

HOW TO SUCGEED IN THE ELECTRONICS BUSINESS:

INVEST 60p AND MAKE G2.40 net profit

Buy Ambit's new concise component catalogue and get $£ 1$ vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low prices. fast service and technical support facility second to none. Here are some examples from the current issue

CMOS		4077	0.18	4705	4.24	7447 N	0.62	74153 N	0.55	74366 N	0.85
4000	0.13	4078	0.18	4706	4.50	74480 N	0.56	74154 N	0.55	74367 N	0.85
4001	0.13	4081	0.18	4720	4.00	7450	0.14	$74155 N$	0.55	74368 N	0.85
4002	0.13	4082	0.18	4723	0.95	7451 N	0.14	74156 N	0.55	74390 N	1.85
4007	0.15	4093	0.41	4724	0.95	7453 N	0.14	74157 N	0.55	74393N	1.85
4008	0.70	4099	0.93	4725	2.24	7454 N	0.14	74159 N	1.90	74490 N	1.85
4008AE	0.80	4175	0.90	40014	0.54	7460 N	0.14	74160 N	0.55	$7415 N$	
4009	0.30	4502	0.79	40085	0.99	7470 N	0.28	74161 N	0.55	74LSN	
4010	0.30	4503	0.48	40098	0.54	7472 N	0.27	74162 N	0.55	$74 \mathrm{LS00N}$	0.11
4011AE	0.24	4506	0.63	40106	0.69	7473 N	0.28	74163 N	0.55	74LS01N	0.11
4011	0.15	4507	0.38	40160	0.68	7474 N	0.28	74164 N	0.55	$74 \mathrm{LS02N}$	0.12
4013	0.32	4508	1.95	40161	069	7475 N	0.35	74165 N	0.55	74.503 N	0.12
4015	0.64	4510	0.66	40162	0.69	7476 N	0.30	74166 N	0.70	74LS04N	0.14
4016	0.30	4511	0.66	40163	0.69	7480 N	0.26	74167 N	1.25	74LSO5N	0.14
4017	0.45	4512	0.70	40174	0.69	7481 N	0.20	74170 N	1.25	74LS08N	0.14
4019	0.38	4514	1.45	40175	0.69	7482 N	0.75	74173 N	1.10	74LS09N	0.14
4020	0.58	4515	1.45	40192	0.75	7485 N	0.75	74174 N	0.75	74 LS 10 N	0.13
4021	0.68	4516	0.75	40193	0.75	7486 N	0.24	74175 N	0.75	74LSIIN	014
4022	0.64	4518	0.40	40194	0.69	7489 N	1.05	74176N	0.75	74 LS 12 N	0.15
4023	0.15	4520	0.75	40195	0.69	7490 N	0.30	74177N	0.75	74 LSI3N	028
4024	0.45	4521	1.60			7491 N	0.55	74178 N	0.90	$74 \mathrm{LS14N}$	0.46
4025	0.15	4522	0.89	TTL	N	7492 N	0.35	74179 N	1.35	74 LS 15 N	0.14
4026	1.05	4527	0.89	7400 N	0.10	7493 N	0.35	74140 N	0.75	74.520 N	0.13
4027	0.50	4528	0.78	7401 N	0.10	7494 N	0.70	74181 N	1.22	74 LS 21 N	0.15 0.15
4028	0.50	4529	0.89	7402 N	0.20	7495 N	0.60	74182 N	0.70	74 LS 22 N	0.15
4029	0.75	4531	0.85	7403 N	0.11	7496 N	0.45	74184 N	1.20	$74 L S 26 N$ $74 . S 27 N$	0.18 0.14
4030	0.35	4532	120	7404 N	0.12	7497 N	1.40	74185 N	1.20	74LS27N $74 . S 28 N$	0.18 0.19
4035	0.75	4534	5. 30	7405 N	0.12	74100	1.10	74188 N 74190 N	3.00	74LS28N	0.19 0.13
4040	0.68	4536	3.00	7406 N	0.22	74104	0.62	74190 N 74191 N	0.55 0.55	74 LS 30 N 74 LS 32 N	0.13 0.14
4042	0.58	4538	0.97	7407 N	0.22	74105 74107	0.62 0.26	74191 N 74192 N	0.55 0.55	$74 L S 32 N$ $74 . S 33 N$	0.14 0.16
4043	0.65 0.93	4539 4543	0.89 1.05	7408 N 7409 N	0.15 0.15	74107 74109 N	0.26 0.35	74192 N	0.55 0.55	74 LS 33 N 74 LS 37 N	0.16 0.15
4044	0.64	4549	3.50	7410 N	0.12	74110 N	0.54	74194 N	0.55	74LS38N	0.16
4046	0.69	4553	3.20	7411 N	0.18	74111 N	0.68	74195 N	0.55	74LS40N	0.13
4047	0.69	4554	1.30	7412N	0.19	74112 N	1.70	74196 N	0.55	74LS42N	0.33
4049	0.30	4555	0.48	74.13 N	0.27	74116 N	1.98	74197 N	055	74LS47N	0.39
4050	0.30	4556	0.53	$7414 N$	0.51	74118 N	0.85	74198 N	0.85	$74 \mathrm{LS48N}$	0.65
4051	0.65	4557	2.30	7416 N	0.27	74119N	1.20	74199 N	1.00	74LS49N	0.59
4052	0.65	4558	0.89	7417N	0.27	74120 N	0.95	74221 N	1.00	$74 \mathrm{LS51N}$	0.14
4053	0.65	4559	3.80	7420 N	0.13	74121 N	0.34	74246 N	1.50	74LS54N	0.15
4054	1.30	4560	1.75	7421 N	0.28	74122N	034	74247 N	1.51	74LS55N	015
4055	1.30	4561	2.18	7423 N	0.22	74123N	0.40	74248 N	1.89	74 LS 73 N	021
4056	1.30	4562	0.89	7425 N	0.22	$74125 N$	0.40	74249 N	0.11	74 LS 74 N	018
4059	5.75	4566	3.80	7426 N	0.22	74126 N	0.40	74251 N	105	74 LS 75 N	0.28
4060	0.88	4568	1.45	7427 N	0.22	74128 N	0.65	74265 N	0.66	74 LS 76 N	0.19
4063	1.15	4569	1.50	7430 N	0.13	74132 N	0.50	74273 N	2.67	74 LS 78 N	0.24
4066	0.34	4572	1.95	7432 N	0.23	74136 N	065	74278 N	2.49	74 LS 83 N 74 LS 55 N	050 070
4067	4.30	4580	3.25	7437 N	0.22	74141 N	0.45	74279 N	0.89	744 LS 865 N	070 018
4068	0.18	4581	1.50	7438 N	0.22	74142 N 74143 N	185 250	$74283 N$	1.30 350	74 LS 90 N	018 0.32
4069 AE 4070	0.18 0.18	4582 4583	1.65 0.80	7440 N 7441 N	0.14 0.54	$74143 N$ $74144 N$	2.50 2.50	$74288 N$ $74285 N$	350 3.50	74LS90N	0.32 0.70
4071	0.18	4584	0.45	7442N	0.42	74145 N	0.75	$74290 N$	1.00	74LS92N	0.34
4072	0.18	4585	0.45	7443 N	062	74147N	1.50	74293 N	1.05	74 LS 93 N	0.34
4073	0.18	4702	4.50	7444 N	062	74148 N	1.09	74297 N	2.36	74 LS 95 N 74 L 96 N	120
4075	018	4703	4.48	7445 N	062	74150 N	0.79	74238 N	1.85	74.596 N	120
4076	0.60	4704	4.24	7446 N	0.62	74151 N	0.55	74365 N		74.5107	

am
TELEPHONE (STO 0277) 230909 TELEX 995194 AMBIT G POSTCODE CM14 4SG

FEBRUARY 1982 Vol 4 No 2

PROJECTS

* UNIVERSAL RELAY DRIVER
A project with 101 uses.
18
* NOISE-LESS FUZZ BOX
The sounds of silence. 26
* TV/FM MASTHEAD AMPLIFIER
Give vour TV a boost where it helps.
* QUICK PROJECT 64
FEATURES

MAKIN' TRACKS

All you need to know to make printed circuit boards 11

* SCALING THE HIFI HEIGHTS
Part Two considers Arms and the Man 37
FAMOUS NAMES
45
Meet Lee DeForest on page
46

SPECIALS

READER OFFER

A Special kit to get started making PCBs at home. 22
A GOOD JOINT IS HARD TO FIND
A comprehensive special feature on soldering techniques.

REGULARS

Monitor 6
Your Letters 23
Errata 23
Clever Dick 30
Bookshelf 50
PCB Service 63
Index to Advertisers 65
Classified 66
Editor: Ron Keeley
Editorial Assistants:Paul Coster BSc
Tina Boylan
Senior Art Editor: Andrew Sawyer
Layout: Enzo Grando
Advertisement Manager: Esme Dansiger
Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell

Hobby Electronics is normally published on the second Friday of the month prior to the cover date.
Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01437 1002. Telex No 8811896 . Published by Argus Specialist Publications Lid, Distributed by Argus Press Sales \& Distribution Ltd, 12-18 Paul St, London EC2A 4JS. Printed by QB Ltd, Colchester. Covers printed by Alabaster Passmore
Copyright: All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing of kits of the projects must be sought from the Publisher. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Argus Specialist Publications Ltd, cannot be held responsible for it legally. © Copyright 1981 Argus Specialist Publications Ltd $A B C$. Member of Audit Bureau of Circulation.

Right first time.

Rechargeable Light

Portable VOM
If you've never built a kit before, Heathkit have some very pleasant surprises for you. Their kits are easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need is there.

Follow the steps and you'll end up with a hand-crafted, well designed piece of equipment. Much better than shop bought, massproduced. Because you built it yourself

Digital Clock There's a great range of kits to start you off. From a

Youbuildonourexperience HEATHK"

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits include ALL the electronics and hardware needed. Printed circuit boards ffully etched drilled and roller tinned) or Veroboard are, of course, included as specified in the origina aricle, we even include nuts, screws and i.C. Sockets. PRICES INCLUDE CASES Unles NCLUDED If you do not have the issue of HE which includes the project you wil NCLUDED. Hy

Reprints available separately 45 peach + p. 8 p. $40 p$

DRUM SYNTHESIZER Dec 81. Full ki GUITAR
GUITAR HEADPHONE AMPLIFIER Oec 81 E 3.48
IN CAR CA
IN CAR CASSETTE POWER SUPPLY Oec 81 E4.46
SOUND TORCH Nov 81 less torch mic $£ 17.98$
SCRATCH FILTER Nov 81 Mono 65.44 Stereo 88.40 SIMPLE STYLUS ORGAN case 81.56 case $\mathbf{~} 4.74$
METRONOME NOV 81 f 11.88
TELEPHONE BELL REPEATER Oct 8 E12.78.
Med Linking wire extra 14p metre
COMBINATION LOCK Oct 81 less solenoid £17.43
DOOR INTERCOM Oct 81 (less solenoid) E22.39
BABY ALARM Oct 81 ع8.14, Fig 8 linking wire 7p metre
TOUCH LAMP Oct 'DIANA' METAL LOCATOR Sepl 8 C33.85
LOWER POWER PILOT LIGHT Sept 81 less case $£ 1.30$
LIGHTMATER ALARM Sept 81 f5.98 CAR LIGHTS DELAY Sept $81 \mathbf{6 5}, 99$ POWER PACK Sept 81 c9.58
SHORT WAVE RADIO Sept 81 E23.98 Extra: Mono headphones $£ 2.98$ REACTION TESTER GAME Sept 8 E11.98 R.P.M. METER Aug 81, inc prob 515.48

VARIABLE BENCH POWER SUPPLY Aug 81 £25.35
ULTRASOUND BURGLAR ALARM July 81 £18.67
ELECTRONIC DOOR BUZZER July 81 f5.65
ELECTRONIC METRONOME July 81
TREB
TREBLE BOOST July 81 £10.93 81 ©5.34 ENVELOPE GENERATOR June 8 f16.85
AUDIO MIXER June 81 f4.99
VOICE OPERATED SWITCH May 81 £10.37. Microphone extra $£ 1.41$ SUPER SIREN April 81 £ 19.52 DOORBELL MONITOR April 81 £3. 28 WINDSCREEN WASHER ALARM april 81 C5.78
PUBLIC ADDRESS AMPLIFIER March 81 £18.21, Extras - horn speakers $£ 6.83$ each. PA MIC ©4.40
FUZZBOX March 81 £ 10.35
WINDSCREEN WIPER CONTROLLER March 81 f7.67
STEAM LOCO WHISTLE March 8 \&1226
PHOTOGRAPHIC TIMER March 81 $£ 3.28$
HEARTBEAT MONITOR Feb 81 ¢23.40 HIGH IMPEDANCE VOLTMETER Feb 81 f9.87

AUDIO SIGNAL GENERATOR Feb 81 £18.93
TWO-TONE TRAIN HORN Feb 81 E6. 24 ess case
MEDIUM WAVE RADIO Feb $81 \mathbf{~} 7.67$
LADDER OF LIGHT (Sound into Light) Jan 81 £29.98
BENCH AMP Jan 81 ¢10.10
NICARD CHARGER Jan 81 f7.67
CHUFFER Jan 81, less case $£ 7.04$
MODEL TRAIN CONTROLLER Dec
BATTERY CHARGE MONITOR Dec 80 C5. 40
STEREO POWER METER Dec 80 £20. 87
MEMORY BANK - MINI SYNTH.
ESISER Nov \& Dec 80 E26.61
PARTY GRENADE Nov 8188.77 .12 inc
test leads
DOUBLE DICE NOV 80 ¢15.18
GUITAR PRE-AMP Nov 80 £5.65 case (diecast) extra $£ 2.99$
NOBELL DOORBELL OCt $80 〔 11.98$
NTRUDER ALARM Oct $80 £ 19.61$
FREEZER ALARM Oct 80 with probe ¢10.36
TUG OWAR Oct 80 〔17.5
KITCHEN TIMER Oct 80 12\% resistors) 67.98

MICROMIX Sept 80 f8.60
AUTO PROBE Sept 80 E3.99 less case
TOUCH SWITCH Sept $80 € 2.57$ less case
8 contacts
GUITAR PHA SER Sept 80 f15.22
BENCH PSU Sept 80 E31. 35
OP AMP CHECKER Aug 80 £4.99
MOVEMENT ALARM Aug 80 £6.24
PASS THE LOOP GAME Aug $80 \mathrm{£15.37}$ SOUND OPERATED FLASH TRIGGER July 80 no skt $£ 4.99$
FOG HORN June 80 £6. 21
SPEED CONTROLLER FOR R/C April 80 16.41 lless case.

DIGITAL FREQUENCY METER April 80
E39.35
ELECTRONIC IGNITION (CD) April 80
DIGI.DICE Jan 80 C10.9
BARGRAPH CAR VOLTMETER Dec 79 7.98 less case

RING MODULATOR Dec 79 €14.24
GUITAR TUNER NOV 79 f 11.99
ANALOGUE FREQUENCY METER Oct $79 £ 16.98$

TION SIREN Oct 79 £17.57 HOME SECURITY UNIT Aug 79 £31.41 ess siren
SIREN $\mathbf{E 5 . 5 9}$ less case
LED TACHOMETER Aug 79 £19.77
NJECTOR TRACER Aug 79 £ 4.77
LINEAR SCALE OHMMETER July 79 £17.57
GSR MONITOR June 79 £10.59
WHITE NOISE EFFECTS UNIT May 79 [19.51
CARALARM Feb 79 ¢12.07
PUSH-BUTTON DICE Dec 78 £7.67

MEMORY BANK SYNTHESISER

Miniature synthesiser feat uring vibrato. envelope, tempo, volume + pitch controls. Uses 24 push button switches in a keyboard style layout. Based on a custom designed L.c. The accessibie memory stores a 32 beat length sequence of notes ${ }^{+}$ use of an external amplifier if wished.

Memory Bank Synthesizer £26.61
TRAIN SET ACCESSORIES MODEL RAILWAY SPEED CONTROLLER
From E.E. Sept. Features fully variable speed control - from zero to full speed. Forward/reverse switch. Auto start and stop for realism. Brake and speed boost. Emergency stop. Use withr the simple controller supplied with most train sets. part includet 6134 Reprininstructions ertre 45p

 TRAIN SOUNDS - from H.E.

STEAM LOCO WHISTLE Mar 81

MAGENTA ELECTRONICS LTD.

SOLDERING

ANTEX X5 SOLLERING IRON 25W £5. 48 SOLDERING IRON STAND
£2. 40 SPARE BiTS. Small standard, large. E5n pach, For $X 5+\times 25$.
SOLDER. Hanc, SOLDER. Hanci, size 99 p.
HOW TO SOLDER LEAFLET HOW TO SOLDER LEAFLET

12p
DESOLDER BRAID 69p HEAT SINK TWEEZERS 29p -LSOLDER PUMP $£ 6.48$ SOLDE? CARTON $£ 1$-84 LOW COST CUTTERS £1.69 LOW COST LONG NOSE WIRE STRIPPERS \& CUTTERS

MORE KITS AND COMPONENTS

 IN OUR LISTS FREE PRICE LISTPricelistincluded with orders or send sae (9×4)
CONTAINS LOTS MORE KITS, PCBE
COMPONENTS

1982 ELECTRONICS CATALOGUE Illustrations, product detcriptions, eircuits all in*
cluded. Up-to-date pricsllist enclosed. All products are stock lines for fast delivery. Send 70p In stamps of add 70p to or der.
MÖRE H.E. KITS PLUS E.E. and E.T.I. PROJECT

DRUM SYNTHESISER

From ETI April 81 the The

independent percussion channets - tach with
pitch, notse, decay and level controts. The swnthesiser contains a velsatile in buit sequencer which enables different beat sequences to be
programmed using 8 way OIL switches. Beats from either channel may bee individually programmed. or combined in any mirture. Once
programmed the sequance can be replayed auto programmed the sequance can be replayed auto-
matically or manality as requitec. Manusi and
automatic operation are possible together so the unit can be plagyod manuatly with an
occasional few bars of aufomatically sequenced thythm. A very versatite instrument. Drum Synthessiser Kit less case $\mathbf{f 3 9} 98$. with case $\mathrm{Lb3} . \mathrm{S6}$
See also M.E. Projects Dec 81 - another Drum
Synthesiser

SOUND BENDER

From ETI Oct 81. A very effective 'Ring
Modulator' sound effects unit. Thus design incorporates its own variabie frequency oscillatod with sine or triangular wavetorm, and o 4 quadiant multiplier cictuth.
A mix cuntrol allows the modulated signal to be outer space. voice and music eftects. Just
connect a signal source and a power amplifier and speaker. Sound Bender Kit $\mathbf{1 2 0 . 7 6}$. less case £15.7e.

GUITAR NOTE EXPANDER

Unit. This versabile project can produce overlo

 effects which closely approach the sound of an Overdiven valve amp 1. Overalle overgrive 2. Overall compression ls sustaind 4. H.F. compression lor bass overdrive 5. Mid frequency eupansion 6. H.F. expansion for H.F. accentuation. controf Guitar Note Expander Kit $\mathbb{£ 1 8 . 4 7}$. liss case 11125.Reprints of the Above 45p each

ADVENTURES WITH by Tom Duncan MICROELECTRONICS

An easy to follow book suitable for all ages. Ideal for beginners No soldering. Uses a Binboard 1 breadboard, gives clear instructions with lots of pictures. 11 projects based on integrated circuits -includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, efc. Component pack includes a Bimboard 1 breadooard and all the components for the projects.
Adventures with Microelectronics £2-55. Component pack £29-64 less battery.

ADVENTURES WITH ELECTRONICS 皆Tem

An easy to follow book suitable for all ages. Ideal for beginners No soldering, uses an S-Dec oreadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2 \cdot \mathbf{4 0}$. Component pack £17.98 less battery.

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS \& KITS. All producis are stock lines and are new \& full specification. We

MAGENTA ELECTRONICS LTD. HS21, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS. DE14 2 ST. 0283 65435. MON.-FRI. 9-5. MAIL ORDER ONLY. ADD 40p P. \& P. TO ALL ORDERS. ALL PRICES INCLUDE 15% V.A.T. OFFICIAL ORDERS WELCOMí:
IRISH REPUBLIC \& B.F.P.O. EUROPE:
Deduct 10% from price shown Payment. Musi be in Slulling. OROERS ACCEPTED BY PHONE OR SAEALL ENQUIRES

Multitudes of Meters

Electronics enthusiasts are now able to get their hands on the Sanwa range of high quality multimeters through Toolmail Ltd's mail order service. Prices start at $£ 20$ for multimeters which feature a wide range of performance specifications.

Sanwa boasts the widest range of multimeters anywhere in the world, with many of its products regularly specified for use in industry and government in several countries.

For a-fatl colour brochure and details of selected models, contact Toolmail Ltd, Parkwood Industrial Estate, Sutton Road, Maidstone, Kent ME15 9LZ Tel: Maidstone (0622) 672736. The catalogue also contains many useful tools of interest to the electronics hobbyist.

The Case of the In-Car Cassette

To make tape cassette storage easier, more organised - and therefore safer - Cambrasound Ltd offer the Tapemate, the incar tape holder.

Tapemate is made of impactresistant material and is easily attached to the dashboard, behind the visor, or to the door of the car by means of velcro and self-adhesive strips (supplied). Tapes stay secure in the holder thanks to a locking device which eliminates the problem of discovering your favourite tape on the floor, mutilated beyond recognition.

For details write to Cambrasound Ltd, Foreden House, 4/10 North Road, Islington, London N7 9HN or phone 101) 607 8141.

Holy Holography!

Light Fantastic, Britain's first gallery of holography, was opened by Sir Hugh Casson, President of the Royal Academy, on the 3rd December 1981. The inaugural display featured forty holographs (three dimensional images created by laser beams) which showed a cross-section of hologrophy from works of art to engineering and promotional holographs, as well as a display of 'laser writing' advertising.
The gallery is located at the centre of Covent Garden at No. 48 South Row (opposite Southampton Street), and
features the most comprehensive exhibit of holography in Britain since the successful Light Fantastic exhibitions in 1977 and 1978.
Light Fantastic will be Britain's premier showcase of holography showing the best of holography in terms of technical achievement, creative interpretation and pure fascination.

The gallery is open to the public from 10 am to 8 pm each day (except Monday) with an entrance fee of $£ 1$ for adults and 60 p for children. Holographs are on sale at the gallery (from $£ 5$ to £9001) along with a wide selection of literature on the subject of holography.

Modular Modes

ILP Electronics of Canterbury, designers and manufacturers of encapsulated audio modules, have announced the addition of four new stereo modules to their family.

The first of the new units is the HY74 stereo mixer, which offers sophisticated five-intoone mixing facilities on each of the two channels. Used in combination with an appropriate preamp and power amp, it is possible to create a quality mixer-amplifier at a reasonable price. The cost of the HY74 itself is $£ 11.45$ plus VAT.

An alternative is the new

HY75 stereo pre-amp with builtin mixer for two signals on each of two channels. The HY75 offers separate bass, mid range and treble controls and costs £10.75 plus VAT.
The other new modules are the HY76, a four-way stereo switch matrix, and the HY77, a combined VU meter drive/LED overload driver module with programmeable gain.

For the future, ILP are promising new products for the new legal CB market.

Contact ILP, Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP. Tel: (0227) 54778 for details.

New 'Scope

The Hitachi V-202 is a low cost dual trace oscilloscope with a full range bandwidth of 20 MHz . Both vertical channels have a maximum sensitivity of $1 \mathrm{mV} /$ division, and variable controls allow intermediate sensitivity between attenuator steps.

The vertical deflection system provides sweep speeds up to 20 nsec/div with $\times 10$ magnification, a comprehensive triggering system with bright line auto mode and an active sync separator for video signals.

The $51 / 4$ inch rectangular CRT has an internal (parallax free) graticule with variable scale illumination, and automatic focus compensation eliminates the need to reset the focus control when altering the brightness.

The cost is $£ 260$, plus VAT, from the distributor, Reltech Instruments, Coach Mews, St. Ives, Huntingdon, Cambs. PE 17 4BN, Tel: (0480) 63570.

Robot Invasion (continued). . .

Systems Control Company and Acorn Computers have designed and developed a small "army" of eight robots, for use in education, research, and light industry. Appropriately called'Smart-Arms', they are similar to a human arm, with a gripping hand, wrist, shoulder and elbow movements.
The 'baby' of the range is the 4E (Educational) model, which has elbow, shoulder rotation and grip movements and is suited for experimental projects; the more sophisticated 6E and 6ES, have a lifting capacity of 200 g and a maximum reach of 300 mm . Top
of the range are the 6R and 61 series; the $6 R$ robot is designed for research use while the 61 is a lower-priced, industrial version.

The robots are completely programmable - the software is in BASIC. Time delays and jumps between points in a sequence of movements can be programmed, and complete sequences may be stored on cassette.
With prices starting at £430 (for the 4E), the Smart Arms will be of great interest to keen students of rototics. For all the details contact Systems Control 30 Thirsk Road, Northallerton, North Yorkshire, DL6 1PH, Tel: (0609) 70643. or Acorn Computers, Tel: Cambridge (0223) 245200.

Soft Competition

Here's a contest for computer buff's who know the BASICs Sinclair Research Ltd is sponsoring a special award scheme to help meet the need for more ZX81 educational software. The prizes are six ZX Printers, for the best programs accepted by the end of March 1982 for the Mini and Micro Computer Users in Secondary Education (MUSE) software library.

MUSE is a national organisation which co-ordinates educational computer activities in primary and secondary schools, teacher training institutions and colleges. MUSE and the Educational 2X80/81 Users Group (EZUG) will administer the scheme and, in collaboration
with Sinclair, judge submissions in the categories at primary maths and science, other primary, secondary maths, science and computing, other secondary and special education.

Sinclair's sponsorship of this competition is the result of their interest in supporting, wherever possible, the development of educational software. The company has already sold $\mathrm{ZX81s}$ to more than 2300 secondary schools under its subsidised purchase scheme.

Entries or inquiries should be sent to Eric Deeson, EZUG Organiser, Highgate School, Birmingham B1 2 9DS. Closing date is February 27th, so you'll have to be quickl

On the Groove

Seeing is believing, so they say . . . and pictures don't lie, but if you can't believe your eyes, you'll have to trust your ears when you hear the Record Runner motoring across your favourite album. Yes, it does look like a micro Volkswagen Minibus, but it contains a speaker built into the roof and a stylus where the exhaust should be... and it plays records without the help of any stereo equipment whatsoever. Just place it on the vinyl and the Record Runner will motor around the disc, making music as it goes.

The perfect present for the man who has everything else? See it and believe it, at The Video Palace, 62/64 Kensington High Street, W8.

MONITOR

Spare Hands

Serious HE project builders will be familiar with the traditional problem of the Third Hand: how to hold a printed circuit board, a sensitive component, a heat sinking clamp, solder and the soldering iron with only the regulation two hands. This outstanding problem for the electronic constructor has been solved by a British manufacturer, Carlton Nichol \& Co. Ltd, who have released two new printed circuit board holders. Both models are made from aluminium and plated steel, and allow easy rotation through 360 degrees with positive locking at any angle. The boards are firmly held in any convenient position, leaving both hands free.

The CNC 6 will take boards of up to $10^{\prime \prime} \times 7^{\prime \prime}$, held in position by spring-loaded clamps, while the larger CNC 9 will hold boards as big as $8^{\prime \prime} \times 8^{\prime \prime}$ in sliding vee clamps which minimise damage to the surfaces but allow maximum ease of access.

An optional anti-static foam pad allows the insertion of a number of sensitive components before the board is flipped for

soldering. The pad is on a backing plate and clips onto the rotating arms of the PCB holder.

The listed prices including VAT, of these handy holders are £ 13.80 for the CNC 6, £ 15.95 for the CNC 9, and the pad is
$£ 9.20$ - but just think of the savings on burn ointment, and the goodwill you will gain when it is no longer necessary to ask someone to ". . . just hold this a moment, please . . ." as you wave a hot iron within milli-
metres of their trembling fingers
The PCB holders are available direct from the manufacturers Carlton Nichol \& Co. Ltd., Goldkey Industrial Estate, Kelvedon, Essex.

Disabled Aid

Undergraduate apprentices at British Aerospace Dynamics Group, Bristol Division, have built a robot arm and a tone operated telephone in a training exercise. Both, with further development, could be used by the disabled.
The arm is electro-mechanical, lifts up to half a kilogramme, can be programmed to repeat simple functions, move in three dimensions, and rotate through 360 degrees.

The tone operated telephone is remotely controlled by three separate whistles which can be positioned away from the telephone. The whistle tones enable the desired number to be obtained, displayed and electronically fed into the telephone. A directional microphone enables the telephone to be answered from a distance.

These projects ware the result of the collaboration of seven apprentices who were given abudget of $£ 200$ for each project and a set of specifications.

For further information contact T. C. Bickerton, Public Relations Manager, British Aerospace Dynamics Group, Bristol Division, PO Box 5, Filton Bristol BS12 70W. Tel: Bristol 693831.

Jogging Time

Jogging may be hazardous to your health yet, desplte this, masochists everywhere persist In pounding the path, riaking shin splints, pulied muscles, ankleeating dogs and asthma, in their quest for fitness.
Riding high on the myths ofprosperity through pacing, new products are constantly creeping into the market; now Casio Electronics has made the running with one of their multimode watches.

The model $\mathbf{} 100$ features what Casio calls "a novel 'pacer' mode." designed to help runners get the most from their tortuous actlvity. Before donning jogging togs, you simply feed the watch information about your length of stride and preferred running rate. The atride length is set digitally and is measured in elther feet and inches or in meters. Running rate is expressed by audible pips on an adjustable 69-step scale, and is also shown on the display

Provided a jogger keeps pace with the pips and holds the set stride length, the watch will show target speed, elapsed time, distance traveled, and the number of strides made. Of course the J100 gives the time. day and date, and also includes a 1/100th second stopwatch and an eight-digit, four-function calculator, a daily alarm, and an
hourly time signal. Whew! Does anyone make watches that simply tell time?
Joggers can huff and puff down to the shop and pick up this new watch for $£ 22.95$.
often avallable below this recommended price. For more information contact Casio, 28 Scrutton St, London, EC2A 4 TY, Tel: 01-377 9087. But don't say you heven't been warnedl

Ând Ñow for Something Similar . .

The new model $3 T$ from Centemp is a battery opereted, hand held, $31 / 4$ digit liquid crystal display digitel multimeterwith push-button control over six functions in 16 ranges. It measures DC voltege, AC voltage, DC current, resistance. Diode/continuous check and also has a transistor gain measurement facility.
The model 3T can be yours for £43.50 plus VAT.
Contect Centemp, 62 Curtis Road, Whitton, Hounslow, Middx. TW4 5PT. Tel: 01-894 2723.

Features

Makin'

Tracks
One of the neatest ways of building up a circuit is on printed circuit board. In this special feature, guest writer Don Keighley shows what a printed circuit board is and how to make your own

PRINTED CIRCUIT BOARDS - PCBs - are used extensively because they provide a neat and reliable way of holding components and of making the necessary connections between them. In the days before PCBs, circuits were built up underneath a large metal chassis with the components strung between connection points - tag strips, they were called - in a seemingly haphazard manner. You only have to look inside an old valve radio or TV to get the point. All electronics manufacturers must have breathed a sigh of relief when PCBs were invented.

PCBs aren't used only in industrial equipment - they are equally suitable for the hobbyist. The difference between commercial/industrial PCBs and those we make at home is really only in the techniques used.

Figure 1 shows the PCB of the Intelligent NiCad Charger project from last month's issue, with the components drawn in to show where they go; Figure 2 shows the same PCB viewed from the bottom. It is quite easy to make a board such as this at home - and shortly, we will explain how it's done.

Board Stiff

Now that you know why a PCB is used, let's backtrack a little and see just exactly what it is. Any PCB starts life as copperclad board - a thin base-board (about 2 mm) of insulating material (such as fibre-glass or resin-bonded paper) with an even thinner (about 0.25 mm) copper coating on one side. Figure 3 shows a cross-section of a piece of copper-clad board Some highly specialised circuits may be built on boards with copper on both sides - called, naturally, double-sided PCBs.

To turn this copper-clad board into a PCB we have to remove all excess areas of copper, leaving behind only those areas (which make up the foil pattern) that we want. After this it's a simple job to drill the holes and to insert and solder components in their places.

By this time you'll be wondering, no doubt, how you 'remove' the areas of copper which aren't wanted - do you need a laser gun to blast them off the face of the earth? Or perhaps Superman might fly along to save the situation and burn them away with his infra-red vision?

The answer is nothing quite as sci-fi as that l'm afraid; in fact it's all down to pure, old-fashioned school chemistry. You see, copper is a metal and metals are dissolved by acids. So all we have to do is place the board into acid and the areas of unwanted copper will be rapidly dissolved (etched) away. But now we have another problem - surely the acid will etch away the wanted areas as well? Well, it will if we let it. But, if we cover up the wanted copper, in the shape of the required foil pattern (as shown in Fig. 4), with acid-resisting material before putting the board into the acid, then those areas will remain un-etched when the rest has disappeared (see Fig. 5).

Down To The Nitty-Gritty

By now, you'll have realised that the production of any PCB goes through three stages:

> design of the PCB foil pattern to suit the circuit
> application of resist in the shape of that foil pattern
> - etching of the PCB until unwanted copper areas are removed, subsequent removal of etch-resist and drilling of the component holes prior to circuit make-up.

I'm now going to unravel the mysteries of each stage and show you how to set about designing and making your own PCBs.

INSULATING MATERIAL
Figure 3. Cross-section of a piece of copper-clad board.

INSULATING MATERIAL
Figure 4. Cross-section of copper-clad board with acid-resistant material applied in the shape of the foll pattern.

Figure 5. Atter etching, the unwanted copper is etched away and those areas in the shape of the foll pattern (with acid-resisting material) remain.

Designing Your PCB Foil Pattern

The only things you'll need at this stage are: pencils, a rubber, some paper (plain, graph and tracing) and either: a selection of one of each type of component used - ie one resistor, one transistor, one IC, etc - or their physical dimensions. This is because you need to know how big each component is so that, when you begin the layout of the board, you know what distance to leave between component lead holes. If you at tempt more than just a couple of PCB foil pattern designs you'll begin to remember the sizes of the more common components and you will only need to measure the unusual ones.

1) Begin by displaying the circuit diagram in front of you, along with a sheet of plain paper. Make sure all components in the diagram are numbered so that as you lay out the foil pattern design on paper you can mark each component's location with its number. Imagine that the sheet of paper is your PCB. All of the components fit into the 'board' from the top, therefore the 'foil pattern' is underneath and you can't see it directly.

2) Choosing a central component, say an IC, pencil in its approximate shape and mark where its connection leads enter into the paper 'board'. Now, draw another component which is connected to the first component

3) When you have drawn a few components on the paper, you can begin to connect them by pencilling-in 'tracks' on the paper, beiween holes. Don't worry if you get stuck, or even make a mistake; that's why you have the rubber! Rub-out the error and start again.
Don't be afraid to position components close together: a spacing of 2 mm between components is ideal.

4) Remember that the finished PCB will have its foil pattern on the other side to its components, so tracks can actually pass underneath components. There is no reason why iwo; or even three tracks cannot pass underneath a component, as long as the tracks don't touch either each other, or the component lead holes.

Draw the remainder of the circuit components on the paper and draw in the remaining tracks to complete your foil pattern.

5) Place a sheet of tracing-paper over a sheet of graph paper and tape the two together along the edges. Now, using the grid of the graph paper to help align components, redraw the layout on the tracing paper. Draw component shapes in one colour of pencil (say, red) and tracks in another colour (say, black). In this way you can instantly tell which is the 'top' and which is the 'bottom' of the board. Check, as you redraw the foil pattern, that it is correct with regard to the circuit diagram.

6) The tracing-paper copy of your PCB foil pattern is now your reference. Cut, or pull off, the tape holding it to the graph paper reference. Cut, or pull off, the tape holding it to the gracing-paper, so that you can see the 'underside' of the board - the black connection pattern corresponds to the actual foil pattern layout required on the copper surface of the copper-clad board.

Transferring Your Foil Pattern On To PCB

Now that you have the foil pattern, you need to transfer it on to the copper-clad board using etch-resistant materials (resist). This resist can take many forms: the simplest can be ordinary household enamel or gloss paint, applied with a fine brush (messy); the most complex is photograhic resist, developed on the circuit board much like your summer holiday snapshots are developed on film. The one you use will depend on how much you're prepared to pay. You can expect to pay about (gulp) $£ 60$ for a basic photographic system: this will let you make firstclass PCBs, but it won't do your pocket a lot of good - it's the system which is likely to be used by schools and colleges where large numbers of one-off PCBs are needed.

The poor electronics hobbyist doesn't normally have that sort of monay to spend on his pastime, so a cheaper way of doing the job is preferable - but it must also produce boards of good quality. One of the best resists for hobby use the method is not too expensive and can produce excellent quality boards) comes in the form of rub-down transfer sheets. All the shapes you need, ie holes, IC pads, transistor pads, straight and curved track, are available and a number of companies produce their own versions. Most electronics hobby shops will stock at least one variety. An outlay of about a fiver should get you all of the shapes you need to let you make a number of PCBs.

Putting the foil pattern on the copper board is easy:

1) Lay the pattern on the copper surface of the board and, with a sharp-pointed instrument (a scriber or the point of a pair of compasses), prick through the pattern in to the copper at every component hole location. The foil pattern can be your own design or one taken from HE.

2) At every prick-mark in the copper, rub down a transfer circular hole.

3) Following your foil pattern, interconnect the holes with transfer tracks until the resist on the copper has the same overall shape and connections as your foil pattern drawing. Be careful as you do this job, because any small cracks or breaks in the resist will mean that a corresponding crack or break will occur in the copper when the board is etched. If you make any mistakes at this stage, they can be removed with the corner of a small piece of sticky tape - but once you have etched the board your mistakes are permanent.

When you finish this task your board is ready to be etched.

Etching Your PCB

The etchant used to etch PCBs is not actually an acid - it's ferric chloride a horrible messy fluid - but it does its job well. Most local component stockists will sell it bagged as crystals or granules and you simply mix water with them to give an etchant solution.

The etching process takes place more rapidly when the ferric chloride solution is warm and you can buy specially built containers or 'baths' to hold the ferric chloride. These baths may be fitted with heaters to maintain a high temperature, with agitators to keep the solution moving (vital to stop the build-up of copper oxide on the surface of the copper, which prevents further etching). They are, however (you guessed itl) expensive.

At the other end of the scale, a plastic photographic-type dish can be used as a bath to hold the ferric chloride during etching, but this method is fraught with hazards - ferric chloride is a very dangerous fluid and a strong solution of it will merrily eat its way through your clothes, the carpet, or even the stainless steel kitchen sink (try explaining that to the missusl).

Until recently there was no real alternative to the these two methods but a new, low-cost, etching system seems to be the answer to the hobbyist's dreams. It's the subject of an HE Reader Offer, on page 51 and I think you'll agree that it offers excellent value for money.

The HE Reader Offer PCB Etching System is supplied in an expanded polystyrene box which is internally formed to hold the various bits before and after water has been added to the etchant granules. This polystyrene box, therefore, lets you store the system safely and tidily between use. Enough granules supplied to allow a number of PCBs to be etched. Most readers will find they use it only once or twice a month, so this way of storing it will be very convenient. All etching is done within a polythene bag and no mess is involved when making a PCB.

The way to use this system to etch a printed circuit board is illustrated in the following pictures. Start by unpacking the bag from its leak-proof box and making sure everything you need is to hand before commencing.

1). Holding the bag flat, make sure that the bottom clip is in place.

2). Remove the top clip and add 250 ml of warm water. If you have not got a measuring jug, use the polythene bag supplied. It will hold 250 ml when full to within an inch of the top.

3) Re-seal the top of the bag. Remove the bottom clip, mixing the water and the granules. Rock the bag backwards and forwards to cissolve the granules.

4) Seal the solution in the bottom of the bag. Unseal the top and insert the PCB then reseal the top.

5) Release the tottom clip then, holding the bay flat, rock it so that the etching solution flows evenly across all parts of the board. Check every few minutes to see if the etching process is complete.

6) Hold the bag by the bottom and turn it upside-down; holding onto the PCB, turn the bag right way up and squeeze ariy remaining solution down into the bottom of the bag.

7) Seal off the solution in the bottom of the bag, then remove the top clip. Leaving the PCB inside the bag, rinse off with cold running water.

9) All that's left to do is to clean the etch-resist off the copper tracks and to drill the holes for the component leads. One of the many 12 V hand-held drills is suitable for the job, or a hand drill can be used if one of the powered variety is not available. The best sized drill bit is 1 mm

10) The completed PCBI The board is now ready for the components to be inserted and soldered in place. Provided the PCB layout (and all the components) are correct, there is now very little that could - or should - go wrong!

GREENWVELD
 443F Millbrook Road, Southampton. SO1 OHX

All prices include VAT (a) 15% - just add 40p post AMAZING! COMPUTER GAMES
PCBs FOR PEANUTS!!
 to omer these at increcibie fow prices

STARBIRD

Gives reatistic ergyine sounds and flashing lasel Hasth - accetersting angine nose when mooule
is pointed up. decelterating noise when pointod down. Presss contect to see listh ond hear blast of lasers shboting PCB testiod and working
complete with spesker and ball clip. Ineeds PP3): PCB wise $130 \times 60 \mathrm{~mm}$ Only $\mathrm{C2.96}$

COMPUTER BATTLESHIPS

MICROVISION CARTRIDGES

ELECTRO-DIAL

Electrical Combination Cock - Tor maximum Dial is turried to the right to one number, wett to d stcond number, then right again to a third

DEYELOPMENT PACXS

hores sre designed to oive the constructor

 compiefe range so the righ value is to hend tial neving over buying individual patti Koot. 5ov coramic plate capaciotis. 5%

 $220013004 / 2$
$\alpha 003$ C2200 or simular Polvester capactions. 10


```
sin0.
```

mounting 100V. 10 axch of the following 0033 , 0047 . 0055 . 0018 . 00222.0027 .0033.

 100wF. Total 70 crapociors. Paice. ta se.
 copacitors Paice: C8 ${ }^{35}$
K 021 CA 25 revisiors or similet, miniature $1 / 4$ proiecter 10 of each value from 10 ohms to
im. E12 series Total 610 resistors. Paice: 0.55

Al the values from $2 V 77$ to 36 V Tolat 280 sen Tors PRICE: 115.95
od. groen and yellow zomp and 5 mm ach

CAPACTTOR BARGANS

[^0]1 N4002 OIODES powest ever pricer tormed leads tor horiz ment fitch 1000

TOROIOAL TRANSFORMER
 1,000 RESISTORS, £2.50 We ve just purchased another 5 million Her to that made iwo vears ago, at the same pricelll K523 1.000 mixed $/ \mathrm{I}$ and $12 \mathrm{~W} 5^{\circ}{ }^{\circ}$ nnig Enormous range of orefer eo PCB

200 ELECTROLYTICS, £4
 huck-ouis 1200 \& 4 : 1,000 E 11.50

CHEAP CHIPS

26477 Sound ic MK 022 P shit 1 tos. ATBMG + volt reg

FILAMENT DISPLAYS

 26537 seg dispoly 12.5 mm high, Idealoperation, toktrg SV \&mA peet seg. Sid RELAY
RELAY
24 a coll. but works well on 6 V D. $2 \times 10 \mathrm{~A}$. c\%

OPTO/REGS/OP-AMPS

ENA5220 2 digil $1 / 2^{\prime \prime} 7$ seg display on PC

 PND360, 367, 501, all 50 Megs. TO3 case $7924120 \mathrm{p}, 7885100 \mathrm{p} .7808$
100p. 7912 100p. 78 CB 230p. Others on B/L 13 ODAmp: UA4136 130D; UA776 $145 p_{\text {pi }}$ UA7 3000: UA318245D.

COMPONENT PACKS
$K 5031150$ wirewound resistors
$12 W$. with a good rongo of values
$K 50520$ a
 K511 200 small vanged rotary and slidert $\mathbf{c} 1.70$ rom a lew pF to .02uF Excellent varrety E1.20
 K 520 Sunch Tolerances rom 1% to 10%
 5521 Heatshrink Pack, 5 diticterent sire $200 \mathrm{~mm}, 50 \mathrm{ol}$

PANELS

 diodes. cons resistors. Hransitior. 2 BC108
 120 V can be used as LED flasher 3 ZV min. Supplied with connection data, suitrble A. ${ }_{2527} \mathrm{Ae}$ 2527 Reed relay panel contains
reeds. 6×25030 or $25230,6 \times 400 \mathrm{viectis}$ 2529 Pack of en-computer panets contanin 74 series 1 Cs Lots of ditterent gates containing pleateopic All Cs are matked with rype no. code or which on didensification sheet
subolied 201 CS 1 . 100 ICs

 RELAYITRIAC PANEL 2537 PCB
componens:
$2 \times 12 \mathrm{NDPCO}$ min, telays, $2 \times 47 \mathrm{ut} 16 \mathrm{v}$ tants. lumer, 10×1 N4001 diodes, $2 \mathrm{~N} 5061,2 \times 3 \mathrm{~mm}$ leds $3 \times 2 \times 3700$, also H - s andes C 's Amazing valuell -
woudd cosi baught separately parts

IW AMP PANELS

AOHI Compsct aunlo amo iniended for record

 plaver on panel $95,65 \mathrm{~mm}$ including volcontrol and swich complete with thob Aparitrom ampe circuliety buith aroung

VU METERS

VEROBLOC BREADBOARD

and tosting crorcuits vers can accom armodate any

REGULATED PSU PANEL

UNIVERSAL RELAY DRIVER

> Operating a relay to switch heavy current or mains voltages is a common application. This project permits a relay to be switched in a variety of ways, from a variety of inputs.

THIS VERSATILE relay driver unit is intended to be used with projects or devices not normally providing a switched relay output. In addition, power for external circuitry can be obtained from the board.

The unit has three groups of 'logic' inputs and a direct input. The relay itself is driven by two transistors, Q1 and Q2, and the direct input goes to the base of Q1 via a resistor (R7). Linking this input to the unit's $O \vee$ rails - via a switch, a transistor which is turned on by a signal (open-collector logic) or a logic gate output - will operate the relay.

The logic circuitry on the board can be implemented by installing Link 1, which connects the output of the logic circuitry to the direct input. There are two 'logic high to operate' inputs (pins 1 and 2). A logic high level - ie a voltage level above about 2 V - on either of these inputs will operate the relay. There are also two 'logic low to operate' inputs (pins 7 and 8). Pulling either of these inputs below logic low - about OV5 - will operate the relay. Note that these input pairs are ORed with diodes and can be linked so that one input inhibits the other. In addition there are two 'latch' inputs, pins 3 and 5. Pin 4 is the output of the latch circuitry and latch operation is implemented by linking this pin to one of the other inputs. All the logic inputs are high impedance and can be driven from CMOS circuitry.

The unit is powered from a 12 to 15 V AC source such as a battery or 5 VA transformer. Supply for IC1 (and perhaps any off-board circuitry) is obtained from a simple zener regulator circuit. This can be chosen to suit individual requirements. We used a BZX61C/8V2 zener to provide an 8V2 rail for IC1, and a $220 \mathrm{ohm}, 1$ W resistor for R5. You can use any convenient zener from 5 V 1 to 15 V but no higher, and we recommend 1 W types run at around $50-60 \mathrm{~mA}$ current.

You will have to work out the value of R5 according to your choice of zener. For a 15 V zener, R5 could be 47 ohms, for a 5V1 zener, 270 ohms, or for a 12 V zener, say 100 ohms. There's plenty of latitude and these values are only given as a guide.

The logic circuitry (ie IC1) can be supplied from an off-board source if you wish. To do so, remove R5 and use a 15 V zener for ZD1 to prevent spikes on the external supply line causing
damage to IC1. Note also that the logic levels on inputs $1,2,3$ and 5 should also be no higher than 15 V .

The accompanying drawings illustrate how the unit is used in its four basic modes of operation.

Construction

Construction is very straightforward. The components may be mounted in any order but you will probably find it easiest to leave the relay and C1 until last. Watch the polarity of all the diodes, the transistor and the IC. However, leave out Link 1 at this stage.

Once you've got it together and have checked everything, apply 12 V $A C$ to the $A C$ input and check various modes of operation as follows:
(1) Bridge the free end of R7 to ground. The relay should operate.
(2) Install Link 1, then bridge pin 7 to ground. The relay should operate. Likewise for pin 8.
(3) Bridge pin 1 to the cathode of the zener. The relay should operate.
Likewise for pin 2.
(4) Connect pin 4 to pin 1 or 2 . The relay may operate. Apply a pulse to pin 3 or 5 and see that it latches on. A pulse on the other input will drop it out again.

If all is well, you unit is ready for installation!

The reley driver board is simple, yet versatile. The extornal inputoutput pins are located around the edges of the board.

How It Works

The best place to start is right in the middle of the circuit - because that's the 'business' end!

Transistor Q2 has relay RLA 1 as its collector load. Diode D5 provides protection for 02 when the coil current is cut off whenever Q 2 is turned off. The base of O 2 is driven by the collector of Q1 via R8 and R9. Base bias for 01 is obtained from the resistor network of R6 and R7. The 'free' end of R7 can be linked to onboard logic circuitry (IC1) or driven by an external source.

If the free end of R7 is connected to $O \mathrm{~V}$ then base current will flow in Q1 which will turn on. This will turn on O 2 and the relay will operate. In fact, all that is required to turn Q1 on is to 'pull' the free end of R7 about 1 V below the positive supply rail to overcome the OV6 base-emitter turnon voltage of Q1.

Effectively, a 'low' level on the free end of R7 will operate the relay.

Two groups of logic circuitry built around IC1 are included to provide a variety of operating 'modes'. IC1 is a quad NOR gate package. One gate, IC1d, is arranged to provide a 'logic high to operate' mode. Two diodes connected as simple OR gate have their cathodes connected to pin 1 of

IC1d. The output of another gate, IC1c, drives the other input, pin 2, of IC1d. IC1c has one input (pin 6) connected to 0 V , which is thus held at logic low. Pin 5 IC1c is held at logic high by R3 and thus its output, pin 4, will be low. As this drives pin 2 IC1d, its output (pin 3) will be high. With Link 1 fitted, 01 will normally be off and the relay not operated.

When a high logic level is applied to either input pin 1 or 2 , or both, the diode(s) will conduct driving pin 1 IC1d high. The output, pin 3, will go low and the relay will operate. The relay will remain operated only while the input remains high.

Two diodes (D6, D7) are connected as a simple OR gate with their anodes connected to pin 5 IC1c. A logic low on either input pin 7 or 8 ('logic low to operate') or both will pull pin 5 IC1c low and its output, pin 4 , will go high. Pin 2 IC 1d will go high and thus pin 3 IC1d will go low and the relay will operate. The relay will remain operated only while the input remains high.

The remaining two gates from IC1 are connected as a set-reset (SR) flipflop. Pin 4 on the printed circuit board provides an output which may be coupled to the other inputs. Assume
the SR flip output is initially low. A pulse applied to input pin 5 will cause pin 4 (pins 9, 11 or IC1a, b) to 'latch' high. A pulse then applied to the opposite input pin will cause the output to go low again and remain low.

This part of the circuit can be used as a 'switch debouncer' as illustrated.

Power is derived from an off-board 9 V AC or 12 VAC source. This drives a bridge rectifier, diodes D1 to D4, smoothing being provided by C1. A zener diode, ZD1, is used to provide a regulated supply to the logic circuitry (IC 1).

Buylines

There should be no problems with any of the components used in this project they are all easy-to-obtain types. The PCB-mounting relay is type RL111 from Watford Electronics, whose address can be found elsewhere in this issue.

LATCH OPERATION
Pin 4, the output of the set-reset (SR) filpflop, must be linked to either pin 1 or pin 2, or pins 7 or 8 . A positive-going pulse on pin 3 or pin 5 will cause the relay to latch. A positive-going pulse on the opposite latch input will then cause the relay to unlatch.

SWITCH DEBOUNCING
The SR flip-flop (IC1a and b) is not electrically connected to the rest of the circuit and may be used in external clicuitry - for exampio. as a switch debouncing circuit.

DIRECT INPUT
The relay will operate when the input is low (ie 0 V) or 'pulled' about 1 V lower than the positive suppiy rall. Only those components shown are necessary for this mode of operation.

Parts List

RESISTORS (all $1 / 2 \mathrm{~W}, 5 \%$ unless noted)
R1,2,9 1 kO
R3, 4 10k
R5 220R, 1W (see text)
R6 4 k 7
R7 $12 k$
R8 2 k 2

CAPACITORS

C1 $\quad 1000 \mathrm{u}, 25 \mathrm{~V}$ electrolytic (PCB mounting)
SEMICONDUCTORS
IC1 4001B
Q1 BC557
Q2 BC547
D1-D5 1N4001, 1N4002 etc
D6-D9 1N914, 1 N4148 etc
ZD1 400 mW or 1 W zener, see text
MISCELLANEOUS
PCB; RLA1 - relay (type RL111).

LOW OR HIGH TO OPERATE
The relay will be operated when pins 1 or 2 are hald at logic high. To operate the relay from a logic low, pins 7 or 8 must be held at logic low. The inputs are ORed so that up to two input signals can be employed to operate the relay in each mode.

Figure 2. Bottom view of the PCB - make It yourself (see page 11).

HE

EHPAK

CB users. Home base POWER SUPPLY 3 A Rugged Powerful British Made fearuares © Sale 3 Amp operaion $\$ 138 \mathrm{~F}$ fully regalited Eiectronic shorl circuit 8 overioso pricecteo Laless mechnology IC desion * Alluative compact case * Compettrely proceo SPECIFICATIONS $\#$ Input wollage - 240 Vac 50 He - Outoul wollage - 138 V oc $=1 \%$ Maximum with

 Tull 1020 - Dimensions $-175 \mathrm{sk} \times 100 \mathrm{~m} \pi 75 \mathrm{~h}(\mathrm{~mm})$ our price only $\mathbf{\Sigma 1 5 . 0 0}$ order no zga CB Rigs and Accessorie S.A.E.for full listings

8 Bit MICROPROCESSOR National INSSOOBOAN 40 Pin DIL N Channel Silica NBO8O Micro Computer Family Instruction Cycle Time ? Supplieo with functiona Block Diagram BRAND NEW
 NOT seconds or rectams YMil 100% perteit ORDER NO SX8080 Only Out BI-Pak Special Price $\mathbf{\Sigma 2 . 0 0}$ so hurry - Limited stocks

Pin IC Socket to fir SX8080 Omer Dine
ORDER NO $1609 \mathbf{3 0 p}$

TECASBOTY
The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers - rotary and slider, presets - horizontal and vertical Resistors of muxed values 2 Zohms 10^{\prime} 'M' $^{\prime}-1 / 8102$ Wat. A comprehensive range of capacitors including eleccrolytic and polyester types plus disc ceramics etcelera. Audio plugs and sockets of various lypes plus swilches, luses. heatsinks, wire, nuls/bolls. gromels. cable cilds and tyes, knobs and P.C Board Then ado 10 that 100 Semiconductors In all a Fantastic Parcel over Sa5.00. Our Fight Against Intilation Price -

Bear the Bucgel
oum with Depression
JUST $\mathbf{~} 6.50$.

Fantastic Audio Bargains

You could not Build one lou this prike.

Amp SILICON RECTIFIERS Glass Tyde simiar IN4000 SERIES IN4001-IN4004 50 - 500 v - uncoded - yau setect tor VLTS AlL berlect devices - NO duas Min 50 50 lor $£ 1.00$ - worth double ORDEA NO SX76
 - 8C107- TB9 NL NEW VCE TOY IC500mA He $75-25050$ off 100 of 500 ofl 1000 off PPICE 2.00 £ 3.80 £17.50 530.00 है Silcon General Purpose PNP Tiansisters 105 Case
 lock tit leads coded Cr9507 strmala 2N2s05A to
BFx 30 VC 60 IC 600 mA Min He SO ALL NEW BFx30 VC 60 IC 600 mA Min He S0 ALC New PRICE $£ 2.50$ £4.00 $£ 19.00 \quad £ 35.00$

COMPLETE

AUDIO CHASSIS
STEPEO 30 Complete 7 wath per channea Stereo ame oond - incudes amps preamp. powel supply, from paner knots and Transtormer
Almost $1 / 2$ PRICE
£12.50
maxerno sio

MONO PRE-AMPLIFIERS

 Myllol suiable for disco mixe. MMICOE suitade to guila preatp minet.The MM1CO and MMIOOG mono preampliters are compatile with the AL60, AL B0AL 120 wid AL250 powe amplifers and their associateo power supphes mulac Suppiy wotage 00.85 inputs Tape Mac P Mriaphone Mar output 500 mm g2er MM1 DOGG Supoly voltage 40.65% inputs: 2 Curturs. Miciophones Mas 500 mv $\varepsilon 10$

Silicon NPN"L' TypeTransitors T0-92 Plasic centre collector Like BC 1822 - 183 L - 184 VCBO 45 VCEO 30 IC200mA He $100-400$ ALL perlect devices - uncoded ORDER AS SX183 50 of 100 off 500 of 1000 of $\Sigma 1.50 \quad \Sigma 2.50 \quad £ 10.00 \quad £ 17.00$ PNP SILICON TRANSISTORS: Similar ZTX500- ZTX214 - E-Lune Brand New - Uncoded - Petect Devices 500 or 100 of 500 of 1000 of | | $£ 1.00$ | $£ 3.50$ | $£ 15.00$ |
| :--- | :--- | :--- | :--- |

Send your orders to
E.PAK

PO BOX 6 WARE HERTS.

Lex prour crestit card Rinp us on Wree 3182 now and

Cles mot
 lout Posuge 20d 50p pei loul arde

WITGIIP asis pow: RAMP?

Because ILP MOSFET power amps give you ultra performance without costing big money. Performance you thought you couldn 't atlord at a price you know you can.

All ILP modules are compatibie with each other - you'll find many more in other ILP ads in this magazine. Choose ILP MOSFET power amps when you need the tastest possible slew rate. low distortion at high frequencies, better thermal stability. MOSFE゙T power amps work with complex loads without diticiculty and without crossover distortion. Connection is simple - via 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience

ILP MOSFET power amps are now available with
integral heatsink (no extra heatsink required). or ready for mounting on to your own heatsink or chassis. Full dissipation detall on data sheet available on request. Each carries a 5 year no quibble guarantee and comes with ful connection data

Send your order FREEPOST today on the coupon at the foot of this ad

MOSFET Ultra-Fi, with heatsinks

Model No	Output power Walts rms		Supply volage Typ/Max	Size mmm	$\left.\begin{gathered} W \\ g \pi \mathrm{~m} \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Price } \\ & \text { onc VAT } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}\right.$
MOS 120	60w/4-80	<0 005\% <0 005\%	* 45 ± 50	$120 \times 78 \times 40$	420	$¢ 2976$	¢25 88
MOS 200	120w/4.85?	<0 005\% <0006\%	- 55 ± 60	$120 \times 78 \times 80$	850	§38 48	¢33 46
MOS 400	$240 \mathrm{~W} / 4 \Omega$	<0005\% <0006\%	* 55 ± 60	$120 \times 78 \times 100$	1025	$\bigcirc 5220$	[45 39
MOSFET Uitra-Fi without heatsinks							
MOS 120P	60w/4-88?	<0005\% < 0006%	$\div 45 \div 50$	$120 \times 26 \times 40$	215	¢26 82	¢23
MOS 200P	120w/4.8S	<0005\% < 0006%	$\pm 55 \div 60$	$120 \times 26 \times 80$	420	£32 81	¢28 53
MOS 400P	240w/482	<0005\% < 0006%	$\pm 55 * 60$	$120 \times 26 \times 100$	525	£44 75	£38 91

Protection:
Able to cope with complex loads. without the need tor very special protectioncircuitry (luses will sutfice)
Ulitra-fi specitications
Slew rate $20 \mathrm{~V} \mu$. Rise tume $3 \mu \mathrm{~s}$. S / N ratio 100 db Frequency response $\{-3 \mathrm{~dB}$ $5 \mathrm{~Hz}-100 \mathrm{kHz}$. mput sensitivity 500 mV rms input impedance 100k Damping tactor $(82 / 100 \mathrm{~Hz})>400$
How to order Freepost
Use this coupon. or a separate sheet of paper. to order these products. or any products from other ILP Electronics advertisements No stamp is needed if you address io Freepost. Cheques and postal orders must be crossed and payabte to ilp Electronics Lid cash must be requstered CO.D - add f1 to total order value Access and Barclaycard weicome All UK orders sent post lree within 7 days of receipt of order

ILP mocules
Total purchase price
I enclose Cheque \square PostalOrders \square Int. Money Order \square Please debit my Access/Barclaycard No. Name

Signature ET $3 / 2$

Post to ILP Electronics LIo, Freeposi 2 Granam Bell House. Roper Close. Canterbury CT2 7 FP Kent England ${ }^{\text {Teleptone }} \mathbf{0 2 2 7)} 54778$ Technical (0227) 64723 Tetex 965780

ELECTRONICS LTO STAYAMEAD.STAY WITHUS

HE Sp

 PCB

 PCB Etching Kit

No mess, no fuss.

Most important, no dangerous chemicals splashing about the kitchen or the bathroom.

The Seno GS printed circuit board etching system provides a high level of safety, convenience and efficiency for making one-off PCBs at home or at school. It is unique in allowing the etching process to be carried out in a sealed bag, eliminating the danger and mess associated with open tanks or baths.

Between use and disposal, the highly corrosive etchant solution is stored, in it's bag, in a leak-proof box. When the solution is finally expended (enough chemical is supplied to etch 248 square inches of copper - that's more than 12 average $6^{\prime \prime} \times 4^{\prime \prime}$ single-sided printed circuit boards), the addition of a simple, safe neutraliser converts the remaining etchant into a harmless, solid lumpl

The Seno GS kit consists of a sealable etching bag, granulated etch chemicals, leak-proof box and neutraliser. As a special bonus, this offer (available only through Hobby Electronics) includes an etch-resist pen that allows you to draw foil patterns directly onto the copper surface; a polyfix block for cleaning the copper both before and after etching; and, to get you started quickly and with minimum bother, two $6^{\prime \prime} \times 4^{\prime \prime}$ singlesided copper-clad boards.

Make the most of the projects in Hobby Electronics by making your own printed circuit boards!

Price includes VAT and postage and packaging; please allow 28 days for delivery.

The Editor answers a selection of your letters

Printed Circuit Boards

Dear Sir,
Can you help, please? You sometimes state that matrix board (strip board) should not be used and that we must use PCBs. Why? Is this due to stray capacitance?
I built your Kitchen Timer, albeit modified so that the output, instead of going straight to the buzzer, goes through a circuit repeating the alarm at one minute intervals. Simple enough. It works, except for the calibration. One can calibrate out of the steel case but as soon as it is assembled in the case the calibration goes awry. Is this also due to stray capacitance, due to either the veroboard or the metal case? I would appreciate an explaination.
In any case I would like to make PCBs but have read articles for and against the standard method. I would prefer the photographic method for accuracy and perhaps time. I presume there is no method for doing the reverse, ie depositing a conductor in the appropriate place rather than etching the copper away.
Once again, your help would be appreciated.
E. Strang,

Krugersdorp, South Africa.
A very timely letter, this. The main reason for using PCBs is that they are neater, safer and allow less probability for error - always assuming that the circuit and the foil pattern itself is correct. And they do minimise stray capacitance which can be critical, particularly with circuits operating at high frequencies. I can see no obvious reason why the Kitchen Timer is behaving as you describe, but the effect does seem to be due to stray capacitance and putting the ciruit onto a PCB would certainly help. More simply, you should ensure that all the wiring is neat and external leads kept as short as practicable.
You will note that we are definitely FOR printed circuit boards and the article commencing on page 11 describes, step by step, one procerdure for making PCBs. It is not a photographic method but, if proper care is taken, it will produce virtually the same quality result.

Finally, there are methods for depositing metal in "appropriate places" but they are feasible only in industrial applications. In fact, transistors and ICs are made by a combination of etching and depositing different semiconductors and metals.

Problem Pages

Dear Sir,
I have been buying Hobby Electronics for a number of months. I know that, on occasion, gremlins get into circuits in the magazine. The gremlins have now migrated to the publishing mac hine. On obtaining my copy of December ' 81 HE recently I was surprised to find that what should have been page 3 was, in fact, page 15. Continuing, I reached page 30 and on turning to page 31 / found / was back at 15! This time I managed to reach page 62 without mishap, only to find that page 63 was actually page 47.1 had double vision without touching a dropl
R. Dunlop,

Blairmore, Argyll.
We apologise to our readers who struck these somewhat odd copies. The gremlins had (have?) migrated to our printers, causing considerable amazement to readers scattered throughout the country. Hopefully these annoying beasties have now been exorcised.

PCB Prints

Dear Sir,
Such a build-up to your Guitar Graphic Equaliser which, I am sure is a well designed project. But, with a capital ' B ', what happened to the PCB pattern? Your 'underground map of printed circuit boards' appears to be of the wrong area!
G. Lloyd,

Wolverhampton.

Wherever and whenever possible, we publish the PCB foil pattern for projects in Hobby Electronics. Unfortunately, three of the projcets in the December issue - the Equaliser, the Doorchime and the Drum Synthesizer, all highly popular projects, too - were designed for us by contributors who wished to retain the copyright on the PCB. For this reason we were unable to publish them. In general, the un-published PCB is the exception, certainly not the rule.

Errata and Back Numbers

Dear Sir,
First/ly, a question. In the January '82 isue of Hobby Electronics you describe the construction of a NiCad battery charger. In the circuit diagram on page 27 Inoticed that the collector of transistor 01 is left un-connected. If, as explained in the text, Q1 and Q2 form a Darlingtopn pair, shouldn't the collectors of these two transistors be connected?
Secondly, a request. Some time ago 1 sent two separate cheques to your back issues department to cover the cost of a January '81 and a March '81. I've received the January issue but not the other. Would you check this for me, please?
Finally, a comment. I've been teaching myself electronics for about six months. During that time HE has provided a great deal of interesting and instructive reading. For me, HE is much more comprehensible than other magazines on the market.
R. Berrisford,

Thorpe, Derbyshire.
Working backwards through Mr. Berrrisfords comments and queries, it is. first of all gratifying that he chooses exactly those words we like to use for Hobby Electronics. We try to please but also to inform - and we work very hard to ensure that we are 'comprehensible'.

The matter of the missing issue has been taken up with the Reader Services department and an answer will be forwarded in due course. In principle, back numbers are available for all previous issues of HE but in practice certain popular issues have 'sold out' and can no longer be obtained, even by the editorial staff.

Then there's the gremlins (again) in the project. We're sure you know the line about "The best laid plans. As you say, the collectors of 01 and Q2 should be connected. Try as we might to eradicate errors they still manage to creep in, like mice. Here's some more from the January ' 82 issue.

In the circuit of the Volume Expander (page 55) the unmarked transistor is, of course, Q2, the BF244B FET.

In the component layout of the Intruder Confuser (Figure 2, page 39) IC1 is shown up-side down. The notch dhould appear at the top, ie pin 1 is at the top left.

BHFAK BARGANS

 CAPACITOR PAKB'
AUDIO PLUAS, SOCKETS AND ACCESSORIES

25 pieces of Audio Pluys, Sockets and Conne

TRIACS - PLASTIC

$10 \mathrm{OF} \quad 100 \mathrm{OF} \quad 50 \mathrm{OF}$ | 10% | $[3.75$ | E17.50 | 1000 FF |
| :--- | :--- | :--- | :--- |
| 30.00 | | | | $609 \quad[5.75 \quad[27.50$ [50.00

Everyday Electronics

Teach-in ' 81
Kit 1 [15 cs

5×40250 Silicon Orodes- Switching lithe INA148 D0.35. All good-uncoded. Wor double oul price $4575 \mathrm{ma} \quad$ c1.2 S141 250 Silicon Drodes-Geneal Purpos 20.100/202. BAX13/16. Uncod
\qquad $30-100 v 200 \mathrm{~mA} 00$
 super value less than ",
 200v, $2 \times 100 \mathrm{v}$ All coded Brand new, a

Pad Mo.	Q**	Description	Price
5×16	250	Capacitors Mred Types	¢1
5117	200	Ceramic Capacitors Minature	
5118	100	Mixed ${ }_{\text {Mixed Ceramics 1ph Stipl }}$	[11
519	100	Mred Ceramics 6 ept 0.5 mm	¢1
5×20	100	Assoried Polyestet/Polyshyene Cupacitors	L1
S021	50	Mixed C280 tyo capacitors metal toil	¢1
5122	100	Electroytics. all sorts	¢1
5123	50	Qualtry Eiectrobyics $50-1000 \mathrm{mt}$	[1]
5×24	20	Tantalum Beasas. mined	11

at well over $£ 3$ normal. Order No. S125. Our Price E .50 at well over 2.3 normal. Order No. Si25. Our Pise E1. 50

Suas 3 Pars of 6 pin 240° DIN Pluger and Chassus SL27 1 a R Rught Angie Stereo Jach Plug 6.3 mm plus 500 sus mounting socket. sx23 i Phono plues and 2 dual phono connectors 5×29 i 2.5 mm Plup to 3.5 mm Socket adaptor $5 \times 301 \times 3.5 \mathrm{~mm}$ Plue to 2.5 mm Socket adaptor 5×31 I $x .3 \mathrm{~mm}$ Plug to Phono Socket adaptor

Sele 1 I Standardiach Plug to Phono Sacket acaptor
Sx33 In Toeprie Switch SPST Minature $125 v 10 \mathrm{~A}$ Su3S I I Rocker Smitch SPDI Miniature. 240r SA 5×36 Ix Right Angle Mono Iach Plue
5×3720 preces 1.284 mm plues and sochets (Banana), Mate hing colours and sures
545010 Assorted Smitches Togrie, Shide. Rockien Sush button,
plastic feet Aumars sousht by the cooject | Plasikict

3ARCAINS

534220 small 125 Red LEO's's
514310 Recionte lenet Ooodes
5146 30 Assorted $250 \mathrm{~mm} \cdot 2 \mathrm{man}$ nined roluges all coded. New
4 Blach Instiument ponter Mnobs-minged win dure 29 a Sundzad sciem. Fit sue 20 mm
S149 20 Assorted Slider Kno
blachin on Filament umps low Suse 12 woons and filament umps trious typers

E1FREE PAK

Get a fil FREE PACK Orders over $f 10$ encluding Vat. Choose ' 11 Pact free (or $2: 500$) add it to your order and suve even more money
This ofter onty applies to this sdertsement

BI-PAK'S OPTO BARGAIN OF THE YEARI

Valued at over £ 10 -Nor mal Retanl-we ofter you a dach ol 25 Dpto devices to include LED's Large and Small in Red. Green. Yellow and
Clear. 7 Segment Displays boit Common Cathode and Common Anod
PLUS bubble trpe displays-like OL.33. Photo Transustors-similar to CP7) Photo Detectors-line MELI1-12. This whole pacch al 25

ano we gualamtee your money bach if you are not Order Mo. 3×57
SEMICONDUCTORS FROM AROUND THE WORLD

100100 which are current everyday usable devices

IC SOCKETS

The lowest price ever. The more rou buy the cheaper they

VOLTAGE REGULATORS

T0220
$\begin{array}{lll}\text { Pasitive }{ }^{+} & \text {Nepative } 4 & \text { ipleasse } \\ 7805-500 & 7905-550 \\ 7812-500 & 7912-550 & \text { state }\end{array}$ $\begin{array}{lll}7812-500 & 7912-550 & \text { state } \\ 7815-500 & 7915-550 & \text { voluge }\end{array}$ $\begin{array}{ll}7815-509 & 7915-550 \\ 7824-50 g & 7924-55 p\end{array}$ requife Other types LM340K - 5 woit - 18 woit -24 woin T03-40. UA723-14 pin DIL - 40p

(1)

6 Blach Heatsinh will it To. 3 and ro. 2220 Ready drilled. Hall price

SxS3 I Power linned Heatsink. This heatsinh gives the greatest possible heatidissipation in the smallest sodece owing to its unique slaggered fin designo. pre drilied
10.3 Sue 15 mm squarer 20 mm high 40 p SxSt \quad T0.66ssize $35 \mathrm{mmn} 30 \mathrm{~mm} .12 \mathrm{~mm} \quad 35 \mathrm{p}$ ssiss 1 Heat Eliciency Power Finned Heatsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High. Ditiled to cate up to Ax c1 50 eact

SK3s 100 Silcoon NPN Transistors-all Detect Coded muree hypes with data and equt. sheet No tefects Real value $\$ 2.50$
Sx39 100 Sitrcon PNP fransistors-all pertect Coded mised types with data and eavit. Sheet No repects Fantastic value 12.50

243055 The dest hnown Power Transistors in the Worio - 2 N305S MPN 115 Dur BIPPAK Soecial Dt Her Pir 10 otl 50 at 100 ct $\$ 3.50$ $816.00 \quad 1000$

10312 COMPUMEMIARY PMP POWC TRANSISTORS: 102 2N0055. Equialent M12955-80312-T03 SPECIM PRICE E0.70 mch 10 en cc .50

and

 atistaction or yout money bach has always been BI.PAK's GUARANIEE and it still is All these Sale tiems are in stocki in quantity and we will despatch the same day as you order is received

 and

CAMBRIDGE LEARNING SELF-INSTRUCTION COURSES
 A PRACTICAL DIGITAL ELECTRONIC KIT FOR \& LESS THAN $£ 20$ is

SUITABLE FOR BEGINNERS

Learn the wonders of digital electronics and see how quickly you are designing you
circuits. The kit coniains: seven $L S$ TTL integrated circuils, breadboard, LEDs, and all the DIL switches, resistors, capacilors, and other components to build interesting digita/ circuits; plus a very clear and
thoroughly tested insiruction manual (also avallable separately). All this comes in a pocket size plastic wallet for only £19-90p inc VAT and p\&p. This course is for true beginners:
needs no soldering iron.
asks plenty of questions. but never leaves you stuck and helpless.
teaches you about sauli-finding, improvisation, and subsystem checking.
the only extra you need is a LIV battery (Ever Ready 1289. or similar) or a stabilised 5 V power supply. Using the same breadboard you may construct literally This course teaches boolean logic. gating. R-S and J-K flipflops, shift registers, ripple counters, and half-adders. Look out for our supplementary kits which will demonsirate advanced arithmetic circuits, opto-electronics 7-segment displays elc.
Other self-instruction courses from Cambridge Learning Lid
$\begin{array}{lll}\text { COMPUTER PROGRAMMING IN BASIC } & \text { £ } 10.50 \\ \text { DIGITAL COMPUTER LOGIC AND ELECTRONICS } & \text { \& } 8.50\end{array}$
DESIGN OF DIGITAL SYSTEMS
C14.00
please send for full details (see coupon below).

GUARANTEE

No risk hathent vour money is you. if vou are not complelely CAMBRIDGE LEARNING LIMITED, Unit 92 RIVERMILL SITE,
 All frices include worldwide postage fairmail is extra
\qquad
.SUPERXIT(5) £ 19.90
..Free detalls of your other self-instruction courses
I enclose a "cheque/PO payable to Cambridge Learning Lid
Please charge my
Access / Amer
Express
Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trusicard
Expiry Date.
\qquad Overseas customers (including Eire) should send a bank draft in sterli

Adress

[^1] Ives Muntingdon Cambs, PE17 48R, England. (Regislered in England No 1328762).

Project

NOISELESS FUZZBOX

No buzz, just fuzz!

THERE HAS BEEN no shortage of FuzzBox designs over the past few years and while most of them gave a good fuzz effect, many unfortunately also made quite good noise generators as welll The increase in noise has been due tothe way in which the fuzz effect is produced; the two most common methods used are a high gain amplifier driving a clipping circuit (which generates the distortion and causes the effect), or a high gain amplifier with a built-in clipping circuit. The fuzz circuit itself is often foliowed by an attenuator which reduces the output to a level comparable to that produced by the guitar pick-up. This will also reduce the noise output of the unit proportionally, but there will still be a significant degradation in the overall signal-to-noise ratio of the system because the noise is actually being produced by the high gain amplifier.

A simple way of improving the apparent signal-to-noise ratio in situations such as this is to use a noise gate; a circuit that enables a signal to pass normally if it is above a certain level, but provides a fairly hightlevel of attenuation lusually around 20 to 40 dB) if the signal is below the threshold level or is absent altogether. This system relies on the fact that when a reasonably strong signal is present it masks the noise. When such a signal is not present the noise gate provides attenuation which reduces the noise to an unnoticeable level. Thus the signal-

to-noise ratio is apparently increased although the true signal-to-noise ratio remains unaltered.

This fuzz unit has a form of noise gate action built in so that it does not give any significant increase in the apparent signal-to-noise ratio. It produces conventional clipping-type fuzz, is battery powered and connects between the guitar and the amplifier in the usual way. A foot-operated switch enables the fuzz effect to be switched out if required.

Construction

We used an aluminium case measuring about $133 \times 102 \times 38 \mathrm{~mm}$ to house this project, but any plastic or metal
case having similar dimensions should be OK. The two sockets are fitted at one end of the case and SW2 is mounted on the lid towards the other end. As SW2 is foot-operated switch it is obviously a good idea to use a reasonably strong case, but it is likely that any ready-made plasic or metal case of the appropriate size will be more than tough enough. Otherwise, tread carefully!

Fit the small components on a $0.1^{\prime \prime}$ matrix stripboard having 36 holes by 15 copper strips using the component layout (and wiring) shown in Figure 2. Make the breaks in the copper strips, drill the two 6BA clearance mounting holes using a 3.2 mm diameter drill and then solder the components and link wires into place.

Figure 1. The noiseless circuit.

Figure 2. Component overlay and bottom view of stripboard.

Bolt the finished board to the base panel of the case between the sockets and SW2, using spacers to keep the underside of the board clear of the case, if it is metal. Of course, the point-topoint wiring must be finished before finally fitting the component panel in place. SK1 has double-pole, double throw (DPDT) contacts but these are used as an single-pole, single throw (SPST) switch in this circuit, with four of the switch tags left unused. If a separate on/off switch is preferred, there is ample space for this to be fitted alongside SK 1 and SK2; SK1 can then be a straightforward $1 / /^{2}$ jack socket.

In use, the unit is simply connected between the guitar and the amplifier using screened jack leads. Assuming a switched socket is used for SK1, the unit will automatically be switched on when the guitar is plugged in, and switched off again when it is unplugged - so don't forget to unplug it! PR1 is adjusted, by trial and error, to a setting that gives no significant change in volume when SW2 is used to switch the unit in and out of the signal path.

How It Works

The input signal is fed to the output via a high gain amplifier which clips the signal to give the familiar distortion of the fuzz effect. The output signal virtually a square wave. To give the circuit a low noise level in the absence of a signal, the gain of the amplifier is normally quite low and is only switched to a high level when a suitable input signal is present. This is achieved by taking some of the input signal to another high gain amplifier, rectifying and smoothing the output to give a DC signal and then using this signal to control a switching transistor in the negative feedback circuit of the clipping amplifier. With no input present, there is no DC signal produced, the switching transistor is turned off and the clipping amplifier has a low gain (and so a low noise output). With an input signal applied to the unit, a DC signal is produced and switches on the transistor. The negative feedback of the clipping amplifier is thus reduced and its gain is boosted by a factor of more than 20. This produces clipping and although the noise level is greatly increased, it is not apparent as the noise is masked by the guitar signal.

The full circuit diagram of the fuzz unit shows that it is basically a conventional op-amp clipping circuit based on IC1. A low noise BIFET opamp is used so that the quiescent and operational noise levels of the unit are kept as low as possible.

Normally IC1 has a voltage gain of about four and the gain is set at this level by the negative feedback network which consists of R5, R6 and R9. The voltage gain is actually equal to the sum of these resistances divided by the resistance of R5 and R6. If Q3 is switched on, its collectoremitter impedance becomes very low and effectively short-circuits R5. The gain of the circuit then becomes equal to R6 plus R9 divided by R6, or just over $100(40 \mathrm{~dB})$, with the specified values.

At this higher gain the output from any normal guitar pick-up will be sufficient to produce an output voltage swing of at least $\pm 0 \mathrm{~V} 6$ from IC1; this causes D3 to conduct on positive peaks and D4 to conduct on negative peaks. When either D3 or D4, are conducting, then, they shunt R9 and effectively reduces the value of the feedback resistances. In fact the reduction in gain produced by the two diodes is so great that the output does not change significantly while one or the other of them is biased into conduction, giving the required clipping action. C6 couples the output of IC1 to a simple variable attenuator using PR1 as a volume control. With many pick-ups, the output from IC1 will be much higher than the direct output of the pick-up and PR1 is adjusted to reduce amplified output to match the 'straight' guitar signal. SW2 is a foot-operated switch which can be used to bypass the unit when
the fuzz effect is not required and, provided PR1 is adjusted properly, there will be no obvious change in signal level when SW2 is operated.

R7 and R8 are used to bias the noninverting input of IC1 and, as this device is used in the non-inverting mode, the input signal is coupled to this input by C5. R7 and R8 are also used to bias Q1, which is used as an emitter follower buffer stage. The output of Q1 is coupled by C1 to the input of a high gain common emitter amplifier, Q2, and this stage provides about 40 dB of gain. With a reasonably strong input signal, Q2 supplies a large output signal which is rectified and smoothed by D1, D2, and C3. The resultant positive DC bias is used to drive Q3 by way of R4.

The switching circuit has a fast attack time so that Q3 is switched on almost immediately when an input signal is present. The decay time is also quite short, so that if the input signal suddenly ceases, the noise level also drops. If the input signals fades out quite slowly, then O3 will switch off quite slowly too; a desirable feature as it masks the action of the noise gate circuit.

SW1 is the on/off switch and is actually a make contact on SK 1 so that the unit is automatically switched on when the guitar is plugged into the input socket. A separate on/off switch can be used if preferred. The current consumption of the circuit is about 4.5 mA .

Parts List

Buylines

The case we used is a Maplin type AB10, but there are many suitable alternatives. The DPDT foot-switch is available from Maplin and the DPDT switched jack socket can be obtained from Maplin or Watford Electronics. There should be no difficulty in obtaining a suitable BIFET op-amp for the IC1 position - a TLO71CP or TL081 CP are suitable alternatives for the LF351 we used. The other components are all easy-to-obtain types.

RESISTORS (ALL $1 / 4$ W 5\%)

R1	4 k 7
R2	1 M 8
R3	3 k 9
R4	18 k
R5	33 k
R6	1 kO
R7,8,9	100 k

POTENTIOMETER

PR1 47k minature horizontal preset

CAPACITORS

C1 470 n 35 V tantalum bead
C2 330 n 35 V tantalum bead
C3 100n polyester (C280)
C4 10 u 25 V axial electrolytic

RECHARGEABLE BATIERIES
 AND CHARGERS

PRIVATE OR TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE SEND SAE FOR LISTS. $£ 1.45$ for Booklet "Nickel Cadmium Power" plus Catalogue. Write or call:

* NEW SEALED

LEAD RANGE AVAILABLE *
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764

TECHNICRL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essenial to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man You study in your own home, in your own time and and yourantee pace and if you are siudyingior al

City \& Guilds Certificates

Telecommunications Technicians
Radio Hmateurs
Electrical Installation Work

> Certifcate Conrses
> Colonr TV Servicing
> Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET
To: Intermational Correspondence Schools

Dept 262R, Intertext House, London SW8 4UJ

Subject of Interest
Name
Address

MXXERSHDERS YUMTIER DRIVETS ATDMORE ALCEWFROMILP!

Just some of the 28 new amazingly compact modules from ILP Electronics, Britain's leader in electronics modules - you'll tind more new products in the amps and pre-amps advertisements

Ail ILP modules are compatible with each other-you can combine them to create almostany audio system. Together they form the most exciting and versatile nodular assembly system for constructors of all ages and experience.

Every item from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon below today

Model No	Module	What It does	Current required	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \text { fic: VAT } \end{array}$	$\begin{aligned} & \text { Pnce } \\ & \text { ex. } \end{aligned}$
HY7	Mono mxer	Maxes exght signals into one	10 mA	¢5.92	¢5.15
HY 8	Stereo maxer	Two channeis each maxng five signals into one.	10 mA	£7 19	£6.25
HY 11	Mono muxer	Mues five sugnals into one - with base/treble controls	10 mA	£6 11	£7.50
HY 68	Stereo maxer	Two channets. exch moxing ten signals into one.	20 mA	¢9 14	¢795
HY 74	Stereo moxer	Two channels, each muxing Ive signals into one - with trebte and bass contiols.	20 mA	513.17	£11 45

AND OTHER EXCITING NEW MOOULES

Model No	Module	What il does	Current required	Price inc VAT	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
HY 13	Mono Vu meter	Programmable gan/LED overload diver.	10 mA	£6 84	¢5.95
HY 67*	Stereo head phone diver	Will dive stereo headonones in the 4 ahmr 2 K orm range.	80 mA	โ14 20	¢12.35
HY 72	Vore operated stereo lader	Provides depth/delay etfects	20 mA	¢15.07	£13 10
HY 73	Gutar pre amp	Handies two guitars (pass and lead) and mic with separate volume/bass/treble and max.	20 mA	§14.09	£12. 25
HY 76	Stereo switch matix	Provides two channels, each swiching one of four signals into one	20 mA	To be announced	
HY 77	Stereo VU meter drwer	Programmable gan/LED overlaze diver	20 mA	£10 64	¢9 25

For easy mounting we recommend
B 6 mounting board for modules HY6. HY13 8090 nc VAT (0.78 ex VAT)
B 66 mounting board for madules HY66. HY77 $£ 112 \mathrm{mec}$. VAT. (0.99 ex . VAT.)
-All modules are encapsulated and include clip on edge connectors Ail operate from 35 minumum $10 \pm 30 \mathrm{~V}$ maximum, needing dropper resistiors for higher volages HY67 can be used only with the PSU 30 power supply unit. Modules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$
FP 480 BRIOGING UNIT FOR DOUBLING POWER
Designed specially by ILP for use with any two power amplifiers of the same type to double the power output obtained and will function with any ILP power supply. In totally sealed case, size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector, $1 t$ thus becomes possible to obtain 480 watts ims (single channel) into 88 . Contributory distortion less than 0.005%, Price: $\mathbf{5} 5.51 \mathrm{inc}$. VAT. (Ex. VAT E4.79.)
How to order Freepost:
Use this coupon, of a separate sheet of paper, to order these products, or any products from other ILP Electronics adventisements. No stamo is needed if you address 10 Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: cash musi be registered. C.0.0. - add $£ 1$ to total order value. Access and Barclaycard welcome All UK orders sent post free within 7 days of receipl of order.

Please send me the following
ILP modules
Total purchase price
IencloseCheque $\square \quad$ Postal Orders $\square \quad$ Int. Money Order \square
Please debll my Access/Barclaycard No
Name
Address

Signature
ET 5/2
Post to ILP Elecrronics Lid. Freepost 2. Gratham Bell House. Roper Close Teteonone (0227) 54778 , England
 STAYAHEAD.STAY WITHUS

Accept no substitute!

The heading this month is another of our Editor's attempts at wit - that's what he calls it and who am I to argue? It was inspired (if that's the word) by a number of letters, this month, offering alternative designs for the Substitution box project from the November '81 issue.

Dear CD.

I was looking at the substitution boxes in the November issue. I saw that the heart of the project - the resistors were only $2 p$ each but the switches were 65p each, so I have re-designed the circuit. Mine has 96 resistances instead of 24 and it doesn't need a changeover switch.

If you need a capacitor substitution box you only need one rotary switch and one changeover switch.
Yours Sincerely.
Nicholas Bradley,
Havant, Hants.
PS Can I have a binder, please?

My advice, Nicholas, is to stick to electronics, and leave economics well alone!

Offers of assistance abound this month (enough, stop, cease and desist etcetera), and this gentleman then had to nerve to ask for help!

Dear CD,

Now if you could help me, where can I get thyristor C103 used in the Reaction Tester (September '81)? Also, could you give me a supplier for Tescus Instruments TO3 transistor R1039? It comes from the line sequesncer of a television.
I. Scholey.

Edenbridge, Kent.

The first question is easy; try RS Components. The second is more difficult - sounds more like a supermarket than a transistor manufacturer - but I think you mean Texas Instruments, don't you? In either case, I can't help you; I have no record of a TI transistor with that number. Very often the parts used in commercial equipment are specially made and have non-standard designations and this is why 1 am usually unable to help with enquiries relating to commercial equipment! I do like to help, you know, but sometimes you just have to help yourselves, if you see what I mean (no, I don't mean the binders)...

Dear CD
As part of my ' O^{\prime} 'level technology project I am building your Six Watt Siren (March 1980), but the photograph does not make the component layout very clear. Could you please send me a diagram?
l've been reading HE since November 1978 so how about a binder to put by HEs in, or even my technology project? K. McDermott,

Colchester, Essex.

It wasn't my project, I assure you - I had nothing to do with it, nothing but you're quite right; it's not very clear, is it?
However, here is a letter followed by a genuine helpful reply; keep it and treasure it forever.

Dear Clever Dick,

I have a problem that you may be able to solve for me. I have been given a new car stereo radio/cassette. The instructions clearly say 'negative ground only' but I have an old car and its electrical system is positive ground. Is there any way / can install the new hiff in my old car? I would be grateful for any assistance you could offer. A.M. Lawrence, Chessington, Surrey.

Trade in your old car? If that's not practical (it isn't? Ohl) then you must be sure to insulate the chasis of the hifi from the car body. A piece of wood is as good as anything else; fix the wood to the car and the stereo to the wood, then connect the power leads normally - that is, negative to negative, positive to positive (the car chassis, in your case). Happy motoring!

Yes, CD administers assistance with a smile - and those ingrates who call it a smug sneer have written themselves permanently off the free binder list.

Dear Clever Dick,

I would appreciaste it if you could help me. I have not been able to obtain a U267B bargraph driver IC ILED VU Meter, November '81). Would I be able to order it from Britain?

Please could you send a binder to a regular reader of your fantastic
magazine in South Africa?
${ }^{4}$ A. Visagie,
Bloemfontein, South Africa.

Would you, could you? Of course. According to the Buyline for that project, the U267B is supplied by Ambit International. Their UK address is 200 North Service Road, Brentwood, Essex CM14 4SG, but if they really are International you might find them in South Africal

Old HEs never die, it seems - they just disappear!

Dear CD.
Looking through my copies of HE the other day, I found that I have missed some of the earlier issues. If you could publish my letter, any fellow readers who have any of the issues, and do not want them, could write to you for my address. I would be so grateful as not to ask for a binder to put them in. The following are the issues that I need: November and December, 1978; January and November, 1979. Naturally, I would be happy to pay for them.
l. Spearman,

Ongar, Essex

Now before anyone gets bright ideas about cashing in their precious backissues, this is not some kind of lonely hearts club for lost copies! However, I could, if you wish, publish your full address so that anyone with spare copies can contact you directly. Over to you, Mr. Spearman.

ANDREW MAWSON, ARE YOU THERE, ANDREW MAWSON? Our super-efficient filing system has managed to 'eat' your address. Your binder awaits you.

Here we have a letter from a worried man - or perhaps the rest of us should be worried???

Dear CD,
When are you going to publish a circuit for a pocket radiation monitor? In the June issue you said you would - or did I blink and miss it? The world is waiting - what say you? Any new game projects coming up soon, please?
Keith Williams,
Basingstoke, Hants.
PS Great mag, keep it up.
PPS How's about a binder?

Did I say that . . . well, so I did. Don't know what happened to it, but l'll investigate, how's that? Why do you want a radiation monitor, anyway? Are you planning to start World War Three?

No brilliant ideas for games projects at the moment - maybe you'd like to suggest one or two? That's the cheapest grovel l've seen in ages, so the answer to your last question is . . . you guessed it.

Now here's a name that sounds familiar if only I could remember

Dear Clever Dick,

If you look at page 32
You will notice something new.
On page 50 there are ads,
Not a charger for nicads.
If this charger then you need You had better now take heed.
It is on page 25,
That's where battery freaks get there kicks.
Now l've written to you in rhyme,
I think that it is about time
That you could get a bit kinder
And send me a Hobby Electronics binder.
Yours Sincerely,
Nicholas Bradley.
Havant, Hants.

Polite, isn't he? Not much of a poet, but polite with it, though.
It appears that Nicholas, and many others throughout the country, has been the victim of an error by our printers who, moving in ways more mysterious than ever before, managed to do strange and wondrous things with the January issue.

Persistance is its own reward, Nicholas, but you can have a binder as well.

价LWESAGAIN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home, every mind.
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Electronics - It's Easy. Originally a long-running series in Electronıcs Today Internatıonal, Electronics - It's Easy wes printed as a set of three books. They sold out. It was reprinted as a single volume. It sold out. Now this phenominally successful publication is available again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-written guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology
You can obtain your copy of Electronics - It's Easy by mall order using the coupon below. Make cheques or postal orders payable to ASP Ltd; alternatively you may pay by Access or Barclaycard.

THE NEW 1982 CASID WORLD BEATERS

WE WILL BEAT ANY LOWER ADVERTISED PRICE BY 5\% providing the advertiser has stocks

AVAILABLE SOON - THE SENSATION OF THE JAPANESE MUSIC SHOW

Deshned by a genius, controlled by computer, progremmed by a leeer. Ployed by amatours professionally and by profeselonals superbly.

THE NEW CASIOTONE 701

The complete programmable polyphonic keyboerd for around f500 Price and detivery on epplication. (Available very early 1882)
Provisional specification

* Input an entire piece of music, apecially scored in bar code and read by a light pen attached to the instrument.
* Alternatively, prograrn your own melodies, chords and timing into the extensive memory,
- fup to 5 minutes or morel with full editing
- 3-WAY PLAYBACK

1/Auto pleybeck of the entire piece; melody, chord, bess and rhythrn with arpeggio; following the music vis lamps above the keys.
2/Auto accompaniment only, with manual melody playing guided by the keyboard lampa Which light up to indicate the naxt note to be played
3/ONe klayed, simply by stroking one

* The 5 octave polyohonic keyt can be used for the eccompaniment.
* 20 breathtaking, clear and bright pre-set instruments and voices.
* Easy play Casio Auto Chord with chords and auto bess. Major, minor, 7th or minor 7th
chords - fingered or auto memory facility
18 supert rhythrn accompaniments with fill-in variation by touch sensitive strip and 2 different percussion effect buttons.
NEW MT. 31.3 octoves, 22 instruments and voices. (RRP E79)
NEW MT-40. As MT-31 plus rhythms and auto chords/bass. (Ei2í)
ONLY E80 Other Casiotones: CT-101 £225. CT-202 275. CT-403 £275. VL-1 £35.95.

NEW CASIO FP-10 PRINTER

(RRP £49.95)

AN INCREDIBLE $£ 44.95$

Compatible whth the FX-501P, FX-602P, FX-601P, FX 602 P and FX. 702 P Menual and program resultis printout. Memory and program Heting FP-10 electric diacharge mini printer. A remerkably clear 5×7 dot matrix printout of 20 characters per line. Up to 30 characters store/printout over 1% ines, with overloed symbol. Fast 2 lines/escond print speed. Aluminised peper rolle are approx 2,500 lines $/ 30$ feet long. Connects directly to the calculator, or via FA-2 cassette interface. Four AA batteries will print epprox, $6,000-9,600$ lines. Rechargeeble pack NP-4M, 13,000 lines. (E6.901 AC adaptor AD-

FX 002 P. 512 program steps. With FREE MICROL PP (C9.96)
FX-702P, Basic pocket computer, 1680 to 80 program steps, 26 to 228 memo......... 874.55

CASIO'S INCREDIBLE BOXING GAME BG-15 Calculating Alarm Clock ONLY £16.95 Display

Fight up to 100 challangers of 10 different weights and increasing speed and technique. All the reslism of the ring with eight 30 -socond rounds per bout, with points ecoring. You must win every bout on points or by KO to continue the geme - scores are incremental. Raise of power. Throw starnine sapping combination punches (with digital display of stamine rating) powor. Throw starnine sapping cornbination punches (with digital displey of stamine rating), even be saved by the belll Digital dieplay of hours, minutes and seconds. 24 hour alarm function. 8 digit calculator with full memory, \% and sign change. Two silver oxide betteries last approximately 18 monthe. $7.3 \times 68.5 \times 113.7 \mathrm{~mm}\left(5 / 16 \times 25 / 8 \times 43 / 2^{\prime \prime}\right), 609(2.3 \mathrm{oz})$. With wallet.

NEW SPACE INTERCEPTOR WATCH GM-10 Alarm Chronograph (RRP £22.95) £19.96

LCD reedout of hours, minutes and seconds, with continuous display of Space Interceptor graphics. Autornatic day, date and month calendar function. Daily alarm mode, with hourly time signal option times to 1 hour.
The UFO beams INTERCEPTOR GAME
, UFO beams, travelling from left to right, have to be intercepted by changing the attitude of your defences and firing an interceptor slong the beam. A number will fight up in the zone of the hit and wher 4 zones are lit up a high bonus game starts. Shoot down 16 UFO Sound effects are incorporated. One lithium bettery lasts approx Metel bezel. Mineral glass face.

World's Most Versatile Alarm Chronograph Watch AX-210

10 Alternative diaplays: over 60 functions. LCD ANALOG display of time, plus: DIGITAL display of: Time (12 or 24 hour); Celender; Full hour); Alerm time; Professional $1 / 100$ second stopwatch with laps atc. Hourly time signal. Alarm - electronic buzzer or 3 solectabla melodies. Rapid forward/bsckward sotting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$.
(RRP £34.95) ONLY £29.95

CASIO'S NEW JOGGING WATCH J-100 PACE RUNNER

Sets the pace for 1982
Displays hours, minutes and seconda (12 or 24 hours syatem), day and date. Auto calondar: Calculator; profemional $1 / 100$ socond stopwatch messuring net, laps and ist and 2 ñd plece uimes; Pacer mode. Con be used as a metronome to pace your running, or any other event. Input data: Length of stide. Pacer mignats, from 394 pips per minute to 63 pipasper minute. Output data: Elapsed time, up to 24 hours. Distence covered, number (RRP £22.95) ONLY £19.95

OTHER CASIO WATCHES

F-82£10.95 A-85t $£ 14.95$ W-200£17.95 W-100 $£ 19.95$ CA-90 $£ 19.95$ W150C f21.96 W. 51 C2.95 W150 £24.95 AN-8GL $\mathbf{F} 24.96$ CA-901 £29.96

SHORT FORM CATALOGUE of latest calculators, key boards and watches available on request. 14p stamp appreciated.

ELECRONIC GNITION SAVES PATROL

More and more new cars use electronic ignition to give the best performance and economy, Bring YOUR CAR up to top ENERGY DISCHARGE electronic system.

TOTALENERGY DISCHARGE gives all

the advantages of the best capacitive discharge ignitions

- Peak Performance-higher output voltage
- Improved Economy-consistent high ignition performance
- Better Starting-full spark power even with low battery
- Acourte Timing-prevenis contact wear without cont
- Smooth Performance-immune to contact bounce offects

PLUS
SUPER HIGH POWER SPARK $-31 / 2$ times the energy of ordinary C. O systems
OPTIMUM SPARK OURATION-so get the very best performance and economy with roday's lean carburettor seltings.
OESIGNEOIN RELIABILITY - with the 'ultimate insurance' of a changeover switch to
TECHNICAL DETAILS
HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-powertul enough to store twice the energy of volts.
SUPERE OISCHARGE CIRCUIT. A brand now technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powertul enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power long burn inductive systems in addition this circuit H.T. system

SOPHIgTICATEO TRIGGER CIRCUIT. This circuit ramoves all unwanted signals caused by contact voli drop, contact shutfle, contact bounce, and external transtents which, in many designs can cause timing errors or damaging un-tımed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - jus sutticient to keep the contacts clean

IN MONEY-SAVING KIT FORM at £14.85
Also MOTORCYCLE TWIN OUTPUTKIT at £22.94
All you need is a small soldering iron and a few bastc tools - everything else is supplied with easy-10-follow instructions

FITS ALL 6/12-volt NEGATIVE EARTH VEHICLES

ELECTKONIZE DESIGN

matima
Magnus Road, Wilnecote, Tamworth B77 58Y Phone: 10827) 281000

Send for my CATALOGUE ONLY 75p

(plus 25p post/packing)
My VAT and post/packing inclusive prices are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade.

See my prices on the following:
CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 1/8th WATT TO 100 WATT; 0.1% TO 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, OUAL, SWITCHED, CARBON, CERMET AND WIREWOUNO, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIODES, RECTIFERS, BRIDGES, CHARGERS, STYUI, SOCKETS, PLUGS, RELAYS, TRANSISTORS, ICS, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPIIES, HARD. WARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDR'S, INSULATORS, CASSETES, METERS, SOLDER, handLes, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not believe before inflation!

BRIAN J. REED
TRADE COMPONENTS
ESTABLISHED 24 YEARS
161 St. Johns Hill, Battersea, London SW11 1 TQ Open 11 am till 7 pm Tues, to Sat. Telephone: 01-223 5016

Sinclair XX81 Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the $Z X$ Software library is growing every day.
Lower price: higher capability With the ZX 81 , it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.
 manual - a complete course in BASIC programming. from first principles to complex programs

Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

- Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animated-
display facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: \&69.95

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

uter-

SCALING the Hi-Fi HEIGHTS

LAST MONTH WE chose the amplifier that will form the heart of our proposed system and went through the specs necessary to make that choice a logical one. This month we move on to the record player for the system and consider what factoraare im-

FROM A SYSTEM POINT OF VIEW the record source and the amplifier must be chosen to compliment each other electrically. The player has to provide the correct level of signal, from the cartridge, to match the amplifier input and it must have the correct balance to suit your tastes and produce a smooth overall result from the system as a whole.

Follow the guidelines and keep in mind possible upgrades; changing the cartridge is often the first of these. Make sure, therefore, that the arm will accommodate any future ambitions you may harbour. If you're quite sure that you have none, an integrated player (combining turntable and arm) will probably suffice, but for those with aspirations to higher-fi, separates are the most economical course in the long run.

The basic aim of a record playing system is identical whether it is an integrated arm/cartridge/deck bought complete, or is assembled from separate components. Whatever the method, the end result is that of extracting as much of the mechanical information from the LP as possible and converting it into an electrical signal which can, after amplification, induce the loudspeaker to re-create the original sound.

For this process three things are necessary: a turntable to rotate the LP at the correct speed, a signal producer (cartridge) to track, or follow, the recording groove and a means of holding that cartridge in exactly the right position above the record to enable it to do this accurately - the pickup arm.

The cartridge is the transducer, the device which converts one form of energy into another; it takes the vibrations from the stylus and produces an electrical output corresponding to that vibration. Figure 1 illustrates the method of operation.

Getting Turned

There are two main types of turntable on the market; direct-drive and belt-drive (Fig. 2), as well as two kinds of pickup arm (Fig. 3) and two leading cartridge varieties (Fig. 4). Thus it is better to ignore the myriad 'one-offs' such as moving iron cartridges and idler-drive turntables. As we are concerned here with choosing and using a first system, I think this is permissable.

To a large extent the operating method is irrelevant, much as it was with amplifiers, but because the disc-player is a considerably less refined product than the amp, differences between units is considerably more marked. Moving coil cartridges offer - in
general - a more detailed and 'open' sounding result but at the cost of less secure tracking and looser bass (at the low end of the market, anyway). As with most things, differences become less general as the price goes upl Moving coils are more expensive to make superbly but the best is something truly wonderfull At up to around $£ 100$ a unit, it remains totally a matter of taste as to which type you will prefer.

If you read some of the hi-fi mags every month you will get the decided impression that there exists only one unit worthy of turning records around under a cartridge, but there are literally dozens of useful turntables available - all of which do the job very well indeed. Naturally some do it better than others, but cost and value for money vary enormously.

First Off

You'll probably be well advised to stick to an integrated deck at the beginning. A separate deck with added arm and cartridge can offer performance advantage, but will require setting up both initially and later on. If this thought induces spasms of panic - or even a moment's indecision - either find a friendly dealer or forget it for now. There is always time later, when upgrading after building up some 'hands-on' experience.

So to specs and interpreting them. We'll take it one component at a time so that the information can be applied equally to both the integrated deck and to separates. As with amplifiers, if we haven't mentioned it below, it's irrelevant to sound quality and can be ignored

Turntables

Quartz-locked: Direct-drive turntables need some form of speed stabilisation and early models compared the rotation with the ultra-stable mains frequency of 50 Hz to judge how accurately the unit was maintaining its speed. Later designs nearly all employ a crystal oscillator, like those used in watches for example, at around 2 MHz . This ensures a much higher degree of accuracy. Another advantage of this system is the provision of 'variable speed' or Pitch Control where the nominal $331 / 3$ RPM can be varied by a set percentage to allow correction of recording faults.

Fig. 1a The mechanical relationship between the pole pieces, the magnet and the record groove wall.

Fig. 1b Axis A can be referred to Fig. 1a to show the positioning of the generator within a moving magnet cartridge.

C

Fig. 1c. Moving coil basics. As the stylus moves the coils, a current is generated within them by the magnetic field from the fixed magnets.

Wow And Flutter: As the turntable's main job is to rotate the LP at the correct velocity, any variations from that velocity can be considered as a form of distortion - it will render impossible the accurate replay of the source material on the record. There are two types of speed variation; (i) a sort of slow oscillation back and forth about the nominal value - noticeable on piano music in particular (wow); (ii) a short term variation, very rapid in nature (flutter) the speed of which can vary downward from a very fast unsettling waver in musical notes. Both are well under control in modern designs and figures of less than 0.5\% are easily achieved. The best direct-drive designs can notch up less than 0.05%. Look for anything under 0.2%.
Rumble: A common feature of all turntable types is the bearing on which the platter (or record support) rests. Any sort of mechanical rotating system will vibrate to some degree or other and a turntable bearing is no exception. As the stylus is picking up mechanical information from the record, if the latter is vibrating unduly due to the bearing, this will be passed on to the amplifier and appear from the loudspeakers as a very low frequency growl - rumble.

Usually specified as a signal-to-noise ratio in decibels (dB), rumble should be only a minor problem on new units - but watch out for it on second-hand components! Look for figures over -45 dB unweighted, or -65 dB weighted.
Platter Mass: Simply the weight of the turntable upon which the record restsl More important on belt-drive units, where the mass is used like a flywheel to iron out minor variations in speed with sheer inertia. The best belt-drive units use somewhere around 6 lbs upwards. More important than actual weight is that the platter offers proper support to the LP. Mistrust any turntable mat that is not totally flat|
Demping/Insulation: It is obviously important to isolate the turntable from all outside vibration as much as possible in order that only the record groove causes the stylus to move. With direct-drive decks, where the motor is fixed to the plinth, this is more important than with the better belt-drive units, where the entire drive systems 'float' on isolating springs.

Pickup Arms

Effective Mass: This is the mass that the stylus will have to pull behind it when following the record groove. This parameter is particularly important in matching the arm and cartridge. Cartridges with a high compliance (a large degree of flexibility) are best matched to arms with a low effective mass. However, some of the modern (particularly moving-coil) units have a low compliance and will give of their best in medium to high mass arms. This is because the arm and cartridge together form a mechanical 'tuned circuit' which will behave in much the same way as a capacitor-inductor electrical circuit does and will exhibit a resonant frequency - a particular frequency at which it is easier to move than any other. Thus the frequency response will not be linear but will show a preference for this resonant frequency. The range of resonant frequencies for most arm/cartridge assemblies lies between 5 Hz and 25 Hz . In order that audible frequencies are effected as little as possible, it is advisable to choose components which have a combined resonance below 20 Hz , but above 75 Hz , the frequency around which record warps usually occur. Table One gives you a range of effective masses and cartridge compliances and lists their resonant frequencies. Choose the arm/cartridge in your system to have a resonant frequency of between 10 Hz and 15 Hz and all will be well.
Bearing Friction: Usually quoted in two forms; lateral and vertical. As most pickup arms rely on two sets of bearings, one aligned in the same direction as the record surface and the other prependicular to it, both figures are important. They tell you the amount of 'drag' imposed by the arm when the cartridge tries to move it figures should be given in milligrams and are quoted as the force required to move the arm in a given direction (laterally across the record or vertical to it) when applied to the stylus. Look for something under 30 mg as good and don't use cartridges with a compliance of over 25 mg in an arm with any more than 30 mg friction!
Tracking (or Downforce) Range: Tells you what range of tracking weight can be applied to a cartridge fitted into the arm. Sounds simple enough, but also watch out that the actual weight of the cartridge you buy can be accomodated by the arm. Some where in the spec there will be a 'maximum weight' figure for matching cartridges. It is unwise to come close to this as your available tracking force will be limited.
Bias Compensation: Every arm should have somel Any object moving in a circle feels a force acting on it, trying to throw it away from the centre of the circle and a pickup cartridge is no exception. As the job of the arm is to keep the cartridge free of outside influences, by definition, it must counter this force. All a bias compensator does - usually with a hanging weight is to pull the arm in the opposite direction to the force, theoretically by an exactly equal and opposite amount; this is determined by experimenting with a test disc. As long as the arm has a bias compensator - don't worry about itl Some integrated decks use springs or magnetic plates and possess a dial to add or subtract bias while the cartridge is playing a record. Nice, but unnecessary.
Lead Capactance: Exactly what it says. The amount of capacitance added to the electrical load imposed upon the cartridge by the wiring from headshell to amplifier. Most car-

Fig. 2e. Schematic raprasentation of a direct drive turntable. The 'dots' around the rim of the platter provide a visual check. by strobe-light, of the speed.

Fig. 2b. Schematic of a beltdrive turntable - 'older', but still capable of exceptional performance if correctly set up.

tridges are sensitive to this figure to some degree as the capacitance is like a mild frequency filter and 'rolls-off' the response. Unless you're making an expensive start to your hifi career by buying a system well up the price scale, it is generally safe to ignore this effect as it is very minor and not liable to effect the music on any but a very few units.
Tracking Error: As nearly all pickup arms are of the type where they pivot at a single point behind the turntable, it will be impossible for them to follow the path taken by the record cutting head used to produce the LP, as this is driven across in a straight line. However, with correct setting-up, the difference in the paths at any point on the record will be small - less than 2° in fact. On integral decks there is little the buyer has to worry about, things will have been worked out for him (hopefully) during manufacture. If you are assembling a deck from components, use the provided protractors - as outlined in our installation article - and all should be well. In reading reviews etc, look for a figure less than $\pm 2^{\circ}$.
Adjustments: Take all you can get! The ability of a pickup system to operate at maximum efficiency depends upon its mechanical accuracy and alignment. A deck which allows you more freedom to 'tinker' probably also offers more chance to set it up correctly and thus earn a better sound qualityl

Cartridges

Compllence: A measure of the 'springiness' of the cantilever assembly that holds the stylus, ie how easily it bends! This is a good thing as far as following the record groove goes, but a bad thing when it comes to moving the weight of arm and cartridge along behind it. Thus there is no right or wrong value. High compliance means 'easily bent' and should be used only with low-mass arms. Compliance is measured in 'cu' (compliance units). Anything above 30 cu is high and anything under 15 cu is low. Shure moving-magnet pickups average $30-40 \mathrm{cu}$ and the best moving-coils under 10 cul A high arm mass is anything over 15 grams, with anything less than 10 grams being considered low mass. Read back over the section on effective mass and take a look at Table One, which illustrates the interaction between these two parameters.

Tip-Mass: Is the weight of the actual stylus as seen by the groove walls! This will determine record wear - and how well the stylus can stay in the groove at high frequencies, since there will be a second resonance here somewhere above 15 kHz . The higher this resonance (lower tip mass) the better, to some degree - suspect any figure less than 20 kHz !
Output Level: There is no figure current for how much voltage a cartridge should generate; it will depend on the amp it is to feed. Figures are generally quoted in terms of millivolts output at $5 \mathrm{~cm} / \mathrm{sec}$ recorded velocity. An average moving-magnet design will develop around 3 mV at 1 kHz and a moving-coil substantially less. Look to match the quoted figure with the amplifier input sensitivity and you won't go far wrong!
Frequency Response: As with amplifiers, a measure of 'flatness' or freedom from uneven treatment of an input. The cartridge should replay any frequencies between $20 \mathrm{~Hz}-20 \mathrm{kHz}$ at an equal level. The limits (in dB) quoted with the figure - ignore it if there are no limits - show how close the unit comes to

The three most common stylus profiles and their relative parameters. Note that whilst the elliptical offers a greater ability, its area of contact will generate increased record wear.

Features

This exploded view of an Empire cartridge gives an indication of the lengths that top manufacturers will go to in order to beat reasonances and colourations.
meeting this requirement. Look for $\pm 2 \mathrm{~dB}$ maximum across $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
Distortion Figure: As the cartride is a transducer, it will impart some distortion to the signal during its transformation. Figures generally quoted are for Intermodulation Distortion - how much one note will effect another when replayed simultaneously - and Total Harmonic Distortion, which is the degree to which a pure sine wave going in is less than pure coming outl Look to better 2% on all distortions figures.

Cash Considerations

With an integral deck, assign 30 percent of your budget to the record player and cartridge. As separates will initially be more expensive, assign 35 percent of the total if you choose this option. The extra comes from the speaker allowance, on the grounds that, as you are in the upgrading game anyway, you will wish to improve them later on. The extra cash will make more audible difference at the source, initially.

Arms And The Man

Integrated decks offer the advantage that they require little, if any, setting up. Generally speaking, there is little the user can adjust, except the cartridge alignment in the headshell. If you have decided on such a machine then read carefully through the adverts in the hi-fi press from the larger dealers. Many of them run package deals, at very attractive prices, which comprise either an integrated deck with a good cartridge or even separate turntable/arm/cartridge set-ups, pre-assembled and prechosen to make things easyl

In just about every case, a Far Eastern machine will arrive with a pre-fitted cartridge. Throw it outl lor, at best, save it for a spare). Such offerings are usually of little value compared to the deck itself and are one reason why many dealers offer the aforementioned deals. Choose your own cartridge following the dealer's advice as to compatibility with the selected deck. If in doubt, ring up the manufacturer of the turntable and ask them whether your proposed cartridge is compatible. You'll be surprised at how helpful hi-fi companies can bel

Separate disc-playing components are more trouble to choose, but offer much greater flexibility - and quality - later on. The problem is made irrelevant to some extent by the scarcity of good quality turntables, without an arm, at anything less than a king's ransom. No matter what the advertising may tell you, spending $£ 400$ on a turntable in a $£ 600$ system is sheer lunacy. It makes sense only if you're selling turntables! Given the level of other components in the system it would be impossible to distinguish, say, the Oracle at $£ 680$ from the TD 160 BC at £ 110 . Keep a sense of proportion.

It is absolutely essential that you hear the cartridge you want together with your proposed loudspeakers. These two components are the ones most likely to possess a strong 'character', or sound of their own.

For example, a number of budget loudspeakers can sound a trifle dull and lifeless, while still being good value for the money. Partnering these with a bright sounding cartridge can produce an overall result which is pleasing and more accurate.
it doesn't matter which you fix on first, speaker or cartridge, but choose them together. You may, for instance, decide that because space in the home is limited, you need compact enclosures of below a certain size. Once more, make up a shortlist and audition a few with the same cartridge. Then get the cartridge changed. After a few minutes the combination which appeals to you most will become apparent.

Pick Up Pickups

With the advent of the new generation of moving-coil cartridges and their higher outputs, it is feasible to use such a device in a first system. However, don't be tempted to buy a cartridge simply because it is a moving-coil unit. The mode of operation is totally irrelevant; it is the sound that matters and if you prefer some other type of unit, go buy it.

By all means consider specification seriously, especially with regard to matching up units, but don't let one single line of ad copy or formulae decide which hi-fi you buy. Let your ears do the choosing for you! This is especially important when it comes to loudspeakers, as we shall see next month.

MASTHEAD AMPLIFIER

A special project for campers or caravanners who like to watch their portable TV when away on holiday trips, but find that it's sometimes difficult to get good TVreception

WE APPRECIATE that it's not always possible to pick up a good TV signal from a set-top TV aerial because so much depends on distance from the nearest TV transmitter and the local terrain. If you find, when you're on holiday trips, that your TV picture often suffers from a weak signal then you may be interested by this project.

Given the right conditions, the HE Aerial Preamplifier can increase the size of the signal picked up by your aerial and thus improve the signal-to-noise ratio, allowing a good picture to be displayed. Of course, if the aerial signal is too small, no amount of amplification will do the job. However, the improvements which our project offers will certainly help you to maintain good reception in all but the poorest areas.

As you can see from the description in How It Works, the OM335 has a bandwidth which extends down to VHF frequencies. Consequently this preamplifier may also be of interest to people who have problems with FM radio reception.

Any voltage within the range of 10 V to 24 V will power the preamplifier, so a car battery - the same one used to run the TV - is ideal. We haven't given a circuit diagram of the project, because the circuit is so simple: a single ICI All the components which make up the circuits - the capacitors, resistors and transistors - are contained within the IC's body. The IC is what's known as a hybrid IC (the term 'hybrid' tells us that it is made up of individual discrete components), and no other components are required to build up the project. Figure 1 shows the pin configurations of the IC.

Figure 1. Pin configuration of the OM355 IC, with a cross-section through the board showing pins $2,3,5$ and 6 soldered both sides.

Make sure the body of the IC fits as close to the board's surface as you can get if before soldering it in and DON'T OVERHEAT THE DEVICEI Solder one pin at a time, then let it cool for a few minutes before soldering the next. Figure 2 shows the PCB overlay. The PCB is double-sided (ie, there is a copper foil pattern on both surfaces) so make certain you insert the IC in to the correct surface.

The upper copper surface (the ground plane) should be at 0 V , which is achieved by soldering pins 2,3,5 and 6 on both sides of the board. Use good quality 75R co-axial cable to connect between the board and the co-axial sockets. Solder a short length (about $2^{\prime \prime}$) of cable to each end of the board screen to the outside earth, as shown in Figure 2 and the signal or centre lead of the cable to the centre connection of the PCB track. Make sure there are no solder bridges across tracks.

Now wire up the power lead from the board to the switch and out of the box. Make sure you get the leads the right way round.

Construction

Mark and drill the die-cast box to fit the switch, the grommet, the two co-axial sockets and the PCB mounting bolts.

Use the PCB exactly as shown and follow the instructions carefully. This is important because high-gain, highfrequency amplifiers can cause interfering oscillations if they aren't correctly mounted. The PCB foil pattern is specially designed to prevent oscillation and must be used - and don't forget the ground plane connections on the component side of the board!

Mount the complete, wired PCB into the case and onto the mounting bolts.

Solder the two co-axial leads to their corresponding sockets, bolt on the bottom of the box and you're ready to go.

How It Works
Integrated circuit IC1 is a wideband amplifier, the gain of which is about 18 times. Any signal picked up by the aerial within the frequency range of 50 900 MHz is amplified by the IC - thus all standard British 625-line TV transmissions are covered.

The actual theory behind the operation of a TV preamplifier is complex, but can be simplified in general terms. In effect, any amplifier is only as good as the input signal - if the signal is noisy then the amplifier output will also be noisy, only bigger.
In the case of an amplifier fed by a long input lead (which adds noise), the output signal is a combination of equally amplified signal plus noise. If, however, the amplifier is at the other end of the lead (ie, before the noise occurs) then the signal is amplified but not the noise. This means that the signal is proportionally larger than the noise and we can say that the signal-to-noise ratio has' increased.

The OM355 is availble from RS Components. All the other parts are easily obtained.

Connecting The Preamplifier

Figure 3 shows the example of how the preamplifier may be connected if the TV has an existing set-top aerial.

If your portable TV aerial is mastmounted (as is sometimes the case in fixed caravan sites), Figure 4 shows suitable connection details.

Best-possible performance will be obtained when the preamplifier is mounted as close to the aerial as you can get it. Therefore, if you do have a mast-mounted aerial, it is advisable to mount the preamplifier at the top of the mast as well. For outside use the box should be mounted upside down and the edges sealed with waterproof sealant.
 fier to an indoor aerial.

Figure 4. Connections to an out door antenna

Incidentally, if you live in a poor TVreception area and the aerial on your roof isn't able to pick up strong enough signals to allow a good TV picture, then you may find this project can help. Mast-mounting the preamplifier (or perhaps putting it in your attic) as close as possible to the aerial and powering it from a mains-to-DC supply could give you a much improved picture signal.

Parts List

SEMICONDUCTORS

IC1 OM335 wideband amplifier

MISCELLANEOUS

SW1 single-pole, single-throw toggle switch
$2 \times$ chassis-mounting co-axial sockets Rubber grommet
Nuts and bolts
Die-cast aluminium case: $4^{\prime \prime} \times 2^{\prime \prime} \times$ 2"

Figure 5. Top (upper diegram) and bottom (lower) PCB foil patterns, viwed from the top and bottom, respectively.

UNIVAC KEYBOARD BARGAIN
Itheal for use with $\mathbf{~} \times 80 / 81$. Hes 50 kevs and many other part for your spares box. Probab cost in excess good used condition $-£ 13.50+£ 2.00$ post. Diagram showing good used condition - $\mathrm{E13.50}+\mathrm{E2.00} \mathbf{0}$ ost.

COMPUTER DESK

Size approk. $4^{1 \times 2} \times 2^{\prime \prime}$ high. These mere made for hard
work, the top peing formica covered. Suitable tor housing instrumenis or for use as office desks. Be autifully made, these cost over $£ 100$ each, our
must arrange to colliect.

EXTRACTOR FANS

Wood .25 Post
Woods extractor
Woods entractor
E6.90 Post E1. 25
C7.50 Post $£ 1.00$
4.50 Post 50 p

Muffin 2300.
c5.75 Post 50 O

INTERRUPTEO BEAM steady
ponents - relay. photo transisior, ression
Ciecuit diagram but no case. Prict e2.30

INSTRUMENT BOX WITH KEY
Very strongly made (ply-wood sides with hard howd too and opearance Internal dimensions $12 \%^{\prime \prime 2}$ long, $4 \mathrm{~K}^{\prime \prime}$ " wide, $6^{\prime \prime}$ deep. tdeal for carrying your multi range meter and small tools and for keeping them in a safe place, C2.30. Post pard if ordered with ROPE LIGHT
 peed control box, ideal for disco or shon window display.

COMPUTER KEY SWITCHES (make Your own keyboaid) Thase are for making up on ap.c.b. and consist of a vertical mount
ing computer type reed switch, which makes circuit when a magnet oasses over it. The magnet is located
the plastic plunger which in tupn is

OUR CAR STARTER ANO CHARGER KIT has no doubt saved mony motorists from embarrassment in an emergency vou can stan car off mbins or bring your bettery up to fultormare two 10 amp bridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in th

GPO HIGH GAIN AMP/SIGNAL TRACER In case measuring only 5% in $x 3 \% \mathrm{in} x 1$ Kin is en extremely high gain (70 dB) solid state amplifier designed for use as a signsl tracer on GPO cables, et a simple coil to the input socket a useful mains cable tracer can be made. Rurs on standard 4% battery and has input, output socketi uses include qenersl purpose amp, cueing amp, etc. An absolute bergain at only $£ 185$. Suiteble 800 hm earpiece 69 p.
PRE OUR CURRENT BARGAIN LIST WILL E ENCLOSED WITH ALL ORDERS

3 CHANNEL SOUND TO LIGHT KIT
complete kit
parts for a
inree-channel
sound to light
sound to high
unit controll.
ing over 2000
watts of light
at home if

vou wish but
is plenty rugged enough for disco work. The unit is housed in an attractive two-tone metai case and has controls for each channel
and a master on/oft. The audio input end output are by $1 /{ }^{\circ}$. and a master on/off. The audio input and output are by protection. A four-pin plug and soc ket facilitate ease of conne
ing lamps. Special snip price is $£ 14.95$ in kit form or $\mathbf{C 2 5} .00$ ssembled and tested.

MULLARD UNILEX system. Rated one of the
inest nerlormers in the
stereo field this would
make a wonderful gift for
aimost anyone. In easv to assemble
 - but due 10 a special bulk buy and as an
centive for you to buy this month we offer the sys.
eem complete at only $£ 16.75$ including VAT and post.
FREE GIFT-buy this month and you will receive a pair of

1 THIS MONTH'S SNIP
 POCKETAUDIO COMPONENT TESTER

 With it you can quickly test diodes, rectifiers, transis Ors, eapacitors, check circuits. find the anode and cathode of a diode or an are the base collector and emitter connections. Con densers, if had, give a convinuous signal, but if good, give intermittent signals of varving length depending o iheir value. The test eufrent is very low (2uA) and the their value. The test eurrent is very low (2uA) and the voltage oniv 1.4 v , so it is also possible to check MOS devices, as well as sensitive transutors without fear of internal hattery

HERMOSTAT ASSORTMENT
0 different thermostats. 7 bimetal ivpes and 3 liquid types. There are the current stats which will open the switch to protec
devices against overload, short circuith, etc., or when fitted say devices against overload, shorit circuiti, etc.. Of when tirted whe
in front of the element of a blow heater, the heat would tup in front of the element of a blow it it the blower fuses, apoliance stits, one for high temp. eratures, others adjustable over erange of temperatures which
could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which
can be immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fitted to our waterproof heater element, up in the
int could protect your pupes from freezing. Separately, these thermostats could cost around $£ 15.00$ however, vou can hav the parcel for $£ 2.50$.
G WAVEBAND SHORTWAVE RAOIO KIT
Bandspread covering 13.51032 metres. Based on circuir which appeared in a recent issue ot Radio Constructor. Complete
cludes case materials, six transistors and diodes, condensers cludes case materials, six transistors and diodes, condensers, resis
ors, inductors, switches, etc. Nothing else to buy it you have an amplifier 10 connect it 10 or a pair of high resistance heartphones. Price £11.95.
MEDIUM \& 2 SHORT WAVE CRYSTAL RADIO All the parts to make up the beginner's model. Price $£ 2.30$. Crystal arpiece 65p. High resistance headilihones (gives best resulti) 83.75
TRANSMITTER SURVEILI ANCE
Tiny, easily hidken but which will enable conversation to the pic up with FM radio, Can be made in ematchbox all electronic perts and circu
RADIO MIKE
Ideal for discos and gar den parties, alloms complete freedom of movement. Play through FM
(Not licenceable in the U.K.)
RAOIO STETHOSCOPE
Easy to fault find start it the aerial and work towards the speaker

- when signal stops you have found the fault. Complete kit $£ 4.95$.
MUGGER OETERAENT
A high-note bleeper, push latching switch, plastic case and batsery
connector. Will scare away any villan and bring help. $\mathbf{£ 2 . 5 0} \mathbf{c o m}$ plete kit.
POPULAR SNIP - STILL AVAILABLE
And it still carries a fiee gift of a desoldering pump, which we are currently selling at $£ 6.350$. The smip is perhaps the most useful
breakdown parcel we have ever oflered. It is a parcel of 50 nearly all dilforent computer pane is containing parts which must have cost at least $£ 500$. On these boarts you will find over 300 IC's. Over 300 diodes. Over 200 transistors and several thousand other parts, resistors, condensors, multa have this puscel for only 188.50 .
etc. If you act promply, vou can hat Which when you deduct the value of the desoldering pump, works should not miss 1

BURGLAR ALARM CONTROL PANEL Contains tabelled connection block, latching relay, test switch and Cemovable key control switch. Simplifies the whole installation. ail you have 10 do is to take wires 10 pres.

MINI MONO AMP on p.c.b., size $4^{\circ \prime}$
 DELAY SWITCH
\qquad set with pointers knob for periocts of up
to 2%,inrs. 2 contacts suitable to switch 10 to 2 /hthrs. 2 conlacts suitable to switch 10
amps - second contact mpens a few min.

LEVEL METER Size approximately \%"' square, scaled signa rescaling. Sensitivity 200 UA . 75p.

WATERPROOF HEATING WIRE
60 ohms per vard, this is a heasing element wound on a fibre glass coil and then covered with p.v.c. Dozens of
pipes, under grow boxes in gloves and socks.
TANGENTIAL BLOW HEATER 2.5 Kw quiet. nesticient insian
hesi290 volt

illustrated, 2.5 Kw
slement, control switch and data all for $£ 4.95$. posi $£ 1.50$.
12V SUBMERSIBLE PUMP Just join it to your cas battery, drop it into the liquid to be moved
and up it comes, no messing about, no priming, etc, and you get a verv good head. Suitable for wates, Daralfin and any non explosive
non-corrosive liquid. One use if you are a camper, make yourself

VENNER TIME SWITCH Malns oper ated with 20 amp switch, one
on and one off per 24 hrs. repeats daily automatically correcting for the lengthen ing or shortening day. An expensive time switch but you can have it for only $£ 2.95$ These are without case, but we can supply
metal case with window $£ 2.95$. metal case with window $\mathrm{E2}, 95$.
Also available is adaptor kit 10 conver Also available is adaptor kit 10 convert
Phis into a normal 24 hr : time switch but with the added adtuantage of up to 12 on
ofts per 2dhrs. This makes an ideal conofts per 24 hrs . This makes an indeal con
troller for the immersion heater. Price of

12V FLUORESCENT LIGHTING

FIVE UNUSUAL SWITCHES

For inventors, experimenters. service engineers, students or in lact anyone interested in making electricsi gadgets. The parcel
contains:- delay switch - motor driven iwitch - two way and contans: - delay switch - motor driven iwitch - two way and
off switch - polarity changing switeh - and humidity switch. Our regular price for these switches bought separately is over $£ 10$, but SPIT MOTORS

These are powerful mains operated induction motors with gear box atteched. The final shaft is a $y / 2, r$ ative couplingmethods - final speed is applox. 5 revs/min, price $\mathbf{E 5 . 5 0}$. Similar motors with final speects of \$0, 100, 160 \& 200 p .p.m. same price
COMPONENT BOARD
Ref. WO998
This is a modern fibreglass board which contanns a multitude of very usetulearts, most 4 amp 4000 v types (marte up in a bridge) B transistors type BC 107 and 2 type BFY 51 electrolvic condensers, SCR ref $2 \mathrm{~N} 5062,25 \mathrm{Ouf} 100 \mathrm{~V}$ OC and 100 uf 25 w OC and over 100 other parts including varisble, fixed and ware wound resis
electrolytic and other condensers. A real snip at $\mathbf{£ 1 . 1 5 .}$
J.BULL (Electrical) Ltd.
(Dept. HE), 34-36 AMERICA LANE, Establishied HAYWARDS HEATH, SUSSEX RH16 3QU. 30 YEARS

MAIL ORDER TERMS: Cash, P.O. or cheque with ordep. Orders under $£ 10.00$, add 60p service charge. Monthly account orders accepted from schools and public compa Access \& Barclavcard orders phone Mavwards Read Off Elm Grove, Brighton (closed Wed.). BULK ORDERS: Write for special quotation. Normally delivery is by return.

FAMOUS NAMES

 Lee De Forest was a brilliant and prolific inventor in the days

 Lee De Forest was a brilliant and prolific inventor in the days when electronics and chemistry weren't quite-so-separate when electronics and chemistry weren't quite-so-separate sciences.

 sciences.}

LEE DE FOREST was bornin 1873 in the country town of Council Bluffs, lowa. His father was a congregational minister and while Lee was still very young, the family moved to Alabama where his father ministered to a congregation which was wholly made up of black families, many of them former slaves. In the atmosphere of the 1870's, with the smoke of the Civil War hardly dissipated and recriminations still ringing bitterly round the South, this was a remarkably courageous thing to do. The Rev De Forest became very widely respected among the black community but was totally outcast in the eyes of the white majority so that Lee, shunned by white boys of his own age, was brought up entirely in the company of black children.

Lee proved to be remarkably inventive and, by the age of thirteen, he was credited with three inventions which he had demonstrated in modiel form. As a result of this and the promise he had shown at secondary school, he was one of the first students to enrol in the School of Scientific Studies (the Sheffield School) at Yale University in 1893. This was one of the earliest specialised courses in Science and, as far as we can tell, Lee was fascinated by the work though his undergraduate career, as is often the case, was not marked by any traces of brilliance. Undistinguished is a kind phrase for it. He graduated, however, and went on to further study for a PhD, starting to show the sort of ability for which he is now remembered. His PhD thesis was something of a watershed in the history of electronics. His interest in the work of Heinrich Hertz and Marconi directed his attention to the study of radio waves; the title of his thesis was "Reflection of Hertzian Waves from the Ends of Parallel Wires". Sound familiar? Yes, that's the VSWR business that radio hams and all the CB'ers talk about! De Forest's thesis was the first accepted in the USA for a PhD degree which dealt with the new subject of radio. That alone should be enough to make him known as a pioneer.

Acid Test

De Forest left Yale to join the Western Electric Corporation; then, as now, very active in all forms of communication involving electricity. He started in the dynamo department but, because of his particular interest in the new technology of radio, moved - first to the telephone department, then to the research department. While there, he worked on the problem of the detection of radio waves, one of the major stumbling-blocks of early radio.

Remember that, at the time, all radio was telegraphic there were no speech transmissions and Morse Code ruled OK?! The problem was to detect the 'dots' and 'dashes' of a Morse transmission and the standard method used a device called a 'coherer'. This was a coil wrapped around a tube of iron filings; a strong enough radio signal, passed through the coil, made the filings cling together (cohere) and in this condition they would pass enough DC current to operate a telegraphic receiver or a sensitive earphone. The DC current also operated a small hammer to loosen up the particles, ready for the next transmission pulse. It was clumsy but it worked, although it wasn't exactly sensitivel

De Forest is credited, in the US, with the invention of the Electrolytic Detector, which used two different metals dipping into a solution of acid. The principle was that such a cell passes current more easily in one direction than in the other so that, like a diode, it could rectify radio waves and provide a DC output.

Lee De Forest with his "Flame" microphone which he developed in 1923 for the Phonofilm.

The same detection principle had been used earlier, in Britain, by Fleming.

By 1902. De Forest felt confident enough in the future of radio as a commercial proposition to set up his own company. The De Forest Wireless Telegraph Co., was the first to give a public demonstration of radio in the USA, but the company went bankrupt in 1906.

Audion-ics

In 1907 De Forest patented his Audion, a three element vacuum valve, the device for which he is famous. Fleming had introduced the valve diode in 1904 but the addition of a third electrode, the 'grid', made it possible to control the current passing through the valve between anode and cathode, making amplification possible. This was undoubtedly one of the most important steps in all the history of electronics but the company which De Forest set up to exploit his invention suffered the same fate as his earlier enterprise, and was declared bankrupt in 1909. In retrospect, he tried to do too much too soon.

Then, in a ludicrous court case De Forest was charged with "using the US mail to promote a worthless device". The "worthless device" was the Audion! Fortunately, he was acquitted of the charge.
Free once more to concentrate on radio, he worked to perfect the Audion and later in 1912, was able to show that huge amounts of amplification could be obtained by cascading Audions, using the output of one as the input for another. This inevitably led him to invent another device for which he deserves to be remembered - the oscillator.

In 1920 he was able to demonstrate a sound-on-film system for the movies and, had he been able to press his achievement on the ignorant and unconvinced studio bosses of the day, he would certainly be remembered for this achievement too. As it was, his system was rejected in favour of crude schemes using gramophone records and it was only in 1928 that the first true sound films were made. Even then De Forest's method was not used until the 30s; there was no benefit to him, then, for having been the pioneer.

Late in life, De Forest was still a keen and gifted researcher. In the 30s he worked on the medical uses of high-frequency signals, designing what are now known as diathermy (deep heat) machines and contributing to the techniques of inductive and capacitive heating which played such an important part in the war effort. During World War II, by now a legendary figure, he directed research at the Bell Telephone Laboratories, one of the most famous and successful research laboratories in the world. There, in 1947, the first working transistor was constructed. De Forest saw all this and must have wryly compared the fortunes of Shockley and his team with his own experiences. He died in 1961, having seen the pioneer years of radio develop into the full flower of electronic science that we know today. His one regret was that he never received a Nobel Prize, though his name was put forward on several occasions.

Picture courtesy of "Sounds Vintage" magazine.

INTO ELECTRONIC COMPONENTS

In Part 7 we take a look at the How, Why and What of transistors.

TRANSISTORS HAVE BEEN around for a long time, since 1948 in fact, which makes them a good bit older than a lot of us! We don't use transistors (as separate components) as much as we once did, thanks to the IC, but it still helps if we know a bit about them, partly because ICs are made out of collections of transistors.

A transistor starts out, like a diode, as a crystal of silicon which has been doped either Por N . To give an example, let's follow the set of operations which are performed on a chunk of N-type crystal that is about to become a transistor. Starting with N-type gives us an NPN transistor; if we started with P-type we would end up with a PNP transistor.

The first step is to oxidise the surface by heating the crystal to a high temperature in water vapour at low pressure. Oxidising silicon will produce silicon oxide, (one form of which is sand) but when it's done in this way the result is a tough surface film of transparent oxide which protects the silicon underneath. The next step is to cut a hole in this film. We don't use anything as

Figure 7.1. The process of oxidising and the use of photoresist allows us to etch patterns of exposed silicon.
crude as a drill, though, because the layer of oxide is very thin and the technique called photoetching is much more precise. A layer of photoresist liquid is put on the surface and allowed to partly solidify; this liquid is a near-relative of the stuff that is used for making printed circuits boards and it hardens totally when exposed to ultra-violet light from a mercury lamp. If we clamp a photographic negative to the coated slilicon and expose it to ultra-violet (UV for short), we can 'print' the pattern of the negative on to the photoresist. The photoresist can then be washed away, where it has not been exposed to the UV. The material which has been hardened by exposure to UV will not wash away, however, but remains as a 'mask', protecting the silicon oxide.

Protecting? Yes, because the hardened resist is resistant to acid - which is why we call it 'resist', but the silicon oxide layer - tough as it is - will dissolve easily even in dilute acids.

By dipping the chip in acid, we can now etch away the silicon oxide which was not hardened by exposure to UV. This etching process exposes the silicon (which is N -type, remember) underneath, but has no other effect because silicon itself is not attacked by dilute acid (Figure 7.1).

Next step is called 'epitaxy'. We remove the rest of the photoresist by dissolving it, in a liquid that has no effect either on the silicon or on the remaining silicon oxide, and then heat the chip in a container which has some vapour of P-type silicon in it. The P-type vapour condenses on the exposed silicon, but not on the silicon oxide. Where it touches the N-type, however, the P-type silicon joins on, forming a thin film of P-type material which looks as if it was always part of the same crystal. It is possi-

Figure 7.2. The shape of the complete set of patterns for an NPN transistor. Contact is made through aluminium 'pads"
ble to accurately control the thickness of this layer, which will become the base of the transistor, by controlling the temperature and the pressure of the P-type silicon vapour in the container.

The next step is to oxidise the P-type silicon again, and to coat the surface with the photo-resist once more. Another pair of holes are now cut through the oxide, using a different 'negative' pattern and once again etching through the oxide. One of these holes has aluminium deposited in it, to form a contact to the P-type layer (which is the base of the transistor), the other one has N -type silicon deposited in it by heating the chip in a container with the vapour of N -type silicon. Following, this aluminium is deposited on top of the N -type material to form a contact to this layer, which becomes the emitter of the transistor (Figure 7.2). The collector connection is to the main slab of N -type material.

Figure 7.3. The chip mounted on its header. If a metal header is used, the collector connection is made by soldering the chip to the header

The process is carried out on several hundred chips at one time, so that each set of operations produces a large number of transistors. Once tested, the chips are mounted on 'headers' with a thin gold wire used to weld connections to the base and the emitter layers (to the aluminium surfaces, which can be spotwelded much more easily than silicon) and the collector connection is made by soldering to the main N-type slab of material. Finally the header is enclosed in a metal or plastic case, thus protecting the chip from damage by exposure to air or by having its fragile connecting wires knocked out of place. A contact to each part of the transistor, N, P, and N, gives a total of three connections. Now, with the two connections of a diode, there were only two resistance readings that could be taken - one in each direction across the two terminals. When we have three terminals, six resistance readings (taken two terminals at a time) are possible the results of typical readings are shown in Figure 7.4.

+ CONNECTION	- CONNECTION	RESULT
BASE	EMITTER	LOW RESISTANCE
EMITTER	BASE	HIGH RESISTANCE
BASE	COLLECTOR	LOW RESISTANCE
COLLECTOR	BASE	HIGH RESISTANCE
EMITTER	COLLECTOR	HIGH RESISTANCE
COLLECTOR	EMITTER	HIGH RESISTANCE

Figure 7.4. Resistance readings taken on a transistor. The + and connections refer to true + and $-;$ remember that the terminals are reversed when a multimeter is used on the resistance ranges

Figure 7.4 shows a pattern; the resistance between the collector and the emitter is always very high - too high for most meters to measure. Try it, but make sure that you aren't holding the leads, otherwise you will be measuring your own resistance, rather than the resistance of the transistor. The base and emitter connections behave like the terminals of a diode and so do the collector and base terminals. You might be forgiven for thinking

EMITTER
Figure 7.5. The results of resistance readings indicate that a transistor behaves like two back-to-back diodes - but only as far as resistance readings are concerned
that the transistor was just a couple of diodes arranged back-toback as shown in Figure 7.5. You'd be wrong - as we'll see later - but as far as resistance measurements are concerned, using two terminals at a time, that is the way the transistor behaves.

We can even use a multimeter to find out which terminal on an unmarked transistor is the base. Just check the terminals two at a time, until you find a pair which don't conduct in either direction. The third terminal, the one that is not being used, is the base. The chart in Figure 7.6 is a summary of this method for finding the base. You can't tell which of the other two terminals is the emitter and which the collector just by using a multimeter, but a transistor tester will soon show up the difference - we'll come to that later.

Figure 7.6. Base-finding chart for an unmarked transistor

Silicon Switching

Examining a transistor by using the resistance ranges of a multimeter might convince you that a transistor did not conduct between its collector and its emitter - and you'd be half-right. We can try this one out as a practical exercise using a cheap and easily obtainable silicon transistor such as the 2N697, 2N1711 or 2N3053. These all have the pattern of connections, which is shown in Figure 7.7, with the collector lead connected directly to the metal case. You have to be careful about this, making sure that when you use this type of transistor the case is not touching against any other component in the circuit - and definitely not against exposed wires.

I use this transistor type more than any other, because it is cheap and reliable and can dissipate a reasonable amount of power. Set up the transistor on the Eurobreadboard, using the lines shown in the diagram of Figure 7.8. This uses the HE meter as part of the collector circuit and, with the meter switched to the SMA range, it will be measuring the current through the collector.

Start with the 100 k resistor, R - connected between lines A6 and Y 1 . This puts the base of the transistor at the same voltage as its emitter, so that no current passes between the base and the emitter. With this connection (assuming all is well) no current should be detectable on the HE meter because the junction bet-
ween the collector and the base is reverse-biased (remember that this is an NPN transistor). A transistor in this state is said to be cut-off, meaning that no collector current is flowing, even though there is voltage between the collector and the emitter.

Figure 7.7. The TO-5 connection diagram used for the transistor types mentioned in the text

Figure 7.8. Investigating switching, using the HE meter

Now connect the 100 k resistor, R1, between lines A6 and line X 1 . The base is now connected to the +9 V line through the 100 k resistor. Knowing about diodes, we should be able to guess what will happen now. Current will flow through the 100 k resistor to the base and so through the base-emitter diode to the emitter. How much current? If the base-emitter part behaves like any other diode, there should be about 0.6 V across its terminals when it is conducting. Using a 9 V supply, that should leave 8.4 V across the 100 k resistor. By Ohm's law (remember?), this should allow current of $8.4 / 100 \mathrm{~mA}$ to flow. That's not much of a current, only 0.084 mA , or 84 uA . Take a look, however, at the current through the collector that the HE meter is reading. How much is it? Several milliamps - I hope - (if the transistor is a good one) and that, in one brief example, is what a transistor does.

The transistor is a current amplifier. No matter how small the current between base and emitter, a much larger current will pass between the collector and the emitter. In fact, the collector current is proportional to the base current; if you double the current flowing between the base and the emitter, you will cause the current flowing between the collector and the emitter to also double. Halve the base current, and you will automatically halve the collector current. The ratio:

collector current base current

is sometimes called the current gain (symbol $h_{f e}$) of the transistor, and it is an important quantity as far as using the transistor is concerned. Measuring the current gain gives us an idea of how good any transistor is, and transistor testers work on just this principle.

Figure 7.9 shows the circuit of a simple transistor tester for NPN transistors only. If you want to use it with PNP transistors, then you'll need a bit of additional switching. The idea is simple we just pass a current between the base and the emitter, using a resistor to limit the current to a value which we can calculate, and we then measure the collector current that this causes. By using
different resistor values we can test transistors which have very widely differing values of current gain.

Switch SW2 is the range switch and it should always be in position ' A ' when the unit is first switched on with a transistor in place. If any current flows, now, then there's something wrong, because the transistor should not pass current when there is no current flowing in the base circuit. A transistor like this is 'leaky' and, because we can't control its collector current properly, it's of no use to us.

Figure 7.9. A simple tester circuit for NPN transistors. The meter can be built-in or sockets wired so that the HE meter can be plugged in

The next three positions of the switch SW2 allow different amounts to pass through the base of the transistor. Position ' B ' of the switch passes about 8.6 UA through the base, so only a few transistors with a very large value of current gain, whose collector currents are several hundred times their base currents, will register much current on the meter in this setting of the switch. If the transistor gave no readable current in position ' A ' of the switch but indicates several milliamps on the meter in position ' B ', then the transistor is a really good one and no further testing is needed. If the current reading in position ' B ' is low, try position ' C ', in which the current to the base is now about 47 uA. A reasonable reading on the meter in this position indicates a reasonable transistor, a normal use-for-almost-anything chunk of silicon. If the transistor happens to be a power type and gives a good reading on this switch position, then it's a very good example of a power transistor. If the transistor is not a power type and it needs position 'D' of the switch to get a reasonable reading on the meter, then it's another candidate for the scrap heap. Note that power transistors are excepted. They normally have low values of current gain, so don't be surprised if you have to use switch position D for such transistors, particularly the physically large ones like 2N3055s.

The quantity that we call 'current gain' is usually listed under the heading $h_{f e}$ in manufacturers, data sheets. This is a fancy abbreviation, but its meaning is the same. If you absolutely insist on knowing: h is short for hybrid parameter (meaning a set of quantities some of which are ratios like the current gain, others being resistances or conductances): \ddagger is for forward because we use the base as the input to the transistor and the collector as the output - we are measuring the effect of the input on the output, not the effect of the output on the input, so it's forward rather than backward; e means common-emitter, because both the base current and the collector current pass through the emitter it's common to both circuits. So now youknow - $h_{f e}$ means the same as current gain and we can get figures anywhere from about 10 (for a power transistor) up to 1000 or more for some modern types of high-frequency transistors.

How do we make use of current gain figures? The main use is to calculate the currents that will flow in the transistor, knowing, or being able to calculate, just one value. For example, suppose that we want to pass 2.5 mA through the collector circuit of a transistor and we know that the current gain figure for that transistor is 150 . This means that the collector current will be 150 times the base current (if there is no other resistance to affect it), so that the base current must be $1 / 150$ of the collector current. 2.5 mA divided by 150 is 0.0166 mA , which is the same as 16.6 uA . Not a lot, really, but that's as much current as needs to

Into Electronics Components

flow to cause 2.5 mA in the collector of this transistor.

Now try it the other way round. Suppose we have a current of 25 UA in the base transistor and its current gain is 85 ; A current gain of 85 means that the collector current is 85 times the base current and 85 times 25 uA is 2125 uA , which is 2.125 mA . Easy, really!

Gathering MOS

The type of transistor which makes use of a PNP or NPN sandwich is called a 'bipolar' transistor and it's the type that you'll find in most of the projects in HE. There's another type of transistor, though, which uses a different sort of sandwich and it's called the field-effect transistor, or FET for short. FETs come in two types, the junction FET and the MOSFET; the MOS type is used mostly for integrated circuits and the junction type is used in circuits which also use bipolar transistors.

The important part of a FET is a strip of doped siliton which is called the 'channel', and which has a connection made to one end. Normally this channel has a fairly high resistance and the action of the FET depends on changing the resistance of the channel. If we make the resistance of the channel lower, then it can pass more current; if we make the resistance of the channel higher, then it will pass less current. The big difference between the two types of FET is the way that they control this resistance.. The junction FET has a junction formed on the channel; if the channel is N-type, then a chunk of P-type silicon is grown at one end of the channel (the 'source' end). A connection is made to the P-type layer and this connection is called the 'gate'. The other end of the channel is called the 'drain'.

Imagine, with the help of Figure 7.10 that a junction FET has an N-type channel. This means that when a voltage is applied across the channel ends (between the source and the drain), electrons are passing between the ends. Now, because there is a junction, there will also be a depletion layer (remember?) which does not conduct. Putting a depletion layer into a channel is rather like taking one lane out of a motorway - it causes a jam, and it raises the resistance of the channel.

A depletion layer isn't fixed. If we reverse-bias the junction by making the voltage of the gate lower than the voltage of the source, the depletionlayer becomes larger. This is like taking two lanes out of a motorway - there's a whole lot more resistance now. On the other hand if we forward-bias the junction, making the voltage on the gate more positive than the voltage on the source, then the depletion layer becomes smaller (all three lanes are open, but with speed restrictions!) and the resistance of the channel is less. We can therefore change the resistance of the channel by altering the voltage between the gate and the source. This is quite unlike the behaviour of a bipolar transistor.

Figure 7.10. The action of the junction FET

The MOSFET contains no junctions, so that current can never pass between the gate and the channel. The channel is, once again, a strip of silicon which may be doped N or P and is formed on a chip which is oppositely doped and is called the substrate. The gate is made by forming a layer of insulating silicon oxide on the silicon of the channel, near the source end, and evaporating an aluminium strip on top of the silicon oxide, not touching the silicon of the channel (Figure 7.11). This sort of arrangement can also be used to make a capacitor. The action is straightforward - in fact, MOSFETs were being made experimentally around the same time as the first bipolar transistors. What happens is that when one plate of a capacitor is made positive (just for an example), then the other plate will also go positive until some charge flows. Similarly, if one plate is connected to a negative voltage, the other plate will also have the same
negative voltage until some charge moves. One plate of the MOS capacitor is the gate, the other is the substrate.

Think, now, about a typical MOS arrangement as shown in Figure 7.11 with the N -channel of semiconductor, that contains electrons which are free to move, and the substrate which contains free holes. If the metal gate of this transistor is connected to a positive voltage (more positive than the source) then the piece of channel which is just under the gate will also be at the same positive voltage. This will cause holes to be repelled away from the piece of channel just under the gate, thus making the channel wider and more conductive. If we make the gate of this N -channel MOSFET negative we can attract holes from the substrate, narrowing the channel and 'pinching-off' the conductivity. When the channel is 'pinched' between gate and substrate, the resistance of the channel rises. It is just as if the channel were depleted of electrons, so that this way of using a MOSFET is called 'depletion mode'. By making the MOSFET without any channel at all, and always keeping the gate voltage positive (for an N-channel MOSFET), a channel can actually be created, a method which is called 'enhancement'. The typical characteristics of an N -channel depletion mode MOSFET are shown in Figure 7.12.

Figure 7.11. The arrangement of a MOSFET

Figure 7.12. Characterlstics of an N -channel depletion-mode MOSFET

Although the first ever transistor was, in fact, an FET type, the manufacturing processes available at the time were not suitable for the mass-production of reliable devices. Bi-polar transistors, however, could be easily made using what was a crude (by today's standards) but effective manufacturing method. The bi-polar transistor has thus become the main component for amplification in electronic circuits.

This month we have seen how this is possible: a small amount of current passing between the base and emitter of a bi-polar transistor will cause a much larger current to flow between emitter and collector. Next month we'll look at the transistor in more detail, considering some of the ways in which this current gain can be used to construct a practical amplifier.

Here is a small selection of the books available from HE's book service. New titles will appear each month

ELEMENTS OF ELECTRONICS by F A Wilson

This series of books covers the basics of electronics, in an easy to understand manner. The topics are written so that important concepts can be grasped by the beginner and yet they can also provide an in-depth reference source for the practising engineer.
Book 1: THE SIMPLE ELECTRÓNIC CIRCUIT AND COMPONENTS£2.25 This book contains all the fundamental theory necessary to lead to a full understanding of the simple electronic circuit and its main components.
Book 2: ALTERNATING CURRENT THEORY . £2. 25
Sinewaves, complex waveforms, time constants, reactance, resonance and other important aspects of AC are covered.
Book 3: SEMICONDUCTOR TECHNOLOGY £ 2.25.
From simple atomic structure models through to complex integrated circuits and the elements of computers.
Book 4: MICROPROCESSING SYSTEMS AND CIRCUITS £2.95
Starting with simple computer models, this book takes the reader up to complete microprocessing systems and theoretical circuits.
Book 5: COMMUNICATIONS .. £2.95 All aspects of communication systems such as channel bandwidth, transmission systems and signal processing, are discussed in this final book of the series.

A MICROPROCESSOR PRIMER

 by E A Parr 1.75 Newcomers to electronics and compoting tend to be overwhelmed when first confronted with literature about microprocessors. This book helps to alleviate the problem by recounting the design of a simple computer in an easy to understand manner.
PRACTICAL COMPUTER EX-

 PERIMENTSby EAParr.
£ 1.75
Readers of this book will find themselves involved in experiments which help to explain the inner workings of computers and microprocessors. All circuits and experiments use discrete logic circuits to demonstrate such things as 'adders', 'stores', 'arithmetic and logic units' etc.

HOW TO MAKE WALKIE-TALKIES

by F G Rayer
£1.50
Low power hand-held, or portable, radio transmitting/receiving equipment need not be complicated - as this book shows. A book of great interest, not only to the licensed operator, but also to those enthusiasts without transmitting licences who wish to participate as
listeners with the described receiving equipment.

ELECTRONIC PROJECTS FOR BEGINNERS
 by F G Rayer £ 1.35

The newcomer to electronics will find this a very useful book. It contains a wide range of easily made projects including component and wiring layouts. A number of projects can be constructed without the use of a soldering iron.

POPULAR ELECTRONIC PROJECTS by RA Penfold.
£1.45 A collection of circuits and projects to interest most electronics constructors, covering four popular main areas: radio; audio; household projects and test equipment.

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE

by A Michaels £2.95 Transistors from over 100 international manufacturers are tabulated in this book in an easy to understand, cross-referenced format, to enable the reader to quickly locate equivalent devices from an alternative source. This book is an extremely useful addition to the electronics enthusiast's library.

To receive your books fill in the form below (or write the details on a sheet of paper) and send it, with your payment, to the address given.
Please wait 28 days for delivery. The offer applies to the UK only. Prices may be subject to change without notice.

To: HE Bookshelf, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE.

I enclose a cheque/postal order made payable to ASP Lid, for the amount shown below
OR
I wish to pay by Barclaycard/Access. Please charge to my account number

Signature
Name.
(BLOCK CAPITALS)
Address
(BLOCK CAPITALS)

Books Required	Price	
	Add 75p p\&p	0.75

Rumble

150 CIRCUITS

KITS,GOMPONENTS,MIGROS \& PARTS

REMOTE CONTROL
 complox, requirng wex
 You oll makingy your own sysiem wave heveryt range fromisimile onith coniritioratio cooso or thres analogue out puts for controlling, e-a, TV or Hit Fi gytems. The kits are easy to bulld and simple to sel up-and they are oxtromely docsatile, controlling anything from garage required output circuits, 1.e reteys, triecs, otc. Tyou can design your own systom we stock a whio range of remote co
try compelitive prices
control, containing circults. hints, date aheots and detelis of ourcremote hinls, dentat and componenta. So don't control yourself-
SEND US $30 p$ end somped
 Switches any appliance up to 1 kW CT100cK Basic Kit day, Kit containe: $\mathrm{AY}-5-1230$ (C), (Resty Builh) 0. N $^{\text {n }}$ LED display, mains supply.
displey drivers. switches LEOs. display drivers. switches, LEDs.
triecs, PCBe and full instructions.

LAZYITIS"

 time but it has also oben esstimated That the savings in shoo leather and
carpet wear alone would pay for this carpet wear alone would pay for this or morel

This unit has considerable practical uses, especially for the old, inillm conventional dimmer, enabling you to switch the lights on or oft, or to dim them to whatover brightness you require. by louch or using the
hend-held infra red transmitter. hend-hald infre red transmitter
When asiembled, it fite into plaster depth box to roplece your conventional switch or dimmer

TDR300K Dimmer Kir $\mathbf{~} 14,30$ WK6 Transmitter Kites.20 We also still sell our highly popular
TO300K Touch Oimmer Kit at $\mathbf{~} 7.00$ and the LO300K rotary controlied Dimmer Kit at only £3.50 All kits contain all necessary You only need a soldering iron and cutters.

No circuit is complote without a call to- 11 Boston Road London W73SJ 2

Telephone: 01 579 9794/2842

DO YOU LONG TO HEAR YOUR DOORBELL RING? OUr Latesi kil pives

$$
\begin{gathered}
\text { note harmonically } \\
\text { related lone equence }
\end{gathered} \text { CHIME }
$$ (not a microprocescor controlled buzz of the sume old ding dong) This kit, based on a new integrated circult. is supplied complote with loudspeeker and drilled oox and requires only gV battery and push button

common to mosi households 0 common to most households. li may applications as car alarms. clocks, toys P.A. systems, etc. The unit produces a 150 mW Outpul and draws less than one iu trom a PP3 battery when the tone coase
Supplied complete with ctrcuit and Supplited completo with
assombly instructions
IDEAL PROJECT FOR BEOINNERS-OnIY E5
DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on the
iCL.7128 (a lower power veralon of The ICL7iOs chipl and a $3 k$ dight 57 IF: Itquid crystal diaplay. This kit wit 544: form the basis of a digital multi metor (only a fow sodditional restations and
 $+150^{\circ} \mathrm{C}$) reding to $0.1^{\circ} \mathrm{C}$. Tha besic kit has a automatic poiarity indication and an ultra low. power ropultoment-gling a 2 year typical battery lifo trom a atandard 'V PP3 when used
8 hours a day, 7 dayil a wook... . Price $\$ 15.50$

MASHMR THTFGYRIONICS DOWT The PRAGHICAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personaliy at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope

Recognise and handle current electronic components

- Read, draw and understand circuit diagram
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radıo, T.V. Hi-FI and microprocessor/computer

Newdob?NewCareer?NewHobby?Getinto Electronics Now!

This might show you a thing or two about how to recognise the good, the bad and the indifferent among soldered joints.

SOLDERING IS somewhat of an art and is essential to the successful construction of electronic circuits. The beginner particularly must learn to solder correctly to achieve success and avoid frustration.

Components are supported by a variety of methods and connections rely on the soldered joint. The solder is not meant to provide mechanical support.

Solder

Solder is an alloy of tin and lead that melts at fairly low temperatures. A joint
is made using solder as a filler and bonding agent. Soldering creates a continuous intimate contact between the solder and the metal surfaces by the mechanical interlocking of the solder with the irregular surface texture of the metals. This process is called 'wetting', as the solder flows onto and into the metal surfaces. The wetting of the metal surface by the solder is important in making a joint electrically and mechanically sound.

All metals oxidise, or tarnish, on the surface as a result of being exposed to air. This prevents the solder from
wetting the metal surface, resulting in a poor joint; 'flux' is used to remove tarnish. For electronic work this is composed of resin (sometimes spelt rosin), which is obtained from the sap of pine trees plus additives called 'activators'. At soldering temperatures, the activators decompose, liberating an acid that dissolves the tarnish faster than pure resin. Other fluxes are also made for non-electronic uses, usually sheet-metal work, copper and brassware manufacture. These fluxes are usually highly corrosive (such as hydrochloric acid) and must never be

PERCENTAGE OF LEAD

PERCENTAGE OF TIN

Fig. 1. How the melting temperature and plastic range are affected by the relative percentages of lead and tin in a solder alloy. At the 'eutectic point', an alloy of 63% tin and 37% lead goes from the liquid to the solid state at $183^{\circ} \mathrm{C}$ without going through a plastic phase. This makes it very brittle, and different contraction rates of the parts of the joint cause the solder to fracture. A small plastic range, such as for 60/40 solder, prevents this.
used for electronics work as even minute amounts rapidly corrode component leads and printed circuit board tracks.

Solder for electronics work is made as different gauge wires. Most have a resin core along their length, some have up to five separate cores.

The resin core melts before the solder and flows onto the joint, wetting both the joint and the solder, excluding the air. At the same time the activators dissolve the tarnish on the surface, allowing the solder to flow freely and properly wet the joint. When the solder melts, the increase in temperature deactivates the flux, limiting the possibility of corrosion. It is important to thoroughly heat activated resin during soldering to ensure the complete decomposition of the activators, otherwise they remain corrosive at normal temperatures.

Fig. 2. Construction of a 5-core multicore solder. The flux cores are located near the surface so that they melt faster, giving rapld fluxing action.

Resin-cored solder is obtainable in a variety of wire gauges. For general and heavy work, such as on sockets, chassis, switch contacts, etc, 16 gauge is suitable. For fine work on printed circuit boards, miniature components, etc, 20 or 22 gauge is best. It pays to have several different gauges handy. Experience will show which is the best under different circumstances.

As already mentioned, solder is an alloy of tin and lead. Tin melts at $327{ }^{\circ} \mathrm{C}$ and is plastic down to $283^{\circ} \mathrm{C}$. Lead melts at $232^{\circ} \mathrm{C}$ and is plastic from $183^{\circ} \mathrm{C}$ to $232^{\circ} \mathrm{C}$. Either by itself
is unsuitable as any movement of the joint while the soldering metal is in its plastic state will result in a faulty joint. An alloy of appropriate proportions has a plastic state temperature range that is much smaller, and a lower melting point (see Fig. 1). With a composition of 63% tin and 37% lead, the alloy has no plastic region. It goes from solid to liquid at exactly $183^{\circ} \mathrm{C}$. This is undesirable as a small region of plasticity reduces brittleness under practical circumstances. The most common composition of solder for electronics work is therefore 60% tin - 40\% lead, often called 60/40 solder. It melts at a temperature of $188^{\circ} \mathrm{C}$ and has a plastic range of about $5^{\circ} \mathrm{C}$. It combines optimum strength with lowest electrical resistance. Another type of solder used in electronics work includes about 1.5\% copper and is known under the trade name of Savbit. Soldering irons with copper tips corrode rapidly when used with straight 60/40 solder as some of the copper is absorbed into the molten solder. Savbit solder prevents this and can extend the life of copper bit soldering irons by up to ten times. Some soldering tools have iron-plated tips to reduce this sort of wear and the use of Savbit is not necessary with these irons.

Ordinary solders, such as 60/40 solder, are also referred to as 'soft solder'. Joints that have to withstand high temperatures, or that need greater mechanical strength than obtained with 60/40 solder, are joined with 'hard' solders that melt at higher temperatures. Hard solder contains either $30 / 70$ or $20 / 80$ tin-lead and melts at $255^{\circ} \mathrm{C}$ and $275^{\circ} \mathrm{C}$ respectively.
'Silver' solder, containing 5\% tin/93.5\% lead $/ 1.5 \%$ silver, melts at about $300^{\circ} \mathrm{C}$ and is mostly used in fabricating brass or copper chassis, etc. Silver solder is usually melted with a gas-burning torch. A special flux is also used.

Low-temperature solder is also
obtainable and is used where components may be damaged or where it is necessary to solder onto a joint that is already soldered without melting the existing joint. This has most applications in special servicing jobs. It consists of 50% tin/33\% lead/17\% cadmium and melts at $145^{\circ} \mathrm{C}$. It requires care in soldering as it tends to - fracture the instant it solidifies.

Soldering Irons

It is important to select a suitable soldering iron - after all, it will probably be the tool you use the most! A bewildering variety of types and sizes are available.

Continuous Heat Irons

These are probably the most widely used despite a few drawbacks. They are heated by a wire resistance element located in the barrel just behind the tip. The most suitable rating for electronics work is between 15 and 30 watts. Tools below this rating generally do not have sufficient heat capacity, while those above have high tip temperatures -that can result in damaged components and poor joints. Irons of the continuous heat type that have ratings above 80 watts are best for sheet metal work. Irons advertised as 'universal' (mostly having a rating of 40 or 50 watts) should be avoided as they are usually too bulky for electronics work, particularly on printed circuit boards, and have too much heat capacity and high tip temperatures with the likelihood of component damage. The handle also usually gets too hot for comfort.

Choose an iron which is comfortable to hold. As well as being light, the iron should preferably have a lightweight power cord to reduce drag on your wrist when moving the iron around. The length of the cord should be adequate - about 1.5 m to 2 m is a good length.

Continuous heat irons are slow to heat to soldering temperatures - they are usually left running continuously. This causes tip oxidisation which therefore requires constant maintenance and fairly frequent replacement. These are minor drawbacks, however, if you cannot afford a more expensive iron.

Some irons of this type are obtainable with a temperature select switch in the handle. This usually doubles the power when needed to provide sufficient heat to make the occasional heavy joint. They are normally used on the lower power position for routine soldering.

Quick Heat Irons

These irons operate from a low voltage at a high current, usually supplied from a transformer, and take only a few seconds to reach soldering temperature. They take only a few more seconds to reach red heat if the operating button is held on too long!

Quick heat irons are made in two basic styles - the soldering gun and the low-voltage iron.

automatically fed to the tip each time the trigger is pressed - but for good joints that's not where you want the solder; it needs to be applied to the joint.

Low-voltage irons have a push-ring or lever on the handle which pushes a carbon contact against the rear of the tip, passing a current of about 30 amps at 3 volts. The contact, having a higher resistance than the rest of the circuit, rapidly heats up, passing its heat to the tip, which reaches soldering temperature in a few seconds. An external transformer supply is the necessary power.

Quick heat irons are suitable for intermittent handyman use or applications requiring their large heating capacity. They are not recommended for general electronics use, particularly on printed circuit boards. They require some skill to control the heat so as not to damage components by overheating. Some do not have an electrostatic screen on the transformer, and ICs and some transistor (particularly MOSFETs) can be damaged by leakage currents.

Despite their limitations, quick heat irons can be useful in an electronics workshop. If you contemplate purchasing one make sure the transformer has an electrostatic screen.

Soldering guns have the disadvantage that the transformer in the handle tends to make them a little unwieldy, especially for prolonged use.

Battery-operated soldering irons have become widely available, and these find application where power is unavailable or inconvenient to supply. These irons can be used where components sensitive to leakage currents (ie MOS devices, CMOS ICs, etc.) are employed. Rechargeable batteries, usually contained in the handle, supply the current. They are not suitable for prolonged use.

Temperature-Controlled Irons

Temperature-controlled irons are made specifically for electronics work. They are unsurpassed for good soldering, convenience and minimum possible damage to components. They are more
expensive than the other types but get one if you can afford it.

There are several ways of controiling the tip temperature. One method (used in the Weller iron) is illustrated in Fig. 4. A spring-loaded switch within the handle is operated by a magnet and temperature-sensitive sensor assembly located in the barrel. The temperature-sensing element consists of a ferro-magnetic material, which at a certain temperature (called the Curie point temperature), loses all magnetic properties. The actual Curie point temperature depends on the composition of the ferromagnetic material. The Curie point for iron is typically $1000^{\circ} \mathrm{K}, 633^{\circ} \mathrm{K}$ for nickel and $1393^{\circ} \mathrm{K}$ for cobalt. An alloy of these and other ferromagnetic materials can be selected to produce any temperature required.

When the tip is cold the magnet is attracted to the sensor, which actuates the switch, applies power to the element, and heats the tip. When the tip reaches the Curie point temperature the sensor releases the magnet, opening the switch and removing power from the heating element. When the tip cools slightly, the magnet is again attracted to the sensor and the whole cycle is repeated, maintaining the tip within a few degrees of the selected temperature. The iron can be heard to emit a small click as the magnet goes through its attract-release cycle.

The tips are removable and sensors having different Curie point temperatures are available. One can select tip temperatures in the range $260^{\circ} \mathrm{C}$ to $430^{\circ} \mathrm{C}$. A variety of shapes is also available to suit different
applications. The Weller irons operate from a 24 volt transformer which is moulded into the stand supplied.

Another type of controlledtemperature iron has circuitry in the stand supplied with it which monitors the tip temperature and controls the supply to the heating element, thus maintaining a constant tip temperature. In this type, a control knob is provided in the stand which allows the operator to set the desired tip temperature (Fig. 7).

Where 60/40 solder is used for construction work, a tip temperature of $250^{\circ} \mathrm{C}\left(500^{\circ} \mathrm{F}\right)$ is recommended. This is sufficiently above the melting point of $215^{\circ} \mathrm{C}$ to allow for heat conducted away by the joint and still melt the solder. If using Savbit solder, it melts at a slightly higher temperature and a tip rated at $275^{\circ} \mathrm{C}\left(550^{\circ} \mathrm{F}\right)$ is recommended.

For desoldering, such as in servicing work, a tip temperature of $315^{\circ} \mathrm{C}$ $\left(600^{\circ} \mathrm{F}\right.$) or more is necessary; up to $370^{\circ} \mathrm{C}\left(700^{\circ} \mathrm{F}\right)$ is recommended where large connections are involved.

Soldering Bits

The soldering iron bit conducts heat from the iron's element to the joint. A typical bit is shown in Fig. 6.

The tip temperature and the amount

Fig. 4. Temperature control system that exploits the 'Curie point temperature' of a magnet to turn the power on end off to the heating element. The magnet is attracted to the rear of the tip, closing the switch. The element heats the tip and when the temperature reaches the Curie point of the magnet, the magnet loses its magnetism and the spring opens the switch. When the temperature drops below the Curie point, the cycle is repeated. Some models of the Weller soldering irons employ this technique of temperature control.

Fig. 5. This iron, Weller's model EC2000D, employs a temperature sensor in the tip and electronic control of the power to the heating element to maintain the tip temperature within very close limits. The desired temperature is set by a knob and displayed in the threedigit readout.
of heat it stores are important factors in obtaining a good soldered joint. The tip temperature will drop when making a joint due to heat being conducted away by the parts of the joint. Just how much the temperature drops and how fast depends on the capacity of the bit to store heat and the mass of the parts being joined. The larger the bit, the more heat it will store and transfer to a joint, and the les will be the temperature drop. Temperaturecontrolled irons minimise these problems to a large extent.

Fig. 6. A typical replaceable soldering iron bit. This one screws onto the end of the iron barrel, and the cylindrical tip has a 'flat' on the end at an angle of about 60° to the axis.

For an adequately rated iron, the correct bit for the job will remain above soldering temperature (without burning the joint) and cause the solder to flow properly. If the tip is too small, too much heat will be conducted away, and the solder, while it may melt a little initially, will not melt and flow properly and a poor joint results. The effect of proper bit size is shown in Fig. 7.

Bits are usually made of copper, copper alloy or iron-plated copper. A plated bit is shown in Fig. 8.

Unplated bits transfer heat more effectively but oxidise rapidly, reducing their efficiency. Their life is much shorter than plated bits and they require more frequent maintenance.

The area of the tip face determines the rate of heat transferred to the joint. A small area will have a higher temperature but less heat reserve (or

Fig. 7. The bit should be large enough for the job, otherwise too much heat is conducted away from it by the joint and the solder will not flow properly. The bit on the left is OK, that on the right is too small.
capacity) than a large tip. Generally, the more heat the work is likely to absorb, the larger the tip area should be. However, the area should not be so large that it obscures the work or damages adjacent parts.

Fig. 8. Plated bits last longer because they do not oxidise as rapidly as unplated bits. They are usually iron-plated.

The distance the bit protrudes from the barrel of the iron is also important. The shorter this distance, the higher the tip temperature. Usually, it is best to select a bit length as short as practicable to reduce the heat path from the element to the tip, and to minimise wobble and bending of the bit. It should not be so short that the barrel touches or radiates onto nearby components or that the tip temperature
becomes too high. One way of reducing the temperature of a smalldiameter bit is to increase the length beyond that used for the larger-sized bit - or vice versa. Bent bits can be used in awkward places where a straight bit cannot reach.

Maintaining The Iron And Bit

For maximum efficiency and consistently good joints, the soldering iron and bit require frequent but simple maintenance. Heating produces oxidisation of the barrel and bit, the oxide forming a scale on the parts. This reduces heat transfer as the scale is an insulator. Continuous heat irons are particularly affected. Excessive scaling is produced by high operating. temperatures and by prolonged use without descaling.

To remove scale, remove the bit and tap both the barrel and bit firmly on the bench top. This should be done regularly. Only remove a plated bit from the barrel of an iron when it is quite cold.

For efficient transfer of heat from the bit to the work, the face of the bit should be smooth and coated with a shiny layer of resin-free solder. A bit in this condition is said to be 'tinned'. A clean, new bit is tinned by heating it to soldering temperature (test it by lightly touching solder on the face of the bit) and applying a small amount of solder to the face and letting it flow freely to cover the face. Any excess should be removed by wiping it on a lightly damped sponge or cloth.

$0.8 \mathrm{~mm} \quad 4.8 \mathrm{~mm} 3.2 \mathrm{~mm} 6.44 \mathrm{~mm}$ CONCORDE

Fig. 9. Bits can be obtained in a variety of shapes to suit the job, such as conical, wedge, bevel, chisel, etc. The most common bit shapes are the wedge (or chisel) and the bevel. They can be different diameters and lengths, giving different heat capacities.

With use, the face of the bit becomes pitted and the solder layer takes on a dull grey appearance. During soldering, some of the copper from the face is absorbed into the solder and with repeated use the surface becomes uneen. There is less absorption with plated tips. Copper bits in good condition and in bad condition are illustrated in Fig. 10. The 'pitting' can be removed by filing. Only file off as much as necessary to produce a smooth face again. Excessive filing
reduces the heat capacity and increases the bit temperature. Remove any scaling as well. When a clean tip is obtained, re-tin the face. Do not pull the tip further out from the barrel to compensate for reduced length as this overheats that section of the heating element not in contact with the bit, producing excessive scaling and eventually causing the element to fail.

Fig. 10. The tip should be in good condition, as at left, for good soldering, not worn. pitted or oxidised as at right.

Small surface irregularities on plated tips should be repaired with fine emery cloth when the tip is cold. Take care not to remove the plating. After cleaning, heat the bit and re-tin the face. Relatively large pitting on a plated bit means that some plating has come off. Attempts to remedy the situation usually result in more plating being removed. In such cases, replace the bit.

During normal soldering with a plated bit, the molten solder on the face should be replenished regularly while the tip is hot. The face can be cleaned by wiping it on a damp, finetextured sponge lthese are usually supplied with controlled temperature irons). Do not overdo it or you will remove all the molten solder. Wait a few seconds after wiping the bit to allow it to recover heat and then lightly re-tin the face. Plated bits should have a small amount of excess soider on the face while not being used.

With either plated or unplated bits, regular cleaning during use is a good practice, making soldering easier and ensuring good joints. A damp sponge pad is good for either type of bit. A fine textured wire brush may also be useful with copper bits. (Fig. 11.)

Fig. 11. The tip should be cleaned regularly during use. A moist sponge pad (left) is good for frequent wiping, while for unplated tips an occasional scrub on a wire brush keeps the tip in good condition.

Soon after learning soldering, most people will use one of two methods to remove excess solder from the bit: viz: flicking or wiping. Wiping is the recommended method. Flicking causes blobs of molten solder to splatter on to all sorts of awkward places. If you're a flicker, don't wear shorts! Apart from ruining the carpet and prompting sudden leaps into the air, molten blobs of solder have a nasty habit of getting into equipment and causing short circuits - which may be disastrous. For habitual flickers, either cure yourself of the habit or screw a low, open-topped container to the bench top and aim in there from close quarters. It is even possible to recycle the solder thus collected - but not in your project.

Basic Soldering

Before use, the soldering iron should be turned on for long enough to allow the bit to reach soldering temperature. Irons vary quite a bit in this; some take quite a few minutes to warm up, whereas others are much quicker. The parts to be joined should be bright and clean; if not they should first be tinned (see 'Preparing Leads and

Components').

When the parts to be joined are prepared, and with the iron at the correct temperature, apply the face of the bit to that part of the joint having the greatest mass (providing it isn't the most heat sensitive). Allow the joint to heat for a few seconds to raise it to soldering temperature, and then apply a little solder. If the parts are clean, the soider will flow freely as it melts, wetting the joint properly and making a smooth, shiny joint. Remember that the solder must be applied to the joint and not to the iron.

Figure 12 shows how to solder a component lead to a tag. Apply the iron to the tag as the tag has the greatest mass. To improve heat transfer and reduce soldering time, first apply a little solder to the iron at the junction of the bit and the tag. Just a touch is sufficient. The flux removes any tarnish from the tag and the hot solder

Fig. 13. When soldering a component lead to a printed circuit board, apply the iron to the lead with the tip touching the copper track as wall.
tarnish that forms on the face of the bit, allowing rapid heating of a small area. The molten solder improves the thermal contact by wetting both surfaces and filling the minute air spaces between them. Next apply the solder to the tag. The solder will only melt if the tag is at the correct temperature, thus ensuring proper wetting.

Soldering components to a printed circuit board is shown in Fig. 13. Always take care not to overheat printed circuit boards as the copper track may lift, damaging the board and making subsequent connections difficult.

Always hold the iron on the joint for a second longer after sufficient solder has been applied. This ensures that all the solder is melted and that the flux has been de-activated. Allow the solder to cool naturally. Don't blow on it to cool it. Don't move the joint while the solder is solidifying - a poor joint may result.

Take care not to apply too much solder as it may conceal a poor joint. On printed circuit boards, too much solder may cause 'solder bridges' to form between tracks.

How much is the right amount of solder, and what does a good joint look like?

Fig. 12. When soldering a component to a tag, apply the iron to the tag and the lead to heat them up. After a few seconds, touch the solder on the iron briefly and then apply the solder to the join.

Features

The size of the solder 'fillet' should be large enough to fill the area of the joint and the contours of the parts should be plainly visible. The surface of the solder should be smooth and bright and meet the parts of the joints at a tangent. This 'feathering' indicates good wetting. The characteristics of a good joint are shown in Fig. 14.

Fig. 14. A good joint will be covered by a small fillet of solder which meets the parts of the joint at a tangent. The solder should be smooth and bright.

There must be sufficient solder filling the spaces of the joint to ensure a good mechanical bond. Insufficient solder results in a mechanically weak joint. The joint is likely to go open circuit or intermittent under slight mechanical stress (such as due to vibration or expansion and contraction with temperature changes). Joints having insufficient solder are shown in Fig. 15.

Fig. 15. Insufficient solder laads to a weak joint which may become faulty.

The Problem Of PlatedThrough Holes

Double-sided PCBs with plated-through holes are becoming increasingly common. It is important that the correct technique be used to solder components to the board as well as when desoldering component leads.

In general, one can solder component leads from the component side of the board. The usual rules, as described here, about applying the iron to the lead and the track apply. Likewise with the appearance of the joint. Component leads should not be crimped or clinched as it is unnecessary. A properly made joint is illustrated in Fig. 16. The application of too little solder will result in a joint as illustrated in Fig. 17.

When desoldering leads from a through-plated hole, as much solder should be removed from the joint as
possible. Vacuum-operated desoldering tools are best for this purpose.
However, the lead should be removed while the iron is still applied to the joint and the solder is molten. Otherwise, you may damage the through-plating in the hole. The iron should not be pressed hard onto the pad as this too can result in damage to the throughplating. With ICs and/or IC sockets where a number of joints have to be desoldered simultaneously, special desoldering tool bits can be obtained, or else the pins of the package must be cut, destroying it.

Fig. 16 A properly made joint in a platadthrough hole.

Fig. 17 Too little solder results in weak joint thet may frecture and become intermittent or unraliable. When desoldering, a little solder will alweys adhere to the joint inside the hole in the positions shown, so the lead must be withdrawn while the solder is molten.

Bad Joints And How To Cure Them

In some instances, the solder may not wet the joint evenly. The solder surface is not smooth and continuous, having irregular, round, non-wetted areas exposed. The solder may meet one surface abruptly in places. This condition is illustrated in Fig. 19. It can often be remedied by reheating, although desoldering and cleaning may be necessary in some cases.

When a joint is not wetted at all, usually due to tarnish, the solder will not completely cover the surface and appears as droplets or balls (Fig. 20). This is a bad joint mechanically and electrically and should be taken apart and properly prepared.

Fig. 18. Too much solder can hide poorly wetted surfaces (top left), which results in a poor joint. On PCBs with close conductor spacing too much solder leads to 'bridging' (bottom).

Fig. 19. When poor watting occurs, the solder meats one surface at an abrupt angle and the solder flows irregularly.

Fig. 20. Tarnished surfaces prevent wetting altogether. Ball of solder slt on the surface.

Sometimes during soldering, the molten solder will run along the metal and then withdraw towards the fillet when the iron is removed (Fig. 21).

Fig. 21. Dewatting. The soldar appears to flow properly, then withdraws when the iron is removed from the joint.

This 'dewetting' is another problem caused by tarnish that the flux is unable to remove. The joint has to be desoldered and thoroughly cleaned before resoldering. Applying more heat and excess solder may make the joint look all right but it may conceal a bad joint.

A 'cold' or 'dry' joint is usually caused by movement of the parts during soldering or as the solder is solidifying. It is also caused by the solder running onto surfaces cooler
than the soldering temperature. A cold joint has a frosty appearance, as shown in Fig. 22, but may otherwise look like a good joint. The trap with cold joints is that they may perform quite well for a considerable period and then suddenly become intermittent or go open circuit. They are repaired quite simply by reapplying heat or desoldering the joint and then resoldering.

Fig. 22. A 'cold' joint. The solder surface has a frosty appearance but looks good otherwise.

If insufficient heat is applied to a joint, the solder solidifies before adequate wetting occurs, causing the angle of contact between the solder and the parts to be very large. The flux is not properly activated and the joint may tarnish. The solder can usually be pried loose. The surface of the solder may be smooth and continuous but it is not attached to the parts of the joint (Fig. 23). Reheat the joint if tarnishing is not evident, otherwise desolder and clean before soldering.

Fig. 23. Too littie heat. The solder forms a large contact angle with the surface and can be prised loose.

In some cases, a resin bond is formed between the parts of a joint. In this case, the angle of contact of the solder is usually large and a layer of solidified resin forms the bond, as shown in Fig. 24. There may be no electrical contact at all, the joint has little strength and may be prised apart. It may be caused by excess flux or solder running onto surfaces cooler than soldering temperature but hot enough to melt the flux. It is usually cured by reheating the joint, making

Fig. 24. A resin bond. There may be no eloctrical contact at all. It can be cured by reheating the joint.
sure that all parts are brought up to soldering temperature.

When soldering multi-strand hookup wire, excess solder or long soldering
time can cause solder to run along the strands. This is called 'wicking' (Fig. 25) and can be reduced by soldering faster or by using a heatsink on the wire. Wicking makes the wire brittle and liable to break when it is moved.

MULTISTRAND WIRE

Fig. 25. 'Wicking' is caused by soider running back up multistrand hookup wire. This makes the wire brittle at the joint and movement may break it.

When the soldering iron is withdrawn from a joint a spike of solder, called an 'icicle', is sometimes left behind, usually pointing in the direction in which the iron was removed (see Fig. 26). Icicles may be caused by a variety of problems, including tarnished joints, too short soldering time, low soldering temperature or excess solder on the iron. Reapplication of the soldering iron usually remedies the problem, but make sure that there is not some other problem with the joint. If the joint is otherwise sound, small icicles are nothing to worry about.

Fig. 26. 'Icicles' sometimes form on a joint when you remove the iron. Reheat the joint with a clean tip to get rid of them.

Preparing Leads And Components

Most modern components have leads which are tin-plated to aid soldering. The tin is readily absorbed into the solder, allowing rapid wetting and reducing soldering time. The plating will tarnish with time and handling. Unplated leads and unprotected printed circuit boards are particularly affected as oxidisation is quite rapid.

It is always a good practice to tin the parts of a joint before puttig them together. Component leads can be tinned by simply heating them with the iron and then applying a little solder. Only tin that part of the lead that is actually going to make the joint as component leads are usually trimmed after the joint is made. If the lead is tarnished, it can be cleaned by pulling it through a doubled-over piece of emery cloth or plain steel wool. Printed circuit board tracks do not need tinning. If the tracks are tarnished, clean the board with an abrasive powder cleanser (such as Ajax) and a moist cloth. Wash the
board in clean water after cleaning and dry with a tissue or paper towel.

Stranded hookup wire is best prepared in the following manner. Strip away about $6-7 \mathrm{~mm}$ of insulation from each end. Twist the strands together, apply the hot iron for about one second and then a touch of solder. Don't overheat or apply too much solder. Solid hookup wire is prepared the same way as component leads.

Tarnished tags are best cleaned by rubbing with emery cloth or lightly scraping them with a penknife. Thoroughly heat the tag with the iron before applying a little solder to tin it.

Enamelled coil wire can be prepared by stripping the end back about 6-10 mm using a penknife, cutting blade, emery cloth or steel wool until the bright copper wire shows. Tin it quickly. Some modern coil winding wire is coated with an enamel that, although very tough, melts at soldering temperatures ('Bicalex' and 'Lewmex' are several trade names). A hot soldering iron is applied to the end to heat it first. Apply some solder to the face of the iron then to form a molten blob to cover the wire. Shortly, the insulation will smoke and burn off, allowing the wire to be tinned. A good hot tip is necessary for this operation.

Mounting Components On Terminals

There are good and bad ways of attaching component leads to terminals before soldering. The correct method of attachment depends on the type of terminal. Pins are generally meant to have the lead bent around them, other terminals have holes through which the component lead is inserted. The main principle to keep in mind is that the lead must always be easy to remove if subsequent servicing or modification is necessary. Also, the solder should not provide all the mechanical support for the component.

Terminal Pins are often used with matrix board, being inserted into the holes at convenient positions. The component lead should be bent around the pin, making an angle of approximately 135°, as shown in Fig. 27 (left). If the angle is too small, the connection is mechanically weak - it depends too much on the solder. If the

Fig. 27. How to attach a component lead to a terminal pin before soldering.
lead is wrapped right around the terminal it is difficult to remove (Fig. 27, right).

When mounting a component between two terminal pins, first bend each lead at the point corresponding to the position of the terminal, leaving sufficient slack in each lead for a little movement in the component. Tension each lead against the terminal during soldering (Fig. 28).

Fig. 28. When mounting a component between terminal pins leave a litite slack in the leads.

Solder Tags and Terminals with Holos are found on tagstrips, potentiometers, switches, etc. The best methods of connecting leads to them are shown in Fig. 29a. In each case, there is adequate contact between the lead and terminal and the lead can be easily removed if necessary later. Do not wrap the component lead right around the terminal as this makes subsequent removal difficult and messy, but if the lead is not bent around the terminal at all too much dependence is placed on the solder for both mechanical and electrical connection. The wrong ways are illustrated in Fig. 29b.

The way a component is mounted between two terminals of this type depends on the orientation of the terminals. Where the holes are approximately parallel, bend each lead at right angles at the point corresponding to the position of the terminal hole. The lead is inserted without further bending (Fig. 30). Leave a little slack in the leads for movement. Hold the lead firmly when soldering.

Where the terminal holes are in line (ie coaxial), bend one lead around one terminals as illustrated in Fig. 29 and pass the other lead through the other terminal without bending it. Solder the bent lead first. Tension it against the terminal while soldering. Arrange a little slack in the leads before soldering the ren asining lead (Fig. 31a). If the terminals are at a slight angle to one another, form one lead to pass along the side of the terminal closest to the body of the component before entering the hole. Don't bend it further. Pass the other lead through the other terminal hole without bending it either. Solder the bent lead first, tensioning it against the terminal to prevent movement. Again arrange a little slack in the leads before soldering the remaining lead. (Fig. 31b).

Fig. 29. The best way to attach component leads to tags and terminals (left).

Fig. 30. Mounting a component between tags with parallol holes.

Fig. 31. Mounting component leads where the tag holes line up, or nearly so. Bend the leads to provide some slack.

To mount a component between a terminal pin and a solder tag, bend the leads around each terminal according to the principles outlined above.

When terminating several leads on one terminal, each lead should be connected separately, regardless of the type of terminal. This allows any single component to be easily removed. Don't twist the leads together as this prevents subsequent removal. Figure 32 illustrates the correct and incorrect methods of terminating several leads to one terminal.

When interconnecting two terminals use a length of wire between them. Don't use component leads.

Mounting Components On Printed Circuit Boards

Components should always be mounted on the non-copper side of a printed circuit board, unless especially noted otherwise. The component leads should be inserted in the correct holes and may be formed in a variety of ways

RICHT

whoma
Fig. 32. When several component leads go to one terminal, attech each lead separately.
before soldering. The leads may be splayed, as shown in Fig. 33, to hold the components in position before soldering. This method allows all the components to be mounted before soldering. See Fig. 34.

Another method is to mount the components one at a time, cutting the

Fig. 33. When mounting components to a printed circult board, the leads may be splayed, before soldering, to hold them in position.

leads close to the board before

 soldering, as in Fig. 35. However, this necessitates holding the component steady whilst soldering.For a neat appearance, do not leave excessive lead length on the components; place them against the board and align them parallel to an edge. Generally, printed circuit boards are laid out so that the components will lie parallel to an edge when correctly inserted. It is a good idea to position the components so that their value and voltage rating or type number can be seen. This greatly facilitates checking and later servicing.

Fig. 34. The leads may be cut off and bent to lle flat along the track on the board and then soldered.

Fig. 35. Altematively, the leads may be cut so that they protrude a short way, and then soldered. They may be cut off after soldering if you wish.

Sometimes components are mounted vertically. It is best to splay or clinch the leads in this case and allow a smali clearance between the end of the component closest to the board and the board. Vertically mounted components are illustrated in Fig. 36.

Many capacitors, ceramic capacitors particularly, have their coating material extending a little way down the leads.

Fig. 36. Whilst axial lead components (ie resistors) are generally mounted horizontally on a PCB, they are sometimes mounted vertically. Leave a millimetre or so clearance between the bottom end and the board.

This should not be removed beyond the point where the leads enter the component body. The coating should not enter the hole in the printed circuit board. Where double-sided board is used, allow a clearance of 2 mm or so
between the circuit pad and the coating on the lead.

Components with metal bodies that are mounted on the copper side of a board, or on double-sided board, or that cross a track or jumper lead should be sleeved or otherwise insulated to prevent a short circuit.

Precautions With

Semiconductors

Most semiconductors are damaged by overheating. Always solder or desolder semiconductors quickly and cleanly. Make sure all parts to be joined are clean and/or tinned beforehand. If you don't feel confident about making the joint quickly, use a heat shunt (eg a pair of pliers) between the end of the lead being soldered and the transistor body to divert the heat. Special heatsink tools are obtainable for this purpose.

Integrated circuits require particular care when being soldered into printed circuit boards. If too much solder is applied, a 'solder bridge' may form between adjacent pins (see Fig. 18). This necessitates removing the solder, with the risk of damaging both the board and the component.

Transistors and integrated circuits of the MOS or CMOS type are easily damaged by electrostatic charges or leakage currents from the soldering iron. These devices are normally supplied with their pins inserted into a conductive material, usually a black foam. Leave them in this until they are to be used. Avoid touching the pins, as even small static discharges from the body (caused by clothing) can cause damage.

Always fit MOS or CMOS components last. Insert the device into place quickly. Solder the power supply pins first. The devices are built so that this activates built-in protective circuitry. The remaining pins may then be soldered with little chance of damage. Sockets for ICs are worth using as they remove the necessity of soldering directly to the IC pins, thus reducing the possibility of damage.

To reduce leakage currents produced by a soldering iron, connect a flexible lead from the metallic part of the iron (make sure it connects to the tip) to an alligator clip that can be attched to the equipment earth 10 V rail). Soldering irons that use a stepdown transformer should have an earthed electrostatic shield between the windings. It is wise to check this when buying. Alternatively with an iron that has sufficient heat capacity, disconnect the iron when soldering components that are sensitive to leakage currents.

Desoldering

Where joints have to be desoldered there are two basic methods that can be used to effectively remove the solder - 'soaking' it up and sucking it up.

It is possible to remove leads while the solder is molten by just heating the joint. However, this is not the best

Fig. 37. A precaution to take when using mains-operated or unprotected low-voltage irons on MOS components is to connect the metallic part of the iron to the 0 V rail of the equipment with a clip lead.
method, as a component may be damaged by the amount of heat produced. Also, flexing the leads whilst trying to remove the component may damage the lead or the lead-body seal. A terminal or printed circuit can also be damaged by heat or attempts to prise the component loose while the solder is molten. It is much better to use a desoldering aid.

Desoldering 'wick' can be used to soak up molten solder from a joint. This consists of a copper braid impregnated with resin. When applied to a joint and heated with a soldering iron, molten solder from the joint flows into the fluxed braid by capillary attraction. effectively clearing the joint of solder. Figure 38 shows how it's done.

You lay the wick over the area to be desoldered. The iron is applied to the wick and some pressure applied. As the wick heats up it activates the flux in it, which flows onto the joint, and as the solder on the joint melts it replaces the flux in the wick, flowing into the braid quite quickly. The 'used' wick is cut off afterwards. A tip running at a higher temperature and having more heat capacity than generally used for soldering is recommended. Desoldering wick is excellent for general use and on joints having a large area.

Sucking up the solder with a suitable tool is a very effective method. Hand-

Fig. 38. How to use desoldering wick. Lay it over the joint and apply the iron tip to the braid, using a littie pressure. When the solder is drawn into the brald, remove the iron and the braid.

Features

held 'solder suckers' are inexpensive and popular but a variety of desoldering irons with suction devices incorporated are also available.

Solder suckers have a spring-loaded plunger in a barrel with a thumboperated release mechanism. A heatresistant nozzle at one end is applied to the joint, which is heated with an ordinary soldering iron. When the plunger is released, molten solder from the joint is drawn into the barrel. Figure 39 shows how it's done. They are excellent for general use with PCBs. boards.

That's the general technique, and it's fine for equipment using bipolar

Fig. 40. This Hakko 'Vac Ace' desoldering tool from G.E.S. employes a small vacuum pump to draw molten solder from the joint into the glass barrel atop the gun handle. A steel wool wad absorbs the solder. This tool is particularly effective on through-hole plated PCBs.

Fig. 39. Using a hand-held solder sucker. The nozzle is made of Teflon (PTFE), a heatresistant plastic, and is replaceable. To use it, load the plunger in the tool. Heat the joint until the solder melts, apply the sucker's nozzle to the joint and release the plunger.
devices, but it can be extremely dangerous for MOS devices. A US maker of solder suckers, Anderson Effects, points out that standard plastic solder suckers have been found to produce a static surge of 5 kV to 10 kV at the tip. This is invariably in contact with the device's leads when the surge occurs and may damage or destroy the device. To obviate the problem staticfree metallised plastic nozzles may be obtained. Otherwise, use desoldering wick or a vacuum-operated desoldering
iron.
A variety of desoldering irons having a hollow tip through which the molten solder is drawn by a vacuum pump are available. These are particularly useful for servicing work. An example is shown in Fig. 40.

HE

Material for prepering this article was dorived from Australian Post Office tochnical treining publcation ETP 0276,1972 , and The Art of Soldaring. ETI April 1975. By Roysfon Eloctronics, Mutricore Solders Pry Ltd, The by Rayston Ebctronics, Mutricore Soldors PTy LId, The Eloctronic Services.)

NOW, A PACKAGE THAT OFFERS YOU A 100uF/10V

 BEAD TANT FOR UNDER 10p \& CER DISCS FOR 1p

 OR ONE OF EACH ABOVE SPECIAL OFFER T2 FOR C7.00.
metain this ad. foh all your immediate and future tantalum reounements suamimiature ver. mounting zov cer. oisce values in PF
22 Pl 334756688210151822733347566082 ep ea 100 p 120150180200220270

C.H.J. SUPPLIES, 4 STATION ROAO, CUFFLEY, HERTS. TEL: 01-440 8969

PARNDON ELECTRONICS LTD.

IlepI. No. 22.
SISTORS:

RESISTORS: :Watl Corbon Film E24 ronge : 5 Ioteramue Higt पunlict rexwerty mode under strictly controlled condition, thy aunmatu machinow Banduliered and colour conded © 1.00 per hundred mixed IMin 10 put valuel E8. 50 per thoussnd mixed (Min 50 per saluel Sperial stock pack 00 values. 10 oll each C 5.5 g	
DIODES	IN4I48 3p each Min order cuantils 15 tivm ©1.60 per hundred
DIL SWITCHES: Cold plated contact in tull wealed bin proge amming problems 4 Was 8peach owas, E1.00 rach Y Wa. £ 120 rach	
DIL SOCKETS: High qualitu lum protile sockets 8 pin - 10p. 14 pin - 11p. 16 pun - 12p. 18 pin - 19p. 20 pin - 21p. 22 pin - 23p. 24 pin - 25 p. 28 pin - 27 p. 40 pin - 42p.	
	ICES INCLUOE V.A.T. \& POST \& PACKING - NO EXTRAS DER - UK 1100 OVERSEASt5 CASH WITH OHIJER PLSAゝF

DIL SOCKETS: High qua
CKETS: High qualitu lum profite sockets
8 pin - 10 p. 14 pin - 11 p. 16 pin - 12p. 18 pin - 19 p. 20 pin - 21 p. 22 pin - 23p. 24 pin -25 p. 28 pin -27 p. 40 pin - 22 p.

ALL PRICES INCLUOE V.A.T. POST \& PACKING NO EXTRAS
ALL PRICES INCLUOE V.A.T. \& POST \& PACKING -U NO EXTRAS
MIN ORDER - UK 11 OO OVERSEAS 55 CASH WITH ORDER PLFAЬF

JOIN UP WHLH: HAMSSOTD

Litesold's now 'L' Series soldoring imon - now at a bargain price Outstanding performance Lightweight Easy to maintain Elements are enclosed in Stanless Steel st.afts. insulated with mice and ceramic Non'seize interchangeable bits. choose from 'copper' or 'long lile' A very special tool at a very special 'direct' price. Just 5522 for iron fitted with 32 mn copper bit Just $\$ 2.27$ for 3 spare copper bits (1 6.2 4.4.7) A mare 84 for professional spring stand! Or buy the lof for 810.54 and savi 10%.

LIGHT SOLDERING DEVELOPMENTS LTD
all prices inc Vat P \& P
Write today Send Cheque/P. 0 to L:tesold, 9799 Gloucester Road. Croydon CRO 2DN or phone 01.6890574 for Barclay card/Access sales

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

January 80		September 80		May 81	
Digi Dice	£2.20	Auto Probe	£1.25	Voice Operated Switch	£1.25
		Guitar Phaser	£1.48	Organ 1	
February 80		Development Timer	£1.35		
Win Indicator	£1.98	Bench PSU	£2.20	June 81	
March 80		October 80		Envelope Generator	£1.40
508025 W Amplifier		Nobell Doorbell	£1.98	Organ 2	£1.90
Module	£1.95	Intruder Alarm	£1.88	July 81	
5080 PSU Module	£1.98	Tug O' War	£1.99	Organ 3	$£ 4.50$
Apri 80		Novermber 80		Organ 4	£4.50
Speed Controlier For R/C	£1.60	Memory Bank Synth:		Ultrasound Burglar Alarm	£1.90
Digital Frequency Meter	£2.95	Mainboard PCB	£2.48		
Hobbycom: Two-wire Inter-		Keyboard PCB	£2.70	August 81	
com (set of two)	£3.98	Party Grenade (set of three)	£2.60	RPM Meter	£1.33
Electronic Ignition (CD)	£2.98	Double Dice	£2.20	Thermometer	£1.25
May 80		December 80		September 81	
5080 Pre-amplifier	£3.50	Stereo Power Meter	£2.12	Power Pack	£1.27
		Digital Speedo (set of two)	£3.50	Reaction Tester Game	£1.28
June 80				'Diana' Metal Detector	£2.48
Fog Horn	£1.40	January 81 Car Rev Counter			
Egg Timer	£1.58	Car Rev Counter	£2.24	October 81	£1.99
July 80		February 81 Heartbeat Monitor	£1.90		£1.99
18 W + 18 W Car Stereo		Audio Signal Generator	£1.85	November 81	
Booster (two required for				Sound Torch (Set of Two)	£3.98
stereo) each	£1.20	March 81 Steam Loco Whistle	£1.99	December 81	
August 80				Pedalboard Organ	£4.48
Equitone Car Equaliser	£1.79	Super Siren	£1.48	January 82	
Pass The Loop Game	£1.98	Russian Roulette Game	£1.20	Intelligent NiCad Charger	£2.28

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/postal order made payable to ASP Lid, for the amount shown below	Boards Required	Price
OR		
I wish to pay by Barclaycard. Please charge to my account number		
V/SA		
OR		
I wish to pay by Access. Please charge to my account number		
..............................		
SIGNATURE . .		
NAME (BLOCK CAPTTALS)		
adoress		
(block Caftals	Add 40p p \& p	0.40
	Total Enclosed	

Please allow 14 days for delivery

SOUND ACTIVATED switches lend themselves to applications such as baby alarms, voice activated tape recorders, burglar alarms and the like. This simple design will operate from a voice of average volume at a range of about twometers or so using a high impedance microphone, or a little less than this using a low impedance microphone or with a high impedance loudspeaker as the microphone.

Signals from the microphone will be at a very low level and must be greatly amplified in order to operate a switching device of some kind (a relay in this case). The microphone signals are therefore coupled, by C2, to a high gain common emitter amplifier using Q1, collector load resistor R2 and base bias resistor R1. The signal level at the collector of 01 is still inadequate, so a further and virtually identical stage of amplification is used to boost it further. The second stage is based on O2, with C4 to attenuate the high frequency response of the amplifier and thus aid stability.

C5 couples the output of Q2 to D1 and D2 which rectify the signal to give a series of positive pulses. These are smoothed by C6 to give a positive DC bias. In the absence of an input signal there will, of course, be no significant drive, and VMOS switching transistor Q 3 will be cut off. The drive will be of the order of a couple of volts or so when the unit is activated, switching on 03 and the relay which forms its collector load. A pair of normally open relay contacts then operate the external equipment.

R6 is included so that the bias decays about two seconds after the input signal has ceased and the unit reverts to the 'off' state. Without R6 the unit would tend to latch 'on', since the input resistance of Q3, unlike an ordinary bipolar transistor, is extremely high. The attack time of the unit is very short and it switches on rapidly at the start of a signal.

The $0.1^{\prime \prime}$ matrix stripboard layout for the Sound Switch is straight-forward. O3 requires no special handling precautions as it has an integral zener diode which protects it from high static charges. D1 and D2 are germanium devices and care should be taken to avoid overheating these when connecting them.

A circuit for all reasons

Parts List

RESISTORS (all $1 / 4$ W 5%)

R1 3M3
R2 10k
R3 2M2
R4 5k6
R5 470R

CAPACITORS

C1 $\quad 100 \mathrm{u} 10 \mathrm{~V}$ axial electrolytic C2,3,5 1u0 25 V axial electrolytic $\mathrm{C} 4 \quad 33 \mathrm{p}$ ceramic plate
C6 $\quad 10 \mathrm{u} 10 \mathrm{~V}$ axial electrolytic

SEMICONDUCTORS

01.2 BC109C

Q3 VN10KM
D1,2 OA91
D3 1N4001

MISCELLANEOUS

SW1 SPST toggle switch

MIC1 microphone or high impedance loudspeaker (see text)
RLA
$0.1^{\prime \prime}$

Now for the next big date in the CB calendar MARCH 19-21 1982 - ROYAL HORTICULTRAL HALLS LONDON
 1982 National Citizens' Band Show! TRADE/PRESS PREVIEW - MANUFACTURERS - IMPORTERS - WHOLESALE - RETAIL - ACCESSORIES - PUBLICATIONS

Advance details, floor plans and booking forms are now available. There are some very special terms for 'early bird' company's who reserve their stands - quickly! This is your chance to display, demonstrate and Sell your products to the national CB audience both trade and public.

FULL DETAILS PHONE OR SEND COUPON TO: ROY PERRYMENT Citizens Band 01-437-1002

ADVERTISEMENT INDEX

Ambit International 2
Amtron (UK) Ltd 65
Bi-Pak Semiconductors 21 \& 24
BK Electronics 67
B.N.R.S 52
J. Bull (Electrical) Ltd 44
Cambridge Learning 25
C.H.J. Supplies. 62
E.D.A. Sparkrite 36
Electronize Design 33
Greenweld 17
Heath Electronics 4
Henry's Radio 68
ICS 29
ILP 17,21,25,29 \& 33
Litesold 62
Magenta Electronics 485
Parndon Electronics 62
P.A.T.H. Electronics 62
Rapid Electronics 10
Brian J. Reed 33
Sandwell Plant 29
Silica Shop 16
Sinclair Research 34 \& 35
Technomatic 41
Tempus 32
TK Electronics 52
Watford Electronics 9

HIGH QUALITY COMPONENTS: LOW profile sockets 24 pin 22 p, 40 pin 30 p. Resistors $1 / 4$ W 5\% 100 mixed 90p. Cermet potentiometers 10 mixed £1.95. P\&P 40p. Large SAE for lists. T. Milner, 203 Goodman Park, Slough, Berkshire.

CLOSE ENCOUNTERS GROUP. Personal introductions/dances, parties, talks, socia! events. Meet interesting, attractive people. All areas. - Tel. (Liverpool) 051 9312844 (24 hours).

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greaty improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick $£ 1.75$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

CENTURION BURGLAR ALARM EQUIPMENT Send sae for free list or a cheque/po for $£ 11.50$ for our special offer of a full sized signwritten bell cover, to Centurion Dept HE, 265 Wakefield Rd, Huddersfield, W. Yorkshire. Access \& Barclaycard. Telephone orders on 048435527

20\% OFF CASES, SWITCHES, RELAYS, DIODES, IRONS, ETC. lists 28p, Industrial and Trade enquiries welcome. RELAY-A QUIP, Moat Lodge, Stock Chase, Maldon CM9 7AA. 24 hr phone: 0621 58RR6

BURGLAR ALARM equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W.A.S. Lid.

CORDLESS TELEPHONES Build your own simple and inexpensive units. Send $£ 3.00$ for plans to: J.F. Ashley, Birley Grange Cottage Farm, Baslow road, Cutthorpe, Derbyshire.

AMAZING ELECTRONICS PLANS. Lasers; Super-powered Cutting Rifle, Pistol, Light Show. Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Cata-logue 95p. - From Plancentre, 16 Mill Grove, Bilbrook, Codsall, Wolverhampton.

RECHARGEABLE BATTERIES
 PRIVATE OR TRADE ENQUIRIES WELCOME

 FULL RANGE AVAILABLE. S.A.E. FOR LISTS $\$ 1.45$ for Booklet. "Nickol Cadmium Power" plus Catalogue. "Now range of sealed lead now available*. Write or call: Sendwell Plant Lid... 2 Union Drive. BOLDMERE, SUTTON COL. DFIELD, WEST MIOLANDS. O21-354 9764.
GUITAR/PA MUSIC AMPLIFIERS

100 watt superb trable/bass overdrive, 12 months quar antee. Unbeatable at $\mathrm{C5O} ; 60$ watt $\mathrm{E44}$; 200 watt $\mathrm{ES5} ; 100$ | watt twin channel sep. treble/bass per channel f85; 60 watt |
| :--- |
| E32; 200 watt |
| $78 ; 100$ watt four-channel sep. treble/bess | par channal $\mathrm{E75}$; 200 watt $\mathrm{C90}$; slaves 100 watt f 34 ; 200 watt f50, 250 watt $\mathrm{f} 70 ; 500$ watt f 140 ; fuze boxes, great sound, f12; bess fuzz f 12.90 ; overdriver tuuz with treble and bass boosters, E22; 100 watt combo, superb sound, overdrive sturdy construction, castors, unbeatable, e98; twin channel, $\mathrm{f115;}$ bass combo 1118 ; speskers 15 in . 100 watt E 36 ; 12 in . 100 wall E24; 60 watt $\mathrm{f16}$; microphone shure unidyn B E25; 3-chennel sound/light E20

Send cheoue/P.O. to: WHIMASON AMPLIFICATIDN

ZX81 FLICKER-FREE GAMES. 6 super games, each 1 K , plus Free menu, all on cassette, plus Free listing, £3. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

ELECTRONIC CLEARANCE PACKS
 HUGE SCOOP PURCHASE
 Containing Transistors, capacitors,

 resistors, pots, switches, radio and audio items, connectors, relays and many electronic devices. Must be worth over £20 per pack. Our price £5 car £1.75.JUMBO PACK Must be worth over $\mathbf{£ 5 0}$.
Our price f10. Car £2.50. Money back if not delighted

HAVE YOU SEEN THE GREEN CAT?

1000s of components, Audio, radio, and electronic. Almost everything electronic at unbeleivably low prices. Something for everyone. Send 35 p P.O. or cheque and receive FREE RECORD SPEED INDICATOR MYERS
Dept HE 12 Harper Street, Leeds LS2 7EA
Tel. 452045

IONISER KIT (MAINS OPERATED)

This Negative lon Generator gives you the poveor to saturate your home or office with millions of refreahing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, criap and wonderfully refreshing.
All parts, PCB and full instructions.
A suitable case including front panel, neon switch, etc

ELEGTRIFY YOUR SALESI © CLASSIFIED ADVERTISEMENT

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15

Please place my advert in: Electronics Today International (Delete as applicable) Hobby Electronics

Advertise nationally in Electronics Today International/Hobby Electronics. Simply print your edvertisement in the coupon here (left), indiceting which magazine you require. Or telephone for more information

Name
Address
\qquad

Send, together with your cheque to:
Jenny Naraine, ETI/HE,
145 Charing Cross Rd., London WC2H OEE.
Tel: 01-437 1002 Ext. 50.

[^0]: ##

 ${ }^{23} 50$
 200uF 350V 100 . 100 , 50uF 300

[^1]: Cambridge Learning Limited, Unity2 Rivermill Site, FREEPOST,

