

ForA D inillorFarth Approach rolyectronics Sca nolene-n品保

CMOS
4000
4001
方䓂各莫
${ }_{4}^{4008} 4$
4009
4010
401 IAE
荌点

4
f $\hat{0}$

INVEST 60p AND MAKE P2．40 net profit

Buy Ambit＇s new concise component catalogue and get $£ 1$ vouchers．Use them for a $£ 1$ discount per $£ 10$ spent．But even without this，you will still find WR\＆E offers the low prices， fast service and technical support facility second to none． Here are some examples from the current issue
I．C．S
A rang
low pr
for bo
types
bronz
contact
8×0
14×0
16×0
18×0
20×0
20×0

Vol
$78 \times$
$79 \times$
78 G
78 G
78 H
78 H
78 H
79 H
LM 31
LM 3
78 S

BC556	12p
BC550	12p
BC560	12p
BC639	22p
BC640	23p
2SC1775A	
2SA872A	
2SD666A	
2SB646A	
2SD668A	
2SB648A	
BF256	
2SK55	

2p
2 p
2 p
22 p
18 p
30 p
30 p
30 p
40 p
38 p
28 p
2SK 168
J 310
$\mathrm{J176}$
40823
3SK 45
3SK51
3SK60
3SK88
MEM68
BF960
BF961
BF963

DISCRETES	
BC237	$8 p$
BC238	$8 p$
RTX238	$9 p$
BC239	$8 p$
BC307	$8 p$
BC308	$8 p$
BC309	$8 p$
BC413	$10 p$
BC414	$11 p$
BC415	$10 p$
BC416	$11 p$
BC546	$12 p$

KETS

$\times 0.3{ }^{\prime \prime}$	12p	$22 \times 0.3^{\prime \prime}$	20
$\times 0.3$＂	13p	$22 \times 0.4^{\prime \prime}$	20p
$\times 0.3$＂	13p	$24 \times 0.6^{\prime \prime}$	22p
$\times 0.3{ }^{\prime \prime}$	18p	$28 \times 0.6^{\prime \prime}$	25p
$\times 0.3 \prime \prime$	19p	$40 \times 0.6^{\prime \prime}$	
$\times 0.4$＂	19p	$42 \times 0.6^{\prime \prime}$	38p

XTALS
1 MHz
$3.2768 \mathrm{MHz} \quad 3.00$
$\begin{array}{ll}1.2 .00 \\ 4 \mathrm{MHz} & 1.70\end{array}$
$4.194 \mathrm{MHz} \quad 1.70$
$\begin{array}{ll}4.43 \mathrm{MHz} & 1.25\end{array}$
5 MHz
6．5536MHz
7 MHz
8 MHz
9 MHz
10 MHz

Prices shown exclude VAT．Postage
50p per arder（UK）ACCESS 50p per order（UK）．ACCESS／
BARCLAYCARD may bs used with Writen or telephone orders－officia MA details on application，and a special prize for those who read ou ds carsfully－free 4 or 8 MHz crystal filter with every CPU IC you buy－just ctip out the paragraph and
attach it to your order．E\＆OE． attach it to your order．E\＆OE．

pos 5 w reg 1.20

74 LS 109N

0.25| 25 | $74 L S 248 \mathrm{~N}$ |
| :--- | :--- |

PROJECTS

* SWITCH-TUNED RADIO

Switch on to your favourite programmes 16

* QUICK PROJECT

Simple Timer25
\star INTELLIGENT NICAD CHARGER
Give your NiCad batteries a kick .26
\star INTRUDER CONFUSER
Small things confuse smallminds . 38
\star VOLUME EXPANDER
Cassette sound booster54
FEATURES

* SCALING THE HIFI HEIGHTS
A simple introduction to a complicated subject 10
INTO ELECTRONIC COMPONENTS
Part 6 introduces the Outlaws 42
FAMOUS NAMES
Who's Alexander Zworykin? Find out on page 53
CAR ELECTRONICSThe final part of our vision of things to come60
SPECIALS
INDEX TO 1980
The collected contents of HE, 1980 issues 32
1982 READER SURVEY
Tell us about yourself, and what you think of us 33
REGULARS
Monitor 6
YourLetters 22
Clever Dick 48
Bookshelf 58
PCBService 65
Classified Ads 65
Editor: Ron Keeley
Editorial Assistant:Tina Boylan Senior Art Editor: Andrew Sawyer Layout: Enzo Grando
Advertisement Manager: Esmé Dansiger Managing Editor: Ron Harris BSc Managing Director: T.J. Connell

	nOMEnWLL PROXHMTry OF TECTOR DC Imegral Pmoliter，AV OC．COMOTIVE CEL，C1E．High－Dowel Cascall． 600 MW ．Ior control circuits Rosaliance $\mathbf{3 0 0}$ ohm to at Man vals 240 Suse $11 / 2 \times$ $1 / 2 m$ RIBBON michopmome mith pre－amp on chassis． E1． 8		ULTRASSOMC transducens mancrs． Comalate on 18 in Scraned cable． ff ． B anch pars 2 2： ULIAA SOMIC TRAMSMITTE Complete unit funcaseo requares 1 SVI．C38 FOSTEA DYMAMIC MICROPHONES 200 Ohm ampedance Moving coll Complata on chassis［1．5s о日，
	M300 Amplefin．．．．．85p LM31BN Hi．Siew Op Amp LM323M 5v 3－dmp．rego LM3IDN Voll．Follower Amp $\$ 1.20$ （M3）IH Migh Pert Voh． LM384N，5－wall Amp $\$ 120$ M3sen Oua Com ．．．COP N05 Reg	CUALTHMPAS Whispow Move＂by Rotom｜ Low power consumption fisess then 10 writud Stimet rumning 115 Itwo in series for 23005080 K O Onty C8．50 inc．VAT BRAMD MEW 50\％mass man manviactuers price	
	STEREO CASSETTE TAPE HEADS Quahly replacemant for most racorders with mounting glate Record Replay c2 \％ maRrIOTT TAPE heads Quertar tract leachl Giso XhPS 36 hecord／haplay （tach） XES 11 frase leach 010	mewtett．packand dismays 5082－7550 HIGH efficiency AND VEAY BRIGHT Onty flacasm Sall 016 tor 8 Hall－uch red common ca thooe will replace DLTOT． 14．0m 011	EX－MOTOROLA $5+5$ WATT CAR STEREO AMPLIFIERS Completa and tasted units Midium and Long Wave Supphed as two buit unts $(5 \times 2 \times 2$ in $]$ with circuit and date Doly CS pair． Includes pre－amp
RELAY IGenerat－purpose Tyoal 4／2－6x single：pole changeover 200 othms topen typal．1 x 1 ＂ 1 inch Mop MINIATUAE MP．C． poremtiometers Modal M2 High－quility．5\％ tolorance． 2 －wath．with lin spindies All values． 41 ohms thit oniy sop asch per 10．500 ench per 100. Hop each	aECHARGEABLE BATERIES VARTA 36 voth DEAC． MAAH 225 C1 50 DRYFIT 6 －voth 45 mmp ［7 50 XTAL RLIEA 10．7men 1750 p seppration． $1 / 2 \times 1 / 4 \times 1$ inch 515 $100 \mathrm{KCS}+1 \mathrm{meg} 3$－pm 0.0		ON KEYPAD It A compact 12－button keypad sutable for use with Cherry keyboard to eriend its functions plus four exire heys Suppled brand now with dats A 3×4 mon－ancoded single mode levboard
QUANTITY DISCOUNTS On ALL items（unless stated）， $\mathbf{1 5 \%}$ per 10，20\％per $50,25 \%$ per 100．All items BRAND NEW（unless otherwise stated）． DELIVERY from stock－Add Post 350 per order． 1			
		enquiries invited．	TELEX 262284 Transonics Mono 1400

01－723 1008／9
404 EDGWARE ROAD．LONDON W2 1 ED

BLECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic ignition to give the best performance and specification by fitting the latest TOTAL ENERGY DISCHARGE electronic system．
TOTAL ENERGY DISCHARGE gives all
the advantages of the best capacitve discharge ignitions：
－Peak Pariomence－higher output voltage
＊Improved Economy－consistent high igninton perlormance
－Berter Sterting－full spark power even with low battery
－Accurbe Tirning－prevents contact woal without contactess errors

PLUS

SUPER HIGN POWER SPARK $-3 / 2$ tumes the energy of ordinary C．D．systems
OPTIMUM SPARK OURATION－10 get the very best perlormance and economy with today＇s lean carburettor settings
OESIONEO IN RELIABILITY－with the utumate insurance of a changeover switch to

TECMNICAL DETAILS

NIGN EFFICIENCY INVERTER．A high－power，high efficiency，regulated inventer provides a 400 －volt energy source－powerful enough to store twice the energy of
other designs and iegulated to provide full output oven with the battery down to 4 volts．
SUPERE OISCHARGE CIRCUIT．A brand now technique prevents energy boing reflected back to the storage capacitor．giving $31 / 2$ times the spark energy and 3 umos the spark duration of ordinary C．D．systems，generating a spark powerlul enough to associated with lower cower the wake burn inducrive systems．In addition this circult maintains the correct output polarity．thereby preventing unnecessary stress on the H．T system．
SOPHISTICATEO TRIGGER CIRCUIT．This circuit removes all unwanted signels caused by contact volt drop，contact shuffle，consact bounce，and external transtents which，in many designs，can cause timing errors or damaging un－tumed sparks．Only at the correct and precise contact opening is a spark produced．Coniact wear is
almost eliminated by reducing the contact breaker current to a low tevel－ןust almost eliminated by reducing the
sutficient to keep the contacts clean．

IN MONEY－SAVING KIT FORM at £14．85 Plusf1
UKP\＆P
Also MOTORCYCLE TWIN OUTPUT KIT at $£ 22.94$
All you noed is a small soldering
FITS ALL $6 / 12$－volt NE GATIVE EARTH VEHICLES ELECTMONIZE DESIGN
Megnue Road，Winecote，Tomworth B77 5BY Phone：（0427） 281000

HEPROJECT KITS

Mahe us your No． 1 SUPPLIER OF KITS and COMPONENTS for H．E．Projects．We supply carefully selected sets of parts to enable you to contruct H．E．projects．Kits include ALL the electronics and hardware needed．Printed circuit boards（fully etcher， dniled and roller tinned）or Veroboard are，of course，included as speciited in the origina otherwise stated．BATTERIES ARE NOT INCLUDED．COMPONENT SHEET INCLUDED．If you do not have the issue of H．E．which includes the project－you will need to order the instruction reprint ap an extra $45 p$ each
Reprints available separately $45 p$ each $+p .4$ p．40p

SOUNO TORCH Nov 81 less torch + mic $[17.98$
SCRATCH FILTER Nov 81 Mono 15.44

Stereo CR．40

LEO VU METER Nov 81 less case［4．56
SIMPLE STYLUS ORGAN Nov 81 less case r4．7． SIMPLE STOME Nov BI C11．88
TELEPHCNE QELL REPEATER OcI B1［12．78， Med Linking wite extr 14p matre

Oct 81 E12．r COMBINATION LOCK OCt 81 less sotencid〔17．43
DOOR INTERCOM Oct 81 （less solenoid）$£ 2239$
EABY ALARM Oct 81 fe 14 ．Fig 8 linking wire 7 p Toutre LAMP Oct 81，Butb version［4．51，Mains
 LOWER POWER PILOT LIGNT Sept 81 ．Ie
 CAR UGHTS DELAY Sept 81 c5．99 POWER PACK SADP 81 f9．58 SHORT WAVE RADIO Sept 81 C23．98 Extre MEACTION TESTER GAME Sept 81 C11．38 THERMOMETER Aug 81 §12 98
R．P．M．METER Aug 日1，inc．probe［15． 48
VARIARLE BENCH POWER SUPPLY
VARIABLE BENCH POWER SUPPLY Aug 81
UTTRASOUNO BURGLAR ALARM July 8
ELECTRONIC OOOR BUZZER July 81 C5． 85 ELECTRONO CONTINUITY CHECKER JURI ENVELOPE GENERATOR JUNe 81 C 1685 AUOIO MIXER JUMe 81 L4．99 Mrcrophone extre E1．41
SUPER SIREN Apri81 19.52
SUPER SIREN April81 © 19.52
DOORBELL MONITOR AprII 81 E3．28
 PUBLIC ADORESS AMPPIFIER M Mrch 81
E18．21．Extras－hom speakers f .83 each．PA E18．21．Extras
MIC $\mathbf{E 4 . 4 0}$
FUZZ80X March 81 § 1035
WINOSCREEN WIPER CONTROLLER March 81
STEAM LOCO WHISTLE MarCh 81 C12．26 PHOTOGRAPHIC TIMER March 81 1 328
HEARTBEAT MONITOA FOD 81 E23．40 HIGH IMPEDANCE VOLTMETEA FAb 81 f 9 AUOIO SIGNAL GENERATOR FED 81 £ 1893 TWO TONE TRAIN HORN Feb $81 \mathrm{f5} 24$ less case
MEDIUM WAVERADIO Feb $81 \mathrm{E7.57}$

LADDER OF UGMT（Sound into Light）Jen 81 C29．98 AMP 1

UICARO CHARGER Jan 81 C7．6

MODEL TRAIN CONTROLLER Dec 80 E18． 51
SATTERY CHARGE MONITOR Dec $20 \mathrm{CE}, 40$ TEREO POWER METER DEC 80 E20．B7 Dec 80 ¢28 61
PARTY GRENAOE NOU 81 CE． 7 ．
TRANSISTOR TESTER NOv 81 f6． 12 inc．tes
Oods
GUTTAR PPE－AMP NOV 80 f5． 65 Case Idiecas xtrse2． 99
NOBELL DOOREELL OCI 80 E11．98
FREEZER A AAM OCt 80 with probe f 1036
TUG OWAR OCt 80 E17． 67
KITCHEN TIMER Oct 80 （2\％resistors） ［ 7 9a
AUTO PROBE Sept 80 E3．99 less case
TOUCH SWITCH Sopt 60 f2．57 less cose 6
CONTACTS
GENCH PSU Sept 80 f31 35
OP AMP CHECKER AUg 80 E4．9
MOVEMENT ALARM AUG 80 f6． 24
SOUNO OPERATEO FLASH TRIGGER JUHY 80 no skl Ca 99
SPEEO CONTROLLER FOR R／C ADRI 80 E16．41
IGIS casel FREOUENCY METER ADril 80 โ 539.36 ELECTRONIC IGNITION ICOIADFII 80 I22．96 ARGRAPH CAR VOLTMETER Dec 79 C798
AING MOOULATOR DOC 79 E14． 24
GUITAR TUNER NOV 791199
1898
MULTHOPTION SIREN OCI 79 E17．E7
HOME SECURITY UNTT Aug T9 C3iA1 hess siren
SIREN IE ES less cese
INJECTOR TRACER Aug 79 E4．7T
UNEAR SCALE OHMMETER JUIY 79 ［17．57 WSAITE NOITE EFFECTS UNIT May 79 Ci9． 5 CAR ALARM Fot 79 E12．07
PUSM－BUTTONOICE Dec 78.7 .67

MEMORY BANK SYNTHESISER
 Miniarure synthesiser feat uring vibrato，envelope，tempo，volume + pitch controls． Uses 24 push button switches in a keyboard style layout．Based on a custom designed L．c．The accessible memory stores a 32 beat length sequence of notes use of an external amplifier if wished．
 Memory Bank Synthesizer £26．61

TRAIN SET ACCESSORIES MODEL RAILWAY SPEED CONTROLLER

from E．E．Sept．Feaures fully variabie speed control－from zero to full speed． Forward／reverse switch．Auto start and stop for realism．Brake and speed boost． Emergency stop．Use with the simple contfoller supplied with most train sets． Housed in an attractive 2 tone sloping front case．Built on a printed circuit board．All parts included．Kte £13．44．Reprintinnstructions extre 45p

TRAIN SOUNDS－from H．E．
STEAM LOCO WHISTLE Mar 81.
TWO TONE TRAIN HORN Feb 81
f 12.26 inc case
65．24 less case
CHUFFER Jan 81
E7． 64 less case

BOOK－MODEL RAILWAY．PROJECTS

LOOK! FROM NOW UNTIL END OF JANUARY A SPECIAL PURCHASE ALLOWS US TO GIVE YOU A SPECIAL CHRISTMAS OFFER. MINIMUM ORDER FROM THIS BOX (ANY MIX) $\mathbf{E} 2+\mathbf{P} \& P$.

555	19p	2N3819	$21 p$	4001	16p	SOCKETS	
556	3 p	2N3055	43p	011	160	8 pin	
741	$16 \div 0$	IN4148	3 D	4017	49 p	14 pin	${ }^{138}$
Lм380	${ }^{69 p}$	ina00		ALL TOP			
C106D	${ }^{89}{ }^{89}$	OA90	Sp		PER	RICES	

```
MORE KITS AND
COMPONENTS
IN OUR LISTS
    FREE PRICE LIST
    OMers or send sae (9 M 4)
        K\TS.PCGB %
```

1982 ELECTRONICS CATALOGUE
Illustrations. product deneriptions. elireults all in
cluded. Up-10.date pric 3 IIst enclosed. All products are stock lines for fast delivery
Send 70 ol in stamps or add 70 p io order.

``` KITS IN THE PRICE LIST.
```

DRUM SYNTHESISER

independent oercussion channels - each with pathesiser contains a versotile in builf sequencer which enables different beat sequences to be programmed using 8 way OIL switches Beats from either channel mey be individually programmed, or combined in any mixture. Once programmed the sequence can be replayed automatucally or manually as required. Manual and automatic operation are possible together so that the unit can blayed manually with an tyathm. A very versatila instrument. Drum Synthesiser Kit less case C 39 9a, with case $\mathbf{5 3}$.5e.

SOUND BENDER From ET
Modulato Modulator' sound ettects unit. This dosign minh sine or thiangular wavetorm, and a 4 quadrant multipiser circuit. A mix control allows the modulated signal to be mixed with the strarght through signal. ideal for
outer space. volce and music effects. Juss
connect a signal source and a power amplifier and souaker.
Sound Bender Kit E20.76, tess case $\mathbb{\$ 1 5 . 7 6}$.

GUITAR NOTE EXPANDER From ETI Aprii 81. Not just another Furz/Sustain
Unit. Thia versaties pfowect can produce overload
athects which closely approach the sound of an effects which closely approach the sound of an overdriven valva amp
Switch seiection for:

1. Overall overdrive

2. Overall compression (susrain)
3. H.F. compresation for bass overdive
4. Mid frequency expension
5. H.F. expanision for H.F. accentuation. All (except oversh overdive) have varimble effects
control. Gutar Note Expander Kit $\mathbb{1 8}$. 7 . less case 11126

Reprints of the Above 45p each

BOOKS . BOOKS . BOOKS

SEMICONDUCTOR DATA BOOK - Newnes
MICROPROCESSORS FOR HOBBYISTS - A. COTES
CONSTRUCTOR'S PROJECT BOOKS
ELECTRONIC GAME PROJECTS Rayer
ELECTRONIC PROJECTS FOR HOME SECURITY Bishoo
ELECTRONIC PROJECTS IN AUOIO Penfor
ELECTRONIC PROJECTS IN MUSIC Flind.
ELECTRONIC PROJECTS IN PHOTOGRAPHY Pentod
ELECTRONIC PAOJECTS IN THE CAR Georg
PROJECTS IN AMATEUA RAOIO \& SHOAT WAVE LISTENING REVV
ELECTRONIC PROJECTS IN HOBBIES HaY . .
ELECTHONIC PROJECTS ITHE HOME BMHOO.
ELECTRONIC PROJECTS IN THE WORKSHOP PAnfon
ELECTRONIC TEST EQUIPMENT PROJECTS AInSII
MORE ELECTRONIC PROJECTS IN TME HOME FIND.
110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTO Marsion
ELECTRONIC PROJECTS - PAPERMAC
ELECTRONIC PRONECTS - PAPERMAC
COST EFFECTIVE PROJECTS AROUND THE HOME Waisen
PROJECTS FOR THE CAR AND GARACE HishO
AUDIO CIACUITS AND PROJECTS BIshop .
TEST GEAR PROJECTS OixON.
LECTRONIC PROJECTS FOR MODEL RAILWAYS Baboni
SOLDD STATE SHORTWAVE RECEIVERS FOR BEGINNERSIPERTOID. ELECTRONIC MUSIC AND CREATIVE TAPE RECOROING Berty. iC 565 PROJECTS Par

BASIC ELECTRONICS - BOOKS i.
cuitr buitr on an E -Dec breaderosi
Sold as a set of 5 books F 1198

ADVENTURES WITH MICROELECTRONICS

An easy to follow book sultable for all ages. Ideal for beginners No soldering. Uses a Bimboard 1 breadboard, gives clear instruc tions with lots of pictures. 11 projects based on integrated circuits -includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard 1 breadboard and all the components for the projects.
Adventures with Microelectronics $£ 2 \cdot 55$. Component pack $£ 29 \cdot 64$ less battery

\section*{ADVENTURES WITH ELECTRONICS | by Tom |
| :---: |
| Buncan |}

An easy to follow book suitable for all ages. Ideal for beginners No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn abou electronic components and how circuits work. Component pack ncludes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2 \cdot 40$. Component pack $£ 17 \cdot 98$ less battery.

MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS G KITS All products are stock lines and are new \& full specincation. We olve personal sgrvice

MAGENTA ELECTRONICS LTD. HR20, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS. DE14 2ST. 0283 65435, MON.-FRI. 9-5. MAIL ORDER ONLY. ADD 40p P. \& P. TO ALL ORDERS.
ALL PRICES INCLUDE 15% Y.A.T.

RIS OFFICIAL ORDERS WELCOTI Deduct 10% BLIC \& B.F.P.O. EUROPE: muat be in Sterling. CCEES ANU BARCLAYCARD (VISA) POST. ALL ENOUIRES.

MONITOR

Pic Of The Bunch

THE EDITOR'S Choice for January shows Lisa Moss, Miss World America (left) and Michele Donnelly. Miss UK (right) climbing on board the CB Bandwagon la Rola is hardly a bandwagon I know, but . . . I
Also in the picture, if you look closely, is Fidelity Radio's new CB 1000 FM rig. Priced at around $\mathbf{5 6 9}$, it will be available from most High Street retailers.

Microcomputers, Of Course!

SLOUGH COLLEGE of Higher Education is currently offering a Microcomputer Workshop for those who would like to become involved with microcomputers and who are seeking hands-on experience with this type of equipment. The workshop is project oriented, with facilities and instruction provided for groups to explore projects of their choice. Projects include use of colour graphics. Pascal with animation tools, financial planning. forecasting, electronic diary, word processing, and other electronic office applications, linking micros to main frames, design. ing and building a flexible interface, etc.

Although the course began in September, the program is ongoing, with new projects continuously starting. The course fee is $£ 25$ and classes are held on Thursday evenings at the College from 6.30 to 8.30 pm.
Dr. Eva Huzan, co-author, with Lionel Carter, of "Micro. electronics and Microcom. puters" (Teach Yourself Books). and head of the Computing Division of Slough College is supervisor to the workshop.

The Slough College laboratory includes: PET. VIC. Apple. Dynabyte and RML 3802 microcomputers plus single board systems and test equipment for interfacing and engineering applications.
Other courses commencing this month are Elementery Basic Programming, Microprocessor Basic. Further Basic Programming, and Assembler Machine Code Programming for Microcomputers, all at $£ 30$ per course.
For further information and registration procedure contact Slough College, Wellington Street. Slough SL1 1YG (0753) 34585.

Experimenter's Delight

A NEW, fast and easy breadboarding system by the 3M Company will enable students, hobbyists, or even electronics engineers to convert their designs into prototype circuits in a fraction of the time it takes using conventional methods. The Scotchflex Breadboarding Kit owes its unique features to 3 M developments in connector technology which eliminate the need for wire wrapping and crimping, and also reduce soldering to a minimum.
The hub of the system is a 24 -contact strip which can be snapped off to any desired length, thus reducing the number of different
speakers of exceptional range and power. The system uses a single speaker unit - a Lowther PM6 - to drive a balanced double folded horn, achieving a frequency response that is flat from 40 Hz to $20,000 \mathrm{~Hz}$ and a transient response that is said to be ideal. This, plus power handling from 20 to 100 watts and a wide dynamic range from an enclosure measuring only 72 cm high by 25 cm wide by 33 cm deep, make the BICOR 200 well worth checking out. You can do so at most major retailers and specialis stockists, or contact the Lowther Loudspeaker Co. Lid, directly. Their address is P.O. Box 28, Bromley. Kent: Phone (01) 4605225.

Certain way to ensure good, solid bass response from a sound system is to use a pair of folded horn speakers. Unfortunately, they're a little too large for most living rooms; only a fanatically dedicated hi.fi nut would insist on a pair of speakers measuring around 6 ft by 4ft by 3ft each!
The Lowther Loudspeaker BICOR 200 system is, therefore. something quite new. After deep and original research. during which "new mathematical farmulae were arrived at and furdamental physics rediscovered" they have produced a pair of compact
components in the kit and which. in turn. reduces the problem of having to anticipate the lengths required when ordering. The plug strip on the underside of the board employs ' U ' elements for quick networking of components. In addition, the system's IC sockets use a unique 'S' contact which ensures reliable electrical connections even after repeated insertion and withdrawal.

Included in the basic kit are a single height Eurocard board, a selection of dual sockets, plug strips, solder strips, universal breadboard tool. insertion tool. plug strip hand tool and 25 feet of 30 AWG wire.
For details contact Ken Adams. Electronic Products Group, 3M United Kingdom, 3M House, P.O. Box 1, Bracknell. Berks RG12 1 JU . Phone Bracknell (0344) 58436.

You Can Take it With You...

WHAT weighs 4.9 kg , is compact, includes a battery pack and can help you analyse your golf swing? Answer - the new VT 6500 portable video system by Hitachi, of course!

The VT 6500 is one of the lightest and most compact portables on the market. This was made possible by eliminating solenoids. introducing more efficient circuitry, manufacturing smaller direct drive capstans and cylinders and by developing a lighter, stronger chassis and circuit board.

With this new portable it is now possible to electronically edit a recorded video tape with the assurance that scene changes and overlays are clean and in sync, with no distortion or electronic 'snow'. The pulse control editing system also allows titles or new material to
be inserted. Audio edit facilities feature 'sound on sound'. which enables the user to blend new sound material with the original track without necessarily replacing it.
The full-function remote unit features 13 operating modes including a visual search button which speeds up the tape lfive times in either direction) for quick location of recorded items. Speed isn't everything. and a still-frame control and frame advance with variable slow motion from $1 / 5$ th normal speed to a still-frame has been incorporated, enabling precision pinpointing of scenes.
VT 6500 power consumption is low - only 5.5 watts - and the battery pack takes only one hour to recharge using either the VT TU 65 tuner/timer (see below) or AV 60 power adaptor.
The VT 6500 comes complete with remote control unit, RF cable, earphone. cassette tape. shoulder bag and battery at $\mathbf{£ 6 7 7}$ (inc. VAT).

... Or Leave It At Home

HITACHI's VT 65 Tuner/Timer complements their new portable recorder. It enables 8 different programmes to be recorded over a 21-day period
and features a microcomputer memory which retains information for up to an hour in the event of a power failure or accidental unplugging. Another interesting feature is the "autochannel lock" which prevents changing channels when in 'record' mode. The VT TU 65 is priced at £179, including VAT.

Mail Order Made Easy

SWITCHES, suppressors, filters, alarms, batteries, LEDs. connectors.
indicators. accessories, transformers, displays, and a wide range of non-active components - in other words, everything your heart desires and your projects require - and much more besides, are available through Stotron Ltd, the new mail order division of the Roxburgh Electronics Group. Their new catalogue is due out early this year.

Emphasis in this operation is
on small quantities for the small user, with a guaranteed 24 hour delivery.

A distribution facility has been opened at Greenwich, SE London, with a Sussex-based centre at Stotron (Haywards Heath) Ltd. Bases in Coventry and central Scotland will be added soon, while other locations are being considered.
Full technical back-up is provided by Roxburgh's central technical division which offers service, stocking and technical information for all customers.
For a look at the goodies on offer contact Stotron Ltd, 22 Winchelsea Rd, Rye, East Sussex TN31 78R. Phone Rye (079) 735815.

The Best Ideas . . .

YOU'LL get quite a charge from NiTech Lid's new X-Cell Plus rechargeable batteries: in fact, you'll get at least 300 - possibly 3000 - complete charge/dis. charge cycles for around $1 / 10$ of a pence a time.
The X-Cell Plus is a direct replacement for six Volt Type 996 dry cell lantern batteries. The remarkable thing is that the unit contains all the electronics needed for recharging; it simply plugs into the handiest mains supply. Recharging from car, boat or lorry batteries is also possible as the X.Cell Plus is polarity protected and cannot
be overcharged. It is virtually indestructible - leak proof. shock proof. vibration proof and weather-proof - and is guaranteed for three years. Shelf life, from any state of charge, is indefinite.
The X-Cell Plus will be available from February at a cost of $£ 19.95$. The lighter duty X -Cell Regular, designed for household use, is rechargeable from mains supplies only and will retail for $£ 14.95$.

NiTech Ltd, a small Sussex. based firm who now look set to move into the big league, tell us that they have one or two other ingeniously original products in the pipeline, too. Watch this space.

MONITOR

Hang-Ups

ONE OF THE MOST convenient ways to keep hi-fi speakers from cluttering up the living room is to hang them on the walls. The problem, until now, has been the bulky, unsightly brackets or builder's scaffolding needed to support them.
Fidelity Fastenings would like you to know that they have solved that problem.
Their Multi-angle Wall Mounting Speaker Hinges (Model FF4) look a lot better hanging on the wall than they do in print. They feature special light-weight glass-filled nylon hinges which can be tilted and swung to point the speaker anywhere in the room. Best of all, they support up to 22 kg that's 50 lb . Each pair comes complete with everything needed to install them, and they are available from most hi.fi or record shops in your high street for around $£ 8.99$ a pair, including VAT.

Alarming New DIY Kit.

THE NEW radar.based SupaGard by Loadpoint Lid., is a security system developed for use both indoors and outdoors, is reasonably-priced, easily installed, and doesn't require multitudes of experts to get it working. Used as an intruderdetector. Supa-Gard's range and sensitivity can be adjusted to detect movement in an area with a frontal range from 1 ft to in excess of 35 ft , and uses a very loud noise (100 db SPL) to deter the uninvited guest.
The system also has a second, less aggressive nature - it can be used as a doorman, greeting guests with a welcome bath of light. Any existing lights or bells can be incorporated if desired. making it one of the most versatile kits available.

A key-operated control unit serves as the brain of the system; it includes a keypad with a unique 3-digit entry code which, when operated correctly. disarms the radar for a set period, enabling entrance into the protected area. Lights can be controlled by a timer, to illuminate an area for security and safety for a specific period of time and then turn off again. The access code can easily be set or cancelled and all units include an anti-tamper switch.
The kit can be assembled with the minimum of bother by a 'reasonably competent DIY enthusiast, ${ }^{\prime}$ or by an electrical engineer. Even with the added cost of having it installed by a professional ($£ 184$, incl. VAT). the Supa-Gard is extremely economical. Ask Mark Sweet of Loadpoint Ltd, Chelworth Industrial Estate, Cricklade, Swindon, Wilts SN6 6HE (Phone 0793751160) for the details.

Again \& Again

IF YOU USE batteries then it could be worth your while digging into your savings to buy a set of rachargeable cells and a recharger. Although capital outlay is initially higher than the outloy for a new set of alkaline or similar cells. It should be remembered that once alkaline celis are 'flat' (wot shape should they be?) they remain 'flat'. Rechargeable cells, however, are - you guessed it - rechargaable and can be used between 100 and 200 times. The overall cost is therefore much less.

Gould Battery Division an-
nounce a complate rechargeable battery system called 'Agein $\&$ Again, which consists of single universal charger (ie, it will recharge any of the cells in a particuiar range) and a salection of cells. The user simply buys the charger and whichever cells are required. The cells are available in AA (HP7), C (HP11), D (HP2). and
$9 \mathrm{~V},(\mathrm{PP} 3$) sizes, and the charger can recharge up to four cylindrical batteries or two 9 V batteries at a time. An overnight charge will restore full power to cells, and cells can be charged indefinitely without harm. Gould Battery Division, Raynham Road, Bishop's Stortford, Herts.

UOSATing The Pace

BRITAIN'S scientific and educational satellite is flying high, orbiting the earth once every 95 minutes at a height of about 340 miles and travelling at around $17,000 \mathrm{mph}$. All systems activated so far appear to be working well. Already it has detected a major magnetic storm in the upper atmosphere and signals have been received by amateur and professional ground stations all over the world. In fact anyone with a standard ameteur FM receiver (covering 145.825 MHz , the primary beam frequencyl should be able to pick up a broadcast from the satellite during one of its three or four daily passes over the UK. The on-board speech synthesiser, based on National Semiconductor's "Digitalker", has been activated and tested. It is programmed to give orbit information. operating schedules and other information that will enable amateurs to make the best use of the satellite. Alternatively. this information is available from a phone-in bulletin service provided by the University of

Surrey on Guildford 61202.
The University, who built and now operate the satellite, have been coping with non-stop enquiries (particularly from schools) about the unit needed to decode signals from the spacecraft's TV camera so that they can be displayed on a domestic TV receiver. As yet, the TV system has not been tested and no attempt will be made to activate it until the spacecraft has settied into a fully stable attitude. This will take some time, though, as many other systems must first be brought into operational condition and tested. However, details of the TV decoder module will be released as soon as the system has been tested and it is seen to be working correctly.
Meanwhile, UOSAT is exciting enormous interest all over the world. The BBC World Service has received more letters following its broadcast about UOSAT than for any other scientific or technology item broadcast last year, while AMSAT.UK, the organisation serving amateurs who make use of satellites, has been swamped with applications for member. ship!

SCALING the HI-FIHEIGHTS

All you ever wanted to know about Hi-Fi but didn't know how to ask.

A BUYER'S FIRST foray into a hi-fi shop, laden with cash or plastic card, can be a daunting experience. The lamps are brightly highlighting the chrome-fronted bank-breakers and a
pack of salesmen is closing in across the carpet, dorsal fins swishing lightly through the deep-pile.

Fear is the immediate reaction. Either the guy turns tail and runs for the jub next door, or he goes under and gets his bank balance badly damaged. If, in the process, he has obtained a system he can be happy with - fine. If not, then all too soon it will be back to the high street and off the deep-end once more.

One of the most common complaints from first-time buyers is that salesmen (and magazines) use too many technical terms, too many times per second. This leads into the 'numbers-game' where enything from 20 W to 100 W can be made to sound earth-moving and desirable.

Figure 1. Low budget ampliflers, such as this KA-300, are often bare of all but the essential features. There are few extras, so choose the ones you need carefully. For exemple, "Ioudness" controls add nothing to the sound - except excessive bess.

The purpose of these articles is to remove some of the confusion that surrounds specifications quoted both in the salesroom and in printed matter, be it advertising blurb or whatever. An important part of this will be to point out which specifications are actually relevant and which are sheer bluff. In every case we will try to give some idea of the numbers which matter and how to interpret them.

The Way In

The general text of this feature is designed to offer a logical method for selecting and setting-up a hi-fi system, starting from nothing more than a wish to hear music in the home, and finishing up with how to install the system once you have it.

In addition, special sections will deal with disc players, amplifiers, tuners, tape machines and loudspeakers; discussing briefly the method of operation, the parameters which dictate performance levels - pointing out those which don't - and explaining the interpretation of these specifications in terms of sound quality. At the end of each section some suggested starting points will be given for various budget levels, beginning at £400 which is probably the lowest feasible total these days for serious sound pursuit.

These recommendations should be taken simply as that somewhere to start. No one but you can decide which hi-fi is suitable for your home and only after you've been and listened to the alternatives should you decide to part with your hardearned cash.

Listen to everything you buy before paying for it and be sure it is what you want. Always have the demonstration (as far as possible) set up with as much of your intended final system as can reasonably be arranged. And don't be put off by claims that ". . . it's too difficult". Parting company with $\mathrm{£} 400+$ is a serious matter, so make sure the sales staff take your request seriously, too.

Take It On Spec?

Hopefully once you've read this feature you will be confident enough to tackle the task of sorting out the valid claim from the exaggeration, or the double-talk from the helpful advice, but if you're not - ask! It is better to wade through excessive verbage than to remain shrouded in doubt. Don't be afraid to question what you've been told and mistrust anything which can't be explained to your satisfaction. This is probably bluff!

So, once armed with an understanding of the jargon and healthy scepticism, where do we start?

Room For Improvement

First things first. Do you know the size of the room in which the hi-fi will be operated? If you don't, out with the tape measure and find out! This will give you the volume of the air which must be moved to generate your music. In turn, this will tell you the minimum amplifier power output which is necessary for your room. We'll come back to this in a moment or two.

Secondly, decide your budget figure; how much you'd like to spend, and how much you will go up to if pushed. Having set this maximum, stick to it at all costs/ It is far too easy to be swayed in the shop with 200 W of Pink Floyd in your ears, stars in your eyes . . . and the salesman's pen in your hand. Feasting on bread and water for a month is not worth the extra 20 W per channell

For the reason that it makes least audible difference to the final sound, I always suggest that a system buyer chooses an amplifier first. The technology of the modern amp is an order of magnitude closer to perfection than either the turntable or loudspeakers and thus differences between them, within limits, are less detectable. Hence, deciding on the amp first allows for more flexibility later on when choosing either the turntable or loudspeakers.

As a basic minimum, 25 W per channel is a safe bet. With the cost of power coming down all the time, there is no point in selecting an amp with less capacity than this, since naught is gained (save frustration) later.

To relate this to your living room, add on 10 W for every $1000 \mathrm{cu} . \mathrm{ft}$. of volume. For example:

Room size $10 \times 10 \times 8 \mathrm{ft} .=800 \mathrm{cu} . \mathrm{ft} .:$ Power needed $=25 \mathrm{~W}$ Room size $15 \times 12 \times 8 \mathrm{ft} .=1440 \mathrm{cu} . \mathrm{ft} .:$ Power needed $=35 \mathrm{~W}$ Room size $25 \times 17 \times 10 \mathrm{ft} .=4250 \mathrm{cu} . \mathrm{ft} .:$ Power needed $=65 \mathrm{~W}$

For now we'll assume these are nice, clean, honest RMS watts - the section on amplifiers will deal with power rating more fully, but for the time being we have our guideline and that will suf. fice.

. . . But I Know What I Like!

When listening to a piece of hi-fi in a shop or at an exhibition (or anywhere else come to that), remember that the specs and jargon don't matter a jot. If you like the sound and it fits your requirements for price, etc, then that is all that matters. Ignore the salesmen, the nice new model for $£ 30$ more, the advice from a friend, neighbour or budgie and buy it! After all, it is you who has to live with it, not the Joneses or the salesmen. Don't be swayed - following the audio fashion is an expensive diversion!

Finally, always try to arrange for the dealer to demonstrate three or four different units to you, using the same cartridge, the same music and the same loudspeakers. If he can't (or won't) do this, then remember that once any other part of the chain is altered you cannot be certain that the differences in sound you hear are due to the amplifier.

Budget Balance

At this point we have a set budget figure and a required power for the amplifier. From this it is possible to draw up a shortlist of amps which possess the facilities you need - how many tape inputs, for example? Do you really want LED power meters or flashing lights to tell you what the hi-fi is doing? Remember,

Feature

these extras all add to the basic cost without helping the sound, so be sensible and keep things a simple as possible.

Make a preliminary trip down to the hi-fi dealer and choose the unit from your shortlist of possibles, but try to spend no more than 35 percent of your total budget on the amp (you'll need the restl). Choosing the amp first is not only logical, it is also the easiest starting point. For reasons which I hope will become clear, we'll take the record player next month. In the meantime, let's have a closer look at the amplifier - what itshould do and why.

The Amplifier Considered

The basic task for an amplifier is to make use of the small signals provided by the record player, tape machine, or tuner, to control the larger voltage available from the power supply and to apply this to the loudspeaker. This is done in such a way that what the speaker 'sees' is an enlarged version of the original signal; it is then up to the speaker to reproduce this enlarged signal (hopefully) accurately.

The power amplifer can thus be considered as a sort of valve, controlied by a preamplifier. The task of a preamp is to bring all the inputs to a common level and to provide some control over them - usually in the form of volume, tone controls etc before passing the now modified inputs to the power amp.

In doing all this the amplifier as a whole should, itself, change the original signal as little as possible (ie distortion must be low). It must respond equally to all frequencies presented to it - have
a flat frequency response - and have sufficient power available to deliver realistic levels in the living room.

Pay particular attention to the following specs when considering amplifiers, as they alone dictate the basic performance of the unit.

Power Output: There are many ways of specifying it, but few are more relevant than the old reliable RMS method. This is the power the amp can deliver continuously into a speaker, usually quoted for an eight-ohm unit - that is, most loudspeakers on the market. 'Burst' power, or peak delivery, shows you how much the power supply has in reserve to cope with crescendos in the music, or an enthusiastic drummer hitting the bass drum too hard. A peak of this sort will require anything up to 100 times the average level of power if it is to be reproduced without distortion. Look for an RMS rating at least as high as that dictated by your room size, with a peak or 'burst' power at least 1.5 times larger. Mistrust DIN, Music Power or any other wierd specification of power. Always take in conjunction with.
Power Bandwidth: Put simply, this is the range of frequency across which an amp is capable of delivering at least half it's quoted output. Normally it is given as two frequencies, ie $3 \mathrm{~Hz}-40 \mathrm{kHz}$; This means that a 50 W unit would deliver 25 W at three cycles per second and at least that much all the way to forty thousand cycles. As the range of audible sound is approximately $20 \mathrm{~Hz}-20 \mathrm{kHz}$, this particular unit is well specified. Beware of catches, though. Consider this:

Flgure 3. At the top-end of the hifitree, things are often less than simple! Compare the panel of this Carver preamp with that of the Trio KA-300 on the provious page. The S-4000 contains a circuit called a "Sonic Hologrem Generator" which creates a 3-D sound effect, claimed to be more like listening in a concert hall, than listening to an amplifier.

Figure 4. These phono sockets are fairly universal nowadays and you can buy ready-made leads to connect up almost any type of equipment. But, as they are identical, be careful when 'plugging in', and NEVER do so when the power is on.

Amp. A
Output: 50 W RMS (at 1 kHz)
Bandwidth: $40 \mathrm{~Hz}-20 \mathrm{kHz}$

Amp. B
40 W RMS from $10 \mathrm{~Hz}-20 \mathrm{kHz}$
At first glance Amp A is more powerful, but consideration of the bandwidth shows that, at low frequencies, it runs out of power pretty quickly. At 40 Hz it is delivering only 25 W , while Amp B is still capable of 40 W - and thus better bass! The larger spec is not necessarily the most honest. Look for a bandwidth of at least $20 \mathrm{~Hz}-20 \mathrm{kHz}$ and mistrust figures of more than 50 kHz as they are not only unnecessary, they are probably detrimental.
Frequency Response: A measure of how evenly, or otherwise, an amp will respond to different frequencies. The nearer the graph is to a straight line the better. If a number is quoted, it will be of the form " $10 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$ " The 'dB' figure shows the amount of deviation from the straight line; plus or minus 1 dB is excellent, 2 dB mediocre and anything more is unacceptable! Look for $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm$ 1 dB as an ideal. Discount any figure that doesn't give a dB limit - it's meaningless.
Signal-To-Noise Ratio: You'll find this in several places throughout the specification. What it tells you is how much hiss or hum or other unwanted noise that particular circuit will add to the signal. All circuits add some, but what constitutes a good figure depends on which part of the amp is under scrutiny.
Look for .
Disc Input: 65 dB or more
Tuner/Tape/Aux: 80 dB or more
Power Amp: 80 dB or more
Accept less if you dare, because if you play your music loud, lower figures will prove obtrusive. A figure quoted as 'weighted' means that it has been 'adjusted' to account for the noise frequencies which are most annoying. This method gives larger numbers, so check carefully. It is, however, a valid adjustment so don't necessarily mistrust it - but do be aware of it.

THD, IM and TIM: These are all forms of distortion and they tell you what percentage of the output signal is being generated by the amplifier itself. THD stands for Total Harmonic Distortion, IM for International Distortion, and TIM for Transient Intermodulation Distortion. With modern techniques, distortion figures are becoming irrelevant, as all amps these days should produce figures of less than one-hundreth of a percent. Solong as the quoted figure is less than 0.1 percent, it can be regarded as sufficient and of no further value for judging how an amp will sound.

Damping Factor: The ratio of the output impedance of the amplifier against impedence of the speaker; irrelevant as long as it is more than 40. Mistrust anything less and if frequency of measurement is quoted, the lower it is the better. Practically, it is a measure of how well the amplifier can control the loudspeakers. A basic spec but, again, one which is easy for the manufacturers to get right.
Input Sensitivity: Sensitivity is the amount of signal required, at the input, to produce full power at the output. In other words, if a disc input has a sensitivity of 2 mV an the amp is rated at 80 W then with 2 mV coming in and the volume full up, 80 W of power is delivered into the speaker cable.
Record players will produce, on average, around 5 mV to 50 mV if they are standard moving-magnet types and anything from 0.5 mV down to 0.1 mV for low output moving-coil designs. Quite often an overload figure is also quoted and, if it is, it should be 100 mV or more, as this is the input level at which audible deterioration sets in and the higher this is the better! A competent design will realise a figure of 120 mV with little trouble. Look for figures somewhere near . . . Disc: $2 \mathrm{mV}-3 \mathrm{mV}$

Tuner/Tape/Aux: $100 \mathrm{mV}-200 \mathrm{mV}$

Anything too far away will prove unsatisfactory; either you won't have enough volume or you'll have far too much, and have virtually no level control at all.
Crosstalk: A measure of how much one channel affects the other, within the amplifier. Power supplies are the major cause of problems and any amp with separate supplies for each channel has an edge on the opposition. In any case, a well designed amp should easily exceed 60 dB .
Slew-Rate and Rise-Time: This is a measure of how fast the amplifier can charge its output level in following a signal. Measured in volts per microsecond (V/uS) and mathematically similar to Rise Time, the time taken for the output voltage to go from 10% to 90% of its final value. Both these measurements are becoming more fashionable lately, but their importance is questionable at best. They are related to frequency response, and the faster the Rise-Time, the wider the response. If a figure is given, the higher the better; 60 V/us is, for example, very good.
Class A, B, AB, etc: Or Sigma-Drive or Super-Feedforward or Clean Drive or Super-A or whatever. Ignore the lot! They all describe the circuit technique used in making the amplifier and are all totally irrelevant. If the other figures are right and the amp sounds good, then regardless of what class it is or whether it current-dumps or feeds forward, its a good amp! Methods of operation are interesting reading but, where a first-time buyer is concerned, not relevant to his choice.

NEXT MONTH: We continue with our ascent, choosing a turntable for the system and taking an in-depth look at the specifications.

From the people who invented the integrated circuit...

The TI Technical Library

Texas Instruments invented the integrated circuit, the microprocessor and the microcomputer. Today, TI is the world's largest manufacturer of semiconductor devices offering the broadest range of products from a single source.

This capability is reflected in the
comprehensive list of high-quality technical data books available to our customers. Each one is an easy-to-use complete reference.

1. MOS Memory 1980 edition $£ 3.95$.
2. Bipolar Memories 1981 edropean edition $£ 4.00$. 1076 . 1976.00 . 3. Optoelectronics Theory and Practice 1 st ed
3. Optoelectronics The
4. Linear Control Circuits 1977 edition $£ 4.50$. 1979 edition $£ 4.50$.
5. Voltage Regulatormputer Components
6. Bipolar Microcompurs 2 nd edition $£ 7.00$.
7. Interface Circuits edition $1981 £ 8.50$. dition $1981 £ 3.95$.
8. TTL 5 th European ed 4 European edition 3 rd edition $£ 3.95$. 10. TTL Supplement to Solid-State Electron 1 st edition $£ 3.95$. 11. Understanding Digital Electronics 1st edition $£ 3.95$. 12. Understanding Dise n E3.95. 13. Understanding Micropmunications Systerion $£ 3.95$.
9. Understanding Calculator Math 1st edit edition $£ 3.95$. 15. Understanding computer Science 1stion $£ 3.95$. 16. Understanding Comtronics 1st edition $£ 3.95$. 17. Understanding Optronics

How to order

simply use the coupon as follows:

1. Select titles and quantities required.
2. Calculate total order value. Add $£ 1.50$ for post and packing.
3. Send the coupon plus your cheque payable to Texas Instruments Limited, PO Box 50, Market Harborough, Leicestershire.

If the coupon has been used by someone else, simply use a piece of paper. Please allow 30 days for delivery.

[^0]

SwitchedTuned Radio

Tired of playing 'Find the Station'? Six pretuned channels make life much easier

ALTHOUGH A RADIO capable of receiving only a small number of stations might at first appear to be of limited use, for most people it will prove more convenient than a radio having the ordinary, continuous dial tuning scale. This is due to the fact that people generally only listen to two or three of the stations available to them anyway. This makes switch-selection of stations an easy and convienient method of obtaining the few of them required to serve the many.

There is nothing new about the idea of push-button tuning, and apart from the use of such tuning in TV sets and FM receivers, this has also featured in a few AM sets over the years. However, whereas FM receivers have tended to use varicap (variable capacitance) diodes in the tuning system, AM designs have used more old-fashioned methods, such as a number of pre-set tuning capacitors. This tends to be more expensive than varicap tuning - where the set is tuned to the desired frequency by applying the appropriate voltage to the diodes. Here the tuning circuit
consists of little more than the switch itself and a few inexpensive preset potentiometers.

Until recently the option of AM varicap tuning was not available, due to the lack of diodes with a wide enough capacitance range. The first of these devices, which appeared several years ago, were not widely adopted as they had a few major drawbacks, the main one being the need for a tuning voltage range of around 1 to 30 V . (This could not be easily obtained from the 6 or 9 volt supply normally employed with portable AM radios.)

The latest varicaps have been greatly improved and can give a wide enough capacitance swing for an ordinary AM receiver, using a maximum tuning potential of just a few volts.

Varicap Theory

A varicap diode is 'tuned' by applying a reverse bias to the device and, in fact, any semiconductor diode will give the effect! Varicaps differ from ordinary diodes in that the capacitance obtained
at a given voltage is guaranteed to be within quite small limits, and they are designed to give good efficiency when used in this manner.

When a diode is reverse biased a 'depletion layer' is formed at the junction of the two pieces of semiconductor material and it is this layer which insulates the pieces of semiconductor from one another, thus preventing a significant current flow. Since a capacitor is merely two pieces of conductive material separated by an insulating layer (the dielectric), this is what is now formed in the diode. The pieces of semiconductor act as the conductive material and the depletion layer as the dielectric.

The capacitance can be raised and lowered by decreasing or increasing the width of the dielectric. In a varicap the width of the depletion layer varies in sympathy with the applied bias voltage such that a high capacitance value is obtained with a low voltage, and a small capacitance value is produced by a high bias.

Our simple varicap design gives

Figure 1. The circuit diagram; Varicap diode, D1, is a dual type.

reasonable sensitivity with sufficient volume from the internal loudspeaker and can have up to six switch-selected stations. Covering the full medium waveband, it is completely selfcontained with an internal ferrite rod aerial and 9V (PP3 size) battery. There is also provision for a crystal earphone and the loudspeaker is automatically muted when the earphone is inserted. The unit is very easy to construct and does not need any complicated aligment.

Construction

Cut out a small piece of Veroboard, having 44 holes by 20 strips, then drill two mounting holes for the board plus another two for the aerial. Figure 2 gives full details of the component panel, including the positions of these holes (which are 3.2 mm diameter and accept 6BA fixings.)

Next make the required breaks in the copper strips and solder the components and links into place, leaving the

Parts List

RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$)	SEMICONDUCTORS
PR1 to	IC1 ZN414
PR6 220k horizontal	IC2 ULN2283B
preset	D1 BB212
R1 3k3	D2,3 1N4148
R2 560k	Q1 BC109C
R3 100k	
R4 3k9	
R5 680R	MISCELLANEOUS
680R	SW1 6 way 2 pole rotary
POTENTIOMETER	switch
$\begin{array}{ll}\text { RV1 } & 10 \mathrm{k} \log \text { with } \text { switch } \\ & \text { (SW2) }\end{array}$	LS1 40 to 80 ohms min. speaker
	JK1 3.5 mm jack socket
CAPACITORS	L1 Medium wave ferrite
C1 15 nF polyester	aerial coil type
C2 220 nF polyester	MWC2
C3 1 uF 63 V elec-	
trolytic	0.1 in. Veroboard
C4 $\quad 33 \mathrm{nF}$ polyester	Control kriobs
C5 10 uF 25 V elec-	Plastic case
trolytic	$140 \times 9.5 \mathrm{~mm}$ F14 ferrite rod
C6 100 uF 10 V elec-	Mounting clips for aerial
trolytic	PP3 battery and connector to
C7 100 uF 10 V elec-	suit
trolytic	Wire, solder, etc.

permit all the desired stations to be received, without RV1 having to be rotated fully anticlockwise. Glue or tape the coil in position once a suitable position on the rod has been found

It then only remains to adjust each preset to the appropriate station. If you do not require all six tuning positions, leave out the unnecessary pots and wiring to SW1, setting the end stop of
the switch to correspond with the number of presets in use. The set has a fairly wide bandwidth and so the tuning is reasonably easy using ordinary miniature presets. Multiturn types or high quality presets are an unnecessary expense in this application.

The unusual components in this project are the ferrite rod, plastic mounting clips for the rod, the aerial coil (L1), the BB21 2 varicap, and the ULN2283B audio IC, all available from Ambit International. The cost of this project, excluding the above components and the case, should be around £15.

How It Works

Basically the unit is a conventional TRF (tuned radio frequency) set covering the standard medium waveband. A TRF is a very simple type of receiver, where the signal from the aerial is amplified and demodulated by a detector stage in order to recover the audio. This is amplified before being fed to a loudspeaker or earpiece.

Sets of this type cannot equal

The Circuit

The circuit diagram of the receiver is shown in Figure 1. The heart of the unit is the ZN4 14 (IC1). This device contains the RF amp, AGC and detector circuitry thus requiring few discrete components. R3 is used to bias IC 1 by way of L1 which is the ferrite aerial. C1 provides a signal path to earth. There are actually two coils on the aerial; the tuned winding and a smaller coupling coil. But as the ZN414 has a high input impedance, it can take the signal direct from the aerial without any impedance matching and the coupling coil is therefore unused in this circuit. R5 is the load resistor for the detector and AGC of IC1, and C2 is the RF filter capacitor. The ZN414 has no positive supply connection, recieving its positive supply via the load resistor R5. A supply voltage of about 1V3 is needed, obtained from
the main 9 V supply using a shunt stabiliser circuit (R4, D2, and D3).

C3 couples the audio output signal of IC1 to volume control RV1. The latter also biases the input of the audio amplifier IC2, a ULN2283B device with a fixed voltage gain of nominally 43 dB - enough to drive high impedance loudspeaker. C4 provides RF filtering at the input of IC2 and C5 decouples the supply to the input stages of this device. Both these components are needed to prevent the audio stages becoming unstable.

D1 is the varicap tuning diode, and is actualiy a dual type, the tuning component being formed by the series capacitance of the two sections. With no bias applied, the diodes exhibit a capacitance value of a few hundred picofarads which tune the set to the low frequency end of the medium waveband. With a
reverse bias of about 6 V , a few tens of picofarads are produced tuning to the high frequency end of the waveband.

Intermediate voltages give intermediate reception frequencies and an appropriate voltage can tune the set to any desired frequency. Note that the anodes of D1 are biased about 0V8 above the negative supply rail by R3, but in practice this simply means that the tuning voltages are all raised by about OV8 volts in order to compensate.

The tuning voltages must be stabilised and this is achieved by Q1. SW1 selects the six tuning potentiometers, and can then be adjusted to give a stabilised potential of between about OV65 (with the wiper at Q 1 collector) and 7 V (with the wiper at the other end of the track.) The upper limit is set by the supply voltage available.

Figure 3. Component layout, with external wiring, and bottom view of the stripboard.

NEW KITS

COMBINATION SWITCH
Battery operared, would control solenold lock or any
slectical device, virtually impossibie to decode. Uses power when in the olf position. Complete kit $£ 4.50$.
A SECRET SWITCH
Con be hidden behind a panel, door, wallpapser, etc.
Will light the lamp or whatever device is secretiv con trolled and it will also latch itself on.
Complete kit $£ 1.95$.
3. 30W VARIABLE VOLTAGE POWER SUPPLY UNIT With 1 amp DC output, for use on the bench, studenth
inventors, service engineers, etc. Automatic short circuit and overioad protection. In case with a volt meter on the front panel. Complete kit $£ 13.80$
IONISER KIT
Refreth your home, office, thoo, work room, ete frith a negative ION generator. Makes you feel better and
work harder - complete mains operated kit, case £11.95. post $£ 1.50$.
BIG AMPLIFIERS
Colt 59.50 . 115 watt $£ 13.50$.
T.V. AERIAL FILTER

MORSE TRAINER
Complete Kit $\mathbf{£ 2} .99$
DRILL SPEED CONTROLLER
MAINS POWER SUPPLY
Gives any voltage from 3 v to 16 vat up to 300 mA
Complete kit less case £ 1.95 . Case 90 .
HOME BASE POWER SUPPLY
13. Bv 20 Amp . buill and regulariv used by G3VCJ, has all
regular features including overload protection trip. 500 watt translormer and all parts including case $\mathbf{£ 3 9 . 5 0}$ carriage f5.
AERIAL DIRECTION INDICATOR Kit includef 16 reed switches, magnet, 16 i.e.ds and chart
which has the 16 compass points ond lights up where your aerial is pointing. $\mathbf{E 5 . 9 0}$
AERIAL ROTATOR

SUPER HI -FI SPEAKER CABINETS
Made for an expensive Hi. Fiourtit

- will suit any decor. Resonance free. Cut-outs for $6 x$ - wooter and 2x". I weeter. The front material is
Dacron. The completed unnt is mos pleasing. Supplied in pairs, price
E6.90 per pair this is protiably less than the original cost of one GOODMAN SPEAKERS $6 \% " 8$ 25watt. $\mathbf{4 4} .50,2 \%$ " 8 iweet. 22.50
No extre for postage if ordared with cabine Vu METER SNIP Approximately $15 / 8^{\prime \prime}$ square, suitable for u
as a recording level meter power output in. dicator or many similar applications. Full vis
front, cover easily removable it you wish to tront, cover easily removable if you wish to alser the sc
for 59.00 .

MOTORISED DISCO SWITCH With 10 amp changeover switches. Multi-
Botiustable swmiches all rated at 10 amps, ofiustabe swiches all rated at to amps,
this would poovide a manniticent display.
For mains operated 8 switch mole C6.25, 10 switch model $26.75,12$ switch

12v MOTOR BY SMITHS Made for use in cars, these are series
wound and ther become more powe by $3^{\circ "}$ dia. These have a good ler
of $\frac{y}{2}$." spindle - price $£ 3,45$. Ditto bur do ple ended $\mathbb{C 4} .2$

EXTRA POWERFUL 12 v MOTOR
Made to work battery la mmoner, this protably develops up io
\%h.p., so it could be used to powei a go-kart or to drive a compressor, etc. etc. $\mathbf{6 6 . 9 0}+£ 1.50$ post
UNIVAC KEYBOARD BARGAIN
all mounted on a p.c.b. fogether with
and other parts. $£ 13.50+\varepsilon 2.00$ post. This is tar less than the value of the switches alone. Diegram of this keyboard is avaitable sepe tely. Price E1.00.

MULLARD UNILEX A mains opersted $4+4$ ste
system. Ratad one of the finest pertormers in the tereo field this mould
 make a wonderful gifi for
almost anyone. In easy to assemble modular form this should sall'at about £30
mot - bur due to a spacias bulk buy and as an in. connive for you 10 bur this month we of for the sys-
tom complete it only $£ 16.75$ including VAT and pos tem complete at only $£ 16.75$ including VAT and post.
FREE GIFT - buy this month and you will recelve a pair of
Goodman's eliptical $8^{\circ}{ }^{\circ} 5^{\circ}$ speakers to match this amplitier.

3 CHANNEL SOUND TO LIGHT KIT Complete kit
paris
for
a parts for a
three-channes threerdannet
sound light
unit controllunit controll. - ing over 2000 ing. Use thi
at home if
y 倍
 at home if
you wish but
is plenty rugged enough for disco work. The unit is housed in an atrective twotone metal case and has conirols for each chann sockets and three panel mounting fuse holcers provide thy ristor profectlon. A four-pin plug and socker fecilltate ease of conn
ing lamps. Special snip price is $£ 14.95$ in kit form or $£ 25.00$

MICRO SWITCH PARCEL
10, ofl different and including one that can be ooprated by a putf
of wind and another by only 1 mm of moveinent. Also containing of wind and another by only 1 mm of moveinent. Also contaning
lever rod and roller operated subminiature end standards. All
 SPIT MOTORS
These are powerful mians operated induction motars with gear box
asteched. The final shalt is a "x " 100 with square hole, so vou have alternative couplingriethods - final speed
is approx. $5 \mathrm{rem} / \mathrm{min}$, price $\mathbf{\$ 5} 50$. 18 appror. $5 \mathrm{rev} / \mathrm{min}$, price $\mathbf{5 5} 50$.
Similar morors Nith finat speeds of Similar motors with final speeds of
$80,100,160$ \& 200 f.m. same price EXTRACTOR FAN

8 POWERFUL BATTERY MOTORS for models, meccenos, drills.
temote control planes, boats, el E2.50.

TAPE PUNCH \&

READER for controlling machin Rools, erc, motorised 8 blt punch with
matching tape resder. Ex-computers, be lieved in good working order, any not so
would be exchanged. 617.50 pair. Post mould be
$£ 3.00$. MINI-MULTI TESTER Defuxe pocket size precision mov.
ing coll instrument, jewelted bearings $-20000 . \mathrm{P}, \mathrm{vo}$ mirrored scale.
 ing coil instrument, Jewelted bearings - 2000 o.p.v. mitroted
11 instant range measures: DC yotis $10,50,250,1000$.
 $A C$ vols $10.50,250,1000$ DC amps $0-100 \mathrm{~mA}$ two ranges. Complete with test prods and in stuction book thowing how to measure cap
aciry and cirv and inductance as well. Unbelievable

REE Amps range kit 10 enble you to read REE Amps range kit to enble you to read
DC current from $0-10$ amps, directly on te $0 \cdot 10.10$ scale. Imps, free if you
purchase quickly, but of you already own a Mini-Testry and would like

FREE OUR CURRENT BARGAIN LIST WILL BE ENCLOSEO WITH ALL ORDERS.

TRANSMITTER SURVEILLANCE
Tinv, easily hidden but which will anable conversation to be picked up with $F M$ radio. Can be made in a matehbox-all olectronic parts and circuit. E2.30. (Not licenceable in the U.K.) RADIO MIKE
Ideal for discos ond gardon parties, allows complate freedom of movernent. Play through FM.
(Not licenceable in the U.K.).
FM RECEIVER
Made up and workirs, complete with scale and pointer needs oniv speaker, ideal for ure with our surveillance tranmitter or radio
mike. $\mathrm{E5} .85$.

CB RADIO

Listen in with our 40 -channel monitor. Unique design ensures that you do not miss sender or cal
and instructions only fti .99 .

NEW ADDRESS FOR CALLERS:-
2. Bentham Road, Dff Elm Grove, Brighton.

Tel: Brighton 671457 . Please phone before
making a special journey for any advertised item.

VENNER TIME SWITCH

Mains operatod with 20 amp svitich, one
on and one off per 24 hrs. repetals dially
automatically correcting for the lengthen Ing or shortening dav. An expensive time
switch but you can have if for only $\$ 8.95$ These are new but without case, but we $\mathbf{£ 1 . 7 5}$ or metal case mith window $£ 2.95$. Also available is adaptor kit to convert
this intio a normal 24 hr , time switch but this into a normal 24 hr . time switch but
with the added advantage of up to 12 on offs per 24 hr . This makes an ideal con wher for the imm

TIME SWITCM BARGAIN
Large clear mains frequency controlied clock, which mill aivevs show you the
corfect time \& start and stoo switches with the dials. Comes complete with knob
$\mathbf{F} 2.50$.
delay switch
Mains operated delay can be accurately set with tacts suitable to switen 10 amps - second contac opens a few minutes after lst contact. \&1.95.
6 WAVEBAND SHORTWAVE RADIO IKIT
Bandspread covering 13.5 to 32 metres, 19 ased
Bandspread covering 13.5 to 32 meires, 19ased on circuit which appeared in a recent issue of Radio Constructor. Complete kit in-
cludes case materiats, six translstors and cliodes, condensers, resis: cludes case maters. inductors, swictise, elc. Nothing olse to buy it you have an amplifier to connect it to or a pair of high resistance headphones. Price E11. 95.
MEDIUM \& 2 SHORT WAVE CRYSTAL RADIO All the parts to moke up the beginner's mociel. Price $£ 2.30$. Crystal
arroiece 65 . High resina ance heactohones (hives best resulua) $\mathbf{c 3} .75$.
 RADIOSTETHOSCOPE
Easy 10 lault find - start at the arial and work 10 wards the speaker

- when signal stops you have found the fault. Complote kit $£ 4.95$. INTERRUPTED BEAM
This kit ensbles you to make a switch that will trigger when a steady beam of intre-red or ordinary light is broken. Main compon
ents - relay, photo transistor, resistors and calps etc. Circuit diaur an but no case. Price 22.30

MUGGER DETERRENT

A high note bleeper, push latching switch, plastic case and battery connector. Will scare away any villain and bring help. $\mathbf{E 2 . 5 0} \mathrm{com}$ TANGENTIAL BLOW HEATER 2.5 Kw quer.
efficient instiont heating trom
$230 / 240$ volt mains. Kit consists
 of bustrated, 2.5 K

12V SUBMERSIBLE PUMP

Just Join it to yout car battery, drop it into the llapid to be moved and up it comes, no messing about, no priming, etc. and you geit a very good head, Suitable for water, paraftin and any nun explosive
non corrosive liquid. One use if you are a camper, mable yourself hower. Price: $\varepsilon 8.50$

MINI MONO AMP

On P.c.b., size $4^{\prime \prime} \mathrm{K}^{2}$ ". Three Yrassistors and we estimate the
output to be watts rms . Brand new, made up

J. BULL (Electrical) Ltd.

(Dept. HE), 34-36 AMERICA LANE,
HAYWARDS HEATH, SUSSEX RH16 3QU. 30 YEARS

Send for my CATALOGUE ONLY 75p
 (plus 25p post/packing)

My VAT and postpecking inclusive pricos are the lowest. All bolow normal trede price - some at only one tenth of manufacturers quantity trade.

See my prices on the following:
CAPACTTORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPE, COMPUTER GRADE, NON POLAR, PAPER BLOCX, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESSSTDRS. 1Rד WATT TD 100 WATT; 0.1% TD 10\% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENDIDS, TAPE SPODLS, VARIABLE CAPACITDRS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WREWOUND, SINGLE OR MULTTTURN, ROTOAY ANO SLDE. DIODES, RECTIRERS, BPIDGES, CHARGERS, STYLI, SOCKETS, PLUGS, RELAYS, TRANSISTDRS, ICS, CLUPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATDRS, NEONS, OPTO'S, LEADS, CONNECTDRS, VALVES, BODKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATDRS, BELLS, SIRENS, HDLDERS, POWER SUPPIES, HARDWARE, MDDULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNDBS, THERMISTORS, VDRS, INSULATORS, CASSETIES, METERS, SOLDER HANDLES, LOCXS, INDUCTDRS, WIRE, UNITS, MOTDRS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHDNES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not beileve before inflationl

BRIAN J. REED

TRADE COMPONENTS
ESTABLISHED 24 YEARS
161 St. Johns Hill, Battersea, London SW11 1TQ
Open 11 am till 7 pm Tuses, to Set. Telephone: 01-223 5018

12" 80 watt R.M.S. loudapanker. a superb general purpoes win cone loudspesker. 5002 . magnet. 2" aluminium voice coi. Rolled surround. Resonant frequency response to 13 KHz . Sensitivity 95 dB . Im- pedance solm. Attrective blue cone with duminium centre dome.
 MANY OTHER LOUDSPEAKERS IN STOCK from $5^{\prime \prime}$ to $15^{\prime \prime}$. up to 100 watts R.M.S. Inctuding kis, and piazo tweeters.

Stereo Cassette Tape Deck Modula comprising of a top panel and tape mechanism coupled to record/play-back printed board assembly Supplied as one complete unit for horizontal instalation into cabiner or console of own and tested. Smart black and silver finish. Features: Three digit tape counter. Auto-stop Six piano type keys, record, rewind, fast forward, play. stop and eject. Automatic record evel control. Main inputs plus secondary inputs for stereo microphones. Input sensitivity 100 mV to 2 V . Input impedance 68 K . Outpu evel 400 mV to both left and right-hand chan nels. Output impedance 10K. Signal to noise ratio 45 dB . Wow and 18 V O.C. at 300 mA . Connections the left and right-hand stereo in puts and outputs are via individual screened leads all terminated with phono plugs (phono sockets provided). Dimensions: Top panel $51 / 2$ in $\times 111 / 41 n$., clearance required under top
pupplied complete with circuit diagram and connecting diagram
Price $£ \mathbf{E 8} .70+\mathbf{£ 2 . 5 0}$ postage and packing Supplementary parts tor 18 V U.C. power
supply (iransformer, bridge rectifier and

B.K. ELECTRONICS
 37 Whitehouse Meedows, Eastwood, Leigh-on-See, Eseex SS9 5TY banclaycard VISA

The Editor answers a selection of your letters

Deaf-Aids Revisited

Dear Sir,
I am a regular reader of Hobby
Electronics and an absolute beginner in electronics. However, I was appalled at the attitude of your reply regarding help required by Mr. Tate who, in his letter (Your Letters, HE November 1981), asked for hearing-aid circuits and was bluntly cut-off with the comment "Our hands are tied".

My three year old son is profoundly deaf in both ears and uses a radio link hearing-aid; one of the vital requirements for this, as for any hearing-aid, is the batteries that power it, in my son's case, 6 V NiCad batteries. The peripatetic teacher who attends each week is desperately in need of a battery checker with simple reliable service, similar to a 12 V car battery checker. Can you help?

As Mr. Tate said, there is scope for quite a few projects and this is one. B.C. Goodman,

Newmarket, Suffolk.
What Hugh Davies said, in his reply to Mr . Tate, is that deafness is a medical condition - and we are not at all qualified to advise on purely medical problems. Consider the possibility, as we must, that a partially deaf person could further damage his or her hearing through misuse, whether by accident or by ignorance, of a hearing-aid device published in our magazine. Heart-beat monitors and suchlike are harmless enough, but any gadget intended to correct an actual medical condition must, we're sure you'll agree, be designed, constructed and operated under strict medical supervision.

As to a NiCad battery checker, it is not practically possible to design such a circuit. NiCad's have very flat discharge curves; simply, they appear to be either charged or discharged. The charge does not fall-off gradually, as with car batteries.

Fortunately, the Intelligent NiCad Charger in this issue should solve the problem, although you may need to shorten the charge period to avoid over charging the battery.

Books For Basics

Dear Sir,
I would be obliged if you can recommend a good basic electronics book for a boy, aged 13, who is very interested in the above.
Lawrence Noone,
Dublin, Eire.

[^1]starting point for anyone approaching the subject for the first time. Another good 'starter' is "Beginner's Guide to Electronics" by Owen Bishop, now in its fourth edition. It is published by Newnes Technical Books, Borough Green, Sevenoaks, Kent TN1 2 8PH, but should be available from any good technical bookshop. Some other suitable publications are listed on our Bookshelf page.

Astronomy Dominie, OK

Dear Sir,
lam interested in both astronomy and electronics. A friend and I recently came up with the idea of building a radio telescope. Could you help? Perhaps a circuit. . . ?

Also, is it possible to get back issues, and Hobby Prints?
Robin Cartley.
Vice-Chairman, Crofton Astronomical Society.
Fareham, Hants.

Our first reaction to this query was along the lines of " . . . you've got to be joking' "I On second thoughts, though, it occurred to us that a smallscale radio astronomy project something a little less grand than Jodrell Bank - might be possible. We'll let you know.

Hobby Prints have been discontinued but most of the old ones are still available from our Reader Services Department. Your other question is answered below. . .

Specials and Back Numbers

Dear Sir,
While looking through some old copies of HE the other day I noticed several references to your "Electronics Digest" Volume 1, Number 1. For some reason or other I failed to purchase a copy of this most interesting publication and would very much like to get hold of a copy.

I know it might be a slim chance but I wondered if perhaps you might have the odd left-over copylying around, which / could purchase.
E. Weeks,

Godalming, Surrey.

Electronics Digest Vol. 1 No. 1 is still available from our Reader Services Department (Specials) for $£ 1.80$ including $\mathrm{p} \& \mathrm{p}$ within the UK. Incidentally, Vol. 2 No. 3 was published in November 1981, so get it while you can!

Back issues of Hobby Electronics are $£ 1$ from the Back Numbers Division of

Reader Services, subject to availability. You should allow 21 days for delivery.

Bouquets . . .

Dear Sir,
I have recently become interested in electronics and am at present following a course in the subject at school.

I have started receiving your excellent magazine on a regular basis and would like to take this opportunity to praise the high standard it maintains and the superbly explained and illustrated projects.

As a project for the abovementioned school course, I am hoping to construct a "multimeter" which would be of practical use both in research and other construction projects. Therefore, I was hoping that your magazine may have carried some articles relating to the construction of such a project.

I would be very grateful if you could help.
Francis Bailey,
Benson, Oxon.
High praise indeed! Unfortunately, though, we are unable to help with your project as we have not, in the past, published such a circuit. It is actually cheaper, these days, to buy one "ready made"; that's another part of the Shogun Inheritance.

. . . And Brickbats

Dear Sirs,
I have cancelled my order for Hobby Electronics and suggest that you change your title to BBC.

The amount of repoat projects that you churn out i.e. 1981 issue, four out of five are reprints; November 1981 issue, four out of four are reprints.

All this suggests to me is that your technical department concentrates on the best way to change existing projects so that you can do another reprint.

I suppose that this letter will be consigned to the rubbish bin.
Yours in disgust,
R. Dixon,

Leeds.
P.S. I have taken HE from the first issue but enough is enough.

Every specialist magazine has this problem. In our case it is perhaps true that we have not always met the challenge of devising new but still simple projects, as well as we'd like. There are, after all, a limited number of clever things you can do with one or two transistors or ICs. Inevitably, a certain number of projects are recycled, but this is entirely for the benefit of
new readers - new to HE and new to electronics; it is not just for our convenience, or because we're lazy.

Perhaps it's time you moved on to more complicated projects, ones with a higher "degree of difficulty". You might find more of a challenge in the pages of our sister magazine,
Electronics Today International.
Meanwhile, we'd like to assure our readers that, while a certain number of projects and even feature material the popular "Building Site" series, for example - will be repeated from time to time, we are always investigating new applications and, we hope, exciting new ideas to extend this fascinating hobby of ours.

HEBOT

The popularity of this little beast continues to amaze us, so it is with regret that we must announce (again) that most of the parts for HEBOT are no longer available. HEBOT is dead, deceased and gone before; Resting, we hope, In Peace.

Dedicated Robo-maniacs are directed to the September and October issues of Electronics Today International. ETI is planning a series of articles and projects covering all aspects of robotics. The series starts with a Robot Arm project, descibed in the issues mentioned above.

Electronic Organ

Dear Sir,
I hope you will forgive me for adding to the list of letters saying how much we, the readers of HE, appreciate it and those who produce it.

I'm sure that, at times, it must be difficult to devise projects and I would like to make some suggestions for you to consider. The Organ Project (HE, May 1981 onwards) was first-class and surely worth some extension. How about some voices, individual preset boards with genuine instrument sounds - oboe, trumpet, cello etc - and, of course, a reverberation unit.

Also, as more and more computers are sold, how about a good power supply with the facility for powering dynamic RAMs as well as overvoltage protection. Most computers seem to have on-board regulation with inadequate heatsinking, and the shortcomings certainly show up if any expansion is planned.

Apart from the reverb, I haven't seen any of the above in any electronics mag. I do hope that these ideas are of some help.
G. Bobtridge,

Leamington Spa, Warwicks.
You are forgiven! We never become tired of compliments - or of complaints (they keep us on our toes. . .).

Your suggestions regarding the Electronic Organ have been passed, along with several other enquiries on the subject, to the designer. Thank you for the other suggestions, too. We will give them some thought.

Components

We have received a number of requests about components - the strange markings on capacitors, the importance of the different types (polyester, electrolytic etc), resistor ratings and so on. In general, these topics are covered by Ian Sinclair's series "Into Electronic Components" and also in his book,

"Understanding Electronic

Components".
However, because of the number of requests for this sort of information we will publish, soon, a quick reference guide that will answer most of the difficult questions.

Thanks to P. Payne of Oxford, W. Haynes of Tattershall, Lincs, and M.A. Barrett of Kings Lynn, Norfolk, for their suggestions.

Parts Past

Dear Sir,
I want to build the Shoitwave Receiver, featured in September 1981
Hobby Electronics, but cannot find a supplier for the 40673 Dual Gate MOSFET.

Can you help?
P. Winards,

Manchester.
The 40673 appears to have been discontinued - such is lifel
Try the MEN616 (Ambit catalogue) or a 3N140 (Watford Electronics).

Letters Acknowledged

Letters have also been received from: J.B. Day of East Barnet, Herts; D.C. Hodgkins of Burnham-on-Sea in Somerset; Edwin Coruth of Leeds; R.B. Ridley Martin of Brockenhurst, Hants; P.H. Smith from Oadby, Leics; William Buckley from Maudlen, Beds; David Jarrard of Welwyn Garden City, Herts; Kevin Salisbury from Exeter in Devon and lastly, from further afield, Jason Lee, who wrote from Province Wellesley in West Malaysia.

We regret that we are unable to answer these letters, as neither time nor space permit.

Oops!

We seem to have collected quite a file of technical enquiries, many of them related to errors, or possible errors, in projects. Rather than try to answer these letters one at a time, we will try to gather them together and dispose of them all at once.

Famous Names

Dear Sir,
In your otherwise excellent land very welcomell feature on CampbellSwinton in Hobby Electronics December '81, you have omitted to draw attention to what was probably his greatest flash of insight - his ennunciation of the so-called "storage principle". This was to become crucial in the realisation of high-definition television 25 years afterwards. He realised that each element of the picture mosaic should store up its
photoelectric current for the whole period of the "frame" time lone-tenth of a second as he suggested, onetwentrfifth of a second as eventually realised) asnd deliver the accumulated charge as a picture signal at the moment when the scanning electron beam discharged the element.

All other systems, mechanical and electronic, only delivered a picture signal proportional to the photoelectric current at the instant of discharge, which was lower by a factor of the order of 10,000 (for a 405-line system).

As you say, Campbell-Swinton hadn't the technical means to realise his vision; this had to wait until Zworykin constructed his
"Iconoscope". But there is no doubt that Campbell-Swinton had the right idea many years before.
B.M. Crowther,

Dorking, Surrey

Dear Sir,
Re. the rather sketchy article by Mr.
Ted Jennings in the November issue.
Once again, Edison has been credited with the first use of wax for recording; not so.

Edison was the first to record and replay articulated speech in 1870, but this was on tin foil wrapped tightly around a spiral grooved cylinder. The stylus, attached to the diaphragm, embossed the tin foil over the groove, to a depth varying with the modulations of the voice. The recording could be plaved back only two or three times; the soft unsupported metal had, by then, been pressed to the bottom of the groove. It was little more than a laboratory novelty and Edison abandoned it for 10 years while developing the carbon filament lamp and the 3-core cable for mains electricity.

A nephew of Bell lthe inventor of the telephone) and Tainter made a machine with removable wax coated cardboard cylinders. The recording was cut or engraved in the wax and replayed with a ball-shaped Saphire stylus. The improvement was offered to Edison, who rejected it. They transposed the word Phonograph and called their machine the GraphOphone.

Edison quickly redesigned his Gramophone to take cylinders of wax, which could be shaved and re-used, but he had to pay royalties to Bell and Tainter.

The "war" between cylinder and disc raged from the 1890 s to 1916, when imports were barred for the duration of the war. Entertainment cylinders faded out in 1929 but the Office Recorders, Ediphone and Dictaphone, continued in use until the 1960s and the advent of magnetic recording.

The City of London Phonograph and Gramophone Society and its branches, exists and thrives for those of us who collect and treasure these old historical machines.
N. George,

Rushden, Northants.
HE

ELECTRONC CAMES

SPACE INVADERS

Hand held Invaders Games avaılable $\mathbb{£ 1 9 . 9 5}$ Invaders Cartridges avalable to fit Cartidges also available for
MAITEL IELENG:ROWTRON ATTEL TELENG ROWTRO

ADD-ON
ADAPTOR
$£ 199$

CHESS COMPUTERS

We carry a range of ov Electronic Chess computers Chess Traveller Chess Challenger

Sensory 8
Sensory Vorce Sensory voice VOICE CHESS CHALLENGER Normal Price $f 245$ NOW $£ 135.00$ SARGON 25 BORIS 25
Normal Price f 27370 NO

SPEAK \& SPELL

EARTH INVADERS

(a)

 $£ 23.95$

GALAXY
1000

$\pm \mathbf{E 1 9 . 9 5}$

ADDING MACHINE OLYMPIA HHP 1010
Nompaize

£39

LD GAMES
 FOR FREE BROCHURES-TLA:01-3011111

THE OLYMPIA — POST OFFICE APPROVED TELEPHONE ANSWERING MACHINE WITH REMOTE CALL-IN BLEEPER
This telephone answering machine is manufactured by Olympia Business Machines, one of the
largest Office Equipment manufacturers in the K it is fully POST OFFICE APPROVED and will answer and record messages for 24 hours a day with your remote call-in bleeper you can receivt Answer Record UnH. which will al your command repeal messages heep or erase them and is be used for message referral if you have an urgent appomiment, but are expecting an important call.
bleepers ($£ 13$ eachl this facilly
\qquad
\qquad

En

 mact ans THIS NEW MODEL INCORPORATES prue Pal Coluur Push button channel change Unnecessary 10
TV programmes
Gold glated circuli board tor relabollty
New SUPERIMPOSE News Flaln laciliv

PRESTEL VIEWDATA

 data adapior simply plugs inio the herialSpecial grdphics leature for high resolute.
\qquad
\qquad
\qquad
\qquad
$\underbrace{}_{\substack{\text { SPECIAA } \\ \text { PRCE }}} £ 228.85$ PRICE $£ 228.85$

SIMPLE TIMER

THIS VERY SIMPLE timer unit turns on an LED between two and five minutes after switchon. The time delay is continuously variable within these limits. To start a new timing run the unit is simply switched off, then on.

At switch-on, Q1 will be cut off because C1 is uncharged and will take Q1's gate to the negative supply potential. Therefore, Q2 receives no base current and is also cut off. C1 will charge from the supply line by way of RV1, R1; the rate of charge can be varied by means of RV1. After a time the charge on C 1 will be sufficient to bias Q1 and U1 into conduction: D1 is used to raise the gate threshold voltage of Q1 so that fairly long time delays can be obtained using practical resistance and capacitance values. A VMOS device is used for Q1 as they draw insignificant input current and there is, therefore, no significant leakage of the charging current.

When Q1 starts to switch on, Q 2 also starts to conduct and passes additional charge current to C1, via D3. This results in both Q1 and Q2 rapidly switching hard on and D2 lights up due to the current flow through Q2, R4, D2, and D1. The regenerative action of D3 ensures that D2 switches on cleanly and rapidly. When SW1 is switched to the 'off' position, it discharges C 1 so that a new timing run can commence.

C1 must be a low-leakage electrolytic or tantalum type,otherwise leakage through it will greatly extend the delay time and could prevent D2 from switching on at all. Q1 can be any N -channel V MOS device (VN66AF, VN67AF, etc)

INTELLIGENT NICAD
 CHARGER

It does the thinking for you

The advantage of using NiCad batteries in equipment such as flashguns. electric models and cassette recorders is that they are considerably less expensive, in the medium to long term, than ordinary (non-rechargeable) batteries. One drawback, however, is the bother of keeping track of how long they have been on charge. Most NiCad manufacturers claim that overcharging cells does not do them any harm, so that it does not matter if they are left too long on charge. The real problem tends to be that the cells are not left on charge long enough, so that they fail prematurely. Another problem is that, in order to achieve their full lifespan, NiCad cells should go through full chargedischarge cycles, since partial charging can reduce operating life.
What is needed is a charger that knows when to switch itself off - but does not cost a fortune. The Intelligent NiCad Charger fits these requirements precisely. It has a built-in timer which cuts off the output approximately 15 hours after switch-on (normally NiCads require 14 to 16 hours to fully recharge) and uses a simple circuit that requires few components.
NiCad cells must be charged from a source which limits the charge current to a safe level as they are likely to be damaged if this current is exceeded. This charger uses a constant current source that gives switched, nominal output currents of $11 \mathrm{~mA}, 50 \mathrm{~mA}$, and 180 mA . These currents are suitable for PP3, AA (HP7), and C (HP11) size NiCad cells respectively. The unit can charge at one time, either one PP3 size battery or up to six AA cells, or up to four C size cells.

Timer

The normal choice these days, for practically any timing application, is the 555 IC; but not in this case. The Old Faithful is unsuitable here because of

the impractically high component values (such as a 54 megohm resistor and a 1000 microfarad capacitor!! required to give a timing run of 15 hours. While this is quite feasible in theory, in practice the leakage current though the capacitor would be such that the timing pulse would, almost certainly, never end! An alternative form of timer is one that uses a counter circuit fed by an oscillator. The output pulse usually lasts for a certain number of oscillator cycles.
The ZN1034E, the device used in this circuit, is a counter-timer IC of this type. It requires 4095 (internally generated) oscillator pulses before the counter changes state, and this enables quite long output times to be obtained using fairly low RC timing component values. In fact, the output time of around 15 hours is obtained even without having to use an electrolytic capacitor in the timing circuit.

In Use

AA or ' C '-sized cells must be fitted into a plastic battery holder which has a PP3type connector to fit directly onto the output connector of the charger. The cells must be connected in series and the plastic holders ensure this, but be sure to fit the batteries into the holder with the correct polarity! Of course, a PP3 NiCad simply connects directly with the output connector. Remember to set SW1 for the appropriate charge current before connecting the cells. Due to the tolerances of the components, it is possible that the charge time might be somewhat outside the required 14 to 16 hour range. If necessary, the value of R1 can be raised or reduced and this will give a degree of control over the charge time. However, if the error is only small, it is probably not worthwhile bothering with.

How It Works

The charger is powered from the AC mains supply and gives a DC output suitable to charge NiCad batteries. It is essential that NiCad batteries are charged at a low current or they may become damaged; the output is therefore supplied by a constant current source, which sets the charge current at a safe level. A counter circuit is used to control the charge time and at switch-on it enables the current source to function normally. After the counter has received 4095 pulses from the oscillator (which takes around 15 hours) the counter output changes state so that the curient source is switched off and the battery no longer receives any charge current.

The mains supply is converted to a smoothed, low voltage DC supply by means of conventional full wave power supply circuit, T1, D1, D2 and C1. No on/off switch is used as, presumably, the unit will be unplugged when not in use.

IC2 is a precision timer device which contains an oscillator, 12 -stage binary counter, and control logic circuitry. It requires a stabilised 5 volt supply and has an internal 5 volt shunt regulator, but this can easily be damaged by excessive current so an external 5 volt monolithic voltage regulator (IC1) has, therefore, been used. C2 and C3 are supply decoupling capacitors which prevent IC1 from becoming unstable.

Pin 1 of IC2 is the trigger input and, as it is taken low by being connected to the negative supply rail, IC2 is

triggered as soon as the unit is connected to the mains supply. At the same time, the Q output at pin 3 goes high, to approximately +5 volts. The time for which the Q output stays high is determined by calibration resistor, R2, and timing components R1 and C4. With R2 at the specified value, the timing components give nominal output pulse length of 7500 RC , that is, 54450 seconds (15 hours and $71 / 2$ minutes).

R3 plus D6 to D9 form a simple shunt regulator circuit that gives potential of about 2.4 volts at the junction of R3 and D6. D6 to D9 are ordinary silicon diodes, forward biased and give a voltage drop of about 0.6 volts across each (4×0.6 volts $=2.4$ volts). This voltage is used to drive Q1 and Q 2 which are connected in the Darlington configuration and form the basis of the constant current generator circuit.

There is a drop of about 1.2 volts from the base of Q1 to the emitter of Q2, leaving 1.2 volts across whichever emitter resistor is selected by SW1. This gives an emitter current of roughly 11 mA with $R 4$ in circuit, 50 mA with R5, and 180 mA with R6. These are the appropriate charge currents for PP3, AA, and C sized NiCad batteries respectively and
provided a suitably low resistance path is present in the collector circuit, the collector current will be virtualiy equal to the emitter current. By connecting the NiCad cells in the collector circuit of Q1/2, therefore, these cells can be charged at the appropriate current.

The charge current always passes through LED indicator D5 and this shows whether or not the battery is properly connected to the unit and is charging. It also shows that the charge period has ended since, after 15 hours approximately, the Q output of IC2 goes low, switching off Q1 and $Q 2$ and cutting off the charge current. With SW1 in the "AA" position, D4 is switched in parallel with D5 and in the " C " position both D3 and D4 are switched in. There are two reasons for doing this; one is simply that the LED display makes it very clear which charge current the unit is switched to lone LED for the PP3 mode, two for the AA mode, and three for the C mode) so that there is little risk of charging a cell at the wrong rate. It also keeps the current through the LED indicators to an acceptable, though high, level when the unit is used at the highest charge current. A secondary role of the indicator diodes is to prevent the NiCad cells discharging through the charger

GAMES - RADIO AUDIO - MUSIC and DISCO INDICATORS and ALARMS
 TEST GEAR - HOUSE AND HOME • LIGHTING and PHOTOGRAPHY •

Construction

The prototype was built in to an inexpensive aluminium case measuring $133 \times 102 \times 64 \mathrm{~mm}$, but any metal case of similar dimensions should do. SW1 is mounted on the left side of the front panel, with D3, D4 and D5 fitted in panel holders on the right. Use large (0.2in.) LEDs and also three LEDs of exactly the same type (not different colours) or, due to differing LED voltages, one or two of the indicators may not work. /The design is a little unusual in that it allows the LEDs to draw so much current - 60 mA each. in the 'C' position - however, no problems arose during repeated tests in our workshop. Ed.I
A soldertag should be fitted to one mounting of T 1 in order to provide a chassis connection point for the mains earth lead. Be sure to use a three-core mains lead and earth the case securely. Drill two holes in the rear panel, one for the output lead and one for the mains cable, and fit them with grommets to protect the cables.
The output connector is an ordinary PP3

Parts List

Resistors (all $1 / 2$ watt 5%)	
R1	3 M 3
R2	300k
R3	1k
R4	110R
R5	24R
R6	6R8
Capacitors	
C1	680 uF 25 V electrolytic
C2,3	100nF polyester (C280 series)
C4	2u2 polyester (C280 series)
Semiconductors	
	$78 \mathrm{~L} 05(5 \mathrm{~V}, 100 \mathrm{~mA})$ regulator
IC2	ZN1034E
Q1	BFY51
02	TIP41A
D1,2	1N4001
D3,4,5	TIL220 (0.2 in. red LED)
D6,7,8,9	1N4148
Miscellaneous	
SW1	3 way, 4-pole rotary
T1	Standard; 9-0-9 volt, 500 mA secondaries
PP3 connector, case. PCB con-	
trol knob, panel holders for LEDs,finned heatsink for 02, mains	
lead, wire, solder, etc.	

Buylines

There should be no problems in obtaining the components for this project. Total cost, including case and heatsink, should be about £12.
battery connector - remember to thread the leads through the hole in the rear panel before soldering them in place!

Finally, connect the mains lead, and give the wiring a thorough check before switching on

Figure 1. PCB foil pattern of the Intelligent Charger.

Figure 2. Component overlay and connection diagram: note the heatsink on Q2.

THREE FOR FREE

 ,

EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in arid out of letter number identufied nickel silver contact hales Start smalt and simply snap lock boards logether to build a breadboard of any suze
All EXP Breadhoards have iwo bus bars as an integral parl of the board, if you need more than 2 buses simply snap on 4 more bus bars with the aid of an EXP 48

EXP 325 E1.60 The ideal breadboard
for 1 chip circuits Accepis 8, 14, 16 and up 1022 pinics has 130 contact points including iwo 10 poinl bus bars

EXP 350 E3. 15 Specially designed for working with up 1040 pin iCs verlect for 3 \& 14 pinics
Has 270 contact points including
wo 20 point bus bars
EXP 300 ¢5. 73 the
most widely bought
hread hoard in the UK With 550 contar 1
points. two 40 point
hus bars. the EXP 300 will accept any size IC and up 10 6: 14 pin DIPS Use this breadboard with Adventures in Microelectronics

EXP $\mathbf{6 0 0}$ £6.30 Mos
MICROPROCFSSOR
projects in maqasines and educatronal hooks are buit on the EXP 600

EXP 650 E3. $\mathbf{6 0}$ Has $\cdot 6$ " centre
spacing so is pertect for
MICROPROCE SSOR applications

EXP 48 © 2.30 Fou
more bus bars in
"snap on" untt

The above prices are exclusive of P\&P and 15% VAT

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post imrnediately GLOBAL SPECIALTIES CORPORATION

G.S.C. (UKI Ltd, Dert. 5 T $^{\circ}$

Unit 1. Shire Hill Industrial Estate
Saffron Walden. Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682
I elex: 817477

Available from selected stockists

ELECTRONICS BY NUMBERS

No. 10 SOIL MOISTURE TESTER

No more witting houseplants with this soil moisture test. Just place the probes into the soil and it will light up to tell vou whether the soll is "too wet" or "too dry". You don't oven need green fingers.
No. 11 DIGITAL ROULETTE
The suspense and excitement of the casino in your own home. Just press the button, the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.
No. 12 EGG TIMER
How do you like your eggs done, hard or soft. just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking nowl
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph;

You will need: One EXP 300 or EXP 350 breadboard 15 silicon diodes
6 resistors 6 Light Emitting Diodes Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components. connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a nerfect working project.

Electronics by Numbe No 11. No 12
Electrojects
prolo 10. No
For full detailed instructions and layouts of Projects 10, 11 and 12 , simply take the coupon to your nearest GSC stock ist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1, 2 and 3, or 4, 5 and 6, or 7. B and 9 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 KIt, 630 contacts, four 5 -way binding posts accepts up to six 14 -pin Dips.
PROTO-BOARD 8 KIT $\mathbf{E 9 . 2 0}$

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with iwo binding posts and sturdy base. Large capacity with Kit economy PROTO-BOARD 100 KIT E11.80

GREENWVELD
 443F Milibrook Road. Southampton, SO1 0HX

All prices include VAT@15\% - just add 40p post AMAZING! COMPUTER GAMES
PCBs FOR PEANUTS!!
A bulk purchase of PCAs from several welle
known computer games including Batle-

STARBIRD

Gives ratistc engine sounds and lisating laser Blasts - occolesting engine nozse when modula down. Press contuct to one Hasteon hear buast of lasers sthooting. PCB lested and working
comolete with soeaker and bant clio. inoeds PP3).

COMPUTER BATTLESHIPS

Probsoly one of the most populat ethecroonic
games on the market. Untoriunatery the desion games on mprectical to tent the PCB as a worting

 the baird TMS tho component value: SNo Cis etc. Size $100 \times 140 \mathrm{~mm}$. Onivenc. 50

LOGIC 5

The obrect 18 to find the number held in the

MICROVISION CARTRIDGES

These are a smald disigned to pluy im to the microvision

 convores! however, they con be used as an
oscilibeto mith 4 ditterent froa. outpuis simply br conneming obetrery and spoaker. Tested and
worting las an oscl min pin out data. PCB size worting las an oscl mith pin our

ELECTRO OIAL
 Elbectricol combination bock - 1or maximum Dial in lumed to the right to one number, teft to wocond number, then right again to a third number. Ont when this has been completad in the correct scouvence will the elecricici contacto

DEVELOPMENT PACRS

These packs of biend now top qualiry compo nents see designed to givo the constructor compieve range so the righi value is to hend ial foving over buying individuull pens.

 1000 oF sere of areater toleronce. 10010 och value 2227333947566882100120150180
27027033039047056088082010001500
 Pace $\mathrm{ET} . \mathrm{m}$.
K003 C280 or similar Polvester capactions. 10 occt of the
 Koces Mvier cappections Small size. verical

 CDosociors MRICE: 44 . 0.
 maill ohyical size axis1 of radiel 1eads 18.

 ing 220,470 And Yoonif
 Kozi cR25 rotiors or simulat minioture $1 / 4$
 K001 the values trom 277 lo 10 or ach or Kosi LEDs - Dect of 60 , Eotmprising 10 eact roc prom and rilow zmm and 5 mm , io

CAPACTTOR BARGANS

200uF 2200 F 10 V axiol 5p: 100 C2,30; 1000 11 ${ }_{4 S 50}^{400}+1$
 cismm vie 100: 1018: 100120

1N4002 DIODES
Lowest ever pricell - full spec by Motorola. Preformed leads for horiz, mnty. 10 mm Plic. 54 t 65.

TOROIOAL TRANSFORMER
18V 4 A .6 .3 V VA. 240 V 0 OA ideal for scopes.
1,000 RESISTORS, £2.50 We vermed resistors, and con mate a similar Ohfor to that madi two vears apo. At the some pricelll K523-1,000 mixed $1 / 4$ and $1 / 2 W^{5 \%}$ motg Enormous range of proferted values.

200 ELECTROLYTICS, 84
cropeed leads for PCB mntg. 1, 10000 Fs, 10.

CHEAP CHIPS

7647 Sound IC 2102A RAM 8 for MK 4027 wint reg. 8 for UATBMG + volt reg ATgMG

FILAMENT DISPLAYS

 RELAY

OPTO/REGS/OP-AMPS

ENA5220 2 digit $1 / 2$.-seg. display on PCB

 1.2e9. disolays: FND360, 367,501, all 50p

 Th311 Hexodecimol disple

COMPONENT PACKS

$K 503150$ wirewound renstors
$12 W$. with g good range of values K 50520 assorted potentiomelers, 61.10 including single ganged, rotary and slider $E 1,70$
 K 514 100 silver mica cans from sie thousand pF. Tolerances strom 16s to 10% an rotary. woggle, push, micto. etc. Only Ei?

PANELS

7521 Ponel with 18236 (2N 3442) on smbil

 LeD
 reeds. 6×25030 or $25230.6 \times 400 \mathrm{~V}$ rects $* \mathrm{R}_{50 \mathrm{p}}$ 2529 Pach of ex.computer panels contianing la seriest cs cors ot dimerent gales and com plex logic. All ICs sere marked with rype no. o
code for whict an identitication sheet is Supplied. $201 \mathrm{Cs} \mathrm{Et} 11.101 \mathrm{Ics} \mathrm{E4}$.

RELAYITRIAC PANEL

2537 components:。 $2 \times 12 \mathrm{OP}$ OPCD

 Amarng valuofl - di bought sevararely parts
woulc cost around fill- Price top the panel jusi 1200.

1W AMP PANELS

Auncompartadio ampintended tor recor

 plaver on panel $95=65 \mathrm{~mm}$ including :on ADaft from amp circuitry buiti around LMB8ON o TBAB2OM Thert is spiseed count crrcult ussing 5 transistors. 9V operationconemetion

YU METERS

VEROBLOC BREAOBOARD

REGULATED PSU PANEL
28 V \& $20 \mathrm{~mA} \cdot 2 \mathrm{~A}$ Board conians all comio nents except pots end translormet. Dnly
E7.75 Suitable tomstormer and pots 6 . Send SAE for luller detants

WTYTIIP asia pow: Ramp?

Because ILP MOSFET power amps give you ultra performance without costing big money. Performance you thought you couldn't aftord at a price you know you can.

All ILP modules are compatible with each other - you'll find many more in other ILP ads in this magazine. Choose ILP MOSFET powe amps when you need the fastest possible slew re low distortion at high frequencies, better armal shil MOSFET power amps work hermal sla with complex loads without difficulty and without crossover distontion. Connection is sim

- via 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience.

ILP MOSFET power amps are now avallable with
heatsink (no extra heatsink required), or ready for
integral heatsink (no extra heatsink required), or ready tor
mounting on to your own heatsink or chassis. Full dissipation detall on data sheel. available on request. Each carries a 5 year no quibble guarantee and comes with full connection data.

Send your order FREEPOST today on the coupon at the toot of this ad.

MOSFET Ulira-fi, with heatsinks

Modet No	Output power Walts rms	DISTORTION THD $\quad 1 \mathrm{MD}$ TyD at 1 kHz at $/ 7 \mathrm{kHz}$	Supply vollage Typ/Max	Size mm	$\left\|\begin{array}{c} \text { WI } \\ \text { gms } \end{array}\right\|$	$\begin{gathered} \text { Paice } \\ \text { inc VAT } \end{gathered}$	$\left\|\begin{array}{c} \text { Price } \\ \text { ex VAT } \end{array}\right\|$
MOS 120	60w/4.88?	$<0005 \%<0006 \%$	+ 4	$120 \times 78 \times 40$	420	¢29 76	¢25 88
MOS 200	$120 \mathrm{w} / 4.888$	<0 005\% <0 006\%	- 55 ± 60	$120 \times 78 \times 80$	850	¢38 48	¢33 4
MOS 400	240w/4ת	<0 005\% <0006\%	$\geq 55 \div 60$	$120 \times 78 \times 100$	1025	¢52 20	¢45 39

MOSFET Ulitra-Fi without heatsinks

MOS 120P	60w/4.88?	< 0005%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 40$	215	£26 82	£23 32
MOS 200P	120w/4-88!	$<0005 \%$	$<0006 \%$	$\pm 55 \pm 60$	$120 \times 26 \times 80$	420	£32 81	¢28 53
MOS 400P	240w/45?	< 0005%	< 0006%	$\pm 55 \pm 60$	$120 \times 26 \times 100$	525	£44 75	£38 91

Protection: Able to cope with complex loads, without the need for very special protection circuitry
A (fuses will sulfice)
Ultra-fi specifications $9 \mathrm{~Hz}-100 \mathrm{kHz}$ input sensilvity 500 mV mms Input impedance 100 k . Damping lactor $(8 \Omega / 100 \mathrm{~Hz})>400$
How to order Freepos
Use this coupon, or a separate sheet of paper. to order these products. or any producis from other ILP Electronics advertisements. No stamp is needed if you address to Freepost Cheques and postal orders must be crossed and payable to ll. Electronics Lid: Cash must be registered. C.O.D -add $£ 1$ to total order value Access and Barclaycard welcome All UK orders sent post free within 7 days of recerpt of order

Prease send me the following
I.P modules

Total purchase price
I encloseChequePostalOrders Int. Money Order Please debit my Access / Barclaycard No

Name
Address

Signature

Posi to ILP Electronics Lid. Freepost 2. Granam Bell House. Ropet Close Canterbury CT2 7EP. Kent. England (027) 64723 Terex 965780
Telepmone (0227) 54778 Technical (027)
 STAYAHEAD.STAY WITHUS

为
 1981 INDEX

PROJECTS

Title

Audio Millivoltmeter
Audio Signal Generator
Baby Alarm
Background Noise Simulator
Bench Amplifier
Bicycle Speedometer
Car Cassettee Power Supply
Car Rev Counter
Chuffer
Combination Lock
Continuity Tester
'Diana' Metal Dectector
Digital Speedo (2)
Direct Reading Frequency Meter
Doorbell Monitor
Doorchime
Doorphone
Drum Synthesiser
Electronic Doorbuzzer
Electronic Ignition
Electronic Organ (1)
Electronic Organ (2)
Electronic Organ (3)
Electronic Organ (4)
Envelope Generator
Fire Detector
Flashmeter
Graphic Equaliser
Guitar Fuzz Box
Guitar Tremolo
Heartbeat Monitor
High Impedance Voltmeter
Infra-Red Remote Controller (1)
Infra-Red Remote Controller (2)
Led VU Meter
Light Beam Telephone
Low Power Pilot Light
Mains Adaptor
Metronome
Medium Wave Radio
Nicad Charger
Pedalboard Organ
Photographic Timer
Power Amplifier (1)
Power Amplifier (2)
Preamplifier (1)
Preamplifier (2)
Public Address Amplifier
Reaction Tester Game
RPM Meter
Russian Roulette Game
Scratch Filter
Short Wave Receiver
Sound-into-Light Module
Steam Loco Whistle
Super Siren
Super-Regnerative VHF Receiver
Telephone Bell Repeater
Thermometer
Touch Lamp
Ticking Eggtimer
Treble Booster

Month May	Page 67
Feb	36
Oct	39
Feb	42
Jan	37
Mar	37
Dec	49
Jan	27
Jan	54
Oct	21
Jun	20
Sep	10
Jan	42
Nov	38
Apr	32
Dec	66
Oct	10
Dec	18
Jul	42
Aug	10
May	11
Jun	43
Jul	20
Aug	42
Jun	51
Nov	37
Nov	35
Dec	10
Mar	54
Apr	39
Feb	13
Feb	26
May	49
Jun	60
Nov	30
Nov	10
Sep	21
Sep	42
Nov	61
Sep	56
Jan	50
Dec	32
Mar	58
Jun	10
Jul	49
Apr	11
May	59
Mar	13
Sep	58
Aug	52
Apr	46
Nov	19
Sep	52
Jan	11
Mar	33
Apr	25
Nov	40
Oct	56
Aug	23
Oct	51
Nov	39
Jul	59

Title
 Two-Tone Train Horn
 Ultrasound Burglar Alarm
 Variable Bench Power Supply
 Voice Operated Switch
 Windscreen Washer Alarm
 Windscreen Wiper Controller
 QUICK PROJECTS

Title
Audio Mixer
Car Lights Delay
Electronic Metronome
Guitar Headphone Amp
Light/Water Alarm
Seven-Segment Display
Simple Stylus Organ
Substitution Boxes
Two-Down-One
SHORT CIRCUITS
SHOT

Title	Month	Page
Diode-Transistor Tester	Mar	46
Direct Reading Ohmmeter	Apr	45
Suppressor Tester	Feb	30

FEATURES

Titte	Month	Page
Aerials	Oct	15
Anatomy of a Space Shuttle	Apr	16
Beginnings of Real TV (The)	Mar	18
Car Electronics	Dec	14
Dictation Machines	Nov	54
Digits on Display	Nov	14
Electronic Aids for the Disabled	Jul	15
Electronics in Diagnostic Medicine	Sep	15
Electronics in Musical Instruments	May	18
How a TV Receiver Works	Dec	61
How to Use An Oscilloscope	Jun	15
Models Galore at Sandown	Aug	20
Move Towards Microcassettes	Mar	10
Oscilloscope (The)	Feb	18
Radio (1)	Jun	24
Radio (2)	Jul	26
Substi-Tutorial	May	28
Top Ten Electronic Games	Jan	19
UOSAT Report	Aug	56
UOSAT Report	Oct	59
SERIALS		
SERIM		
Title	Month	Page
Into Electronic Components		
Part 1	Aug	47
Part 2	Sep	46
Part 3	Oct	46
Part 4	Nov	48
Part 5	Dec	52

READER'S SURVEY

Once again the January issue rolls around and it's time to ask Hobby readers what they think of our efforts over the past year. Not only does this give us the chance to collect lots of stamps, but it means we can try to please more of our readership more of the time by giving you what you want - as far as possible, that is.

By filling in the questionnaire overleaf you'll be helping us to plan Hobby in the months to come. If you feel moved to take up pen and postage stamp, then remember we appreciate honest comments. Philately will get you nowhere.

HOBBY SURVEY, ARGUS SPECIALIST PUBLICATIONS LTD, 145 CHARING CROSS ROAD, LONDON WC2H OEE

Surveys do make a difference - last year about 90\% of you told us to put it in the centre pages, so we have. So that we don't have to cope with everything from staples to Sellotape and sealing wax, we've made things a little easier this year. Simply fold along the dotted lines, and tuck the small bit into the big bit!

On an arbitrary scale of $\mathbf{1 0 0}$ with Hobby scoring 50, please rate the competition against us.					
	regular	READ SOMETIMES	USEO TO	NEVER	RATING
WIRELESS WORLD					
PRACTICAL WIRELESS					
PRACTICAL ELECTRONICS					
ELEKTOR					
EVERYDAY ELECTRONICS					
Citizens' band					
CB RADIO					
CB WORLD					
ELECTRONICS AND MUSIC MAKER					
RADIO AND ELECTRONICS WORLD					
ELECTRONICS AND COMPUTING					
PRACTICAL COMPUTING					
COMPUTER PRINTOUT					
PERSONAL COMPUTER WORLD					
COMPUTING TODAY					
COMPUTER AND VIDEO GAMES					
TELEVISION					
WHICH VIDEO					
VIDEO TODAY					
WHAT VIDEO					
VIDEO REVIEW					
HI-FI ANSWERS					
WHAT HI-FI?					
PRACTICAL HI-FI					
HI-FI FOR PLEASURE					
HI-FI NEWS					
mobey					50

Thank you for your time and patience! Name
Address
12) In general again, do projects constructed from Hobby work first time?
13) Which of Hobby's special offers did you purchase in the past year?
Is there anything you'd like to see appear as an offer in Hobby?
If yes, please specify
14) Have you ever bought any goods from Hobby through mail order?
If yes, how was the service you received? Poor Bad
Any problems? (Please specity below)
ADVERTISING
15) Do you read ad
15) Do you read advertisements in Mobby?
Orequently
Occasionally
Frequently
16) Oo you find
16) Do you find the advertisements in Hobby useful when purchasing goods?
Yes No Neither
17) Have you ever purchased goods from mail order advertisements in Hobby?
18) If so:-
(a) Approx. how many times in the last year have you ordered goods from
a) mail order company?
(b) How many mail order companies have you used during that period? 19) Approx. how much have you spent on electronics in the last year?
20) Approx. how much of this amount was spent as a direct result of seeing
21) Approx. how much do you plan to spend on electronics in 1982?
AUDIO
23) If yes, how much did your present system cost?
24) Approx. how much do you plan to spend on audio equipment in 1982 ?
25) Please list your present system

A Candid Picture of Clever Dick before he got smart and opened CLEVER DICK'S BINDER BOUTIQUE

ORDER FORM

Please send me
Hobby Binders
I enclose chequeipostal order for
ε
I wish to pay by Access: Barclaycard. Please debit my account

Signed
Name
Address

Now his copies are always to hand, safe in a

Hobby Binder

Let CD solve your binding problems

He won't give them away - well, hardly ever but he will sell you one (he claims we don't pay him enough, the ungrateful wretch)

DON'T CUT THE COUPON!

Return the two centre pages, not forgetting to fill out our

1982 Reader Survey.

Clever Dick's Hobby Binders

For the man who needs protection.

Clever Dick's Hobby Binders cost $£ \mathbf{3 . 9 5}$ each for UK residents including postage, packing and VAT

For overseas orders add 30p
Send the completed coupon
together with your remittance to:
Hobby Binders
Argus Specialist Publications Ltd.
145 Charing Cross Rd, London WC2H OEE
Please allow three-four weeks for fulfillment of order.

Now for the next big date in the CB calendar... MARCH 19-21 1982 - ROYAL HORTICULTRAL HALLS LONDON

1982 National Citizens' Band Show! TRADE/PRESS PREVIEW - MANUFACTURERS - IMPORTERS - WHOLESALE - RETAIL - ACCESSORIES - PUBLICATIONS

Advance details, floor plans and booking forms are now available. There are some very special terms for 'early bird' company's who reserve their stands - quickly! This is your chance to display, demonstrate and Sell your products to the national CB audience both trade and public.

FULL DETAILS PHONE OR SEND COUPON TO: ROY PERRYMENT Citizens Band 01-437-1002

Return to: Roy Perryment - Advertisement Manager Citizens Band Magazine, 145 Charing Cross Rd, London WC2H OEE. Please send all available show information to:

M
Messrs

INTRUDER CONFUSER

The simplest security system imaginable.

advertise the fact by installing a few Confusers as window dressing. Finally, there is the deadly "wild goose bluff". It works like this: The burglar notices the Confuser, thinks it might be an infra-red system, steps carefully over the imagined beam - straight on to a carefully positioned pressure-mat!

Construction

The circuit is assembled on a piece of strip-board as shown in Figure 2 and mounted inside a small case. It is advisable to purchase a case for this project rather than use the legendary tobacco-tin; a professional appearance makes the deception more likely to succeed. Building the circuit presents no problems. The leads of the LED are bent and it is mounted to protrude through the hole in the lid. If the LED doesn't light you have probably soldered it the wrong way round! Apart from this, the circuit should work immediately the battery is connected. The simplest way of making contact to the cell is by solder-tags; these are held against the terminals by a wide rubber band while the battery itself is held by a 'sticky fixer' or 'Blu-tak'.

The device should look as if it projects infra-red rays - or perhaps some hitherto unknown type of radiation! The barrel used for the prototype was the casing of a coaxial plug and it looked

THIS OSTENTATIOUS DEVICE is intended to puzzle a would-be intruder or other unwanted visitor, and make him decide that it is safer, after all, to leave your premises untouched and try elsewhere.

All it does, actually, is to flash the LED steadily, day and night, and pretend to be something complicated, such as an infra-red beam projector. The case has a dummy barrel on the outside through which infra-red rays might be seen emerging, if you could see infra-red rays. On the other side of the room you can place a reflector, as if deflecting the beam to a receiver. The purpose of the flashing LED is to attract attention to the device. Simple, innit? Dead cunning!

Preferably, it is placed just inside a window so that it can be seen by the intruder before he tries to break in. This device is akin in spirit to those objects, seen in department stores, that look like flying saucers and could by TV cameras scanning the shoppers, but probably are not. Like the Confuser, they are an effective deterrent, yet cost much less than the real thing.

In some ways the Confuser is better than a real alarm system. For one thing it doesn't give false alarms (nobody pays the slightest attention to them anyway). On the other hand a few Confusers around the place will suggest that an alarm system really is in action, or if you have genuine system you can

Figure 1. Circuit diagram of the Intruder
Confuser.

Figure 4. The rubber band is NOT the power source!

WE WILL BEAT ANY LOWER ADVE FULL SOFTWARE BACKUP

World＇s Most Powerful BASIC Pocket Computer

FX－702P

RRP £134．95
ONLY
£119．95

Tratinition－

以妆け山以

Plus FREE MiCROL Professional Programming Pack＊（RRP 89．95）． Flattens the Sharp PC 12：1
Alpha／numeric dot matrix scrolling LCD．Variable input from 1680 steps 26 memories，to 80 seps， 226 memories，all reswined when switched off．Up to 10 programs．Subroutines： 10 levels．FOR：NEXT looping； 8 levels．Debugging and Edtting．SS built－in functions，including Regression and Correlation，all usable in proyrams．Program／Date storage on cassette via optional FA－2 adaptor $(~(19.95)$ ．Auto Power Off． $17 \times 165 \times 82 \mathrm{~mm}$ ． 176 g ．

World＇s Fastest Programmable？

FX－602P

－LCD alpha／numeric（dot matrix） scrolling display．
－Variable input from 32 program stepa with 88 memories，to 512 steps with 22 memories．
－Memory and proyram retention
when switched of
－Up to 10 pairs unconditional jumps
－Condition
－Conditional jumps and count jumps Indirect addressing．Manua jump．
－So scientific functions，all usable in programs．
－PAM（Algebraic）with 33 brackets at 11 levels．
－Program and data storage on cossette tepe using optional FA－2 remote control adaptor，$£ 19.95$ －Compatible with the FX－501P and FX．502P
$.6 \times 71 \times 141.2 \mathrm{~mm} .100 \mathrm{~g}$
ONLY $£ 74.95$
（RRP £84．95）
Pins FREE MiCROL Professional Programming Pack＊（RRP 89．95）．
FP－10 MINI PRINTER
For FX－702P，FX－602P，FX－502P，FX－501P
Avalable soon Price and delivery on application．

CASIO FX－702P SOFTWARE
 Produced by MICROL exclusively for Tempus

10% dincomat on sotware，if you purchase your hardware from us．

MECROL 702 USER SUPPORT

Profemand Proyramoin Pack．Get the best from your FX－702P with PROFESSIONAL PROGRAMMING－practical 702 programmins from the ground up phas 702 REFERENCE MANUAL－definitive guide to every 702
program command－INVALUABLE！

MICROL PROCOS for PROFESSIONAL USERS
Now you cen create powerin，reitable protrans in jusi minutes，even if you have wever programeed a compater beforel
MICROL PROCOS is an advanced inteqrated operating system that cuts pro－ gramming time by 80.90% in most applications areas，saving many hours of valuable time．PROCOS A and PROCOS B are supplied together on a ready－ to－run cassette，with a fully detailed User Manual offering catures to suik while PROCOS B provides A isy of the features of a＇Viticalc＇type modelling system PROCOS B provides many of the features of a hakek thpe modetcture easy－ －answers what in questions and analy and support FP－10 print options．Brochure on request． Available late November．MICROL．PROCOS（A＋B）Price $\mathbf{8 2 4 . 9 5}$

MKCROL 702 Basictiphe．Add the power of up to 20 new commands to your programs！Custom－made to ease advanced programmine－reatures include： String－nurnber conversions；single－shot，await，timed KEY with user－controlled return values；programmable RAN \＃generator；DATA－PACKING－up to 2000 single dipit，single name variables；INTEGRATED DISPLAY COMMANDS display data and text with extra－low memory overheads．Modular design uses minimum memory；easy to customise．Full－detail User Manual plus Program Lis Available December， 1981

MCROL 102 B：P．Price $£ 14.95$

LOW COST PROGRAMMABLE

CASIO FX－3600P 10 digit LC display． 55 scieatific functions including INTEGRALS and REGRESSIONAL ANALYSIS．Up to 38 program retained when switched off． 1.300 hour lithium battery． $9 / 32 \times 27 \times 9 t^{\prime \prime}$ Wallet．
${ }^{\circ} \mathrm{O}$－1y on reques，m time of onderiag．RRP of $702 \mathrm{P} / 602 \mathrm{P}$ versions， 29.95

World＇s Most Versatile

 Alarm Chronograph Watch
AX－210

10 alternadive displays；over 60 functions． LCD ANALOG display of time，plus：DIGITAL dis－ play of：Time（ 12 or 24 hour），Calendar；Full month calendar（this month and next month） Dual time（ 12 or 24 hour）；Alarm time；
Countown alarm timer with memory function； Professional $1 / 100$ second sopwatch with laps． or 3 selectabte melodies．Rapid forwand／bickward setting． $9.4 \times 35.4 \times 36 \mathrm{~mm}$ ．
（RRP £34．95）ONLY £29．95

CASIO＇S NEW JOGGING WATCH

J－100 PACE RUNNER
Sets the pace for 1982
Displays hours，minutes and seconds（ 12 or 2 hours system，day and date．Auto calendar； calculator；professional $1 / 100$ second stopwatch messuring net，Laps and 1 st and 2nd place times： Peeer mode．Can be used as a metronome to pice your runting or any other eveat．
Input data：Length of stride．Pecer signals，from 394 pips per minute to 63 pips per minute． Output data：Elapsed time，up to 24 hours． Distance covered，number of strides，and speed． （RRP £22．95） ONLY £19．95

100 METRE WATER RESISTANT 50M W／R

CASIO W－100
Resin case and strap $£ 19.95$

S／Steel case resin strap
£21．95

CASIO W．150B All S／Steel
$£ 24.95$

CASIO W－5 All S／Steel
$\mathcal{2 2 . 9 5}$

Time and auto celendar．Alarm，hourly chimes，countdown alarm timer with repeat memory function，professional $1 / 100$ second stopwatch．Time is always on display resardless of display mode．

LATEST PRODUCTS

| AA－ss Restyled AA－81．Analog／digital alarm cronograph． | $\mathbf{8 2 9 . 9 5}$ |
| :--- | :--- | :--- |
| LC－950 A new metric conversion calculator with a double display． | $£ 16.95$ |
| SG－15 Calculator with built in boxing game． | $\mathbf{£ 1 6 . 9 5}$ |
| FX－82 More powerful version of the FX－81 | $\mathbf{1 1 2 . 9 5}$ |

SHORT FORM CATALOGUE of latest calculators，key－ oards and watches available on request． 14 p stamp appreciated．

DELIVERY NORMALLY BY RETURN OF POST．

Orders received by December 18th should be delivered in time for Christmas．
PRICE includes VAT and P\＆P．Send your company order，cheque，PO or phone your Access or Barclaycard．

INTO ELECTRONIC COMPONENTS

Part Six, this month, investigate various types of Diodes.

WE GET so accustomed to the importance of Ohm's law that we sometimes forget that the most important electronic components are the ones which do not obey Ohm's law. Diodes are some of these components and since knowing about diodes is a good leadin to transistors and IC's, we're spending this article on the diode and its odd little ways.

A diode starts life as a chunk of germanium or silicon. Now there's nothing particularly rare or odd about these elements; germanium is found in coal and silicon in sand, and we're not really short of either. What makes the germanium and the silicon in transistors and diodes so unusual is its purity, because neither is any use in an impure state. Before modern methods of purifying these elements were invented, germanium and silicon were a bit of a mystery because the resistance of a standard sample depended on purity of the material. This isn't so for most materials, and before this point was understood, many worthy researchers got quite heated about whose measurements were more precise. We now know that these elements, silicon particularly, are almost insulators at room temperature when they are really pure, but conduct quite well, either when they are impure or when they are heated; which is why they are called semiconductors.

It's unusual enough that we can make these materials conduct better by deliberately adding impurities, but what is more unusual is that we can even control the way in which they conduct. By adding one type of impurity we can make the silicon or germanium conduct like a metal - by the movement of the negative bits of atoms called electrons. When the pure material has been treated ('doped') in this way, we call it N-type. We can also add another form of impurity, however, which will cause the semiconductor (silicon or germanium) to conduct mainly by the movement of positive particles called holes, which appear only inside the crystal of a semiconductor. A semiconductor which has been treated in this way is called P-type. By controlling the quantity of impurity, we can make a sample of a pure semiconductor into a conductor with high, medium, or low resistance according to how much impurity we have added.
The real action starts when we have both types of impurity in a single crystal of the semiconductor. If you have ever hung a small crystal of blue.copper sulphate in a jar of copper sulphate solution and watched the crystal grow, keeping its basic shape unchanged, you'll understand that it's possible to grow extra layers onto a crystal of germanium or silicon - though by cooling them in a jar filled with vapour rather than in a solution. We can grow either P-type or N-type in this way, so that it's easy to have a layer of N -type material on the surface of a P-type crystal. Where these opposite types meet is a layer called a junction, and when we make conducting contacts to the two different materials, we have a junction diode. The P-type part of the diode is called the anode, and the N -type part is called the cathode.

From Replete to Deplete

Now we can't actually see what happens when we grow one type of semiconductor layer over the top of another, but we have plenty of evidence about what happens. Where the two layers touch, positive holes meet negative electrons and combine, leaving nothing behind except a bit of heat. The junction then becomes a no-man's land where particles, which can move freely in the rest of the material, are not nearly so free. This no-man's land is called a depletion layer. 'Depletion' means draining, and calling this layer
depleted means that it has been drained of all the particles which could move and thus conduct electricity.

Figure 1. A depletion layer, with no particles capable of moving, appears between a layer of P-type and a layer of N-type semiconductor in contact on the same crystal.

On this basis, we could expect that the arrangement of a P-layer and an N-layer would not conduct an electric current - and we would be half-right. Try it out for yourself with a silicon diode - the popular 1 N 4148 or any of its equivalents will be suitable - using the circuit of Figure 2. The potential divider,R1 and R2, reduces the 9 V battery voltage to under half a volt, which is enough to push half a milliamp through 1 k and to be detected by the HE Meter. Make the potential divider circuit, with the meter connections and the battery connections as shown, and set the meter to the 5 mA range. Now connect a silicon diode between line 5A and line 10A in Figure 2. It doesn't matter which lead of the diode is in which line, as long as there is one lead in each. See any trace of current? Now try the diode connected the other way round, using the same lines. Any current this way? Just as we expected - the depletion layer stops current from flowing.

Figure 2. Testing a diode for conductivity - the 'no-mans land' of the depletion layer stops current from flowing.

But does it? Rewire the circuit, so that it looks the same as in Figure 3, and try the readings again. This time you find that the diode does pass current one way round, though not the other way round. It's a one-way street. Why? The answer, as you might suspect, is in the depletion layer, along with the laws of electric forces that we have known for centuries. Positive and negative electrical charges are like magnetic poles - two of the same type repel each other, two of the opposite type attract. When you connect the positive end of a battery to the N -type part of a diode, and the negative end of the battery to the P-type part of the diode, the battery pulls the P and N charges away from the juction. That way it becomes more depleted and definitely not a good conductor, except for a very few 'minority' carriers. Minority carriers are the few P particles in the N -type material or the few N particles inthe P -type material that will move across the junction when the voltages are arranged this way round, but because there are so few of these minority carriers, the current they produce doesn't amount to much. This type of connection is called reverse bias.

Things are quite different if we reverse the connections so that the positive end of the battery is connected to the P-type material and the negative end of the battery is connected to the N -type material. Now the action of the battery is to force the charges across the depletion layer - and the amount of force depends on the voltage. For a germanium diode, about 0.4 V is enough to get the particles crossing, but for a silicon diode more than 0.5 V is needed - and that's why we found that a silicon diode appeared to be an insulator when we used a low voltage. These voltages for conduction, incidentally, depend on the material, not on how it's prepared; but they will vary with the temperature of the material.

Figure 3. Testing for conductivity with a higher voltage - the results are very different.

The Lawless Lot

When current flows through the diode because of the normal movement of particles across the junction, we call the voltage which is applied across the diode 'forward bias' - positive on the anode, negative on the cathode. Now it's here that we find Ohm's law being completely disregarded. Just to refresh our memories Ohm's law means that if we take a resistor, pass 1 mA current through it and get a voltage of 0.6 V across it, then passing 10 mA through it will produce a voltage of 6.0 V across the resistor (ten times the current needs ten times the voltage). You can try this out on a diode, using the circuit shown in Figure 5. The circuit, which uses an 8 k 2 resistor to limit the current, will pass about 1 mA and the circuit which uses a 1 k resistor will pass about 10 mA . With the HE Meter switched to the 2.5 V range, measure the voltage across the diodes - across 5 A and Y 1 for D 1 , and across 10 B and Y 1 for D2. If Ohm's law held good, the second voltage reading would be around ten times as much as the first one. It's not, because the diode simply doesn't obey Ohm's law.

Figure 5. A circuit which shows that diodes do not obey Ohm's law.

What sort of law does it obey, then? The simplest way of looking at it is that the voltage across the diode is around 0.6 V for as long as it is conducting in the forward direction. Unless the current changes very greatly this will be about right, but you'll find that the actual voltage will vary from one diode to another and it will also vary as the temperature of the diode varies. If you're prepared to make a (possible) sacrifice, connect up a silicon diode in the circuit

Figure 4. The effect of connecting a diode to a voltage. (a) Negative to the P-type, positive to the N-type, pulls particles away from the depletion layer so that no measureable current can flow. (b) Reversing the voltage pulls particles across the depletion layeri that is, cutrent flows.
of Figure 6, with the HE Meter set to the 2.5 V range and note the voltage reading on the meter very precisely when the diode is at room temperature. Now hold the end of a hot soldering iron close to the diode, making sure that you aren't going to burn the Eurobreadboard or the insulation of the wire and watch the voltage change. The change isn't large and that's why you have to be pretty precise about the readings. Unless you keep the diode very hot for a long time this experiment should not cause any permanent damage!

Figure 6. Measuring the forward voltage across a diode as its temperature is changed.

Assuming that the voltage across a diode remains at about 0.6 V for any value of current is a simple law which is approximately true for most silicon diode circuits. To describe more precisely how a diode behaves requires a graph of the type which we call a characteristic curve. Figure 7 shows such a graph for 'typical' germanium and silicon diodes. It shows how each diode starts to conduct at a different voltage and how little the voltage changes even when the current varies quite considerably.

Figure 7. A portion of the characteristic curves of silicon and germanium diodes.

Forward, Reverse

We've assumed that the diode does not conduct at all in the reverse direction - that is, when the voltage is reversed. That's true for a lot of dio de circuits, but not quite all of them. For one thing, there's always a small current caused by the minority carriers. It's too small for any but the most sensitive instuments (at least a thousand times more sensitive than the average multimeter) to detect, but it has one very noticeable effect. If we increase the size of the reverse voltage across the diode, we accelerate these minority carriers to higher and higher speeds. At many stages in the journey across the depletion layer, these minority carriers will hit atoms of the
semiconductor material. If the minority carriers are moving really fast then each collision will knock carriers away from the atoms and these carriers will be accelerated in turn and will hit other atoms. When this effect (called avalanche effect) occurs, the depletion layer suddenly becomes a conductor because of all the particles that have been released in the collisions. The diode is said to have broken down - it is no longer an insulator for reverse current.

Now we can't illustrate this breakdown effect easily with ordinary silicon diodes like the 1 N 4148 , because the voltage that is needed to make then break down is quite high - certainly higher than we can get from a 9 V battery. We can, however, demonstrate this effect on diodes which have been manufactured so that they will break down at lower voltages and which are named Zener diodes, after Clarence Zener who was the first to research this effect.

Connect up the circuit of Figure 8, using a 5 V 6 zener diode and with the HE Meter set on the 10 V range. The resistor limits the amount of current that can flow and with the 330 R resistor it will be about 10 mA . Notice the reading on the HE Meter; it should be somewhere around 5.6 V - if it is 0.6 V then you have connected the diode (or the supply) the wrong way round. The voltage will, probably, not be precisely 5.6 V because zener diodes have tolerances like all other components, but it should be reasonably near. Note the exact value.

Figure 8. The voltage across a Zener diode. Notice that the diode is reversed.

Now try a $3 k 3$ resistor, which will cut the current through the diode to one tenth of its previous value. Does this cause any change to the voltage? No, and you will find that even values as low as 100 R do not make much difference to the voltage. The usefulness of a zener diode lies in the fact that the voltage across it can be more than 0.6 V when it is connected in the reverse direction and that the voltage remains steady even if the current is varied considerably. The only point to watch is that there is a minimum current, less than a milliamp, below which the voltage is no longer stable. Zener diodes can be manufactured with breakdown voltages which range from about 2.7 V up to 150 V or more.

We can now draw the complete characteristic graph for a diode, showing both the forward and the reverse characteristic. Because the range of voltages and currents are so very different in the two directions, the complete characteristic (Figure 9) uses two different pairs of scales, with low-voltage, high-current for the forward characteristic and high voltage, low-current for the reverse characteristic.

Don't Confuse it, Use it

Diodes are used for a large number of circuit applications but they are all connected with the one-way movement of current, or the zener effect. Diodes in rectifier circuits play a part in converting AC into DC, using circuits such as that of Figure 10. The diodes which are used as rectifiers must be able to pass large amounts of current in the forward direction because the current that flows into the reservoir capacitor, to recharge it on each cycle (or twice per cycle for full-wave rectification), will be much greater than the average amount of current. In addition, because there is very little resistance in series with each rectifier diode, the diodes must not

Figure 9. Complete characteristic for a typical silicon diode. Note that the scales for current and for voltage in the reverse direction are different from the scales used for the forward direction.

Figure 10. Rectifier circuits using diodes to convert AC into current in one direction.
break down when they are reverse biased because the combination of the large reverse voltage across the diode and the large current would cause overheating, which would quickly melt the junction. Diodes for rectification are usually silicon junction types.

Signal diodes, used for demodulation of radio signals or for clipping and level setting (Figure 11) are not required to pass large

Figure 11. Other uses for diodes. Demodulation (a) produces an audio waveform from a modulated high-frequency wave. Clipping (b) removes signal voltages above or below a selected level, and DC restoration (c) shifts the DC level of a signal.
currents. For some tasks, particularly demodulation, the voltage across the diode should be low and that means using a germanium diode. These are usually point contact diodes, a method of construction which was invented earlier than the junction diode.

Figure That Zener

The calculations that are needed for zener diodes seem to baffle a lot of readers, so here goes with an explanation. The important

facts to bear in mind are the simple ones - the voltage across the diode is constant, but only while the diode passes current in the reverse direction. Let's look at an example.
Taking the circuit of Figure 12, think of it first of all with no current being supplied from the zener diode to the load. The supply voltage is 9 V , the diode voltage is 5.6 V , so the voltage across resistor $R 1$ is the difference, $9-5.6=3.4 \mathrm{~V}$. If $R 1=330 \mathrm{R}$, then the current which flows is, by Ohm's law, about 10 mA . Ohm's law but didn't we just say that diodes don't obey Ohm's law? We did, but resistors still do, and this calculation is for the resistor. You must always have some resistance in series with a diode in a circuit, because only resistance will be able to control the current, and the control is by good old Ohm's law.

Figure 12. A zener-diode circuit.
Having got this far, we can now calculate the power which is converted to heat in the diode and in the resistance. The voltage across the diode is 5.6 V and the current is 10 mA . Multiply these quantities together and we get 56 milliwatts (milliwatts because it was milliamps), which is not enough to overheat the zener diode because most are rated to take at least 250 mW . The voltage across the resistor is less -3.4 V - so that its power dissipation is $3.4 \times 10=34 \mathrm{~mW}$, and that won't trouble even the smallest eighth watt resistors $(1 / 8 \mathrm{~W}=0.125 \mathrm{~W}$ or 125 mW$)$.

Now what happens if the battery voltage goes down to 8 V ? The voltage across the 330 R resistor goes down to 2.4 V , so that the current drops to about 7 mA , but the voltage across the zener diode remains at 5.6 V even with this smaller current flowing. That's why we use zener diodes!
Now look at another reason. Suppose we now close the switch and use the voltage across the zener diode to supply 5 mA to a circuit, the load circuit. With a battery voltage of 9 V and 10 mA flowing through the zener diode when the load circuit is not connected, what happens when the load is connected? All that happens is that the current flows in different paths. Of the total of $10 \mathrm{~mA}, 5 \mathrm{~mA}$ flows into the load and 5 mA is left flowing through the zener diode, whose voltage is still steady at 5.6 V . Even if the battery voltage dropped to 8 V and we had only 7 mA flowing through the zener diode before we connected the load circuit, 5 mA will be taken from this, leaving 2 mA flowing through the zener diode, which is enough to keep it working. Notice that the load current does not cause the current through the resistor R1 to change; it simply robs the zener diodel If, however, the load circuit demands more current than was flowing in the zener diode before the load was connected, then the zener will stop operating and the voltage across the load will drop.

It's All Glow

There's one other type of diode which is used a lot and which needs a mention - the light-emitting diode or LED. The LED, to start with, is not made from silicon or germanium but from compound materials (not elements) with exotic names such as gallium arsenide or indium antimonide. Both these materials have two quite unique properties; one is that they are transparent - light can pass through them - and the other is that when an electron meets a hole in a junction made from one of these materials, the two
annihilate each other in a flash of light. The light happens to be visible light - a wavelength that we can detect with our eyes.

If we make diodes using these substances, therefore, and use a transparent case around the junction, we can see the junctions glow when current is passed in the forward direction. The usual type of LED has a junction which glows red but other colours can be obtained by using different semiconductor materials.

Electrically, their behaviour follows familiar paths. Unlike silicon or germanium diodes, the forward voltage needs to be quite high (around 2V) so that LED's aren't much use on equipment which is intended to be operated from a 1.5 V cell. Like all other diodes, however, the votage does not change much as the current is increased, so that a resistor must be connected in series with an LED, as in Figure 13 to ensure that the current is limited to an amount that is safe.

Figure 13. An LED connected with a current-limiting resistor in series.

Figure 14. LED test circuit - the voltage is too low to damage the LED if it is connected the wrong way round.

Another important point, which is not always well understood, is that the LED has an unusually low reverse breakdown voltage, only $3-4 \mathrm{~V}$, and is easily damaged by quite small reverse voltages. Get an LED the wrong way round in a circuit, switch on, and nothing happens. Turn the LED the right way round and you'll quite often find that you get the same result - nothing! Having burned out the junction when it was connected the wrong way, you can't expect it to work the next time! The only solution is always to be absolutely certain that you have connected LEDs the right way, or to use much higher than normal series resistors (10k or more) until you are sure that the LEDs are correctly connected. The HE Meter is NOT a useful guide because the low ohms scale uses a 1.5 V cell, too little voltage to pass current through the LED, while the high-resistance scale uses a 9 V battery which can blow it out! So make yourself a circuit like the one in Figure 14. This limits the voltage across the LED and lets you test which way round is correct, without risk. Try it on your Eurobreadboard and then transfer it to a more permanent form.

Next month - we take a look inside the transistor, with lots of practical tips.

HE

Editors may come and go, but Clever Dick is here to stay The Show Must Go On!

HEADING-UP the International Section this month is a letter from West Germany.

Dear Richard-With-The-Brains, As I write, I am in desperate need for information on where / can get the VN67AF VMOS power transistor used in the Super Siren (April 1981) and the two 40 kHz ultrasonic transducers for the Ultrasonic Burglar Alarm (July 1981).

My components shop doesn't stock the transducers, and they say it could be years before they get hold of a VN67AF!
By the way, is my subscription
extension and moving notice confirmed?
Yours in dire need,
Victor Chua,
Kronberg/TS,
West Germany.
PS I'm 13, and if you can't give me the information, the least you can do is send me a binder.

Actually, I hadn't noticed you'd moved, myself, but l've passed your letter to our mighty Subscription Department (allseeing, all-knowing), just in case they haven't noticed either, just this once. I suggest you try one of the many mailorder companies who advertise in Hobby Electronics - they should be able to help you with the components you need. So now you've got the information - too bad about the binder And that's it for the International Section.

The next one's easy

Dear CD,

Help! I am a beginner in electronics and want to make my own PCBs. Problem: I don't know how.
I would appreciate any information you could give me about using the etch pen and the transfers. Could you also give me some foil patterns for some beginners projects! Any information would be of great help. With your brains (creep, creep) I know you can.
Yours hopefully,
N. J. Harris,

Billericay, Essex.
PS The mag's great - keep up the good work
PPS What a bind it would be to go to a shop to get the information.

Lastly, disgusting puns like that one deserve to be ignored, so l'll not mention it again . . I'm sorry I mentioned it in the first place. As to making PCBs, WATCH THESE PAGES (All will be revealed).

We're always open to suggestions (as long as they're nice ones) here at the luxurious offices of ASP, so the next letter has been passed to our Brilliant Design Team.

Dear CD,
I have my own darkroom for processing black-and-white film, but seem to waste tons (slight exaggeration) of expensive photographic paper as exposure test strips.

I would, therefore, like to know can the Flashmeter (Project Supplement, November 1981/ be used under the enlarger to give an exposure-time reading and if so, will any modifications lother than meter calibration) be necessary?
Keith Challenger,
Sheffield
The Flashmeter is designed to register very, very brief flashes of light, so the circuit would indeed need to be modified heavily. We're looking into this and, all being well, a suitable project will appear. Meanwhile, are there any photo-fans out there who can help Mr. Challenger with suggestions (nice ones, remember) for saving paper?

Now, just for a change, an Errata that wasn't.

Dear Dick,

Could you please tell me if there were any Errata for the System 5080A Power Amplifier (March 1980) and also if
Hobbyprints are available?
G. Finney,

Pontypool, Gwent.
The only note I can find concerning the 5080A is that the transformers on special offer were sold out, so you'll have to find and alternative, right? Hobby prints are no longer generally available, but the PCBs for the 5080A are - see the HE PCB Service page in this or any recent issue.

Next, one from the Heavy-Handed Hints Dept.

Dear Clever Dick

l enjoy reading HE and have all the issues from June '79 and I am looking for a place to keep them - something like a binder (hint, hint).

I have built many of your projects on Verobloc, but only one on Veroboard the 2 W Amplifier from June ' 80 . I have had good performance from the amp, until now. The problem is that when the input goes high, the output starts buzzing. Could the problem be the LM380N?

What about producing a CB Transceiver? Would it be possible to modify the Super Regenerative VHF Receiver (Project Supplemenmt,
November issue) to pick-up 27 MHz signals?
Steven Johnson,
Bishop Auckland, Co. Durham.
Questions, questions. Doesn't anyone write just to say "hello", any more? Well, to answer those questions (but ignoring all requests for
unmentionables) . . . In reverse order, yes, it would certainly be possible to modify the VHF Receiver as you suggest, but since it would receive only 27 MHz AM signals - which are illegal we couldn't possibly recommend it. A CB Transceiver project is also possible; | believe that a series on radio theory is being planned, and may even appear in these pages (anything can happenll and a CB project may be designed to go with the series.

Can't really help you with the audio problem, though, except to point out that the amplifier is intended to take an audio input, not logic-level (high/low) inputs.

This letter cannot go unanswered. Read on . . .

Dear Macho, Handsome Intelligent
Richard, Isee what I mean]
Can you help a maiden in distress? I won't bore you with the whys and wherefores, but I desperately need - a circuit! I've searched in vain but nowhere can I find one that links the amount of light falling onto a surface with the movement of a servo-
mechanism (such as those used in radio control models), i.e. Darkness = No Movement, Brilliant Sunlight $=$ Full Movement. The Black Baron Imy Lecturer) approaches as the final project hand-in date draws nigh . . . will the HE knight in shining armour be in time?!! Yours Poutingly Desperate,
Lucy Morris.
Portsmouth, Hants.
Who could resist? WHO would resist. Not I, said Clever Dick, so despite the fact that I never (well, hardly ever) answer requests for circuits, I'll make (yet another) exception and despatch a circuit or two. They're in the post.

Here's someone with very strange tastes.
Dear CD.
Maybe everyone licks your boots and grovels for a binder because, like me, they are unable to find an advertisement for them in the magazine - not that I'd say 'NO' to a free one... What about a medium power Guitar Amp project for those of us who normally play acoustic guitar, but sometimes need a boost? All the best to a great magazine.
Andrew Chapman,
Telford, Shrops.
Now isn't that nice. My boots are available any time - and thanks for the nice words. As a reward, I can tell you that a guitar amp project is being planned (hang on and hope).

And now, by popular request...
Dear CD.
I, for one, do not intend to grovel to get. a free binder! I actually want to buy, yes, BUY one. I have written to the suppliers and have been informed

that they are no longer in a position to supply them. Can you advise?
Kevin J. McLaren,
Glasgow.
PS perhaps I was a little hasty!
Too late, too late by half. You'll just have to consult the Binder advertisement which, the Editor has assurred me (for all that's worth), appears in this very issue.

Apparently, quite a few people have had problems with the printed circuit boards for the projects in last month's issue. They can't find them.
Dear CD.
How about printing the PCB patterns for the Guitar Graphic Equaliser, the Drum Synth, and the Doorchime? You seem to have forgotten them (tut, tut)!
Peter Smith,
Westbury Park, Bristol.
PS I could do with one of those things to keep my copies of HE in. What do you call them? Bind...something?

Tut, tut indeed. Anymore of this baby talk and l'll send you an all day sucker. The projects you've mentioned were supplied to us by outside contributors who have retained the copyright on the PCB patterns. You'll have to write directly to the companies concerned that is, if you can remember what to ask for!

Now, a true rarity - a genuine, polite letter.

Dear Clever Dick,

1. What do " K " and " Z " mean on capacitors (mostly ceramics)?
2. Where can I get hold of the first few issues of HE? Can any readers help? How much would they be?
3. Why do readers crawl to you for a binder? Why don't they just ask nicely (like me). Please.
R. Vicent

Stevenage Herts

1. These are part of a manufacturer's code, and do not really concern us, usually. However, a spokesman for Mullard Limited told me that, at Mullard,

' K ' could stand for one of three things: 'kilo', ie 1000, to denote the number of picofarads (10 K or $10 \mathrm{k}=10,000 \mathrm{pf}$, for example); or, 10% tolerance; or, the data code for 1978. Take your choice - it doesn't really matter. As for ' Z ', he thought this could be the first part of ' 25 U ', a code used to indicate highpermittivity general-purpose coupling capacitors.
2. The first few issues are definitely not available, here. Even some of mine have been pinched!
3. Sorry, even courtesy won't work.

Andrew Mawson very nearly wins this month's binder. I'm surprised he can even remember December 1978 . .

Dear CD, Sir,
Why have you decided to build another Light Beam Telephone project? I can see no major differences between the
Photon Phone (December 1978) and the Sound Torch (November 1981) except that the Sound Torch has a separate transmitter and receiver whereas the Photon Phone had one item to do the whole job. Why? Did the Photon Phone not work?
Andrew Mawson.
Bingley, West Yorks.
PS I think HE's great, brilliant, marvellous (grovel, grovel).
PPS CanIhaveabinderasl'vegoteveryissue ofHEfromDecember78toNovember81and nowheretoputthem?
PPPS I'm only 13, please, please, please.
PPPPS Where's Breaker One-Four gone?

Weren't me Guv, honest! I expect somebody thought it was a good project and worth reviving - not everyone has every issue from December 78 to November 81, you know. Breaker One Four is temporarily off the air (and that's my bad pun of the month) but hopes to return soon. Finally, just to show I'm not completely heartless, I will relent, give up and submit.
Andrew Mawson, THIS IS YOUR BINDER.
$\tau_{\text {cam }} u_{\mu}$ With TM Electronics
for top－quality components，innovative kits FAST SERVICE AND LOW，LOW PRICES

disco lighting kits

YOU MUST HAVE BETIER THINAS TO 00

DVM／THERMOMETER KIT
Based on the ICL7126（a low power verstion of the ICL7106 chipl and a 3% digit kequid crystal display．this tut will torm the basis of a digital muthimeter fonly a fon
 digitel thermometer $1-50^{\circ} \mathrm{C}$ to $* 150^{\circ} \mathrm{C}$ ，reading to $0.1^{\circ} \mathrm{C}$ ．The basic kit has as
sensitivin of 200 mV for a full scale reading．aviomatic polarity indication and any ulira how power requirement－\quad giving a 2 yeat tho
PP3 when used 8 hours a day． 7 days o week．

THE KEY TO YOUR SECURITY

0 O－10 （3）（ㄷ）©

 ©（1）（ $)$HE KEY TO YOUR SECUNTTY IS IN OUR LOCK 乌几『
If you have problems，with people tomporing with your car，
electical and elactronic equipment．or if you are iust in a electical and elactronic equipment．Or if vou are iust in a
habit of forgerting your door keys，we have fuer the tit for

Our ELECTRONIC LOCK KIT includes a 10 －way kevboard and a special IC which provides a 750 mA output to drive a solanoid or relay（not supplied）when tour keys are depressed in the correct sequence．This gives over 5.000 possible combinations！The sequence is pre－wired and may be
easily changed by means of a small plug and socket A＂SAVE＂function is also available enabling easily changed by means of amalloplug and socket A SAVE function is also available enabling open code need not be disclosed）．Size： $7 \times 6 \times 3 \mathrm{cms}$ Power consumption is 40 uA at 5 V ． 1015 V ． d．e． At only $\mathbb{E} 10.50$＋VA．T．，if will make a smaller hole in yout pocket than a bunch of keysi tock I．C．：

LS7220 with SAVE nemory
LS7225 with laiched and
S7225 with latched and momentary outputs and a tamper output

\section*{| Close |
| :--- |
| tomen \square |}

 of hghing．TDR300K Dimirer Kh K 14.30 ．
and Mk Transmitter Kit 4.20
 rotary controled Dimmer Kit at only $\mathbf{E 3 . 5 0}$
（potus V．A．T．to above prices）． All hits contain all neecesssary components
and full assembly instuctions．You only need a soldering iton．cutters and a few
hours．

DO YOU EVER NEED A FEW MORE HAND
The new and improved MINIBENCH＊

System will add a new dimension to your hobby

PRICE LIST

Minibench Standard model
Delux model with powder coated finish Delux model with rotating tu free－standing mount（as illustratable base on
Flexi－Arm $=12$
－ 18 ＂
Lens Attachment－ 50 mm lens
－ 100 mm lens
Clip Attachment－Large
Light Fitting with $18^{\prime \prime}$ F／Arm
Transformer Unit mains to 12V 1A
Complete with switch
Foot Pedal with cable Assy for independent jow operation
Quantity discounts avallable for orders of 10 Minibenches more：please enquire．
We do endeavour to keep prices stable and absarb increases by outside suppliers where we can but since this is not possible in every case，the prices quoted are subject to PLEASE ADORESS ALL OROERS TO：－

＊Just a squeaze to clamp or release circuit board
＊Adjustable minimum jaw aperture
＊Jaws flip over for work on either side of circuit board
＊Rubber lined jaws for circuit board protection \＆maximum grip
＊Single wing nut controls jaw attitude and friction setting
＊Crocodile clips mounted on flexi－arms hold components exactly where needed
＊Crocodite clip can be used as a heat shunt
＊Lens similarly mounted is ideal for close work ＊and spotring those solder bridges
＊Flexiarms keep station with circuit board ＊Stove enamelled or powder coated finish ＊Buile to last a lifetimel

NOW WITH
＊WHISPER SMOOTH
＊EXTENDED RANGE
OF ATTACHMENTS

C. H. J. SUPPLIES

DIODES

A SMALL SELECTION FROM OUR LARGE RANGE

AA120 .7p BA102 18p BA154 ...10p BA156...12p BY126 .9p BY127 ...10p BY133. 18 p BY176 . 65p BY176 spec. but unmarked \& larger ...30p BY206...26p IN4148 ..3p 1544. SIL RECTIFIERS
200 mA 50 V IS \% \% . . 5 p 100 IS $921 \ldots 6 \mathrm{p} 200 \mathrm{~V}$ IS923 . Bp IAMP 50 V IN $4001 \ldots 4 \mathrm{p} 100 \mathrm{~V}$ IN4002 4 p 200 V IN 4003 . 4 p 400 V IN $4004 \ldots .5 \mathrm{P} 600 \mathrm{~V}$ IN $4005 \ldots 5 \mathrm{~F} 800 \mathrm{~V}$ IN $4006 \ldots . .6 \mathrm{p}$ NN4006... 8% p $3 A M P 200 \mathrm{~V}$ iN5402 ...12p (bargain pack of 25 iN 4002 unmarked 8 PREFORMED $\ldots 1 / \mathrm{A}: \times$ MM $\ldots 50 \mathrm{pl}$
TRANSISTORS
AC128 $\quad 16 \mathrm{p}$ AC153K 35 p AC176K $\ldots 35$ p AD149 ...60p AD161 ...35p AD162 $\ldots 35 \mathrm{p}$

 2 2ncoss .. 40 p Full range of 74 Series, $1,366 \mathrm{amp}$ Bridge Rectifiers. Memories, Op Amps, Trmers, Etc.
TANT BEADS 1 OFF 10 OFF
$\ldots \quad 1 / 35 \quad 10 p(9 p) \quad 20 / 35 \ldots 10 p(8 p) \quad 33 / 35 \ldots 10 p(7 p) .47 \ldots / 35 \ldots 10 p(8 p) .68 / 35 \ldots 10 p(8 p)$ $1 / 35 \ldots 10 p(8 p) 22 / 35 \ldots 12 p(10 p) 3.3 / 16 \ldots 12 p(10 p) 4.7 / 17 \ldots 12 p(10 p) 4.7 / 35 \ldots 15 p(14 p)$ $68 / 25 \ldots 14 p(12 p) 6.8 / 35 \ldots 15 p(14 p) 10 / 16 \ldots 16 p(15 p) 12 / 6.3 \ldots 16 p(14 p)$ 22/10..20p (17pp)
 (60p) ONE OF EACH TANT E3.50

PEP add 50 p Orders over $\mathrm{E6} .00$ Post F (eee. Add VAT at 15\%. Cat. Free on request (MAIL ORDER ONLYI 4 STATION ROAD, CUFFLEY, HERTS Tel: 01-440 8959

If you find an ad unacceptable, don't turn the page: turn to us.
 The Advertising Standards Authority.

A.S.A. Ltd., Brook House, Torrington Place, London WCIE 7HN

MXXERSHDERS VUMAIER DRIVERS ATDMORE ALNEWFROMILP

Just some of the 28 rew amazingly compact modules from ILPElectronics, Britain's leader in electronics modules - you'll find more new products in the amps and pre-amps advertisements

All ILP modules are compatible with each other - you can combine them to create almost any audio system. Together they form the most excring and ver satile modular assembly system for constructors of all ages and experience.

Every item from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon below loday!

$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Model } \\ \text { No } \end{array} \\ \hline \end{array}$	Module	What inoes	Current required	$\begin{array}{\|l\|l\|} \hline \text { Pice } \\ \text { inc VAI } \end{array}$	$\begin{array}{\|c\|} \hline \text { Price } \\ \text { ex VAT } \\ \hline \end{array}$
HY 7	Mono maer	Mixes erght signals into one	10 mA	£592	£5.15
HY 8	Stereo muxer	Two channels each maxing trve signals into one	10 mA	¢7 19	£6.25
HY 11	Mono muxer	Muxes five signals into one - with base/treble controls	10 mA	£ 11	£7.50
HY 68	Sterea mixer	Two channels, each muxing ten signals into one	20 mA	$¢ 914$	¢7.95
HY 74	Slerec moxer	Two channels. each muxing five signals into one - with treble and bass controls	20 mA	£13 17	£11.45

AND OTHER EXCITING NEW MODULES

$\begin{gathered} \text { Model } \\ \text { No } \end{gathered}$	Module	What If does	Current requited	$\begin{gathered} \text { Price } \\ \text { inc VAT } \end{gathered}$	$\begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}$
HY 13	Mono Vu meler	Programmable gan/LED overioad driver:	10 m	¢6 84	¢5
HY 67°	Stereo nead phone driver	Will drve sterea neadphones in the 4 ohm2 K ohm range.	80 mA	£14 20	£12 35
HY 72	vace operated stereo tader	Provides depin/delay eltects	20 mA	£15	£13.10
HY 73	Gutar pre amp	Handles two gutars (bass and lead) and mic with separate volume/bass/trebte and mix	20 mA	§1409	£12
HY 76	Stereo swich	Provides two channeis. each switching one of tour signals info one	20 mA	To be announced	
71	Stereo VU meter drver	Programmable gam/LED overlazo driver	20 mA	£10 64	$¢ 925$

For easy mounting we recommend:
6 mounting board lor modules HY6 - HY13 $£ 090$ nnc. VAT $(0.78$ ex. VAT.)
66 mouning board lor modules HY66. HY77 £1 12 inc. VAT (0 99 ex. VAT.)
minumum to +30 V maximum needing drood and include clip on eoge connectors. All operate from $\$ 5$ PSU 30 power supply unit Modules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$ HY 66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$
FP 480 BRIDGING UNIT FOR DOUBLJNG POWER
Designed spectally by ILP for use with any two power amplifiers of the same lype to double the power output obtained and will function with any ILP power supply. In totally sealed case, size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector. It thus becomes possible to obtain 480 watts rms (single channei) into 8Ω. Contributory distortion less than 0.005%. Price: $£ 5.51$ inc. VAT (Ex. VAT £4.79.)
How to order Freepost
Use this coupon, or a separate sheet of paper, 10 order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid : cash must be registered. C.0.0. - add $£ 1$ to total order value. Access and Barclaycard welcome All UK orders sent post free within 7 days of receipt of order

Please send me the following
ILP modules
Total purchase price
Ienclose Cheque \square Postal Orders \square Int MoneyOrder \square
Please debut my Access / Barclaycard No. ___
Name
Address

Signature
Post to MP Elecrionics Lld. Freedost 2. Graham Bell House Aoper Close. Canterbury CI2 7 EP Keni England

STAYAHEAD.STAY WITHUS

Don't miss the fabulous February issue - out January 8th

COMING SOON

Making Tracks
To These Pages!
Everything you need to know to make your own printed circuit boards.

TV Aerial Amplifier
Designed for campers and caravaners, this little booster will give loud and clear TV (and FM radio) reception from almost any site. It's also useful for fringe-area reception.
Digital Desk Thermometer
A touch of class, this . Impress your friends, amaze your colleagues!
Noiseless Fuzz Box

Making Tracks
Everything you need to know to make your own printed
circuit boards.
TV Aerial Amplifier
Designed for campers and caravaners, this little booster
will give loud and clear TV land FM radio) reception
Irom almost any site.
A touch of class, this . Impress your als amaze your colleagues!
Noiseless Fuzz Box
No buzz, just fuzz.

MASMFR THFGHRONICS NOW! The PRACHTCAT way!

This new style course will enable
You will do the following
anyone to have a real understanding of electronics by a modern, pracical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in elecrronics or as a self employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace A tutor is available to whom you can write personally ut any time, for advice or help during your work A Certificate is given at the end work A Certifica

NewJob?NewCareer?NewHobby?Getinto Electronics Now!

FAMOUS NAMES

 Vladimir Zworykin is - or should be - famous for his

 Vladimir Zworykin is - or should be - famous for his achievements in the field of Opto-Electronics

 achievements in the field of Opto-Electronics}

WHO? Never heard of him? Well, it's certainly true that Zworykin, a pioneer of electronic television, isn't as well known on this side of the Atlantic as he is on the other, but that's not really an excuse. Zworykin was born in 1889 in Imperial Russia and during the first part of World War One served with distinction in the Radio Corps of the Imperial Russian Army. Then came the Revolution, the army was disbanded in confusion and, like many others, Zworykin escaped while escape was still possible. Emigrating to the USA in 1919, he joined the Westinghouse Electric Corporation in Pittsburg, and launched his brilliant research career. In 1923, he patented the device which provided the first genuine electronic television service. It was the Iconoscope - the first TV camera tube.

The Iconoscope has long been out of date and only survives in a few museums, but it was the mainstay of TV broadcasting from 1936 until well after the second World War. Briefly, the idea was that an image of a scene was projected on to a photosensitive sheet of material inside an evacuated tube. The sheet (or target) wasn't continuous but consisted of tiny dots of conducting material surrounded by insulation. so that each dot became electrically charged by the action of the light falling on it. A beam of electrons was then scanned across the sheet and the differences in charge at various places on the conducting target caused the electron beam to be modulated at the final anode, after the beam had been reflected from the target.

Problems

The principle was fairly simple, though not well understood at the time and depended on being able to construct a target with just the right amount of leakage between conducting sections. This was not possible then, though if a bit more development work had been done, television wouldn't have been sidetracked into mechanical methods left over from the 1880's.

Zworykin, totally committed to all-electronic television, patented a receiver in 1924 and continued development work at Westinghouse. A patent for a colour TV system followed in 1928 and, in 1929, RCA were so impressed by Zworykin's improved working model of a receiver that they offered him the plum job of Director of Research at their Princeton research centre (now at Camden).

The years that followed were extremely exciting for the future of TV. Demonstrations of mechanical systems had caused considerable sums of money to flow into a method which would prove to be a dead end. This had the twin effects of making fewer resources available for research into electronic TV and at the same time convincing many people that television simply wasn't worth having. At RCA, however, Zworykin assembled a team whose objective was to ensure that they came up with the first all-electric TV Meanwhile in Hayes, Middlesex, the EMI Company (then HMV) was working on precisely the same project, with the advantage of having two outstanding research engineers - McGee and Blumlein. McGee (now Professor McGee) was in charge of camera tube development, Blumlein was in charge of circuit development.

Everyone a Winner

Who won? We all did. One of the remarkable things about that period was the way in which everything went in synchronism (almost) at the two places. If we take the end of the race as being the first public TV broadcast then the EMI team, with the close cooperation of the BBC, just made it. No-one on the other side of the pond is ever going to admit that, though!

As in so many other cases, however, RCA was able to produce and sell TV receivers on a scale which greatly outstripped the UK (there were about 700 receivers in London in 1939) and it was Zworykin's team that undoubtedly made the true mass production of TV receivers a reality

By the outbreak of war between Japan and the USA, Zworykin had taken out another significant patent. It was for a device which he called an 'electric eye', but which we now recognise as an elec-
tron microscope. The development of the electron microscope did not progress much further until after the War, but the basic principles remain those laid out in Zworykin's patent. Our understanding of materials, particularly the nature of semiconductors, owes much to this remarkable instrument.

The onset of war inevitably caused research laboratories to turn away from television. Zworykin's team worked extensively on infra-red imaging tubes, the 'sniperscopes' which can sometimes still be bought as 'war surplus'. The basic principle, illustrated in Figure 1, was remarkably simple. A photocathode was made which was sensitive to infra-red (heat) radiation so that electrons were emitted from any part of the photocathode struck by infrared. These electrons could then be accelerated by a high voltage and used to form a visible image on a phosphor screen. Using a lens to focus the infra-red rays onto the photocathode, the tube produced a visible image from the invisible infra-red.

Early sniperscopes were relatively insensitive but were quite capable of detecting hot engines or guns, allowing artillery to be aimed at night. Towards the end of the war more sensitive versions were developed, capable of detecting human bodies against a colder background. The most recent devices allow us to see with almost the same resolution and contrast range as we would expect from television!

1. Principle of the 'sniperscope'. A photocathode emits electrons when struck by infra-red (heat) rays. The electrons are accelerated to a phosphor screen to produce a visible image, allowing the user to literally "see in the dark".

Images Intensified

It was Zworykin's work which made this and so many other modern light detectors possible. Secondary emission multiplication, a method of noiseless amplification and another first for Zworykin, makes use of an effect which takes place when a fast moving electron hits the surface of an insulator or conductor. When both the speed of the electrons and the voltage between the source of the electrons and the surface are correctly adjusted, each electron which hits a surface can knock off several others. This is where the 'multiplier' comes from; each time this happens, the number of electrons in the beam is being multiplied. Several stages of multiplication can change of current from a fraction of a microamp to one of several milliamps and without any noise signal being introduced. This principle was to be the key to the more sensitive camera tube, the image orthicon, which superceded the iconoscope and its offspring, the super-iconoscope. Scientific investigation was also to benefit from photomultiplier light detectors, which also use the secondary emission effect.

Zworykin's lifetime of research was not overlooked by his colleagues or by RCA He was appointed an Honorary Vice President of the company in 1950 and became Director of the Rockefeller Medical Electronics Institute (now Rockefeller University) in New York City. As the final seal of esteem, in 1967 the National Academy of Sciences awarded him their highest honour, the National Medal of Science.

HE

VOLUME EXPANDER

Puts the Crash back into your Crescendos!

ONE OF THE PROBLEMS of cassette recorders, especially those with no system for noise reduction, is that it is not uncommon for a big crescendo not to happen! Instead of an expected rise in volume to a powerful peak, it tends to flatten out and may even become rather muffled and distorted! This is because the dynamic range of the programme material, on tape, is greater than the dynamic range of the system. Dynamic range is simply the difference between the lowest and highest signal levels and the dynamic range of a recording system is the difference between the lowest signal level that can be recorded, without getting lost in noise, and the highest level that can be recorded without serious distortion resulting. If the former is greater than the latter then you obviously have a problem!

On the face of it, the choice is between losing the lowest signal levels in noise or allowing the highest signal levels to overmodulate the tape and cause severe distortion. In practice, it is common for compression to be used lusually in the form of an automatic recording level system or limiter) and this reduces the recording level, during peaks in the dynamic level, so that overmodulation and distortion are avoided while allowing sufficient average gain to keep low-level passages above the 'noise floor'. Unfortunately, this also results in crescendos that are only slightly louder, certainly less loud than they should be and the reproduced music is consequently lacking in impact, to say the least.

Name Of The Gain

It is not really possible to process a compressed signal to precisely restore the dynamic levels to their original condition unless the compression law used during the recording is known. This is not likely to be the case. However, it is possible to use a
compromise system which leaves the lower dynamic levels unchanged but boosts the higher levels, so that the lost dynamic range is, after a fashion. restored to something like the original. Of course, the expansion will not exactly match the compression used in the recording stage, and the usefulness for otherwise) of volume expansion depends largely on the programme material. It might give a dramatic improvement, or it may give an artificial sound to the music. Generally, though, if it's used with programme material that seems to be rather lacking in dynamic range and impact, a very worthwhile improvement can normally be expected.

This simple expander is, therefore, primarily intended for use between an inexpensive cassette recorder and an amplifier. It was designed as a mono expander but, as the two channels are processed separately in a stereo expander, it is merely necessary to use two circuits in order to produce a stereo version.

Construction

There is nothing out of the ordinary in the construction. A small piece of $0.1^{\prime \prime}$ Veroboard is used for all components except the controls, etc. Drill the two mounting holes (for 6BA or M3 fixings) and make the breaks in the copper strips before soldering on the components. The layout is quite dense and bridges of solder between copper strips are easily produced, so inspect the finished board for bridges and, if possible, double check using a continuity tester.

Use a metal case for this project as it will screen the board and wiring from mains hum etc. The input and output sockets are 3.5 mm jacks, but use another type of connector if this will make it easier to wire the Expander into your system. A PP3-size battery is sufficient to power the unit - the current consumption of 2.5 mA does not justify the use of a larger size.

Parts List

RESISTORS (ALL $1 / 4$ WATT 5\%)

R1	100 k
R2	120 k
R3	3 k 3
R4	2 k 7
R5	1 k 5
R6	330 k
R7	270 k
R8	33 k
R9	10 k
R10	1 M 8
R11	4 k 7

POTENTIOMETERS

VR1 2M2 linear carbon
VR2 2 M 2 linear carbon

CAPICITORS

C1 1uF tantalum
C2 10uF tantalum
C3 0.22 uF tantalum
C4 10uF tantalum
C5 0.47uF tantalum
C6 0.1uF polyester (C280)
C7 100uF 10 V electrolytic
SEMICONDUCTORS
Q1,3 BC109C
Q2 BF244B
D1,2 1N4148
MISCELLANY
SK1, $2 \times 3.5 \mathrm{~mm}$ jacks
SW1 SPST miniature toggle switch
Stripboard panel
PP3 battery and connector
Two control knobs
Wire, solder, etc.

Setting up

The Expander will function with input levels of between about 100 mV rms and 3 volts rms and it should be possible to use it successfully with virtually any

-
Figure 1. Complete circuit diagram of the Expander. The battery is a PP3.

Figure 2. The layout inside the case - a smaller one could be used.
cassette recorder and amplifier (use screened leads to connect it into the system). With threshold control VR1 backed right off (fully anticlockwise), the volume can be altered to some extent by adjusting the Level control, VR2, but only over a fairly narrow range. Best results will probably be obtained with VR2 backed off just far enough to reduce the volume to its minimum level, however, it is worth experimenting a little here.

Also, if VR1 is not advanced far enough, expansion will not be obtained while (if it is advanced too far) the effect of the unit will be very obvious and probably annoying. Again, it is a matter of experimenting to find the setting that gives best results.

Buylines

The BF244B f.e.t. is available from Technomatic Ltd. The case is a Maplin type TP2, but any similar case should do just as well. The other parts are all easily obtained and the approximate cost of this project should be around $£ 15$, excluding the case. -

How It Works

The input signal is taken to a buffer stage, then to a voltage controlled attenuator (VCA), which reduces the signal level slightly. Some of the output of the buffer is amplified and fed to a rectifier and smoothing circuit which sets the attack and decay times and provides the control voltage for the VCA.

With little input signal, the VCA provides a set amount of attenuation. Higher signal levels are less heavily attenuated so that they are effectively boosted, providing an increase in dynamic range. The attack and decay times are quite short so that the circuit responds almost instantly to changes in level.

The Circuit

The heart of the circuit is a JFET used as a Voltage Control Attenuator. One arm of the attenuator is formed by R4. the other by the resistance of R5 and the drain-top-source resistance of Q_{2} in series. If Q 2 is switched off, it has an extremely high drain-to-source resistance, typically a thousand
megohms or more. Assuming the output of the attenuator feeds a medium to high impedance load, it gives very little signal loss. If Q2 is switched on, however, it exhibits a drain-to-source resistance of only a few hundred ohms, at most, and this gives losses of 9 to 10 dB .

VR2 is adjusted so that the reverse bias on the gate of Q 2 is not sufficient
to switch it off. so that the loss through the VCA is 9 to 10 dB . Q1 is used in an emitter follower buffer stage to ensure that higher losses do not occur if the unit is fed from a low impedance sourse (which is quite likely to be the case).

Some of the buffered input signal is fed via C3. VR1, and R8 to a common emitter amplifier based on Q3. The output of this is coupled by C6 and R9 to a rectifier circuit, D1, 2, which gives a negative DC output signal, smoothed by C5. This negative bias is applied to the gate of Q 2 but will be too small to have any effect at low dynamic levels. VR1 is adjusted so that, at higher dynamic levels, the bias starts to tuin off O2, reaching "pinch off" at or just below peak volume. Thus the attenuation of the unit is reduced as the dynamic level is increased; that is, the volume is expanded. The values of R11, R9, and C6 give the circuit the necessary fast attack time, and the values of C5 and R6 give a somewhat slower but still quite rapid decay time. It is essential that the response is fast enough to follow the rise and fall of the signal level, or the action of the circuit would become clearly audible. On the other hand, there must be a small delay. provided by the slower decay time, or the circuit would seriously distort the processed signal.

Ltesold's new 'L' Series soldering iron - now at a bargain price Outatanding performance. Lughtwolght. Easy to maintain Elements are onoloeed in Stainless Steel shafts, insulated with mica and ceramic. Non-setzo interchangeable bits. choose from copper' or 'long lifo'. A very special tool at a very special 'direct' price. Tu ct 9522 for iron fled with 32 m copper bit. Just 52.27 for 3 spare | copper bit. Jut |
| :--- |
| copper bits (1.6; 2.4; for | A mere 84 for A mere 84 for

professional spring Land or Dry the lot for 810.84 am eave 10\%

All prices inc. VAT P \& P

Write today. Send Cheque/P.0. to Litesold. 97.99 Gloucester Rod. Croydon CRO 2DN or phone 01-689 0674 for Barclaycerd/Access sales.

PARNDON ELECTRONICS LTD

Dept. No. 22, 44 Paddock Mend, Harlow, Essex CM13 7RR. Tel. 027932700
RESISTORS
made under strictly controlled conditions by automatic mach quakes Bandoistors
and colour coded
E1.00 per hundred mixed (Min 10 per value)
E8.50 per thousand mixed (Min 50 per value)
Special stock pack 60 values 10 off each $\mathbf{~} 5.50$

DIODES: IN 4 148 3p each Min order quantity - 15 rems

£1.60 per hundred
DIL. SWITCHES: Gold plated contact in fully sealed base solve thaw programming problems
4 Way 86 p each 6 Way $£ 1.00$ each 8 Way $£ 1.20$ each

KETS: High quality. low profile sockets
8 pin - 10p. 14 pin - 11p. 16 pin - 12p. 18 pin - 11p. 20 pin - 21p.
22 pin - 23p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER -UK aI OO OVERSEAS LS CASH WITH ORDER PLEASE

D
 0
 0

 Here is a small selection of the

 Here is a small selection of the books available from HE's books available from HE's book service. New titles will book service. New titles will appear each month

 appear each month} kshelf

ELEMENTS OF ELECTRONICS by F A Wilson
This series of books covers the basics of electronics, in an easy to understand manner. The topics are written so that important concepts can be grasped by the beginner and yet they can also provide an in-depth reference source for the practising engineer.
Book 1: THE SIMPLE ELECTRONIC CIR. CUIT AND COMPONENTS £2.25 This book contains all the fundamental theory necessary to lead to a full understanding of the simple electronic circuit and its main components.
Book 2: ALTERNATING CURRENT THEORY
£ 2.25
Sinewaves, complex waveforms, time constants, reactance, resonance and other important aspects of $A C$ are covered
Book 3: SEMICONDUCTOR TECHNOLOGY $£ 2.25$ From simple atomic structure models through to complex integrated circuits and the elements of computers.
Book 4: MICROPROCESSING SYSTEMS AND CIRCUITS £2.95 Starting with simple computer models, this book takes the reader up to complete microprocessing systems and theoretical circuits.
Book 5: COMMUNICATIONS .. £2.95 All aspects of communication systems such as channel bandwidth, transmis. sion systems and signal processing, are discussed in this final book of the series.

A MICROPROCESSOR PRIMER by EA Parr £ 1.75 Newcomers to electronics and computing tend to be overwhelmed when first confronted with literature about microprocessors. This book helps to alleviate the problem by recolunting the design of a simple computer in an easy to understand manner.

PRACTICAL COMPUTER EXPERIMENTS
by EA Parr
£ 1.75
Readers of this book will find themselves involved in experiments which help to explain the inner workings of computers and microprocessors. All circuits and experiments use discrete logic circuits to demonstrate such things as 'adders', 'stores', 'arithmetic and logic units' etc.

HOW TO MAKE WALKIE-TALKIES

by F G Rayer £1.50 Low power hand-held, or portable. radio transmitting/receiving equipment need not be complicated - as this book shows. A book of great interest, not only to the licensed operator, but also to those enthusiasts without transmitting licences who wish to participate as
receiving equipment.

ELECTRONIC PROJECTS FOR BEGINNERS
by F G Rayer
£ 1.35
The newcomer to electronics will find this a very usefill book. It contains a wide range of easily made projects incluiding component and wiring layouts. A number of projects can be constructed without the use of a soldering iron.

POPULAR ELECTRONIC PROJECTS by R A Penfold
£ 1.45
A collection of circuits and projects to interest most electronics constructors, covering four popular main areas: radio; audio; household projects and test equipment.

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE
by A Michaels
£2.95
Transistors from over 100 international manufacturers are tabulated in this book in an easy to understand, cross-referenced format, to enable the reader to quickly locate equivalent devices from an alternative source. This book is an extremely useful addition to the electronics enthusiast's library.

To receive your books fill in the form below (or write the details on a sheet of paper) and send it, with your payment, to the address given.
Please wait 28 days for delivery. The offer applies to the UK only. Prices may be subject to change without notice.

To: HE Bookshelf, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE.

I enclose a cheque/postal order made payable to ASP Ltd, for the amount shown below
OR
I wish to pay by Barclaycard/Access. Please charge to my account number

VISA

Signature
Name
(BLOCK CAPITALS
Address
iblock Capitals)

Books Required	Price
Add 75p p\&p	0.75
Total enclosed $\quad £$	

TECHNICRL TRAINING IN ELECTRONICS RND TELECOMMUNICRTHONS

ICS can provide the technical knowledge that is so essential to your success, knowiedge that will enable you to lake advant age of the many opportunities open to the trained man. You study in your own home. in your own lime and at your own pace and if you are studying for an examination ICS guarantee coaching untll you are successful.

City \& Gailds Certificates

Telecommunications Techiicians
Radio hmateurs
Electrical Installation Work

high precision multimeters

at Christmas

 min Gift prices from JV

MAIH Analogue Multimeter Normal Price: £33.20
Special Discount Price: \&27.45
Analogue multimeter
pivoted movement and easily read mirror scale. Input impedance 20 K O/V D.C DCV 9 ranges up to 1000 V ACV 6 ranges up to 500 V DCA 6 ranges up to 5A ACA 5 ranges up to 5A Resistance 4 ranges up to 1 Mn Capacitance can also be measured from 2-200,000uF Carrying Case: $£ 5.1$ Binc Vat

Digital Multimeter Normal Price: £63.10 Special Discount Price: £53.90 nc. leads, carrying case.
Vat. Postage/Packing) Digital multimeter Large LCD display. input impedance 10 Mn . AC and DCV 5 ranges up to 650 V AC and DCA 4 ranges up to 2 A Resistance 5 ranges up to $20 \mathrm{M} \Omega$

OR ORDER BOTH \& SAME ELS ONIY 879.05 inin van

Full service back-up and money-back guarantee

From one of Europe's leading electrical groups, now available in the U.K. from JMI. JOHN MINISTER INSTRUMENTS LTD 137/139 SANDGATE ROAD. FOLKESTONE KENTCT2O ZDE TeI (STD) 0303 d1598/54002 Telex 965478 JOHN MINISTER INSTRUMENTS LTD
Name
Address
Telephones (STD) 0303 d1590/54002 Telex 965418
Please supply:
\square MAIH Analogue Multimeter \square
\square MAID Digital Multimeter inc carrying case.
Cheque/Postal Order for $£$
Goods will be despatched within five working days of receipt of order

Despite the apparent acceptance worldwide of DCEL and VF as the most suitable forms of instrument displays, a number of other techniques are currently being investigated which may have advantages in limited applications. In Japan, NEC has an electronic multi-coloured instrument panel using a combination of back-lit liquid cystal displays and vacuum fluorescent techniques, and is developing a dot matrix readout with a highly flexible format for displaying symbols, letters and numbers. Jaeger SA of France has also developed an electrolytic liquid display in which light is dispersed from a silver film deposited on a clear electrode, while in the USA, a number of companies are active in the field of VF. One such company, Zenith Radio Corp, has even proposed a computerised cathode-ray tube display systeni. (A variety of different types of displays were described in Digits On Display in the November ' 81 issue of HE, pp 14-17.)

Voice synthesis techniques, now well established, are also being investigated for providing 'spoken' indications of low fuel, presence of ice, low oil pressure etc, as a means of attracting the driver's attention.

Driver information and car status has been carried a stage further by Siemens of West Germany. This company, in collaboration with BMW, has developed a microcomputer system that offers the driver fifteen functions. In additon to the milometer and speedometer, it includes such things as average petrol consumption, the residual range with the residual fuel carried, distance to destination, likely time of arrival, and flashing lights with gong alarm that warns of maximum speed and icy road hazards.

Integration Requires A Reliable Power Source

Any electronic system is only as good as its power supply, and this applies equally to vehicle systems. Here again, integrated circuitry comes to the rescue by making it possible to design a single-chip voltage regulator that can absorb all the electrical stresses that occur in a car, and to provide at its output safe and stable supplies. One such regulator is the SGS.ATES L2600
(Fig. 5) which can withstand at its input peak voltages between -150 V and +120 V and steady DC voltages between - 28 V and +28 V . Also, because it has been designed to supply devices that must operate during start-up, when it is possible for the battery voltage to drop to as low as 6.5 V , the drop-out voltage is only 1.5 V . Even at this voltage it does not actually drop out but 'drops off' by following the input voltage. Full output stage, overvoltage and thermal protection are built in 'on chip', and a particularly important aspect is the high precision of the output voltage which can be set to $\pm 2 \%$ during production of the device.

Figure 5. Block diagram of SGS-ATES' 22600 regulator

To maintain the cost of the device within reasonable limits, the maximum current capability has been limited to about 0.5 A. When a higher current is needed, a specially designed power transistor can be added which has a collector current of greater than 20 A, thus allowing it to withstand extreme reverse polari-
ty conditions. By including this transistor in a circuit configuration such as that shown in Fig. 6, it is possible to design a power supply that not only provides the high and low voltage and current requirements for all of the in-car electronics, but also offers protection against possible destructive abnormal electrical conditions that could be encountered.

Figure 6. The $\mathbf{L 2 6 0 0}$ regulator with added protection for high/low voltage and power

Another type of regulator, the L485, is a monolithic (single chip) integrated circuit that has been designed for use in conjunction with a Darlington power transistor as voltage regulator in a three-phase alternator charging system (Fig. 7). Particular features are complete built-in diagnostics, 3 W lamp direct driving, lamp short-circuit protection, 120 V load disconnection protection, 300 V low energy interference spikes protection and thermal protection.

Other Areas For Electronic Control

One important application for the microprocessor which has not yet been mentioned is in transmission control which, in the future, will not include separate and definite gears but instead will have a microprocessor-controlled servomechanism that
will automatically adjust itself according to the load the car is being required to carry. As a result, the proper gear ratios will always be chosen to maintain optimum torque efficiency and maximum engine efficiency.

Another important area, depending upon how comfortable you like to be, is the air conditioning and temperature control of the car interior. This is particularly relevant to European cars which do not always provide the same degree of comfort as that enjoyed by American drivers.

Most of the ancillaries such as signal flashers, hazard warning lamps, interior dimming, headlight dipping, screen wipers, rear window de-misting or de-frosting can all benefit from integrated circuit or microprocessor contral.

Putting It All Together

The application of integrated circuits and microprocessors to individual areas of vehicle systems presents no real problems to current technology. Bringing them together into one integrated system under the control of a microcomputer, or using a distributed technique whereby a number of microprocessors or microcomputers control specific areas in an inter-linked system, requires a more elaborate approach. It is this approach which is now being investigated by the major semiconductor houses in co-operation with the car manufacturers.

Obviously, only the larger functions such as engine management and fuel injection, ignition control, anti-skid braking, instrumentation, transmission and power supply, would be integrated into a total system, leaving the ancillary areas to individual control, but how can all this be put together efficiently, economically and in an orderly manner? It has been said that a camel is a horse designed by a committee - it has all the bits, it does the job, but what a combination! (Apologies to camel lovers.) As more and more electronics are added to the car we could, if we are not very careful, be in danger of producing a 20th century camel unless some orderly approach is adopted.

The actual method of approach adopted will depend very much on the preferences of the individual car manufacturers and whichever electronics companies supply their systems, and either of the two methods referred to above - centralised or distributed control - could be adopted.

One international electronics company, SGS-ATES of Milan, has formulated an approach it calls 'partitioning' which is fully integrated, and which caters for the severe electrical en-

Figure 7. Electronic voltage regulator for use with a three-phase car alternator

Feature

vironments encountered in cars by providing a fully protected central power supply.

The system operates by splitting the car electronics into separate groups characterised by technology, performance and function, as shown in Fig. 8. In general, this results in four different groups. At the heart of the system is the power supply group, the function of which is to convert the normal car supply into a safe and appropriate supply for each of the other groups in the system. Devices working in this power supply section must not only be of high power rating and of high efficiency but they must also be protected against all the adverse conditions such as overvoltage, transients, wrong polarity etc.

Having obtained a safe supply, it is then possible to optimise the remaining units according to their functions, using the most appropriate technology available and without worrying about device protection. For instance, input sensors can be designed with the optimum signal-to-noise ratio, (inearity and drift, the three major requirements of such devices. It is possible to process signals at low voltages and, because the supply is constant and secure, it is also possible to use more standard semiconductor devices than specially-designed devices.

Power actuators for driving motors, solenoids etc use the same technology as the power supply, but unlike devices in the power group these need no special electrical protection against supply variations, and therefore the whole semiconductor design can be concentrated on achieving the desired function.

What About The Wiring?

By now, even from the brief examples quoted, it must be obvious that fully integrated car electronics with microprocessor control could present problems in interconnection techniques (that is, circuits sited around the car 'talking' to a central com-
puter) unless something other than the conventional cable harness was used. Fortunately, the answer to this problem already exists in well-established computer systems - digital multiplexing. This is a combinational method of transmitting binary information selected from one of many input lines to a single output line. It can be likened to a single-pole multiposition switch that passes digital data in one direction only.

The trend in car electronics will be towards this method for the replacement of conventional cable harnesses to carry all signal data, and it is possible that fibre optics will be used instead of copper wire to achieve savings in cost and weight.

For those unfamiliar with the term fibre optics, it is used to describe light 'pipes' made up of many strands of glass drawn and fused together as a solid length. When light is applied to one end-face of the pipe, it is transmitted to the other face with little lost on the way; that is, none escapes from the wall of the pipe.

Thus many digital signals, converted to modulated light, can be transmitted along the pipe, with total freedom from electrical interference. l'Interference' here applies to that generated by the data lines as well as that picked up from other electrical circuits in the vehicle.)

Even in cars fitted out with a fibre optic network copper cables will, of course, still be used for the power wiring.

The actual system of data transmission that will be used is uncertain, but it could well be that described in MIL STD 1553 B (or variant) which is an American standard relating to a serial mutliplexed data bus ('bus' is the term given to one or more conductors used as a signal path for transmitting information from one of several sources to any of several destinations. A group of such signal paths is often referred to as a 'highway' or 'data highway'). This MIL STD is presently being adopted as a NATO standard and as a UK Defence standard. Marconi Electronic Devices Ltd of Lincoln has completed a detailed circuit design for a MIL STD 15538 terminal suitable for implementation in metal gate CMOS integrated circuits, and it is understood that this company has expressed interest in the application of this approach to car electronics.

Computer Control On An Automatic Highway

What must be considered as the ultimate in vehicle electronics is the fully automatic highway system (AHS) which is still a decade or so away, and which will involve a wide range of communication and computer technologies, many of which exist today. Examples are: automatic vehicle identification, automatic vehicle monitoring and route guidance. (Before we go any further, I should point out that 'highway' here relates to real roads for vehicles - not the electronic data highways described abovel)

On the subject of vehicle identification, a number of technologies are being investigated but experience has shown that, within the concept of the automatic highway, the established technique of vehicle-mounted transponders and buried loops is bulky and expensive, and that microwave or infra-red techniques offer the most promise.

For automatic vehicle monitoring, where the location of road vehicles within some well-defined area would be determined automatically and communicated to a central facility, the three approaches being considered are proximity methods, trilateration and dead reckoning.

In the first, vehicle position is determined when it receives a signal from a fixed post along its path: the vehicle then transmits its post location to the control centre.

With trilateration a vehicle is located by direct measurements on radio signals travelling between the vehicle and a number of fixed stations: this offers the potential of providing wide-area location data at a low cost.

In dead reckoning the vehicle position is determined by a reference position, directional information and incremental position updates.

The primary objective for route guidance is to provide a driver automatically with routing instructions at decision points in the road network using two way links from the vehicle to the roadside. The technology is well known but application in route guidance systems is still to be proven.

The concept of the automatic highway system (AHS) makes use of a roadway complex which would consist of both automated and non-automated roads - various main arteries would probably be equipped for automation while secondary roads would not. In theory, a vehicle would enter the system at a special entrance, where it would first undergo a rapid automatic safety check-out and the driver would indicate the destination. If the vehicle passed the check-out it would be merged automatically into the traffic stream, but if it failed the check it would be guided into a nearby service facility for repair. Once in the traffic stream, the vehicle would remain under automatic control until the driver's preselected exit was reached when it would be guided off the roadway onto an exit ramp. At this point control would be returned to the driver. In the event of a vehicle breakdown, it would be released from the main stream and, if still driveable, routed to the nearest emergency exit. If it were not still driveable, the use of one lane would be lost and the main stream would have to be directed around the disabled vehicle. Hence, some provision would have to be made for clearing the roadway as quickly as possible.

The technology required for AHS depends upon the selected
system structure, and this can be represented by two extremes - a highly centralised structure and a decentralised structure. The first would be characterised by an extensive computing and decision-making network, intercomputer and computer-tovehicle communications, guideway-based devices to determine the state of each vehicle, and individually controlled vehicles with a minimum amount of on-board sensing and decision-making capability. At present this would be beyond the current state-of-the-art for computer hardware, and twoway computer-to-vehicle communications would pose severe problems although it would be feasible. For a decentralised structure, the technology would be characterised by a relatively modest computing and decision-making network, vehicle-toroadside communications, complex vehicle-based sensors, and controlled vehicles with maximum on-board decision-making capabilities. Computing hardware for such a structure would be available, communications requirements would be less stringent, but reliable vehicle-to-vehicle and vehicle-to-roadside communications would require considerable research effort.

It is conceivable, therefore, that any choice would fall between these two extremes, and a study is being made in the USA in an attempt to resolve the issue.

Forecast

Undoubtedly, the application of micro-electronics to specific areas of vehicle systems will continue to grow, but the extent to which total integration will be applied, when, and by whom, are matters for conjecture. In an industrially sane world we should expect to see all car manufacturers embodying an increasing range of micro-electronics systems in their vehicles within the next 12.18 months, and by 1983 the first cars with fully integrated mico-electronics should be rolling off the production lines in the USA and Japan, followed by West Germany, Italy, France, and possibly the UK, a year or two later. Obviously, the USA must be the favourite in this race because of that country's vast home-based micro-electronics capability. Japan is also a favourite because of its industry's exceptional entrepreneurial prowess.

However, at present we do not live in an industrially sane world, and the recession that now affects the car industries in most countries is likely to modify these forecasts. In the USA, for example, the recession in the car industry has forced microelectronics companies to shelve ideas for the development of new integrated circuits and microprocessors for vehicle systems. Instead, they are placing emphasis on improved manufacturing techniques to give greater reliability and productivity, and on the modification of existing designs to withstand the harsh environments of vehicle applications.

Finally, but nevertheless extremely important, the problems of car maintenance must be considered. While car owners will, in general, welcome the improved performances, greater economies, and increased safety that electronic systems will bring, there is no doubt that higher levels of garage maintenance skills will be required because of the increased difficulties of servicing. Of course, the well-proven techniques of easily-replaceable subsystems and modules will be applied to vehicle electronics, but this would result in a customer having to pay for a fairly costly module replacement, even if only one component fails, because module repair would be beyond the capabilities of the average service station.

Identification of faults in car electronic systems will be made that much easier by the incorporation of system test points that the manufacturers would have to build in, and this in turn will generate the demand for a whole new range of specialised, easy-to-use test instruments for diagnosing and finding system failures.

General References

In addition to manufacturers' data, reference has been made to the following in compiling this article:
Electrotechnology, January 1979, October 1980, January 1981 (Institution of Electrical and Electronics Technician Engineers).
IEETE Bulletin, September 1980, December 1980 (Institution of Electrical and Electronics Technician Engineers).
Large are flat displays, IEE Colloquium, 22 nd May 1980 (Institution of Electrical Engineers).
Display components and technology, Electronic Displays ' 79 Conference Proceedings (Network Ltd).

HE PCB
 PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an

 obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

January 80 Digi Dice	£2. 20
February 80 Win Indicator	£1.98
March 80 508025 W Amplifier Module 5080 PSU Module	$\begin{array}{r} \mathrm{£} 1.95 \\ \mathrm{£} 1.98 \end{array}$
April 80 Speed Controller For R/C Digital Frequency Meter Hobbycom: Two-wire Intercom (set of two) Electronic Ignition (CD)	$\begin{array}{r} \text { £1.60 } \\ \text { £2.95 } \\ \text { £3.98 } \\ \text { £. } \end{array}$
May 80 5080 Pre-amplifier	£3.50
June 80 Fog Horn Egg Timer	$\begin{array}{r} \mathrm{£} 1.40 \\ \mathrm{£} 1.58 \end{array}$
July 80 $18 W+18 W$ Car Stereo Booster (two required for stereo) each	£ 1.20
August 80 Equitone Car Equaliser Pass The Loop Game	$\begin{array}{r} £ 1.79 \\ £ 1.98 \end{array}$

September 80	
Auto Probe	£1.25
Guitar Phaser	£1.48
Development Timer	£1.35
Bench PSU	£2.20
October 80	
Nobell Doorbell	£1.98
Intruder Alarm	£1.88
Tug O' War	£1.99
Memory Bank Synth:	
Mainboard PCB	£2.48
Keyboard PCB	£2.70
Party Grenade (set of three)	£2.60
Double Dice	£2.20
December 80	
Stereo Power Meter	£2.12
Digital Speedo (set of two)	£3.50
January 81	
Car Rev Counter	£2. 24
February 81	
Heartbeat Monitor	£1.90
Audio Signal Generator	£1.85
March 81	
Steam Loco Whistle	£1.99
April 81	
Super Siren	£1.48
Russian Roulette Game	£1.20

May 81
Voice Operated Switch £1.25
Organ 1
£3.48
June 81
Envelope Generator £1.40
Organ $2 \quad £ 1.90$

July 81
$\begin{array}{lr}\text { Organ } 3 & £ 4.50 \\ \text { Organ } 4 & £ 4.50\end{array}$
Ultrasound Burglar Alarm $\quad £ 1.90$
August 81
RPM Meter £1.33
Thermometer $£ 1.25$
September 81
Power Pack £1.27
Reaction Tester Game $£ 1.28$
'Diana' Metal Detector $\quad £ 2.48$
October 81
Combination Lock £1.99
November 81
Sound Torch (Set of Two) £3.98
December 81
Pedalboard Organ £4.48
January 82
Intelligent NiCad Charger £2.28

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

Please allow 14 days for delivery

SURPLUS - Ex equipment 120W $(60+60 \mathrm{~W})$ power amplifiers, case and controls, vol/bal, sockets, smoothing 5" heatsink, boxed, data, $£ 9.95$ inc. Klifco, 1 Regent Rd, likley, LS29 9EA: Merry Christmas Folks!

BOOKS. "I.C. 555 PROJECTS" by E.A. Parr. 160 pages of basic and general circuits. Section on 556, 558, 559 Timers. $£ 2.15$ inc p\&p. List of other titles s.a.e. to "Alpha Books", Reg. Office 18 Connaught Close, Hemel Hempstead, Herts HP2 7AB.

AMAZING ELECTRONICS PLANS. Lasers; Super-powered Cutting Rifle, Pistol, Light Show. Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Cata-logue 95p. - From Plancentre, 16 Mill Grove, Bilbrook, Codsall, Wolverhampton.

PARAPHYSICS JOURNAL IRussian translations); Phychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: Sae $4 \times 9^{\prime \prime}$ Paralab, Downtown, Wilts.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac ilight-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55D. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick $£ 1.75$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

PRE-PACKED SCREWS, Nuts, Washers, Solder Tags, Studding. Send for price list. A1 Sales (ETI), P.O. Box 402, London SW6 6LU.

LIE DETECTORS. Beautifully made unit in grey and blue metal case, fully solid state with 100-0.100 Crompton microammater, gel, 6 probes, circuit and operating instructions. Brand new, our all in price is only $\mathbf{E 8 . 0 0}$ this includes VAT and postage. SAE for cct and instructions to " Q " SERVICES, 29 Lawford Crescent, Yateley 871048, Camberley, Surrey.

POWER TRANSFORMER AND

 RECTIFIER BARGAINS, $30-150$ amps, various voltages. List: R. NEVILLE, Green Lane, Ellisfield, Nr. Basingstoke, Hants.ZX81 KEYBOARD SOUNDER Made from easily obtained components. Send E 3.00 or SAE for further details to R. Mitchell, 20 Gorse Close, Portslade, Sussex.

HEAR THE C.B.'s simple, effective receiver with speaker. Common parts. Three transistors. £1.25. Diagram, parts list. Mrs. Stevens, Box 57, 164 Corn Exchange, Manchester M4 3BN.

TV TO SCOPE CONVERTER. Amazing easy to build unit. Plugs into aerial socket and converts any TV into large screen oscilloscope. Cost to build approx. £12. Circuit and plans £3 (or SAE details). J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

CENTURION BURGLAR ALARM EQUIPMENT Send sae for free list or a cheque/po for $£ 11.50$ for our special offer of a full sized signwritten bell cover, to Centurion Dept HE, 265 Wakefield Rd, Huddersfield, W. Yorkshire. Access E Barclaycard. Telephone orders on 0484 . 35527

20\% OFF CASES, SWITCHES, RELAYS DIODES, IRONS, ETC. lists 28p, Industrial and Trade enquiries welcome. RELAY-AQUIP, Moat Lodge, Stock Chase, Maldon CM9 7AA. 24 hr phone: 0621 5PAR6.

SOLDERLESS BREADBOARDING

 SOCKETS SK-50 Socket. 33 pairs of 5 common Nickel Silver Spring Contacts. 4 bus rails. Total of 430 contacts. $9 \mathrm{~mm} \times 56 \mathrm{~mm} \times$ 86 mm . £4.35 each, including VAT and P\&P. Cash with order to: E\& L Instruments Lid. Whitegate Ind. Estate, Whitegate Road, Wrexham, Clwyd LL13 8UG. Tel: 0978 263030.
ELECTRONIC CLEARANCE PACKS
 HUGE SCOOP PURCHASE

Containing Transistors, capacitors. resistors, pots, switches, radio and audio items, connectors, relays and many electronic devices. Must be worth over £20 per pack. Our price £5 car £1.75.
JUMBO PACK Must be worth over $£ 50$.
Our price £10. Car £2.50. Money back if not delighted

HAVE YOU SEEN THE

 GREEN CAT?1000s of components, Audio, radio, and electronic. Almost everything electronic at unbeleivably low prices. Something for everyone. Send 35p P.O. or cheque and receive FREE RECORD SPEED INOICATOR MYERS
Dept HE 12 Harper Street, Leeds
LS2 7EA
Tel. 452045

IONISER KIT (mains operated)

This Negative lon Generator gives you the power to saturate your home or office with millions of refreshing ions. Writhout fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The reeult? Your air feots fresh, pure, crisp and worderfully refreshing.
All parts, PCB and full instructions

A suitable case including front panel, neon swiech, etc Price Includes Poet \&' VAT

Barclaycard/Accees wolcome

GUITAR/PA MUSIC AMPLIFIERS

100 watt superb treblehbass overdrive, 12 months guar antee. Unbeatable at £50; 80 watt $£ 4$; 200 watt $\mathrm{ExP} ; 100$ watt twin chamel sap. trebte/bass per channel $\mathfrak{E 6 5}$; 60 wat E52; 200 watt f78; 100 watt four-channel sep. (redthas Ser channet 250 witt ETO ; 500 wati ह140; fuzz boxes, great sound, £12; bese fuze $\mathrm{E12.50}$; overdrver fuzz with trible and base c12; btese fuze 12.90 ; overarver fuzz with truble and base boosters. Eza; 100 watt combo, supero sound, ovararve f115; bass combo f118; speakers 1 Sin . 100 watt c 36 ; 12 in 100 watt E24; 60 watt f18; microphone shure unidyn B E25 3-channel soundinght E26
Send cheque/P.O. to: WuLuamson AMPLFFATION

CORDLESS TELEPHONES Build your own simple and inexpensive units. Send $£ 3.00$ for plans to: J.F. Ashley, Birley Grange Cottage Farm, Baslow road, Cutthorpe, Derbyshire.

ZX81 FLICKER-FREE GAMES. 6 super games, each 1K, plus Free menu, all on cassette, plus Free listing, £3. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

BURGLAR ALARM equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W.A.S. Ltd.

NEWII LOW PRICEI SPECIAL SHAPE LEDSI Pack, 20 mixed Arrowheads, Lines, Tri/rectangles, Dots, Red, Green, Yellow only $£ 2.45$. IC SKTS $8 / 14 / 16 / 24 / 40$ PIN $7 / 9 /$ 10/20/25p. + 25p P\&P. Petron Electronics, 1 Courtiands Rd, Newton Abbot, Devon.

AERIAL AMPLIFIERS Trebles incoming signal, price $£ 7.00$. SAE for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.

ZX COLOUR!! Enhanced version of board demonstrated at ZX Microfair. Programmable Character Generator. Memory, Motherboard, UK101/S2 P.C.G. P.O.A. Repeating key £2.50. Keboard £17.50. Edge connector £1.95. Input/output port 77.95 .2114 200MS 99p. Resistors $3 / 40$. SAE for details. Haven Hardware, 4 Asby Road, Asby, Workington, Cumbria.

CLOSE ENCOUNTERS GROUP, Personal introductions/dances, parties, talks, socia events. Meet interesting, attractive people. All areas. - Tel. (Liverpool) 0519312844 (24 hours).

AUTO ELECTRICAL KITS: Interior Light Delay - adjustable 12-20 seconds. Fits inside headlining. £3.25 incl. Lights-On Alarm-self cancelling. No more flat batteriesl $£ 3.95$ incl Micha Design, Gt. Missenden, Bucks.

A KIT FOR CHRISTMAS

The LECTRON BOOK LASORATORY contains elaven magnetically linking bullding blocks, bsecoowro, 242 ege ilustrated book of a projcis lrom begnitery components amip, bulb and amart plastic holdall you need to find out whether electronics is for you. No tools, no soldering. More advenced couran availebla.

ARTEC If for El Lid, Selowhed House, Ribchenter Pretton, Lancs PA3 $3 \times \mathrm{X}$
c2 inc poest and VAT (Returnable if not satiafled)

ADVERTISEMENT INDEX

Absonglen Ltd 50
Ambit International 2
Amtron (UK) Ltd 57
Bi-Pak Semiconductors 15
BK Electronics 21
B.N.R.S. 52
J. Bull (Electrical) Ltd 20
C. H. J. Supplies 51
E.D.A. 67
Electronize Design 4
Greenweld. 31
G.S.C. 30
Heath Electronics. 41
Henry's Radio 4851
ICS 59
ILP $21,31,41,51 \& 57$
LEM Services 59
Litesold 57
Magenta Electronics 4 \& 5
Maplin 68
John Minister Instruments 59
Parndon Electronics 57
P.A.T.H. Electronics. 51
Brian J. Reed. 21
Silica Shop. 24
Technomatic 46
Tempus 40
Texas Instruments 14
TK Electronics 50
Watford Electronics. 9

ELECTRIFY YOUR SALES! • CLASSIFIED ADVERTISEMENT

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15

Advertise notionally in Electronics Today International/Hobby Electronics. Simply print your advertisement in the coupon here (left), indicating which magazine you require Or telephone for more information.

Name
Address

Tel. No. (Day)

Send, together with your cheque to: Jenny Naraine, ETI/HE,
145 Charing Cross Rd., London WC2H OEE.
Tel: 01-437 1002 Ext. 50 .

Please place my advert in: Electronics Today International (Delete as applicable) Hobby Electronics

Step-by-step
 illustrated assembly and fitting instructions are included together with circuit descriptions Highest quality

NOW AVAILABLE IN KIT FORIM

SX1000

Electronic Ignition

- Inductive Discharge
- Extended coil energy
storage circuit
- Contact breaker driven
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

MAGIDICE

Electronic Dice

- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second umble sequence
Throw displayed for 10 seconds
Auto display of last throw 1 second in 5 - Muting and Off switch on base - Hours of continuous use from PP7 battery - Over 100 components to assemble

Supplied in superb presentation gift box

SX2000

Electronic Ignition

- The brandleading system
on the market today
- Unique Reactive Discharge Combined Inductive and Capacitive Discharge Contact breaker driven - Three position changeover switch - Over 130 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg earth vehicles

TX2002

Electronic Ignition

- The ultimate system - Switchable contactless - Three position switch with Auxiliary back-up inductive circuit - Reactive Discharge Combined capacitive and inductive Extended coil energy storage - Magnetic contactless distributor trigger head - Distributor triggerhead adaptors included - Can also be triggered by existing contact breakers majority of 4 and 6 cylinder 12 v neg earth vehicles - Over 150 components to assemble

VOMAGER Car Drive Computer

- A most sophisticated accessory - Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Lid - Affords 12 functions centred on Fuel. Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left on - Facility 10 operate LOG and TRIP functions independently or synchronously - Large 10 mm high 400 ft -L fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or - 1% Large LOG \& TRIP

Arms doors, boot, bonnet and has security loop to protec fog/spot lamps, radio/tape, CB equipment - Programmable personal code entry system

- Armed and disarmed from outside vehicle using a special
magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components 10 assemble
memories 2,000 miles. 180 gallons. 100 hours. Full Imperia and Metric calibrations - Over 300 components to assemble

EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS 1 3DE England. Tel: (0922) 61479

	SELF SSEMBLY KIT	READY BUIIT UNITS
SX 1000	$£ 12.75$	$£ 27.95$
SX2000	$£ 19.95$	$£ 43.75$
TX 2002	$£ 29.95$	$£ 62.95$
AT. 80	$£ 24.95$	$£ 49.75$
VOYAGER	$£ 49.95$	$£ 84.75$
MAGIDICE	$£ 12.95$	$£ 19.95$

For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads. There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

Over 100,000 copies sold already! Don't miss out on your copy.
On sale now in all branches WH Smith price £1.
In case of difficulty check the coupon below.

[^0]: TEXAS INSTRUMENTS LIMITED

[^1]: We can indeed - our own
 "Electronics, It's Easy" is an excellent

