

HOW TO SUCCEED IN THE ELECTRONICS BUSINESS:

PROJECTS

+ GUITAR GRAPHIC EQUALISER
Control your guitar sound. 10
- DRUM SYNTHESISER
18
Electronic drumkit with an ear for sound
27
Easy-to-build Quick Project 27
* PEDALBOARD ORGAN32
IN-CAR
49
49
Keeps cassettes steady while on the road
Keeps cassettes steady while on the road
66 66
PCB FOIL PATTERNS
Underground maps of printed circuit boards 70DOORCHIME
FEATURES
CAR ELECTRONICS
Special Feature - the move towards microelectronics in cars 14
YOUR LETTERS
The Editor replies - double length this month 22
FAMOUS NAMES
Campbell-Swinton - aman with insight into modern TV 25
SYNTHESISER SECRETS - 3
Alook at the sound-generating circuits 29
* GADGETS, GAMES \& KITS
FREE supplement on the latest electronic products -
three in-car product reviews this month 35
BUILDING SITE
Constructive advice with Murphy's law in mind 43
INTO ELECTRONIC COMPONENTS
Part 5 of our beginners'series 52
CLEVER DICK
CD replies to your technicalqueries - double length this month. 58
* HOW A TV RECEIVER WORKSAnother special feature this month: a simple explanationof monochrome TV transmission and reception61
* 8REAKERONEFOUR
Rick Maybury's back with a special report on Britain'snew legal Citizens' Band system69
EVERYDAY HUMOUR IN THE W ECTRONICSCartoons speak louder thanjokes$30,58,59,64,70$
NEWS \& INFORMATION
Monitor - Electronics News 6
HE Next Month
* Breadial OFFER - Talking Digital Watch 41
* IYDP Project Design Competition Results 46
Subscriptions - the easy way to buy HE
PCB Service - the easy way to obtain circuit boards for HE projects 71
Bookshelf - a selection of books from HE 72
Classified Ads 73
Assistant Editor: Keith Brindley Editorial Assistant: Judith JacobsDrawing Office Manager: Paul Edwards Managing Editor: Ron Harris BScLayout Artist: Enzo Grando Managing Director: T. J. Connell

SPECIAL OFFER of the menth: Teiking Digital Watch. Not only whll it tell you
the time digitelly but li will announg it at the prese of a button and on the hour

DISSATISFIED with the tone of your acoustic or electric gultar? Just connect DISSATISFIED with the tone of your acoustic or electric gultar? Just connect
your pickup to our Guitar Graphic Equaliser isee easy-to buld project with kif your pickup to our Guitar Graphic Equaliser isee easy-to
offer on page 10) and balance-up the sound to your toste

[^0]

MONITOR

Editorial

I will be leaving HE (and Argus Specialist Publications) at the end of October, after holding HE's 'reins' since September last year.

From the January 1982 issue (due out early in December 1981) Ron Keeley will take over as HE's Editor. Ron's name should be familiar to regular readers, as the author of our Synthesiser Secrets series (the third part is on page 29 of this issue).

His face may be familiar too - we persuaded him to hold the HE Electronic Ignition module for the cover picture of the August ' 81 issue. (Next to him, incidenttally, is Adrian Boxall from our photographic departmont.)

Ron left his native Australia in 1980 and has been working in the UK as a freelance journalist. He is a professional musician and has a background in electronics.

Thanks to everyone who has helped me put HE together over the last few months, and best wishes to all our readers, in the UK and overseas.

Hugh Davies MISTC, G3VCU

News For Radio Control Enthusiasts

THE ANNOUNCEMENT of the date (ind November) for the start of the Government's legal CB service has done little to reassure the Radio Control fraternity.

Members of this fraternity are only too well aware that the numbers of users of Hilegal CB equipment are such that the chances of regaining the use of 27 MHz are negligible. The resulting overcrowding on the
now 35 MHz allocation, and the frustration of boat and car onthuslasts, who have no realistic alternative to 27 MHz , means that the pressure is now being applied to the Home Office for it to make a further RC frequency allocation.

The CEPT recommends firequencies in the 40, 53 and 72 MHz wavebands, in addition to 27 and 35 MHz for RC applice. tons: it is likely that a claim for one or more of these allocations is imminent.
Pete Christ

Sounds New

A RANGE OF new modular products for home hi-fi and disco/guitar amplifier construetors has been announced by ILP Electronics of Canterbury.

The company is already well known as designer and manufacturer of encapsulated audio amplifiers, pro-amplifiors and power supplies, and the new
modules increase its range to almost 50 modules.

Many of the new modules are suited to disco and guitar amplifier equipment including: mono mixers, stereo mixers, high-power MOSFET amplifiers and stereo headphone drive modules.

ILP Electronics Ltd, Roper Close, Canterbury, CT2 7EP (tel 022754778).

Make Friends With

 A MicroprocessorDOES THE WORD imicroprocessor' send a cold shiver down your spine? Does it describe a faceless technological monster that threatens mankind's existence? Or is it just a black plastic gadget, not much bigger than a 50p place, that you can buy for around $£ 10$?

In Introducing Microprocessors (KeIth Dickson Publishing Limited, £4.50), Ian Sinclair removes the mystery from microprocessors without going into deep technological explantations.

Definitely a good way to get to

Faster Teletext

And a First For Scotland

TWO DEVELOPMENTS in ORACLE, the ITV teletext service, took place in October. The first was a halving of the average access time to pages, from 30 to 15 seconds. The second was of national significance: Scotland was given the world's first regional teletext service.

Both developments stemmed from one change in the method used to transmit the teletext pages. In the past, ORACLE's page information was carried on two 'spare' TV lines out of the nominal 625. (These lines are not normally visible but if the picture height is badly adjusted on your TV receiver you can see them flickering away at the top of the picture. This flickering is the page information, transmitted in digital form.)

grips with these devices before moving on to practical microprocessor-based computer system (and there's nothing like hands-on experience to help with understanding computers).

Now four lines have been allocated to the service, with one of four magazines of page information allocated to each line.

On Scottish Television (STV), from 12 October 1981, three of the lines are allocated to national magazines while the fourth is allocated totally to regional infermation (such as local weather, sports, events and so on).

According to the ITV, ORACLE will become completety regionalised' by $1984 / 5$.

For a comment from the competition, HE spoke to Graham Clayton, Duty Editor of CEEFAX (the BBC's teletext service). He said that the BBC had simply 'slashed access time' (that is, reduced it by half). Although the BBC had originally planned to start its first regional service in Manchester this year, cuts in spending have prevented this from being implemented. The BBC still hopes to operate regional services as soon as funds are available.

Electronics News

Cushion-grip
 Comfort For Hobbyists

TELE-PRODUCTION TOOLS Limited has placed emphasls on comfort whth the set of tools it is offering to hobbylats.

The set comprises:

- fine-nosed pliers, jaw length 40 mm from plvot
- fine-nosed pliers, jaw length 28 mm from plvot
- flush-cutting micro-shear, with
cutting head angled at 45° for ease of use on printed circult boards

Each tool is fitted with what are described as: 'softly sprung cushion-grlp handles' that are clalmed to reduce fatigus in use.

You can elther buy all three for £10 or buy them individually at £3.75 each. (These prices include postage, packing and VAT.I

Tele-Production Tools Limited, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SSO 9NW (tel 0702352719).

UOSAT Launches. OK!

THE UNIVERSITY OF SURREY'S satellito, UOSAT. Britain's first educational spacecraft intended for use by engincers, radlo amateurs and schools (see HE August '81, pages 56-57) was successfully launched, by NASA. at 12.27 pm Britsh Summer Time on Tuesday 6th October.

Separation from the Delta 2310 launch rocket was at
13.30 pm as the spacecraft entered orbt. Lift-off was from the Western Test Range. Vandenburg, Calfornia.

The latest nows we've heard is that all functions of UOSAT are performing well and that the apacecraft ls transmitting telometry data as planned on 145.825 MHz . The signal Is strong and transmissions can be plcked up using a standard amateur narrow-band FM recelver whith crossed dipole aerial.

Calling All Home Computer Owners

THE 8BC has planned what it describes as a unique experiment. It will take place on the Tomorrow's World programme on Thuraday 3rd December, on 88C-1, and home computer owners throughout 8ritain are Invited to take part.

During the programme, a complete progrem (notice the difference in spellingl) with be broadcast, in audio form, consisting of a burst of bleeps from the Beeb and lasting about 15 seconds. Viewers will be able to record the program on an audio cassette machine with tes microphone placed close to the loudspeaker of the TV receiver. Once recorded, it shouid be possible to run the program through a computer (probably propped on top of the TV).

If the experiment works, date which started in the Tomorrow's World studio in London will be in thousands of homes throughout Britain - in a few seconds. (The implications of this are exciting - and frightening - 1984 is only two years awayll

Full detalls will be given In the Radio Times. According to the BBC, 'Vlewers with unusual, but sensible applications are Invited to contact Trevor Taylor at 'Tomorrow's World', Kensington House, Richmond Way, London W14 OAX'.

Projects To Build ... For Disabled People

THE WORK of ACTIVE, a charitable association which alms to holp disabled people to lead more active and Independent llves by sharing ideas on one-off aids and modifications, was described In Electronic Aids For The Disabled (HE July 'B1, pp 16-19). ACTIVE has recently started publishing a series of Worksheets covering a wide range of play, leisure and communication aids for severely disabled children and adults.

The Worksheets are segregated Into categories according to the skills and facilitlos required. Maln groups are Craft Techniques (group C). Electrics/Electronics (group E), Metalwork (group M) and Woodwork (group W). Degrees of constructional skill required are Indicated by the number of asterisks after each group for example, an E* project is easier to make than an E*** project).

Constructional detalls are glven for aids ranging from simple 'kttchen table' woodwork to electronic, woodwork or metalwork designs which are best tackled, unless you have the abllity, at an evening class or as a project by local technical college students.

HE readers might be interested in the electrical or electronic projects. Group E* projects contain no translstors or ICs but inchide some detells of construction. Group E" " projects are likely to include these devices and some detalls of construction or Veroboard leyout. Group E** * 哺 similar to E** but dastans are generally more complex and no constructional detalis are lleoly to be given.

Examples of electrical/electronic projects are: Wee-D Mk. 5 (E*), a unt devised to astablish Incontinence pattern and assiat in training. and Mandevibe Clown (E** M**W*), a toy originally designed for soverely handicapped children. It provides a combination of light and sound rewards when a separate switch is pressed.

Prices of Worksheets range from 20p to £1.60: a catalogue giving detalls of all projects is avallable from: ACTIVE, The Toy Libranles Association, Seabrook House, Wyllyotts Manor, Darkes Lane, Potters Ber, Herts EN6 2HL (tel 070744571).

Technology For The Handicapped Child

THE COURSE, Technology for the Handicapped Chlld, was held at Castlo Priory College, WallIngford, Oxfordshlre during October.

This weok-long residential course has been a regular event over the last fow years and has as one of its main alms the dissemination of information on the latest advances In
technology, and how these advances can benefit handicapped children.

HE attended the 'micro course' - Microcomputers for Disabled People - on Saturday 10 October. Apart from barning some fascinating detalls of how micros are used to aid the disabied at home, in their education and at work we had the chance to try out some of the istest computer equipment.

The course ls organised by Roger Jofcoate, who was the
subjoct of our Eloctronic Alds For The Disabied feature In the July ' 81 lssue and who helped judge our IYDP Project Design Competition (see page 46 of this lssue for details of winners). It is likely that next year's course, due to be heid in November 1982, will be of interest to HE readers. When HE spoke to Rosemary Mc Closkey, Tutor and Organiser, she said that there will be a greater emphasls on computer systems throughout the week, and for this reason there will not be a special day dedicated to the subject.

Those interested in attending can ether opt for the full week or select Indtvidual days when subjects of particular interest will be covered.

Further detalls from: Mlas Rosemary McCloskey, Castlo Priory College, Thames Street, Wallingford, Oxfordshire OX10 OHE (tal 049137551).

Five easy projects for you to build: Nicad Charger

Your batteries (rechargeable nicads, that is) will get a kick out of this one. Build our charger and your nicads need never let you down again.

Simple Timer

Our easy-to-build timer will enable you to dispense with hour glasses, clockwork ticking timers or guesswork.

Intruder Confuser

An ingenious yet simple design which encourages burglars to buzz off. We'd describe it as a psychological deterrent.

Switch-tuned Radio

A very neat project, this one. it's a sensitive radio, with built-in loudspeaker, that gives you the stations of your choice at the touch of a button.

Volume Expander

Enables you to take your amplifier to new heights (and depths). An invaluable aid to audio enthusiasts.

out December 11th

 plus foatures galoreHi-Fi System Feature - all you ever wanted to know about hi-fi lbut the salesman wouldn't tell you)
This feature is definitely a down-to-earth approach (where did that come from?) to choosing hi-fi systems, So before you depart with $£ £ £ s$ of hard-earned cash take time to read this feature.

Large Scale Model Aircraft

Guest writer John Greenfield outlines some of the problems associated with large (and we do mean large) scale radiocontrolled model 'planes. John also describes his experiences when he attempted to take two of his models to the Las Vegas Large Scale Championships last year.

Items mentioned here are those planned but unforeseen circumatences may affect the actual contents

COMPUTERS•AUDIO•RADIO © MUSIC•LOGIC•TEST GEAR•CB•GAMES $\bullet K I T S$

Wednesday 11th November 10 a.m. -6 p.m. Thursday 12 th November 10 a.m. -8 p.m. Friday 13 th November 10 a.m. -6 p.m. Saturday 14th November 10 a.m. -6 p.m. Sunday 15th November 10 a.m.-4 p.m.

Any one of the 17,000 people who thronged the RHS for the Breadboard exhibition last year will need no introduction to this year's premier show for the electronics enthusiast. They already know all about the demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could name you all the leading companies who were there to see - and to buy from, at fantastic prices.
Even thuse !ucky 17,000 would be surprised to hear that this year we've improved BREADBOARD still further! More stands, more demonstrations and wider gangways to make it all easier to enjoy!

GREADBOARD 81 is the place to be from November 1lth to 15th at the RHS Hall. Why not come and find out for yourself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81 Close to Victoria Station and NCP car parking facilities:
Cost of entry will be $£ 2.00$ for adults and £1.00 for children under 14 yrs and O.A.P.s. ORGANISED BY ARGUS SPECIALIST PUBLICATIONS LTD., 145
CHARING CROSS ROAD, LONDON WC2H OEE.
ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET, WESTMINSTER, LONDON S.W.1.

RADATHION DBHECIOIKS

BE PREPARED
freal tor the explerumenter

- this oosimeter will automatically dETECT GAMMA AND X-RAYS
- UNIT IS SIZE OF FDUNTAIN PEN \& CLIPS ONTO TOP POCKET
- paecision instrument
- manufacturers current paice of a SIMILAR MODEL OVER $\mathbf{f} 25$ EACH

Butush design © mamulacture
Tested and fully guaranteed. En-slock delivery

Send for my CATALOGUE ONLY 75p

(plus 25p post/packing)

My VAT and post/packing inclusive prices are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade.

See my prices on the following:

CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW ANO HIGH VOLTAGE, RESISTORS. 18\%t WATT TO 100 WATT; 0.1\% TO 10\% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE DIODES, RECTIFIERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, IC'S, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPIIES, HARD WARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VOR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not believe before inflation!

BRIAN J. REED

TRADE COMPONENTS
ESTABLISHED 24 YEARS
161 St. Johns Hill, Battersea, London SW11 1TQ
Open 11am till 7pm Tues. to Sat. Telephone 01-223 5016
BIPOLAR Standard, without heatsinks

| HY 120 P | $60 \mathrm{w} / 4 \cdot 82$ | 001% | $<0006 \%$ | $\pm 35 \pm 40$ | $120 \times 26 \times 40$ | 215 | $\$ 1783$ | $\$ 1550$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | HY 200 P | $120 \mathrm{w} / 4.8 \Omega$ | 001% | $<0006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 40$ | 215 | $£ 2123$ | $£ 18.46$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Protection: Load line momentary stront circuit (typically 10 sec). Slew rate $15 \mathrm{~V} / \mu$ s Rise time: $5 \mu \mathrm{~s} . \mathrm{S} / \mathrm{N}$ ratio 100 db . Frequency response (-30 BB):15Hz-50kHz . Input sensitivity 500 mV rms. Input impedance $500 \mathrm{k} \Omega$. Damping factor $(8 \Omega / 100 \mathrm{~Hz})>400$.
HEAVY DUTY with heatsinks

Modet No	Output power Valis ims	$\begin{aligned} & \text { DISTO } \\ & \text { TH.O } \\ & \text { TyD } \\ & \text { a! } 1 \mathrm{kHz} \end{aligned}$	ORTION $\begin{gathered} 1 \mathrm{MO} \\ 50 \mathrm{Mz} / 7 \mathrm{kHz} \\ 41 \end{gathered}$	Supply voluge Typ/Max	Size mm	$\begin{gathered} \mathrm{m} \\ \mathrm{gms} \end{gathered}$	Price inc Vat	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
H0 120	$60 \mathrm{w} / 4.88$	001\%	<0006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	£25.85	§22 48
HD 200	120w/4-88	001\%	<0006\%	$\pm 45 \pm 50$	$120 \times 78 \times 60$	620	[31 49	£27.38
HD 400	$243 \mathrm{w} / 48$	001\%	<0006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	§44 42	$\underline{58.63}$

HEAVY DUTY without heatsinks

HO 120P	$60 \mathrm{w} / 4.89$	001%	$<0006 \%$	$\pm 35 \pm 40$	$120 \times 26 \times 50$	265	$£ 2282$	$£ 19.84$										
:---	:---	:---	:---	:---	:---	:---	:---	:---		HO 200P	$120 \mathrm{w} / 4-88$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 50$	265	$£ 2717$	$£ 2363$
:---	:---	:---	:---	:---	:---	:---	:---	:---		HO 400 P	$240 \mathrm{w} / 40$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	$£ 3942$	$£ 34.28$
:---	:---	:---	:---	:---	:---	:---	:---	:---	Protection: Load line. PERMANENT SHORT CIRCUIT (ideal for disco/group use should evidence of short circuit not be immediately apparent). The Heavy Duty range can claim additional output power									

devices and complementary protection circuitry with performance specs as for standard types.
How to order Freepost: Use this Coupon, or a separate sheet of paper. to order these products or any products from other ILP Electronics advertisements. No stamp is needed if you address 10 Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. cash must be registered. C.O.D. - add $£ 1$ to total order value. Acc
Please sena me the following ILP modules
Total purchase price
Ienclose Cheque $\square \quad$ PostalOrders $\square \quad$ Int. Money Order \square
Please debit my Access/Barclaycard No
Name
Adaress
Signature
Post to H.P Electronics Lid. Freeposi 2. Granam gell Mouse. Roper Close Canterbury CT2 7EP. Kent. Englanc

HE 2/12
Etactanics ra^{2}
StAYAHEAD.STAY WITHUS

Guitar Graphic Equaliser

Seven steps to control the sound from your electric guitar: - 1 Build this project - 2-7 Adjust the controls to suit

IMAGINE - YOU'RE ON stage playing to a packed house. You're just about to run your lead guitar break and you need just that little extra 'top', to give the solo the brightness you're after. With the HE Guitar Graphic Equaliser, it's easy. Simply adjust the control for the frequency you feel needs boosting (or cutting) and then you have it - a perfect guitar sound.
You couldn't ask for more really: the project is built in a strong metal case so even that flat-footed roadie can't damage it; it has a footswitch to enable you to cut in and out while playing; it has six controls which provide boost or cut at six centre frequencies. it's battery-powered (with an option for an external power supply); and it looks good!

Construction

Build up the main printed circuit board (PCB) first. Insert and solder the six links, followed by resistors and capacitors (making sure that the polarised capacitors are the right way round). Figure 2 shows all component locations for this board.

Next insert the four ICs directly into the PCB making sure they are the correct way round and then solder them in.

Insert and solder the $1 / 4$ " jack sockets and switch SW1. Connect a short length of wire to the large solder tag (the tag fits over the switch) and solder the other end of the wire into the board where shown.

Jack socket SK3 should be soldered directly into the board at this time, although as you can see in the view of the prototype board, we wired ours in.

Now fit the battery connector and leave this board aside.

The slider PCB should now be constructed. Insert and solder the five links as shown in Fig. 3.

Now insert the six slider potentiometers into position. Bend their solder tags over the edges of the board and solder them to the copper track.

Using nuts, bolts and $1 / 2$ " spacers, mount the slider board above the main board.

Connect between the two boards, in eight places using single-strand tinned wire.

Insert the complete assembly of two boards into the case and fasten the three jack sockets and the footswitch with their corresponding nuts.

Push fit the slider knobs onto the slider spindles. Insert a battery. Finally, fit the case together and fasten with four self-tapping screws.

Below: Three atages in the build-up of the HE Guitar Graphic Equaliser. On the left is the main PCB. Centre fo the main PCB with the sllder PCB postioned over it and on the right is the finished project

Parts List

A full kit of parts, including PCBs, casa and all hardwere, has been produced by:

Sola Sound Lid,
Unit 6,
LETO Works.
Offmead Road,
Edgware,
Middx.

Figure 2. Component overlay of the main
component PCB

The price of the kit is $£ \mathbf{2 9 . 5 0}$ including VAT and pEp.
Sola Sound can also supply assembled end tested equalisers at $£ 34.50$ including VAT and p\&p. Cases alone are £6 including VAT and p\&p.

RESISTORS (All $1 / 4$ W, 5\%)

R1,10	$680 R$
$R 2,3,9$	$470 k$
$R 4,6,12$,	
15,19	$22 k$
$R 5,7,11$,	
14,18	$470 R$
$R 8,13,16$,	
$17,20,21$,	

POTENTIOMETERS

RV1,2, 22k linear sliding poten-
3,4,5,6 tiometers

CAPACITORS

C1.12,16.

C1,12,16,	
21,23	68 n mylar
C2,8	100 n mylar
C3	10 n mylar
C4,11	47 n mylar
C5	3 n 3 mylar
C6,13	15 n mylar
C7	22 n mylar
C9	33 n mylar
C10	$4 \mathrm{n7} 7 \mathrm{mylar}$
C14,22	220 n polycarbonate
C15	6 n 8 mylar
C17,19,20	$470 \mathrm{n}, 16 \mathrm{~V}$ tantalum
C18	150 n polycarbonate
C24	$10 \mathrm{u}, 10 \mathrm{~V}$ electrolytic
C25	1 nO mylar

SEMICONDUCTORS

IC1-4 LM1458 dual operational amplifiers

MISCELLANEOUS

SK 1.2 1/4" jack sockets
SK3 $\quad 3.5 \mathrm{~mm}$ jack socket
SW1 double-pole, double-
throw footswitch
Battery + clip
Cese to suit
Slider knobs

Equallaar

How It Works

The input guitar signal is buffered and then applied to a group of six filters. Five of these filters are bandpass/bandcut filters; ie, they can be adjusted to amplify or attenuate a single frequency range. The sixth filter is a highpass/lowpass filter; ie, all frequencies above a set 'corner' frequency can be amplified or attenuated together.

In this way a selection of amplified or attenuated frequency bands are combined together in the output mixer.

Because all integrated circuits are of the conventional 741 -type operational amplifiers, they need a three-rail power supply lie, $+\mathrm{V}, \mathrm{OV},-\mathrm{V}$. This is not possible from a 9 V battery alone, so an artificial mid-rail has to be formed electronically. Operational amplifier IC1b is a non-inverting buffer amplifier. Its input the mid-point of potential divider R2 \& 3) and therefore it's output too, is held at 4.5 V . Thus a three-rail power supply; 9 V . 4.5 V, and O V, results.

Operational amplifier IC1A forms the input buffer and IC2a forms the output mixer.

The remaining five operational amplifiers are used in the five bandpass/bandcut filter stages. Centre frequencies of these filters are defined mainly by the values of capacitors in the circuit. For example, capacitors C17 \& 18 define a filter frequency of 200 Hz for IC4b.

A highpass/lowpass filter is formed in the same way as a 'treble' control in a standard hi-fi amplifier. Its corner frequency is defined by the value of C1.

NOTE:
LINKS UNDER SLIDERS

Figure 3. Component overiay of the slider

GREENWELD
 443F Millbrook Road, Southampton, SO1 OHX

All prices include VAT @ 15\% - just add 40p post AMAZING! COMPUTER GAMES
PCBs FOR PEANUTS!!
A bulk purchase of PCBs from soveral well-
known computer games including Bartioships. Simon. Logic 5 and Starbird enabie us ther mese a mcrocible low prices:

STARBIRD

Give wivitic engine burnds and hasting laseat
 down. Prowe contact to see flash and hesi blese of eaers shooting. PCB iested and working

COMPUTER BATTLESHIPS

Frobebry ore ot the mat poputer thationic gemer on two mexiat untonuaior mo nounn

 the board for ths component value: SN7s/it

LOGIC 5

The obfect is
find the number nold in the montains with os fow entries as possible. PCB linked to membrione rype kepbourd. Overtay tox keys and inetruction provided. PCB sirge: 96×80
$85 \times 70 \mathrm{~mm}$. Supolied tested and working $885 \times 70 \mathrm{~mm}$. Supplied tested and working -
PP3 required

MICRDVISION Cartridges

nese ree a small PCB with a micro-proceren

 consodieall Howeven the to wo don't have any occiliotor with a difterent trua. outputs aimpty by ONLY ${ }^{x} 00 \mathrm{~mm}$

ELECTRO-DIAL

electrical combination lock - for maximum Dial iof furned to the right to one number, left to : second number, then right soain to : third the corroct sequerice will the electrical contacts

OEYELOPMENT PACKS

These packs of brand new top quality compocomplete range so the right value is to hand whenever required They also give a subsian. K001, 50 V ceramic plate capacitors. $5 \% 10$ of each value 22 pF to 1000 pF , total 210 . \&4 80 . 002 Extended range 22 pF to 0.1 . Volues over 10000F ore of e greater tolerance. 10 of each
 2200330047006800 .01 . 015 . 022 . 033 . 047.1. PRICE: E7 EB
 each of the lollowing: .01, $015, .022, .033$.
6540
K004 Mylar capacitort. Small sure, verizal
mounting 100 V .10 each of the following: mounting $100 \mathrm{~V}, 10$ each of the following:

$.001, .0012 .0015, .0018, .0022, .0027, .0033$, $.0039, .0047,0056, .0068,0082$. 01. Total 130 | Copacitors. PRICE: 5470. |
| :--- |
| K007 Electrolytic |
| 1000 |

0007 Electrolytic capacitors 25 V working
mall physical dize axal or radiod leade ion each of the tollowing: 1, 2.2, 4.7. 10,22, 47 100,F. Total 70 capacitors' PRiCE: C3. 59 K00s Extended range, os above. also includ cepacitors PRICE: EE 35
K021 CR25 reaistors or similar, miniature $1 / 4$ watt carbon film 5%, as used in neatly all projects 10 of each value from 10 ohms to
iM, E12 series. Total 610 resistors. PRICE: 53.95 all the values from 200 mW to 5%. 10 of esch of 10 V . Tot 280 zen KOS1 LEOs = pack of 60, comprising 10 each red, green and Yellow 3 mm and 5 mm , to-
gether with clips. PRICE: CB 95

CAPACITOR BARGAINS

 $10 / 2550$ 220 FF 10 V autal 5p; 100 E2 30; 1000 \& 16 CS. 60 . $200 \mathrm{uF} 350 \mathrm{~V}, 100+100+50 \mathrm{uF} 300 \mathrm{~V}$ can, 75 44 mm dia. 400: 10/C3; 100/620
owest ever pricell tull eoee by Motorol

TOROIDAL TRANSFORMER 18 V 4 A .6 .3 V 1 A .240 V 0.3 A ideal for scope 1,000 RESISTORS, £2.50 We've just purchased another 5 million
preformed resuators, and can make similar offer to that mode two vears soo, st the semme pricalll K523-1,000 mired ta and 1/TW 50 mnta. Enormous fange of preferred values 1,000 for $2.50 ; 5,000$ E10; 20k EB^{2}

200 ELECTROLTICS, £4

GAS DISCHARGE DISPLAYS

\section*{| 712.5 mm dim |
| :--- |
| 2050 . |}

26502 diph rerminated in 16 DIL noader phug ceivio multuple red ou tpu1 26513 digit as athove
$26523+2$ digit as ab

FILAMENT OISPLAYS 26637 seg draplay 125 mm hrog. Idasi for TTL
operation, taking 5 V 8mA per regy Sid 14 OIL MK4027 SHIFT REGISTER 2048 bin dynamic elith register, 6 MHz , ideal for
CAT displayt buther memones etc. SDecial low

DPTO/REGS/OP-AMPS

```
NA5220 2 digit \(12^{\prime 2} 7\) - seg. display on PCB
``` -seg displays: FND360, 367, 501, all \(50 p\) 530 , 847 . 850 , all 11.50 Rege. TO3 case: 7924 1200, 7885 100p. 7800 Ap Amps: UA4136 130p; UA776 145p: UA7M7 300p: uA 318246 p . solators: FCD831, It15, TL 118 , all 60 p L311 Hexadecimal disp

\section*{COMPONENT PACKS}

\section*{503150 winewound resistors from IW 10}
 including single ganged, rotary and slider K 511200 small value poly, mice, coramic caps from a tew pf to . O2 uF Excellent variely E 1.20 K514 100 silver mica casp from 5pF to tew
thousand pf. Tolerances from 1\% to \(10 \%\) \& thous and pf. Tolerances from 1\% to 10\%
k 520 Swith Pack. 20 ditterent, rocker, slide, 520 Switch Pack, 20 different, rocker OHary, toggle, push, micfo, ete. Only \(\mathbf{Q 2}\).
K 521 Heatshink Pack, 5 different siren 200 mm .50 p

\section*{PAMELS}

2521 Panel with 16236 (2N3442) on small
heatsink. 2 N 2223 dual transistor. 2 BC108. diodes. cans, ressitiors. etc.
\(\mathbf{4 8 2}\) Potted Oscilltor Module woiks from .20 V , can be uscd as LED flasher (3 V min.) SEO LeD lied with connection date, suitable A, C E1 2527
Reed selay panel - contains \(2 \times 6 \mathrm{~V}\)
2
2529 Pack of ex-computer panels conraining plex logic. All ICs are marked with type no. or code for which an identification sheet is A 504 phed. 20 ICs C1; 100 ICs \(\mathrm{E4}\). ase PCB inside has 240 reed relay, 200 V 7 MA RELAY/TRIAC PANEL
2537 PCB \(100 \times\) 万m \(2 \times 12 \mathrm{~V}\) DPCO min. etays, \(2 \times 47\) ut 16 v conts C146E 1045001 dioces, \(2 \mathrm{NSO61}, 2 \times 3 \mathrm{~mm}\) leds \(3 \times 2 \mathrm{~N} 3704\), also H 's and C . Amazing valuell - \({ }^{\text {H }}\) bought seberately parts
would cosl around call - Price for the panel ius? would
C2.00.

\section*{IW AMP PANELS} A011 Compact audio smp imended for record
player on panel 95.65 mm including vol
and control and switeh. complete with tnobs. Apart from amp clifculisy built around LM 380 N of TBAB20M, there is a speed control
circuit using 5 transisiors. 9 OV operation
connection dara supplied
ONIY 1.50 .

\section*{VU METERS}

Voo6. Very attractive \(55 \times 46 \mathrm{~mm}\) scaled -20 to
-5 dB . 250 u movement. Only C 1.75 of \(\mathbf{e 3} \mathrm{pp}\).

\section*{VERDBLOC BREADBDARO}
and testing circuis can accommodate any ire of IC. Blocs can be joined together. Bus strips on \(X \& Y\) axis
REGULATED PSU PANEL
28 V \& \(20 \mathrm{~mA}-2 \mathrm{~A}\) Board contains all compo nents except pots and transformer. Only
\([7.75\). Suituble transformer and pors \(\mathbf{f 6}\) Send [7.75. Suitable trans
SAE for fuller deraile

\section*{WHTRIIP dasia poweralip?}

Because ILP MOSFET power amps give you uttra performance without costing big money. Performance you thought you couldn't aftord at a price you know you can

AII ILP modules are compatible with each other - you'll find many more in other ILP ads in this magazine. Choose ILP MOSFET powe mos when you need the fastest possible slew rate, low distortion at high trequencies, better thermal stability. MOSFET power amps wor with complex loads without difficulty and without crossover distortion. Connection is simp create almost any audio system, whatever your aoe or experience

ILP MOSFET power amps are now available with
negrat hearsink (no extra heatsink required). or ready torion detail on data sheet mounting on to your own heatsink or chassis. Full dissipan den com sith connection data

Send your order FREEPOST Ioday on the coupon at the foot of this ad

MOSFET Ulitra-fi, with healsinks
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Moder No & Outpor power Meter ims & \begin{tabular}{c}
DISTOATHON \\
TH.D \(\quad 1 \mathrm{MD}\) \\
Typ \\
at 1 kHz \\
\hline \(0 \mathrm{KHz} / 7 \mathrm{kHz}\) \\
41
\end{tabular} & Supply voltage Typ/Max & Size mm & \[
\left.\begin{gathered}
W \\
g \mathrm{~ms}
\end{gathered} \right\rvert\,
\] & Price nic VAT & Perce VAr \\
\hline MOS 120 & 60w/4-80 & <0.005\% <0006\% & \(\pm 45 \pm 50\) & \(120 \times 78 \times 40\) & 420 & £29 76 & £25 88 \\
\hline MOS 200 & 120w/4-8! & <0 005\% <0 006\% & \(\pm 55 \pm 60\) & \(120 \times 78 \times 80\) & 850 & ¢38.48 & £33.46 \\
\hline MOS 400 & 240w/40 & <0 005\% <0 006\% & - \(55 \pm 60\) & \(120 \times 78 \times 100\) & 1025 & £52 20 & [45.39 \\
\hline
\end{tabular} MOSFET Uitra-Fi without heatsinks
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline MOS 120P & \(60 \mathrm{w} / 4 \cdot 89\) & \(<0005 \%<0.006 \%\) & \(\pm 45 \pm 50\) & \(120 \times 26 \times 40\) & 215 & \(£ 2682\) & \(£ 2332\) \\
\hline MOS 200P & \(120 \mathrm{w} / 4.8 \mathrm{l}\), & \(<0005 \%<0006 \%\) & \(\pm 55 \pm 60\) & \(120 \times 26 \times 80\) & 420 & \(£ 3281\) & \(£ 2853\) \\
\hline MOS 400 P & \(240 \mathrm{w} / 4 \Omega\) & \(<0005 \%<0006 \%\) & \(\pm 55 \pm 60\) & \(120 \times 26 \times 100\) & 525 & \(£ 4475\) & \(£ 3891\) \\
\hline
\end{tabular} Protection:

Able to cope with complex loads, without the need for very special protection circuitry (fuses will suffice).
Uitra-fi specifications
Slew rate \(20 \mathrm{~V} \mu \mathrm{~S}\). Rise time \(3 \mu \mathrm{~s}\). \(\mathrm{S} / \mathrm{N}\) ratio 100 db . Frequency response (-3 dB) \(15 \mathrm{~Hz}-100 \mathrm{kHz}\). Input sensitivity 500 mvims . Input impedance 100 k . Damping lactor (\(802 / 100 \mathrm{~Hz}\)) \(>400\).
How to order Freepost
Use this coupon, or a separate sheet of paper. to order these products. of any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid : cash must be registered. C.O.D. - add \(£ 1\) to total order value. Access and Barclaycard welcome All UK orders sent post tree withn 7 days of receipt of order.

Please send me the following
ILP modules
Total purchase price
Ienclose Cheque \(\square \quad\) PostalOrders \(\square \quad\) Int. MoneyOrder \(\square\)
Name
Address

Signature
Posi to ILP Electionics Lid. Freepost 2. Granam sell house. Roper chose Canterbury CT2 7 tP. Kent. England

0227164723 Teter 965780

ELECTRONICS LTD
STAYAHEAD.STAY WITHUS

\title{
Steering Towards Micro Control
}

\section*{Some recent applications of integrated circuits and microprocessors in car electronics, and the possibilities of fully integrated microprocessor-controlled systems, are outlined by Bill Mitchell*, who also looks ahead a decade or so to the time when we could be driving 'hands off' on an automatic highway}

THE APPLICATION OF ELECTRONICS in areas such as ignition, regulators, fuel injection, fuel consumption/economy computers, warning flashers and air conditioning is becoming a standard feature of many models of cars now coming off worldwide production lines. In fact, some systems are so well established that they can be purchased as individual items for installation by enthusiasts in older makes of vehicles.

However, these are all systems in isolation; that is, they are not 'integrated' as a total vehicle system (and it is doubtful if any of them could be) and for the average motorist this situation is likely to prevail for a number of years.

Fully integrated electronics in production cars would control not only those functions already mentioned but would also control engine management, anti-skid braking, continuous monitoring of tyre pressures, oil levels, coolant levels etc by means of non-contacting sensors, all through a central computer - or possibly a distributed computer system - and using a 'two wire' system to replace the conventional cable harness.

At present, such sophistication is only to be found in experimental, one-off vehicles, but work is progressing rapidly in the major car-producing nations, and possibly by 1983 we should see the first 'computerised' car in production. Indications are that the race to achieve this distinction will be between the Americans, the Japanese and, conceivably, the West Germans.

The ultimate, and this will be a decade or so away, is the computer-controlled car with built-in route guidance running on an automatic highway system.

\section*{Components Of Integration}

Few of the electronic systems as we know them today will be capable of meeting all the requirements of a fully integrated and computerised system. First, they have not been designed for such operation. Second, the rapid advances in technology will undoubtedly render them obsolete over the next 12 to 24 months. Third, in certain areas two or more individual systems could well be integrated into single sub-systems. For example, over the last 15 years nearly four million vehicles in Europe have been equipped with electronic fuel injection systems. Couple this with electronic spark advance, which could become significant by 1983, and integration of the two is the next obvious and predictable step. Another example is the electronically-
controlled carburettor. This could be with us by 1983 and its function is likely to be combined with electronic ignition or digital spark advance within a shared module.

\section*{Engine Management And Fuel Injection \\ Engine management systems, taking full advantage of all that} the microprocessor has to offer, are now being designed into new vehicles by many of the world's major car manufacturers. Prominent in the UK in this field is Lucas Electrical whose system employs the technique of measuring the engine air consumption on a mass flow basis by using an improved and mechanically strengthened device working on the principle of hot-wire anemometry, a technique which is capable of operating in car environments.

The Lucas hot-wire air mass flow meter, as it is known, is accurate for all inlet air conditions but a special solenoid cold start/idle valve is incorporated to provide control of idle speed. This allows the engine idle speed to be set throughout the complete engine temperature range, irrespective of the power required to drive ancillary equipment such as the air-conditioning compressor and power steering pump. A microprocessorbased Electronic Control Unit (ECU) calculates the fuelling and ignition timing requirements for each operating condition of the engine, using data from the air mass flow meter and from sensors measuring coolant temperature, crankshaft position and speed (Fig. 1).

Each of the two crankshaft position sensors, which give information on engine speed and ignition timing, provides a pulse for each engine revolution and determines the sequence in which the ignition coils are energised, and hence the firing order of the engine. Under normal operating conditions the microprocessor calculates the timing advance by delaying the spark for a specified time from the preceding crankshaft transducer signal. It also calculates the required dwell time to ensure that sufficient energy is stored in the coil - two doubleended coils eliminate the need for a distributor. The sensors also provide the pulses that control the timing at very low engine speeds.

Engine intake air flow, water temperature, throttle position, battery voltage and engine speed are first converted into digital form, from which the microprocessor computes the fuel and spark timing required by the engine for minimum fuel consump-

\footnotetext{
*The author is Editor of Electrotechnology and the IEETE Bulletin, of the Institution of Electrical and Electronics Technician Englneers.
}
tion, low exhaust emissions and good driveability. The ECU also controls the fuel pump so that, with the engine stationary, the fuel pump is automatically switched off, thus preventing fuel spillage in the event of an accident.

An integral part of the overall system is electronic fuel injection, and the Lucas Electrical system uses a digital control unit incorporating LSI (large-scale integration) circuits and a 1024-bit ROM (read-only memory) which contains the fuel schedule for the engine. In addition to providing improved fuel economy, performance and driveability, the system also reduces exhaust emission to comply with legislation.

Figure 1. Input/output signals of Lucas Electrical's Electronic Control Unit

The processing of information within the control unit is shown in Fig. 2. Load input signal and engine speed (obtained from the ignition system) are each converted into a digital 'word' which is influenced by the interpolation mathematical function obtained from the fuel requirements of the engine. The modified numbers representing load and speed are then used to select the site in the memory which stores the fuel requirements for these particular conditions. The memory output number (fuel quantity) is fed into a number-to-time counter where it is stepped to zero by a fuel trim oscillator. Power circuits energise the solenoid injectors for the countdown period of the number-to-time counter, when fuel is delivered to the engine. Fuel enrichment under cold-start conditions is provided through a separate cold-start injector.

The circuit used to drive the injector solenoids is one of the most critical points of an electronic injection system, which normally uses a constant-current drive. It is present-day practice for discrete power devices to be used to drive the solenoids but the biggest problem here is that, to overcome initial stiction (friction or sticking), the injector coil and its driving circuit have to withstand a high current for the whole time that the solenoid is open. This high current is required despite the fact that, once the solenoid is activated, only a relatively small holding current is required to keep it open. The problem appears to have been overcome by SGS-ATES. This company has recently developed a new integrated circuit (type L583) which, when the IC is coupled to a power stage, allows the generation of a two-level switching current waveform that guarantees the maximum efficiency of operation and very low response times. Its design is such that, during initial switch-on of the solenoid, the power Darlington transistor under its control provides the high current required to overcome solenoid stiction, and afterwards has its current reduced to a holding level.

\section*{Ignition Control}

The wide range of electronic ignition systems currently used in cars, or available as DIY items, are generally of the inductive storage type, where energy is stored in the ignition coil primary winding, or the capacitor discharge type, where the energy is stored in a capacitor. Either of these may or may not use some
form of triggering to replace the contact breaker, and this triggering could be either optical or magnetic in operation.

A more recent form of breakerless electronic ignition that is gaining in popularity, and which would appear to lend itself well to integrated circuit or microprocessor control, is that which uses a Hall-effect sensor. With this technique, named after E.H. Hall who first discovered the effect in metals in 1879, if a current is allowed to flow through a plate of semiconductor material from one edge to the opposite edge in the presence of a magnetic field across the faces of the plate, a voltage is produced across the other two opposite edges of the material. ISee Technical Terms, HE September '81, page 23.) If the magnetic field is constant the Hall voltage is proportional to the current, and if the current is held constant the Hall voltage is proportional to the magnetic field.

In practice, a typical Hall-effect ignition sensor comprises a fixed Hall-effect semiconductor, through which a fixed current is passed, and a fixed magnet, separated by an air gap. A slotted metal vane is then passed between them which has the effect of switching on and off the magnetic field to the semiconductor, so producing ignition pulse voltages and thus eliminating the need for contact breaker points. Variations of this have been, and are being, developed along with associated discriminatory circuitry to overcome the effects of temperature variations which can occur.

Typical of the integrated ciruit controllers that have been designed to control the dwell angle in a Hall-effect ignition system is the Siemens TLF1492 (Fig. 2). With this the charging time of the ignition coil is controlled so that the primary current will reach its permissible maximum value just at the moment of ignition. 8ecause high-performance ignition coils are used, the ideal ignition energy is available during any driving state and, at the same time, the average power dissipation of the ignition circuit will be minimised.

Another integrated circuit is the SGS-ATES L482, intended for use in breakerless ignition systems using Hall-effect sensors and high-energy coils to provide regulated current in the coil with low power dissipation. It is also particularly suitable for use as a dwell controller and driving stage in more complex ignition systems which use microprocessor circuits. Full current, overvoltage, reverse battery and thermal protection circuits are incorporated in the device.

Figure 2. Signal processing with Lucas Electrical's Electronic Control Unit

\section*{Anti-skid Braking Control}

Control of braking during skid conditions will be an important feature of road vehicles in the near future and a number of systems are being developed worldwide. Typical is a system announced by Robert Bosch GmbH of West Germany. It has developed a microprocessor-based anti-skid control system which is designed to maintain vehicle stability and steerability during emergency braking on any road surface.

The system depends on the fact that, with the brakes ap-

\section*{Feature}
plied, only a rolling wheel provides the necessary lateral (sideways) support at optimum deceleration. A locked wheel cannot transmit lateral forces, so a car with locked wheels loses steering control and stability. Hence the reason for the manual 'pumping' of the brakes when stopping on wet, icy or snowcovered roads.

To prevent the wheels from locking, the Bosch anti-skid brake control system senses continuously whether or not there is a tendency for any of the wheels to lock. The wheel-sensor signals are processed by a set of AMI Microsystems microcomputers, and these form part of an electronic control unit which activates the hydraulic brake unit, modulating the brake pressure by means of electromagnetic valves. Such action simulates the manual pumping of a brake system but at a much higher rate, and also modulates the pressure in the wheel brake cylinders individually to obtain optimum stability and deceleration.

Three custom-designed microcomputers are used in the total system. One monitors the sensors on the right front wheel and drive shaft: another monitors the left front wheel and drive shaft. The third functions as a safety monitor to ensure that the system is functioning correctly. If a system malfunction occurs, the monitor circuit returns the brakes to normal operation and flashes a warning on a dashboard indicator.

This system is currently being offered as an option on a number of European vehicles, but no American car manufacturer has yet incorporated the system.

Wheel speed and vehicle speed reference in this system are derived from transducer sensors, while some schools of thought suggest that an optimum system should be based on knowledge of the true vehicle speed relative to the ground. One method of obtaining this speed is to use the principle of Doppler radar, and Philips Research Laboratories at Redhill has developed an experimental system in which a continuous wave in the microweve frequency band (\(X\) band) is beamed from the vehicle onto the road surface at a specific angle. The forward motion of the vehicle causes a Doppler frequency shift proportional to speed in the returned (reflected) signal from the road surface. After mixing with a sample of transmitter signal, this low Doppler frequency beat is amplified, frequency band limited and counted electronically to give a speed reference which can be used by a microprocessor-based anti-skid system.

Figure 3. Siemens' integrated ignition controller used with a Halleffect Ionition system

\section*{Integration Of Instrumentation}

The concept of integration is now being applied to the car dashboard layout where, by the use of optoelectronics, the entire instrumentation can be built into one panel. Of the various types of displays available and under development, the two which are most suitable are direct current electroluminescence (DCEL) and vacuum fluorescence (VF), both of which have the advantage that they emit light. The colour of the light produced is a function of the phosphor used, and hence the displays require no other means of illumination, unlike liquid crystal displays (LCDs) which require back lighting. A number of countries, including the UK, have been experimenting with both types of displays for some years - Smiths Industries Ltd, for example, demonstrated a practical installation based on DCEL as far back as 1978 (Fig. 4) - but at present neither has emerg-

Figure 4. Smiths Industries' DC electroluminescence display system installed in a prototype vehicle
ed as the dominant technology, although VF does appear to hold favour in the USA and Japan.

In construction, the DCEL display consists of a glass plate, the reverse side (the side furthest from the viewer) of which is coated with a thin film of conductive material (usually indium oxide or tin oxide), the desired character pattern being produced by a photo-resist and etching process. This is followed by a coating of phosphor and a thin coating of aluminium or silver which forms the negative electrode. A protective cover is then fitted and the assembly is gas filled. Application of voltage between the negative electrode and the conductive pattern on the glass plate (the positive electrode) causes the phosphor to glow in the shape of the etched pattern. A dot matrix pattern enables a range of characters to be presented from one display.

With the VF display, a thin aluminium film (the negative electrode) is deposited onto the glass plate and a pattern is etched in a similar way as that used in the manufacture of the DCEL display. Next comes a layer of insulation (usually screen printed) with spaces left for the positive connections, and this is followed by a further layer of aluminium used as a base for the deposited phosphor. The assembly is then covered and hermetically sealed. As with DCEL a dot matrix pattern enables a range of characters to be presented from one display. The subtle difference compared with DCEL is that the illuminated characters appear at the back of the assembly while with DCEL they appear on the reverse of the front glass plate. However, both assemblies are so slim that this difference is not apparent.

The predominant colour with DCEL is yellow so that a multicoloured display would require the use of optical filters to give the desired effect, although development of phosphors emitting different colours is proceeding. With VF displays a limited range of colours is already available, although some filtering may still be necessary.

Apart from the major benefit of both types being selfilluminating, their big advantage is the slimness of the final assembly. For example, a typical instrument panel using DCEL would measure \(360 \mathrm{~mm} \times 60 \mathrm{~mm}\) with a total thickness of only 12 mm , and would contain 35 parts and process steps. Compare this with a conventional electromechanical instrument panel presenting the same amount of information which would measure \(400 \mathrm{~mm} \times 120 \mathrm{~mm}\) with a total thickness of 60 mm and containing 430 parts.

Another important aspect to consider is that the ready availability of membrane switch panels now enables a complete system, comprising displays, indicators and switches, to be integrated into one slim-line instrument module. (See Technical Terms, HE October '81, pp 27-28.)

\section*{Continued Next Month}

Bm Mitchell continues Cer Electronics in next months' HE. He looks at methode of obtaining stabilised power supplies in vehicles and outlines other parts of the vehicte to be brought under electronic control. He elso conalders the diemma facing vehicle manerfecturers: totil integration of control or separate control syatems. The articis conchides with a description of automatic highways.

\section*{GIECTRONIC IGNITION SAVES PATROL}

More and more new cars use electronic ignition to give the best performance and economy. Gring YOUR CAR up to top specification by fitting the latest TOTAL ENERGY DISCHARGE electronic system

TOTALENERGY DISCHARCE gives all
the advan of the best capacitive discharge rgnition
- Pan Purformence-higher output voltage.
- Improved Economy-consistent high ignition performance
- Better Abriting-full spark power even with low battery.
- Aceurns Tining-prevents contact wesr without 'contactiess' errors
- Smooth Performance-immune to contact bounce offects.

PLUS
SUPER HIOH POWER SPARK- \(31 / 2\) times the energy of ordinary C.D. systems OPTIMUM SPARK OUNATION-to get the very best performance and economy with odays lean carburettor sentings.
OESIONEO IN RELIABILITY - with the 'ultimate insurence of a changeover switch to revert insuantly to standard tonition.

\section*{TECHNICAL DETAILS}

HIOH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 volt energy source-powertul enough to store iwice the energy of other designs and regulated to provide full output even with the battery down 10 volts.
SUPERE DISCHARGE CIMCUIT. A brand new technique prevents energy being reflected back to the storage cepacitor, giving 3 V times the spark onergy and 3 times the spark duration of ordinary C.D. systems, generating aspark powerful enough io cause rapid kgnition of oven ho weakest inductive syssems. In addition this circuit maintains the correct output polarity thereby preventing unnecessary stress on the H.T. system.

SOPHISTICATEO TRIGQEA CIACUIT. This circuit removes sll unwanted signals caused by contact volt drop, contaci shuftle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. low level - lus sufficient to keep the contacts clean

IN MONEY-SAVING KIT FORM te £14.85
Also MOTORCYCLE TNN OUTPUT KT at E22.94
All you ned is a smatl soldering iron and a few basic tools - everything else is supplied with basy to-follow instructions.

\section*{Now is the time to buy me I'm the ideal Christmas gift and I'm only £24.50!}

It's truel As a special Christmas offer we've actually cut nearly \(£ 5.00\) off the price of 'Speechtime' - the first ever easy-to-build speaking clock kit. 'Speechtime's' combination of electronics and quartz technology plus clear instruction manual make it fun to build and fun to own equally suitable for beginner or expert.
Speechtime also makes a great gift to build for sorieone else. Look at these 'plus' features:
- Accurate to a minute a year - Adjustable voice pitch
- Pocket size - approx. 5in. \(\times 21 / 2 i n . \times 1 \mathrm{in}\).
- Grained stainless-steel case
- Useful in the home or office

Silicon Speech Systems

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3NW
EASY ORDERING BY TELEPHONE
- RING ANDOVER (0264) 64455

AND GIVE YOUR ACCESS OR
BARCLAYCARD NUMBER -

\title{
A drum synthesiser to build yourself, for under \(£ 30\) - an exceptional project at an exceptionally low price
}

NOT ONLY CAN this project imitate the sounds of various types of drum, it will also produce other sounds not entire.'. \(\gamma\) typical of natural percussion instruments, but which can still be used for rhythm-keeping purposes. Perhaps the commonest sound recognisable as such is the 'beeoombeeoom' sound featured on certain pop records. The range of available noises and sounds is very wide and with a bit of practice any 'player' will be able to obtain many interesting electronic rhythm accompaniments.

The project is simple to build and is constructed using a printed circuit board (PCB). Two integrated circuits along with only a handful of semiconductors and passive components form the circuit.

An integral crystal microphone acts as the pickup for the project, but an external microphone can be used instead, and a headphone monitoring socket allows the player to set up the synthesiser using headphones so that fellow musicians are not disturbed.

\section*{Construction}

Insert and solder all resistors and the
single link into the PCB.
Figure 2 shows the PCB overlay.
Next, insert and solder all capacitors into place, making sure all electrolytic capacitors are the correct way round, followed by the three
transistors and the diodes.
It's a good idea to use circuit board pins where all off-board connections are to be made (shown in Fig.2) so insert and solder them into place now.

Integrated circuits IC1 \& 2 can be soldered directly into the PCB, but as they are fairly expensive devices, we advise you use IC sockets. The sockets should be soldered in and then the ICs pushed into place. Check that these ICs to their correct places.

Next, mark and drill the case for all controls and sockets and fasten them to their correct places.

Following the connection details in Fig. 2 wire up your project. Use thin multi-stranded wire for this job and tie the PCB to front panel leads together with cable ties, to give a neat finish.

\section*{Operation}

Before you turn on your project, set all

\section*{Buylines}
A complete kit of paris (including case
and PCB) is obtainable from:
Bewbush Audio,
26 Hastings Road,
Pound Hill.
Crawley, Sussex.
Order as DS 1 kit. Price is \(£ 29.95\) in-
clusive of VAT and p\&p.

\section*{Parts List}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RESISTORS (All \(1 / 4 \mathrm{~W}, 5 \%\))} \\
\hline R1,3,5 & 100k \\
\hline R2 & 2k2 \\
\hline R4 & 1 kO \\
\hline R6.8 & 680k \\
\hline R7 & 82k \\
\hline R9 & 3k9 \\
\hline R10 & 150k \\
\hline R11 & 39k \\
\hline R12 & 68k \\
\hline R13 & 10k \\
\hline R14 & 22R \\
\hline R15 & 18k \\
\hline \multicolumn{2}{|l|}{POTENTIOMETERS} \\
\hline RV1 & 220k linear potentiometer + double-pole, doublethrow switch \\
\hline RV2 & 1 MO linear potentiometer \\
\hline RV3 & 100k linear potentiometer \\
\hline RV4,5 & 220k linear potentiometer \\
\hline \multicolumn{2}{|l|}{CAPACITORS} \\
\hline & 10u, 16 V printed circuit mounting electrolytic \\
\hline C6 & 390p ceramic \\
\hline C7 & 100n polyester \\
\hline C9 & 1 nO polystyrene \\
\hline \multicolumn{2}{|l|}{SEMICONDUCTORS} \\
\hline IC 1 & TLO82 dual operational amplifier \\
\hline IC2 & SN76477N complex \\
\hline & sound generator \\
\hline 01.2 & BC5478 NPN transistor \\
\hline 03 & BC558A PNP transistor \\
\hline D1.2 & 1 N4148 diode \\
\hline \multicolumn{2}{|l|}{MISCELLANEOUS} \\
\hline SW 1 & three-pole, four-way rotary switch \\
\hline SW2 & single-pole, single-throw rotary switch \\
\hline \multicolumn{2}{|l|}{Case to suit} \\
\hline JK 1,3 & mono \(1 / 4\) " jack socket \\
\hline JK2 & stereo \(1 / 4{ }^{\text {" }}\) jack socket \\
\hline \multicolumn{2}{|l|}{Knobs to suit} \\
\hline \multicolumn{2}{|l|}{Crystal insert} \\
\hline PP6 sized bat & ttery + clip \\
\hline
\end{tabular}

\section*{How ltWorks}

Sound, picked up by the microphone as the project's case is tapped, is amplified and then used to control a voltage controlled oscillator (VCO). The frequency of the oscillator output signal is thus proportional to the gain of the amplifier and how hard the project is struck.

A noise generator produces white noise when required and an LFO (low frequency oscillator) generates a low frequency (2-20 Hz) sinewave.

An electronically controlled mixer accepts a combination of one or more of the three sound generators. The output of the mixer is then amplified and fed to the headphones.

The heart of the drum synthesiser is integrated circuit IC2. This device (an SN76477) is complex. It contains: the VCO; a VCA; the noise generator; the LFO; the mixer; and a 5 V regulator. The latter is important because the output of the chip depends on the logic levels on 'mixer select' pins 25, 26 and 27. The 'voice' of the synthesiser
is determined by connecting these pins, via SW1, to the output of the regulator.

The LFO is used to modulate both the VCO and the noise generator. This is switched 'IN' or 'OUT' by means of SW2.

Transistors 02 \& 3 are used as a complementary output amplifier stage, to allow headphone moni-
toring of the project's output. The actual output amplitude is variable over a large range by controlling the current from pin 11.

Before the circuit is triggered, Q1 is switched off, and no current flows from pin 11 - so the output signal amplitude is zero. However, when triggered, the collector voltage of 01 drops to 0 V and the output amplitude is at maximum. As the trigger voltage decays so does the output signal (because Q1's collector voltage increases and reduces the pin 11 current).

Input trigger signals, from either an external microphone or the internal pickup, are applied to the input of IC1 a via RV1. Most types of microphone can be used to trigger the circuit. Operational amplifier IC1b is configured as a comparator. When its inverting input is at a more positive voltage than its non-inverting input, the output is at a low state. However, as soon as the voltage on the non-inverting input goes higher than the inverting input voltage, the output switches to a high voltage.

This comparator action rapidly charges capacitor C4 on every trigger pulse from the pickup. Potentiometer RV2 controls the discharge rate of the capacitor, hence the duration of the sound. HE

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.
\(\bullet\) V.A.T. must be added on all items. © Shop hours \(9 \cdot 5.30\) (Weds. 9 - 1) - ex-stock delivery on all items. Units on demonstration, callers welcome. \(\bullet\) Post and packing charge 50p per order. \(\bullet\) S.A.E. with all enquiries please.

Get a great new deal from Marshall's

\section*{VISIT OUR STAND} at BREADBOARD 81

\section*{11th-15th NOVEMBER 1981}

\section*{SPECIAL THIS MONTH SIEMENS ELECTROLYTIC CAPACITORS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{B41010 AXIAL} & \multicolumn{2}{|c|}{B41070 RADIAL} \\
\hline 220/63v & 0.35 & 1000/63v & 1.50 \\
\hline 220/100v & 0.40 & 2200/25v & 1.50 \\
\hline 470/25v & 0.33 & 2200/40v & 1.75 \\
\hline 470/40v & 0.36 & 2200/63v & 205 \\
\hline 470/63v & 0.45 & 4700/25v & 2.00 \\
\hline 470/100 & 0.75 & 4700/40v & 2.10 \\
\hline 1000/25v & 0.45 & 4700/63v & 3.50 \\
\hline 2,200/25v & 0.75 & 10.00/25v & 3.15 \\
\hline 2,200/40v & 0.95 & 10.000/40v & 3.75 \\
\hline 4,700/ & 1.10 & & \\
\hline
\end{tabular}

DISCOUNTS CAN BE ARRANGED FOR OUANTITY PURCHASES

\section*{NEW "CHIP SHOP" ELECTRONICS CONSTRUCTION KITS, MAKE IDEAL PRESENTS \\ FOR THE YOUNGER ENTHUSIAST BEGINNER ALSO MORE ADVANCED "ELECTRONICS CONSTRUCTION" KITS. SEE THEM AT OUR STAND AT "BREADBOARD" 81 OR OUR SHOP AT 325 EDGWARE ROAD, LONDON N.W. 2}

Please note that all "Mail Orders" should be addressed to: Kingegate Housa, Kingegate Plece, London NW8 4TA Quoting Ref. HE12

PLEASE ADD POSTAGE/PACKING 60p UNLESS STATED. ALSO \(15 \%\) VAT ON TOTAL
A. Marshall (London) Ltd.

Kingsgate House, Kingsgate Place, London NW6 4TA Industrial Sales: 01-624 0805
Mail Order: 01-624 8582 - 24-hour service Also retail shops:
325 Edgware Road, London, W2 85 West Regent Street, Glasgow

\section*{MXYERSFADERS} YOMTIER DRIVERS ANDMORE ALNEWFROMILP

Just some of the 28 new amazingly compact modules from ILP Electronics, Britain's leader in electronics modules - you'll tind more new products in the amps and pre-amps advertisements

All ILP modules are compatible with each other-you can combine them to create almost any audio system. Together they form the most exciting and ver satilie moduliar assembly system for constructors of all ages and experience.

Every hem from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon below today! MIXERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Moder } \\
& \text { No }
\end{aligned}
\] & Modute & What it does & Current requaned & \[
\begin{array}{|l|l|}
\hline \text { Pic. VAT }
\end{array}
\] & \\
\hline HY 7 & Mono mxaer & Moes eiphl signals into one. & 10 mA & ¢5.92 & \(£ 5.15\) \\
\hline HY 8 & Stereo maxer & Two chamels. each moung tive signas into one. & 10 ma & £7.19 & £6.25 \\
\hline HY 11 & Mono mixer & Maxes ive signals mito one — with base/ireotio controls & 10 mA & ¢8.11 & £7.50 \\
\hline HY 68 & Sterso mixer & Two chamnets. each meong len signas into one. & 20 mA & £9.14 & ¢7.95 \\
\hline HY 74 & Sterso mexer & Two channels. each meang tive signats into one - with trebele and bass controls & 20 mA & £13.17 & £11. 45 \\
\hline
\end{tabular}

AND DTHER EXCITING NEW MDOULES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mocel No & Mocule & What ill does & Curront required & \[
\begin{array}{|l|}
\hline \text { Price } \\
\text { inc. VAT } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { Price } \\
\text { ex. Mat } \\
\hline
\end{array}
\] \\
\hline HY 13 & Mono VU meter & Programmable gain/LED overload drwer. & 10 mA & £6.84 & £5.95 \\
\hline HY 67* & Stereo headphone diver & Whll orve stereo heacphones in the 4 chm2 K ohm range. & 80 ma & £14.20 & E12.35 \\
\hline MY 72 & Vuce operated sterse tader & Provides depth/delay effects & 20 mA & 515.07 & 293. 10 \\
\hline HY 73 & \[
\begin{aligned}
& \text { Gutar } \\
& \text { pre-amp }
\end{aligned}
\] & Handies two guitars (bass and lead) and mic whin separate volume/hass/trebie and max & 20 ma & ¢14.09 & 512.25 \\
\hline HV 76 & Siereo swich matrox & Provides two chamets. each swicting one of four signals into one & 20 ma & \multicolumn{2}{|l|}{To be amnouncod} \\
\hline HY 77 & Sereo VU meter druer & Programmable gam/LED overiond driver. & 20 mA & £10.64 & c9.25 \\
\hline
\end{tabular}

For easy mounting we reconmend
86 mounting boarr lor modules HY6 -HY13 5090 inc VAT. \((0.78\) ex. VAT.)
"All modules are encapsulated and include cip-on edge connectors Al aperata from \(\pm 5 \mathrm{~V}\) minumum \(10 \pm 30 \mathrm{~V}\) maxumum. needing dropper resistors for higher votages. MY67 can be used onty with the PSU 30 power supply unt Modules HY6 to HY13 measure \(45 \times 20 \times 40 \mathrm{~mm}\). HY66 to HY77 measure \(90 \times 20 \times 40 \mathrm{~mm}\)
FP 480 BRIDEING UNIT FOR DOUBLNG POWER
Designed specially by ILP for use with any two power amplitiers of the same type to couble the power output oblained and will tunction with any ILP power supply. In totaly seaied case, size \(45 \times 50 \times 20 \mathrm{~mm}\) with edge connector. It thus becomes possible to oblain 460 watts rms (single channel) into \(8 \Omega\). Contributory distortion less than \(0.005 \%\). Price: \(£ 5.51\) inc. VAT rms (single channe
(Ex. VAT 反4.79.)
(Ex. VAT §4.79.)
How to order Freepest:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: cash must be registered. C.O.D. - add \(£ 1\) to total order value. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order.
Please send me the lollowing ILP modules

Total purchase price
I enclose Cheque \(\square\) Postal Orders \(\square\) Int. Money Order \(\square\)
Please debitmy Access/Barclaycard No
Name
```

Address

```

Signature \(\quad\) Post to ILP Electroncs Lid. Freepost 2 Graham Bell House. Roper Close. Canterbury CT2 TEP. Kem. England Telephone (0227) 54778 Techuncal (0227) 64723 Tetex 965780

ELECTRONICB ㄴT STAYAHEAD.STAYWITHUS

\section*{The Editor answers a selection of your letters}

THIS IS THE last opportunity I'll have to answer some of your letters on this page and so l've tried to fit in a few more than usual.

There's nothing like a controversial start to an article, and so l'll begin with this letter from D.L. Gillan, which was passed to me by Clever Dick.

\section*{Dear Sir,}

Re your 'HE reader offer' in the Oct. issue. I was seriously considering purchasing the SK6220 when, purely by chance whilst browsing through one of your rival mags Everyday Electronics (one I seldom lift from the shelf), I came across an ad for the SK6110 and SK 6220 with price tags of \(£ 59.95\) and \(£ 42.95\) respectively. OK you're not a charitable organisation, your offer prices show that only too well. Also your prices are lower than the recommended retail but if Audio Electronics can make a profit at the abovementioned prices why con readers? No doubt you will have a plausible answer. If so I would very much like to hear it.

Obviously you cannot print this but if you could I don't want a binder - a buckshee SK 6110 or 6220 will do in stead.
D.L. Gillan

Clydebank
Yours is the second letter I have received about our Special Offer Digital Multitesters. Just after the October issue went to press I too saw the advertisement you mention and was equally surprised: when we made arrangements with our supplier, West Hyde Developments Limited, the prices represented a special offer to our readers. I discussed the matter with Chris Long, product manager at West Hyde. According to Chris, when products such as the HE Digital Multitesters travel half-way across the world it is possible for them to reach the British market-place by several different routes and to be sold at several different prices. The important point he made was that West Hyde has been trading with the Japanese exporter of these instruments for many years and is in a position to offer a full service back-up. For instance, in the unlikely event of a serious manufacturing defect occurring in either model, West Hyde will replace the defective instrument with a brand new one. (Both models, by the way, carry a 12 -month guarantee.) Our Special Offer prices may be above those of the other company but we can at least offer the back-up of West Hyde, a company which often advertises in HE and whose products we often recommend for use in our projects.

Dear Sir,
In a recent experiment I discovered that by connecting an electromagnet to the loudspeaker output of my tape recorder and holding it near the loudspeaker of a small radio, the radio would reproduce the output of the tape recorder. The volume control on the radio was set at its minimum to prevent 'interference' from radio stations, but otherwise didn't affect the output.

The coil wasn't driving the loudspeaker directly because removal of the radio's battery stopped it working. Can you please tell me what was happening?
Colin Price

\section*{St Andrews, Fife, Scotland}

I believe I have an explanation for the phenomenon that you describe. When you connect an electromagnet to the loudspeaker output of your tape recorder the electromagnet will produce, over a distance of perhaps a few inches, an audio-frequency electromagnetic field. You say that when the volume control of the radio is set to minimum it does not affect the output: this indicates that it is the amplifier section, not the radio frequency section, of your radio that is picking up the 'signal' from the electromagnet. I suspect that the component in the radio that is responsible for the effect is a transformer in an early stage of the amplifier. Thus a transformer action is taking place: the electromagnet is the 'primary' and the transformer in your receiver is the 'secondary'. (A better explanation of this action is given in this month's Into Electronic Components on page 52.)

\section*{Dear Sir,}

I have just completed the HE Electronic Organ. I would like to say that the quality of sound is very good.

I have been getting the "Hobby Electronics" since the first issue and of course intend to keep on taking it.

I am 67 years of age and have only started electronics since / retired.

Would like to thank you for the help your very good magazine has given me.

I wonder if any of your readers have any ideas on a cabinet for the organ? A.P. Chislott Guiseley, Leeds

I was pleased to hear of your success with the HE Electronic Organ - we have the HE Organ Pedalboard, which is complementary with the Organ project, in this issue.

I spoke to Trevor Hawkins, designer of both projects, recently and he told me that the first project has proved to be very popular, judging from the response to his kit offer. He has also
had to give some personal assistance to some readers to get their projects working - for instance he even made a visit to one reader's home in Birmingham. With such a complicated project (by HE's standards) it is easy to make an odd mistake or two with component values or interwiring.

I thought it was worth including this next letter, as a follow-up to M.L
Peake's letter under YL in the October ' 81 issue, page 55.

\section*{Dear Sir,}

In Hobby Electronics dated Oct, a letter suggests the use of the sound operated trigger circuit to operate the power winder on a camera.

I have been experimenting with circuits for power winders and motor drives for the past two years and, while I have not used a Chinon winder, I have had two different drives fail while using circuits where they were triggered by thyristors, so Ifeel that your readers should be warned that while the circuits work in the short term, I would not recommend their use.

I think the trouble occurs since the winder is controlled by electrical timing circuits, the action being started by a pulse from a microswitch connected to the shutter release, which is used to trigger a thyristor in the winder timing circuit. Unfortunately the thyristor in the external circuit does not produce a pulse but latches the power on until the voltage drops across the remote control socket, which can be several seconds.

In the two winders which failed, it appeared that the circuits of the winders would not take the overload caused by the power being latched on while the winder was in a single shot mode, and as the modern ideas of repair are to remove and replace an entire printed circuit if faulty, the repair bill is usually about \(£ 20\) to \(£ 30\).

I now have a golden rule when combining external circuits with cameras:

\section*{ALWAYS USE COMPONENTS WHICH} ISOLATE THE POWER SOURCES OF THE EXTERNAL CIRCUIT FROM THAT OF THE CAMERA ETC, AND TRY TO IDENTIFY WHAT TYPE OF PULSE THE DESIGNER HAD PLANNED THE CIRCUITS OF THE CAMERA TO WORK WITH.

I also would make the comment that, with the sound operated trigger, the delay in the time of the mirror rise, before the shutter opens, would spoil its purpose for action shots.

It may also interest you to know that, although it has been extremely common in the past to use the thyristor in circuits to trigger electronic flash
guns, the new breed of dedicated flash guns are in electrical contact with the camera circuit lto give viewfinder information or to stop the shutter/flash working if the shutter speed is wrong). I personally prefer to use the optocoupled thyristor RS 308-001 to keep the camera circuits protected, as far as possible, from any component failure in the triggering circuit.
D.C. Kent

Aylesbury, Bucks

\section*{Dear Sir,}

I am a regular reader of the Hobby Electronics: some time ago lasked if you would put an article in the Hobby Electronics about oscilloscopes. The only one you did was not much use to me. Like a lot of others it is a hobby with me and I have several books on scopes, but they all take it for granted that one knows all about scopes and how to use them, I don't.

That is where the trouble starts. how do you use the scope for voltages? How do you use the probe and where do you use the probe? How do you use the scope on a radio to find faults etc?

If you could put in an article covering these points, over a few months, 1 am sure there would be others like me that would be most grateful. There are others like me that are too old to go to night school to learn. I rely on Hobby Electronics to teach me. My scope is the 456.

I thank you for any help you can provide.
K. Hall

Potters Green, Coventry
I have passed your letter on to Ron Keeley, HE's incoming Editor: I'm sure he'll give your suggestion serious consideration.

\section*{Dear Sir,}

Could you please include more projects concerning motorcycles in either this mag or ETI. If so may / suggest various alarms, electronic ignition or possibly a helmet intercom?

Great mag, keep up the standards.

\section*{Mark Heywood}

Breightmet, Bolton
More worthwhile suggestions - l'il pass these on too.

Dear Sir,
I was very interested in your multimeter offer in the October issue of "Hobby Electronics". However, on reading the "fine print" (specifications) / was disappointed.

My great misapprehension concerns the frequency response of the digital multimeters. With an upper limit of 500 Hz , I think that their use is limited when trying to make measuraments across the audio bandwidth, even say at 1 kHz , a popular test frequency. This is puzzling as I have noticed that, in general, digital multimeters have a very limited response when compared to their analogue counterparts, even the cheaper ones.

I understand that the limited fre-
quency response is due to the low slew-rate/frequency response of the op amps used for the precision rectifiers. If this is so, could the performance of these digital multimeters be improved by using an IC like the Harris HA5 195 \((200\) V/us slew-rate, 150 MHz gainbandwidthl? Your answer will be appreciated.

On another subject, couldn't the electronic combination lock, shown on page 21 of the same issue, be opened by depressing all the buttons together? Norman King
Finsbury Park, London N4
The main part of the circuit that influences the frequency response of a digital meter is the RMS to DC converter. Individual integrated circuits that perform this function are expensive and, one that provides a reasonably high frequency response would add appreciably to the overall price of the instrument.

I can put your mind at rest on the second point. The Electronic Combination Lock will not operate if all the buttons are pressed together. Only the correct sequence of buttons, pressed within a reasonable period, will result in the solenoid being activated.

\section*{Dear Sir,}

I am hoping to construct the Audio Mixer featured in your June '81 issue of HE. As my knowledge of electronics is very limited and extends only to being able to follow circuit diagrams for constructional purposes I wonder if you would be kind enough to send me details of a suitable transistor to use as Q1 in the circuit, as I am unable to find any reference to it in the article.

\section*{Mike Floyd}

Kings Lynn, Norfolk

\section*{PS. Thanks for such a super mag.}

We published the Audio Mixer as a Quick Project in the June ' 81 issue, on page 58. The type number for Q 1 was given in the article: it is a BC109. You'll find the number tucked in as a note to the circuit given in Fig. 1.

\section*{Dear Sir,}

Can you plaase help me. How can I convert a 1 mA meter to a 1 V FSD meter?
Timothy Chapman
Fareham, Hants
The conversion is very simple but you omitted to supply one small piece of information; that is, the electrical resistance of the meter movement. Normally this will be very small, and shouldn't have any great effect on the accuracy of your readings, so let's assume it is zero ohms.

Full-scale deflection of the meter will occur when 1 mA is passed through it. Therefore, with a voltage V of 1 V and a current I of 1 mA , from Ohm's law, the value of resistor R required in series with the meter will be given by:
\[
R=V / I,
\]
or
\[
\begin{array}{rl}
R=1 & V / 0.001 \mathrm{~A} \\
& =1 \mathrm{k} .
\end{array}
\]

If your meter is calibrated in tenths of a milliamp, then each division can be read as one tenth of a volt.

\section*{Dear Mr Davies,}

I think your magazine is really excellent but please would you test the
equipment you have on "SPECIAL
OFFERS'". I bought the recommended
Multimeter you have on offer but when it arrived the meter had faults so I returned it. When the next meter arrived I was disappointed to find the same sticky needle and fluctuating accuracy again. These faults must be in the design because I cannot blame the Post Office again, so I have sent it back again and asked for a refund.

I bet you wouldn't print this letter so I will keep my mouth shut for a binder.

Good mag otherwise.
Paul Turnbull
Lossiemouth, Morayshire
I wish that you'd bet me \(£ 10\) that I wouldn't print your letterl Seriously, though, I was sorry to hear about such extreme problems: it sounds like you've just been unlucky, as we're unaware of any design defect with the HE Multitester. Before I leave HE, I'll set a one-time-only precedent: l'll send you a binder for your troubles.

Finally, a letter from Norway:

\section*{Dear Editor,}

Please answer the two short questions to follow.
1) Has HE published the second half of the "Heart Beat Monitor" project as promised? If so, when?
2) Could you please tell me where I could obtain two valves, type 6 V 6 or 6L6, or any equivalent?

Thanks for the info and keep up the good mag.
C.R. Dimmock

HEFAN, Norway
First, 1 find that address very suspicious.

Second, we never did get round to publishing the 'second half' of the Heart Beat Monitor project. The design has been in progress but it is difficult to say at present when you will see it.
(We may even publish a revised design, which will incorporate the facility for direct monitoring of pulse rate.)

Third, try RST Valve Mail Order Company, Climax House, 159 Falisbrook Road, London SW 16 6ED, for the valves. I understand from RST that the 6 V 6 (GT version) costs \(£ 1.60\) and the 6L6 (GC version) costs \(£ 2.50\). Postage charge to Norway (both valves sent together) is 72 p .

And with that l'll say farewell to all HE's readers. Thanks for all your letters - I'm only sorry that I couldn't manage to answer all of them. As I mentioned above, Ron Keeley will be taking my place - he will be sitting in front of this typewriter from November.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Multitesters \(100,000 \mathrm{opv}\)} \\
\hline \(A C\) volis & \({ }^{\circ} \mathrm{O}-5-10-250-1000\) \\
\hline OCvolis . & 0-05-25-10-50-250-1000 \\
\hline DCcurrent & \[
\begin{aligned}
& 0-10 \mathrm{u}-25 \mathrm{~m}-500 \mathrm{c}-0-5 \mathrm{~m}-50 \mathrm{~m} \\
& -500 \mathrm{~mm}-10 \mathrm{mp}
\end{aligned}
\] \\
\hline A current . Resistance & 10 mpp
\(0-20\) ohms -200 ohms -5 K ohms -200 K \\
\hline & ohms -50 K ohms - 200 K ohms - 5 mog ohms \\
\hline & - 50 meg ohms \\
\hline
\end{tabular}

\title{
Famous Names
}

\title{
Campbell-Swinton ranks as one of the most remarkable pioneers of modern TV. Over 70 years ago he had a vision of an electronic TV system
}

RECOGNISE THE NAME? You should, because CampbellSwinton was the true inventor of one of the spectacular uses of electronics, television. You thought someone else invented television? Read on - legends are not always the same as reality.
A.A. Campbell-Swinton, born in 1863, was almost the archetype of the Victorian engineer. At the age of 19 he was apprenticed to Armstrong's Engineering Works at Elswick-onTyne, and this apprenticeship lasted five years. During this time his interest in electricity and the topics which would form the foundation of the new engineering technology of electronics grew and matured. At the end of his apprenticeship, he left Armstrong's to become an independent contractor and consultant, a way of life which allowed him to experiment and innovate to the full.

By the end of the 19 th century, Campbell-Swinton was a very respected figure in engineering. Typical of the time, he had introduced innovations in more than one field of engineering. In 1896, he had taken the first X-ray photograph, and had quite certainly laid the foundations for the method of diagnosis we now call radiography. By contrast, he had also acted as a consultant to Parsons in the development of the steam turbine, which was to revolutionise shipping and lay the foundations for Whittle's later work on gas turbines.

\section*{Vision Of Electronic TV System}

By the turn of the century, he was a member of most of the engineering institutions, and his interests were turning to the idea of television. Now it's important to realise at what stage television had got to then. The idea of mechanical scanning had been put forward by Nipkow and others in the 1870's: these were the systems which Baird was to adopt. Campbell-Swinton was more influenced by Braun (inventor of the cathode ray tube) and Rosing, who believed that a completely electronic system was possible.

Campbell-Swinton set himself the task of designing such a system, using cathode ray tubes both at the camera and at the receiver. It's difficult nowadays to imagine what an enormous task he had set himself. To start with, no-one had ever built a working mechanical TV system, let alone an electronic one. Radio itself was in its infancy - Marconi had only just shown that signals could be transmitted across the Atlantic. The cathode-ray tube was a laboratory toy which could not be produced in any quantity. Despite all these difficulties, though, there is little doubt that Campbell-Swinton thoroughly understood the problems and saw how they were to be solved. His patent of 1908 and his speech to the Röntgen Society in 1911 are classics of our time - perfect descriptions of the television system which would later be developed by Schoenberg, McGee and Blumlein in Britain, and by Zworykin's team in the USA around 1936.

\section*{Touch Of Genius}

Before we look at the patent, one question remains. Why did he choose the Röntgen Society to reveal his scheme to? The answer is reasonably simple - it was the most appropriate of the professional societies to which he belonged. At that time, the IEE (Insitution of Electrical Engineers) was completely rooted in power engineering, and paid little attention to radio or telegraphy, the other engineering institutes were virtually unaffected by the new technology and only the Röntgen Sociey of which Campbell-Swinton was a founder seemed appropriate. The Röntgen Society, named after the discoverers of X-rays,
took an interest in raciation, photography and image formation, and in radio. To this day, developments in some aspects of electronics are reported in the Journal of the Röntgen Society before they appear in other journals. Certainly in 1911 , this was the place to reveal a stunning new idea. Stunning? Take a look at the wording which Campbell-Swinton used. It's the language of 1911 , not so very different from the language you'll find in some present-day patent applications, and it's the first description of television as we know it:
' . . . two beams of cathode rays, one at the transmitter and one at the receiver, synchronously deflected by the varying fields of two electromagnets placed at right angles to one another and energised by two atternating electric currents at widely different frequencies, so that the moving extremities of the two beams are caused to sweep synchronously over the whole of the required surfaces within \(1 / 10\) of a second, necessary to take advantage of visual persistence.'
These are the words of a genius. He must have realised that only the principle of the cathode ray tube could permit scanning of a picture at a rate which would give good definition. The unanimous rejection of Baird's 30-line system in favour of Schoenberg's 405 -line system (in 1936) proved how right Campbell-Swinton was. He also realised the importance of synchronisation, that signals which were being transmitted at the start of a scan at the transmitter should arrive at the receiver at an identical part of the scan. No-one else before this date seems to have understood how important synchronisation would be in any sort of television system, but Campbell-Swinton's patent makes it clear that he had completely thought this out, making life much easier for future workers in this field of research.

He also had a good understanding of the principles of scanning. Scanning up till then had meant using the Nipkow disc, a crude mechanical system which was difficult to synchronise. Campbell-Swinton seems once again to have understood thoroughly the idea of using two timebases running at very different speeds (see How A TV Receiver Works in this month's issue). He also seems quite clear about how these timebases were to be applied to the cathode ray tubes, using deflection coils (electromagnets) set at right angles to one another. Finally, he had learned from the movies, in their infancy, that a picture will seem continuous provided that its repetition rate is more than about 10 pictures per second.

\section*{Ahead Of His Time}

As so often happens, however, Campbell-Swinton was years ahead of his time. His patent was valid, his ideas were correct but the technology simply wasn't there. Like Leonardo da Vinci's helicopter, the Campbell-Swinton TV system couldn't be manufactured, and in 1911 there simply was no urgency about it. The urgency came later. Techniques using cathoderay tubes were as essential to radar as to TV and even in the thirties, when the idea of defending Britain was one which drew ridicule from many well-known political figures, some just recently retired, there was keen interest in cathode ray tubes, scanning techniques and wideband radio transmissions. These advances enabled Campbell-Swinton's ideas to be put into practice at last, culminating in the television service which we now take for granted.

No one man invented television, but from the names which include Rosing, Zworykin, Schoenberg and many others, that of Campbell-Swinton must be ranked as the most far-sighted of all the pioneers.

This Quick Project couldn't be simpler - only three components are used to make a super practice amplifier for an electric guitar

At long last - now you don't need a 100 watt amplifier and a ginormous speaker stack to practise your electric guitar. Now, with a pair of 'phones, you can play your guitar in private without annoying others.

A standard pair of stereo (or mono) headphones should be plugged into the output socket of the project and your guitar lead plugs into the input socket. Preset resistor RV1 adjusts the basic volume, but once set to match your guitar it needn't be readjusted because the guitar's volume and tone controls cater for any required variation.

Integrated circuit IC1 is an LM386 an audio power amplifier IC which has its gain internally set to 20. Thus a guitar signal input of, say, 100 mV will produce an output from the amplifier of 2 V . The IC is capable of driving any load of 4R or more, so most headphones can be used with this project.

Construction is easy; make the five track breaks where shown in Fig. 2, using a cutting tool or a small (about 1/4") hand-held drill bit. Press the cutting edge of the tool against the hole in question and twist the tool clockwise until the copper track breaks in a clean circle. Make sure no copper swarf from the track bridges across to adjacent tracks, forming a short circuit.

Now insert all components as shown and wire up your project. Finally, connect a battery and play away.

Figure 1. Circuit of the HE Guitar Headphone Amplifier

Figure 2. Veroboard overlay and underside view (showing component locations and track breaks) along with connection details of the project

Ecam \(\mathrm{uph}^{\text {With }}\) TK Electronics

\section*{for top－quality components，innovative kits FAST SERVICE AND LOW，LOW PRICES}

Prices do not include V．A．T．Add 50p 戸．\＆P．+ \(15 \%\) V．A．T．to total．Overseas customers add
 tor price list and whit enquiries．
11 BOSTON ROAD
LONDON，W7 3SJ
Tel：01－5799794／2842

YOU WUST HAVE BETIER THINBS TO DO

DVM／THERMOMETER KIT

 PP3 when used 8 hours a dav， 7 days 15 week EAT

THE KEY TO YOUR SECURITY

IS IN OUR LOCK
そ几己
It you have problems with people tampering with your car，
electrical and electronic oquipment，or ti you aro just in a habth of forgerting your door keve．we have just the kin for Our ELECTAONIC LOCK KIT includes a 10 －way keyboard and a special IC which providas a 750 m output to drye solenoid or relay（not supplied）when four keys are depressed in the correc
sequence．This gives over 5,000 possble combinationsl The sequence is pre．Wired and may assily changed by means of a small plug and socket．A＂SAVE＂function is also available enablin the oden cote to be storad（especially useful in a car when it is lof in a gerage for servicing as ith At．only E 10.50 －V AT．it will make a smaller hole in your pocket than e bunch of keysi LOCK I．C．
LST20 with SAVE memory
LS7225 with SAVE rememory．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1250

\section*{In Part 3 of this occasional series, on the electronics of music synthesisers, Ron Keeley talks about sound generators, the voltage controlled oscillators (VCOs)}

THERE ARE MANY different techniques for building voltage controlled oscillators. These days, of course, you can buy a single integrated circuit which may contain two, three or more complete VCO circuits but for the moment we're going back to the Dark Ages, when circuits were built up from individual components. .

The first thing to realise about VCOs for music synthesisers is that they don't (generally) produce sinewaves. Musically interesting sounds are much more complicated, and sinewaves are simply boring. A practical VCO must produce a wave shape rich in harmonics, one that can be selectively filtered to generate a replica of traditional musical sound - or a completely new one.

The best wave shapes for this purpose are square, triangle and sawtooth waveforms. Often one or two of these can be generated simultaneously, and any other required shape can be produced by special conversion circuits. Even sinewaves (which do have their uses in, for example, modulating other oscillators, filters etc, or for making bell, chime and synthesised drum sounds) can be produced by squarewave-to-sinewave converters.

In fact voltage controlled square/triangle wave oscillators are relatively easy to make - much simpler than voltage controlled sine oscillators. A simple squarewave VCO is shown in Fig. 2. It is based on the even simpler circuit in Fig. 1, an astable multivibrator that uses two CMOS inverters, a resistor and a capacitor.

Figure 1. Simple CMOS astable mutivibrator

The operation of this circuit depends on the fact that the output of a CMOS inverter will switch from high to low - or vice versa when the input voltage crosses a certain threshold level called the transfer voltage, Vtr, which is usually about half the supply voltage.

If we assume that the output of the second inverter is low, its input, and therefore the output of the first inverter must be high which, in this example, is the full postive supply voltage \(+V\). The capacitor thersfore begins to charge up, through R, to the supply voltage. When it reaches about half \(+V\), though, the output of the first inverter will switch low, taking the output of the second inverter high. The full supply voltage will appear on top of the
capacitor and will be coupled through to the input of the first inverter, providing positive feedback ithis input was already going high as \(C\) charged up) and forcing inverter 1 to rapidly switch states.
Now the capacitor begins to discharge through R into the low output of the first inverter, until the voltage at the junction of \(R\) and C once again crosses the threshold level Vtr, but this time in the opposite direction. This causes its output to go high, taking the second output low and restoring the original conditions: this whole cycle then will repeat indefinitely.
The period of oscillation of this simple circuit is approximately 1.4 RC, and this corresponds to a frequency \(f\), where:
\[
f=\frac{1}{1.4 R C}
\]

Figure 2. Voltage controlled oscmator using CMOS inverters and a CMOS field-effect tranaistor. Pin numbers relate to the 4007 integrated circutt. Supply connections are not shown

Obviously the frequency can be varied by altering either R or C . The circuit in Fig. 2 does this by using a CMOS field effect transistor (FET) as a variable voltage-controlled resistor in the timing network RC. When the gate voltage Vc is zero, the source-todrain resistance of the FET is about 1000MR - virtually an open circuit - and the oscillator frequency will be very low. As Vc is taken positive, though, the FET resistance drops towards a minimum value of about 1 k when Vc is equal to +V and the frequency of oscillation will be high. Thus by simply varying the control voltage Vc we are able to control the frequency of the oscillator.
The minimum frequency is set by the parallel combination of Rt and the FET resistance: the maximum frequency is determined by the series combination of R2 and the FET.

This circuit is rather basic and, while it will work, it will not work particularly well. Many refinements are necessary to turn it into a VCO suitable for use in a synthesiser. One such refinement is the inclusion of R1, which makes the oscillator less susceptible to fluctuations in frequency caused by fluctuations in the supply voltage. The same circuit is shown, more conventionally, in Fig. 3. Comparing the pin numbers, you can see that they are practically identical, with the addition of a pair of BC 108 s (or similar audio-frequency transistors) in the final circuit to drive an 8 ohm speaker.

Next month we'll look at another simple VCO scheme, based on two simple circuit elements, an integrator and a Schmitt trigger.

Figure 3. Complete circuit of a VCO based on the 4007

\section*{Beasties wizzbang Eectronics}

DEFINITION OF "TERMNAL ILNESS" IS EYESTRAIN CAUSED BY PLAYING "SPACE INVABERS" ON THE FIRM'S COMPUTER".

\section*{Beasities DID yOU HEAR ABOT}

THE DOCTOR WHO DESIGNED A MINIATURE BODY GUNCTIONS MONITOR THAT COLLD BE IMPLANKED BEHIND THE COLLAR BONE AND ENIDED UP WKH A CHIP ON HIS SHOVLDER..?

\section*{HEPROJECT KITS}

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits include ALL the electronics and hardware needed. Printed circuit boards (fulty etched drilled and roller tinned) or Veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERES ARE NO HE WCLUDE. COMPONENT SHEE INCLUDED. If you do not have the issue of H.E. which includes the project - you w need to order the instruction reprint at an extra 45 peach
Reprints avallable separately 45p each + p. 6 p. 40p

SOUND TORCH Nov 81 less torch + mic..............
SCRATCH FILTERNov 81 Mono \(£ 5.44\) Stereo \(\mathbf{f 8} .40\)
LED VU METER Nov 81 less case \(£ 4.56\)
SIMPLE STYLUS ORGAN Nov 81 less case \(£ 4.74\)
METRONOME NOV 81 E11.88

TELEPHONE BELL REPEATER OCY 81 [12.78
TELEPHONE GELL REPEATER
COMBINATION LOCK OCI B
\([17.43\)
0008 BABY ALAAM Oct 81 C8. 14. Fin solenoiol \(£ 22.39\)
TDUEt'
vowion 27.16
'DIANA' METAL LOCATOR SeD: 81 c33.85
Case fl 30 POWER PILOT LIGHT Sept B1. les
LIGHTWATER ALARM Sept 81 C5.98
CAR LIGMTS DELAY Seot 8155.99
POWER PACK Sept 81 C9.60
Mono headphones f 298 Sept 81 C23.98, Extra
MEACTION TESTER GAME Sept \(81[11\) S8
THERMOMETER Aug \(81 \mathrm{C12} 98\)
A.P.M METER Aug B1, inc. probe C15. 40

C25. 35 BLE BENCH POWER SUPPLY Aug B:
ULTRASOUND BURGLAR ALARM JUly 81
ELECTRONIC DOOR BUZZER JUVV8I C5. 65
ELE
ELECTRONIC METRONOME JULV E1 54.57
TREBLE BOOST JUIV B1 C10.93
CONTINUTTY CMECKER JUne \(81 \mathrm{c5} .34\)
ENVELOPE GENE RATOR JUNe 81 Cis B5 ENVELOPE GENERATOR JUne 81 C16 a5
AUOIO MIXER June 81 C4.99 VUCI OPERATEO SWITCH May 81 [10.37
Vicrophone extra E1.41 Microphone extra ci.fl 19.5 OOORBELL MONITOR ADCil 81 C3.28 WINDSCREEN WASHER ALARM ADRII 81 IE 7 R PUULIC ADDRESS AMPLIFIER Warch 8 MiC 18 21. Extras \(=\) horn speakers f 6.33 each. PA
FUZ28 \({ }^{+1+{ }^{+*}}\) March 81 C10.35
WINOSCREEN WIPER CONTROLLER Match 81
STEAM LOCO WHISTLE March \(81 € 1226\) PHOTOGRAPHIC TMEE MArch 81 f3. 28
HEARTBEAT MONITOR FAD 81 123. 40 HEARTBEAT MONITOR FED 81 123.40
HIGH IMPEDANCE VOLTMETER FEb 81 C 9.87 AUDIO SIGNAL GENERATOR FeD 81 C1893 AUO SIGNAL GENERATOR ROD TWO TONE TRAIN HOAN \(\mathrm{Feb}_{\mathrm{eb}} 81 \mathrm{CE} 24\) less case
MEDUUM WAVE RAOIO Feb \(81 \mathrm{f7.67}\) LADOER DF LIGHT ISound into Light) Jan 81 \({ }_{\text {CRENCH }}\)
BENCH AMP Jan 81 c 10.10

NICARD CHARGER Jan 8117.8
CHUFFER Jan 81, less case C7.04
MODELTRAIN CONTRDLER Dec 80 C18. 54
BATTERY CHAROE MONITOR DeC 80 55.40
STEREO POWER METER Dec 80 tzo. 87
MEMOA Y BANK - MINI SYNTHESISER NOV
Gec \(90 \mathrm{fz6} 61\)
TRANSISTDA TESTER Nor 81 C 6.12 inc. test
leads OOUBLE DICE Nov 80 C15, 18
GUITAR PRE.AMP Nor 80 [5. 65 case (diecast) -nrra 22.99
NOBELL DOORBELL Oct 80 E11 98
INTRUDER ALARM OCt 80 C19.61
FFEEZER ALARM Oct 80 with probe \(\mathbf{~ 1 0 . 3 6 ~}\)
TUG O'WAR OCt 80 C 1757
KTTCHEN TMEER Oct 80 (2\% resistors) C7 9
MICAOMIX Sept 80 ᄃ8. 80
AUTO PROBE Sept 80 F3 99
TOUCH SWITCH Sept 90 l2.57 less case \&
CONTACTS
GUITAR PHASER Sept \(80[15.22\)
BENCH PSU Sep 80 f31 35
BENCH PSU SEDT 80 A31 30 C4.9
MOVEMENT ALARMA AUG 80 fe. 24
PASS THE LOOP GAME AUG \(80 € 15.37\)
SOUND OPERATED FLASH TRIGGER JUIV 80
no 3 kr f 4.99
FOG HORN Jung 80 C
SPE.21
SPEED CONTROLLER FOR RUC ADFII 80 C16.41
OIGITAL FREOUEN CY METER APrit 80 C39. 35 ELECTRONIC IGNITION ICDI AptII 80 c22 95 DIGIIDICE Jan 80 C10 97
BARGRAPH CAR VOLTMETEA Dec \(79[798\) ass case
GUITAR TUNER NOV Dec 19 C14 2
ANALOQUE FREOUENCY METER OCI 79
MULTI OPTION SIREN OCT 79 C17 57
HOME SECURITY UNTT Aug 79 f31,41 less siten
SIAEN EE 59 Imss Case
SIREN CE 50 less case
ED TACHOMETER Aug 79 C19.77
UNEAR SCALE OHMMETER July 79 C17.5
UNEAR SCAALE OHMMETER July 79 C17.57
GSR MONTOR June 79 E10.59 WHITE NOISE EFFECTS UNIT MAv \(79 \$ 19.51\) PUSH-BUTTON DICE DOC 78 [7.67

\section*{- CHRISTMAS KITS -}
```

TWINKLING STAR EE Dec 79
TABLE DECORATION EE DEC }8
TREE LIGHTS FLASHER EE DEC B

```
. 5598
c3.89
C8 98
speach

\section*{MEMORY BANK SYNTHESISER}

3 BAND S.W. RADIO
Simple T.R.F. Dasign. Covering
most Amateur Bands and Short Wave Mroadcast Bands. Five controls.
Bate Bands it. Bandspreay Reaction.
Wavechanje and Altenuator. Col section is by Wavechange Switch Section with Headohones or a Crystai earplece. KIt contains all the com-
ponents reauired including the P.C. Board and Case. Instructions are In ctuded with this kit. KIT \(\mathrm{E19} 98\).
Headphones extra \(\mathbf{E 2} 98\).

\footnotetext{
IDEAL SOLDERING EQUIPMENT FOR ELECTRONICS

ANTEX X5 SOLDERING IRON 25W £5 18
SOLDERING IRON STAND
£2. 40
SPARE BiTS. Small standard large. 65p each. For \(\times 5+\times 25\) large. \(65 p\) each. For \(x 5+x\)
SOLDER. Handy size 99p. HOW TO SOLDER LEAFLET

DESOLDER BRAID 69p
HEAT SINK TWEEZERS 29p DESOLDER PUMP £6.48 SOLDER CARTON \(£ 1.84\) LOW COST CUTTERS \(£ 1.69\) LOW COST LONG NOSE PLIERS \(£ 1.68\)
WIRĒ STRIPPERS \& CUTTERS
}

\section*{LOOK!}

FROM NOW UNTIL END OF DECEMBER A SPECIAL PUR. CHASE ALLOWS US TO GIVE YOU A SPECIAL CHRISTMAS OFFER. MINIMUM ORDER FROM THIS BOX (ANY MIX) \(£ 2+P\). \& \(P\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 555 & 19p & 2 N 3819 & 21p & 1001 & 10 & Sockets & \\
\hline 556 & 38 D & 2N3055 & 49p & 4019 & \({ }^{169}\) & & 10 p \\
\hline 241 & ¢ & N4148 & 3 p & 4093 & \({ }^{19} 8\) & \({ }^{14} 16\) pin & 14 p \\
\hline Lм 388 & \({ }^{9} \mathrm{p}\) & iN4001 & 10 & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ALL TOP QUALITY SUPER PRICES}} \\
\hline \({ }_{\text {Cl }}^{\text {2N414 }}\) & 898 & IN4005 & & & & & \\
\hline
\end{tabular}

\section*{DRUM SYNTHESISER}

GUITAR NOTE
EXPANDER
from ETI Aprii 81, Nor just another Fuzz/Surzain Unit. This versatile profect can produce overioad overdiven value amp
Switch selection for
witch selection for:
2. Over aill ovardive
2. H.F. compression for beas overdive Ovirall expanmion for suastinecd overdrive 5. Mid frequency expension All foxcept overallo vercrivel hove variabie effects
control. Quitar Note Expandep Kit [18.47, less control.
case
Clito
25

\section*{SOUND BENDER}

From ETI Oct 81. A ver effective Ring
Modulator sound eflects unin. This design Modulator sound eflects untr. This design
 multiplier cliccuit.
A mix control sllowe the modulated eignal to be mixed with the atraight through signal., Ideal for coter space. vorice and muvic effecti. Jus speaker.
Sound Bender Kir Cza.76. less care [15.76.

Reprints of the Above 45p each

\section*{BOOKS . BOOKS . BOOKS}

SEMICONDUCTOR DATA BOOK - NEWN
MICROPROCESSORS FOR HOBBYISTS - R, COL

CONSTRUCTOR'A PROJECT BOOKS
ELECTRONIC GAME PROJECTS Raver
ELECTRONIC PROJECTS FOR HOME SECURITV.............
ELECTRONIC PROJECTS FLECTRO NIC PROJECTS IN AUOIO Pentold

ELECTRONIC PROJECTS IN PHOTOGRAPHY Panfond.
ELECTRONIC PROJECTS IN THE CAR GOORG-
PROJECTS IN AMATEUR RADIO S SHORT WAVE
PROJECTS IN RAOIO AND ELECTRONICS Sincl
ELECTRONIC PROOJECTS IN HOBBIES RAYat.
ELECTRONIC PROJECTS ITHE HOME Bighop
ELECTRONIC PROJECTS IN THE WORKSEHOP PQNTO
EELECTRONIC TEST EQUTPMENT PROJECTS Aingli
-MORE ELECTRONIC PROJECTS IN THE HOME FINO.
I10 ELECTAONIC ALAAM PROJECTS FOR THE HOME CONSTRUCTO Marsion
ELECTRONIC PROJECTB - PAPERMAC
COST EFFECTIVE PROJECTS AROUNO TH
COST EFFECTIVE PROJECTS AROUNO THE HOME Watsen
PROJECTS FOR THE CAR ANO GARAQE BE
AUDIO CIRCUITS ANO PROJECTS Bighop. .
TEST GEAR PROJECTS DHON.
ELECTRONIC PROJECTE FOR MOOEL RAILWAYS Bab
SOLIO STATE SHORTWAVE RECEIVERS FOR BEEINNERS Pontod
ELECTHONIC MUSIC ANO CREATIVE TAPE RECOROING Berry.
IC 565 PROJECTS PATT
BASIC ELECTRONics - BOONS if
circuits outit on an \(5=\) - ec braodboard.
Sodd si \& set of 5 booke \(\mathrm{E11}\). 98

\section*{ADVENTURES WITH symo MICROELECTRONICS}

An easy to foliow book sultable for all ages. Ideal for beginners No soldering. Uses a Binboard 1 breadboard, gives clear instructlons with lots of pictures. 11 projects based on integrated circuits -includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard 1 breadboard and all the components for the projects.
Adventures with Microelectronics \(£ 2 \cdot 55\). Component pack \(£ 29 \cdot 64\) less battery

\section*{ADVENTURES WITH ELECTRONICS \begin{tabular}{c}
by Tom \\
Duncen \\
\hline
\end{tabular}}

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about metronome, organ, intercom, how circuits work. Component pack electronic components and how and all the components for the Includes an S-Dec breadboard and all the components
projects. Adventures with Electronics \(£ 2 \cdot 40\). Component pack \(£ 17 \cdot 98\) less battery.

\section*{MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS \& KITS.} All products are slock lines ond are new d full speclfication We

MAGENTA ELECTRONICS LTD.
SCAF 135 HUNTER ST. BURTON.ON.TRENT, STAFFES., GCOFT 135 HUNER ST. BURTON. ADD \(40 \mathrm{P} P\). \(\&\) P. TO ALLO ORDERS.

 Deduct 10\% from price: shown Payment. must bo in Sterllng.
ACCESS ANA BARCLAYCARD (VISA)
OROERS ACCEPTED BYPHONE OR OROERS ACCEPTED

\title{
PEDALBOARD ORGAN
}

> Although this project has been produced to complement the HE Electronic Organ, that is not its only use - it can be played in combination with most other instruments to provide a supplementary bass line. With its large-sized pedals, the project could also be adapted for use by the disabled

IF YOU HAVE ever played a solo musical instrument you will appreciate the HE Pedalboard Organ. It can be used to provide a back-up bass accompaniment line while you play your organ, guitar, flute or whatever. Consisting of 13 foot-operated pedals (\(C\) to \(C\), to give one octave of bass notes), the project can add many possibilities to your music.

A single printed circuit board (PCB) contains all circuitry for note generation, sustain and preamplification. There are three footoperated switches for choice of instrument voicing and two rotary controls for sustain length and volume. Power amplification is provided by a BI -

PAK 10 watt amplifier module (AL30A).

The pedalboard is tuned so that the lowest note is pitched at a frequency of \(65 \mathrm{~Hz}(\mathrm{C})\) and this corresponds to an B-foot pitch in organ terms. In our prototype the 13 pedals are mounted onto a wooden baseboard and the generator PCB, amplifier module, controls and mains transformer are all mounted on the underneath of another piece of wood over the rear of the pedals. Readers may like to follow our case style or they could design their own.

\section*{Parts List}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{RESISTORS (all \(1 / 4 \mathrm{~W}, 5 \%\) except where stated)}} & C16 & 100n polyester \\
\hline & & C17 & 470n polyester \\
\hline R1 & 15k & C18,19 & 220 n polyester \\
\hline R2 & 27k & C21 & \(220 \mathrm{u}, 16 \mathrm{~V}\) electrolytic \\
\hline R3 & 15R & C23 & \(2200 \mathrm{u}, 40 \mathrm{~V}\) electrolytic \\
\hline R4-16,88 & 100k & C24 & 1000u, 16 V electrolytic \\
\hline 17-29. & & & \\
\hline 69-81,87 & 4k7 & \multicolumn{2}{|l|}{SEMICONDUCTORS} \\
\hline R30-42 & 22k & IC1 & 556 timer \\
\hline \multicolumn{2}{|l|}{R43-55,} & \multicolumn{2}{|l|}{IC2 M083 13-note generator} \\
\hline 56-68.91 & 33k & \multirow[t]{2}{*}{IC3} & MO83 13-note generator 741 operational amplifier \\
\hline \multicolumn{2}{|l|}{R82,84.} & & 7812,1 A voltage \\
\hline 86,89.90 & 10k & IC4 & regulator \\
\hline R83 & 56k & 01.13 & BC183 NPN transistor \\
\hline R85 & 15k & D1-13 & 1N4148 diode \\
\hline R92 & 330R, 2W & D14-17 & 1N4001 dlode \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{POTENTIOMETERS}} & \multicolumn{2}{|l|}{MISCELLANEOUS} \\
\hline & \multirow[t]{2}{*}{10k miniature horizontal preset} & SW1 & double-pole, double-throw \\
\hline RV1 & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { SW2,3,4 } \\
& \text { T1 }
\end{aligned}
\]} & push-on, push-off switch \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RV2 } \\
& \text { RV3 }
\end{aligned}
\]} & 10k lnnear potentiometer & & 240/24 V mains \\
\hline & preset & & transformer \\
\hline \multirow[t]{3}{*}{RV4} & \multirow[t]{3}{*}{22k logarthmic potentiometer} & \multicolumn{2}{|l|}{Neon with integral resistor} \\
\hline & & SK1 & mono \(1 /{ }^{\text {" }}\) jack sockot \\
\hline & & AL30A & power amplifier \\
\hline \multicolumn{2}{|l|}{CAPACITORS} & \multicolumn{2}{|l|}{Knobs to sult} \\
\hline C1 & 680p polystyrene & 13-note p & alboard (see Buylines) \\
\hline C2,20,22 & 2u2, 16 V electrolytic & 3-way ter & nal block \\
\hline C3-15 & 22u, 16 V electrolytic & Wood for & \\
\hline
\end{tabular}

\section*{Construction}

Make up the PCB first - insert and solder each component as shown in Fig. 2 making sure that all polarised components are the right way round, but don't insert IC 1,2 or 3 yet.

Insert and solder circuit board pins into the board where off-board connections are to be made.

Following the connection details in Fig. 3 wire up the underneath of the

\section*{Buylines}

A complete kit of parts is available from: Portative Instruments
23 Blenheim Road.
St Albans,
Herts AL1 4NS
Kit price is \(\mathbf{5 8 8}\). This includes VAT but ploase add \(\mathbf{£} 4\) to cover pfp.

The pedalboard alone will cost you £22 plus \(£ 3\) to cover p\&p. Delivery within the UK only.

Now, following the connection details shown in Fig. 4, wire up the project. Connect the transformer primary to a 240 V mains supply and, with a voltmeter, check that: +30 to +35 VDC is present across capacitor C23; that +12 VDC is present across capacitor C24. Disconnect from mains power supply.

Insert IC1,2 and 3 into their correct places making sure they are the right way round. It now only remains to house the project.

Figure 3. Wiring details of the underside of the PCB

Figure 2. PCB overlay and connection details of the project

Figure 1. Circuit of HE Pedalboard Organ

Figure 4. Connection detalis

\section*{How It Works}

A high-frequency oscillator, runnng at 31.24 kHz , provides the clock input to a 13 -note generator. The generator divides down this clock frequency to give the 13 notes of one musical octave from \(65-130 \mathrm{~Hz}\). Each note is continuously available at its respective output.

Whenever a pedal is operated, the sustain generator circuit for that pedal (only two are shown) is triggered. Thus the corresponding note from the 13 -note generator is allowed through to the amplifier after being mixed with any other notes played simultaneously.

The high frequency oscillator is formed around a 555 timer, IC1. Preset resistor RV1 is a pitch control. The output of the 555 is directly coupled to the clock input of IC2, an MO83, 13-note generator, which divides down the high frequency signal in a musical ratio. The 13 outputs of IC2 form an oc-
tave, the individual frequencies of which are thus directly related to the clock input frequency.

Each output signal from IC2 is taken through a 100k resistor (R4-16) to the emitter of a transistor (01-13) in a common-base configuration. Depressing an organ pedal causes a +12 VDC
keying signal to charge up a 22 u capacitor (C3-15) through a 33k resistor (R43-55) and this slowlyrising voltage is fed to the base of the transistor. The transistor turns on and the squarewave note-signal at the emitter thus appears at the collector. All the collectors are connected together, so that any signal appearing will be passed on to the next stage.

The discharge rate of the 22 u capacitor defines how long the transistor stays on and thus how long the note lasts. After the pedal has been released, the capacitor discharges through a \(4 k 7\) resistor (R69-81). Sustain control RV2 provides a variable bias voltage of between +12 V and OV to the 4 k 7 resistor. This affects the capacitor discharge rate and hence the length of note sustain.

Power supply is from: a 240/24 \(V\) mains transformer (T1); bridge rectifier (D14-17); filter capacitor (C23). An unregulated voltage of about 30-35 VDC is produced and this provides power for the AL30A power amplifier module. Integrated circuit IC4 is a 12 V voltage regulator which supplies up to 1 A of current, at 12 VDC. for the oscillator, note generator, sustain and mixing circuit.

HE

It's in-car entertainment time in this month's GG\&K. Hugh Davies installs a pair of Philips door-mounting loudspeakers and Steve Ramsahadeo fits a complete audio system from Videotone. There's also comment on the installation of Blaupunkt Quick Fit 723 loudspeakers. Meanwhile, back at the office, Ian Graham checks out his state of mind with a brainwave sensor from Aleph One

\section*{Installing Philips EN8751 Car Door Loudspeakers}

PHILIPS' AUDIO DIVISION presented us with a small box containing an EN8751 loudspeaker kit for the car, saying: 'How would you like to try installing this?' We had a Ford Escort (series 2 model) with unblemished door panels and so it seemed worth a try.

\section*{Contents Of Kit}

The kit comprises:
- two EN8751 \(5^{\prime \prime}\) loudspeakers, 15 W rating
- two 'speedy mount' water covers (these protect the speakers from any water dribbling down inside the door)
- two lengths of twin flex, fitted with non-reversible sockets at one end and with polarity marking on one lead
- pack of fixing screws and clip nuts - template to aid marking out of the speaker mounting holes (forms part of box front)
- instruction sheet

Philips also provided, for the purpose of our test, some information (not supplied with the kit) on how to fit its radios, radio/cassette players and loudspeakers to Ford Escorts.

All that we required from this information was the recommended position of the loudspeakers in the doors.

\section*{Installation}

We removed the right-hand door panel and marked out horizontal and vertical lines, in the positions suggested, on the inside of the panel (180 mm from the panel edge vertically and 90 mm from the lower edge horizontally).
Next the template was carefully detached from the box and aligned with the two lines on the panel. Marking out was easy: with the template in position the aperture and mounting holes could be marked out on the panel with a pencil.
To prevent damage to the panel, a string of \(3 / 16^{n \prime}\) holes was drilled around the inside of the circle mark. ed out for the speaker aperture. The disc of waste material was cut out with a sharp knife.

One of the EN8751s was tried in the aperture at this stage, and a discovery was made. If the loudspeaker had been fitted with its four mounting holes lined up with the vertical and horizontal lines
marked out on the panel (which seemed natural enough to do) then the legends on the rim of the loudspeaker would have been tilted, as shown in Fig. 1a. To prevent this happening, it was found necessary to mark out fresh mounting hole positions on the template, thus moving the loudspeaker through \(45^{\circ}\) (see Fig. 1b).

\title{
From the people who invented the integrated circuit...
}

\section*{The TI Technical Library}

Texas Instruments invented the integrated circuit, the microprocessor and the microcomputer. Today, TI is the world's largest manufacturer of semiconductor devices offering the broadest range of products from a single source

This capability is reflected in the
comprehensive list of high-quality technical data books available to our customers. Each one is an easy-to-use complete reference.
1. MOS Memory 1980 edition \(£ 3.95\).
2. Bipolar Memories 1981 edition \(£ 1.00\).
2. Bipolar Memories 1979 European edition \(£ 4.00\).
3. Optoelectronics 1979 Europ and Practice 1st edition \(1976 £ 6.00\). 4. Optoelectronics Theory 1980 edition \(£ 4.00\).
5. Linear Control Circuits
6. Voltage Regulators 1977 ed mponents 1979 edition \(£ 4.50\). 7. Bipolar Microcomputedition \(£ 5.00\).
8. Interface Circuits 1st edition \(1980 £ 6.80\).
9. TTL 4th European edition 1980 保 edition \(1981 ~ £ 3.95\). 11. Understanding Solid-State Electronics 1st edition \(£ 3.95\). 12. Understanding Digita processors 1 st edition \(£ 3.95\). 13. Understanding Microprocessorns Systems 1st edition \(£ 3.95\). 14. Understanding Commulor Math 1 st edition \(£ 3.95\).
U. Undertan

\section*{How to order}

Simply use the coupon as follows:
1. Select titles and quantities required.
2. Calculate total order value. Add \(£ 1.50\) for post and packing.
3. Send the coupon plus your cheque payable to Texas Instruments Limited, PO Box 50, Market Harborough, Leicestershire.

If the coupon has been used by someone else, simply use a piece of paper. Please allow 30 days for delivery.

Texas Instruments LIMITED

After all the holes had been drilled and cut, the panel was tried in position on the door. Part of the aperture was obstructed by the metal panel of the door, and this left us no choice but to remove part of the metal (see comments at the end of this report).
When a loudspeaker is fitted into a car door it is necessary to bring the connecting flex out at one point on the hinged edge of the door and to pass the flex into an adjacent hole in the car body. No difficulty was experienced in finding appropriate places for these holes but we suddenly realised that two important components had not been included in the kit, namely protective grommets.

These tiny rubber fittings serve two purposes. The first is to protect the flex from being chaffed on the sharp edge of the hole and the second is to help seal the hole against the ingress of water.

Also missing from the kit were plugs to connect the flex from each speaker to our radio/cassette player: we had to provide our own.

\section*{On Test}

When the two speakers were connected to the Escort's ICE system (in-car entertainment system or, if you prefer plain English, stereo radio/cassette player!) the results were impressive. A smaller tweeter cone, complete with metal dome is fitted in the centre of the \(5^{\prime \prime}\) paper cone of the EN8751, and we thought that the overall frequency range, from bass through to crisp treble, was good. The speakers gave, for instance, a good account of some recorded music on 'metal' tape. The EN8751s are rated at 15 W .

\section*{Looks}

When mounted on the black door panels of our test vehicle the speakers were inconspicuous. (The EN8751s have a dark grey rim and a black protective grille.)

\section*{Comment}

Apart from the niggles about the template and the omission of the grommets and plugs, the speakers performed well for a reasonable cost - around \(£ 19\) including VAT.
- We contacted Philips about our niggles. The spokesman was surprised to hear that grommets had not been included in the kit: he claimed that they were supplied with most Philips car radio kits. The omission of plugs on the leads was more a result of company policy, because the plugs are usually sup. plied with the radios or radio/cassette players and not with the speakers. He agreed to discuss

these points with the Dutch parent company.

The spokesman also passed on some tips about those grommets. To prevent rusting, after the holes have been drilled in the doors and car body it is advisable to apply a little petroleum jelly (such as Vaseline) around the holes. Some of the jelly applied to the flex as it enters each grommet also helps to prevent the ingress of water.
- A further note about installation: the EN8751s will mount in the doors of a series-2 Ford Escort without the need to cut any metal from each door. However, when the speakers are mounted in the ready-cut aperture in the doors, the windowwinding handle is uncomfortably close to the loudspeaker and may even touch the grille. If you use the dimensions given by Philips then you will have to cut a portion of the metal away, but the lower hole position will keep you clear of that handie.

When marking out the hole in the metal, allow for clearance of the loudspeaker terminals and also of the lower mounting nuts and screws. Simply mark out a rectangular flap (we did it the hard way and followed the shape of the speaker) and drill a string of \(3 / 16^{\prime \prime}\) holes along the lower line (that is, parallel with the bottom edge of the door). The vertical lines can be easily cut down using a junior hacksaw. When the cutting and drilling is completed, break out the flap along the line of holes and file smooth the jagged edges (mind your fingers when doing this).

To prevent rusting, it's also worthwhile treating the freshly-cut metal with a dab of underseal or thick paint before you fit the door panel.

```

_ NEW KITS

```

\section*{COMIINATION SWITCH}
```

Bettery operated, would control solenoid lock or any power when in the off potition. Complete kit $£ 4.50$.

```

\section*{A SECRET SWITCH}
```

Con be hidden behind a panel, door, wallosper, etc
Will light the lamp or whatever trolled and it will also latch itself on

```

\section*{Complete kit \(£ 1.95\).}
```

3. 30, VARIABLE VOLTAGE POWER SUPPLY UNIY With 1 amp DC output, for use on the bench, students. and overload protection. In case with a volt meter on the front penel. Complete kit E13.80
```

\section*{IONISER KIT}
```

Refresh your home, office, shop, work room, etc. with mork harder - complete mains opereted kit, case £11.95. post Et .50 .
4O WATY AMPLIFIER
T.V. AERIAL FILTER
Designed to eliminate C. 8 . and other interterence comulete

```

\section*{MDRSE TRAINER
Complete kit \(£ 2.99\)}
```

DRILL SPEED CONTROLLER
Complete kit E 3.95 .
MAINS POWER SUPPLY
Gives any voltage Irom 3 v to 16 v at up to $\mathbf{3 0 0 \mathrm { mA }}$
Complete kibless case $£ 1.95$. Case 90 p .

```

\section*{SUPER HI -FI SPEAKER} CABINETS
Made for an expensive Hf . Fi ourtit Tree. Cut-outs for 6 K " " wootar and 2\%" iweeter. The front material is Dacron. The completed unit is mos pleasing. Supplied in pairs, price
\(\mathbf{6} 6.90\) per pair (this is probably le C6.90 per pair (this is probably
than the original coss of one cabinet carriage E 3.00 the pai

GOODMAN SPEAKERS \(6 \%\) " 825 watt. \(£ 4.50 .2 Y^{\prime \prime} 8\) ineet, E2.50
No extra for postage if ordered with cabinets
 No extra for

Vu METER SNIP
Approximataly \(15 / 8^{\circ}\) square, suitable for un as a recording level meter power output
dicator or many similar apolications. Full front, cover easily removable if you wish to
alter the scale. Soecial snio price \(£ 1.00\) or 10 alter the sc
for 69.00 .

MOTORISED DISCO SWITCH With 10 amp changeover switches. Mult edfustable switches all rated at 10 amps
this would provide magnificent disol For mains operated 8 aviich model E6.25, 10 switch model \(66.75,12\) swite model \(\overline{7} .25\).

100uA PANEL METER
very good quality, these have a fult visio very good quality, these have a full visio
front, are approx, \(2^{\prime \prime}\) square and come Pront, are approx, 2 square and come
comple to with mounting stucts and nuts. thoroughly relieble instrument usually retsiled ar over \(£ 4\), offered ot a snip price
this month of \(£ 2.85\) or 10 for \(£ 25.00\).

12v MOTOR BY SMITHS Macde for use in cars, these ara series
wound snd they become more power ful as load increaser. Size \(33^{\prime \prime}\) " long
by \(3^{"}\) dia. These have a good length of ya.d soindle - price a \(£ 3.45\). Ditto, bur double ended E 4.25

EXTRA POWERFUL 12 v MOTOR \(Y_{4} h . p\)., so it could be used to power a a go.kart or to drive a compressor, etc, etc. f6 \(90 * £ 1.50\) post.

\section*{UNIVAC KEYBOARD BARGAIN}

\title{
50 compurer troe kevs. 10 gether with 5 miniture toggle smitches
} and other parts. £13.50 \(£ \mathrm{£2.00}\) post. This is for less than the value of
the iwitches elone. Diegram of the switches alone. Dibgrem of his keyboard hav
ately. Price \(£ 1.00\).

SOLENOID WITH PLUNGER Mains operated E .99
\(10-12\) voles 10-12 volts DC

MULLARD UNILEX
A mains operated \(4+4\) stereo syatem. Rated one of the
finest performers in the trereo fietd this would make a wondorfut gits to almost onyone. In easy to ssemble
 - but due to a spacias bulk buy and as an centive for you to buy this month we offor the gystern complete at only C16.75 including VAT and post.
FREE GIFT -buy this month and you will receive a FREE GIFT - buy thin month and you will receive a pair of
Goodman's eltprical \(8^{7} \times 5^{-1}\) speakers to match this amplitier

3 CHANNEL SOUND TO LIGHT KIT parts for a threechannel sound to light
unit controll. unit controll-
ing over 2000 wates of light. ing. Use this
you wish but it

is plenty rugped anough for disco work. The unit is housad in an attractive two tone netel case and has controls for each channel,
and emaster onfort. The sudio input and outpur ere by \(X\)." sockets and three panel mounting fuse holders provide thyriuto protecrion. A tourpin plug and socket tacilitate ease of connect ing amps. Special snip price is \(£ 14.95\) in kit form or \(£ 25.00\) assembied and toited

\section*{THIS MONTH'S SNIP}

YOUR LAST CHANCE TO BUY THIS COMPUTER PRINTER FOR ONLY \(£ 4,95\)
Japanese made Epson 310 - has a self starting. brushless, transistorised d.c. motor to drive the print leed.
Complere, iesdy-buflt with electronics. Brand new still in me ker's wropping-price \(£ 4.95+£ 1.25\).
Technicel and practical dare E 1 extre.

SPIT MOTORS
These are poweriul mains operated induction motors with gear box with square hole, to you have altern. stive couplingmethods-final speed

EXTRACTOR FAN

8 POWERFUL BATTERY MOTORS For models, meccanos, drills,
remote control planes, boast, etc. eemote control planes, boasts, etc.
E2. 50 .

TAPE PUNCH \&
READER For controlling machine tools, erc, motorised 8 bit punch with
motchimg tape reader Ex
 nieved in good morking orroer, any not so
would be exchanged. c17.50 pair. Post E3.00.

MINI-MULTI TESTER Deluxe pocker vize precision mov ing coil instrument, tewelled bearings - 2000.0.0...mirror
11 instant renge measures: DC volta \(10,50,250,1000\).

PREE OUR CURRENT BARGAIN LIST WILL
TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be picked UP with FM radio. Can be made in a matehbox - all electronic RADIO MIKE
Ideal for discos and garden parties, allom complete freedom of movement. Play through FM redio or tuner amp. \(£ 8.90\) comp. kit
(Not licencesble in the U.K.).

\section*{FM RECEIVER}

Made up and working, complete with scale and pointer needs only a speaker, ide.
mike. 55.85 .

\section*{CB RADIO}

Listen in with our 40-chonnel monltor. Unique design ensures tha you do not miss sender or caller. Complete kit with case, speaker
and instructions onty \(\mathbf{~} 5.99\).

VENNER TIME SWITCH Mains ooerated with 20 amp switch, one automatically correcting ior the len dail automatically cor recting for the lengthen
ing or shortening day. An expensive time witch but you can have it for only \(£ 2.95\) Thase are now but without case, but we can supply plastic cases (base and cover)
\(\mathbf{E 1 . 7 5}\) or metal case with window \(£ 2.95\). Also availabie is adsport wit to \(£ 2.95\). this into a normal 24 hr . time switch but With the added advantage of up to 12 on , roller for the inmmersion meater so ideal confaptor kit is \(E 2.30\) STEREO HEADPHONES dapanese made so very good uual
8 ohm impedance. padded, term. inating with stondard
plug. f2.99 Post 6 for

TIME SWITCH BARGAIN
Large clear mains frequency controlled
clock, which will always show you the corract time + start and stoo switches with the dials. Comes complete with \(k\)
\(\equiv 2.50\).

SAFE BLOCK
Mains quick connector mill save you valuable time. Features include switch. Complete kit. £1.95
6 WAVEBANO SHOR TWAVE RADIO KIT
ppeared ludes case materials six of Radio Constructor. Completa kit inors, Inductors, twitches, etc. Nothing else to buy if you have an mplifier to connect it to or a pair of high resistance headphones. SHORT WAVE CRYSTAL RADIO
All the paris 10 make up the beginner'is model. Price E2.30. Crystal earpiece 65 p . High resissance headohones (gives best resulti) £3.75. Kit includes chassis and front but not case. RADIO STETHOSCOPE
Easy to tault find - start at the arial and work towards the speaker
- whien signal stops you have found the fault. Complate kit \(£ 4.95\). - Whien wifnal stops you have found the fault. Complate kit \(£ 4.95\)
INTERRUPTED BEAM

This kit enables you to make a switen that will trigger when a ents - selay, photo transistor, resistors and caps erc. Circuit diagr but no case. Price E2.30
MUGGER DE TERRENT
MUGGER DE TERRENT
A high-note bleeper, push latching switch, olastic case and battery
connector. Will scare away eny villain and bring help. 22.50 com.
TANGENTIAL BLOW HEATER
efficient instent
heating trom
\(230 / 240\) vols
\(230 / 240\) volt
mains. Kit con

illustrated, 2.5 Kw
12V SUBMERSIBLE PUMP
Just foin it to your car battery, drop it into the liguid to be moved and up it comes, no messing about, no priming, etc. and you get a non-corrosive liquid. One use it you are a camper, make yourself -shower. Price: ©8.50.

\section*{MINI MONO AMP}

On D.C.b.e size \(4 \times 2\) ".Three Tramsistors and we estimate the
output to be 3 wart rms. Srand new perfect condition,
offered at the very low price of \(£ 1.1\) esch or 10 for f 10.0
J. BULL(Electrical) Ltd.
(Dept. HE), 34 - 36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH16 3QU.

Established 30 YEARS

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under \(£ 10.00\), add \(60 p\) service charge. Monthly account orders accepted from schools and public companies ACCESS \& BARCLAYCARD orders phone Haywards Heath (0444) 54563. CALLERS: to Haywards Heath or 2, Bentham Road, Off Elm Grove, Brighton BULK ORDERS: Please write for special quotation,

\section*{TEMIPUS SHORT FORM CASID CATALOGUE}

\section*{FREE}

Replacement Battery Voucher
(where applicable) on request with every item ordered from this catalogue

FULL DETAILS OF INDIVIDUAL ITEMS AVAILABLE ON REQUEST

14 p stamp appreciated
\(\qquad\)

\section*{CASIOTONE KEYBOARDS}

\section*{VIVID REALISM}

Sound is the criterion when judging a musical instrument Our CASIOTONE keyboards are out-selling all others because of their superb reproduction, quality and legendary reliability

GENERAL SPECIFICATION
All Casiotone keyboards (except VL Yone) are polyphonic - up to 8 notes can be played simultaneously they all have an integral amplitier and loudspeaker, plus an output jack for headphones and external amplifier or recorder
 ONLY 1199

14 instruments over 4 oclaves \(8 \times 2\) rhythm accompaniments Vibrato and delayed vibrato Start stop. synchro start, tempo controt tempo indicator and rhythm volume \(4^{1 / 2} \times 31^{1 / 2} \times 12^{2}\), Weight 271 bs

RRP \(£ 325.00\)

25 instrumenis over 4 oclaves four varce memory function with push button selection Vibrato and sustain switches 16 rhythm accompaniments with fill-in varialion Casio Auto Chord for one finger or auto playing of controlsincluding pitch \(A C\) only 4 \% \(\times 30 \mathrm{~m} \times 11 \mathrm{~m}\) Weight 176 lbs

Casio have a world-wide reputation for QUALITY, RELIABILITY and VALUE FOR MONEY

\section*{ORDER TODAY - PLAY TOMORROW}

On request goods will be sent by
SECURICOR 24 hour delivery service at no extra charge Small keyboards by RETURN OF POST Also CASH \& CARRY from Cambridge

INSTANT MUSICIAN
VL-TONE (VL-1)

VL- 1 records and plays back up to 100 notes as a melody, with memory break-in ONE KEY PLAY or AUTO PLAY of 5 instruments, or create your own unique sounds with ADSR 10 built-in AUTO RHYTHMS and TEMPO CONTROL LCD dighal readout of notes and tempo Also a calculator Battery powered with memory retention With song book \(\times 11^{1 / 2} \times 3\)

PORTABLE PERFORMERS
M- 10 the Casiotone's talemt for sparkling, crystal clear tones Even more impressive is the clav (Melody Maker)
49 instruments over 4 octaves 4 voice memory function with push butron selection 3 vibrato setings and sustain Pitch control O P packs AC only \(31 / 2 \times 341 / 2 \times 11 / 2\) 1681 bs
The light weight (\(3 \mathrm{5lb}\)) and battery power allows enjoyable playing anywhere of piano, violin. flute and organ over \(2 \frac{1}{2}\) octaves Bult-in vibrato function \(16 \frac{1}{2}\) \(\times 5\) \% \(\times 2\) " With soft carrying case

\section*{MT. 30}

RRP \(£ 115\) ONLY \(\mathbf{C 9 5}\) 22 insiruments over 3 octaves four position voice memory function Built in Vibrato and sustain Batlery or mains \(22^{3 / 4} \times 6 \frac{1 / 2}{} \times 2 / 2{ }^{\prime \prime}\) Weight \(61 b\)

25 instruments over 4 octaves four ONL function with push button selection Buit in vibrato and sustain Pitch control AC only \(30^{3 / 5} \times 11^{3 / 4} \times 4 \%\) Weight 16 Blbs

Analog Display

COMMON SPECIFICATIONS: "High quatity modules and cases *Mineral glass face * Accurate to * 15 seconds per month * Water resistant to withstand day-10-day splashing. rain, etc.

W-150. (lefi) RRP \(£ 2795\) 224.95. Stainless steel case/bracelet W. 150C (right) RRP 12495 \& 21.95. Stainless steel case/resin strap

Time and auto calendar Alarm hourly chimes. count down alarm time with repeat memory \(1 / 100\) sec and stopwatch Time is always on display. regardless of display mode

THESE SPACE INVADERS WILL ALARM YOU Casio's most amazing watches ever

\section*{CA. 90 (left) RRP \(£ 22.95\)} E19.95. Black resın case/strap
CA. 901 (right) RRP £3495 \&29.95. Chrome plated case. S/S bracele

Time and auto catendar,
catculator, alarm, hourly chimes, stopwatch, dual IIme. DIGITAL SPACE
INVADER GAME INVADER GAME

STANDARD CASES
(SPLASH (SPLASH
RESISTANT
F. 81 /FB2 (left) RRP \(61295 \quad 110.95\). Black

A-851 (right) RRP £ 1695 14.95. Stainless steel jacket and bracelet

Displays hours. minutes and date: seconds or day Alarm, hourly chimes and 10 second stopwatch

W. 51 (left) RRP \(£ 25.95\) \&22.95. All S/S
specification as W. 150
LW-5. RRP \(£ 1095\) c895. Resin case and strap Colours as available.
Three display modes hours and minutes, month and date; seconds display 7 year battery life.

LADIES
LADIES MODELS size)

NEW
LM- 3 (left) RRP \(f 1695\) \&14.95. Resin case and strap Colours as avallable
available
Ladies melody alarm Ladies melody alarm chronograph Time and calendar. 3 selectable
alarm melodies, hourly alarm melodies, hourly stopwatch.

AN-BGL (right) RAP ¢27.95. 124.95 . Gold plated case. Leather strap Gentleman's slim dress watch. LCD/analog display of hours and minutes Sweep second hand or radial seconds No other functions.
50 METRE WATER RESISTANT

NEW
CLAIRVOYANT CALCULATOR
Fortune Teller, Matchmaker, Calendar and Alarm Clock FT- 7

RRP \(£ 18.95\) ONLY \(£ 16.95\) Predictions of individual fortunes (Health, Gambling/ Investment, Business and Love) or the compatibilizy between two persons on any given day
Hourly tume signals \(5 / 16 \times 2 \frac{1}{2} \times 41 / 4\) inches Wallet.

BQ-1100 BIOLATOR Alarm Clock Calculator

Calendar. Iwo alarms countdown alarm, stopthree date memorys date and BIORHYTHM CALCULATIONS. CALCULATIONS.
\(1 / 6 \times 2.7 / 16 \times 41 / 8\) RRP \(£ 1895 \quad 16.95\)

MO 1200 MELOOY. Alarm Clock Calculator RRP £22.95. £19.95

11111111

12 Melodies, 2 alarms, date memories. anniversary memories, calendar, night light \(1-9 / 16 \times 6 \times 2 \frac{1}{4}\) inches. 7 ounces.

MELOOY ALARM CLOCK CALCULATORS
ML-120

RRP \(f 16.95\) f14.95

RRP \(£ 25.95\)
\(£ 22.95\)

12 melodies, 2 alarms, date memories,
anniversary memories, calendar, stopwatch.
ML-120 \(7 / 32 \times 2 \frac{1}{2} \times 4 \frac{1}{2} 2^{\prime \prime}\). Walle1
ML-2000 Office. \(13 \times 4 \times 6 / 4 /\)
ML-75: Card version of above. 614.95 .
BANKING AND FINANCE
BF-100 RRP 16.95 ONLY 14.95

SYMPHONIC ALARM CLOCK

NEN
INTELLECTUAL SPACE INVADERS
More mental agility-less manual dexterity
MG-885
Three missile bultons for
three level attack. 8
arcs of fire make
"aiming off" essential

Basic calculator with
full memory and \%

RRP \(£ 12.95\)
ONLY \(\mathbb{C 1 0 . 9 5}\)

MG-880 OIGITAL INVADERS
Our best selling calculator last Christmas
MG-880
MG-770 Card Size

RRP \(£ 12.95\)
£10.95
Quick reacions and fast fingerwork are called for Basic calculator with full memory and \%

UC- 365 MELODY
Alarm Clock Calcular

MELODY ALARM CLOCK CALCULATORS

UC- 360 Card Size

RRP £21.95 £19.95.

Specifications as UC- 365 above

\section*{RRP \(£ 30.95\)}
£27.95
UC \(-3607 / 32 \times 3 \% \times 23 / 4.1 .802\). Wallet
UC- 3000 . Office. \(13 / 4 \times 4 \times 61 / 4^{\prime \prime}\)

\section*{GENERAL SPECIFICATIONS}

All casio calculators listed have liquid crystal displays for long battery life and a (minimum) 8 digits, with floating decimal point.
Alarm clock calculators all have a one year battery life, pre-programmed automatic calendar adjustment" and hourly time signals. ("Excep FX-6100).

NEW
INSTANT MUSICIAN!
Electronic Musical Instrument and Calculator VL- 80

Records and plays back notes as a melody. ONE KEY PLAY AUTO PLAY Manual play
Melody demonsiration
Vibrato effect
\(8.5 \times 68 \times 118.5 \mathrm{~mm}\)

Price/delivery on application.

SCIENTIFICS at discount prices

FX-B1 8 digits, 30 scientific functions. \(2 \times \mathrm{AA}\) batteries last 4,000 hours, \(3 / 4 \times 3 \times 53 /{ }^{\prime \prime}\) FX-100. 10d, 44 sc.f, otherwise as FX-81 FX-550. 50 sci 1,300 hour lithium battery \(5 / 16 \times 2 \% \times 51 / 4^{\prime \prime}\). Wallet.

WITH CLOCK AND ALARM

FX-6100. 8d, 39 sc.f, clock with hourly time signals. alarm, countdown alarm timer, \(1 / 100\) second stopwatch \(2 \times\) AA batteries last 1 year. \(7 \times 3 \times 57 / \mathbf{m}^{\prime \prime}\)
FX-B100. Similar to above but 49 sc . 1 , auto calendar additional timer alarm and powered by 2 silver oxide batteries. \(1 / 4 \times 21 / 4 \times 51 / \mathrm{b}^{\prime \prime}\). Wallet.

LOW COST PROGRAMMABLES

FX-180P

f19.95

FX. 3600

\(£ 22.95\)

FX-1BOP. \(10 \mathrm{~d}, 55 \mathrm{sc} . f\), including Integrals and REGRESSIONAL ANALYSIS. Up to 38 program steps and 2 programs: One independent memory, 6 constamt memories; all non-volatile. \(2 \times\) AA batteries give 7,000 hours use. \(3 / 4 \times 3 \times 5 \%\) "
FX-3600P. Wallet version of above with hyperbolics and 1,300 hour lithium battery \(9 / 32 \times 2 \% \times 51 / 4^{\prime \prime}\)

RRP \(£ 134.95\) ONLY £119.95

LCD scrolling display of alpha/numeric (dot matrix) characters Input can be varied from 1680 programme steps, with 26 independent memories, to 80 programme steps with 226 memories. (All retaned when switched off). Up to 10 programmes can be stored (PO to P9). Subroutıne Nested up to 10 levels. FOR NEXT looping: Nested up to 8 levels. Straight forward programme debugging by tracing. Editing by moving cursor 55 built-in scientific and statistical functions, including regression analysis and correlation coefficient, can be incorporated in programmes Programme/data storage on cassette tape via optuonal FA 2 Optional FP 10 mını printer available soon. Two lithium batteries give approx. 200 hours continuous operation with battery saving Aulo Power Off. Dimensions

LCD alpha/numeric (dot matrix) scrolling display (86 types). - Variable input capacity from 32 functional program steps with 88 independent memories, to 512 steps with 22 memories. - Memory and program retention when switched off.
-Up to 10 pars unconditional jumps (GOTO). Manual jump.
-Conditional Jumps and count jumps. Indirect addressing. -Up to 9 subroutines. Nesting possible up 109 levels.
- 50 built-in scientific functions. all usable in programmes - PAM (Perfect Algebraic Method) with 33 brackets at 11 levels. - Ultra high speed calculations. - Program storage on cassette tape using optional FA. 1
-Compatible with FX-501/2P - 2 lithium batteries. Approx 660 hours continuous use.
- Battery saving Auto Power Off - Only \(9.6 \times 71 \times 141.2 \mathrm{~mm}\)

100 g .
Optional FP-10 printer available soon.

RRP \(£ 84.95\) ONLY \(£ 74.95\)

Official Timekeepers. 1980 Olympic Games

PROFESSIONAL STOPWATCH

ONLY \(£ 33.95\)
MICROSPLIT 1030
\(\cdot 1 / 100\) second timing up to 9 hours, 59 minutes, 59.99 seconds.
-Selectable lap or split tuming
-Quartz accuracy, certified 0.0004\%
-Water resistant case (it floats!) - Low battery warning indicator.
- Two year continuous battery life. - Colour coded butlons, with precise clickıng action for reassurance -Lightweight, shock resistant, easygrip cases, with lanyard.
Other models available. Details on request

CITIZEN Fast overtaking SEIKO as the worid's largest manufacturer of high quality watches. with 28 million sold in 1980.

41-8510-51 Analog/Digital Alarm Cronograph

Analog time, with luminous hands. Digital second time, or calendar. with night time tilumination Professional \(1 / 100\) second stopwatch to 1 hour, then seconds to 24 hours. Alarm and hourly chımes. Countdown alarm timer, with repeater function. 100 METRE WATER RESISTANT S/S case, with crystal glass.

ONLY \(£ 87.50\)

Copyright Tempus, 1981. E\&OE

Prices include VAT and P\&P or carriage. Send cheques, Postal Orders or phone vour ACCESS or \(B^{\prime} C A R D\) number to:

The Beaumont Centre, 164-167 East Road, Cambridge CB1 1DB. Telephone 0223312866

Tempus, 164-167. East Road, Cambridge CB1 108
Please supply
Name
Address

I enclose a cheque/PO for \(E\)
or I wish to pay by Access/Barclaycard My number is

I saw your advertisement in.
magazine

\section*{Installing Blaupunkt Quick Fit 723 Loudspeakers}

EARLIER THIS YEAR the installation of one of Blaupunkt's do-ityourself car radio/cassette player kits was described under GG\&K (see June ' 81 HE, pp 35-37).
We had experienced a few problems in mounting the loudspeakers provided with the kit, and managed to write off a door panel of a Ford Escort 1600 Sport in the process. You may recall we found that there was insufficient clearance between the speaker and the inner edge of the window winding handle. (Happy ending to this story: Rober Bosch, the UK company for Blaupunkt, covered the cost of a new panel.)
Ron Sherwood, Robert Bosch's UK product manager, suggested the use of model 723 flush-mounting speakers from the Blaupunkt Quick Fit range in place of those supplied with the kit. As promised in the June issue, we did try installing these.

\section*{Contents Of Kit}

Each kit comprises:

\section*{- one 723 loudspeaker}
- one self-locking threaded ring to secure loudspeaker from rear of panel
-one tool (attached to ring moulding) for use in tightening speaker in door panel hole
- two grommets

The loudspeaker has a cone diameter of about \(3^{\prime \prime}\) (75 mm) and has a power rating of 15 W . Leads and plugs are supplied separately, according to individual requirements.

\section*{Installation}

Listed on the back of the 723 pack are recommended dimensions for marking out the position of the loudspeaker on the door panels of a variety of popular makes of car, together with the recommended hole diameter for the speaker aperture. (lt is only necessary to cut one 107 mm diameter hole in the panel: the speaker is clamped tightly in place by means of the threaded ring.)

We marked out our new Escort door panel according to the dimensions listed and found that, if we mounted the loudspeaker in the recommended position, its magnet would have become tangled with the window-winding mechanism.

Somewhat dismayed, HE's Editor contacted Ron Sherwood, who suggested that he should get in touch with Sound On Wheels, in Harrow, one of Blaupunkt's main outlets in the UK. A spokesman at Sound On Wheels said that the dimensions given on the back of the Quick Fit
packs should be treated as a guide only. For Escorts, he said, it is necessary to remove some metal from the door panel to fit any model of loudspeaker. Sound On Wheels always advises its customers to check first before attempting an in. stallation.

Now, when we installed a pair of Philips EN8751 loudspeakers in a Ford Escort (see report in this months' GG\&K) we did find it necessary to cut metal away from the inside of the door. Providing that this is done (and it may not be necessary on other models of car) the installation of the 723s should present few problems.

\section*{Price Guide}

Cost of each 723 Quick Fit pack (two are required for stereo) is £9.55.

Leads, complete with plugs and sockets are priced as follows:
\begin{tabular}{ll}
\(3^{\prime}\) & \(60 p\) \\
\(71 / 2^{\prime}\) & \(75 p\) \\
\(15^{\prime}\) & \(90 p\)
\end{tabular}

Alternatively, you can buy a set of four (two long, two medium, two short) for \(£ 5.45\).

All these prices are exclusive of VAT.

Sound On Wheels, 340 Pinner Road, North Harrow, Middlesex (tel 01836 5749).

\section*{ \\ Videotone ICE System}

OVER THE PAST few years the incar entertainment (ICE) industry has grown to become a highly competitive and lucrative enterprise. Gone are the days when we were only too pleased to have a common-orgarden radio attached to an equally cheap loudspeaker, producing the kind of sound quality reminiscent of a radio broadcast of the early 50 s .

The key to success is not only emphasised towards attaining a high quality in audio reproduction but the art of miniaturising components and
systems is also playing its part as a front-runner on the technological battlefield.
Faced with a multitude of various makes and offsprings, the customer has the difficult task of selecting a suitable system.
To bring you a step closer in making your choice we have reviewed a complete ICE system comprising a stereo radio/cassette, pod-mounted speakers and a five-channel graphic equaliser/booster. All units are supplied by Videotone Ltd.

\section*{The System}

The cassette player is a dash. mounting unit with AM/FM and MPX (multiplex) stereo radio. The radio covers frequency ranges of \(535-1605 \mathrm{~Hz} \mathrm{AM}\) and \(88-108 \mathrm{MHz}\) FM stereo. Additional features include digital frequency tuning, 24-hour time display and an end-oftape eject system that also operates when DC power is removed from the player. The frequency display can be overridden by the time/frequency selector switch to obtain a constant time readout. The time-set switches are situated on the front panel for easy access.

The MS4015 is a three-speaker system (woofer, mid-range and tweeter) housed in a robust enclosure and protected by a metal grille. The rest of the hardware includes a pair of swivel brackets, speaker leads and screw fixings.

The graphic equaliser/booster controls five frequency allocations. These are: \(60 \mathrm{~Hz}, 250 \mathrm{~Hz}, 1 \mathrm{kHz}\), 3 k 5 Hz , and 10 kHz , with a cut and boost of \(\pm 12 \mathrm{~dB}\). Each slider has a click action throughout its travel. For the power-minded individual, the booster amplifier is claimed to deliver 30 W per channel into a 4 R load. Front and rear speaker connections are available at the back of the booster. If you decide to incor-
porate this unit, we recommend that you use this facility to get the best all-round performance. The complete system was installed in a Ford Cortina Mk 4.

\section*{On Test}

Listening to the speakers under test it was of no surprise to find, with speakers of this size, that bass response was limited and power handling capacity was lower compared with door-mounting types. However, they have the advantage of being easier to fit than doormounted speakers, and, played within their limits, provide a clean dynamic sound.

The front speaker connection of the booster was wired to a pair of existing door-mounting speakers. The fader control was then used to adjust the balance between the front and rear speakers. Using the system in this way gave exceptional results of power output, clarity and tonal contrast.
Prices for the above units are:
Radio / cassette \(£ 79.95\)
Pod speakers \(£ 19.95\) per pair
Equaliser / booster £24.95
All these prices include VAT but add \(£ 1.50\) with your order to cover carriage.

Videotone Limited, 98 Crofton Park Road, London SE4 (tel 01690 8511).

\section*{Brainnwave \\ Sensor}

Aleph One produce a range of biofeedback equipment including a Myophone to monitor muscle activity, a Relaxometer which monitors skin resistance (skin resistance changes with stress) and the instrument they supplied me with for evaluation this month the Alpha Sensor.

The Alpha Sensor is a battery operated device which signals when the user is producing alpha waves. Why would you want to know that you're making alpha waves? The brain produces minute electrical signals consisting of a number of rhythmically varying potentials. They are divided into four major groups according to frequency as follows:

\section*{FREQUENCY \((\mathrm{Hz})\) GROUP NAME \\ 0.5-4 \\ 4-8 \\ 8-13 \\ 13 and over}

Although the relationship between brainwave patterns and personality is complex, it seems to be generally true to say that 'more highly structured mental activity is
associated with higher frequency waves'.

Delta waves are found in sleep, beta waves in a state of alertness and alpha waves in a resting state not asleep, but not active either.

Theta waves, associated with 'flashes of inspiration' or the state of mind of an experienced meditator are not normally found in adults, but can be produced by training.

\section*{Using The Alpha Sensor}

The device is normally supplied in the UK with batteries already fitted. To check everything out, plug the electrodes into the test socket and touch them together. You should hear a continuous tone from the speaker behind the spiral grille.

The electrodes are small brass rings with sponge rubber inserts and Velcro backing, held against the head by a Velcro strap. One electrode is held above and just in front of the ear and the other slightly to the same side of the back of the head.

A bottle of saline solution is supplied to make good contact between the skin and the scalp. A clip has been sensibly attached to the electrode cable. When the electrodes are in place, it can be
clipped to a collar or lapel to avoid awkward tugs or strains on the cable.

\section*{Plugging Yourself In}

With the electrode cable connected to the input socket, there should be no signal from the unit when the user is sitting quietly with open eyes. Blink and the unit should bleep. It's picking up muscular electrical activity in the skin. At this point the sensitivity control is turned fully clockwise (most sensitive).
Now you can settle back, relax and close your eyes. If you can remain quiet but alert and free from distraction, you should soon hear the characteristic tone associated with alpha waves. With practice it should become easier to produce them and the sensitivity control can be turned down to decrease noise.

For this monitored trip into a trance-like state of relaxation you can expect to pay a staggering £188.60 including VAT and postage. As you can imagine, with that sort of price tag, the Alpha Sensor is not a toy. Alpha wave training has been used in the treatment of hyperactive children, of intractable pain and of epilepsy. It has also helped experimenters reach a suitable state of mind for ESP research or to promote suggestion under hypnosis.

Aleph One also issue a Biofeedback newsletter surveying books, articles, conferences and research in the field - subscription \(\mathbf{£ 1 . 5 0}\) per year (about four issues). In addition, Aleph One can supply books and cassette tapes covering a range of stress therapy for agoraphobics and those afraid of thunder, flying, interviews, etc.

For details of the Alpha Sensor and a range of biofeedback instruments (from £45) contact Aleph One Ltd, The Old Courthouse, High Street, Bottisham, Cambridge CB5 9BA.HE

\section*{TALKING Digital Watch}

HERE'S YOUR CHANCE to own a watch that will:
\(\star\) announce the time at the touch of a button
* announce the time on the hour
* remind you, up to an hour, how much time you've used up on a parking meter
* wake you up and give you two snooze periods

These are just a few of the functions provided by this exciting Talking Watch on special offer to HE readers for only \(£ 59.95\) (this price includes VAT, registered post and packing).

Just take a look at the specification given right for this latest model from the Trafalgar Watch Company

Announcements
- Time of day, at the press of a button leg 'It's ten fifty-seven am")
- Selectable hourly time, preceded by tone (eg "It's eleven am")
- Alarm, followed by melody (Anna Maqdaleua Bach Minuet)
- Snooze, followed by the melody 5 and 10 minutes after the alarm (eg "Attention please, it's now seven thirty am. Please hurry!"')
- Elapsed time, in timer mode, every 5 minutes for one hour from the timer start. Elapsed time also announced at the press of a button

\section*{On Display}
- Normal mode: hours, minutes, seconds, pm and day of the week. Alarm symbols are also displayed when alarm functions have been selected
- Calendar: when the 'speak' button is pressed the day, date and month are displayed simultaneously with the announcement of time of the day
- Timer: hours, minutes and seconds are displayed for periods up to 9 hours, 59 minutes, 59 seconds. Elapsed time is announced every 5 minutes during the first hour and when a button is pressed during the total period
- Alarm: selected alarm time can be displayed
- Setting: time, date and alarm displays can be set sequentially at the press of a button

The HE Talking Watch is finished with golden panels set in a black resin case, and comes complete with adjustable stainless steel bracelet. Each watch carries a 12-month guarantee.

Use the coupon supplied, and place an order today for this technological masterpiece of horology.

To: HE Talking Watch Offer, Argus Specialist Publications Limited, 145 Charing Cross Road, London WC2H OEE
```

Please send me . . . . . . . . Talking Watch(es) at £59.95
each. (Price includes VAT, registered post and packing)
I enclose a cheque made payable to Argus Specialist Publica-
tions Limited for £
or
I wish to pay by Barclaycard/Access. Please charge to my
account number

```

```

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(block capitals!
Address
(block CapItalSi
Please note that the offer applies to the UK mainland onlv.
Allow }28\mathrm{ days for delivery.

```


\section*{COMPUTER COMPONENTS}

4000 SERIES

震
PLEASE ADD 40p PGP \& 15\% VAT (Export no VAT) Government, Colleges, etc. ORDERS WELCOME BARCLAY \& ACCESS CARDS ACCEPTED

\title{
BUILDING SITE
} In the last of the present series, HE's Master Builder, Keith Brindley,
tells you how to hold your printed circuits down. He also discusses
a topic of great concern in the electronics world - Murphy's Law.

FASTENING PRINTED CIRCUIT boards (PCBs) down, into a project case, can be a pain - and anything to ease this is welcome. The obvious way of doing it is with bolts, nuts and washers: a bolt at each corner. This way is shown in Fig. 1. But what happens if you haven't got room on the PCB to drill the necessary holes or, more to the point, what happens when you can't be bothered?

Figure 1. A method of fixing a PCB to a project case, using nuts, washers and bolts

The way the HE Project Team mounts PCBs, in most of HE projects, is with double-sided adhesive pads. The application of a pad on each corner of the underside of a PCB (as Fig. 2 shows) allows the board to be firmly held to the bottom of the project case. Once the board has been positioned, of course, it becomes impossible to remove it without damaging the adhesive pads so all soldered connections to the copper board should be done, (and a check made to see if the circuit is working correctly) before fixing the PCB down. A good tip, regarding connections, is to insert and solder circuit board pins wherever off-board connections are to be made to the PCB: in this way off-board connections can still be made - but to the top (ie, component side) of the PCB and after fixing it down.

Figure 2. Using double-sided adhesive pads to hold down a PCB

Incidentally, the use of a double-sided adhesive pad allows a very convenient way of fastening down a battery in a project too (see Fig. 3).
Another simple way of mounting your PCB is on plastic guiderails, as shown in Fig. 4. The plastic extrusion has a PCB-sized slot on one of its sides and a length of adhesive pad on the other. The idea is to mount guide-rails on the inside front and rear panels (or side panels) of the project and then to slide the PCB into the slot produced between the two rails.

Figure 3. Double-sided adhesive pads are ideal for holding batteries in postion

Figure 4. PCB guide-rails make an easy method of positioning and holding circuit boards

\section*{And Now For Something...}

Finally, throughout this series I have occasionally referred to that well known law of inanimate object behaviour: Murphy's Law.
Now, it has come to my attention recently that some of our readers do not believe that Murphy's Law is a true law/ To allay their doubts and prove its existence, reproduced below is an abridged version of Murphy's Law (taken from Murphy's own book: The Understanding Of Inanimate Objects). Although the Law has been stated simply as, 'If anything can go wrong, it will'. a more detailed and much broader analysis of the Law is obviously beneficial to anyone involved in the study of electronics.
This version of Murphy's Law is grouped into five of the most common problem areas in electronics, but it should be realised that other areas do exist, and the Law is not specific to electronics alone:

\section*{General Electronics}
I. 1 A patent application will be preceded by one week, by a similar application made by an independent worker.
I. 2 The more irrelevant a design change appears, the further its influence will extend.
I. 3 Firmness of delivery dates is inversely proportional to the tightness of the schedule.
l.4 Dimensions will always be expressed in the least usable term. Velocity, for example, will be expressed in furlongs per fortnight. l. 5 Driginal drawings will be mangled by the copying machine.

\section*{Mathematics}
II. 1 In any given miscalculation, the error will never be traced if more than one person is involved.
II. 2 Any error that can creep in, will. Furthermore, it will be in the direction that will do the most damage to the calculation.
II. 3 All constants will be variables.
II. 4 In any given computation, the figure that is most obviously correct will be the source of error.
II. 5 A decimal will always be misplaced.
II. 6 In a complex calculation, one factor from the numerator will always move into the denominator.

\section*{Projoct Construction}
III. 1 Any wire cut to length will be too short.
III. 2 If a project requires \(n\) components, there will be \(n-1\) components in stock.
III. 3 A dropped tool will land where it can do the most damage. (Also known as the Law Of Selective Gravitation.)
III. 4 A device selected at random from a group having \(99 \%\) reliability, will be a member of the \(1 \%\) group.
III. 5 The probability of a component value being incorrect or omitted from a circuit diagram, is directly proportional to its importance.
III. 6 Interchangeable parts won't.
III. 7 A DC meter will be used on an overly sensitive range, and will be wired in backwards.

\section*{Equipment Servicing}
IV. 1 A fail-safe circuit will destroy others.
IV. 2 A transistor protected by a fast-acting fuse will protect the fuse by blowing first.
IV. 3 A crystal oscillator will oscillate at the wrong frequency - if it oscillates at all.
IV. 4 A PNP transistor will be an NPN.
IV. 5 After the last of 32 mounting screws has been removed from an access cover, it will be discovered that the wrong access cover has been removed.
IV. 6 After an instrument has been re-assembled, extra components will be found on the bench.

\section*{Specifying}
V. 1 Specified environmental conditions will always be exceeded. V. 2 Any safety factor set as a result of practical experience will be exceeded.
V. 3 In an instrument or device characterised by a number of plus-orminus errors, the total error will be the sum of all errors adding in the same direction.
V. 4 In any given estimate, cost of equipment will exceed the estimate by a factor of three.
V. 6 In specifications, Murphy's law supersedes Ohm's Law.

HE

The Low Cost Eurocard Size Microboard
Fully Compatible with indirect connectors: and Card Frames to the latest international specifications.

Accepts any Integrated circuit package allows high packing density.

Screen Printed with 'island' pattern for ease of use - ideal for solder and wire wrap applications.

\begin{tabular}{|l|l|}
\hline ORDERCODE \\
\(200-22271 B\) \\
\(200-22270 E\)
\end{tabular}

Name:

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
Wall in into 14.0un ail socket Ten at l5p ees: per 100 sbp em .
\end{tabular} & homenwll phoximaty DETECTOA mingral amolfiner, ev OC. E3 50 photo comouctive CKL \(E 12\). High.power Cos coll. 600 MW . Ior control girevila Resistence 000 ohm to ak Max volts 240 Size I/2 \(x\) 1/2n RIBEOM MICROPHOME Hi.s. pro-amp on chassis t1.ß & & \begin{tabular}{l}
ULTRA SOMIC thansoucens merce Complete on 181 in Scienned cable. ti.s UITRASOMIC TRAMSMITEN COmpiste untl luneased toquites 15V.cas \\
FDStEA oymamic MICROPHONES 200 athm mpoedance. Moving coal Complate on chassis E 1 n pbit
\end{tabular} \\
\hline & (14300 Ampltion. A. . LM318N Ho Slew Op Amp [150 LM323K. Sv 3. mmp. req
\(\qquad\) LM31ON Volt. Follow of Amp LM3IIN Hegk Pert Voh Comparator 1100 LMBENN 5 wati Amo \(£ 120\) LM333N Dusi Com. 1905 Rog \(\qquad\) & \begin{tabular}{l}
Whaper Moder by hoton Low poww consumption (hass then 10 writu Simm ruming 1 15w thoo in semes for 2300 50800 \\
Sire 4h \(\times 4 x=18\) \\
Ont EAEP inc. YAT \\
BRAMD MEW \\
50\% lex then \\
mandacturess price
\end{tabular} & \\
\hline \begin{tabular}{l}
\(\qquad\) \\
6moge hectifen 1000 Piv 35 amps \\
1/2x1/2x/7m 6.5
\end{tabular} & \begin{tabular}{l}
stekeo cassette tare heads Quabity ceplacemont for mosi recordens with mounting \\
 manmot tape meado Ouarter tract TME XRPSIB Record/Replay reschl. XapS 36 hecordheplay
(encht. \\
XESII Erosoloachl 100
\end{tabular} & \begin{tabular}{l}
MEWLITT-PACKARO Displays \\
5032.7050 HIGH EEFICIENCY ARO VERY BAIGHT Only [1.en each \\
Sel of 6 for CS Hallinch fend common camode will replise Dirat. 14 . pin Di .
\end{tabular} & \begin{tabular}{l}
EX-MOTOROLA 5+5-WATT CAR STEREO AMPLIFIERS \\
Complete and tested units Medrum and Long Wrwe Supplied as weo buif unts \(15 \times 2 \times 2\) in 1 wath circun and dete. Oty ES men. Includes pry-amp.
\end{tabular} \\
\hline \begin{tabular}{l}
melay iGeneral.purpose Typos) 4/2-6x sungle-pote changeorar 200 ohms lopen moel. \(1 \times 1 \times 1\) men mop. \\
mimiature mp.c. POTENTDMETERE MOdel M2 High-quility. 5\% tolerence. 2 -wath, mith lin spindess All values. 47 ohms 47 h only 60 p .uch per 10, sop each per 100: Cop aech
\end{tabular} & \begin{tabular}{l}
me changease BATTEAES \\
VAATA 36 volts DEAC. \\
M AH 2\% \(\quad 1150\) ORYBTT 6-voh 4.5 amp \\
t750 \\
XTAL FLTER 10.7 mos . \(12.50 \beta\) separation. 1/2x1/Axinch 67 \(100 \mathrm{c} / \mathrm{s}+1 \mathrm{meg} 3 \mathrm{pm}\)
\end{tabular} & & \begin{tabular}{l}
a compacl 12-button keypod surable for use weth Cherry Keyboard 10 extend its tunctions phus fout entre keys \\
Supplied beand new with dele. \\
a \(3 \times 4\) nen ancoded sengle mode heyboter
\end{tabular} \\
\hline \multicolumn{4}{|l|}{QUANTITY DISCOUNTS on ALL items (unless stated), 15\% per 10, 20\% per 50, 25\% per 100. All items BRAND NEW (unless otherwise stated).} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|c|}{1-7231008/9 ¢冖ํ} \\
\hline \multicolumn{4}{|l|}{404 EDGWARE ROAD, LONDON W2 1 ED} \\
\hline
\end{tabular}

\section*{ELEGTROUALIE} ELEKROMALI CATALOGUE Send 70p for your copy now - 64 pages (A4). More than 6000 stock items from nuts and bolts to complete computer systems.

With it we include a Reclaim Voucher value 70 p for spend ing towards orders value f 10 or more.
I.LP. TOROIDAL TRANSFORMERS

From Catalogue 82, page 22
LLP. Toroidal Tranaformers
with secondary \(\mathrm{O} / \mathrm{P}\) voltage of \(9+9,12+12\), STATE REO, ZD VAL UE WHEN ORDERW

50VA-E7.36: 80VA-f7.82: 120VA-58.92 (Prices include rigid mounting kth and VAT) UK C.W.O. orders sent POST FREE
WE CARAY FULL I.L.P. TOROIDAL RANGE AS ADVERTISED

Youbuild onourexperience
HEATHK

\section*{Compe}

RIGHT BACK in the April ' 81 issue of HE we announced our Project Design Competition for the IYDP. The original closing date was 31st July 1981 but, because the initial response was disappointing, we extended it to 1 st September 1981 in the July '81 issue.

We've had dozens of entries and they covered a broad range of topics. For this reason we engaged the services of some people working closely with, or for, disabled people.

Our panel of judges comprised, in alphabetical order:
Simon Browning Project Engineer, Notting Dale Technology Centre, London W10
Judy Denziloe
John Flack
Roger Jefcoate
Development Officer, ACTIVE Principal, Electraid
Consultant Assessor and lecturer on electronic aids for the severely disabled
Patrick Poon
Research Assistant, Department of Electrical and Electronic Engineering, University of London
Heather Seaman Paediatric Occupational Therapist, Cheyne Centre for Spastic Children
The Winners
\(\star\) First Prize - a cheque for \(£ \overline{200}\) - went to Anthony Nash, of Kings Heath, Birmingham.
Anthony's entry comprised two projects, both designed with the aim of helping the blind and partially sighted learn about electronics.

The first was a Resistance/
Capacitance Indicator, which will
produce pulses of different rates as electronic or passive components are placed between two terminals. The circuit is simple and practical, and Anthony estimated its cost at about \(£ 2.50\).

His second project, an Audio Multimeter, would enable a blind or partially sighted person to make measurements of electrical units. The position of the needle of a moving-coil meter is 'tracked down' by means of an optical sensor mounted above the meter scale. When the needle and sensor coincide (the sensor can be moved by the user), an audible warning is given and the value can be read from an adjacent scale written in Braille. To prolong the life of the battery, Anthony included a timer which turns off the meter and sensor circuits after a predetermined period. We considered that the project could be built for a reasonable cost.

According to Anthony, the aim of the two projects was to assist blind and partially sighted children in tackling electronics as part of their technology lessons. He became involved in the work as one sector of a B Ed in-service degree course at the NCST. Although the work was aimed at children in schools, Anthony envisaged the finished projects as also being suitable for use by adults.

> The First Prize was donated by Brian Brooks of Magenta Electronics, Burton-on-Trent, Staffs. Magenta is one of HE's regular advertisers - see page 30 in this month's issue

\section*{\#Second Prize - a Kikusui} 538A Oscilloscope - went to R.Fairweather of Oxted, Surrey. By coincidence, his entry was also dedicated to the blind, and was described as a Braille Teaching Aid.
R.Fairweather outlined a common way of teaching blind pupils to read Braille, in which they are given a board on which there are six tins,
each labelled with a Braille character. The pupils are also given a pile of cards on which a Braille character is printed. The object is for the pupil to find the tin with the character that corresponds with that on a chosen card and to put the card into it.
His project works along similar lines: the pupil is given a pile of Braille cards, each with a unique code cut into its top edge, and the pupil inserts one of these cards against a slot on the equipment. The equipment also has a panel of six buttons over which is placed a master card of Braille characters. The object is for the pupil to feel the character on the card and then to feel down the master card until he or she finds what seems to be the same character. The pupil next presses the button alongside that character. A correct choice will result in one kind of noise being produced as the button is pressed: a wrong choice will result in another kind of noise. Right and wrong answers are recorded on individual digital scoreboards, thus enabling a teacher to monitor the pupil's progress.

Although the electronics is a little complicated for this project, our judges were unanimous about their decision over this entry. We understand that the project was designed as part of the A-level Design and Technology course. The prototype won a prize in the Schools Design Prize competition, run by the Design Council.
There were, as originally specified, three Third Prize winners. We had three digital multimeters as prizes, and they were awarded as follows:

\section*{*Third Prize No. 1 - Kaise} SK-6110 Digital Multitester went to C.J.Hart of Wootton, Isle of Wight. His entry, Distress Alarm System, is intended to enable the elderly or disabled living on their own to call for help, or to have help summoned automatically in the event of an emergency.

This project includes some clever

innovations. When help is needed, the user can activate an alarm situated in the house of a neighbour or warden or an alarm placed within earshot of passers-by. The alarm is triggered by pressing one of several push-buttons sited at strategic positions around the house. Alternatively the alarm will be automatically activated if the equipment has not been reset by the user within a set period from the outset of a warning signal sounded within the house. This warning signal will sound every hour or so. For ease of use, the same push-buttons double to set off the alarm if the warning signal has not been sounding and to reset the equipment if it has been sounding.

To avoid the necessity for the user to switch off the equipment during the night, for an afternoon snooze or for short trips out for shopping the equipment includes a timer which can be set for an extended 'off' period (2 or 10 hours on the prototype). After this period the system returns to 1 hour cycles.
C.J.Hart estimated that the cost of the project, excluding case, would be about \(£ 10\).
- Third Prize No. 2 - Kaise SK-6220 Digital Multitester went to A. Trafford, aged 14, of Milton Common, Oxford, His project, Temperature Alarm, is intended for use by an elderly person living alone and who might be in danger of suffering from hyperthermia (body temperature greatly above normal) or hypothermia (body temperature below normal) as a result of the room temperature being extremely hot or extremely cold.

His design was very simple only 10 components are used. The circuit uses a thermistor as the temperature-sensing device, and this is placed close to the person at risk. When either condition occurs (the two extremes of temperature can be pre-set) a constant audio warning is given. The project also gives a visual indication that the
room is not safe for occupation. A.Trafford estimated the cost of his project at around \(£ 5\).
\(\star\) Third Prize No. 3 - ICD
Digital Multimeter 600D - went to Brian Davey of Millom, Cumbria. The title of his project was Lifeline. To illustrate its simplicity of construction and operation a sample was attached to his entry form.

This project, like that from C.J.Hart, is intended for use by the elderly or disabled living alone. He envisaged that most house-bound elderly or disabled people tend to follow set patterns of activities in the house and will generally move along the same routes (such as favourite chair to kitchen, toilet, bathroom, and so on). If the person should fall over at any point on this route then they might be out of reach of any means of calling for help. Brian's Lifeline consists simply of two parallel lengths of uninsulated wire carried between two strips of flimsy paper. This 'tape' is pinned within easy reach throughout the house.

The idea is that the two wires are attached to a low-voltage alarm circuit (such as a door bell). In an emergency the elderly or disabled person simply reaches for the nearest length of tape, tears it apart and twists the two wires together. Thus by short-circuiting the wires in this way the alarm circuit is completed.

Definitely a simple - and lowcost - system. Our judges were a little worried about the flimsiness of the material and, of course, the need for the voltage on the wires to be absolutely safe but otherwise thought it to be very clever.
The general standard of entries was so good that we decided to award two consolation prizes!

\section*{\(\star\) Consolation Prize No. 1}
- Grand Prix hand-held computer car racing game - went to
A.Trafford (second time lucky in this competition!) for an ingenious Radio Alarm.

Consolation Prize No. 2
- Galaxy Invader 1000 hand-held space battle game - went to John L.Wigley, of Bourne End, Buckinghamshire, for his Low-cost Communicator for the disabled.
- The Third Prizes were donated by West Hyde Developments Limited, Aylesbury, Buckinghamshire and by Danesbury Marketing Limited, Welwyn Garden City, Hertfordshire. Consolation Prizes were donated by Computer Games Limited, Woodford, London.

Our thanks to all who took part in our Competition - we will be in touch with all who took the trouble to enter.

Thanks also to our panel of judges, who gave up their time to assess the entries from the finalists.

20 digit scrolling display. Up to 1680 programme steps and 226 memories
FX702P £115.96
FA 2 interface £19.50
FP 10 printer SOON

fx-E800 10 digit \((8+2)\) liquid crystal display. 50 scientific functions. Standard deviation Fractions. True algebraic logic FX EC0 £18.95

FX 3000P 10 digit \((10+2) 38\) step programmable calculator with liquid crystal display. Regression analysis, 44 scientific functions. 7 memories, 18 sets of parentheses. True algebraic logic. 6 functions.

FX 3000P 21.50

FX-E02P 10 digit \((10+2)\) programmable with alpha-numeric liquid crystal display. Up to 512 programme steps and 88 memory registers. 33 parentheses nestable up to 11 levels. Up to 9 subroutines, nestable up to 9
FX 602P 171.56
FX 601P E51.95
FA 1 interface \(\mathbf{£ 1 9 . 9 5}\)
\begin{tabular}{|c|c|}
\hline EL 5101 & \\
\hline & \\
\hline
\end{tabular}

CASIO FX 502P lest few at £49.56, CASIO FX 100 £ 16.95, CASIO FX 350 £15.95, CASIO FX 8100 £23.95, CASIO FX 68 £ 18.96
CALCULATOR SALES \(\&\) SERVICE (C.S.S.)
FREEPOST (no stamp required) REDDITCH WORCS. Bg OBR telephone (0527) 43169

\section*{MASMHR FTFGITRONICS NOWT The PRACHTCAL Way!}

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory. You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self. employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following
- Build a modern oscilloscope
- Recognise and handle current electronic components
Read.draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. \(\mathrm{Hi}-\mathrm{Fi}\) and microprocessor/computer equipment

NewJob?NewCareer?NewHobby?GetintoElectronicsNow!

\title{
In-car Cassette Power Supply \\ \\ If you have portable \\ \\ If you have portable battery-powered battery-powered equipment and you use it equipment and you use it in or around the car, then this project is ideal. It will provide up to 1 A of current at a voltage variable between 5 and 12 VDC
}

YES, WE KNOW that strictly speaking, this project doesn't just supply power to portable cassette recorders for in-car use - but we thought that 'HE In-car Battery-powered Equipment Power Supply' would be too much of a mouthful so we shortened the title.
The project will, of course, provide power for equipment which has an input socket for a low voltage power supply between 5 and 12 V . With it you will be able to run portable radios, cassette recorders, some TVs etc, from your car electrical system thus saving yourself the expense of dry-cell batteries.
The circuit is a single integrated circuit design and, with just four extra components, provides you with a working project. The IC, a 7805 voltage regulator, is well known to most electronics hobbyists and is ideally suited to this application.

\section*{Construction}

Insert and solder the preset resistor RV1, resistor R1, and capacitors C1 and 2 into their correct places as indicated in Fig. 2. Make sure you polarise capacitor C2 as shown.
Push circuit board pins into the board where off-board connections are to be made. Now solder the pins in.
Mount and solder IC1 into the board so that it is perpendicular to the Veroboard surface.
Mark and drill the case to fit the mounting bolt for IC1. Using a mounting kit (ie, a mica washer and an insulating washer) bolt the IC and thus the whole board to the case side. It is essential that the metal case of the project is isolated from the metal tag of IC1, so it is as well to check with a meter that no electrical contact occurs between the two.

\section*{How It Works}

A car's electrical system provides about 12-14 VDC, depending on engine (and hence generator) running speed. This is applied to a variable voltage regulator, the output voltage of which is adjustable between about 5-13 VDC, depending on the value of variable resistance \(R\).

Integrated circuit IC1 is a fixedvoltage regulator which develops and holds the output voltage at 5 VDC. A typical circuit using the IC would have its common connection directly connected to the earth rail (0 V). The IC's output, in such a circuit, is at a voltage of exactly 5 V above earth. However in our circuit, a preset resistor RV1 is connected between the common connection and earth.

A small current (about 1.5 mA)
continuously flows from the common connection of the IC to earth. Inserting RV1 into the current flow causes a voltage across the resistance, given by Ohm's Law:
\[
V=\mathbb{R},
\]
dependent on the value of \(R\). With a preset resistor value of 4 k 7 the voltage is variable between 0-8 V.

The output voltage of the power supply is thus 5-13 VDC depending on the value of RV1.

\section*{Parts List}

\section*{RESISTOR (\(\%\) W, 5\%)}

R1 15k
POTENTIOMETER

Figure 1. Circult of the \(H E\) In-car Cassette Power Supply

Figure 2. Verobourd layout, showing component locetions along with connection detalls of the project. Note that there are no track breaks to make

\section*{Buylines}

All of the components used in this project should be readily obtainable. Approximate price of perts (exchuding case) will be £2.50.

CHRISTMAS IS NEARLY HERE!
Remember last Christmas when everbody sold out of Electronic Games? Don't get caught out again!
Activision Cartridges (full range)
£16.95
Sensory 8 Chess Computers
£109.00
Morphy Encore Chess Computers £149.00
Great Game Machine. P.O.A.
Game and Watch Lion, Headache, Manhole
£19.00
Legal CB Radios
from \(£ 69.00\)
Cheap TV Games
from \(£ 7.00\)
Atari VCS
£99.00
Mattel Intellivision P.O.A.

Enormous range of products at unbeatable prices
Please ask!

\section*{SEE OUR STAND AT BREADBOARD '81}

ACCESS, BARCLAYCARD, DINERS CLUB, AMERICAN EXPRESS

\section*{SAVEES}

MAIH Analogue Multimeter Normal Price: \(£ 33.35\)
SpecialDiscount Price: \(£ 27.60\) Oncmean

Analogue multimeter plivoted movement and easily read mirror scale. Input impedance 20K O/V D.C DCV 9 ranges up to 1000 V ACV 6 ranges up to 500 V DCA 6 ranges up to 5A ACA 5 ranges up to \(5 A\)
Resistance 4 ranges upto 1 M 8 Capacitance can also be measured from 2-200,000 uF Carrying Case: \(£ 5.18\) inc Vat

Fill service back-up and money-back guarantee.
From one of Europe's leading electrical groups, now available in the U.K. from JMI.
John Minister Instruments Lto., 137/139 Sandgate Road, Folkestone, Kent CT20 2DE

\title{
Into Electronic Components
}

\section*{Part five of our series for those starting out in electronics. This month, Ian Sinclair investigates inductors, tackles transformers and touches on tuned circuits}

IF YOU COULD THINK of a capacitor as a well-engineered open circuit you could be excused for thinking of an inductor as an equally well-engineered short circuit. An inductor starts off life as a piece of wire, having a low electrical resistance.

Now when any piece of wire carries an electrical current, the space around the wire changes. There's nothing unusual about this, and you can't see the effect, but you can detect it with a compass-needle, as a Dane called Oersted did in the early years of the 19 th Century. The space around a wire which is carrying current is, in fact, magnetised, and magnetised in a way that we can't achieve with any shape of permanent magnet (see magnetic 'lines of force' shown arrowed in Fig.1).

Figure 1. Magnetism around a wire when current flows. The arrowheads show the direction that a compass needle will indicate at various places around the wire

The magnetism is pretty weak, though, unless a very large amount of current flows, because the effect is spread over all the space around the wire. If we wind the wire into a coil, we greatly concentrate the magnetism, and also incidentally, create the same shape of magnetism as a bar magnet (Fig. 2).

Why should we be concerned with this? There are several reasons, and one of the important ones is that we can use the magnetism to deflect the beams of cathode rays in a cathode ray tube (something visualised by A.A. Campbell-Swinton in 1911 - see Famous Names on page 25). One of the other reasons is one that Michael Faraday ran across in the 1830s the generation of a voltage from changing magnetism.

\section*{Go On, Induce Yourself}

When you move a magnet near a coil of wire which has been connected to a voltmeter, you can detect a voltage in the coil for as long as the magnet is moving nearby. Try it out for yourself take a transformer of almost any kind, as long as it has a metal core and lots of turns.

Figure 2. Shape of the magnetism when a wire is wound into a coil and current passes. This is the same shape as we would detect from a bar-shaped permanent magnet

Connect the meter to the primary terminals of the transformer (the ones which would be normally connected to mains voltage) as shown in Fig.3. Switch the HE Meter to the \(250 \mathrm{mV}(0.25 \mathrm{~V})\) range, and wave a magnet (not too fast) close to the transformer ironwork. You'll see the needle of the meter deflecting in one direction as you bring one end of the magnet to the transformer, and in the other direction as you take the magnet away. That's the effect that Faraday discovered and called 'electromagnetic induction' all those years ago. He also found out what the rules of this induction were - the voltage generated in the coil of wire depends on the number of turns of wire, and the rate at which the magnetism around the coil is changed.

Figure 3. Inducing a voltage in a coil by moving a magnet close to it. Here one of the windings of a transformer (an iron-cored choke could also be used) connected to the HE Multitester (10 VDC range)

Now this is where the story turns from interesting to really curious. When Faraday did this experiment, he was using the magnetism of a bar magnet, separate from the coil. What hap-
pens if the magnet is the coil itself, magnetised by the current passing through it?

The answers to this one were investigated by the great US physicist Joseph Henry. He found that exactly the same rules apply - if you change the amount of current flowing through a coil, then the changing magnetism causes an induced voltage, and that voltage is in the opposite direction to the voltage you used to change the current! This induced voltage is called a 'back EMF', and its effects are very important, and not only in electronics.

Figure 4. A circuit which shows how you can measure the slow bulld-up of a current in a coil, if you can get hold of a coil which has a very large inductance

Take a look, for example, at Fig.4, which shows a circuit with a meter and a large coil. You probably can't do this one, because the coil has to be a really large one - something like 15000 turns of wire round a massive iron core - to produce a really noticeable effect, but you can try it if you have a large oldfashioned 'choke' in the junk box. What happens is rather like the reverse of charging a capacitor - the current starts off at a low value, and builds up to the value that Ohm's law predicts; that is, V/R. Unlike the capacitor charging and discharging, too, the effect is not improved by adding resistance - the less resistance there is the greater the time-constant of the effect (see Fig.5).

Figure 5. How the current in the circuit in Fig. 4 changes after switching on

The back EMF exists only while the current is changing, and when the circuit containing the inductor is switched on, the rate at which the current can change is determined by the inductor itself. Back EMF is also generated when the circuit is switched off, however. When we switch off a circuit that contains an inductor, the current is forced to change rapidly - down to zero. From Faraday's rules, this should cause a large back EMF - it can easily be much greater then the voltage of the battery which pushed the current through the coil, but only for an instant as the current is switched off. A favourite demonstration of this is illustrated in Fig. 6. It consists of a neon lamp connected across the winding of a transformer or choke, with a switch and a power supply of low voltage. The neon needs at least 80 V to flash, but the battery in the example is only 6 V . When the switch is closed, the current flows, rising at a rate determined by the coil until it reaches maximum, but when the switch is suddenly opened, the neon flashes, indicating that 80 V or more was generated across the coil when the current was interrupted.

Figure 6. Back EMF can be larger than battery voltagel This circuit flashes the 80 V neon each time the switch is opened, even though the battery voltage can be 6 V or less

This effect has all sorts of consequences - one of which is the traditional type of car ignition circuit (Fig.7). The contact points remain closed for a time (the dwell time) to allow current to build up in the coil. At the ignition time, the points are rapidly opened, causing a back EMF which is stepped up by the transformer action of the double-wound coil. The back EMF across the contact points is enough to cause sparking, which causes a slower rate of change of current, so that the back EMF is lower than it need be. This is corrected by connecting a capacitor across the points to absorb the sudden voltage surge, suppressing the sparking to some extent, and enabling a much higher voltage to be produced across the high voltage winding of the coil.

Figure 7. The traditional type of car ignition circuit. The back EMF that is generated when the contact points open is stepped up to \(25000 \mathrm{~V}(25 \mathrm{kV})\) by the coil (acting as an autotransformer, described in this article)

Back EMF also affects us in other ways. If a transistor is part of a circuit which contains an inductor (Fig.8), then we have to add a diode circuit which will conduct when the back EMF is generated. In the circuit shown, when the transistor switches off, the back EMF is always positive, and will exceed the collector voltage rating of the transistor if not checked. It is checked by the diode, which conducts when the voltage at the collector of the transistor rises higher than the supply voltage. Any circuit which uses a transistor to control current in a coil with a metal core (such as a relay or solenoid) must use a diode like this (a 1N4001 is a favourite type) to prevent damage from backEMF.

Dol have to remind you, too, that you can get a shock from a 6 V electric bell? Each time the bell sounds, the current through a coil is being switched on and off, and the back EMF can be high enough to be noticeable if you put your hand on the coil connections.

Figure 8. Protecting a transistor against back EMF from a coil

\section*{Henry's Contribution}

Joseph Henry's work with back EMF produced a new unit for electrical theory, the one which bears his name. He found that the back EMF of a coil was proportional to two sets of factors the rate of current and the way the coil was made. To avoid the cumbersome calculations which made use of coil length and diameter and the type of core used, he proposed using a single quantity, which he called self-inductance, to replace all these factors, just as we use the capacitance of capacitors rather than the area and thickness of the insulator and its permittivity.

Henry's definition is a simple one:
\[
\text { Self-inductance }=\frac{\text { back EMF }}{\text { ràte of change of current. }}
\]

A self-inductance of 1 Henry (abbreviated to 1 H), for example, will produce a back EMF of 1 V if the current through it changes by 1 A per second, which is pretty slow switching. If you had a

\section*{Feature}
current of 1 A flowing, and you managed to switch it off in one millisecond (\(1 / 1000\) second), then the back EMF in a 1 H coil would be 1000 V . The back EMF, you will notice, is decided entirely by the self-inductance and by the rate at which current can be changed, not by the actual value of the current or by the voltage which is used to make that current flow.

An inductance of 1 H is a lot of inductance, though not by any means an impossible large quantity. Inductors as large as this are not used so much nowadays, but smaller inductors whose sizes are measured in millihenries (\(1 \mathrm{mH}=1 / 1000 \mathrm{H}\)) or microhenries (\(1 \mathrm{uH}=1 / 1000000 \mathrm{H}\)) are used to a considerable extent, especially in radio and TV circuits. The modern trend is to avoid inductance as much as possible, for reasons which include the following:

1 it is impossible to make a 'pure' inductor which has zero resistance. A 'pure' capacitor, by contrast, would have an infinitely high resistance, and we can get as near as makes no difference to this ideal
2 inductors are normally not off-the-shelf components like capacitors or resistors
3 the actual inductance of a coil which uses a metal core is very difficult to predict precisely, and can change during its operating life.

\section*{Core!}

We started by saying that inductance was about magnetism, and you can't talk about magnetism without coming to magnetic materials. There are in fact, two main types of magnetic materials, called hard and soft. Hard magnetic materials are the ones we make magnets from, and we're not considering them here. The soft magnetic materials ('soft' has nothing to do with how the material feels - it can be as hard as nails) are the ones which will magnetise very strongly when we wrap a coil around them and pass a current through the coil but which lose this magnetism completely whenever the current is switched off. They concentrate the magnetism in a coil rather than retaining any magnetism of their own. When we take a coil, measure its self-inductance, and then add a soft iron core to the coil and measure the self-inductance again, there is a startling difference between the two readings. Adding a core of soft magnetic material to a coil can push its self-inductance up by a very large amount - thousands of times for some inductors. The trouble is that the effect, caused by a quantity called relative permeability, varies a lot, not just from one magnetic material to another, but also with the way the material is treated. Hit the core with a hammer, heat it, magnetise it - all these things will change its permeability so that when we use it as a core, the self-inductance of the coils will also be changed. There is also a limit to the amount of magnetisation the core can take; that is, it reaches a state called saturation. When the material becomes saturated the self-inductance of the coil will suddenly drop when a large amount of current is passed through it.

The design of large value inductors which are intended to behave in a predictable way is not easy, and that's one reason for wanting to do without them. It was the main reason for welcoming the transformerless push-pull output stage in audio amplifiers, for example, because it eliminated the need for a very expensive transformer which was also very difficult to design.

Equally difficult problems arise when coils are used at radio frequencies. An AC signal applied to, or induced in, a coil will magnetise the core, and the magnetism will be alternating, like the signal. This changing magnetism needs a supply of energy which has to come from the signal, and the higher the frequency of the signal the faster the magnetism has to change, and the greater the energy needed to sustain it. Massive metal cores are out as far as radio signals are concerned, and the only method we can use to concentrate the magnetism is to use 'ferrite', an insulating material which also happens to be a soft magnetic material. Coils for frequencies ranging up to about 100 MHz can use these ferrites to some advantage, so long. as the correct grade of ferrite is used for the frequency range. At high frequencies, the amount of signal energy that is wasted in any type of magnetic core makes the use of cores impossible, and air-cored coils are used instead. At the very high frequencies (for example, UHF television frequencies) not even a coil is used - a straight wire provides sufficient inductance.

\section*{Transform Your Life}

One very useful inductive component, the transformer, is made by winding two coils on to one core. The principle is simple enough - an alternating current through one coil, which we call the primary, causes alternating magnetism of the core. Because. of the concentrating effect of the core, this will cause an alternating voltage to be induced in the other coil, the secondary. The effect is that an alternating supply connected to the primary coil causes an alternating voltage at the secondary, but with no wires connecting the circuits. The connection is made through the magnetism of the core, nothing else. Because of this, we can use transformers to couple signals between points which are at very different DC voltages (see Fig.9) or when a pulse from a low-voltage DC circuit has to operate an AC circuit (Fig.10).

Figure 9. Using a transformer to connect signal from the collector of one transistor at 20 VDC to the base of another transistor at 1 VDC

Figure 10. Using a transformer to send a pulse from a low-voltage circuit which is earthed to a high-voltage AC circuit with no earth connection

Transformer theory provides a beautifully simple law for the ratios of the voltages of the windings. If the number of turns on the secondary winding is \(\mathrm{N}_{\mathrm{s}}\), and the number of turns on the primary winding is \(N_{p}\), the vobltage on the primary winding (AC, remember) is \(V_{p}\), and the voltage on the secondary winding is \(V_{s^{\prime}}\), then for a perfect transformer:
\[
\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}
\]

Let's look at an example. Suppose we have a transformer with 4800 turns 4 primary winding and 240 turns of secondary winding. If we connect 240 V mains to the primary winding, what voltage do we get at the secondary? Using the equation
with
\[
\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}
\]
\[
V_{p}=240
\]
\[
N_{p}=4800
\]
gives:
\[
N_{s}=240
\]
\[
\frac{V_{s}}{240}=\frac{240}{4800} .
\]

This quantity is equal to \(1 / 20\), so that
\(V_{s} / 240=1 / 20\),
and that makes \(\mathrm{V}_{\mathrm{s}}\) equal to 12 V .
If you don't like having to rearrange equations like this, the transformer equation is shown in all of its possible forms in

Table 1, so that you can use whichever one you need.
The equation applies to 'perfect' transformers, and real transformers are never perfect. If the core is of a reasonable size for the frequency being used llow frequencies need large cores), the equation gives results that are close enough for most purposes, with a tolerance better than \(20 \%\).
\[
\begin{array}{ll}
V_{s}=\frac{V_{p} \times N_{s}}{N_{p}} & V_{p} \text { AC voltage, primary } \\
V_{p}=\frac{V_{s} \times N_{p}}{N_{s}} & V_{s} \text { AC voltage, secondary } \\
N_{s}=\frac{V_{s} \times N_{p}}{V_{p}} & N_{p} \text { number of turns, primary } \\
N_{p}=\frac{V_{p} \times N_{s}}{V_{s}} & N_{s} \text { number of turns, secondary }
\end{array}
\]

Table 1. Equations you can use to calculate transformer primary and secondary voltage and primary and secondary turns

As far as steady DC is concerned, the winding of a transformer is just a low resistance, and a steady DC current in the primary of a transformer has no effect on the secondary. There will be a pulse, however, when the DC is connected and disconnected, as we can show, using almost any transformer along with a 9 V battery and the HE Multitester (Fig. 11). This principle is used to signal instants when DC is switched on and off in circuits, and is also the basis of the use of pulse transformers.

Figure 11. How to show the effect of a voltage pulse when the switch is opened or closed

Transformers that are intended for use only with high frequency signals can be much smaller than mains or audio frequency transformers. Radio frequency transformers can use ferrite or air cores, and the coils do not need to be wound tightly together. The transformer law still holds even at the very high frequencies but it's more difficult to predict exactly how the transformer will behave when the 'turns' are simply strips of metal of different lengths, as they are in TV tuners.

One notable variant on the normal two-winding transformer is the autotransformer. This has just one winding. The autotransformer behaves like a two-winding transformer with one end of each winding connected together (Fig. 12) and is easy to wind when what is needed is straightforward transformer action without any sort of isolation between circuits. A mains autotransformer, the VARIAC, which has a variable tapping, like a potentiometer, is used extensively for providing different supply voltages for test purposes.

Figure 12. The autotransformer: a) circuit symbol, bl equivelent circuit, using two windings

\section*{Tune-in To L-C}

One of the really important uses of inductors is where an inductor is connected to a capacitor. This type of circuit is called a tuned circuit, because of the way that it behaves when it is fed with signals of different frequencies, and it is the key to understanding all types of radio circuits from the humble tranny to the \(C B\) rig, from telly to satellite station.

We noted last time the odd behaviour of a capacitor when it is supplied with an AC voltage. A capacitor has a 'reactance' which is a large amount of ohms when the frequency of the AC is low, and a small amount of ohms when the frequency of the AC is high. There is an AC current flowing which is out of step with the AC voltage.

When we connect an inductor of any size into an AC circuit, there is also an AC current flowing for as long as there is an AC voltage across the inductor. The ratio of these two is also a reactance - the inductive reactance. Unlike the capacitive reactance, the inductive reactance increases for signals at higher frequencies though, so that high frequency signals cannot pass easily through an inductor. The current is out of step with the voltage, but in the opposite direction (see Fig. 13). The voltage across a capacitor is at its peak a quarter of a wave later than the current peak, but the voltage across an inductor is at its peak a quarter of a wave earlier than the current peak.

Figure 13. AC voltages and currents associated with an inductor. The current and voltage waveforms are out of step, but the voltage is one \(1 / 4\)-cycle ahead of the current in this case

By themselves, these out-of-step currents and voltages may not seem very important to you, but put together they start to look interesting. Consider what happens, for instance, when there is a capacitor connected to an inductor in series (Fig.14), with a signal connected across the pair. If the signal frequency. is low, the reactance of the capacitor is high but the reactance of the inductor is low. If we make the signal frequency high, then the reactance of the capacitor will be low and the reactance of the inductor will be high. Somewhere between these two frequencies there will be a frequency at which the two reactances are exactly equal - and that's the frequency. we're interested in. You see, when we have a signal current at that frequency flowing through both the capacitor and the inductor, as it must when they are connected in series, the voltages across these components exactly oppose each other and cancel each other. One voltage is quarter of a wave ahead of current, one is a quarter wave behind, so that the difference between the voltages is half a wave - and for a sine wave shape that means opposition (Fig. 15). We would expect the voltages across points XY in Fig. 14 to be the sum of these two voltages - and we would expect from Fig. 15 that the sum would be zero.

Figure 14. A series tuned circuit

b
CURRENT

Figure 15. Reactance, voltage and current: a) how reactances of a coil and of a capacitor vary as the frequency of the signal is varied, b) voltage and current waveforms for a coil and capacitor in series at the resonant frequency of signal

It isn't quite zero. The reason is that every inductor has an inherent resistance along its length, and this resistance will have a voltage across it even when the other voltages have cancelled out. Nevertheless, at this one frequency, we have the strange effect that the current through the circuit reaches a maximum, with a low voltage across the circuit (Fig.16).

Figure 16. Resonance - this occurs at the frequency at which the reactances are equal and the current through the circuit.reaches a maximum level

Stranger things happen (even without vodkal) when we measure the voltage across one of the components, capacitor or inductor. We can't do this with the HE Multitester, though, it's a job for an oscilloscope, like the one HE had on special offer a few months ago. Suppose our circuit has a capacitor and an inductor which each have a reactance of 1000 ohms (1 kO) at a frequency of \(10000 \mathrm{~Hz}(10 \mathrm{kHz})\), with a resistance of 100 ohms (100R). If we connect the circuit to a 1 V supply, whose frequency is 10 kHz , then the current that flows is \(1 / 100 \mathrm{~A}\) (\(1 \mathrm{~V}, 100 \mathrm{R}\), Ohm again), which is 10 mA , because only the resistor has any effect on the current at this frequency where the reactances cancel. But if we measure the voltage across just one of the components (Fig.17), say the capacitor, then once again normal circuit laws apply and the AC voltage across the capacitor will be equal to the reactance of the capacitor multiplied by the amount of current flowing through it. But in our example, the reactance is 1 kO and the current is 10 mA , so that the voltage is
\[
10 \times 1=10 \mathrm{VI}
\]

Yes - it has amplified the \(A C\) voltage, changing a 1 V signal at this particular frequency into a 10 V signal. No, you're not getting something for nothing, for there is no extra power generated. The extra voltage you get across the capacitor (or across the inductor) is obtained at the expense of the current in the whole circuit, so if you take, or try to take, some current from the circuit, the voltage just collapses.

This is one type of tuned circuit in action, giving a voltage step-up at one selected frequency, the tuned (or resonant) fre-

quency. We can use it in circuits like the one in Fig. 18, which feeds the input of a field-effect transistor (FET) with signal at the tuned frequency of \(L\) and \(C\).

There's another variation of this idea, the parallel tuned circuit, shown in Fig. 19. This time, the inductor and the capacitor are connected in parallel and the behaviour is different. At most frequencies, the circuit has a low amount of total reactance, letting signal current pass fairly freely between points \(X\) and \(Y\) in Fig. 19. At the tuned or resonant frequency however, the circuit behaves as if it had a large reactance, so that the signal voltage across it, assuming we keep the current constant, increases

Figure 19. Parallel-tuned circuit. The reactance varies as the frequency of signal across the circuit is changed, and becomes a high value of resistance at the resonant frequency

Figure 20. Using a parallel-resonant circuit as the load for a transistor, so that signals at the resonant frequency are amplified much more than signals at any other frequencies
greatly. Table 2 shows the values of inductance required to resonate (series or parallel connected) with values of capacitance ranging from 10 pF to 1 uF , at various frequencies.
\begin{tabular}{|l|l|llllll|}
\hline Capacitance & \multicolumn{6}{|c|}{\begin{tabular}{c}
Frequency \\
\multicolumn{1}{c|}{C}
\end{tabular}} & 1 kO \\
\multicolumn{1}{|c|}{10 k} & 100 k & 1 Mi & 10 M & 100 M \\
\hline 1 uF & 25 mH & 250 uH & 2.5 uH & - & - & - \\
0.1 uF & 250 mH & 2.5 mH & 25 uH & - & - & - \\
10 nF & 2.5 H & 25 mH & 250 uH & 2.5 uH & - & - \\
1 nF & - & 250 mH & 2.5 mH & 25 uH & 0.25 uH & - \\
100 pF & - & - & 25 mH & 250 uH & 2.5 uH & - \\
10 pF & - & - & 250 mH & 2.5 mH & 25 uH & 0.25 uH \\
\hline
\end{tabular}

Dash (-) means impossibly large or small value
Table 2. Values of inductance to resonate with the capacitor values shown at various frequencies

A circuit like that shown in Fig. 19 is used as a load for a bipolar transistor (see Fig. 20) or an FET (Fig. 18). The idea is that the current signals through the transistor of FET flow through the LC circuit, and by Ohm's law give voltage signals - very small voltage signals when the frequency of the signals is not the resonant frequency. At the resonant frequency, the resistance of the LC circuit is much greater, and the voltage of the signal across it is much greater, so that the combination of transistor and tuned circuit selectively amplifies just one frequency. Once again, if we attempt to take much current (more than a few microamps) from the circuit, the selecting effect collapses this is called damping. Figure 21 shows the effect of connecting resistors across the tuned circuit.

Figure 2.1. Effect of taking current from a resonant circuit. Adding resistance to take current causes the curve to flatten out. This is called 'damping'

Well, that rounds up inductors for this month. We haven't been able to do much practical work on these components, because the most interesting effects are high-frequency AC effects. But we'll be back in the practical business in a big way next month, when we start investigating diodes.

\section*{Guess who builds this great \\ \\ With this easy-to-build Logic Probe Kit from GSC and just a} few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.

With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic

Complete, easy-to-follow instructions help make this a one-night project. with the LPK-1, one of the better tools from GSC.

G.S.C. (IK) Limited, Dept. 142 Unil 1, Shire Hill Industrial Estate, Saffron Walden, Essex. CB11 3AO. Telephone: Saffron Walden (0799) 21682 Telex: 817477. GLOBAL SPECIALITIES CORPORATION. DEPT 142 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex.

\title{
A bumper Clever Dick this month: topics range from oscilloscope tubes to obfuscation
}

I JUST HEARD the news: HE's Editor is leaving. Only thing is that he won't tell us where he's going. I've heard rumours and they're only rumours - that he's going to take over the post of Clever Dick. Mind you, I could do with a holiday.)

Enough of this chat and down to business. First reader has overcome the language barrier between two nations.

\section*{Dear CD,}

1
Marios Theocharous
Ayios Dometios-Nicosia, Cyprus.
As mentioned last month, this business of the shortest letter that could still make sense started with the letter from Ben Chaston in the July '81 issue. Let's face it, ' 1 ' is even used on international road signs - so Marios gets a binder.
K. Rawsthorne has been trying to track down some 'scope tubes.

Dear CD,
Your assistance is sought in the following quest.
Irecently purchased a copy of "How to build your own solid state oscilloscope" by F. G. Raver (from HE Book Service). Unfortunately, try as Imight, I have been unable to find a supplier who stocks a suitable CRT.

Mr Rayer lists three types of tube in the book, they are: VCR139A, CV1 588 and 3BP1. If you could locate a supplier of any of these types / would be eternally indebted.
K. Rawsthorne

Whiston, Merseyside.
First, I'd like to take this opportunity to say how sorry we were to hear of Frank Rayer's death. He became widely known and appreciated from the many technical books and articles he wrote over the years.
The three types of tube you mention are available from: RST Valve Mail Order Company, Climax House, 159 Fallisbrook Road, London SW 16 6ED (tel 01677 2424-7). A very helpful lady at RST said that the VCR1 39A is equivalent to the CV1 588 and it costs \(£ 8\) (excluding VAT). Cost of the 3BP1 is \(£ 10\) (also excluding VAT). Add \(£ 1\) carriage for each tube.

A query about the Stereo Power Meter (HE December'80, pp 59-61) next.

DearCD,
I'm trying to build an LED stereo power meter. I've seen your circuit in HE Dec 80

using LM3915 IC. However, on receiving the RS Data sheet for this chip it also shows your power meter but one snag/l What if / don't want 100 watts full scale reading?
I want full scales of 10 watts and 30 watts. How can lachieve this using this chip, if it's possible? (Bearing in mind the 10 watts reading if for the car (12 VDC).)

Or is there somewhere to get a suitable circuit? I hope you can help. I'm getting desperate.
D. Conchie

Aldershot, Hants.
I woke up one of the HE Overpaid Technical Consultants (HEOTCs) to get an answer to this one. The LEDs in the published design light up at fixed points on a logarithmic scale. According to the published data on the LM3915, if you apply 1.2 V between pin 5 and ground you will get full-scale deflection; that is, all the LEDs will light up. So it is necessary to juggle with the values of Rx, Ry, R1 and R2 to obtain FSD at 10 W or at 30 W . With the correct resistor values for each FSD power reading, the readings will be subdivided as shown on the finished project (that is, \(10 \mathrm{~W}, 5 \mathrm{~W}, 2.5 \mathrm{~W}, 1.3 \mathrm{~W}\) down to 0.02 W) but for 30 W full-scale the divisions will be more awkward (that is, \(30 \mathrm{~W}, 15 \mathrm{~W}, 7.5 \mathrm{~W}, 3.9 \mathrm{~W}, 1.8 \mathrm{~W}\) down to 0.06 W).
P.M. Hitching's last letter was published under CD in the September ' 81 issue. It
appears that Lascar's policy of not selling close-tolerance resistors independently of multimeter kits has changed.
DearCD,
Not long ago I wrote to you in a state of "extreme desperation" enquiring about close tolerance resistors (\(0.25 \%\)). Iam now back in my normal happy, relaxed state following the arrival of a letter from Lascar Electronics stating that they are now able to supply the \(9 \mathrm{M}-1 \mathrm{k}\) values I was seeking. Thys, a satisfactory solution to the seemingly insoluble problem, outlined in the letter published in your column of September '81, has been reached. If any other readers are interested in the above attenuator values 19M, 900k, 90k, 9k, 1k) Lascar Electronics can be contacted at Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex SS 13 1LH or by telephone on 0268727383.
P.M.Hitching

South Croydon, Surrey.

\section*{Can't see the wood for the trees in the} nextone.
Dear Clever Dick,
I binder am binder writing binder to binder inquire binder about binder the binder Geiger binder counter which binder binder was binder mentioned binder binder back in the bindermists of time. It was binder 'promised' binder binder as a binder project but binder never binder materialised. It binder struck me as binder a binder very interesting project binder and binderl wonder binder whether binder there are any binder plans to binder repeat it, i.e. binder actually have binder it in the binder magazine.
Yours subtly,
Edward Weeks
Godalming Surrey.
PSI think you're the Office Cat
PPS 2 million lemmings can't be wrong
No, the radiation level is so high in the HE office most cats don't survive very long here. (That goes for lemmings too.) And no, we don't have any immediate plans for a Geiger Counter project. Sorry, no Binders for Weeks.

Now a query about HE's Windscreen Wiper Controller (March ' 81 issue, pp 30-31).
Dear Sir,
Ihave just made the Windscreen Wiper Controller formy car (Morris 1000) and it works perfectly with just the ignition switch on, both single and group of sweeps.
But when the engine is on and the unit is on single wipe, the wiper blades slowly creep across the screen before and after
the single wipe is made. The relay is clicking a lot during all this.

When on a group of sweeps, the relay is again clicking continuously and the wipers do not stop at all, untill turn the switch back to the single or off.
It does not work properly when I'm driving you see. Here are some more facts.
a) Imeasured 13 ½ upwards volts when engine is on or 12 V when ignition is on.
b) Supply voltage to unit is from the rear windscreen demister switch which runs on 12 V .
c) lused the 12 VRelay Flat 8 amp rating from Maplins, as stated in the magazine.

Any ideas of what is going wrong? Do I need a 12 Vregulator?l'd be gratefulfor an answer.
Greg Costello
HampsteadNW3.
It sounds as if you need some decoupling on the supply to the project. (Translation: you need some interference suppression on the supply leads close to the point where they enter the Controller.) A suggestion is to connect a 1000 uF, 16 V electrolytic capacitor between the positive and negative supply terminals of the controller. (Don't forget to connect this capacitor the right way round; that is, with ' + ' end of the capacitor to the positive supply point.)

The next letter adds a lyrical flavour to Clever Dick.

Dear Clever Dick, Good day to you my dear friend, lend an ear which I may bend By telling of my woeful tale of circuits that like bread turn stale. On purchasing your fine magazine, there are projects that at first seem so simple, but at later glance, lead on to coma, alas a trance. For components that are specified, are sold by shops that long have died. Andsubstitutes, they don't exist, however long Imay persist.
So as I toil 'neath death's dark veil, and stumble o'er the ones that fail, may lemplore there be a list, of substitutes that do exist.
For added to the component tally, they at least would help me rally the parts that hold out to the last and make dud projects be the past. A binding question I may add, you see, I mention, this poorlad, has no means of keeping clean his collection of this magazine.
God bless you lad, may you remain the man we know, so clever, sain, and even though your brain's so fast, you'll read this letter to the last.

\section*{Life's a bind.}

Jason Pos
Newlands 7700, South Africa.
It didn't escape my reading, 'neath Argus Specialist Publications' dark veil, that you had a binding question. I think such epic verse deserves the means to keep your treasured collection clean - in short, a binder!

The HE Bench PSU (September '80, pp 63-65) cropped up next.

\section*{Dear Clever Dick,}

In the September 1980 issue you give details formaking a Bench PSU. Unfortunately it does not state what type of capacitor to use for C4. Also there is no provision made on the PCB Foil Pattern for C3.

As /am new to this hobby I am unable to relate the circuit diagram to the PCB to find out what these should be. I would be obliged if you could help me on this matter.

I would also be interested to know what case you used.

Thanks for a very interesting magazine. P.Elstone

Guildford, Surrey
Capacitor C4 is a \(1 \mathrm{uO}, 16 \mathrm{~V}\) tantalum type. The holes for C3 should be sited somewhere along the ' OV ' and 'SW2' printed tracks on the PCB.

The case we used for this project was a Bazelli Instrument Case B19, and it is available from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4 TA (tel 016248582).

Dear Clever Dick
I bought 'How to Make Walkie-Talkies' recently. As lam only 12 /wondered if there are any kits available, because I find the book difficult to understand. John Escott
Nr Beaminster, Dorset.
As far as I am aware, nobody is selling any of the designs in How to Make WalkieTalkies (F.G. Rayer, £ 1.75 from HE Book Service) as kits. To comply with the Law, you need a licence to operate walkietalkies, and this means a Radio Amateur's licence (you have to pass an examination to get one of these) or a Citizens' Band licence (have a look at the special report in Breaker One Four on page 69 for details of these).

\section*{Dear CD}

In the Low Power Pilot Light project (September '81) C1 should be moved down one hole from C8 to D8, and shouldn't the LED's anode go to E1 and its cathode to the \(O V\) line?

Also, the lead from SW1 to the circuit board of the Light, Water Alarm
(September '81) should go to D24 not C24.
And in the Variable Bench Power Supply (August '81)R1 should go to the other side of the panelmeter, and RV1/SW1 is not listed in the components list.

Now, isn't that worth a binder?
Fergus McDonald
Dublin, Eire.
PSIam 11 and / think HE is great.
We've definitely got an observant reader here. All your comments are correct, except that it doesn't matter which terminal of the panel meter that R1 is connected to. Pity, I've just used up a year's supply of binders in this issue. (Must be in a silly, irresponsible and over-generous mood again.)

This page wouldn't be complete without one of those horrible grovelling letters and this one's no exception.

Dear CD.
I started reading HE four months ago but although Ionly started collecting this super mag recently my massive collection seems to be getting kicked about the floor because I've no place to put it (grovel, grovel, lick, lick, sob, sobl.

Could you please tell me if, when you reverse the polarity on a loudspeaker, it acts as a microphone?
Andrew Megaughin
Kilmacolm, Scotland.
PS Since you are such a really clever person you may notice that I'm after a Binder (would a few more boot licks help - lick, lick, lick, lick?)

No, if you reverse the polarity of a loudspeaker it doesn't act as a microphone. It only grovels as a microphone if you connect it to the input of an amplifier instead of to the output. Usually, to lick this problem, it is necessary to make sure that the impedance of the loudspeaker matches that of the amplifier input. The simplest method of matching is to use a small output transformer with its high impedance winding coupled to the amplifier input and the low impedance winding coupled to the loudspeaker.

Thanks, by the way, to Joe Levine in Cape Town, South Africa, for sending us a copy of Obfuscation "Made Easy part 2, from the Argus (Cape Town) 1 December 1980 . Joe thought that some of the definitions given could describe some of the 'slobs' who may be 'working' in the HE office (see CD, HE August '81). Here are a few samples: Active socially - Drinks like a fish Family-oriented - Wife drinks, too Willing to spend extra hours on the job - Wife nags him at home Demonstrates qualities of lear urship - has a loud voice Keen sense of humour - Vast repertoire of dirty jokes.
And I'll wind it up on that note - look after yourselves. And watch out for any hot soldering iron tips.

\footnotetext{
- Act of making topic obecure or confusing Ed
}

\section*{Hour after hour we watch that box (even described by one headmaster several years ago as a 'fool's lantern'). It's entertaining, it can be annoying but how does it work? Derek Jenkins explains, in simple terms, the operation of a black-and-white TV receiver}

THIS IS THE AGE of electronics and one of the most common pieces of electronic equipment is most likely to sit in the corner of your living room - your TV set. Most of us have one of these boxes in our home, but just how does it work? In this article I will try to explain in a non-technical way some of the more important things that are happening inside your TV set.

To understand how a TV system works we must first know how a TV picture is produced on the screen. To explain this it is easiest to consider an example: Suppose we have a sheet of paper on which is drawn a black vertical column, and we wish to transfer this picture onto a second empty sheet of paper alongside it.

\section*{Proving It On Paper}

Look at the two sheets shown in Fig. 1. If we moved a pointer along the top sloping line \(A B\) on the first sheet it would cross over the white area, then over the black column and again over the white area until the end of the sheet was reached at B. Now

Figure 1. Transferring an image accurately from one sheet of paper to another. Light and dark areas on the first sheet are 'scanned' with a pointer and this information is transferred with a pen, line by line, to the second sheet. The pen must move in exact step with the pointer and only delivers ink to the page when the pointer is scanning dark areas. Complicated? A similar, electronic, process is used to transfer images viowed by a TV camera to the plcture tube in your TV recolver
imagine that we held a pen on the second, empty, sheet of paper and we moved this pen to follow exactly the movement of the pointer. If we could also control the flow of ink through the pen nib so that it wrote only when the pointer was over a black part of the first sheet then as the pointer moved from \(A\) to \(B\) our pen would move along the line \(A^{\prime} B^{\prime}\) (shown dotted) but would only draw a line in the same position as the black column on the first sheet. Next imagine that we moved the pointer and the pen very rapidly to \(C\) and \(C^{\prime}\) but this time did not let the pen write anything and then moved along the line CD, and so on. When the whole sheet had been scanned in this way we would have drawn a picture of the first sheet on the second sheet, this picture consisting of a series of almost horizontal lines. If we made these lines very much closer together than those on our two sheets in Fig.1, so that the picture on the second sheet was made up of hundreds of lines, it would be difficult to see individual lines. Thus we would see an almost exact copy of sheet 1. Also, if when the final line \(Y Z\) had been drawn both the pointer and the pen were returned very quickly to \(A\) again, we would be ready to scan a second completely different page which we could then transmit onto another clean piece of paper.

\section*{The Real Thing}

This is exactly what is happening in your TV receiver. The picture tube replaces the paper and a beam of minute electric particles (called electrons), which are made in the picture tube, replaces the pen. The flow of 'ink' is controlled by the number of electrons we allow to flow at any instant. The face of the TV tube (the part a viewer looks at) is coated with a material which glows when the electrons hit it: the more electrons there are the brighter the glow. This material is called the phosphor. If we made the electrons flow in a very thin beam and we swept this beam across the tube face in exactly the same way as we moved the pen over the paper in our example, and we controlled the strength of the electron beam as we did the ink in the pen, then we would show a picture on our TV tube which was a copy of sheet 1 , only this time the picture tube would glow where before the pen wrote. In fact very many of the electronic components in your TV receiver are used to control the movement and strength of this electron beam pen.

If this process is repeated very rapidly then we can send many different pages in one second and in this way a moving picture, which consists of still pages shown in very rapid succession, can be seen. A modern UK television receiver does in fact produce 25 complete pictures every second and each picture is made up of 625 lines. (This is where the term 625 -line system is derived.)

Let us now look a bit closer into how the picture tube and TV circuitry do all this.

\section*{Inside The TV Tube}

Figure 2 shows a typical TV tube. At one end of the tube we see the cathode. This electrode, as it is called, gives off the minute electrical particles, the electrons, when it is made hot. Immediately behind the cathode are the heaters. These are thin wires which get very hot when we pass an electric current through them (they glow just like the bars of an electric fire) and they are used to heat the cathode and so make it give off electrons. Across the tube (from the cathode to just behind the screen) we apply a very large voltage (about \(17000 \mathrm{~V}!\) !). It is worth saying at this point that:

IT IS EXTREMELY DANGEROUS TO TOUCH A TV TUBE BECAUSE OF THIS VERY HIGH VOLTAGE WHICH REMAINS PRESENT EVEN AFTER THE SET IS TURNED OFF. THIS VOLTAGE IS SUFFICIENT TO KILL!*

Because the electrons are little particles of electricity they are attracted by this very high voltage (called the EHT or extra high tension) and so shoot out from the cathode inside the tube and hit the phosphor. It is the impact of the electrons on the phosphor that produces the glow from the screen. Thus electrical energy is converted into light energy at the phosphor coating. From the phosphor the electrons flow along a metal coating on the inside of the glass of the tube into the EHT connecting wire and back through this wire to the EHT supply and
- We are referring here to the parts of the tube which are inside the TV receiver. You should never effempt to remose the protective cover et the back of the receiver.
through a further wire to the cathode. Thus we get a continuous flow of electrons in the tube.

Now if, for example, you were in a corridor full of people, and tried to move very quickly from one end to the other, it would be very difficult because you would keep bumping into other people. If the corridor was empty then this journey would be very easy. A similar thing would happen to electrons as they made their journey through the TV tube - if the tube was full of air then the electrons would keep bumping into the air particles and would have great difficulty in travelling along the tube. For this reason we remove all the air particles from the tube (that is, we create a vacuum in the tube) so that the electrons can flow freely.

Figure 2. TV picture tube: a) main component parts and connections to EHT supply, b) outside view of picture tube

The electron beam is forced to pass through the electron gun, as shown in Fig. 2a. This gun focuses the beam very sharply onto the phosphor - just as a magnifying glass can be used to focus the light from the sun onto a piece of paper. This focusing makes the beam very narrow and produces a sharp picture on the tube face.

The flow of electrons is also controlled by a voltage applied to the electron gun, which is connected to one of the pins at the back (base) of the tube. Because the phosphor glows at the point hit by the electron beam, we would have a very bright point of light at the centre of the tube face.

\section*{Moving The Spot}

The next thing we have to do is to make the spot scan across the face of the tube and so draw out the lines necessary to have a complete picture on the screen in the way explained at the beginning of the article. This is done by means of circuits known as the timebases, and there are two of these in every TV set. One, called the line timebase, makes the spot scan rapidly from left to right (horizontally) across the tube face. The second, called the field timebase, makes the spot move at a much slower rate down the tube face (vertically), giving us the very narrow separation of the horizontal lines necessary to produce a picture.

Well, how can we move our beam of electrons? Because they are particles of electricity they can be moved by a magnet. If we placed a magnet along the side of the TV tube we would bend the beam of electrons so making the small glowing spot on the phosphor move away from the centre of the tube. The more powerful the magnet was the further the beam would move. If
we now had a magnet which was just strong enough to pull the glowing spot to the left-hand edge of the screen and then slowly weakened the strength of this magnet the spot would move back towards the tube centre. If, when it reached the centre, we had a second magnet on the other side of the tube and slowly increased its strength until the spot was at the right-hand edge of the screen then we could make the electron beam draw a line across the tube centre. Also, if when the spot reached the right-hand edge of the tube face we very quickly reversed the polarity of the magnets (that is, reversed the north-south poles of each) the beam would shoot back to the other edge of the screen and be ready to draw another line. If we kept repeating this process we would be continuously drawing a horizontal line right across the centre of the tube, and if we did this quickly enough anyone looking at the screen would see a bright horizontal line right across the centre of the tube face. This is what the line timebase does in your TV set. The magnetism is generated by wire coils, called the deflection coils (since they bend or deflect the electron beam) which are placed on the neck of the TV picture tube (see Fig.3).

The magnetism is produced by passing an electric current through the coil windings, and the larger this current is the stronger the magnetism. If we pass a current which is slowly increasing through these deflection coils then the magnetism, and aiso the deflection of the electron beam (and hence the deflection of the spot on the tube face) would increase. Also, if when the spot had been deflected to point B in Fig.3, at one edge of the screen, we rapidly reversed the direction of the current flow until it returned to its original value the spot would very rapidly 'fly back' to its original position (point A) at the opposite edge of the screen.
\(a\)

b

Figure 3. Position of deflection coils on neck of a TV picture tube: a) connections to timebase circuits, b) orientation of magnetic fields from colls

The shape of the current in the deflection coils would then be as shown in Fig.4. This is called a sawtooth current waveform. If we had a continuous string of these waveforms the spot would move continuously across the tube face, scanning, flying back, scanning, flying back and so on giving a bright horizontal line across the screen. A string of waveforms such as these can be generated in an oscillator circuit: a sawtooth generator is used to give them the correct shape. Thus our scanning circuit generates a string of sawtooth waveforms (Fig.5) which make the spot move across the tube face and hence draw our scanned lines.

Figure 4. Shape of current waveform in deflection coils. This is known as a 'sawtooth' waveform because of its shape

Flgure 5. Because the scanning of lines on the picture tube is repettive the current waveform is a continuous stream of sawtooth waveforms such es those shown in Fig.4. This is the picture you would expect to see on an oscilloscope connected to each coll in turn

If we had only one of these scanning circuits then we would only see a single bright line across the screen centre since each line would fall on top of the previously drawn one. To separate these individual lines slightly, and to fill the complete tube face from top to bottom with lines, a second timebase circuit is used, which works in exactly the same way as the one described above. The only difference is that it runs much slower, and it is used to drive deflection coils which are placed at right angles to those of the first timebase. In this way the spot can be moved down the tube face as well as across it.

Thus we can cover the whole of the face of the tube with almost horizontal lines, as described earlier for the pen moving across the sheet of paper. In TV receivers in the UK, the first timebase is called the line or horizontal timebase, and it produces 15625 sawtooth waveforms every second thence it draws 15625 lines across the tube face every second). The other one, called the field timebase produces 50 sawtooth waveforms a second. For both timebases the scanning time lasts about \(85 \%\) of the total time of one sawtooth, and the flyback time lasts \(15 \%\) of this total time.

So we have now covered our screen with lines exactly as described earlier for the pen on the sheet. We now need to know what is happening in the TV studio.

\section*{At The Transmitting End}

Inside the TV camera at the studio there are two timebases, similar to those described above for the TV receiver and running at exactly the same speeds as those in the receiver. Instead of a TV picture tube the camera uses a special light-sensitive tube which, in simple terms, works in reverse to the picture tube.

Behind the camera tube face is a light sensitive (photosensitive) layer which is scanned by an electron beam. (This beam is deflected in the same way as the electron beam is deflected in the picture tube.) The scene in front of the camera lens is focused onto the photosensitive layer, so producing a twodimensional image (see Fig.6). (This process is exactly the same as that which takes place inside a conventional camera, where the image is focused through the lens onto a photographic film.) Inside the camera tube the electron beam scans the reverse side of the image, as shown in Flg.6, which will normally consist of varying degrees of brightness, ranging from brightest white to deepest black. As the beam traces its way over the photosensitive layer the differences in light intensity produce small changes in current through the tube, and these changes can be amplified for transmission by radio waves to your TV receiver.

The important thing to remember is that the electron beam in the picture tube in the TV receiver moves in perfect step with the beam in the TV camera tube at the studio.

At the end of each line, when flyback occurs in the studio timebase a small square pulse is transmitted. This is to tell the timebase circuit in your TV receiver exactly when to start a new line, so that both the 'pointer'drawing lines across the picture in the studio, and the electron beam pen are always at exactly the same point on the picture. If this was not so then the image seen on your screen would be broken up and unintelligible. These pulses are called synchronising (or sync) pulses and they lock the timebase oscillator in the receiver to the one in the studio. If we looked at a drawing of the voltage against time for the signal transmitted from the studio to your receiver for two horizontal lines it would look like the one shown in Fig. 7.

We can see in Fig. 7 the sync pulses which are used to 'lock' the timebase oscillators at fixed rates. The voltage levels in the lines (the irregular jagged bits) are the variations in the camera tube voltage occurring as the beam scans different brightnesses of the scene before the lens.

The TV receiver picks up these signals (sent from the studio via the transmitter) on its aerial from where they enter the receiver. The variations in the voltage seen as each line is scanned are used to control the strength of the electron beam in the picture tube and hence to cause variations in the brightness of the glowing phosphor on the tube face. These variations follow the changes in brightness measured by the camera tube, and these changes occur in exactly the same place on the picture scanned in the TV studio as on your TV screen. In this way we get an exact replica of the studio picture on the TV receiver.

Together with the information required to make the picture, sound is also transmitted from the studio in the same way as for radio broadcasts. The sound is converted into electrical signals

Figure 6. Greatly slmpified operation of TV camera. The illuminated studio scene is focused, through the lens systom, onto the Highseneltive screen of the camera tube. 'You'll notice that because a single lens is used in my example, the image on the tube screen ls upsidedown.) The tube has been mede trensparent to enable you to see the image as it would be 'seen' by the electron beam, as it scans the reverse side of the light-sencitive (photosenalive) layer
at the studio and these signals are mixed with the corresponding picture information signals from the camera. It is this combined signal which is picked up on the aerial of your TV receiver, and fed into the receiver circuit. Inside the TV the signals received by the aerial are amplified many times and the sound and vision signals are separated from each other. The sound signals are amplified and sent to the loudspeaker, and the vision signals, after their amplification, are fed to a control pin on the base of the picture tube where they are used to control the flow of electrons as described before. The synchronising pulses are also separated from the sound and vision signals, and these are fed to the line and field timebases for correct locking.

Figure 7. Waveform of signal transmitted from the studio to your TV recelver. It contains two kinds of information: regular 'sync' pulees which lock the horizontal and vertical deflection thebbase circulta precisely to those in the camera, and voltage variations corresponding to the brightness information from the scene \(\mathrm{h}_{\mathrm{\prime}}\) front \(\because\). the camera lens, transmitted line-by-line

\section*{Other Parts Of The Receiver}

The TV receiver also has a tuner which enables the user to pick out the desired station and to reject the others. Each of the TV stations transmits signals with different frequencies from each
other. The TV tuner tunes into these frequencies only one at a time, depending upon where the viewer sets the tuning knob, thus allowing the viewer to select any desired station. If this were not so then the TV would be showing all the stations at the same time and utter confusion would occur on your TV screen!

I have tried in this article to explain in a non-technical way the workings of a modern black-and-white (monochrome) TV receiver. Although it has been necessary to simplify the explanation of the various stages of the transmission and reception circuits I hope you have a better idea of what is going on inside that ubiquitous 'box' - the TV receiver.

Perhaps, in a future issue, I'll go on to explain the differences between a monochrome TV receiver and a colour TV receiver.

\section*{RECHARGEABLE BATTERIES \\ AND CHARGERS}

\section*{PRIVATE OR TRADE ENQUIRIES WELCOME}

FULL RANGE AVAJlLABLE SEND SAE FOR LISTS. £1.45 for Booklet "Nickel Cadmium Power" plus Catalogue. Write or call:

\author{
* NEW SEALED \\ LEAD RANGE AVAILABLE *
}

SANDWELL PLANT LTD.
2 Union Drive, Boldmere Sutton Coldfield, West Midlands

021-354 9764

\section*{C. H. J. SUPPLIES}

A SMALL SELECTION FROM OUR LARGE RANGE

 SLL RECTIFERS

 TRANSISTORS

 1

 2 N 305 S 400 Full range
TANT BEADS. 1 OFF (10 OFF)

 PGPAOD 50 T ORDERS OVER \(E 6.00\) POST FREE
(MAIL ORDER ONLY) 4 STATION ROAD, CUFFLEY, HERTS Tel: 01.408959

\section*{Bectronic Kits for the Thrify!}

\section*{Buid 50 Projects on a P.C. Chassis with components from your "Spares Box"}

\section*{EXPERIMENTER'S PRINTED CIRCUIT KIT}

Contents: 4 assorted boards to suit the enclosed designs. Etching Powder, Resist Pain Solvent, Degreaser and Etching Instructions; also 50 Circuit Diagrams, Chassis Plans and Lavouts for simple Crvstal Sets. Transistor Radios, Transmitters, Amplifiers, Intercoms Radio Control, Metal Detector, Photoelectric and Ultrasonic Alarms, "Perpetual motion Light-Beam Telephone, Instruments, Testers, Gadgets, etc, you can build at negligibie cost with "Surp Price: \(\mathbf{£ 2 0 0}\) Postage \& Packing \(50 p\)

\section*{PHOTOELECTRIC KIT}

A kit of basic parts to build a simple Infra. Red sensitive Photoelectric Switch. Contents: Phototransistor, Transistors, Dlode, Resistors, Connector, Latching Relay, Screws, Chassis Board, Case, and instructions. Also Plans for 10 Advanced Designs etc.
Price: \(\mathbf{~} 4.50\) Postage \(\&\) Packing 500 Price: \(\mathbf{~} 4.50\) Postage \(\&\) Packing 50

\section*{OPTICAL KIT}

A kit of parts to build an I.R. folded-beam Projector and Receiver to suit the above kn. Contents: 2 Lensos, 2 Mirrors, 245 -deg. blocks, Infra Red Filter, Lampholder, Building Plans.
Price: 3.70 Postage 8 Packing 30 p
Both kits together make an excellent Invisible. Beam Burglar Alarm,

\section*{EXPERIMENTAL ELECTRONICS}

335 Battersea Park Rd. London SW11 4LS
Send s.a.e. for full details of all kits and circuits and you will be amazed

\section*{JOIN UP WITH: HTYISOTD}

Ltesold's new 'L' Semes soldering iron - now at a bargain price Outstanding performance. Wghtweight. Easy to maintain. Elements are onclosed in Stainless Steel shafte. Insulated with mics and ceramic. Non-seize Interchangeable blts, choose from 'copper' or "long Ufe". A very special tool at a very special 'direct' price. Just 85.22 for 1 ron fitted with 3.2 mm copper bit. Just \(£ 2.27\) for 3 spare copper btts (1.6; 2.4;4.7).
A mere fa for
 profeselonal apring stand OT buy th lot for \(£ 10.54\) and savi \(10 \%\).
All prices inc. VAT P. \&eP
 DEVELOPMENTS LTD

Write today. Send Cheque/P.0. to Litesold. 97-99 Gloucester Road. Croy don CRO 2DN or phons 01-689 0674 for Barclay card/Access Bales.

\section*{PARNDON ELECTRONICS LTD}

Dept. Nos23; 44 Paddock Mead, Harlow, Esser CM18 7RR. Tel. 027932700
RESISTORS: \(1 / 4\) Want Carbon Film E24 range \(\pm 54 /{ }^{\prime}\) folerance High quality resisto made under sinctly controlled conditions by automatic machines Bandoliered and colour coded
E 1.00 per hundred mixed (Min 10 per value)
E8.50 per thousand mixed (Min 50 per value)
Special stock pack 60 values 10 off each \(£ 5.5\)

DIODES: IN4148 3p each. Min order quantity - 15 hems
E 1.60 per hundred
DIL SWITCHES: Golt plated contact in fulty sealed bast solve thoss
programming problems.
4 Way 86 p each. 6 Way \(£ 1.00\) each 8 Way \(£ 1.20\) each
DIL SOCKETS: High quality, kuw profile sockeps.
8 pin - 10 p. 14 pin - 11 p. 16 pín - 12 p. 18 pin - 19p. 20 pin - 21 p. 22 pin - 23p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK EI OO OVERSEAS E5 CASH WITH ORDER PLEASE

Design on a EuroBreadBoard - Instal on a EuroSolderBoard
First the EuroBreadBoard
Will accept 0.3" and 0.6" pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter.connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, fow resistance (\(<10 \mathrm{~m}\) ohms) nickel silver contacts

\section*{Now the EuroSolderBoand}

New 100 mm square, 1.6 mm thick printed circuit board with pre. tinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
E2.00 for set of three ESB's

\section*{And don't forget the EuroSolderSucker}

Ideal for tidying up messy solder loints or fresing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Tefion tip and enables removal of molten solder from all sizes of pet pads and track. Primed and released by thumb, it costs only \(£ 7.25\) including VAT \& PP \(\square\))

Snip out and post to David George Sales,
Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales, HE12
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 0AU
Please send me:-
\begin{tabular}{lllll}
& 1 EuroBreadBoard & \(@ £ 6.20\) & \(\bigcirc\) & \\
or 2 EuroBreadBoards & \(@ £ 11.70\) & \(\bigcirc\) & Please \\
or 3 EuroSolderBoards & \(@ £ 2.00\) & \(\bigcirc\) & Tick \\
or 1 EuroSolderSucker & \(@ £ 7.25\) & 0 &
\end{tabular}

All prices are applicable from Jan. 1st, 1981 and include VAT and PP but add \(15 \%\) for overseas orders.
Name.
Company.
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

\title{
DOORCHIME
}

\section*{A simple-to-build battery-powered project which is not expensive and is available as a kit}

BEFORE WE START, let's get one thing clear - the circuit for this project does not contain a 5551

Gasp - stand back in amazement!
Yes it's true. Nowhere in this project is there a 555 timer. We were fed up with doorbell/buzzer/chime circuits which featured the beast and we thought it was about time a different device was used. The SAB0600 (sounds much better than 555, doesn't it?) produces a harmonically related three-tone sequence, at a suitable power to feed a loudspeaker directly. without the need to use an amplifier. Once the third tone has decayed away the IC automatically turns itself off, ready for the next person to press the doorpush. Then in this standby mode, the whole circuit consumes only about 1 uA, so battery operation is ideal.

\section*{Construction}

Insert and solder the integrated circuit socket into the printed circuit board (PCB), followed by resistor R1 and preset resistor RV1. Figure 2 shows the PCB component overlay which you should carefully refer to.
Next insert and solder the six capacitors, making sure the two electrolytic capacitors are polarised correcty.
Now push the integrated circuit IC1 into its socket, aligning it, as shown in Fig. 2.
Connect the battery clip, loudspeaker and lead to the PCB. Drill the case to allow the lead to fit through.

Fit the battery and touch the two free ends of the lead together (or press the push-button if you have alreedy fitted it) to operate the doorchime. As the chime is sounding, adjust RV1 to obtain the desired pitch.
Mount the PCB to the case using a double-sided adthesive pad. Finally fit the loudspeaker onto the guides in the box and fasten the lid down to secure it in position.

\section*{How It Works}

The output of a high frequency audio oscillator is divided down to produce the three harmonically related tones which are amplified and then fed to the loudspeaker.

The oscillator's output is a squarewave, the frequency of which is determined by the values of capacitor C5 and preset resistor RV1, connected to pin 6 of integrated circuit IC1. This frequency is divided down to produce a harmonically related and musical three note sequence (still consisting of
squarewaves).
Capacitors C3 and 4 reduce the amplitude of the higher harmonics of the squarewave, to give a less harsh sound.
The circuit is triggered when a voltage over 1.5 V is applied to pin 1 of IC1. After the tones have decayed the circuit switches itself off unless the trigger
voltage is still present, in which case the sequence is repisated.

Components C1 and F11 prevent spurious triggering of the chime which might occulr when long leads to the push-button are used. Also, the IC ccintains circuitry to prevent such spurious operation.

\section*{Parts List}

Figure 1. Circuit of the ME Doorchime

the right connection
Cambion Electronic Products Ltd
Castleton, Nr. Sheffield S30 2WR. Tel: Hope Valley (0433) 20831 Telex: 54444

\section*{Power in hand}
for MODELLERS

PRECISION PETITE have produced the ideal miniature power equipment suitable for the Modeller.
The drills are light - the P1 160 g , the P3 300g, fit comfortably in the hand and can be powered by two 4.5 v batteries or by a small transformer which is fitted with a cradle lat \(£ 16.68\), one of the many accessories available) for use when the Flexible Drive shaft is employed.
They take shank sizes up to 2.5 mm on the P1 and 3.5 mm on P3 and operate at approximately 10,000 and \(12,000 \mathrm{rpm}\) respectively.

For full details of the complete range of mniature power equipment write or please send \(9^{\prime \prime} \times 4^{\prime \prime}\) S.A.E.

119a HIGH STAEET TEOOINGION -MIDOLESEX TW 11 8HG TEL 019770878

\title{
In this special BOF feature, Rick Maybury, in his capacity as Editor of Citizens' Band magazine, comments on the new, legal, Citizens' Band system for Britain
}

\begin{abstract}
WELL, WE MADE IT - CB was officially legalised in the UK on 2nd November 1981, as if you didn't already know. At this point I would like to say a very personal thank-you to all the readers of Hobby Electronics who have participated in the campaign; signed our petitions and generally persuaded the Government that the British Public are indeed responsible enough to be let loose with radio transmitters.

From that you might deduce that I am satisfied with the system, as opposed to continuing the fight for the American system which uses AM, in contrast to our FM system. Well, you would be half right. The UK FM system does work, and works well. The equipment is not significantly dearer than illegal American equipment and, as you may have discovered by now, renge, clarity and efficiency are at worst the same as the illegal system, and can be substantially better. However, there are problems.
\end{abstract}

\section*{Restrictions}

First, the antenna restrictions. The system is severely limited, particularly from the point of view of base station operation. The ludicrous 7 metre (7 m) height restriction makes a mockery of the worth of monitoring stations being able to offer assistance in out-of-the way areas. Inserting a 10 dB attenuator into the feedline of an already inefficient antenna reduces the power
output by a factor of 10 and makes emergency mo nitoring all but impossible. Fair enough, the antenna length li mit which says that no antenna shall be longer than 1.5 m is r to real problem on mobile installations but to try and impose the same limitations on base stations will ensure that any moni toring station will effectively be half deaf.
Second, the licensing conditions: they're too la xl For instance, no provision is made for maintenance and rep air of faulty equipment. In theory, a two-year-old with a screl ndriver is quite entitled to fiddle around inside a rig: it can happ zen and it will happen. The result? A lot of rigs will end up transr nitting on frequencies that might interfere with others.

\section*{Benefits . . . And Opponents}

But these are the minus points. In its favour, UK CB , will offer thousands of people access to the air, lives can be sa ived and people will have the opportunity to talk to one anoth er again (without the assistance, or hindrance, of the Post Offic e) and in this day and age that can't be a bad thing.
It's much too early to say whether or not the systen 7 will be allowed to work, and a lot of people have state d quite categorically that they're out to upset UK CB. These morons will try very hard to ruin CB for others: hopefully their interest will be short-lived, as is often proved to be true of such people. Given that disruption will be slight we have a unique opp zortunity with UK CB to establish a first class local communi, cations system.

\section*{The Fight's Not Over Yet}

It has been a long fight - regular readers may rememt ier our very tirs: feature on CB back in early 1979, and I sin cerely believe that it has all been worth it. There were times \(w\) then it seemed that the Government would never sanction CB. i 「hat's not to say I'm congratulating them now, I think they s hould have done it two years ago and avoided all this misery. Bu they have made the best of a bad job and it's up to us now to। orove that we can use it responsibly. It's fairly apparent that 40, zhannels will not be enough. We'll need at least another 40 b) \(/\) this time next year, so the campaign as a whole is far from k reing over, and something must still be done about those z ierial restrictions.
In the meantime, CB is here and you have the opportunit :y to participate in a great experiment, not least the demonstra tion that the British public can use two-way radio in a respons :ible manner. It shows that laws can be changed, where there 's a will. Now, about those cordless telephones, wouldn't it be \(r\) vice if.....?

HE

\title{
PCB Foil Patterns
}

Belo' w: The PCB foil pattern of the HE Pedalboard Organ project

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.
\begin{tabular}{|c|c|c|c|c|c|}
\hline January 80 & & September 80 & & April 81 & \\
\hline Digi Dice & £2. 20 & Auto Probe & £1.25 & Super Siren & £1.48 \\
\hline & & Guitar Phaser & £1.48 & Russian Roulette Game & £1.20 \\
\hline February 80 & & Development Timer & £1.35 & & \\
\hline Win Indicator & £1.98 & Bench PSU & £2.20 & May 81 & \\
\hline March 80 & & & & Voice Operated Switch & £1.25 \\
\hline 508025 W Amplifier & & October 80 & & Organ 1 & £3.48 \\
\hline Module & £1.95 & Nobell Doorbell & £1.98 & & \\
\hline 5080 PSU Module & £1.98 & Intruder Alarm & £1.88 & June 81 & \\
\hline 5080 PSU Modula & & Tug O' War & £1.99 & Envelope Generator
Organ 2 & £ 1.40
£ 1.90 \\
\hline Speed Controller For R/C & E1.60 & November 80 & & & \\
\hline Digital Frequency Meter & £2.95 & Memory Bank Synth: & & July 81 & \\
\hline Hobbycom: Two-wire Inter- & & Mainboard PCB & £2.48 & Organ 4 & £4.50 \\
\hline com (set of two) & £3.98 & Keyboard PCB & €2.70 & Ulirasound Burglar Alarm & £1.90 \\
\hline Electronic Ignition (CD) & £2.98 & Party Grenade (set of three) & £2.60 & Urasound Burglar Alarm & \\
\hline & & Double Dice & £2.20 & August 81 & \\
\hline May 80 & & & & RPM Meter & £1.33 \\
\hline 5080 Pre-amplifier & £3.50 & December 80 & & Thermometer & £1.25 \\
\hline June 80 & & Stereo Power Meter & £2.12 & & \\
\hline Fog Horn & £1.40 & Digital Speedo (set of two) & £3.50 & September 81 Power Pack & £1.27 \\
\hline Egg Timer & £1.58 & & & Reaction Tester Game & £1.28 \\
\hline July 80 & & January 81 & & 'Diana' Metal Detector & ¢2.48 \\
\hline 18 W + 18 W Car Stereo & & & £2.24 & & \\
\hline Booster ltwo required for & & February 81 & & Combination Lock & £1.99 \\
\hline stereo) each & £1.20 & Heartbeat Monitor & £1.90 & & \\
\hline August 80 & & Audio Signal Generator & £1.85 & \begin{tabular}{l}
November 81 \\
Sound Torch (Set of Two)
\end{tabular} & £3.98 \\
\hline Equitone Car Equaliser & £1.79 & & & & \\
\hline Gaztec Gas Detector & £2.98 & March 81 & & December 81 & \\
\hline Pass The Loop Game & £1.98 & Steam Loco Whistle & £1.99 & Pedalboard Organ & £4.48 \\
\hline
\end{tabular}

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

\begin{tabular}{|l|l}
Boards Required & Price \\
\hline & \\
\hline
\end{tabular}

Please allow 14 days for delivery

\title{
Here is a small selection of the books available from HE's book service. New titles will appear each month
}

\section*{ELEMENTS OF ELECTRONICS by F A Wilson \\ This series of books covers the basics of electronics, in an easy to \\ A MICROPROCESSOR PRIMER by E A Parr £1.75} understand manner. The topics are written so that important concepts can be grasped by the beginner and yet they can also provide an in-depth reference source for the practising engineer
Book 1: THE SIMPLE ELECTRONIC CIRCUIT AND COMPONENTS \(£ 2.25\) This book contains all the fundamenta theory necessary to lead to a full understanding of the simple electronic circuit and its main components.
Book 2: ALTERNATING CURRENT THEORY
£2.25
Sinewaves, complex waveforms, time constants, reactance, resonance and other important aspects of AC are covered.
Book 3: SEMICONDUCTOR TECHNOLOGY £2.25 From simple atomic structure models through to complex integrated circuits and the elements of computers.
Book 4: MICROPROCESSING SYSTEMS AND CIRCUITS£2.95 Starting with simple computer models, this book takes the reader up to complete microprocessing systems and theoretical circuits.
Book 5: COMMUNICATIONS . . £2.95 All aspects of communication systems such as channel bandwidth, transmission systems and signal processing, are discussed in this final book of the series.

Newcomers to electronics and computing tend to be overwhelmed when first confronted with literature about microprocessors. This book helps to alleviate the problem by recounting the design of a simple computer in an easy to understand manner.

\section*{PRACTICAL COMPUTER EX} PERIMENTS
by EA Parr
£1.75 Readers of this book will find themselves involved in experiments which help to explain the inner work ings of computers and microprocessors. All circuits and experiments use discrete logic circuits to demonstrate such things as 'adders', 'stores', 'arithmetic and logic units' etc.

\section*{HOW TO MAKE WALKIE-TALKIES} by F G Rayer
£1.50
Low power hand-held, or portable, radio transmitting/receiving equipment need not be complicated - as this book shows. A book of great interest, not only to the licensed operator, but also to those enthusiasts without transmitting licences who wish to participate as
receiving equipment.

\section*{ELECTRONIC PROJECTS FOR BEGINNERS \\ by F G Rayer \\ £ 1.35}

The newcomer to electronics will find this a very useful book. It contains a wide range of easily made projects including component and wiring layouts. A number of projects can be constructed without the use of a soldering iron.

POPULAR ELECTRONIC PROJECTS by R A Penfold
£1.45 A collection of circuits and projects to interest most electronics constructors, covering four popular main areas: radio; audio; household projects and test equipment.

\section*{INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE}
by A Michaels £2.95
Transistors from over 100 international manufacturers are tabulated in this book in an easy to understand, cross-referenced format, to enable the reader to quickly locate equivalent devices from an alternative source. This book is an extremely useful addition to the electronics enthusiast's library.

To receive your books fill in the form below (or write the details on a sheet of paper) and send it, with your payment, to the address given.
Please wait 28 days for delivery. The offer applies to the UK only. Prices may be subject to change without notice.

To: HE Bookshelf, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE.

I enclose a cheque/postal order made payable to ASP Ltd, for the amount shown below
OR
I wish to pay by Barclaycard/Access. Please charge to my account number
\begin{tabular}{|c|}
\hline Signature \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
Books Required & Price \\
\hline & \\
\hline Add 75p p\&p & 0.75 \\
\hline Total enclosed \(\quad £\) & \\
\hline
\end{tabular}

\title{

}

SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H 05E. TEL: 01-437 1002 Ext. 50.

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, \(£ 2.25\). Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick f 1.75 sq . ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

BUILT F.M. MICRO-TRANSMITTERS E2.95. Receive on your radio's V.H.F. band. \(88-108 \mathrm{MHz}\). I.C. Design Range 150 yd (avoids unwanted detection). Money back guarantee. Unlicensable Post 20p. P. Faherty, 37 College Drive, Ruislip, Middx.

BOOKS. "I.C. 656 PROJECTS" by E.A Parr. 160 pages of basic and general circuits. Section on 556, 558, 559 Timers. £2.15 inc pep. List of other titles s.a.e. 10 "Alpha Books", Reg. Office 18 Connaught Close, Hemel H'empstead, Herts HP2 7AB.

DE-SOLDERING TOOLS. A must for every constructor. Our price only \(£ 4.50\) inc. P\&P. Cash with order to Trenmead Limited, 1 Elms Lane, Wembley, Middx.

ZX81 KEYBOARD SOUNDER Made from easily obtained components. Send E3 for P.C.B. instructions and transducer or S.A.E. for details to R. Mitchell, 20 Gorse Close, Portslade, Sussex.

\section*{GUITAR/PA MUSIC AMPLIFIERS}

100 watt superb trable/bass overdrive; 12 monthe guar. antas. Unbaatable at E50; 60 watt \(£ 4\); 200 watt \(£ 88 ; 100\) E52; 200 wat \(\mathrm{E78}\); 100 watt four-channel sep. trebie/bass per channol \([75 ; 200\) want \(\mathrm{CS3}\); glvves 100 watt \(\mathrm{E} 4 ; 200\) watt fen, 250 watt 770 ; 500 wstt f 140 ; fuzz boxes, great sound. E12; bass fuze £12.50; overdrver fuze with treble and bass boopters, e22; 100 witt combo, superb sound, overdive, sturdy construction, castors, unbeatable. c5s; twin channel. £115: bass combo f118; spenkers 15 in . 100 watt E 36 ; 12 in 100 watt E 24 ; 80 watt \(\mathrm{E16;}\); microphone shure unidyn 8 E25; 3-channel soundingtr ezs.
Send cheque/P.0. to: WILLAMSON AMPLIFICATION

WANTED. Electronic components and test equipment. Good prices given. O Services, 29 Lawford Crescent, Yately (0252) 871048, Camberley, Surrey.

\section*{P.C.B.s THE FOTO WAY}

\section*{ADVERTISEMENT INDEX}

CLOSE ENCOUNTERS GROUP. Personal introductions/dances, parties, talks, social events. Meet interesting, attractive people. All areas. - Tel. (Liverpool) 051 . 9312844 (24 hours).

PRE-PACKED SCREWS, Nuts, Washers, Solder Taps, Studding. Send for price list. A1 Sales (ETI), P.O. Box 402, London SW6 6 LU .
L.C.D. WATCHES. Time, date, seconds. Stainless steel strap. Ladies, Gents. Year's quarantee. \(£ 3.60+300\) PEP. Peuling's Discounts, 6 Urban Road. Hexthorpe, Doncaster, South Yorkshire.

ELECTRONIC KIT BUILDERS. You supply the kit - we build it for \(60 \%\) of kit prics. Powertran approved. - for quotation telephone 060456248 or 0908564642.

\section*{IONISER KIT IMANs OPERATEDI}

This Negative lon Generator ghve you the power to suturate your horne or office with millions of refreahing ione. Without fans or moving perts if purt out a pleasent breaze. A pure flow of lons pours out like weter from a fountain, fifing you oom. The reault? Your arr feetes frowh, pure, crisp and wondertully refreeting. All perts, PCB end full instructions
A sulteble ceeo including front penel, neon owitch, otc

SURPLUS - Ex equipment 120W \((60+60 \mathrm{~W})\) power amplifiers, case and controls, vol/bal, sockets, smoothing \(5^{\prime \prime}\) heatsink, boxed, date, \(£ 9.95\) inc. Flifco, 1 Regent Rd, likioy, LS29 9EA: Merry Chriatmas FolksI

LADIES/GENTS 5 FUNCTION L.C.D. Digital watches with backlight E4.75 including p\&p. 12 month guarantee. Other models available. S.A.E. for list. Cheque/P.O. to M. Boote, 45 Silver Street, South Petherton, Somerset TA13 5AN.

\section*{FREE CATALOQUE}

Everything for Microcomputer users.
Phone: Croydon Computer Centro. 23A Brlestock Ad. Thormton Heeth, Eurroy. \(01+120\)

ETI 4600 SYNTH. All working end set up. Need quick sale hence only \(£ 550\) o.n.o. Ring: 01-989 9335

PRINTED CIRCUIT BOARD. Single Sided \(-12^{\prime \prime} \times 12^{\prime \prime} £ 1.00\). Single sided \(1 / 16^{\prime \prime}\) Glass Fibre \(12^{\prime \prime} \times 12^{\prime \prime} £ 1.60\). Double sided Glass Fibre £1.60. P\&P 60 p any quentity. Jowal Electrics, 16 Lodge Road, Hockley. Birmingham B185PN.

POWER TRANSFORMER AND RECTIFIER BARGAIN8, \(30-160\) ampa, various voltages. Liet: R. Nowillo, Green Lane, Ellisfield, Nr. Beaingatoke, Hants.

\section*{CENTURION BUROLAR ALARM} EQUIPMENT Send see for free libe or a cheque/po for E 11.50 for our special offer of a full sized signwritton bell cover, to Centurion Dapt HE, 285 Wakofield Rd, Huddersfietd, W. Yorkehire. Acceen É Barclaycard. Telephone orders on 0484 . 36527

\section*{PARAPHYSIC8 JOURNAL (Russian} translationa); Phychotronic Generators, Kirianography, gravity lasers, talekinecia. Datails: See \(4 \times 9^{\prime \prime}\) Paralab, Downtown, Wilte.

AMAZINQ ELECTRONICS PLANS. Levers; Super-powered Cutting Rifle, Piptol, Light Show. Ultrasonic Force Fields, Pocket Dofence Weaponry, Giant Teele, Satellite TV Pyrotechnics, 160 more projects. Cata-logue 95 p . - From Plancentre, 16 Mill Grove. Bilbrook, Codsall, Wolverhampton.

\section*{HAVE YOU SEEN THE GREEN CAT? \\ 1000 of components, Eudio, redio, clectronic,} CB including everything electronic for the constructor and the trade at unbeleivably low prices. Special diecounte to the urade and public. Send \(89 p\) for the GREEN LIST and receive sample ELECTRONIC CLEARANCE PACK worth \(E 3\) plus FREE RECORD SPEED INDICATOR or \(£ 1.85\) for peck worth \(£ 5\) or \(\mathbf{\Sigma 2 . 7 6}\) for peck worth 88 or \(\mathbf{E 8}\) for peck worth over ED or \(£ 10\) plus \(\mathbf{2 . 5 0}\) carr for JUMBO PACK worth or E 10 plus E .60 carr for JUMBO PACK Worth
over LOO . Money beck H not deligheed. Sentu over E6O. Money back I not deligheed. Sentin
whether trads or publlc. AH pecke contein tranciators, cepe, pots, realators, switches, redlo and audlo iteme, connactore, relay end electronic deviens.
NEW RETAIL PREMIBE8. Now open at 12, Harper Streot, Leeds 2. Next to Union Jack Clothing Store. Open 9 to 5 Mon to 8et. Tel 452045. Callere Welcome.

Instent CASH PAID for moet cectronic equipment and components, teet equipment, valver and recelvers. No quentity too terge or Valven and
too amell.
Send semples/detaits offier mede by refurn.
MYERS
Dept ETI 12 Harper 8treet, Leeds 2 Tel. 45.045

\section*{ELEGTRIFY YOUR SALESI © CLASSIFIED ADVERTISEMENT}
\begin{tabular}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline 7 & 8 & 9 \\
\hline 10 & 11 & 12 \\
\hline \(13-\) & 14 & 15 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Advertise nationally in Electronics Todey Internetional/Hobby Electronice. Simply print your advertisement in the coupon here lleftl. indicating which magazine you require.
Or telephona for more information.

Name
Address

Tel. No. (Day)

Please place my advert in: Electronics Today International
(Delerte as applicable) \(\begin{aligned} & \text { Hobby Electronics }\end{aligned}\)

Send, together with your cheque to:
Jenny Naraine, ETI/HE,
145 Charing Cross Rd., London WC2H OEE.
Tel: 01-437 1002 Ext. 50.

\section*{to turn this}

\section*{into this?....}

.... then you're ready for a POWERTRAN kit.

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3NW. (0264) 64455
SALES COUNTER: If you prefer to collect kit from the factory, call at Sales TELEPHONE ORDERS: To make ordering even easier we now accept Access and Barclaycard Simply phone us with your order and quote your card number PRICE STABILITY: Order wh conidence Wre honour pices in ine til the end of the month following the month of publication of this is sue. IE adverisements untill the end of the month following the month of publication of this issue. (Errors and VAT rate EXPORT ORDERS: No VAT. Postage charged at actual cost plus \(f 1\) handling and documenU.K. ORDERS: Subject to \(15 \%\) surcharge for VAT No charge is made for carrage or at cufren! rate ifhanged Cheques, Barclavcard, Access accepted SECURICOR DELIVERY: For this optional service IU.K. mainiand onlyl add E2.50 (VAT inclusive) per kit. FREE ON ORDERS OVER £100

Powertran kits offer the enthusiast the chance to construct the finest quality elactronic music technology at a mere fraction of the cost of shop-bought units. For over ten years our kits have been winning a national and international reputation for excellence. We lead the field not just in originality and design ingenuity - but aso in the truly professional finish and performance capability of our machinas. Although Powertran kits use advanced technology you don't need to be a genius to build them. Our clear comprehensive and fully diagrammed construction manuals make them suitable even for the beginner - you not only build your kit, you build yaur skill and knowledge too. There are a dozen kits to choose from - so isn't it time you became a Powertran builder?
POWERTRAN - OUITE SIMPLY THE BEST WAY TO MAKE MUSIC.
Your Powertran kit features
- Advanced electronic technology
- Original and ingenious designs
- Fully comprehensive manuals
- Fully finished metalwork
- Superior components
- Solid teak cabinets (with all synthesizers)
- Fully professional performance
- Complete down to the last nut and bolt!
plus the confidence of Powertran's international reputation for quality, servise and reliability.```

[^0]: Hobby Electronics; 145 Charing Cross Road, London WC2H OEE, 014371002 . Telex No 8811896 . Published by Argus Specialist Publications Lid. Distributed by Argus Press Sales \& Distribution Ltd, 12-18 Paul St, London EC2A 4JS. Printed by QB Lid, Colchester. Covers printed by Alabaster Passmore.
 Copyright: All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing of kits of the projects must be sought from the Publisher. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Argus Specialist Publications Ltd, cannot be held responsible for it legally. Copyright 1981 Argus Specialist Publications Ltd ABC Member of Audit Bureau of Circulation.

