FRIE PULL-OUT PROJEGSSUPPLAMENT INSIDE

Hobhy
 ISSN 0142.6192

Only60p

For A Down-lo-Earth Approach To Electronics

Bumper easy.to-build Projects issue! projects

FOR THE MUSICIAN

 \title{
ELEGTRONIC
 \title{ \section*{ELEGTRONIC MEASURIMMENHS}

 MEASURIMMENHS}}

ev	

- Elecfronic Metronomeo Simple Stylus Organo Scrafch Fillero - Componen' Substilution Boxo Sound Level Metero Frequency Mefero

- Light Beam Telephoneo VHF Radio o Fire Defectoroticking Egg Timero - Flash Intensify Metero

LINEAR ICS		THE				PR\｜CES			50						M	174				IN			$1=$	UK		RANSISTORS	
TBA120S	1.	SL1610P		HA11223	15	4000			0.95				0.58	74125	0.40												
1200	195	SL1611P	1.6	HA11225	1.45	4000	0.13	40	1.15		1.59 2.18	74	0.14	74126	0.40	74190 74191 7419	0.55		3.14 0.14	7496 74107	1.20	74190 74191	${ }_{0}^{0.60}$			$\begin{aligned} & \text { BF } 194 \\ & \text { BF } 195 \end{aligned}$	$18 p$ $18 p$
$U 2378$ $U 2478$	1.28 1.28	SL1612P	1.60	HA1200	1.45	4001	0.13		0.38	${ }_{4569}$	2.18 1.95	7451	0.14	74	0.65	74192			0.14	74109	0.25	74192	0.68	7400	0.20	BF224	22 p
U2578	128	SL1620P	2.17	HA12402	1.95	4007	0.19	4068	0.18		0.30	7454	0.14	${ }_{74136}$	0.50 0.65	78193	0		0.13	74112	0.25	74193	0.68	7402	0.20	BF241	18p
U2678	128	SL1621P		HA12411	1.20	4008	0.70	4069	0.18	4582	0.99	7460	0.14	74141	0.45	74195	0.5			74114	0.2	74195	0.42	7408			p
LM301H	0.6	SL1623P	2.44	HA12412	1.55	4009	0.30	4070	0.25			7470	0.28	74142	1.85	74196		7413	0.28	7412	0．40	74196	0.65	7410	0	BF441	${ }_{210} 1$
LM301N	030	SL624C		LF 13741	0.33	4010	0.30		0.22	4702	4.50	7472			2.50	74197	0.55	7414	0.49	74123	0.55	74197	0.65	7414	0.55	BF362	${ }_{49}{ }^{21 p}$
LM3081C		SL1		SN76680N	0.80	4011	24		0.22	4702	4.50	7473	0.28	74144	2.50	74198		741	0.14	74124	1.80	74200	3.45	7420	0.20	BF395	180
LM324	06	SL1626P		FREO．DI	AY		15	4075	0.22	4704	4.24	7474	0.28	74145					0.13	74125	0.29	74202	3.45	7430	0.20	BF4	P
LM339N LM348N	066 1.86	SL1630P	1.62	AND SYN	－AV	4012	0.20	4075	0.18 0.60	4705	4.24 4	7475 7476	0.3 0.3	74147 74148	1.50 1.09	744221	1.00	7421		74126	0.29	74221	0.60	7432	0.20	BF679	p
LF35	0	SL164	1.	devices		401	0.70	4077	0.23	4706	4.50	7480	0.26	74150	0.79	74247	1.51	742	0.15	7413		74240		7442	1.80	BF R991	1.3
LF353		TDA2002	1.25	SAA 1056	3.75	4016	0.30	4078	0.25	4720	00	7481	0.20	74151	0.55	7424			． 14			74242					60p 99 p
LM374N		ULN2242A		SAA 1058	3.35	4017	65		0.25	4723	95	7482		74153	0.55	74249	1.89	742	0.35	74138	0.4	74.243	1.65	7474	0.50	BFY99	9p
LM380N． 14	1.00	ULN228		SAA1059	3.35	3019	0.38	4093	0.45	4725		7483	0.60		0.55	74251			0.13	7413		74244		7476	48		
ZN419C		CA3090AO	3.35	LN1242	19.00	4022	0.68	4502	0.90	40085	0.99	7489	1.05	7				7433	0.16	74147		74247	1.35	7485	8		8 p
NE544N		CA3123E	1.40	MSL2318	3.84	4023	0.19	4503	0.55		0.54	7490	0.30	74159	1.95	74278	2.89	${ }^{7437}$	0.17	74148		74248 74249	． 35	7486 7489		SK 168	$5 p$
NE555N		CA3130E		MSM5523	11.30	－024	45	4506	0.75	40106	0．54	3491	0.5	74160	0.55	74283	1.30	7440	0.13	7415	0.35	74251	0.46	7490	0.80	J1317	p
N		CA3130		MSM5524	11.30	－025	0.18	4507	0.45	40161	0．69	？ 7492	0.3	74161	0.55	74284	3.50	7442	0.40	7415	0	74253	0.46	7493	0.80	40823	65p
NE56	4.0	CA3189E	2.20	MSM5525	785	2028	0.60	${ }_{4510}$	1．99	40162	0.69	7493 7494	0.35 0.70	74162	0.55	4728		7447	0.42	7415		74257	55	7495	0.94	40673	K51
NE 56	4.29	CA3240	1.27	MSM5527	9.75	－ 029	0.75	4511	0.85	40163	0.69	7495	0.6	74164	0.55	74293	1.05	7448	0.6	7415		74258 74259	39	74151		3SK45	p
NE565N	1.00	MC3357P	2.85	MSM5527	9.75	${ }^{030}$	0.35	512	0.70	40175	0．69	7496	0.45	7416	0.55	74297	2.36	7451	014	7415	0.40	74260	0.70	74154			
N N	160 385	LM3900N	0.60 0.68	MSL2312	3.94 3.85	835	0.75 0.68	4514	2.20	40192	0.75	74970	1.40		0.70	7429		7454	0.15	74160		74366	0.24	7415 \％	1.52	3SK88	
SL	3.	LM3914N	2.80	Sp8647	6.00	4342	0.65	4516	0.75	40193	0.75	74104	0.6	${ }_{74170}$	1.25	${ }_{74365}$	0.8		0.15			74273	0.90	74		MEM	
TB		LM3915N	2.80	95490p	7.	434		¢18	0.75	0194		74105	0.62	74173	1.10	74367	0.85	7473	0.21	74163	0.40			74162		和 961	70p
UA709	0.64	KB4400	0.80	HD10551		44	0.93	4520	0.80	95	9	74107	0.26	74174	0.75	74368	－．as	7474	0.18	74164	0.50	74280	2.50	74163	0.80	${ }^{\text {BC237 }}$	
UA	0.46	KB4412	1.95	HD812009	6.00	4346	0.68	${ }_{4521}$	2.36 1.49	TL	＇${ }^{\prime}$	7.109	0.35 0.54	74175	0.75	T4	1.8				． 7	74283	0.44	74164		BC239	
UA710P	． 5	KB44 13	195	H044752	8.00	$4{ }^{4} 47$	0.69	4527	0.95	7400	0.10	74111	0.68	74177	0.75	74393 7490			0.22			74290	1．58	74165		EC307	8 p
UA741CH	0.66	K84417	1.80	MC145151	12.45	${ }_{4}^{4} 49$	0.30	4528	0.95	7401	0.10	7411		74178	0.90			7483	0.50	7416		74295	1.50	74174		${ }^{\text {BC308 }}$	8 p
UA741CN	0.27	K844208	09	MC1451	75			4529	1.40	7402	0.10	74166		74179	1.35			7485	0.70	74170	1.85	742	． 50	74175		$\mathrm{BC}^{8 \mathrm{C}} 309$	
UA747CN	0.70 0.36	TDA4720	26	W		$4 \mathrm{C5} 2$	0.65	539	10	7403	0.11	74118	0.85						0.18	74173	0.75	743	0.35	74192	0.80		
UA		K84	2.30	ICA17106C	9.55	${ }_{4}^{4 C 52}$	${ }_{0}^{0.69}$		50	7404	0.12	74119	1.20 0.95	74181 74182	1.22 0.70	7400	0.11	7490	0.32	74		743	0.35	74193	0.80	BC415	110
UA	235	KB4431	1.95	ICM7107		4054	1.30	4555	0.72	7405	0.22	74121	0.35	74184	1.20	7402	0.12					748367	035	74195		BCal6	p
TBA820M	0.78	K84432	1.95			4055	1.30	4556	0.58	7407	0.22	74122	0.34	74185	1.20	7403		749				${ }_{7} 73373$	0．78			${ }^{\text {BCC546 }}$	12p
TCA940E	1.80	K84433	1.52	ICM	0.9	4056	1.35	60	18	7408	0.15	123	0.40		3.00		0.13	仡		－		74374		74901		BC556	
TDA	2.11	K84436 $\mathrm{KB4} 437$	1.75	CRYSTAL	LS		RYSTAL	ALS	RAD	dio Con	IRO											74375	1.15	7490	0.38	BC5	
TDA1054	1.45	KB4438	222	32.768 kHz	2.70	102				XTALS												7437	1.99	74903	0.38	BC639	
TDA1062	1.8	KB4441	1.35	100 kHz	3.85	10.698		2.50		TX／RX		Pos	GE	p	，	UND				Ver	12	743	1.40	74904	0.38	BC640	22 p
TDA1072	2.	KB4445	1.29	45	5.00 2.95	10700		2.00	FM	RX														74905		2 zc	
TOA1074	1.	KB4446 K84448	1.6	1.0000 3.2768	2.95 2.70	1070		2.50 2.00	3－d	01／30pF		The	west	rices	primer	rep						74385		74906		$2 \mathrm{2SA}$	
TOA109	3.	NESOMAN	2.26	4.000	2.00	11.115			HC2	25U	65											74386	0.29	7		S864	
HA1	1.	NE5532N	2．	4.193	2.00	11． 320		2.00		HC25					to	con						74390	0.68	74909		${ }^{2} \mathrm{SD} 5668$	
HA		SD6000	3.75	4.096	2.00	8.9985		2.00						comp		of		cove		our ne		743	0.61 210	74910		2S8648A	40p
HA1197	1.00	SL 6270	2.03	4.032 4.4338	2.00 200	9.0015		2.00 200		RS．．．AM	3.10	12		and	short	with	pris	list：	avail	frer		7439		74914		2S0760	45p
TDA1220	1.	SL6310 SL6600	2.03 3.75	4．800	2.00 2.00	24．000		2.00 2.00	PAI	RS．．．FM	3.25	writh	SAE	and	ppl	with	1 or	ers．	u	order		74398	2.75	74918		${ }^{2} \mathrm{SCC} 254$	
1307		SL6640	2.75	5.000	2.00	25.000		2.00	CHA	ANNELL	ING	by A	ESS	BARC	LAYC	RD，	que	PO	th	der		7439	2.30	74926	． 32	SA1085	200
MC1310P	1.90	SL64	POA	6.5	200	${ }^{26.000}$		2.00	27 M	$\mathrm{MHz}^{50} 5 \mathrm{kH}$		come	to o	ur refur	bished	retail	shop	and us：	＇real＇	money				74927	4.32	S87	2.34
MC 1330		SL66	3.20	7.000	2	18.000		250	35M	$\mathrm{AHz}^{2} \mathbf{2 0 k H}$		Our	catalo	ogues	1.85	inc．or	5 p ea	inc）	浐							K13	34
HA 1370	1.9	SL6700	2.35 4.50	8.000	2.00	（A	AL FIL	LTERS												as well						K134	10
HA1388	275		1.75	9.0	200																					k1	
TDA1490	1.86	MSL9363	1.75	10.000	200																		1.70			2S．150	
MC	1.25	HA11211	1.95	10.240	2.00	5 SB	$8 \text { pole }$	10		\％ 8								－		cost．				aval		2Sk227	

NOVEMBER 1981 Vol 3 No 13

Editor: Hugh Davies
Senior Art Editor: Andrew Sawyer

PROJECTS

SOUND TORCH

Sound transmission at the speed of light 10
SCRATCH FILTER
Reduces hiss from worn-out records
19
SUBSTITUTION BOXES
Change components at the turn of a switch 26
LED VU METER
Replaces moving-coilmeters30

FREE EIGHT - PAGE PROJECT SUPPLEMENT
FIVE extraprojects to build this month 35

SIMPLE STYLUS ORGAN

Easy-to-build Quick Project . 58
TOUCH LAMP UPDATE
The elusive How it Works section 59
METRONOME
Time for music61

PCB FOIL PATTERNS
Down underneath.

FEATURES

DIGITS ON DISPLAY

All types of electronic displays 14
YOUR LETTERS
The Editor replies21

FAMOUS NAMES
Regeneration, superhet, FM and Edwin Armstrong 23
SYNTHESISER SECRETS - 2
Musicalsynthesisers explored more deeply 28
BUILDING SITE
Socket-to-me
CLEVER DICK
Replies to your technicalqueries
INTO ELECTRONIC COMPONENTS
Part 4 of our beginners'series
DICTATING MACHINES
Without them, hi-fi would not exist

NEWS \& INFORMATION

Monitor - Electronics News . 6
HE Next Month
Breadboard 81 Exhibition
Subscriptions - the easy way to buy HE
Bookshelf-new books from HE 68
PCB Service 70
Classified Ads 73

Assistant Editor: Keith Brindley Editorial Assistant: Judith Jaciobs
Drawing Office Manager: Paul Edwards Managing Editor: Ron Harris BSc Layout Artist: Enzo Grando Managing Director: T. J. Connell

Scratch Filter - reduces the background noise of records

Project Supplement

- an extra five projects in
a free supplement

(RRP £134.95) ONLY £119.95

High speed computer using BASIC language, with program/data storage on cassette tape via optional FA-2 adaptor.
AVAILABLE SOON: Plug In ROM program modules and FP. 10 Mini Printer for program/data printout.
LCD dot matrix scrolling display. Input can be varied from 1680 program steps, with 26 independent memories, to 80 program steps with 226 memories, plus text display memory (string and string manipulations), all with power back-up. Up to 10 program storage.
Subroutines: 10 levels. FOR NEXT looping, 8 levels.
Debugging by tracing. Editing by moving cursor.
55 built-in functions Including Regressional Analysis and Correlation Coefficlent all usable in programs. Program/data storage on cassette tape. Two lithlum batteries give approximately 200 hours continuous use, with Auto Power Off after 6 mins disuse.
Dimensions: $17 \times 165 \times 82 \mathrm{~mm}$. ($\mathbf{1} \times 6 \frac{1}{2} \times 34$). Weight $180 \mathrm{~g}(6.30 \mathrm{z})$.
FX-602P Advanced programmable. Up to 512 steps $\mathbf{£ 7 4 . 9 5}$ Plus FREE Protessional Programmable Pack (RRP £12.95)

$$
\text { * *NEW!* * FX-3600P } 38 \text { program steps }
$$

£22.95

ThESE SPACE INVADERS THESE SPACE INVADERS WILL ALAR in Y
Yasio's most amazing watches ever!

clairvoyant calculator ${ }^{\text {n }}$

 $\mathbf{I F}_{\text {Fortune Teller, Matchnaker, Calendar and }}$ Alarm Clock
(RRP £18.95)

CASIO PROGRAMMABLES

with power back.up for memories and programs
NEW FX-602P
LCD dot matrix
scrolling display. 32 to 512 program steps. 22 to 88 memories. 33 parentheses, 11 levels. Editing by cursor Jumps.
$9.6 \times 71 \times 141.2 \mathrm{~mm}$ 100 g .
(RRP £84.95) £74.95
Plus FREE Professional
Programming Pack
(RR' $^{\text {¹ }}$ 12.95)

 NEW FX.3600P

Up 1038 steps and 2 programs, plus 7 memories. 18 parentheses, 6 levels. 61 functions, including Integrals \& Regressional Integrals \& Regress
Analysis. Long life Analysis. Long li
Lithlum battery. $8.7 \times 71.5 \times 134 \mathrm{~mm} .64 \mathrm{~g}$. (RRP £25.95) £22.95

CA90 (left) | £19.95* CA901 (right)
$£ 29.95$
 | Time and auto calendar, calculator, alarm, hourly chimes, stopwatch, dual time.
| DIGITAL SPACE INVADER GAME.

NEW MG-885

"Game II" and "Game II" and calcuiator. Full memory and \% plus 3 level digital space invader game. (RRP £12.95) $£ 10.95$
The highly successful MG-880 caiculator/game plus FREE cubik puzzle ONLY £10.95

Predictions of individual fortunes (Health; Gambline/lnvestment, Business and Love) or the compatibllity between two persons on any given
6 digit clock. Auto calendar pre-programmed from 1901 to 2099. Daily alarm and hourly chimes can be easily switched on or off. Calculator with full memory $\%$. One year battery life ($2 \times$ LR44).
$7.9 \times 114 \times 56.5 \mathrm{~mm}\left(\mathrm{f}_{\mathrm{z}} \times 4 \frac{1}{} \times 2 \mathrm{t}^{\prime \prime}\right) .58 \mathrm{~g}(2 \mathrm{oz})$. With wallet.
1
SHORT FORM CATALOGUE Avallable October 14p stamp appreciated

Delivery normally by return of post. Prices include VAT and P \& P.
Send your cheque, P.O, or phone your ACCESS of B'CARD number to:

THE LEADING U.K. REPRESENTATIVE, Dept. HE/11
164/167 East Road, Cambridge, CB1 1DB
Tel: 0223312866

* *VIVID REALISM *

Sound is the criterion when judging a musical instrument. Our CASIOTONE keyboards are outselling all others because of their superb reproduction, quallty and legendary reliability

Order today, play tomorrow
SECURICOR 24 hour delivery included In price, or RETURN OF POST (small keyboards) or CASH \& CARRY

The Prolessionals
THE EXCITING NEW CASIOTONE CT- 202

(RRP £325) By Securicor ONLY £275
"Son of success...The two harpsichords demonstrate the Casiotone's talent for sparkling, crystal clear tones...Even more impressive is the clav." (Melody Maker)
8 -note polyphonic playing of 49 instruments over 4 octaves. 4 voice memory function with push-button selection. 3 Vlbrato settings and Sustain switch. Integral amplifler and speaker (10 watts o/p). Line Out and headphone jacks, Foot volume and sustain pedal lacks. Pitch control.
\& CASIOTONE MT-30

(RRP E115.00)
ONLY $£ 95.00$
22 instruments over 3 octaves. 4 -position sound memory. Battery or mains. O/P jack. Dims: $2 \frac{1}{2} \times 221 / 9 \times 61 / 2^{\prime \prime}$. 6 lb .
\sum Vivid realism for beginner and expert CT-401

(RRP £345) By Securicor ONLY £295

8-note polyphonic playing of 14 instruments over 4 octaves. 16 rhythm functions with full-in auto rhythm. A fill-in button adds variety. Casio Auto Chord system for one-finger accompaniment (major, minor and seventh chords) or automatic chord and bass accompaniment. With Vibrato. Delayed Vibrato, Sustain and Hold switches. Integral amplifier and speaker. Line and headphone jacks. Foot volume and sustain pedal jacks. Pitch control. $A C$ only. $41 \times 31 \pm \times 12$ inches. Weight 28.2 lbs . CT.301. Simllar to the 401 without Casio Auto Chord £199 MT-30. 22 instruments. 3 octaves. Vibrato, Sustain. Mains/Battery. $£ 95$

BECOME AN INSTANT MUSICIAN
"Tomorrow's World" featured this resounding success. Hundreds sold already. Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back...beautifully! CASIO VL-TONE (VL.1)
Electronic Musical Instrument
(RRP £39.95) ONLY £35.95

This complete 29 note (expandable) synthesizer records and plays back up to 100 notes. Enter the notes of a melody into the memory and recall them in sequence with the One Key Play button, varying tempo and duration of each keystroke to create a melody. Mistakes can be corrected and Individual notes added or deleted. Your best performance can be re-recorded back into the memory, then re-played at a touch of the Auto Play key. Choose an instrument (Plano, Violin, Flute, Guitar or Fantasy) or switch to A.D.S.R. and program your own unique sound from one of 80 million combinations. Select one of the ten Auto Rhythm accompaniments, adjust the Tempo Control and play back your composition, then try a variation. Facilities: Digital display of notes and tempo. Mains or battery operation with battery saving Auto Power Off, with protection of the stored melody and preset A.D.S.R. data. Built-in amplifier/speaker. Output Jack. Pitch Control. 11f $\times 11 \frac{1}{2} \times 3$ Inches. Weight 15.40 z

P.C.B.s THE FOTO WAY

whr wan wats for manutacturent WHEN you cen mate protesuonal printed encurtboards youtsalit!	Materals from stock you can reny on: Pact of Drationg Iransters is sheets assto) Oratting sheef for master patiern. Deveiodet cmishis or.							
IT'S $\$ 0$ SIMPLE WITM: THE PATM P.C.E FOTOSYSTEM METMOO.	eveloper Liquid concenterte							
i) Mate mastar pentem of P.C. 8 layout on close drating him	FOTOstrippar Concentrate							
il) Tate foto sensicsed board (pre-coeted or mote your awn using FOTOsprayl Place	FOTOspray highe senastive lacquer in serosol lorm maugh to cover 1 to $1 / 2$ sa metres							
master panem upon bosm Eupose to UW or devioght	Poyporooviens Oishes for etchmits and developers							
w) Phact exposed boserd imb	roveerd col copper fibreglass Pre-sensstised boid							
v) Wash								
vil) Eteh	sided Sined							
vi) Remo								
per								
You now have your pertect P.C.B. resty for use. Your mester pattom may be usad again and again for rounm $\times 114 m($ Enn $\times 4 / 3 n$.) $200 \mathrm{~mm}+728 \mathrm{~m}$ t $\sin \times \mathrm{x}$ in L . \qquad E1. ${ }^{2}$								
1 mm SS	1 mm DS	1.6 mm SS	1 mmm OS	4mm	24 mmos			
			1					
			5					
$305 \mathrm{~mm} \times 305 \mathrm{~mm}(12 \mathrm{in} \times 12 \mathrm{~m})$	Qn		$2{ }^{2}$	[4.27				
POST \& PACKING Plose add 20 D per order. Plus vat. at 15% to total Prompt despatch assured UV Boxme. fubes and P.CB. associated products evainabie - ask for delals								
PATM ELECTRONIC SERVICES 300 Alum nock hoad, Birminghe								

FIVE OCTAVE ORGAN KEYBOARDS

These keyboards have 61 ivory coloured plastic tapered front keys, covering five octaves from C to C . Plastic contact actuators are fitted beneath the keys, and the keyboard is mounted on a light steel frame.

Price $£ 32$ each, including postage within the UK
12' 50 WATT LOUDSPEAKERS
These chassis loudspeakers are of 8 ohms impedance by McKenzie, and are offered at $\mathbf{£ 2 3}$ each, including postage within the UK

PORTATIVE INSTRUMENTS 23 BLENHEIM ROAD
 ST ALBANS
 HERTS AL1 4NS

Special Notice

THAT VERITABLE FOUNDATION stona of the electronlcs world, Modmags Lid (ie, usi) - is Modmags Lid no longerl As of this very instant we are . . . (wait for itl).
Argus Specialist Publications Ltd. Yes, we know it's a bit of a mouthful but please label any communication with our new name from now on. The company address remains as it was.

Two-way Wrist Radio By 2000

A TWO-WAY wrist radio will become a reality by the year 2000 as a result of communication satellite developments, according to the Lockheed Missile \& Space Company.

Lockhead engineers ape building a 180 ft mock-up of an antenna to be placed in orbit by the Space Shuttle and unfurled in space like an umbrelia. It would be a very sensitive receiver of low power transmissions from earth which would be re-broadcast at high levels.

So, a low power two-way radio perhaps worn on the wrist and using a simple antenna, could transmit voices using the satellite

Diana's Replacement Coil

CRESTWAY ELECTRONICS LTD contacted us recently to tell us about a ready-built coil head which the company produces and thinks may be of interest to builders of the HE 'Diana' Meta Detector. The coil head is of vacuum formed plastic and is foam-filiad to produce a strong yet light body. It directly replaces the original home-made coil head, we are told.

Readers can obtain thelr coil head for £9.85. This price includes VAT and p\&p. Crestway Electronics Ltd, Woodhill Lane, Shamlay Green, Guildford, Sur rey (tel 0483893236 .)

Circuit Board Tool Set

THIS SET OF tools can come in handy if you build up circuit boards in the course of your hobby, for the set provides you with: a stainiess steel brush for removing resin and oxidisation from boards: a fork for forming component leads and wire-wrapping: a knife for general cutting jobs; a hook for removing components

In Car Entertainment?

ONE OF THE fastest growing markets in electronics over the last couple of years has been that of in-car entertainment. Power boosters and graphic equalisers seem to become more powerful and more abundant daily, and they all seem to be of foreign origin.
after desoldering; a reamer for eniarging small holes in a board; and a scraper for cleaning componeat leads.

Each of the three tools is double-ended and insulated, and measures 180 mm , weighing 10 gms . The set is supplied in a plastic waliet and costs $£ 3.74$ including VAT and p\&p, from Teleprofuction Tools Lid, Stiron Hoese, Electric Avenue, Westcliff on Sea, Essex (tel 0702 352719).

SEMICONDUCTOR DATA EOOK

$$
5-17
$$

Semiconductor Data Book

A NEW EDITION (the 11 th) of Semiconductor Data Book (formerly known as Radio Valve and Semiconductor C'ata) has been published by Newnes Technical Books.

Within the book's peges you can find detailed information on over 10000 transistors, FETs, UJTs, diodes, etc, including device outlines and pinouts.

At £5.50, the book represents a worthwhile investment to the electrorics enthusiast, whether amateur or professional. Newnes Technical 8ooks, 8orough Green, Sevenoaks, Kent (tel 0732 884567).
response of 35 Hz to 17 kHz . A bar graph LED display is provided on each channel and the graphic equaliser has seven frequency controls.

The booster/equaliser measures 166 mm by 54 mm by 148 mm and will retail at $£ 135.00$. We hope to rediew a sample in a future supplement of Gadgets, Games \& Kits. Circolec, 1 Franciscan Road, Tooting, London SW17 8EA (tel 01767 1233).

New Cat From BI-PAK

BI-PAK Semiconductors' new catalogue landed in our pigeonhole recently and a very impressive publication it appeared, too. It's full of semiconductors, hardware, cases, iest gear. books, etc, all to do with electronics.

You can obtain your own copy of the catalogue for $£ 1.00$ including 25p for p\&p from BI-PAK Semiconductors, The Maltings, 63a High Street, Ware, Herts (tel 09203442).

Breadboard '81

8ELIEVE IT OR not, we have received a press release from ourselves, Modmags - sorry, delete that - Argus Specialist Publications Ltd, informing us when our company's electronics exhibltion. Breadboard ' 81 , is to be held. (The world, or rather Modmags - sorry. I'll probably get the sack for this - ASP Ltd works in mysterious ways.)

Breadboard will be open for flue days at the Royal Horticultural Society's New Hall. Greycoat Street. Westminster, London SW1:
Wednesday
11 th November, 10am-6pm

Thursday

12 th November, $10 \mathrm{am}-8 \mathrm{pm}$ Friday

13th November, 10am-6pm Saturday

14 th November. 10am-6pm Sunday

15th November, 10am-4pm
Cost of entry will be $£ 2.00$ for adults and $£ 1.00$ for children under 15 years of age and OAPs, although reduced rate advance tickets are also available - see page 45.
\qquad

Wire Shaper/ Cutting Tool

IF YOU'VE EVER put together a fairly complex printed circuit board (PC8), you'll know how tedious a job fitting the components can be - pick up pliers, bend leads, put down pliers, pick up side cutters, cut leads.

Eraser International's Hand Component Lead Cutter Model TP-3 lets you bend and cut leads in a single action. Although it looks awkward and cumbersome, it in fact comes to hand
easily and operation is simple insert the lead in the tool notch and squeeze the handes together. The lead is bent and cut in one.

The stroke of the movable blade can be lengthened to increase its cutting and bending force. When the fixed and moving blades become worn, they can be renewed.

The Model TP-3 Hand Component Lead Cutter is available from Eraser International Lid, Unit M, Portway Industrial Estate. Andover. Hants SP10 3LU (tel 0264 513547/8)
 characters to a line, 9 lines to an

ZX Printer

SINCLAIR RESEARCH HAS introduced a printer designed to complement the existing range of ZX personal computers. Owners of the company's 2×81 and the 2X80 (with replacement 8K ROM) will now be able to obtain permanent copies of listings and computations.

Errata

WE HEARD FROM a rellable source that a few gremlins got into the HE Ultrasound Alarm of the July ' 81 issue.

Firstly, with the component values shown, the transmitting oscillator runs at 400 kHz - not as specified (ie, 40 kHz). Increasing the value of C8 tenfold decreases the frequency by the same amount, thus C8 should be 10 n . It was (naturally) a typing orror!

The second problem is a bit more serious - it appears that some 4093 gates don't trigger in the IC3c position. If your project
inch, and printing speed is 50 characters per second. A 65 foot roll of aluminised paper lenough to print over 250 full screens of text) is supplied with the printer and additional rolls cost £11.95 per pack of 5

The $2 \times$ Printer is available for $\mathbf{£ 4 9 . 9 5}$ including VAT from: Sinclair Research Ltd, 6 King's Parade, Cambridge (tel 0223 312919)
suffers because of this you can counteract it by: connecting a potential divider of two resistors from $+9 \vee$ to $0 V$ (with a $4 k 7$ resistor in the upper arm and a $22 k$ in the lower arml; next disconnect the cathode of D3 (the side which originally connects to +9 V) and fasten it to the centre point of the above potential divider.

Lastly, R17 should be reduced in value to $22 k$ to give a bit more drive to the output transistors.

In the HE 'Diana' Metal Detector of the September ' 81 issue. R11 was specified as 2M2; it should be $2 k 2$ lthat darned typist! .

Panasonic Speaks for Itself

PANASONIC 8USINESS SYSTEMS has introduced a talkIng calculator capable of storing and reviewing entries totalling up to 255 steps.

The JE-1650U offers all the usual features of a conventional

10 -digit calculator with the advantage of audible confirmation of each number, function and result as it appears on the display.

With mains adaptor, it should appear in your high street for around $£ 85$ plus VAT.

NEXT MONTH IN HE - NEXT MONTH IN HE - NEXT MONTH IN HE

Don't miss the December issue - out November 13th

We've got lots of projects to interest musicians next month:

Drum Synthesiser

Yes, you know the noise - a sort of cross between a bomb hurting down, and a seagull. Well, this machine can make these and many more sounds to help you keep your rhythm. This one's a super project; easy-to-build, easier to use and what's more, we reckon it won't cost you any more than about $£ 30$ - that's about a fifth the price of commercial counterparts.

Organ Pedalboard

This project was designed to match the HE Electronic Organ (see HE May to August 1981). It's a 13 -note, free-standing, foot-operated pedalboard (phew - what a mouthful), which can be plugged into the same amplifier as your organ, or it can be used with its own internal amplifier.

Now, although it's primarily intended to complement our organ, you can, of course, use it to accompany yourself while you play any other instrument. Thus you can have bass accompaniment to say, a guitar, flute, piano, or even the HE Drum Synthesiser.

Guitar Graphic Equaliser

For those electric guitarists who enjoy building their own effects boxes, this project's a must! How do you fancy a 6 -channel graphic equaliser to control the tone of your electric guitar? All in a small foot pedal!

It's battery operated, easy-to-build and sounds great.

Car Electronics

There's no doubt that, although car manufacturers, overall, tend to be slow to change their ideas about the equipment that goes into their cars, they are at last waking up to the fact that electronics has a large part to play.

Guest writer Bill Mitchell tells you about the possibilities and probabilities of in-car electronics.

Plus

News and information, circuits, regular features, your own views - all about the electronics world.

WATFORD ELECTRONICS
 35 CARDIFF ROAD，WATFORD，HERTS．，ENGLAND

POLYESTEA CAPACTTOAS：Axial Land TYPA

 7400
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7416
7417
7420 にのスの
 ，

Trade Mark Acknowledgement October Project: ENTRYPHONE

Kingdom of the Entryphone Company Limited. In the October issue of this magazine, we featured prominently a project for the assembly of a telephone door security device. This project and the design had no connection with and was not authorised by the Entryphone Company Limited. We are now aware and accept that the use by the magazine in this project of the word 'ENTRYPHONE' was an infringement of the registered trade mark 'ENTRYPHONE' and we apologise unreservedly for this innocent oversight. We also accept unreservedly that the word 'ENTRYPHONE' should only be used for telephone door security systems originating from the Entryphone Company Limited.

'ENTRYPHONE' is a registered trade mark in the United

Sound Torch-

\author{
HE SOUNG TORCH

- RECEIVER
}
\square

- Project

WITH THIS PROJECT you can talik at the speed of light indoors or out, night or day. You can even use a mirror and talk round corners. The transmitter consists of an Ever Ready torch modified to produce pulse width amplitude modulated signals. The use of pulse width modulation means savings in battery power and a high efficiency cool-running output stage. If the technical details don't interest you just put the circuits together and talk. There are no adjustments to make in use and the units need no setting up provided you can point straight, that is!

The receiver uses an active load for the input phototransistor to compensate for a wide range of ambient light levels, and the filters remove high frequency hiss and cut down the interference from mains lighting.

Construction

Start construction with the receiver board first. Figure 1 shows the circuit diagram of the receiver; its overlay is shown in Fig. 2. Insert the wire links, followed by all the resistors, IC sockets and finally the taller components like capacitors, etc.
Insert the semiconductors into the printed circuit board (PCB) last of all, making sure you have them the right way round. When in doubt, check the pin-out against our drawings or manufacturer's data and cross-check
with the circuit diagram. (Does the emitter really go there? etc).
Connections to the receiver board are straightforward; power supply, loudspeaker and phototransistor. If all is well you should hear a hiss as you apply power. Rotate the volume control - okay? Now point the phototransistor at a mains powered light; you should hear a hum which becomes a raucous squawk as you approach the light. If it all works, switch off and grin.

Mark and drill the case for the receiver to fit the on/off switch and the hole, to allow light through for the phototransistor. Now fit all parts inside the case.

The transmitter board is equally simple to assemble and the overlay is shown in Fig. 4 along with connection details. However, if you plan to use the same torch model that we did then solder IC3 directly to the PCB. Use of a socket in this position makes it impossible to fit the board into the case.

Use shielded cable for the microphone lead. We used a jack socket on the torch case and capacitor C4 must be soldered into place where the microphone lead comects so that one end of C4 goes to the jack socket top connection and the other end goes to the inner conductor of the shielded cable.

Similarly, mount C1 off the board with its negative lead connected with the wire from the PCB to the wire from
the torch switch (O V) and its positive end connected to the positive conductor track on the PCB. The easiest way to do this is to solder it to the top end of R1. It may sound a little complicated but it's really quite easy, just follow Fig. 4.

We used the microphone from an old cassette recorder. The earpiece insert from a ' surplus' telephone also works: you can even try using a loudspeaker. The gain of the audio amplifier is fixed at about 450 by the ratio of resistors

Internal vlow of the Sound Torch Receiver

R7 and R8. To reduce the gain, increase the value of R8. You'll know you're overmodulating if you see the lamp flickering when you speak and you will hear the speech output from the receiver breaking up.

Don't expect hi-fi quality from the project - you won't get it, and alignment becomes critical as the distance is increased. Nevertheless you can have a lot of fun - just switch on and talk. By the way, a useful trick to get increased range is to use a lower voltage torch bulb. Because the average power input is reduced they don't burn out - we used a 3.6 V bulb without mishap.

Figure 2. Overlay of the receiver PCB

How It Works

Sound Torch - Receiver

Changes in the light falling on the phototransistor result in corresponding changes in voltage. These are fed to a filter which removes high frequency hiss; the remnants of the ultrasonic oscillator signal; cuts down 100 Hz hum from mains powered lighting. The resultant audio signal is -amplilfied and used to drive a loudspeaker or headphones.

An active load based on IC1a,b and 02 is used to compensate for the wide range of standing currents caused by changes in the ambient light level. This system will control the bias of O 2 in such a way as to try to keep its collector potential at 4 V with reference to ground. Capacitor C2 reduces the response of the circuit so that audio frequency signals are not suppressed. The audio frequency components are amplified and filtered to remove noise and hum by fitters built around IC1 1 and d, Cut-off frequencies of about 300 Hz and 3 kHz were chosen which
gives good results for speech. To increase the passband to $6 \mathbf{k H z}$ just halve the value of C3, C4 to the nearest preferred value, 2 n 2 , and keep all the remaining components unchanged. Audio signals may be taken directly from the output of IC1a. Resistors R10 and RV1 provide blas current for the amplifier outputs. Without them crossover distortion would occur causing very bad results.
The audio signals from IC1d are amplified by IC2 which drives a loudspeaker. Much of the circuitry needs a mid-rail bias and this is provided by R1, R2, C1.

Flgure 3. Circult of the HE Sound Torch Transmitter

Parts List

Sound Torch - Transmitter
RESISTORS (ALL 1/4W, 5\%)
R1.2 56k
R3 18k
R4 470k
R5,6 100k
R7 1 MO
R8 2k2
R9 22R
R10 390R
SEMICONDUCTORS
IC2 741 operational amplifier
IC3 3140 operational amplifier
ZTX650 NPN transistor
CAPACITORS
1000u, 16 V electrolytic
C2 $47 \mathrm{u}, 16 \mathrm{~V}$ tantalum
C3 $4 n 7$ ceramic
C4 100 n ceramic
C5 10 n ceramic
MISCELLANEOUS
Microphone
Jack plug and socket
Torch

Parts List

Sound Torch - Receiver

RESISTORS (All $1 / 4 W, 5 \%$	
R1,2,10	4k7
R3,5	5k6
R4	33k
R6,7,11.12	10k
R8,13	$39 k$
R9,14	$22 k$
R15	10R

POTENTIOMETER	
RV1	4k7 miniature horizontal preset
CAPACITORS	
C1	22u, 16 V tantalum
C2,8	47u, 16 V tantalum
C3,4	4 n 7 polyester
C5,6	47 n polyester
C7	$4 n 7$ ceramic
C9	100n ceramic
C10	$220 \mathrm{u}, 16 \mathrm{~V}$ electrolytic
SEMICONDUCTORS	
IC1	LM324 quad operational amplifier
IC2	LM386N power amplifier
01	TIL78 phototransistor
02	BC 1848 NPN transistor
MISCELLANEOUS	
LS 1	8RO miniature
Case to sult	loudspeaker

Buylines

All parts for this project should be readily obtainable from any of the mail order companies who advertise in HE. Approximate price of components will be £ 12 (excluding PCB s, case and torch).

No. it's not Jaws - just the HE Sound Torch Transmitter

> Digital electronic displays are winking at you wherever you go these days - petrol pumps, weighing machines, calculators and watches are just a few examples of where you'll find them. Guest writer John Gilliam describes the construction and operation of some of the main types of digital displays in use today

SLOWLY AT FIRST, then in leaps and bounds in recent years, electronics has become a readily accepted part of our lives. The main contributor to the recent acceleration has been the integrated circuit - the IC. Through its increasing complexity and miniaturisation it has enabled electronic equipment to become progressively more complex yet at the same time widely available. The electronic calculator and digital watch, despite being outstanding examples of advances in electronic microtechnology, are to many of us commonplace items.

A vital part of the process of our acceptance of electronics has been the way electronic circuits communicate with us. In this article we will look at some of the electronic devices that provide visual communication. Generically these devices are know as electronic numeric displays, and they can be divided into five main groups:

- light emitting diodes (LEDs)
- liquid crystal displays (LCDs)
- gas discharge displays (GDDs)
- vacuum fluorescent displays
- filamentary displays

Before dealing with each type we should first become acquainted with three terms used frequently when talking about electronic displays, namely:

- optical
- interface
- multiplexing.

Optical

From an optical point of view displays may first be divided into two types: active and passive. Most displays are of the active type which generate light, like the light emitting diode (LED). The passive types on the other hand only change the reflected light in the same way as print does when layed down on paper. An example of the passive type is the liquid crystal display (LCD).

The light generating types can be easily seen if the ambient (surrounding) lighting level is not too high and at night time they appear very bright. But as the sunlight becomes strong they suffer from 'washout' which can only be overcome by putting more power into the devices to make them brighter.

Passive types of display behave in the opposite way. They cannot be seen without a certain amount of ambient lighting and are most easily seen in bright sunlight.

Other optical characteristics that should be considered before croosing a display for a specific application are size, colour and format.

The size of the numeric displays discussed here ranges from character lights of $2-3 \mathrm{~mm}$ up to 9.5 mm . The smaller sizes are suizable for reading as far away as you would comfortably hold a book and are those used in watches and.personal calculators. Most scientific instruments for use in a laboratory use displays with characters around 15 mm high. Applications for the larger types (say, 25 mm in height) are in such things as petrol pumps and weighing machines in shops.

As far as colour is concerned, displays with colours near the middle of the response of the eye are the best choice. Green and yellow displays are accepted as being 'easy on the eye' and therefore are most suited for sustained viewing in comfort. Any
display which is not monochromatic (having more than one colour) - notably neon gas discharge displays - may be used with a coloured filter in front so that only that colour can be seen.

Three different types of format: formed character; 7-segment; and dot matrix, are shown in Fig. 1. By far the most commonly used today is the 7 -segment type because of its ease of construction.

FORMAT

SINGLE CHARACTER DISPLAYED

(a)

(c)

Figure 1. Examples of how charecters are presented on electronic digital displays: (a) formed, (b) segmented, and (c) dot matrix

Interface

With regard to active and passive types of display it is not surprising to learn that passive displays require very little electrical power to drive them, which makes them suitable for portable equipment. Active displays require relatively high power - especially if they are to be seen in conditions of high ambient light.

In addition to the amount of power required when selecting a particular type of display you must be conscious of what a device requires in terms of voltage and current. Almost invariably the signal which turns the display on and off originates from an integrated circuit (IC) using TTL (transistor transistor logic) or MOS (metal oxide semiconductor) technology. The 'driving' capability of TTL is nominally 5 V and a few tens of milliamps. With MOS technology, this capability is $5-15 \mathrm{~V}$ and only microamps of current. Often an IC is found to be incompatible in voltage or current (or both) to drive a display directly, and for this reason special interface drive stages are used to link the display to the IC (see Fig. 2). The interface takes the form of a special IC or a discrete transistor circuit.

The driver stage itself performs a useful 'logical' interface. Display circuits usually work in pure binary or binary coded decimal. In simple terms, the code (known in digital language as the 'word') associated with each digit of the display comprises four parts or 'bits'. Its proper title is a four-bit word. The display, on the other hand, will require some combination of a seven-bit word. This logical transformation is performed by a driver called a decoder. Figure 2 shows a schematic of this circuit - which interfaces both electrical and logical incompatibilities between the drive circuit and the display. Not surprisingly it is called a driver/decoder stage.

Multiplexing

Usually numeric displays are used in rows or registers of up to 10 digits, 4 and 8 being the most popular lengths. Indeed, many types of display are made with the required number of digits in a single envelope as well as individual digit versions.

In a register of more than two or three digits it is not economic to provide each segment of each digit with a separate correction and its own driver stage. By using a multiplexing technique fewer connections and fewer drivers are used as would otherwise be necessary. The multiplexing system shown in Fig. 3 makes a common connection between all of the same segments in the register. Each digit connection is still brought out individually. The number of drivers and connections to an 8-digit register is now only 15 instead of 64. The penalty for this saving in hardware is a complication in timing and drive power. Each digit has to be addressed (supplied power for a brief period) in turn and can only be addressed for an eighth of the time it takes to address the whole register. Thus each segment has its address period or time slot. During each time slot the particular pattern of segments to display the required digit is situated in the decoder. Since only one digit is turned on at any one interval how is it that the whole of the register appears to be activated at the same time? It is because the total time taken to address all of the digits in the register, called the field time or refresh time, has to be shorter than the persistence of vision on the retina of the eye if a flicker-free image is to be seen.

Finally if the image is to appear as bright as a statically addressed register then each digit must be made to pass eight times as much current (brightness is directly proportional to current) during its time slot. This requirement necessitates higher current ratings from the selection switches than if multiplexing were not used.

By now, you must be baffled by the technicalities of optical, interface and multiplexing! Things should become a little clearer as we look at the individual types of display, at their construction, materials used and their electrical requirements.

Light Emitting Diodes

The light emitting diode (LED) is a semiconductor junction diode

Figure 2. Position of decoder/driver interface stage between TTL or MOS logic and digital display

Figure 3. How the segments of a four-dight display are multiplexed. In practice all the switches are electronic end are contained within a single integrated circult (multiplexing IC)

similar in many ways to the germanium and silicon diodes now commonplace in solid-state electronic circuits. LEDs were originally made in one of two ways. The first was by forming a PN junction from gallium phosphide (GaP). The disadvantage of this method was that it readily saturated and was not very suited to multiplexed operations in which high currents were required. On the other hand, it was a low resistance material. The second was by forming the junction from gallium arsenide phosphide (GaAsP). This has a super-linear characteristic of light output against current but also has a high resistance. An improved LED was made by forming a PN junction in an epitaxial layer of GaAsP on a GaA (gallium arsenide) substrate. The disadvantage of this type of LED structure, however, was that the GaA substrate was opaque to the light generated at the PN junction. Therefore only light emitted in a forward direction was useful. Nowadays the super red lamp (Fig. 4) uses GaP for its substrate which is translucent to the emission from the epitaxial layer above.

Figure 4. Section through high efficiency gallium arsenide phosphide (GaAsP) or gellium phosphide (GaP) LED

The high light output provided by this structure is optimised first by its mounting technique. The contact onto which the crystal is mounted is mirror polished, thus returning most of the incident light. Second, the display is made by using small dies (individual semiconductor chips) for each of the segments as opposed to the earlier monolithic (all-in-one) structure. This is not only an economical use of expensive material but allows light to emerge from the sides which in turn can be collected by a shaped light pipe and turned into useful emission (see Fig.5). Such a structure results in a LED which is a great improvement on its predecessors. Orange, yellow and green LEDs are made employing similar techniques.

LEDs have typical semiconductor diode characteristics with a knee voltage of about 1.5 V and an average current of about $20 \mathrm{~mA} /$ segment for a digit 20 mm high.

Figure 5. Section through a 7-segment LED display where light is transmitted to the segment feces by means of 'light pipes'

Liquid Crystal Displays

Liquid crystal displays (LCDs) are the most recent display technology to become established in high volume production. They are the only type of display to be discussed here which fall in-
to the passive or non-light-generating type. They therefore have limited application to multiplexing although it should be said that the latest LCD materials give good results when multiplexed in short register lengths.

A simple cell showing the principle of the LCD is shown in Fig.6. The liquid, in a completely relaxed state, takes up an orderly organisation in which the molecules, which may be regarded as rod-shaped, all point in the same direction. If now a thin layer (say, 10 um thick) is trapped between glass plates, the inside surfaces of which have been specially treated, then the layers naturally take up the twist shown in Fig.6. The 'treatment' accomplishes two jobs. First, tin or indium is evaporated onto the glass to give the shape of the electrode structure required, typically a 7 -segment display. Second, by a technique of rubbing or evaporating at a low angle, the surfaces of these electrodes exhibit a property by which the liquid crystal in immediate contact with the surface takes up the alignment laid down in the surface. Because the surface alignment of the top and bottom plate takes place at right angles, the molecules of the liquid take up the twist shown.

Figure 6. Operation of Mquid crystal cell. Molecules of the liquid twist as shown when an electric field is set up across the cell. Under these conditions the passage of incident light becomes blocked

Now if light entering the cell is first passed through a plane polariser, then the plane of polarisation is twisted by 90° while passing through the liquid. If, as the light leaves the cell, it is passed through a second polariser placed at 90° to the first, then the cell will appear transparent. If now an electric field is set up across the cell, the molecule arrangement of the liquid is destroyed and light is blocked, giving an opaque deep blue or black colour.

The electrical characteristics of LCDs are ideal for interfacing to MOS integrated circuits; ie, they have negligible power consumption and require driver voltages anywhere between 2 and 20 V . These features make this technology well suited to batteryoperated applications (ie, watches, calculators and portable instruments).

Gas Discharge Displays

A gas discharge display (GDD) generates light from the invisible plasma formed around a cathode electrode. The plasma is produced when a discharge path is established between the cathode and an anode, with both electrodes mounted in an atmosphere consisting mainly of neon at low pressure. The plasma is seen as a bright orange-coloured glow which entirely encloses the surfaces of the cathode electrode.

A typical GDD display is shown in Fig.7. Each digit consists of an anode electrode and seven cathode electrodes in the shape of seven segments. This structure is enclosed in a low-pressure neon atmosphere. A plasma discharge is set up between the anode and the selected cathode segments. The glow has a broad spectrum and several colours can be produced by filtering.

Figure 7. Example of typical gas discharge display (Mullard ZM1550)

Typically about 170 V is required to ignite the display (see Fig. 8), and once ignited it requires a maintaining voltage of 130 to 150 V depending on the current. Below about 125 V the plasma is extinguished.

The device is not self-limiting in the amount of current it draws and therefore the drive circuit must have a defined current.

The presence of some argon in the neon helps to reduce the striking voltage, and the inclusion of a small amount of mercury vapour prevents sputtered material from fogging the viewing window or contaminating unselected cathode electrodes.

Figure 8. Typical electrical characteristic of a gas discharge display
Although GDDs require a high-voltage supply to strike them, the voltage required to select or extinguish individual segments is, for the device shown in Fig. 7, only 30 V . Because the current consumption of each segment is only about 200 uA for a character 15 mm high, GDDs can be driven by MOS decoder circuits.

Vacuum Fluorescent Displays

The principle of operation of the vacuum fluorescent display is the same as the magic-eye indicator used in domestic radio receivers and tape recorders using thermionic valves (remember valves?). It incorporates many of the techniques used in the thermionic triode valve.

In its modern form of construction the vacuum fluorescent display is housed in a flat pack glass envelope, a section of which is
shown in Fig.9. An electron stream is given off from a very fine oxide-coated filament placed just under the viewing window. The heater would not be noticed by the observer because of its fine construction and because it is only heated to a dull red.

A fine grid in front of each 7 -segment array of anode elements controls the electron flow to the anode. The arrays of anode elements are coated with a special low-energy phosphor which glows with a pleasing blue/green light when it is bombarded with the electron stream. The stream itself is collected by the metal anode elements underneath. An individual character is lit by applying about 30 V to the required configuration of anode electrodes.

Throughout the register within the envelope all similar anode segments are connected to a common bus. At any time only one grid electrode is made positive, and this facilitates multiplexed operation of the device.

In addition to the flat pack construction, recent developments have been the introduction of multi-coloured displays by filtering from the relatively broad spectrum blue/green phosphor. Also,

Figure 9. Typical construction of a vacuum fluorescent display (Futuba FDP)

screen printing techniques now used have helped to keep this type of device economical and more able to easily facilitate customised formats.

Filamentary Displays

Filamentary (incandecent) displays, perhaps the first 7 -segment display technology, still account for a sizeable share of the market. The staying power of these displays comes from their unrivalled brightness (up to 10,000 lux) which allows them to be seen in the brightest ambients. Hence their durability in aero and marine applications, and also in petrol pumps.

In spite of their spindly appearance (see Fig. 10), the filaments are made from a coiled length of tungsten wire. Unlike the domestic lamp the filament is run at a low temperature (typically $1500^{\circ} \mathrm{C}$), and this gives it its long life - up to 100,000 hours. When filamentary displays are designed to emit white light, filters can be used to produce any colour. Each segment requires typically 15 mA at 5 V for a character height of 11 mm .

HE

ZTHiNTL
 - Positive and negative voltages with an FSD

 of 999 mV which is easily extended. Of 999 mV which is easily extended.

- Requires only single supply 7.12 V . - High overall accuracy $\pm 0.1 \%+1 \mathrm{digit}$. \begin{tabular}{l}
- High overall accuracy $\pm 0.1 \%+1 \mathrm{dag}$.

- Large bright $0.43^{* *} ~$

\hline 11 mm$)$ LED displays.
\end{tabular} - Large benght $0.43^{\circ} 11 \mathrm{~mm}$) LED displavs information. Using this fully buitt and calibrated mouule as a bass now means that you can easily buikd a wide range of accurate equipment such as multimeters, thermometers. battery ind icators, etc etc. at a traction of the cost of ready made equipment. Full detais are supplied with each module showing how to easily extend the voltage range and measure current, resistance and tempetature. Fully guaranteed, the unit has been and many companies

Temperature Measurement

$£ 2.15$ vat
An easily constructed kit using an I.C. probe providing a linear outpus of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ over the temperature range from $-10^{\circ} \mathrm{C}$ io $+100^{\circ} \mathrm{C}$. The unit is wieal for use in conjunction with the above DVM module providing an accurate digital ther mometer suitable for a wide range of applications

Power Supply

£4.95 *vat
This fuliy buite mains power supply provides two stabilised isolated outputs of 9 V providing current levels of up to 250 mA each. The unit is ideally suited for power ing the DVM and the Temperature Measurement module constructing the smallest of units

Hardware Kit £3.95*vat
A suitable ready drilled case together with the various mounting pillars, nuts and bolts. and including mains switch and 2 mm sockets designed to house the ultrasonic alarm module. rogether with its associated power supply. This hardware kit provides an ideal solution for assembling the economical slarm system. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items. ©Shop hours 9-5.30 (Weds. 9.1)
- ex-stock delivery on all items. -Units on demonstration, callers welcome. \bullet Post and packing charge 50p per order. © S.A.E. with all enquiries please.

RISCOMP LIMITED

Dept. HE. 11.81
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough (084 44) 6326

Scratch Filter

- --------! That's what happens if you build this simple scratch filter and use it when you listen to noisy records. It can help to reduce surface noise picked up by record playing equipment

IF YOU HAVE a record collection, then you almost certainly have at least a few records that would benefit from the use of our scratch filter. The problem with disc recordings is that even if they are well cared for they inevitably show signs of wear in the quality of reproduction obtained. This loss of quality appears as a loss of treble response and a background of almost constant clicking and popping sounds. As these sounds consist largely of high frequency components it is possible to reduce them substantially using a filter having a response that attenuates high frequencies, but does not significantly affect lower frequencies. The price that has to be payed for the reduced noise is the slight loss of wanted treble signals as well. However, it is probably true to say that most people prefer noise-free reproduction even if there is a loss of treble output.

Construction

Following Fig. 2, make up the Veroboard. Start by breaking the tracks of the board at the shown positions. You can do this with a Veroboard cutting tool, alternatively a $1 / \mathbf{m}^{\prime \prime}$ hand-held drill bit can be used for the job.

Next insert and solder the components one at a time, starting with resistors followed by capacitors and then semiconductors.

Mark and drill your chosen case, to fit the input and output sockets and the on/off switch. Two boards and two sets of input and output sockets are required for a stereo scratch filter, but the battery

and on/off switches are common to both channels in this event.

Finally, wire up your project as shown in Fig. 2.

Using The Filter

Ideally the scratch filter should be connected between the preamplifier and power amplifier stages of the hi-fi amplifier or receiver, and in many cases this will be possible using the 'tape monitor facility. However, as the circuit has a high input impedance it is possible to connect it between a crystal or ceramic pick-up and the input of the amplifier, and this method should also give good results.

Figure 1. Circuit of HE Scratch Filter

It is also possible to use the filter between a magnetic cartridge and the input of the amplifier, if you put a 100 k resistor across the input of the filter, to give a suitable input impedance to match the cartridge. However, this method is not recommended since it will give a significant reduction in the signal to noise ratio of the system, and it is quite likely that stray pick-up of mains hum and other interference will be a problem.

Parts List

RESISTORS (All $1 / 4 . W, 5 \%$)	
	1 MO
R2	2M2
R3,4,5	4k7
CAPACITORS	
	100n polyester
C2	$1 \mathrm{u}, 25 \mathrm{~V}$ electrolytic
C3	22 n polyester
C4	3 n 3 polystyrene
C5	10u, 25 V electrolytic
SEMICONDUCTORS	
$\text { IC } 1$	TLO71CP low noise operational amplifier
01	BC109C NPN transistor
MISCELLANEOUS	
SW1	single-pole, single-throw
Case to sult	
Veroboard, 24 hole x 10 strip	
Input and output sockets (SK1 and SK2)	
PP3-size	battery + connector

Figure 2. Veroboard layout, and underside view showing component locations and track breaks

Buylines

The TL071CP can be obtained from most of the mail-order companies which edvertise in HE. All other parts are eesily available.

Approximate price for components in this project (excluding cese) will be $£ 4$.

How It Works

A sound signal, obtained from the cartridge of a record player, might have a 'flat' frequency response - so named because the output volume is level over a large part of the frequency spectrum. This output signal may contain surface noise from a worn record.

But noise (ie, surface noise) consists of high frequency components.

Passing the signal through a scratch filter gives an output signal amplitude which, above a corner frequency, decreases with increasing frequency. Thus unwanted surface noise is reduced in volume compared to the majority of the sound signal.
back from its output (pin 6) to its inverting input (pin 2) so that it acts as a unity voltage gain buffer stage, and prevents loading on the output from affecting the response of the filter.

A simple RC filter provides a roll-off rate of only about 6 dB per octave, and tends to give only a very gradual initial roll-off, with the ultimate 6 dB per octave rolloff only being reached well above the point where the response starts to fall away significantly. This gives rather poor performance in practice with only limited noise reduction and a small but significant loss of signals at middle audio frequencies.

This problem is overcome by the inclusion of capacitor C3, which has no significant effect on the circuit at low frequencies.

The situation is very different at higher frequencies where C4 produces significant losses through R4 and R5, resulting in the output voltage change being less than that at the junction of R4, R5, and C3. Although C3 is always less than 100% effective, it does now have some effect on the circuit, producing additional losses through R4 at high frequencies.

The Editor replies to a selection of your letters

APART FROM enquiries about projects published in HE , we also receive a variety of general technical enquiries unrelated to material published in the magazine.

By coincidence, two enquiries were received in August about hearing aids. The first letter came from H . Chester in Burton-on-Trent, who wanted to know where he could obtain ICs,
microphones and earpieces suitable for building into the moulded cases of hearing aids. He also requested circuit details.

The second letter, from G.W. Tate in Bristol, is printed below.
Dear Sir,
On holiday last year, I met a man who, like myself, wore a behind-the-ear hearing aid. Besides this, he also had a home made, hand-held aid that he used at meetings, concerts etc. He claimed it was much better than the manufactured body-worn aids and only cost a fraction of these. It was of course much larger but as it was used only for special events that would hardly matter.

In your July issue you published an article on aids for the disabled. Deaf people are disabled too, so why not think up a few projects for us? If you really wanted to go to town you could work out an aid that would include a pick up from the loop system. If you think there are hardly enough of us to matter you should go to the audiology department of a hospital and you might be surprised how busy it is. And it isn't only older people who attend: there are children who haven't even started school.
In this instance / have only mentioned deaf aids, but if you went into the matter there is scope for quite a few other projects.
How about giving it a thought.
G. W. Tate

Shirehampton, Bristol
I am aware of how distressing deafness can be and I would not underrate it as a disability. The problem is that each case of deafness must be treated individually - and by a qualified medical specialist. If we published a simple 'HE Deaf-aid' how could it cope with so many degrees of deafness, frequency response impairments and so on? Apart from these practical problems, we would also run into difficulties with the health authorities - after all, none of us are medical specialists. As much as we'd like to help, our hands are tied on this matter.

A letter from South Africa next.
Dear Sir,
I have been reading and collecting your magazine right from the start, and always enjoy reading it.

It was with great interest that in the April 1981 issue you published the first
part of an exciting new stereo system. Everything went perfectly until the June 1981 issue, in which you published the Amplifier Circuit Diagram, along with the PSU Diagram, and a parts list for the PSU Diagram, but no parts list for the Power Amplifier.
l appreciate you can buy a complete kit from Capricorn Electronics for £155, but this proves to be difficult if you are living in South Africa, even provided that exchange control allows for such a transaction to take place.

I awaited the July issue, to see if you had rectified your omission, but only found that the final wiring diagram was published.

I would appreciate it if you would prove the subtitle on your magazine and show a down-to-earth approach to electronics - by publishing the parts list for the Power Amplifier, or by letting me have same per letter. Thomas R. Bradley
Alberton 1450, South Africa
The Power Amplifier project, unlike most of our projects, was based on a pre-assembled module (two are used for stereo operation), as supplied by Capricorn Electronics. Readers who have not perfected their constructional technique might run into serious difficulty building up one of these modules, apart from the setting-up procedure required. We therefore decided to concentrate on the peripheral wiring of the modules to enable readers to obtain hi-fi results with little difficulty. For these reasons we do not intend publishing the usual parts list for this project.

Dear Sir,

Receiving Transmissions from UOSAT (HE Aug 81):

Is it possible to modify the short wave receivers in HE March 1980 and September 1981 to receive the "synthesised voice" telemetry from UOSAT (after its launch of course) on 145.825 MHz (FM)?

If a modification is not possible could you suggest a simple circuit which would receive these transmissions?
G. K. Fletcher

Northampton
Both the receivers that you mention are designed for short-wave operation only: the UOSAT transmissions will be on a very high frequency (VHF) waveband and a receiver specifically intended for VHF operation will be required. Another important requirement of the receiver is that of narrow bandwidth. The HE short-wave receivers operate on the principle of regeneration (see Famous Names in this issue for an explanation of this). Although quite sensitive, regenerative
receivers have a wide bandwidth and might not sort out UOSAT's transmission from other transmissions close by on the waveband. (See also comments on reciever kit in UOSAT Launch Imminent, HE October '81, page 59).

Dear Editor,
Please would you put your next Index to Vol 3 of your great HE mag as a pull out in the centre page and add some DATA and JARGON with it so we can pull it out and put it in the back of the BINDER.
A. Ford

Chesterfield, Derbyshire

PS I look forward to every mag.

We think that your suggestion is an exceilent one. Just give us some time to think up some appropriate 'data' and 'jargon'. (No free BINDERS on this page!)

Dear Sir,
Having just become interested in electronics, buying your magazine I am slightly confused as to the way some components in your projects are described. For example, in the Low Power Pilot Light project in this month's (September) edition the resistor R1 is described as 1M2 and R5 as $1 \mathrm{k8}$, also the capacitor $\mathrm{C1}$ as 1 uO . In the diagram, $R 5$ is shown as 1 k 2 . Please could you explain these. B. Mitcheson

Kettering, Northants

So many abbreviations and symbols are used in electronics that it would only lead to confusion if we defined every one in every project. For some general advice l'd recommend that you refer to Ian Sinclair's Into Electronic Components series (we've reached Part 4 - see page 48).

Dealing specifically with the components that you mention: R1 1 M 2 means 1.2 million ohms resistance ($1,200,000$ ohms), with the M for million taking the place of the decimal point
R5 $1 \mathrm{k8}$ means 1.8 thousand (kilo) ohms (1,800 ohms). For this one the k takes the place of the point. The value of R5 should be 1 k 2 , as shown in the circuit in Fig.2. However, as the value is not critical in this circuit, 1 k 2 or 1 k 8 can be used
C1 1 u0 means 1.0 microfarad or 1 uF (0.000001 farads). The u symbol takes the place of the decimal point.
This practice of using the symbol in place of the decimal point is a practical one: tiny points have a habit of disappearing when printed in components lists and on components.
And we'll end it there for this issue. HE

12PRICE CABLES! Flat P.V.C. covered mains cables - for lighting and power instalations.

SIzE	TYPE	100 Meres	CARRIAG
1.5 mm	Single	£ 3.95	E2.00
1.5 mm	Figt imin	¢ 6.50	¢2.50
1.5 mm	Flat three core \& E	f 9.85	¢3.00
6 mm	Single	E 7.50	12.50
4 mm	Flat iwim	\$11.50	c3.50
6 mm	Flat three core	¢34.50	¢4.50
16 mm	Trin \& E	$\mathbf{6 6 5 * 5 9 . 7 5}$	¢10.00

INSTRUMENT BOX WITH KEY
bortom) This is black grained elfect vinvi covered ver pieane appearance. Internal dimensions $12 \%^{\prime}$ Iong, $4 \%^{\prime \prime}$ wide, $6^{\prime \prime}$ deep.
ateal for carrying youf mult range meter and small tools and for keeping them in a safe olace. £2.30. Post pand it ordered with

COMPUTER KEY SWITCHES (make your own keyboard)

These are for making up on a p.c.b. and consist of a vertical moun passes over it. The magnet is located in the plastic plunger which in turn is
deopressed by a push the plas

lich the legended these are
fired. These are made
un in banks of
6 , price $\mathbf{E z . 3 0}$ per bank of 6
lincluding toos)

OUR CAR STARTER ANO CHARGER KIT has no doubt saved
many motorists from emberrassment in an emergency you can start car off mains or bring your battery up to full charge in a couple of hours. The kit comprises: 250 w mans transformer, iwo 10 amp assemble this in the evening, box if up or leave it on the shelt
garage, Wichever suits vou best. Price $£ 11.50$ - $£ 2.50$ post. GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring
only 5 \%in 3% in x 1/hin is an extremely high gain $(70 \mathrm{~dB})$ solid srate amplifter designed for use as signal tracer on GPO cables. bargain at only $\mathbb{E} 1.85$. Surtable 800 hm earpiece 69 p

MINI MONO AMP

12V FLUORESCENT LIGHTING
For cemping - car repsiring - emergeny lighting
from s 12 v battery you can't bear fluorescent
trom s $12 v$ battery you
lighting. Is will offer plen
distritusuted light and is
economical we
economical. We
offer an inverter
minapure fluores
ent iube. $\mathbf{E 3} .45$.

SONY HI.FI SPEAKER CABINETS
 Tree cul outs for 6%, moofer and
2% tweeter The front is thick 2% tweeter The front is thic
and stuck in atter the speakers and stuck in at ter the speaker
are fitted and the completed Unit is most pleasing Colour teak
Supplied in pars, price $\mathbf{E 6 . 9 0}$ per Supplied in pars, price $\mathbf{6 6 . 9 0}$ per
parr this is probably less than the
 original cost of one car
carriage $£ 350$ the paar

TANGENTIAL BLOW HEATER

thus liazed, 2.5 K

MOTORISED DISCO SWITCH

With 10 amp changeover switches. Multw.
adjustable switches all rated at 10 amps. this would provide a magnificent display
For mains operded 8 swish mol

3 CHANNEL SOUND TO LIGHT KIT

parts for a

sound to ligh
unit controll.
ing over 2000 warts of light
ing. Use this

you wish but
is plenty rugged enough for disco work. The unth is housed in an atractive two-tone meral case and has controls for each channel,
and a master onfoff. The audio inpul and output are by $\% 4^{-1}$ sockets and three panel mounting fuse holders provide thyristor orotection. A tour-pin pluy and socket facilitete ease of connect

THIS MONTH'S SNIP
 COMPUTER PRINTER FOR ONLY $£ 4.95$

Japanese made Epron 310 - has à self statring.
brushless, transistorised d.c. motor to drive the print hammers. print drum - lape forward/reverse and paper

Complete in module form with elecironics including
Printer Synchro Signal Amplifier \& Pronter Reset
Signal Amplifier. Brand new and with
practical datet. $£ 4.95$ post $£ 1.25$.
EXTRACTOR FANS - Mains Voltage
En-compuper, made by Woods of Colche Ex-compuler, made by Woods o Ideal as blower, central heating
systems, fume extraction etc. Easy fixing
through panel, very powertul 2,500 rpm but quiet running. Chorce of 2 sszes,
$5^{\prime \prime}$ (5.50. 6" 66.50 . post f1

bridge rectitiers, start/charge switch and full instructions. You can With a radio it functions very well as a signal tracer. By connecting made. Runs on standard 4 Mv battery and has input, output socket and on-off volume control, mounted flush on the top. Many other uses include general purpose amp, cueing amp, erc. An absoluto
 100uA PANEL METER
Japanese made IShinohara E Japanese made (Shinohara Elpcrical) so
very good quality, these have a full vision front, are approx. $2^{\prime \prime}$ square and come complete with mounting studs and nuts. A
thoroughly reliable instrument usually refthoroughty reliable instrument usually
aited at over EA , offered at a snip price

12v MOTOR BY SMITHS
 EXTRA POWERFUL $12 v$ MOTOR
Made to work battery lawnmower, this probably develops up s
$\% \mathrm{~h} \cdot \mathrm{p}$., so it could be used to power a go-kart or to drive a compressor, esc. esc. $\mathbf{E 6 . 9 0}+\mathrm{E1} .50$ pos:
MINI-MULTI TESTER Delume pocket saze precision mov ing coll instrument, tewelled bearings - 2000 o p.v. mirrored scale $A C$ volts 10, 50, 250, 1000 DC amps $0=100 \mathrm{~mA}$ ntinuity and resistance 0 ranges. Complete with rest prods and struction book showing how to measure capvalue at only $\mathbf{6 6 . 7 5}+50 \mathrm{p}$ post and insurance. C current from 0.10 amps, direcily on the $0-10$ seale. It's free il you purchase quickiv, bur of voul aliead
own a Mini-Tester and would like own Minı-Tester
one, send $£ 2.50$.

TRANSMITTER SURVEILLANCE
Tiny. easily hidden but which will enabie conversation to be picke parts and cricuis C 2.30 . (Nor isenceable an all elec
RADIO MIKE
Ideal for discos and garden partues, allows complete freedom of
movement Play through FM radio or funer amp $\mathbf{E 6 . 9 0}$ comp kit (Not licenceable in the $U K$)
FM RECEIVER
Made up and working, complete with scale arid pointer neects on a speaker. idea
mike $\mathrm{f5} .85$.
CB RADIO
Listen in with our 40 channel monizor Unique design ensures th
you do not miss sender or caller Complete kit with case, speaker

NEW ADDRESS FOR CALLERS:-
2 Bentham Road, Off Elm Grove, Brighton. 2, Bentham Road, Off Elm Grove, Brighton.
Telephone: Brighton 671457 . Please phone before calling for anything special.

VENNER TIME SWITCH. Mains opersted with 20 amp swatch, on
on and one off per 24 his. repeats cailv automatically correcting for the lengthen
ing or shortening day. An expensive time ing or shor tening day. An expensive time
swith but you can have of for only $\mathbf{E 2 . 9 5}$. These are new but wothout case, but we can supply plastic cases thase and cover)
f1.75 or metal case with window $\mathbf{2 . 9 5}$. Also avalable is adapror kir to convert
this into a normal 24 hr . time switch bu this into a normal 24 hr . time switch bu
with the added advantage of up to 120
offs per 24hrs This makes an thal con offs oer 24 hrs . This makes an ideal con
ofler for the immersion heater. Price of STEREO HEADPHONES Japanese matie so very good qualtiv. inating with sisandard
plug. E .99 Post 60 .

SAFE BLOCK
Mains quick connector will save you valuable sume. Fearures includ auick spring connectors, heaw
switch. Complete kit. Ei.95.
6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering 13.5 to 32 mutres. Based on circuit which appeared in a recent issue of Padio Constructor. Complete kit ors, inductors, switches, efc. Nothing else to buy if you have en ors, inductors, switches, etc. Nothing ef high resustance headphones
SHORT WAVE CRYSTAL RAOIO
All the parts to make up the beginner's model. Price $\mathbb{C} 2.30$. Crystal
earprece 65 p . Migh resistance headphones (gives hess resulis) f.3.75. earpiece 65 p . High resistance headphones (gii RAOIO STETHOSCOPE
Easy to faulf find-start at the arial and work towards the speaker

- when signal stops you have found the faulf. Complete kit $£ 4.95$. INTERRUPTEO BEAM This kit enables you to make a switch that will trigger when a
steady beam of infra-red or ordinaiy light is broken. Main comp ents - relay, phor transisfor, resisfors and caps etc. Circuir diagram but no case. Price E2.30
MUGGER OETERRENT
A high-note bleeper, push latching switch, plastic case and battery
connecior. Will scare away any villain mid bring help. f 2.50 com. plete kit.
8 POWERFUL BATTERYMOTORS
WATERPROOF HEATING WIRE
ohms per vard, this is a heating element wound on a libreglass
coll and then covered with p.v.c. Dozens of uses pipes, under grow bo wes in gloves and socks. $\mathbf{£ 2 . 5 0}$ for 10 metres. COMPONENT BOARO Ret. WO998
This is a modern fibreglass board which contans a multitude of
very useful parts, most important of which are: 35 assorted diocs and rectifiers including a 3amp 400v fypes (made up in a bridge) 8 transistors type BC107 and 2 type BF Y. 51 electrotytic condensers.
SCR ref $2 \mathrm{~N} 5062,250 \mathrm{uf} 100 \mathrm{vC}$ DCd 100 ut 25 NDC and over 100 SCR ref 2N 5062, 250 uf 100 v DC and $100 u$ 25N DC and over 100 electrolvtic and other condensers. A real snip at $£ 1.15$.
FRUIT MACHINE HEART. 3 wheels with all truiss, motorised and With solenoid for slopping the wheels with a little ingenuizy
dety your friends getting the "iackpot". $\mathrm{E9} 95 . \mathrm{E} 4$ carriage. 4-CORE MLEX CABLE
100 metres $\mathbf{1} 15$. Othe extensions, disco lights, etc. 10 metres White pve for telephone ext
100 metres $£ 15$. Other mult

J. BULL (Eilectrical) Ltd.

(Dept. HE), 34-36 AMERICA LANE,
HAYWARDS HEATH, SUSSEX RH16 3QU.

Famous Names

Few of us are aware of the enormous contribution Edwin Armstrong made to the development of radio. Sadly, like many famous inventors, he was bedevilled by legal wrangling over his patents

THERE'S A VERY hallowed place in radio history not far outside New York City. After you escape from the confusion of Kennedy Airport, you cross the George Washington Bridge and take the green and pleasant Palisades Parkway, which points you towards upper NY State. Not far out, yet in wild, forested country, you'll see a transmitting aerial. Ask, and you'll be told that it is Edwin Armstrong's radio station.

On this side of the Atlantic we know the name of Marconi pretty well, and we could probably name a few other people associated with the development of radio and radar, but how many of us, hand on heart, could really place Edwin Armstrong? Yet of all the names which follow Marconi, his must be the most illustrious in radio history: radio, as we know it today, owes more to Edwin Armstrong than to anyone else.

Edwin Armstrong was born in Manhattan, New York, in 1890. His folks were well-to-do: his father a publisher, his mother a former schoolteacher, and between them they fostered in their son a fascination for the mechanical and electrical gadgets with which he was constantly surrounded. The turn of the century in New York was the age of the inventor. A steady stream of inventions were being registered at the US Patent Office, and each was eagerly seized on to be marketed and advertised. In many ways it was an inventor's paradise, but as many were to find out, the paradise had a few traps in it. Young Edwin caught the mood and at the age of 14, decided that he would be an inventor. The newest thing around was radio, and it was this field that Edwin chose, surrounding himself with coils and crystals, earphones and morse keys.

We know very little of what he did in those days, because like many inventors, he was shy and secretive. The next milestone in his career was his entry to Columbia University to study science and engineering - and to chalk his name on the list of radio pioneers long before his studies were complete. Radio at that time (about 1910) had very limited uses, mainly because of the very low sensitivity of receivers. Lee de Forest had just invented his Audion - a three electrode valve of the type we now call a triode, and this permitted some amplification of the feeble signals from a tuned circuit. At university, Armstrong was able to lay his hands on one of the first of these valves, and to start making use of it. Within a few months, he had made one of the major discoveries in radio - that of positive feedback.

First Milestone - Regeneration

The idea was simple enough. The primitive valve had a very low gain at radio frequencies. Armstrong hit on the idea of feeding the signal back to be amplified again, and he called the idea regeneration. A regeneration receiver was hundreds of times more sensitive than the average receiver of the day, so that Armstrong's invention was undoubtedly one of the milestones in radio progress. It was immensly successful and every radio, from then on, with any pretensions to sensitivity, incorporated regeneration. Armstrong himself had already found out that excessive positive feedback could cause oscillation, and so paved the way for all electronic radio transmitters to replace the crude spark-coil or alternator types which were then used.

It could have, and should have, been the moment of his greatest triumph, but it was soured in a way that was to haunt him for the rest of his life. His patents were challenged by de Forest, and judges and lawyers, ignorant of the principles involved, ruled that Armstrong's patents were invalid. To its great credit, the scientific community never accepted the legal
judgement, and recognised Armstrong with every honour they could bestow. Many inventors from that day on, however, have regarded pate, it rights as a playground for lawyers and have preferred to get in first with the manufacturing of an invention rather than trust to their ability to profit from licensing agreements.

Second Milestone The Superheterodyne

At the outbreak of war in 1914, Armstrong was appointed to the US Army Signal Corps to research into improved radio communications. Details of his work are not easy to obtain even now, because of the secrecy which surrounded the 'back-room boys', but one invention of this period is outstanding, and will probably remain so as long as radio is used. Until then, all radio receivers were either crystal sets, using no radio frequency amplification, or tuned radio frequency (TRF) receivers which used coils and capacitors to tune each amplifying stage to the frequency which was being received. TRF receivers are useful up to a point, but they have great disadvantages when large amounts of gain are needed. One disadvantage is that the tuning of each circuit has to be changed whenever a different frequency is wanted. Another is that even very small amounts of signal, if fed back from the output to the input, can make the receiver oscillate and so radiate interference. All this was solved by Armstrong's invention of the superheterodyne (superhet) receiver.

In a superhet receiver, each incoming frequency is tuned, amplified and then converted to an intermediate frequency (IF) by mixing it with a signal from an oscillator. The same IF is used no matter what the input frequency on that particular range happens to be. Tuning becomes easier because there are fewer variable tuned circuits, feedback is less of a menace because the signal which is most likely to feedback (the IF) is not at the same frequency as the input. It's difficult nowadays to imagine radio without superhet receivers: from the pocket transistor radio right through to the mighty radar receiver, all use Armstrong's superhet principle.

This work earned Armstrong more than fame. During the 1914-18 war, he had met David Sarnoff, founder of the Radio Corporation of America. (Armstrong had, in fact, married Sarnoff's secretary). Sarnoff was utterly convinced of the entertainment possibilities of radio, and he bought many of Armstrong's patent rights. In the early twenties, the sudden blossoming of radio as an entertainment medium meant a boom in radio manufacture, and made Armstrong a dollar millionaire because of the royalties which were paid by radio manufacturers.

Third Milestone Frequency Modulation

Despite his new wealth Edwin Armstrong remained withdrawn, and continued to work at Columbia University. His theme now was the elimination of radio interference, a topic which was to occupy him to the day he died. His work was fruitful: in 1933 he took out patents on the frequency modulation system - FM. The idea of modulating the frequency rather than the amplitude of a radio wave makes it possible to design receivers which are completely insensitive to the amplitude modulation caused by interference. At the time, though, only the Army Signal Corps
really saw the usefulness of $F M$. Armstrong found himself with an uphill struggle to convince even his friends that his new system was capable of providing broadcasting of a quality totally unknown at the time. He began the construction of an FM transmitting station, using his own personal wealth. It swallowed over $\$ 300,000$ and was completed in 1939 - just in time for the wartime economy drive to make it out of the question to operate the station, or for manufacturers to switch to making FM receivers. Frequency modulation was to prove its value in World War II, however, and once again, Armstrong worked in military research projects.

After the war, FM started to be accepted slowly. The problem was mainly cost, and what boosted sales more than anything else was the new craze for hi-fi which suddenly brought in its wake an appreciation of better quality radio broadcasting. These could have been the days of triumph for Armstong, but the nightmare which had haunted him from his early years was to recur. Once again, his patents were challenged in the courts, and he was put under the strain of trying to prove technical points to an audience of people who were technically ignorant and antipathetic to the quiet unassuming inventor. To add to his worries, his vast expenditure on FM was not yielding him any return, and in 1954, with his fortune spent and his brilliant invention being tossed about the courts by lawyers, Edwin Armstrong committed suicide.

He left behind him a monument as vast as any man can ever hope for. Every radio receiver and every FM transmitter in the world is the result of Edwin Armstrong's patient and littlepublicised achievements. Only his name deserves to be better known.

7 HUGHENDEN ROAD, HASTINGS, SUSSEX. TN34 3TG Telepthone: HASTINGS (0424) 436004

ELECTRONIC KITS

RECEIVER B8 loemiz gV o.c e5 3 hm VAT

KSZ20 MINIF.M. TRANSMITTEA 88 IOO UK) 739 inc VAT
 $3 \times 1 \mathrm{KW} 240 \mathrm{~V}$ f13.70 inc Vat

KS238 3 CHANMEL MICROPHONE OPERATEO SOUNO TO HGHT, JOOW PER CHAN 2 GOV A.C E14.43 inc VAT

UK56A LOGIC PROBE, SUTTABLE FOR ITL OTL SMOS CIRCUITS. SV O.C 99

 nemany V/SA

HEPROJECT KITS

 ELECTRONICS AND MARDWARE NEEDED. Printed circute boords thult erched, drilled and roller tinned) or varoboand are. of coures, included an speciffed in the original aricite, wo wtetod. BATIEAIES ARE NOT MCLUOED. COMPONENT SHEET MNCLUDED. M You do no have the hesue of H.E. which includen the propect- you will need to order the instruction

Reprints available separately $45 p$ each + p\&p 40p LATEST KITS: S.A.E. OR PHONE FOR PRICES
TELEPHONE BELL REPEATER Oct 81
$£ 12.78$
Med Linking wire extra... 14p metre COMBINATION LOCK Oct 81 less solenoid.

BABY ALARM Oct 81
Fig 8 linking wire
7p metre
TOUCH LAMP OCt 81 . Bulb version . 51
Mains version
$£ 7.16$
'DIANA' METAL LOCATOR, Sept '81 $\mathbf{E 3 3 . 8 5}$
LOW POWER PILOT LIGHT, Sept. '81, less case §1.30
LIGHT/WATER ALARM, Sept. '81. 95
LIGHT/WATER ALARM, Sept. '81 .
CAR LIGHTS DELAY, Sept " 81 E5.98
POWER PACK, Sept. '81 81 55.99
69.58

SHORT WAVE RADIO, Sept. ' 81 $\uparrow 9.58$

Extra: Mono headphones...
$£ 23.98$
REACTION TESTER GAME, Sept. ' 81
THERMOMETER, Aug. ' 81
$E 2.98$
R.P.M. METER, Aug 81, inc. probe...........................

VARIABLE BENCH POWER SUPPLY, Aug. '81.......................... £25.35
ULTRASOUND BURGLAR ALARM, July '81 £18.67
ELECTRONIC DOOR BUZ7ER JVIV'81
18.67
65.65

ELECTRONIC ME TRONOME, July '81 ... 44.67
TREBLE BOOST, July'81 ... 810.93

ENVELOPE GENERATOR, June ' 81 ... $\mathbf{\Sigma 1 6 . 8 5}$
AUDIO MIXER, June '81..................
AUDIO MILLVOLTMETER, May' 81
84.99
\&18.67
OICE OPERATED SWITCH, May '81
£ 10.37
……......... $£ 1.41$
SUPER SIREN, Apr ' 81 .. 19.52
DOORBELL MONITOR, Apr ' 81 ... $\mathbf{E B}_{3} 28$
GUTTAR TREMELO, Apr '81... $\mathbf{\Sigma 1 2 . 4 6}$
WINDSCREEN WASHER ALARM, Apr '81
RUSSIAN ROULETTE GAME, Apr ' 81 £5.78
PUBIIC ADDRESS AMPUFIER Mar '81 $\mathbf{6} 9.14$ less case
PUBLIC ADDRESS AMPLJFIER, Mar ' 81
Extras - horn speakers
PA mic
FUZZBOX
£18.21
FUZ7BOX Mar 81 .
WINDSCREEN WIPER CONTROLLER, Mar '81 £7.67
STEAM LOCO WHISTLE, Mar '81
PHOTOGRAPHIC TIMER, Mar ' 81
$\begin{array}{r}\mathrm{E} \\ \mathrm{E} \\ \hline\end{array}$
.
… $\boldsymbol{8 3 . 4 0}$
HIGH IMPEDANCE VOLTMETER, Feb '81
AUDIO SIGNAL GENERATOR, Feb ' 81
$\begin{array}{r}\mathrm{f} \\ \mathrm{f} .87 \\ \hline\end{array}$
BACKGRUND NOISE SIMULATOR, Feb '81
$\begin{array}{r}£ 18.93 \\ \hline\end{array}$
TWO-TONE TRAIN HORN, Feb '81 £7.07
TWO-TONE TRAIN HORN, Feb '8
£5.24 less case
MEDIUM WAVE RADIO, Feb ' 81
LADDER OF LJGHT(Sound into Light), Jan. '81
$E 7.67$
BENCH AMP, Jan '81
$\mathbf{\$ 1 0 . 1 0}$
NICARD CHARGER, Jan '81
$£ 7.67$

ADVENTURES WITH MICROELECTRONICS
 by TOM DUNCAN

An easy to follow book suitable for all ages, ideal for beginners No Soldering. Uses a Bimboard 1 breadboard, gives clear instruc tions with lots of pictures. 11 projects based on integrated circuits

- includes díce, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard 1 breadboard and the components for the projects.
Adventures with Microelectronics $\mathbf{5} \mathbf{2 . 5 5}$.
Component pack $\mathbf{5} 29.64$ less battery

ADVENTURES WITH ELECTRONICS

An easy to follow book suitable for all ages, ideal for beginners. No Soldering. Uses an 'S Dec' breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S Dec and the components for the projects
Adventures With Electronics $\mathbf{2} .40$.
Component pack £17.98 less battery
1981 ELECTRONICS CATALOGUE

MAGENTA ELECTRONICS LTD.

INTO DIGITAL ELECTRONICS

Current H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics. $45 p$ each. Eurobreadboard and components for series $£ 20.85$ less battery. Components only 113.98.

INTO ELECTRONICS GONSTRUCTION

H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics. Circuits are built on a plug.in Eurobreadboard. Reprints of back issues available 45p esch. Eurobreadboard and comporients for series $\mathbf{E 2 0 . 8 5}$ less battery. Components only £13.99. 7 part series

MAGENTA ELECTRONICS LTD

AP14, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS., DE14 2ST. 0283 65435. MON.FRI. 9.4. MAIL ORDER ONLY. ADD 40D P \& P TO ALL ORDERS.

ALL PRICES INCLUDE 15\% VAT

\square
risim Rapablic \& B.F.P.O. Firwe beduct 104 tram
sitatios
lecess and barciapcant fizal ertors
ccomer by imone a post

- CHRISTMAS KITS -

TWINKLING STAR EE Dec 79
MAins PSU
TABLE DECORATION EE Dec 80
TREE LIGHTS FLASHER EE Dec 80

3 BAND S.W. RADIO Simple T.R.F. Design. Covering most Amsteur Bands and Short Wave Broadcast BAnds. Five controls. Bandset, Bandspread Reaction, Wavechenge and Attenustor. Coal section is by Wavechange Switch. Use with Headphones or a Cryatel earpiece. Kit contains all the components required inchuding the P.C. Board and Case, Instructions are included with this kit. KIT £1998 Meadphones extra隹98.
Simple T.R.F. Design. Covering most Ansteur Bands and Short Wave Broadcas! BAnds. Five controls. Bandset, Bandspread Reaction, Wavechenge and Attenustor, Coll section is by Wavechange Switch. Use with Headphones or a Cryatal earpiece. Kit contains all the components required inchuding the P.C. Board and Case, Inatructions afe included with this kit. KIT $\mathbf{I} 1998$ Meadphones extra ¢ 298.

MORE KITS AND COMPONENTS IN OUR LISTS

FREE PRICE LIST Price list included with
orders or send sae (9×4) CONTAINS LOTS MORE
KITS, PCBS COMPONENTS

BOOKS			
ONDUCTOR DATA BOOK - Newnes ..f6. 58			
CONSTRUCTOR'S PROJECT BOOKS			
ELECTMONIC GAME PROJECTS Rayer			
ELECTRONIC PROJECTS FOR HOME SECURITY BIShoD			
ELECTRONIC PROJECTS IN MUSIC Flind . 63.70			
ELECTRONIC PROJECTS IN PHOTOGRAPHY Pentolo. ELECTHONIC PROJECTS IN THE CAR GOMge.			
PROJECTS IN AMATEUR RADIO \& SHORT WAVE LISTENING Rayer. PROJECTS IN RADIO AND ELECTRONICS Sinclerl			
ELECTRONIC PROJECTS IN HO88IES Rayet . 6370			
ELECTMONIC PROJECTS I THE HOME Bishop			
MORE ELECTRONIC PROJECTS IN THE HOME Fhnd.			
ELECTRONIC PROJECTS - PAPERMAC			
COST EFFECTIVE PROJECTS AROUND THE HO			
PROJECTS FOR THE CAR AND GARAGE BistopAUDIO CIRCUITS AND PROJECTS Bishop .			
AUDIO CIRCUITS AND PROJECTS Bishop . is			
TEST GEAR PROJECTS DIXOM. CLECTRO			
SOLID STATE SHORTWAVE RECEIVERS FOR BEGINNERS Peniold			
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS Penfold 11.35			
Super set of books covering theory and practice. Educational. Suit age 14 upwards. Lots of useful projects - cricuits buill on an 5-Dec breadboard.			
12p $¢ 2.69$			
TELEPHONE PICK.UP COIL 72p F.M. AERIAL............................ 49p			
Pp3 CLIPS....................... 10p pp9 CLIPS............................. 11 . 11 .	P93CUPS 100 Pp9 CLIPS11p		
PANEL METERS. $60 \approx 45 \mathrm{~mm}, 50 \mathrm{uA}, 100 \mathrm{uA}, 1 \mathrm{NA}, 1 \mathrm{~A}, 25 \mathrm{~V}$ VEROBOARD 0.1"COPPER. 10 strips, 24 hoves... 20 per 5			
$24537 \mathrm{H}, 78 \mathrm{p}, 24 \mathrm{~S} 50 \mathrm{H}, 89 \mathrm{p}$. $365 \mathrm{S7H}, 89 \mathrm{p} .36 \mathrm{~S} 50 \mathrm{H} 99 \mathrm{p}$			
PIN INSERTIONTOOL ¢1.59 SPOT FACE CUTTER................... 11.23			
 MULTIMETER TYPE 2. 20.000 opv with hransisiot tester			
CROC CLIP TEST LEAO SET. 10 leads with 20 clps. 99p			
TOWERS INTERNATIONAL TRANSISTOR SELECTOR . 10.30 .35			
PLUGGTIN POWER SUPPLY 4.5V. 6V: \%V. 300 mW . 53.89			
MUUMINATEO MAGNIFIER. 1% K1.14 \quad \%			

Quick Project:
 Substitution Boxes

Capacitance and resistance substitution boxes can be the most useful items of electronic test equipment anyone can possess. This Quick Project gives details of how to make your own, both simply and cheaply

When developing and testing circuits a substitution box can save a lot of time spent look. ing through component storage boxes in search of particular resistor or capacitor values. You see, a substitution box is simply a case which contains a range of resistors or capacitors selection of the desired value is with a switch (or switches). The selected component is connected to sockets on the front of the box, and from here it is connected into your circuit with a couple of test leads.

The circuit of Fig. 1 shows a simple capacitor substitution box which gives a wide range of values. Not every preferred value is included, but using this unit it is possible to get reasonably close to almost any desired value, and the box is quite simple and inexpensive. In use, multiway switches SW 1 or SW2 (as appropriate) are switched to select the desired component, and SW3 selects the correct multiway switch. Switching cannot be achieved using a single switch as a suitable component is not available. Switches SW2 and SW3 can be 12 -way rotary types having their adjustable end stops set for 10 -way operation.

A resistor substitution box can be produced instead, simply by replacing the capacitors with resistors having values of 1R, 2R2, 4R7, 10R, 22R, 47R, 100R, etc, up to 10 M .

Figure 2 shows the wiring of the capacitor substitution box and is perfectly straightforward. The circuit can be housed in any suitable small plastic or metal case, but you must make sure the intended case has sufficient depth to take the components which are mounted on SW1 and SW2.

Figure 1. Circuit of an HE Capacitance Substitution Box. By replacing capacitors with resistors (see text) a resistance substitution box can also be made

Figure 2. Wiring diagram of the Capacitance Substitution Box

BrEAK BARGANS

IRRESISTABLE RESISTOR BARGAINS

- Pref formed ${ }^{4}+\frac{1}{4}$ watt Carbon Resistors 200 watt Carbon Resistors 50 I? watt Resistors 220 hm am Mused Skis $100 \quad$ ohm 2 m 2 Mares

 Pass $\$ \times 12-15$ contain a range of Carbon film Resistors of assorted values from 22 ohms to 22 meg Save pounds on these resQuantities approximate count by weight
"CAPABLE CAPACITORPAKS"

$\begin{array}{lll} & 250 & \text { Capacitors Mixed Types } \\ 5 \times 17 & 200\end{array}$ Ceramic Capacitors Miniature Mined Mired Ceramics 22 d . 390 pi Mined Ceramics 470 pt . 047 ul Assorted Polyester/ Polystyrene
Mixed C280 type capacitors metal foul metal for Elecitolytics. all son
Quality Electrol|tics $50-100 \mathrm{ml} 0$ Tantalum Beads, mixed entities approximate. count by weight

A Collection of Transistors. Diodes. Rectifiers Bridges. SCR* Triacs IC's both Logic and Linear plus Onto's all of
 Clear 7 Segment Displays both Common Cathode and Common Anode PLUS bubble type displays-like 0133 Photo Transistors-similaı P71 Photo Defectors-like MEL11.12 This whole pack of 25
£4:00
ND we guarantee your money bach il you are no
Order No. SX57.

STILL MORE SLIDER POTENTIOMETERS ac k 40 mm five l Mono

25
100 AUDIO PLUGS, SOCKET
AND ACCESSORIES 25 pieces of Audio Ply is Sockets and Connecting Pion lack stereo and Mono is etc Val ut at well over $£ 3$ normal Order No $\$ \times 25$ Our Pice $£ 150$ der pal k Guaranteed to save you money
$\$ 2263$ Pis of 6 pin 240 OIN Plugs and Chassis 5×27 I I Right Angle Stereo lack Plug g 63 mm plus matching metal chassis mounting socket 5×284 Phone plugs and 2 dual phono connector $5 \times 291 \times 25 \mathrm{~mm}$ Plug 103^{5} <compat>nm Socket adaptor Sx30 $\because 35 \mathrm{~mm}$ Plug 102 mmm Socket a captor
5×321 a Stand and lack Plug to Phone Socket
SKI 1 \& Toggle Switch SPSI Miniature 125 v 10 A S134 Ir Forge Switch SPOT Miniature 125w 16 A S 536 I A Right Angle Mono lack Plug 5 K 3720 prices i 2 s 4 mm plus and sockets (Banana) Matching colours and sizes 5010 Assorted Switches Toggle Slide Rocker Push button

E1FREE ${ }_{\text {DAK }}$

IC SOCKETS
The lowest price ever.
The more you buy the cheaper they cure

5×52
6 Black Heatsunh will th t T0 3 and 10220 Ready drilled Mall price
Skis I Powerlinned Mealisink This h It gives the greatest possible heal dissipation

Guarantee Satisfaction or your money back has always been BI.PAK GUARANIEE and it still is All these Sate items are in stock in quantity and we will despatch the same day as you order is received

5x40 250 Silicon O lodes- 5 withing lithe IN 414800-35 All good-uncoded Worth \$xl 250 Silicon Diodes-General Purpose like aAz00 202 BAX 13 16 Uncoded $30100 \times 200 \mathrm{~mA} \mathrm{DO}$ SX44 10 SA SCR S $10643 \times 50 \mathrm{v} 3$ = 100 v $200 \mathrm{r} 2=400$. Super value less than
 200r 2: 400 walicoded Brand new a

BARGAINS
Sx42 20 small 125 RedLEDS
 $5 \times 46 \quad 30$ Assorted liner died villages all coded New
5447 a black instrument
Mnobs-wnged with porte
20 mm mods standard push SHA 8 int 15 mm shier knobs Sx49 20 Assorted Shoe l

SEMICONDUCTORS FROM AROUND THE WORLD

100 which are current everyday usable devices
£4-00 Data etc in
curry pah
che der No $\$ \times 5$ 5-0 0) -

BI.PAK'S OPTO BARGAIN OF THE YEAR!

25

MORE BARGAINS
5151 60 metres PVC covered HE
SKS: Colours
SX58 $\quad 25$ Assorted It Gates 7400
Series $7401 / 460$ Les 7400
10 Assorted fly flops and MSI
$5 \times 60 \quad{ }_{20}^{1 / 4}$
20 Assorleo Strider
516125 Assorted Port
SK 62 Rotary Dual els in the smallest space ownan to its unique staggered fin design ore oniled 103 Sire 45 mm square a 20 mm mgh 40 p 5×54 10 66 size $35 \mathrm{mmn} 30 \mathrm{~mm} \times 12 \mathrm{~mm} \quad 35 \mathrm{p}$ SX35 I Heat Efficiency Pownif finned Meatsinh $90 \mathrm{~mm}, 80 \mathrm{~mm}, 35 \mathrm{~mm}$ High Dulled to take up to 4 take up 10 a
103 deuces [1.50 each

5 watt (RMS) Audio Amp High Quality audio amplifier Module total tor use in record players lape recorders stereo amps and cassette players etc Full data and bach up diagrams with each module
specification
Specification

- Power Out puls malts RMS - Load Impedance 8.16 ohms I frequency response 50 Mz to $25 \mathrm{NML}-300$ -
 30 ohms Sue $85,64 \times 30 \mathrm{~mm}$ - I

£2.25

BI.PAK'S COMPLETELY NEW CATALOGUE

renters the langsian some emiconiur sis the

There are no wasted pages or useless miormation so often include a on Catalogues published nowadays lust solid facts ie price description and individual features of what we hare available But remember Br.Pak 5 policy has always been to sell quality components at competitive prices and That WE STILL DO.
BI-PAK S COMPLEIELY MEW CATALOGUE is now available fo you You will be amazed how much you can save when you shop lo r Electronic Components win a Bi Pall Catalogue Have one by you all the fime-il pays to buy B1 PAK

To receive your coop send $\mathbf{7 5 p}$ plus 25 D DB D

BreAK
 Send your orders to Dept. HE11, BIPAK P0 BOX 5 WARE HEATS GOOP AFIBNDOCK SI WART MEETS
 il RUS CASH with order same day ot spatch access BARCLAYCARO ALSO ACCIPILO IEL (0920) 3182 GIRO 3887006 ODE 55° VAT ONO SOD PI R OROI R POSTAGE AND PACKING

Ute pour credit cord ling us on Wee 3182 mow and gel per adder men taser. Cooed nom malt sent ind Clos Mad.

In this occasional series on the innards of musical synthesisers, Ron Keeley explains how sounds are made and how a synthesiser is capable of imitating them

THE FIRST PRACTICAL music synthesiser was built by Robert Moog: it used the special voltage controlled circuit elements developed by Moog to determine the musical qualities of pitch, tone and loudness. All synthesisers, except the more recently developed digital instruments, now use the voltage control technique because it permits fine and accurate dynamic control. Although it's not immediately obvious, it is this ability of a synthesiser to be dynamically controlled which makes the instrument a powerful one indeed, and it is worth considering this ability closely to understand why.

The problem of control goes back to the very beginning of electronic music synthesis. In 1952, the first synthesiser, RCA's Electronic Music Synthesiser, was built. It consisted of seven separate racks of equipment, each one six feet high . Music was synthesised by specifying seven characteristics for each note. These characteristics had to be encoded on a punched paper roll, much like an old-time pianola roll. Obviously, it was impossible for a musician to simply sit down at a keyboard (there wasn't one!) and actually play this complicated 'instrument'. That is to say, in the jargon of computer technology, it couldn't be controlled in 'real time'. There was a considerable delay (while a new section of paper was encoded and spliced in) in changing the sound of even one note: the synthesiser could obviously not be dynamically controlled.

Voltage controlled synthesisers, however, are controllable in real time - hit a key and a note sounds, turn a knob and it sounds different instantly. It's this facility for instant control which allows modern synthesisers to be played as real instruments, whether imitating more traditional instruments or creating new and unique sounds.

Making Music . .

The three basic qualities of a musical sound - pitch, tone and loudness - are the 'handles' by which musical ideas can be grasped, and which are manipulated by composers to create an individual piece of music. By deciding that a melody will be played on, say, a violin, a composer is also deciding that: the melody will be played within a certain pitch range (see Fig.1); it will have particular tonal qualities (see Fig.2); and it will be within fixed limits of volume (see Fig.3). Had he selected a different instrument - a trumpet, for example - he would in effect be selecting different pitch, tone and loudness ranges.

The choice of an instrument determines the broad outlines of the music. The detail and colour, the fine texture, are each determined by the way the composer handles the pitch, tone and loudness capabilities of the instrument. He will actually compose the melody by writing down, in musical notation, the pitch of each note and its length; he may decide to vary the tonal quality by specifying that a certain passage should be played (again using the example of a violin) with the heel of the bow, rather than the flat, while loudness variations may be indicated on the score by words such as Piano (soft) or Fortissimo (very loud). In addition, a composer may decide to use one of the many techniques, such as portamento, staccato or pizzicato, which affect both tone and loudness.

Electronically

If a synthesiser were to be used to play this particular melody,
Figure 1. The frequency ranges of some instruments. The range of a synthesiser is wider than that of an organ

exactly as it was intended to sound, it would need to be a very complicated instrument indeed, and it would need a very clever synth-player, as well. Together they would have to duplicate exact/y the musical qualities of the instrument to be imitated, right down to the minute changes in pitch, tone and volume that take place during even the shortest note, and all the playing techniques which are possible on that instrument.

In fact few synthesisers, if any, have the capability to imitate exactly any traditional instrument; most though, will permit a good synth-player to produce a close copy, depending on the exact facilities of the synthesiser - what can be controlled and how finely it can be controlled - and on the abilities of the player.

On the other hand, a musician or composer working directly with a synthesiser can specify musical notes or sounds that are totally beyond the range of any traditional instrument. These sounds, however, must still be thought of in terms of the three basic qualities of pitch, tone and loudness, because these are the three musical elements which a synthesiser can control.

Admittedly there is a small problem here, in that there is no accepted way of describing synthesised sounds.

Can anyone, for example, suggest how they might write down, in any musical notation, the sound of a flying saucer whistling through the air, gradually changing into the sound of bird's wings flapping, as it passes from left to right?

Anyway, that's just something to be going on withl In the next part of this series we consider what is actually being controlled - starting with oscillators: voltage controlled oscillators (VCOs), of course!

HE
Figure 3. The loudness ranges of some traditional instruments

Figure 2. The harmonic content of the four open strings of a violin. Note that the fundamental frequency (F) is not always the loudest harmonic

DO YOU EVER NEED A FEW MORE HANDS? . . . IF SO

The new and improved MINIBENCH*

System will add a new dimension to your hobby

PRICE LIST

and whisper smooth actunn
free-standing mount (as illustrated)
Flexi.Arm - 12

- 18

Lens Attachment - 50 mm lens
75 mm lens
100 mm lens
Clip Artachment - Large

- Smal.

Light Fitting with $18^{\prime \prime}$ F/Arm
Tranaformer Unit manss to 12V IA
Complete with switch
Foot Pedal with cable Assy for independent baw operation
Quantury discounts avalable for orders of 10 Minibenches of more: please enquire
We do endeavour to keep prices stable and absorb increases by outside suppliers where we can but sunce this is not possible in every case. the prices quoted are subject to alteration without notice
PLEASE ADDRESS ALL ORDERS TO

Pat App for

* Just a squeaze to clamp or release circuit board
* Adjustable minimum jaw aperture
* Jaws flip over for work on either side of circuir board
* Rubber lined jaws for circuit board protection

E maximum grip

* Singla wing nut controls jaw attitude and friction setting
- Crocodile clips mounted on flexi-arms hold components exactly where needed
* Crocodille clip can be used as a heat shunt
* Lens similarly mounted is ideal for close work
*and spotting those solder bridges
* Flexi-arms keep station with circuit board
* Stove enamelled or powder coated finish
* Built to last a lifetima!

NOW WITH
 * WHISPER SMOOTH ACTION
 * EXtended Range
 OF ATTACHMENTS

If you require a quality VU meter to use with your tape recorder, or if you simply want a pretty audio display on the front of your hi-fi system, then build this five LED VU meter. Better still, build two for stereo

ORDINARY VU METERS respond to the average signal level, because they are quite slow to operate - we say they have a slow attack rate. This means that a signal waveform such as that of a piano or any other percussive instrument (ie, a waveform with a rapidly occurring initial peak followed by a long, average amplitude section) will produce a deceptively low reading on the meter. The signal peaks may thus be over-recorded and distortion will occur.

The HE LED VU Meter can be used as an inexpensive alternative to the ordinary type of VU meter, and it has the advantage of having a fast attack rate. Five LEDs provide indications at signal levels of: $-20 ;-10 ;-3 ; 0$ and +3 dB .

Construction

Build up the Veroboard as shown in Fig. 2. Make all track breaks first, using
a cutting tool or an $1 / 8^{\prime \prime}$ hand-held drill bit. Hold the cutting edge against the hole to be broken and twist gently clockwise until the track breaks in a clean circle. Make sure there are no loose bits of copper swarf. Insert and solder all components and links as shown.

The project can either be constructed as a self-contained item of equipment having its own case and power source (such as two 9 V batteries connected in series), or it may be possible to build it into the main equipment, depending upon individual circumstances and preferences. If built as a separate unit, an on/off switch must of course be included in the positive supply line.

In order to give RV1 the correct setting it is first necessary to apply a signal to the main equipment that corresponds to a 0 dB level, and then RV1 is adjusted for the lowest sensitivity that causes LED4 to light up.

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	
R1	15k
R2	2M7
R3	3k3
R4	56k
POTENTIOMETER	
RV1	100k miniature vertica preset
CAPACITORS	
C1.2	4u7, 25 V electrolytic
C3	100 n polyester

SEMICONDUCTORS

IC1	U267B bargraph driver
Q1	BC109C NPN transistor
D1.2	1N4148 diode
LED1.5	$0.2^{\text {n }}$ LEDs (3 yellow.
	1 green, 1 red)

MISCELLANEOUS
Veroboard, 24 hole $\times 10$ strip LED panel clips

Figure 1. Circuit of the HE LED VU Meter

How lt Works

The circuit consists of two basic sections - a rectifier (shown very simply as a diode) and a bar graph driver.

The bar graph driver requires a DC voltage. When no signal is applied to the project the DC voltage must obviously be zero. No LEDs are therefore lit.

As the amplitude of the AC signal increases from zero, so does the DC rectified voltage. As the rectified voltage increases the bar graph driver switches on each LED in turn, depending on the amplitude of applied signal.

An active rectifier is needed ahead of IC1 to give a DC input voltage that is proportional to the peak level of the audio input signal. A simple passive rectifier circuit would not be suitable due to the forward voltage drop through semiconductor diodes. This would increase all the LED
threshold levels by a similar amount, and would therefore alter their relative levels so that the unit would be hopelessly inaccurate. An active rectifier uses a high gain amplifier and generous negative feedback to effectively remove the forward voltage drop and thus give accurate results.

The amplifier is a straightforward common emitter stage which uses transistor 01 in a conventional arrangement. The negative feedback is provided by capacitor C3 which also acts as a smoothing capacitor. The circuit has a fast attack time so that the unit responds properly to transients, but a slow decay time so that a comparatively long and clear indication is provided by such signals.

Preset RV1 is a simple variable input attenuator that enables the sensitivity of the unit to be set at the correct level. At maximum sensitivity about 200 mV RMS is needed at the input to give a reading of 0 dB . The circuit requires a supply voltage of between 12 and 24 V , and the current consumption is virtually constant at about 25 mA .

Buylines

The only component which you may ponents are all common types. have difficulty in obtaining is the U2678 Approximate price of all parts lexintegrated circuit. This is available from cluding case) will be $£ 7$. Ambit Electronics Lid. The other com-

ELECRONIC IGNITION KIT

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE —— higher output voltage under all conditions.

IMPROVED ECONOMY —_ no loss of ignition performance between services

FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.

ACCURATE TIMING —_ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE \longrightarrow immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK - $31 / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.

OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING— full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

 it provides a top performance electronic ignition system at less than half the price of competing ready. built systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.AS REVIEWED IN ELECTRONICS TODAY MAGAZINE
JUNE '81 ISSUE
Quote "the kit is very impressive"
"well written instructions and a good performance".
"Exellent value for money. Highly recommended".
FITS ALL VEHICLES, 6 or 12 volt, with or without ballast NEGATIVE EARTH ONLY

OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE £2.95

STANDARD CAR KIT $£ 14.85$ plus $£ 1$ TWIN OUTPUT KIT £22.94 U.K. P. \& P

For MOTOR CYCLES and CARS with twin ignition systems
Prices include V.A.T.

ELECTRONIZE DESIGN

Magnus Road, Wilnecote Tamworth, B77 5BY
Phone (0827) 281000

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer 'burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with It's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at $2000 \mathrm{rev} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ imes the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes al unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

	total ENERGY DISCHARGE	ORDINARY CAPACITIVE DISCHARGE
SPARK POWER (PEAK)	140 W	90 W
SPARK ENERGY (STORED ENERGY)	$\begin{aligned} & 36 \mathrm{~mJ} \\ & 135 \mathrm{~mJ} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mJ} \\ & 65 \mathrm{~mJ} \end{aligned}$
SPARK DURATION	$500 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
OUTPUT VOLTAGE ILOAD 50pF EQUIVALENT TO CLEAN PLUGS)	38 KV	26 KV
OUTPUT VOLTAGE (LOAD 50pF + $500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGS)	26 KV	17 KV
VOLTAGE RISE TIME TO 20 KV (Load 50pF)	$25 \mu \mathrm{~S}$	$30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

Jw when and where to use which type of connector? zy lets you in on the secret

IRE about the many plug and socket collIly all they want to know is which sort of :h application - do you use a jack plug and amplifier, or can you put a phono socket wer supply?
simple answer! It's largely a matter of Jus connectors are capable of connecting m out, listed below are some of the more Jf plugs and sockets which you are likely to sut aren't of any real significance to HE readers e were to use any unusual connectors in one of we would always say what it was.

נnnectors are used at the inputs and tape outputs of hi-fi ars. Figure 1 shows a typical plug and socket. The socket directly on to the metal case of the amplifier and this pro\& a good earth point for the inserted plug. The centre, signal, inection is isolated from the outer, but because the two are so use together and may easily short circuit if not wired carefully, c's advisable not to use phono plugs and sockets for high current (above say, 0.5 A) connections.

Phono plugs and sockets are good quality connectors and are ideal for audio work.

Figure 2. A selection of jack plugs and sockets. Mono and stereo $1 /{ }^{\prime \prime}$ ", 3.5 mm and 2.5 mm

DIN

A complete range of DIN plugs and sockets exist; from two connections to seven connections, a selection (two-, three- and fivepole) is shown in Fig. 3.

Two-pole DIN plugs and sockets are the standard loudspeaker connectors on low power (up to about 30 W) amplifier outputs.

Three-and five-pole connectors are often used at the inputs and tape outputs of hi-fi amplifiers.

Because all connections are so close together in DIN connectors, two things should be remembered - they are not ideally suited to high current applications; and crosstalk lie, interference from one connection to another) can occur.

DIN plugs and sockets make good quality and neat audio connectors.

Figure 1. Phono plug (left) and socket. The socket bolts directly onto the case of the circult.

Jack

There are three main sizes of jack connectors available to the hobbyist: $1 / 4^{\text {n }}, 3.5 \mathrm{~mm}$, and 2.5 mm (see Fig. 2). The $1 / /^{\text {" }}$ varieties are commonly used on guitar or microphone inputs to amplifiers etc, or headphone outputs. Mono (two connections ie, signal and earth) and stereo (three connections ie, left signal, right signal and earth) versions exist and the connectors can be used any where a fairly rugged and easily repairable coninection is needed.

If a $1 /{ }^{\prime \prime}$ plug and socket is too big then either of the two smalier varieties, 3.5 mm or 2.5 mm , may provide an alternative. In all three types the internal connections are quite close together so jack connectors shouldn't normally be used in high current work.

Figure 3. Two, three, and five pole DIN plugs with a typical socket

Figure 4. A co-ax plug and socket

Co-ax

Co-axial plugs and sockets (see Fig. 4) are typically used for aerial downlead connections (ie, from an aerial to a TV, tuner etc.) but because they are quite reliable, they are often used for input connections to test gear.

These connectors are ideal in high-frequency work but can be used with success as audio frequency connectors.

Flgure 5. Two 4 mm sockets and a 4 mm plug

4 mm

If you intend making connections to bench power supplies, multitesters, test gear etc, then this type of connector is ideal. The plugs and sockets are very robust and easy to connect (see Fig. 51 , and different coloured bodies are available to allow coded inputs and ou!puts.

Some types of 4 mm sockets have a screw down clamp. which will allow you to fasten a bared wire to the socket as well as a plug.

Oh well, time's up - see you next month!

If you've never built a k it before. Heathkit have some very pleasant surprises for you. Their kits are easy to build. Simple, but detailed Rechargeable l.ight ${ }^{\text {to }}$ tinstructions take you through every
stage. Everything is included. Even the solder you stage. Everyth
need is there.

Follow the steps and youll end up with a hand-crafted, well designed piece of equipment. Much better than shop bought. mass produced. Because you built it yourself.

Digital Clock There's a great range of kits to start you off. IFrom a
 buzzer alarm to a digital electronic clock, or a portable rechargeable fluorescent light to a portable VOM.

With all this going for you. you can count yourself very lucky you started off with Heathkit. Because all first time kit builders will get a free soldering iron and 10% discount off ten selected kits.
 in stamps.

Youbuild onour experience HEATHK

Flashmeter

Pentold, R.A. and Pentold J.W. Eloctronic Projects in Photography pp 63.69
Determining the correct exposure when using electronic flash is not quite as straightforward as it might at first appear. Guide numbers give correct results only under certain conditions, and a substantial increase in exposure is normally needed out of doors, or in a large, dark room. In small rooms it is usually necessary to reduce the exposure. Even for an experienced flash photographer it is impossible to guarantee perfect exposure without repeating each shot at several aperture settings.
Using a flashmeter overcomes this problem, since the flashmeter measures the amount of light falling on the subject, and therefore shows what effect the surroundings are having on the exposure.

The circuit

The circuit diagram of the flashmeter appears in Fig. 12.1. Phototransistor TR1 and its load resistor R1 are used to produce a negative output pulse having an amplitude which is roughly proportional to the intensity of the light pulse received from the flashgun. The pulse of light from an electronic flashgun is only very brief, usually only about 1 ms , and sometimes very much less than this. The photocell circuit must therefore be capable of responding very quickly, as it must produce a pulse of virtually the same duration as the light pulse. The BPX25 silicon phototransistor seems to be perfectly adequate in this respect.
C1 couples the output pulse from TR1 to a simple rectifier
circuit consisting of D1 and D2. These ensure that the pulse of current fed to the subsequent stage is not rapidly leaked away as the pulse decays. The subsequent stage is actually a Miller integrator which uses TR2, R2, C2, R3 and R4. Initially, reset switch S1 is briefly operated, so that TR2 gate terminal is taken to the negative supply potential. TR2 is then biased as a conventional common source amplifier, and C2 charges to the potential at TR2 drain terminal. C2 therefore tends to hold TR2 in this state when S 1 is released.

Figure 12.1
The circuit diagram of the flashmeter.

The negative pulse from the rectifier circuit when the flash is fired takes TR2 gate negative, and it causes C2 to steadily charge through R2. This negative signal at TR2 gate causes TR2 drain terminal to go positive, and this results in C2 charging at

Supplement

a virtually constant rate for the duration of the input pulse. Of course, the rate at which C2 charges is controlled by the amplitude of the input pulse. The final charge on C2 is thus dependent both upon the intensity of the light from the flashgun, and on the duration of the light.

It is essential that the circuit responds to both these factors, since they both have an effect on the exposure.
At the end of the pulse the integrator retains its new state, since C2 cannot discharge through the high reverse resistance of D2, or into the high input impedance of TR2. In practice the charge on C2 will very gradually leak away through these two paths, and through the leakage resistance of C2 itself. However, the circuit remains in the new state for a length of time which is more than adequate to enable a meter reading to be taken.

The meter is connected in a sort of bridge circuit, and VR1 is adjusted so that there is initially zero voltage across the meter, and accordingly it reads zero. When the circuit responds to the light pulse from the flashgun, TR2 source goes negative by an amount similar to the gate terminal, giving a deflection of the meter which is proportional to the change in voltage at TR2 source.
The circuit requires a stable supply voltage of about 8 to 10 V . This is provided by a small monolithic voltage regulator from an 18 V battery supply (the latter being provided by two PP3 batteries connected in series). An 8 V regulator is used in the prototype simply because it happened to be at hand, but a 9 or 10 V regulator could be used if one of these is more readily available than an 8 V type. The current consumption of the circuit is only about 5 mA .

Construction

The components, apart from the controls and batteries, are assembled on a 0.1 in matrix stripboard which has 15 copper strips by 13 holes. The component layout of this board is shown in Figs. 12.2 and 12.3. There are no breaks in the copper strips incidentally.

Mount the finished panel in the case (after it has been wired to the rest of the unit) so that TR1 is mounted behind a hole of about 10 mm diameter drilled in the case. TR1 should be positioned no more than about 10 mm behind this hole. It is advisable to have a diffuser mounted over the hole, as the unit will otherwise be highly directional, producing inconsistent and unreliable results. The diffuser can consist of a thin piece of translucent white plastic, and some foods come packed in containers made from a suitable material. Thin paper is a suitable alternative, but it would be advisable to reinforce this with some perspex.

Adjustments and use

When the unit is first switched on, immediately depress S1 and adjust VR1 to zero the meter. The meter can be zeroed after each reading has been taken by means of S1. VR1 may need occasional readjustment to correct slight drift in the circuit.
To calibrate the unit it is necessary to find the points on the scale corresponding to one-stop intervals in light value. The most reliable way of doing this is by varying the flash-to-meter distance. Increasing the distance by a factor of 1.414 (the square root of 2) reduces the intensity by half, which is equivalent to the required one-stop intervals.
The meter should be set up in an average size room in a position where it is at least 1 m away from any wall or similar reflective surface. The flashgun should be directly facing the light receiving surface. Half a metre is a suitable distance for the highest reading. The flashgun should be fired (as soon as the ready light comes on, to ensure repeatable results) and the meter reading noted. The flashgun should then be moved $0.707 \mathrm{~m}(0.5 \mathrm{~m} \times 1.414)$ away from the meter and fired again, with the scale reading being noted. This procedure is repeated at distances of $1 \mathrm{~m}, 1.414 \mathrm{~m}, 2 \mathrm{~m}, 2.828 \mathrm{~m}, 4 \mathrm{~m}$, and so on, to give a scale covering 7 or 8 stops.
A calculator chart like the one shown in Table 12.1 can be

\longrightarrow Direcion of strips \longrightarrow

Figure 12.2
The 0.1 in matrix stripboard layout for the flashmeter
drawn up to convert the scale readings into apertures for the various film speeds. in practice, the top line of this chart is marked with the meter readings for the various flash distances,

Figure 12.3
The flashmeter unit
and not the numbers shown in the diagram which are only given as examples. An alternative method is to remove the original scale from the meter, and replace it with a scale of numbers from 1 to 7 (or 8) marking the 1 stop intervals. These numbers are then used on the top line of the chart.

ASA	20	27	35	43	51	60	69	77
25	11	8	5.6	4	2.8	2	1.4	
50	16	11	8	5.6	4	2.8	2	1.4
100	22	16	11	8	5.6	4	2.8	2
200	32	22	16	11	8	5.6	4	2.8
400	45	32	22	16	11	8	5.6	4

Table 12.1 Example of a chart based on a flashgun with a guide number of 14 (in metres) for a film speed of 100 ASA, used at the distances mentioned.

Initially the chart can be based on the guide number of the flash unit used for calibration, but it may be necessary to modify it slightly in the light of experience.
When calibrating the unit it may be found that the sensitivity is too high or too low, although this is unlikely as the range covered by the unit is somewhat more than is absolutely necessary. However, a lack of sensitivity can be corrected by using a thinner diffuser, or the value of C.2 can be reduced. An excess of sensitivity can be corrected by adding more layers of material in the diffuser, or C 2 can be increased in value.

Table 12.2 Components list tor the tlashmeter	
Resistors (all miniature $1 / 4 \mathrm{~W}, 5 \%$)	
R1	$4.7 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$
K 3	$4.7 \mathrm{k} \Omega$
R4	$2.2 \mathrm{k} \Omega$
K5	$4.7 \mathrm{k} \Omega$
VRI	$4.7 \mathrm{l} \Omega$ lin. carbon
Capacitors	
C1	100nt, tope C-280
(2)	470 nf , ivpe C280
C3	$1(0) \mathrm{nI}$, ivpe C28)
(4)	101nF, type C28)
Semin onductors	
TR1	BPX 25
TR2	BF 2448
1)1	1N4148
1)2	1N4148
1 Cl	$\mu \mathrm{A} 88 \mathrm{LO8}(8,9$ or $10 \mathrm{~V}, 100 \mathrm{~mA}$ regulator)
Swutches	
\$1	Push to make - release to break push button tvpe
S2	SPST miniature toggle type
Miever	
' If 1	100 $\mu \mathrm{A}$ moving (oil panel meler
Afisechllanerous	
U. I in matrix wipuboard	
Case	
(ontrolknob	
Wire', wolder, eft.	

Fire Detector

Bhhop. O. Electronic Projects for Home Security pp 30.33
This device warns of fire by detecting any excessive increase of temperature. It can be set to sound the alarm when the temperature exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, a temperature that is not likely to occur under normal weather conditions. Several sensors may be placed in strategic positions at various parts of the house.

How it works

The sensor is a thermistor, which is a rod of semiconducting material. As temperature increases, its electrical resistance decreases. In Fig. 4.1 the thermistor R1 and the variable resistor VR1 are joined as a potential divider. The potential at the input terminal depends on the values of R1 and VR1. For the average i.c. operating on a 12 V supply a potential of 6 V or lower is taken as a 'low' input. A potential above 6 V is taken as a high input. There is variation between i.c.s in this respect and the threshold potential may lie anywhere between 3.6 V and 8.4 V for any given gate. This variation is taken care of by using a variable resistor in the circuit.
At $25^{\circ} \mathrm{C}$, R1 has a resistance of $47 \mathrm{k} \Omega$. Assuming that VR1 is set to about $18 \mathrm{k} \Omega$ the potential at the input is 3.3 V . This is effectively a 'low' input. As temperature rises, and the resistance of R1 decreases, the input potential rises. At $45^{\circ} \mathrm{C}$ the resistance of R1 has fallen to about $21 \mathrm{k} \Omega$, producing a potential of 5.5 V at the input. This is still a 'low' input. At $50^{\circ} \mathrm{C}$, R1 has the value $17 \mathrm{k} \Omega$ and the potential is 6.2 V . This is a 'high' input.

Figure 4.1
Heat detecting fire alarm detector circuit (thermistors R2,
R3 and resistors R6, R7. R8 not shown)

Gate 1 is a 4 -input NOR gate. For as long as all its inputs are low, (i.e. if any one or more of the thermistors connected to it becomes hotter than $50^{\circ} \mathrm{C}$) its output goes low. This output is fed to the other gate in the i.c. which is wired so as to invert the output of gate 1. Consequently, fire causes the output of gate 2 to go high. This output is used to trigger an alarm to sound

Construction

The first point to consider is whether this detector is to be built as a self-contained unit, or whether it is to be linked with the main domestic alarm system. A separate system gives the advantage that it can have its own distinctive alarm sound. One

can then tell whether to telephone for the police or for the fire brigade! A disadvantage of the self-contained alarm is that it needs its own sound-generator circuit and its own power supply, both of which increase installation costs considerably.

Figure 4.2
Layout of the circuit board for the fire alarm. on the underside ot the board cut strips at C4, D17, E17, F17, C17. 117, (not $\mathrm{C} 17, \mathrm{H} 17$) E21, F21, G21
Solder blobs join six strips: C20 to D20 to E20 to F20 to G20 to H20

Since only one i.c. is involved construction is very simple. The lavout of Fig. 4.2 provides for four thermistors. Each of these needs to be matched to the i.c. as described below.

Supplement

Connect a thermistor to its input pin and to the 12 V rail. Connect all other input pins temporarily to the zero volt rail. Temporarily connect a $47 \mathrm{k} \Omega$ variable resistor to the input pin and the zero volt rail. Connect a voltmeter to the output of gate 2 (IC1, pin 1). The voltmeter should now read close to zero. Place the thermistor in a cup of water heated to approximately $50^{\circ} \mathrm{C}$ and leave it for about 1 minute to reach the same temperature as the water. The voltmeter may go high at this stage. Carefully adjus! the variable resistor until you find the point at which the output changes from low to high. Disconnect the variable resistor without altering its setting. Use an ohmmeter to measure its resistance. Select a fixed-value resistor of equal value and solder this in postition on the board (R5 to R8). The value of the variable resistor will probably not be exactly equal to one of the standard values for tixed resistors: select the next higher value, as this will ensure triggering at a temperature slightly less then $50^{\circ} \mathrm{C}$. Finally check the circuit with the fixed-value resistor in place. The output of gate 2 .should go high soon after the thermistor is placed in the
warm water, and should go low a minute or so after removing it from the water.

The procedure should be repeated for each of the other thermistors in use. It may seem that this is an unnecessarily complex operation. when one could use four preset variable resistors instead. The chief danger in using variable resistors \because : a permanent part of the circuit is that if their seltings should accidentally be altered, the fire alarm could be inactivated unknown to the user.

The four thermistors are placed in different parts of the house, where there is greatest danger of fire. In general they should be mounted high in the room, preferably close to the ceiling. Suitable places are just above any fireplace, cooker or central-heating boiler, and in any room in which there may be risk of fire (e.g. a hobby room). It is also worth while to place one at the top of the stairway. Each thermistor requires a twin lead to connect it to the alarm unit. If fewer than four thermistors are to be used, join the unused pins of IC1 to the zero volt pin.

Direct Reading Frequency Meter
 Andte, A.C. Electronic Test Equipment Projects pp 50.56

Here is a simple design (Fig. 9.1) for a unit that will enable a $0-1 \mathrm{~mA}$ meter to display frequency directly on a linear scale over the useful audio range of 20 Hz to 20 kHz . Measurements can be made on any waveform, with a sensitivity of less than 100 mV . Applications apart from frequency measurement include tachometers and speedometers for cars.

Circuit

The input signal is amplified by IC1 (Fig. 9.2) to a level suitable for driving the Schmitt trigger IC2. Diodes D1 and D2 reduce the gain of IC1 for large input signals. Regardless of the input waveform, the output from IC2 is a series of pulses of the same frequency as the input.
A monostable is built around IC3, a 555 timer, triggered from the output of IC2. The output of the 555 on pin 3 is normally 0 volts, but when triggered by a pulse on pin 2, pin 3 goes high for a period dependent on the value of C5 and the resistor selected by S1. As the input frequency increases so does the proportion of time that pin 3 is high, increasing the deflection on the meter. Zener diode ZD1 ensures that the pulses passed to the meter are al! of a defined level, the averaging of the meter movement then produces a deflection linearly proportional to the input frequency.

Timing of the monostable period is achieved by varying the voltage on pin 5 of the 555 with P1. This changes the overall period that pin 3 is high on all ranges and is used for calibration.

Construction

All of the components with the exception of the meter, S1 and R12/R15 are mounted on a printed circuit coard as in Fig. 9.3.

In Fig. 9.4, provision is made for using either eight or fourteen pin packages for IC1 and IC2. The pin numbers on the circuit are for eight pin devices which are mounted on the PCB in such a manner that pin 1 of the package fits into the hole drilled for pin 3 of the 14 pin package. Take care to locate the i.c.s correctly. Both the diodes and the electrolytic capacitors also have to be located correctly.

Solder pins are inserted into the board for the external connections, which can be made with instrument wire, although if the input leads are long it would be better to use screened cable.

Figure 9.3
PCB layout
R12, R13, R14 and R15 are connected directly to the rear of S1 and in many cases the common connection can be supported on a spare tag on the switch.
figure 9.2
Circuit diagram of the frequency meter

Figure 9.4
Component layout on the PCB
Virtually any convenient 1 mA meter can be used or alternatively the frequency meter can be assembled as an add-on unit for a multirange meter set to the 1 mA range.

Calibration

Only one calibration adjustment is needed to calibrate all of the ranges. This adjustment can be made at any frequency for which a convenient standard is available, P 1 is trimmed so that the meter correctly indicates the input frequency.

50 Hz mains derived from a low voltage isolating transiormer is a standard available to all constructors, but is not really suitable as the 50 Hz point is only one quarter f.s.d. on the 200 Hz range.

N.B. BEWARE OF LIVE VOLTAGES AND POSSIBLE LIVE CHASSIS

Alternative calibration can be achieved by reference to a calibrated signal source, or an oscillator at 200 Hz referenced to 50 Hz mains by Lissajous frequencies on a CRO.

Use

Any signal above 100 mV will be sufficient to trigger the meter which will then indicate the frequency of the applied signal. It is possible to use the instrument to indicate revolutions per minute by arranging contacts which close once per revolution (rotating magnet past a reed switch?) An extension of this would be to feed the meter from a phototransistor which would enable r.p.m. readings to be taken without contact if a contrasting line is painted on the rotating object. To eliminate the conversion from hertz to r.p.m. $(\times 60)$ it is possible to recalibrate directly in r.p.m., convenient ranges achieved with out changing any components other than resetting P1 being:

$$
\begin{aligned}
& 0-500 \text { r.p.m. } \\
& 0-5000 \text { r.p.m. } \\
& 0-50,000 \text { r.p.m. } \\
& 0-500,000 \text { r.p.m. }
\end{aligned}
$$

Changing C5 to 10 nF will change the ranges to

$$
\begin{aligned}
& 0-50 \text { r.p.m. } \\
& 0-500 \text { r.p.m. } \\
& 0-5000 \text { r.p.m. } \\
& 0-50,000 \text { r.p.m. }
\end{aligned}
$$

It may be necessary to connect a capcitor of value $5 \mu \mathrm{~F}$ across the meter to stop needle flutter on the lower ranges.

1.C. 5				
IC1	741, 8 or 14 pin			
IC2	7415, 8 or 14 pin			
IC3	555			
Resistors				
R1	$220 \mathrm{k} \Omega$	R10	$22 \mathrm{k} \Omega$	
R2	$10 \mathrm{k} \Omega$	R11	$4.7 \mathrm{k} \Omega$	
R3	$2.2 \mathrm{M} \Omega$	R12	$10 \mathrm{M} \Omega$	
R4	$47 \mathrm{k} \Omega$	R13	$1 \mathrm{M} \Omega$	
R5	$10 \mathrm{k} \Omega$	R14	$100 \mathrm{k} \Omega$	2\%
R6	$1 \mathrm{M} \Omega$	R15	$10 \mathrm{k} \Omega$	2\%
R7	$10 \mathrm{k} \Omega$	R16	$2.2 \mathrm{k} \Omega$	
R8	$10 \mathrm{k} \Omega$	R17	$3.3 \mathrm{k} \Omega$	
R9	$4.7 \mathrm{k} \Omega$			
($1 / 2 \mathrm{~W}$ unless stated)				
Capacitors				
C1	$4.7 \mu \mathrm{~F}, 16 \mathrm{~V}$			
C2	$33 \mu \mathrm{~F}, 6.3 \mathrm{~V}$			
C3	4.7 nF			
C4	100 nF			
C5	1 nF			
C6	160μ F. 25 V			
C7	100 nf			
Diodes				
D1	1N4148			
D2	1N4148			
Miscellaneous				
P1	$5 \mathrm{k} \Omega, 50 \mathrm{~mW}$			
S1	Four-way, two-pole Lorlin			
Meter	1 mA or multirange meter on 1 mA range			
PCB				

Ticking Eggtimer

Fund. A. More Electronic Projects in the Home pp 20-23
It was originally intended that this should be one of the simpler circuits in this book, but it was not to be! It was in fact for this project that the pulsed timer circuit explained in the previous project was originally developed, as the author likes his breakfast boiled egg timed to a slightly better tolerance than that available with most electrolytics; -50 to $+100 \%$! When one stops to think about it, there's quite a lot in an eggtimer circuit. In addition to the actual timer, an output tone generator is required to signal the completion of the timing period, and a second timer is needed to time the operation of this. One further objective was specified for the prototype. Your author tends to stagger down early in the mornings bleary-eyed and late for work, and a complex machine with lots of knobs and dials was strictly out! The final design was to have just two controls; a knob for setting the time, and a button to bash in order to start it. Even an on-off switch was ruled out.

The use of CMOS throughout solved the on-off switch problem, as when it's not running it draws no current. In the

Eggtimer circuit

Supplement

circuit of Fig. 5.1, IC1 A, B and C form the timer. Pressing S1 discharges C 2 and sets the timer running, as with the timer circuit of the previous project. VR1 sets the oscillator's rate and is used as a calibrator to set the range. When the timer completes its run, IC1C's output goes low. This pulls IC1D's input low via C3, and its output goes high and stays high for about 5 seconds, until R5 manages to charge C3 sufficiently to take it low again. Whilst it is high the oscillator comprising IC2C and D is able to run, producing an audio tone. This completed the circuit as specified, but left two spare gates available in IC2. It seemed a shame to waste them, so they have been wired to form a second astable, IC2A and B, with a

Figure 5.2
Eggtimer, copper side
frequency of about 2 Hz , gated on whilst the timer is running. The outputs of the two astables are fed to the output stage, so the net result is a quiet ticking noise whilst the circuit is running, culminating in a 5 second bleep when the set time is reached. D3 and D4 cause the output to consist of short pulses rather than a square wave, as this greatly improves battery economy. R14 keeps the volume to a reasonable level; if you have a large kitchen reduce it, for sensitive ears increase it.
A large piece of Vero was used to hold all this circuitry, 24 strips of 50 holes. Fig. 5.2 shows the 48 breaks, and Fig. 5.3 the component layout, including 23 links. Wire VR1 to decrease resistance when rotated clockwise. VR1 and VR2 then both increase the period for a clockwise rotation. To set the circuit up, turn VR1 fully anti-clockwise (minimum period) and adjust VR2 to provide a time of just under one minute. Then check that VR1's maximum setting gives over 6 minutes. The control can then be calibrated by trial and error for times of 1 to 6 minutes. The current drawn by this circuit is minimal at all times, even when giving the output tone it is no more than 5 mA , so a PP3 battery should last for a very long time.

The board completed is shown in Fig. 5.4.
A note on troubleshooting these timer circuits will probably not be amiss here. If they refuse to operate for any reason, probably the first test you'll want to make is whether there is a voltage present on the timing capacitor, and whether it is

Figure 5.4
Ticking eggtimer

Figure 5.5
Using a CA3140 op-amp as a buffer to measure voltage at high impedance points
increasing when it should be. Unfortunately it can't be simply measured with a meter as the current drawn by most meters would discharge it immediately. The answer to this is to buffer the meter with a 3140 op -amp which has a CMOS FET input stage. Fig. 5.5 shows how to do this using a 3140 as a simple unity-gain voltage follower. No components are required apart from the op-amp itself, and the supply can be taken from the circuit under test. Note that the op-amp can only follow the voltage up to about 2 V below the positive supply rail, but it can follow all the way down to negative rail.

Table 5.1 Components list for eggtimer

Resistors		Semiconductors
R1, R6	$10 \mathrm{M} \Omega$	D1, D2, D3,
R2	$2.2 \mathrm{k} \Omega$	D4 1N914
R3	$470 \mathrm{k} \Omega$	TR1 BC184L
R4, R7	$1 \mathrm{M} \Omega$	IC1, IC2 CMOS4011B
R5, R10	4.7M	
R8, R9	$10 \mathrm{k} \Omega$	Miscellaneous
R11	220k Ω	0.1 in Veroboard, 24 strips of 50 holes
R12	$100 \mathrm{k} \Omega$	Switch, SPST push-to-make
R13	$33 \mathrm{k} \Omega$	2×14-pin DIL i.c. sockets
R14	8.2Ω	$21 / 2$ in 8Ω loudspeaker

Potedntiometers
VR1 $\quad 10 \mathrm{k} \Omega$ linear
VR2

Capacitors

C1, C2, C3 $1 \mu \mathrm{~F}$ polycarbonate
C4 $\quad 470 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C5 $\quad 0.1 \mu \mathrm{~F}$ polyester
$\begin{array}{ll}\mathrm{C} & 0.1 \mu \mathrm{~F} \text { polyester } \\ \mathrm{C} & 0.01 \mu \mathrm{~F} \text { polyester }\end{array}$

Super-Regenerative VHF Receiver

Raver, F.G. Projects in Amarour Radio and Short Wave Listening pp 83-90
Regenerative circuits feed back part of the amplified signal into the aerial, or input of the regenerative stage, in correct phase to add to the original signal. This provides a considerable increase in sensitivity to weak signals. With a superregenerative circuit, regeneration can be carried beyond the usual limits, because the stage is quenched, of repeatedly brought out of oscillation, at a frequency above audibility.

Supplement

Because of the high sensitivity obtained by this method, super-regenerative receivers were very largely used for VHF reception, though they are now mostly replaced in commercial applications by superhet receivers. Thus a super-regenerative VHF receiver offers one of the simplest methods for the reception of VHF AM transmissions, and it can be adjusted to cover a wide frequency band with the minimum of difficulty.

Receiver circuit

This is shown in Fig. 11.1. Signal pick-up is by a short telescopic aerial, connected to L1, coupled to L2. L2 with T1 in parallel tune very flatly, and fully variable tuning is not required here. Signals are taken to gate 1 of the dual-gate FET, TR1. Gate 2 receives its operating voltage from the divider formed by R1 and R3, and R2 is for source bias. Output from this stage is from the drain to L3.

TR2 is the grounded gate super-regenerative detector, and operating frequency is determined by L4. VC1 is the panel operated tuning capacitor. T2 allows adjustment of band coverage.
Regeneration in this stage is controlled by the potentiometer VR1, which allows adjustment of the drain voltage (via R5 and L4). The source supply is through the radio frequency choke RFC, and R6. C5, R7, C6 and C7 are the quench network and for coupling of audio signals to the audio amplifier.

The latter is a relatively simple two stage circuit, TR3 and TR4, stabilised by direct current feedback through R9. This section will give moderate volume with a small 75Ω or 80Ω loudspeaker, and the output jack socket allows headphones (up to $2 \mathrm{k} \Omega$ resistance) to be plugged in, silencing the speaker.

Operation is from a 9 V or 12 V battery supply. The latter can be two 6 V battery holders, for four small 1.5 V cells each, in series.

TR1 is not expected to provide significant amplification, but is intended to help isolate the aerial from the oscillating stage TR2. This reduces radiation. In addition, the power level at which TR2 operates is extremely low.

L4, made as shown, allows tuning from 110 MHz to 180 MHz . VC1 covers only a part of this total range, which is chosen by the setting of T2. So long as VC1 is of low value (5 pF or 10 pF) no reduction drive is necessary with it, tuning being sufficiently flat for control by means of a fairly large knob.

The optional capacitance Cx may not be wanted with some samples of TR2. Cx is not necessary when super-regeneration is obtained over the frequencies required. Where Cx has to be added, it is of very low value, and is made by looping a turn or two of thin insulated wire around a bare wire soldered to VC1.

Super-regeneration is indicated by a hissing noise arising when VR1 is advanced. This hiss ceases when a signal is tuned in.

Case preparation

The case is made from a universal chassis box $204 \times 127 \mathrm{~mm}$ ($8 \times 5 \mathrm{in}$) and all assembly is on the flat plate, which serves as panel or front. The universal chassis sides are secured together with 4BA bolts and nuts. If the plate is to fit inside the flanges, as illustrated, then a little must be cut from two edges, or it may prove to be slightly too large.

First drill or punch holes for VR1 and VC1. Four countersunk holes are used to secure the two tag strips near VC1. Two countersunk holes also take bolts, with extra nuts or spacers, to allow the audio board to be fixed, as shown in Fig. 11.5. An aperture must also be cut to match the speaker cone. This can be done with an adjustable tank cutter; with a large screw-up punch; or by drilling a ring of small holes, removing the piece, and finishing off with a half-round file.
After construction, and having checked that the plate will fit inside the flanges, as mentioned, the front is completely covered with loudspeaker fabric or similar material. This is held taut by adhesive round the edges of the plate.

TR1 stage

Components for this occupy the top tag-strip in Fig. 11.2. L2 is $41 / 2$ turns of 28 swg wire, and L1 two turns, immediately against L2.

Figure 11.2
TR1 and TR2 stages
Connect C1 and R1 in paraliel, from tag MC (metal panel) to the tag taking gate 2 connection from TR1. Similarly connect C2 and R2, for the source lead. Take gate 1 to the top of L2, and connect T1 across L2 here. L3 is a single turn of thin insulated wire, 12 mm outside diameter, and C3 goes from here to MC. Connections to TR1, and to capacitors C1, C2 and C3 and to the coils, should be as short as can be reasonably arranged. LT/L2 is shown a little removed from the tag strip and TR1, in Fig. 11.2, to clarify connections. Positive for this stage runs from R3 and R4, at the anchor tag provided, as shown.

Fig. 11.3 shows the RF and detector stages assembled on tagstrips.

Supplement

Figure 11.3 RI and detector stages assembled on VC1 and tagstrips

Detector stage

This is mainly centred on VC1, and leads to L4, C4, drain and gate of TR2, and T2, in particular, are as short as can be arranged.

L4 is three turns of 20 swg wire, wound on any object which will provide an outside diameter of 12 mm . The coil is removed and turns spaced so that L 4 is 15 mm long. Solder one end to VC1 stator (fixed plates) tag as shown. Connect a stout lead from VC1 rotor (moving plates) tag to TR2 gate, joining on also C4 and T2. The free end of C4, and R5, go to the second end of L4. Solder TR2 drain lead to VC1 stator tag, and also T2.

The RF choke is 35 turns of 36 swg wire on an insulated former 4 mm in diameter and 10 mm long. Adhesive can be applied at the ends only. The choke is supported by stouter wires at its ends - one running to TR2 source (centre lead) and the other to the tag shown.

Other components are supported by the lower tag strip, Fig. 11.2. From here, leads run away against the panel to the centre tag of VR1, and to the base of the first audio amplifier.

Audio board

This is shown in Fig. 11.4. Do not overlook the essential strip break under R9.

The board is later fixed about 8 mm to 10 mm or so clear of the panel by means of bolts with extra nuts (Fig. 11.5). Check that the outermost strip, forming the negative return for TR3 emitter, C9 negative, R10, and C10 negative, is in good

[^0]electrical contact with the metal panel. This is most easily done by securing a tag under the board, soldered to this strip. At the same time, check that the second strip (TR3 base, C9 positive, etc.) is not grounded by contact with the tag or nuts.

Resistors			
R1	47k Ω	R6	$10 \mathrm{k} \Omega$
R2	270Ω	R7	$15 \mathrm{k} \Omega$
R3	$47 \mathrm{k} \Omega$	R8	$56 \mathrm{k} \Omega$
R4	3908	R9	270k
R5	$1 \mathrm{k} \Omega$	R10	39Ω
(resistors 5\%, 1/4 watt)			
VR1	$22 \mathrm{k} \Omega$	eter	ch S1
Capacitors			
C1	1nF disc ceramic		
C2	1nF disc ceramic		
C3	1nF disc ceramic		
C4	1nF disc ceramic		
C5	5 nF disc ceramic		
C6	10nF disc ceramic		
C7	$0.1 \mu \mathrm{~F}$		
C8	$22 \mu \mathrm{~F}, 12 \mathrm{~V}$ electrolytic		
C9	$100 \mu \mathrm{~F}, 6 \mathrm{~V}$ electrolytic		
C10	$220 \mu \mathrm{~F}, 12 \mathrm{~V}$ electrolytic		
VC1	Small 10pF air spaced short wave variable capacitor (Jackson C. 804 type), or similar		
T1	Miniature 30pF VHF trimmer		
T2	Miniature 30pF VHF trimmer		
Transistors			
TR1	40673		
TR2	MPF102		
TR3	BC109		
TR4	BC108		
Miscellaneous			
Loudspeaker: approx. 60 mm , ($21 / 2 \mathrm{in}$) 75Ω or 80Ω Jack socket, 3.5 mm fully insulated			
Telescopic aerial, about $430-600 \mathrm{~mm}$			
Two 6-way tagstrips (2 earthed)			
Board $40 \times 60 \mathrm{~mm}(15 / 6 \times 23 / 8 \mathrm{in}) 0.15$ in matrix			
Small knob, large knob with dial			
$204 \times 127 \mathrm{~mm}(8 \times 5 \mathrm{in})$ universal chassis box with extra plate (Home Radio, Mitcham)			
Coil former $10 \times 4.5 \mathrm{~mm}$ with VHF grade core			
Battery connectors, wire, etc.			

Negative circuits are completed also by a lead to the mounting bush of VR1, by the tags MC of the tag strips, and by the bush of VC?.

As the output jack socket is in the positive line, it must be a completely insulated type, or must be isolated from the panel by means of insulating washers. The actual position of tags varies somewhat. Wire the socket so that it completes the circuit from TR4 collector to the loudspeaker, when no plug is inserted. When a plug is put in the socket, the contacts supplying the loudspeaker are opened, and the circuit to the headptones is by the sleeve and tip contacts.

Adjustments

The aerial can be a hinged telescopic type fitted to the top of the case near $L 1 / 2$, or a sliding-down type fixed to the side of the case here. The securing screws (or screw) must be insulated from the metal case. This can be done by placing a strip of Paxolin or other insulating material between aerial mounting and case, and passing the bolts through holes allowing ample clearance. Further insulation is of course necessary before putting on the nuts inside.

T2 is open for the higher frequencies mentioned, and closed to reduce frequencies. With VR1 advanced about two-thirds, a hiss should be heard in the loudspeaker. This shows superregeneration is present. Without this, reception will not be obtained. When a transmission, or carrier, is tuned in, this hiss ceases. VR1 is adjusted for best results.

The best position for L3 was found with this turn between the turns of L4. Band coverage can be extended by changing L4 slightly. If necessary, Cx may be added as explained, but the capacitance used here is very small indeed.

The operation of a super-regenerative detector provides some degree of 'automatic volume control' effect. Because of this, and inherent damping and losses at these frequencies, no sharp resonant peak will be found for the setting of T1.

					 NNNNN 	 				 				
								- 						

MASHMR THTFGYRONICS NOW! The PrACHICAI way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous k nowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried ou: in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time. for advice or he!p during your work. A Certificate is given at the end of every course

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electroni components
- Read draw and understand circuit diagram
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Burld and use digital electronic circuits
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radıo, T.V Hi-FI and microprocessor/computer

NewJob?NewCareer?NewHobby?GetintoㅋlectronicsNow!

Questions \& Answers on Electronics

Second Edition by lan Hickman
\star What is feedback, and how is it used? \star Why is decoupling necessary? \star How is a square wave produced?
Using a question and answer approach this book provides a condensed account of a wide-ranging subject, intended to give the interested layman and the student an insight into the underlying principles and numerous applications of electronics. 0408005785160 pages
ORDER NOW-from your local bookseller
Write for full details of all our books or
in case of difficulty send cash with order to Patricia Davies,

Also of interest...

Questions and Answers on Integrated Circuits Second Edition R G Hibberd $0408004665 \quad 112$ pages
Questions and Answers on Transistors Fourth Edition lan R Sinclair 0408004851112 pages
Each book in the series measures
$165 \times 111 \mathrm{~mm}$ is illustrated. Paperback and priced at $£ 1.95$

Newnes Technical Books 1 Baroumh Green Severoaks Ken TNI5 8 H

THE EXHIBITION FOR THE ELECTRONICS ENTHUSIAST

Wednesday 11 th November 10 a.m. -6 p.m. Thursday 12 th November 10 a.m. -8 p.m. Friday l3th November 10 a.m. -6 p.m. Saturday 14 th November 10 a.m. -6 p.m. Sunday 15 th November 10 a.m. -4 p.m.

COMPONENTS • DEMONSTRATIONS • SPECIAL OFFERS• MAGAZINES• BOOKS

Any one of the 17,000 people who thronged the RHS for the Breadboard exhibition last year will need no introduction to this year's premier show for the electronics enthusiast. They already know all about the demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could name you all the leading companies who were there to see - and to buy from, at fantastic prices.
Even those lucky 17,000 would be surprised to hear that this year we've improved BREADBOARD still further! More stands, more demonstrations and wider gangways to make it all easier to enjoy!
BREADBOARD 81 is the place to be from November 1 lth to 15 th at the RHS Hall. Why not come and find out for yourself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81. Close to Victoria Station and NCP car parking facilities.

Cost of entry will be $£ 2.00$ for adults and £1.00 for children under 14 yrs and O.A.P.s. ORGANISED BY ARGUS SPECIALIST PUBLICATIONS LTD., 145 CHARING CROSS ROAD, LONDON WC2H OEE.

ROYAL HORTICULTURAL SOCIETY'S

 NEW HALL, GREYCOAT STREET. WESTMINSTER, LONDON S.W.1.To avold queuving, advance tickets will be available from Advance Tickete BB '81,
RSP Ltd, 145 Charing Croms Road, London WC2A OEE.

- "Special Advance Booking Price"

Adults £1.75 Children under 14 yrs and O. A.P.s 80 p
Please send tickets (1) 11.75 tickets 80p

Just back from his summer holidays, Dick answers your queries

LAST MONTH I started with a long letter: I'll go to the other extreme this month.

Dear CD,
Do lonisers work? Will you publish a circuit? Can I have a binder?
Richard Payne,
Coleme, Wiltshire
Answers: Yes. No. No.
Our thanks, by the way, to Colin Ashman in Suffolk, Christopher Bowman in Kent and James Mercer in Glasgow, who all said that they would like to correspond with Peter Degerlund in Finland. I'll pass your details on to him.

The next writer appears to be OK for formers but stuck for cores - if you follow what I mean.

Dear Intelligent Richard,
Can you tell me of anywhere that I could get some 5 mm coil formers, and suitable cores for 28 MHz AM working. Also screening can to suit. I've had no problems finding the formers and cans (thanks to Electrovalue) but / can't find the cores anywhere.
A. Docherty, 12 years

Brentwood, Essex.
We got on the line to Watford Electronics for this one. Watford supplies Neosid coil 'kits' comprising cans (13 mm by 13 mm by 14 mm high), formers and cores (about 4 mm diameter). These are sold together under the code number 722/1, for 36p. (You'il find Watford Electronics' address on page 9 of this issue.)

Help to Eton College is offered by the University of East Anglia in the next letter.

Dear Clever (or not quite so? . . .) Dick. Reference your column, September '81, and the Correspondence from Eton College, a Mr. Dick Gibbons, which poses the question as to the source of 3.5 mm stereo jacks and sockets. These can be obtained from Farnell Electronic Components, Canal Road, Leeds. Indeed, in their latest catalogue, there are listed two types of plug and a socket, all three pole (stereo) and 3.5 mm gauge.

I hope this information is of some use to Mr. Dick Gibbons, for we institutions of learning have to stick togetherl
R.M. Ames, Technician

University of East Anglia, Norwich.
PS. How about a binder, talking of togetherness/?

PPS. I have no connection with the above company, other than satisfactory trading relations.

Similar help from William Leung in Essex:

Dear CD,
I would like to comment on your reply towards Dick Gibbon's letter: "RubbishI".

Have you ever tried Maplin? They supply a STEREO 3.5 mm jack plug for 25 pence (code HF98G).
William Leung,
Harlow, Essex.
PS. For me being so helpful, how about sending something in return? (hint) hintl/

Richard Smedley in Montgomery, Powys supplied the same information as William Leung but added: ' . . . an inline socket is available from Ross Electronics (No. RE-207) as part of an adaptor from a $1 /{ }^{\prime \prime}$ jack plug, priced $75 p^{\prime}$.

William gets the binder because his letter arrived here first.

The on-going saga, starting with Ben Chaston's letter in the July ' 81 issue, goes on. (See last month's suggestion under CD from F.R. Maher.) We were looking for the shortest letter that could still make sense. Try this one for size:

Dear CD,
Y ?
A.J. Shave,

Bournemouth.
We'll give you one more issue before the winning entry is declared.

Dear CD,

Looking back through old issues I noticed that there was a short wave radio in March ' 79 with ranges from 0.5 to 30 MHz (I'm a CB fan). I built the project but to my dismay found an extra hole in my PCB where an aerial should be connected. I could find no description of this aerial so could you please advise.
A.J. Shave,

Bournemouth.
(Just a minute, what a coincidence: there must be two A.J. Shaves in Bournemouth.)

I tried this question out on the HE Team of Technical Experts. Silence at first but then one of them woke up. His advice was simply: 'Use a long length of wirel' (How long is a piece of string?)

My purchase of HE Saptember '81 is $m y$ first ever step into the fascinating world of Electronics, as I have only just begun to be interested in this subject. I find the magazine very interesting and am planning to purchase several of the advertised items

I am 16 years of age, extending my education and am contemplating the idea of studying electronics in the near future.

I have a problem - I don't have sufficient money (but who does) and am surprised and gratified at some of the incredibly low prices in HE.
N. Ghedda,

London SW9.
PS. I am wondering if you would be abla to send me a "project" for a MW \& FM radio-receiver?

Funny you should say that - I've got the same problem: I don't have sufficient money either.

An AM receiver? (See the Short Wave Receiver project in the September ' 81 issue (copies available from us at HE if your newsagent hasn't got one).

An FM receiver? You must mean a VHF receiver. If so, see this month's special projects supplement.

Final letter coming up, flavoured with Latin.

Dear Ingeniosus Dicius,
Anything wrong with the GSR Monitor in June ' 79 edition of HE??
Gratias tibi ago,
A. Richardson,

Fareham, Hants.
I blew the dust off our ' 79 file, tracked down the GSR Monitor on page 8 of the June ' 79 issue but could find nothing wrong. (This project helps you to relax scientifically by monitoring your galvanic skin response.)

Stay lucky till the next issues. Finis for now.

Zeam un With W Electronics
for top-quality components, innovative kits FAST SERVICE AND LOW, LOW PRICES

INTEGRATED CIRCUITS

555 Timer
556 Dual 555 Ti
741 Op-Amp
0590 Constan $\quad .190$
Temperature Sensor 2.75
AY-5-1224 Clock
AY-5.1230 Clock/Timer
AY-3.1270 Thermameter
CA3130 CMOS Op. Amp. CA3140 CMOS Op. Amp. ICL7106 DVM (LCD drive)
ICM755 CMOS 555 Timer LM377 Dual 2W. Amp. LM379S Dual 6 W . Amp. LM380 2W. Audio Amp. LM382 Duaf low-noise Pre-Amp.
LM 386250 mW . Low Voltage Amp LM1830 Fluld Level Detector LM2917 F-V Converter (14. pin)
LM3909 LED Flasher/O Scillaio LM3911 Thermometer LM3914 Dot/Bar Driver (linear) M3975 Dot/Bar Driver (log.) "Save" feature Combination Lock LS7225 Electronic tamper output MM74C911 4.dight display controller
MM74C915 7 -segment BCD Converter MM74C926 Counter/7-seg. output S5668 Touchdimmer SLA40 A.C. Power Control
SL441 Burst Fire Controller SL441 Burst Fire Controller
SN7647T Complex Sound Generator TBA800 5W Audio Amp THA810AS 7W. Audio Amp. TMS1121 Clock/7. day Time TDA 1024 Zero Voltage Switch TDA2020 20W. Audio Amp TDA4290 D.C. Controlled, Base. Trebl TLO81 J-FET OD. Amp. TL082 Dual J-FET Op. Amp TLO84 Quad J. Fot Op. Amp
ZN414A.M. Radio ZN4 14A.M. Radio
ZN1034E Timer
Most ICs supplied with Data Sheet

SPECIAL OFFER			
orrears must be eeeived delotre 30.11 .81			
'556	${ }^{35}$	M 1928	1.20
${ }_{\text {L }}^{13127}$		${ }_{\text {SLS }}$	${ }^{1.20}$
1 m 380	${ }^{1} .65$		${ }_{1.70}^{2.105}$
1 M3974	1.95		
	1.60	Pastic Refece R 1 east tor	

DISCO LIGHTING KITS

Each unit has 4 channels frated at 1 KW or 240 V per
Channell) which switch lampe to channell) which switch lamps to provide sequencing DL 1000K
This kit teatures a obdirectional
sequence, speed ol sequence, speed of sequence and
Irequency of direction change trequency of direction change
being variable by means of potar, iometers. Incorporates OLZ1000K A lower cosi version of the above Teaturing undirectional channei
sequence with speed variable by means of a preset pol. Outputs swiched only at mains zaro cros
sing points to reduce redio erence 10 minimum c... Optronal Opto input
OLA1

DVMTHERMOMETER KIT otfecis. conirolied manually or by an optional opto than gerting up to switch lights on when in
solated audio input.

Based on the ICL7126 fa low power version of the ICL7106 chiol and a $31 /$ dignt
liquid crystal display this kit will form the basis of a digital multimeter lanly a additional resistors and swiches are required - delaris supplied), or a sensitive
digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$. The bas sic kit has a sensitivity of 200 mV for a full scale reading, automatic polarity indication and an
uitra low power requirement - giving a 2 year typical battery lite from a standard 9 V uiltra low power requirement - giving a 2 year typic
PP3 when used 8 hours a day. 7 davs a week.
f15.50 + VAT
 ${ }_{6 A}$ A with trigger O4006LT 8A isolated tab TXAL226B Diac
Opro Isolated Triac 30200.6 A/400V.


```tor
```

\qquad ase. Trebl oble $\begin{array}{r}2.85 \\ \text { and } \\ \text { 1. } \\ \hline\end{array}$ 1.98
. .67
1.00
.98
1.80
.10

Prices do not include V.A.T. Add 50p P. \& P. 15% V.A.T. to total. Overseas customers add 15%. A.T. to total. Overseas cu
£ 1.50 (Europe), £ 4 (elsewhere). Access and Barclaycard welcom Access and Barclaycard welcome. Shop open: 9-5 (Mon.-Fri.), 10-4 (Sat.) 11 BOSTON ROAD. LONDON, W7 3SJ Tel: 01-5799794/2842

MINI
TRANSFOAMER
0. lin. Red
0.1in. Green 0.1in. Green
0.1 in. Yellow

Standard mains Orimaries 240 V a.c.
100 mA secondaries $6-0.6 \mathrm{~V} \quad 80 \mathrm{p}$ $\begin{array}{ll}6-0-6 \mathrm{~V} & 80 \mathrm{p} \\ 9-0-9 \mathrm{~V} & 85 \mathrm{p}\end{array}$ 12.0.12V. 90 p 1A. 9-0.9V. 210 p
0.2in. Red
0.2 Zin Green
0.2 in Yellow 0.2 in . Yellow
0.2 in . CItps $0.2 i n . C i t p s$
Rectangular Red
Rectangular Gre Rectangutar Yellow 170 Fiat Foce rectangu lar. Triangular, A
rowhead or Square Red
Green Red
Green
Rec. Yell Green
Rec. Yell

Component side

The Low Cost Eurocard Size Microboard

Fully Compatible with indirect connectors! please and Card Frames to the latest international specifications.

Accepts any Integrated circuit package allows high packing density.

Screen Printed with 'island' pattern for ease of use - ideal for solder and wire wrap applications.
\qquad
 Postal Code:

Vero Electronics Limited, Retail Dept., Industrial Estate Chandler's Ford, Hampshire SO5 32R. Tel (04215) 62829

Into Electronic Components

In Part Four of our beginners' series, lan Sinclair unravels the mysteries of capacitors. He also describes some practical measurements

A CAPACITOR IS, as far as DC is concerned, a gap in a circuit which stops DC current from flowing. Even in the early days, several centuries ago, experimenters had found that a gap in a circuit could, with a bit of designing, store small quantities of electric charge. In those days, the idea of electrons had not been completely thought out, but the idea that electric current was a movement of something called electric charge was well established. The storage action of the gap then seemed quite reasonable - electricity tried to flow around the circuit, and when it came to the gap it piled up on one side, unable to move.

It's not quite so simple as that, but the idea serves us quite well. A big breakthrough in these early days was the invention of the 'Leyden Jar', a glass bottle coated with metal foil on its inside and outside surfaces but with no connection between the two metal coatings (Fig. 1). This simple device was found to be capable of storing enough charge to give fatal shocks, and the inventors of that time promptly set about trying to discover what rules governed its action.

These rules emerged slowly. The greater the surface area covered by the metal, the more electric charge could be stored. That one seemed reasonable. What was much less predictable was that jars made of thin glass stored much more electric charge than an otherwise identical jar made of thick glass. That put paid to the simple idea that electricity was a liquid and that it needed a large volume of jar for storagel Later yet, researchers discovered that the material in the gap between the metal sheets also played an important part. Obviously, it had to be an insulator, but insulators like glass were much more effective than air, and sulphur was much more effective than glass.

Coming back with a rush to the twentieth century, we make many types of capacitors by putting a thin film of metal on to each side of a thin sheet of insulator. The actual amount of capacitance we get from this arrangement is measured in units called farads, and the equation which enables us to predict just how much capacitance we can get from a given arrangement is given in Fig. 2.

The units shown in Fig. 2 are modern units, with area measured in square metres, and thickness in metres. The quantity e is called 'permittivity', and its value depends on the

Figure 2. Parallel-plate capacitor, and the equation for capacitance
material that is used as an insulator. A vacuum has the lowest value of permittivity while insulators like ceramics have much higher values.

Sizing It Up

How do you measure the ability of a gap to store electric charge? It's not the world's easiest problem, and it's just as well that it was solved a long time ago, when experimenters measured the amount of charge that was stored in a capacitor when different voltages had been used to charge the capacitor. It should not come as a surprise to learn that we can store more charge by using a large voltage to push charge into the capacitor - it's rather like compressing gas into a cylinder. What is a pleasant surprise is that when we draw a graph of the amount of charge stored in this way plotted against the amount of voltage used to push the charge in, the graph is a straight line (Fig.3). When you get a straight-line graph, it means that there is a constant relationship between the quantities that are being plotted. Since this graph is of charge plotted against voltage, the straight line shape means that the ratio

$$
\frac{\text { charge }}{\text { voltage }}
$$

is constant.
Take another capacitor and repeat the measurements, and you again'get a straight line graph, but with a different value of the charge/voltage ratio. Each different capacitor that you test gives a straight line graph, but with a different value of the charge/voltage ratio - and that ratio is the quantity that we call capacitance, measured in units of farads.

Figure 3. Capacitance, charge and voltage. Connecting a capacitor to a voltage results in a quantity of charge to be stored in the capacitor, and a graph of the amount of charge plotted against voltage is a straight line

King-size Farads

One of the unfortunate facts of life is that when you pick a set of measuring units, some will inevitably turn out to be much too large, and some too small. The farad is one of the very large ones, and a one-farad (1F) capacitor is not exactly an everyday value. The common values that we use are much smaller, so that we have units called microfarads (millionths of farads, symbol UF), nanofarads (thousandths of microfarads, symbol nF), and picofarads (millionths of microfarads, symbol pF).

Table 1 is a reminder of how much of each makes one of the next size up. The reason for using millionths in this way is that it makes it easier to convert from the practical units back to farads when we need to use farads in calculations.
IF $=1000000 \mathrm{uF}$ (MICROFARADS) $O R \quad 1 u F=1 / 1000000 \mathrm{~F}$
$1 \mathrm{uF}=1000 \mathrm{nF} \quad$ (NANOFARADS) OR $1 \mathrm{nF}=1 / 1000 \mathrm{uF}$
$1 \mathrm{nF}=1000 \mathrm{pF} \quad$ (PICOFARADS) OR $1 \mathrm{pF}=1 / 1000 \mathrm{nF}$
SO THAT $1 \mathrm{uF}=1000000 \mathrm{pF}$
CAPACITOR SIZES CAN BE QUOTED IN ANY OF THESE UNITS,
BUT WHEN COLOUR CODING IS USED. THE UNITS ARE ALWAYS
PICOFARADS. MANY CAPACITORS MADE IN JAPAN CONE WITH
' k ' MARKINGS - THE k MEANS nF, SO THAT A 10k CAPACITOR
HAS A VALUE OF 10 nF

Table 1. Capacitance units

On Charge

Now to the nitty gritty. When we connect a capacitor to a power supply, we are charging the capacitor. The amount of charge is calculated by multiplying the amount of capacitance by the amount of voltage, and if you used farads for capacitance and volts for voltage, the answer is in units called coulombs. It's a lot more convenient to use microfarads, nanofarads or picofarads, though, and by so doing end up with microcoulombs, nanocoulombs or picocoulombs of charge. For example, if you charge a 1 uF capacitor from a 20 V supply, the charge is just 20 uC (20 microcoulombs). If you charge a 5 nF capacitor to 12 V , the charge is 60 nC (60 nanocoulombs). If you charge a 220 pF capacitor to 10 V , the charge is 2200 pC (20 picocoulombs), which is the same as 2.2 nanocoulombs.

These stored amounts are very small - one of the problems that we have with electricity is that we can store only very small quantities. As a practical demonstration, take a 10 uF electrolytic capacitor and plug it into the Eurobreadboard. Connect the negative end of the capacitor lead (Fig.4) to the negative(-) of the 9 V battery, and also to the negative (-) input of the HE Multitester, switched to the 10 V range. Now touch the positive(+) lead of the battery to the positive (+) end connection of the capacitor. This will charge the capacitor - you don't have to hold the lead against the capacitor for more than a fraction of a second. Now hold the positive (red) probe lead of the HE Multitester on the positive lead of the capacitor. What do you get?

Right, the meter needle flicks up then falls back. The amount of stored charge in a 10 uF capacitor is just enough to make the needle of this very sensitive meter flick over - but that's all. A battery of the same size could keep the needle of the meter well over the scale until several generations of cows had come home. That's because batteries don't store charge - they push it around because of their chemical action.

Figure 4. Simple method of charging a capacitor and measuring the charge voltage

Inside Information

Most capacitors are made in a straightforward way - they're just pieces of insulating material, with films of metal deposited on each side, and with connections made to the metal film (Fig.5). There are a lot of materials we could use, but the two favourites are mica and ceramic. Mica is an excellent insulator, and as it is dug up it cleaves like slate into flat sheets. Unlike slate, though, these sheets of mica can be split down into very much thinner sheets with very little effort, and so it's easy to make mica sheets which are less than one thousandth of an inch thick. We can coat these with metal by chemical methods (they are dipped into a solution made using silver, and end up with a silver coating), or by evaporation. Evaporation of metals is a more modern technique and has to be done in a vacuum. The metal that is evaporated is usually aluminium, and the technique is to hang a loop of aluminium wire on to a length of tungsten wire that can be electrically heated. The insulators are supported somewhere close by and the wire and insulators are covered with a jar. After the air is evacuated the tungsten wire is heated until the aluminium melts and evaporates. The aluminium condenses on to the insulator in an even coating, just what we need for a capacitor.

Figure 5.Mica capacitor construction: (a) top view, (b) side view, (c) multi-layer construction

Mica And Ceramic Types

Whatever methods are used, the mica and the ceramic types of capacitors are favourites for the smaller values of capacitance. Mica types, particularly the high-grade ones called silver-micas, are prized by the folks who build high-frequency radio equipment, because the capacitance values of mica capacitors are stable - they don't change much with age or temperature, and their values are not affected by changing the voltage across them. Ceramic types, by contrast, can be made with larger amounts of capacitance than their mica counterparts without being too bulky, but the value of capacitance of a ceramic is not nearly so stable, so that there are some jobs for which ceramic capacitors are never used, like oscillator resonant circuits (more of that next month). If you just want a capacitor to bypass some unwanted high frequency signals, though, a ceramic type is often useful.

Rolled Types

Another common construction is the rolled capacitor. This starts off as a long strip of flexible insulating material, traditionally paper, but nowadays usually some sort of plastic material. The strip is coated on each side with metal, using the evaporation technique described above, so that the strip is one long capacitor. To reduce the size, the metallised strip is then rolled up with another insulating strip into the familiar tube shape (see Fig.6). Rolling up with an additional length of insulator not only reduces the size, it increases the capacitance, so that we can make comparatively large values of capacitance this way - up to a microfarad or so - without the capacitor being unacceptably bulky. The name of the material that is used as an insulator is also used to describe the capacitor, so we get polystyrene, polyester, polycarbonate types specified for cir-

Feature

cuits. Unless you're a designer, the differences between them aren't too important, but try to stick to the type that is specified when you are building a circuit.

Figure 6. Tubular rolled capacitor construction

Electrolytic Types

The third important class of capacitor is the electrolytic, which is used a great deal in low-voltage circuits. Unlike all the others, which use entirely solid materials, the electrolytic capacitor uses a conducting paste as one of its connections. The principle is a fairly simple one. Since we can get greater amounts of capacitance by having very thin insulating layers, the electrolytic capacitor relies for its operation on the formation of a very thin film of insulator on a metal, rather than by thin metal films on either side of an insulator. The metal is usually aluminium (there are also tantalum electrolytic capacitors, but we'll stick to aluminium types for simplicity). For aluminium types the insulator is aluminium oxide, which forms as a thin hard film on the surface of the metal when the aluminium is placed in contact with a dilute acid and current is passed between the aluminium and the acid. This action, called forming, is necessary when the capacitor is constructed, and will sometimes also be needed if the capacitor has been stored unused for a long time. Because the insulator is so thin, and because the aluminium foil can be etched to give it a very large surface, very large amounts of capacitance, as high as one farad, can be obtained in comparatively small spaces.

Figure 7. Wrongly-connected electrolytics: (a) probably harmiess, because the resistors will prevent excessive current flow flowing, (b) wait for the bang!

The price we pay is polarisation and low voltage operation. Polarisation means that the capacitor must always be connected the same way round as it was in the circuit which formed it. This is why the leads are marked, so that you can connect it the correct way round into your circuit. What happens if you don't? The results can be spectacular. Reversing the connections will reverse the process which caused the insulating film to form on the aluminium, so that the film disappears. When that happens, the 'capacitor' just isn't a capacitor any longer: it's a conductor, and it will pass as much current as the circuit allows. If your circuit is like that shown in Fig.7a, there shouldn't be too much trouble because the resistor will limit the amount of current that will flow. If, however, the capacitor is strung directly between the positive and negative supply lines with nothing to limit the current, as it would be in a power supply (Fig. 7), then one of two things will happen. The first is that the power supply will give out, so you'll have to replace a fuse or a diode or both. The second, distinctly more unpleasant, possibility is that the capacitor will overheat and burst, showering the circuit and probably you as well with corrosive acid paste that won't do either you or your circuit any good at all. The effect on a circuit board is like having a battery burst on it messy. The noise is fairly spectacular too, but it's an expensive
way of celebrating Guy Fawkes day. If you get any paste in your eye, wash it out at once with lots of cold water, then see a doctor.

Always watch, then, which way an electrolytic is connected. The trouble is that though they are always marked, different manufacturers mark their electrolytics in different ways. Some put a red dot at the positive(+) end, some put a black band at the negative (-) end. Some have a set of black arrows pointing to the negative end. If you are in any doubt, look to see if either one of the leads is connected directly to the outer case of the capacitor - this is almost always the negative lead.

The other problem which is associated with an electrolytic capacitor is that of leakage. Capacitors which are made in other ways are good insulators for DC - if you connect them to the most sensitive resistance range of the HE Multitester, which is the 20 M scale, then after the capacitor has charged from the meter, there should be no noticeable needle deflection. You should expect a resistance reading of at least 1000M (1000 million ohms or megohms) for silver micas and ceramics, and most rolled capacitors have resistances of at least several hundred megohms. Electrolytics are quite different - they have much lower resistance values because the thin film of insulator is never quite perfect. There is always some contact between the conducting paste and the aluminium, so that a meter measuring current and connected in series with a charged electrolytic capacitor will always read some current.

Try out the circuit shown in Fig.8. Make quite certain that the electrolytic is the right way round, because the current will be a lot higher if it isn't. Start with the HE Multitester switched to its 50 mA range, and if there's no reading visible, switch to lower ranges in turn until you can read the leakage current. A good electrolytic may have a leakage current of only a few microamps, a poor one may have several milliamps. You will possibly find that the current is not constant. At the instant when you connect up, the battery inside the multimeter will charge the capacitor, and this causes a current which should rapidly die away. After a few seconds, however, if the current continues to change, this is probably because some more insulator is forming, increasing the resistance of the capacitor. An electrolytic which has not been used for some time will pass quite a lot of current (a few milliamps) for some time, but this current should eventually drop to the normal leakage level. What is 'normal' depends a lot on the capacitor value. In general, the larger the capacitance is (in UF), the more leakage you can expect. The existence of leakage current is a problem which we always have to remember when we have electrolytics used as coupling capacitors or in timing circuits such as those using the 555 timer integrated circuit.

Figure 8. How to measure leakage current through an electrolytic capacitor

A Variable Quantity

There are nothing like as many circuits which need variable capacitors as those which need variable resistors, but the few that exist are important. One of these is the tuning of radio circuits - done by altering the capacitance in the tuning circuits. Variable capacitors used for this purpose consist of a set of fixed plates which mesh with another set of plates mounted on a shaft so that their relative positions can be altered without touching each other (see examples in Fig.9). At one time, the space between the plates was always air, but to make smaller variable capacitors having the same capacitance values, nowadays the space is normally filled with mica or plastic sheets which also prevent the plates from touching and shorting to each other. When variable capacitors of this type are used, the moving set of plates is always connected to the frame, and so earthed. This avoids the 'hand capacitance' ef-
fect which plagued radios in the old days - when the fixed plates were earthed, touching the control knob added a.bit more capacitance to the circuit, and altered the tuning, so you could find that having tuned in a signal, you would lose it as soon as you let go of the controll

Figure 9. Variable capacitors: (a) miniature air-spaced type, (b) standard size air-spaced, (c) twin-ganged air-spaced capacitor: the two capacitors are on the same shaft so that their values change together, (d) a solid-dielectric variable capacitor - the material between the plates is a solid insulator

Trimmers are small versions of variable capacitors and are used rather more widely. They can be small versions of the tuning variables, or they can be 'postage stamp' or 'beehive' types. The postage stamp, or compression trimmer consists of a stack of thin sheets of metal sandwiched with thin sheets of mica, all held in a frame of plated metal, with an adjusting screw which has the effect of compressing the plates together. Alternate plates are connected, so that only two leads are used (Fig.10). By tightening the screw, the plates are clamped more tightly, the spacing between them is reduced, and the capacitance value becomes greater.

The beehive trimmer has a fixed set of circular plates into which another set can be meshed by screwing the top of the beehive shape clockwise, so increasing the area of metal that is overlapping, and so increasing the capacitance.

Figure 10. Operating principle of the compression trimmer tightening the screw forces the plates closer together, so increasing capacitance

Fill 'Em Up, Joe

Charging or discharging a capacitor, like filling or emptying a bottle, takes time. There are two items that decide how long the capacitance of the capacitor la bigger bottle takes longer to fill or empty) and the resistance of the circuit through which the capacitor is charged (turn the tap to a dribble, and the bottle takes a long time to fill). We measure the time in units called time-constants, and the time-constant for a capacitor-resistor combination is the quantity

$$
C \times R,
$$

where C is the capacitance value and R is the resistance value.
Because of the way that units of capacitance and of resistance are defined, multiplying these two together gives units of time. If we multiply farads by ohms, we get the timeconstant in seconds. A much more practical pair of units is nanofarads and kilohms, which gives time-constant in microseconds (us). For example, a 0.05 uF (which is 50 nF) capacitor charged through a 47 K resistor gives a time-constant of

$$
50 \times 47=2350 \text { us, }
$$

which is 2.35 ms .

Figure 11. Charging a capacitor - the voltage across the capacitor is zero before the switch contacts are closed

Now, as it happens, the time-constant is not the time that it takes to charge or discharge a capacitor. Imagine a charging circuit for a moment (Fig. 11) which at the instant you switch on sends a current of 1 mA into the capacitor. This current of 1 mA flows because when you first switch on, the voltage across the capacitor is zero, so that the whole 10 V of the circuit is across the 10 K resistor - the result is that Ohm's law rules OK, and the current is 1 mA . By the time the capacitor is halfway charged, though, the voltage across it will be 5 V , and there's only 5 V left across the resistor. A voltage of 5 V across 10 K can pass only 0.5 mA , so the rate at which the capacitor is charging is now only half of what it was at the start. By the time the capacitor has 9 V across it, there's only 1 V across the 10 k resistor, and the current has gone down to 0.1 mA , making the charging rate only one tenth of what it was at the start. Charging up a capacitor is not like filling a pot with water, because the charging rate of the capacitor becomes less as the capacitor is charged. A graph of voltage plotted against time (Fig.12) shows that the capacitor never quite finishes charging, but gets as near as we need to being completely charged in a time equal to four time-constants. For example, if you have a 1 uF capacitor charging through 100 k , then the time-constant is
1000×100 us $=0.1$ seconds,
and we can reckon that charging is finished in four times this amount of time; that is, 0.4 seconds. This four times factor is not a bit of fancy theory, it's just a rule of thumb, and some folk take three times the time-constant instead of four.

Figure 12. Graph of voltage/time for a capacitor charging in a 10 V circuit

Pretty much the same happens when a capacitor is discharged. The discharge is fast at first, but slows down so that complete discharge takes a long time, but for all practical purposes it's over by four time-constants. Take a look at the circuit in Fig. 13. When the input, side A, is suddenly switched to +10 V , side B of the capacitor also reaches +10 V , because it can't charge immediately - charging would mean A being at $+10 \mathrm{~V}, \mathrm{~B}$ at $0 \mathrm{~V} . \mathrm{By}$ the time four time-constants have pass-

Figure 13. Demonstrating the effects of time-constants
ed, through, the capacitor has charged and the voltage at B is zero. When the input is switched back to zero, the voltage at B will go negative. The capacitor cannot discharge suddenly, so that when the voltage of side A drops by 10 V , the voltage of side B must also drop by 10 V as well, and that means dropping from 0 V to -10 V . By four time-constants have passed, though, the capacitor had discharged and the voltage at B is back to zero again

Now look at the circuit in Fig. 14. When the switch is made, connecting the 10 V supply through the resistor to side A of the capacitor, the capacitor starts to charge through the resistor, and is completely charged, so that the voltage at A reaches +10 V , in four time-constants. When the switch setting is reversed, the capacitor discharges through the resistor, reaching zero again in another four time-constants.

Figure 14. Circuit similar to that in Fig. 13, to demonstrate effects of time-constants. Here the positions of the capacitor and resistor have been swapped

We can't use the HE Multitester to measure the voltage across a charging capacitor with much accuracy because the meter uses current as well, but we can get some idea about what goes on by using a large value capacitor, such as a 100 uF, with 100k in series, as shown in Fig. 15. When you switch on, you can see the needle of the meter rise quite slowly to its maximum value because of the time needed to charge the capacitor. An even better demonstration is obtained by measuring the charging current. Using the circuit in Fig. 16, with the meter switched to the 25 uA range (50 uA selected, and the sensitivity switch in the VA/2 position), switch on, and watch the current start at a comparatively large value, then decrease over a time of several seconds. Four time-constants for this circuit is about 12 seconds, so you can check that the current has stopped changing after this time. It won't have gone down to zero, however, because of the leakage of the capacitor. In fact, if the electrolytic is a poor one, you may find the meter needle steady at about 18 uA .

Figure 15. How to measure the voltage across a charging capacitor - this is possible only
if the capacitor has a large
value, because smaller values will have completed charging before the meter has had time to respond

Any Reactions?

That last part on charging and discharging gives you a flavour of what AC does to a capacitor. An AC voltage is alternately positive and negative so that a capacitor in an AC circuit is continually being charged and discharged. This causes a current to flow, an AC current, so that the capacitor seems to behave like a resistor (Fig. 17), allowing an AC current to flow when there is an AC voltage across it, and we can even use a form of Ohm's law to calculate the ratio of volts/amps, the units of which must be ohms. This quantity is called reactance, so that we don't confuse it with resistance which also uses units of ohms.

Figure 17. Effect of $A C$ - the capacitor alternately charges and discharges for each direction of voltage, so that current flows continually

What's different? Well for one thing, reactance is for AC only. A resistance has the same value for AC or DC, but reactance is something that affects only AC circuits. For another thing, reactance is not constant. An AC voltage which has a high frequency will charge and discharge a capacitor more times per second than an AC voltage which has a lower frequency, so that the current is greater and the reactance lower for the signal with the higher frequency. Table 2 shows values of reactances of various capacitor values at different frequencies - the equation for reactance $X c$ is given by:

$$
X c=\frac{1}{6.25 \times f \times c}
$$

where f is frequency in hertz, and C is in farads.

Table 2. Graph of reactance against frequency. To find the reactance of a capacitor at any frequency, select the line for capacitor value, find where it crosses the vertical (frequency) line, and look across to read the reactance value

Third point is that when the AC voltage gets going, the current through the capacitor does not reach its peak (maximum) value at the same time as the voltage across it reaches it peak valuel The current peak appears a quarter of a cycle before the voltage peak (Fig. 18) because the rate of charging of the capacitor is fastest when the voltage across it is zero. This effect is called a 90° phase shift, and it appears wherever an AC voltage is connected across a capacitor to make AC current flow.

Figure 18. Waveforms of (a) current and (b) voltage for a capacitor connected to an AC supply. the peak current always occurs a quarter of a wave earlier than the peak voltage

Because these are AC effects, we can't demonstrate them with our meter and a battery - but we'll make reference to them later.

Next month, we get coiled up with inductors, inductance and inductive reactance, before we are transformed. Happy metering.

HE

Chess Computers
TV Games
Hand Held Games

Christmas is nearly here!

We have increased our stocks and extended our range of products to provide you the best mail order service available at unbeatable prices for Christmas
ACTIVISION Cartidges for Atari games

CB RADIOS (FM legalised) from | £ 16.95 | |
| :---: | :---: |
| to | F 200 |

available as soon as the Home Office says so!
available as soon as the Home Office says so!
BELL \& ANSELL Graphic Equalisers 100 Watt Booster Amplifiers for Car Hifi - special Christmas price
$\$ 95.00$
MORPHY ENCORE Chess Computers
£149.00
SENSORY 8 Chess Computers
£113.00
Full range of Chess Computers from
£25 to £300
Atari, Mattell, Philips, Computer TV Games and Cartridges
NEW GAME \& WATCH Lion, Headache, Manhole
$£ 21.95$
ULTRASONIC Burglar Alarms
$£ 23.50$
Prestel Decoders and Telephone Answering Machines discontinued
LOTS MORE IN STOCK!
Please write or telephone for more details

Please make cheques payable to CIROLEC and send order to FREEPOST (no postage required), LONDON SW17 8BR

Dictation Machines

Dictation machines are not just boring items of office equipment without their development through the years, hi-fi records and cassette players would not exist. Guest writer Ted Jennings traces the history of dictation machines from first beginnings to presentday use and casts his eye to the future

THOMAS EDISON FIRST saw the possibility of recording a voice onto a soft wax cylinder medium in the late 19 th century. It was quickly recognised that such a system could enable a person to dictate some of the more mundane office material (such as letters, reports etc) in the absence of a secretary or typist - the material could later be transcribed when a typist was available. Of course, once the cylinder had been recorded it was permanent, and had either to be filed for future reference or thrown away. (Actually, there was one method of erasing the cylinder for re-use - the typist, having completed the transcription, could put the cylinder onto a lathe-like machine and shave it clean!)

Although the prime use of dictation machines, in the early part of the 20th century, was in the office, manufacturers were quick to realise the potential of pre-recording music for the domestic market. Consequently a great deal of research was undertaken which culminated in a flat disc of hard material (the forerunner of modern records) which was suitable for recording music. Some readers will, no doubt, remember the playing equipment of the time - a gramophone $w i$ ith a winding handle and a large speaking cone.

The Birth Of Magnetic Tape

At this stage in the development of recording equipment, the market remained unchanged for a few decades. It was the possibility of a world war in the 1930 s that spurred further research and development with the result that the first magnetic tapes were developed. This obviously created a new appraisal of recording media on the domestic and dictation machine market, with manufacturers such as Grundig and Philips (see Fig.1) pressing forward with their development of magnetic tape recording, while others like Dictaphone continued with the concept of cutting their own recordings onto a wax sleeve that was now thin and flexible.

It became clear in the period up to the early 1960s that magnetic tape was likely to be the medium which would eventually be adopted in the home and office. (Unlike other recording media tape can be easily re-used many times.) All manufacturers were pressing hard with the aim of becoming leaders in this field. Grundig and Philips were using a reel-to-reel principle on their dictation equipment and had started to manufacture their first transistorised machines. This transistorised equipment gave an inkling of the revolution in miniaturisation that was to follow.

One of the amazing anomalies of the 1960 s was that Philips developed the compact cassette which became the set standard on the domestic market, but in the dictation machine market all the large manufacturers were each using their own media. The compact cassette - being small - opened up another market of pre-recorded music as occurred earlier with the record or disc. However, the main object of dictation machine manufacturers at this time was to provide facilities to make the typist's job easier.

Figure 1. Reel-to-reel dictation machines produced by (a) Grundig and (b) Philips

These included remote control (that is, a remote microphone which controls the functions of record, playback, start and back space), also a foot control and headphones that could be plugged in therefore leaving the typist's hands free. No effort was put into improving sound quality as this was considered unnecessary

During the 1960 s most manufacturers placed greater emphasis on the domestic market and the production of quality sound machines, eventually leading to stereo and hi-fi equipment. However, Philips did not lose sight of the dictation machine market and by the end of this period had developed the

Figure 2. Some micro-cassette recorders available today

first mini-cassette machine - the Philips 85 - because it recognised the need for absolute portability. This machine opened up the possibility for recording while out of the office.

During the early 1970s Philips dominated over 60\% of the dictation machine market. This domination was mainly the result of the proven reliability of the Philips 84 desk machine and the poularity of the mini-cassette machines. Philips also produced a mini-cassette adaptor for the desk machines so that minicassettes could be transcribed in the office without the need for two machines to transcribe two different types of tape media. Grundig held the second largest portion of the market with its machine, the Grundig Stenorette L, which operated on the reel-to-reel principle.

Move Towards Micro

Mini-cassette recorders have one main drawback: the reels within the cassette are rim driven, and so it is impossible to maintain a constant tape speed throughout the length of the tape. (This variation in speed can become apparent when a rim-driven cassette is transferred from one machine to another.) Because of this drawback and because the sound quality of some of the early machines was not particularly high, manufacturers began to look at ways of improving the overall quality of 'mini' cassette equipment. A breakthrough was made - in 1974 by Olympus the camera people - with the first micro-cassette machine,

With the dictation machine market very successfully priming the public with micro-cassettes, it only needed some development on the domestic market to make the micro-cassette the new international standard cassette. This year we have already seen some domestic micro-cassette machines with a very favourable response from the public, one of the most recent of thees being the AIWA CS-M1 (featured in Monitor in the September issue of HE and in the Gadgets, Games \& Kits supplement of the October issue). (See also Fig.4.) These portable micro-cassette machines herald only the beginning of the next generation of tape playing equipment - they will be followed in
the next year or two by micro-cassette machines for in-car use and finally high-quality mains machines for the home.

What Next?

The micro-cassette will probably be the last tape media used for recording. Already there is electronic equipment which 'talks' from a digital memory - it is only a question of time before selected storage of music or voice on plug-in microchips becomes possible.

How long? Dare I give an estimate of less than 10 years?

Quick Project: Simple Stylus Organ

If you want to make music - cheap, cheap music - this Quick Project is for you. For about a fiver you can build yourself a simple stylus organ

This easy-to-build project uses two 555 timers in conventional astable oscillator circuits.

Integrated circuit IC2 is an audio frequency oscillator. Its frequency is primarily controlled by the resistance between pins 2 and 7. Thus the setting of presets RV4-11 control the oscillator frequency and by touching a stylus (connected via limiting resistor R5 to pin 2), to each preset, different notes can be played.

Integrated circuit IC1 is a low frequency oscillator (running at approximately 3-10 Hz), the frequency of which is variable by RV1. The output of this oscillator is connected through depth control RV2 and limiting resistor R3 to the voltage control input (pin 5) of the audio frequency oscillator. A vibrato effect occurs.

Figure 2 gives details on how to build and wire up your project. We leave probe and keyboard details up to the builder - we used an old multimeter prod for a probe, and a piece of Veroboard into which the presets were positioned as the keyboard, but readers may like to use their own ingenuity at this stage.

Figure 1. Circuit of Simple Stylus Organ

Figure 2. Veroboard layout, connection details and underside track break positions of the project

Touch Lamp Update

Readers may recall that in the HE Touch Lamp project of last month's issue, we stated that the How It Works section of the article would be printed in this November issue of HE

How It Works

The HE Touch Lamp circuit consists of a simple bistable. A common name for a bistable is a flip-flop, and this helps to explain the action of the circuit.

When the top two touch plates (the ON plates) are touched, the bistable is turned on and its output voltage goes positive (ie, it 'flips') and stays in this state.

When the lower two touch plates (the OFF plates) are touched, the bistable is turned on and its output voltage goes to zero (ie, it 'flops').

The output of the flip-flop is used to turn a bulb or a relay on and off.

The full circuit diagram is shown in Fig. 1 on page 51 of last month's HE. When power is first applied, the circuit takes up a state where transistor $\mathbf{Q 1}$ is biased into conduction by way of the load and resistor R1. This gives practically $\mathrm{O} V$ at the drain terminal of Q1, and transistor Q2 is therefore cut off as it receives no significant bias voltage via resistor R4. Both transistors are VMOS types and are therefore voltage operated - unlike ordinary bipolar devices which are current operated.

If the two 'ON' touch contacts are activated, the skin resistance of the operator is placed between O2's gate and the positive supply rail. Although this resistance is almost certain to be very high, the high input impedance at O2's gate ensures that the gate of Q2 is taken a few volts positive so that Q 2 is biased into conduction. The load is therefore switched on.

Transistor 02's drain terminal is now at a very low potential, and is further reduced by the voltage divider action of resistors R1 and R2 so that Q 1 now becomes
switched off. The voltage at the drain terminal of Q1 thus rises to virtually the full positive rail voltage, and Q2 will be biased into conduction by way of R4 when the operator's finger is removed from the touch contacts. This latches the circuit in the 'ON' state.
The circuit can be returned to the 'OFF' condition by touching the two 'OFF' contacts. This places the skin resistance between the positive rail and Q1's gate so that $\mathbf{Q 1}$ is biased into conduction. Its drain voltage falls back to almost zero so that $\mathbf{Q 2}$ and the lamp are both switched off. Transistor Q2's drain voltage rises to almost the full positive supply voltage again so that Q 1 is latched in the on state as a result of the bias voltage received via R1. Thus the circuit stays in this state with the lamp switched off when the touch contacts are no longer operated.

The circuit can obviously be triggered from one state to the other indefinitely by operating the appropriate pair of touch contacts, and capacitors C1 and C2 are used to filter out any electrical noise which could otherwise produce spurious operations.

VMOS devices require no significant input current and will work at very low drain currents. This makes possible a circuit having a low stand-by current: the quiescent current consumption of this circuit is typically only about 1 uA .

HE

Texas Instruments invented.....

the integrated circuit and the

 Pocket GuideTTL£3.50
Volume One Digital Integrated Circuits.
A concise summary-logic and pin assignments - of all TTL semiconductor devices currently available from Texas Instruments, the world's largest manufacturer.

LINEAR \& INTERFACE £2.50

Volume Two Professional Linear.
A detailed description of all Texas Instruments Linear and interface integrated circuits (including second-source) Pin-out guides, device characteristics and complete support information are included.

Together these Pocket Guides make the complete reference to advanced bipolar integrated circuits from Texas Instruments. To obtain your copies complete the order form and send together with your cheque or postal order (payable to Texas

Send completed forms to Texas Instruments Ltd. PO Box 50. Market Harborough. Leics.
Texas Instruments invented the integrated circuit, the microprocessor, and the microcomputer. Being first is our business.

ELECTRDII:Kit

DENSHI KITS
Final offer on kit type SR-3A (over 100 projects)

... fun and entertainment as well as education"
(EVERYDAY ELECTRONICS mag.)
This is the final opportunity to obtain this first-class multi-project kit at little more than its 1977 price! (Current value over £40)
Circuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build - and have a lot of fun, too. The kits are safe for anyone.

SR-3A KTT (161/2in. $\times 10 \mathrm{in} . \times 21 / 2 \mathrm{in}$.

$£ 29.95$
Build over 100 projects including 3-TR reflex fadio receiver, 3 -TR radio receiver with RF amplifier, 2-TR reflex radio receiver, 3 -TR amplifier for crystal mike, 3-TR amplifier for speaker/mike, 3-TR signal tracer, Morse Code trainer, 2-TR electronic organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronic gun, 2-TR sleeping aid, high-voltage generator, discontinuity warning device, water supply warning device, photoelectric alarming device, 3-TR burglar alarm, 3-TR water supply warning device, 3-TR water level warning device, 3-TR photo-electric alarming device, Morse Code trainer with sound and light, discontinuity warning device with sound and light, water level warning device with sound and light, electronic metronome with sound and light, buzzer with sound and light, wireless mike, wireless telegraph set, wireless discontinuity warning device, wireless water level warning device, wireless water supply warning device, wireless photoelectric warning device, etc.
All kits are guaranteed and supplied complete with extensive construction manual PLUS Hamlyn's "All Colour" 160-page book "Electronics" (free of charge whilst stocks last).
Prices include educational manual, free book, V.A.T., p. and p. (in the U.K.), free introduction to the British Amateur Electronics Club.

PLEASE NOTE OUR NEW ADDRESS PERSONAL CALLERS WELCOME

Cheque/P.O./Access/Barclaycard (or 23p for illus. trated literature) to:

ELECTRONI-KIT LTD. Dept. HE 388 ST. JOHN STREET. LONDON, EC1V 4NN (01-278 0109)

Project

Metronome

HE METRONOME

Although the clockwork pendulum type of metronome has been around for many decades, we reckon that it is about time (pun intended) to replace it with a modern electronic counterpart

IF YOU PLAY a musical instrument especially if you're a beginner, then a metronome can be a valuable aid to help you keep in the correct time.

Clockwork varieties of metronome are fine, but they can only keep a basic rhythm - the musician still has to keep a count of the beats in a bar. The HE

Metronome, however, apart from keeping basic rhythm, can also play accented rhythms in 2/4, 3/4, 4/4 and $5 / 4$ times. The pitch of the accent and

Figure 1. Circuit of the HE Metronome
main beat are fully variable, and beat rates of 50 to 240 beats per minute can be obtained.

As well as audible indication of time there is a visible indication supplied by two flashing LEDs - a red LED for main beat and a green LED for accented beat. Thus if you turn the volume right down so that no sound can be heard over the music, the musician can still keep good time with the help of the flashing LED beat indication.

Construction

Carefully following the details shown in Fig. 3 make all necessary track breaks in the copper track side of the board. Use a Veroboard cutting toot:

Buylines

Magenta Electronics has produced a full kit of parts for the HE Metronome, the price of which is £11.88. Please add 40p to cover p\&p.

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	
R1	27k
R2	2k2
R3,5,6,7	10k
R4, 11	4k7
R 8,9	100R
R10,	22k
12,13	22k
POTENTIOMETERS	
RV1	220k linear poten-
	tiometer with double-
	pole, double-throw switch (SW1)
RV2	100k linear poten-
	tiometer
RV3	470 R antilog poten-
	tiometer
CAPACITORS	
C1	10u, 16 V tantalum
C2,4	100n polyester
C3	10n polyester
C5	$220 \mathrm{u}, 16 \mathrm{~V}$ elec-
	trolytic
SEMICONDUCTORS	
IC1.3	555 timer
IC2	4017 decade
	counter
D1-8	1N4148 diode
LED1	0.2" red LED + clip
LED2	0.2" green LED +
	clip
01,3	BC184 NPN tran-
	sistor
02	BC214 PNP tran-
	slstor
Miscellaneous	
SW2	2-pole, 6-way rotary
	switch
LS 1	75R loudspeaker
Veroboard, 24 strip $\times 50$ hole	
PP3-sized battery + clip	
Knobs and case to suit	

alternatively a small (about $1 / \mathrm{s}^{\prime \prime}$) handheld drill bit can be used for this job.

Insert and solder all low-level components first, eg, resistors and diodes, in the positions shown in Fig. 2. Fit links where indicated.

Next insert and solder capacitors followed by the remaining semiconductors.

Push in and solder circuit board pins where all off-board connections are to be made.

Now mark and drill the case to fit the three potentiometers, the switch and two LEDs.

Mark and drill a matrix of holes to form a grille for the loudspeaker. Glue the loudspeaker to the inside of the case using contact adhesive, but make sure you get no glue on the loudspeaker cone.

Fit the controls and LEDs to their correct places and then wire up your project as Fig. 2 shows.

How It Works

An astable oscillator provides clock pulses for a 1 to 6 counter. On every positive pulse from the astable, the counter moves on to its next state, eg, 1-2-3-4 etc.

In our example output 4 of the counter is connected to the reset input so that whenever output $\mathbf{4}$ goes high the counter immediately resets to state 1.

The counter outputs of all six states are connected to one end of the potentiometer, but the state 4 output is also connected to the other end of the potentiometer. The frequency of the 'bleep' thus changes on the reset pulse. Varying the position of the potentiometer wiper alters the frequency dif-ference between the reset and the other states.
Integrated circuit IC1 is a 555 operating in a familiar astable configuration. It generates a train of short negative clock pulses from pin 3. The frequency of these pulses is variable from about 50 to 240 beats per minute by adjusting potentiometer RV1. Transistor Q1 converts the negative clock pulses to positive ones which are then fed to the clock input of IC2.

Integrated circuit IC1 is a 555 operating in a familiar astable configuration. It generates a train of short negative clock pulses from pint 3. The frequency of these pulses is variable from about 50 to 240 beats per minute by adjusting potentiometer RV1. Transistor Q1 converts the negative clock pulses to positive ones which are then fed to the clock input of IC2.

Switch SW2 allows the IC2 reset pin to be connected to one of its own outputs. These outputs are selected so that the IC will reset after 1,2,3,4 or 5 pulses.

Another 555 astable oscillator is used as IC3. It drives the loudspeaker via the volume control RV3. It can only oscillate
when the voltage at pin 7 is taken high through R12 and RV2. The frequency of oscillation depends on the setting of RV2 and whether the high voltage is derived from D7 or D1-6.

Integrated circuit IC3 is also gated by the voltage derived from D8 and R11 which clamps pins 2 and 6 to 0 V except during the brief clock pulses. This produces a short 'bleep' of sound on each beat.

Light emitting diode LED1 is driven from IC1 and Q2, and flashes on every beat. Light emitting diode LEED2 only flashes during the accented beat when O3 is turned on by the first output of IC2.

Figure 2. Veroboard layout, and underside view showing component locations and track breaks

BIPOLAR S		Standard, with heatsinks				\int_{1}	Price	641	Without heatsinks				
		DIST	doriom										
moots mumben	outpur POWEA Watisims	$\begin{gathered} \text { YND } \\ \text { In } \\ \text { ot } 1 \mathrm{HH} \text {, } \end{gathered}$	$\begin{gathered} 1 \mathrm{mO} \\ \operatorname{senz2} \mathrm{JHz} \\ 41 \\ \hline \end{gathered}$	suppir volifage IVP max	S12E m.				$\begin{aligned} & \text { mooet } \\ & \text { Mumben } \end{aligned}$	$\begin{gathered} \text { \$12t } \\ \text { in mm } \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \\ \hline \end{array}$	PRICE	vai
hY30	$15 \mathrm{w} 483!$	0015**	. $0006{ }^{\circ}$	- 18 - 20	76.68 .40	240	¢1.29	1109					
HY60	30w 48 ! !	0015**	- $0006{ }^{\circ}$	- $25 \cdot 30$	76.68:40	240	[8.33	(1)25					
Mr120	60w $483!$	001%	. $0006{ }^{\prime \prime}$	- 35.40	120п78ı30	410	(17.48	1262	HY120P	120:26140	215	¢ 15.50	1233
hr200	120w 4 8s!	001%	<0006\%	- $45 \cdot 50$	120.78.50	515	[21.21	1318	hr200P	120n26m40	215	[18.46	1271
hY400	240w 4!!	001\%	<0006"	. $45 \cdot 50$	120\&78:100	1025	[3183	[471	hra00P	120:26:70	$3 / 5$	〔28.33	1425

AMPLIFIER
WITH
HEAT SINK

OFA NEW ERA O=

Which modules?

In launching eighteen different units all within amazingly compact cases to help make complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the most versatile modular assembly scheme ever for constructors of all ages and experience. Study the list - see how these modules will çmbine to almost any audio project you fancy - and remember all I. L. P. modules are compatuble with each other, they connect easily. Modules HY6 to HY 13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY 66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year no quibble guarantee

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	MODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT
HY6	MONO PRE AMP	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	¢6.44	$¢ 0.97$
HY7	MONO MIXER	To mix eight signals into one	10 mA	¢5. 15	$\underline{50.77}$
HY8	STEREO MIXER	Two channels, each mixing five signals into one	10 mA	¢6. 25	£0.94
HYg	STEREO PRE AMP	Two channets mag. Cartridge/ Mic + Volume	10 mA	[6.70	¢ 1.01
HY 11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	$¢ 7.05$	¢ 1.06
HY12	MONO PRE AMP	To mix four signals into one + Bass/Mid-range/Treble	10 mA	¢6.70	¢ 1.01
HY13	MONO VU METER	Programmable gain/LED overload driver	10 mA	¢5.95	$¢ 0.89$
HY66	STEREO PRE AMP	Mic/Mag. Carrridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	¢ 12.19	£1.83
HY67	STEREO HEADPHONE	Will drive headphones in the range of $4 \Omega-2 K \Omega$	80 mA	¢ 12.35	¢1.85
HY68	STEREO MIXER	Two channels, each mixing ten signals into one	20 mA	¢ 7.95	¢ 1.19
HY69	MONO PRE AMP	Two input channels of mag. Cartridge Mic + Mixing/Volume/Treble/Bass	20 mA	¢10.45	¢ 1.57
HY71	DUAL STEREO PRE AMP	Four channels of mag. Cartridge/Mic + Volume	$\begin{gathered} 20 \mathrm{~mA} \\ t \end{gathered}$	¢ 10.75	£1.61
HY72	VOICE OPERATED STEREO FADER	Depth/Delay	20 mA	¢13.10	£ 1.97
HY73	GUITAR PRE AMP	Two Guitar (Bass/Lead) and Mıc + separate Volume/Bass/Treble + Mix	20 mA	£12.25	¢1 84
+HY74	STEREO MIXER	Two channels, each mixing five signals into one + Treble/Bass	20 mA	£ 11.45	¢1.72
+HY75	STEREO PRE AMP	Two channels, each muxing four signals into one + Bass/Mid-range/Treble	20 mA	¢ 10.75	£161
†HY76	STEREO SWITCH MATRIX	Two channels, each switching one of four signals into one	20 mA	7,	ne.in +7
†HY77	STEREO VU METER DRIVER	Programmable gain/LED overload driver	20 mA	¢9. 25	¢ 1.39

The modules are encapsulated and include latest design high quality clip on edge connectors.

For easy mounting we recommend B6 Mounting board for modules HY6 - HY 13
$78 p+12$ p. V.A.T
B66 Mounting board for
HY66 - HY77
$99 p+13 p$. V.A.T

All I.L.P. modules include full connection data.
I.L.P. Products are of British Design and Manufacture

ALL WITH ILP'S 5 YEAR MO QUIEBLE GUABANTEE

TO ORDER USING OUR FREEPOST FACILITY

Fill in the coupon as shown. or write detalls on a separate sheet of paper. cuoting the name and date of this journat By sending your order to our address as shown at the holtom of the page opposite. with FREEPOST clearly shown on the envelope, you need not siamnit Wenay ostage for you Cheques and money orders must he crossed and made navable 101 L P Electronics Lid if sending cash, it must be by iegistered post To nay COD please and $\mathrm{r}^{1} 10$ TOTAL value of ordes Whern orderme. UK customers amssimithole the rimprommetio A T as shown
PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REOUIRED

OF REEEINIIGYYOR OODCE

SUBSCRIBE TO HE

Send to HE Subscriptions Department， 513 London Road， Thornton Heath，Surrey CR4 6AR
I would like to subscribe to 12 issues of Hobby Electronics
｜। enclose a Cheque／Postal Order＊ I made payable to Modmags Limited for I £10．25

I wish to pay by Barclaycard．Please charge to my account number щиаитешо

OR

I wish to pay by Access．Please charge to my account number

SIGNATURE
NAME
（block capitals）
ADDRESS
（BLOCK CAPITALS）
－Deleto as appropriate

FX 702．P
－Display capacity for 20 slpha－numeric characters．
－High utility variation of program steps and data memories．

ONLY f115．95

FAZ interface available soon．
FP10 printer unit available soon

WHAT WILL THEY THINK OF NEXT？

\square TEXAS INSTRUMENTS

$\begin{aligned} & \text { TI } 51.111 . . \\ & \text { TI } 58 \ldots \\ & \text { TI } 59 \ldots \end{aligned}$		TI 57 TI 58C PC 100C printer for 58／58C／59
	SHARP EL 510116 digit alpha／numeric $\mathbf{£} 41.95$ EL 510024 digit alpha／numeric $\mathbf{E 5 1 . 9 5}$ Pocket Computer PC1211 E91．85 CE121 Cassette Interface £15．85 CE 122 Printer／Cassette Interface $\mathbf{2 7 1 . 9 5}$ FULL RANGE OF CASIO SHARP AND TEXAS AVAILABLE．S．A．E．WITH ENQUIRIES PLEASE	

ELEGTROVALIE CATALOGUE 82

(Ready mid October)

Improved . . . updated and a real money saver

Your instant link with today's forward trends in electronic progress, your chance for quick delivery of the components you'll need for 1982 projects - plus of course, Electrovalue's vast and dependable stocks of basics resistors, capacitors, semi-conductors, pots, connectors, meters, hardware and a massive variety of items well arranged for swift reference. In our new catalogue, computing takes far more pages, and there is a sense of urgency and service throughout to help you when ordering.

Send 70p for your copy of Catalogue 82 by return. A reclaim voucher allows you to deduct 70p when ordering goods $£ 10$ or more.
When sending for Catalogue 82 please marke CAT. 82 clearly on top left corner of envelope.

This year it's better than ever!

DISCOUNTS

(On all items except some quoted NET or N)
5% on orders over $£ 20$
10% on orders over $£ 50$
FREE POSTAGE
in U.K. on orders $£ 5$ upwards
V.A.T. Chargeable on U.K. orders at prevailing rate (15\%)

ELECTROVALUE LTD., Dept. HE11, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 0HB. Phone 33603 (STD 0784: London 87). Telex: 264475.

Northern Branch (personal shoppers only) 680 Burnage Lane, Burnage, Manchester M19 1NA. Phone: (061) 4324945.

To: electrovalue ltd., 28 St. Jude's road, englefield green, EGHAM, SURREY TW20 OHB.

Please send me copies of Catalogue 82 at 70p for which I enclose f........

NAME
ADDRESS \qquad

R.P.M. Meter	2D125	August'81	f13.75
Electronic Ignition	ZD124	August'81	£18.90
Variable Bench Power Supply	ZD123	August'81	£22.50
Treble Boost	ZD122	July'81	f10.25
Voice Operated Switch	2D120	May'81	¢10.50
Audio Millivoltmeter	ZD121	May'81	£17.25
Super Siren	2D116	April'81	£16.95
Guitar Tremolo	ZD117	April'81	¢11.50
*Russian Roulette Game	ZD118	April'81	¢7.95
Windscreen Washer Alarm	ZD119	April'81	£5.50
Fuzz Box	ZD115	March'81	¢9.00
Steam Loco Whistle	2D114	March'81	£11.50
Windscreen Wiper Controller	ZD113	March'81	¢6.50
Public Address Amp (no mike/spkrs)	2D112	March'81	£16.50
Heart Beat Monitor	2D108	Feb'81	¢20.25
Audio Signal Gener	ZD109	Feb'81	£16.00
Background Noise Simulator	2D110	Feb'81	¢6.00
* Two-Tone Train Horn	ZD111	Feb'81	¢5.00
Bench Amplifier	2D107	Jan'81	¢8.85
Nicad Charger	ZD106	Jan'81	[6.75
Car Rev Counter	2D104	Jan'81	£26.80
Digital Speedometer	ZD100	Dec'80	£35.25
Battery Charge Monitor	2D101	Dec'80	£5.00
Model Train Controller	2D102	Dec'80	£15.25
Stereo Power Meter	ZD103	Dec'80	£19.25
Double Dice	ZD99	Nov'80	£14.00
Guitar Pre-Amplifier	2D97	Nov'80	£8.90
Watchdog Intruder Alarm	2 D 89	Oct'80	£18.25
Freezer Alarm	ZD91	Oct'80	£9.75
Nobell Doorbell	2D93	Oct'80	£11.25
Light Dimmer	2D88	Oct'80	f6.35
Guitar Phaser	2D85	Sept'80	£12.00
Auto Probe	2D83	Sept'80	£4.00
Equitone Car Equaliser	ZD52	August'80	£15.30
Car Booster (no speakers)	2D50	Julv'80	£23.50
Hazard Flasher	2D48	July'80	£12.50
Fog Horn	2D44	June'80	$£ 5.75$
*Egg Timer	2D43	June'80	£9.35
Track Cleaner	2D12	May'80	f9.65
*R/C Speed Controller	2D3	April'80	£13.50
Electronic Ignition	2D2	April'80	¢21.45
Digital Frequency Meter	ZD9	April'80	£32.75
Crosshatch Generator	2D4	Jan'80	£13.85
Digi-Die	2 D 5	Jan'80	f7.75
Ring Modulator	2D1	Dec'79	¢11.55
Bargraph Car Voltmeter	2D40	Dec'79	¢8.50
Guitar Tuner	2D38	Nov'79	£10.50
*R2 D2 Radio	2D37	Nov'79	¢10.35
Mulii Option Siren	2D36	Oct'79	£13.50
*Starburst	2D30	Sept'79	£16.75
Injector Tracer	ZD27	Aug'79	¢4.75
LED Tachometer	ZD26	Aug'79	$¢ 17.55$
G.S.R. Monitor	2D19	June'79	¢10.65
Envelope Generator	ZD20	June'79	£14.50
Drill Speed Controller	2D21	June'79	f8.75
White Noise Effects Unit	2D18	May'79	$£ 18.00$
Digibell Project	2D16	May'79	f6.35
Car Alarm	2D70	Feb'79	$£ 10.40$
Graphic Equaliser	2D62	Jan'79	¢30.50
Audio Mixer	ZD14	Dec'78	E24.00

ITEMS MARKED NO CASE
REPRINTS OF ABOVE 40p EXTRA
ALL PRICES INCLUDE POST AND 15% VAT
PERSONAL CALLERS PLEASE RING TO CHECK AVAILABILITY OF KITS

IONISER KIT
 (MAINS OPERATED)

This negative ion generator gives you the power 10 saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, flling your room. The result? You air feels fresh, pure, crisp and wonderfully refreshing
All parts, PCB and full instructions£12.50
A suitable case including front panel, neon switch, etc.
£ 10.50
Hours Mon-Friday 9-5 p.m. (1 p.m. Thurs.) Sat. 9-4.30 p.m. Callers by appointment only

Telephone: 01-226 1489

T. POWELL

Advance Works, 44 Wallace Road, London N. 1.
Visa/Access cards accepted Minimum telephone Orders £5 Minimum Mail Order £1

This new readers' service provides you with an opportunity to buy the useful books that you require in your hobby - from the comfort of your home

ELEMENTS OF ELECTRONICS by F A Wilson
 This series of books covers the

 basics of electronics, in an easy to understand manner. The topics are written so that important concepts can be grasped by the beginner and yet they can also provide an in-depth reference source for the practising engineerBook 1: THE SIMPLE ELECTRONIC CIR CUIT AND COMPONENTS £2.25 This book contains all the fundamenta theory necessary to lead to a full understanding of the simple electronic circuit and its main components.
Book 2: ALTERNATING CURRENT THEORY
£2. 25
Sinewaves, complex waveforms, time constants, reactance, resonance and other important aspects of AC are covered.
Book 3: SEMICONDUCTOR TECHNOLOGY f225 From simple atomic structure models through to complex integrated circuits and the elements of computers.
Book 4: MICROPROCESSING SYSTEMS AND CIRCUITS£2.95 Starting with simple computer models, this book takes the reader up to complete microprocessing systems and theoretical circuits.
Book 5: COMMUNICATIONS .. £2.95 All aspects of communication systems such as channel bandwidth, transmis sion systems and signal processing, are discussed in this final book of the series.

A MICROPROCESSOR PRHMER

 by EA Parr Newcomers to electronics and computing tend to be overwhelmed when first confronted with literature about microprocessors. This book helps to alleviate the problem by recounting the design of a simple computer in an easy to understand manner.
PRACTICAL COMPUTER EXPERIMENTS

by EA Parr £ 1.75

Readers of this book will find themselves involved in experiments which help to explain the inner workings of computers and microprocessors. All circuits and experiments use discrete logic circuits to demonstrate such things as 'adders', 'stores', 'arithmetic and logic units' etc.

HOW TO MAKE WALKIE-TALKIES

by F G Rayer 1.50
Low power hand-held, or portable, radio transmitting/receiving equipment need not be complicated - as this book shows. A book of great interest, not only to the licensed operator, but also to those enthusiasts without transmitting licences who wish to participate as
receiving equipment.

ELECTRONIC PROJECTS FOR BEGINNERS
 by F G Rayer £ 1.35

The newcomer to electronics will find this a very usefil book. It contains a wide range of easily made projects including component and wiring layouts. A number of projects can be constructed without the use of a soldering iron.

POPULAR ELECTRONIC PROJECTS

 by R A Penfoldf 1.45
A collection of circuits and projects to interest most electronics constructors, covering four popular main areas: radio; audio; household projects and test equipment.

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE by A Michaels
 £2.95

 Transistors from over 100 international manufacturers are tabulated in this book in an easy to understand, cross-referenced format, to enable the reader to quickly locate equivalent devices from an alternative source. This book is an extremely useful addition to the electronics enthusiast's library.To receive your books fill in the form below (or write the details on a sheet of paper) and send it, with your payment, to the address given.
Please wait 28 days for delivery. The offer applies to the UK only. Prices may be subject to change without notice.

To: HE Bookshelf, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE.

I enclose a cheque/postal order made payable to ASP Lid, for the amount shovin below

OR
I wish to pay by Barclaycard/Access. Please charge to my account number

Books Required	Price
Add 75p p\&p	0.75
Total enclosed $£$	

GREENWNELD

443F Millbrook Road, Southampton, SO1 OHX
All prices include VAT @15\% - just add 40p post AMAZING! COMPUTER GAMES
PCBs FOR PEANUTS!!
A bulk purchese of PCBS from several well: known computer games including Bartle.
ships. Simon, Logic 5 and Starbird enable us shipss. Simon, Logic 5 and Slarbird e

Gives realistic "STARBIRD"
aser blasts - accelereating sounds and flashing laserble is a accined up, edecelerating noise ond hear llast of lasers shooting. PCB fested and working complete with spe.aker and bart.
clip (needs P P3 bantry). Only Ez.95 2 tor 5 5. For detalls of other games, send $S A$ 1N4002 OIDOES

TORDIDAL TRANSFORMER

1,000 RESISTORS, E2.50 We've lust purchased another 5 million preformet es stistis. and can make int shilar
 Carbon film resisitiots, preformed tor PCB ${ }_{1,000}$ mitor Enormous range of preter

200 ELECTROLYTICS, E4
 chuck-outs 11200 A4, 1,000 s. 17.50

GAS DISCHARGE DISPLAYS

72.5 mm
1

26502 diget on PCB with 16 way nibbon cable
 25513 aigl as above $26523+2$ dight as above $\mathbf{C 1 2 0}$
$\mathbf{6 1 . 7 0}$
$\mathbf{1 2 5 0}$

FILAMENT DISPLAYS

MK4027 SHIFT REGISTER

OPTD/REGS/DP-AMPS

FNA5220 2 dign ${ }^{1 / 2} 7$ 7.seg. display on PCB
7 7. seg displays. FND360, 367, 501, all 50p;

 TLL 311 Hexadecimal display with decoder, 0.9 COMPONENT PACKS
K503 150 wirewound resistorn from 1 W to
 incluting single ganged, rotary and sidider K 511200 small value poly, mice, ceramic cri.zs

 transistors in plastic packege Almost all are masterd, fult spect dovices. but some have bent leads. Over 30 dititerent types have been

 $K 520$ Swith Pack, 20 differernt, rocker,
 K 521 Heatsin
200 mm , 50 .

PANELS

2521 Panel with 16236 (2N3442) on 5 mall diodes, cass, resistors. etc 60 c 2482 Potred Oscllator Module works from
120 V Can be used as LED flasher (3 V min). Supolied with connection dato, sultable R. CA LED
 2529 Pack of ex.computer panels containing 74 series ICs Lots of ditterent gatos and complex logic. All ICs are marked with typer no. of
code for which on identification sheer is sumpliad 20 Ca 51 : 100 iCs E.

 also 28 other chips inc $7 \times$ LS75. $4 \times 74366.3 \times$ ${ }_{2536}^{74180 \text { Atc }}$ Abova but extra 1574 LS chips ${ }^{\text {Onty }}$ E5 RELAYITRIAC PANEL

2537 PCB

 $12 \times 12 \mathrm{DPCO}$ mer 10×1 M001 dact
 would cost around gBil - Price tor the panel fust

1W AMP PANELS
 control and swinch. complete with knobs
Apart trom amp curcuitry built around LM380N or TBAR2OM, there is s speed control

VU METERS

Vo06. Very artactive $55 \times 48 \mathrm{~mm}$ scaled -20 to

THE SPECTACULAR

 1981 GREENWELD Component Catalogue
8igger and better than

-600 discount vouchers

- First Class reply paid envelope
- Free Bargain List
- Priority Order Form
- VAT inclusive prices
- Quantity prices for bulk
buyers
SEND 75p FOR YOUR COPY NOW!!
4 TERMINAL REGS

UA78MG in power minindip case 5-30V at $1 / 2 \mathrm{~A}$

 UA78MG in power mini.dip case $5-30 \mathrm{~V}$ ar $1 / 2 \mathrm{~A}$E1
UAT9MG Negative version of above $\quad \mathrm{E} 120$ Only A extro components required ($150 p$ ererira)
to make fully variable sudp iv Data supolied.

VERDBLOC BREAOBDARD

end

 are of IC. blocs can be ooned together. Bus strips on $X \& Y$points tor just caisis

REGULATED PSU PANEL

Exclusive Groenweld design, fully variable 0- 28 \& 20 mA .2 A Board conisins zall compu. nents except pots and transformer. Onty

 nents excepl pots and transtormer. OnlyOEVELOPMENT PACKS
These packs of brand new top quellity compo
nents are designed to give the constuctor nents are designed to give the constructor a
complete range so the right value is to hand whenever required. They also give a substan thal saving over buying individual parts.
K001. 50 ceramic plate capacitore 5% exch value 22pF to p, 000 op F, total 210 . EA .80 . K002 Extended range 22 pFF to 0.1 Values over 1000 pf are of e greater tolerace. 10 of esch
value 222733394756882100120150180
 2200330047006800 O1 015.022 .033 . 047.1 PRICE: E7.66.

 ${ }^{65} 5004 \mathrm{M}$ Myar capacitors Small size, verical mounting 100 V .10 each size, venica

 ach of the following: 1, 2.2.4.7. 10. 22, 4
 ing 220.470 and 1000 ar all at 25 V . Totat of 100 Cosoracitorn PAICE: E6. 35
K021 CR25 resisiors or
K021 CA25 resistiors or similar, miniature $1 / 4$ wort carbon film 5% as used in nearly al
propecis 10 of each value trom 10 ohms io
 65.95 .
5. Zener diodes 400 mW 5\%, 10 ol Kill the values from $2 V 7$ to 36 V Total 280 zen neis PAICE: E15.95. Ko5 LeDs - pach of 60 . comprising 10 each

BARGAIN LIST No. 13

10 AA pagesill Hundreds of different thems

 Sorws. panels, elc., etc Cs, As, semis, connec Send 9×4 SAE for your F be repeated bargains! AD563KDD-A converter. Only E3.50
CAPACITOR BARGAINS

2200 uF 100 V cans $77 \times 35 \mathrm{~mm}$ dia 75

 ${ }^{65.50}$
200uF 350V, $100 \cdot 100$ - 50uF 300V can, 75 x

N TEST GEAR

Wobbulators, Calibration Gens., Modulators. Sync. Generators. Encoders. Converters, elc. VOU CRTS
Approx. 25012 and $15^{\prime \prime \prime}$

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard

First the EuroBreadBoard

Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors,
LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
£6.20 each or $£ 11.70$ for 2

Now the EuroSolderBoard

New 100 mm square, 1.6 mm thick printed circult board with pre. tinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
E2.00 for set of three ESB's
And don't forget the EuroSolderSucker
Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pab pads and track. Primed and released by thumb, it costs only £ 7.25 including VAT \& PP

Snip out and post to David George Sales,
Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE 24 OAU
David George Sales, HE11
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU Please send me:-
1 EuroBreadBoard
@ $£ 6.20$
2 EuroBreadBoards
@ £11.70
3 EuroSolderBoards
@ £ 2.00
@ $£ 7.25$
0
0
0
0
Please
1 EuroSolderSucker
Tick

All prices are applicable from Jan. 1st, 1981 and include VAT and PP but add 15% for overseas orders.

Name

Company.
Address.

Tel. No
Please make cheques/P.O payable to David George Sales and allow 10 days for cheque clearance and order processing

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

January 80		August 80		March 81	
Digi Dice	£2.20	Equitone Car Equaliser	£1.79	Steam Loco Whistle	£1.99
		Gaztec Gas Detector	£2.98		
February 80		Pass The Loop Game	£1.98	April 81 Super Siren	£1.48
Win Indicator	£1.98	September 80		Russian Roulette Game	£1.20
		Auto Probe	£1.25		
March 80		Guitar Phaser	£1.48	May 81	
508025 W Amplifier	£1:95	Development Timer	£1.35	Voice Operated Switch	¢1.25
5080 PSU Module	£1.98	Bench PSU	£2.20	Organ 1	
		October 80		June 81	
April 80		Nobell Doorbell	£1.98	Envelope Generator	¢1.40
Speed Controller For R/C	£1.60	Intruder Alarm	£1.88	Organ 2	£1.90
Digital Frequency Meter	£2.95	Tug O' War	£1.99	July 81	
Hobbycom: Two-wire Inter-		November 80		Organ 3	£4.50
com (set of two)	£3.98	Memory Bank Synth:		Organ 4	¢4.50
Electronic Ignition (CD)	£2.98	Mainboard PCB	£2.48	Ultrasound Burglar Alarm	£1.90
		Keyboard PCB	£2.70		
May 80		Party Grenade (set of three)	£2.60	August 81 RPM Meter	
5080 Pre-amplifier	£3.50	Double Dice	£2.20	RPM Meter Thermometer	$\begin{aligned} & \mathrm{f} 1.33 \\ & \mathrm{£} .25 \end{aligned}$
		December 80			
June 80		Stereo Power Meter	£2.12		
Fog Horn	£1.40	Digital Speedo (set of two)	£3.50	Power Pack	
Egg Timer	£1.58	January 81		Reaction Tester Game ‘Diana’ Metal Detector	£1.28 £2.48
		Car Rev Counter	£2. 24	October 81	
$18 \mathrm{~W}+18 \mathrm{~W}$ Car Stereo		February 81		Combination Lock	£1.99
Booster (two required for		Heartbeat Monitor	£1.90	November 81	
stereo) each	£1.20	Audio Signal Generator	£1.85	Sound Torch (Set of Two)	£3.98

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/postal order made payable to ASP Ltd, for the amount shown below	Boards Required	Price
I wish to pay by 8arclaycard: Please charge to my		
account number mancano		
. VISA		
OR		
I wish to pay by Access. Please charge to my account number		
SIGNATURE		
NAME (BLOCK CAPTTALS)		
ADDRESS (BLOCK CAPTTALS		
-	Add 40pp \& p	0.40
	Total Enclosed	

Please allow 14 days for delivery

Get a great deal from Marshall's

TRANSISTORS - JUST SOME OF OUR LARGE RANGE

2N929	0.20	2N3771	1.65*	AC127	0.20	BC172	0.11	B0204	1.20
2N1131	0.20	2N3772	1.90	AC128	0.24	BC173	0.11	B0235	0.35
2N1507	0.12	2N3789	0.90	AC153K	0.20	8C182	0.10	B0240	0.36
2N1637	0.18	2N3790	1.50	AC188	0.30	BC183	0.10	B0242	0.42
2N1638	0.25	2N3791	1.50	AC188K	0.40	BC184	0.10	BD244	0.60
2N1991	0.35	2N3794	0.12	AD161	0.40	BC205	0.17	BD246	0.65
2N2060 2N2198	3.00	2N3819	0.22	AD162	0.45	BC212	0.12	BD535	0.45
2N2198 2N217	0.50	2N3854A	0.20	AF106	0.12	BC213	0.12	BD536	0.45
2N2217 2N2221	0.25	2N3856A	0.25	AF109	0.12	BC214	0.12	BDY17	1.80
2321	0.2 0.2	2N3905	0.14	AF126	0.28	BC250	0.12	BF225J	0.15
2N2646	0.45	2N3506	0.15 0.25	BC107	0.15	BC347	0.12	BF271	0.20
2N2714	0.12	2N4036	0.48	BC108	0.15	8C350	0.12	BFR39	0.22
2N2904	0.28	2N4059	0.13	BC109C	0.15	BC549	0.12	BFR81	0.22
2N2905	0.26	2N4060	0.13	BC115	0.19	BC559	0.12	BFY50	0.27
2N2907	0.26	2N4249	0.13	8C136	0.19 0.12	BCY58	0.20	BSY28	0.30
2N3053	0.28	2N4284	0.15	8 BC 147	0.11	BCY59	0.20	TIP34C	0.85
2N3054	0.70	2N4286	0.12	8C148	0.11	BCY7	0.20	TIP41A	0.50
2N3055	0.70	2N4288	0.12	BC149	0.11	BD115	0.20 0.25	TIP54	1.40
2N3108	0.30	2N4400	0.15	8C159	0.12	B0115 BD116	0.25 0.60	TIP110 TIP117	0.67 0.60
2N3393	0.14	2N4822	0.50	BC160	0.35	BD121	0.60 0.50	TIP117	0.60 0.54
2N3402	0.11	2N4898	1.00	BC167	0.10	BD138	0.40	ZTX301	0.16
2N3440	0.80	2N4901	1.60	BC168	0.10	80181	0.75	ZTX501	0.14
2N3441	0.90	2N4903	1.50	BC169	0.10	BD182	0.22	2 Psol	
2N3570	1.95	2N4907	1.75	BC170	0.10	BD201	1.00		
2N3638	0.15	2N5033	0.35	BC171	0.10	B0203	1.0		

DIGITAL CIRCUITS

CD4000	0.12	CD40998	0.93
CD4001B	0.18	CD45108	0.65
CD4002	0.14	CD4511	0.55
CD4407	0.18	CD4514	1.50
CD4008B	0.60	CD4518	0.53
CD4009	0.30	CD4520	0.68

Now the time can tell you! . . .

New - from Silicon Speech Systems (a Powertran subsidiary) - the first ever easy-to-build kit that will give a whole new meaning to the 'speaking clock'! Electronics and quartz technology combine to enable you to construct a talking timepiece that is interesting to build - fun to have!

Full instructions make this a kit with equal appeal to the beginner or experienced constructor

Special Christmas offer | includes VAT |
| :--- |
| and Post $\&$ Pkg. |

Accurate to a minute a year
Adjustable voice pitch
Grained stainless-steel case
Pocket size - approx. $5 \mathrm{in} . \times$
$21 / 2 \mathrm{in} . \times 1 \mathrm{lin}$.
Useful in the home or office
A perfect gift to give to the
onthusiast
Or, why not build one as a
present for someone else?

Silicon Speech Systems
 (A Powertran Subsidiary)

PORTWAY INDUSTRLAL ESTATE, ANDOVER, HANTS., SP10 3NM TELEPHONE ORDERING FOR ACCESS/BARCLAYCARD CUSTOMERS AVAILABLE -
RING ANDOVER (0264) 64455; PLACE YOUR ORDER AND JUST QUOTE YOUR CARD NUMBER

JOIN UP WIMI THMFSOTD

Litesold's new 'L" Somes coldomis iron - now at a bargain price
Outstanding parformance Lightwoight. Basy to maintain Eloments aro onclosed in Srainless Sreel shafts. insulated with mics and ceramic Non-seize interchangeable bite. choose from -copper or "lons lufe: A very special tool at a very opecial 'direct' prioe Juen 85.22 for iron fitsed with 3.2 mm copper bit Juek ©2.27 for 3 apare copper bite (1.6: 2 4:4.7) A mere $\$ 4$ for profocaional spmis stand O. Mny the hot for 10.8
ampo 10\%
All prices inc VAT P \& P

Ing DEVELOPNENTS LTD

Write today Send Cheque/P.0. Lo Litesold. 97.99 Gloucester Rosd. Croydon CRO 2DN or phone 01.6890574 for Barclaycard/Access sales

\section*{SUPER VALUE PACKS AND COMPONENTS
 P1. 50 Ass. Electrolytics Caps..... 80p
 | | | Hiah Voltage Discs. $1 \mathrm{KV}-8 \mathrm{KV}$.
 27pt-470pf80p |
| :---: | :---: | :---: |
| P10 | 18 | High Voltage Discs IKV-5KV 1000 of - 01 uf |
| P11 | 10 | 20 mm in line fuse holders |
| P12 | 10 | 5 pin din chassis sockets 80p |
| P13 | 150 | Axial $1 / 4$ watt resistors 80p |
| P14 | | 100K Multitone trimmers for |
| | | Thorn Varicap tunars80p |
| P15 | | One of each Tant Bead Cap. |
| | | as listed below. Qty. 20. £3.50 |

DIODES 1N4001;.04p. 1N4002; .04p. 1N4003; .04p. 1N4004; .05p. 1N4005; .05p TANT BEAD CAPACITORS

6.8/35v.........15p $10 / 16 v16 p$ 22uf/6.3v $4.7 / 35 v v^{2.8 / 25 v}$

100/16v...
Polystyrene Caps.
\qquad
 . $\quad .14 \mathrm{p}$
$+\quad . \quad 20 \mathrm{p}$ Post androm . $10 p$ Etc., etc. Lista enclosed with first order or S.A.E. Post and packing add. 20 p per pack or .20 p on orders for components only. Mall Orders over 25.00 poes free. VAT Inchashe. Mall Order Only.
C.H.J. SUPPLES, 4 STATIONROAO, CUFFLEY, HERTS. Td: 01 440 esse ONLY

TECEINICRL TRATNING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essental to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man You study in your own home. in your own time and at your own pace and if you are studying for an examination ICS quar antee coaching until you are successful

City \& Guilds Certificates

Telecommunications Techiicians Radio Amateurs
Electrical Insfallation Work

Certificate Courses

Colour TV Servicing
Electronic Engineering and Maintenence Computer Engineering and Programming Radio, TV, Mudio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

To: Internationai Correspondence Schools
Dept. 262 N . Intertexı House, L.ondon SW8 AUJ (n) or iclephone 6224911

Sublect of Interest
Name

Address

Bectronic Kiss for the Thrifty!
Build 50 Projects on a P.C. Chassis with components from your "Spares-Box" EXPERIMENT'S PRINTED CIRCUIT KIT
Contents: 4 essorted boards to suit the enclosed designs. Etching Powder, Resist Paint, Sotvent, Degreaser and Erching Instructions; also 50 Circuit Diagrams, Chassis Plans and ayouts for simple Crystal Sets, Transistor Radios, Transmitters, Amplifiers, Intercoms, Madio Control. Matal Oetector, Photoslectric and Untratonic Alarms, 'Perpetual Motions' Light-Beam Telephone. Instruments. Testers, Gadgets, etc. You can build at negligible coat with "Surplus" or reclaimed parts and trantistort you already have. Price: $\mathbf{\text { 2 }} \mathbf{2 0 0}$ Postage \& Packing 50,

PHOTOELECTRIC KIT

A kit of basic parts to build a simple Infra-Red sensitive Photoelectric Switch. Contents: Phototransistor, Transistors. Diode, Resistors, Connector, Latching Relay. Screws. Chassis Board, Case, and instructions. Also Plans for 10 Advanced Designs elc. Price: $\mathbf{6} 4.50$ Postage 8 Packing 50p

OPTICAL KIT

A kut of parts to build an I.R. folded-beam Projector and Receiver to suit the above kit Contents: 2 Lenses, 2 Mirrors, 245 -deg. blocks, Infra-Red Filter, Lampholder, Building Plans.
Price: 3.70 Postage \& Packing 30p.
Both kits together make an excellent Invisible-Beam Burglar Alarm.
EXPERIMENTAL ELECTRONICS 335 Battersea Park Rd, London SW11 4LS
Send s.a.e. for full details of all kits and circuits and you will be amazed.

If you find an ad unacceptable, don't turn the page: turn to us.

The Advertising Standards Authority.

A.S.A. Ltd., Brook House, Torrington Place, London WCIE 7HN.

PCB Foil Patterns

The PCB foil pattern for the Sound Torch Transmitter (left) and Receiver

L.D.R. SIMILAR TO OR8 61 IN SHIELD WITH LEAD. ONLY 30p OR E2.35 FOR 10

RELAYSBY KEVEwITCH
10A 2-Pole C/O 240 V NLY 2 for $\mathrm{E1.50}$ 2 for 81.50
5 for 8.60

GEC CONTACTOR 3. N/O Contacts 600V 36A Coil 4.60

TOGGLES, DPDT CENTRE OHF 10A 240 V 80 p 5 for E3.50
BIASSED $30 p 4$ FOR EI
FEMAIL $x^{\prime \prime}$ SPADE 10/20p GAS SOLENOID VALVE $1 / 8^{\circ}$ Pop Rivets 50/50

20 mm GLASB FUSE
20mm QUICK BLOW 1A ${ }^{\prime \prime}$ (FITS 1 "" CHASSIS MOUNT HOLDERI 3A. 10A QUICK 10/40p 100/ £3.00

ROLLER ARM MICRO SWITCH SPST 15p
10 mm GLASS SLEEVE 30 p BULGIN $3 A 3$ PIN PLUG AND SERET USEFUL HARDWARE E1

FOR THE ELECTRONICS MAN WITH NEARLY EVERYTHING!

an immortalized thermonic valve in a TRANSPARENT PAPERWEIGHT. IDEAL PRESENT

ONLY £2.10
LATCHING RELAY WITH MANUAL RESET
2 POLE C/O AND
SINGLE POLE MAKE PANEL MOUNTING

ONLY £1.00

LOW-COST, RUGGED TEMPERATURE CONTROL

TEMP. GALCE $0^{\circ}-120^{\circ} \mathrm{C}$
Rempter zensor on 38° capillary, panal mounting
dial 56 mm . dia. dial 55 mm . die
ONLY £1.86
16A 24OV RANCO THERMOSTAT Wide control range llow room temp. to over boifing point) Sensor on 22" capilliery. C2.30, including control knob
RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$ 15 A 240 V . Sonsing coill on 41 in . capiliary panel mounting with reset button E1.20 BUY ONE EACH OF ABOVE FON E4.S5

LEM. SERVICES 230 Rucer noal LEAMINGTON SPA CVZ EDY WARWICKSHIRE

ADD 500 P\&P ORDERS OVER $\mathbf{f 5}$ post free

PARNDON ELECTRONICS LTD.
Dept. No. 22, 4 Pedsock Meed, Harlow, Esees CM18 7RR. Tel. 027932700 RESISTORS:
 and cotour coour
E. 50 pran mand (Man 111 pert vilue)

DIODES

E1.60 per hundrud
DIL SWITCHES: Cistd plaled

DIL SOCKETS: Hegh quahtiv lem prothle wnk,

$$
8 \text { pin }-10 \mathrm{p} .14 \text { pin }-11 \mathrm{p} .16 \text { pin }-12 \mathrm{p} .18 \text { pin }-19 \mathrm{p} .20 \text { pin }-21 \mathrm{p} .
$$ 22 ріп -23 p. 24 ріл -25 p. 28 pin - 27 p. 4 (pin -42 p.

all PRICES INCLUDE V.A.T \& POST \& PACKING - NOEXTRAS
MIN ORDER - UK 11 (K) OVERSEAS IS CASH WITH ORDER PIEASE

ELECTRONIC CLEARANCE PACKS HUGE SCOOP PURCHASE

Containing Transistors, capacitors, resistors, pots, switches, radio and audio items, connectors, relays and many electronic devices. Must be worth over $€ 20$ per pack. Our price $£ 5$ car $£ 1.75$.
JUMBO PACK Must be worth over $£ 50$.
Our price £10. Car $£ 2.50$. Money back if not delighted

HAVE YOU SEEN THE GREEN CAT?

1000s of components, Audio, radio, and electronic. Almost everything electronic at unbeleivably low prices. Something for everyone. Send 35p P.O. or cheque and receive FREE RECORD SPEED INDICATOR MYERS
Dept HE 12 Harper Street, Leeds LS2 7EA Tel. 452045

SINCLAIR ENTERPRISE programmable calculator, only slightly used, $£ 20$ ono. Phone Hull (0482) 781517 after 6.00 pm .

2X81 1K codebreaker, a super flicker-free game, send $£ 1$ plus s.a.e. R. J. Andrew, 15 Lambions Way, Winslow, Bucks.

HIGH QUALITY COMPONENTS: Metal Film Resistor packs, 100 pieces, minimum 10 values: $1 / 4$ W 5\% 90p; $1 / 2$ W 2\% 85p; $1 / 4$ W 2\% £2.50. Cermet Potentiometers: 10 for $\mathbf{£ 2 . 0 0}$. Gold contact 24 pin low profile IC sockets 48 p each. P\&P 40p. Full lists 40p. T. Milner, 203 Goodman Park, Slough, Berkshire.

SMALL REED SWITCHES 10p. Reed Relays 6V, 9V. 12V, 40p, Dynamic Mike Inserts, 65p. Small magents, 8p. Red L.E.D.s 10p. Intercom cases 45p. Postage 25p. Grimsby Electronic Components, 95 Lambert Road, Grimsby, Humberside. List 16p.
PRE-PACKED SCREWS, Nuts, Washers, Solder Tags, Studding. Send for price list. A1 Sales (ETI), P.O. Box 402, London SW6 6LU.
BARGAIN COMPONENT PACKS: 100 mixed resistors $£ 1$; 1,000 for $£ 7.50$, post free. - JKS Electronics, 2 Poundfield Rd., Debden, Loughton, Essex.
CENTURION BURGLAR ALARM EQUIP. MENT. Send s.a.e. for free list or a cheque/p.o. for $\mathbf{£ 5 . 9 5}$ for our special offer of a full-sized decoy bell cover. To: Centurion, Dept. ETI, 265 Wakefield Road Huddersfield, West Yorkshire. Access and Barclaycard. Telephone orders 0484 35527.

3 INCH 30 OHMS 1.5 Watt loudspeakers, square frame, suitable metronome project, etc. 70p each, 50 p p\&p per order. Cheques, $P O$ to - AFDEC Electronics Ltd, 17c London St, Basingstoke, Hants.

GUITAR/PA MUSIC AMPLIFIERS

100 watt superb treble/hass overdrive, 12 months guarantee. Untentable at $\mathrm{E} 50 ; 60$ watt $£ 44$; 200 watt $688 ; 100$ watt twin channel sep. trable/bass per channel ê5; 60 watt E52; 200 watt E75; 100 watt four-channel sep. treble/bass per channol 575 ; 200 watt Cse; slaves 100 watt $\mathrm{E34}$; 200 watt c80. 250 watt $£ 70 ; 500$ watt $£ 140$; fuze boxes, great sound, C12; bass tuu $£ 12.50$; overdriver fuuz with treble and bass boosters, E22; 100 watt combo, superb sound, overdive E115; bass combo f118; speskers 15 in . 100 wall E36; 12 in . 115; bass combo f118; spaskers 15in. 100 wati cso; 3-channel sound/ight $£ 26$.
Send cheque/P.O. to: WLIMMSON AMPLIFICATION

ELECTRONIC KIT BUILDERS. You supply the kit - we build it for 60% of kit price. Powertran approved. - for quotation telephone 060456248 or 0908564542.

AMAZING ELECTRONICS PLANS. Lasers: Super-powered Cutting Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue 75p. - From Plancentre, 16 Mill Grove, Bilbrook, Codsall, Wolverhampton.

MAIL ORDER PROTECTION SCHEME

 If you order goods from mail order advertisers in this magazine and pay by posi in advance of deliven, this publication Hobby Electronics will consider your for compensation if the advertiser should become insolvent or bankrupt. provided:You have not received the goods or had your money returned; and
2. You write to the publigher of this publication Hobby Electronics explaining the position not order and not later than 2 months from that day.

Please do not wait until the last moment to in form us. When you write, we will tell you how to make your clam and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of elifected and up to $55,400 \mathrm{p}$, a in in respect of so insolvent advertisers. Claims may be pard for higher amounts, or when the above procedures has not been complied with, at the discretion of this publication Hobby Electronics, but we do not guarantee to do so in view of the need to set some limit to this commitment, and to learn quickly of readers difficulties.
this guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payments a result of answering such advertisements! Classified advertisements are excluded.

SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H OEE. TEL: 01-437 1002 Ext. 50.

RECHARGEABLE BATTERIES

PRIVATE OR TRADE ENQUIRIES WELCOME

 FULL RANGE AVAILABLE. S.A.E. FOR LISTS £1.45 for Booklot. "Nickel Cadmium Power' plus Catalogue. "Now range of sealed lead now plus Catalogue. "Now range of sellod lead now available'. Write or call: SAndwell PIAnt LId.. ${ }^{2}$.Union Drive, BOLDMERE. SUTTON COL DFIELD. WEST MIDLANDS O21.354 9764.

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer -. now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick $£ 1.75 \mathrm{sq}$. f. Post/packing 75p. White House Electronics. Castle Drive, Praa Sands, Penzance, Cornwall.

CONVERT ANY TV into large screen oscilloscope. External unit plus into aerial socket. Circuit and plans f3 (SAE details). - J. Bobker, 29 Chadderton Drive. Unsworth. Bury, Lancs.

ZX81 FLICKER-FREE GAMES, 6 on cassette, £3 (or SAE details). - Kerr, Dept HE, 29 Chadderton Drive, Unsworth, Bury, Lancs.

WANTED. Electronic components and test equipment. Good prices given. Q Services, 29 Lawiord Crescent, Yately (0252) :871048, Camberley, Surrey.

CLOSE ENCOUNTERS GROUP. Personal introductions/dances, parties, talks, social events. Meet interesting, attractive people. All areas. - Tel. (Liverpool) 0519312844 (24 hours).

ADVERTISEMENT INDEX

Abeonglan Ltd
B.N.R.S

Circolec..
Electroni-Kit . .

Greenwold.

ICS
ILP.
Ltesold
Marshalls
T. Powell.

Powertran. .
Brian J. Reed
Riscomp
Setray Book
Silicon Speect
Tempus

Akhter Instrumente
Amblt internationa
Amtron (UK) Ltd
Bi-Pak Semiconductors
BK Electronice
J. Bull (Electricali) Lid

Calculator Sales 8 Sorvice
C.H.J. Supplte

Electronize Design
Electrovalue.
Experimantal Electronice
Devid George Seles
Heath Electronics
Henry's Redio
Home Radio (Componante)

LEM Service.
Megente Eiectronic.
Newnes Technical Bool
Parndon Electronics
PATH Electronice
Portative Inarument
Portative Instruments

Rheinbergs Sciences

Selrey Book C
Silicon Speech Syeteme
Tempus Instrument
TK Electronics
Vero Electronics
Watford Electronice
Weat Hyde Developments
. 29 .18 .24 . .27 .. .53 .. .42 88 . .53

Eyde Developments 13

ELEGTRIFY YOUR SALESI • CLASSIFIED ADVERTISEMENT

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15

Please place my advert in: Electronics Today International (Delete as applicable) Hobby Electronics

Advertise netionally in Electronics Today International/Hobby Electronics. Simply print your edvertisement in the coupon
here lleftl. Indicating which magazine you require. Or telephone for more information.

Name

Address
\qquad

Tel. No. (Day)
Send, together with your cheque to:
Jenny Naraine, ETI/HE,
145 Charing Cross Rd., London WC2H OEE.
Tel: 01-437 1002 Ext. 50.

Are you good enough with these..

a. 1 B

to turn this....

into this?....

then you're ready for a POWERTRAN kit.

Powertran kits offer the enthusiast the chance to construct the finest quality elec tronic music technology at a mere fraction of the cost of shop-bought units. Fer over ten years our kits hare been winning a national and international reputation fo. excellence. We lead the feld not just in originality and design ingenuity ~ but also in the truly professiona finish and performance capability of our machines Although Powertran kits use advanced technology you don't need to be a genius to build them. Our clear comprehensive and fully diagrammed construction manuals make them suitable even for the beginner - you not only build your kit, you build your skill and knowledge too. There are a dozen kits to choose from - so isn't it time you became a Powe-tran builder?
POWERTRAN - QUITE SIMPLY THE BEST WAY TO MAKE MUSIC.
Your Powertran kit features:

- Advanced electronic technology
- Original and ingenious cesigns
- Fully comprehensive menuals
- Fully finished metalworb
- Superior components
- Solid teak cabinets (with all synthesizers)
- Fully professional performance
- Complete down to the lasi nut and boli!
plus the confidence of Powertran's international reputation for quality, service and reliability

MPA 2.20 an easy to build 100 W amplifier Professional firish and performance com zined with reliability and economy Adsplabto inpul mixer accepts a varety
of sources.
CHROMATHEOUE GOM a superb 5 channal lighting affect system Outstanding derign teaturas enabio a massive variaty of elfects Each channel handles up io 500w - minimal wiring with single-board design COMPLETE KIT \&AS,E0f + VAFI ETI VOCOOEA - 14 channets tor the ultmate in varsatility and high inteiligibiliy The Vocoder has an almost infinite variety of oparatuon Construcrion - with easy to-follow manual - is challenging yet within the scope of most enthusiasts

COMPLETE KIT EMCO + VAT DJSO STEAEOMIXEA - Ashown above in a console with Chromathequa and SP2 20 I the most versalio mixer with overy fachty you need for stick and plotas sional disco work - fun to bulld end even more fun to operate. COMPLETE KIT ES7.E0 1 , VAI For nowcomere wo offer our unique Soldering Practice Wh with halptul tips and euldence notee - free on requect with your flret kh ordored. Plue

[^0]: Figure 11.5 Speaker, audio board and other items

