

Ambit's new concise component catalogue is out !!

SEPTEMBER 1981

 Vol 3 No 11
PROJECTS

+ 'DIANA' METAL DETECTOR
Build this project... you could unearth a fortune 10
LOW-POWER PILOT LIGHT
Reminds you to turn equipment off 21
LIGHT/WATER ALARM
Simple audible alarm project 28
CAR LIGHTS DELAY
Helos you see in the dark 38
POWER PACK
An adjustable mains adaptor 42
HE ELECTRONIC IGNITION
Additionalinformation. 50
SHORT WAVE RADIO
Long-distance reception at low cost 52
REACTION TESTER GAME
Easily built and has six skill levels 58
PCB FOIL PATTERNS
Track patterns of our PCBs 62
FEATURES
* ELECTRONICS IN DIAGNOSTIC MEDICINE How electronics aids doctors'diagnoses 15
TECHNICAL TERMS - New Feature
Understanding the Hall Effect 23
IM NAMES
Oliver Heaviside - an original genius 26
FREE supplement on the latest electronic products 31
BUILDING SITE
Hot tips on soldering 39
CLEVER DICK
Those technical queries answered 41
INTO ELECTRONIC COMPONENTS
Part 2 of this new series for beginners 46
YOUR LETTERS
The Editor gives his views 55
BREAKER ONE FOUR 62
NEWS\&INFORMATION
Monitor - Electronics News 6
HE Next Month 27
Subscriptions - the easy way to buy HE
29
ToolSet Offer
37
37
Video Synthesiser Offer
Video Synthesiser Offer
50
50
Multimeter Off
56
56 60
Prize Winners! - HE Schools' Competition
Prize Winners! - HE Schools' Competition
Electronics Digest - Autumn Edition 60
NEW Printed Circuit Board Service from HE 61 61
First National Citizens' Band Show 63
8ooks From HE 64
Classified Ads 65
Assistant Editor: Keith Brindley Editorlal Assistant: Judith JacobsDrawing Office Manager: Paul Edwards Managing Editor: Ron Harris BScLayout Artist: Enzo Grando Managing Director: T. J. Connell

This month's cover shows Carole Anne with a look of determination on her face as she searches for hidden treasure with the ME 'Diana' Mefal Detector. Why did we call this project Diana? See page 10 for the answer

The HE Short Wave Radio is easy to build and covers 1.5 to 33 MHz in three ranges - see page 52

HE Tool Set Offer - five high-quality tools for the electronics hobbyist - details on page 29

Which amplifier?

I.L.P. Amplifiers now come in three basic types, each of which is available with or without heatsink. Having decided the system you want - home hi- fi (models HY30, 60 or 120 for example), super quality hi-fi with extra versatility (MOS 120, MOS200) or Disco/PA/Guitar (HD120, HD200 or HD400) you will then decide whether amplifiers housed within their own heatsinks or plate amplifiers for bolting to a metal chassis will suit. With choice such as this and a brilliant new range of I.L.P. functional modules to choose from you now have the chance to build the finest audio system ever offered to the constructor.

BIPOLAR		Standard, with heatsinks							Without heatsinks				
		DIST	Rtion										
$\begin{aligned} & \text { MODEL } \\ & \text { MUMAEE } \\ & \hline \end{aligned}$	gutput POWE Watts rms	$\begin{gathered} \text { T.M.O. } \\ \text { TV } \\ \text { it } 1 \mathrm{HHz} \end{gathered}$	\qquad	SUPPIY voltage TYP信AX	SL2E mm	${ }_{c}^{\text {wim }}$	PaICE	vat	$\begin{aligned} & \text { MODEL } \\ & \text { MUMAER } \end{aligned}$	$\begin{gathered} \text { sLLE } \\ \text { in } \\ \hline \text { min } \end{gathered}$	$\begin{aligned} & \text { WT } \\ & \text { gmis } \end{aligned}$	Palce	vat
hr30	15w/4.88	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	¢7.29	[1.09					
hrso	$30 \mathrm{~W} / 4.8 \Omega$	0.015\%	<0.006\%	$\pm 25 \pm 30$	$76 \times 68 \times 40$	240	¢8.33	[1.25					
HY120	60w14.8R	0.01\%	<0.006\%	$\pm 35 \pm 40$	120ı78×40	410	[17.48	¢2.62	HY 120P	$120 \times 26 \times 40$	215	¢15.50	12.33
HY200	120w/4.88	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	¢21.21	[3.18	HY200P	120×26x40	215	[18.46	\{2.77
HY400	240w/4ת	0.01\%	<0.006\%	$\pm 45 \pm 50$	120^78×100	1025	[31.83	$[4.77$	HY400P	120×26×70	375	¢28.33	[4.25

Protection: Load line momentary short circuit tiypically 10 seci Slew rate: $15 \mathrm{~V} / \mu \mathrm{s}$ Rise tume $5 \mu \mathrm{~s}$
S/W ratio: 100 dth Frequency rasponse $1-308$: $15 \mathrm{~Hz}-50 \mathrm{kHz}$
Input sensitivery: 500 mV ms Input impedance: 100 kS Demping factor. $18821100 \mathrm{~Hz} \mid>400$

AMPLIFIER
 WITH
 HEAT SINK

Without heatsinks

H0120	60w\|4.88	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	¢22.48	¢3.37	HD120P	$120 \times 26 \times 50$	265	¢19.84	¢2.98
H0200	120w/4.88	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 60$	620	[27.38	¢4.11	H0200P	120×26x50	265	£23.63	¢3.54
H0400	240wi4 Ω	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	¢38.63	¢5.79	H0400P	120×26x 70	375	¢ 34.28	¢5.14

Protection: load line, PERMANENT SHORT CIRCUIT (ideal for discofgroup use should evidence of short curcuit not be immedately apparent).
The Heavy Duty range can cloum additional output power devices and complementary protection circuitry with periormance specs. as for standard types.

MOSFET Ultra. Fi, with heatsinks

m0S120	60w/4.88	<0.005\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 40$	420	¢25.88	¢3.88	mos120P	$120 \times 26 \times 40$	215	¢23.32	¢3.50
mos200	$120 \mathrm{w} / 4.88$	<0.005\%	<0.006\%	$\pm 55 \pm 60$	$120 \times 78 \times 80$	850	¢33.46	¢5.02	mos200p	$120 \times 26 \times 80$	420	¢28.53	¢4.28
M0S400	240w/4ת	<0.005\%	<0.006\%	$\pm 55 \pm 60$	$120 \times 78 \times 100$	1025	¢45.39	66.81	mos 400 P	$120 \times 26 \times 100$	525	¢38.91	¢5.84

Protection: Able to cope with complex loads. without the need for very special protection circuitry lifuses will sufficel.
Ultra-fi specifications:
Shew rate: $20 \mathrm{~V} / \mathrm{\mu s}$ Rise time: $3 \mu \mathrm{~s} \quad$ S/Wratio: 100 H Frequency response $1-3 d 8 \mathrm{H}: 15 \mathrm{~Hz}-100 \mathrm{kHz}$
Input sensitivity: 500 mV tms Input impedence: $100 \mathrm{k} \Omega \quad$ Damping factor: $\{8 \Omega, 100 \mathrm{~Hz} \mid>400$

POWER SUPPLY UNITS

mooel no	FOR USE WITH	PRICE	vat
PSU30	$\pm 15 \mathrm{~V}$ combinations of HY6/66 series to a maximum of 100 mA The following will also drive the HY6/66 series except HY67 which requires the PSU30.	¢4.50	¢0.68
PSU36	1 or 2 HY 30	c8. 10	¢1.22
PSU50	1 or 2 HY 60	£ 10.94	¢1.64
PSU60	$1 \times$ HY120/HY 120P/HD 120/HD 120 P	£13.04	¢ 1.96
PSU65	$1 \times$ MOS $120 / 1 \times$ MOS 120 P	£13.32	f2.00
PSU70	1 or 2 HY120/HY120P/HD120/HD120P	£ 15.92	¢2.39
PSU75	1 or 2 MOS $120 / \mathrm{MOS} 120 \mathrm{P}$	£16.20	¢2.43
PSU90	$1 \times$ HY200/HY200P/HD200/H0200P	£16.20	¢ 2.43
PSU95	$1 \times \mathrm{MOS} 200 / \mathrm{MOS} 200 \mathrm{P}$	£16.32	¢2.45
PSU180	$2 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{HD} 200 \mathrm{P}$ or $1 \times$ HY $400 / 1 \times$ HY $400 \mathrm{P} / \mathrm{HD} 400 / \mathrm{HD} 400 \mathrm{P}$	¢21.34	¢3.20
PSU185	$\begin{aligned} & 1 \text { or } 2 \text { MOS } 200 / \text { MOS } 200 \text { P } / 1 \times \text { MOS } 400 \\ & 1 \times \text { MOS } \end{aligned}$	¢21.46	¢ 3.22

FP480

BRIDGING UNIT FOR DOUBLING POWER Oesigned speciedy by I.L.P. Ior use with any two power amplifiers of the same type to double the power output obtained and will function with any I.L.P. power supply. In totally saaled case, size $45 \times 50 \times 20 \mathrm{~mm}$, with edge connector. It thus becomes possible to obtain $\mathbf{4 8 0}$ watts tims isingle channell into 8Ω. Contributory distortion less than 0.005\% Price: $\mathbf{5 4 . 7 9 + 7 2 p . ~ V . A . T ~}$

OFA NETV ERA

Which modules?

In launching eighteen different units all within amazingly compact cases to help make complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the most versatile modular assembly scheme ever for constructors of all ages and experience. Study the list - see how these modules will combine to almost any audio project you fancy - and remember all.I.P. modules are compatible with each other, they connect easily. Modules HY6 to HY 13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 to HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year no quibble guarantee.

- Ready August - may be ordered now
†Ready September-may be ordered now

See our advertisement on page 65

TO ORDER USING OUR FREEPOST FACILITY

Fill in the coupon as shown, or write details on a separate sheet of paper. quoting the name and date of this journal By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Lid. If sending cash, it must be by registered post. To pay C.O.D. please add £ 1 so TOTAL value of order. When ordering, U.K. customers must include the appropriate V.A.T. as shown

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARO IF REOUIRED

ALL WITH ILP S 5 YEAR NO QUIBBLE GUARANTEE

TO: I.L.P. ELECTRONICS LTD. ROPER CLOSE CANTERBURY CTZ 7EP

Please supply

Total purchase price \&......
I enclose Cheque \square Postal Orders \square Intemational Money Order \square
Please dobit my Access/Barclaycard Account No.

NAME
ADDRESS

Help The Handicapped

WE ARE PLEASED to report that the response to the HE Project Design Compettion for the International Year of Disabled Persons 1981 has taken an encouraging upturn during the last month (see comment under Your Letters. page 55). As a reminder, the closing date for the competition is 1 st Septomber 1981 - contact the Editor before this date if you have any questions about project designs.

While on the subject of IYDP it is worth noting the following:

First is a series of informal workshop sessions where those attending make aids for the disabled. Paul Tippell, lecturer in electronics, has been running these sessions during term time at Richmond-upon-Thames College, Egerton Road, Twickenham TW2 7SJ (tel 018926656) during the last three years. The noxt sessions will begin on Tuesday 22nd September 1981 between 7.00 and 9.30 PM each weok. Just contact Paul at the Collage or call in on any Tuesday evening at 7.00 PM and ask for Workshop H3.

Fee for each term (usually 12 weeks) is $£ 9$.

Examples of ltems that could be made at the sessions include - electronic remote controls for operating radio, TV and other olectrical appliances, devices for opening garage doors
automatically when a car is driven up to them, remotelycontrolled door locks and lowcost communications alds.

Paul told HE that one project completed recently by the workshop was an extended computer keyboard' which enabled a disabled person to program a computer - with his or her toesl

Second item for your diary is a low-cost course 'Disabled People - Living and Learning', organised by ACTIVE. It is to take place on the lsie of Wight on 25th September - full detalls are given in the first letter under Your Letters this month.

Third is 'IYDP And Then . . . ?' - the Autumn Conference of ACTIVE. It will take place on Saturday 17 th October 1981 in the Great Hall, Imperial College, London SW7. This conference will look at the increasing importance of self-help and one-off solutions to the needs of severely disabled people, methods of approaching problems and some practical examples of equipment to make.

The conference will include a small exhibition of play, lelsure and communication alds.

Foes, including refreshments and buffet lunch, are $\mathbf{£ 6}$ for TLA/ACTIVE members, £6.95 for non-members and $£ 15$ for families (not more than four people).

Contact: Judy Denziloe, ACTIVE, Seabrook House, Darkes Lane, Potters Bar, Herts EN6 2HL (tel 0707 44571) for further details.

19 (V) 81

TV Games From Activision

EIGHT GAMES CARTRIDGES are planned for release in the UK in the autumn, from Californianbased Actlvision.

Under Monitor in the January '81 issue of HE we commented on the formation of Activision by some of the engineers who had been working for Atari and who had produced games cartildges which were compattble with Atari's Video Computer Game. We also mentioned the legal wrangle that had ensued between the two companies.

Now that the air has cleared, the cartridges are to be marketed in the UK by Computer Games

Limited, with the following titles:
Tennis Skỉng
Boxing Fishing Derby
Dragster Kaboom
Laser Blaster Freeway
According to Computer Games Limited, Tennis and Boxing will be the first to appear, in September, followed by Dragster and Laser Blaster in October, Fishing Derby and Skiing in November and Freeway and Kaboom (whatever that is) in December. Each game will cost £16.95, and we hope to review them in our Gadgets, Games 8 Kits supplement

The games will be available from Circolec, 1 Franciscan Road, Tooting, London SW17 8BR (tel 01767 1233).

Sharpen-up Your Hi-fi Pencils

A SMALL SNIPPET from the June 1981 issue of the Antique Wireless Newsheet, Number 71 :

- Did you know that the name of "Sharp". that well known Japanese manufacturer of hi-fi and car radios, came from the 1920's when they produced an "everlasting pencil" - always sharp ${ }^{\prime}$

Handy Microcassette

JUST DELIVERED to the HE of fice is one of the latest devices from AIWA - the CS-M1.

You would be forgiven for thinking that the CS-M1 is just another ordinary radio/cassette recorder if it were not for the machine's size (rather, lack of it). AIWA calls the CS-M1 a micro stereo radio cassette recorder and micro is definitely the operative word. Case dimensions are only 230 mm wide, by 80 mm high, by 36 mm deop. It weighs in at only $\mathbf{7 2 0} \mathbf{g}$, too.

Apart from:

- recording and playing back using a microcassette
(not a standard cassette)
- its small size
- metal tape facility
the CS-M1 is similar to larger more conventional machines. The radio section features FM stereo and AM medium wavebands, while the tape sectlon has cue/roviow controls, a tape position counter, built-in - lectret condenser microphones for stereo live recordings, and auxiliary inputs to record from an external source (such as your hi-fi system).

Many other features are also included, which we hope to tell you all about in a future Gadgets, Games $\&$ Kits supplement.

The AIWA CS-M1 retails at £109.95 or under.

Trap Those Signals!

IF YOU PLAN to build the HE Short Wave Recelver, of have one already. then you need a good aerial to get the best results from It. Ler Modules Lid claims that: 'About the easiest and least expensive way to be able to trensmit/receive on five bands is to use a trap dipote ${ }^{\circ}$

The company is offering a pair of LAR 7 MHz weatherproof traps, 500 W rating. a pair of lightweight end-insulators and in-
structions for making a five-band trap dipole for $\mathbf{£ 1 2 . 5 0}$, including VAT (postage and packing £1.75 extra).

This dipole will cover the 80 , 40, 20, 15 and 10 metre amateur bands.

Of course, you won't need the 500 W rating until you start transmitting, and you need an Amateur Radio Licence for that .

LAR Modules Limited, 60 Green Road, Leeds LS6 4JP (tel 0532782224).

Leader Test Gear From Sinclair

LOOKING FOR SOME test equipment? You might find what you want in the Leader range from Sinclair Electronics.

Aithough Sinclair Electronics has been stocking Leader products since the middle of last year, according to Tony Starling, SE's Sales and Marketing Manager, a recent decision was made to select 'items of potential Interest' for the alectronics hobby market.

Examples are the LSG-16 signal generator (E63.25 including VAT) and the LAG-26
audio generstor (£73.60 Including VAT)

The LSG- 16 covers 100 kHz to 100 MHz lup to 300 MHz in harmonics) in six ranges. It has a 1 kHz modulator and provision for external modulation. A crystal oscillator facility is also provided.

The LAG-26 covers 20 Hz to 200 kHz in four ranges and has a rated harmonic distortion of within 0.5%.

We hope to test the above instruments and report on our findings in furture Gadgets, Games $\&$ Kits supplement.

Further detalls from Sinclair Electronics Limited, London Road, St. Ives, Huntingdon. Cambs PE17 4HJ (tel 0480 64646).

Latest In Microcassette Recorders

PEARLCORDER S801 has been introduced by Olympus Optical Company, and is the smallest microcassette recorder that we've seen yet.

You may remember Move Towards Microcassettes, the special feature on pages 10 and 11 of the March ' 81 issue of HE. There we featured the D6710 microcassette recorder from Philips and the M5850FG microcassette recorder/radio from Sanyo. The S801, intended primarily for use as a dictating machine, is smaller than these iwo and offers some interesting foatures.

Instead of the conventional mechanical tape log counter, the S801 has an LCD display. This works in conjunction with a builtin momory, which enables you to stop the tape automatically at pre-programmed points indicated by the counter.

We tested a sample machine and found it comfortable to hande, aithough the slide controls took some getting used to after years of button-pushing. We also found that loading and unloading a cassette was not as fast or as easy as it was for the D6710 or M5850FG.

However, the \$801 is a rugged looking machine bult in a metal case and finished in matt black. It comes complete with a blank microcassette cartridge, pouch, wrist strap, personal ar. plece and a set of batteries (two AA-size cells).

Olympus offers 12 different accessories to go with the machine. including a tolophone pick-up, remote control switch. car cigarette lighter socket adaptor and an AC mains adaptor.

The cost is $£ 106.42$ (including VATI from Offmech Services Limited, $13 / 19$ Curtain Road, London EC2A 3LT itel 01-2478986)

Offmech offers full service back-up on microcassette recorders and dictating machines.

Electronics News

DXTV Reception Group

THE NATIONAL DXTV (longdistance television reception) group has been meeting regularly in London since February 1981.

This group, formed by George Grzebleniak (RS 41733), has acquired and made use of a large
variety of TV equipment ranging from a $5^{\prime \prime}$ multi-band black-andwhite TV to a $27^{\prime \prime}$ colour model which has provision for reception of satellite transmissions.

Detalls can be obtained from George Grzebieniak, c/o 185 Fleet Street, London EC4A 2HS, enclosing a self-addressed stamped envelope.

Rack Those Tools With Rawlplug

TWO RACKS have been introduced by the Rawlplug Company to halp cope with the ever. incressing number of tools that do-it-yourself enthusiasts seem to accumulate.

First is the Rawlplug Handy Tool Rack which, it is claimed, will hold over 50 hand tools ranging in size from a medium-length saw to a $1 / 16^{\prime \prime}$ drill blt. The rack is made from stove-enamelled steel, measures $36^{\prime \prime}$ by $4^{\prime \prime}$ by $4^{\prime \prime}$ and can be fitted in a garage, shed, above a workbench or in a
cupboard. It costs $\mathbf{f 4 . 9 9}$ including VAT and comes complete with fixing screws and - naturally anough - Rawlplugs.

The second rack is for the do-it-yourself gardener and will hold a mixture of long- and shorthandled tools (we're sure that many HE readers fit in a spot of gardening between project building). This rack is about 36" long by $4^{\prime \prime}$, costs $£ 4.99$ including VAT and comes complete with firtings.

The Rawlplug Company Limited, Rawlplug House, London Road, KIngston-upon Thames, Surrey KT2 6NR (tel 01 $5462191)$.

Amateur Radio Courses Taken By Fear

FRANK FEAR (G8CVR) will be running two courses in Amateur Radio from September this yoar.

The first will run for three 10 -week terms and will cover the syllabus of the Amateur Radio Course Examination Number 765. Applicants need not have previous knowledge of the sub ject. The couse will be held at the Broadway North Adult Centro. Queen Mary's Grammar School, Sutton Road, Walsall, on Monday and Wednesday from 7.00 to 9.00 PM, starting from 21 st September 1981. Enrolment days are Monday 14 th and Tuesday 15 th September, betwoen 6.30 and 8.30 PM at the Aduli

Centre. Cost of the course is $\mathbf{~} 5$ per term, or $£ 12.50$ in advance for the three terms.

The second course will run for 10 weeks and is intended for those who have some previous knowledge of amateur radio or who have falled the May ' 81 ex amination. It will be hold at Barr Beacon Comprehensive School, Old Hall Lane, Aldridge on Thursday ovenings, from 24 th September. Enrolmont day is Thursday 17 th September between 6.30 and 8.30 PM at Barr Beacon, and the cost is $£ 5$.

Frank Fear has been running these courses for two years and because of the unexpected response last year, was forced to run an extre evening course. The same arrangement could be made this year.

If you want details of these coursas, contact Frank Fear on 092252706.

Five low-cost projects for the home

TOUCH LAMP

The HE Touch Lamp can be turned on and off with the lightest of touches. It's easy to build and handy to have at the bedside

COMBINATION LOCK

No keys to worry about with this project: you just need a good memory to remember the right push-button combination. A simple-to-build project with home security in mind

ENTRY PHONE

Imagine: a dark evening, it's pouring with rain and a stranger knocks at your front door. Now, instead of having to speak through the letter box you can address callers in comfort with the HE Entry Phone

TELEPHONE BELL REPEATER

No, not an ingenious method of mass-producing telephone bells at home but a project that will relay the sound of a ringing 'phone to any other room in the house

METELEPHONE

BELL REPEATEA

Build yourself this pulse induction metal detector and perhaps you'll find yourself a fortune! It's ideal for beginners and novices to electronics and treasure hunting, because it is simple to construct and needs no special test equipment to set it up for use

The Roman goddess Diana (pietured on the right) was, according to myth, a huntress usually depicted in Roman art with bow and quiver, and accompanied by a hound. Because this project is the ideal metal detector for would-be treasure hunters we have adopted the name
'Diana' to evoke a hunting atmosphere.
The HE 'Diana' Metal Detector is easy to build and equally easy to use. You can make it out of readily available components and hardware well below the costs of equivalent commercial detectors.

Pulse induction (see How It Works) is used in the detector to create a very sensitive circuit - our prototype is capable of detecting the presence of small metal coins at a fair depth. It cannot, however, distinguish between ferrous metals (such as iron) and non-ferrous metals (eg, gold, silver, aluminium).

Construction

Build up the printed circuit board (PCB) as shown in Fig. 2: start by inserting and soldering all low-profile components first (eg, resistors, diodes, IC sockets and preset resistors), making sure the diodes are the right way round. Also insert and solder the wire links.

Next insert the remaining components - carefully checking that both the transistor and the electrolytic capacitor are the correct way round. Solder in terminal pins where connections to the PCB are to be made.

Push fit the ICs into their sockets, aligning the dot or notch on the top of each IC with the notch shown in the overlay in Fig. 2.

Now, mark and drill the larger of the two cases for the PCB pillars, potentiometer, switch, mounting clips, and the coil and meter wires. Mount the PCB, switch, potentiometer, and wire as shown in Fig. 3.

Next, cut out a round hole in the bottom of the smaller case for the panel meter. A suitable tool for this job is an Abraframe hacksaw. Another way to make the hole is to drill a circle of small holes and then file out the large hole.

Drill the four holes to fit the meter bolts (see Fig.4) then mount the panel meter in position.

Solder resistor R19 into position on the rear of the panel meter.

Using the hardboard rough side down, construct the search head of the metal detector as shown in Figs. 5 and 6. Drill the hole for the handle connector. The four pieces of prepared beading are glued using a rapid-bond

Figure 1. Circuit of the HE 'Diana'
Metal Detector

adhesive to the rough side of the hardboard, with the beading groove towards the board and facing outwards. Apply the glue to both the hardboard and the beading - also apply glue on the corners of the beading.

Hold the assembly for about five minutes till firm, then leave for at least two hours until the glue is fully cured. Next wind the coil. Thread about one metre (1 m) of insulated copper wire through the hole from the 'beaded' side to the handle connector side, then carefully wind 22 turns of wire around the groove. Leave approximately $1 \frac{1}{2}$ metres over, for threading through the hole. The two wire ends of the coil need to be long

Diana, mascot of our metal detector project, on her mettle as she goes to hunt

-
Figure 2. PCB overlay showing component locations

enough to reach the electronics at the top of the handle with 200 mm to spare.

Now, assemble the handle parts as in Fig. 7. Remember to drill a hole in the handle section for the wires into, and out of, the cases.

Cut the end off the hand grip before pushing it into position - a drop of washing up liquid as a lubricant will make positioning easier.

Now, connect 1 m of two core wire to the panel meter. as shown in Fig. 4. Thread the wire through the handle and down the stem to the other case position.

Fasten the panel meter case to the handle.

Fix the larger case to the handle using two saddle clips. Thread the two ends of the search coil wire through the handle to join the PCB. Protect and cover this wire from the coil to the PCB
using 2 mm sleeving. If you find it a difficult job to thread the coil wires through the sleeving, first insert a length of stiff wire and use it to pull through the coil leads.

Before connecting the panel meter into the circuit, make the following checks, using the panel meter as a makeshift voltmeter. If you connect a 100k resistor in series with the meter it will read 10 VDC full scale deflection (100 uA on the meter scale). Connect the lead from the negative terminal of the meter to the negative side of B2 and:

- Check that the voltage on 2D1 anode is about 9 V
- Measure the voltage at pin 6 of IC1 and adjust RV1 until this voltage equals the voltage at 2D1 anode - Measure the voltage at pin 6 of IC4 and adjust RV2 until this voltage also equals the voltage at ZD1 anode

How It Works

- A magnetic field is built up around the search coil by passing a current through it. The current is then switched off and the magnetic field slowly decays to zero.
- The rate of decay of the field is altered by the presence of metal.
- The resulting voltage change across the coil is amplified and fed to the panel meter.
- Movement on the panel meter indicates the presence of metal.

Oscillator IC2a generates a positive pulse which turns on Q1, with the result that a current builds up in search coill1. At the end of this pulse, 01 is turned off and the voltage waveform shown below appears across the coil, and falls to zero in time X. If metal is near the coil the voltage falls more slowly to zero (ie, time Y). Operational amplifiers IC1 and IC4 amplify the coil voltage 10000 times. Monostable multivibrators IC2b and c generate a second pulse, ac-

Once set no further adjustment is necessary.

Disconnect the batteries and then solder the panel meter wires to the PCB as shown on the overlay.

Move the search coil away from any metal - we suggest you hold it in midair to keep the search head clear of floor board nails or other metallic objects - and adjust RV3 until the meter reads zero.

The metal detector is now ready for use but you may wish to give the search head a few coats of varnish to help preserve it. All that remains is for us to wish you 'Happy Hunting'.

Figure 3. Layout and wiring of the main case, which holds the PCB and two batteries. Each battery consists of four AAsize cells

Figure 4. Inside of meter box, showing wiring and mounting of meter and handle connector

Figure 5. Underside of the search coil head

Parts List	
RESISTORS	(All $1 / 4$ W, 5\%)
R1.2	100R
R3,17.19	10k
R4	3 M 3
R5	18k
R6	68k
R7,16	47k
R8	1 kO
R9, 14, 18	100k
R10.11	2 M 2
R13	1k5
R15	470R
POTENTIOMETERS	
$\text { RV } 1.2$	100k miniature horizontal preset
RV3	10k linear potentiometer
CAPACITORS	
C1	1000u, 16 V electrolytic
C2.8	2p2 polystyrene
C3	3n3 polystyrene
C4,5	1 no polystyrene or ceramic
C6	100n ceramic
C7	100 n polyester
C9	470n polyester
C10	220n polyester
SEMICONDUCTORS	
IC1.4	CA3130 operational amplifier
IC2	40106 or 74C14 hex
	Schmitt trigger
IC3	4016 quad bilateral switch
IC5	LF353 operational
	amplifier
0.1	VN67AF VFET transistor
D1-9	1N4148 diode
2D1	3V9, 400 mW zener diode
ZD2	4V7. 400 mW zener diode
MISCELLANEOUS	
SW1	single-pole, single-throw toggle switch
$2 \times$ battery holders + clips	
100 uA panel meter	
Cases to suit	
Control knob	
Wood for coil former	
Handle assembly clips, bends and handgrip	
28 SWG insulated copper wire	
2 mm sleeving IC sockets and PCB pins	

Parts List

SEMICONDUCTORS

MISCELLANEOUS

x battery hoggle switch
100 uA panel meter
Cases to suit
Control knob
Handle assembly clips, bends and hand-
grip
2 mm sleeving
IC sockets and $P C B$ pins

Figure 7. Details of handle and stem construction showing mounting positions of the two cases

4Figure 6. Sections of the search coil head showing coil leadout and route up into the handle

NEW KITS THIS MONTH

115 WATT AMPLIFIER
Complete kit ior making this up in module form. Unicue
design makes frequency iesponse 5 hz to 25 Kh , which puis this well into the hi.fic category. $\mathbf{E 1 3 . 5 0}$.
SUPPLY KIT, MAINS OPERATE
SUPPLY KIT, MAINS OPERATED lagge enough 10
£14.50 + E 3.00 post
3. 30 V VARIABLE VOLTAGE POWER SUPPLY UNIT
with 1 amo DC oulput, tor wee on the bench with 1 amp DC oulput, for use on the bench, sludents.
inventors, service engineers, eic Protabiy the most important piece of equipment you can own, (after omult. and has meter). Gives variable outpur from 3 , aport ion. In case with vot meter on the tront panel. Price for the full kit, complete with instructions is $\mathbf{£ 1 3 . 8 0}$.
IONISERKIT
Reftrest your home, office, shop, work room, etc. wil out negative ION generator. Makes you feet better an
work harder - complete mans operated kit, without case $£ 9.95$. Case $£ 4.00$

STROBE LIGHT
Mrended tor use at discos of in window displays etc. Gives a brig
llash of white light at a speed which you can vary betmeen appo. roximately 1 Hash pee second up to 20 liasiles per second Ano Uselul applications of a strobe is
tor tooking at rotaing whizels. cogs, etc. By turning the speed adustment you can get the light
to symchronise with the wheel rasynchronse with the wheel
and cause it 10 appear stationary.
 broken cog for instance. If uses Xenon tube and is housed in a control at the back. Works oft

SPOT LAMPS

tvpe screw in lamp size approximately trpe screw in lamp size approximately
$5^{\prime} \times 5^{\prime \prime} \times 6^{\prime \prime}$ deep. Case mades from heary duty plastic and designed so that any number of these may be loined together to make a running light or other display.
E4.80 +50 p

ROPE LIGHT
give the appearance of a
 COMPUTER KEY SWITCHES (make yous own keyborid These are for makingup ond ing computer type reed switch, which makes circuit when a magne

OUR CAR STARTER AND CHARGER KIT has no doubr saved car off mains or bring your battery up to full charge in a couple of hours. The kit comprises: 250 w mans transtormer, two 10 amp
bridge rectifiers, start/charge switch and lull instuctions You can assemble thus in the evening, box in op or leave tit on the shelf in
garage, whichever suits you best. Price $£ 11.50+\varepsilon 2.50$ ost GPO HIGH GAIN AMP/SIGNAL TAACER
only $5 \% \mathrm{~m} x 3$ \% in $\times 1$ \%in is an extremety high gain (70 oas) solid Stare ampmiter designed for use as a signal tracer on GPO cables, er
With a radio it functions very mell as a sional tacer With a radio it functions very well as a signal tracer. $8 y$ connectung
a simple coll to the input socker a useful mains catie wcer can en made. Runs on standard 4% \%verattery and has input, output sockets and on-off yolume control, maunted llush on the top. Mary other uses include eeneral purpose amp. cueing amp, etc. An absolute

COIN SWITCH

12 V GAR IGNITION COIL

Mounted in metal case a Swiches on for one hour per 100 con EA. $60 \div$ © 1 po
mere a angh voitage from LT is

LOUDSPEAKERS
\qquad

MOTORISED DISCO SWITCH With 10 amp changeover switches Mult
adjustable swithes all ratid at 10 amps thus would provide a magnitictent dhaplay,
For maths operated 8 swith motel E6.25, 10 swict mottel $\mathbf{E 6} .75,12$ switc 3 CHANNEL SOUND TO LIGHT KIT complete kit
parts lor threechanne
sound tol light
unit controll unit controll.
ing over 2000
watts of light. watts of light
"ng. Use this
at home it 20089
is plentr ivgged enough for disco work, The unit is housed in an
atrractive two-fone metal case and has controls for each channel. antractive twotone metar case and has controls for each channel,
and master onioft. The audio input and output are by sockeis and hiree panel mounting luse holders provide thyristor
protection. A lourpin plug and socket faclitate ease of connect.

THIS MONTH'S SNIP

IN FLIGHT STEREO UNIT (for breaking down)

moving cont transducers, these can be used, erther as 12 oosinto simgle poles surich, special leature beng thereo por, edgewise control iwint 5κ, 5 transistiors and

STACKABLE MICROSWITCHES
 cogether by a length ol siud
coutd be mounted in a cradle.
Aporo

Approximate site $30 \times 21 \times 4 \mathrm{~mm}$ thick Price 28p each.
 100uA PANEL METER Japanese made (Stunohara Electucal) sc
very good quality, these have a full front, are anprox 2 " square and come complete with mounting studs and nu is.
thoroughty reliable instrument usually thoroughty reliable mstryment usuatly
ailed at over $£ 4$, offered at a smp price ailed at over $£ 4$, offered al a smpp price
this month of $£ 2.85$ or 10 for $£ 25.00$. 12v MOTOR BY SMITHS

 EXTRA POWERFUL 12 v MOTOR
 MINI-MULTI TESTER ing coil insirument, Jewelled bearings- 20000. D.v. mirrored scale.
11 instant range measures. DC volts $10,50,250,1000$.
 ${ }_{\mathrm{AC}}^{\mathrm{AC}}$ volts $10,50,250$. 0000

DC amps $0-100 \mathrm{~mA}$.

 Continuity and resistance 0.1 meg onmstwo ranges. Complete with test tprods and two ranges. Complete with test prods and in-
strutron book showning how to measure cap.
acily and acily and inductance as well. Unbelievababe
value at only $6.75 * 50$.
FREE Amps range ket to enble you to read
DC current from 0 . 10 amps
EC Amps range kit to enble you to rem
on the 0.10 osale. 10 amps, directily

\square

VENNER TIME SWITCH
Manss operated with 20 amp switch, one
on and one ofl per 24 hrs. repeasts dally
automalically correcting for the lengthen-
ing of shor tening day. An expensive time
swich but switch bur you can have If for onlv $\mathbf{E 2 . 9 5}$
These are new but hutchoul case but Ean supply plastic cases (lyase and cover) £1.75 or metal case with window f2.95. Also availabie is a daptor kit to converi
thws into anormal 24 htr tume smith but with the addered duvantroge of up 1012 on
olfs per 24hrs. This makes an teal olts per 2 hhrs. This makes an deal con-
roller for ine immersion heater. Price of STEREO HEADPHONES Jro anese made so very
88 ohm mpectance. pad
nating with
pluand
E2.99

Mains quick connector will save you valuable ume. Features include Yuick spring connectios, heavy plastic case and suto on and off 6 Waveband shortwave radio kit
Banckpread covering 13.5 to 32 metres. Based on circuit which
appeared in a recent issue of Radio Constructor. Cumplefe kit in. cludes case materials, six transistors, and diodes, condensers, res
ors, inductors, swilches elc. Nothing else to buy if you have an ampl fier to connect it io or s pair of high resstrance headphones short wave caystal radio All the parts to make up the beginner's model. Price $\mathbf{\text { E2.30. Crystal }}$
earp.ece 65 . High resistance headiphones igives best resulis) $\mathbf{C 3 . 7 5}$. RADIO STETHOSCOPE
Easy to feult find - start at the arial and work towards the speaker

- when ssignal stops you have found the faulf. Complete kir $\mathbb{C} 4.95$. INTERRUPTED BEAM
 nis - relay, photo transistor, resistors and caps erc. Circurit diagram

UNUSUAL MOTORISED PUMP

hitted a nylon worm drive
his considerably reduces speed an
urns a nylon cog wheel to which is coupled a link operating g
smail bellows pump. The outle smail bellows pump. The outlet
and inlee to and from this pump and inter to and trom this pump
are nyion pipes to which ilex. are nyion pipes to which tlex.
tble tubing can be connected. Obviously, there will not he a
big tiow of air from this pump Dut ourte considem this pump
can be devereloered can be doveloped.
Ps ice $£ 4.60 * 50$.

SOLENOID AIR VALVE
Thie to woik with the above pump.
This mans operated valve will stop t
apolied to it. 220 v . 230 mod

J. BULL (Electrical) Ltd -Established 30 vears. MAIL ORDER: Cash, p.o or cheque with order - please add 60p to all orders under $£ 10$, to offset pack ing, etc. ACCESS \& BARCLAYCARD welcomed. Our shop is open to callers BULK ENOUIRIES INVITED. Telephone: Haywards Heath (0444) 54563

Electronics In Diagnostic Medicine

Would you trust a computer to diagnose your illness? Graham Thirsk shows that although increased use is being made of electronic diagnostic techniques and data analysis, there will still be a need for the doctor and nurse

THE WORD ELECTRONICS in the title may be clear enough, but what is meant by diagnostic medicine? Put simply, it is the detective work that the doctor has to do to discover why your body is not functioning correctly when you are ill. This 'faultfinding' may be approached in many different ways, and some simple examples are: asking questions about the symptoms, using simple techniques such as taking your temperature, or looking and feeling for abnormal signs. More sophisticated techniques will often require the use of electronic equipment. The doctor collects all the facts together, derived from one or more of these techniques, and makes a logical deduction about the cause of the illness. This deduction will, of course, be guid ed by the doctor's experience. I used the expression 'faultfinding' because an electronics service engineer uses similar fault-finding procedures for electronic circuits.

Diagnosis From ECG

Electronic instruments have aided the detective work required in diagnosis since early amplifiers were first used to detect and display the electrical activity of muscle. Of particular interest is the electrical waveform produced by the heart muscle, and this waveform is called the electrocardiogram, or ECG. Early ECG machines were large and required a special electricallyscreened room for their operation. It was also necessary for the patients to sit with their feet in water to ensure a good ground (earth return) connection. Modern ECG machines, however, can be small enough to fit into the doctor's black bag and require no screening. With the modern machines only simple electrode connections are required to the patient.

Advances in diagnostic techniques have often taken place as a direct result of advances in electronic technology and their application to medicine. Interestingly, these advances have often produced a demand for more sophisticated equipment to yield more information and hence stimulate further developments in electronics. An example of this interaction is shown by the development of ECG monitoring.

Studies of the ECG have shown that changes in the norma functioning of the heart are nearly always accompanied by changes in the ECG waveform. Consequently, the ECG is used widely to assist in diagnosis of malfunction of the heart. Such is the importance of the ECG that methods were devised for continuously displaying the ECG of certain high risk patients, such as those who had recently had a heart attack, on a cathode ray tube. As a result, much information was acquired about abnormal heart rhythms or arrhythmias and soon doctors felt that a record of the ECG during 24 hours in the normal life of these high risk patients would yield much valuable information about the condition of the heart. This could be done easily using a special portable cassette recorder, but to play back the recording would obviously require 24 hours in real time, which is impractical. The development of digital techniques, particularly in
microprocessors and solid-state memories, has enabled instruments to be constructed which can replay the tape at high speed, memorise that patient's normal heart rhythm, detect any abnormal rhythms, store them and classify them according to a pre-programmed order of priority and the number of times each occurred. This processing can be completed within minutes for a 24 -hour recording, and also the sections of ECG containing the abnormal rhythm can be displayed on an oscilloscope, following a simple machine instruction.

Doppler Analysis

The interaction between the development of electronic and medical sciences continues even now. A recent innovation has been the measurement of the flow of blood within the blood vessels. This technique uses the doppler shift of a burst of high frequency sound waves, ultrasound, by the movement of blood cells within the vessels. The doppler effect is simply a change in the sound pitch that results when there is a relative motion between the sound source and the observer. If a sound wave is reflected off the moving object then movement towards the sound source produces an increase in the pitch of reflected sound and movement away from the source produces a decrease in the pitch. If a continuous beam of ultrasound is passed into the body, any movement in the same axis will produce a change in frequency of the reflected beam. This is similar to frequency modulation as used in radio transmitters.

The returning beam is demodulated to remove the original carrier frequency and this leaves just the signal produced by the movement, the doppler information.

The information obtained in this way used to be analysed by amplifying the shift frequencies (typically 1 to 3 kHz) to drive loudspeakers. The analysis was based on listening to the result. Although apparently a crude method, much information about flow could be derived in this way. However, a more quantitative method of dealing with the data was required. Initially, a zero crossing technique (that is, counting the number of times a doppler waveform crossed the zero voltage point) was used to obtain information about the frequency content of the doppler signal. Subsequent research showed this method to be hopelessly inaccurate when used on complex signals such as those produced when studying blood flow. Recently, the availability of fast and inexpensive microprocessors made it possible to analyse the doppler signal mathematically to provide true real time spectrum analysis, together with a statistical treatment of the data. Such is the impact of this latest development and the diagnostic information it provides, that doctors are currently researching methods to best apply this powerful technique to diagnostic medicine. Improvements to the technique that might be incorporated into subsequent designs of instruments have already been suggested.

These two examples, ECG and doppler analysis, serve to il-
lustrate the interaction between electronics and medicine, where advances in one discipline may stimulate developments in the other and vice versa.

Analysing Waveforms

Observations and recordings of electrical signals produced by various parts of the human body have long been important diagnostic tools. Several types of waveform can be obtained, some of the more important ones being electromyogram (EMG), produced by ordinary muscle, electroencephalogram (EEG), produced by brain cells and electrocardiogram (ECG), produced by heart muscle. All are detected by amplifying signals obtained from electrodes placed at different points on the skin surface and recorded on paper.

The ECG is the most commonly used and is probably the most useful. A typical ECG waveform is shown in Fig. 1. The segments, P Q R S T represent electrical events occurring within the heart. Each occurs at a specific point in the cardiac cycle (one heart beat). The number of cardiac cycles occurring each minute is the heart rate, usually 70 beats/minute in a healthy person at rest, but as high as 160 beats/minute under stress or during exercise. The shape of the waveform and the time relationship of the segments yields important information about the state of the heart.

Figure 1. Typical ECG (electrocardiogram) waveform. It is divided into segments P Q R S T for analysis of electrical events in the cardiac cycle

Although this is an apparently simple technique, there is first the difficulty of detecting and selectively amplifying an electrical signal of approximately 1 millivolt (1 mV) peak-to-peak in the presence of induced AC noise such as 50 Hz mains hum of several volts peak-to-peak. Second, since the human body may be considered as being filled with a conductive fluid, an electrical signal from areas other than the ones being studied may also be present at the skin surface. For example, electrical signals produced by the movement of muscles is a common source of interference on ECG recordings. Third, it is generally recognised that a current flow of greater than 10 microamps $(10 \mathrm{uA})$ across the heart can be fatal and since good electrical contact with the skin is essential, precautions must be taken to avoid leakage of current to the skin electrodes, especially when mains-powered equipment is used.

Use of modern circuit design has minimised most of these difficulties. Front-end circuitry is of the differential type offering a very high common mode rejection ratio (the noise, common to two amplified signals, tends to be cancelled out). Amplifiers with specific passband together with deep-notch filters (to limit amplification to an extremely narrow band of frequencies) further improve the selectivity and noise immunity of the instruments. Isolation of the patient from the instrument and power supplies is achieved by transformers or more recently by opto isolators (devices incorporating a light source and a light detector).

The ECG has become such an important index of heart function that all high risk patients, such as those undergoing surgery in the operating theatre or those in intensive care units, have their ECG waveform monitored continuously and displayed on a 'scope of some type. Early bedside monitors comprised a high persistence low sweep speed oscilloscope and an analogue meter giving an indication of heart rate. Modern monitors, however, can display several seconds of ECG waveform at one time, while continuously updating this display by using analogue-to-digital conversion and a digital memory. Digital display of heart rate is provided either by means of LED displays or as alphanumerics on the 'scope itself. An audible and visible alarm is also usually provided to alert the nurse immediately in the event of the heart rate exceeding preset limits.

Various other body functions may be monitored in a similar manner: temperature using thermistor probes, respiration by measuring impedance changes related to chest movements and blood pressure by means of strain gauge type pressure transducers.

Patient monitoring techniques have gradually been improved to provide further detailed information about the patient's condition. Patients recovering from a heart attack may now be allowed out of bed to walk around in the hospital and still have their ECG monitored by means of telemetry. In this, the ECG is modulated onto a radio frequency (RF) carrier wave and is transmitted by a short range transmitter to a base station where it is demodulated and displayed on a 'scope in the usual way. This provides a valuable half-way stage between intensive care monitoring in bed and the patient being allowed home.

Detection of abnormal heart rhythms or arrhythmias by observation of the ECG is an essential part of the monitoring of patients with heart disease. Some arrhythmias may be just an indication of impaired heart function, while other abnormal rhythms may be a threat to life. Arrhythmia detection initially depended upon constant observation of the ECG by the nurse and the recognition of abnormal patterns. However, it is not possible to concentrate on a display of this kind for more than 60% of the time and abnormal rhythms often went undetected. Automated detection systems are able to observe the ECG for 100\% of the time, classify any arrythmias and store them in memory for later review. Normal and abnormal ECG waveforms are differentiated by a template matching process. In this, the monitor initially stores the normal waveform for a particular patient in its memory and compares all the subsequent waveforms

Figure 2. Example of how information on individual patients can be printed out in hard copy form. The advantages of data handling equipment include immediate (automatic if required) updating of information, analysis of data and saving of time for nurses
with this template. Deviations from the template are then classified and stored for later review together with data on the number and types of abnormal rhythms detected.

Handling The Data

The volume of patient data now being produced by modern nursing methods has prompted the development of data handling equipment for medical purposes based on microprocessor technology. Features include:

- on-line assimilation of data from monitoring equipment and production of trend graphs for periods of up to 24 hours from this data
analysis of data from arrhythmia monitors
- recording of drugs given to the patient, when they were given and in what doses
- storage of the patient's personal data such as age, weight, height, names of relatives and the name of the family doctor. Hard copy of this information is also often provided for inclusion in the patient's medical notes, an example of which is shown in Fig.2. Data handling of this type has become sophisticated to the point where data obtained from blood pressure measurements made in the operating theatre can be analysed and interpreted on-line, providing the doctor with a complete diagnosis in a very short time.

The monitoring techniques described are all attempts to provide continuous information about the patient's condition, to collect and provide easy access to all this data while relieving the nurses of tedious routine observations and in this way enabling them to spend more time caring for the patient.

Diagnosis From Images

An area of medical diagnosis which is currently undergoing the fastest development, as a direct result of the advances in electronics, is diagnostic imaging. Diagnostic imaging is the science of producing pictures of the internal structures of the body without damage to them. The best known imaging technique is that which uses X -rays to produce a photograph of internal structures such as bone but which does not allow X-rays to pass through these structures. The technique is limited, since only structures that are opaque to X-rays can be seen with clarity. To see other structures, such as the stomach and intestines, these must first be outlined with a contrast medium which absorbs the X -rays. The patient must swallow a contrast medium (for example, barium sulphate) and then undergo a series of X -ray photographs as the contrast medium passes through the intestines. A further disadvantage of X-ray photographs is that they are static and cannot show motion of any kind. In fact, motion during exposure of the X-ray film results in blurred images. However, the most serious disadvantage of X-ray techniques is that X -radiation is known to be harmful to healthy body tissue and therefore excessive exposure should be avoided.

Figure 3. Scanning elements of a greatly simplified computerised tomography scanner. As shown, the patient's head is placed in the centre of the assembly. X-rays are emitted from elements 1 to 4 and are received by elements 5 to 8 . The whole assembly then rotates a fow degrees and the sequence is repeated

Advances in microcomputing techniques have enabled some of the shortcomings of X -ray imaging to be overcome. For example, X-ray scans of brain tissue can now be made using a computerised tomography scanner (CT Scanner). Initially developed by EMI this instrument produces pictures of suc-
cessive sections (1 mm thick) through the head using X -rays (see Fig.3). Each element 1 to 4 in Fig. 3 sequentially emits a burst of X-rays which are received by the elements 5 to 8 and converted to an electrical signal which is stored by the computer. The scanhead revolves a few degrees after all the elements are fired and the sequence is then repeated. In this way, the computer memory stores information about the absorption of the X -rays as they pass through each tissue type and an image can then be reconstructed on a video monitor by reading the information out of the memory in the correct sequence. A complete brain scan requires 50 to 100 sections to be constructed, which is a lengthy process taking 20 minutes or more. The sections are often stored on floppy discs for later review and analysis.

Ultrasound Imaging

A technique for examining the interior of the body painiessly, without the use of X-rays, has been developed in the last 10 years. It uses high frequency sound waves, typically 1 to 10 MHz in frequency, to probe the organs of the body. From the echoes produced, pictorial images of the organs can be constructed by means of techniques first used for radar and sonar.

When pulses of ultrasound travel through a medium they are reflected and scattered in much the same way as audible sound. The diagnostic application of ultrasound depends mostly on the fact that the pulses are partially reflected at boundaries between tissues that differ in their ability to transfer the ultrasound energy (acoustic impedance). Acoustic impedance is dependent upon the density of the medium and the velocity of sound passing through it. The density of soft tissue is close to that of water and the velocity of sound through it is close to the velocity of sound through water. The velocity ranges from 1450 metres per second in fat to 1600 metres per second in muscle. Therefore, the difference in impedance between tissues is not very great and consequently the echoes are small.

Typically only 0.5% of the incident energy is reflected at a boundary in a manner that can be detected, and this requires a sensitive receiver. However, since much of the ultrasonic energy crosses the boundary it penetrates deeper into the body and thus is an effective probe of deeper organs. These strong reflections may limit the usefulness of ultrasonic diagnosis in some analyses.

The resolution of the system depends upon the wavelength used to form the image. Generally, resolution increases as the wavelength decreases. Since wavelength is inversely proportional to frequency, a better resolution requires high frequencies. In practice, the ultrasound is attenuated as it passes through the body by absorption and scattering, and the rate of attenuation is directly proportional to the frequency. Therefore, a compromise between resolution and depth of penetration is necessary. Frequencies of 3 to 5 MHz are the most useful for general ultrasound imaging.

The ultrasonic pulses are generated by a piezoelectric transducer, and usually the same transducer serves for detecting the pulse echoes. The piezoelectric crystal is excited by a voltage pulse at the resonant frequency of the crystal, causing it to emit a brief burst of high frequency sound. The length of the pulse is restricted to one wavelength by electrical and acoustic damping, to maximise the resolution of the system. The crystal then waits for returning echoes which cause it to vibrate and produce an electrical signal proportional to the amplitude of the echo. The distance of the reflecting boundary from the transducer can be determined by measuring the interval between the moment the pulse is transmitted and the moment the echo is received. Pulse echo information obtained in this way can be displayed on the CRT.

Image Display

A single sweep of the CRT is difficult to observe and so the process of transmit/receive is repeated at 1000 times/second to provide a flicker-free display. Figure 4 shows a typical display obtained in this way and is known as an A mode camplitude versus distance) display.

This type of display provides limited information about structures in the sound beam, so the echoes are usually presented in the form of a brightness modulated display IB scan). In the B scan each echo is represented by a spot of light, the brightness of which is proportional to the amplitude of the echo received. However, to form a pictorial image of a crosssection of the body, much more information is required.

Feature

In static scanners, which provide non-moving pictures, the transducer is mounted on a mechanical arm which is able to move in two directions. Data is then obtained not only on the strength of the echo and the position of the boundary, but also on the position of the probe and the direction of the ultrasound beam. Each position of the probe, together with the position and brightness of the echo, is stored by the scanner. If the probe is moved, different structures will be in the beam and different echoes will be returned. Thus by integrating all the lines of information at each probe position, a composite picture of the underlying structures can be built up. This picture has several different brightness levels equivalent to what is called a grey scale.

Figure 4. Example of display obtained from an ultrasonic scanner. The piezoelectric transducer transmits a pulse of sound and then 'listens' for the echo, in this example from the organs and bones in the abdomen

Intermediate lines of the image are stored by a scan converter. Early scan converters were analogue devices, but more recently digital scan converters have been developed. The analogue scan converter is a vacuum device resembling a CRT but the phosphorescent screen is replaced by a silicon target. The surface of the target consists of a mosaic of tiny silicon oxide elements, each of which stores a charge corresponding to the brightness of the image at that position. Once the image is formed, it is scanned by sweeping an electron beam of low intensity over the target in rapid horizontal motion, like the raster scan on a TV screen. The raster scan is repeated in the CRT and the current from the scan converter controls the current in the electron gun of the CRT. The result is a display of the image stored in the scan converter target. Satisfactory operation of the analogue scan converter requires careful adjustment.

To avoid some of these problems, digital scan converters were developed. In the digital scan converter the image information is split up into a regular, two-dimensional matrix of picture elements. A typical picture consists of 512×512 elements, and the position of each element corresponds to the location of a word in random access memory. The brightness of each picture element corresponds to the value of the word, and the composite picture stored in the memory can be read out and displayed on the CRT in the usual way.

The ultrasound pulse is attenuated as it travels through tissue and consequently for a given interface between tissues, the echoes become weaker as the distance from the transducer increases. To produce a display with uniform brightness, for similar echoes, compensation for attenuation is required. This is known as time gain compensation or TGC and it increases the gain of the receiving amplifier logarithmically, as the time from the transmission of the pulse increases. Figure 5 shows a typical static B scanner in block form.

Real Time Scanning

Static B scans of this type take up to 15 seconds to build up an image of one full cross-section through the body and so cannot depict fast-moving objects such as the heart. So, a real time scanning system was needed that could rapidly produce a

Figure 5. Main parts of a typical static B scanner
series of stop-frame images. Two advantages of such a system are the ability to freeze motion and to greatly reduce the time needed for an examination. Real time moving images are also easier to interpret than static ones. There are two main types of real time scanner: sector or linear array. In the first type of scanner the sound beam from the transducer is either mechanically or electronically swept across the patient at high speed. It produces a series of stop-frame images, like cine film. Linear array scanners have a probe consisting of up to 400 transducer crystals in line which are fired in rapid sequence to produce repeated scans. These transducers are very small so that several elements are usually fired together to increase the sound intensity. By introducing a delay in the signal path of each element, it is possible to focus the sound beam at selected distances, thus improving the resolution of the system. An image produced by a sector scanner is shown in Fig. 6.

Figure 6. Ultrasound image of human liver, showing one of the blood vessels within it

Real time imaging is developing rapidly as a result of the application of new electronic technology. Memories with faster access times coupled with microprocessor control have enabled faster image formation with subsequently higher frame rates. This effectively allows even the fast motion of the heart valves to be frozen easily. Early instruments used 3-bit digital memories and could only differentiate light levels of echo intensity or grey scale. Now instruments may have 6-bit memories providing 64 levels of grey scale. As a result it is possible to distinguish different types of tissue boundary more easily since different boundaries return different intensities of echo and hence are depicted as a different shade of grey. Electronic miniaturisation has also allowed the scanners to be made small and portable, increasing their usefulness. An example of the most recently introduced sector scanner is shown in Fig. 7.

Combining Pulse-echo And Doppler

Echo-ranging is not the only information that can be obtained from the use of ultrasound. Information about the velocity of a moving object may also be obtained from the doppler effect, described earlier in this article. Instruments using the basic doppler technique are used routinely to listen to the heart beat of the foetus during labour and to detect the flow of blood in its arteries.

Combining the pulse-echo technique with doppler provides even more information and is known as pulsed doppler. Instead of emitting a continuous beam of ultrasound, only a short pulse is emitted. Measuring the time taken for the echo to return gives the position of the object, and the doppler shift gives the velocity of the object. The pulsed doppler technique offers the advantage of the ability to select one moving object when many are in the path of the sound beam. Instruments that combine twodimensional images and pulsed doppler are now available, which allow the doctor to see a moving object such as blood in the artery and to measure the velocity or flow of the blood and the direction in which it is flowing. Analysis of the doppler shift frequencies can provide valuable information about the flow of blood in the arteries; whether it is laminar or turbulent flow and whether the flow is the same all the way across the blood vessel. From this data the doctor can tell if the artery is occluded (blocked) or stenosed (narrowed) - all without any discomfort to the patient.

Looking Ahead

What of future developments in medical diagnosis? The ultimate end point must surely be fully automatic diagnosis by a small diagnostic computer. However, automatic diagnosis is not yet possible since the doctor often uses the data from diagnostic tests in an intuitive way which the best computers currently available are still not able to do.

Realistic advances in medical electronics will almost certainly be aimed at reducing the workload of the doctors and the nurses. On-line data acquisition and analysis together with a complete listing of the patient's medical history and personal data will provide the doctor with the information he or she needs to make a correct assessment of the patient's condition. Written record-keeping will be minimised, as will routine observations of the patient, so that the nurse will have more time to care for the patient. Current developments in electronic

Figure 7. Example of sector scanner from Advanced Technology Labs Inc. The instrument, using microelectronics, provides a real time scan of body tissue derived from different intenalties of reflected ultrasound. Tissue boundaries and composition are depicted by variations in shades of grey
technology will almost certainly improve the quality of imaging techniques. Recent advances in analogue delay lines, such as surface acoustic wave devices, have enabled sector scanners to be constructed which are non-mechanical, where the ultrasound beam is steered by delaying the pulses used to excite the transducers. An instrument recently introduced changes the black-and-white image produced by ultrasound scanners into a colour picture and this shows up the small differences between tissues much better. Development of the pulsed doppler technique is aimed at providing a coloured overlay of the flow in the blood vessel or heart on the black-and-white two-dimensional image produced at the same time.

The use of electronics in diagnostic medicine is widespread, and ranges from digital thermometers to complex imaging instruments: only the more interesting techniques have been included in this article. Perhaps next time you visit a hospital you might like to look for some of the sophisticated electronic instruments that are being used there.

HE

GREENWVED

443F Millbrook Road, Southampton, SO 10 HX All prices include VAT @ 15\% - just add 40p post

THE SPECTACULAR

1981 GREENWELD

Component Catalogue
Bigger and better than everl!|

- 60p discount vouchers * First Class reply paid envelope
* Free Bargain List
* Priority Order Form
* VAT inclusive prices
* Quantity prices for bulk uyers

END 75p FOR YOUR COPY NOW!! REGULATED PSU PANEL
Exclusive Greenweld design, fully variable 0 28V a 200 mA -2A. Board contains all compoE7.75 Sultable ransformer and pots EB . Send
SAE for fuller details.

DISC CERAMICS
0.22 uF 12 V 9 mm dias. Ideal for decoupling 100 0.5 uF 12 V 15 mm dle. $100 \mathrm{E} 1.50 ; 1000 \mathrm{c12}$ Pack of disc ceramics, assorted values and
voltages - 200 for 1 .
VEROBLOC BREADBDARD
New from Vero, this varsatile aid for building
and testing circuiss can accommodata any and testing circuits can accommodate any
size of IC Blocs can be joined together. Bus strips on X\&Y Y Axis - total 360 connexion

ALFAC PCB TRANSFERS
Lines, curves, dots, pads, DIL pade. etc. Pack
of 13 different sheers 58.15. DEVELOPMENT PACKS

These packs of brand new top quality compo

 nents are designed to give the constructor:complete range so the right value is to hand complete range to the right value is to hond Whenever required They sisso give a sub
tial saving ove buying individual pars tial saving ove buying individual parts.
K001 50 y ceramic plate ccpacitors 5%. 10 of
each value 22 pF to $1,000 \mathrm{pF}$, total 210 capact tors. PRICE: E4.80 K002 Extended range 22pF-1. Values over
1000 p value 222733 39 47566882100120150180 $220 \quad 27033039047056068082010001500$
2200330047006800 PRICE: $\mathbf{F} .66$.
K003 C280 or similar Polvester capacitors. 10 each of the following: $.01, .015, .022, .033$,
$.047, .068,1,15, .22, .33$ and 47μ F PRICE: 55.40 .

Koos Mylat capacinors Small size vertical mounting $100 \mathrm{~V}, 10$ each of the following:
$.001, .0012, .0015, .0018, .0022, .0027, .0033$. $\begin{array}{lll}.001, .0012, .0015, \\ 0039, .0047, & 0056,0068, .0082, .0027, .0033 .\end{array}$ Capacitors. PRICE: EA. 70 .
KOO7. Electrolytic K007. Electrolytic capacitors 25 V working.
mmail physical size axial or radial leads. 10 mmail physical size axial or radial leads.
each of the following. 1, 2.2 47. $10,22.47$.
100uF. Total 70 . Koos Extanded range: as above, also includ ing 220,470 and 1000 uf all at 25 V . Total 100 capacitors. PRICE: 6535 .
K021 CA25 resistors or timilar, miniarure $1 / 4$
wert carbon film 5%, as used in nealy projects. 10 of each value from 10 ohms tS 95 Eeries Tola 610 resistors. PRICE 185
$k 0412$ all the values from 2 V 7 to 36 V . Total 280 zen ers. PRICE: $£ 15.95$.
Kos 1 LEDS - pack of 60 , compriting 10 each
rod, green sad vellow 3 mm and 5 mm , io red, green and vellow 3 mm
gether with cllps. PqICE: 58.95 .

BARGAIN LIST No. 13
10 A4 Pagesill Hundreds of different itemsll Switches, pots, relavs, Ce, Rs, semis. connec
tors Danals, etc. etc. tors. panals. etc., etc.
Send 9×4 SAE for yo
be repeated bargainsll FREE copy of never to

OISPLAYS

2635 Seven seg by NEC, type LO8012. This is a
wire ended fype 43 mm high 11 mm dia wire ended type 43 mm high 11 mm dia tube rollumingte the segments. Olgit height 12 mm 2636 Futuba 7 seg display type DG1001. R0p quites same supply as above. Tube size
$30 \mathrm{~mm} \times 8 \mathrm{~mm}$ dia. Ot it height 8 mm
co $26371 T \Pi$ nixie tube GNP17A. wire ended 40 mm high $\times 17 \mathrm{~mm}$ dia. Oigit height 15 mm Can be operated from 240 V ac mains by put The DC

PLUG TO SOCKET AOAPTORS

202 1/4in mono plug to 2.5 mm skr 203 /ain mono plug to phono skt 2043.5 mm plug to $/$ /ain mono ske P206 3.5 mm plug to 2.5 mm ak 207 Phono plug to phono thin P208 Phono plug to 3.5 mm tht P209 Phono plug to 2.5 mm skr P210 2.5 mm plug to 1 min mono skt P2122.5mm plug to phono ski P213 3.5 mm plug to $1 / 4 \mathrm{in}$ stereo skx P214 $21 /$ Cain stereo plug to 3.5 mm skt

COMPONENT PACKS
K503 150 wirewound resistors from IW to
12W, with a good range of values
E1.75
 including single ganged, totery and slider $K 511200$ small value poly, mica, ceramic caps K514 100 silver mica cass trom 50F 10 a thousand DF Tolerances from $1 \% 1010 \%$ a K516 Transistor Pack. Small signal NPN/PNP transistors in plastic package. Almost all are ment leads. Over 30 different types have been found by U5s, inc. BC184/212/238/307/328 BF196/7; ZTX $107 / 8 / 9 / 342 / 450 / 550$, etc. Look at the low pricel 100 for $\mathfrak{E 3}$; 250 for $£ 7$
 Heatsink Dack, 5 diff. sizes each $200 \mathrm{~mm}, 50 \mathrm{p}$

PANELS

2521 Panel with 16236 (2N3442) on small heal caps, resistors, etc 2482. Ported Oac llator Module wort 60 D 1.20 V , can be used as LED Hasher 13 V lion Supplied with connection data, suitable R, C \& 2527
reeds, 6×25030 panal contains $2 \times 6 \mathrm{~V}$ reeds, $6 \times 2 \mathrm{SO} 30$ or $2 \mathrm{~S} 230,6 \times 400 \mathrm{~V}$ rects 2529 Pack of ex-computer panels containin 74 series ICs. Lors of different gates and com plex logic. All ICs are marked with type no or code lor which in identification sheel
supplied. $20 \mathrm{ICs} \mathrm{f} 1 ; 100 \mathrm{ICs}$ fs A504 Biack case $50 \times 50 \times 78$ base. PCB inside has 24 V reed relay, 200 V 7 A
SCA, $4 \times 5 \mathrm{~A} 200 \mathrm{~V}$ recte etc

4 TERMINAL REGS

UA7BMG in power mini-dip case. 5-30V at $1 / 2 \mathrm{~A}$
uA79MG Negative version of above \quad E1 $\frac{£}{2}$ Only 4 extra components required (50 p extra o make fully variable supplyll Oat

1W AMP PANELS ecord-player on panel $95 \times 65 \mathrm{~mm}$ ind for vol. control and switch, complete with knobs. Apart from amp circuitry built around circuit using 5 umensistors. av speed contro crecuit using 5 transistors. 9V operation
connection data supplied
ONLYfiso VU METERS
V008 Very atractive $55 \times 48 \mathrm{~mm}$ scaled -20
$10 \rightarrow 50$ B. 250 uA movernent. Only $£ 1.75$, or $£ 3$ $10+5$
pr.

OP-AMP PSU KIT

15.0, $15 V$ supply from mains input. 50 mA

COPPER-CLAO BOARO

K 522 All pieces too small for our erching kirs
Mostry double sided fibreglass. 250 gm (ap-
E1.
JOB LOT OF COMPONENTS

500 1N4006; $10000.033 / 50 ; 22000$ 10pF/50

 30000 various resistors. Yotal 112.500 compo
12-VOLT INOICATORS

ideal for light chasers. etc. Miniature 12 V glue and ciear. 10 p each. 20 each colour, total

BITS AND PIECES

Transiormer, mains in, 1770 V 10 mA out. $\mathbf{E} .50$ W847 PCB mitg. relay $11 \times 33 \times 20 \mathrm{~mm} .37 \mathrm{R}$

 0145 Pickering OLL relay 500R. SP make, 3.7 10 V ex equid. on PCB.X 905140 X
MW windings
10 M windings. 5% CF Resistors. 40 W amp PCB + cet + layout. E1. All parts to make. i/2w Rs $-111 \mathrm{k}, 333 \mathrm{k}, 500 \mathrm{k}, 900 \mathrm{k}$. 950 k .50 $1 \% / 2 W$ Rs $-111 \mathrm{k}, 333 \mathrm{k}, 500 \mathrm{k}, 900 \mathrm{k}$. 950 k . All
10
FNA5220 2 digit $1 / 2 \mathrm{in} .7$. seg . display on PCB FNA5220 2 digit 1/2in. 7 -seg. display on PCB,
CC. With data.
E1.50 CC. With data.
7 seg . displays

7 seg displays: FNO $360,367,501$, all 50 p ;
530 , 847 . 850 . 6150, Regs, TO3 case: 7924 120p; 7885 100p; 7808 100p: 7912 100p: 78CB 230p. Others on B/L Dp.Amps: UA4136 130D; UA776 145p; UA777 300p: UA318 245p

£1 BARGAIN PACKS

Each pack $\mathfrak{f 1}$; any 25 packs $£ 22$
More on Bargain List
$\begin{array}{lll}\mathrm{K} 101 & 16 & \text { BC2398 transistors } \\ \mathrm{K} 102 & 15 & \text { BC2349A transistors } \\ \mathrm{K} 103 & 10 & \text { 日C546 }\end{array}$
K 103
10
K 104
18
BC5468 transistors
$\begin{array}{lll}\mathrm{K} 104 & 18 & \text { BC1828 ransisio } \\ \mathrm{K} 105 & 50 & \text { IN4148 diodes }\end{array}$
$\begin{array}{lll}\mathrm{K} 105 & 50 & \text { INA148 diodes } \\ \mathrm{K} 106 & 18 & \text { OC184L transisto }\end{array}$
$\begin{array}{ll}\mathrm{K} 107 & 18 \\ \mathrm{BCO} 213 \mathrm{~L} \\ \mathrm{~K} 108 & \mathrm{~B} \\ \text { 2N5 } 5060\end{array}$
K 108 - 2 N 5060 thyristors. 30v 0.8A 1092
$\begin{array}{lrl}\mathrm{K} 109 & 15 & \text { EC8 } 114 \text { trarsistors } \\ \mathrm{K} 110 & 4 & \text { B0131 transisters }\end{array}$

$\begin{array}{lll}\mathrm{K} 112 & 12 & 3 \mathrm{~A} 100 \mathrm{~V} \text { rect, wir endec } \\ \mathrm{K} 113 & 30 & \mathrm{OA} 002 \text { rects } 150 \mathrm{~V} 0.5 \mathrm{~A}\end{array}$

$K 11610$ MPSLO1 NPN 140 V T092

If you've never built a kit before, Heathkit have some very pleasant surprises for you. Their kits are easy to build. Simple, but detailed Rechargeable Light instructions take you through every
stage. Everything is included. Even the solder you stage. Everything is included. Even the solder you need is there

Follow the steps and you'll end up with a hand-crafted. well designed piece of equipment. Much better than shop bought, massproduced. Because you built it yourself

There's a great range of kits to start you off. From a
 buzzer alarm to a digital electronic clock, or a portable rechargeable fluorescent light to a portable VOM With all this going for you, you can count yourself very lucky you started off with Heathkit. Because all first time kit builders will get a free soldering iron and 10% discount off ten selected kits.
Buzzer Alarn

To: Heath Electronics (UK) Limited, Dept (HE9), Bristol Road. Gloucester GL2 6EE.
To start me off. please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

Name
Address
Youbuildonourexperience HEATHK

Build yourself this simple circuit to fit inside battery-powered equipment - it will warn you that you have left the equipment on and that you are wasting valuable battery power

HOW MANY TIMES have you gone to your tranny to listen to your favourite programme, only to find that the battery is dead because the last time you tuned in you forgot to turn off the radio? This sort of thing can happen quite often to battery-powered equipment and the chances are you won't have any fresh batteries.

Now, wouldn't it be nice if you could fit a LED pilot light to the equipment, to give a visual warning when it has been left on? The problem with such a method is that the current drawn by the LED (about 20 mA) could result in the pilot light using more power than it saves.

A more practical alternative is to use a low power pilot light such as this one. The HE Low Power Pilot Light flashes a LED for only very short periods, at intervals of about 1 s. Because the LED is on for only a small fraction of the total time, the average current consumption is very low. Thus battery life will not be significantly reduced with the use of this project, even if the battery is a small, low capacity type.

A flashing LED pilot light also has the advantage of being more noticeable than a non-flashing type.

Construction

Insert and solder the five resistors into the Veroboard, according to Fig.2, followed by the two capacitors. Make

Parts List

RESISTORS (All \% W, 5\%)	
R1	1 M 2
R2	100k
R3	18k
R4	10k
R5	1 k 8
CAPACITORS	
C1	1 u 0.16 V electrolytic
C2	10u, 16 V electrolytic
SEMICONDUCTORS	
01	BC109 NPN transistor
02	BC179 PNP transistor
LED 1	$0.2^{\prime \prime}$ red LED + panel clip
MISCELLANEOUS	
Verobo	ard, 8 strip $\times 11$ hole, 0.1"
matrix.	

How It Works

This project consists of a simple oscillator, producing pulses which light the LED at about one-second intervals.

The LED is on for only about 5% of the total time. Thus the average current consumed by the circuit is very small, so it won't waste battery energy while doing its job.

Inhtially transistor $\mathbf{Q 1}$ is biased Into conduction by resistor R1, and it in turn biases 02 into conduction via current llmiting resistor R2. Transistor 02 therefore supplles a current to LED1 through R5. Capachtor C1 then charges from the supply lines through Q2, R4, and the base circult of Q1, causing a substantial base current to fiow into 01. This results in 01,02 and LED 1 all being switched on.

Capactor C1 soon becomes fully charged, and the large base current to 01 ceases. Translstors 01 and 02 then start to switch off, and the voltage at Q2's collector falls, forcing a reduction in the potential at Q1's base since the voltage across C1 remains unahered. This results in Q1, 02 and LED 1 all swit-
ching off. Capachor C1 now diachargas through R4, R5, LED1, and the base circult of 01 , reverse blasing 01 and holding it in the off state. The discharge path has a higher resistance than the charge path, glving the required reiatively long eff time of the LED. When C1 has discharged, R1 again biases 01 into conduction, and the cyclo commences from the beginning once again.

Resistor R3 is needed to ensure that leakage currents do not cause $\mathbf{Q 2}$ to be partially switched on when it should be turned off, which would reduce the efficlency of the unit. Capachor C2 ls a supply decoupling component and it provents the pllot light circuit transmitting noise splikes to the main equipment via the supply lines.

Figure 1. Circult of the HE Low Power Pllot Light. The suggested Veroboard layout for the project is overleaf in Fig. 2
sure you polarise the capacitors correctly.

Now, mount transistors Q1 and 2, checking before you solder each one in that it is the right way round.

Solder in LED1, the same way round as shown in Fig. 2. Now, bend it down so that it lies in a horizontal line with the Veroboard.

Finally, solder a couple of coloured leads from the corresponding points (red to +9 V ; black to 0 V) long enough to go to the supply points of the equipment into which the project fits.

The circuit board does not need to be fastened down because it is adequately mounted when LED1 is fitted into its panel clip. So, all you need to do now is drill a hole in the panel of your battery-powered equipment to fit the LED panel clip, push in the LED (complete with circuit board) and connect the board to the supply points of the equipment.

Semiconductors behave very strangely in the field - magnetic, that is. lan Graham gives a brief explanation of the Hall effect

OF ALL THE EFFECTS depending on the influence of a magnetic field on semiconductor charge carriers, the best known is probably the Hall effect. Edwin Herbert Hall (1855-1938), an American physicist, observed the result of applying a magnetic field to a semiconductor, through which he passed a current at right angles to the field. The arrangement is shown in Fig. 1.

In Fig. 1, a magnetic field of $8 \mathrm{Wm}^{-2}$ (webers per square metre) in the Y -axis acting on a current (I) along the X -axis deflects 'holes' along the Z -axis to the bottom of the P -type semiconductor. Holes (vacant atomic positions in the crystal lattice) are the majority charge carriers in a P-type semiconductor. In N-type, the majority charge carriers, electrons, would be deflected to the bottom of the semiconductor.

Facial Motion

This movement of charges to one face of the semiconductor produces a potential difference at right angles to both the current ($\mid \mathrm{x}$) and the magnetic field (By). This potential difference

Figure 1. Result of applying a magnetic field to a current-carrying semiconductor - the Hall effect
is called the Hall voltage $\left(V_{H}\right)$ and is given by:

$$
V_{H}=\frac{3 \pi 8 y .1 x}{8 p \cdot e \cdot d} \times 10^{-4}
$$

where e is the charge on an electron,
d is the thickness of the semi-
conductor (cm)
p is the hole density $\left(\mathrm{cm}^{-3}\right)$.
This strange behaviour of charges follows a well-known rule in physics - Fleming's Left Hand Rule - used to predict the behaviour of a current-carrying conductor in a magnetic field.

Applications

Hall discovered an interesting effect, but how can it be used? By fixing any two of the three variables the third can be measured. For example, an unknown magnetic field can be measured by finding how big a Hall voltage it produces compared with a reference field. Many of the devices available use indium antimonide or indium arsenide, because they exhibit a large Hall effect and are not greatly affected by temperature.

The TL170C uses the Hall effect to sense steady-state magnetic fields. It has a built-in output transistor for use on voltages up to 30 V and requires a supply of 5 V at 4 mA (output high) to 6 mA (output low).

Max output current

Output voltage
(at 16 mA , output low)
0.4 V

Table 1. Output characteristics of TL170C Hall effect switch. The TL172C is a normally-off switch. A positive-going magnetic field switches the output low

BOTTOM VIEW

Figure 3. Outlines of TL170C and TL172C Hall effect devices

TYPE	SBV566	EA218	FA22E
Imax control (mA)	50	150	200
Hall emf (mVat mT	130 at 75 at 10	85 at 1000 at 100	120 at 1000 at 100
at mA)		3	2
Control R (ohms)	30	1.5	1.5
Hall R (Ohms)	30	1.5	0.002
Offset max (V/A)	1.0	0.005	0.0

Table 2. Characteristics of three readily-available Hall effect devices

Figure 4. Outlines of the three devices described in Table 2 : SBV566 (left),
EA218 (centre) and FA22E (right)
Figure 2. In this example the direction of the force on the wire can be determined from Fleming's Left Hand Rule. Point your first finger in the direction of the magnetic field and your centre finger in the direction of the current. Your thumb should now be pointing downwards. The wire will be deflected downwards. If your thumb is pointing upwards, you've discovered Fleming's Right Hand Rule - change hands

PROBABLY THE MOST EDUCATIONAL PUZZLE EVER INVENTED

 CUBIK MANIA - FREE OF CHARGE!With purchases totalling over $\mathbf{8 1 7 . 5 0}$. Oniy un request at rime of ordering. Offer

WITH STEP-BY-STEP SOLUTION

BECOME AN INSTANT MUSICIAN

 NO EXPERIENCE NECESSARYThe success story of 1981. Hundreds sold alreadyl As featured on "Tomorrow's World" Create your own music with a VL.TONE. You combine the sound, rhythm and tempo and the VL-1 plays it CASIO VL.TONE (VL.
Electronic Musical instrument
and calculator.

(RAP $\mathbf{~ E 3 9 . 9 5) ~}$ ONLY $£ 35.95$
VL-1 records and plays back up to 100 notes as a melody. One Key Play or Auto Play of Piano, Violin, Flute, with A.DSP 10 burtasy or create your own unique sounds control. LCD digital readout of notes and tempo. Also a calculator. Battery powered with memory and program retention. Integral amplifier/speaker. Output jack. With Song Book. Dims.: $11 / 8 \times 113 / 4 \times 3 \mathrm{in}$

CASIOTONE POLYPHONIC KEYBOARDS

MT-30

22 instruments over 3 octaves. 4-position sound memory. Battery or mains. O/P jack. Dims.: $2^{1 / 2} \times 22^{1 / 2 / 4} \times$ $61 / 2 \mathrm{in}$. 61 b

$\star \star$ NEW $\star \star$ CASIOTONE CT-202

"Son of success. . The two harpsichords demonstrate the Caslotone's talent for sparkling, crystal clear tones (Melody Maker).

(RRP £325)
49 Instruments over 4 octaves. 4 voice memory func. ion with push-button selection. 3 vibrato settings and sustain. Pitch control. O/P jacks. AC only. $35 / 8 \times 341 / 9 \times$ hun 1suas

сr.301

(RRP E285)
ONLYE245
14 instruments over 4 octaves. 8×2 hyihm accompaniments. Vibrato and delayed vibrato. Start/stop, synchro start, tempo control, tempo indicator, and rhythm volume. Pitch control. AC only. O/p jacks. $45 / 8 \times 31 / 3 / 8$ 127/ain. 27lbs.

Ст 401

As 301 plus following; 16 rhythm accompaniments with fill in. Casio Auto Chord for one finger or auto accompaniment. Plays major, minor and 7th chords memory lever and octave switch. Dims as 301 Weight 28 2lbs.

CASIO LCD SCIENTIFICS

$\begin{gathered} \text { FX550 } \\ \text { R.R.P. £21.95 } \end{gathered}$			E -
		FX3500P	E7x+5as ${ }^{\text {a }}$
		$\begin{aligned} & \text { R.R.P. } \\ & \text { ع25.95 } \end{aligned}$	
$£ 19.95$		$\begin{aligned} & \text { ONLY } \\ & \text { E22.95 } \end{aligned}$	

FX5 Junior scientific (R.R.P. E10.95) FX7 Junior scientific with trigs EX100 10 dig its 44 AA Batteries. - $\times 55010 \mathrm{~d} 50 \mathrm{t}$ Wallas X550 10d. 50 . Wallif size, lithium EX6100 39 scientific functions. AA FX8100 46f. Calendar wallet size Programmables with Integrals and Re FX 180 P 10d. 38 steps. 7 memories. 55 t
FX3500P Wallet version with Hyps. 61 l
(fi2.95) $\begin{array}{r}\text { ONL } 10.95 \\ \mathbf{E 8} \\ \hline\end{array}$
(f12.95) $£ 10.95$
(C14.95) $£ 12.95$ (£18.95) $£ 16.95$ d stoowatch (C22.95) $£ 17.95$ ($\mathbb{1} 27.95$) $\mathbf{2 4 . 9 5}$

SPECIAL SUMMERTIME OFFERS

FX502P Programmable. 514.22 memories. 256 steps. With FREE MASTERPACK. To clear, while stocks last MASTERPACK Software for FXSO1P, FXSO2P To clear FX601P. Alpha/numeric dot matric scrolling display 50f. 11 memories. 128 steps. FREE MASTERPACK +3
CUBIKS. 2 FOA TME PAKE OF 1.
MG880. The very successful basic calculator with Digi tal Space Invader Game plus CUBIK for ONLY $£ 10.95$

All items subject to availability

CA90 - NEW LOWER PRICE!

THESE SPACE INVADERS WILL ALARM YOU - THE NEW REDUCED PRICE WON'T! Casio's most amazing watches everl

CA90 (left) E19.95

CA901 (right) R.R.P. £34.95 $£ 29.95$

Time and auto. calendar, calculator, alarm, hourly chimes, stopwatch, dual-time. DIGITAL SPACE NVADER GAME

> There is still time to buy one of these watches for SUMMERTIME SPORTS ANO LEISURE

Time and auio. calendar, alarm, hourly chimes, countdown alarm timer with repeat memory function. Time is always on display, regardless of mode.

SENO 20P FOR ILLUSTRATED CATALOGUE

PRICE includes VAT and P\&P. Send cheques, P.O. or phone your ACCESS or BARCLAYCARD number to:

THMPUS

Dept. HE FREEPOST

164-167 East Road, Cambridge CB1 10B Tel. 0223312866

Gataxy y 1000 SPECIAL OFFER WHILE STOCKS LAST

Hand-held Games
£19.50
INC. P.\&P. VAT

FREE SET BATTERIES WITH EACH GAME

Order any one of these games: Galaxy Invader 1000 Jet Fighters Basketball Invader from Space
Race ' n ' Chase Entex Space Invader Safari . . . £19.50 each + free set of batteries

EARTH INVADER $£ 24.95$ inc.
GRAND PRIX $£ 24.95$ inc.
SAE ENQUIRIES. ALL PRICES INCLUSIVE

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excallent job prospects await those who hold one of these recognised certificates. ICS can coach you for

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Elecrical Installation Work

Diploma Courses

Colour T.V. Servicing
CCTV Engıneering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Carcer Courses

A wide range of other technical and professional courses are available including GCE.

ToICS. Dept. 2263. Intertext House. London SW8 4UU

Age
To ICS. Dept. $26 \overline{3} \mathrm{~L}$, Intertext Housé, London SW8 4UJ or telephone 01-6229911 (all hours)

Famous Names

This fifth part of our Famous Names series looks at the life of Oliver Heaviside. Like Isaac Newton before him, Heaviside showed original genius in his work and discovery

ONE OF THE most tantalising aspects of writing biographical notes is that our knowledge of a person seldom matches up to our interest in what he has achieved. We may find, for example, that the life of some obscure worthy who did very little for electrical or electronic science is completely documented simply because he served on every committee that he could get to. On the other hand, there is the problem of the towering genius about whom practically nothing is known. Oliver Heaviside definitely falls into the second category. Gradually and painfully, researchers are discovering details of the life of this quite extraordinary man who, had he sought publicity for his theories, might easily have outshone Einstein in popular mythology.

Heaviside was born in 1850, and seems to have had only an ordinary school education. By the age of 20 he was working as a telegrapher - one of the 'glamour' occupations of these midVictorian days. He might well have continued this work, which
gave him the opportunity for reading electrical theory, but for the sudden occurrence of deafness which forced him to retire in 1874. From what little we know of these early years we discover that his nature was retiring and introspective, and his deafness was a further burden which made him even more reluctant to communicate with others.

From the time of his retiral at the age of 24 he decided to devote the rest of his life to electrical research, work which was inspired by the problems of telegraphy which he had encountered at first hand.

We are still sorting out some of the work which he did in these years - and what we have found so far points to the conclusion that Heaviside was of that extremely rare species - an original genius, comparable to Isaac Newton. Like Newton, he was prone to write down his results in obscure phrases and notes, and also like Newton, to invent new mathematical methods to cope with the problems on which he was working.

One of the main problems which he solved, and which appeared in his 'Electrical Papers', published in 1892, was that of long-distance telegraphy. It's one thing to transmit sine waves on wires over long distances, but the square waves which are generated by a Morse key are something quite different. A long telegraph line has stray capacitance to earth, and it also has some inductance: these components combine to integrate waveforms, converting the square waves from the key into a rounded shape which was incapable of operating the papertape punch at the other end of the line.

Theory Of Transients

We feel now that we know quite a bit about what are called transients - the currents which flow for brief periods when stray capacitances are being charged or discharged. But do we? A startling number of examples of malfunction of microprocessor equipment turn out to be the result of the effects of transient currents caused by the very fast rising and falling pulses used in the circuits. Consultants complain that not enough is known or taught about transients, and the most popular bus structure ($\mathbf{S 1 0 0}$) for small computers positively invites transient troubles. We just don't seem to learn - despite the fact that Heaviside solved all these problems.

In classical legends, the story of Cassandra tells how she was cursed with the ability to prophesy the future with complete accuracy. Cursed? Yes, because no-one would ever believe her. Heaviside must have felt this way after the publication of his papers. Although what he had done was the foundation of modern pulse theory, only a handful of people were able to see what he had done and understand its significance. Two factors contributed to this neglect. One was the fact that Heaviside had invented his own form of algebra to deal with transients. It's now known as the Heaviside Calculus, though it's not used much nowadays. Engineers generally, couldn't grasp Heaviside calculus, and were suspicious of such a new approach. Mathematicians were obsessed by the need for rigorous proofs of Heaviside's theorems - and were unable to find any. Heaviside himself was totally uninterested in proving his theorems, which to him seemed so obvious as to need no proof. He also took the traditional engineers' view that the important thing was to get on with making use of his discoveries, rather than deal with the 'nit-picking' business of academic discussion. He had little patience with anyone who wanted to discuss his work, and this intolerant attitude offended many who might have been of great assistance to him. If we think what it must have been like to be such a shy, deaf genius, we
surely cannot pass harsh judgement on either Heaviside or those whom he offended. The results of his work spoke more eloquently than anything that could be said, however, and thanks to a few dedicated engineers who were prepared to try out Heaviside's remarkable conclusions, long-distance telegraphy became possible.

Practical Proof

What was the solution? Heaviside recognised the problem as one which we could now call line matching. He reasoned that a line with the correct ratio of series inductance to stray capacitance would behave like a pure resistance, the quantity we now call the characteristic impedance of the line. Every time we use coaxial cable or turn-line, we're making use of Heaviside's theories - they permeate the whole of electronics. The conclusion which Heaviside reached, which so many of his contemporaries found quite unbelievable, was that a long telegraph line needed extra inductance added, in series, at intervals, so that the characteristic impedance of the line matched the resistance of the receiving equipment. At the time it must have seemed like telling a driver that a road could be covered faster by adding a few Z-bends! Nevertheless, a brief trial confirmed that Heaviside was absolutely right, and long-distance telegraphy arrived. Within a decade, it seemed that the bed of the Atlantic would be covered in telegraph cables!

Meanwhile, Heaviside, embittered by the reception of his 'Electrical Papers', turned back to further research on fundamental electromagnetic theory, building on the firm foundations laid by James Clerk Maxwell, who had died in 1879. Recent studies of Heaviside's work during this period reveal that he had already concluded that the 'mass' of an electron must increase as the speed of the electron approaches the speed of light. This was to be one of the most easily tested conclusions of Einstein's Theory of Special Relativity some 20 years later, and it is only one of an astonishingly well thought out set of conclusions which Heaviside published in his 'Electromagnetic Theory' between 1893 and 1912. One of these conclusions
has caused Heaviside's name to be immortalised in the way which is familiar in Science - by having something named after him.

On 12 December 1901, Marconi succeeded in establishing that radio waves could be transmitted over really long distances, by his transmissions from Newfoundland to Poldhu in Cornwall. He attempted this in the face of a chorus from engineers and scientists that it 'couldn't be done' - three words which have stimulated engineers more than anything else. There was one voice missing. Heaviside knew exactly how it was possible - he had already worked out the theory, and in 1902, secure in the knowledge that no-one could challenge the truth of long-distance radio, he published his theory.

Briefly it was that the radiation from the sun must ionise (split into charged particles) atoms of the gases in the atmosphere, and that these charged ions would then act to reflect radio waves whose wavelength fell between defined limits, encompassing in particular the bands which were to be known as the 'short waves'. For once, Heaviside was not out on a limb of his own because Kennely, of Harvard, was also working along the same lines.

It was impossible to prove Heaviside's ideas at the time, but two years before his death radar methods showed reflecting regions in the atmosphere between 50 km and 400 km above the surface of the earth. One set of these layers was called the Heaviside, another the Kennely: each consists of several strata, the distance of which from the earth varies according to the time of day or night. Heaviside died in 1925, with the knowledge that his name would be remembered in at least one sphere of activity.

That was 56 years ago. To this day, we are still finding evidence of his genius. His mathematical system, the Heaviside Calculus, has now been shown to be perfectly sound although it has been superseded by the use of Laplace Transforms. Only time will tell what other remarkable inventions and discoveries are tucked away in the volumes of Heaviside's notes.

Quick Project: Light/Water Alarm

A simple yet ingenious circuit for you to build which won't break your piggy-bank. One of our series of Short Circuits which we've selected for a project

The purpose of this circuit is to produce an audible tone when light is detected by a photocell. However, if the photocell is replaced by two strips of metal placed close together but not quite touching leg, two adjacent copper strips on a small piece of Veroboard), the alarm will respond to water bridging the metal strips rather than to light. The unit canbe used, for example, as
an alarm that will trigger if a suit case in which it is placed is opened, or as a rain alarm, depending on the sensor selected.

The circuit is little more than a standard 555 oscillator driving a loudspeaker so that the required audio tone is generated. Pin 4 of integrated circuit IC1 would normally be connected to the positive supply rail, but in this circuit it is taken to the

Figure 1. Circuit of the Light/Water Alarm
negative supply rail via resistor R1. This prevents the oscillator from operating unless the photocell PCC1 is subjected to a reasonably high light level (daylight is more than adequate). The voltage at pin 4 of IC1 then goes positive, and the tone is generated by the unit.

The same basic action occurs if PCC1 is replaced by a water sensor. Normally R1
takes pin 4 to the negative rail, but the low resistance across the sensor when it is bridged by rain or tap water is sufficient to activate the unit. (Pure water has a high resistance and will not trigger the unit.)

The CMOS version of the 555 (the ICM7555) is used in the project to give a low standby supply current of only 80 uA .

Figure 2. View of the project

HE Tool Set Offer

High Quality Tool Set

'A GOOD WORKMAN never blames his tools' goes the old saying. But if you buy poor quality tools then your work - and your patience - are bound to suffer.
We have put together a set of high quality tools which should cope with most of the tasks of the electronics hobbyist.

The set comprises:

* All-purpose Cutter -	for general cutting and shaping work. A safety catch is incorporated and the handles are fitted with a return spring
* Miniature Cutter - \quadfor circuit work. A cutting guard is fixed to the jaws to prevent the free portion of a piece of wire flying away as a cut is made. Jaws are finished in matt black. Handles are shaped for comfort and are fitted with springs to hold the jaws open	
* Snipe-nose Plier - \quadinvaluable for circuit work. Handles are fitted with springs to hold the jaws open	
* Plot Screwdriver - \quadhandle is shaped for comfort and the blade is finished in matt black	
Screwdriver -in the same style as the slot screwdriver	

So don't blame your tools - instead, buy a set you can depend on for only $£ 19.95$ including VAT and postage and packing.
And choose between four methods of payment: Cheque, Postal Order, Barclaycard, or Access

> Featured this month by Ian Graham - the latest thing in video synthesisers from CEL Electronics, three new games cartridges from Atari, Bib Hi-Fi's video recorder head cleaning kit and two handy pieces of test gear from Lawtronics - pocket-sized continuity and transistor testers

Chromascope - TV Light Show

We first described the two video synthesisers from CEL Electronics, the $\mathrm{C}-101$ (domestic model) and the P-135 (professional model) under Monitor in the August ' 81 issue. (Note the ' a ' in Chromascope, not 'Chromoscope' as printed last month.)

When the $\mathrm{C}-101$ is coupled to the aerial socket of a colour TV receiver, it will produce an almost infinite variety of continuously changing multi-coloured abstract patterns and shapes. If an audio signal is applied to the C-101, the colour of individual patterns, or the sequence in which they change, can be influenc-
ed by the amplitude (volume) or frequency (bass, mid-range or treble) of the signal.

Model C-101

Retail price of the $\mathrm{C}-101$ is $£ 295$ plus VAT (but see special introductory offer to HE readers on page 37). It has a smartly finished case with aluminium trim panels and simulated hide cover panels. Sockets are provided for connecting the synthesiser to a TV receiver and, for modulation effects, to an audio system.

The TV aerial is plugged into the C -101: when the synthesiser is switched off the aerial is automatically reconnected to the aerial socket of the TV for normal programme viewing. A separate 15 VDC power supply adaptor is supplied for use with the $\mathrm{C}-101$.

Operation

When the C-101, adaptor, TV receiver and audio system (if you want sound-to-light effects) are all connected up, as described in the instruction manual, the TV is set to a spare channel and a button marked 'Step' is pressed on the synthesiser. When you tune the TV into the signal generated by the C-101 a colour bar pattern - thick vertical bars of white, yellow, cyan, green, mauve, red and blue - appears on the screen. You use this pattern to tune in the TV precisely and to set brightness, contrast and colour controls on the TV.

When you release the Step button the light show begins: coloured patterns and shapes appear and merge in random fashion, at rates determined by the settings of the controls.

Marshall's

TRANSISTORS - JUST SOME OF OUR LARGE RANGE

PLEASE ADD. POSTAGE/PACKING 60p UNLESS STATED. ALSO 15% VAT ON TOTAL - ALL ITEMS ON THIS ADVERTISEMENT SPECIALLY SELECTED FOR EX-STOCK DELIVERY

A. Marshall (London) Ltd.

Kingsgate House, Kingsgate Place, London NW6 4TA Industrial Sales: 01-328 1009.
Mail Order: 01-624 8582-24-hour service Also retail shops:
325 Edgware Road, London, W2
40 Cricklewood Broadway, London, NW2
85 West Regent Street, Glasgow \& 108A Stokes Croft, Bristol

R.P.M. Meter	ZD125	August'81	£13.75
Electronic Ignition	ZD124	August'81	£18.90
Variable Bench Power Supply	ZD123	August'81	£22.50
Treble Boost	ZD122	July'81	£10.25
Voice Operated Switch	ZD120	May'81	f 10.50
Audio Millivoltmeter	ZD121	May'81	$£ 17.25$
Super Siren	ZD116	April'81	£16.95
Guitar Tremolo	ZD117	April'81	£11.50
*Russian Roulette Game	ZD118	April'81	$£ 7.95$
Windscreen Washer Alarm	ZD119	April'81	$£ 5.50$
Fuzz Box	ZD115	March'81	$£ 9.00$
Steam Loco Whistle	ZD114	March'81	£11.50
Windscreen Wiper Controller	ZD113	March'81	¢6.50
Public Address Amp (no mike/spkrs)	ZD112	March'81	£16.50
Heart Beat Monitor	ZD108	Feb'81	£20.25
Audio Signal Generator	ZD109	Feb'81	£16.00
Background Noise Simulator	ZD110	Feb'81	£6.00
*Two-Tone Train Horn	ZD111	Feb'81	£5.00
Bench Amplifier	ZD107	Jan'81	£8.85
Nicad Charger	ZD106	Jan'81	£6.75
Car Rev Counter	ZD104	Jan'81	£26.80
Digital Speedometer	ZD100	Dec'80	£35.25
Battery Charge Monitor	ZD101	Dec'80	¢5.00
Model Train Controller	ZD102	Dec'80	£15.25
Stereo Power Meter	ZD103	Dec'80	¢19.25
Double Dice	ZD99	Nov'80	£14.00
Guitar Pre-Amplifier	ZD97	Nov'80	¢8.90
Watchdog Intruder Alarm	ZD89	Oct'80	¢18.25
Freezer Alarm	ZD91	Oct'80	¢9.75
Nobell Doorbell	ZD93	Oct'80	£11.25
Light Dimmer	ZD88	Oct'80	¢6.35
Guitar Phaser	ZD85	Sept'80	$£ 12.00$
Auto Probe	ZD83	Sept'80	¢4.00
Equitone Car Equaliser	ZD52	August'80	¢15.30
Car Booster (no speakers)	ZD50	July'80	£23.50
Hazard Flasher	ZD48	July'80	E 12.50
Fog Horn	ZD44	June'80	¢5.75
*Egg Timer	ZD43	June'80	£9.35
Track Cleaner	ZD12	May ${ }^{\text {8 }} 80$	£9.65
*R/C Speed Controller	ZD3	April'80	£13.50
Electronic Ignition	ZD2	April'80	£21.45
Digital Frequency Meter	ZD9	April'80	£32.75
Crosshatch Generator	ZD4	Jan'80	£13.85
Digi-Die	ZD5	Jan'80	¢7.75
Ring Modulator	ZD1	Dec'79	£11.55
Bargraph Car Voltmeter	ZD40	Dec'79	£8.50
Guitar Tuner	ZD38	Nov'79	£10.50
*R2 D2 Radio	ZD37	Nov'79	£10.35
Multi Option Siren	ZD36	Oct'79	£13.50
*Starburst	ZD30	Sept'79	£16.75
Injector Tracer	ZD27	Aug'79	£4.75
LED Tachometer	ZD26	Aug'79	$£ 17.55$
G.S.R. Monitor	ZD19	June'79	£10.65
Envelope Generator	ZD20	June'79	£14.50
Drill Speed Controller	ZD21	June'79	¢8.75
White Noise Effects Unit	ZD18	May'79	£18.00
Digibell Project	ZD16	May'79	£6.35
Car Alarm	2D70	Feb'79	£10.40
Graphic Equaliser	ZD62	Jan'79	£30.50
Audio Mixer	2D14	Dec'78	£24.00

PTEMS MARKED NO CASE
REPRINTS OF ABOVE 40p EXTRA
ALL PRICES INCLUDE POST AND 15\% VAT
ERSONAL CALLERS PLEASE RING TO CHECK AVAILABILITY OF KITS,

IONISER KIT IMAINs OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, flling your room. The result? You air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions \qquad . 12.50
A suitable case including front panel, neon switch, etc.

Hours Mon-Friday $9-5.30$ p.m. Sat. 9-4.30 p.m.
Callers by appointment only
Telephone: 01-226 1489

T. POWELL

Advance Works, 44 Wallace Road, London N. 1.
Visa/Access cards accepted
Minimum telephone Orders $£ 5$
Minimum Mail Order £1

Control Functions

Front panel controls are divided into six groups:

Power	On/off button and LED indicator. As soon as this button is pressed the synthesiser is connected to the DC supply from the adaptor, and the aerial is disconnected from the TV
Seq	This button selects two modes of control for the sequence of patterns: timer, where the sequence is determined by a built-in timer, or audio, where it is determined by the content of the incoming audio signal (for example, by the beat of a piece of music)
Form	This button selects

$\left.\begin{array}{ll}\text { two modes of control } \\ \text { for the movement of } \\ \text { form within a pat- } \\ \text { tern: form modifica- } \\ \text { tion timer (four in- } \\ \text { dependent timer } \\ \text { controls are provid- } \\ \text { ed for this mode) } \\ \text { and audio modulated } \\ \text { (determined by the } \\ \text { content of the in- } \\ \text { coming audio signal) }\end{array}\right\}$
two modes of control for the movement of form within a pattern: form modification timer (four independent timer controls are provided for this mode) and audio modulated (determined by the content of the incoming audio signal)

Form Four controls allow Modification the setting of the Timers rates of change for colours and shapes within a particular pattern
Sequence Three controls are Timer

Three slider controls enable you to set up the overall hue of the picture, using the primary colour combinations of red, green and blue
group: Hold, Step and Sequence Timer
adjustment. The Hold button stops timer- or audiocontrolled pattern sequencing. The display does not freeze, however. because the pattern modification timers continue to change the patterns to a limited extent and the display still responds to audio stimulation. If you like a particular design then you can retain it indefinitely by pressing the Hold button.
The main function of the Step button is to select a colour bar display. Operation of Step will also make the pattern sequencing random, so that the machine will never repeat the display

On Test

We demonstrated the C-101 to two different audiences, of widely differing age groups. Two different makes of TV were used in the demonstrations.

The younger group was enthralled by the patterns displayed, particularly when the picture was modulated with some music by Jean Michel Jarre. The general view seemed to be: 'We like the effects produced by the C-101, but it's too expensive'.

Response from the older group was less demonstrative but nonetheless positive. One of our audience commented on how this compact machine, with the great variety of effects that it produced, was a good example of how modern 'chips' had brought such machines down in size. Comments about the cost echoed those made by the younger group.

The only technical niggle we had was with the power supply adaptor unit. This seemed to get very hot during use. A plus point for the C. 101 was its ability to display a colour bar pattern. This is used by TV service engineers to set up TV displays and gives an instant check of the overall colour balance.

Feedback

We spoke to Robin Palmer, director of CEL and designer of Chromascope, after we had tested and

evaluated the $\mathrm{C}-101$. The first ques. tion we put to him was about the price. He told HE that Chromascopes use analogue and digital electronics, much of it working in a random fashion, so it was difficult to shrink the design down to a handful of ICs. The enormous PCB, which takes up most of the case was, he said, 'a pig to develop' over a twoyear period. He added that he would have loved to have made something cheaper but users would have become bored with it very quickly.

When asked to comment on the heat produced by the adaptor, he said that PSUs from an early batch
do run hot - by design. But these were 'perfectly reliable' and he claimed to have had some running for months without problems. However, his supplier has assured him that adaptors in future batches will run cooler.

Palmer also commented on the professional interest in Chromascope. Professional users are now asking for a version of the P-135 which will give a still picture (static patterns, that is) and plain colours that can be adjusted separately for use as background displays.

He has already designed a version for France (SECAM TV system)

TRANSISTOR TESTER

Test transistor, diodes, Leds, SCR etc. in situ, no need to remove devices from board. Tests for short or open circuits and identifies NPN or PNP transistors.

CONTINUITY
 TESTER

Only 25MV at Probe Tips so cannot damage any sensitive transistors or ICs, on P.C.B. under tests. Audio tone indicates continuity in programmed range.
$0-1-3.0$ ohms safe with sets and cmos etc.

MULTIMETERS

Miniature $1.9 \times 2.7 \times 4^{\prime \prime}$ NLS LM 300
3 Digits LCD 21 ranges 1\%
1 v-kv AC/DC
1 ma-1A AC/DC
1 k-10 Mohm £49

BECKMAN 3020

$31 / 2$ digit LCD
29 ranges 0.1\%
$200 \mathrm{mV}-1.5 \mathrm{kV}$ AC/DC
$200 \mathrm{~mA}-10 \mathrm{~A}$ AC/DC
200 Ohms-20 Mohm
(Diode Tester) £99

OSCILLOSCOPES

TR10 C01303D 5MHZ 10MV
Single Trace \qquad £125.00
NLS M5215 8MHZ 10MV Dual miniature battery/mains £399.00

GENERATORS

Trio SG402 30MH2 AM mod. £68.00 AG 202A 200KHZ Sign Sq........ £79.50
AG203 A 1MHZ Sign Sq......... £127.50

We are a franchise distributor for Beckman Insts. Global Specialties, Trio Insts, Sinwood, non-linear systems, Coline, GP Industrial and we manufacture our own testers, prom erasers, etc.

"

139 High Street

Edenbridge, Kent
Tel: (0732) 865191
Prices include V.A.T.
P\&P, Access, Barclaycard or C.W.O.

Conctuer the chip.

 will revolutionise every human activity over the next ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MASTEPEETPONUG LEARN THE PRACTICAL WAY

- Building an oscilloscope. - Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi- Fi and all types of modern
computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW
THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational Mini-

Computer supplied ready for use. Self Test program

- Services of skilled tutor available. exercise.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology
- Kits for Signal Generators - Digital Meters etc.

and aims to penetrate Japanese and American markets. The existing machines are suitable for PAL users
in Europe. (The PAL system is used in the UK.)
CEL Electronics Limited, River

Bib Compact Video Recorder Maintenance Kit

Until recently, video recorders were the preserve of the BBC and pools winners. Now, as prices plummet, almost 20 manufacturers are producing about 50 standard and portable systems. They're available for sale and hire and there's a growing second-hand market. If your family has invested in a second-hand machine or your service agreement has lapsed, you may be interested in doing the routine maintenance work yourself.

Bib Hi-Fi now have a Videophile' range of accessories to serve the growing video market. This month l've been looking at their Compact Video Recorder Maintenance Kit. For a recommended retail price of $£ 5.47$ including VAT you get a set of five head cleaning tools, a bottle of tape head cleaning fluid and an aerosol can of Dust-Away air blast. The kit has thoughtfully been packed in a clear container the same size as a VHS cassette so you can store it in your video cassette rack.

The kit contains comprehensive instructions to clean VHS and Betamax heads. The innards of a video cassette recorder are delicate at the best of times, but Bib's instructions feature the necessary do's and don'ts. It does involve taking the cover off your machine, so tread very carefully. All the parts of the kit are available as separate items. The Videophile' range also includes title labels, head cleaning cassettes (VHS and Betamax), tape eraser, tape splicer, tape head demagnetiser, TV screen anti-static treatment kit, etc. You should be able to get the Bib Compact Video Recorder Maintenance Kit from any good video/hi-fi store.

Game, Set And Match: Atari Games Cartridges

Game - Football; Set - Television; Match - You versus the Atari Videocomputer System (or a human opponent). Atari has added three new games cartridges to its extensive

range. Pele launched Atari's 'Championship Soccer' cartridge during a recent visit to London. The familiar black plastic box gives you a choice of 54 different games - 1-27, two-player; $28-54$, single-player. The game variations are achieved by offering different combinations of team speed, penalties, goal size and game difficulty. There are three players and a goal-keeper on each side, manoeuvred about the pitch by your joystick controllers. You can dribble, kick, tackle and score your
way around the screen in glorious colour. Who needs Match of the Day? Nice touch - when you score, the computer lays on your own personal fireworks display to celebrate.

Atari's Othello cartridge offers four variations: $1-3$, you versus the computer at increasing difficulty levels; game 4, a two-player game. The object is to convert as many of your opponent's counters to your colour as possible. In Fig. 1, you are black and it's your turn to move. You can convert

Fig. 1 Playing Othello on Atari

two white counters by placing your piece top right. Fortunately, the computer does make mistakes on the lowest play level, so it can be beaten.

Last, but by no means least, I plugged in Video Pinball to try the four variations - two single-player and two twoplayer. The screen was immediately filled with drop-targets, rollover indicators, spinners and bumpers. It all happens - as the ball bounces around, lights flash and the score mounts up. You can nudge the ball towards a target, but beware - nudge too much and you incur a tilt penalty.

All three games are played with joystick controllers. Prices - Football £29.95, Othello £23.95, and Pinball £23.95. All prices are inclusive of VAT. You can get hold of an Atari Videocomputer System to plug them into for less than $£ 100$.

Testing, Testing, 1,2,3,: Lawtronics Test Gear

Lawtronics sent me two interesting pieces of test gear to look at. Its TT2 Transistor Tester is a 'go, no-go' tester for NPN and PNP transistors and
diodes. It's simple to operate Diagrams on the top of the tester's case show you how to connect the two probes and component operation is indicated by two LEDs. Power is supplied by a PP3 battery.

If you think you have a broken wire somewhere, check it out in no time with the CT2 Continuity Tester. Power this time is from two PP3s. The CT2 has two switched resistance ranges (R25 and 1R) and can easily be calibrated using a single potentiometer adjustment.

The CT2 and TT2 are, I feel, overpriced at $£ 17.50$ and $£ 22.00$ respectively. Lawtronics can supply an extensive range of test gear including oscilloscopes, counter timers, digital and analogue multimeters, signal sources, logic analysers and breadboards, probes, test leads, etc. Lawtronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX.

Chromascope Offer

 for HE ReadersWE REVIEW the Chromascope C-101 Video Synthesiser in this month's Gadgets, Games \& Kits supplement.

When the C-101 is connected to your colour TV receiver it will produce a spectacular display of coloured patterns and shapes, which merge and blend in random fashion (see the cover of this month's issue). Connect it to your audio system as well and the display will respond to the audio signal, adding a visual dimension to music.

By special arrangement with CEL Electronics, we are offering the C-101 at an introductory price of $£ 249$ plus VAT (normal retail price $£ 295$ plus VAT). This offer closes on 30 th November 1981.

Choose between three methods of payment: Cheque, Barclaycard, or Access.

To: HE Video Synth Offer, Modmags Limited, 145 Charing Cross Road, London WC2H OEE

Please send me my C-101 Video Synthesiser at £286.35, including VAT and delivery.
I enclose a cheque made payable to Modmags Limited for $£ 286.35$
| OR
| I wish to pay by 8arclaycard. Please charge to my account | number

I I wish to pay by Access. Please charge to my account | number

Signature
| Name
(BLOCK CAPITALS)
Address
(block Capitals)

Please note that the offer applies to UK mainland only. Allow 28 days for delivery

Quick Project: Car Lights Delay

An easy-to-build project for your car, which operates your car lights to let you see your way around after you've parked in the dark. A couple of minutes later, when you're safe and sound in the house, the car's lights are automatically extinguished

When push-button PB1 is pressed this project turns a car's spotlight or headlights on for a fixed period of around two minutes. At the end of this time the lights are turned off automatically. When not in use the project's current consumption is zero.

Circuit operation is simple. Transistor Q 1 is connected as an emitter follower (its emitter voltage is always the same as its base voltage) with emitter load R2, and base bias provided by C1. Transistor $Q 2$ forms a common emitter amplifier. with the relay coil RLA as its collector load. Its base bias arises from R2 and $\mathbf{Q 1}$ emitter. Power is applied to the circuit via N/O (normally open) relay contacts RLA/1 which are shunted by the pushbutton PB1.

Initial operation of PB1 connects the circuit to its power supply. At this time C1 is fully discharged, so O1's base is effectively shorted to the positive supply line. Transistor O1's emitter 'follows' the base voltage (+12 V) so +12 V appears there. Transistor 02 is driven on by the current through R2 and thus the relay is turned on. As this takes place, contacts RLA/1 close thus maintaining power after push-button PB1 has been released. Relay contacts RLA/2 also close and power is applied to the spot- or headights. The above operation occurs almost instantaneously, as the push-button is pressed.

Capacitor C1 now starts to charge slowly, and the base voltage of 02 (via emitter follower Q1) drops exponentially towards 0 V . After a delay of about two minutes the voltage decreases enough to turn transistor $\mathbf{Q} 2$ off. The relay contacts must now open, disconnecting power to the circuit and to the lights.

When construction of the board is complete, mount the project in a suitable case, and install it in your car.

Figure 1. Circuit of Car Lights Delay

Figure 2. Veroboard layout, connection detalls and underside track breaks

This month, Keith Brindley tells you all about the most often used process in the whole area of electronics - soldering

THERE'S NO DOUBT, one of the first jobs to master in electronics is that of soldering. However you build a project, whether on printed circuit board (PCB) or Veroboard, you will have to solder the components in.

When done properly, a soldered joint (the connection between a component lead and the copper track of the circuit board) is the neatest and most permanent way of making any connection between the separate parts of a project. Of course, one joint which has been badly soldered can render the same project useless. It's very important, therefore, to do the job right.

Practice Makes . . .

There's nothing quite like repeatedly doing a job to improve performance, and soldering is no exception. The more often you build a circuit board the better you'll become at soldering, but even so there are a couple of tips you can follow to help get it right immediately: have? the correct tools for the job, and keep everything as clean as possible.

The right tool for the job is a good quality soldering iron, for electronics use. We've come a long way from the time when a soldering iron was simply a wooden-handled rod of iron, the tip (or bit, as it is correctly known) of which was thrust into a hot fire, till glowing red hot. This sort of iron is not meant for electronics but for heavier jobs such as lead pipe plumbing. Nevertheless, the name of the modern tool 'soldering iron' comes from its red-hot predecessor.

A modern iron consists of an electrically heated element at the end of an insulating (usually a form of plastic) handle. A slide-on or screw-on bit fastens over the heated element and it is this bit which is used to heat the circuit board connections before solder is applied. Figure 1 shows how a typical soldering iron is constructed. The element will be rated by its power in watts, eg, $15 \mathrm{~W}, 25 \mathrm{~W}$, etc, and various bit thicknesses will be obtainable.

Figure 1. A typical modarn mains-powered soldering iron
The power of an ir on and its bit thickness are largely matters of the physical size of the connections to be soldered, although personal preference will play a part, too. The larger the area of the connection to be soldered, the more heat will be dissipated away from the bit. Thus, more power will be required to maintain the required temperature to melt the solder. For circuit board use, a 15 W soldering iron is adequate and certainly no greater than 25 W is necessary. If you use a more powerful soldering iron than this you might damage the components by overheating them.

A bit thickness of $1 / 0^{n}$ to ${ }^{3 / 16^{\prime \prime}}$ is ideal for circuit board work.

What's Best?

Most irons are mains-operated but there are exceptions: some are designed to be operated on a lower AC voltage (eg, 50 VAC), and so a step-down transformer is used to provide this from the mains, and some types (see Fig.2) are batterypowered. The iron in Fig. 2 contains its battery inside the
handle-type body and the battery is made up of nickel-cadmium cells - so it is rechargeable - hence the recharger you can also see. It features enormous advantages over mains-operated or low-voltage AC-operated irons, mainly because (being batterypowered) it is cordless: no more fiddly mains flex getting in the way while you try to solder. With the use of such an iron you are, at last, completely free of having to be within four feet of a mains outlet. For instance, soldering jobs on the car which are usually a nightmare with a mains-operated iron become a very simple job. A cordless soldering iron is also useful if you are soldering CMOS integrated circuits into a PCB, because it has no earth connection, and therefore you can't damage the ICs by static discharge.

Figure 2. Cordess, rechargeable soldering iron plus recharger
The iron takes about four hours to reach its fully charged state, once the recharger is turned on and the iron put into it. The cells inside the iron cannot be overcharged or damaged by leaving the iron in the recharger, so you can leave it in this position till required. Operating the iron is easy - lift it from the charger, press the 'on' button, wait 3-5 s to allow the bit to heat up, then solder the joint as you would with any iron.

Once fully charged the iron can be used for a constant period of about 15 minutes without needing charging, but using the iron for about 20 s at a time every few minutes (an average amount when soldering - remember you're never actually using an iron constantly) will give a working time of well over an hour beiween charges.

A Clean Sweep

Everything you use when soldering; ie, iron bit, component leads and circuit board must be clean and grease-free. The smallest amount of grease or dirt could cause a faulty joint.

Keep the tip of the soldering iron bit clean by wiping it every few minutes, when hot, over a damp sponge or rag - the tip should have a shiny, silvery surface.

Clean the copper track of the circuit boara with household
scouring powder and a damp rag. Figure 3 shows a PCB which has been half cleaned (ie, one half of the board has been cleaned with scouring powder then washed - the other half hasn't). The difference is obvious because the cleaned copper surface has a bright, shiny appearance rather than a dull one. Another way to clean the board is with methylated spirits and a rag, although this doesn't remove any oxide layer on the copper - it just removes grease.

If the component leads are dirty or greasy, rub them lightly with a piece of emery cloth before inserting them into the circuit board.

Insert and solder components one at a time, then cut off the excess component leads using a good pair of side-cutters, close to (but not on) the soldered joint.

When you actually apply the soldering iron to the joint to be soldered, remember to heat the copper track rather than the component lead. You see, copper is a good heat conductor and therefore the applied heat from the iron will be dissipated quickly away from the joint, and more heat will be needed. If too much heat is applied to the component lead then obviously the heat is conducted along it to the component body and heat damage might occur.

Figure 3. Here you can see how dirty a PCB can get. The left-hand half of this board has been cleaned with househoid scouring powder, the other haff hasn't. Dry joints are easy to make on a dirty PCB

The order of steps in soldering a joint is as follows:

- Apply the hot soldering iron bit to the copper track of the board, about $1 /$ " $^{\text {a }}$ away from the component lead and leave it there for a few seconds
- Touch the end of a length of solder to the other side of the hole which the component lead goes through, and wait for it to melt (see Fig.4)
- Move the bit of the iron up to touch the component lead, still keeping it on the copper and at the sarne time applying more solder until the solder flows all round the hole and up the lead in a concave arc shape
- Remove the iron bit and let the joint cool

Nothing to it, is there, when you know hew ! Keep practising see you next month.

You can obtain a cordless rechargeable soldering iron similar to ours, from:

West Hyde Developments Ltd,
Aylesbury
(telephone 02962044 1)
for about $£ 25$.

Figure 4. Solder just beginning to melt onto the copper track around the hole of a PCB. When this occurs you know that the joint is hot enough

HE

P.A.T.H

Electronic Services

Unmankeo packs 110 asome meche gese 50 Sthe on a Germanum Transistiors
$500 c 11$ Type Transisto
50 Sthe on Diodes

100 Polystyrene Capacitors
ty coax eounpment
Sid Pastic Cons Plug
Sid Cosx Coupler
Single cosx skt in sid hush gien Ooubie coox ske in sha Hush plate

10p each 10 tor 9 $15 p$ MEADPHONE JUNCTIOM BOX
A most popular stereo punction dor lacility for two osits of headohones and wow spasters 3 -position swith ensbles you to satect headohones spubers
C25e each 10 for cze
Mastic soxes min wo

120.800335 mm Black

I2V de Soldering lion ideal for lobs on the cal
camcur boand
S48
$2 / 2 \times 5$
2×20

MAKING PAIMTEO CINCUIT BOARES?
Materials from STOCK You can raly on

POST AND PACKING pleaze add 50 p posi and pack ing the currems under fio post rree ore rio, ADDVA BUMPE WHOLESALE LIST AVAILABLE SHOATLY

ment to pour cor ma

SALE - BARGAINS

Bargan oack list now ready Send 24 p for your copy - SA We sill have stocks of all goods advertised last month Plus
till 6 Call in and see us

SS = Single sided coppar $O S=$ Double sided T the SS = Single sided coppet OS -Dovbly shided The gree bosed Cut to order in my of the follownig hicknoesses and wayghts 1 mm 102116102 and 202 $3 / 32(24 \mathrm{mma}) 102$ and $202-10(32 \mathrm{~mm}) 208$
avaisale mn amph of double-sided Special suze

 econd quitity 6×6 M59, 6×12 Ele. $12 \times 12 \quad 81.31$ DALO ETCH RESIST PEM FENRCC CMLOROE Felamic cmomot

OEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Orginally desuged for instalistion inio a music contre Supplied as wo separily bunl and iestad Note: Circuit diagram and interconnec. ung wiring diagrams supplied Rotary Controls: Tuning on loti volume balance, trable bass. Push-button controle: Mono. Tape, Disc. AFC. FM (VHF), LW. MW. SW Power Outpin: 7 watts RMS per channel, at better than 2\% THD nit 8 ohms 10 watts speech and music Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ whin $\pm 3 \mathrm{~dB}$. Tepe Senantivity: Output - typically 150 MV input - 300 mV for rated output Oisc senesitivity: 100 mV (coramic cartridge) Redio: FM (VHF). $875 \mathrm{MHz}-108 \mathrm{MHz}$ Long wave
$145 \mathrm{kHz}-108 \mathrm{kHz}$ Medium wave.

Steroo Casset Tage and packing of a top panal and iape mechanism couptad to a record/play-back printed board assembly Supplied es one complete unit for horizontal installation into cabinet or console of own choice. These units are brand new, readv-built and tested. Smart thack and silver finish. Features: Three digjlt tape counter, Auto-stop, Six piano type key's, record, rewind, fast forward, play, stop and eject. Automatic record level control. Main inpuls plus secondary in 100 mV to 2 V Input impedance 68 K . Output level 400 mV io borh laft and righthand chan nels. Outout impectance 10 K . Signal to noize ratio 45 dB . Wow and flutter 0.1%. Power supply requirements 1 BV D.C. at 300 mA Connections the left and right-hand stereo in puts and outputs are via individual screened leads all ierminateo with phono plugs iphono sockets provided). Dimensions: Top pane $51 / 2 i n . \times 111 / 4 i n$. , cle arance required under top panel $21 / 4 ı n$. Supplied complete with circuit diagram and Price $\mathbf{E 2 8 . 7 0}+\mathbb{2} .50$ postage and packing Supplementary paris for 18 V U.C. powe supply itransfornier, bridge rectifier and smoplying capacior) fa briage recrifier and
37 Whitehouse Meadows, Eastwood, Leigh-ori-Sea, Essex SS95TY
BARCLIAYCARD
VISA
CTRONICS

520 kHz -- 1620 kHz . Short wave $58 \mathrm{MHz}-16 \mathrm{MHz}$ sire: Tuner -2 Kin . $\times 15 \mathrm{n} \times 715$ in approx. Power amplifier 2 in $\times 1 / 2117 . \times 41 / 21 \mathrm{n}$. approx 240 V AC knobs and pushted complete with fuese beacon inclicator. Price E21.80 plus - 50 postage and packing.

Clever Dick

Shock! Horror! Clever Dick shows rare generosity and gives away two binders this month

BACK IN THE June '81 issue of HE, Clever Dick came to a close with a letter from someone claiming to be Professor S. Unwin. It ended with 'Await deep joy at your reply', and I ended with 'Binder to the reader sending the best suggestion'. Well here it is.

Dear Clever Dick,

I think / can help your correspondent of last week, Prof. S. Unwin. I suspect that he is an alien of the Planet Arpeggio or has spent some time there.

My wife and I spent a two-decade holiday in the seventeenth century (their time) and I picked up the language, oh ves!

Prof. Unwin

Your problem Professor, is a question of impedilode. I assumi that you have a single outputilode on the recordi tape contraption and headphone socketer fittilode for an extoni speakibold. If your speakibolds are of equali impedilode and you connectiwire them in serilode, you add the impedilode which gives you approx halfmo outputilode and much reduced musipoo, oh yes.

If howeverlode, you connectiwire the speakibolds in the parallelimode, it then halfmos the impedilode of the combined speakibolds, therebymo giving, approx doublo the outputilode and much increasimo the musipoo with much greater joy, oh yes.
Yours sinceriwish,
Mr. Viv Reed
Right, for that you get a bindilode. If the 'Professor' sends me his address then l'll send him suggestions received from other readers.

Two letters were received from readers in response to Martin Portman's request for HEBOT spares in the July ' 81 issue. The first was from Richard Bradford in Canterbury, Kent and the second was from lan Fosberry in Thurmaston, Leicester. Thanks for your letters - I'll send them to Martin.

Richard Bradford, incidentally, suggested a camera flash as an HE project: l'll see how it develops in the HE Long-term Ongoing Ideas Laboratory.

Next letter was sent with the aim of helping P. Smith, who wrote in the June ' 81 CD: 'I would like to know who sells the AY-3-8610 IC and how much it costs'.

Dear CD,
Having just read a letter from one P. Smith concerning the AY-3-8610 integrated circuit.
I am NOT a dealer, but I have a few of these circuits.

They are not new, but / can guarantee they will all work.

I would be happy to supply a fellow constructor with this IC for just the price of postage.
D. R. Jaynes

Harlow, Essex
Our thanks to Mr Jaynes for his wish to help a fellow constructor. If P. Smith drops me a line l'll pass on his address.
Off to sunny Finland now.

Dear Clever Dick,

I have the honour of being a reader of your excellent magazine, and / would like to ask about three tings.

1. You had an article in HE (May '81) about a microcomputer named ZX81. 1 would like to know more about it. What shall I do?
2. Is anybody who reads this magazine interested in corresponding with me? I am from Finland but my language is Swedish. I am a sixteen-year-old boy in desperate need of exercise in English.
3. What is this "Binder" that everyone nearly fights about?
I hope you forgive my bad English. Peter Degerlund
01490 Vanda 49, Finland
First tings first. We covered the $\mathrm{ZX81}$ - in kit form - in the Gadgets, Games \& Kits supplement in the July ' 81 issue.

Second, if anyone would like to correspond with Peter, drop me a line.

Third, not only will I send you a copy of HE but l'll also send you a coveted Binder (l'm in a silly and generous mood - for this issue only).

I asked in the July issue if anyone cculd beat Ben Chaston's letter for brevity and still make sense.

Dear CD,

No!
F.R.Maher

Formby, Liverpool
Any sensible replies?
Another short one, this time written on the noble headed paper of Eton College.

Dear Clever Namesake,
Please could you tell me where I could

get 3.5 mm stereo jack male and female sockets for mini-portable-stereo-tape-players?
Dick Gibbons
Eton College, Windsor, Berks
I'd like to say 'yes, they're available from . . . ' but I can't. After a quick phone round I soon came to the conclusion that these were specialist items. Plenty of mono 3.5 mm sockets and plugs around but no stereo versions. Sorry, but it looks like it's time for a redesign of whatever you're making. (What's wrong with highlypopular old-fashioned $1 / 4$-in diameter types?)

Now one from a desperate reader.
Dear CD,
lam writing in a state of extreme desperation and hope that you can offer a remedy.

Recently I purchased components for an LCD multimeter and now am trying to find close tolerance resistors for range setting. I require especially the following values: $9 \mathrm{M}, 900 \mathrm{k}, 90 \mathrm{k}$, 9k, 1k. Whilst Lascar Electronics supply 0.25% tolerance values, they are not prepared to supply these independent of a kit.
P. M. Hitching

Croydon, Surrey
The MPR24 range of 0.25 W resistors from Mullard Limited covers a wide range of values, temperature coefficients and resistance tolerances extending down to 0.01%. Mullard distributes these through Intel
Electronics, Henlow Trading Estate, Henlow, Beds (tel 0462812505) but, because they are such specialist items, the resistors are very expensive.
Minimum orders are 20 of anv one type, at 0.05\% tolerance, at a cost of E1 each. As suggested by Intel, it would be cheaper to buy 100-off (for example, 0.25% tolerance, 100 -off would cost $141 / 2 \mathrm{p}$ per resistor). But 100-off of a single value will not, in any configuration, give all the values that you mention.
And that's the end of the page. See you in the next issue.

An ideal project for users of batterypowered calculators, radios, cassette players etc, because the HE Power Pack can be adjusted to give the voltage you require

PROJECTS ARE OFTEN designed with a particular case or enclosure in mind. The HE Power Pack is a good example - when we first saw the case, from West Hyde Developments, we knew exactly what to design into it. This case was specifically intended to house mains power supply units, and features three pins lin the shape of the pins of a standard 13 A plug top) which plug straight into a 13 A mains outlet socket.

Our circuit (Fig. 1) gives a regulated output of between 5 V and 15 VDC , adjusted and set by a preset resistor. Current output is anything up to about 350 mA .

An integrated circuit is used in the project to regulate the output voltage and although this IC (the 7805) is normally used in a fixed-voltage (5 VDC) supply we have adapted the circuit so that it will give a variable output voltage.

Construction

Insert and soider the two diodes into the printed circuit board (PCB) making sure that they are the correct way round, as shown in the overlay in Fig. 2. The bodies of the diodes must be mounted as close to the surface of the PCB as possible.

Solder in PCB pins wherever connections are to be made to the circuit board, then insert and solder all remaining components, following the overlay diagram. Clip the heatsink on to IC1.

Now open the plastic power supply case and take out the sub-chassis. Break or cut off the transformer mounting lugs so that the transformer will fit into the case.

Using good quality contact adhesive and following manufacturers ${ }^{\circ}$ instructions as to use, stick the transformer to the sub-chassis.

Next, using the contact adhesive, stick the PCB to the sub-chassis to fit underneath the edge of the transformer. Figure 3 shows a view of the project in which you can see the details at this stage.

Wire up the project carefully following the connection details given in Fig. 2.

Solder leads to the live and neutral terminals, inside the power supply case, and bend the leads up to the top of the case. Refit the sub-chassis and then solder the remaining ends of the live and neutral leads to the PCB and the transformer, where shown in Fig. 2.

Tightly attach a cable tie to the output lead, so that no damage will occur if it is pulled. A view of the project at this stage is shown in Fig. 4.

Stick a small piece (about 1" by $1 / 2^{*}$) of foam sponge onto the inside lid of the case, positioned so that when
the two halves of the case fit back together, the sponge pushes down onto the transformer, preventing movement.

Finally, plug the supply into a mains outlet, turn on, and measure the voltage at the supply output. By adjusting preset resistor RV1 you should obtain an output voltage variable between about 5 VDC and 15 VDC. Set the output voltage to what you require, switch off, remove the supply from the mains outlet and screw the two halves of the case together.

How It Works

The workhorse of this project is a voltage regulator integrated circuit which sets the output voltage $\left(\mathrm{V}_{\text {OUT }}\right)$ to a value determined by the setting of the preset resistor.

The input voitage ($\mathrm{V}_{1 \mathrm{~N}}$) comes from the rectified output of mains transformer T1. Diodes D1 and 2 give full-wave rectification of the 12 VAC transformer output.

Capacitor C1 provides smoothing of the rectified voltage and $V_{\text {IN }}$ will be about 18 VDC.

Integrated circult IC1 is a 5 V voltage regulator, and whatever the output voltage of the circuit, $V_{\text {REG }}$ will always be 5 VDC.

The value of current I_{R} is 1.5 mA for IC1 (from manufacturers' data) so wo can calculate the voltage across the
preset resistor from Dhm's law. For example, if the value of the preset is 1 kO then:

$$
V_{R}=1.5 \mathrm{~mA} \times 1000
$$

$=1.5 \mathrm{~V}$.
The output voltage is simply the sum of the two voltages, ie.

$$
V_{\text {OUT }}=1.5+5=6.5 \mathrm{~V}
$$

Thus, by varying the value of the preset resistor the output voltage can be varied.

Parts List

```
POTENTIOMETER
RV1 4k7 miniature horizontal
    preset
```


CAPACITORS

C1 $1000 \mathrm{u}, 25 \mathrm{~V}$ electrolytic
C2 220n polyester
SEMICONDUCTORS
IC1 7805, 1 A voltage regulator D1.2 1N4001.1 A diodes

MISCELLANEOUS
T1 0-12.0.12 V. 6 VA miniature transformer
Printed circuit board mounting fuse clips FS $1 \quad 500 \mathrm{~mA}, 20 \mathrm{~mm}$ fuse
Case (see Buylines)

NOTES:
IC1 IS 7805
D1,2 ARE 1N4001
Figure 1. Circuit of the HE Power Pack

Figure 3. View of the project fitted to the sub-chassis, before insertion into the case

Buylines

You should have few problems obtaining component parts for this project and the approximate price lexcluding case and PCB) will be $£ 4.50$.

If you have any trouble finding a source of supply for transformer T1, you can buy it direct from:

Verospeed,

Stansted Road,
Boyatt Wood, Eastleigh.
Hants SO5 4ZY
by sending them a cheque for $\mathbf{£ 2 . 1 0}$.
The malns power supply case is obtainable from:

West Hyde Developments Lid
Aylesbury
(telephone 0296 20441)
and its order code is PSC200K flor a black case) or PSC200W (if you want a white case).

4Figure 2. Overlay of the PCB for the project and connection details

Figure 4. Internal details of the HE Power Pack

PARNDON ELECTRONICS LTD.
Dept. No. 22, 44 Paddock Mead, Harlow, Essex CM18 7RR. Tel. 027932700 RESISTORS:

 and crowur weded £1.00 per hurdred mand (Min 111 per wallie)

DIODES: IN4 148
\&1.60 mer hundred

DIL. SOCKETS:
8 pin - 10p. 14 pin - 11 p. 16 pin - 12p. 18 pin - 19p. 20 pin - 21p. 22 pın - 23p. 24 pin - 25p. 28 pın - 27p. $4 C$ pın - 42p.

ALI PRICES INCI UDE V.A.T \& POST \& PACKING - NOEXTRAS

Every week, millions of advertisements appear in the press, on posters and in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We would like you to help us keep advertising up to standard.

The Advertising Standards Authority If an advertisement is wrong, we're here to put it right.
A.S.A. Lid., Brook House, Torrington Place, London WCIE THN.

HEPROJECT KITS
Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Propects. Wo sueph earoluly solected setis of parts to ensble you to construct $H . E$. Profects. Kits inctude ALL TH ELECTMONICS AND HARDWARE NEEDED. Printed clreuk boside (Tully atched, drilled and roiter tinnedi or varobosed ara. of courso, inclucled ws apecifisd in the oripinal artiche, we stated. BATTEAIES ARE NOT MNCLUDED. COMPONENT SHEET MNCLUDED. I You do no have the lasue of H.E. which includee the project - you with need to order the instruction

Reprints available separately 45p each + p8p 40p LATESTKITS: S.A.E. OR PHONE FOR PRICES

ADVENTURES WITH MICROELFCTRONICS bUNOM

An easy to follow book suitable for all ages. Ideal for beginners. No soldering. Uses a Bimboard 1 breadboard, gives clear instructions with lots of pictures. 11 projects based on integrated circuits includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard 1 breadboard and all the components for the projects.
Adventures with Microelectronics £2.35. Component pack £26.95 less battery.

ADVENTURES WITH ELECTRONICS Byxam

An easy to follow book suitable for all ages. Ideal for beginners No soldering. uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren metronome, organ, intercom, timer, etc. Helps you learn about electronic components and hriy circuits work. Component pack inciudes an S-Dec breadbos and all the components for the projects
Adventures with Electronics £1.90. Component pack $£ 16.72$ less Adventu
battery.

MAGENTA ELECTRONICS LTD

INTO DICHTAL ELEGTBONIGS

Current H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics Circuits are built on a plug-in Eurobreadboard. Reprints of back issues available $45 p$ each. Eurobreadboard and components for series $£ 18.95$ less battery. Com ponents only $£ 12.75$.

WTO ELEGTRONILS FONETRNGTON

H.E. 6-part Series: Feb. ' 80 to July '80. COVERS THE BASICS OF ELECTRONICS LOTS OF PRACTICAL WORK. Circuits are built on a plug-in Eurobreadboard
REPRINTS AVAILABLE, 45 p each part. Eurobreadboard and Components for Series $£ 15,63$. Components only $£ 9.43$.

INTO ELECTRONIC COMPONENTS

NEW SERIES: Eurobreadboard £6.20. Test Lead Kit Type IEC, parts for 2 leads, croc. clips to 4 mm banana plugs 62 p . Solid core

MAGENTA ELECTRONICS LTD
HL12, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS. DE14 2ST 0283-65435-9-4 MON.-FRI. MAIL ORDER ONLY

rish Republic \& B.F.P.O. Europe de duçt 10° o trom pricés showio. Paymerit must be in sterling
Access and Barclaycard (Visa) orders

The INStructor
A FULIY CONSTRUCTIONAL PROJECT INCORPORATING AN INS8060 MICROPROCESSOR CHIP
The instructor is a cost assembly which peovides practical cassors and their functions. It is not a computer but it is a working circuit which allows and you will gain microprocessor experience. The serles is based on the INS8060 microprocessor IC, also known as the SC/MP Mk. 2. Circuits are buill on a plug in Eurobreadbnard. Kin is available with or without the breadboaro.
Eurobresdboard $£ 27.85$: or less Eurobreadboard $£ 21.65$. INSTRUCTOR COURSE NOTES AND OPERATING INSTRUCTIONS £2.96 extra.

C106D ... 56p	2N5457.. 58p	BFY51.... 24p
TIC46.... 49p	2N5484..63p	BFY52...23p
OA47.... 11p	40673 ... 98p	BFX88 ...32p
OA90...... 9p	AC128 ... 29p	BRY39 ...48p
OA202... 16p	AC141... 38p	MPSA65.39R
W0.05 ... 33p	AC142 ... 39p	RPY58A
W06...... 47 p	AC176 ... 37p	\ldots ….... $£ 1.16$
25J.... £2.92	BC182.... 11p	TIP31A.. 52p
$1 \mathrm{~N} 4001.51 / 2 \mathrm{p}$	BC182...11p	TIP32A..83p
1N4005.... 6p		TIP33A.. 94p
1N4148...5p	BC183.....11p	TPP34A..99p
1N5404.. 18p		TIP121 £1.12
TN5408.. 19p	BC184L..11p	T1P2955. 69p
BF244B.. 45p	BC212...11p	TIP3055.69p
MPF102.69p	BC212L 11p	TIS43.... 38p
TIS88A.. 57p	BC213...11p	TPSA13.35p
VN67AF	BC214....11p	2N3053. 25p
¢1.21	BC214L.. 11p	2N3055..59p
2N3819.. 28 p	B0131 ... 48p	2N3702. 11p
2N3820.. 78p	BFY50... 25p	2N3704.. 11p

$1 / 4 \mathrm{~W}$, carbon film resistors, E12 series 1R-10M, $11 / 2 p$ each. Min. horiz. preset 100R-4M7, 12p each. Midget pots, 2M3 38p 2M, in. 75 p . Log. 7 pp .

Polyester (C2B0) capacitors 250 V 10 nF ; 15 nF ; 22 nF ; 33 nF ; 47 nF 7 p ea 68 nF ; 100 nF 8 p . $150 \mathrm{nF} ; 220 \mathrm{nF}$ 12p. 330nF 15p. 470 nF 20p. 680 nF 28p. 1uF 33p. 1.5uF 49p. 2.2uF 65p.
Sub miniature plate ceramics 63 V . Values in pF: 2.2; 3.3; $4.7 ; 5.6 ; 6.8$
$8.2 ; 10 ; 15 ; 22 ; 33 ; 47856 \mathrm{pF} 7 \mathrm{p}$ each 8.2;10;15;22;33;47 \& 56 pF 7p each. $68 \mathrm{pF} ; 100 \mathrm{pF} 7 \mathrm{peach} .150 ; 220 ; 330 \mathrm{pF}$
$11 \mathrm{p}, 390 \mathrm{pF} ; 470 \mathrm{pF} ; 1000 \mathrm{pF} 5 \mathrm{p} .2200 \mathrm{pF}$ 6p. 3300pF; 4700pF 7p. 10 nF 13 p 100 nF 22p. 47nF 14p.
Electrolytic capacitors, AXIAL leads:- $1 \mathrm{uF} / 16 \mathrm{~V}$ 11p: 1uF/63V 1uF/100V 12p; 2.2uF/63V, 3.3uF/63V $\begin{array}{llll}4.7 \mathrm{uF} / 63 \mathrm{~V} & 12 \mathrm{p} ; & 10 \mathrm{uF} / 16 \mathrm{~V} & 11 \mathrm{p} ; \\ 10 u F / 63 \mathrm{~V} & 12 \mathrm{p} ; & 22 \mathrm{uF} / 25 \mathrm{~V} & 12 \mathrm{p} ;\end{array}$ $10 \mathrm{uF} / 63 \mathrm{~V}$ 12p: $22 \mathrm{uF} / 25 \mathrm{~V} \quad 12 \mathrm{p}$:
$22 \mathrm{uF} / 63 \mathrm{~V}$
$15 \mathrm{p}: 33 \mathrm{uF} / 40 \mathrm{~V} .47 \mathrm{uF} / 25 \mathrm{~V}$ 12uF: $47 \mathrm{UF} / 25 \mathrm{~V}$ 12p; $47 \mathrm{uF} / 40 \mathrm{~V}$ 15p: 12p; $47 \mathrm{uF} / 25 \mathrm{~V}$ 12p; $47 \mathrm{uF} / 40 \mathrm{~V}$ 15p
$47 \mathrm{uF} / 63 \mathrm{~V} 18 \mathrm{p}$; $100 \mathrm{uF} / 16 \mathrm{~V}$ 12p $\begin{array}{llll}47 \mathrm{uF} / 63 \mathrm{~V} & 18 \mathrm{p} ; & 100 \mathrm{uF} / 16 \mathrm{~V} & 12 \mathrm{p} \text {; } \\ 100 \mathrm{uF} / 25 \mathrm{~V} & 15 \mathrm{p} ; & 100 \mathrm{uF} / 40 \mathrm{~V} & 18 \mathrm{p}\end{array}$ 100uF/63V 29p; 220uF/10V $220 \mathrm{uF} / 25 \mathrm{~V}$ 19p; $470 \mathrm{uF} / 16 \mathrm{~V}$ 29p; $\begin{array}{lll}470 \mathrm{uF} / 25 \mathrm{~V} & 36 \mathrm{p}: ~ & 470 \mathrm{uF} / 40 \mathrm{~V} \\ 65 \mathrm{p} \\ \text { 580 }\end{array}$ $680 \mathrm{uF} / 16 \mathrm{~V}$ 32p; 1000uF/10V 30p; $1000 \mathrm{uF} / 16 \mathrm{~V}$ 33p; $1000 \mathrm{uF} / 25 \mathrm{~V}$ 46p, $1000 \mathrm{uF} / 40 \mathrm{~V}$ 58p; $1000 \mathrm{uF} / 63 \mathrm{~V}$ 79p; 2200uF/10V 39p; 2200uF/25V 64p; 2200uF/63V £1.10. RADIAL leads:- $0.47 \mathrm{uF} / 25 \mathrm{~V}$ 81/2p; $\begin{array}{ll}10 \mathrm{uF} / 16 \mathrm{~V}, 22 \mathrm{uF} / 16 \mathrm{~V}, 47 \mathrm{uF} / 16 \mathrm{~V} \text {, } \\ 100 \mathrm{uF} / 16 \mathrm{~V}, & 100 \mathrm{uF} / 25 \mathrm{~V} \quad 121 / 2 \mathrm{p} ;\end{array}$ 100uF/16V, 100uF/25V 121/2p; 220uF/63V 391/2p; 220uF/16V $641 / 2 p$.

Switches

Min. toggle: spst 59p; spdt 69p; dpdt 79p. Min. push on 18p; push off 22p. Footswitch alt. action: spco $\begin{aligned} & \text { E1.39; } \\ & \text { dpco } £ 1.88 \text {. Rotary switches: 1p } 12\end{aligned}$ dpco $2 \mathrm{p} .8 \mathrm{w}, 3 \mathrm{p} 4 \mathrm{w} 403 \mathrm{w} 69 \mathrm{p}$ each way, 12 p . 18 R dpco relay $£ 2.98$.

Soldering
Antex X25 soldering iron, 25W £4.98. Soldering iron stand £1.99. spare bits for $\times 25$ small, std, large 64p each. bin 30p. Desolder pump $£ 5.98$. Desolder braid 69p. Solder, handy size 98p. Heat sink tweezers 15p.

\section*{LINEAR ICs} CA3080 512 CA3080 ... £1.21 CA3085A. f1.32 | CA3130T |
| :--- |
| CA3140E |
| 57 | CA3140E $\ldots .57 \mathrm{p}$ ICL7611...£1.04 ICL8038CC

ICM7555 f1

LCM7555. f1. 5 | LF353 96 p |
| :--- |
| LF356. | LM301AN .. 39p LM309K E2.9 LM317K £3.5 LM317T ... $£ 2.55$ LM324N.... 79p LM3B0N.....99p M381N $£ 1.98$ LM382N . f1. 62 LM386N. f1.04 LM387N. . $£ 1.39$ LM389N... 51.29 LM2917N.E2.27

LM3900N...85p LM3909N... 79 p LM3911N . 11.55 LM3914N f2.89 LM3915N E2.98 MC3340 $£ 2.15$ TBA820 ... $£ 1.05$ TLO64 \quad £2.59 U237B $\mathrm{El}^{1.69}$ ULN2283B ZN1034E $£ 1.47$ 2N1034E. 82.19 ZN414....f1.09 ZN424E...£2.14

CMOS

$4001 \ldots \quad 27 \mathrm{p}$

 L.e.d.s with cllps

3 mm : Red 15p; Green 18p; Yellow 20p. 5 mm ; 3 mm : Red 15p; Green 18p; Yellow 20p. 5 mm ,
Red 16p; Green 19p; Yellow 21p.
Flashing l.e.d. 78p. Rectangular red $58 p$. Flashing l.e.d. $78 p$.
Mains panel neon 32 p .

Zener diodes 400 mW , BZY88. Range

 2 V 7 to 33 V 12 p each
Denco Coils

DP Green Range 3, Range 4, Range 5 $\mathbf{E 1 . 8 5}$ each. B9A valveholder 59 p.

Jackso

Jackson
300 pF dilecon $£ 2.36$. 500 pF dilecon £2.92. C804 var. capac. 10 pF £2.28; 25 pF £2.46; $50 \mathrm{pFF} £ 2.48 ; 100 \mathrm{pF}$ £2.83; 150pF £3.48. 'O1' $365 \mathrm{pF} £ 3.48$; $\mathbf{3 6 5}$ 4511 DAF 6.1 drive $E 174$ Low cost cutters $£ 1.69$. Low cost long nose pliers $£ 1.68$. Wire strippers and cutters $£ 2.48$. P.c.b. assembly iig weezers 69p. Eurobreadbeard £6.20. Bimboard 1 £6.48. S. Dec £3.98.
Speakers miniature, 8 ohm 87p; 64-75 Speakers miniature, 8 ohm 87p; 64-75 netic earpiece 15p. Mono headphones £2.98. Stereo headphones £4.35. Telephone pick-up coil 72p. FM aerial 49p. Min. buzzers 6 V 50 p ; 9 V £1.10; 12 V 65p.
PP3 clips 10p; PP9 clips 11p. Panel meters $60 \times 45 \mathrm{~mm} £ 4.99$ each. 50 uA , $100 \mathrm{uA}, 1 \mathrm{uA}, 1 \mathrm{~A}, 25 \mathrm{~V}$
Veroboard 0.1"' copper
10 strips, 24 holes $£ 1.20$ per 5.24 S 37 H 78 p. 24S 50 H 89 p . 36 S 37 H 89 p . 36 S 50 H 99 p . Terminal pins $48 \mathrm{p} / 100$. Pin insertion tool $£ 1.69$. Spot face cutter £1.23.
Multimeter rype 1. 1000opy with proves, $2^{\prime \prime} \times 3^{1 / 2}$ Multimeter type 2. 20,000opv inc. transistor
Croc clip test lead set. 10 leads with 20 clipsConnecting wire pack, 5×9 yd coilsResistor colour code calculator...
Towers International Transistor Selector
AM-FM airctah band portable radio
2 station desk intercom, $.5 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}, 300 \mathrm{~mW}$
Plug-in power supply, 4.5 V
Dimmer switch.
PVC tape - $\mathbf{3}$ reels
Dentists ins pection mirror

f6.66
$\mathbf{E} 14.75$

. 67.483 station... ... 67.48 38 station...
…...
Hawdilers eyeglass.............. magnifer, $3^{\prime \prime}$
Illuminated magnifier, $11 /{ }^{\prime}$

Into Electronic Components

The second part of this beginners' series on the components we use in electronics deals with the measurement of voltage, current and resistance. Ian Sinclair tells you how to make these measurements, using the HE Multitester (see special offer on page 50)

I MENTIONED Georg Simeon Ohm last month. His name has been given to a law (Ohm's law) which we use more than any other in electronics, and one which must be understood and used correctly if we are to make any real progress. Even today, more than a century after he lived, Ohm's law is often misunderstood, so this looks like a good time to set the record straight and look at the quantities his law deals with.

Quantities

We can start with the quantities voltage and current. Current is the flow of electricity and is measured in amperes (amps); voltage is the 'push' that drives the current along, and is measured in volts. In a circuit, the more volts you use the harder the 'push'; that is, the current increases.

Our idea of resistance to the flow of current is expressed as the ratio volts/current (ie, voltage divided by current). The unit of this quantity is the ohm, so we could just as easily call the ohm the volt/amp.

A lot of people get that far - and then stick. The trouble is that electric current is invisible, and it can be difficult to concentrate well on invisible quantities. To get around this, it's easy to compare electric current with something more tangible, like water in a pipe. The movement of water in a pipe is something like electric current, and the pressure of the pump that makes the water move through the pipe is something like electric voltage. Let's imagine now that one section of pipe (Fig. 1) is narrower than the rest of the pipe in the 'circuit'. A narrow pipe is a high resistance for the flow of water, and the water will need to have quite a high pressure to keep up a good rate of flow

Figure 1. Pressure in water pipes. Most of the pressure caused by the action of the pump is needed just to keep water flowing through the narrow section of pipe
through the narrow piece of pipe. We can measure this pressure difference between the ends of the narrow piece of pipe, using a pressure meter (called a manometer, if you want to know!).

Now the pump provides all of this pressure, and thus we can measure a pressure difference across the pump also; but there's an important difference between these two measurements. Suppose we clamped the pipe closed at each side of the pump (Fig.2). There is still a pressure difference between the ends of the pump but there is no pressure difference across the narrow piece of pipe, because the pipe is no longer connected to the pump. The pressure across the piece of narrow pipe was caused by the pressure of the pump.

Figure 2. Comparing pressures: (a) the narrow piece of pipe does not cause pressure, it's the pump (b) which causes the pressure

Figure 3. The electrical circuit: (a) there is a voltage across any resistance in the circuit - this is just the amount needed to make current flow. Just like the water circuit, there is no voltage across the resistance by itself (b), only across the 'pump', in this example a battery

Now let's go back to the electric circuit (Fig.3). The 'pump' for an electric circuit is the battery or generator which can push electrons round a circuit. If we have a resistor anywhere in the circuit, we will measure a voltage across it as long as there is a current flowing (when it's connected to the 'pump'), but not when the circuit is broken, because the resistor is not a generator.

Whenever a current flows through a resistor, then, it's possible to measure a voltage between the ends of the resistor. The amount of this voltage can be expressed by the equation:

$$
V=I R,
$$

so that if we have a current of 0.2 amps (abbreviated to 0.2 A) and a 20 ohm resistor (ie, a 20R resistor), then the voltage is calculated by

$$
V=0.2 \times 20,
$$

which is 4 volts (ie, 4 V). We can also apply this equation to a complete circuit. Suppose the 20R resistor is part of a circuit whose total resistance is 50R. If we connect this to a battery whose voltage is 10 V , then the current (see Table 1) is given by

$$
I=V / R,
$$

which in this example is $10 / 50$, equal to 0.2 A .

VOLTS, AMPS, OHMS	UNITS
$V=I \times R$	VIN VOLTS
$R=\frac{V}{I}$	RIN OHMS
$I=\frac{V}{A}$	IINAMPS

Table 1. The three versions of the electrical circuit law which we know as Ohm's law

The common mistake that many of us make is to call the $V=$ IR equation (along with derivatives $I=V / R$ and $R=V / I$)'Ohm's law'. It isn't, but it's a handy name, because the use that we make of the equation depends so much on Ohm's law. What Ohm's law actually states is simply that the quantity, resistance, is a constant for a sample of metal at a constant temperature. If this wasn't true, we could not use the equation $V=I R$ so freely, because we would have to use a different value of resistance for each different value of voltage or current. You'll appreciate that point a lot more when we come to deal with diodes in Part 6 of this series.

More of that later, because we have to look now at how we are going to use the multimeter in practical measurements, and before we can do that, we need to know some more about the multimeter itself.

Inside The Multimeter

At the heart of the multimeter is a moving-coil movement. This consists of a shaped magnet (Fig.4), whose poles enclose a tiny coil of wire. The coil is supported by thin wires (which act as

Figure 4. Action of a moving-coil meter. The coil is free to rotate between the poles of a strong magnet, and is retained by a set of thin wire springs. Current flowing through the coil causes a force which rotates the coil
springs), and it carries on its shaft the pointer which swings over the dial to show the readings of the multimeter. Connections are made through the thin wire springs to the ends of the coil, so that current can be passed through the coil.

Yes, that's right - current. That's the quantity that causes the needle to move over the scale, no matter what you think you are measuring. When a wire is close to a magnet, and there is a current flowing through the wire, a force exists between the wire and the magnet. How much force? It depends on how much current is flowing, and that's why we use this principle.

The coil of wire has, of course, a resistance, which is called the internal resistance of the movement. The movement will also deflect full-scale (as far as the pointer can travel) for some measurable amount of current, and this amount is called the FSD (full scale deflection) current. The size of this FSD current depends on how strong the magnet is, and on how many turns of wire are on the coil, and also on the size of the coil - but these are problems for the designer of the movement.

Multimeter Design

Knowing these values, internal resistance and FSD current, we can design a multimeter, using the moving-coil movement. Let's take, just for starters, the current ranges. Suppose we have a movement where FSD is 50 uA and the internal resistance is 500R: fairly typical values for modern movements (the HE meter is better than average, with its FSD of 18 uA). Now, as our imaginary movement comes, it can't measure any amount of current greater than 50 uA , which isn't much good if you want to measure milliamps.

No, you don't have to make a different movement to measure a higher current range! All you have to do is to split the current so that only a constant fraction of it goes through the movement - and design things so that the fraction is no more than 50 uA . It's like saying that only 100 cars per hour can go down the High Street, but cars can go through the town at a rate of 300 per hour. The solution just has to be to send 200 of them along another route, and that's the type of solution we use to measure currents which are larger than the FSD. The 'other route' is a resistor which is connected in parallel with the meter movement, as in Fig.5. Now this doesn't just send some current another way, it always sends the same fraction of the current the other way. For example, if we fix it so that $3 / 4$ of the total current goes through the resistor and $1 / 4$ through the meter, then these ratios apply to each value of current. Put in 40 uA , and 30 uA goes through the resistor and 10 uA through the meter. Put in 100 uA , and 75 uA goes through the resistor and 25 uA through the meter movement.

Figure 5. Using a shunt resistor to take a definite fraction of the total current past the coll. This lets us measure currents which are much too high to pass through the coil

By using these resistors, called shunts, we can adapt a moving-coil movement for larger values of current than the FSD current. There's no change in the movement, through. The FSD does not change, it's just that when the needie indicates fullscale, the total amount of current is greater, because there is current passing through the resistor as well.

We can also adapt the movement to read volts, by making use of Ohm's law. Suppose we have a movement with 1 mA FSD, internal resistance of 100 R , and we want to be able to measure 10 V . By Ohm's law, if we use metal (or carbon) for the resistor, it will have a constant amount of resistance, so we can use $\mathrm{V}=\mathrm{IR}$. For 1 mA to flow with 10 V applied means that the total resistance in the circuit must be 10 k . We could, of course, wind a coil for the movement which would have a resistance of 10 k , but that's not needed. All we need to do is to connect a resistor in series with the movement, as in Fig.6, so that the tota/ resistance is 10 k . Since the meter movement has 100 R of
internal resistance, we need to add 9900R to make up the 10k, and that's the value we would need to connect in series with the movement.

Figure 6. Using a serles resistor for voltage ranges. The series resistor will pass an amount of current which depends on the voltage (Ohm's law), so that the meter reading is'proportionat to voltage

Going Ohm

Next problem - how do we get a multimeter to read in ohms? The answer is to use the meter to indicate the current which a small battery passes through the resistor - and that's why the multimeter contains a dry cell or a battery (both in the HE meter, accessible when you unscrew the two screws at the back and carefully take the two halves of the meter apart).

Figure 7. Meter arrangement for resistance measurements. A ceil inside the meter is used to provide a voltage to pass current through the resistance, and the movement measures the current. Note the reversed voltages at the terminals

The circuit is shown in Fig. 7. When you switch to the OHMS range, the positive terminal of the internal battery is connected to the ' - ' of the movement, and the negative terminal of the internal battery is connected to one end of a variable resistor the OHMS SET resistor. The other end of the variable resistor is connected to the ' + 'terminal of the meter - which is now a negative terminal because it is connected to the negative terminal of the batteryl The negative terminal of the movement is still connected to the negative terminal on the meter case.

Now when we connect the multimeter terminals together, shorting them out, the amount of current that flows depends on the amount of resistance in the circuit - and all of that resistance is in the OHMS SET variable resistor. We can set this so that the amount of current that flows is equal to the FSD current of the meter. Since the terminals of the multimeter are shorted together, this reading corresponds to having zero ohms connected to the terminals, and the FSD of the meter is marked as zero ohms on the ohms scale. When we now connect a resistor between these terminals, this will add to the total resistance in the circuit, so that the current is less, and the reading on the dial is less. The OHMS scale is not linear - equal distances along the scale do not correspond to equal amounts of resistance. For example, if the variable resistor has to be set to 60 k (using a 3 V battery and with a meter of 50 uA FSD), so that this passes the FSD current, then connecting a 25 k resistor across the terminals will make the total resistance equal to 85 k , so that the current becomes $3 / 85 \mathrm{~mA}$, which is 35 uA . Now if we use a 50 k resistor across the terminals, the total resistance will now be 110 k , and the current will be 27 uA , which is certainly not half of 35 uA . The first 25 k of added resistance causes a drop in current of $50-35 \mathrm{uA}$, equal to 15 uA , and the next 25 k we add (to give 50k) causes a drop in current from 35 $u A$ to $27 u A$, ie, only $8 u A$.

This causes the OHMS scale to have its markings widely
separated at the low-resistance end, but cramped very closely at the high-resistance end of the scale, so that the difference between, for example, 1 k and 2 k on the OHMS $\times 1$ scale of the HE meter is almost impossible to measure. That's why we need more than one ohms range, and the correct one to use is one which gives a reading around the middle of the scale, definitely not at the cramped left-hand side.

The measurements of voltage, current and resistance are the three important ones for the work that we'll be doing - we won't be using the AC volts range in this series, because everything we need to do can be done using a battery supply. We're dealing with components and their actions, after all, not with large circuits.

Practice Makes Perfect

-Now to more practical matters, and a closer look at Ohm's law. Start by placing a 1 kO resistor (see Fig. 8 for the colour identification) on the Eurobreadboard. The resistor has two leads, and they must never be put into holes on the same line, because if you do, the resistor is not in any kind of circuit. Give yourself some space, put one lead of the 1 kO resistor into line Y 1 and the other in line 5 A . Also in line 5 A , plug in a short length (a couple of inches or sol of tinned copper wire, of around 18 SWG. Don't on any account use stranded wire, because it tangles with the Eurobreadboard spring clips and won't come out again without a struggle.

Figure 8. Reading current through a resistor. The markings at the ends of the leads in the drawings are the Eurobreadboard hole reference numbers/letters

Now connect the battery, which by this time you should have fitted with wire leads ending in single-strand wire or pins. The negative (' - ', black) lead of the battery should be plugged now into line Y 1 , and the positive (${ }^{\prime}+'$, red) lead into line X 1 . These are the lines that we'll use throughout this series for the power supply leads.

We can now measure how much current a 9 V battery will send through a 1 kO resistor. Set the meter to its 50 mA range, and clip the negative lead of the meter to the piece of tinned copper wire which is in line 5A. Now clip the positive lead of the meter to the end of the battery lead which is in line $\times 1$ (see Fig.8). The circuit which you have made is shown in Fig. 9 - the battery is pushing current through the meter and also through the 1 kO resistor. All the current that flows through the 1 kO resistor has had to pass through the meter, so what we measure on the meter is the current through the resistor. If you're using the HE meter, switch to the more sensitive 25 mA range by putting the slider switch to its VA/2 position, and take another reading.

Figure 9. The circult of the arrangement shown in Fig. 8
We could also calculate how much this current should be.

Using the Ohm's law equation for current I,

$$
\begin{aligned}
& I=\frac{V}{R} \\
& =\frac{9}{1000}=0.009 \mathrm{~A},
\end{aligned}
$$

ie, 9 mA . The meter reading should be somewhere near this.
Why just 'somewhere near'? Well, as we'll see, nothing is ever exact in the world of electronic components. Generally, if you get to within 10\% of a calculated value, you're close enough, because mass-produced components are never exactly the values that they claim to be. This is a matter of tolerances, which we'll look into next time.

Figure 10. A pair of resistors (both 1 kO) connected in series. The Eurobreadboard numbers show how the resistors can be positioned on the Eurobreadboard

Now have a look at the circuit in Fig. 10. This is shown as a circuit diagram, with the Eurobreadboard line numbers written in so that you can place the components in the same locations as I am using for the circuit right here in front of me. The way these resistors are connected here is called a series connection, and the meter will measure the current through them. How much current is flowing? Note the value, because the Ohm's law equation can make use of this value to calculate the total resistance, using $R=V / I$. How does this calculated value of total resistance compare with the value you get by adding the values of the two resistors?

This type of connection is a series connection, and the result of a series connection of resistors is always more resistance the sum of the resistor values. Now try the circuit in Fig. 11. The resistors are in the same lines, so the current will split up, and some of it will flow through each resistor. Measure this total current. How much current do you think should flow through each resistor? Now calculate the total resistance, which is expressed as:

9 V
 Total current

and compare this value with the value for each resistor, 1 kO .

Figure 11. Two resistors in parallel
Connecting resistors in parallel like this always results in a lower total resistance value. Now try the circuit in Fig.12. The resistors are both 1 kO , and this time we'll measure the voltage
across just one of them. Switch the meter to its 10 V range (with the slider switch in its VOA position), and clip the - COM lead to the Y1 battery connection. Plug the red probe lead into the + input of the meter, and touch the end of the probe against the resistor wire in line 5A (either wire in this line). Theory tells us that the voltage should be 4.5 V .

Figure 12. Potential divider circuit. The meter is set to measure the voltage across one of the 1 kO resistors. This value should be almost exactly half of the battery voltage (remember that the resistors can be $\mathbf{2 0 \%}$ high or low)

Now repeat using two 1 MO resistors (Fig.13). Theory tells us that the voltage should still be 4.5 V - but see what you measure with the meter 'negative' (black) lead connected to line $Y 1$, and the positive probe lead on line 5 A . Less than 4.5 V ?

Figure 13. Potential divider circuit, this time using two 1 MO resistors. What voltage do you find this time? With no meter connected, the voltage is still equal to half the battery voltage

Nothing wrong with the theory - the problem is the way we're using the meter. As we said right at the start, the meter needs current. When it takes that current from a circuit, the voltage in the circuit changes - so the meter reading is of the voltage that has changed in a circuit. How do we know when we can rely on a voltage reading? As it happens, we do know when the readings of voltage should be reliable. For every meter, there's a 'goodness' factor, measured in thousands of ohms-per-volt, or $k / v o l t$. This figure, multiplied by the full-scale range of voltage that the meter is set to gives the total resistance of the meter when it is being used as a voltmeter. This resistance should be at the very least 10 times as much as the resistance between the supply + and the point where we are measuring voltage. For example, if we use the HE meter on its 10 V scale, then with a goodness factor of $25 \mathrm{k} / \mathrm{V}$, the total resistance of the meter is 250 k . This is a lot more than 10 times 1 kO , which is why we can rely on the measurements of voltage we read across the 1 kO resistor in Fig. 12, but it's not high enough compared with 1 MO , which is why the reading for the circuit in Fig. 13 is lower than it should be. There's nothing wrong with the meter - it measures the voltage which is present when it is connected. What it can't do is to measure the voltage that is present when it is not connected and so not affecting the current in the circuit.

Take care, then, with voltage readings in circuits where resistors with large values are present. If in doubt, repeat a reading using a higher range $(25 \mathrm{~V}$ instead of 10 V , for example, using the slide switch of the HE ineter to bring in a range which is of higher voltage and double the goodness factor, $50 \mathrm{k} / \mathrm{V}$ instead of $25 \mathrm{k} / \mathrm{V}$). If the reading on the higher range is of a higher voltage value, then you have meter-resistance problems. The biggest giveaway is when every voltage range gives about the same amount of deflection of the needle - then you know you can't believe any of them!

Next month - we meet some resistance!
HE

Special Offer To HE Readers Only Invaluable Aid To The Hobbyist

THIS Multitester offers much more than a standard multimeter, as the specification shows. Apart from DC and AC voltage, DC current, resistance and decibel ranges, the HE Multitester has a range doubler for voltage and current measurements. Thus sensitivity on DC voltage ranges extends to $50 \mathrm{k} / \mathrm{V}$.

The meter dial is large (111 mm by 89 mm) and easy to read. It has a mirror strip to improve accuracy of readings.

The new series Into Electronic Components has been written around this Multitester. Although other instruments can be used in conjunction with the series, the HE Multitester is undoubtedfy the best choice.

So take advantage of this special offer: the Multitester is supplied complete with test leads with probes attached, batteries and instructions for only $£ 19$ plus 95 p post and packing.

Specification

Multitester Offer

- Overload protected by two silicon diodes

Uses double-jewelled $\pm 2 \%$ meter with mirror and $\pm \mathbf{1 \%}$ temperature stabllised resis tor

Measurement	Ranges	Accuracy	Remarks
DC Voltage	$\begin{aligned} & 0-125-250 \mathrm{mV} \\ & 0-1.25-2.5-5-10 \\ & -25-50-125-250 \\ & .500-1000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 4 \% \\ & 125 \mathrm{mV} \text { to } 2.5 \mathrm{~V} \\ & 500 \text { to } 1000 \mathrm{~V} \\ & \pm 3 \% \text { except as noted } \end{aligned}$	Sensitivity $50 \mathrm{k} / \mathrm{V}$ range doubled 25k/V normal
AC Voltage	$\begin{aligned} & 0-5 \cdot 10-25-50 . \\ & -125-250-500 \\ & -1000 \mathrm{~V} \end{aligned}$	$\pm 4 \%$ of full scale	Sensitivity $10 \mathrm{~K} / \mathrm{V}$ range doubled $5 \mathrm{k} / \mathrm{V}$ normal
DC Current	$\begin{aligned} & 0-25-50 \text { uA } \\ & 0-2.5-5-25-50 \\ & -250-500 \mathrm{~mA} \\ & 0-5-10 A \end{aligned}$	Same as for DC voltage	
Resistapce	$\begin{aligned} & 0-2 \mathrm{k}-20 \mathrm{k} \\ & -200 \mathrm{k} \\ & 0-2 \mathrm{M}-20 \mathrm{M} \\ & \text { (centre scale 10) } \end{aligned}$	$\pm 3 \%$ of scaie length	Batteries: one penlight 1.5 V one rectangular 9 V
Decibels	$-2010+62 d 8$		8-ranges
Size	H970 $\times 124 \times$ D50 mm		
Weight	590 g (battery and test leads included)		

HE Electronic Ignition-Additional Information

DESMOND ARMSTRONG, designer of the HE Electronic Ignition project published in last month's issue, asked us to pass on some additional information to readers.

If you refer to the circuit in Fig. 7 on page 13 of the August ' 81 issue, you will see a ballast resistor connected in series with the ignition switch. Although the circuit will function as shown, it is better to connect the red supply lead from the HE Electronic Ignition directly to the +12 V supply from the ignition switch, but retain the ballast resistor in series with the ignition coil (see revised version of Fig. 7 on this page).

Second point is about the mica washer for transistor Q2. To ensure reliability it is best to use a thick mica washer or, as Desmond suggested, two thin ones sandwiched together. Don't forget to smear a small amount of heat-sink compound on both sides of the washer (or washers) to improve heat conduction.

Desmond has just returned from a trip to Israel by Minivan - fitted with the HE Electronic Ignition, of coursel

Under Buylines on page 13 of the August '81 issue, we said that Technomatic was producing a kit for the HE Electronic Ignition project for $£ 18.50$ including VAT for callers (70 p extra for postage and packing for mail order customers).

Technomatic has now reduced the price of its kit to $£ 16$ including VAT (add 70p for postage and packing).

Technomatic Limited, 17 Burnley Road, London NW10 (tel 01-452 1500 or 01-450 6597).

HE
HE Electronic Ignition connected to the standard Kettering ignition circuit. This is a corrected version of Fig. 7 shown on page 13 of the August ' 81 issue, where the ballast resistor was shown in series with the ignition switch. The correct position of the ballast resistor (if your car ignition system has one) is in series with the ignition coil, as shown above

ELECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic ignition to give the best performance and economy. Bring YOUR CAR up to top specification by fitting the latest TOTAL ENERGY DISCHARGE alectronic syatem.
TOTALENERGY DISCMARGE

The advantages of the best capectur discharge ignitions

* Part Performance - higher cutpul voltage
* Improved Economy-consistont high ignition performance
- Cotear Starting-full spark power even with low battery
* Acourte Thing-prevents contact wear wrthout 'contactless' errori
- Smooti Performance --immune lo contuct bounce effect

PLUS

SUPER MIOH POWER \$PARK- $31 / 2$ times the energy of ordinary C.D. systems OPTIMUM SPANK DURATION-to get the very best performance and economy with todey's lean carburettor settings.
DESIGNED IN RELLAABLITY-with the "ultimate insurance of a chengeover switch to

TECHNICAL DETAILS

HIGH EFFICIENCY INVERTEN. A high-power, high efficiency, regulared inverter provides a 400 -vot energy source-powertul enough to store iwice the energy of other designs and regulated to provide full output even with the bettery down to 4

SUPERE DISCHAREE CIRCUIT. A brand now technique prevents energy being reflected beck to the atorage capecitor. giving 3 K times the spark energy and 3 times the sperk duration of ordinary C.D. syatems, generating asperk powertul enough to cause rapid ignition of aven the weakest fuel mixtures without the ignition delay meocials wim lower power long burn inductive systems. In addition this circuit maintains the correct output polarity, theraby preventing unnecessary stress on the
SOPHIETICATED TAIGGEN CINCUIT. This circuit romoves sll unwanted signals caused by contact volt drop. contact shufle, contact bounce, and external transients which, in many designs, can cause trming errors or damaging un-timed sparks. Only almost eliminated by reducing the contact breaker current to a low leval - just sulficient to keep the contacts cleen

IN MONEY-SAVING KIT FORM at $£ 14.85$

Also MOTORCYCLE TWIN OUTPUT KIT at £22.94
All you need is a small soldering iron and a fow basic rools - everything else is supplied with any-to-follow instructions.

FITS ALL 6/12-volt NE GATIVE EARTH VEHICLES

ELECTRONIZE DESIGN

2 Himeide Roed. Four Ocks Phome 02T.308 5877

BUILD YOUR OWN HIGH ACCURACY 3½ DIGIT PANEL METER

Teledyne Semiconductor has introduced two evaluation kits for the new $7106 / 7107$ 31/2 Digit Monolithic CMOS A/D Converters. The kits are simple to use and will measure $A C$ and $D C$ voltages, multi-range DVMs, resistance currents, temperatures and other physical dimensions.
The 7106 kit uses a liquid crystal display and is normally powered by a single 9 V battery. It is portable, can be used inside or outside and will not fade in sunlight. The 7107 kit uses light emitting diode displays and requires an external power supply. It operates under normal indoor ambient light conditions. Both kits include parts for 200 MV full scale. The kits use the I.C. internal reference, which at 100 ppm is adequate for most applications. However, they can be modified to operate from an external reference where higher stability is required.
Each evaluation kit contains one I.C. (either 7106 or 7107), one display (either LCD or LED), a PCB, passive components, miscellaneous hardware and a detailed 6-page application note.
The comprehensive application note contains all assembly instructions

THE 7106 EVALUATION KIT COSTS £17.44 + V.A.T. THE 7107 EVALUATION KIT COSTS £14.31 + V.A.T. Greenway Electronic Components

(EAST GRINSTEAD) LTD.
62 MAYPOLE ROAD. ASHURST WOOOD EAST GRINSTEAD, SUSSEX TEL: FOREST ROW 3712

EEEGTROVILIE

BEST SELLERS

Rechargenble Colls by SANYO-CADNICA SLze AA 99p. C 2 27. D376. PP3

 410 With tags AA $106 . C 243 . D 399$Chargers PP3 $475, A A 495, A, C . D 760$ 62p
Bread
Braedboards Euro 570 N , Veroblock 363 Bimboard 803 . Buzzer 6.15 V 80 p
CAPACITORS Polyty CAPACITORS Polystrene 47.4700pF 6a 7 p C280 0160 , 17p. 229 p (full luf 26 p (Many more values in this rangel variable Dilecon 100pf 208. 500pf 321
ELECThOUVTIC F Full range

 Fuse holders 20 mm panal 22 p - chassis 6 o Hall-effect devices fom
Heat sinks Power $1.25^{\circ} \mathrm{C} / \mathrm{W} 285$ finger tyop 10325 p . O 22025 p

INTEGRATED CJRCUITS Hundieds of types 74118 p .555 23p. CA3140E

 INTEGRATED CIRCUTTS Hundreds of types 741 189. 555 23p. CA3140E40p. LM380N 99p. LM 3914 N 268 . S56682 114 TCA905 120 IC holdars 8 pin Sp i4.40 on 10per pin Knobs. screw fitting $1 / 4$ from 16 p Loudspeakera
$2 / 2.8$ or 64 ohms 93 p Magneio resisiors from 1.60 N Meters, panel

POTENTIOMETERS Carbon 20 mm dia 100A-2M2 $1 \mathrm{in} .220 \mathrm{~A}-4 \mathrm{M} 7$ log single
 PAINTED CIRCUIT MA TERLALS

 BFR344 63p. BFT65 119 , C106D1 450 , TIP $31 \mathrm{~A} / 32 \mathrm{~A}$ es 44 p , TIP41A/42A 450. T1P2955/T1P3055 es 550 Solder 500 gm 60/40 20SWG 7 30N Irons Antex
C.CCN, CX or $\times 25$ ee 40 N Oryx50 tomperature controlled il 50 N ISO.TIP C.CCN, CX or $\times 25$ es
cordiess with charger 2400 N
 siver contects SPDT 57p DPOT 80p, 3PDT 1 6A, APDT 275 DIL gold plated APST 95p. 10PST210
 Tools CK plears 470 . curters 610 . strippers 495
wire 117 Computer Nascom i built $£ 14000 \mathrm{~N}$
MASCOM
NASCOM
2 min C295 00 co
RAM Kit 11000
RAM kit 11000 N
Add VAT af 15% to all prices
Smatl order surcharge 40 op
(4118's C225 00N) P/S ktt. 38 mp 32 50N, 16K
Smail order surcharge 40p if under 575 No inland PaP on CWO order:

BEST SERVICE FOhREEN
BUYERS!
SA. brings comprohonsive price list (Yalid 3 methsi. Covaring catalogue 81 Aceass and
Berclaycards Barclaycerds accepted Everything brand now \& quarameed Hard to find itumes Keen prices \& discount Special quantity discounts Spendy turn round on orders No P/P charges on U.K. C.W.O. erders over E5.75. (Add handling charge of 4no if under)
\qquad Masse add 15% V.A.I, to total vilu dill ord

Shep heur

 2-5.30:Snts. te 9-1p.m

ELECTROVALUE LTD. DEPT. H7, 28 St . Judes Roed, Englefied Green. Egham, Surrey TW20 OHB. Phone Egham 33603 (STD 0784. London 87). Telex
28475 . Branch (Personal Shoppers only) 680 Burnage Lane, Burnage. Man
Northern Brand Northern Branch (Personal Shoppers
chester M19 1NA. Phone (061) 4324945

QUANTITY DISCOUNTS on ALL items (unless stated), 15% per $10,20 \%$ per $50,25 \%$ per 100. All items BRAND NEW (unless otherwise stated).
DELIVERY from stock - All post paid. Please add VAT, EXPORT enquiries invited.
TENRIES
01-723 1008/9
404 EDGWARE ROAD. LONDON W2 1 ED

Tune in to the airwaves with this easily-built project which offers worldwide reception of short wave transmissions at a low cost

A COMPLEX COMMUNICATIONS

 receiver is a difficult constructional project and is also likely to be quite costly. Fortunately, a sophisticated receiver is not essential if you just want to listen in on some of the transmissions on the short wave bands. A simple TRF Ituned radio frequency) receiver, such as this design, will do the job quite satisfactorily. It will provide many hours of enjoyment and can be built quite easily at a low cost.Although a TRF receiver is not as selective as a superhet receiver (it cannot sort out closely-spaced stations as well as a superhet can) it is highly sensitive and should be capable, with a suitable aerial, of worldwide reception.

Our design (Fig. 1) covers the entire short wave spectrum in three tuning ranges, with approximate coverage of each as follows:

Range ${ }^{3} \quad 1.5 \mathrm{MHz}$ to 5 MHz
Range $4 \quad 5 \mathrm{MHz}$ to 17 MHz
Range 510 MHz to 33 MHz
The above range numbers are those used by Denco Limited, the manufacturer of the tuning coils for this project. Band changing is accomplished by simply changing the plug-in tuning coil in the receiver. Plugging in coils is obviously a little less convenient than band switching, but it does simplify
construction and reduces cost. It is a method of band changing that is often used in simple short wave sets.

The receiver requires an external aerial, and quite good results can be obtained using only a short length of wire. The output of the receiver is primarily intended to drive low impedance headphones, but high impedance 'phones can also be used. For short wave reception, headphones are preferable to using a loudspeaker, but the receiver can even be used with a loudspeaker having an impedance in the range 8-80 R.

Construction

House the receiver in a metal case - we used an instrument case measuring 203 by 127 by 51 mm but any metal case of about this size will be suitable. Mount the four controls and phone socket on the front panel.

Drill or punch a 15 mm diameter mounting hole for VC1. Now, glue the variable capacitor in place behind the hole using a good quality adhesive. The capacitor has provision for mounting by way of three short 4BA screws, but it is much easier simply to glue it in place.

Mount sockets SK1 and SK2 onto the rear panel of the case on the left-
hand side (as viewed from the rear).
Drill or punch a 15 mm diameter hole in the rear panel just to the right of the two sockets. This hole enables different tuning coils to be fitted and removed from the receiver without having to remove the lid, and makes changing ranges much quicker and easier.

Make an L-shaped bracket from 18 or 16 SWG aluminium to hold the coilholder about 30 to 35 mm behind the cutout in the case. The coilholder is actually a B9A valve holder.

Most of the components are fitted into one of our standard 10 strip by 24 hole $0.1^{\prime \prime}$ matrix Veroboards, and this is constructed using the normal techniques. Figure 2 gives full details of the component board. Check that each semiconductor and electrolytic capacitor is in the board the correct way round befcre soldering them and insert Veroboard pins at each connection point.

When the circuit board is completed mount it in the case. Now, wire up the project as shown in Fig. 3. Keep the leads as short as possible or the receiver will become less efficient over the higher frequency bands. Use a solder tag fastened to one of the mounting bolts of the coilholder as a chassis connection point.

Figure 1. Circuit of the HE Short Wave Receiver

Using The Set

An aerial must be connected to the aerial input. SK 1 , if the receiver is to function properly, and a few metres of wire strung around the room will provide reasonable results. However, for giod results on the low frequency bands (range 3) a long outdoor aerial is preferable, and this can simply consist of about 10 to 40 m of aerial wire strung between any two convenient points. For best results the wire should be positioned high up and clear of buildings or other large obstructions. (For more information about aerials keep your eyes glued to HE's pages in a forthcoming issue we plan an aerial feature.)

On low frequency bands an earth connection can also boost signal strengths, and an earth can be made by

Parts List

RESISTORS (All $1 / 4$ W, 5\%)	
R1	560R
R2	1k0
POTENTIOMETERS	
RV1	10k linear potentiometer
RV2	10k logerithmic
	potentiometer with
CAPACITORS	
C1	1 nO ceramic
C2	150p ceramic
C3.4	10n polyester
C5,6,7	$100 \mathrm{u}, 10 \mathrm{~V}$ electrolytic
VC1	365p air-spaced (Jackson type 0)
VC2	25p eir-spaced (Jackson type C804)
SEMICONDUCTORS	
	40673 dual gate
	MOSFET
IC1	ULN2283 power
	amplifier
D1	0 O91 diode
Miscellaneous	
T1	Denco DP coil, green ranges 3,4 and 5
	ranges 3,4 and 5
Sk3 ${ }^{\text {Sk }}$	4 mm sockets 3.5 mm jack socket
Case to sult	
B9A valveholder	
8ettery + connector	
Control knobs	
Veroboard metrix	24 hole x 10 strip, 0.1^{*}

attaching a lead to a piece of metal pipe, and then burying the pipe in the ground. The free end of the lead is connected to SK2.

Potentiometer RV2 is the volume and on/off control, variable capacitor VC1 is the coarse tuning control, and VC2 is used for fine tuning. Potentiometer RV1 is the regeneration control, and it is essential that this is adjusted correctly if good results are to be attained. With very little regeneration the radio's performance will be poor. As RV1 is advanced you will find that sensitivity increases and tuning becomes 'sharper'. However, at some point regeneration will become excessive and the RF amplifier will break into oscillation. This will be heard as an increase in the background noise level and an audible tone of varying pitch as the set is tuned over stations. Proper reception of ordinary AM radio transmissions is not possible with the circuit oscillating, and RV1 should be backed off just below the threshold of oscillation. Sensitivity and selectivity
will then both be at maximum. It will be necessary to readjust RV1 each time the tuning is altered, to keep the set at optimum efficiency. With a little practice the set soon becomes easy to operate though, and using a receiver of this type is easier than it may at first seem.

CW (Morse) and SSB (single sideband) are the main types of transmission used on the short wave amateur bands, and can be received by adjusting the regeneration control just beyond the threshold of oscillation. For SSB signals the tuning must be adjusted very carefully or the audible signal will be shifted in pitch. If the tuning is well off the correct setting, the signal may even be completely scrambled.

When first trying out the receiver it is advisable to use the range 4 coil. The main broadcast bands are on this tuning range, and these normally provide a number of strong transmissions whatever the time of day or year.

$$
\left.\begin{array}{|l|lllllllllllllllllllllll|}
\hline \hline & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Figure 2. Veroboard leyout, and underside view showing component locations and track breaks

How It Works

Signals received by the aerial are fed to a tuned amplifier which selects the desired signal and amplifies it. Some of the amplified signal is fed back to the amplifer input to improve sensitivity and selectivity.

The selected RF (radio frequency) signal is then fed to a detector which recovers the AF (audio frequency) signal from it. The AF signal is then amplified before being fed to a loudspeaker or headphones.

The tuned circuit, which resonates at the desired reception frequency, is formed by the main winding of T1 and the parallel capacitance of VC1 and VC2. Variable capacitor VC1 is the main tuning control, and VC2 is what is termed the 'bandspread' control. This has a much lower value than VC1, and therefore covers only a small part of
each tuning range. This makes fine tuning much easier using VC2 rather than VC1. The aerial signal is coupled into the tuned circuit by a small coupling winding on T1.

Transistor 01 is a dual gate MOSFET which is used in this application as a common source amplifier. The signal
selected by the tuned circuit is fed direct to the gate 1 terminal of Q1. The main winding of T1 provides gate 1 biasing for Q1.

Some of the amplified output at the drain of $\mathbf{Q 1}$ is fed back to the tuned circuit via C2, RV1, and the third winding of T1. This positive feedback (known as 'regeneration') tends to boost the gain of the circuit and thus gives improved sensitivity. Selectivity lie, the set's ability to 'separate' stations on the crowded SW bands) is also enhanced with this regeneration process.

Most of the output from 01 is couplod by C3 to a simple diode demodulator which uses D1, C4, and RV1 in a conventional arrangement. Apart from acting as the load resistor for the detector circuit, RV1 is also the volume control and acts as the bias resistor for integrated circuit IC1. The latter is an audio power amplifier IC which has an internally preset voltage gain of 43 dB , which is just about the ideal figure for this application. The only discrete components required by the ULN228.? apart from the volume control/input bics resistor are: a decoupling capacitor for the internal bias circuit (C5), and an output DC blocking capacitor (C6). Capacitor C7 is the supply decoupling capacitor for the entire circuit.

Figure 3. Connection details of the project

Buylines

The two variable capacitors, colls, and B9A holder are available from Watford Electronics.

The ULN2283 IC can be obtained from Ambit International.

There should be no problems in obtaining the other parts which are all standard types, and total cost of parts (excluding case) will be approximately $£ 16$.

The Editor replies to a selection of your letters

I RECEIVED SEVERAL letters and enquiries following the publication of Electronic Aids For The Disabled in the July ' 81 issue of HE. As I had hoped, the article appeared to act as an inspiration to some readers to take part in our Project Design Competition for the International Year of Disabled Persons 1981. Unfortunately, we couldn't avoid printing the coupon for the competition on a page backing onto one of the PCB overlays for the HE Electronic Organ.

Judging from the encouraging response so far, we made the right decision to extend the closing date to 1 st September 1981.

The first letter contains details of a course to be held by the Isle of Wight branch of ACTIVE.

Dear Mr Davies,
I was delighted to read your feature article 'Electronic Aids for the Disabled' in your July issue. As a member of ACTIVE I know Roger Jefcoate very well and his enthusiasm and knowledge is quite something when it comes to discussing helping disabled people.

Although we on the Island may appear to be 'out in the sticks' lor even allat seall to mainland hobbyists there is, nevertheless, a growing group of electronics enthusiasts who are becoming interested in the formation of an ACTIVE branch here.

This Committee is arranging a week of conferences on disability during the week September 21/26. Of particular interest to those who may feel that they would like to achieve something of real value, using the skills they have acquired through our hobby, is the Day Course, 'Disabled People - Living \& Learning'. This will take place on September 25th at the I.O.W. College of Arts \& Technology. This course is being organised in consultation with Roger Jefcoate; so, if as a result of your article, readers would like the opportunity of talking with Roger and hearing him talk about the ways people can help, a trip to this lovely Island of ours should prove a great experience in more ways than one. In conjunction with the Course, Southern Vectis Ltd are offering a package trip which will include two nights hotel accommodation, train and boat fares, conference fees and lunches - and for good measure a round the Island trip by coach. All for about £35!

The Course will provide much to interest those who would like to know about ACTIVE and will show the way forward to those who, as yet, are unsure as to how their skills might be utilised. ACTIVE will be well represented and Judy Denziloe, who is the group's development officer, will speak on the role of ACTIVE in the field of disability.

If you are able to print this letter I would be particularly pleased to hear from hobbyists on the lsland who may be interested in the formation of an ACTIVE group and would be happy to arrange a meeting to discuss it. My own involvement with electronics came from my interest in the work of the group and I would welcome the opportunity of talking with people similarly attracted.

With all good wishes for the continuing success of your magazine.
Bill Stock,
73/75 High Street,
Ryde, Isle of Wight
РОЗ3 $2 S U$
(tel 0983 63437)

Dear Editor,

Please can you help me? I am looking for a circuit for a guitar practice amp.

I would prefer that it uses batteries, has one input and uses ordinary stereo headphones for the output.
Martin Paffet,
RAF Cosford,
Wolverhampton, West Midlands

PS Great mag, keep it up (creep, creep!)

It appears that you didn't receive an answer to your first letter. This is one suggestion that we will definitely consider for a future project. Perhaps we'll call it the HE Harmony - it will enable electronic guitar players to live in harmony with their neighbours.

If you can't wait until we publish a design, you could refer to the Bench Amplifier project in the January 1981 issue (pp 37-38). Provided you can ensure that the total impedance of your headphones lies within the range 40 to 80R, this amplifier should give reasonable results. I'll make sure you receive a copy of the article.

Dear Mr Davies,
Ref. Letters Page, July 81 \& Chuffer Project

I was surprised to read your reply to P. Prodromov'sletterregarding the Chuffer project on page 56 of the July 81 issue.

Twelve-year-old young Prodromov didn't stand much of a chance with the Chuffer project in the January 1981 issue. In Fig. 1 on page 55 there should not be a connection between the top of RV2 IC2 +) and battery + ve IIC1, pins 4 \& 8). This error is also in Fig. 3 on page 56. With this connection the chuff rate will be fixed, since the voltage on C2 will be fixed at the battery voltage.

Funny that you didn't know this, perhaps no-one else has attempted to make this project.
Dave Mills,
West Bridgford, Nottingham

PS Support the anti-post-script movement.

We rechecked the project file and yes, your comment about Fig. 1 was correct. However, apart from the incorrect numbering of capacitor C9 that I mentioned in my earlier reply, the fault in Fig. 1 did not find its way onto the Veroboard layout.

The Chuffer, by the way, appears to have been a popular project.

PS The postscripts are sometimes the most amusing parts of letters.

Sir,
I have recently purchased the Kikusui 538A oscilloscope but find, to my dismay, that the probes are not included.

I would be most grateful if you would recommend a type, and place of purchase.
Mr. D. F. O'Gara
Chellaston, Derbyshire

We did not include probes in the price of the HE Special Offer Oscilloscope - the illustration merely showed how the 'scope could be hooked up to a typical circuit layout. Super-deluxe probes are not required for a 'scope of this type (particularly because the bandwidth extends to only 5 MHz). A suitable pair of probes are available from the supplier of the Kikusui 538A, that is:

Telonic-Berkeley UK Limited,
2 Castle Hill Terrace,
Maidenhead, Berks
(tel 0628 28057)
for $£ 3.45$ including VAT, post and packing. These come complete with crocodile-clip probe-ends.

Dear Sir,
I am wondering whether you could publish another robot project such as you did in HE November and December ' 79 and January ' 80 , as I am very interested in this aspect of electronics and cannot obtain a back number for November '79.
R.S. Andrew

Winslow, Bucks

We have no plans at present for a HEBOT 2. I would not advise you to tackle the first HEBOT design because some of the mechanical components are no longer available.

And that brings Your Letters to an end for this issue.

Prize Winners!

Hobby Electronics Wales \& West Schools' Electronic Project Competition 1981

On Tuesday 7th July 1981, Nicholas Murphy, of Abingdon School, Oxford and Paul Varischetti of Ashmead School, Reading were presented with their prizes by HE's Editor

WE GAVE DETAILS of the HE Wales and West Schools' Competition on page 28 of the August '81 issue. Tuesday 7th July was selected as 'prize day' and Hugh Davies, accompanied by Peter Freebrey, Modmags' exhibitions manager, visited the schools of Nicholas Murphy, First Prize iwinner and Pierre Varischetti, Third Prize and Top Junior Prize winner.

Second Prize winner Paul Miller, of Filton High School, Stoke Gifford, Bristol, received a $£ 50$ component voucher.

Here our First Prize winner demonstrates the use of his project. The change in conductivity of the solution - under test is converted to a voltage change by Datafeed 1 and this information is processed by an Apple computer and displayed on a visual display unit (VDU) winning project, Datafeed 1 which enables chemical reactions to be monitored and plotted by a computer \checkmark

STEREO RECORD－PLAYER

£39．95 incl．V．A．T．+ £2 p．\＆p．

－Stereo Record－Player with Speakers
－ $5+5$ Watts Music Power
2－speed Semi－transcription Deck
－Durable White Vinyl with Perspex Cover

ADJUSTABLE POWER SUPPLY KIT

－Complete Kit
Fully adjustable from 1.25 V ．to 30 V ．
Automatic Current Limiting
－Thermal Shutdown

ELECTRONIC THERMOMETER

$£ 18.50$ all incl
－Complete Unit
Remplete Temper ature Sensor
－ 33 Merres Cable Fitted
Temperature Dial Reads $0.50^{\circ} \mathrm{C}$
PP3 Battery not supplied
INSTRUMENT CASES
Easy Slide－in Assembly with extra slots to
with leather textured finish to top and base
$\begin{array}{llll}\text { Widih } & \text { Height } & \text { Depth } \\ 12 \times & 21 / 2 & \times 5 i n \\ 12 & \times & 31 / 2 & \times \\ 12 & 9 i n \\ 12 & 51 / 2 & \times & 9 \text { in }\end{array}$
Other sizes available，please enquire
CAR CLOCK MODULE，Green Display

AR WASHER BOTTLE LEVEL SENSOR
7－SEGMENT LED DISPLAYS
0.3 in comm anode
f0． 85
0.5 in ．c．an／c．cath．，dual digit package
0.6 in c an／c．cath．

SOCKETS：

Low Profile，dual－in－line．Low price．Send s．a．e．
ALL PRICES EXCLUDE V．A．T．UNLESS STATED．POST AND PACKING ADD 40p

O ALL S E FOR PRODUCT
 TWO＋ONE
 COMPONENTS LTD．
 P．O．BOX 77，GERRARDS CROSS，BUCKS，SL9 ONT
 TELEPHONE： 02.4073568

badtavion dithectodis
 BE PREPARED
 eal for the erpertmenter
 －THIS OOSIMETER WILL AUTOMATICALLY OETECT GAMMA ANO X．RAYS
 －UNIT IS SIZE OF FOUNTAIN PEN \＆CLIPS ONTO TOP POCKET
 －PRECISION INS TRUMENT
 MANUFACTURERS CURRENT PRICE OF A SIMILAR MODEL OVER $£ 25$ EACH
 Brilish design \＆manulaclure
 Tested and fully quar anteed．Ex－stock delivery
 HENRYE
 $01-7231008 / 9$
 404 EDGWARE ROAD，LONDON W2 1 ED

INCREDIBLE VALUE

1000 MA 0.5 .0 .10 .0 .100 Sensitivity 2000 V ． 24 range．diameter 133 by

SUB－MINLATURE PRECISION．BUILT GEAREO MOTOR 3．9V OC ODeration Speed 26 r．pm Current consumption

MINIATURE SOLENOID FLUID VALVE ow adjuster ${ }^{1} 8$ in BST inlet and outtet Size： $58 \times 27 \times 25 \mathrm{~mm}$ Weight 130 gr Price $\mathbf{E 2 . 6 0}$－35p P \＆P（Totalinct V．AT $\mathbf{E 3} 39$ ）
 BLACK LIGAT Sett－Ballasted Mercury U．V．I75W．Bulbs

FROM STOCK AT PRICES THAT DEFY COMPETITION

AC GEAREO MOTORS O OC．MOTORS MICROSWITCHES O RELAYS O TRANSFOR

SERVICE TRADING
 57 BRIDGMAN ROAD，LONDON，W4 5BB－Tel： 01.995156

OHIO SCIENTIFIC COMPUTEAS．Superboard Poa Power suply kit EIT．95 Modular 50 £19．95．Cegmon E22．50 Case £27．Casselte re corder f 19 Assembler／editor E 25 ．Word Proces sor $£ 10$ Oisplay expansion kot 30 lines $\times 54$ char acters tor supertouard any board fos
vic 20 computers new low prices Poa
SHARP computers MZ80K 20K 1418 36K［440 48K 〔460 PC1211 882
PRINTERS supplied with free inferface and word Processor tor Superboard and UK 101．Seikosha
GP80A 〔199 Enson MX70 2259 Enson MXB0FT C399 OU Microline 80 C299
－SINCLAIR PRODUCTS only are post free aci10 scilioscope 158.95 ，adaptor 55 69．recharge §11 50．carry case c8．86 TM352 E54 95 TM354〔45 95 PFM200 โ57 27．adeptor $\mathbb{C 4}$ ，case $\mathrm{E3} 45$ ．
 dim450 £ 13685 ．adaptor $\mathbb{5} .69$ ．case C8 86. re chargeable batts cz .63 ．Microvision iv L69．adap－ tor f6eal 95

VIDEO GENIE COMPUTERS C289
 MEMORIES 2114 450ns fl． 35.4115 200ns © 199
 BATTERY ELIMINATOR KTTS 100 ma radio yoes with press studs 9v $51,79,9$ ．9y $\mathrm{E2} 50$ ． tabmsed 8 －way rypes $3 / 4$ ． $5 / 677.5 / 9 / 12 / 15 / \mathrm{fa}$ $2.19 \mathrm{v} \quad 100 \mathrm{~ms} \mathrm{C3.12}$ ．1．30\％1A f8．50．1．30v 2A $6 / 75 / 9$ viAC1．6？
 BATTERY ELIMINATOAS 3 －way tyde 6／7．5／9 nput，output $4.5 / 6 / 7.5 / 9 \mathrm{v} 800 \mathrm{ma}$［3．04 TV GAMES AY－3．8600，hit E12 98 AY－3－8550
 SWANLEY ELECTRONICS
 BR8 8 EZ Tel：Swanley 64851 ．
 Postage E3．50 on suparboard，©4．50 on Printers Please and VAT except to sections marked with a

ANAMUNTKI NHEN MEII DHE MBA SmIC

This 5 volume set contains over 500 pages Bound in stiff linen．Cover size $81 / 2$ in $x 5$ in． Price $\mathbf{£ 1 0 . 0 0}$ per set（we pay the postage）

Book 1．Introducing Electronics Book 4．Meters／Voltage dividers Book 2．Resistors／Capacitors Book 5．Transistor Project Circuitry Book 3．Inductors／Diodes
The manuals are unquestionaby the finest and most up－todate available and represent exceptional value
This series has been written in a fascinating，absorbing and exciting way，providing an approach to acquiring knowledge that is a wery enjoyable experience．Suitable for industrial trainees，City and Guilds students，DIV enthusiasts and readers of electronic journals．
Each part explains electronics in an easy－to－follow way，and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor prolects：Lamp Flasher，Metronome，Wailer．Photographic／Monostable Timer，Metal Locator，Geiger Counter，Radio Receiver，Intercom．，Intruder Alarm， Electronic Organ，Battery Eliminator，Anemometer，Sound Switch Light and Water operated Switches，Pressure－opersted Switches，Light meter，Radio Thermometer，Ice Alarm，

Order Now
Selray Book Company
11 Aspen Copse．
Bromley
Kent．BR1 2NZ
Amount enclosed：
Name：
Address：

Reaction Tester Game

Here is a 'game' project, adapted from a design sent to us by a reader. It provides a novel way of testing your reactions - and it's fun, too!

THERE ARE ONLY a limited number of ways you can use a 4017 and a 555. Or so we thought.

We used to think that the stockpile of possible ways of combining the two ICs had been exhausted until we opened the mail one morning and saw this ingenious idea for an electronic game from A. Trafford (see Fig.1).

The game has, as its main feature, a row of coloured LEDs. When you switch on, the bottom LED lights up, ready for play. When the 'GO' button is pressed the light moves up the row. The idea is to get the light as far up the row as possible - the higher up the row, the higher your score - but not past LED5. You see, LED5 gives maximum score (+20 points) and if the light goes further up than this you lose points.

Finally, if the light goes further then LED9 (-20 points) another LED (LED10 - LOSE) lights up, and stays on until you reset the game.

Now, as far as we're concerned, this game must definitely be the very last way that these two ICs can possibly be used together - or do you know different?

Construction

Following the printed circuit board (PCB) overlay details in Fig.2, insert and solder all components into the board, starting with the low-level components (ie, resistors, IC sockets). Solder in PCB pins at all connection points.

Next, insert and solder the two capacitors making sure capacitor C1 is the right way round.

Push the two ICs into their sockets, and insert and solder the thyristor SCR1 into place making sure that the polarity of all semiconductors is correct.

Now, mark and drill the case for switch SW2 and fit it into position.

Using double-sided, self-adhesive pads, stick the 9 V battery and the PCB to the bottom of the case.

Finally, wire up your project, following the connection details of Fig.2. A tip to help prevent your project becoming a 'bird's nest' is to wire each switch or push-button separately. twisting the leads before soldering. Similarly the 11 wires connecting the PCB to the LEDs should be twisted together.

Buylines

None of the component parts will be difficult to obtain. Approximate price of components (excluding, as usual, the PCB and case) is E 7 .

Δ
Figure 2. PCB overiay and connection details of the project. From this you can see how one terminal of each LED lie, their cathodes) are commoned and connected to resistor R10

Parts List

RESISTORS (All $1 / 4 W, 5 \%$)	
R1	2k2
R2,7	10k
R3	18k
R4	27k
R5	39k
R6	47k
R8	22k
R9	820R
R10	470R
CAPACITORS	
C1	$1 \mathrm{u}, 10 \mathrm{~V}$ electrolytic
C2	100n polyester
SEMICONDUCTORS	
IC1	555 timer
IC2	4017 counter
SCR 1	C103 thyristor
LED1-4	$0.2^{\prime \prime}$ green LEDs
LED5	$0.2^{\prime \prime}$ orange LED
LED6-9	0.2" yellow LEDs
LED10	0.2" red LED
MISCELLANEOUS	
SW1	single-pole, six-way rotary
SW2	single-pole, double-throw
	biased toggle switch
SW3	single-pole, single-throw
	toggle switch
PB1	single-pole, push-to-make reloase-to-break switch
Case to suit	
Knob to suit	
Battery +	clip

How It Works

An oscillator formed by an astable multivibrator continually oscillates at a set frequency.

Pressing the push-button connects the output of the oscillator to the input of a counter, the outputs of which are connected to a row of LEDs. On every positive pulse from the oscillator the counter counts on and lights the next LED.

When the '10' output of the counter turns on it fires a thyristor, which holds LED10 on, permanently, until power is disconnected.

The astable multivibrator oscillator is configured round a 555 timer. The frequency of oscillation is determined by one of the resistors R1-6, and the chosen resistor is switched into circuit by switch SW1.

A 4017 (IC2) is used as a'1 of 10 counter' and every time push-button PB1 is pressed, the 4017 counts the output pulses of the 555 oscillator. The first nine outputs of the counter directly
drive LEDs which give an indication of the state of the count.

Output 10 is connected to the gate of thyristor SCR1 thereby turning on the thyristor on the count of 10 . This thyristor drives LED10, the LOSE indicator.

Switch SW2 disconnects power from the thyristor, thus turning off LED10, and also resets the counter to a zero count.

Vol. 2 No. 2 AUTUMN 1981
FROM THE PUBLISHERS OF
ELECTRONICS TODAY INTERNATIONAL

The Autumn edition of Electronics Digest features over 20 DIY projects for the audio and motoring enthusiast . . . plus test gear to build and projects for the home including a complete infra-red control system and full details of a device that can transmit music to any room in a house along the mains wiring. For model train enthusiasts we have included a sophisticated train controller capable of driving up to four track layouts and 16 sets of points and featuring fine speed control, track cleaners and full remote control facilities.

[^0]Back Numbers Electronics Digest
145 Charing Cross Road
London WC2H OEE
(Make cheques and POs payable to Modmags Lid)

COMPUTERS - AUDIO © RADIO © MUSIC•LOGIC•TEST GEAR•CB•GAMES•KITS

COMPONENTS © DEMONSTRATIONS • SPECIAL OFFERS - MAGAZINES • BOOKS
ROYAL HORTICULTURAL SOCIETY'S
NEW HALL, GREYCOAT STREET.
WESTMINSTER, LONDON S.W.1.

17,000 PEOPLE CAN'T BE WRONG
For 5 days last year they packed the RHS halls for Breadboard '80. All the leading companies were there
and they're back again this year for BREADBOARD '81...... with larger stands and wider gangways.
Whether you're buying or just browsing. BREADBOARD ' 81 has something to offer you. The top electronics magazines will be there. If you're interested in kits, components or computing, BREADBOARD ' 81 covers it all. books, bargains and demonstrations. It's all happening at BREADBOARD '81.

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our new PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. Starting from this issue, all (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

January 80		August 80		February 81	
Digi Dice	£2.20	Equitone Car Equaliser	£1.79	Heartbeat Monitor	£1.90
		Gaztec Gas Detector	£2.98	Audio Signal Generator	£1.85
February 80		Pass The Loop Game	£1.98		
Win Indicator	£1.98			March 81	
		September 80		Steam Loco Whistle	£1.99
March 80		Auto Probe	£1.25		
508025 W Amplifier		Guitar Phaser	£1.48	April 81	
Module	£1.95	Development Timer	£1.35	Super Siren	£1.48
5080 PSU Module	£1.98	Bench PSU	£2.20	Russian Roulette Game	E1.20
April 80		October 80		May 81	
Speed Controller For R/C	£1.60	Nobell Doorbell	£1.98	Voice Operated Switch	£1.25
Digital Frequency Meter	£2.95	Intruder Alarm	£1.88	Organ 1	£3.48
Hobbycom: Two-wire Inter-		Tug O' War	£1.99	June 81	
com (set of two)	£3.98			Envelope Generator	£1.40
Electronic Ignition (CD)	£2.98	November 80		Organ 2	£1.90
		Memory Bank Synth:			
May 80		Mainboard PCB	£2.48	July 81	
5080 Pre-amplifier	$£ 3.50$	Keyboard PCB	£2.70	Organ 4	¢4.50
		Party Grenade (set of three)	£2.60	Ultrasound Burglar Alarm	¢1.90
June 80		Double Dice	£2.20		
Fog Horn	£1.40			August 81	
Egg Timer	£1.58	December 80		RPM Meter	£1.33
		Stereo Power Meter	£2.12	Thermometer	£1.25
July 80		Digital Speedo (set of two)	£3.50	September 81	
18 W + 18 W Car Stereo				Power Pack	f1. 27
Booster (two required for		January 81		Reaction Tester Game	£1.28
stereo) each	£1.20	Car Rev Counter	¢2. 24	'Diana' Metal Detector	£2.48

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Modmags Limited, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/Postal Order made payable to Modmags Limited for the amount shown below* OR	Boards Required	Price
I wish to pay by Barclaycard*. Please charge to my		
account number barclarcard		
VISA		
OR		
I wish to pay by Access*. Please charge to my account		
number		
.................... .		
SIGNATURE .		
NAME .		
(BLOCK CAPITALS)		
ADORESS (ELOCK CAPTTALS)		
. .	Add 40p p \& p	0.40
.		
- Denete as appropriate	Total Enclosed E	

CR Brater \square One Four

The publishers of HOBBY ELECTRONICS would like to point out thet it is at present econtravention of the Wireless Telegraphy Act of 1949 and 1968 to use, manufacture, instell or import C8 transmitting equipment. It is not the Intention of Modmegs Ltd to incite, encourage or condone the use of such equipment.

A variety of news items from Rick Maybury this month: criminal CBers, flooded CB food, Hitachi CB, CB sloths, AM crack-down and musical CB

I'M ASHAMED! For nearly three years I have been doing my best to convince people that CB is a good thing. It wouldn't be used by criminals, it wouldn't be used by subversive or political organisations, and what happens? We hear through the media that CB is being used by various groups to co-ordinate riots, to help outwit the police and is generally finding applications for everything that I hoped CB would be useful against. All I can say is that anyone hearing messages that are obviously intended for people who are up to no good should pass these messages on to the police pretty sharpish, or we'll be playing right into the hands of the people who did their best to prevent us from getting any kind of CB system in this country.

Back to lighter matters. The CB restaurant I told you about last month has, by an unfortunate act of God, failed to open. The cause? A rather heavy downpour flooded the restaurant to
a depth of several inches. All being well I will report on the destiny of this restaurant next month.

Preparations And Restrictions

Back on the serious side of CB, we have heard of noless than 20 different companies now preparing to set up full-scale production or importation of rigs. The big names are now starting to get interested and if I tell you that Hitachi, well known video and hi-fi manufacturer of this parish, is now dabbling a tentative toe in the CB market, you'll see what I mean.

On the slothful legalisation front things are still crawling along. By this time I had hoped to have details of the licensing restrictions and other news but there is still no word from the HO. Rumour has it that we will see some developments in the next few weeks - we shall see!

A word of warning from my spies at the Customs and Excise: there is a major campaign in progress to relieve CBers of their rigs. On the plus side I understand that prosecutions will not be sought unless, as one mole tells me, '...an excessive number of rigs are involved'.

This tale ties up with some other snippets that have come my way concerning a short training course which certain PO personnel are being sent on. Apparently this is an idiot's guide to CB and teaches you how to tell a CB from a legitimate twoway radio. It seems that there is going to be a considerable crack-down on the AM rigs in the next few months, so don't ring us up if you get busted - it'll be your own fault.

On A Musical Note

CB and music have always gone together in the USA but only now is it beginning to become respectable in this country. The trouble has always beeri the association of CB with Country and Western music, always a little out of the average Englishman's appreciative range. However, listen out for a purely British CB music album coming from a group called Citizens Banned. The music is good, the lyrics are superbly witty and very up-to-date. Country and Western influences are kept to an absolute minimum. Some of the tracks will never be heard on the Beeb but I can really recommend that you try and listen to a copy.

Well, time's up once again - the next few months will see the run-up to legalisation and we can expect a number of very interesting developments to materialise, so keep your eyes peeled and start saving for that legal rig now.

HE
 (see pege 58)

Have you heard about CB? Citizens' Band radio is to be legalised this Autumn; yes, that's right, our very own personal two-way radio system that can be used in the car, the home - anywhere. As you can imagine, CB will be a real boon to the motorist, the housebound, those who go for outdoor activities - and don't forget that CB can save lives!

With all this in mind Citizens' Band magazine, the country's leading CB publication, will be holding a major CB exhibition in September, timed as closely as possible to coincide with legalisation. If you want to know more about CB, or you are a CBer, come along to the Royal Horticultural Hall on 11th, 12th, 13th September and see Britain's biggest ever $C B$ show.

There will be stands and exhibits from many of the country's leading CB accessory dealers plus, for the first time ever, working examples of the new legal rigs that will be on sale this Autumn. That's right, a number of manufacturers and importers will be on hand to show the new CB equipment that almost anyone can buy and use.

There's something for everyone, CBers old and new. The latest accessories and antennas, gadgets - in fact everything connected with CB including the new equipment.

Come along in September and see what CB can do for you. Even if you've never heard of CB , you soon will, so don't miss out - whether you're a motorist or a small businessman with an eye to the future, CB is for you! CB is the future of two-way communications....

BRITAIN'S FIRST NATIONAL CB SHOW!

ROYAL HORTICULTURAL SOCIETY HALL, VINCENT SQUARE, LONDON SW1 (SEPTEMBER 11th-13th INCLUSIVE)

This is the BIG ONE for

 breakers. Whether you're a confirmed fanatic or an interested beginner, this is the place to be in September!
OPENING TIMES

Friday 11th Sept 10am-7pm Saturday 12th Sept 10am-6pm Sunday 13th Sept 10am-4pm

Books from the HE Book Service

SPECIAL OFFER TO READERS OF HOBBY ELECTRONICS ONLY
ELEMENTS OF ELECTRONICS
Book I
£2. 60
Book II
£2.60
Usual price is $£ 7.80$ inc post and packing for 3 volume set. OUR packing for $\begin{aligned} & \text { PRICE } 7.00+\text { FREE slip case for } 3\end{aligned}$ PRICE $\mathbb{2} 7.00+$ FREE slip case for 3
volumes + FREE Resistor Colour
volumes
Code Disc
28 TESTED TRANSISTOR PROJECTS by R. Torrens .. £1.50 The author has designed developed and bult some completely new crrcuits.
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS by R. A. Penfold $£ 1.50$ Enables the complete beginner to tackle the practical side of electronics:
ESSENTIAL THEORY FOR THE ELECTRONICS HOBEYIST by G. T. Rabaroe $£ 1.50$ Supplies the hobbyist with a background knowledge
50 PROJECTS USING RELAYS,
SCR'S \& TRIACS by F. G.
Rayer $£ 1.50$
Gives rried and practical working circuits which should present the minimum of difficulty for the enthusiast to construct.

HOW TO BUILD YOUR OWN METAL AND TREASURE LOCATORS by F. G. Rayer
Contains complete electronic and practical details on the simple and inexpensive construction of Heterodyne Metal Locators

HOW TO MAKE WALKIETALKIES by F. G. Rayer $£ 1.75$ IC555 PROJECTS by E. A. Parr
Included in this book are Basic and General Circuits. Motor Car and Model Railway Circuits, Alarms and Noise Makers as well as a section on the 556,558 and 559 timers.

PRACTICAL ELECTRONIC CALCULATIONS AND FORMULAE by F. A. Wilson \qquad Units and Constante Direct Curren Units and Constants. Direci Curren Circuits. Passive Components Alternating Current Circuiss. Net works and Theorems. Measure ments

ELECTRONIC SECURITY DEVICES by R. A. Penfold $£ 1.70$ Includes both simple and more sophisticated burglar alarm circuits using light, infra-red and ultrasonics gas and smoke detectors, flood alarms doorphone and baby alarms. etc.

ELECTRONIC PROJECTS FOR BEGINNERS by F. G. Rayer
A newcomer to electronics finds a wide range of easily made projects

POPULAR ELECTRONIC PROJECTS by R. A. Penfold E1.70 Radio Projects. Audio Projects Household Projects and Tess Equipment.

HOW TO BUILD YOUR OWN SOLID STATE OSCILLOSCOPE by F. G. Reyer
 Enables the enthusiast to simply and inexpensively build his own oscilloscope.

ELECTRONIC GAMES by R. A. Penfold E2.00 In this book the author has designed and developed a number of interesung electronic game projects using modern integrated cırcuits

COUNTER DRIVER AND NUMERAL DISPLAY PROJECTS by F. G. Rayer . . £2.00 Author discusses and features many applications and projects using various types of numeral displays. popular counter and driver IC's etc

BEGINNERS GUIDE TO MICROPROCESSORS AND COMPUTING by E. F. Scott
Introduction E2.00 concepts of binary arithmetic; microprocessor operation and machine language programming

ELECTRONIC HOUSEHOLD PROJECTS by R. A. Penfold
 2 tone door buzzer" Intercom through Smake or Gas Detectors to Baby and Freezer Alarms.

A MICROPROCESSOR PRIMER by E. A. Part . . $\mathbf{£ 2 . 0 0}$ A newcomer to electronics iends to be overwheimed when first confronted with articles or books on microprocessors. This small book will start by designing a simple computer and because of its sim. plicity and logical structure the language is hopefully easy to learn and understand.
50 CIRCUITS USING 7400 SERIES IC'S by R. N. Sowr
The author has compiled 50 in teresting and useful circuits and poplicetions covering different aspects of electronics using these devices.

AUDIO	
Earl, J, Audio Technicians Bench Manual $\mathbf{£ 5 . 0 0}$ Pickups and Loudspeakers	
Earl. J., Pickups and Loudspeakers £5.00	
Earl, J. Tuners and Amplifiers	
	84.00
Earl. J., Cassette Tape Recorders	
. $\mathbf{\Sigma 6 . 0 0}$	
Earl, J., ABC of Hi-Fı . $\mathbb{E 6 . 0 0}$	
Capel, V. Microphones in Action	
	£6.00

Capel, V. Improving Your $\mathrm{Hi}-\mathrm{Fi}$
Capel, V., Creatıve Tape Recording £5.00
Hellyer, H. W., Tape Recorders 55.00 Sinclair, I. R, Audio Amplifiers For Home Construction ... E8.00

RADIO CONTROL
Drake, J. Radio Controlled Helicopter Models . 84.95 Jeffries, C R., Radia Control For Model Yachts $\mathbf{3 . 8 5}$ Safford. E. L., Radio Control Manual E5.50

C00K800xS

Tracton, K., BASIC Cookbook 14.10
Lancaster, D.. TTL Cookbook $£ 7.55$ Lancaster, D., RTL Cookbook £4.65 Lancaster, D., CMOS Cookbook E8. 20 Jong. W. IC Op Amp Cookbook $\begin{aligned} & \text { £10.70 }\end{aligned}$ Lancaster. D, TV Typewrite Cookbook $£ 7.75$ Lancaster, D. Cheap Video Cook Jook W. IC Timer Cookbook k 7.65 Lancaster, D., Incredible Secre Money Machine fa how to cook book for serting up your compute or technical business) .. $\mathbf{4 . 9 5}$

QUESTIOMS AND AMSWERS

SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE BEGINNER

COMSTRUCTOA GUIDES

Graham. P., Simple Circuit Building £3.40
Colwell, M., Electronic Diagrams
Colwell, M. Electronic Compone
Colwell M Printed Circuir $\mathbf{£ 3 . 4 0}$
bly $\mathbf{~} 3.40$
Ainslee. A... Practical Electronic
Project Building $\quad \mathbf{\$ 3 . 4 0}$
Colwell, M . Project Planning and
Burlding
$\mathbf{3} .40$

BEENMNER'S GUIDE

Sinclair, I R, Begınner's Guide To
Tape Recording

Sinclarr, I. R.. Beginner's Guide To ntegrated Circuits ... £4.25 Sinclair, 1. R., Beginner's Guide to Audio G. J. Beginner's Guide To King, G. J., Begınner's Guide 10
Radio King, G J., Beginner's Guide To Television $\mathbf{E 4 . 2 5}$
King. G. J Beginner's Guide To Colour T.V. £4.25 Guilou, F., Begınner's Guide To Electric Wiring £4.25

PROJECT BOOKS

Marston, R M., 110 Cosmos Digital IC Projects For The Home Constructor 110 Wa. $£ 4.95$ Marston, R. M, 110 Wave Form Projects For The Home Constructor £4.95
ProMarston, R. M., 110 Op Amp Pro jects For The Home Constructor
£4.95
Marsion, R M. 110 Semiconductor 84.95

Marston. R. M. 110 Thyristor/ SCR Projects For The Home Constructor $\quad \mathbf{4 . 9 5}$ Marston. R M., 110 Electronic Alarm Propects For The Home Constructor 1. 44.95 Marston. R M, 110 Integrated Circuits Projects For The Home Constructor R, M, 20 Solid State Projects For The Car and Garage $£ 4.95$ Marston, R M., 20 Solid State
Projects For The Home $\quad \mathbf{E 4 . 9 5}$

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only plesse) and send to:
Hobby Electronics Book Service
Modmags Lid
145 Charing Cross Road
London WC2H OEE

SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H 0EE. TEL: 01-437 1002 Ext. 50.

MAIL ORDER PROTECTION SCHEME Th you order goods from mail order advertisers in this megazine ond pay by post in advance of de-
livery, this publication Hobby Electronics will consider your for compensation if the advertiser should become insotvent or bankrupt, provided:
. You have not received the goods or had your money returned; and
2. You write to the publisher of this oublication Hobby Electronics explaining the position not aarliar then 28 daya from the day you sent your order and not later than 2 months from that day form us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as scon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for any one advertiser so aflected and up, to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for has not been complied with, at the discretion of this publication Hobby Electronics, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties.
this guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc, recerved as a result of answering such advertisements). Classified advertisements are excluded.

BARGAIN COMPONENT PACKS: 100 mixed resistors $£ 1$; 1,000 for $£ 7.50$, post free. - JKS Electronics, 2 Poundfield Rd., Debden, Loughton, Essex.

INTERESTED IN CB? Be first in your street with the very latest receiver. It's legal and covers 2-CB bands, PB/WB and medium wave/AM, FM/VHF aircraft $82 \mathrm{M}-\mathrm{Ham}$. In fact everything you ever wanted in a radio. It's just arrived in England so it's not in the shops yet! Send cheque or PO for $£ 24.50$ inclusive. - S\&M Sales, 99 St . Leonards Road, Windsor, Berks SL4 3BS.

CROFT ALARM EQUIPMENT, send SAE for free list or cheque or PO for $£ 14.60$ for our burglar alarm module to - Croft Alarms, Box 89, Stockport SK5 7ER.

50 RESISTORS (mixed) only 95p. 50 Ca pacitors (mixed) £2.80. 5 Mixed untested i.c.s some unmarked £1. Solder pack, small gauge, useful for i.c. work, only 18p. Plus 25p p\&p. - L.B. Supplies, 3 Armscroft Gardens, Barnwood, Glos.

TTLs, CMOS, RAMs, transistors, brand new, home constructors, huge stock, SAE. - Jain, 17 Taylors Lane, London NW10.

ZX81 FLICKER-FREE GAMES, 6 on cassette, £3 (or SAE details). - Kerr. Dept HE, 29 Chadderton Drive, Unsworth, Bury, Lancs.

GUITAR/PA MUSIC AMPLIFIERS

100 watt supart trablefbass overdive. 12 months guarantee. Unbaatable at $£ 50$; 60 wan $£ 44 ; 200$ watt $£ 68 ; 100$ watt twon chamel sep. treble/bass per channel 585 ; 60 watt E52: 200 watt £78: 100 watt four-channel sep. treble/bass par channel $£ 75$: 200 watt E98; slaves 100 watt E34; 200 wath £60, 250 watt $£ 70$; 500 watt E140; fuzz boxes. great sound. £12; bass fuzz 112.90 ; overdriver fuzz with treble and bass boostars, f22; 100 watt combo. supert sound, overdrive.
 . 100 watl E74. 60 wan f16. microphone shure undyn 8 f25 -3-channel sound/ight $£ 26$.
Send cheque/P.O. to: WILLAMASON AMPLIFICATION E2 Thernclifle Avanue, Dukinfield, Choshire. Tol. D61.300 2054

AMAZING ELECTRONICS PLANS. Lasers; Super-powered Cutting Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue 75p. - From Plancentre, 16 Mill Grove, Bilbrook, Codsall, Wolverhampton.

100 MIXED DIODES £1. 1920s onward items. Lists 25p S.A.E. Sole Electronics, HE, 37, Stanley Street, Ormskirk, Lancs.

[^1]

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly im proved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55p. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick £ 1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

CENTURION BURGLAR ALARM EQUIP. MENT. Send s.a.e. for free list or a cheque/p.o. for $£ 5.95$ for our special offer of a full-sized decoy bell cover. To: Centurion, Dept. ETI, 265 Wakefield Road. Huddersfield, West Yorkshire. Access and Barclaycard. Telephone orders 0484 35527.

TWIN 6 AMP mains cable, white, extra flexible. Ideal for speakers or table lamps. etc. 25 metre coil $£ 2.25$ inclusive. Longer lengths available. Send cheque or PO to

S\&M Sales, 99 St Leonards Road. Windsor, Berks SL4 3BS

2X81 GAMES. Six super games on cas sette, £3 (plus additional free game and other info.) or SAE list/details. Bobker, 29 Chadderton Drive, Unsworth. Bury. Lancs.

CLOSE ENCOUNTERS GROUP. Personal introductions/dances, parties, talks, social events. Meet interesting attractive people. All areas. Tel. 01-278 0203/0519312844.

CONVERT ANY TV into large screen oscilloscope. External unit plus into aerial socket. Circuit and plans $£ 3$ (SAE details). - J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

WANTED. Electronic components and test equipment. Good prices given. Q Services, 29 Lawford Crescent, Yately (0252) :871048, Camberley, Surrey.

PLEASE MENTION HOBBY ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

3 INCH 30 OHMS 1.5 Watt loudspeakers, square frame, suitable metronome project, etc. 70 p each, $50 \mathrm{p} p \& p$ per order. Cheques, PO to - AFDEC Electronics Ltd, 17c London St, Basingstoke, Hants. ,

ADVERTISEMENT INDEX

Ambit International 2822
BK Electronics 40
B.N.R.S 34
J. Bull (Electrical) 14
Circolec 25
Electronize Design 51
Electrovalue 51
Greenway Electronics 51
Greenweld 20
Heath Electronics 20
Henry's Radio 51 \& 57
ICS 25 25
LP $4 \& 5$
Lawtronics 34
Magenta Electronics 44845 44845
Maplin 68
Marshalls 32
NIC Models 25
Parndon Electronics 44
P.A.T.H. Electronics 40
T. Powell 32
J. W. Rimmer 57
Selray Book Co 57
Service Trading Co 57 57
Silica Shop 67 67
Swanley Electronics 57
Technomatic 30
Tempus 24
TK Electronics 37
Two + One Components 57
Watford Electronics 9

For personal service visit one of our stores
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads
There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

[^0]: Back copies of Electronics Digest Vol. 1 Nos. 1,3 \& 4 are still available for $£ 1.75$ per copy from:

[^1]: HAVE YOU SEEN THE GREEN CAT? to00s of components (C.B., Radio \& Electronic). Aerials, Plugs, SWR Meters \& Accessories. Audio, Hi.Fi, Experimental devices. In fact anything electronic er unbelievebly low prices. Something for everyone. Send 30 p for list and receive FREE RECORD SPEED INDICATOR. MAIL ORDER ONLY. MYERS (Dept. HE), 14/16 Clifton Grove, Harehills. Leeds 9. Mall Order Only.

