Mobly .aure

For A Down-To-Earth Approach To Electronics

Protect your home cheaply with our ultrasonic system

High-quality Furniture Kits for your Mi-fi amodular design •low cost-See inside for details

Chokes, block filters, ceramic filters, resonators, IFTs, oscillator coils, audio filter blocks etc.

LOW PASS FILTERS

Now from 10 kHz to $\mathbf{2 0 M H z}$ TOKO's recently expanded LPF series covers from the audio spectrum through to 20 MHz in a series of LPFs for mpx , video, radio etc.

The LPFs are based on $7 \& 10 \mathrm{~mm}$ formats with up to 4 LC tuned elements per block. Many stock types available.

Editor: Hugh Davies Group Art Editor: Paul Wilson-Patterson BA Advertisement Manager: Stephen Rowe

PROJECTS

* BURGLAR ALARMStop thieves - quietly11
ELECTRONIC ORGAN
Part 3 gives details of the final PCBs 20
DOORBUZZER 42
POWER AMPLIFIER
49
49
Final details of our hi-fi amplifier
55
Keep the beat with this simple metronome
TREBLE BOOSTER
A cut above the average guitar effect 59
PCB FOIL PATTERNSDown under the boards64

FEATURES

NEWS \& INFO

Monitor . 6
HE Next Month . 8
Subscriptions

* Hi-fi Furniture Offer . 25
* Hi-fi Loudspeaker Offer . 29

Books From HE . 48
Classified Ads

* ELECTRONIC AIDS FOR THE DISABLED

How electronics is helping the handicapped 15

* DESIGN COMPETITION

How you can help the disabled 19
RADIO
Part 2 looks inside a transistor radio 26
GADGETS, GAMES \& KITS
FREE pull-out supplement31

BUILDING SITE
Safety precautions when using mains 39
0 LEVELO\&A
Final teach-in - multivibrators and storage 45
CLEVER DICK
Readers'letters . 53
YOUR LETTERS
The Editor replies 56
BREAKER ONE FOUR
More about the regulations 62

Assistant Editor: Keith Brindiey Editorial Assistant: Judith Jacobs Drawing Office Manager: Paul Edwards Managing Editor: Ron Harris BSc Group Advertisement Manager: Terry Booker Advertisement Representative: Sally Holley] Managing Director: T. J. Connell

Pele Kicks Off TV Football Game

Thursday 30th Aprll saw the public launch of Atari's new football games cartridge for the Atari Video Computer - Pele's Championshlp Soccer. The game, for one or two players, is personally endorsed by the brilliant Brazilian footballer, Pele, who flew into London the day before the launch.

Pele spent a hectic five days in the capital, signing autographs
and at the mercy of press, radio and television journalists.

As yet we haven't managed to get our hands (or should we say feet?) on a games cartridge for more than just a few minutes. but we hope to review it in next month's Gadgets, Games \& Kits supplement. Suggested retail price of the cartridge is $£ 29.95$ including VAT.

Also released by Atari were two other games cartridges VIdeo Pinball and Othello. Sug gested retail price of these games is $£ 23.95$ Including VAT.

Budget Toroids

Cotswoid Electronics is offering a 'budget range' of toroidal transformers for use by professional and do-lt-yourself enthusiasts in 30, 60, 100, 160 , 230,330 and 530 VA sizes at prices ranging from $£ 4.55$ to £15.80.

All types are normally supplied with 240,110 or 220 V primary windings, but special windings can be supplied on request.

Torolds have some significant advantages over traditlonal
stacked-laminate types. They are, for Instance, about 50\% lighter and have 50\% lower volume because they are more efficient. Unlike laminated types toroids have no air gap, and thus have less reluctance (magnetic resistance) and less magnetic radiation. The low helght profile of toroids makes them suitable for use in slim-line equipment.

More detalls are available from Cotswold Electronics Ltd Unit T1, Kingsullle Road, Kingsditch Trading Estate. Choltenham GL51 9NX Ite 024241313).

G8EOP Petition

We received details of a petition, organised by Melvyn Jackson (GBEOP) in the wake of the recent proposals for a UK citizens ${ }^{\circ}$ band.

The petition sets out 'slight modiflcations to the radio ham licence', as follows:

- The use of CW by class B radio hams recelving and sending as part of the selftraining in communication by CW on VHF bands
- Limited use of station under supervision leg, jamboree on air, radio conventions, radio clubs, SWLs, XYLs, YLs, etc)
- The 27 and 930 MHz CB bands to be used by radio hams on existing licence at no extra fee and not with type-approved rigs
- The 10 and 4 m ham bands to extend to class B radio hams leg, the 10 m band not taken over by CB to be used by licensed radio hams).
The petition, signed by Melvyn Jackson, G8EAH, G8PSE, G8WWE, G3LHQ, G4LED and ' 460 others' also invites any club requiring a copy of the signature sheet to send a stamped addressed envelope to M Jackson, 17 Bywell Road, Dewsbury, West Yorkshire ZN2 2C Itel 0924 463850)

Hi-fi ICE From Blaupunkt

Latest addition to Blaupunkt's ICE (In-car entertainment) range is a three-way hi-fi sound component system.

Four slim-line speakers are used for each channel of this system to allow greater flexlbility in fitting to individual makes of car and for the best sound radiation (particularly from the tweeter).

The system consists of the

following:

- two woofers, each 100 mm by 100 mm , installation depth 45 mm and linear frequen cy response 40 to 600 Hz
one mid-range speaker, 85 mm by 85 mm . installation depth 33 mm and linear trequency response 600 Hz to 4 kHz
one iweeter. 42 mm radius, installation depth 23 mm
4 to 20 kHz
- a three-way dlvider

The system conforms with the DIN hi-fl standard 45.500 and has 60 W/channel music power handling capability.

Price of the system (eight speakers and two divider units) is £90.85 including VAT.

For those preferring a four-

Response To Club Call

In response to our Put Your Club On The Map invitation in Monitor in the May ' 81 issue of HE, we are starting to receive details of 8 variety of clubs. Details of one are given below.

This could be an opportunity to increase your membership: send us details of your club and of any coming events likely to be of Interest to HE readers.

ZX Guaranteed

Recently we received details of a new club called ZX Guaranteed, which could be of interest to
channel installation in their car Blaupunkt has recently introduced an equaliser on a flexible stalk. This gadget has slide controls and two illuminated VU meters. It costs $£ 79.35$ including VAT.

The four channel booster amplifier (4×20 W), model 7607367111 , which goes with the equaliser will set you back another $£ 79.35$ including VAT.

HE was given a demonstration of all the above items fitted in a Ford Cortina. One of Blaupunkt's Bamberg OTS CR receivers was fitted in the dash and the souñ, coming from the front door panels and from the rear parcel shelf, was very impressive. The equallser stalk sprouted close to the steering column.

If you're interested in the whole system described above; start saving (the Bamberg OTS CR costs $£ 517.50$ including VAT). Alternatively, you could opt, for example, just for the speakers.

Details from Robert Bosch Ltd, PO Box 166, Rhodes Way, Watford, Herts WD2 4LB (tel 92 44233).
owners of Sinclair $Z \times 80$ microcomputers (and possibly 2X81 owners in the future).

We looked at a copy of the club newsletter, also titled ZX Guaranteed and printed quarterly. It contained six programs for the ZX80 which, according to G A Bobker, who runs the club. are guaranteed to work.

Membership stood at 27 when we received the informa tion but the classified advertise ment piaced in the June ' 81 issue of HE could well have increased this.

Membership costs $£ 5$ a year. Contact G A Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

Easi-Grip Lightweight Handtools

A set of miniature handtools, designed for use in electronics and fine modelling, have been in troduced by Tele-Production Tools.

The set comprises miniature carbon steel side cutters, finenosed stainless steel tweezerpliers and a serrated stainless steel scissor-shear for light cutting work

Each tool is fitted with what are described as 'ergonomicallystyled self-opening handles', intended for fingertip operation. The handles are held in the open position by means of a plastic strip linking the ends of the handles. Average weight of each tool is only 40 g .

Cost of each tool is $£ 3.75$ or $\mathbf{£ 1 0}$ for the set of three (these prices inlcude post, packing and VATI.

Also avallable is the K-40 plastic lockable tweezer-plier, moulded in glass-filled propylene
and incorporating self-locking handles. This locking facility enables the serrated jaws to grip and hold objects up to 7 mm wide.

The K-40 costs $£ 1.44$ including post and VAT.

We tested all the above tools and found them to be good value for money.

The side cutters had a novel feature: if you tried to cut a wire which was beyond the capability of thejeutters then the flexible handles simply bowed under the applied pressure.

The tweezer-pliers proved to be fine for holding small components and for tightening small nuts, while the shears were sharp enough to nibble through a piece of Veroboard without cracking it.

We found the K-40 lockable tweezer-plier particularly usefu because, as claimed by the supplier, it will even grip and hold a human hair.

All these products are available from Tele-Production Tools LImited, Stiron House. Electric Avenue, Westcliff-onSea, Essex SSO 9NW (tel 0702 3527 19).

Electronic Aids For The Handicapped Child

On Thursday 25th June 1981 an intensive day course, covering a broad range of technical aids. equipment and techniques developed for physically and mentally handicapped children, will be run at St Josephs' College, Lawrence Street, Mill HIII, London N7.

The course, starting around 10 am, will include a small exhibition of aids, including a special display of microcomputers. Although of particular interest to speclalists and professional people, anybody who would like some inslght into these developments will be welcome. Relatives of handicapped
children are especially walcome.
This course will cover some of the subjects discussed in Electronic Alds For The Disabled, this month's special feature on page 15.

Nearest underground station is Burnt Oak (Northern Line), then take a 251 bus to the college. By road, the college is 500 m north of Mill Hill roundabout (Watford Way). An access map will be sent to all who register.

The fee is $£ 7$ to professlonals or $£ 6$ to relatives of handicapped people and non-professionals. Fees must be paid in advance to Castle Priory College, Thames Street. Wallingford, Oxfordshire 0X10 OHE (tel 049137551). Cheques should be made payable to Castle Priory College.

Although tea and coffee are provided, those attending must bring their own packed lunch.

NEXT MONTH IN HE - NEXT MONTH IN HE - NEXT MONTH IN HE

RPM METER

Anywhere or anytime you need a reading of the revolutionary speed of a motor, shaft, oscillation etc, consider our revs-per-minute-meter project featured next month. This ingenious device is battery-powered, making it an ideal hand-held meter which measures rotational speed within the range
300-30,000 RPM.

RADIO CONTROL

ELECTRONIC CAR IGNITION

With the HE Electronic Ignition project next month you'll be able to get better performance and greater fuel economy from your car than with its conventional ignition system. The HE Electronic Ignition is a transistor-assisted, capacitive discharge system which virtually eliminates points-wear and allows more healthy and dependable sparks to be generated at the plugs.

This project doesn't cost the earth and is simple-to-build. With the current high fuel prices the chances are that it will pay for itself very quickly. Can you afford not to build it?

POWER SUPPLY

Of all the pieces of equipment that you're ever likely to need in your hobby a power supply unit is, arguably, the most important. If you are going to build your own, it needs to be rugged, cheap, reliable and easy-to-build. Next month we give details of a power supply which is all these things and more.

Output voltage is fully adjustable from about 1 V up to 15 VDC and it is capable of supplying currents of over an amp. A complete kit of parts will be available for this superb project.

Items mentioned here are those planned, but unforeseen circumstances may affect the actual contents

The first radio-controlled model aircraft were developed well before the Second World War. Today, radiocontrolled modelling has become a hobby shared by thousands of enthusiasts throughout the world. Guest writer Peter Christy traces the history of radio control and outlines some of the technological advances in the equipment. He also gives some advice on how to get started in the hobby, the choice of equipment . . . and the likely cost.

HE SUBSCRIPTIONS

Having problems hunting down your copy of HE each month? Make life easier for yourself: for only $£ 10.00$ you can have it delivered to your door every month for a year.

Use one of three methods of payment to subscribe to HE:

Barclaycard Enter your Barclaycard number in the space provided on the

कातtrano
visi coupon, add your signature, name and address - and we'll do the rest

Cheque or
Postal Order Enter your name, address and the amount in the coupon and send it with your cheque or postal order, made payable to Modmags Ltd.

Subscriptions Dept., Modmags Ltd., 145 Charing Cross Road, LONDON WC2H OEE

I would like to subscribe to 12 issues of Hobby Electronics

I WISH TO PAY

 BY BARCLAYCARD PLEASE CHARGE TO MY ACCOUNT MY BARCLA YCARD NUMBERIS:

I enclose a cheque/postal order* for $£ 10.00$
SIGNATURE
NAME
(BLOCK CAPITALS
ADDRESS

- Delete as appropriate

WATFORD ELECTRONICS
CARDIFF ROAD, WATFORD, HERTS., ENGLAND
ORDER, CALLERS WELCOME. Tel. Wafford $40588 / \mathrm{s}$
ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED, ORDERS
DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/
P.OE OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EOUCATIONAL P.OE OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONA
INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY WELCOME. PEP ADD 50 P TO ALL ORDERS UNDER E10. OVERSEAS ORDERS POSTAGEAT COST, AIR/SURFACE. ACCESS ORDERS WELCOME.
VAT Export ordera no VAT. Appliceble no U.K. Cubtomiver orily. Unlese eveted oither

Ample Free Cer Perking eppoce encílable.

$160 \mathrm{~V}: 10$
$4 \mu \mathrm{~F} 8 \mathrm{p}$.
1000v: 1 nf 17p; $10 \mathrm{n} 30 \mathrm{p} ; 15 \mathrm{n} 40 \mathrm{p} ; 22 \mathrm{n} 36 \mathrm{p} ; 33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{n} 42 \mathrm{p} ; 100 \mathrm{n} 42 \mathrm{p} ; 470 \mathrm{n} 9 \mathrm{p}$.

POLTETER RADIAL LEAD CAPACITONE: 250V: 10nF, 15n, 22n, 27n 4p; 33n, 47n, 68n. 100n 7p; 150 n .220 n 10 p. 330n, 470 m 13 p ; 680n 19p; $1 \mu \mathrm{~F} 23 \mathrm{p}$: $1 \mu 540 \mathrm{p}$; $2 \mu 2 \mathrm{46p}$; $4 \mu 7$ 60p.	ultrasonic tran doucers $40 \mathrm{kHz} 395 \mathrm{p} / \mathrm{pr}$

VOLTAGE REGULATORS

(Jacksons variable capacitors		DIODES		${ }_{\text {S }}^{\text {ScRa }}$ (hyristors
			ZENERS Range: 2 V 7 to 39 V 400 mW Range: 3 Bp wach 33 V .1 .3 W 1昜p esch	
	davo			
${ }_{0}$			${ }_{\text {Dipdo }}^{\text {NOISE }}$ 195p	
		bridge RECTIFIERS		
			${ }^{241500}$	
			(10AT200V 215	

PUSHBUTTON COIISO TEEPHONE Thit is is superbly styled, anepice, very compact push bution telephone with last-number redisl faclity fon pressing one butyou dislled). A special MUTE Butend without the other party hear		SLIM PENDANT MATCH This watch is beautifully de agned as a slim pendant 26 in . long neck chaln. The functions include: hours, minutes, econds, day month and 4 -year auto calendar. Comes in gola coloup and is ideal for day	STEREO PLYYER You can enjoy a very high-quality periect stereo wherevor you 80 or high qually stereo; pligyer comes complete with y carcing case, a se, of super sensitive oxtremely lightwelght heedphone and demonstration cassette. specia teature is the HOT LINE his enables you to hear what going on around you through a for soditional headphones. $\{44.85+£ 1.95 \mathrm{Ps}$ P Extra headphones [7.95 + 75 p p\& P	COMPUPHONE LAMBOA 738 Chis is the most advanced computerised telephone on the market. to has a bullt-in calculator,
	OULL MELOOY WORLD TINER At a touch of button it displays time anywhere in the world, with geographical position indicated by flashing that zone on the world map. It has two alarms, a home time alarm and a whay different melody for epprox. 30 secs, - t also has song demonstration facility. $\{24.85$ $+75 \rho$ P\& P	seconde. month, dete backilght, euto dste/time display mode. 4-yeser has an optional suto da. ra/time difplay mode. In this mode, time and date is alternatively displayed every 2 sec (Chrome or gold). $\mathbf{1 5 . 0 5}+50 p P 8 P$		COMPUPHONE LAMBOA 738 his is the most advanced computerised telephone on the market. th has a bullt-in calculator, most frequently used telephone numberra automatic dialling of preprogrammed number, auromenc re-dial with repeat dialing at short intervals until the other party enablas you 10 monitor the line efophone index and lots of other Exchange and Mar at fiso.00, but price. £ $80.95+$ E2.90 P8P
		This is a very good value for money, it has large easy to read 6-digit dinplay and shows hours. minutes and seconds. pressing e bution it shows date, month, and day of the weak, the 24 hour alarm has 5 min . snooze facility. It has a fully a backlight. (Gold colour).		
	This doorchime is powered from 9 V d.c. source and has from $9 V$ d.c. source, and has battery back-up facility. It has an automatic fune advance fa. cility and single or dual play pptions at 3 selectable speeds. A built-in burglar alarm circuir MALLY CLOSED alarm system. two bell pushes can be connected, each playing different tunes. $E 8.85+95 p P \& P$	FLUORESCENT This very compact unit is o torch. a portable fluorescent light and a hazzard flasing neat case. It comes complete with a shoulder strap to allow both hands to be free. Ideal for campers, hikers and motorists. Runs on six ' C ' size batteries E6.85		
2-BAND HIGH QUALITY HEADPHONE RADIO You can buy this AM/FM Headphone radio for the price of just headphones. Runs off single PP3, battery, has volume control and a telescopic aerial for FM wave- band. The ideal gift for youngsters. $£ 9.95+95 p \text { p\&p }$	WETHT Mer bugli EREO HEDPPONES ight it uses Sanarium size im vibrator unit enables minimum distorion. The $\{7.85+25 \mathrm{p}$ PRP	CAR ELECTRIC AERIAL Add a little luxury to your car by installing this motorised car aerial. Can be installed in any car or truck with 12 V supply, it is an exceltent value for money and is an ideal gifh. $[8.85+\varepsilon 1.25 \mathrm{P} \& \mathrm{P}$		(10.
HARLOW, ESSEX CM18 Tel. 0279414464	D. phone your barcuaychro OR RCCESS NUMBEER For Mmmedare despatch 24 hour service	GUARANTEE: All oür products äre guarantèed for a period of 1 year. We also offer a 10 -day money back guarantee lif you are not completely satisfied with our product, then return within 10 days in same condition as you received it). All our products are fully tested before despatch.		

IF YOU WANT to protect the family heirlooms or just keep prying fingers off your back issues of 'Hobby' then this is the project for you. The HE Ultrasound Alarm runs off a single 9 V battery and uses only three chips and a handful of other components. It's quick to build and easy to set up, offering good sensitivity and a choice of operating modes.

Shifty Sounds

The alarm works on the doppler shift principle. Sounds complicated doesn't it? But it's really quite simple. The pitch of a moving sound source will seem to be higher then lower as the source moves toward then away from a stationary observer. This change in frequency is called the doppler shift. The effect is often heard in daily life as a jet screams overhead or a police car whizzes by. Of course, your average burglar isn't going to visit in a jet or a police car so how does doppler ultrasound catch a thief?

Since the burglar moves with silent stealth we have to make the noise ourselves and the circuit generates and transmits a beam of sound which fills the room. Of course, at 40 kHz you would need supersonic ears to hear it. So long as the sound waves bounce off
stationary objects the frequency remains unchanged and the alarm silent. However, when an intruder enters the sonic field the sound waves strike his moving limbs and the doppler effect produces reflected sounds shifted by a few tens of Hertz (cycles per second) from the original transmitted signal. We can detect those small changes in frequency by mixing the reflected sound and the original to produce a beat note. The beat note (the fancy name is 'heterodyne'), appears as a lowfrequency envelope modulation of the ultrasonic carrier wave and we can detect it with a diode rectifier and lowpass filter in just the same way that an audio signal is detected in a radio receiver. The low-frequency signal can then be amplified and rectifled and used to drive a relay, bell or tactical nuclear weapon.

Construction

Build-up the printed circuit board (PCB) as shown in Fig. 2. Insert and solder in all low-profile components first (eg, resistors, diodes, IC sockets and preset resistors). Make sure the diodes are the right way round.

Use PCB pins where the 11 off-board connections are to be made.

Next, insert the remainder of the components to be soldered; capacitors and transistors - noting the correct polarity where appropriate.

Push-fit the ICs into their sockets, aligning the dot or notch on top of each IC with the notch shown in the overlay in Fig. 2.

Now, mark and drill the case for the six, 4 mm sockets and switch SW1 (in the back panel) and the two ultrasonic transducers (in the front panel) and fit them in. The holes for the transducers should be $3 / 8 / 19 \mathrm{~mm}$). Glue the transducers to the inside of the panel behind the two holes. Their bodies should be electrically isolated so check that the layers of glue you use to hold the transducers to the panel also provide insulation.

Finally, wire-up your project as Fig. 2 shows. Use screened cable to connect the receiving transducer (40R) and make sure that the lead which is soldered to the body of the transducer connects to the earthed screen of the cable.

Tuning Up

Sensitivity can be controlled by adjustment of RV2 which alters the gain of the low-frequency amplifier.

Project

Figure 1. Circuit of the HE Ultrasound Burglar Alarm

However, the circuit is at its most sensitive when the detector is just not quite saturated. The transmitted and reflected signals mix in the receiving transducer and ultimately drive the relay. If the transmitted signal is too strong then IC1 will clip the signal, C10 will charge up to a maximum and the low-frequency envelope will be 'sliced off'. We overcome this problem not by controlling the amplitude of the transmitted signal but its frequency. As we tune the transmitter away from 40 kHz the efficiency of the transducers is reduced and IC1 and the detector will operate in a linear region. In practice this means adjusting RV1 by trial and error or connecting a voltmeter across C10 and adjusting RV1 for a reading of about 3.5 V. The optimum setting for RV1 will depend on the siting of the HE Ultrasound Alarm, in the area to be protected.

Ultrasound is quite directional but will readily bounce off walls and ceiling. Greatest range will.be obtained in sparsely furnished rooms (put your valuables in the bathroom) as soft furnishings, curtains and carpets tend to absorb the ultrasound. Remember that the circuit will detect anything moving and that means people, curtains or even hot air from a radiator or air conditioner.

A switch is included to latch the output. This means that you can select either unlatched: alarm triggered during the period of detected movement or latched: continuous alarm from the moment of detection.

On/off switch SW2 can be any commonly available switch and it should be mounted outside the room which the alarm is protecting. That way you can switch off the alarm before you trigger it by walking into the room. If you do select a tactical nuclear weapon in favour of a bell, use cheap components you'll only need them once.

Other uses for the HE Ultrasound Alarm:

- Annunciator - it will keep an 'ear' open for you in unattended reception areas, shops, etc.
- Detector/counter - linked to a counting device (electro-mechanical or electronic) it will log moving objects such as people, vehicles, dogs, cats, flying saucers, etc.

An ideal audio alarm for use with the HE Ultrasound Alarm is the Super Siren, described in the April ' 81 issue of HE, pp 25-27. This will produce an ear-splitting noise of your choice when the ultrasound circuit is triggered.

How It Works

Ultrasound Burglar Alarm consists of two main parts:

- A multivibrator oscillator which produces a 40 kHz squarwave transmitted by an ultrasonic transducer.
- A receiver which detects change in the received ultrasonic waves due to any movement of an object within the sound field. This movement detector triggers a transistor which activates the load. The load may be a relay or an alarm etc.

The ultrasonic signal is generated by an oscillator built around IC3a. Frequency is set by adjus tment of RV1 and inverter IC3b provides an anti-phase drive to theultrasonic transmitter.

The signal from the receiver transducer is amplified by 01 and IC 1. Resistor R1 shunts the transducer, giving it a less 'peaky' response. Integrated circuit IC1 is configured as a noninverting amplifier with a gain of about 50. The output from this chip is rectified by D1 and D2 and smoothed by C10 and

R12. The combination of C11 and R13 acts as a high-pass filter, transmitting the signals caused by human movement but rejecting the very low frequency signals from moving air currents. Amplified by IC2 and smoothed by C12, the signals trigger IC3c and turn on 22 and O 3 thus energising the load. When there is no signal C12 will discharge through R15 and the load will deenergise. However, the circuit can be latched by closing SW 1 .

Ultrasound Burglar Alarm

Parts List

RESISTORS (All $1 / \mathrm{W}, 5 \%$)	
R1	180k
R2,9,13	47k
R3	3k3
R4	12k
R5	3k9
R6,7,11,12	10k
R8,14,16,	100k
17	
R10,15	1 MO
POTENTIOMETERS	
RV1	10k miniature horizontal preset
RV2	47k minature horizontal preset
CAPACITORS	
C1,6	$10 \mathrm{u}, 16 \mathrm{~V}$ tantalum
C2	100 n polyester
C3,5	1 nO ceramic
C4	$47 \mathrm{u}, 16 \mathrm{~V}$ tantalum
C7	4p7 ceramic
C8	1 n0 polyester
C9	47 n ceramic
C10,13	4u7, 16 V tantalum
C11	100 n ceramic
C12	2u2, 16 V tantalum
C14	22u, 16 V tantalum
SEMICONDUCTORS	
IC1	LM301 operational amplifier
IC2	741 operational amplifier
IC3	4093 quad, 2 -input
	NAND, Schmitt trigger
01,2	BC109 NPN transistor
03	BFY51 NPN transistor
D1-4	1 N4148 diode
D5	1N4004, 1 A diode
MISCELLANEOUS	
SW 1	single-pole, single-throw toggle
SW2	on/off switch
40R,40T	40 kHz ultrasonic
	transducer pair
Batteries, bell, nuclear warhead etc	

THE EARTHED SCREEN OF THE
CABLE MUST BE CONNECTED TO
THE TRANSDUCER WHICH IS DIRECTLY
CONNECTED TO ITS CASE

LOAD
eg, RELAY, SIREN

HE

Figure 2. Component overlay of the printed circuit board and all connection details. Note the use of screened cable to connect the receiving transducer 40R

Buylines

All parts are easily obtainable - the ultrasonic transducers being the possible exception. Most of the mail order companies who advertise in HE should help.

The approximate cost of components, excluding the case and PCB will be $£ 15$.

Above. Internal layout of the project

TO SW2 MOUNTED OUTSIDE THE ROOM

Hugh Davies interviews Roger Jefcoate, consultant assessor and lecturer on technical aids for disabled people

THROUGHOUT THE HISTORY of mankind, to be mentally or physically handicapped from birth, or disabled later in life, meant relegation from the life of normal healthy people.
While advances in electronics have been proclaimed in areas such as communications, weaponry, medicine and space technology, simple electronic aids for handicapped and disabled people have been sadly neglected. One obvious reason has been the low return compared with other more profitable ventures.

But slowly, over the last two decades and thanks to the work of a handful of people like Roger Jefcoate, a neglected part of society has begun to receive recognition and help through the ingenious application of readily-available electronic devices.

In this interview with Roger, you will see how a little ingenuity and a low outlay can bring pleasure and fulfilment to a handicapped person's life.

Last 20 Years

I asked Roger Jefcoate what he considered were the main technological advances in the last 20 years. He saw the first as being Possum, which he helped to develop from 1962 and which is still commercially available. As the best known of electronic controls, it consists of a range of remote-controlled devices for disabled people, and is operated by various kinds of switches.
"Possum showed that disabled people, with appropriate electronics, can gain greater meaning from life.'

Can you give any details of the electronics used in Possum?
"Yes, the original Possum was very simple, based upon standard electromechanical devices; that is, relays and Post Office type selectors - Uniselectors."

Possum enabled a single switch to operate a Uniselector which in turn enabled a light, a radio, a television, a heater or other appliances to be switched on.

He saw the next development as being Electraid, in 1969 : ' the first solid-state remote-controlled typewriter".

Possum had made use of typewriters for some years, but Electraid used solid-state electronics and was very versatile.
"The really clever bit about the Electraid is that for the first time the teacher or the therapist (or, indeed, if it is an adult, the disabled person) can program the machine by switching two knobs on the front, to provide a continuing physical and mental challenge."

Those with extreme handicaps can benefit from use of an Electraid. Roger gave the example of children with cerebral palsy (CP) who could try repeated actions with a single switch. It has been found that this repeated action gives improved residual ability the child becomes less handicapped.

Roger Jefcoate demonstrating the Lightwriter, a communication aid developed by Toby Churchill of Cambridge. Toby lost the use of speech and the use of all his limbs apart from his left hand. His handicap struck while in the third year of an engineering course at Bath University and he used his skills to design this machine, which converts typed characters into a message moving across the display strip
"'This was first discovered with a project I initiated called the Toy Aids projects where I realised by modifying toys and games in a very simple way - and this is right up the street of your Hobby Electronics readers - handicapped people were having more fun."

With the Electraid electronic typewriter, as few as one or two switches can be used to operate the machine. After the handicapped person has mastered these switches, the inputs can be increased to four, possibly coupled to a joystick. So with an increased number of switches, operation becomes faster. The machine, costing around $£ 2,500$, is especially useful for assessing the physical and mental ability of a child, and has been supplied to special schools and centres for the handicapped.

In 1981 came the application of the microcomputer to the needs of the handicapped. Roger sees this as being probably more significant than either of the other two developments, and he is heavily committed to the application of microcomputers.
"Apple have been very sensible here and they are the first microcomputer suppliers to set up an agency with national responsibility for disabled people."

The agency has been awarded to John Flack, principal of Electraid, after Apple saw the work he had been doing.

I visited Electraid at the Old Labour Exchange, Aylesbury, and I will give my own impressions of the work going on there in a later article.

Electraid Typewriter Control 5600, with visual indicator, Brother large-print typewriter and trolley. It Incorporates the facility for one, two or up to eight switch inputs

Toy Aids

Roger was given the idea for starting Toy Aids by Peter Toft of the Inner London Education Authority's Engineering Centre for Special Schools at Woolich College. Peter had for a long time taken an interst in the possibilities for modifying toys for use by disabled people. It was he who had run the first workshop for parents, teachers and therapists to come and make these leisure aids
"It was through discussions I had with Peter that I then asked the AIDIS (aids for diabled and elderly people) Trust if they might be prepared to support this. A former AIDIS trustee, Mr Colin Dann, decided that this was something worth pursuing."

The long-term result has been the setting up of a separate charity called the Toy Aids Projects, under the direction of Colin Dann. This makes available fully modified toys and leisure aids at reasonable cost to anyone working with handicapped people.

How The Electronics Hobbyist Can Help

Although Possum, Electraid or microcomputer aids are of great benefit to the handicapped, often simple home-made gadgets can also be of value, as Roger discovered when helping to set up the Toy Aids project.
"A two-year old, for example, isn't interested in Electraids and Possuṃns - it wants to play with its doll. Kids can be so handicapped that they can't even reach out and hold a doll. This problem can be solved by buying an electric doll from Woolworths and bringing out its control to a pair or switches. It will give movement, colour, sound - and stimulation. A kid can become, by repeated use of the toy, less handicapped."

Roger runs courses throughout the year to bring professional and non-professional people up to date with technological developments and to enable those attending to share their ideas and experience. More details of these will be given later. During the talks, Roger says: "Isn't it exciting that we've got this wonderful technology? Now let's look for ways in which we can avoid it!"

He sees the need for those designing aids and equipment (and this includes hobbyists) to make life simpler and cheaper for disabled people.

Between 1973 and 1975 he realised that the technology was available but it cost a fortune. Ready-made commercial equipment did not suit every need because every disabled person's needs are different. Roger then considered how he could harness the talents of do-it-yourself enthusiasts - amateur or professional (but preferably amateur) - to make life more enjoyable, not just more meaningful, for the disabled. His solution was to start an organisation called ACTIVE: "because we're ac tive people wanting to help disabled people themselves to be more active."

ACTIVE

The ACTIVE Association* was founded to promote do-it-yourself leisure, learning and communication aids. Roger Jefcoate sees it as his main vehicle for finding technicians to do odd jobs in particular areas. What is more significant is that, once enthusiasts become members of ACTIVE, they can setup their own links with a special school, centre for the handicapped and so on. As Roger said, " . . . if one of your Hobby Electronics readers reads this article and says, 'Well now, how can I help?', first thing they shouid do is to either join ACTIVE nationally, which will cost $£ 4.50$, or equally as good, initiate an ACTIVE group in their own patch if there isn't one.
"If there is one, join it, and then go charging along to the local special school, the local centre for disabled people, saying, 'My hobby is electronics. I am a member of ACTIVE. How can I help?'".

Roger sees this approach as being a very fruitful way of using people's skills. He gave an example of someone, armed with some knowledge of electronics, approaching a special school.
"They will say, 'Well, isn't there in ACTIVE's design index a "wee detector" - a device which will tell when'a child has urinated in the potty - part of toilet training?'
"If you are a mentally handicapped child you do need positive reinforcement. It's very hard to train a mentally handicapped child to the potty. And it's not unusual to have people 15 years old still in nappies. Yet with appropriate technology - simple technology this can all be avoided, because you can stick a little sensor inside the potty which can be linked to something that will give immense reward to that child. It might be a roller-coaster which performs. It might even be, obviously through very safe circuitry, something which switches on the telly."

Enthusiastic Amateurs

Roger is keener to pick up the amateurs rather than the professionals " . . . because it is the amateurs who seem to have more enthusiasm and certainly seem to be willing to give the time." He has found a furitful area of talent among sixth-form schoolboys.

He turned to the example of a remote on/off control for a TV. Many people, particularly the elderly, are forced to spend a lot of time in bed. Roger sees the television as a "window on the world" - but not everybody can afford colour TVs with remote control built in. And there are virtually no sets available with remote on/off control.
"It's not a difficult job, using basically a few commercial components, to build a device that will give, very safely, remote on/off over a telly."

So it's left to the amateur to see the idea through to its conclusion?
"Oh yes, involvement must be the name of the game. What we would hope is that if they do a thing like this (on/off TV control), they shove the circuit, and preferably a picture or two of the end result, up to ACTIVE's headquarters so that we can put it, if it is felt suitable, desirable, in our design index. ACTIVE produces a design index of well-proven designs so that other people can copy a good initial job."

What about the safety of a design: does ACTIVE exercise any sontrol?
"If somebody is doing a remote TV control (for example), my usual suggestion is to base it on an existing well-tried commercial device, such as the Home Automation single-channel infra-red device, where the bit at the mains end is already tied up and organised.
"The clever part, from the amateur's point of view, is to modify the infra-red unit so that the disabled person can work it."

Which is presumably at low voltage?
"On the whole, we in ACTIVE are not too enthusiastic about using mains voltage on anything. But you know you've got to let people use their own heads.'

Windmill Teaching Aid

One example he gave of where mains might be used was of a motor driving a rotary pointer on a learning aid for children in a special school. Care was obviously needed to ensure that the switching circuit was either double-insulated or, preferably, operating from a low voltage (that is, 12 V or less).

Roger is still looking for a better design of this teaching aid nicknamed a windmill. The model shown was developed for a school in Chipping Norton. He considered that HE readers could come up with better designs of their own. (Don't forget the HE Project Design Competition for the International Year of Disabled Persons, first announced in the April ' 81 issue. A fresh application form is provided on page 19.)

Roger said that mechanical rotary pointers (preferably single pointers) were more successful than circles of LEDs.

Electronic Aids For The Handicapped

Roger was asked to give specific examples of handicaps and how these had been made easier to bear by the use of some electronics ingenuity.

Head-operated pad from Electraid. This pad is made from a car spot lamp cover and produces changes in air pressure at the end of the tube when pressure is applied to the pad. These changes are converted in turn to on/off functions by a remote pressure-sensitive

Early 'windmill' teaching aid in use. The spastic child can operate switches to make the pointer come to rest at the word which corresponds to the picture being indicated. The machine is made from Meccano components and is battery-operated
"As I said earlier, it's always the ability which counts. In operating any remote-control device you've got to look for what the person can do. And if they've got good hand control, well you're home and dry. If they have good hand control then you've go to be very careful in mounting a switch or switches to operate some form of remote-control device.
"For the severely handicapped people there's often very small movement: for a person with advanced motor neurone disease it can be just a flicker in the foot.
'"For the heavily handicapped spastic child, whosearms flail all over the place, you might have to end up with a single or dual switch in the head area, perhaps for side-to-side movement of the head."

He saw the ideal switch, because it's socially and psychologically acceptable, as being a standard switch operated by hand. But for a disabled person, a standard switch could be one that is 6 " square, specially that made by an enthusiastic amateur.

Roger sees switches as being an interesting area of development because he considers nobody has yet designed a really good large flat surface area switch. He is looking for a good design for an electromechanical switch, possibly based on a microswitch, that can be logged on ACTIVE's design index. He is equally interested in a good design for a touch-operated switch (sensitive to a change in capacitance), with variable sensitivity. He put these designs forward as a challenge to you, our readers.

Commenting on touch switches he said: "Even now we have got a long way to go. Nobody has produced a good design. There is one commercially but it's very expensive.'

> Head control of a modified train set. Roger Jefcoate is seen sitting next to a spastic boy who can only move his hand, to which a magnet is attached. The magnet can be dropped into any one of 20 slots, each one controlling a signal, a point, a start or a stop. The picture was taken at one of ACTIVE's conferences

He is a 'microswitch man' primarily " . . . because it's an electromechanical thing, you can feel as the pressure increases against the switch and you can feel it as it snaps open."

Let's take a few examples of handicaps and what has been done for them.
"Take advanced multiple sclerosis, for a start. Here we have a person who is wheelchair bound, and who wants to do something remotely. Well then, looking for the ability: they've got no ability. They can't even turn their head from side to side. What can you do? Well, they can still drink. So you can get hold of an air-sensitive switch - you can either buy them commercially or go down to the washing machine service depot and scrounge a second-hand one - which could be operated by light sucking or light puffing down a tube."

He went on to give an example of a water level sensing switch from Hoover. Even those that are no longer reliable for the original function of switching a mains-operated pump or heating element are still satisfactory for low-voltage operation.
"At the other end of the range you've got a fairly badlyhandicapped spastic child, arms flailing all over the place. Usually the spastic child hasn't got good puff and suck control because they can't close their mouth and seal their lips. Then we're going to have to look for an extra tough switch which on the one hand will trigger with a relatively modest pressure, say $1 / 2 \mathrm{lb}$, but at the same time will withstand a wack of 20 lb on the same switch. Tough specification, that."

One technique he suggested was to use two pieces of wood, hinged at one end, and with a very low profile. With a microswitch fixed between the hinged arms, the operating pressure can be adjusted simply by packing in a desired amount of plastic foam. Thus the more foam that is used, the tougher the switch is to operate. Such a design makes use of simple everyday materiais.

Another example he gave of a handicap was muscular dystrophy in children, a progressive disability with progressive weakening of the muscles.
"There's no spasm there like there is with the spastic child. You need a light-duty, light-pressure switch - because it's never going to have to withstand a real bash - which can respond to whatever they can do. And I find that a muscular dystrophy child is particularly successful using joysticks."

Roger said that very easily home-made or commercial joystick assemblies can be used in this application.
'It's quite easy to build a sensitive joystick, with a spring underneath it to keep it in a central position against a couple of simple microswitches.
"The great advantage of joysticks is that you can get more than one result from the single lever action."

One example he gave for the use of a joystick was for it to enable the handicapped person to turn the pages of a book.

He next described a disability common to many of us.
"Arthritis is a very distressing handicap amongst the older population - although even that can hit children. There is an unfortunate combination: it isn't just paralysis, it's pain to go with it as well as disfigurement. But again the same kind of fairly sensitive switches that would be used, for example, by a person with multiple sclerosis or a child with muscular dystrophy, would be relevant.
"It's always this business of finding what the person can do easily and satisfactorily: what they themselves feel is most appropriate."

What about the needs of adults?
"'Adults have different needs. I find adults enjoy much more their window on'the world - the telly. And of course we have this problem of safety with the mains and so on. And again it's the old story: what can they do most easily, balanced against what is socially and psychologically acceptable, because disabled people don't want to look like men and women from Mars, with wires festooned in every direction. How can we give them the remote control that they need without the wires, nice and discreetly?
'I find, with your average handicapped adult, a modestly-sized switch will work out quite successfully. Even the quite heavily handicapped spastic adult can manage a switch that would, for example, be about the size of a C-60 cassette holder."

Proportional Control

All the switches described so far have been simple on/off devices, so I asked Roger whether any proportional movement controls were used by handicapped people.
"Certainly there are proportional joystick controls, for example on electric wheelchairs, where you do indeed want quite fine movement. But other than that there's not a lot of need for proportional control except on things like microcomputers, model aircraft, model boats and this kind of thing.'

Would proportional control help a disabled person to paint a picture?
"If they can't manage to cover the whole painting area then a straight on/off control on a motorised easel is perfectly adequate."

One. such easel wâs initiated by.Roger and designed by REME (Royal Electrical and Mechanical Engineers).

Notting Dale Technology Centre

Designing aids for handicapped people can have some unlikely benefits, not least to the designers themselves. One such example of where this has happened is the Notting Dale Technology Centre at Hammersmith, set up by Christopher Webb. Here a group of unemployed youngsters from the Hammersmith area, most of whom have an interest in electronics, are being given a basic training, and are helping handicapped people through their work. It is in this concept of teaching a trade, linked to social awareness, that Roger comes in.
'I shove at them good projects which these lads can get stuck in with, they can tackle, they can see the disabled person who needs it, they can install it - and it's already working out quite successfully."

An example he gave was of a gadget called the Microprocessorassisted Communicator, invented by Patrick Poon, a graduate student at Kings' College. It is a new communication device for disabled people.
"The beauty of Notting Dale is that they'll tackle things where they'll make them in ones and twos where commercially it would not be viable.'

At least one of the lads has been offered employment as a result of his work at the centre.

Courses

It was mentioned earlier in this article that Roger Jefcoate runs courses throughout the year. These take two forms: in-depth residential courses on technology for the handicapped child, and single-day courses. The first are held at the Spastics' Society's Educational Centre, at a cost of £150, and are aimed at professional people throughout the world.

The second - and of interest to our readers - are held at various places throughout the UK at a cost of $£ 7$ to professional
people and $£ 6$ to non-professionals (the $£ 1$ reduction is a subsidy from one of the charities to which Roger is linked).

Readers are welcome to attend the next day course on Thursday, 25 June 1981 at St Joseph's College, Lawrence Street, Mill Hill, London NW7. The course opens with arrivals and coffee at 9.45 am . Fees must be payed in advance to the organisers: Castle

Priory College, Thames Street, Wallingford, Oxfordshire OX10 OHE (Telephone 049137551).

Further details of this course are given under Monitor on page 6.
In a coming issue of HE , I hope to give details of $m y$ visit to Electraid in Aylesbury, and to outline some of the latest microcomputer aids for the handicapped.

Roger Jefcoate

In the early 60s, Roger Jefcoate was one of the original trio who developed Possum, the first fully adaptable electronic aid for the disabled, at the National Spinal Injuries Centre, Stoke Mandeville Hospital.

He saw a need in the early 70 s for a freelance consultant on electronic aids to advise those concerned with rehabilitation about the most appropriate aid for a particular disability. So he set himself up in this role after leaving the Possum project in 1972. Without any commercial links whatsoever, he works with therapists, teachers, health visitors, district nurses and doctors, and liaises with societies such as the Spastics Society, the Multiple Sclerosis Society, the Muscular Dystrophy Group and many smaller ones both in the UK and abroad.

Roger founded the AIDIS Trust in 1975 to sponsor urgently needed electronic equipment and aids for disabled and elderly
people. He also founded ACTIVE, an association which promotes do-it-yourself leisure, learning and communication aids:

To keep people in touch with the latest developments in aids and to pool ideas, Roger runs residential and single-day courses throughout the UK. These are attended by people from many parts of the world.

He is concerned with all kinds of handicaps, and primarily with extreme cases. Having established the person's ability he will set about seeking a practical solution and the funds with which to achieve it.

Although Roger Jefcoate has no formal qualifications for this work, he received an honorary degree from the Open University in 1980 for his services to disabled people.

His interest in electronics stems from electronics as a hobby. One of his early achievements was to help develop the world's first electronically-controlled ventilator machine, which operates as an artificial lung.

COMPETITION Project Design for the international 19 Year of Disabled Persons

AS A REMINDER, we are repeating the entry form for our competition, first announced in the April ' 81 issue. Design an electronic aid for the disabled - even a very simple one - and you could win the first prize of $£ 200$ cash.

No restriction is placed on the area of electronics that you wish to use: transistors, integrated circuits, valves (if it is impossible for semiconductors to do the job!), electromechanical aids (electronically controlled), computer programs - the choice is yours.

The only restriction we place on entries is that of ORIGINALITY: the design must be original, or an original adaptation that has not been published or marketed.

No Design Is Too Small

 Entries can be as simple or as complex as you like, but we envisage that the winning entries will be ingenious solutions to a problem or problems encountered by a disabled person rather than an enormous (and expensive) box of tricks.We will, if necessary, segregate designs into 'classes
of complexity' or specific types. In judging, we may also take into consideration the ages of the entrants.

First Prize $£ 200$ cash
 Second Prize Kikusui 538A oscilloscope PLUS
 Three runners-up prizes

Closing date for the competition was fixed as 31 July 1981 in the April ' 81 issue. So far the response has been low, so we have decided to extend this date to 1 September 1981.

No correspondence will be entered into after this closing date.
As a guide, set out your design along the lines of an HE project - we will publish the winning designs.
Send your design to:
Project Design Competition Hobby Electronics Modmags Limited 145 Charing Cross Road LONDON WC2H OEE.
AND include the following:

- the completed entry form (see below)
- written details of your design, including drawings or black-andwhite photographs
- a suitable sized stamped and addressed envelope (if you wish to have your material returned)

If your design is 'boxed' or breadboarded, keep it intact until at least two weeks after the closing date: if you haven't heard from us by then you can assume that your design is not among the winning entries (your daytime telephone number would be very helpful).

HE

PROJECT DESIGN COMPETITION ENTRY FORM

I certify that my design, to the best of my knowledge, is original and has never been offered for publication or manufacture

Signature . .

Name

(CAPTALSI
Address
(CAPITALS)

Daytime tel.no
Project title

Electronic Organ-3

Part 3 of our super organ project outlines further constructional details

WELL AT THIS STAGE, you'll be pleased to know that you are halfway through construction work on the HE Electronic Organ. This month we deal with the remaining printed circuits and we'll leave the final interwiring between PCBs and the keyboard till next month. Are you sitting comfortably? Good, then we'll begin.

Construction

Build-up Boards 3 and 4 according to the overlay in Fig. 1. The diagram is an overlay of the top half of the boards only. We'll call it the 'topside' overlay.

Note that you have two extra holes to drill on each board for earth (ie O V) connections (actually the right-hand hole on Board 4 isn't strictly necessary).

Insert and solder PCB pins where all interboard connections are to be made (50 on Board 3, 44 on Board 4).

Differences in component values of the topside overlays for both boards exist for capacitors C1 to C30 and the top line of resistors: The values of Board 3 capacitors are shown unbracketed, while those of Board 4 are shown bracketed. Resistor values are found from Fig. 3 for Board 3 and Fig. 4 for board 4.

Use sockets for all integrated circuits. All six ICs are of the CMOS
variety and you run the risk of damaging them if they are handled incorrectly, so we advise that you leave them aside for now

Make sure the polarity of all capacitors and transistors is correct before you solder them in.

Wher you have completed the topside construction fasten the two boards down, in position on the PCB guiderails. Now, solder the seven short links (made of single-strand wire) between the two boards.

Take the boards (now joined by the seven links) off their guiderails and turn them over so that they are in a position as shown in Fig. 2, the bottom overlay.

Solder the 48 resistors into place, between pads, as shown. Make sure that none of the resistor leads touch any parts of the copper, other than those intended.

Now, connect the 60 thin, insulated wire links from each numbered pad on the bottom row (eg, 1 to 1,2 to 2 etc). This is a long, monotonous job, but try to keep them as neat as possible. Once done, cable-tie the group of wires at a few points along the line, to hold it neatly together. If you haven't got plastic ties (as we used) then string will do.

Turn the boards over again and put them back onto the PCB guiderails in their correct position and screw them down tightly.

Connect the six links (of single strand wire) from Board 3 to Board 1

The only power supply connection now necessary is an earth from Board 3 to Point 1 on Board 1. Use insulated wire for this connection.

Finally, push-fit the six ICs into their sockets, making sure they are the correct way round.

CONNECTIONS TO KEYBOARD CONTACTS
Figure 1. The topside overlay diagram of Boards 3 and 4. Resistor, transistor and IC values are identical on both boards. Board 3 capacitor values are shown unbracketed and those of Board 4 are shown bracketed

Figure 2. The bottom overlay of Boards 3 and 4. Resistor value are as shown. After all connections have been made between the numbered pads, carefully cable-tie the group of wires together

HE ORGAN 384

Project

Figure 3. Circuit of Board 3

Parts List

Parts List Board 3

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)
R1,5,6,10,11,15,
16,20.21,25.29
30,34,35,39,40
44,45,49,53,54
58,59,63,64,68
69,73,77,78,82,83
87,88,92,93.97
101,102,106,107.
111.112.116.

117
R2,7,12,17,22,26,
31,36,41,46,50,
55,60,65,70,74,
79,84,89,94,98
103,108,113,118,
122,127,132,
137,142
R3, 8, 13, 18,23,27.
32,37,42,47,51
56,61,66,71,75,
80,85,90,95,99
104,109,114,119.
123.128,133.138,

143
R4,9,14, 19,24,28,
33,38,43,48,52,57
62,67,72,76,81,86,
91,96,100,105.
$110.115,120,124$,
129,134,139.
144
R12 $12,125,126,130$.
R12 T, 125,126.
$131,135,136$.
140,141

CAPACITORS

C1,2,6,7,11,12,
$16,17,21,22,26,27$

C3,4,8,9,13,14,
18,19,23.24,28.29,

C5, 10,15,20,25,30
4u7.16V tantalum or electrolytic

3 u 3.16 V tantalum or electrolytic 2u2, 16 V tantalum or ele trolytic

SEMICONDUCTORS
IC1,2,3
4520
01.30 NPN BC183 NPN iransistor

Above. Boards 3 and 4 in final position showing all single-strand wire links

Parts List

Parts List Board 4

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)
R1,5,6,10,11,15,
16,20.21.25.29.
30,34,35,39,
40,44,45,49,53,
54,58,59,63,64.
68,69
R2,7,12,17,22,26
31,36.41,46,50,
55,60,65,70,74,
79,84,89,94.98,
103,108,113.118.
122,127.132.
137.142

R3,8,13,18,23,27
32,37,42,47,51,
56,61,66,71,75,
80,85,90,95,99,
104.109,114,119

123,128,133,13-
8.143

R4, 9, 14, 19, 24,28.
33,38,43,48,52.
57,62,67,72,73,
76,77,78,81,82,
83,86,87,88,91,
92,93,96,97,100,
101,102,105,106.
107,110,111,112.
115,116,117,120.
121,124,125,126.
129,130,131,134.
135,136,139,140.
141,144
100k

CAPACITORS

C1,2,6,7.11,12,
16,17,21,22,26,27.

C3,4,8,9,13,14.
18,19,23,24,28,29,

C5, 10,15,20,25,30

SEMICONDUCTORS
IC1.2,3
programmable counte
01-30
BC183 NPN transistor

$4 u 7.16 \mathrm{~V}$ tantalum or electrolytic
$3 \mathrm{u} 3,16 \mathrm{~V}$ tantalum or elecirolytic 2u2,16 V tantalum or electrolytic

To octave
BUSES

Figure 4. Circuit of Board 4

How lt Works

Boards 3 and 4 comprise all Dividing and Keying Circuits.

Twelve notes comprising the semitones of the top-octave are fed from Board 2 to the six ICs of Boards 3 and 4 .

Each note is divided by $2,4,8$ and 16 by the circuit thus making five complete octaves.

As a key on the keyboard is pressed, one transistor key circuit allows an envelope of sound through to the output.

The divider circuitry is made up of six 4520 ICs which bear the official title 'Programmable, Divide-By-N, 4-Bit BCD Counters'. They are configured to divide any input frequency by $2,4,8$, and 16 , thereby producing one octave, two octaves, three octaves and four octaves below that of the input. Each IC divides down two separate input frequencies

At the output of this part of the circuit all 60 notes of the organ are permanently available.

Depressing the key on the keyboard
allows a +12 V pulse to trigger one keying circuit built up by a transistor, flve resistors and a capacitor. Each keying circuit is essentially a simple envelope generator with a set attack and decay time defined by the value of the capactior. To give a realistic orgen sound the bass notes should have a longer attack/decay time than that of the treble notes, thus the capacitor values of the bass notes are correspondingly higher.

Figure 5. The HE Electronic Organ after this month's constructional stage

Buylines

A llmited number of kits for the HE Organ can be obtained from:

> Mr A T Hawkins
> 23 Blenheim Road
> St Albans
> Herts AL1 4NS
for $£ 99$ inclusive. The kits contain all metalwork, hardware and PCBs, as well as the keyboard and components. You only need to supply your own baseboard and case.

For those readers who prefer to buy the components themselves, Mr Hawkins is willing to supply the keyboards seperately. None of the other items should be difficult to find.

Figure 6 (Below). Underneath our two prototype printed circuit boards. Note how the 48 resistors have been positioned diagonally on the boards. The 60 multistrand connecting leads should be cabletied together at a few points

A LIMIT,ED NUMBER of self-assemble modular furniture kits have been specially reserved at low prices for HE readers. This is your chance to mount your hi-fi equipment in attractive real teak veneered cabinets, complete with tinted Perspex doors and adjustable shelves.

These easily-assembled kits enable you to configure the equal-sized cabinets to your choice and to suit your room space requirements.
Kit 1 costs only $£ 79$ and consists of three cabinet modules, 547 mm ($1 \mathrm{ft} 91 / 2 \mathrm{in}$) wide by 375 mm (1 ft $23 / 4 \mathrm{in}$) high by 413 mm ($1 \mathrm{ft} \mathrm{4} 1 / 4 \mathrm{in}$) deep, complete with two tinted Perspex doors, four shelves and two matt black plinths. Also included is a metal divider finished in matt black which takes a fixed shelf and a back panel. One of the shelves can be used between two of the cabinets as shown.

Kit 2 costs only $£ 73$ and consists of three cabinet modules, complete with one tinted Perspex door, three shelves and two matt black plinths. (No metal divider assembly is supplied with this.kit.)
The above prices include VAT and delivery to your door.
Each kit comes with all screws, fittings and easy-to-follow instructions. Items from Kit 1 and Kit 2 can be used together to suit your requirements.
When assembled, this furniture is ideal for:

- mounting most types of audio equipment, with the advantage that unsightly leads are hidden from view holding your LP or cassette collection
- use as room furniture to hold books, ornaments, crockery, etc.

EXCLUSIV
OFFER
Kits

AKn 2 This comes with one tinted Perspex door and without the metal divider

4 Kit 1 Two tinted Perspex doors are provided, together with a metal divider for separating two of the cabinets. In the example shown, a record deck has been mounted on the connecting shelf

The pictures show how the two kits can be used to mount and disjlay your audio equipment

We stress that this is a limited offer. Once this consignment has gone it cannot be depeated.
Send your order today to:
HE Furniture Offer, Modmags Limited, 145 Charing Cross Road, LONDON WC2H OEE

Please send me.... of Kit 1 at $£ 79$ each
. of Kit 2 at $£ 73$ each
I enclose a cheque made payable to Modmags for a total of £
OR
I wish to pay by Barclaycard. Please charge to my account number
enrclatcard nO.
VISA \square 4929 \square
Signature \qquad
Name (BLOCK CAPITALAS) Address (block Capitails)

Please note that the offer applies to UK mainland only: allow 28 days for delivery

Radio part two
 In the second part of this article lan Sinclair describes the operation of tunedradio frequency (TRF) and superheterodyne (superhet) receivers, and how signals are demodulated. He also looks at a practical radio

WE ENDED LAST MONTH having described what happens when a charged capacitor is connected in parallel with a coil. Figures 11 a to 11 f are shown again this month to remind you of how the see-saw action described in the first part takes place. The kind of waveform you would obtain if an oscilloscope was connected across the circuit is shown in Fig. 11 g . The important point is that this circuit has generated a signal at a frequency which is set by the coil and the capacitor. This frequency is called the resonant frequency, and its importance is that it is the natural frequency of oscillation of this circuit. We can make this circuit into a continuous generator of oscillations simply by continually replacing the small amount of energy which is lost because of the resistance of the coil.

g

CURRENT OR
CURRENT OR
VOLTAGE

Figure 11. A charged capacitor in a resonant circuit. Figures 11 a to $11 f$ show how the charge produces a current which then charges the capacitor in the opposite direction, reversing the current until the charge is almost at its original value

From the point of view of radio reception, the interesting action of this circuit occurs when we try to feed a signal into it, as in Fig. 12. If the signal that we feed in is at the same frequency as the natural or resonant frequency of the coil-capacitor circuit, then the coil and capacitor will resonate - currents will start to circulate to and fro until there is a comparatively large amount of signal present, keeping in step with the input signal. If we feed a number of different signals into this circuit, the only one which will have any effect will be the signal whose frequency is the same as the resonant frequency of the coil and capacitor combination, which is called a 'tuned circuit'. The action can be neat-

Figure 12. Feeding a signal into a parallel resonant tuned circuit
Iy illustrated practically by the circuit shown in Fig. 13. The signal generator supplies signals at a constant amplitude, but at a frequency which can be varied. The oscilloscope detects the amount of signal across the tuned circuit and as the frequency of the signal generator is altered, the amplitude of signal across the resonant circuit rises to a peak and then falls again. What is happening is that the resonant circuit responds mainly to that frequency represented by the peak of the graph. It is as if the circuit had a high resistance for the signals at the correct frequency, but a low resistance for all other signals. It is called the dynamic resistance' of the tuned circuit.

Figure 13. Experimental method (a) of observing the action of circuit In Fig. 12. The frequency of the signal from the signal generator is varied, and the amplitude of the output measured on the oscilloscope. The resulting graph (b) has a steep peak at the resonant frequency

You can see that resonant or tuned circuits allow us to sort out one frequency from another, and we can alter the frequency of resonance either by altering the capacitance or the inductance value (see Fig. 14), which is what we do when we tune a radio. The trouble is that one tuned circuit isn't selective enough to sort out the signal from all the nearby signals that exist on the crowded airwaves these days. In the days when there were only two or three transmitters on the whole of the medium-wave band around (550 kHz to 1.3 MHz) one tuned circuit was sufficient.

Figure 14. Varying the tuning. This can be done using (a) a variable capacitor or (b) a variable inductor

Adding Extra Stages

The obvious solution is the one that was used in the early days of radio; that is, to have several resonant circuits, each with variable tuning. The arrangement shown in Fig. 15 is of a tuned-radio-
frequency (TRF) receiver, the type used in the 20 s and 30 s , and still built even today. There are two tuned circuits, each tuned by a variable capacitor. The circuit can be tuned with one control because the variable capacitors are 'ganged' (connected to the same shaft so that both capacitors can be varied together).

The TRF receiver with one stage of (valve) amplification was such an improvement over the single tuned circuit receivers of the day that its development resulted in more receivers being sold, so that more transmitters opened up to fill the demand for radio broadcasting. Soon it became painfully obvious that two tuned circuits were not enough to separate the signals from transmitters that were on frequencies close to each other. The obvious step was to add another tuned circuit and another stage of amplification, but this turned out to be much harder. The snag this time was instability. With three tuned circuits and two stages of amplification, the slightest amount of signal fed back from the final amplifier to the aerial would cause oscillation. This not only caused the receiver to make unpleasant squealing noises, but it also interfered with other receivers around making the TRF receiver a thoroughly unpopular device.

Figure 15. Outline of a TRF receiver. The signal is tuned, amplified and then selected by another tuned circult

Supersonic Heterodyne

The answer lay in a different approach to receiver design, pioneered by the American engineer Edwin Armstrong. It was Armstrong's proposal that the first stage of a radio should be a frequency-converter, changing the frequency of the wanted input signal into a fixed frequency, the intermediate frequency (IF). Most of the amplification and selection could then be applied to this signal, with no need for variable tuning at this stage. Because there was no need to vary the tuning of the IF signal stages once set at the factory, the tuning components could be contained inside metal boxes, discouraging feedback of signals. In any case, feedback of signals to the aerial could cause few problems because the intermediate frequency was not the same as the frequency being received.

Armstrong called the principle the Supersonic Heterodyne supersonic because the intermediate frequency is well above the highest frequency of sound we can hear, and heterodyne because this is the name for the action of mixing two frequencies together to produce one which is the difference between them (it's very similar to modulation). The name was soon shortened to superhet, and both the name and the principle have been the backbone of radio receivers ever since.

The arrangement of a typical modern superhet receiver is shown in Fig. 16. The tuning control affects two stages, the input tuhed circuit, whose coil is the one around the ferrite rod itself, and the oscillator, which generates a signal at a frequency 465 kHz higher than the frequency to which the input is tuned. The mixer stage is the heterodyne part of the receiver. One input to the mixer is from the aerial, and consists mainly of the wanted signal together with signals at the frequencies close to the wanted one. The other input to the mixer is the oscillation at a frequency 465 kHz higher than the wanted signal. This oscillation is a sinewave, with no modulation, and as an economy measure is usually generated by having the mixer operate as an oscillator rather than having a separate oscillator stage.

Let's assume, for the sake of an example, that the wanted signal is at a frequency of 1 MHz . The oscillator signal then has to be at 1.465 MHz , and the signals from the output of the mixer will be at these two frequencies, along with a 465 kHz signal (the difference between 1.465 MHz and 1 MHz) and a 2.465 MHz signal (the sum of 1.465 MHz and 1 MHz). From this mixture it is easy to separate the lowest frequency signal of 465 kHz which, because of the action of the mixer, is modulated in exactly the
same way as the original 1 MHz at the input. This 465 kHz intermediate frequency can then be amplified, using several tuned circuits set permanently at 465 kHz to make sure that the bandwidth is narrow enough to avoid interference from transmitters broadcasting at frequencies close to the one we want.

Figure 16. Block outline of a superhet, recaiver. The signals from the aerial are filtered by the first tuned circuit to select just a fow. These are mited whth a slnewave from an oscillator. The mixing generates an intermediate frequency, which can then be amplified and selected by several tuned circuits. A much narrower bandwidth can be selected and much more amplification can be used than with a TRF recelver

When the tuning control is altered, the ganging of the variable capacitors ensures that the oscillator tuning is also changed, keeping the oscillator frequency 465 kHz above the signal input frequency and ensuring that the IF remains constant. Using the superhet principle then, we can have plenty of amplification and many tuned circuits without the risk of the oscillation which always haunted TRF receivers. The superhet principle is used, not surprisingly, for all types of receivers ranging from the humble medium-wave tranny to the early-warning radar receiver and yes, your TV as well.

Extracting The Original Sound

No matter how much tuning and amplification you apply to a radio signal, it's still a radio frequency signal which, because of its modulation, is continually changing in amplitude. Loudspeaker cones cannot vibrate at the frequency of a radio signal, whatever its amplitude, and even if they could we would not be able to hear the sounds. We need some method of extracting the audio frequency signals from the modulated radio frequency (or more correctly, since we invariably use a superhet, IF) signal. The method of extraction is called demodulation, and for amplitudemodulated signals it almost invariably takes the form of a diode demodulator.

b

Figure 17. Dlode demodulator (a) with the waveforms (b) produced by varlous inputs at IF

A typical diode demodulator circuit is shown in Fig. 17. The important components are the diode D1, the capacitor C1, and the resistors R1 and R2. The action is a combination of rectification and charge storage. To understand what happens, you need to know that the time-constant of C1 with R1 and R2 is greater than the time between IF waves, but is much shorter than the time between AF waves. This means that the voltage across the capacitor C 1 will not change noticeably when the diode is cut off during the negative cycle of the IF, but will fall fast enough if the diode does not conduct for several IF cycles. If the amplitude of

Feature

the IF was steady, C1 would charge up to the peak voltage of the IF and stay at that voltage with the diode conducting only at the peak of each wave to keep the capacitor charged, compensating for the loss of charge through R1 and R2. The amplitude of the IF is not steady, however, when the signal is modulated: it is changing at an audio frequency rate, and the voltage across C1 will alter at the same rate because the time-constant of C1 with R2 and R3 is not long enough to keep C1 charged for the time of one audio frequency wave.

You might gather from all this that the values of C1, R1 and R2 are fairly critical, and you'd be about right. Only about right, mark you, because there is a reasonable bit of leeway. You see, the IF for an AM radio is 465 kHz , which means a time of 2 microseconds (2 us) between wavepeaks, but the highest audio frequency we can transmit on the crowded medium wave is 5 kHz , a time of 200 us between peaks. We only have to choose a time-constant which is greater than 2 us and less than 200 us and we're there. In practice, we usually make the time-constant on the small side, and then smooth out the waveform with an additional capacitor (C2 in Fig: 17).

What we have now is a demodulated signal which we can amplify and use to operate a loudspeaker. This signal consists only of positive voltages when the circuit shown in Fig. 17 is used, because of the diode, so that a DC voltmeter connected across C2 would read a positive voltage whenever a signal, modulatedor not was received. We make use of this DC signal as well. The amplitude of the carrier signal from a radio transmitter, unless the receiver is very close to it, is seldom steady. This is because radio signals are reflected from the ground; from large metal objects and, most important, from a layer of charged particles called the ionosphere (see Fig. 18) well above the Earth's atmosphere (at a height of 30 to 150 miles). Unless you are very close to the transmitter, a fair proportion of the signal that you receive will

Flgure 18. How reflections from the lonosphere cause more than one signal from a given transmitter to reach the receiver (not to scale)
a

Figure 19. Direct wave and reflected wave add in phase (a), so that the signal at the receiver is stronger than normal. The two waves cancel in antiphase (b above right), so that the slgnal at the receiver is much weaker than normal
b

have bounced from this layer, and what reaches the aerial of the receiver depends on how far the reflected wave has travelled. If the reflected and a direct wave (Fig. 19a) from the same transmitter reach the receiver in phase (their peaks coinciding), then the two waves add to give a stronger-than-normal signal. If the reflected wave has to travel just a half a wavelength more or less, however, the waves that reach the receiver will be in antiphase (Fig. 19b) and the result ing signal will be much smaller. If the signal wavelength is 300 m , for example, then a half wavelength is 150 m , and the reflected wave would travel this much more or less if the ionosphere moved by just 75 m , which isn't much. Needless to say, the reflecting ionosphere, being a layer around the spinning earth, is continually moving so that the radio signals are continually changing in amplitude.

Automatic Gain Control

This would make the reception of all but the nearest radio stations useless if it were not for that DC voltage at the demodulatorl As the signal strength fades, so the DC voltage (which has nothing to do with the modulation, remember) drops, and we can use this DC voltage to control the gain (amplification) of the IF amplifier or amplifiers of the receiver. By doing this we step up the gain when the signal strength is small, and step it down again when the signal strength is high, compensating for the continual changes in strength. Only if you have attempted to listen to. a radio in which this feature, called automatic gain control (AGC) has been switched off, can you appreciate how useful it is!

Practical Receiver

Having been over the sections of an AM radio receiver, we need to finish off by looking at the complete circuit. Fig. 20 shows a typical pocket tranny circuit, medium wave only for simplicity, which we can use to illustrate the circuits used.

Inductor L1 is the main tuning-coil wound on the ferrite rod that acts as an aerial. This coil is tuned by the variable capacitor VC2, part of a twin-gang arrangement (indicated by the dotted lines), and by a 'trimmer' capacitor VC1 which is set at the factory. The signal we want to receive will be across the ends of L 1 , but connecting a circuit to L 1 will disturb the tuning so we use a separate winding, L2, of fewer turns than L1. The two windings act like. the windings of a transformer so that L2, with fewer turns, has a lower voltage signal than L1, but one which can provide more current into the base of $\mathbf{Q 1}$.

Transistor Q1 is the mixer/oscillator. The signal from the ferrite-rod aerial is fed into the base of Q1, along with the DC bias current from R1. The emitter, however, is connected to the coil L4, which is coupled to the coil L3 in the collector circuit. These windings are arranged to provide positive feedback so that $\mathbf{Q} 1$ oscillates, and the frequency of oscillation is set by the tuned circuit comprising L4, VC4 and VC3. Variable capacitor VC4 is the other section of the ganged tuning capacitor, and VC3 is another trimmer capacitor, preset so that there is a 465 kHz frequency difference between the input signal and the oscillator frequency all over the range of tuning.

The IF is extracted from the mixture of frequencies by using IFT 1, which is tuned to 465 kHz . The secondary winding of the transformer passes the IF signal to O2, the IF amplifier, biased through R3. A second IF transformer IFT2 keeps the bandwidth

Figure 20. Typical portable transistor radio receiver (medium wave only)
narrow, at about 5 kHz , and its secondary winding provides a signal to the demodulator diode D1. The DC which is present as a result of demodulation (negative in this example, because the anode of D1 is connected to C6) changes the voltage at the point where R3, R4 and R5 join, and so changes the blas on Q2.

Because the gain of a transistor amplifier depends on the amount of current that flows through the transistor, the whole arrangement constitutes a simple form of AGC. Capacitor C3 has a large value and thus removes any traces of audio modulation from the AGC voltage. The rest of the circuit is now plain sailing - a volume control, an output stage, a loudspeaker, and that's your AM radio.

HE

THE HIGHLY acclaimed D100 loudspeaker is ideal for updating your existing hi-fi system or for use in the dining room, bedroom - wherever you need musicl It produces a big sound for its size.

This reader offer is your chance to buy these amazing little speakers at an unrepeatable price - $£ 29.95 /$ pair. Sound quality is outstanding, with clear mid-range and exceptional bass for the size. With its low colouration, there is no hint of that 'small box' sound that often bedevils many competitive designs,

Don't miss this opportunity - place your order today!

TYPICAL SPECIFICATION

Maximum Power Handling: 50 W programme. Recommended Amplifier Power: 10-25 W RMS per channel. Impedance: 4-8R. Frequency Response: $90 \mathrm{~Hz}-18 \mathrm{KHz} \pm 5 \mathrm{~dB}$. Finishes: teak or walnut veneered cabinets with black cloth covered speaker grilles. Size: $73 / 4^{\prime \prime}$ deep, $64 / 3^{\prime \prime}$ wide, $11^{\prime \prime}$ high.
Modmags Ltd.
145 Charing Cross Road
Please send me pairl of D100 speakers at £29.95 per pair, plus £2.95 ptep per pair. made payable to Modmags for \mathbf{E}
Ienc
I wish to pay by Barclaycard. Plaase charge to my account
maneran

NO.

Tick choice of veneer: Tesk
Wainut
Signature
Name.
(CAPITALS
Address
(CAPITALS)
Please note that the offer applies to UK mainland only: allow $2 \dot{8}$ days for delivery.

ELECTRONIC CANES

COLOUR CARTRIDGE

DATABASE T.V. GAME g

FULLY PROGRAMMABLE 14 Cartridges available 14 Cartridges available
Normal Prie 887.86
NOW REDU

T.V. GAME

SPACE INVADERS

- *

ค.7.0\%
不芴
M \quad.

The most popular T.j. Game on 40 cartridges including SPACE 95 games on one carriidge.

Hand held Invaders Games avallable $\mathbf{f 1 9 . 9}$ + Invaders Cartridges available to fit ATARI/RADOFIN/ACEIROMC/PHLLIPS ATTEL/TELENG/ROWTRON

CHESS COMPUTERS

different chess computers Electronic Chess $\quad \mathbf{2 9 . 9 5}$ Chess Travellier $£ 39.95$ Chess Challenger $7 \quad \mathbf{5 7 9 . 0 0}$

Sens $\begin{array}{ll}\text { Sensory } 8 & \mathbf{f 1 1 9 . 0 0} \\ \text { Sensory Voice } & \mathbf{f 2 5 9 . 0 0}\end{array}$ SPECIAL OFFERS VOICE CHESS CHALLENGER Normal Price $£ 245$ NOW $£ 135.00$ SARGON $2.5 /$ BORIS 2.5 SARGON 2.5/BORIS 2.5
Normal Price $£ 273.70$ NOW $£ 199.95$

SPEAK \& SPELL
\qquad Normal Price $£ 49.95$
NOW REDUCED TO £39 Teach your .50 VAT spell properly with aid. Fully automatic

ADDING MACHINE OLYMPIA HHP 1010

TELETEXT

ADD-ON
ADAPTOR
$£ 199$

THE RADOFIN TEEGEEXX ADD.ON Plug the adaptor into the aerial socket of your
colour $T . V$. and receive the CEEFAX and ORACLE television inlormation services. THIS NEW MODEL INCORPORATES: Double height character facility Meets latest $88 C$ \& IBA broad
Push bution channel change Unnecessary to remove the unit to watch norma TV programmes
old plated cricuit board for relabillay
ew SUPERIMPOSE News Flash facility

HAND HELD GAMES
 EADTM NYADEDS

 These invaders are a breed of creature huthemo unknown to man they cannot be killed by tradtional methods
 gaLaxy
 1000

THE OLYMPIA - POST OFFICE APPROVED TELEPHONE ANSWERING MACHINE

WITH REMOTE CALL-IN BLEEPER

This telephone answering machine is manufactured by Olympia Business Machines, one of the largest Office Equipment manufacturers in the U.K. It is full POST OFFICE APPROVED and wilt answer and record messages or 24 hours a day. Whit your remore cali-in bleeper you can receive Answer/Record Unit, which will at your command repeal messages, keep or erase them, and is activated from anywhere in the world, or on your return to your home or office. The machine can also be used for massage referral, if you have an urgent appointment. but are expecting an important call.
simply record the 'phone number' and location where vou can be reached. With optional extra

bleepers (513 each) this facility exar extended to colleagues and members the family. Using a C90 standard casselte You can record as many as 45 messages se announcement can be up to 16
seconds long and the incoming message Yp to 30 seconds long. install and comes with full instructions It is easily wired to your junction box with the spade connectors provided or alternatively a ackp plug
can be povided to olua into a ack socke: Can be provided to plug into a ack sockei
Most important. of course. is the tact that Most imporiant. of course. 15 the tact tha
it is fully POST OFFICE APPROVED. The orice of $f 135$ (inc. VAT) includes the machine an extra-light remote call-in Bleeper, the microphone message tape. A/C mains adaptor The untit is
$99 / 2^{\prime \prime} \times 6^{\prime \prime} \times 2 / 2 / h^{\prime \prime}$ and stully guaranteed for 12 months. The felephone can be place $£ 135$

MATTEL T.V. GAME ELECTRONIC DOOR BELL NOW REDUCED TO \&12. 70 inc. vat Plays 24 different tunes with separate speed
conirol and volume control. Select the mosi
appropriate tune for yout approppiate tune for your
visitor, with appropriate visitor, with appropriate nes for different times of

PRESTEL VIEWDATA

\qquad (0yy. \square 5ow Fonth \square \square ompany hoparit Prestel The ACE TELCOM vDX1000 Prestel View data adaptor simply plugs into the aerial socket of your television and enables you to recenve the Prestel/Viewdata service in colour or black \& white Feature Simplified controls for quick. easy, operation Special graphics feature for tighíre Solution State-ofthe-art microproces sor controller Standard remote relephone keypad with Prestel Auto dialler incorporated for easy Prestel acquisition True PAL colour encoder using reliable IC chroma filter and dela line incorporated for minimum picture interferencermaximum fidelity includes convenient TV - Prestel switchbox Easily connected to standard home or office Fully Posi Office approved

FOR FREE BROCHURES-TEL: 01-301 1111

> Two do-it-yourself kits are featured in this month's GG\&K. The first is the Sinclair $\mathrm{ZX81}$ microcomputer - now available in kit form. The second is SoundLink, supplied as two modules from IMP Electronics. When built up, it couples your hi-fi system to an extension speaker - without trailing wires. We also review the Chess Partner 2000 game.

ZX81 Kit Review

In Monitor in the May ' 81 issue of HE we described the ZX81 microcomputer from Sinclair Research, launched in March as successor to the well-established ZX80.

Although it was said at the time that the ZX81 was available readybuilt or as a kit, we had to wait some weeks before one of the first kits was available for review in GG\&K.

At last it arrived, complete with mains-plug-mounted power supply. (This power supply is normally only supplied with the ready-built ZX81.)

Contents Of The Kit

The kit comprised separate bags of components (resistors, capacitors, discrete semiconductors and fittings), with the ICs and IC holders plugged into a protective strip of conductive foam plastic. All discrete components came with pre-formed leads, which took the pain out of bending and lining up the leads with the holes in the board.

Component numbers and outlines were clearly printed on the PCB. The underside of the PCB was coated with green solder-resist, which cut down the risk of bridged tracks by confining applied solder to the exposed pads. To aid checking of the layout, a blown-up drawing of the printing on the component side

of the PCB was included on the instruction sheet.

Remaining items in the kit included the case halves, keyboard strip, connecting leads with fitted plugs and operating manual.

Documentation

We found the instruction sheet (foldout A2-size) easy to follow.

The section on Preparations gave details of where you should build your kit ('. . . a clean, dry and well lit workspace) and a list of the tools and other items you were likely to
need. Under the heading Precautions you were advised on how to treat your ICs; that is, to be careful to avoid static electricity discharges during handling. Sections on Component Identification, Circuit Board Assembly and Case Assembly were accompanied by some helpful line drawings.

To avoid any confusion, we took the step of adding three component changes given on a separate errata sheet to the main component list.

After reading the instructions carefully (as recommended in bold

GREENVVELロ

443F Millbrook Road. Southampton. SO1 0HX All prices includeVAT@15\% - just add 40p post

THE SPECTACULAR
1981. GREENWELD Component Catalogue
Bigger and better than everl!
\star 60p discount vouchers

* First Class reply paid envelope
* Free Bargain List
* Priority Order Form
t VAT inclusive prices
* Quantity prices for bulk buyers

SEND $75 p$ FOR YOUR COPY NOWII
REGULATEO PSU PANEL
Excluslve Greenweld design, fulli variable
28 Q \& $20 \mathrm{~mA}-2 \mathrm{~A}$. Barc contains nents except pots and transtormer. Onl nents except pots and transtormer. Only
©77. Sutitbis transformer and pots fe. Send
SAE for fuller details.
0.22 LF 12 V 9 mm dia. Ideal for docoupling 10
 Pack of disc ceramics, assored values and

VEROBLOC BREADBOARD Now from Vero, thin versatile ald for building
and trentin clactis can accommodate any
size of ic. Blocs can be joined together. Bus
 inis for fust E4. 15 .

ALFAC PCB TRANSFERS
Lines, curves, dots, pads. DIL padse, etc. Pack
of 13 different sheets $E 6.16$.
DEVELOPMENT PACKS
These packs of brend new top quality compo nents are designed to give the constructor a
complete range so the right value is to hand complete range so the right value is to hand
whenever required. They also give a substan tiil saving revired buying individual parts,
$K 00150$ or
 each value 22pF
tor.
topice: 4.90
Kooz Extended range 22pF-, 1. Values ove 1000 p are of th grater tolerance. 10 of each
 2202733303904705666808201001500
2200330047006800.01 .015 .022 .033 .047 .1 PRICE:E7.66.
K003 C 280 or
K003 C280 or simllar Polyester capacitors, 10
each of the following each of the following: $01, .015, .022$, . 033
$.047, .068, .1, .15,22,33$ and .474 . PhicE ${ }_{c}^{25004}$
Koo4. Mylar capacitiors. Small size, vertical
mounting 100 V , 10 each of the followina mounting 100 V . 10 each of the following
$.001, .0012, .0015, .0018,0022, .0027,0033$ $.001,012,0015, .0018, .0022,0027,0033$
$.0039, .047,0556,006,1082, .07$. Total 130 capacitiors. PRICEE: $E 4.70$.
K007
Kle K007. Electrolvtic capactiors 25 V working.
smali physical size axial or radial leads. smah ohysical lize axial or radial leads. 10,
each of the tol lowing: $: 1,2.2,4,7,10,22,47$, each of toal 70 capacitors. .2.2icE: 1 E3. 59 . Kcos Extended range: as above élso includ-
ing 220,470 and 1000 af all at $25 V$. Total 100 ${ }^{\text {ing }}$ Copaciors, PRICE: EG .35 .
Kozt Cars resistors or simllar. miniature t/4
Want carbon film 5% as usad in neurly all wart carbon film 5% as usod in nearly al Oroiects. 10 of each value from 10 ohms io
im. E 12 serias. Total 610 resistors. PRICE ${ }^{53} 95$. Koas. Zanar diodes. $400 \mathrm{~mW} 5 \%$. 10 of each of
all the values from 2 V 7 to 36 V . Tot 280 .
 KoS LEDS - pack of 60 , comprising 10 each
red green and vellow 3 mm and 5 mm , to red green and rellow 3 mm
gether with cilios. PRICE: $E 8.95$.

BARGAIN LIST No. 13
10 A4 Pagesil Hundreds of diffiferent hems II
Switches, oots, relays. Cs. As, semis connec-
 Send 9x4 SAE for your FREE copy of never to
be repeated bargainsil

DISPLAYS

2635 Seven seg by NEC, ype Lo8012. This is wire ended type 43 mm high 11 mm dia tub requiring a heater supply of 0.6 V and tsV tome
illuminate the segments. Digit height 12 mm
2636 Futuba 7 seg display type DG10a1. Re quires same supply as above. Tube size
$30 \mathrm{~mm} \times 8 \mathrm{~mm}$ dia. Digit height Emm
60 26371π nixie tube GNP17A, wire ende 40 mm high $\times 17 \mathrm{~mm}$ dia. Digit height 15 mm Can be operared from 240 ac an mans by put. inovoc The above displays are all provided with leadout data, etc
PLUG TO SOCKET ADAPTORS
P201 $1 / 4 \mathrm{in}$ mono plug to 2.5 mm sk
P202 $/ 4 / \mathrm{in}$ mono plug to 3.5 mm sk
P203 צain mono plug to phono skt
P20a 3.5 mm plug to /ain mono sk
P200 3.5 mm plug to 2.5 mm skt
P 2063.5 mm plug to phono skt
${ }_{-207}^{\text {P206 Phono plug to }} \mathrm{P}$ /ain mono
P208 Phono plug to 3.5 mm ske
P2099 hono olug to 2.5 mm skt

${ }^{\mathrm{P} 2122.5 \mathrm{~mm}} \mathrm{plug}$ to phono skt
P213. ${ }^{\text {P2 }}$
P214 $1 / 4 \mathrm{in}$ siereoo plug to 3.5 mm sh
P215 Car aerial plug

[^0]
COMPONENT PACK

K 503150 wirewound resistors from 1W it
12 w , with a good range of values
$£ 1.78$ K505 20 assonted potentiometers, all types
including singte ganged, rotary and slider £1.70 K511 200 smaill value poly, mice, ceramic caps
 thousand pF. Toierancess from 1\% 1010% fi K5U5 Transistor Pack. Small signal NPN/PNP
translstors in in pastic package. Aimost all aro translstors in plastic package. Aimost all aro
marked. full
ppec, devices, but some have merked. full spec. devices, but some have
bent leads. Over 30 different tyepes have been lound. by Us. inc. BC184/212/238/307/328 BF $196 / 7 ;$ 2TX $107 / 8 / 9 / 342 / 450 / 550$, etc. Look
at the low pricel 100 for $E 3$; 250 for $E 7$. at the low pricel 100 for $53 ; 250$ for $t 7$.
$K 520$ Swich Pack 20 differant, rock
 Heatsink pack, 5 diff, sizes each 200 mm , 50 .

PANELS

2527 Panel with 16236 (2 N 3442) on small heat

 1.20 V can be used as LED flasher (3 V min).
Supolied with connection data, sultable R, $\mathrm{C} \alpha$
 ${ }_{\text {Rs }}$ 2529 Pack of ex-computer panels containing 74 series $1 C_{5}$ Lots of dififerent gates and complex logic. All ICs are marked with tyoe no or
code for which an Identification sheer is supplied. 201 Cc s 51 : 1001 Cs \& 4
A504

4 TERMINAL REGS

An in uA79MG Negative version of above 1 E.,20 to make a fuly varisble supplyll Data supplied.

IW AMP PANELS
 vol. Control and switch, complete whit knobs Apart from ${ }^{2} \mathrm{mp}$ circuitry built around
LMBOON or TBAZ2OM, there is a circuit using ${ }^{5}$ transistors.
connection data eupolied. VU METERS
V000 Very attractive $55 \times 48 \mathrm{~mm}$ scaled -20 to +5 dB . 250 UA movement. Only $£ 1,75$, or E 3

OP-AMP PSU KIT

A198 All parts + instructions to make a 50 mA

COPPER-CLAD BOARD

JOB LOT OF COMP ONENTS 9500 N4006; 10000.233/50; 22000 108F/50;
 30000 various resistors. Totel 12,
nents for $£ 400$ inc. $V A$.T. and carr.

12-VOLT INDICATORS

Ideal for light chasers, etc. Miniature 12 V 75 mA wire-ended lamps in yellow, red, green,
blue and ciear. 10 p acch. 20 each colour, total 100 for $55.50,100$ clear 21 E4.50.

BITS AND PIECES

$\times 905140 \times 10 \mathrm{~mm}$ ferrite rod with LW
MW Windings
$10 \mathrm{M} / 2 \mathrm{~W} 5 \% \mathrm{C}$
10 W amp PCB + cct + layour, E1. All parts to

 cc. With data. 7 -seg. displays: FND $360,367,594$, ill 50° Regs, TO3 case: 7974120 o; 7885100 p ; 780
 13. - Pmps: AA4136 130p; UA776 145p; UA777
ODOD.

E1 BARGAIN PACKS
Each pack £1; any 25 packs $£ 22$
More on Bargain List

$\begin{array}{ll}\mathrm{K} 109 & 15 \text { Case } \\ \text { BCl } 14 \text { transistors }\end{array}$

K11
K115
K

BLECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic ignition to give the best performance and
economy. Bring YOUR CAR up to top
specification by firting the latest TOTAL
ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all

- Pead Portormance - higher output voltage
* Peak Porformance - higher output voltage.
- Improved Economy-consistent high ignition perrorma
- Accuratt Timing - prevents contact wear without contact

PLUS
SUPER HIGH POWER SPARK $-31 / 2$ times the energy of ordinary C.D. systems.
OPTIMUM SPARK DURATION - to get the very best performance and economy with
today's lean carburettor settings.
OESIGNED IN RELIABILITY-with the 'ultimate in surance' of a changeover switch to

TECHNICAL DETAILS

HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-poweriul enough to store twice the energy of volts.
SUPERB DISCHARGE CIRCUIT. A brand new technique prevents energy being reflected back to the storage capacitor. giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powertul enough to associated with lower power 'long burn' inductive systems. In addition thls circuit maintains the correct output polarity, thereby preventing unnecessary stress on the H.T. system

SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwamied signals caused by contact valt drop. contact shuffle, contact bounce. and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is
aimost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean

IN MONEY-SAVING KIT FORM at E14.85

Also MOTORCYCLE TWIN OUTPUTKIT at £22.94 and P. \& P
All you need is a small soldering iron and a few basic tools - everything else is supplied
FITS ALL 6/12-volt NEGATIVE EARTH VEHICLES
ELECTRONIZE DESIGN
2 Hillside Rond, Four Oak
Sutton Coldfield. West Midlends, 374 40O Phone 021-3085877

HH/857

Multiband Receiver plus 40 -channel CB
Monitor. Frequency coverage: $88-108 \mathrm{MHz}$ Plus H1 40 CB Channel 108 - 145 MHz
This unit has a telescopic antenna and squelch control, sockets for earphone
and external DC power source

$£ 21.95$ inc.

 S.a.e. enquiries. Please allow up to 21 days for delivery. AlL PRICES INCLUSIVE

Basic Kit................. $£ 19.90$
(2 PCBs and all PCB components)
HE MICROBE R/C
Kit all PCB compo
ELECTRONIC
GAMES
hess TV Game.......
HE MICROBE
Kit
EL and all PCB con
ELETRON
GAMES
hess TV Game.....

The latest from the U.S.A PINBALL WIZARD * Still available * Featured in Nov. issue of ET. Basic Kit $£ 28.90$ Contains everything except box and controls Box and Controls £6.50. P.S.U. £3.90 CEH Car Alarm Kit £18.90 Chrome Chime $24-$ tun

Ball Clock as H.E. offer. Kit $£ 24.95$, or ready-built £29.95.

letters at the top of the sheet) we were ready to start assembly.

Down To Business

In true hobbyist style, the kit was assembled on the kitchen table (within easy reach of a supply of coffee). To aid identification of the components (and to avoid losing any), the small packet of discrete components was tipped into a handy saucer.

After all the resistors had been inserted and soldered (we appreciated those pre-formed leads), it was found that a horizontal-mounting 1 k 0 resistor had been supplied instead of a vertical-mounting one. With a little improvisation it was found possible to nudge the resistor supplied into the PCB. As a prize, one spare 680R resistor was left in the saucer.

The remainder of the components were inserted into the board and the only problem experienced was with the regulator IC. When its leads were bent as instructed, it didn't line up with the holes in the board. It was necessary to bend the leads very sharply in a zigzag fashion to enable the regulator to be dropped into place, which could result in lead fracture for the unlucky constructor.

As recommended under the instructions for Testing, the board was checked very thoroughly and all components were checked back against the list.

All that remained was to connect the keyboard 'tails' to the edge connectors on the PCB. Some difficulty was found in inserting the narrower of these two tails into its socket, possibly because the socket was slightly distorted. These tails, carrying flat conductive ribbons on thin plastic tapes, are very fragile.

On Test

After three or four hours of soldering and coffee drinking, we considered that the PCB with keyboard attached was ready for testing. Because all the sockets are mounted on the board, it was only necessary to link the PCB to the aerial socket of a TV receiver and to the power supply.

Mains was applied to the power supply and a furtive search was made with the TV tuner to find the signal produced by the modulator mounted on the PCB. Suddenly the picture synchronised and went white - all except for a black letter K in the left-hand corner of the screen. A few tests proved that our kit worked first time.

It was noticed while the PCB was exposed during the test that a fair amount of heat is produced by the ICs. Perhaps this is not surprising

since the specification for the power supply is given as 12 V maximum and about 8 V minimum (depending on smoothing), with current consumption not less than 600 mA . (This increases to 1.2 A if the printer - yet to become available from Sinclair Research - is run from the same supply.)

Tidying Up

The final job was to insert the PCB into its case, stick the keyboard in place (its underside is self-adhesive), link up the keyboard tails again and bolt the whole lot together.

Comment

Construction of the kit shouldn't be too difficult for those of our readers who have already had some experience with PCB construction and who take heed of the special precautions required when handling the ICs.

The penultimate section on the instruction sheet deals with faultfinding, and perhaps the best advice given is to 'check it again' If it doesn't work first time. Sinclair Research Service Department will
repair completed ZX 81 kits . . . for a fixed fee of $£ 10$. In exceptional cases, say if the ICs have been damaged by being inserted the wrong way round, there may be an additional payment. If the trouble is traced to faulty components then the full service fee is refunded. You can see why there is a need for careful checking!

The only niggle we had with the finished computer was about its keyboard. It is a compromise between a touch-sensitive keyboard and a switch-operated one: definite pressure is required to activate each key but there is no accompanying 'click' or 'bleep'.

On the other hand, at $£ 49.95$ for the kit (power supply $£ 8.95$ extra) or $£ 69.95$ ready-assembled (complete with power supply) there is a limit to what you can expect.

In a future GG\&K we will comment on how we found the ZX 81 to use and to program. We also hope to review the 16 K plug-in RAM memory available for use with the ZX80 and the ZX81. And we hope to try out the printer, scheduled for launch in June 1981.

CASIO'S REVOLUTIONARY VL-TONE As featured on "TOMORROW'S WORLD"

The success story of 1981. Hundreds sold alreadyl
Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back . . beautifully!

CASIO VL-TONE (VL-1)

Electronic Musi
and Calculator

(R.R.P. E39.95) ONLY $£ 35.95$

Thanks to Casio's V.L.S.I, circuit and revolutionary technology you can now compose and play music with one finger! It's as easy as this:-
play music with one finger! it s as easy as tris:-
First choose one of the five Preset Instrument Sounds; Piano, Violin, Flute, Guitar or Fantasy. Now enter the notes of a melody into the memory (maximum 100 notes) via the numbered keyboard.
Notes entered (or played back) are shown digltally on the liquid crystal display
break-in allows you to correct any mistakes and add or delete individual notes. Vary the tempo and duration of the keystroke to create a melody. Now you're playing the musicl
To add the professional touch, select one of the ten Auto Rhythm accompaniments and adjust the 19 -step Tempo Control, with digital readout. Playing in time to the rhythm, record your best performance back into the memory.
The Auro Play function lets you re-listen to the melody you have just recorded. A repeat function can give you four non-stop playbacks. Choose any of the Auto Rhythms to accompany your recording and vary the tempo and pitch of both. For a change select another instrument voice, or switch to ADSR and programme in eight digits to create your own unique sound. With over time and Release, as well as tremelo and vibrat creativity is your own imagination. Manual playing, with Auto Rhythm, can also be tunes can be entered up to a maximum of 100 notes.

V-1: 29 note monophonic synthesiser with Octave Shif expanding the range to almost 5 octaves.
Calculator: 4 basic calculations $(+,-,+,+1$ with constants and percentage. Non-volatile memory and square roots. 8 digit display.
Facilities: LC Display of notes, including sharps, tempo and calculations. Battery saving Auto Power Off with protection of the stored melody and the pre-set ADSR data lor calculator memory total). Built-in amplifier and loudspeaker. Pitch control for tuning, utput jack
Power supply: Four AA size batteries last approx, 12 hours playing or 4,000 hours calculating. AC adaptor, type AD 4160 costs E5.
Dimensions: $30 \times 300 \times 75 \mathrm{~mm}\left(11 / 4 \times 11 \frac{3 / 4}{} \times 3^{\prime \prime}\right)$. Weight: $438 \mathrm{~g} ; 15.4 \mathrm{oz}$. Complete with instruction book, Songbook and soff cover.

$\star \star \star$ NEW CASIOTONE CT-202 $\star \star \star$

"Son of success . . . the two harpsichords demonstrate the Casiotone's talent for spark (Melody Maker).

CT-202

Polyphonic playing of 49 instruments over 4 octaves. 3 vibrato settings and sustain switch. 4 voice memory function with push-button selection. Pitch control ($+1-1 / 4$ tone). Buit-in amplifier and speaker (1ow output), Output jack (5 kitohm, 1.4V max). Power source: AC only.

OTHER CASIOTONES (Polyphonic)

MT-30. 22 instruments. 3 octaves. Mains/bartery (RRP £115) £95
CT-301. 14 instruments. 4 octaves. 8×2 rhythm accompaniments. Vibrato and delayed vibrato. Pitch control. Output jack. AC only (RRP $£ 285$) $£ 245$,
CT-401. As CT-301 but with Casio Auto Chord for one finger or auto accompaniment.
Major, minor and 7 chords with bass. Sustain and hold. ($£ 345$) $£ 295$.
Send 20 p (postage) for our illustrated catalogue of selected CASIO, CASIOTONE and EIKO products
PRICE includes VAT and P\&P. Delivery normally by return of post, subject to availability Send your order FREEPOST, no stamp required.
Send cheques, PO or phone your ACCESS or BARCLAYCARD number to 164-167 East Road
Cambridge CB1 10B Tel: 0223312866

The latest craze sweeping the country "CUBE MANIA" - FREE OF CHARGE!

CASIO'S MOST AMAZING WATCHES EVER

Display: Hours, minutes, seconds, am/pm, day and date. 12 or 24 hour format
Auto Calendar: Day, date, month, year.
Alarm: 24 hour, with "On" symbol
Hourly Chimes: Time signal every hour, on the hour
asily switched on or off.
econd to 24 hours.
Dual Time: Second time zone
Calculator: 8 digits, four functions, with constams and display symbols.
INGER-TOUCH KEYBOARD
DIGITAL SPACE INVADER GAME
whth sound effects and scoring.
Water resistant case. Miner glass.
CA-90: $46 \times 36 \times 10.55 \mathrm{~mm}$. Black resin
RRP £29.95) ONL $£ 24.95$
CA-901: $40.5 \times 35.2 \times 10.5 \mathrm{~mm}$. Metal
(RRP £34.95) ONLY £29.95

CASIO ALARM CHRONOGRAPHS

All have an easily-read display of full time and calendar, with half-hourly time signals which can be switched on or off. Easy-to-use functions include: 24-hour alarm. Professional stopwatch measuring lap times, etc., to $1 / 100$ second. Countdown alarm timer with One-touch selection of 12 -or 24 -hour format. Micro light for night viewing. ± 15 seconds month accuracy. Amazing 5 -year battery life. 9.65 mm thick case with mineral glass face.

OTHER CASIO WATCHES

Sports: $\mathfrak{F 5}$, resin $£ 6.95$. Sports Chronograph: $\mathfrak{F 5 0 0}$, resin $£ 9.95$ ALARM CHRONOGRAPHS: F81, resin $£ 15.95$. Melody A/C: M12 resin $£ 19.95$. M1200 S/S $£ 29.95$. LCD Analogue/digital A/C: AA81, chrome £29.95. AA82, S/S £39.95. AA81G, gold plated $£ 49.95$. $\star \star \star$ NEW $\star \star \star$ UC50W, S/S 50 metre water resistant A/C with full month calendar display with forward and reverse stepping, alarm, chimes, etc, £19.95

CASIO CALCULATORS

the SPECIAL OFFER. FX502P programmable with FREE MASTERPACK software kit (RRP $£ 17.95$) and 3 Rubik's Cubes ONL Y $£ 74.95$. FA1 cassette adaptor $£ 19.95$,
Digital Space Invader game: MG880 £10.95. MG770£12.95.
With alarm/s, calendar, etc: BQ1100 Biolator $£ 16.95$.
With melody alarm/s: UC360 £19.95. UC365 £19.95. UC3000 £27.95. ML75 £17.95. ML90 £19.95. MQ1200 £19.95. ML2000 £22.95. SCIENTIFICS: FX81 £12.95. FX100 £16.95. FX510 £19.95. Programmable: FX2700P £19.95. FX180P £19.95. FX3500P £22.95. With clock, alarms, stopwatch, etc: FX6100 £18.95. FX7100 £24.95. FX8100 (also has calendar function) £24.95

Extend Your Hi-fi . . . Without Wires

Fitting an extension speaker to your hi-fi system can present problems, either because of the need to route wires around the house or because of the electrical connections you must make to the system. With such difficulties in mind we looked at SoundLink, a system which couples your amplifier to an extension speaker through the house's existing 240 V ring main circuit.

Soundlink comes as a kit comprising two ready assembled, prealigned printed circuit boards (PCBs), together with detailed layout, wiring and setting up instructions. Additional components are required, however, such as two 240 $\mathrm{V} / 12-0-12 \mathrm{~V}$ transformers, switches, potentiometers, sockets, 13 A 3 -pin plugs, an extension speaker and so on.

As the two PCBs form two separate units, and it is necessary to make connections to the 240 VAC mains from each, it is essential for safety reasons to house both in suitable boxes. The instructions suggest that the output module can be fitted inside the enclosure of the speaker it is driving, and this can save on outlay.

How It Operates

The input module is connected to the 'tape record' socket of an audio amplifier. When the input module is coupled to the AC mains it inserts a low-level high-frequency signal between the neutral and earth lines. The output module, coupled to a distant power point in the house, detects and demodulates this signal and amplifies it to drive the extension speaker. An output power of around 10 W is available from the output module.

How We Assembled It

We built the input module into a case (cost around £4) from Vero Electronics. For the purpose of the test, the output module was mounted on a wooden board, with an aluminium panel fitted on one side. We found the instructions easy to follow and the drawings were of assistance in the layout of components. All connection points were printed clearly on the PCBs.

How It Worked

The SoundLink system was tested on two different hi-fi audio systems. Each amplifier was found on have a different tape output signal voltage. A small sensitivity switch is fitted to the input module PCB and this,

together with the volume control, allowed the correct signal level to be set for each. If the volume control on the input module was advanced too far, then the sound from the extension speaker became distorted. Setting the control too low resulted in excessive background hiss.

It was also found necessary to trim the preset potentiometer on the output module to prevent distortion caused by the unit being de-tuned from the incoming signal. This trimming was critical.

With a good quality record deck as the signal source, and a threeunit, medium-sized enclosure as the extension speaker, the sound output was reasonable though not quite as good as that produced from the directly-coupled speaker. With the volume turned up high on the output module, and in the absence of a signal, a background hiss along with any severe bursts of mainsbourne interference (deliberately injected for our tests) could be heard.
packing. As mentioned, it is necessary to buy additional hardware which could, we estimate, add between $£ 10$ and $£ 20$ to the cost. You have to weigh this against the convenience of being able to site an extension speaker wherever there is a ring main socket in the house. This flexibility has obvious advantages for events such as parties (no leads to trip over) or more permanent installations such as in bedrooms or workshops.

Our test was a critical one, using hi-fi equipment. When a 'bookshelf loudspeaker, with not quite the dynamic range of the much larger three-unit speaker system, was coupled to the output module the sound produced was very pleasing. It is envisaged that the extension speaker used with SoundLink is likely to be of the bookshelf type.

SoundLink is supplied by IMP Electronics, 34 Caraway Road, Fulbourn, Cambridge CB1 5DU (tel 0223881105).

Is It Worth The Cost?

The two SoundLink modules cost £45.50, including VAT and post and

Chess Partnership

Here is yet another edition to the Chess Computer family. It is of the larger table-top variety and comes complete with mains adaptor for £77.50.

This innovative machine, called the Chess Partner 2000, works using sensors. This means that the
moves are communicated to the computer by the pressure of the pieces on the squares of the chessboard as you play. The chess pieces for this game are of more or less normal size and have a reasonably attractive finish, as does the board and case.

Among the capabilities of the Chess Partner 2000 are eight levels of skill which can be changed at any point during the game, and a multi-

MK5 - Simple Infra Red TRANSMITTER held plastic box. Requires a 9 V battery. SPECIAL PRICE *MK6 and MK7 together. Order as RC500K MK8- Coded Infra Red TRANSMITIER. Base日
$6 \times 2 \times 1.3 \mathrm{cms.and}$ requires a $9 V$ (PP3) battery.
MKg - 4 Way KEYBOARD. For Use with the MK the ML928 or ML926 receiver (MK12) Kit
MK11-10 On-Off Channel IR RECEIVER with 3 analogue outputs (0-10V) for controlting such functions
E5.40 as lamp brightness, volume, tone, etc. Other functions include an on/standby output and a toggle output, which may be used for sound muting. Based on ML922 decoder IC. Includes its own mains Supply
 MK13 - 11 -Way KEYBOARD. For use with MK8 and MK 19 kits. Transmits programme step + and -
analogue + and - (3), mute, normalise analogue outputs, an on/standby

INTECRATED CIRCUIES AY. $5.1230 / 2$ Cloch/Tum ICL7106 DVM MCD LM377 Owal 2 WAmp IM3795 Cual 6W Amp IM382 Dual llow noise Pream IM 386250 mW low voliage Amp IM1830 Flurd Level Detector IM2907-vConverter 18 pin IM2917 t- Converter / 14 pin)
IM 3909 LEO Flasher/ Oscillator LM391 ${ }^{\text {Then }}$ Thermeneler MM MAC 157 digut display Con iroller MM74C915 4 dign CIt with $/$ seo 0.0 p S5668 Touchdimmer
SLA40 A.C. Power Cont
SN76477Complex Sound BABOO SW Audio Amp OA 1024 Zero Voltage Switen OA202020W Audio Amp TMS1121 Clock/7-Day Timer
TMS 1121 Data NiO34E Timer
All iCs supplied mith data sheets

VMOS POWER FETS

aEmore contral xits

 MK7 - Infra Red RECEIVER. Single channel, output to switch loads up to 500 W at 240 Vac , but can be modified for use with 5 to 15 V dc supplies and 8 kit, to make a 4-channed remote control transmitrer MK10-98 Way KEYBOARD. For use with the MK 8 kit, to generate 16 different codes for dacoding by interface circuitry, such as relays or triacs, will switch up to 16 lterns of equipment on or off remotely80xES

ARE YOU SITTING COMFORTABLY?

Our new TDR300K Touch Dimmer in years to come everyone will be our highly that you are. Base touch controlled dimmer kit, the TDR300K incorpo
rates an infra red re
ceiver, enabling
he lamp
brightness to be varied and switched on or off by touch or remotely by means of a small hand held transmitter instructions, will fit into a plaster depth box and the plastic front plate has no metal pads to touch, ensuring complete safety. included to help you locate the switch in the dark.
in years to come everyone wis be you can have your TDR300K kit now and E 4.20 for the transmitter.
included to help you locate the swi and the TDE/K Extension Kir for 2. way switching, etc, is $£ 2$. DUN'T FORGET to add 50p and 15% VAT to your tol pur EVERY DOOR SHOULD HAVE ONE

Whatever kind of door you have, our New Elec1

MBke things very diffrutitor unwalcome visitors.
The unit which comes complete with a 10 -way keypad, requires an easily remembered four digit code to be emtered before the door can be opened, whide the intruder has over 5.000 combinations to choose from. The code can be easily changed by means of a pre-wired plug and a momentary or latched output version can be made. The kit has even more uses in a car enabling the car to be used by authorised persons such as garag日 personnal without disclosing the code. The complate kit measures $7 \times \$ \times 3 \mathrm{cms}$. deap and consumes a mere

\qquad
ONLY $£ 10.50$
(and think about all the keys you can lose or forget withou ever locking yourself out

Tatacs
 49p
48p
85p
$95 p$
$190 p$
$80 p$
$85 p$
$90 p$
6A with trigzer 04006 LT
254 TIC246

thTK Electronics
(HE) 11 BOSTON ROAD. LONDON W7 3SJ. 01-579 9794/2842

move key for setting up book open. ings as well as a simple way of setting up and verifying any position. It will also castle, make en passant captures and will play against itself. Sounds impressive doesn't it? So how does it work?

Setting up the board for a standard game is quite simple: you just press a button and the computer locks in. You then choose your level - If you don't, it will automatically play you on level 1, the simplest level. The first move, being white is yours, so you make it by pressing your piece on its original position until you hear a bleep, and then you
move it, pressing again on the square. When you're satisfied that it's the right move you press ENTER on the keyboard and the computer will display its move. You must carry this out pressing the squares again, but you don't press ENTER for the computer's move. This is how it's done. Quite simple, you might think.

The complications set in after the first few moves. When a piece is taken you must press twice on the square which the plece has been taken from or chaos ensues, as it will do if you accidently press ENTER on the computer's move, as
pressing this key also changes the side the computer is playing on! This can be very confusing as the computer doesn't actually display the side it's playing on, on the LED readout.

Castling can be equally as bewildering, as you must press the four squares in exactly the right sequence - the machine will bleep its discontent at you until you do. If you accidentally make an incorrect move you must repeat it backwards to clear the display before you try it again. It is unfortunate that there is no CLEAR ENTRY key, particularly useful when you're making a mess of castling and you feel like throwing the machine against the nearest wall!

In summary, this isn't really the right machine for a beginner, as it is an art in itself to master the idiosyn. crasies of the machine before you can even contemplate playing chess with it. However, the fanatical chess-player would find it a great machine once the controls are mastered as it has eight brainboggling levels to choose from. It is unfortunate that it doesn't have a built-in printer on the machine as, to avoid confusion, it's always useful to have notes of the moves that you are making.

Chess Boob

In last month's GG\&K we reviewed the Chess Traveler (see Moves On The Move on page 37 of the June issue). The game shown, though, was not the Chess Traveler but the Chess Partner 2000, which is reviewed in this month's GG\&K. To set the record straight, the Chess Traveler is shown below.

Coming Kit Review

We received a sample of Adventures With Microelectronics, a kit from Unilab which teaches you about electronic devices and how they are used in circuits.

A quick look in the box and in the accompanying instruction book revealed that you can build a variety of different projects on Bimboard (no soldering required), ranging from simple logic circuits to a medium wave and long wave radio receiver.

> We hope to review this kit in the August GG\&K
supplement.

Both games are available from Silica Shop Limited, 1-4 The Mews, Hatherley Road, Sidcup, Kent DA14 4DX (tel 013011111 or 01 309 1111).

Building

Keith Brindley gives more hints and tips on project construction

A OUICK LOOK at the projects in any issue of HE will show you that a project can be in one of two groups: mains- or batteryoperated. A small project, such as this month's Ultrasound Burglar Alarm or the Treble Booster, requires only a lowvoltage, small-current supply, and a battery is an ideal power source. On the other hand large projects, such as the Power Amplifier or the Organ, require a relatively high-voltage, largecurrent power supply and usually the only way to provide this is through the use of mains electricity.

Used properly, mains allows a convenient and, in the long run, cheap source of power - you don't need to keep changing batteries every so often. But, I'm sure I don't need to stress that, handled incorrectly, mains can be dangerous - it can kill! Whenever you use mains, the moral is to use it carefully and correctly.

Getting It In

One of the places where a problem can arise is the point where the mains cable gets into the project - normally through a drilled hole in the back panel of the case. Cable should never be allowed to go through an unprotected hole, because the sharp edges of the hole will rub against the cable and, through time, will cut the cable's insulation until the inside mains-carrying wires become exposed. At best, a fuse will blow but at worst, part or all of the project will become live.

Various methods of protecting the cable at this point exist and l've selected a few for you to look at. The simplest (and cheapest!) is a rubber grommet (see Fig.1) which pushes into the drilled hole before you feed the cable through. To prevent the cable from being pulled out, fasten a plastic cable tie tightly round it.

Secure And Safe

Plastic strain relief bushes, clamps or glands such as those

Figure 1. A rubber grommet used in the HE Electronic Organ. Note the plastic cable tie used to prevent the cable from being pulled out

shown in Figs.2, 3 and 4 are available which clamp the cable securely while simultaneously preventing rubbing. The sor shown in Fig. 2 are very cheap - only a few pence each - but are quite fiddly to use. They nevertheless do their job well. The bush is in two parts connected by a thin plastic tie. The two parts are clamped together r_{r} with a cable in between, and the bush is pushed into the drilled hole. The outside ridge of the bush engages with the inside edge of the hole and the bush is then securely held.

Figure 3 shows a slightly more expensive (but still costing no more than about 20p) device which is operated by a screwadjusted clamp. We've used this in the Power Amplifier this month and it is a very successful and safe method. The beauty of it is that if you need to disconnect or adjust the mains cable you can do so easily.

Another type of cable clamp (about 30p per device) is shown in Fig.4. This is a plastic gland with a compressible rubber washer inside. At one end of the gland is a nut and bolt arrangement which fastens to the panel of the project. At the other end is a similar nut and bolt which tightens the internal rubber washer onto the cable (which goes through the middle of the gland). This variety again allows you to remove or adjust the cable if you wish.

Finally, if you feel like doing the job professionally, you can use a plug and socket arrangement such as that shown in Fig. 5 . Inevitably, the cost is higher - over £ 1 for the two parts. This method is useful if you have a number of items of test equipment and you only use a couple at a time. Because any mains lead with the socket on can fit into any chassis plug, you only need a couple of made-up leads.

Well, that's given you a few tips on how to do it properly, and above all, safely. l'll be giving some more advice on mains, in future Building Sites, but that's all for now. See you next month.

Figure 2. Two-part cable bushes. Once pushed into the drilled hole of a case, these bushes hold the cable securely

Figure 3. Screw operated cable clamps

Figure 4. Cable glands. The cable is tightly held by a compressible rubber washer inside the gland body

Figure 5. A mains plug and socket connector

HE PROJECT KITS

Make us your No. 1 SUPPLIER OF KTS and COMPONENTS for H.E. Prolects. We supply carofully selected wots of parts to anable you to conotruct H.E. Projects. Kits includo ALL THE
ELECTRONICS AND HARDWARE NEEDED. Printed elrcult boards fuliy otched, drilled and rollor tinned) or varoboard are, of course, Included as specifled In the original article, wo oven Include nuts, scrows and I.C. sockets. PRICES INCLUDE CASES unlass othorwlse
otated. BATIERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the lssue of H.E. which Includes the project - you will need to order the Instruction

LATESTKITS: S.A.E. OR PHONE FOR PRICES
CONTINUITY CHECKER, JUne '81
ENVELOPE GENERATOR, JUNe '81 £15.32

VICE OPERATED SWITCH, May ' 81 .. $£ 9.43$
$£ 1.29$
SUPER SIREN, Apr'81 $\mathbf{E} 17.75$
DOORBELL MONITOR, Apr '81 .. E2. 99
GUITAR TREMELO, Apr'81.. $\mathbf{£ 1 1 . 3 3}$
WINDSCREEN WASHER ALARM, Apr ' 81 $\mathbf{£ 5 . 2 6}$
RUSSIAN ROULETTE GAME, Apr '81. $\mathbf{2 . 3 1}$ less case UBLIC ADDRESS AMPLIFIER, Mar 81 86.83 each
Extras - horn speakers . $\mathbf{2 6 . 8 3}$ each
PA mic 84.40

FUZ2BOX, Mar'81 WINDSCREEN WIPER CONTROLLER, Mar'81 £6.9. $\mathbf{£ 6}$
WINDSCREEN WIPER CONTROLLER, Mar ' 81 ..

HIGH IMPEDANCE VOLTMETER, Feb'81 ... 88

BACKGRUND NOISE SIMULATOR, Feb ' 81 66.43
TWO-TONE TRAIN HORN, Feb '81 £4.77 less case
MEDIUM WAVE RADIO, Feb '81 .. 69.98
BENCH AMP, Jan ' 81
66.98

NICARD CHARGER, Jan '81 £6.98
CHUFFER Jan '81 less case ... $\mathbf{E 6 . 4 4}$
CAR REV COUNTER, Jan 81, less case.................................. €21. 20
Case extra.
E5.98

BATTERY CHARGE MONITOR, Dec.' 80 £4.91
JACK LEAD TESTER, Dec. '80 $£ 1.99$
STEREO POWER METER, Dec. '80 £18.98
PARTY GRENADE, NOv '80
lov'80. £5.57 inc. test leads
TRANSISTOR TESTER, Nov '80 DOUBLE DICE, Nov '80
\qquad £13.80 GUITAR PRE-AMP, Nov $80 \ldots . .$. $£ 5.65$ case (diecast) extra $£ 2.99$

Public Address Amplifier 18 watts 12 volt
Public Address Amplifier 18 watts 12 volt
As featured in H.E. March " 81 . Make yourself heard with this high-powered amplifier. Two inputs - one for microphone and an auxiliary line - each with amplifier. Two inputs - one for microphone and an auxiliary line - each with
its own level control - allows mixing of music with announcements, etc. Compact unit built in a black anodised aluminium 'sink box.' Uses a 12-volt d. supply - so can be powered from a car battery or a mains powered 12 V supply. Uses a special audio i.c. to deliver 18 watts into 4 ohms $(2 \times 8$ ohms in parallel). P.A. Amplifier Kit $£ 16.58$, Extras: P.A. Mic $£ 4.40 ; 8$ hm horn speakers £6.83 each

Sound Pressure Levol Mete
Featured in Feb. 81 E,T.I. Uses a precision ceramic microphone. Portable. Moving coil panel meter. work gives a waighted (loudness) work gives A weighted (loudness) response or flat response for absodomestic, schools, industrial or disco use.
Instructions included e45.75.
Printed Clrcult Boards = HठbБy Electronics
Electronics
Fully etched, drilled and roller
finned p.c.b.s available for most Hobby Electronics projects - send s.a.e. for p.c.b. price list.

1981 ELECTRONICS CATALOGUE

Guitar Fuzz Box. H.E. March 81
Produce delightful distortion from your electric guitar in a novel way. A simple to build project with foot pedal control. This unit produces a very smooth sound. Circuit is housed in a 'brand new' style of box - complate with a pedal to operate an internal switch. Features more controlled distortion and less back ground noise than most other de signs. Guitar Fuzz Box, Mar $81 £ 9.42$

KITS ICs TRANSISTORS CAPACITORS

Hundreds of illustrations. product data, circuits and details of all our kits and list included. All products are stock
lines for fast delivery
TOOLS RESISTORS HARDWARE Send 70 p in stamps or add 70 p to your CASES

ADVENTURES WITH MICROELEGTRONICS
 Säme štyle as above book; 11 projects based on integrated circuits - includes: dice, two.tone

 Same style as above book; 11 projects based on integrated circuits - includes: dice, two-tonedoorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard, iplug-in breadboard and the components for the projects.
Adventures with Microelectronics $£ 2,35$. Component pack $£ 26.95$ less battery.

ADVENTURES WITH ELECTRONICS 路Tomem

An easy to follow book suitable for âll ages, ideal for beginners. No soldering. Uses an 'S Dec breadboard. Gives clear instructions with fots of pictures. 16 projects - including three radios siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec and the components for the projects.
Adventures With Electronics $£ 1.90$,
Component Pack $£ 16.72$ less battery.

MAGENTA ELECTRONICS LTD.

TNTO DICITAL ELEGTRONIGS

durrent H.E. serles Part 1 in Sept. '80. Covers digital electronics from the basics Circuits are built on a plug-in Eurobreadboard. Reprints of back issues available $45 p$ each. Eurobreadboard and components for series $£ 18.95$ less battery. Com

WTO EHEGTRONIGS AONSTRUCTION

H.E. 6 -part Series: Feb. 80 to July 80 . COVERS THE BASICS OF ELECTRONIC REPRINTS AVAILABLE, 45p each part. Eurobreadboard and Components for Series $£ 15.63$. Components only $£ 9.43$

H.E.LADDER OF LIGHT:JAN: 81

Novel 'sound to light' project. Creates a pulsating, rising and falling light show Will drive up to 10100 W light bulbs either in bar mode - in a line increasing from one end; or in dot moder- one bulb at a time. Filter allows selection of bass treble or middle frequencies. Extra with our kit only - additional circuit and components for strobe and chase eatures.

MEMORY BANK SYNTHESISER
 Miniature syntesiser teaturing vibrato. en velope tempo, volurne and pitch controls. velose tempu, volurne and pitch controls. Uses 24 push button switches in a keyboard style layout. Bised on a custom designed i.c. The accessible memory stores a 32 beat length sequence of notes and spaces. Can be played 'live: Fitted with an internal be paces. Can spegke speaker. Jack socker allows the use of an oxternal amplifier if wished.
 Memory Bank Synthasiser £33.85

3 BAND

S.W. RADIO

 Retaction. Wevechangen and difienuasor coil
section is bywavechane Swich Use with section 15 by wavechange Switch. Uso with
Headobones or a Crusta earpoece. Kit con-
 Rectuce with his the

MAGENTA ELECTRONICS LTD

hJ10, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS, DE14 2ST 0283-65435-9-4 MON.-FAI. MAIL ORDE ONLY

rish Republic \& B.F.P.O. Europe deduct 10\% from prices showti. Payment must be in sterling accepted by phone or post.

Electronic Doorbuzzer

> This easily-built project for the home is an ideal alternative to the more expensive, commercially available door-chimes. Build it and it'll provide you and your visitors with a tremendous conversation piece!

HE ELECTRONIC

DOOREUZZER

ALTHOUGH AT FIRST sight an electronic doorbuzzer may seem to have no advantages over electromagnetic types, it will probably be more reliable and longer lasting. A further advantage is that you can build it yourself at low cost. Our electronic doorbuzzer produces a warbling tone that is quite attention-catching, but should not prove to be objectionable to other members of the household! For simplicity of construction and installation the HE Electronic Doorbuzzer is battery-powered, and a PP3-size battery should have virtually its shelf life (typically about six months or more) within the project.

Construction

Start construction with the Veroboard by cutting the tracks underneath the board, where shown in Fig. 2. Use a cutting-tool or a small ($1 / \mathrm{l}^{\prime \prime}$) hand-held drill bit for this job. Hold the cutting edge onto the hole in question. Press gently and then rotate the tool or bit clockwise, until the coper track has broken in a clean-edged circle. Make sure no loose pieces of copper swarf bridge across to adjacent tracks.

Insert and solder all resistors and capacitors in the positions indicated in Fig. 2. Now solder in the IC socket, if you intend to use one, and transistor Q1. Push fit the IC into its socket (or solder it into the board).

Following the connection details of the project, wire-up the board into its box.

Glue the speaker to the rear of the front panel of the box, behind a grille of some kind. This can be a cutout with a piece of speaker fret fitted behind it, or à simpler solution is to drill a neat matrix of small holes. Make sure you don't get any glue on the speaker cone itself - only on the outside rim.

The hole for the lead to the bell push must be made in the casing, and it is a

How It Works

The circuit is based on two oscillators, one of which is used to produce the tone which is fed to the loudspeaker. The other is used to frequencymodulate the tone generator, and it is this variation in pitch that gives the warbling effect.

Integrated circuit IC1 Is used as the basis of the tone generator, and it is a standard 555 used as a free-running oscillator. Capacitor C4 charges to about $2 / 3$ of the supply voltage via R5 and R6, and then discharges down to approximately $1 / 3$ supply by way of R6 and IC1. This process repeats indefinitely. with the main output at pin 3 of IC1 going high while C4 is charging, and low while it is discharging. The waveform produced here is fed to a loudspeaker. which consequently emits an audio tone.

The $2 / 3$ supply voltage threshold at which C4 starts to discharge is modified by applying a control voltage to pin 5 of IC \uparrow. When this voltage increases the charge and discharge times of C4 are lengthened, giving decreased operating frequency. As the voltage reduces the charge and discharge times of C4 also reduce, so that a higher operating frequency results. The tone produced by the second generator is therefore frequency-modulated by means of a control voltage applied to IC1 pin 5.

The warbling effect is obtained by using a control voltage that rises and falls a fow times. per second. The character of the output signal depends to a large extent on the waveshape of the modulating signal, and a waveform similar to a sawtooth is used in this circuit. This is of the type that rises fairly steadily in voltage and then suddenly falls back to its minimum level. This actually gives a steady decline in output frequency followed by a rapid return to the initial frequency although this action occurs too rapidly to be clearly heard, and a pleasant warbling effect is produced.

A unijunction relaxation oscillator is used to generate the modulating signal. Capacitor C2 charges through resistor R3 until a charge voltage of about 7 V is achieved, whereupon C2 rapidly discharges through Q1 and R2. Transistor 01 then switches off, C2 commences to charge once again, and so on. R4 couples the output of 01 to pin 5 of. IC1.
good idea to fit this with a small grommet which gives a neat finish and protects the lead.

Finally, mount the case securely to the wall where it is required, and wire it to the bell push.

Parts List

RESISTORS (All $1 / 1 W, 5 \%$)
 R1.R2 100R
 R3,R5 10k
 R6 82k

CAPACITORS

C1.3
$100 \mathrm{u}, 10 \mathrm{~V}$ electrolytic
C2 $4 \mathrm{u} 7,25 \mathrm{~V}$ electralytic
C4 $22 n$ polyester
SEMICONDUCTORS
IC1 555 timer
Q1 2N2646 unijunction

MISCELLANEOUS

LS 1 miniature 40-80R
loudspeaker
Veroboard 24 hole $\times 10$ strip, $0.1^{\prime \prime}$ matrix
Case to suit
PP3-size battery + clip
Bell push and connecting cable

Figure 1. Circuit of the HE Electronic Doorbuzzer

J	0	0	-	0	-	0	0	-	-	-			-	0	O	0	0		0	-	-	-		-	\bigcirc	
1	0	0	0	0	-	0	0	\bigcirc	-	-	-		\bigcirc	\bigcirc	\bigcirc	0	-		0	0	0	0		\bigcirc		
H	-	0	-	-	0	0	0	0	\bigcirc	-	-		\bigcirc	-	0	-	0		-	0	\bigcirc	0		-	\bigcirc	
G	-	\bigcirc	0	\bigcirc	\bigcirc	0	0	0	0	-	-		-	0	0	O	0		-	\bigcirc	-	0	0	0	-	0
F	-	-	-	\bigcirc	0	0	0	0	0	0	-		-	0	\bigcirc	0	0		-	0	-	0	\bigcirc	\bigcirc	0	\bigcirc
E	-	0	-	-	-	0	-	\bullet		O	-		-	0		-	0		-	-	\bigcirc	0	0	0	-	\bigcirc
D	0	-	-	\bigcirc		-	0	0	-	0	-		-	0		-	0		-	0	0	\bigcirc	0	-	0	
c	0	0	\bigcirc	\bigcirc	0	0	0	O	-	-	-		-	0		-	-		0	0	0	0		\bigcirc	-	
8	0	\bigcirc	-	\bigcirc	0	\bigcirc	-	-	O	0			-	0		-	-		-	0	-				Q	
A	-	\bigcirc	-	0	0	-	-	\bigcirc	0	O			0	-	\bigcirc	0	-		0	\bigcirc	\bigcirc			0	\bigcirc	

Figure 2. Veroboard overlay, underside track breaks and component locations, and connection details

Buylines

The loudspeaker can be of any variety having an impedance between about 40 and 80R (low impedance types are not recommended), and types with a largediameter cone are best if greater volume
is required. The other components are al standard, readily available types.

Cost of all parts (excludíng case and Veroboard) is approximately $£ 4$.

FREEOUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS.

TRANSMITTER SURVEILLANCE
Tiriv, easily hidden but which will ensble conversation to be picked up with $F M$ radio. Can b
parts and clreuit. 2.30 .
parts and clrevit. 2.
RADIO MIKE
Ideat for discos and garden parties, allows complete freedom of
SAFE BLOCK
Mains quick connector will save you valuable time. Features Includ
quick spring connectors, heavy plastic case and auto on and off
quick spring connectors, heavy plastic case and auto on and off swirch. Complete kit. £1.95.
LIGHT CHASER
Gives a brilliant display - a psychedelic light show for dizcos, par-
ties and pop groups. These have three modes of tlashing iwo chase ties and pop groups. These have three modes of flashing. two chase
patterns and s strobe effect. Total output power 750 watts pet channel. Comlere kit. Price E16. Ready made up f_{4} extra.
FISH BITE INDICATOR
Ensbles anglers to sét up several lines then sit down and read a boo
As soon as one has a bite the loudspeaker emlits a shrill As soon as one
Price $£ 4.90$.
6 WAVEBAND SHORTWAVERADIO KIT
Bandspread covering 13.5 to 32 metres. Based on circuit which appeared in a recent issue of Radio Constructor. Complete kit in.
cludes case materials, six transistors, and diodes, condensers, resist ofs, inductors, switches, etc. Nothing else to buy if you have on amplifier to \mathbf{c}
Price E11.95.
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price £2.30. Crystal
earpiece 65p. High resistance headphones (gives best results) $£ 3.75$. Kit includes chassis and front but not case.
RADIO STE THOSCOPE
Easy to fault find - start at the arial and work towards the speaker

- when signal stops you have found the fault. Complete kie $£ 4.95$ INTERRUPTED BEAM
This kit enables you to make a swith that will trigger when a
steady beam of infra-red or ordinary light is broken. Main compon. ents - relay, photo transistor, resistors and caps etc. Circult diagram but no case. Price E2.30
OUR CAR STARTER AND CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can start car off mains or bring vour bettery up to full charge in a couple of
hours. The kit comprises: 250 w mains transformer, two 10 amp bridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the garage, whichever suits you best. Prica $£ 11.50+£ 2.50$ post. GPO WIGH GAIN AMP/SIGNAL TRACER. In case measuring
only $5 \mathrm{Kin} \times 3 \%$ in $\times 1 \%$ in is an extremely high gain $(70 \mathrm{~dB})$ solld state amplifier designed for use as a signal tracer on GPO eables, ete With a radio it functions very well as a signat racer. By connecting a simple coil to the input socket a useful mains cable tracer can be made. Runs on standard 4 hiv bottery and has input, output sockets and on-off volume control, mounted flush on the top. Many other uses include general purpose amp, cueing amp, etc. A.
bargain ot only $£ 1.85$. Suirable 80 ohm earpiece $69 p$.

```
NEW KIT THIS MONTHI
CB RADIO - Listen in with our 40-channel monitor.
Complete kit with case and instructions only E5.99,
```

8 POWE FFUL BATTERY MOTORS
For models, Meccanos, dills, remote control planes, boats etc. 2.50 WATE APROOF HEATING WIRE
60 ohms per vard, this is a heating element wound on a fibre glass
coil and then covered with p.v.c. Dozens of uses - around water coil and then covered with p.v.c. Dozens of uses - around water
pipes, under grow boxes in gloves and socks. 23p per metre. COMPONENT BOARD Ret. WO998
This is a modern fibreglass board which contains a multitude of
very usefut perts, most important of which are: 35 mssorted dia very usefut parts, most important of which are: 35 assorted diodes
and rectifiers including 43 3amp 400 v types (made up in a bridge) 8 transistors type 8C107 and 2 tvpe $8 F Y .51$ electrolytic condensers. SCR ref $2 \mathrm{~N} 5062,250 \mathrm{Hf} 100 \mathrm{VDC}$ and $100 \mathrm{u} / 25 \mathrm{vDC}$ and over 400 other parts including variable, fixed and wire wound resistors
elocirthic
FRUIT MACHINE HEART. A wheels with all fruits, motorised and with solenoids for stopping the wheels with a litile ingenuity
defy vour friends getting the "iackpot". $99.95+$ CA carrisoo. -CORE FLEX CABLE
White puc for relephione extensions, disco lights, etc. 10 metres $E 2$ MUGGER DETERRENT
A high.note bleeper, push istching switch, plastic.case and battery
connector. Will scare away any villain and bring help. E2. 50 corn. connector.
plete kif.
EXTRACTOR FANS - Molns Voliza
Ex-computer, made by Woods of
ideal as blower: central heating
syrough panel extraction etc. Easy fixing but quiter running. Chowere of 2 sizesp
$5^{\prime \prime} \mathrm{E5}, 50.6^{\prime \prime} \mathrm{E6} .50$. Post El $5^{\prime \prime} \mathrm{E} 5.50 .6^{\prime \prime} \mathrm{E} .50$. post E 1 per lan.
 KEYBOARD BARGAIN
50 computer type kevs, toge ther with 5 miniature toggle switche
all mounted on a P.c.b. together with 12 i.c.'s and many tranall mounted on a P.c.b. toget her
sistors and other parts. In a case otherwise damaged $\mathrm{E} 11.50+\mathrm{E} 2$ post. This is far
less than the value of the less than the value of the switches alone. Diagram o this keyboard is inelud
you request it, or it is
separately. Price: $£ 1$.

- (Not licenceable in the U.K)

SUPER HI-FI SPEAKER CABINETS
Made for an expensive Hi-Fi outi

- will suit any decor, Resonance - will suit any decor. Resonance
free cut-outs for 8 " woofer and Tree cus-outs or the 8 wooter and
$4^{\prime \prime}$ twe tront material is carved Dacron, which is thick and does not need to be stuck in and the completed unit is most pleasing. Colour black. Supplied in pairs, price E6.9 per pair (this is prob
ably less than the original cost of one cabinet/ carriage 63.50 the pais

Vu METER SNIP

for $\mathbf{5 9 . 0 0}$

MOTORISED DISCO SWITCH With 10 amp changeover switches. Multi-
adjustabie switches all rated at 10 amps, this would provide a magnilicent displav, For mains operated 8 switch model
C6.25. 10 switch model $£ 6.75,12$ switch odet E7. 25.
3 CHANNEL SOUND TO LIGHT KIT

parts for a

three channel
sound to light
sound to light
unle controll.
unit controll-
ing over 2000
watts of light.
watts of ligh
ing. Use this

you wisth but it
is plemty ruged enough for disco work. The unit is housed in an
attractive iwo tone metat case and has controls for each channel, and a master onfoff. The audio input and output are by
sockets and three panel mounting fuse holders provide sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socket faclitite ease of conne
ing lamps. Speciat snip price is $£ 14.95 \mathrm{In} \mathrm{kit} \mathrm{form} \mathrm{or} £ 19.95$

FLUORESCENT TUBE INVERTER

THIS MONTH'S SNIP

1/2 PRICE CABLES! Flat P.V.C. covered mains cables - for lighting and power

12v MOTOR BY SMITHS Made for use in cars, these are series
wound and they become more powe
ful as lied inceses foul as laod increases. .they will
in fact burn themselves out it

SOLENOID WITH PLUNGER Mains operated E 1.99
$10-12$ volts DC
operated $\mathrm{E1.50}$.

MINI-MULTI TESTER Deluxe pocket size precision mov ing coil instrument, Jewelled bearings - 2000 o.p.v. mirrored
11 Instant range measures: DC volts $10,50,250.1000$.

$A C$ volts $10,50,250,100$
$D C$ amps $0-100 \mathrm{~mA}$.
Continuity and resistance 0.1 meg ohms in
iwo ranges. Complete with test prods and iniwo ranges. Complete with test prods and in-
struction book showing how to measure capstruction book showing how to measure cap
acity and inductance as well. Unbelievable value at only $£ 6.75+50$ p post and insurance FREE Amps range kit to enble you to rear
DC current trom 0.10 amps. directly on the 0.10 scale. It's free if you
purchase quickly, purchase quickly. but of you atread
own a Mini-Tester and would like own a Mini-Tester
one, send $£ 2.50$.

MULLARD UNILEX A minins oper ated 4
system. Rated one of the
finest performers tinest periormers in the
stereo field this would make a wonder ful gift for almost anyone. In easy to assemble modular form this should sell at about $£ 30$ - but due ro a special bulk buy and as an intem complete at only $£ 16.75$ including VAT and post. FREE GIFT - buy this month and vou will receive a pair of
Goodman's eliptical $8^{\prime} \times 5^{-}$speakers to march this amplifier.

DELAY SWITCH

Mains operated - delay can be accurately
set with polnters knob for periock of up set with pointers knob for periods of up
to 2 khrs . 2 eonacts suitabie to switch 10 $1021 / \mathrm{hrs}$. 2 conlacts suitable to swith 10
amps - second contact opens a few min. amps - second contact opens a
utes at ite Ist contact. E1.95.

LEVEL METER
Size approximately 3 z " square, scaled signal Size approximately x_{2} " squar e, scaled sign
and power but cover asily removable for
rescaling. Sensitivity 200 uA . 75 p . STEREO HEADPHONES Japanese made so very good quali
8 ohm impedace. paodded, terminating with standard \%
olug. $\mathrm{E}_{2} .99$ Post 60 p .

BRIDGE RECIFIER 1 amp 400 N 30 peach .
10 for $\mathbf{E 2 . 5 0} .100$ for E 20.00

BURGLAR ALARM CONTROL PANEL Contains labelled connection block, latehing relay, test switeh and removable key control switch. Simplifies the whole instailation,
all you have to do is to take mires to pressure pads and to alamm all you have to do is 10 ta ke mres to pressure pasds and to alamm
bell. Price $£ 7.95$, with comolete diagram.

PRECISION MAINS OPERATED CLOCK

For only 11.99 . Sounds unbelie vable but that's what you can
have if you send your order right away. The clocks which have have if you send your order right away. The clocks which have
large clear dials were made by the famous Smiths Company fo use with domestic cooker/switch, brand new and guaranteed.

12V SUBMERSIBLE PUMP

Just ioin it to your car battery, drop it into the liquid to be moved and up it comes, no messing sbout, no priming, etc. and you ge: a
very good head. Suitable forr water, paralfin and any non explosive very good head. Suitable ifr water, paralfin and any non explosive
non-corrosive liquid. One use If you are a camper, make yourself ashower Price: E8.50
POPULAR SNIP - STILL AVAILABLE
And it still carries a free git of a desoldering pump, which we are
currently selling at $£ 6.35 \mathrm{p}$. The snip is perhaps the most useful bre currenty selling at $\mathrm{E6.35p}$. The snip is perhaps the most useful
down parcel we have ever offered. It is a parcel of 50 nearly all different computer panels containing parts which must have cost at
least E 500 . On these boarck you will find over 300 IC's. Overs 300 least E 500 . On these boards you will find over 300 IC 's. Over 300
diodes, over 200 oransistors and several thousand ather diodes, over 200 transistors and several thousand other parts, resist-
ors, condensors, multi-turn pots, recifiers, SCR, etc. etc. If you act ors, concersors, multi-turs pots, recifiers, SCR, etc. etc. If you act
promptiv, you can have this parcel for oniv E8.50, which when you deduct the value of the desolder ing pump, works out to just a little
over 40 per panet. Surely this is a bargain vou should not miss! over $\mathbf{4 p}$ per panet. Surely this is a bargain you should not miss

MAINS MOTORS Precision made as used in record players, blow heaters, erc. spindte length for coupling fan blade pullev, eic. Power depends on stack siz
$5 / 8^{\prime \prime}$ stack $£ 2.00 ; \neq{ }^{\prime \prime}$ stack $E 2.50 ; 7 / 8^{\prime \prime}$
 E4.50. Add 25% to motor cost
tage, and then add 15% VAT.
YOUR LAST CHANCE FOR THIS BARGAIN 100 twist crills, regular tool shop price over $£ 50$, vours for only
$£ 11,50$. With these you will be able to drill metal, wood, plastic. $£ 11,50$. With these you will be able to drilt metal, wood, plastic, et
from the tiniest holes in P.C.B. right up to about $\%$ ". Don't miss Prom the tiniest holes in P.C.B. rig
thls snip - send your order today. MINI MONO AMP approx. Fitted volume control and a hole
for a tone cont rol should you require it. The amplifiter has thrise
trasistors and we estimate
the out the output to be 1 W ims. More technical data will be
included with the amolitier. included with the amplitiet.
Brand new, Brand new, perfect condition,
offered at the very low orice
£ 1.15 ach, or 10 for $\mathbf{£ 1 0 . 0 0}$.
J. BULL(Electrical) Ltd.
J. BULL (Electrical) Ltd - Established 25 years, MAIL ORDER TERMS: Cash with order - please add 60 p to all orders under $£ 10$, to offset packing. etc. ACCESS \& BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

OLevelezA

This month Nick Walton rounds off the series with a look at multivibrators and the storage of information in various ways, chiefly on disc and tape

MULTIVIBRATORS ARE A FAMILY of circuits whose importance has been much enhanced by the 'digital explosion' - that is, the huge increase in the use of electronic calculators, computers of all sizes and digital watches, all of which use the transistor as a switch and not as an amplifier. Hopefully when you have read this section you will begin to see why.

Let us begin by looking at how we can use a very simple transistor circuit to produce a single pulse. Consider Fig. 1, which is similar to a circuit we saw in our study of amplifiers in the May 1981 issue of HE, but now we are only interested in whether the transistor is conducting or not, ie whether it is switched on (by supplying base current) or switched off (by absence of base current). We did not actually have the capacitor there before but we shall.need it in a moment.

Figure 1. Basic transistor circuit. (Transistor not conducting and X is at 6 V)

In Fig. 1 nothing much is happening. The transistor is not conducting because no base current is being provided, so just about all the supply voltage of 6 V is dropped across the transistor and so the potential at the point X is 6 V . When we get to Fig. 2 the resistor R1 on the base of Q1 has been

Figure 2. Transistor conducting. (X is at 0 V)

connected to the positive supply line, base current is provided and the transistor is switched on. As a result 6 V is dropped across R2 and the potential at X is just about 0 V . In Fig. 3 much the same is happening but we have connected the capacitor to the positive line as shown so it charges up to 6 V . Notice which way round it is - the positive charge is on the lower of its two plates. Incidentally, we have also turned R1 round through a right angle but the transistor doesn't notice that.

Figure 3. As Fig. 2 but capacitor C1 is charging up

The next thing to do is to change the connection of the capacitor from the positive supply line to the zero line as

Figure 4. Situation Immediately the lower (positive) end of C Is taken from the +6 V line to the $O V$ line. C is conducting as if it were a short circult

shown in Fig.4. To begin with the capacitor conducts so easily that the current prefers to flow down to the zero line through it, rather than through the transistor. You see, a transistor will not conduct until there is about 0.5 V between its base and emitter, and initially the capacitor is letting current pass as though it were effectively a short circuit; so there won't be as much as 0.5 V across the transistor's baseemitter junction. But the charge soon builds up on the capacitor plates as shown in Fig. 5 (opposite to before), the transistor will once again conduct and the voltage at X will return to zero. This little cycle of operations can be summarised by saying that the act of changing the capacitor connection from high to low voltage will make the voltage of point X go from low to high and back to low again. This is

Figure 5. Base current is now provided again, Q1 conducts, and X goes to 0 V

what Fig. 6 is showing. The input voltage pattern is sometimes called a negative going edge because it starts high and goes down (negatively) to zero.

Figure 6. The high-tolow input pattern gives rise to the X output pattern of low-high-low

Around We Go

Now comes the clever bit. Notice that the output voltage pattern contains its own built-in negative edge (it finishes high to low) so we could use this to initiate the same thing on another stage. This idea is put into practice in Fig. 7. The two stages are connected together via the capacitor and the negative edge applied at the input on the far left triggers off a pulse at X whose own negative edge triggers off a similar pulse at Y. Actually you could have a string of these stages, one passing a pulse along to the next - like knocking down a row of dominoes. You could also feed the pulse you get from Y back to the original input and that would activate a pulse, at X again which would give you a pulse at Y which would produce another at X and so on till you switch off or get fed up - or both. This is shown in Fig.8, with the feedback loop

Figure 7.
Production of two pulses, one after the other by the same input pattern as Fig. 6

coming round and down below the $O \mathrm{~V}$ supply line and up to C1. Figure 9 shows how the circuit is usually drawn. Check

Figure 8. The arrangement whereby the pulse
from Q2 is fed back to the input of 01

carefully for yourself that Fig. 9 is, in fact, exactly the same as Fig. 8. (I bet you never knew that there were right-handed and left-handed transistors!) The speed at which the pulses get passed round the circuit depends on the rate at which the capacitors change their voltage, and that in turn depends on the capacitance and the resistance values in the circuit. You can have a pretty wide variation in pulse rate, from one every few seconds to hundreds of thousands per second. So this pulsing multivibrator finds application wherever you need a series of pulses (eg, in computers and calculators where the operations are initiated by pulsés).

The kind of multivibrator we have just looked at is called

Figure 9. The usual representation of the circuit of Fig. 8

an astable multivibrator; that is, it has no stable state but just keeps pulsing to and fro. The astable has a close relation called a bistable which is a device that is stable in either of two states. Consider Fig. 10 and suppose that we start things off by connecting the flying lead of R1 to the high voltage line. This will make $Q 1$ conduct so the point X will be at low voltage (since 6 V will be across R 2). This in turn means that

Figure 10. A bistable multivibrator arrangement

Q2 has no base current, so that it doesn't conduct and the point Y will be at high voltage. Now, by means of the feedback loop from Y round to $R 3$ this high voltage is fed to R3, and so Q1 is maintained in the conducting state. Even if we disconnected R1 from the positive line, the system would stay in this statel It is stable.

If, however, we were to touch the free end of R4 to the positive line, think what would happen. (No, don't read on have a think firstl) The immediate result would be that Q2 would now conduct, making Y a low voltage point. The feedback loop from Y to R3 would no longer provide any base current and so Q 1 would be switched off, making X a high voltage point which feeds R5 with base current for Q2 - the circuit is stable again but Q 2 is conducting - not Q 1 .

Memory

So it is stable in either of two states, hence the name bistable. We can flip it over into one state with ease and with equal ease get it to flop back again; so for this reason it is sometimes known as a flip-flop. The circuit can be thought of as 'remembering' which of R1 or R4 was the last resistor to be touched to the positive line and this is the basis of at least one form of computer memory. As with the astable, this circuit can be more neatly represented by turning one of the transistors round, as shown in Fig. 11. This also shows a small modification with R1 and R4 made redundant and their job of touching the positive line being taken over by the two flying leads shown.

Figure 11. The usual representation of the bistable multivibrator
There is one other important modification of the bistable and this is one which enables it to act as a counter. If we now add the diodes D1 and D2, the resistors R7 and R8, bulbs in place of R2 and R6, and the capacitors C1 and C2 as shown in Fig. 12, we can make the circuit flip from one state to the other by means of a singleflying lead connected to point X and watch it happen. Space does not really permit me to analyse what is happening, but it would be an excellent logical brainteaser exercise for you to puzzle out, and it is not difficult. Start with the bulb R2 on (ie, Q1 conducting) and the point X at 6 V . Consider whether C 1 will charge up (and why), and whether D1 will be conducting or not. Then consider what happens when X goes to O V and finally back to 6 V again.

Whether or not you do the brainteaser bit, or understand it or not, the overall result is, quite simply, that the circuit changes state (it flips or perhaps flops) only when the voltage at X drops from 6 V down to 0 V . When X goes from $O V$ to 6 V , no change of state occurs. It is when X goes from 6 V to $0 \vee$ that it flops over (or perhaps flips).

Figure 12. Modified bistable with single input

Dividing By Two

Behind this apparently innocent pastime of the bistable lies its ability to divide by two. It works like this. Suppose you feed a series of pulses into a bistable (to the point X which is sometimes called the trigger) then it will change states only when the voltage goes from high to low ie, on each negativegoing edge. Thus a pulse train fed in looking like Fig. 13 a will come out looking like Fig. 13b, where you will notice that each positive-going, then negative-going edge coincides with every negative-going edge of 13a - the pulse train of 13b has half the frequency of 13 a . And if this in turn is fed into a second bistable the output is again half the frequency of what went in, like Fig. 13c.

Figure 13. Pulses fed to a hungry bistable multivibrator. It eats every other pulse of a) and gives b) at the output

If you look closely at Fig. 14 and imagine all the bulbs are off to start with and we produce the pulses by turning bulb B1 on and off by means of switch SW1. Table 1 shows what happens to the bulbs as this happens. You should notice that B2 changes state only when B1 goes from the on state to the off state; similarly B3 changes state only when B2 goes off, and similarly for B4.

Figure 14. A binary counter

If we represent the off state by a zero and the on state by a one, then the table takes on the appearance of the binary series of numbers as Table 2 shows. This function of a series of bistables to act as a binary counter is extremely useful in computer circuits and calculators.

B4	B3	B2	B1
OFF	OFF	OFF	OFF
OFF	OFF	OFF	ON
OFF	OFF	ON	OFF
OFF	OFF	ON	ON
OFF	ON	OFF	OFF
OFF	ON	OFF	ON
OFF	ON	ON	OFF
OFF	ON	ON	ON
ON	OFF	OFF	OFF
ON	OFF	OFF	ON
ON	OFF	ON	OFF
ON	OFF	ON	ON
ON	ON	OFF	OFF
ON	ON	OFF	ON
ON	ON	ON	OFF
ON	ON	ON	ON

Table 1. What
happens to the
bulbs of Fig. 14

B4	B3	B2	B1
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Table 2. The binary
series of numbers (where an ON bulb gives a 1)

Memory Banks

The final item is the storage of information. This is a field which is changing rapidly and it has been said that the impact of the electronics revolution depends partly on the way information storage develops. The memory of a microcomputer may take all sorts of forms from special integrated circuits - in some cases containing literally thousands of bistables all on one little chip - to external memory banks like ordinary cassette tapes, the floppy disc, and looming up on the horizon some pretty unlikely sounding methods like magnetic bubbles or even the hologram -
which is a sort of photographic plate giving rise to a threedimensional image.

Of course, information storage is not restricted to computers and indeed a record or tape of your favourite pop group or classical symphony is really just a collection of a large number of bits of information. In the article on transducers we saw the way in which the wiggly track of a record's groove could be turned into audible information. The stylus was corinected to a coil which moved in a magnetic field, thus inducing a current which was fed to an amplifier and then a speaker.

Making A Disc

The way the disc is made in the first place constitutes quite a story in its own right. Originally a tape recording is made of the performance and this is played back to produce a master disc copy of it using a diamond stylus. Then a layer of silver (followed by copper for strength) is electroplated onto the disc, which when it is removed is, of course, a negative. A further positive is made from which come at least two more negatives and it is these which are used to print the records which end up on your turntable.

Figure 15. A tape record or playback head
Now you might wonder how the tape caught all the original information. That is no great problem to understand if you can think back to electromagnets and induction. The sounds from the orchestra or group are picked up by a microphone and after suitable amplification are fed to an electromagnet as shown in Fig.15. This electromagnet has a small gap of the order of a thousandth of a millimetre. Magnetic tape is drawn past this gap and the lines of force by preference go through the magnetic tape rather than across the non-magnetic gap. Thus the tape emerges with a series of regions like small magnets impressed on it as shown in Fig. 16.

Figure 16. The way a tape is magnetised

Having magnetised the tape in this way, the information is recaptured by the process in reverse. As the tape passes the gap of the pickup head the little magnets ingrained on it induce small currents in the coil and it is these which are fed to an amplifier and speaker.

Our Time Is Over

Well, friends, that winds up this article and indeed the whole series. I hope you have enjoyed studying it as much as I have enjoyed writing it, and a special good luck to anyone taking the exam. I hope you will pass with flying colours; I'm sure you will if you: revise the basics (which you could do by rereading the series); read the questions carefully; and answer what they ask and not the question you would have liked them to ask! One final bit of advice - enjoy your involvement in electronics. The best ski instructor I ever had said he had come to teach us to enjoy the mountains and then we couldn't help learning to ski. The more you enjoy your involvement, the better your involvement will be. I'd like to finish by quoting Tom Lehrer, the cynical American mathematician and songwriter very much in vogue a few years ago. He said, "Life (but he could equally well have said enjoyment/involvement in electronics) is like a sewer; what you get out of it depends on what you put into it." Cheers! HE

Books from the HE Book Service

SPECIAL OFFER TO READERS OF HOBBY ELECTRONICS OFLY
ELEMENTS OF ELECTRONICS
Book 1
Book II
Book III
£2.60
packing for $\mathbf{E 7} .80$ inc post and PRICE volum Vode Disc.

28 TESTED TRANSISTOR PRO. JECTS by R. Torrens .. $£ 1.50$ The author has designed developed and built some completely new circuits.
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS by R. A. Penfold $\mathbf{8 1 . 5 0}$ Enables the complete beginner to tackle the practical side of elec tronics.
ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST bY G. T. Rabaroe £1.50 Supplies the hobbyist with a background knowledge.
50 PROJECTS USING RELAYS SCR'S R TRIACS by F. G Rayer
Gives E1.50 lives tried and practical working circuits which should present the minimum of difficulty for the enthusiast to construct

HOW TO BUILD YOUR OWN METAL AND TREASURE LOCATORS byF. G. Rayer \because
Contains complete electronic and practical details.on the simple and inexpensive construction of Heterodyne Metal Locators.

HOW TO MAKE WALKIETALKIES by F. G. Rayer $£ 1.78$ IC5ES PROJECTS bY E. A. Por Included in this book are Basic and General Circuits, Motor Car and General Circuits, Motor Car and Model Railway Circuits, Alarms and
Noise Makers as well as a section onNoise Makers as well as a sectio
the 556,558 and 559 timers.

PRACTICAL ELECTRONIC CALCULATIONS AND FORMULAE by F.A. Wilson ... $£ 2.50^{\circ}$ Units and Constants, Direct Current Circuits. Passive Components. Alternating Current Circuits, Networks and Theorems, Measurements.

ELECTRONIC SECURITY DEVICES by R. A. Ponfold E1.70 includes both simple and more sophisticated burglar alarm circuits using light, infra-red and ultrasonics gas and smoke detectors, flood alarms doorphone and baby alarms, etc.

ELECTRONIC PROJECTS FOR

 BEGINNERS by F. G. RayorE1.610 A newcomer to electronics finds a wide range of easily made piojects.

POPULAR ELECTRONIC PROJECTS by R. A. Penfold $£ 1.70$ Radio Prolects, Audio Projects Household Prolects and Test Equipment,

HOW TO BUILO YOUR OWN

 SOLID STATE OSCILLOSCOPE by f. ©. Rnyer Et,75 Enables the enthusiast to simply and inexpensively build his own oscilloscope.ELECTRONIC GAMES bY R. A. Penfold E2.00 In this book the author has designed and developed a number of interes. ting electronic game projects using modern integrated circuits:

COUNTER DRIVER AND NUMERAL DISPLAY PRO. JECTS by F. G. Rayer .. E2.00 Author discusses and features many applications and projects using various types of numeral displays popular counter and driver'IC's etc.

BEGINNERS GUIDE TO MICROPROCESSORS AND COMPUTING bYE. F. Scott
. . . E2.00 Introduction to the basic theory and concepts of binary arithmetic microprocessor operation and machine language programming.

ELECTRONIC HOUSEHOLD

 PROJECTS by R. A. Penfold E2.00Circuits range from such things as 2 tone door buzzer' Intercom through Smoke or Gas Detectors to Baby and Freezer Alarms

A MICROPROCESSOR PRIMER by E. A. Part .. £2.00

 A newcomer to electronics tends to be overwhelmed when first confronted with anticles or books on microprocessors. This small book will start by designing a simple computer and because of its sim. plicity and logical structure the language is hopefully easy to learn and understand.50 CIRCUITS USING 7400 SERIES IC'S by R. N. Soar
£1.65
The author has compiled 50 in teresting and useful circuits and applications covering different aspects of electronics using these devices.

> AUDIO
> Earl, J., Audio Technicians Bench Manual E5.00 IEarl, J., Pickups and Loudspeakers $£ 5.00$ Earl, J., Tuners and Amplifiers

> Earl, J., Cassette Tape Recorders c6.00 Earl, J., ABC of Hi-FiEE.00 Capel, V., Microphones in Action

Capèl, V., Improving Your Hi-F
Capel, V., Creative Tape Recording £5.00
Hellyer, H. W., Tape Recorders
$\varepsilon 5.00$
Sinclair, I. R., Audio Amplifiers Fo Home Construction £6.00

RADIO CONTROL

Drake, J., Radio Controlled Helicopter Models $£ 4.95$ Jeffries, C. R., Radio Control For Model YachtsE3.85 Safford, E. L., Radio Control Manua £5.50

C00K800KS

Tracton, K., BASIC Cookbook Lancaster, D., TLL Cookbook Lancaster, D. RTL Cookbook E7.55 CMOS Coo.. $\mathbf{E 4 . 6}$ ok $E 8.20$ Jong. W. IC Op Amp Cookbook Lancastor, D. T.V. Typewrite CookbookE7.75 Lancaster, D., Cheap Video Cook book £6.50 Jong, W. IC Timer Cookbook

C7.65
Lancaster, D.. Incredible Secre Money Machine (a how to cook book for setting up your computer or technical business) ... £4.95

QUESTIOMS ANO AMSWERS
SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE BEGINNER
Coker, A. J., Q \& A On Electric Coker, A. J., Q \& A On Electric Hetlyer, H., Q \& A Or Radios and T.V.E2.50 Hibberd, R., a \& A On Integrated Circuits Jackson, K., Q \& A On Electricity
Brown, C., Q \& A On $\mathrm{Hi}-\mathrm{Fi} \quad £ 2.50$ Brown, C., Q \& A On Transistors Brown C Q \& A Ön Electronics E2.50 Reddihough, J., Q \& A Ón Colour T.V. $£ 2.50$ Miller, H., O \& A On Electric Wiring

CONSTRUCTOR GUIDES
Graham, P., Simple Circuit Building E3.40
Colwell, M., Electronic Diagrams
Colwell, M., Electronic Components Colwell M Printed Circuit E3.40 bly Ainslee, A., Practical Electronic Project Building £3.40 Colwell, M., Project Planning and
§3.40

[^1]Sirtclair, I: R., Beginner's Guide To Integrated Circuits C4. 25
Sinclair, I. R., Beginner's Guide to Audio 84.25

King, G. J. Beginner's Guide To
Radio $£ 425$
King, G. J., Beginner's Guide To Television $£ 4.25$ King, G. J. Beginner's Guide To Colour T.V. $£ 4.25$ Guilou, F., Beginner's Guide To Electric Wiring £4.25

PROJECT 80gKS

Marston, R. M.. 110 Cosmos Digital IC Projects For The Home Constructor
Marston, R. M., 110 Wave Form Projects For The Home Constructor Marston, R. M., 110 Op Amp Pro jects For The Home Constructor
£4.95
Marston, R. M. 110 Semiconductor Projects For The Home Constructor
Marston, R. M., 110 Thyristor/ SCR Projects For The Home Constructor
Marston 8 M i10 E4.95 Alarm Projects For The Home Constructore4.85 Marston, R: M., 110 Integrated Circuits Projects For The Home Constructor $\therefore € 4.95$ Marston, R. M., 20 Solid State Projects For The Car and Garage E4.95
Marston, R. M., 20 Solid State

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:
Hobby Electronics Book Service
Modmags Ltd
145 Charing Cross Road.
London WC2H OEE.

Power Amplifier

This month we conclude the HE Power Amplifier with details of wiring

HAVING CAREFULLY followed the contructional details of the HE Power Amplifier last month, you should have an amplifier chassis complete with all hardware including amplifier PCBs, mains transformer, bridge rectifier, capacitors and other fittings. It only remains to wire up your project.

You can see from the pictures of the inside of the amplifier that most connections are made neatly to wires contained in one main cable-form. The only wires not included in this cableform are those associated with the 240 VAC mains. These have been kept clear for safety and to prevent the injection of any audible 'hum' into the circuit. For neatness, the mains leads should also be tled into a 'mini' cableform.

The main cable-form consists of a collection of either heavy-guage multistranded wire or screened cable. The multi-stranded wire is used for all power supply and output connections - the screened cable is used purely for input connections from the input phono sockets to the PCBs.

Construction

Follow a colour-code of some sort (Table 1 shows the colour code we used) when wiring up the amplifier. This not only eases the procedure as you do it, but also makes any necessary fault-finding easier.

Start the wiring-up of your projec with the mains circuitry. Follow the diagram in Fig. 1. Note that this is only a diagram - the actual lengths of leads should be cut to fit exactly, going around the outside, internal edge of the chassis.

Next, wire up the power supply leads from transformer to bridge rectifier, capacitors to bridge rectifier,
and transformer to 5-pin DIN socket etc.

Now make all power supply connections to and from the PCBs. This stage is easier to follow if you wire one power supply rail (ie, $+\mathrm{V}, 0 \mathrm{~V},-\mathrm{V}$) at a time and finish all connections using each separate colour before starting the next.

Make all input and output connections to the correct back panel
fittings.
Finally, tie the cable-form together neatly using either lacing cord (as we used), plastic cable ties spaced at about 50 mm intervals, or simply string.

The false front panel can now be fitted, after which the case lid should be slid on from the rear and bolted on. You now have a complete and (with luck) working Power Amplifier.

Grey multi-stranded wire	- earth (0 V)
Blue multi-stranded wire	- output and mains neutral
Red multi-stranded wire	- positive (+V)
Black multi-stranded wire	- negative (-V)
Screened cable	signal (input)
Brown multi-stranded wire	- mains live
Green/yellow multi-stranded wire	- mains earth

Table 1. Suggested colour-code for cable-form

Buylines

A complete kit of parts for the HE Power Amplifier project is available from:

Capricorn Electronics
281 Balmoral Drive
Hayes
Middlesex UB4 8HD
(Tel 01573 1566)
for $£ 155$.
If you prefer to build the amplifier into a case of your own choice, Capricorn can supply all parts (excluding the case) for $\mathbb{E} 125$.

The case is also available (complete with all rear panel fittings for $£ 35$.

Complete ready-built PCBs for an amplifier are $£ 38.50$ each. Kits of all components to build your own PCBs are £28.

For those readers wishing to
purchase individual items used in the Power Amplifier, the following list gives a few examples of price.
Power Amp PCB +

sub-heatsink	£12.00
Thermal cut-out	£3.00
toroid transformer	
43-0.43 VAC	£20.00
Toroid transformer	
45-0-45 VAC	£25.50
Toroid transformer	
50-0-50 VAC	£34.50
Capacitor $4700 \mathrm{u}, 70 \mathrm{~V}$	£3.00
Capacitor 6800u 63 V	£4.50
Capacitor $10000 \mathrm{u}, 63 \mathrm{~V}$	£5.50
Bridge rectifier $10 \mathrm{~A}, 400 \mathrm{~V}$	¢5.00
Contact Capricorn for other Please remember to ad	tails. 1.50 to

Figure 1. Wiring and connection details of the project. Use a colour code such as the one we used (Table 1) and route all the wire around the inside edge of the case

Citizens' Band magazine, currently the country's leading CB publication, is looking for another person to join the editorial team of this new and exciting monthly magazine.
Prospective applicants should ideally have some journalistic training and a good working knowledge of radio and electronic theory is essential.
The job involves a fair amount of practical testing and assessment of equipment plus the day-to-day editorial work necessary on a monthly magazine. The ability to work unsupervised and upon initiative would therefore be an advantage.
Prospective applicants should send a full CV to:-

[^2]
ADDS TOYOUR CAPABILITY

Already used in industry, this solderless breadboard is now available to the hobbyist. Unique because of its universal interlocking facility meaning you no longer need lots of different boards.
Send now for the unique Verobloc. Order code 200-21092 G. £4.16p inclusive.

4	AND VEROHAVEADDED TOTHER TRADITIONAL RANGE OF HIGHQUALITY BOARDSAISOEX-ALSOEX-STOCK.		
		Size(m)	
$10-2858$	Mcroboard	180x100	5.68
$10-2864 \mathrm{H}$	Mcroboard	160 2334	12.41
200-2108E	v. Boarc	$147.83 \times 7 \times .66$	1.65
09-2196L	Verobord	160×100	1.63

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829

GUITAR PHASER	2085	Sept. '80	$£ 9.60$	HOBBYTUNE	2034	Oct. '79	£18.00
BENCH POWER SUPPLY UNIT	2087	Sept. '80	£25.00	MULTI OPTION SIREN	2 D 36	Oct. '79	£10.50
DEVELOPMENT TIMER	2086	Sept. '80	£8.75	ANALOGUE AUDIO			
TOUCH SWITCH (on Vero).	2084	Sept. 80	£4.50	FREQUENCY METER	2 D 35	Oct. '79	$£ 15.00$
AUTO PROBE	2083	Sept. 80	£3.00	COMBINATION LOCK	2029	Sept. '79	£12.50
REACTION TIMER	ZD82	Sept. '80	£26.50	*STARBURST	ZD30	Sept. '79	£14.50
MICROMIXER [on Vero)	2 D 1	Sept. '80	£8.50	LAMP DIMMER	2031	Sept. '79	£6.50
EQUITONE CAR EQUALISER	2052	Aug. 80	£13.30	ULTRASONIC SWITCH	2032	Sent. 79	£21.00
GAS DETECTOR	2055	Aug. 80	£22.00	CONSTANT VOLUME AMPLIFIER	2028	Aug. ${ }^{79}$	£11.50
PASS THE LOOP GAME	2056	Aug. '80	£12.00	INJECTOR TRACER	2027	Aug. '79	¢4.50
RADIO TIMER [on Vero]	2 D 57	Aug. '80	$£ 5.50$	LED TACHOMETER	2026	Aug. '79	£14.75
MOVEMENT ALARM [on Vero)	2054	Aug. '80	$£ 5.00$	BABY ALARM	2025	July '79	£13.50
OP. AMP CHECKER (on Vero)	2 D 53	Aug. 80	£4.00	POINTS SWITCH	2024	July '79	£12.50
CAR BOOSTER [no speakers)	2050	July 80	£18.00	LINEAR SCALE OHMMETER	2023	July '79	£14.00
HAZARD FLASHER	2048	July '80	£10.50	SHARK	2022	July '79	£22.75
*PUSH-BUTTON VOLUME				G.S.R. MONITOR	2019	June '79	£10.50
CONTROL	2047	July '80	£19.50	ENVELOPE GENERATOR	2020	June '79	£11.79
SOUND FLASH TRIGgER [on Vero	I2049	July '80	£3.50	DRILL SPEED CONTROLLER	2021	June '79	£7.00
2 WATT AMPLIFIER (on Vero)	2046	June '80	£3.90	WHITE NOISE EFFECTS UNIT	2018	May '79	£16.85
METRONOME [on Vero)	2051	June '80	£3.50	PARKING METER TIMER.	2017	May '79	£6.70
MICROBE R/C SYSTEM				DIGIBELL PROJECT	2016	May '79	$£ 5.00$
[less Servos]	2045	June '80	£17.50	VARIABLE POWER SUPPLY			
FOG HORN	ZD44	June '80	£4.50	O.30V 1 AMP	2015	May '79	£30.00
*EGG TIMER	Z043	June '80	£6.50	TRANSISTOR GAIN TESTER	2076	April '79	£6.50
MINI CLOCK	2010	May '80	£26.00	CISTERN ALARM	2075	April '79	£5.50
5080 PRE-AMP	2011	May '80	£32.00	MODEL TRAIN CONTROLLER	2074	April '79	£26.00
TRACK CLEANER	2012	May '80	$£ 7.75$	PHOTOGRAPHIC TIMER	2073	March '79	£14.50
*R/C SPEED CONTROLLER	203	April '80	$£ 9.60$	TONE CONTROL	2072	March '79	$£ 9.00$
HOBBY COM	208	April '80	£28.60	CASANOVA'S CANDLE	2071	March '79	£7.50
ELECTRONIC IGNITION	202	April '80	£18.25	SHORT WAVE RADIO	2066	Feb, '79	$£ 12.50$
DIGITAL FREQUENCY METER	209	April '80	£27.75	SINE/SQUARE WAVE			
SHORT WAVE RADIO	2080	March '80	£19.50	GENERATOR	2067	Feb. '79	£22.50
TOUCH SWITCH	$2 \mathrm{D79}$	March '80	£5.00	SCRATCH AND RUMBLE			
5080 PSU MODULE	2078	March '80	£29.50	FILTER MONO	2068	Feb. ${ }^{\prime} 79$	£22.50
SYSTEM 5080A	2077	March '80	E15.00	SCRATCH AND RUMBLE			
PASSION METER	206	Feh. ${ }^{\text {' } 80}$	£5.00	FILTER STEREO	2069	Feb. '79	£25.00
WIN INDICATOR	ZD42	Feh. 80	$\underline{1} .00$	CAR ALARM	2070	Feb. ' 79	£8.50
INFR RED REMOTE CONTROL	207	Feb. ${ }^{80}$	£19.35	FLASH TRIGGER (less flash gun)	2065	Jan. '79	$£ 10.50$
SCALEXTRIC CONTROLLER	2041	Jan. 80	£52.50	TOUCH SWITCH	2063	Jan. '79	£5.50
CROSSHATCH GENERATOR	204	Jan. '80	£11.25	VARI-WIPER	2064	Jan. '79	£8.00
DIGI-DIE	205	Jan. ${ }^{\text {80 }}$	£5.50	GRAPHIC EQUALISER	2062	Jan. '79	£25.00
RING MODULATOR	201	Dec. ${ }^{79}$	£8.50	PUSH-BUTTON DICE	2061	Dec. ${ }^{78}$	£6.00
SCALEXTRIC CONTROLLER	2039	Dec. ${ }^{79}$	£21.50	AUDIO MIXER	2014	Dec. '78	£20.30
BARGRAPH CAR VOLTMETER	2040	Dec. ' 79	£6.60	BEDSIDE RADIO	2058	Nov. '78	£12.50
GUITAR TUNER	2038	Nov. '79	£8.50	STEREO AMPLIFIER (HOBIT)	2059	Nov. '78	£52.50
*R2 D2 RADIO	2037	Nov. ${ }^{79}$	£8.60	WAA-WAA PEDAL	2060	Nov. 78	£30.00
TANTRUM	2 O 3	0Ct. '79	£37.50				

IONISER KIT: Z013. This negative ion generalor gives you power to saturate your home with millions of refreshing ions, without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean air, crisp and wonderfully refreshing. All parts p.c.b. and full instructions $£ 10$. A suilable case including front panel neon switch. etc., available at $£ 8$ extra.

PLEASE NOTE OUR NEW ADDRESS

LATE EXTRA

Watchdog Intruder Alarm 2089 OCT $80 \quad £ 15.75$ Temperature Controlled Soldering Iron Z090 OCT. $80 \quad £ 9.00$ Freezer Alarm (on Vero) …....2D91 OCT.' 8C £8.50
Tug O War Game.
Nobell-Doorbell
Kitchen Timer (on Vero)
Light Dimmer ZD94 OCT. '80 £12.50 Z093 OCT. 80 £9.75 $\begin{array}{lll}\text { ZD92 } & \text { OCT. } 80 & £ 5.75 \\ \text { Z5.50 }\end{array}$ ZD88 OCT. $80 \quad £ 5.00$

All kits contain components as specified plus Texas I.C. sockets, where required, also connecting wire.

FAIRCHILD FLVI50 red. 2 LEDS. 10 for $£ 1.00,100$ for $£ 7.50$ DALY ELECTROLYTIC CAPACITORS $2000 \mathrm{uF} 100 \mathrm{v} £ 1.50$ PHILIPS SCOPE Tube 5" CV2191/DG-13-2 \&10

If you do not have the issue of H.E. which contains the Project, we can supply a reprint at $40 p$ extra. Please add . 30 p post and packing. Add 15% VAT to total order. Callers please ring to check availability of kits.

T. POWELL

ADVANCE WORKS
44 WALLACE ROAD, LONDON, N. 1
TEL. 01-226 1489

Minimum telephone Orders $£ 5$
Minimum Mail Order £1

C lever

DESPITE the fact that July is printed on the cover, this CD is being compiled in May. (And just to confuse you further, the press day for this issue is in May, about a week after the June issue comes out.) And despite the bad weather in many parts of the country, those letters haven't stopped coming in.

On your bike for the first two.
Dear CD
I have become a regular reader of HE since December last year and am disappointed at the fact that both the digital speedometer and digital bike speedometer are both in mph . How can I convert them to $\mathrm{K} / \mathrm{h} / \mathrm{h}$? D. Basson

Natal, South Africa
Both of these speedos can be converted to read kMPH. Taking the Digital Speedo first, refer to the circuit in Fig. 1 on page 14 of the December'80 issue. Increase the value of resistor R2 (you'll need to experiment with different values, starting with, say 3 M 3) and you should be able to calibrate the speedo in KMPH by adjusting RV1 (coarse) and RV2 (fine).

Coming to the Bicycle Speedometer, refer to the circuit in Fig. 1 on page 38 of the March ' 81 issue. The same operation as described above for the Digital Speedo is required here, this time with resistor Rx. Follow the instructions given in the text.

Another query on the Bicycle Speedometer came up next.

Dear CD
lam thinking about making the bike speedo in the March issue. But it says "and adjust the pot until you get the right speed reading". All very well, but how do you know what the right speed is? Unless you already have a speedo - and I haven't. Please could you help.
James Byrne
Peterborough
Someone woke up here and suggested roping your bike to the hand rail of a bus but it's much too dangerous, illegal - and how would you know the speed of the bus anyway? Seriously, the only way to calibrate the speedometer is to compare it with the speed of another vehicle, such as a moped, travelling at a known speed. It obviously needs great care - preferably it should be done in an open space away from any vehicles or pedestrians - but once the potentiometer is set for one known speed, that's the job done. You just substitute it for an equivalent fixed value in the Rx position

We've got an aspiring radio ham next
Dear CD.
Please could you tell me where / could get information about becoming an amateur radio operator and if possible a place where I could get plans from which I can make a transceiver or where / could buy one from? Michael Nelson
Barrow-in-Furness, Cumbria
First things first: Information on becoming an amateur radio operator is available from the Radio Society of Great Britain, 35

Doughty Street, London WC1 (tel 01-837 8688). One of its publications, Beginners Handbook of Amateur Radio ($£ 8.26$ including post and packing) is worth looking at. Unless you intend operating a transceiver illegally, you will certainly have to learn about becoming a radio ham - and pass the necessary examination (the Radio Amateurs' Examination) before you can think about making or buying one.

Dear Clever Dickypoos,
I built your car booster amp but I have a problem: it will only work with about a $20 R$ speaker. With 8 or $4 R$ / get a continuous popping, and the output is very distorted. Please can you help?
David Harrington
Farnham, Surrey
Unfortunately, a 'bad' batch of HA1 388
ICs - the device used in the project - was produced which, although the devices functioned correctly, could become unstable. First check that your wiring to the PCB is tidy, with no unnecessarily long leads. Second ensure that screened cable has been used at the input. Third make sure that the supply leads are of a heavy gauge (the peak current can be as high as 4 A). If all else fails, try adding a 100R resistor in series with capacitor C7 and one in series with C8.

The next letter must hold the record for being the shortest so far.

Dear CD.
How much is a binder?
Ben Chaston
Enfield, Middlesex
Can anyone beat that and make sense? A binder costs $£ 3.95$ including p\&p, from Easibind Ltd, 4 Uxbridge Street, London W8 7SZ (add 30p for overseas orders).

Can anyone help this next reader?

Dear CD,
Please can anybody help me. After buying all the electronic components for your Hebot I phoned up Remcon Electronics (who produced the mechanics) only to be confronted with "Sorry - we don't do that anymore". Now I'm left with $£ 30$ worth of electronics so if anvone has any spares or $1 / 2$ started ones I would be glad to hear from them.
Martin Portman
Godalming, Surrey
PS is the info, about ETI bringing out a new robot in September true and how much will it cost?
The designer of HEBOT left HE about a year ago, so we have been unable to answer any technical enquiries about it. If anyone can help Martin, drop me a line. As to a new ETI robot coming out in September, who told you that? If there is one coming, there's no telling when - yet.

We have some observant readers, as shown by the next letter.

Dear CD,
Ithink, after reading May 81 issue of Hobby Electronics lought to point out to you and $\mathrm{N} J M$ Freeland that the guitar pre-amp, as in the overlay shown does have a fault. The interwiring does not show the -ve connection, that is the OV screen to anywhere along the track. This is the reason why he cannot get the pre-amp to work.

Although the circuit is supposed to be active, it lacks any real boost and cut lit sounds like a very good passive tone control network).

I would very much appreciate it if you could give some different values for the tone control network to give a good bass and treble, cut and lift.
Mark lan Arnold
Kings Lynn, Norfolk
PS Now ain't that worth a binderl
We looked at the overlay on page 37 of the May ' 81 issue and saw Mark's comments to be true - the outer screen of the cable from the volume potentiometer should have been connected to the ground track (point H14). Unless this screen is grounded, the negative terminal of the battery remains unconnected to the board. Now the bad news and the good news. The bad news is that we think you've got a faulty pre-amp there, because ours has plenty of cut and lift on the bass and treble. And the good news? We'll send you a binder.

Dear Clever Dick.
Whilst idling through a pile of HEs, we decided to carry out a survey of the cost है each page in HE. From the enclosed graph you will see very varied results and the cost does not appear to be consistent. We do not feel that we are getting the greatest possible value. . . maybe there are too many pay rises in the HE officel - but nothing would stop us ordering our regular copies of HE.
Peter Durrant \& Mark Hayter
Malvern, Worcestershire
PS How about slipping a couple of binders into the post to us, go-on be devils

Thanks for the survey - you must both be born statisticians. Although we haven't space to print it here, the graph shows the inevitable rlse over the last two years or so - but then what hasn't suffered price increases during this time? Nice to know that despite the recession, inflation, cuts and closures we still have some loyal readers. We'd be slipping if we sent out binders willy-nilly.

That's the lot for another month. Watch this space in the August issue. Until then take care of yourselves.

Every week, millions of advertisements appear in the press, on posters and in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We would like you to help us keep advertising up to standard.

Electronic Services

Electronic Equipment
Manulacturets $\mathbf{3 6 9 \text { Alum Rock Road, Birmingham. B8 3DR. Tet.021-327-2339 }}$ ISCO. Sound to Light Unit. 3-channel Unit fullly
 Some Units neediand atterntion you to repair, E5.s5 Lard of MULTICORE Solder Zup.
ANTEX SOLDERING IRONSI
CCN 15 wath Iron.
CX 17 watt Iron.
x 17 watt lron..
$\times 2525$ watt lron.

2525 watr Pon
ELEMENTS for

SAND Soldor above irons, state type. Spare TIPS (icN \& $\mathrm{C} \times \mathrm{X}), 2.3 .3-4.7-6 \mathrm{~mm}$ Spare TIPS $\times 25,2.3-34$
MINIATURE SPEAKERS
 hotary swicmes
ROTARY SWITCME
$5 W$
SP 3 Bank.......
5W 6P 3 日ank.
2P 5 1 Bank
$2 P 30 W 2$ Bank
ORLIN TYPES
P12W, 2P 5W, 3P 4W, 4P 3W
stereo Test cat bib Type.

CAN CAPACITORS (EIectrolytica)		
1500 FF	40 V	55p
2000 F	12 V	17p
335004 F	25 V	30 p
4000.45	15 V	25p
4700 HF	16 V	30 p
4700,	30V	2000
$5000+5000 \mu \mathrm{~F}$	16 V	100 p
6800 HF	10V	250
6800 HF	15 V	30p
$7500+7500$ WF	16V	100p
8000 uF	25 V	110p
10000uF	IOV	50p
10000 u	25 V	$80 p$
$11000+11000 \mu \mathrm{~F}$	10 V	50 p
$11000+11000 \mu \mathrm{~F}$	16 V	60p
12500uF	16 V	${ }^{110 p}$
15000 ${ }^{\text {c/ }}$	10V	30 p
15000, ${ }^{\text {F }}$	25 V	80 p
$16000{ }_{4} /$	16 V	40 p
$16500+16500 / \mathrm{F}$	10 V	30 p
20000 y F	10 V	100p
22000 ,	10 V	110 p
35000 ${ }^{\text {F }}$	15 V	150p
$39000 \mu \mathrm{~F}$	20 V	2500

Package contalning Ex-equipment boards. FULL of
seful componenis pack with 7 Panels,il DISPLAY. Gas discharge type, 9 digits 70 p at., or 2 tor $£ 1$ TUNING METRE. Centre Zero Fsd 50-0-50,4A.
Oims $34 \times 33 \times 21 \mathrm{~mm}$.
MICRO SWITCH
ype V3 SPCO Contacts. TOP-HAT RECTIFIER Dlode

MARKED PACKS

50 Silicon + Germanium T

50 Silicon Diodes
00 Polystyym Zener Diodes
5 Polysstyren Capacitors
30 PCB Type Elactroht.
25 Axial Lead Electrolynics.
AUMPER PARCEL
A super components. As, Cs, elc. Many ditie tent sorts
ANEL MET RES, 2" Type
Avallable in the following seales: $50 \mathrm{uA}, 100 \mu \mathrm{~A}$.
$500 \mathrm{uA}, 1 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}, 25 \mathrm{Vac}, 50 \mathrm{Vac}$,
$300 \mathrm{Vac}, 30 \mathrm{Vqe}, 300 \mathrm{Vdc}$.
THANSFORMER GVA
Split sobbin construction, $41 / 2=0.4 \frac{1}{2}$ Volt........... 10 p
RELAY
0 Mica/Ceramic Capacitors
oc Preformed Resistors. -
0 Assid. IAw Resistors.
50 Assid. 12 w Resistors
0 Asstd. Iw Resistors...........
15 Asstd. Presel Pots....
10 ingo02 Diodes (Pre-formed)
CAPACTTORS
220 pf tokV Disc.
1000 pF toov Pape
uF goov Mixed Dielectric
D5uF 750 V Mixed Ofelectnc
POST ANO PACKING please add 50 p post and pack
ing to orders under f10. Post free over E10 ADO VAT at the current rate of 15\% to total
BUMPA WHOLESALE LIST AVAILABLE SHDATLY. Send C 1 for your copy now.
SALE - BARGAINS

DIL. SOCKETS: High quality low profile sockers
8 pin-10p. 14 pin - 11p. 16 pin - 12p. 18 pin - 19p. 20 pin -21 p. 22 pin -23 p. 24 рin -25 p. 28 pin -27 p. 4 C pin -42 p
ALI PRICES INCIUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER UK 21 (k). OVERSEAS LS CASH WITH ORDER PLEASE

Quick Project:
 Electronic Metronome

This month's Quick Project is a metronome - specially designed for all our readers who are budding musicians - to help you keep your time while playing your instrument

This simple circuit produces a tick-tock sound, through the speaker, the speed of which can be varied by adjustment of RV1

Transistors Q1 and Q2 are connected in a standard astable multivibrator circuit. Potentiometer RV1 controls the charge rates of capacitors C1 and C2 and thus the operating frequency. Transistor 03 amplifies the pulse produced by the astable and drives the loudspeaker.

You can build the project into any suitable metal or plastic box and power it from a PP3-sized 9 V battery. Speed control RV1 and the on/off switch SW1 should fit on the box front.

If you require an on/off indicator, a small bulb (such as an LES type) can be wired between the +9 V and 0 V power connections on the board.

Most speaker impedances will suit the circuit although higher impedance types may not give much volume. In this case reduce the value of resistor R6 to about 27 R.

Figure 1. Circuit diagram

Figure 2. Veroboard layout, underside track breaks and connection details

NOTE: COLLECTOR
AND R4 LEAD GO INTO THE SAME HOLE

BOTH THE YOUR LETTERS page and Clever Dick's page can provide a useful means of exchanging your views. This first letter should help to answer J.A.Pearson's plea under Your Letters in the May ' 81 issue of HE .
Dear Mr Davies,
I was interested to read the letter from Mr Pearson concerning old television receivers.

I thought you might be interested in seeing an article I wrote which appeared in February Scottish Field, about Benjamin Clapp, who was chief assistant to John Logie Baird. I have sent a copy of Mr Pearson's letter and the article to which he refers, to Mr Clapp.

I suggest your reader contacts Wireless World at Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

I hope this letter might be of some help. Janet Thomas
Coulsdon, Surrey
Thanks for taking the trouble to forward Mr Pearson's letter and for the information. I will send a copy of your article to Mr Pearson.

Dear ED or C Dick

Looking through the 'Your Letters page' I was stunned at R Sawyer's letter. ED said try the Doorbell monitor (in the) March issue. What Doorbell monitor? I am only twelve - don't I deserve a binder?

I've been trying the Chuffer project for weeks (January) and I've checked all the wiring and components. Where have I gone wrong? Was there a fault?
P. Prodiomov

Southgate, London N14
PS Don't I deserve a binder?
PPS I think your mag should have something about computers in it.

It was my mistake - the Doorbell Monitor project was on pages 32-33 of the April ' 81 issue.

The only error we have on file for the Chuffer project was a misprint on the overlay shown on page 56 of the January ' 81 issue In the lower right-hand corner of the overlay, the electrolytic capacitor is numbered C9 - it should have been numbered C 8 . Otherwise it's difficult to say where you could have gone wrong. (Faulty component perhaps?)

We're not offering binders on this page yet but we'll consider your request for something about computers. (See the review of the Sinclair ZX81 - in kit form - in the Gadgets, Games \& Kits supplement on page 31).

I'll let this next letter speak for itself

Dear Sirs,
May I start by congratulating you on a magazine that brings electronics within everybody's reach.

That is the praise, the rest isn't.
If you are passing my way do drop in and see the pile of scrap that is all that is left of a model plane that took me weeks to build, cover etc. It took time to save for the radio equipment and it has now been all ruined by some B------ with a CB set.

My monitor showed that this 'accident' was not pilot error.

How can you possibly jus tify trying to promote something that is both illegal and causes so much damage to other people's
property? Your Article in May 1981 issue is proud of the 20,000 turn out at Donington and amused at the trader selling "straight 40-channel AM rigs for $£ 120^{\prime \prime}$

Every one sold is illegal and that should be made quite clear. Every one used is illegal and that should be made quite clear. Every one sold will have a good chance of affecting a legal radio modeller and that is not funny and that should be made quite clear.

You should not compare whether $A M$ or FM is better or worse for service . . . there is NO choice. FM will be legal, AM will not.

At the top of the page you cover yourselves by pointing out the 1949 Wireless Act and then in the last line you congratulate the organisers.

Let me make it clear I am not anti-CB and when it is legal I will have a set but the children using it (children in mentality at least) give the whole thing a bad name

My monitor has picked up conversations treating the damage to radio modellers as a joke. How funny would it be if someone destroyed their property? Another conversation wondered what the buzzing noise was on their set. Are they that daft not to know when they are interfering with a totally legal radio modeller?

You and other electronic magazines have been a powerful force in making CB legal, commendable / agree, but understand the power you have and the damage you do and have done.

The whole frequency system is cockeyed but 'facts is facts' and 1 and thousands of others either have to write off hundreds of pounds worth of planes, motors, servos etc, sell our transmitters and receivers and knock down prices as nearly obsolete to buy new equipment for the new frequency alloca tedito aero-modellers. What a Catch-22.

I hope the government choosing the frequency and you for lobbying for it are pleased with the damage and cost you have put thousands of people to.

I doubt writing this will have any effect or you will risk publishing it but looking at a pile of scrap balsa, cracked receivers and a pile of wires I felt someone should know.

D. Reed

Leatherhead, Surrey

I had received similar reports of sabotage to model aircraft by irresponsible (and illegal) CBers ... but I doubted whether thousands of RC modellers had been affected.

I spoke to Pete Christy, technical consultant to a radio control equipment manufacturer, who said: " 'It's difficult to put an actual number on it. A thousand or so might be a reasonable estimate for the last year.

He considered that the problem of CB interference to radio modellers was usually restricted to major urban areas or city centres. To give some idea of the potential targets for such interference, he said that up to the time that radio model licences were suspended in January 1981, about 100,000 licences had been issued.

Items published under Breaker One Four in HE contain the personal views of Rick Maybury, who is the Editor of Citizens' Band magazine. I share Rick's opinion that if successlve governments over the last 10 years had not stalled in the allocation of different frequencies for CB and radio-controlled models, we would not have had the present chaos on 27 MHz and other bands.

Dear Sir,
I have recently constructed the Public Address Amplifier from your March issue and at long last got it to work

I am appalled at the mistakes, both in the layout and method of construction, it could never be made to work from your published article.

First corrections to the layout:
Move the top end of R5, C3 and R6 up one hole from K to J .
Move the top end of R4 and the bottom end of C2 from J to 1.
Move the lead from the centre of the Mic Vol onloff control and the top end of R8 from H to G.
Having corrected the above errors the output waveform distortion (due to incipient instability) was completely unacceptable. Investigation showed that the Veroboard tracks are not capable of carrying the circulating earth currents present and it was necessary to re-inforce these with solderedon heavy gauge copper wire, the holes for the wire links were drilled out and these also replaced with heavy gauge wire.

1 might add that two samples were constructed, both showed the same faults and both responded to the same cures.
A.D. Poupard

Edenbridge, Kent
We agree with the errors listed in your letter, and these apply to the Veroboard layout shown in Fig. 2 on page 14 of the March ' 81 issue. We cannot, however, agree with your comments about the method of construction and the 'incipient instability'. The project was designed to avoid large currents passing through the Veroboard tracks, and if you refer to Fig. 2 you will see that the 0 V supply lead goes directly to one of the solder tags on IC 1. Thus the supply current to the board is only a few milliamperes

Thanks for pointing out the layout errors.

Dear Sir,

Referring to page 16 of the May issue of Hobby Electronics, what technique of playing is required with regard to the annotation of the notes from the tone generators and the keyboard adjacent?

As a professional (retired) arranger and pianist etc (I was at one time staff arranger with Francis, Dav and Hunter in Charing Cross Road I I would love to hear what would come out of the instrument played normally but connected as annotated.

Of course it is a slip but how it could get past so many people / cannot understand. || had a few years correcting printers errors etc.)
Ivan E. Gray
Bidlington, East Yorks
PS I enjoy reading HE - it is my favourite.
We discussed your letter in the HE office and came to the conclusion that you had misunderstood the drawing under How it Works on page 16 of the May ' 81 issue. Here the dividers have been shown linked to the note outputs from the top octave generator IC, but not in chromatic order. In the final wiring $u p$, the correct notes are coupled to the correct outputs from each divider IC. To show this in the drawing on page (16 would have meant showing a lot of wires crossing over each other.

And that's the last letter of the month. HE

THREE FOR FREE

 M. FROMGSC
EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Stant small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 48.

EXP $325 £ 1.60$ The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP 350 E3. 15 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs. Has 270 contact points including two 20 point bus-bars.

EXP 300 ¢5. 75 The most widely bought bread-board in the UK With 550 contact
 points, itwo 40 point bus-bars, the EXP 300 will accept any size IC and up 106×14 pin DIPS. Use this breadboard with
Adventures in Microelectronics.
EXP 600 £6.30 Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600

EXP $650 £ 3.60 \mathrm{Has} \cdot 6^{\prime \prime}$ centre
spacing so is perfect for MICROPROCESSOR applications.

EXP 48 $£ 2.30$ Four
more bus-bars in

"snap-on" unit
 1

EXPERIMENTOR BREADBOARDS and
following the instructions in our FREE 'Electronics By Numbers' leaflets, ANY800Y can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph;

You will need; One EXP 300 or EXP 350 breadboard 15 silicon diodes 6 resistors 6 Light Emitting Diodes Just look at the diagram. Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's' finished. All you have to do is follow the large, clear layouts on the Electronics by Numbers' leaflets, and ANY BODY can build a perfect working project.
No. 10 SOIL MOISTURE TESTER No more wilting houseplants with this soi moisture test. Just place the probes into the soll and it will light up to tell you whether the soil is "too wet or "too dry". You don't even need green fingers.
No. 11 DIGITAL ROULETTE The suspense and excitement of the casino in your own home. Just press the button, the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.

No. 12 EGG TIMER

How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking now!

Want to get started on building exciting , projects, but don't know how? Now using

E
Just clip the coupon
Give us your name and full postal address (in block capizalst. Enclose cheque, postal order or credit card number and expiry date, indicating in the appropriate box(es) the breadboard(s) you require.

Available from selected stockists ELECTRONICS BY NUMBERS

For full detailed instructions and layouts of Projects 10, 11 and 12, simply take the coupon to your nearest GSC stockist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1, 2 and 3, or 4,5 and 6 , or 7.8 and 9 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips. PROTO-BOARD 6 KIT £9.20

PB 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy PROTO-BOARD 100 KIT E11.80

The above prices are excusive of P\&P and 15% VAT

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately GLOBAL SPECIALTIES CORPORATION

EXPERIMENTOR BREADBOAROS	CONTACT	IC CAPACITY 14 PIN DIP	UNIT PRICE INC PGP \& 15% VA	$\begin{aligned} & \text { Oiy } \\ & \text { req } \end{aligned}$
EXP 305	130	1	E 2.70	
EXP 350	270	3	¢ 4.48	
EXP 300	550	6	¢ 7.78	
EXP 000			¢ 8.39	
Expeso	270	use with 06 pitch Dip's Simp Bus Bar	¢ 5.00	
EXP 48	Fout 40 Point Bus Bars		¢ 3.50	

For immediate action

The GSC 24 hour, 5 day a week service.
Telephone (0799) 21682 and glive us your Access,
Telephone (0799) 21682 and give us your Access, order will be in the post immediately.

[^3]Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Tel: Saffron Walden (0799) 21662
Telex: 817477

Get a great deal from Marshall's

PLEASE ADD POSTAGE/PACKING 60p UNLESS STATED ALSO 15\% VAT ON TOTAL - ALL ITEMS ON THIS DELIVERY. WATCH FOR SPECIAL REDUCTIONS ON STARRED ITEMS.

A. Marshall (London) Lid.

Kingsgate House, Kingsgate Place, London NW6 4TA
Industrial Sales: 01-328 1009. Mail Order: 01-6248582 24hr service Also retail shops: 325 Edgware Road, London W2, 85 West Regent St., Glasgow \& 108A Stokes Crofti, Bristol.
OHIO SCIENTIFIC COMPUTERS. Superboard 3 E149,
Power supoly kit E11.95. Modulator fe3.50. Guard band it E 10 (converts the display to 50 Hz and 32 lines of 32 chrs, gives 1200 and 3008 8aud tape speads and in Superboard $3+$ power supply and modulator kit + Superboard band kit only $£ 172.4 \mathrm{~K}$ extra ram $£ 11.95$. Weno $£ 19.95$. Case $£ 27$. Cassarta racorder $\mathrm{f18}$. Cegmon mproved monitor rom $£ 29.50$. Assembler/Editor $£ 25$.
Word processor $£ 10$. Dispolay expension kit 30 lines x. Word proce ssor $\begin{aligned} & \text { 10. Display expension } \\ & \text { 54 characters for superboard } \\ & \text { TWO }\end{aligned}$
PRINTERS suppliad with free interface and word p199, Okl Microline 80 £299. Epson MX70 £259.
\star Sinclair products only are post free. SC110 es
 ror kit $£ 11.27$. POM $35 £ 53.95$, adaptor $\varepsilon 44$, case $£ 1.73$. OM235 $556.50,0 M 350 £ 78$, DM450 £107, adaptor $£ 4$. Case. Adepor 6 C. 95 .
MEMDAIES 2114 450ns $£ 1.50 .4116$ 200ns £1.99. 4027 £1.30. All low currem.
 way vyes $3 / 4 / 26 / 7 / 2991215 / 518 \mathrm{v} 100 \mathrm{ma} \Sigma 53.12,1 \mathrm{Amp}$
 5 V stabilised $11 / 2 \mathrm{~A}$ f9, 3A $£ 14,6 \mathrm{~A} \in 22$. 12 V car convertor $8 \pi^{\dagger} / 2$ gv 1 A 1.62

\#BATTE日Y ELIMINATORS 3 -way type 671/2g 64\%. $9+9 \mathrm{y}$ E6.25. car convenor 12 v Input, output or hovorma
-TV GAMES AY-3.8600 + kit E12.98. AY-3-8550 +ki
SWANLEY ELECTRONICS Dept HE, 32 Goldsel Road, Swanley Ken

Postage $£ 3.50$ on superboard, $£ 4.50$ on printers and 45p on other orders Lists 27p post free. Please add VAT except to sections marked with a

* BARE ESSENTIALS * ABOUT ELECTRICITY *ACTIVE COMPONENTS *CONNECTING UNITS * MEASURING \& METERING *CIRCUITS THE IDEAL INTRODUCTION TO ELECTRONICS FOR THE NOVICE OF ANY AGE
£ 3.95 INC P\&P

OTHER BOOKS AVAILABLE BY IAN SINCLAIR

* UNDERSTANDING ELECTRONIC CIRCUITS £4.50
* UNDERSTANDING ELECTRONIC COMPONENTS £ 4.50
* REPAIRING POCKET TRANSISTOR RADIOS £2.95

KEITH DICKSON PUBLISHING LTD 17 HENDON LANE LONDON N3

all prices incluoe postage \& Packing

55111	
BEST SELLERS	
\qquad Add VAT at 15% to ail prices.Small order surcharge 40 p if under 5.75 . No inland P\&P on CWO orders.	
ELECTROVALUE LTD. DEPT. H7, 28 St. Judas Road, Engio Egham, 2e4475. Branch (Personal Shoppors, only) 680 Burnage Lane,Nornhernchester M19 NA. Phone (061) 4324945 .	

WITH THE AID of our Treble Booster you can liven up the sound of your electric guitar and obtain what guitarists call a 'brighter' sound. Conventional treble boost circuits are readily obtainable and most guitarists who play electric guitars will have used the effect at some time or another. The standard effect relies on amplification of frequencies around 4 kHz much more than those frequencies below and above this point. Our treble booster does this, of course, and the response of this 'normal' booster mode of the circuit 'peaks' at approximately 4 kHz with a maximum boost of 25 dB (a gain of about 18). However, in 'superboost' mode the circuit can be used to provide a more extreme effect, with a peak of around 40 dB (a gain of 100) at 10 kHz , for those who do not believe in doing things by halvesl Figure 1 shows the two responses that are available. When not required, the frequency boost can be completely removed (ie, for a flat response) so that the guitar sound is unaffected.

The booster is completely selfcontained, and is connected between the guitar and amplifier using a standard guitar lead terminating in a $1 / /^{\prime \prime}$ jack plug. Regular readers will recognise the case we have used as being of the same type housing the HE Fuzzbox in the March issue and the HE Envelope Generator in the June issue - it's such an ideal case for a guitar effects pedal that we couldn't resist using it yet again.

Construction

Make all necessary breaks in the copper tracks of the board, as indicated in the underside view in Fig. 3. These can be dohe with either the specially designed tool from Vero, or a small hand-
held drill bit (about $1 / \mathrm{s}^{\prime \prime}$ is ideal). Press the cutting edge onto the hole in question and twist clockwise until the copper breaks away in a clean circle. Make sure no loose swarf bridges across to adjacent tracks.

Insert and solder the 8 -pin DIL (dual-in-line) IC socket where shown and also solder in Veropins where external component-to-board connections are to be made.

Next, the link, resistors and capacitors should all be inserted and soldered. Make sure you have positioned all polarised capacitors the right way round. Push the IC into its socket, checking first that it is correctly aligned.

Now, mark and drill the case to take the input jack socket and SW1, and then mount them both into their places.

Wire up your project, carefully following the connection details in Fig. 3, using screened cable for input and output leads to reduce the chance of interference. All other connections are made with thin multi-strand wire.

Finally, screw on the bottom of the case, plug in your guitar - and boost.

GAIN (dB)

Figure 1. Measured frequency responses of our prototype Treble Booster. Switch SW1 allows you to choose the response required

Figure 2. Complete circuit of an HE Treble Booster

How It Works

Without the capacitor shown connected by broken lines, the circuit basically consists of an amplifier whose response is flat.

In this circuit, by inserting the capacitor into a positive feedback loop around the amplifier the response can be changed. As the reactance lyou can think of reactance merely as AC resistance) of the capacitor falls at higher frequencies, more signal is fed back and is thus re-amplified. The gain of the system therefore increases as the frequency goes up.

Figure 2 shows the circuit of the treble booster, and it is based on an LF351 or similar (TLO71CP, TLO81CP, etc) lownoise, JFET operational amplifier. Integrated circult IC1 is used in the noninverting mode, and has its noninverting input biased to half the supply potential by R1 and R2. Cepacitor C1 couples the signal from the guitar to the non-inverting input of IC1.

The voltage galn of IC1 is controlled by the amount of negative feedback from the output to the inverting input. At DC and low frequencies there is virtually 100% negative feedback through R3 and R4 due to the very high input impedance of IC1, and the circuit therefore has unity voltage gain. At higher frequencies the impedance of C2 becomes significant and it tends to decouple some of the feedback, giving the circuit a response which steadily rises with increased signal frequency. It is normal to tame the high frequency response somewhat to prevent excessive boost
at the highest audio frequencies and to reduce the risk of instability. With SW1 in the 'normal' position C3 is shunted across R3 and R4, and its fairly low im--pedance at high frequencies glves increased feedback at frequencies above about 4 kHz , with a consequent 'rolling off' of the response. If SW1 is set to the 'high' position C4 is added in series with C3 giving reduced capacitance and higher boost at frequencies above approximately 5 kHz .

If SW2 is closed the output of IC1 is connected directly to the inverting input, glving 100\% negative feedback and unity voltage gain. Switch SW2 can therefore be used to switch out the treble boost and give a flat response when the boost is not required. On/off switching is provided by SW3, which is part of the input jack socket. The treble booster is turned on by insertion of a jack plug. Total current consumption is less than 2 mA so long battery life can be expected from this project.

Buylines

A full kit of parts for this project, including foot pedal and Veroboard, has been produced by Magenta Electronics for $£ 9.94$. This price includes VAT but not p\&p.

Magenta can also supply the stylish foot pedal case separately, for $£ 5.65$ including VAT but not p\&́p.

Please add 40 p to cover p\&p. whatever size your order.

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	
R1, 2	150 k
R3	2 k
R4	3 k 3
CAPACITORS	
C1	2 n 2.16 V electrolytic
C2,6	100 n polyester
C3	$2 n 2$ polystyrene
C4	$390 p$ ceramic
C5	$10 \mathrm{u}, 16 \mathrm{~V}$ electrolytic

SEMICONDUCTOR

IC 1
LF351 JFET opera-
tional amplifier
MISCELLANEOUS
SW 1
single-pole, singlethrow latching pushbutton switch
Case to suit (includes SW2 - see
SKA
Buylines)
$1 / 4$ " Jack socket (with SW3)
P.P3-size battery + clip

Veroboard, 10 strip $\times 24$ hole, $0.1^{\prime \prime}$ matrix

Figure 3. Veroboard overlay, underside track breaks and component locations, and connection details. Note the use of screened cable for input and output connections

Conquer the chip.

 will revolutionise every human activity over the next ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MASTER ELECTRONICS
 LEARN THE PRACTICAL WAY BY SEEING AND DOING
 - Building an oscilloscope. Recognition of components.
 - Understanding circuit diagrams. - Handling all types Solid State 'Chips'.
 - Carry out over 40 experiments on basic circuits and on digital electronics.
 - Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

 MASTER COMPUTERS

 MASTER COMPUTERS}

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW
THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library.
- Special educational Mini-

Computer supplied ready for use.
Services of skilled tutor available

- Self Test program exercise.

MASTER THE REST

- Radio Amateurs Licence. - Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. - Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

Breaker One Four

The publishers of HOBBY ELECTRONICS would like to point out that it is at present a contravention of the Wireless Telegraphy Act of 1949 and 1968 to use, manufacture, install or import CB transmitting equipment. It is not the intention of Modmags Ltd to incite, encourage or condone the use of such equipment.

The battle over the FM spec goes on. Rick Maybury looks at the latest developments

IT WILL COME as no surprise to learn that within three weeks of the UK CB draft specifications being published at least one Japanese manufacturer had working examples of their wares in the country. On the other side of the coin, all the various legalisation groups are running around doing their utmost to get the spec changed.

At the epicentre of the discontent is the new frequency and the use of FM instead of good old AM. Without wishing to be a bore, we have had the opportunity to try out the new equipment and I can confirm, whether you like it or not, that the range is just as good and the quality of speech several times removed from what we are accustomed to. As reported last month, the equipment cost, a very touchy subject at the best of times, will at worst be the same as that already on the black market and at best, less than we are used to. To date the cheapest basic 40 -channel 4 W FM mobile rig will cost under $£ 50$.

Antenna Restrictions

However, it's not all smooth sailing. There is one area of contention: the ERP (effective radiated power) of the new equipment is likely to cause a few problems with antennas. A spokesman at the Home Office has told me that it is almost certain that it will only permit one type of antenna. It looks as though the standard CB antenna will consist of a stainless steel whip with a loading coil at the bottom of the whip. Sounds familiar? It should do, as it will look like the radio telephone antenna used by cab companies and by those rich enough to afford radio telephones.

There's more to come, though. It looks as though legislation will be introduced to specifically outlaw helically-wound antennas (just like DV27s, Firestiks, Roadhogs, etc) and as for base stations, well you can forget beams, gain antennas, or in fact anything that would transgress the 2 W ERP rule. All is not lost though, as steady pressure from NATCOLCIBAR and several other groups has been bending the ears of the Home Office in order to get this ruling changed.

This rather shortsighted legislation could make the difference between a workable system and a poor alternative to the illegal system already in use. I'll be reporting on the outcome of a very important meeting at the Home Office next month, hopefully with some good news.

Important Announcement

Just a couple of weeks before the legislation date good old Modmags will be organising the most important CB exhibition of the whole year. Already several very large importers and manufacturers of CB equipment will be exhibiting their wares. We plan to allow visitors to the show to purchase rigs but we can't say too much until our plans are finalised. In the meantime, if you want to see what the new system is all about, see the very latest equipment, eyeball all the CB personalities or just ratchet with the dozens of accessory dealers who will be there, get yourself along to the Horticultural Hall in London on the 11 th, 12th and 13th September. We at C8 will be there to answer your questions and sell you magazines, etc so come along and make a day of it. HE

AKRO-MILS Storage Organisers

Compartment Boxes

With either 16 or 18 compartments Snap tight, 'see-thru' lid secured by extra strong hinge. Ideal for school, domestic, office or workshop use.

[^4]GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally de signed for installation into a music centre
Supplied as two separate built and tested Supplied as two separate built and teste Units which are easily wired together ting wiring diagrams supplied. Rotary Controls: Tuning, on off volume balance, treble, bass. Push-button con trols: Mono, Tape, Disc, AFC, FM (NHF) WW. MW. SW. Power Output: 7 watt RMS per channel, at better than 2\% THD into 8 ohms. 10 watts speech and music Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ red output. Disc Sensitivity: 100 mV rated oulput. Disc Sensitivity: 100 m (ceramic cartridge). Radio: FM (VHF) $145 \mathrm{kHz}-108 \mathrm{kHz}$. Medium wave

$520 \mathrm{kHz}-1620 \mathrm{kHz}$. Short wave $5.8 \mathrm{MHz}-16 \mathrm{MHz}$. Size: Tuner $-23 / 4 \mathrm{in}$ $x 15$ inn $^{x} x 7 / 2$ in approx. Power amplifier in. $x 7 / 2 \mathrm{in}$. $x 41 / 2 \mathrm{in}$. approx. 240 V AC operation. Supplied complete with fuses, knobs and pushbuttons, and LED stereo beacon indicator. Price E21.50 plus - 50 postage and packlng.

fereo Cassette Tape Deck Module comprising of a top panel and tape mechanism coupled to a record/play-back printed board assembly. Supplied as one complete unit for horizontal installation into cabinet or console of own choice. These units are brand new, readv-built and tested. Smart black and siver finish.
Features: Three digit tape counter, Auto-stop, Six plano type keys, record, rewind, fast for-
ward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. Input sensitivity 100 mV to 2 V . input impedance 68 K . Output level 400 mV to both left and right-hand channels. Output Impedance 10 K . Signal to noise ratio 45 dB . Wow and flutter 0.1%. Power supply requirements 18 V D.C. at 300 mA . Connections the left and right-hand stereo inputs and outputs are via individual screened sockets provided). Dimensions: Top panel $5^{1 / 2 i n}$. $\times 111 / 4 i n$., clearance required under top panel 2 t/ain.
Supplied comple connecting diagram Supple. $\mathbf{2}$ + 2.50 postage and packing. supply (transtormer bridg rectifier and smoothing capacitor) $£ 3$.
 And each charge lasts as long as most ex-
 pensive batteries at less than $1 / 2 p$ each recharge.

Every battery will recharge at least 500 times.

NEVER RUN OUT OF POWER AGAIN

Knight Charger Will charge three popular sizes of NI-CAD CELL

- AA (HP7) - Radios, Shavers, Photographic Equipment Calculators
- C(HP11) - Torches, Toys, Toothbrushes

D (HP2) - Large Portable Radios, Cassette Players, Bicycle Lamps
ORDER FORMTo: HEYWARD REID LTD., PO Box 39, East Molesey, Surrey, 01-979 6051Individually - Charger $£ 8.95$. Cells: HP7 at $£ 1.29$ ea., HP11 at $£ 1.79$ ea. HP2 at $£ 2.25$ ea.
My Order is
I enclose Cheque/P.O./Cash for $£$.

I enclose Cheque/P.O./Cash for $£$.
OR Debit my Access/Barclaycard account number
\qquad
Name
SPECIAL OFFER - Charger plus 4 HP7 celis at $£ 12.95$
\qquadAddressTel. No1

PCB FOIL PATTERNS

PCB foll pattern of the HE Ultresound Alarm

गTITITगTINTITH1गTI

HE ORGAN 3\&4

HE Electronic Organ, Board 3 and 4 foil pattern (two boards required)

BARGAINS FOR THE ELEC TRONIC HANDYMAN

 BRANDED L.E.D. DIGITAL ALARM CLOCKSReturned to Servica Deparment within guarantee period.

With alarm repeat. S. . S.P (2) £3.95, inc. VAT. or 3 for $£ 9.95$, inc. VA
2 With luxury lamp and repeat alarm. S.P.S.P £31.00. Offered of $\mathbf{£ 7 . 9 5}$ inc. VAT each, or 3 for
$\mathbf{£ 1 9 . 9 5}$ inc. VAT $\$ 19.95$ inc. VAT.
These will be sold as received from our customers with the existing fault(s) and without guarantee
U.K. only
Discounts available on large bulk purchase
PRESCOTT CLOCK \& WATCH CO LTD.
PRESCOTT MOUSE, MUMBER ROAD, LONDON
NW2 6ER
QUALITY COMPONEIJTS at really low prices. S.A.E. lists. RKS Electronics, 13 h Queens Terrace, Sherborne, Dorset.

100 MIXED DIODES $£ 1$. 1920s onward items. Lists 25p S.A.E.. Sole Electronics, HE, 37, Stanley Street, Ormskirk, Lancs.

WANTED. Electronic components and test equipment. Good prices given. - Q Services, 29 Lawford Crescent, Yately (0252) 871048, Camberley, Surrey.

SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H 0EE. TEL: 01-437 1002 Ext. 50.
COMPONENT PACKS. $6 \times$ CD4011 f1. 100 MIXED Capacitors 75p. 13x TIL209 £1. Add 25p p\&p. Lists 35p. John E. Harris, 9 Ivybridge, Broxbourne, Herts.
CENTURION BURGLAR ALARM EQUIP. MENT. Send s.a.e. for free list or a cheque/p.o. for $£ 5.95$ for our special offer of a full-sized decoy bell cover. To: Centurion, Dept. ETI, 265 Wakefield Road, Huddersfield, West Yorkshire. Access and Barclaycard. Telephone orders 0484 35527.

ZX80 \& ZX81. Join ZX guaranteed. All games/programs guaranteed to work. £5 year. Frustrated National ZX80 club people are welcome. - Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
ZX81 PROGRAMS on cassette and listings. S.A.E. for list. Cadsoft, 24 St. James Street, Cheltenham, Glos. GL52 2SH.
I'D LIKE to help you out of your isolation. Let me find you a friend. Lisa Bliss, Timber Lodge, Gasferry Road, Bristol BS1.

TECHNICRL TRAINING INELECTRONICS AND TEEFCOMMUNICRTIONS

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You sludy in your own home. in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City \& Cuilds Certificates

Telecornmunications Technicians Radio Amateuxs
Electrical Installation Work

Certificate Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET

To: International Correspondence Schools

Dept. 262J, Intertext House, London SW8 4UJ
Subject of interes:

Name

Address

Tel

FREE FREE FREE

parkíng for 4,000 cars at the

SUSSEX MOBILE RALLY

Brighton Raceground

JULY 19, 1981 10.30 to 6 p.m,

All the usual traders exhibiting. Many attractions for all the family.

2X81 GAMES. Six super games on cassette, £3 (plus additional free game and other info). or S.A. E. list/details. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
DIGITAL CLOCK designers kit $£ 5.95$. Suitable case with switches $£ 1.50$. S.A.E. details, 36 Westfield Road, Rugby.

MAIL ORDER PROTECTION SCHEME

 If you order goods from mall order advertisers in this magazine and pay by post in advance of delivery, this publication Hobby Electronics will conshould- You have not recelved the goods or had your money returned; and

2. You write to the publisher of this publication Hobby Electronics explaining the position no eartier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required
made in accordance with claims from readers made in accordance with the above procedure declared bankrupt or insolvent to a limit of £1,800 per annum for any one advertiser $\$ 0$ affected and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the ąbove procedures has not been complied with, at the discretion on this publication Hobby Electronics, but we do not guarantee to do so in view of the need to sel quickly of readers' difficulties.
quickly of readers difficulties. sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc, received as a result of answering such advertisements). Classified advertisements are excluded.

GUITAR/PA MUSIC AMPLIFIERS

100 watt superb trabla/bass overdrive, 12 months guar antee. Unbeatable at $£ 50 ; 60$ watt $£ 44 ; 200$ watt $£ 68 ; 100$ watt twin channel sep. tréble/bass per channal 665 ; 60 watt £52; 200 watt $£ 78$; 100 watt four-channel sep. trable/bass per channal £75; 200 watt $£ 98 ;$ slaves 100 watt $£ 34$; 200 watt f12. bass fuzz 112 00. Dverdriver fuzz with treble and bass £12; bass fuzz $£ 12.90$; overdriver fuzz with treble and bass boosters, $\mathbf{2 2} ; 100$ watt combo, superb sound, overdrive, sturdy construction, castors, unbeatable, 138 ; twin channei,
£115; bass combo $£ 118$; speakers 15 in . 100 watt $£ 36$; 12 in 100 watt $\mathrm{E24}$; 60 watt $£ 16$; microphone shure unidyn 8 ह $£ 25$; 3-channel sound/Ight E 26 .
Send cheque/P.O. to: WILLIAMSON AMPLIFICATION 62 Thomeliffe Avenue, Oukinfield, 'Cheshire. Tol. 061-308 2064

CHEAPEST ELECTRONIC DIMMERS. Replace domestic light switches. Kits include everything: Touch $£ 3.25$; Proximity £5.93. Add 15% and 65 P P. \& P. Tremorran Data Systems, Torrs Park, ilfracombe, Devon. Satisfaction guaranteed.

HAVE YOU SEEN THE GREEN LIST?

 1000s of components (radio, audio and electronic) and electronic items and accessories at unbelievably low prices. Something for everyone. Send 20p stamps or large S.A.E. for list and receive FREERECORD SPEED INDICATOR. MYES
MYERS (Dept. H.E.), 14-16 Clitton Grove, Harehills,
Leeds 9.

ADVERTISEMENT INDEX

	Akhter Instruments \qquad 10
	Ambit International..................................... 2
	Arrow Audio Centre
	Audio Electronics 67
	Bi-Pak Semiconductors 38
	BK Electronics....................................... 62
	B.N.R.S. ... 61
	J. Bull (Electrical) 44
	Clicolec.. 36
	Kelth Dickson Publishing........................ 58
	Electronize Design 32
	Electrovalue.. 58
	Greenweld ... 32
	G.S.C... 57
	Heyward Reid Ltd.................................. 63
	I.C.S. .. 65
	I.L.P... 4 \& 5
	Linton Electronics 54
	Magenta Electronics 40 \& 41
	Maplin ... 68
	Marshalls.. 58
	NIC Models.. 32
	Parndon Electronics 54
	P.A.T.H. Electronics 54
	T. Powell.. 52
	J. W. Aimmer ... 54
	Selray Book Co 65
	Silica Shop .. 30
	Swanley Electronics.............................. 58
	Technomatic... 14
	Tempus ... 34
	ectronics .. 36
	Vero ... 51

PARAPHYSICS JOURNÁL. Russian/ Czech translations. Autogenics (self-training) timproves vitality. Psychotronic Generators UFÓs, contacting extraterrestrials, Kirklianography, telelinesıs, levitation, gravity lasers. S.A.E. $4 \times 9^{\prime \prime}$ Paralab, Downton, Wilts
TEIEPHONE ANSWERING MACHINE. Build your own for under $£ 10$ plus any cassette recorder. Send $£ 3$ for circuit and plans. S. D. Cross, 24 Thorney Road, Streetly, Sutton Coldfield, West Midlands.

9V CALCULATOR ADAPTORS. New boxed. Money back guarantee. Send $€ 3.50$ cheque/P.O. payable to V. Duff, Box No. H301, HE Classified, 145 Charing Cross Road, London WC2H OEE.

PRINTED CIRCUITS Make your own simply cheaply ana quicklyl Golden Foto lak light-sensitive lacquer - now greatly improved and very much faster. Aeroso cans with full instructions, $\mathbf{E 2 . 2 5}$; de veloper, 35 p; ferric chloride, 55 p; clear acetate sheet for master, 14 p ; copperclad fibreglass board, approx. 1 mm thick £ 1.75 sq. ft. Post/packing 75p. - White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

ELEGTRIFY YOUR SALES! - CLASSIFIFD ADVERTISEMENT

1	2	3	Advertise nationally in Electronics Today International/Hobby Elactronics. Simply print your advertisement in the coupon here (leftl, indicating which magazine you require. Or telephone for more information.
4	5	6	
7	8	9	Name Address
10	11	12	
13	14	15	
			Tel. No. (Day)
			Send, together with your cheque to: Jenny Naraine, ETI/HE,
Ple 10	H	rnational	145 Charing Cross Rd., London WC2H OEE. Tel: 01-437 1002 Ext. 50.

SCOPES

A range of Scopes in stock from 5 mHZ Single Trace to 50 mHZ Dualtrace
Mains and Battery/Mains portables. Many on demonstration

SINGLE TRACE (UK c/petce $£ 2.50$) $\mathrm{Hm} 307-310 \mathrm{mHZ} .5 \mathrm{mV}, 6 \times 7 \mathrm{~cm}$ display plus	
3030	
(Optional case $£ 8.86$. Nic ads $£ 8.63$ Mains unit $£ 5.69$) CS1559A $10 \mathrm{mHZ} 10 \mathrm{mV} 5^{5}$. ${ }^{\text {" }}$ display 	
$6.50, \times 10 £ 8.50, \times 100 £ 12.95, \times 1-\times 10 £ 10.95$	
10 mHZ 12 mHZ 15 mHZ	

DUAL TRACE (UK c/p etc £3.50)
CS $1562 A 10 \mathrm{mHZ}, 10 \mathrm{mV} 5^{\prime \prime}$ display
CS $15755 \mathrm{mHZ} 1 \mathrm{mV} 5^{\prime \prime}$ multi display
Hm $312-820 \mathrm{mHZ} .5 \mathrm{mV} 8 \times 10 \mathrm{~cm}$ display CS1566A $20 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime}$ display LBO3085 $20 \mathrm{mHZ}, 2 \mathrm{mV}, 5 \times 6.3 \mathrm{~cm}$ display. Battery/mains. Portable built-in Nicads
HM412-4 $20 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display plus Sweep Delay
 CS1571A $35 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$, display E 478.00 CS1830 $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5$, display plus sweep delay and
delay line - new model
$£ 569.00$ delay line - new model
$H \mathrm{~m} 512-850 \mathrm{mHZ}, 5 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$ display. Delay Swee †LBO5 $1410 \mathrm{mHZ}, 1 \mathrm{mV},(5 \mathrm{mV}) 5^{\prime \prime}$ displày $\begin{array}{ll}\star L B O 51410 \mathrm{mHZ}, 1 \mathrm{mV},(5 \mathrm{mV}) 5^{\prime \prime} \text { display } & \mathbf{£ 2 9 4 . 0 0} \\ \boldsymbol{K} \mathbf{V} 15215 \mathrm{mHZ}, 1 \mathrm{mV}, 5^{\prime \prime} \text { display } & \mathbf{£ 3 2 6 . 0 0}\end{array}$
 $\rightarrow V 55050 \mathrm{mHZ}, 1 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$

Delay sweep +3 channel display
£267.00 $£ 284.00$ 253.00 /mains. $£ 569.00$ £799. 25

HAMEG TRIO SINCLAIR LEADER HITACHI

GENERATORS
(UK c/pe1.75)

TRIO LEADER CSC SINCLAIR LEVELL

RF
SG402 $100 \mathrm{KHZ}-30 \mathrm{mHZ}$ with AM modulation LSG $16100 \mathrm{KHZ}-100 \mathrm{mHZ}(300 \mathrm{mHZ}$ SG2030 250 KH
SG2030 250KHZ-100 mHZ
ARF $30018 \mathrm{HZ}-200 \mathrm{mHZ}$ low cost range audio and RF PULSE
$20011 \mathrm{HZ} \cdot 100 \mathrm{KHZ}$ (function) TG $1055 \mathrm{HZ}-5 \mathrm{mHZ}$
$40010.5 \mathrm{HZ}-5 \mathrm{mHZ}$ TG 100 (function 100 KHZ)

AUD10 (All sine/square) AG202A 20HZ-200KHZ LAG26 20HZ-200KHZ AG203 10HZ-1mHZ sine/sq LAG120A $10 \mathrm{HZ}-1 \mathrm{mHZ}$
*PRICE INCLUDES FREE PROBE(S)

LOGIC PROBES/MONITORS

Logic probes indicating high/low, etc., states
that scopes can miss. All circuit powered for all ICs. LP3 50 mHz logic probe LP1 10 mHz logic probe LP2 $11 / 2 \mathrm{mHz}$ logic prob LM1 Logic monitor
LDP 50 MHz logic pr $£ 33.00$
$\mathbf{£ 5 1 . 0 0}$ Also in stock range of Protoboard kits and breadboards.

'PRO' MULTIMETERS

M1200 $100 \mathrm{~K} /$ Volt 30 range plus $A C / D C \quad 15$
£67.00 $\begin{array}{ll}\mathrm{amp} \\ \mathrm{K} 140020 \mathrm{~K} / \text { Volt } 23 \text { range large scale } & £ 67.00 \\ £ 79.95\end{array}$ M1500 20K/Volt 42 range plus AC/DC 10 amp (UK c / p £1.20) K200 38 range FET 10 m OHM input 20 Hz to 30MHz multimeter (UK c/pE1.50)

SWR/FS AND ${ }_{\text {Uuk } \mathrm{cip}_{8} \text { 85p }}$ POWER METERS

Aange in stock covering up to 150 mHZ and up to 1 K watt power PL259 sockets. Also 250 UHZ Grid Dipmeter. SWR9 SWR/Fls $3-150 \mathrm{mHZ} \quad £ 9.50$ SWR50 SWR/Power meter. $31 / 2$
 100 SWRATP 171 As 110 Twin meter plus F/S $£ 14.50$ Plus large range of BNC/PL259/ etc leads/plugs/adaptors/connectors al ways in stock.
176 SWR/Power/FS $1 / 2-144 \mathrm{mHZ} 5-50$

KAISE SINCLAIR LASCAR THURLBY

BENCH PORTABLES

(UK c/p £1)
DM235 31/2 Digit LED 21 ranges, 0.5\% AC/DC 2A DM350 $31 / 2$ Digit LED 34 ranges AC/DC 10A $\mathrm{fB7}_{68}$ TM353 3½ Digit LCD AC/DC 2 amp
 TM351 3½ Digit LCD AC/DC 10 amp LM100 3½ Digit LCD AC/DC 2 amp DM450 41/2 Digit LED 34 ranges AC/DC 10 amp $£ 113.85$ (DM series options. Carry case $£ 8.86$ Ni-cads $£ 8.63$ Mains adaptor $£ 5.69$)

FREQUENCY COUNTERS

Portable and Bench LCD and LED Counters up to 600 mHZ . Prices include batteries and leads.

HAND HELD

(UK post etc 85p) TP600 500 mHZ Pre-Scale
TF040 8 Digit LCD 60 MHz
PFN200 20 HZ to 200 mHZ 8 Digit LED MAX50 100 HZ to 50 mHZ 6 Digit LED MAX550 30KHZ to 550 mHZ 6 Digit LED
£57. 27 £97.75

BENCH PORTABLES (UK c/pel)

 $\begin{array}{lr}\text { MAX100 } 8 \text { Digit LED } 5 \mathrm{HZ} \text { to } 100 \mathrm{mHZ} & \mathrm{E} 89.00 \\ \text { TF200 } 8 \text { Digit LCD } 10 \mathrm{HZ} \text { to } 200 \mathrm{mHZ} & £ 166.75\end{array}$ $\begin{array}{ll}\text { TF200 } 8 \text { Digit LCD } 10 H Z \text { to } 200 \mathrm{mHZ} & £ 166.75 \\ 7010 A 9 \text { Digit LED } 10 H Z \text { to } 600 \mathrm{mHZ} & £ 169.00\end{array}$ 200SPC 6 Digit 100 mHZ LED built into 0.002 HZ to 5.5 mHZ Pulse Generator $\quad £ 437.00$ $\begin{array}{lr}\text { 5.5mHZ Pulse Generator } \\ \text { TP600 } & 00 \mathrm{mHZ} \text { Pre-Scaler for TF200 } \\ \mathbf{~} 43.13\end{array}$ £126.50CSC SINCLAIR SPC OPTO ELECTRONICS

HAND HELD (UK $6 / 8550)$ TM352 31/2 Digit LCD plus 10A DC and Hfe checker $£ 54.95$ TM 354 31/2 Digit LCD 2A AC/DC \quad E45.95 ME502 $31 / 2$ Digit LED plus 10A DC and Hfe checker $£ 43.95$ 0.1% 3 $1 / 2$ Digit LCD 2 amp \quad E5170 $620031 / 2$ Digit LCD 0.2 A AC/DC. Auto range $£ 45.95$ 6220 As 6200 plus 10A AC/DC $£ 55.95$ 6100 As 6200 plus Cont. testíange 6110 As 6100 plus 104 ACDC $\quad 669.95$ 6110 As 6100 plus 10A AC/DC $\quad £ 85.95$ GL35C 31/2 Digit LCD IA AC/DC $£ 37.50$

SOLDERLESS

 BREADBOARD AND KITSEXP350 $£ 3.45$. EXP650 $£ \mathbf{£ 3 . 9 5}$. EXP300 E5.95. EXP600 £6.50. ${ }^{\text {KITS }}$
PB101 £17. PB100 £12.95. (UK c/p EXPs 30p. Kits 55p)

MINI DRILLS AND KITS

(9-12 Vott $1 /{ }^{\prime \prime}$ chucks) Smali Drill plus 3 collets 67.25 Medium Drill plus 3 collets $£ 10.50$
Small Drill plus 20 tools
$£ 14.95$ Small Driil plus 20 tools
Medium Orill plus 20 tools
$£ 17.95$
£ Medium
Mains Drill $\begin{array}{lll}\text { Mains Drill } \\ \text { Mains Drill plus } 20 \text { tools } & \left.\begin{array}{l}\text { E13.95 } \\ \mathbf{E 2 1 . 5 0}\end{array}\right)\end{array}$

MULTIMETERS (UK post etc 75p)

KRT101 IK/Volt 10 range pocket ATM1/LT1 $1 \mathrm{~K} /$ Volt 12 range pocket NH55 2K/Volt 10 range pocket ATI $2 K / V$ olt 12 range pocket de luxe
TMK $50030 K / V 23$ range $+12 A$ DC TMK500 30K/V 23 range $+12 A D C+$ conts YN360TR 20K/Volt 19 range pocket plus hfe tes AT 1020 20K/Volt 19 range de luxe plus hfe test $708150 \mathrm{~K} /$ Volt 36 range plus 10 amp DC $\quad \begin{aligned} & \mathrm{E} \\ & \mathbf{E 2 0 . 9 0}\end{aligned}$ TR303TR 20K/Volt plus 12A DC plus hife test $£ 15.95$ AT20 20K/Volt 21 range de luxe plus 10A DC and
5 KV DC SKV DC
AT205 $50 \mathrm{~K} /$ Volt 21 range de luxe plus 10A DC 7080 20K/Volt 26 range large scale, 10A DC 5KV AC/DC

CHOOSE FROM UK's LARGEST SELECTION

301 EDGWARE ROAD. LONDON, W2 1BN, ENGLAND. TELEPHONE 01.7243564
ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD, LONDON W2 1ED

For personal service visit one of our stores Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

11?

All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911

[^0]: All 40p each; 100 M1x $£ 25.30$

[^1]: BEGINMEA'S GUIDE
 Sinclair, I. R., Beginner's Guide To
 Tape Recording

[^2]: Citizens' Band (Dept EJ)
 Modmags Limited,
 145 Charing Cross Road, London WC2H OEE.

[^3]: G.S.C. (UK) Ltd, Dept. 14 TT

[^4]: 단
 For full inlormation about all AKRO-MILS Storage Organisers write or phone AKRO-MILS (U.K.) LTD., 210 CHURCH ROAD, LEYTON. LONDON, E10 7JH TELEPHONE 01-558 1203/4/5

