Mobly nues Mectionics

For A Down-To-Earth Approach To Electronics

Other Projects \& CB News Inside
Special Practical Feature

LINEAR ICS	LINE	AR ICS	AF	CS LINE	ICS	4000 ser		000 s		TTL	N	LPS	TTL	N	'LPSN'	TTL		PSN	TTI.	N	LPSN	micran	KET	LEDS	LEDS	
TBA120S	1.00	SL1919	1.60	-11225					0.25												'LSN'	8224	3.50	STD DC		
1200	1.95	SL1611P	1.60	HA11225	1.45	4001	0.18	4069	0.25	7400	0.13	0.20	7454	0.20	0.30	74128	0.74		74194	1.05		8251	6.25 5.40	5 mm	ar 12	
U2378	1.28	SL.1612P	1.60	HA12002	1.45	4002	0.24	4070	0.30	7401	0.13	0.20	7455			74132	0.73	0.78	74196	1.34	1,20	6800P	7.50	3 mm	ar 150	
U2478	1.28	SL1613P	1.89	HA12017	0.80	4007	0.30	4071	0.24	7402	0.14	0.20	7460	0.20		74136			74197	1.10		6810	5.95	25m5		
U2578	1.28	SL1620P	2.17	HA12402 HA12411	1.95	4008 ${ }^{4008}$	0.80 0.80	4072	0.24 0.24 0	7403	0.14	0.20	7463			74138		0.72	74198	1.60		6820	7.45	5 mm G		
U2678	1.28	SL1621P	2.17 2.4	HA12411 HA12412	1.20	4008AE	0.80 0.58	4073	0.24 0.25	7404	0.14	0.24 0.26	7470	0.40 0.30		74141	0.75		74199	1.60		6850	4.90	3 mm G	cir 16p	
LM301H	0.67 0.30	SL1623P	2.44 3.28	${ }_{\text {HA12412 }}$	1.55	4010	0.58	4075	0.25	7405	0.18 0.36	0.26	7472	0.30			2.65		74247		0.9	6852	4.85	3 mm G	16p	
Lmзовтс	0.65	SL1625P	217	SN76660N	0.80	4011AE	0.24	4077	0.35	7407	0.38						3.12				1.8	MC2708	6.00	2.5x5	20 p	
L.M324	0.64	SL1626P				40118	0.24	4078	0.30	7408	0.19	0.24	7475	0.56		74145		0.97	74279		0.88	2114	6.50	5 mm		
LM339N	0.66	SL1630P	1.62	AND SYN		4012	0.55	4082	0.28	7409	0.21	0.24	7476	0.41	0.45	74147	1.75		74283		1.20	2027	5.78	3 mm	$16 p$ $18 p$	
LM348N	1.86	SL1640P	1.89	devices		4013	0.55	4093		7410	0.18	0.24	7478		0.50	74148	1.09	1.19	74293		1.32	2102	1.70 3	3 mm	$\begin{aligned} & 18 p p \\ & 20 p \end{aligned}$	
LF351N	0.49	SLI6a1P	1.89			4015	0.95	4175	1.15	74	0.26	0.32	7480	0.52		74150	0.99		74365		0.66	2513	3.40	5 mm		
LF353N	0.76 3.75	TDA2002	1.25	SAAT056	3.75 3.35	4016	0.52	4503	1.15 0.68	7412	0.27 0.32		7481	1.20 0		74151	0	0.90	74366 74367		0.65	2513 HM471	7.54 4.00	5 mm O	cir 290	
LM380N-14	1.00	ULN2283B	1.00	SAA1059	3.35	4019	0.60	4510	0.99	7414	0.51		7485	1.04	99	741	1.30		74368		0.92	81LS97	1.25	3 mm O	19p	
LM380N-8	1.00	CA3080E	0.70	11csooc	14.00	4020	0.98	4511	1.49	7415		0.40	748											2.5×5	24p	
LM381N	1.81	CA3089E	1.84	LN1232	19.00	4021	0.82	4512	0.98	7416	0.30		7489	2.0		74156	0.80		74377		1.99	LEOS	ad	5 mm	Rd 56p	
2N419CE	1.98	CA3090A	3.35	LN1242	19.00	4022	0.96	4514	2.55	7417	0.30			0.42	0.90	74157	0.78		74379		2.15					
NE544N	1.80	CA3123E	1.40	MSL2318	3.84	4023	0.25	4518	1.03	7420	0.19	0.24	7491	0.85	1.25	74158		71	74393		1.40					
NE555N	30	CA3130E	0.80 0.90	MSM5523	11.30	4024	0.76	4520	1.09	7421	0.38	0.24	7492	0.50	0.78	74159			VOLTAGE REGS.							
E5	0.50	CA3140E	0.96	MSM5524	7.35	4025	0.25	4521		74	0.27		7493	0.57	0.99	74160	0.99	1.30				SOUARE $3 \times 3 \mathrm{~mm}$ RECT, $2.5 \times 5 \mathrm{~mm}$		TRANSISTORS		
NE560N	4.05	CA3189E	220	MSM5526	7.85	4028	0.79	4529	1.61	74	0.32	0.3		0.85					78 series 0.95 79 10 saries 1.00			TR1A. $2.5 \times 5 \mathrm{~mm}$				
NE564	4.2	CA3240	1.27	MSM5527	9.75	4029	1.04	4539	1.28	7428	0.35	0.35										TR1A. $3 \times 3 \mathrm{~mm}$		BF2	38p	
E565N	1.00	MC3357P	2.85	MSM55271	9.75	4030	0.59	4549	3.50	7430	0.17	0.26				741			78M	deries		ROUND 3 mm		2 SK 1		
E566N	60	LM3900N	0.60	MSL2312	3.94	4035	1.20	4554	73	7432	0.32	0.28	74107		0.45	7416	1.20	1.45	78 L		0.85			${ }^{2} 131$	p	
NE570	3.85	LM3909	0.68	SP8629	3.85	4040	0.98	4560	2.18	7437	0.40								78 MG		1.75	ROUND 5 mm				
SL624	3.28	LM3914N	2.80	SP8647	6.00	4042	0.85		18	7440	${ }^{0.33}$	0.35	741	0.54		7416		2.10	79 M			PRICED BY COLOUR:		40823	$65 p$	
84651	0.6	LM3915N	280	95H90PC	7.80 2.45	4043	0.85		2.18	7440	0.20	0.28	74111	0.68		74170	2.30	2.8	723 C		0.65			40673	K51	
UA709 HC	0.64		0.80	H01055 HD44015	2.45 4.45	${ }^{4044} 40$	0.93		3.03 0.30	7441	0.74		74112		0.41	74174	1.05	1.20	L200		1.95	Red 17p		3SK 45	49p	
UA709PC UA710HC	0.46 0.65	K84406 K84412	0.60	HD44015 HD 12009	4.45 6.00	4044 4046	0.94		1.00	7442	. 175	0.9	74113			74175	0.87	1.10	TOA1	412	0.75	Green 20 p Yellow 20 p		3SK51	54p	
UA710PC	0.5	KB4413	1.95	HO44752	8.00	4047	1.99		1.00	7444	1.12					741			NE55	53N	1.25			35K60	58p	
UA741CH	0.66	K84417	1.80	MC145151	12.45	4049	0.52			7445	1.05					74			LM			Orange 26p		3SK88	1.24	
UA741CN	0.27	K844208	1.09	MC145156	8.75		0.55			7446	2		741			7418			LM	MP	1.48	TRANSISTORS		MEM680	75p	
UA747CN	0.70	TDA4420	2.65	MISC ICM7106CP 9.55		4051	0.78			7447		0.89							MICROMARKET							
UA748CN	0.36	K84423	2.30			4052	0.79			7448	0.56	0.9	74123	0.73		741			8080		7.50	AC237 8p		BF194	18 p	
UA753	2.44 2.35	K84424 K84431	1.65	ICM7106CP 9.55 ICM ICM107CP 9.55		4053	0.78			7449			74124		1.8	7419	0.92		8212		2.30			BF195		
UAFA8	2.78	K84431 KB4432	1.95	ICM7216BP 19.50			18			7451	0.20		7412		0.46	7419	1.20	1,80	8214		3.50	8C239 8p		8F241	22p	
TCA940E	1.80	KB4433	52							7453					0.4	741	1.42		8216		1.95	BC307BC308		BF274	18 p	
TOA1028	2.11	K84436	2.53	CRYSIALS		CRYSTALS						ALL PRICES EXCLUDE VAT - CURRENTLY AT 15\%										8C309 8p		8F440	$21 p$	
TPA1029	211	K84437																				BC413 10p		BF441	21 p	
TDA1054	1.45	KP4438 KB4441	2.22	32.768 kHz 100 kHz	2.70 3.85	10.245 10.6985		200	AM TX/RX			POSTAGE 50p ORDERS UNDER £12 - FREE OVER ¢12										8C414		BF362 EF 395	${ }^{49} \mathbf{p}$	
TDA1062	1.95	KB4441 KB444	1.29	455 kHz		${ }^{10.700}$		200														BC415		BF395	18p	
TDA1074A	5.04	KB4446	275	1.000M	295	10.7015		2.50		30pF		Terms and conditions of sale: CWO please, MA availablefor schoools, colleges, industrial users etc. Please ask for										BC416 BC546		${ }^{8 F 6795}$	55p	
TDA1083	1.95	K84448	1.65	3.2768	2.70	11.00		200	HC25	U												$\begin{aligned} & \text { BC546 } \\ & \text { BC556 } \end{aligned}$		BFR91	1.33	
TPA1090	3.05	NE5044	2.26	4.1934	2.00	11.115		200	FMT	X: Fund		details. ACCESS/BARCLAYCARD may be used for mail										$\begin{aligned} & \mathrm{BC} 556 \\ & \mathrm{BC} 550 \end{aligned}$		厚W922	${ }_{69}^{60}$	
HA1137	1.20	NE5532 SD6000	1.85 3.75	${ }_{4}^{4.0964}$	2.00 2.00	11.520 8.9985			20 pF	C2												8C550		BFT		
HA11	2.00	SL6270	203	4.032	2.00	9.0015		2.00	PAIR			or phone orders (Mastercharge/Visa overseas). Please add										$8 \mathrm{BC639} \quad 22$		80238		
TDA1220	1.40	SL6310	203	4.433619	2.00	21.000		200	PAIR	S..AM		enough for overseas airpost (inc catalgues pse) since the										8 C640		258753	2.34	
LM1303	0.99	SL6600	3.7	4.800	2.00	24.000		200	CHAN	N...FM		airmail rates have been dramatically increased in January.										$2 S C 1775$ $2 S A B 72 A$	14 p	$2 \mathrm{SB723}$	2.34	
LM1307	1.55	SL6640	275	6,55	2.00 2.00	25.000 26.000		200		NEL												2S0666A	30p	2SK134	3.10	
MC1310P	1.90	SL6440	POA 3.20	7.000	200			2.50		2: 20 k												2SB646A2SD668A	30p	$2 \mathrm{SJ4} 4$	3.10	
MC1350	1.20	SL6700	2.35	7.68	2.00	XTAL	FIL	2,				pricelist include the LARGEST STOCK RANGES OF COILS,											40p	${ }_{\text {2SK130 }}$	4.25	
HA1370	1.90	ICL8038CC	4.50	8.000	2.00			7M	15 Kh			CHes of radio modules for AM/FM/SSE - plus the most sophis										$\begin{aligned} & \text { 2SO760 } \\ & \text { 2SB720 } \end{aligned}$	45p	2SK227	3.55	
HA1388	2.75	MSL9362	1.75	${ }^{9.000}$	200 200	8 pole																45p	83	3.55		
TDA1490	1.86	MSL9363	1.75	10.000	200	M2	20. 10	. 7		hz		icated DIY FM tuner parts in the world. $£ 1.85$ (inc) will get you full set of catalogues (pts. 2, \& 4) or 75p per individual section.											$\begin{aligned} & 2 S C 2547 \\ & 2 S A 1085 \end{aligned}$	19p	N66A	95
496P	1.25	HA11	1.9	10.240	200	SSB					7.20											$20 p$		2N3866	850	

CIMBIT internutional
 Ren
 200 narth Service Rond, Brentuond, Essen

Chokes, block filters, ceramic filters, resonators, IFTs, oscillator coils, audio filter blocks etc.

LOW PASS FILTERS

Now from 10 kHz to 20 MHz TOKO's recently expanded LPF series covers from the audio spectrum through to 20 MHz in a series of LPFs for mpx , video, radio etc.

The LPFs are bassd on $7 \& 10 \mathrm{~mm}$ formats with up to 4 LC tuned elements per block. Many stock types available.

HELICAL FILTERS 2 \& 3 elements available
for VHF and UHF:

VIDEO FRAME STORES

* 525/625 operation
* 512 pixell/line
* Local or remote control
* Top/bottom \& L/R reverse
* Models available with digitized I/O

Audio buzzers now down to 1 kHz - low cost $400-600 \mathrm{kHz}$ crystal replacements for MPUs, RCs etc. Low cost - wide range.

Video frame stores are a new addition to TOKO's memory product range. They permit easy analysis of low dose X-Ray pictures, digital processing of picture information (including the VFM10D with $8^{\prime \prime}$ disk drive) with much better resolution than available from VTR

Editor: Hugh Davies Assistant Editor: Keith Brindley Editorial Assistant: Judith Jacobs Drawing Office Manager: Paul Edwards Group Art Editor: Paul Wilson-Patterson BA Managing Editor: Ron Harris B Sc

PROJECTS

- POWERAMP
High-power, high-quality, high-fidelity amplifier 10
CONTINUITY CHECKER
Connected or unconnected, this project gives audible warning 20
ELECTRONIC ORGAN
Second part of our superb organ project 43
ENVELOPE GENERATORElectronic musical effect to alter your instrument's sound . 51INFRA-RED CONTROLLER
A hand-held transmitter to match last month's receiver 60PCB FOIL PATTERNSAt the bottom of the projects64

The radio receivers on this month's cover include three from the Science Museum. Left is a GECoPhone crystal set, which cost $£ 5.50$ in 1923. Next to it is a Marconiphone 81, a straight-eight luxury TRF receiver. It used triode phy A52. This had nine valves, and was a double-superhet, tt cost $£ 18.50$ when it was introduced in 1938
In the foreground is the latest AM/FM stereo tuner from Mitsubishl, the DAF630E. This contains four ICs, 24 discrete transistors and 20 diodes, including six LEDs. It costs around £97

FEATURES

* HOWTOUSEANOSCILLOSCOPE

John Strong tells you how to use a 'scope 15 * RADIO
Early discoveries and developments 24
 29
FREE pull-out supplement 31
BUILDING SITE
Front panellettering - how we do it 39
OLEVELQ\&A
A teach-in on op amps and systems. 47
CLEVERDICKCDanswersback55
FAMOUS NAMES
Heinrich Hertz - the man who discovered radio waves 56

* VIDEODISC UPDATE
Latestnews on video disc systems 59
BREAKER ONEFOUR
Report on FMCB specification 62
NEWS \& INFO
Monitor 6
HE Next Month 18
Oscilloscope Offer 18
* Citizens Band Exhibition 40
Books From HE 42
Backnumbers 64
Subscriptions 65
Classified Ads 66

Monitor

Lower Prices In Heathkit Catalogue

Some of the generalpurpose test instruments featured in Heathkit's Spring/Summer '81 catalogue have been reduced in price.

Among the test meters, the SM2215 hand-held digital multimeter, which has a liquidcrystal display and a maximum accuracy of 0.03% of full scale, now costs $£ 76$ assembled or £63.25 in kit form loriginal price was $£ 87.40$).

Hand-held frequency counter SM2400, which has a range of 50 Hz to 512 MHz and typical input sensitivity of 10 mV RMS. now costs $£ 89$ assembled or £85.10 as a kit (original price £102.35).

High-quality

Sound . . . All

 Round The HouseSoundLink is a new product from a new company, IMP Electronics of Cambridge. It enables you to relay music from most hi-fi systems to an extension loudspeaker - without trailing cables.

Based on what is described by IMP as the 'established principle of FM mains transmission', the system is supplied as a pair of ready-built circuit board modules.

For the system to operate, it is first necessary to connect the input module to your hi-fi system

Function generator SG1271, covering 1 Hz to 1 MHz , is now $£ 125$ assembled or $£ 121.90$ as a kit (original price £143.75).

And among the power supplies, the SP2718 tri-output power supply 15 VDC fixed and 2×0 to 20 VDC variablel has been priced at $£ 99$ assembled, or $£ 66.70$ as a kit (original price £113.85).

Emphasis is placed on digital electronics in this catalogue, with 16 of its 64 pages dedicated to computer hardware, software and programming courses.

HE hopes to review a couple of Heathkit's courses in a future Gadgets, Games $\&$ Kits supplement.

The catalogue is avallable (send 25p in stamps) from: Heath Electronics (UK) Ltd, Bristol Road, Gloucester GL2 6EE or The London Heathkit Centre, 233 Tottenham Court Road, London W1P 9AE.
and to connect the output module to an extention speaker. (Additional output module and speaker combinations can be added as required.) But that's not the complete story - some additional hardware is required, including two mains transformers, two potentiometers, two switches and, of course, the extension speaker.

HE hopes to review the SoundLink system in a future Gadgets, Games \& Kits supplement.

SoundLink is available for £45.50 from IMP Electronics, 34 Caraway Road, Fulbourn, Cambridge CB1 5DU (tel 0223 $881105)$.

Sussex Mobile Rally

A second Sussex Mobile Rally is to be held at Brighton Race Course on Sunday 19 July 1981. The event, organised by six amateur radio clubs in the Sussex area, will run from 10.30 am to 6 pm .

Last year nearly 3,000 people attended the rally, with more than 100 stands under cover. This year the rally will be larger lover $20,000 \mathrm{sq} \mathrm{ft}$ of display area) with more trade stands dealing with all forms of electronics including amateur radio, microprocessors, components and CB.

This rally will cater for the family, with free trips to the sea front by minibus, restaurant and bar facilities and many attractions.

Entrance charge will be 50p (including draw ticket), with no charge for disabled persons or for children under 14 years.

Parking space for more than 4,000 cars will be available, together with an area for caravan parking.

More details are available from: A.K. Baker (G4GNX), 38 Elphick Road, Newhaven, Sussex (tel 079125327 evenings).

HE COMPETITION - Project Design for IYDP

Come on! You're not trying hard enoughl The response so far to HE's electronic project design competition for the International Year of Disabled Persons, announced in the April ' 81 issue, has been disappointing. Or perhaps your project entries will all come in at the last moment!

Just think of a physical or mental handicap, or of a disabled person you know and then think: 'What ingenious device can I come up with to help cope with that handicap or aid that person?'

As stressed in the April issue, no design is too small - and the first prize is big - £200 in cash.

So if you have any difficulties
or questions, give Hugh Davies a ring on 014371002 or drop him a line at HE, Modmags Ltd, 145 Charing Cross Road, London WC2H OEE. Please head your envelopes 'Competition'.

Next month we plan to run a special article on electronic aids for the disabled.

Clean Up Your Video Head

Cleaners in cassette form have been available for some years for audio tape heads: now one has been produced specifically for tape heads in video recorders. Intended for use with tape head systems in BETA-MAX recorders, the Bib Videophile Edition tape head cleaner is claimed to have sufficient tape for 20 cleaning operations, covering 800 hours

After each 40-hour period of playing, the cassette is inserted in the normal way and run for 15 seconds. No portion of tape, once run through the machine, should be replayed.

Recommended retail price for the cleaner is £8.98, including VAT.

Bib Hi-Fi Accessories, Kelsey ${ }^{\circ}$ House, Wood Lane End, Hemel Hempstead, Herts HP2 4RQ (tel 0442612911.

Electronics News

PETs On Show

The Second International PET Microcomputer show will be held at the West Centre Hotel, London SW6, from June 18 to 20.

The show, open to the public from 1.00 pm to 7.00 pm on Thursday 18 June, 10.00 am to 7.00 pm on Friday 19 June and 10.00 am to 5.00 pm on Saturday 20 June, will enable visitors to see about 300 PET computers showing off their tricks.

Among the estimated 100 exhibitors will be companies from all over Europe and the US. Also exhibiting will be PET user club groups.

Apart from computer systems and applications for business, medicine, education and engineering, products and programs for the home will be on show.

Of particular interest to HE readers will be the Commodore VIC colour home computer, which can be connected to a TV and is likely to cost under $£ 200$.

HE hopes to report on this event in a coming issue.

Commodore VIC 20 computer

Vintage Radio

holders are fitted with solder terminals and have pre-drilled holes for mounting.

In common with most other mercury cells, the case of the RM401 is positive (+ ve) while the tip is negative (-ve). So the springs in the holders go to the case-ends while the studs go to the tips. Each holder has a small picture of a cell between the terminals as a guide. However, as pointed out by Magenta, because the holders were originally intended for another type of battery having the same case size as the RM401, it is best to ignore the pictures and be guided by the spring and stud connections instead.

Add $40 p$ with each order placed with Magenta Electronics Ltd., 135 Hunter St., Burton-on-Trent, Staffs DE14 2ST (tel. 0283 654351 .

Keep A Hold On Your Cells

Two new holders are available from Magenta Electronics for RM401 mercury cells. The first, priced at 22 p , holds a single 1.4 V cell, while the other, priced at $27 p$, takes two cells side-by-side.

Despite their small size (about 28 mm long by about 11 mm diameter) RM401 cells have a remarkable capacity $800 \mathrm{~mA} / \mathrm{h}$. Shelf life to 75% of full capacity is three vears. These cells are available from Magenta at $64 p$ each.

Most cells are difficult items to connect or solder leads to, and are equally difficult to anchor down to a circuit board. The
(ai)

Readers who have an interest in radio can do two things this month: first, read Radio, the special feature starting on page 24 in this issue; and second, take a subscription to the Antique Wireless Newsheet.

This A5-sized booklet is published by The Vintage Wireless Company in Bristol. The company, run by Tudor GwilliamRees, specialises in vintage radio lor should we say 'wireless') receivers and all the associated hardware and nostalgia.

HE that the most sought-after sets are the BBC period models from the early 1920s. These have a type approval stamp, with the letters BBC in a circle, and with 'type approval by the Post Master General' printed around the circle.
He said that, at present. most collectors are on the look-out for sets from the 1930 s . The more unusual they look the better: square-box sets have little value unless they possess some exceptional technical qualities. It appears, however. that even these vintage sets have not escaped

0272565472).
the ravages of the recession, because their value has dropped in recent months.

Gwilliam-Rees is at present restoring some receivers for the company which origlnally made them in the early-to-mid 1930s - Clarke-Atlas.

Subscription to the Newsheet is $£ 2.50$ per year ($£ 5.00$ for overseas via airmaill. It is issued 12 times a year.

The Vintage Wireless Company is based at 64 Broad Street, Staple Hill, Bristol BS 165 NL (tel etbe ETin

Next month

Here are just a few of the things we have planned for the July issue of Hobby Electronics.

Burglar alarm

A simple-to-build yet very effective thief detector, designed to stop burglars in their tracks. HE Ultrasound Burglar Alarm uses the tried and tested Doppler effect along with ultrasonic sound waves, in a low-cost battery operated circuit, which means you won't have to spend all the money you are trying to protect on building it.

Treble booster

The next project in our series of complementary guitar effects is a good-looking, and even better-sounding treble booster. It has two switched boost options - a 'normal' boost, identical to that from other circuits and a 'super' boost for real ear-splitting treble from your guitar. It is housed in the same style case as two previous projects, the Fuzzbox, and this month's Envelope Generator.

Doorbuzzer

Commercial doorbells and buzzers usually operate along electromagnetic lines. Typically they need a low-voltage transformer too. Our doorbuzzer is different - it's battery operated for a start (a single PP3-sized battery should give around six months' operation) and it features a solid-state design (ie, there are no moving parts to wear out). Total cost of this project should be around a fiver. With those specifications and that price, what more could we offer?

Plus

News and information, circuits, projects, regular features, your views - all presented in an understandable and down-
to-earth fashion.
Keep up with the rapidly changing world of electronics with Hobby Electronics - the magazine that's written for the electronics enthusiast and hobbyist.

[^0]
Power Amplifier

Designed to match the HE Pre-amplifier, this project allows you to choose power output level to suit your own requirements. Modular construction makes it easy-to-

HAVE YOU EVER heard 300 W of power (ie 150 W per channel into speakers of 4R impedance) at a distance of only 6 ft ? It's loud. Pardon?
I SAID IT'S LOUD! In fact, after we had tested the HE Power Amplifier in our project laboratory it took two hours before our hearing h.3d returned to normal and we could hear anybody knocking on the door to ask what it was.

No, really, joking apart, 150 W per channel is loud and for those readers who want a very good quality amplifier system but with not quite that power output, there is an option to lower the output to the more manageable figure of 60 W per channel.

Whatever output power rating you choose, your finished amplifier will be a high quality device. Distortion is very low, meaning that the amplifier will faithfully reproduce at its output an amplified version of whatever signal is applied to the input, without adding any extra bits of its own. Its frequency range limits are well below and above the limits of hearing, so whatever you can hear, the amplifier can amplify with no problem.

Other Uses

The amplifier is suitable not only for home use but, because of its high output power option, is ideal as a high-power disco amplifier, a group instrument amplifier for guitar, organ, etc, or a high quality public address (PA) amplifier for on-stage use in, say, a theatre. In most
situations, the amplifier will be limited only by the other equipment, eg pre-amplifier, speakers, etc, used with it.

Stylish Appearance

Apart from extremely good technical specifications the power amplifier is also aesthetically pleasing, being housed in a sleek, low-profile, black plastic-coated steel case.

The modular format of the project means that even those readers who aren't too sure of their capabilities should be able to build it. The case is available ready to use, pre-formed and punched to fit all hardware. The most difficult job is the wiring-up and we'll take you through that stage, step-by-step, next month.

Table 1 is a list of the specifications of the complete amplifier.

Bandwidth	$\begin{aligned} & 10 \mathrm{~Hz} \text { to } 70 \mathrm{kHz} \\ & (\pm 3 \mathrm{~dB}) \end{aligned}$
Input sensitivity	775 mV (variable by RV1)
Input impedance	10k
Harmonic distortion	<0.06\%
Signal-to-noise ratio	100 dB
Damping factor	minimum 100

Construction

You have to decide at this point which power rating you want. As supplied, the amplifier printed circuit boards (PCBs) are complete and ready for operation in their higher power option. To derate
them to 60 W amplifiers, the following procedure should be adhered to.

Desolder and remove the middle two power transistors on the heatsink. Then desolder and take out R34 and R35. Replace the two resistors with wire links. You now have a 60 W power amplifier PCB.

The remainder of this month's work concerns the case hardware.

First, locate and fit all the rear panel components onto the blank chassis of the case: three fuseholders, two phono sockets, a 5-pin DIN socket, four 4 mm sockets, the power supply cable clamp, and the small false panel. Figure 1 shows where each part is positioned.

Next fasten the mains on/off switch and neon to the inside front panel. Leave the false front panel aside for the time being, safe from harm.

Locate and fit the inside hardware, as shown in Fig. 2, by bolting from the underside of the chassis.

Two special points to note are:

- the 12 -way terminal block is held by two self-tapping screws
- both PCBs are mounted as follows: Fasten eight nuts and bolts (one per corner of each board) to the chassis bottom. Put a nylon washer over the end of each bolt. Insert the two PCBs into the chassis so that the bolts go through the ready-drilled holes in the corners of the boards. Fasten the boards down with a nut on each bolt

Internal view of the completed project.

Next month we shall describe the wiring-up procedure of the project.

Below you can see details of the chassis
and all parts.

Figure 1. Positioning details of the major parts within the chassis of the HE Power Amplifier

Figure 3. Circuit of the power supply used in this project

How It Works

The HE Power Amplifier consists of three main stages: an input stage which allows simple gain adjustments, a driver stage which provides the power necessary to drive the output stage, and an output stage formed by high-power transistors.

Four output transistors (two pairs in parallel) are used in the 150 W amplifier option. Derating the amplifier to 60 W is a simple matter of removing one pair of transistors.

Integrated circuit IC1 and associated components form the input stage of the power amplifier. The IC presents a fairly high impedance to whatever signal source is used, thus acting as a buffer amplifier. This stage's gain, and in turn the whole amplifier's gain, is set by preset RV1.

One of the purposes of the driver stage is to produce DC standing voltages on the bases of the output stage transistors turning them partially on at all times. The standing voltages are set by the voltage across $\mathbf{0 9}$ and can be varied by RV2.

The AC signal to be amplified is superimposed onto the standing voltages.

Final amplification in this stage is performed by 06 to 08 , and 010 .

The power stage in the Power Amplifier is formed by transistors Q11 to 014. By removing 012 and 014 the amplifier can only deliver about half of the maximum power.

From the output of the amplifler there is a feedback loop via R6 to the input of the operational amplifier IC1. This is a negative feedback loop and defines the overall gain of the complete amplifier.

Parts List

CAPACITORS
C1. 2
4700 u (or greater), 63 V electrolytic

SEMICONDUCTOR

BR1 $10 \mathrm{~A}, 400 \mathrm{~V}$ bridge rectifier

MISCELLANEOUS

SW1 double-pole, doublethrow push-button switch
T1 120/240 V primary. $50-0-50+15-0-15 \mathrm{~V}$ secondary transformer
Case to suit
Neon with integral resistor
$3 \times$ fuseholder + fuse (all 5 A)
5-pin DIN socket
$4 \times 4 \mathrm{~mm}$ socket ($2 \mathrm{red}, 2$ black)
$2 \times$ phono socket
Mains cable + entry clamp
$2 \times$ ready-built PCB
12-way terminal block
Mounting hardware
Cable harness

Power Amplifier

Figure 4 Circuit of the 150 W power amplifier, reproduced by courtesy of Capricorn Electronics. Two identical circuits are used on ready-built PCBs in the HE Power Amplifier

Buylines

A complete kit of parts for the HE Power Amplifier project is available from: Capricorn Electronics,
281 Balmoral Drive,
Hayes, Middlesex UB4 8HD
(Tel: 01573 1566)
for £155.
If you prefer to build the amplifier into a case of your own choice, Capricorn can supply all parts (excluding the case) for £125.

Please add $£ 1.50$ to your order to cover p\&p.

All components and parts are also obtainable individually from Capricorn.

How To Use An Oscilloscope

John Strong describes some simple tests and measurements that can be done with an inexpensive oscilloscope

AN OSCILLOSCOPE is probably the most informative instrument that anyone interested in electronics can possess. Used properly it can give a visual indication of what a circuit is doing, and often it can show what is going wrong quicker than any other instrument.

As with most things, the more money you spend, the better the equipment you can get. However, for the average hobbyist, equipment cost cannot be allowed to get out of proportion with the hobby itself. For this reason it is better to start with a simple and inexpensive 'scope rather than an elaborate and expensive one. As knowledge and finances improve, you can move on to more 'professional' equipment.

Getting Started

It is best to start with a single-channel, single-timebase oscilloscope. Such an instrument has the advantage of being fairly inexpensive (new ones can be bought for around $£ 100$) and it will have the minimum of controls.

Regular readers should have some idea of how a 'scope works (see The Oscilloscope, HE February 1981, pp18 to 22) but as a reminder, Fig. 1 shows a basic 'scope in block form.

Figure 1. Principal stages of a simple oscilloscope
To make use of your 'scope it is best to follow the same procedure every time. Even those who make regular use of 'scopes cedure every time. Even those who make regular use of 'scopes

The following steps should serve as a guide.

1) Turn the horizontal gain fully up, and make sure that the
sweep range control is not set to an external input position.
2) With no signal applied to the 'scope, adjust the position con-
3) (With nosignal applied to the 'scope, adjust the position controls so that a continuous horizontal line is displayed across the trols so that a continuous horizontal line is displayed across the
centre of the screen. Check that the intensity and focus controls are correctly set at this stage. If the intensity control is set to high
then there is a danger that the life of the CRT (cathode ray tube) will are correctly set at this stage. If the intensity control is set to high
then there is a danger that the life of the CRT (cathode ray tube) will be shortened.
4) Check that the input voltage does not exceed the maximum value specified for the 'scope or of any probe used with the 'scope.
5) Check that the vertical gain (attenuator) control is set to, or above, the voltage of the signal to be measured. If in anyasured. If in any doubt, start with maximum attenuation (highest voltage set-
ting, equivalent to least sensitivity) and work down the range until the correct setting is reached.
6) Check that the vertical input selector is set to the correct mode (that is, DC- or AC-coupled).
7) Check that the timebase and vertical amplifier controls are in their 'calibrated' positions (if these settings are provided). Remember that the CRT is the most expensive single component in a 'scope so keep beam intensity down to the minimum required for a particular test. Take care to 'turn down the glare' on slow sweep speeds or if the 'scope is being used in the external horizontal timebase mode, as described later. When using the 'scope in this mode, avoid displaying a stationary bright 'dot' for any length of time. Once the phosphor coating has been burned from any part of the CRT screen the only remedy is to renew the CRT.

Practical Measurements

Rather than plunge into the depths of complicated circuits, it's best to start with something simple such as some rectifying and smoothing circuits. Figures 2 a to $2 d$ show various transformer, rectifier, capacitor and load resistor combinations, with test points indicated.

Figure 2. Simple power supplies. Figs. 2c and 2d are shown overleaf a) single-diode, half-wave rectified circuit, with resistive load.

b) as circuit a, with smoothing capacitor.

Nothing is critical about the components used in these circuits: suggested values are given in Table 1. When wiring up the
transfomer, take care to insulate the primary winding connections to avoid the chance of any electric shocks from exposed 'live' points. It is also advisable to 'breadboard' the components; that is, to mount the diodes, capacitor and resistor so that they can be easily rearranged for each configuration shown.
Power Supply Components

Transformer	Low-current type (say 50 mA$)$ with 240 V primary and $6 \mathrm{~V} / 6 \mathrm{~V}$ centre-tapped secon- dary
	Diodes D1 and D2. Capacitor C1
1001 or similar	
Resistor R1	$1000 \mathrm{u}, 10 \mathrm{~V}$ electrolytic

Table 1. Suggested components for circuits shown in Figs. 2a to 2e
It is also worth mentioning that a valuable aid when making oscilloscope measurements is a pair of probes. If you have an inexpensive 'scope then you won't need a deluxe probe set with builtin compensation components, variable gain and a kitchen sink built in. For most measurements, two lengths of ordinary insulated wire are sufficient. However, you will probably like to invest in a set of ordinary test leads, the black or earth lead having a crocodile clip or similar on one end, and the red or signal probe lead with a test prod or probe at its end.

Switch the 'scope to DC-coupled mode and adjust the trace to the centre of the screen before making measurements. Connect the clip of the earth probe to the point on each circuit marked with the earth symbol
(ie, 六)
With the circuits shown in Figs. $2 a$ and $2 b$ only one half of the secondary winding is used (centre tap and one 6 V tap). Both windings are used in the other two circuits, with the centre tap earthed.

When the probe is applied to point A in the circuit shown in Fig. 2a, trace A in Fig. 3 should be obtained. This represents an AC voltage with a frequency of 50 Hz (mains frequency).

The waveform of trace B at point B in Fig. 2a shows the effect of diode D1; that is, only the positive half-cycles are allowed to pass through to the load resistor R. This waveform represents DC in its crudest (unsmoothed) form. This kind of rectification is used, for example, in simple battery charger circuits.

Moving on to the circuit in Fig. 2b, capacitor C has been added in parallel across the resistor. The smoothing action at point C is indicated in trace C .

Figure 3. Traces that should be obtained from points A to E in clrcuits in Fig. 2

Figures 2 c and d both show a full-wave rectified circuit. Here, two diodes are used to extract both half-cycles, giving the continuous line of 'humps' shown in trace D. With the capacitor in circuit as shown in Fig. 2d, a smoother trace is obtained: much smoother than obtained with the single-diode circuit.

You will notice that even the best smoothed circuit has some ripple (trace E). Pure DC from a battery would, by comparison, give
c

c) two-diode, full-wave rectified circuit, with resistive load.

d) as circuit c, with smoothing capacitor.
a straight line on the 'scope. In the DC-coupled mode, the displayed line simply moves up the screen in proportion to the DC voltage. Thus the 'scope enables you to 'see' the presence of any ripple, which is the part of the AC voltage which, after rectification by the diodes, escapes smoothing by the capacitor. If the load were increased by reducing the value of R, then the ripple would be worse. If the ripple is observed with the 'scope in the AC-coupled mode, then the sensitivity of the vertical amplifier canbe increased to allow the amount of ripple to be measured without the trace shifting out of view. This power supply ripple is an important consideration when designing some circuits and can, for example, produce an unwanted buzzing sound from an audio amplifier when it is run from a supply with a high ripple content.

Amplifier Measurements

To observe the response of an amplifier at various frequencies you will need, in addition to the 'scope, an audio-frequency generator similar to the one described in HE February 1981, pp 36 to 38.

The instruments are connected to the amplifier as shown in Fig. 4. Connect the generator, set to its lowest output voltage, to the

CAN BE SAFELY CONNECTED AS SHOWN
TO ONE SIDE OF THE LOUDSPEAKER
AMPLIFIER

How To Use An Oscilloscope

input terminals of the amplifier, and connect the output of the amplifier to the vertical input terminals of the 'scope. Adjust the input attenuator and timebase controls to obtain a display. With the output signal from the generator held constant, try varying the generator frequency over the range of interest while adjusting the timebase controls to display only a few cycles of the waveform. The response of the amplifier at chosen frequencies can be observed, and the probe can be moved from the output of the amplifier back to the input to make comparisons of the shape and size of the signals at these points.

Simple Frequency Measurements

A display of what are called Lissajous figures can be useful for measuring the frequency of signals, particularly where no indication of time or frequency is given on the 'scope. Lissajous figures are obtained by feeding two different signals at the same time into the 'scope, one into the vertical input and the other into the horizontal input. Under these conditions, the timebase is switched off (that is, it is set to external horizontal timebase). The waveforms can be used to measure frequency if one of the signals has a known frequency while the other has an unknown frequency.

Figure 5. How a signal generator, providing a signal with known frequency and a signal source of unknown frequency, are connected to an oscilloscope to produce Lissajous figures

Connect the 'scope as shown in Fig. 5 and adjust the gain and position controls to centre the trace on the screen. Apply the unknown frequency to the vertical input and adjust the gain confrol to give a convenient sized display. Then adjust the generator frequency for a stationary display. The unknown frequency can then be calculated as follows:

Unknown
frequency
:---
over the horizontal scale line
Number of crossing points over the vertical scale line
:---
from generator.

For example, let's assume that the generator frequency is 1 kHz . If the trace in Fig. $6 a$ is obtained, then the unknown frequency will be:
a

Figure 6. Lissajous figures produced by signals applied to the vertical and horizontal inputs of a 'scope: a) trace crosses horizontal axis at four points (twice at centre of screen) and vertical axis at two points (both at centre of screen), b) six crossing points on horizontal axis and four on vertical axis
$\frac{4}{2} \times 1000=2 \mathrm{kHz}$.
If the trace in Fig. 6b is obtained, then the unknown frequency will be:

$$
\frac{6}{4} \times 1000=1.5 \mathrm{kHz}
$$

Reading The Scale

All the measurements described so far have been based on observation of the displayed image, and this method is satisfactory for most purposes. Often, the 'scope is used as an 'eye' to see what is going on in a circuit, and with experience much can be gained from correct interpretation of what is displayed. For example, if you are putting a pure sinewave signal into an amplifier and you get a flat-topped waveform from its output, then 'clipping' is taking place in the amplifier as the result of over-driving one of its stages. (See O Level Q \& A, HE May '81, page 55 for a description of this effect.)

Sometimes, however, you may need to take measurements of units such as frequency and voltage direct from the screen. To do this, you will need to know what each little square on the screen means in terms of time and voltage. An example is given in Fig. 7.

Figure 7. Example of sinewave signal displayed on typical oscilloscope screen. Timebase has been set to $5 \mathrm{~ms} / \mathrm{cm}$ and vertical attenuator to $1 \mathrm{~V} / \mathrm{cm}$

A sinewave signal has been applied to the 'scope's vertical input, with the timebase set to $5 \mathrm{~ms} / \mathrm{cm}$ and the vertical attenuator set to $1 \mathrm{~V} / \mathrm{cm}$. Therefore, the period of the waveform, measured over a full cycle, will be six divisions along the horizontal axis, equivalent to:

$$
\begin{aligned}
& 6 \times 5 \mathrm{~ms} \\
& \text { or } \quad 6 \times 0.005 \mathrm{~s}=0.03 \mathrm{~s} .
\end{aligned}
$$

OK, you may say, what does 'period' mean? Let's convert it to frequency f (number of full cycles per second), by taking its reciprocal, where

$$
f=\quad 1
$$

Period in seconds.
Therefore,

$$
f=\frac{1}{0.03}=33 \text { cycles } / \text { second or } 33 \mathrm{~Hz}
$$

What about the voltage? Counting the vertical divisions between the peaks gives:

$$
6 \times 1 V=6 V
$$

Thus we have a 6 V peak-to-peak sinewave signal with a frequency of 33 Hz . All this calculation may seem a trifle complicated but you will soon get a 'feel' for it, and you can often do a rough calculation of frequency or voltage in your head.

Remember that the more practice you get in using a 'scope the more useful it will become.

THIS is the last chance to own the most valuable aid to the electronics hobbyist - AN OSCILLOSCOPE. With a screen size of 75 mm and a bandwidth of DC to 5 MHz the Kikusui 538A will enable you to 'see' how circuits are working instant/ly.
Apart from the CRT, semiconductors are used throughout the circuit: the 'scope is ready to operate in under 20 seconds. It comes complete with operating manual containing full details of operation, maintenance, calibration and circuits. (Probes not supplied.)
All-inclusive cost of the 538A, delivered to your door, is only $£ 95$. Each 'scope carries a full one-year guarantee.
Such was the response to our advertisements for the 538A in the February and April '81 issues that stocks quickly disappeared. Our supplier has allocated one last consignment to HE at the above price, so don't miss this chance to own a high-quality scope.

Pay by Barclaycard or cheque:

Enter your Barclaycard number in the space provided on the coupon, add your signature, name and address - and we'll do the rest.
Enter your name, address and the amount in the coupon and send it with your cheque, made payable to Modmags Ltd.

Please also specify the number of 'scopes you require
SEND ALL ORDERS TO:
HE Scope Offer,
Modmags Ltd.,
145 Charing Cross Road, LONDON WC2H OEE

Please note that the offer applies to UK mainland only: allow 28 days for delivery

BRIEF SPECIFICATION

Vertical Deflection	
Voltage sensitivity	$<10 \mathrm{mV} /$ division
Bandwidth	AC 2 Hz to 5 MHz
Input impedance	$1 \mathrm{MO} \pm 5 \%$ vithin 35 pF
Ext. Horizontal Amplifier	
Voltage sensitivity	$<250 \mathrm{mV} / \mathrm{division}$
Input impedance	1MO 10\% within 35pF
CRT	$75 \mathrm{~mm}\left(2.95^{\prime \prime}\right)$ round screen, green phosphor
Power Requirements	
Voltage	$100,110,117,220,230$, or 240 VAC, 50 to 60 Hz
Wattage	about 10 VA
Dimensions	202 mm wide by 160 mm high by 305 mm deep. (7.9 by 6.3 by $12^{\prime \prime}$)

TECHNICRI TRRINLNG INELECTRONICS RND TELECOMMUNICHTIONS

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City \& Guilds Certificates

Telecommunications Technicians
Radio Amateurs
Electrical Installation Work

Certificate Courses

Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

To: International Correspondence
Schools
Dept. 262H Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address versatility and precision in testing all types of digital circuits. It incorporates a fully isolated power supply which means that there is no loading of a circuit under test; avoids logic level shifts, false triggering and power supply loading. The self contained power supply in conjunction with I.C. comparators provides constant current drive to LEDS and ensures a uniformly bright display. A logic family selection switch enables the precise selection of logic thresholds and provides more accurate measurement of I.C.'s under test.
gLobal specialties corporation

G.S.C. (UK) Limited, Dept. 14DD Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO. Tel: Saffron Walden (0799) 21682 Telex:817477.

Continuity Checker

Here's an ideal project for you to build it's cheap, simple-to-build and very useful

THERE ARE MANY times in the electronics hobbyist's life when a need arises for a quick and simple test to check fuses, coils, circuit boards etc, for short or open circuits. Normally this means searching for a multimeter (only to find that the internal battery is long dead) or diving into the junkbox to look for a battery, bulb and holder, and suitable wire (and then struggling to hold all connections in place between your knees while trying to position the probes onto whatever you're testing). The HE Continuity Checker is a project to end all of that. In fact, once you have built it you won't know how you ever managed without it. Housed in a small, hand-held case it combines usefulness with good looks. Total cost is around $£ 5$ so the project won't burn a large hole
in your pocket, and it is very easy to build.

The circuit is formed around a single IC, the LM3909, which directly drives a miniature loudspeaker with an audio frequency tone. The frequency of this tone varies with the resistance between the two probes - the lower the resistance, the higher the frequency. We reckon that, with a bit of practice, the 'experienced' ear should be able to distinguish easily between short circuits, open circuits or rough values of resistance from about 10 to 220 R. The audio tone generated also means that you don't need to look away from the object under test (as would be necessary with a meter) while holding the probes in position on that object.

When the Continuity Checker is
connected to a loudspeaker, the speaker under test (if it works) will also emit the tone, so giving a good/bad speaker acoustic test.

No on/off switch is necessary because when the probes are disconnected battery drain is nil and battery life of the project (using an RM401 battery) should be a matter of years with average use. These batteries are specified as having a capacity of $800 \mathrm{~mA} / \mathrm{hours}$ and a battery shelf-life, to 75% of full capacity, of 3 years.

Construction

Start construction by making the four breaks in track, on the underside of the Veroboard beneath IC1, as indicated in Fig. 2.

Next, insert and solder the links, followed by an 8-pin IC holder for IC1. Now insert and solder R1 and C1 making sure that you polarise C1 correctly, and then push IC1 into its socket.

Mark and drill the case for the two 4 mm probe lead sockets, also drill a number of holes in the front panel to act as a loudspeaker grille. Glue the speaker into position, being careful not to get glue on its cone, and fasten the two probe sockets into their positions.

Finally, wire together the speaker, battery holder, Veroboard and 4 mm sockets as shown in Fig. 2 using short lengths of connecting lead, and then fasten the board and the battery holder
into the case using double-sided adhesive pads. Insert the battery, seemingly the wrong way round (ie + ve to the spring) into its holder. The construction of these batteries is such that their outer case is positive, unlike most batteries of similar size, and consequently they should be inserted into the holder the opposite way round.

Flgure 1. Circult of the Continuity Checker

Flgure 2. Veroboard layout, showing underside view and track breaks, along with connection details

Parts List

RESISTOR ($1 / 4 W, 5 \%$)
R1 1k0
CAPACITOR
C1
$10 \mathrm{u}, 10 \mathrm{~V}$ electrolytic

SEMICONDUCTOR

IC1 LM3909 LED flasher/ oscillator

MISCELLANEOUS

Case to suit (Vero type 202-21025K) RM401 battery + holder
8-pIn DIL IC socket
$2 \times 4 \mathrm{~mm}$ probe sockets (red and black)
$2 x$ probes (red and black)
8R speaker
Veroboard, 7 strips $\times 18$ holes, $0.1^{\prime \prime}$ matrix

Buylines

A complete kit of parts for the Continulty Checker is available from Magenta Electronics for $£ 4.86$ including VAT. probes and battery.

RM401 batteries are avallable separately for 64 p each, the holders cost 22 p each and LM3909s cost $79 p$ each, all from Magenta.

Please add 40 p p\&p, whatever the total order price.

$\begin{array}{lllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 18\end{array}$

Continuity Checker

How It Works

Integrated circuit IC1 is a purposedesigned oscillator requiring a minimum of only one external component, a capacitor, to operate. Its main function is as a low-voltage (as low as 1 V) LED flasher.

The output stage of the circuit is quite powerful and a small 8R loudspeaker can be driven directly, replacing the LED in the above circuit.

Oscillator frequency is dependent on supply voltage, so if the probe leads are made part of the supply line then whatever resistance is in between the probes will determine the voltage across the IC and hence the oscillator frequency.

Beasties

Beasties Don't tuv Thur Ther

HEPROJECT KITS

Make us Your No. 1 SUPPLIER OF KITS and COMPONENTS for M.E. Projects. We supply carofully selected sets of parts to enable you to construct H.E. projects. Kits include ALL THE ELECTRONveroboard are of course included ad circuir boerds huly erched. driled and rolles tinned) or screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES AAE NOT INCLUDED. COMPONENT SHEET INCLUDED. II You do not have the issue of H.E. which includes the project - you will need to order the instruction reprint as an extra 45 p each

Reprints available separately 45 p each + p\&p $40 p$ LATEST KITS: S.A.E. OR PHONE FOR PRICES
AUDIO MILLVOLTMETER, May '81
£16.98
VOICE OPERATED SWITCH, May '81
$\begin{array}{r}\mathbf{E} 9.43 \\ \hline 9.99\end{array}$
Microphone extra.

- 6.29

SUPER SIRON, Apr '81
E157.5
DOORBELL MONITOR, Apr '81

- 11.93

GUITARTLEMELO A A
£11.33
WINDSCREEN WASHER ALARM, App' 81 ... 26
RUSSIAN ROULETTE GAME, Apr' 81
£8.31 less case

83 each
$£ 4.40$
FUZZBOX, Mar '81
£9.41
WINDSCREEN WIPER CONTROLLER, Mar'81 £6.98
STEAM LOCO WHISTLE, Mar '81 ... £11.15
مHOTOGRAPHIC TIMER, Mar '81
E11.15
HEARTBEAT MONITOR Feb '81 .. 22.99
HEARTBEAT MONITOR, Feb 81... $£ 21.28$
HIGH IMPEDANCE VOLTMETER, FED' 81
$£ 8.98$
AUDIO SIGNAL GENERATOR, Feb'81
£17.21
BACKGRUND NOISE SIMULATOR, Feb ' 81 £4.77 less case

BENCH AMP, Jan '81
£6.98
CHUFFER, Jan'81, Jass ' 81 f6.98
$\mathbf{f 6}$
CAR REV COUNTER, Jan 81, less case.
$\begin{array}{r}\mathbf{E} 6.44 \\ \hline\end{array}$
Case extra...
$\mathbf{~} 21.20$
DIGITAL SPEEDO, Dec. ' 80
£35.89
MODEL TRAIN CÓNTROLLER, Dec. ' 80 $£ 16.86$
BATTERY CHARGE MONITOR, Dec.' 80 .. $£ 4.91$
JACK LEAD TESTER Dec ' 80 . Dec. 80
£1.99
STEREO POWER METER, Dec. ' 80
£18.98
PARTY GRENADE, Nov'80
E7.98
TRANSISTOR TESTER, Nov '80
$\mathbf{E 5 . 5 7}$ inc. test leads
DOUBLE DICE, Nov '80
GUITAR PRE-AMP, Nov 80. £13.80 £5.65 case (diecast) extra $£ 2.99$ BATTERY ELIMINATOR, Nov '80

3 Channel Sound to Light

500 watts per channel. Independent controls for bass, middle and treble. Full wave output via PL552 socket and PL551 plug. Complete with p.c.b. and case.
instructions included $\mathbf{£ 1 8 . 9 8}$
Chaser
A psychedelic light show. 3 modes of flashing - two chase patterns and a strobe effect. 3 channel total output power 750 W per channel. Supplied with plug and socket for output to the bulbs
Instructions included $£ 19.98$
Sound Pressure Level Meter Featured in Feb. 81 E.T.t. Uses a precision ceramic microphone. Portable. Moving coil panel meter. $30-120 \mathrm{~dB}$ sound level. Internal network gives A weighted (loudness) response or flat response for absolute measurements. Suitable for domestic, schools, industrial or disco use
instructions included £45.75
Printed Circuit Boards - Móbby Electronics
Fully etched, drilled and roller tinned p.c.b.s available for most Hobby Electronics projects - send s.a.e. for p.c.b. price list.

Public Address Amplifier 18 watts 12 volt
As featured in H.E. March 81. Make yourself heard with this high one for mirophone and anputs line - each with its own level control - allows mixing of music with announcements, etc. Compact unit built in a black anodised alu minium 'sink box'. Uses a 12 volt d.c. supply - so can be powered from a car battery or a mains powered 12 V supply. Uses a special audio i.c. to deliver 18 watts into 4 ohms (2×8 ohms in parallel). P.A Amplifier kit $£ 16.58$. Extras: P.A. Mic £4.40; 8 ohm horn speakers $£ 6.83$

Guitar Fuzz Box. H.E. March 81 Produce delightful distortion from your electric guitar in a novel way. A dal control. This unit produces a very smooth sound. Circuit is housed in a 'brand new' style of box - complete with a pedal to operate an internal swith. Features more controlted distortion and less back ground noise than most other de
signs. Guitar Fuzz Box, Mar $81 \mathbf{\Sigma 9 . 4 2}$

1981 ELECTRONICS CATALOGUE

KITS
ICs

TRANSISTORS

CAPACITORS
Hundreds of illustrations, product data, circuits and details of all our kits and educational ducts are stock lines for fast delivery. Send 70 p in stamps or add $70 p$ to your order.

ADVENTURES WTH MCROFLFGTRONGS

Same style as above book: if projects based on integrated circuits - includes: dice, two-tone doorbell, electronk organ, MW/LW radio, reaction timer, etc. Component pack includes a Bim ooard, 1 plug-in breadboard and the components for the projects.
ADVENTURES WITHELEGTRONILS SVTMem
An easy to foliow book suitable for all ages. ideal for beginners. No soldering. Uses an 'S Dec iren, metronome, organ, intercom, timer, atc. Helps you learn about electronic components and how circults work. Component pack includes an S.Dec and the components for the projects.

MAGENTA ELECTRONICS LTD.

NOBELL DOORBELL, Oct. '80.. £10.98 INTRUDER ALARM, Oct. '80... £17.83
FREEZER ALARM, Oct. '80 with probe $£ 9.42$
TUG O' WAR, Oct. '80 ... £15.98
KITCHEN TIMER, Oct. '80 (2\% resistors) £7. $\mathrm{B}^{\mathbf{8}}$
MICROMIX, Sept. '80.. £7. 82
AUTO PROBE, Sept. '80... £3.67 less case
TOUCH SWITCH, Sept. '80......................f2. 34 less case \& contacts
GUITAR PHASER, Sept. '80... £13.84
BENCH PSU, Sept. '80 ... £28.50
EQUITONE CAR EQUALISER, Aug. '80 £14.98
OP AMP CHECKER, Aug. '80 ... £4. 55
MOVEMENT ALARM, Aug. '80.. £5. $\mathrm{E}^{\mathbf{6}} \mathbf{6 8}$
RADIO TIMER, Aug. '80 ... £6. 5.98
PASS THE LOOP GAME, Aug. '80....................................... £13.98
SOUND OPERATED FLASH TRIGGER, July '80, no skt.......... £4.59
18W+18W CAR STEREO 800STER, July '80......... ¢29.98 (stereo)
FOG HORN, June '80 .. £5.65
SPEED CONTROLLER FOR R/C, April '80 £14.92 less case
DIGITAL FREQUENCY METER, April '80............................. £35.78
HOBBYCOM: TWO WIRE INTERCOM, April '80 £33.95 (Master)
Sub Station .. £3.38 each
ELECTRONIC IGNITION (CD), April '80 $\mathbf{E 2 0 . 8 7}$
WIN INDICATOR, Feb. '80 (with switches) £13.92
DIGI-DICE, Jan. '80... $\mathbf{E 9 .} 98$
BARGRAPH CAR VOLTMETER, Dec. '79................ £7.33 less case
RING MODULATOR, Dec. '79... £12.95
GUITAR TUNER, Nov. '79.. £10.9. ${ }^{\text {¢ }}$.
HOBBYTUNE, Oct. '79 ... $£ 26.98$
ANALOGUE FREQUENCY METER, Oct. '79......................... £15.52
MULTI-OPTION SIREN, Oct. '79.. £15.98
ULTRASONIC SWITCH, Sept. '79.... £28.85 less 3 pin mains socket
HOME SECURITY UNIT, Aug. 79 ¢28.56 less siren
SIREN.. £5. 09.
LED TACHOMETER, Aug. '79.. £17.98
INJECTOR TRACER, Aug. '79.. £4.34
CONSTANT VOLUME AMPLIFIER, Aug. '79 £15.60
LINEAR SCALE OHMMETER, July '79................................. £15.98
GSR MONITOR, June '79 ... £9.63
ENVELOPE GENERATOR, June '79..................................... . . 14.98
WHITE NOISE EFFECTS UNIT, May '79................................ $\mathbf{~ £ 1 7 . 7 4 ~}$
TRANSISTOR GAIN TESTER, April '79................................... $£ 9.98$
CAR ALARM, Feb. '79 .. £10. 10.98
£29.98 Stereo
USH BUTTON DICE, Dec. '78 .. £6.98

TNTO DIEITAL ELEGTIONIGS

Current H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics Circuits are built on a plug-in Eurobreadboard. Reprints of back issues availab 45p each. Eurobreadboard and components for series $£ 18.95$ less battery. Com

INTOELEGTRONIGS MONSTRIGTION

LOTS OF PRACTICAL WORK. Circuits are built on a plug-in Eurobreadboard. REPRINTS AVAILABLE, 45p each part. Eurobreadboard and Components for Series $£ 15.63$. Components only $£ 9.43$.

H.E.LADDER OF LIGHT,JAN.'81

Novel 'sound to light' project. Creates a pulsating, rising and falling light show.
WIII drive up to 10 100W light bulbs either in bar mode - in a line increasing from WIII drive up to 10100 W light bulbs either in bar mode - In a line increasing from one end; or in dot mode - one bulb at a time. Filter allows selection of bass,
treble or middle frequencies. Extra with our kit only - additional circuit and components for strobe and chase features
Ladder of Light Jan '81 £29.98. Reprint extra 45p.

MEMORY BANK SYNTHESISER Minlature synthesiser featuring vibrato, envelope tempo, volume and pitch controls. Uses 24 push button switches in a keyboard style layout. Based on a custom designed i.c. The accessible memory stores a 32 beat length sequence of notes and spaces. Can be played 'live'. Fitted with an internal speaker. Jack socket allows the use of an external amplifier if wished. Memory Bank Synthesiser £33:85

3 BAND

S.W. RADIO

Simple T.R.F. Design. Covering most Ama teur Bands and Short Wave Broadcast
Bands. Five controls. Bandset. Bandspread Reaction. Wavechange and Attenuator Coll section is by Wavechange Switch Use with Headphones or a Crystral earpiece. Kit con tains all the components required including
the P.C. Board and Case. Instructions are included with this kit.

MAGENTA ELECTRONICS LTD.
HH9, 135 HUNTER ST., BURTON-ON-TRENT. STAFFS, DE14 2ST. 0283-65435. 9-4 MON.-FRI. MAlL ORDER ONLY

Irish Republic \& B.F.P.O. Europe de. duct 10° o from price
must be in sterling
Access and Barclaycard (Visa) orders

Access and Barclavcard
accepted by 'ohone or post

The INStructor
 A FULLY CONSTRUCTIONAL PROJECT INCORPORATING AN INS8060 MICROPROCESSOR CHIP

The Instructor is a cost assembly which provides a pracical introduction to micropro cessors and their functions. It is not a computer but it is a working circuit which allows
mleroprocessor working to be followed, one program step at a time. Build the Instructor and you will gain microprocessol experience. The series is based on the $\mathbb{N} S 8060$ microprocesson IC, also known as the SC/MP Mk. 2 Circuits are buil on a plug in Eurobreadbnard. Kit is available with or without the breadboard. INSTRUCTOR COMPONENT PACK: Includin obresdboard £27.85; or less Eurobreadboard $£ 21.65$. INSTRUCTOR COURSE NOTES AND OPERATING INSTRUCTIONS E2.96 extra.

C106D ... 56p	2N5457.	BFY51.... 24p
TIC46...., 49p	2N5484.. 63p	BFY52.... 23p
OA47..... 11p	40673 ... 98p	BFX88 ... 32p
OA90...... 9p	AC128 ... 29p	BRY39 ... 48p.
OA202 .. 16p	AC141 ... 38p	MPSA6539p
W0.05.... 33p	AC142... 39p	RPY58A
W06...... 47p	AC176...37p	£1.16
25J..... £2.92	BC182....11p	TIP31A.. 52p
1N4001.51/2p	8C182... 11p	T1P32A ..83p
1N4005...6p		T1P33A ..94p
1N4148...5p		TIP34A..99p
1N5404.. 18p		TIP121.f1.12
1 N5408.. 19p		TIP2955.69p
BF244B.. 45p		TIP3055.69p
MPF102.69p	BC212L 11p	TIS43....38p
TIS88A.. 57p	BC213.... 11p	TPSA13.35p
VN67AF	BC214.... 11p	2N3053. 25p
£1.21	BC214L.. 11p	2N3055.. 59 p
2N3819.. 28p	BD131 ...48p	2N3702. 11p
2N3820.. 78p	BFY50.... 25p	2N3704.. 11p

$1 / 4 \mathrm{~W}$, carbon film resistors, E12 series 1R-10M, $11 / 2 \mathrm{p}$ each. Min. horiz. presets Linear 470R-4M7 37p each. Log 4k7$2 \mathrm{M} 3,38 \mathrm{p}$ each. Switched pots, 4k71 M , Lin. 75p. Log. 76p.

Polyester \{C280\} capacitors 250 V 10nF: $15 n \mathrm{FF}$; 22 nF ; 33 nF ; 47 nF 7 p ea $68 n \mathrm{~F} ; 100 \mathrm{nF} 8 \mathrm{p}$. $150 \mathrm{nF} ; 220 \mathrm{nF}$ 12p 330 nF 15 p .470 nF 20 p . 680 nF 28 p . 1 uF 33p. 1.5uF 49p. 2.2uF 65p.
Sub miniature plate ceramics 63 V . Values in pF: $2.2 ; 3.3 ; 4.7 ; 5.6 ; 6.8$; 68pF; 100pF 7p each. $150 ; 220 ; 330 \mathrm{pF}$ 11p. 390pF; 470pF; 1000pF 5p. 2200pF 6 p .3300 pF ; 4700 pF 7 p .10 nF 13p. 100nF 22p. 47nF 14p.
Electrolytic capacitors, AXIAL leads:- $1 \mathrm{uF} / 16 \mathrm{~V}$ 11p; 1uF/63V, luF/100V 12p; $2.2 \mathrm{uF} / 63 \mathrm{~V} / 63 \mathrm{~V}$; $12 \mathrm{p} ; 10 \mathrm{VF} / 16 \mathrm{~V} \quad 11 \mathrm{p}$. $\begin{array}{lll}\text { 4.7uF/63V 12p; } \\ \text { louF/63V 12p; } & 22 u F / 25 V & 12 p ;\end{array}$
 22uF/63V 15p; $33 u F / 40 \mathrm{v}$, $47 \mathrm{UF} / 25 \mathrm{~V}$, $12 \mathrm{p} ; 47 \mathrm{uF} / 25 \mathrm{~V}$ 12p; $47 \mathrm{FF} / 40 \mathrm{~V}$ 15p: 47UF/63V 18p; 100uF/16V 12p; $100 \mathrm{uF} / 25 \mathrm{~V}$ 15p; $100 \mathrm{uF} / 40 \mathrm{~V}$ 18p; 100uF/63V 29p; 220uF/10V 15p; 220uF/25V 19p; $470 u F / 16 \mathrm{~V}$. 29p; $470 \mathrm{uF} / 25 \mathrm{~V}$ 36p; $470 \mathrm{uF} / 40 \mathrm{~V}$ 55p; $680 \mathrm{uF} / 16 \mathrm{~V}$ 32p: $1000 \mathrm{uF} / 10 \mathrm{~V}$ 30p; $1000 \mathrm{uF} / 16 \mathrm{~V}$ 33p; $1000 \mathrm{uF} / 25 \mathrm{~V}$ 46p; 1000uF/40V 58p; 1000uF/63V 79p; $2200 u F / 10 \mathrm{~V}$ 39p; $2200 u F / 25 \mathrm{~V}$ 64p;
$2200 u F / 63 \mathrm{~V}$ £ 1.10 . RADIAL leads:- $0.47 \mathrm{uF} / 25 \mathrm{~V}$ 81/2p; $10 \mathrm{uF} / 16 \mathrm{~V}, 22 \mathrm{uF} / 16 \mathrm{~V}$, $100 \mathrm{uF} / 25 \mathrm{~V} \quad 121 / 2 \mathrm{p}$ $100 \mathrm{uF} / 16 \mathrm{~V}$. $100 \mathrm{uF} / 25 \mathrm{~V} / 16 \mathrm{~V} 351 / 2 \mathrm{p}$: $220 \mathrm{uF} / 16 \mathrm{~V} 641 / 2 \mathrm{p}$.

Switches

Min. toggle: spst 59p; spdt 69p; dpd 79 p . Min. push on 18p; push off 22 p footswitch f1.88. Rotary switches: 1p 12 dpco E1.88. Rotary sw 3 w . 69 p each way. $2 p 6 \mathrm{w}$, $3 \mathrm{p} 4 \mathrm{~m}, 4 \mathrm{p} 3 \mathrm{w}$
12 V 185R dpco relay $£ 2.98$.

Soldering

Antex $\times 25$ soldering Iron, 25 W £4.98. Soldering iron stand $\mathbf{£ 1 . 9 9 \text { . spare bits }}$ (for X25) small, std, large 64p each. How to solder sheet 12p. Solder bobbin 30p. Desolder pump £5,98. Desolder braid $69 p$. Solder, handy size $98 p$. Heat sink tweezers $15 p$.

LINEARICs	LM3900N ... $85 p$
555............. 32 p	LM3909N... 79p
556........... $79 p$	LM3911N. 51.55
741...........28p	LM3914N.f2.89
748...........55p	LM3915N £2.98
CA3080f1. 21	MC3340 .. £2.15
CA3085A. E1. 32	TBA820....£1.05
CA3130T..E1.12	TL064f2.59
CA3140E.... 57p	U237B.....f1.69
HA1388.... $\mathrm{EL}^{8} 85$	ULN2283B
ICL7611...f1.04	£1.47
ICL8038CC	ZN1034E.f2.19
$£ 3.92$	ZN414.....f1.09
ICM7555.E1.19	ZN419CE. $£ 2.59$
LF351.........58p	ZN424E... $£ 2.14$
LF353........ 96p	ZN425E ...ef5.98
LF356........ 99p	
LM301AN .. 39p	C.MOS
LM309K ...E2.99	4001.......... 27p
LM317K ...E3.56	4011........... 28 p
LM317T....22.55	4013........... 55p
LM324N..... 79p	4017........... 95 p
LM389N 99 p	4020......... $\mathbf{1 1 . 2 0}$
LM381N ...E1 98	4024...........76p
LM382N... 51.62	4069.......... 31p
LM386N...f1 04	4081.......... 29p
LM387N...E1 39	4093..........89p
LM389N...E1 29	4522......... £1.79
LM1830.... $\mathbf{C 2} .32$	40174.......51.50
LM2917N E2.27	74C14N......78p

BPX25
2N572
ORP12
TLI32
TLI

Le.d.s whth clips
3 mm : Red 15 p ; Green 98 p ; Yellow 20 p . 5 mm ;
Red 16 p ; Grean 19p: Yellow 21 p . Red 16p; Green 19p; Yallow 21p. Flashing l.e.d. 78p.
Mains panel neon 32 p .

Zener diodes 400 mW , BZY88. Range 2V7 to 33 V 12 p each.

I.c. sockets

8 pin...........16p	18 pin............22p
14 pin......... 17p	24 pin.........48p

Jackson

300 pF dilecon $£ 2.36$. 500 pF dilecon £2.92. C804 var. capac. 10 pF £2.28; $25 \mathrm{pF} £ 2.46 ; 50 \mathrm{pF} £ 2.48 ; 100 \mathrm{pF} £ 2.83$;
 4511 DAF 6.1 drive $£ 1.74$. Low cost cutters $\mathrm{E1.69} \mathrm{}$. nose pliers $\mathbf{f 1 . 6 8}$. Wire strippers and nose pliers $\mathrm{c}^{\text {futers }} £ 2.48$. P.c.b. assembly ig cutters £2.48. P.c.b. tweezers 69p. Eurobreadboard £6.20. Bimboard 1 £6.48. S. Dec $£ 3.98$. Speakers miniature, 8 ohm 87p; 64.75 ohm 89p. Crystal earpiece 65p. Mag. netic earpiece 15p. Mono headphones £2.98. Stereo headphones $£ 4.35$. Telephone pick-up coil 72p. FM aerial 49p. Min. buzzers 6 V 50 p ; 9 V £1.10; 12 V 65 p .
PP3 clips 10p; PP9 clips 11p. Panel
meters $60 \times 45 \mathrm{~mm}$ f 4.99 each. 50 uA , meters $60 \times 45 \mathrm{~mm}$ £ 4.99 each. 50uA, $100 \mathrm{uA}, 1 \mathrm{HA}, 1 \mathrm{~A}, 25 \mathrm{~V}$.
Veroboard 0.1" copper
10 strips, 24 holes $£ 1.20$ per 5.24 S 37 H 78 p . 24 S 50 H 89 p . 36 S 37 H 89 p . 36 S 50 H 99 p . Terminal pins $48 \mathrm{p} / 100$. Pin insertion tool £1.69. Spot face cutter £1.23.

KIT $£ 18.97$. Headphone extra $£ 2.98$.
Multimeter type 1. 10000 pu with proves, 2 $^{2 \prime} \times 3^{1 / 2}{ }^{\prime \prime \prime}$

${ }^{66,68}$Multimeter type 2. 20,0000 inc. it ir insistiorConneting wire pack, ale
Resistor colour code calculator..Towers tolernational TTansistor Sole
AM.FM aircratt band pontable radio
AM-FM aircratt band portable radio

Dimmer switch
PVC tape- 3 reels
Jewellers eyeglass
Hand magnifier, $3^{\prime \prime}$
lluminated magnifier, $1^{1 / 2}$

Radio

Even in this age of microelectronics, radio still has its appeal. lan Sinclair traces its development and describes wave propagation, reception and simple receivers
" THERE WAS A TIME" quavered the old man, his stick trembling slightly, " when every recruit to the ranks of electronics as a hobby would have started by making his own radio receiver."

It would have been, of course, a simple receiver, not the sort of miracle-box which automatically tunes Radio Tokyo for you at 7.25 each morning, but a receiver which at least you had built with your own fair hands. In those days, too, we could take it for granted that everyone who started that way knew a fair bit about radio, because there wasn't much else to electronics in the early days.

Things have changed a lot. Radio is just one tiny part of the whole electronics scene, although one which looks as if it might make quite a comeback as an amateur activity when legal CB comes into operation later this year. Many people nowadays join this hobby of ours without ever coming into contact with radio, and that's a pity. Perhaps this article will help put some of that right.

Early Discoveries

The best place to start is always the beginning, and the beginning was, as so often happens, a bit of a false start. In 1864, James Clark Maxwell, a physicist of considerable distinction, put forward the idea, backed by theory, that light was an electrical wave.(See Famous Names, pp 63 to 64 in last month's HE.) He also said that it should be possible to generate similar but invisible electrical waves which would travel through space with the speed of light and which, unlike the telegraph or telephone, would need no wires to connect the transmitter with the receiver. His ideas were met with polite disbelief, his calculations were thought to be unrealistic, and because no-one had succeeded in producing any detectable waves by electrical methods, Maxwell's Electromagnetic Theory, as it was called, remained just a theory. Like all true research, however, it was not wasted, In 1888, some nine years after Maxwell had died, a researcher called Heinrich Hertz succeeded in producing the waves that Maxwell had predicted - and that's why we use the word hertz today for the unit of frequency. A brief look at Hertz's achievements is given in this month's Famous Names, on page 56.

Why had it been so difficult to produce radio waves? To answer that, we must know something of what was needed (as Maxwell knew) and also why it could not be achieved easily. What was needed was an alternating voltage which alternated at a high frequency. Alternating voltages had, of course, been around for several years (even in the 1860 s), because an alternating voltage is
what you get when you spin a coil of wire between the poles of a magnet. The voltage between the ends of the wire is alternately positive, zero, negative, zero and positive again in each revolution of the coil. The frequency of the alternating voltage is the number of times per second that it goes through this complete cycle of changes. When the alternating voltage is generated by a coil rotating between the poles of a magnet, the frequency of alternation is easily found - it's the same as the rate of turning in revolutions per second. In the 1860s, it was reasonably straightforward to build generators which could rotate at around 3,000 revolutions per minute. That's 50 revolutions per second, giving a frequency of 50 Hz , the frequency we still use for mains supplies today.

Now it wasn't at all obvious from Maxwell's equations that the frequency of an alternating voltage should be an important factor in deciding whether or not it could be used for radio. Nevertheless, the information was there and several researchers found it and drew the correct conclusions - that the amount of radio wave which could be radiated from a piece of wire would be immensely greater if the frequency of the $A C$ voltage on the wire was higher, much higher than 50 Hz . As it happens, the frequency of a . radio wave is very closely related to another quantity called wavelength. The wavelength is, as the name suggests, the distance between two neighbouring wave peaks (Fig. 1), when the wave is travelling through space. Wavelength multiplied by frequency of a wave gives wave speed, and for all electrical waves - and that includes light - the speed is constant at around 300 million metres per second. By comparison, Concorde at full speed manages to cover just 630 metres per second. Because the speed of all types of radio waves is constant and of known value (in space), we can find the wavelength for any frequency by dividing the speed by the frequency.

For a 50 Hz wave, for example, the wavelength is

300 million

50
which is a wavelength of 60 million metres, a distance equal to 15 times around the earth.

Figure 1. Wavelength. As the radio wave travels through space,
there is a measurable distance between wavepeaks. This distance is the wavelength

Now Hertz and several others reckoned that an alternating voltage on a wire would cause a radio wave to be launched only if the wire was long compared with the wavelength - and no-one was likely to come up with a wire long enough to launch a 50 Hz wave. Hertz therefore concentrated on trying to generate much shorter wavelengths, which meant much higher frequencies. That, in turn, meant forgetting about rotating machines, because no alternator could stay in one piece at the frequencies Hertz was trying to generate; that is, frequencies of several thousands of millions of hertz. He solved the problem by using spark-gaps to generate highfrequency signals (see Fig. 1 on page 56), and radio was born at last.

Shift To Thermionic Valves

Radio has changed a lot since that momentous discovery by Hertz, and the work of Marconi, Tesla, Popov and many others who developed Hertz's laboratory experiments into a workable method of communication. Radio at the start of this century was still primitive - an induction coil to develop a high voltage, a spark-gap to cause high-frequency oscillations, and an aerial. The only control that was possible was to switch the induction coil on and off, using a telegraph key so that Morse code could be transmitted. To distinguish this from the 'normal' method of telegraphy, transmitted along wires, it was christened 'wireless telegraphy', and that's where the word 'wireless' comes from.

Figure 2. Block diagram of an oscillator
As a way of communicating short or emergency messages spark-gap transmitters were effective, and they were carried as emergency transmitters on ships right up to the '50s. But radio broadcasting needed something much more electronic in nature, and that came when thermionic valves were developed during the early years of this century. The thermionic valve was the device that dominated electronics for half a century. It could rectify (convert AC into current in one direction only), amplify (create a large-scale copy of an alternating voltage) and, most important of all, oscillate. Oscillation means creating an alternating voltage, and the important difference between a valve oscillator and a rotating generator is that the valve, like the transistor, has no mechanical moving parts. That in turn means that higher frequencies were at last simple to generate (as long as they were not too high!). It also meant that transmitters could operate at last on set frequencies.

That last remark needs some explaining. An oscillator, whether it uses a valve or a transistor, consists of three parts: an amplifier, a frequency selector and a positive feedback circuit (see Fig. 2). The amplifier has an input terminal and an output terminal, and produces at its output a large-scale copy of the alternating voltage - the signal - at its input. A frequency selector is a circuit which, as its name suggests, picks out one frequency of signals and rejects all others. A positive feedback circuit connects the output of an amplifier back to its input so that the amplifier provides its own input signal and doesn't need any other signals. Put these three components together and you have the kind of oscillator that is useful for radio. Because of the frequency selector, though, the signal from such an oscillator is a sinewave which has a single frequency, a frequency which can be changed only by altering the frequency selector circuit.

The old spark-gap transmitters lacked such refinements, and in the early days of radio no-one needed them anyway. As more and more transmitters were built, however, it became important to prevent them from in-
terfering with each other (as they did because the sparkgap created signals which comprised a huge mixture of frequencies). Valve oscillators allowed different transmitters to operate on different frequencies, not interfering with each other. They also permitted something else modulation.

Controlling The Waves

Modulation means 'control', and in radio it means the control of the high-frequency oscillations of the radio wave or carrier wave. Morse code is a simple type of modulation, on or off, a digital signal long before its time. Why would we want to modulate a carrier wave? In the early days the most important reason was the ability to carry speech rather than Morse code. The human voice (yes, I include even DJ's) produces sound waves in air. Microphones can then convert these into electrical waves which have the same frequency and waveshape (Fig. 3) as the sound waves, so that we can amplify the electrical waves, something we can't do with sound waves. We cannot, however, transmit these electrical waves through space because thair frequencies are too low - most voice signals are in the range of 300 Hz to 2000 Hz . The solution that was found simultaneously by several pioneers of radio was to make the high-frequency signals produced by an oscillator carry these low-frequency signals - the audio frequency signals, as they were later called. To do this it was necessary for the audio signals to control some feature of the high-frequency radio signals. In other words, the audio signals were used to modulate the radio signals.

Figure 3. Frequency and waveshape. Frequency (a) is the whole number of complete cycles of a wave which happen each second. The waveshape is the shape of the graph of the wave plotted against time. For a sound wave, the quantity that is plotted is air pressure, and for an electrical wave, voltage is plotted

The idea had been around for a long time. In 1903, Valdemar Poulsen (who invented tape recording) patented a way of modulating the output of a spark-gap transmitter. It was called the 'singing arc' and it was necessary to speak directly into the spark. There were no volunteers for DJ duties - not surprising, when the spark was a foot long and generated by nearly $100,000 \mathrm{~V}$:

The use of valves as oscillators made possible a comparatively simple method of modulation, known as amplitude modulation. The amplitude of an oscillation is the voltage of the signal measured from one peak of the wave to the opposite one (Fig. 4): strictly speaking, this is peak-to-peak amplitude, because there are other ways of measuring amplitude. The idea of amplitude modulation is to use the audio signal to control the amplitude of the carrier wave, so that the carrier wave has its normal amplitude only when the audio wave voltage is zero.

Figure 4. Peak-to-peak amplitude for a wave
When the audio wave is at its negative peak the carrier wave amplitude is reduced, and when the audio wave is at its positive peak the amplitude of the carrier wave is greater than normal. In this way (Fig 5), the outlines of the carrier wave are a copy of the waveshape of the audio wave - the carrier has been modulated. The carrier wave is still a radio frequency wave, so that it can be transmitted easily. At the same time it carries the information of the audio wave with it.

Band On The Side

A curious thing happens when a carrier wave is modulated. Before modulation, a carrier which is a sinewave consists of one frequency only. When it is modulated other frequencies are present, equal to carrier

Figure 5. Modulating a radio-frequency carrier so that it carries an audio frequency wave. The frequency of the carrier must be much higher than the frequency of the audio wave
frequency plus audio frequency and carrier frequency minus audio frequency. For example, if the carrier frequency were 100 kHz , then before modulation only a frequency of 100 kHz would be present. When this same carrier is modulated with, for example, a 5 kHz sinewave, then four frequencies are present. One is the carrier frequency of 100 kHz , another is the audio frequency of 5 kHz . In addition, however, there are frequencies of 105 kHz (carrier + audio) and 95 kHz (carrier-audio) present, and these are called sidebands. The reason for the name? If we draw a graph of signal amplitude plotted against frequency, these two new frequencies lie on each side of the line that represents the carrier frequency (Fig. 6).

Figure 6. Sidebands. A carrier alone has a single value of frequency. When it is modulated by a low-frequency signal, the result is two new frequencies, the upper and lower sidebands

Why should this be important? For one thing, it limits the range of frequencies that we can use for radio transmitters. We can't, for example, have one transmitter operating at 100 kHz and another at 105 kHz if they are both being modulated with audio frequencies up to 5 kHz . If we did, then any receiver which was tuned to réceive the complete signal (carrier plus sidebands) from one transmitter would also receive some of the sidebands of the other transmitter (see Fig. 7). This overlap causes interference, so that clear reception of either transmitter is not possible.

Figure 7. Interference is caused when the sidebands of two transmitters overlap, even though the carriers are separated

The sidebands have another effect. We have assumed so far that the radio transmission hàs been at a single frequency, the carrier frequency, so that a receiver which could receive only that frequency would suffice. Because a modulated carrier contains sidebands, however, a receiver for a modulated signal must be able to pick up and amplify the full range of frequencies from the lower sideband frequency to the upper one: this is the range of frequencies that we call the bandwidth.

Capturing Signals With A Ferrite Rod

Receiving a radio wave starts with catching a chunk of the modulated radio wave which has been sent out from the transmitter. The traditional way of doing this was to use a long piece of wire (Fig. 8), the aerial, slung between insulators and well clear of buildings. The radio wave is both
an electric and magnetic wave, and the electric part of the wave will produce an alternating voltage between the ends of any wire in its path. The voltage is greatest if the length of the wire is equal to a quarter of the wavelength of the wave, and that is the principle that we use for TV (operating at ultra high frequencies) and FM radio (operating at very high frequencies). For transmissions at medium wave, where the wavelength is several hundred metres, a quarter-wavelength aerial is usually impractical.

Figure 8. The traditional aerial, a long piece of wire insulated from its supports

The alternative to a long-wire aerial is to detect the magnetic part. of the wave, using a coil. This method has been used for many years (it was called a frame aerial in the early days of radio) but was given a tremendous boost in the late '50s by the use of ferrite rods. Ferrite is a nonmetallic magnetic material which, like all magnetic materials, has the ability to concentrate magnetism (see Fig. 9). By winding a coil round a ferrite rod, the magnetic portion of the transmitted wave can be made to provide an alternating signal between the ends of the coil, and because of the concentrating effect of the ferrite this signal can be as large as would be obtained from quite a long aerial wire. In addition, the ferrite rod is directional, because it is the magnetic waves approaching the ends of the ferrite rod that are most concentrated by the rod. Other magnetic materials, incidentally, are useless for this purpose because they are conductors, and the signal current flows within the material rather than in the coil - we had to wait for non-conducting ferrite before this method became really useful.

Now that we have a radio signal between the ends of a coil, what do we do with it? There are two important requirements. One is to select the signal we want from the thousands which are sent out from transmitters all over the world. The other is to amplify the signals, and extract the modulating audio signals from them.

Figure 9. How ferrite concentrates magnetism. The dotted lines show what the tracks of the magnetic lines would be if no ferrite were present

Sorting Out The Signals

Selection is not quite so difficult as it sounds. Of all these thousands of signals, many are so faint that we can forget about them, and the stronger ones, providing they are all on different carrier frequencies, can be separated by using resonant circuits. A resonant circuit in its most familiar form consists of a coil (inductor) and a capacitor (Fig. 10a). The most usual form of this circuit in
amplitude-modulated radios is the parallel one, and that's the one we will look at.

Flgure 10. The resonant (tuned) circuit (a). This is a parallel type. If the capacitor were charged and connected to a resistor (b), then the capacitor would rapidly discharge through the resistor (c)

Imagine, to start with, a charged capacitor. If we connect this capacitor to a coil, the charge will flow from the positively charged plate of the capacitor through the coil to the negatively charged plate: this movement of charge is a current. If we had simply connected a resistor to the charged capacitor the current through the resistor (Fig. 10b) would heat up the material of the resistor, the heat would be lost to the air around, and once the capacitor was discharged that would be the end of the process. In other words, the energy of the charged capacitor has been changed to heat energy and lost. When the capacitor is connected to a coil which has a very low resistance, however, things are very different. The action of a coil, an inductor, is to keep current flowing, because the energy of the current goes into creating magnetism rather than heat, and magnetism does not flow away. Even when the voltage that has caused the current to flow is at zero the current does not stop, because the magnetism converts back into current, pouring charge back into the capacitor, this time charging it up in the opposite direction (Fig. 11). It can't stop there as the coil is still connected to the capacitor, so that the capacitor discharges again, sending current through the coil in the opposite direction this time. Once again the coil keeps the current flowing so that the capacitor ends up charged again, almost as it was in the beginning, and will then start to discharge again. This seesaw action keeps going at a rate which is set by the value of the capacitor and the inductance of the coil, but it can't go on forever because the coil has resistance which causes some of the electrical energy to be converted into heat and lost.
We have to leave the story of Radio at this point, but next month we'll continue the saga starting with the waveform obtained from a circuit such as that in Fig. 11.

Figure 11. A charged capacitor in a resonant circuit. Figures 11 a to
11 show how the charge produces a current which then charges the capacitor in the opposite direction, reversing the current until the charge is almost at its original value

GUITAR PHASER	2085	Sept. '80	£9.60	hobbytune	2034	Oct. ${ }^{79}$	$£ 18.00$
BENCH POWER SUPPLY UNIT	2087	Sept. 80	£25.00	MULTI OPTION SIREN	2036	Oct. '79	£10.50
DEVELOPMENT TIMER	2086	Sept. '80	£8.75	ANALOGUE AUDIO			
TOUCH SWITCH (on Vero).	2084	Sept. '80	£4.50	FREQUENCY METER	2035	Oct. '79	$£ 15.00$
AUTO PROBE	2083	Sept. '80	£3.00	COMBINATION LOCK	2029	Sept. '79	£12.50
REACTION TIMER	2082	Sept. '80	£26.50	*STARBURST	2030	Sept. '79	£14.50
MICROMIXER (on Vero)	2081	Sept. '80	£8.50	LAMP DIMWMER	2031	Sept. '79	£6.50
EQUITONE CAR EQUALISER	2052	Aug. ${ }^{\text {8 }} 80$	£13.30	ULTRASONIC SWITCH	2032	Sept. '79	£21.00
GAS DETECTOR	2055	Aug. ${ }^{80}$	£22.00	CONSTANT VOLUME AMPLIFIER	2028	Aug. '79	£11.50
PASS THE LOOP GAME	2056	Aug. 80	£12.00	INJECTOR TRACER	2027	Aug. '79	£4.50
RADIO TIMER (on Vero)	2057	Aug. '80	$£ 5.50$	LED TACHOMETER	2026	Aug. '79	£14.75
MOVEmENT ALARM (on Vero)	2054	Aug. 80	£5.00	BABY ALARM	Z025	July '79	£13.50
OP. AMP CHECKER (on Vero)	2053	Aug. 80	£4.00.	POINTS SWITCH	2024	July '79	£12.50
CAR BOOSTER (no speakers)	2050	July '80	£18.00	LINEAR SCALE OHMMETER	2023	July '79	$£ 14.00$
HAZARD FLASHER	2048	July '80	£10.50	SHARK	2022	July '79	£22.75
*PUSH-BUTTON VOLUME				G.S.R. MONITOR	2019	June '79	£10.50
CONTROL	2047	July '80	£19.50	ENVELOPE GENERATOR	2020	June '79	$£ 11.79$
SOUND FLASH TRIGgER (on Vero)	2049	July '80	§3.50	DRILL SPEED CONTROLLER	2021	June '79	¢7.00
2 WATT AMPLIFIER (on Vero)	2D46	June '80	£3.90	WHITE NOISE EFFECTS UNIT	2018	May '79	£16.85
METRONOME (on Vero)	2051	June '80	£3.50	PARKING METER TIMER.	2017	May '79	£6.70
MICROBE R/C SYSTEM				DIGIBELL PROJECT	2016	May '79	¢5.00
(less Servos)	2045	June '80	£17.50,	VARIABLE POWER SUPPLY			
FOG HORN	2044	June '80	$\underline{\$ 4.50}$	O.30V 1 AMP	2015	May '79	£30.00
\star EGG TIMER	2043	June '80	$\underline{6.50}$:TRANSISTOR GAIN TESTER	2076	April '79	£6,0
MINI CLOCK	2 D 10	May '80	£26.00.	CISTERN ALARM	2075	April '79	£5.50
5080 PRE-AMPP	2 D 11	May '80	£32.00	MODEL TRAIN CONTROLLER	2074	April '79	£26.00
TRACK CLEANER	2012	May '80	$£ 7.75$	PHOTOGRAPHIC TIMER	2073	March '79	¢14.50
*R/C SPEED CONTROLLER	ZD3	April '80	$£ 9.60$	TONE CONTROL	2072	March '79	$\underline{9.00}$
HOBBY COM	208	April '80	£28.60	CASANOVA'S CANDLE	2071	March '79	$£ 7.50$
ELECTRONIC IGNITION	202	April '80	£18.25	SHORT WAVE RADIO	2066	Feb. '79	£12.50
DIGITAL FREQUENCY METER	209	April '80	£27.75	SINE/SQUARE WAVE			
SHORT WAVE RADIO	2080	March '80	£19.50	GENERATOR	2067	Feb. '79	£22.50
TOUCH SWITCH	2079	March '80	85.00	SCRATCH AND RUMBLE			
5080 PSU MODULE	2078	March '80	£29.50	FLLTER MONO	2068	Feb. '79	£22.50
SYSTEM 5080A	2077	March '80	£15.00	SCRATCH AND RUMBLE			
PASSION METER	206	Feb. ${ }^{\text {80 }}$	$£ 5.00$	FILTER STEREO	2069	Feb. '79	£25.00
WIN INDICATOR	2042	Feb. ${ }^{\text {80 }}$	$£ 9.00$	CAR ALARM	2070	Feb. ' 79	£8.50
INFR RED REWOTE CONTROL	207	Feb. 80	£19.35	FLASH TRIGGER (less flash gun)	2065	Jan. '79	£10.50
SCALEXTRIC CONTROLLER	2041	Jan. 80	£52.50	TOUCH SWITCH	2063	Jan. '79	£5.50
CROSSHATCH GENERATOR	204	Jan. 80	£11.25	VARI-WIPER	ZD64	Jan. '79	£8.00
DICI-DIE	205	Jan. 80	$£ 5.50$	GRAPHIC EQUALISER	Z062	Jan. '79	£25.00
RING MODULATOR	Z01	Dec. ${ }^{79}$	£8.50	PUSH-BUTTON DICE	2061	Dec. ${ }^{7} 78$	£6.00
SCALEXTRIC CONTROLLER	2039	Dec. ' 79	£21.50	AUDIO MIXER	2014	Dec. ${ }^{78}$	£20.30
BARGRAPH CAR VOLTOMETER	2040	Dec. '79	£6.60	BEDSIDE RADIO	2058	Nov. ${ }^{78}$	£12.50
GUITAR TUNER	2038	Nov. '79	88.50	STEREO AMPLIFIER (HOBIT)	2059	Nov. 78	£52.50
*R2 D2 RADIO	2037	Nov. 79	£8.60	WAA-WAA PEDAL	Z060	Nov. ${ }^{78}$	£30.00
TANTRUM	2033	OCL. '79	£37.50				

IONISER KIT: ZD13. This negative Ion generator gives you power to saturate your home with millions of refreshing ions, without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean air, crisp and wonderfully refreshing. All parts p.c.b. and full instructions $£ 10$. A suitable case including front panel neon switch. etc., available at $£ 8$ extra.

PLEASE NOTE OUR NEW ADDRESS

LATE EXTRA

Watchdog Intruder Alarm ZD89 OCT. '80 £15.75
Temperature Controlled Soldering Iron ZD90 OCT. '80 £9.00
Freezer Alarm (on Vero) ZD91 OCT. '8C £8.50

Nobell Doorbell ZD93 OCT. '80 £9.75
Kitchen Timer (on Vero) ZD92 OCT. '80 £5.50
Light Dimmer
ZD88 OCT. '80 £5.00

All kits contain components as specified plus Texas I.C. sockets. where required, also connecting wire.

FAIRCHILD FLV150 red. 2 LEDSS. 10 for $£ 1.00,100$ for $£ 7.50$ DALY ELECTROLYTIC CAPACITORS $2000 \mathrm{uF} 100 \mathrm{v} £ 1.50$
PHILIPS SCOPE Tube 5" CV2191/DG-13-2 £10

If you do not have the issue of H.E. which contains the Project, we can supply a reprint at 40 p extra. Please add 30 p post and packing. Add 15% VAT to total order. Cällers please ring to check availability of kits.

T. POWVLL

ADVANCE WORKS
44 WALLACE ROAD, LONDON, N. 1
Access
Minimum telephone Orders £5
Minimum Mail Order £1

Your Letters

A selection of your letters to the Editor

IT IS ALWAYS frustrating to have reached the final stages of project construction and to be stuck for one vital component. This was certainly the experience of David White in our first letter.

Dear Sir,
From your October 1980 HE issue, in my schools Electronics Club, I have built the "Intruder Alarm". But, I am unable to complete it because two ICs used in the circuit I cannot obtain. So could you tell me where I can get it and how much they cost or an equivalent as the project has already cost me $£ 9$.

The IC's number is JCL 7611 . Maplin and Watford do not stock it.
David White
Hornchurch, Essex
True, the ICL 7611 is not a widely-stocked device. However, a quick check by 'phone revealed that it is available directly from Magenta Electronics, 98 Calais Road, Burton-on-Trent, Staffs for $£ 1.31$ plus 40 p postage and packing.

The next two letters relate to circuit boards.
Dear Sir,
I am wondering if you could explain the Hobby Prints and also generally how P.B.C. is constructed.
R. G. Bannocks

Leytonstone

The Your Letters page is the wrong place to answer your two queries in sufficient depth. I would suggest that you read Building Site in the November ' 80 issue of HE , on pages 46 and 47. A good description is given of how to use Hobbyprints and of the different stages in the production of a PCB. (I assume it was PCB that you were referring to.)
Dear Sir,
I am very interested in H.E. projects. I found it difficult to follow mounting of components on P.C.B. given for the 'Watchdog' Alarm (H.E. October 1980).

Since I am a beginner and keen on H.E. projects, would you please help me to mount components on Veroboard layout, which I find much easier to follow. In most of your projects you do give Veroboard layouts but on this occasion you gave it on P.C.B. D.L. Rao

London NI 8
When I looked at the component overlay in Fig. 3, page 61 of the October ' 80 Issue, 1 could appreciate your problem. We try, wherever possible, to show a faint pattern of the copper track - appearing as if the board were translucent (see Light Dimmer, Fig. 4, on page 35 of the same issue). Around that time we were experimenting to see if the overlay could be shown without the pattern, One problem associated with including the pattern is that, when the board contains
many components and connection points, inclusion of an outline of the track on the overlay can make the overall picture confusing. Most designs published since Octobe ' 80 have, however, included the pattern.

Some projects are more suited to PCB layout while others are better suited to Veroboard. A few readers have told us that they have tried to use Veroboard in place of our PCB patterns but have become confused in the process, because of the cross-linking required. We will continue to use both methods: Veroboard for the simpler projects and PCBs for the complicated ones (or where space-saving is important)

Finally, a call for some information on electronic components.

Dear Sir,
I am a pupil at Tunbridge Wells Technical High School. I am undertaking an English Study on Electronics.

I would be very pleased if you could send me some information on how components are made and work. It is a beginners study so I need information on resistors, capacitors, diodes and transistors etc.
Ian Scholey
Edenbridge, Kent
We plan to take a careful look at the fundamental components of electronic circuits in a few issues' time. Meanwhile, you might like to refer to Into Electronics Plus, a booklet which gives broad coverage of electronic components. It is available, price $£ 1.30$ (including post and packing) from the Hobby Electronics Book Service, Modmags Ltd, 145 Charing Cross Road, London WC2H OEE. HE

ELECTRDIT:KiT

Introducing our new

CHIP SHOP KITS

Each CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a $9 v$ battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit. No. 2 - SOLDERING IRON - contains a high quality British soldering iron; a Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance.
Kit No. 3 - ELECTRONICS TOOLS - contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.
SOLDER is included with every kit.

Kit. No.		Price
1(a)	Morning Call plus	
1(b)	Transistor Tester...	¢5.00
2	Soldering Iron	¢5.00
3	Electronics Tools	£4.50
4	Electronic Organ	£3.50
5	Morse Code Trainer and Sir	¢4.00
6	Light Operated Burglar Ala	£4.00
7	Buzzer - Aircraft	£3.00
8	Light and Sound Alarm	£3.00
9	Lie Detector	£3.00
10(a)	Lamp Flasher plus	
10, b)	Sleep Inducer	£4.50
11)a)	Cat Sound plus	
11 (b)	Night Light Reminder	£4.50
12(a)	Bicycle Horn plus	
12(b)	Electronic Shocker	$£ 5.00$
13(a)	Light Sensitive Alarm plus	
13(b)	Electronic Lamp	£5.00
14	2-Transistor Radio	£4.00
15	Morning Alarm	£4.00
16	American Police Siren	£4.00
17	Flashing Dual-tone Horn	£3.50
18	Two-way Interphone.	E5.00
19	4 -Transistor Radio.	$£ 5.00$
20	Clicker-Helicopter Oscilla	£3.00

All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required).

Kit nos. 1, 10, 11, 12, 13 contain two separate projects.
These kits are becoming available in Hobby and Electronics Stores all over the Country - look out for the CHIP SHOP DISPLAY in your local store.

If you cannot locate a stockist please order direct from Electroni-Kit Ltd. Please add 50p per kit for postage and packing.
Trade and Educational Enquiries welcomes.
Cheque/P.O./Access/Barclavcard (or 23p for full-colour illus trated literature) to DEPT. HECS.

ELECTRONI-KIT LTD

RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

 ค

Chess Computers	
TV Games	
Hand Held Games	$\begin{array}{c}\text { The Electronic } \\ \text { Games } \\ \text { Shop }\end{array}$

WE TRY THE HARDEST!

We sell a comprehensive range of chess computers and TV

 Games from Atari, Mattel, Chess Challenger, Videomaster, CGL, Grandstand and others. A fast mail order service Is offered but demonstrations can be arranged with pleasure at our heoffice in Tooting - please telephone to arrange if necessary

PRICE EXAMPLES

Atari VCS Console............. $£ 99$
 Jet Fighters.
 Including free mains adaptor

 Mattel Intellivision £199 Videomaster Database $£ 54$ All including free cartrldge. Chess Challenger '7' $£ 78$ Voice Sensory ChallengerSensory ' 8 ' Chatlenger ... $£ 113$

All prices include VAT and postage

All cartridges available for programmable games listed. Please write or telephone for details of other games

Please make cheques payable to CIRCOLEC and send order to FREEPOST (no postage required), LONDON SW 178 8R Galaxy Invader 1000.... £22.95 Including free mains adaptor Garth invader £24.95 Game and Watch (Vermin, Fire, etc). . $£ 17.95$ Colour Cartridge T.V. Game Colour Cartridge T.V. Game
c/w 4 cartridges and adaptor £34.

P ? 1 if a \square

m	A	A	最	

> GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally designed for installation into a music centre units which are easily wired together. Note: Circuit diagram and interconnecting wiring diagrams supplied. Rotary Controls: Tuning, on /off volume. balance, treble, bass. Push-bution controls: Mono, Tape, Disc, AFC, FM (VHF). LW, MW, SW. Power Output: 7 watts RMS per channel, at better than 2% THD into 8 ohms. 10 watts speech and music. Frequency Response: 60 Hz -20kHz within $\pm 3 \mathrm{~dB}$. Tape Sensitivity: Output ted oulput Disc Sensitivity: 100 mV rave oulpul. Dis Sonsicit IM (ceramic cartridge). Radio: FM (VHF). $87.5 \mathrm{MHz}-108 \mathrm{MHz}$. Long wave
$145 \mathrm{kHz}-108 \mathrm{kHz}$. Medium wave.

$520 \mathrm{kHz}-1620 \mathrm{kHz}$. Short wave $5.8 \mathrm{MHz}-16 \mathrm{MHz}$. Size: Tuner $-2^{3 / 4}$ in $x 1$ in. $x 71 / 2$ in approx. Power amplifier 2 in . $\times 71 / 2 \mathrm{in}$. $\times 41 / 2 \mathrm{in}$, approx. 240 V AC operation. Supplied complete with fuses knobs and pushbuttons, and LED stereo beacon indicsur. Price £21.50 plus £2.50 postage and packing.
Stereo Cassette Tape Deck Module comprising of a top panel and tape mechanism coupled to a record/play-back printed board assembly.
Supplied as one complete unit for horizontal installation into cabinet or console of own choice. These units are brand now, readv-built and tested. Smart black and silver finish. Features: Three digit tape counter, Auto-stop, Six piano type keys, record, rewind, fast forward, play, stop and eject. Automatic record puts for stereo microphones. Input sensitivity 100 mV to 2 V . Input impedance 68 K . Output levet 400 mV to both left and right-hand channels. Output impedance $\dagger 0 \mathrm{~K}$. Signal to noise ratio 45 dB . Wow and flutter 0.1%. Power supply requirements 18 V D.C. at 300 mA . Connections the left and right-hand stereo inputs and outputs are via individual screened leads all terminated with phono plugs (phono sockets provided). Dimensions: Top panel $51 / 2 \mathrm{in}$. x provin., clearance required under top panel $21 / a i n$.
Supplied complete with circuit diagram and connectinq diagram.
Price $£ 26.70+£ 2.50$ postage and packing. Supplementary parts for 18 V U.C. power supply (transformer, bridge rectifier and
smoothing capacitor)f3.

Abstract

Here is the second free GG\&K supplement to HE. Last month we reviewed the Tantel adaptor for connecting you and your TV to Prestel. This month we look at the Radofin TAD110 adaptor, which enables your TV to display CEEFAX and ORACLE teletext transmissions. We also review three hand-held games, install a car radio/cassette combination and try our hand at a portable electronic chess game

Time For Teletext

We had a look at Tantel, Tangerine Computer Systems' Prestel adaptor, last month. The other sort of TV information service is teletext - but again, you need an adaptor. This month we look at one available from Silica Shop.

There isn't the amount of information available on teletext (about 700 pages) that there is on Prestel (nearly 200,000 pages at present) and the speed of page recall is much slower. One point in teletext's favour, however, is that any information received is completely free. All the on-screen data which you can read is already there (on the received TV signal) and you only need an adaptor to decode it into a readable form. The cost of using Prestel, on the other'hand, can be quite high, because you are billed (on your telephone bill) for telephone time and also for certain (not all) pages of information. You pays your money. . . .

The Radofin TAD110 Teletext Adaptor comes complete with the necessary leads and instructions. All you need to supply is a plug, a TV and a good aerial signal. You take out the aerial plug, which goes to the back of your TV, and put it in the back of the adaptor, where it says 'To aerial'. Next, you plug the lead from the adaptor's 'To TV' socket into your TV. Last, you switch on and go.

Selecting Pages

Your TV needs to be tuned to channel 36 and the adaptor must be tuned to your usual received TV stations. This procedure is a bit tricky, but the instruction booklet tells you how to do it step-by-step.

You now have three complete magazines under your remote control (at the end of a long lead). The two Beeb stations - 1 and 2 - have a 100-page magazine each, under the name CEEFAX, while the ITV version is called ORACLE and has about 500 pages.

When you first switch on, the adaptor automatically looks for and displays page 100 - the index page (except for BBC2, which has it on page 200). After this, requesting any particular page is a simple matter of entering the number of the page onto the keypad. After a few seconds' delay, due to the fact that the pages are broadcast in sequence, your requested page will appear on the screen. And so it goes on.

You can choose between teletext
or television via your hand controller, or have a mix of the two on the screen, at any one time. An 'alarm clock' facility, using the highly accurate clocks transmitted by the broadcasting companies in the TV signal, can produce a chosen page or signal onto the screen at a preset time, if you want. You can also use one of the clocks as (would you believe) a digital clock to tell the time by.

Useful Machine?

We found the adaptor very simple to operate, and extremely useful in obtaining news headlines or sport updates, looking for what's on at theatres, cinemas, and of course TV programmes. It's ideal if, like us, you're a gadget-lover, button-pusher or gimmick-freak. If you are, then you'll have hours of fun, entertainment and interest with one of these.

Radofin TAD110 Teletext Adaptor is available for $£ 199$ including VAT from Silica Shop Ltd, 1-4 The Mews, Hatherley Road, Sidcup, Kent.

Multitesters $100,000 \mathrm{opv}$

AC votis:- $\quad 0-5-10-250-1000$
DCvolts:- $0-05-25-10-50-250-1000$
DCcurrent:- $0-10 \mathrm{ua}-25 \mathrm{ua}-500 \mathrm{ua}-0-5 \mathrm{ma}-50 \mathrm{ma}$

$$
\begin{aligned}
& 0-10 \mathrm{ua}-25 \mathrm{aa}-5 \\
& -500 \mathrm{ma}-10 \mathrm{mp}
\end{aligned}
$$

AC current:- $\quad 10 \mathrm{amp}$
Resistance:- $0-20$ ohms -200 ohms -5 K ohms -200 K ohms - 50 K ohms - 200 K ohms -5 meg ohms - 50 meg ohms
$\begin{array}{ll}\text { HFE:- } & 0-5 \text { (NPN) - PNP) } \\ \text { CO:- } & 0-5 \text { ua (NPN }- \text { PNP) }\end{array}$
Dims:- $\quad 178 \times 140 \times 70 \mathrm{~mm}$

Multitester

1,000 opv
$A C$ volis:- $0-5-150-500-1000$ OC volts:- $0-15-150-500-1000$ OC current: $0-1 \mathrm{ma}-150 \mathrm{ma}$
Resistance: $0-25 \mathrm{kohms}-100$ K ohms
Dims:-
$90 \times 61 \times 30 \mathrm{~mm}$

Please add 30 P P.P. per unit order as MT

Multitester

20,000 opv

AC vols::- $\quad 0-10-50-100-250-500-1000$
DC volis:- $\quad 0-0.5-5-25-125-250-500$
DC volis:- $0-0.5-5-25-125-250-500 \leq-=\infty$
OC current:- $0-50 \mathrm{ma}-0.5 \mathrm{ma}-250 \mathrm{ma}$, Resitance:- $0-3 \mathrm{Kohms}-300 \mathrm{~K}$ ohms -3 meg ohmis Deibels:- $\quad-2010+63 \mathrm{db}$
Dims:-
$127 \times 90 \times 32 \mathrm{~mm}$
Please add 30p P.P. per unit order as Mr 7

Headphones

High velocity mylar diaphragms. Coiled lead. finisted in combination of brith alumil.

Impedence:-
Frequency re Frequency
Weight:-$15-220$
350 gms

Please add 30p P.P. per unit
Prder as PM
12

RROW AUDIO (6)ENTRE

2O NOATH BAR EANEURY OXON OX'G OTF. TELEPHONE EANBURY CD29533677
TERMS: CHEQUEIRD WITH ORDER. CALLERB WELCOME

HH/857
Multiband Receiver plus 40 -channel CB Monitor. Frequancy coversge: 88-108 MHZ Plus H1 40 CB Channets 108 - 145 MHz
This unit has a telescopic antenna and squelch control, sockets for earphone and external DC power source.
$£ 21.95 \mathrm{inc}$.

The latest from the U.S.A.

 PINBALL WIZARD - Still available ${ }^{*}$Faatured in Nov. issue of E.T. Home TV Gama - B/W Kit

Basic Kit $£ 28.90$
Contains everything except box and controls
Box and Controls £6.50, P.S.U. £3.90 CEH Car Alarm Kit £18.90 24-tune door chimes kit $£ 11.50$. Built $£ 15.95$
he microbe r/C
(2 PCBs and all PCB components)
ELECTRONIC GAMES
Star Chess TV Game........
Database Prog. TV Game $£ 63.35$ Database Prog. TV Game c89.00 Chess Chalienger 7
Voice Challenger.... $\underline{89.00}$ Chessmate 8 level $\begin{array}{r}£ 230.00 \\ \\ \hline 59.95\end{array}$ Zodiac Astrology Computer Electronic Mastermind f 29.95 Supersonic Mastermind, new Basketball E21.0 UFO Masterblaster....................... $£ 19.95$ Soccer
Boxing................ . $£ 24.95$ Galaxy Invaders, new $£ 22.95$ Radio Control Models-Various

Ball Clock as H.E. offer, Kit £24.95, or ready-built £29.95.

GIECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic Ignition to give the best performance and economy. Bring YOUR CAR up to top ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all
the advantages of the best capacitive discharge ignition

* Poek Performance-higher output voltage
* Improved Economy-consistent high ignition performance
* Better Stanting-full spark power even with low battery.
- Accurate Timing-prevents contact wear without 'contactless' errors
- Smooth Performance-immune to contact bounce effects

PLUS

SUPER HIGH POWER SPARK $-31 / 2$ times the energy of ordinary C.D. systems OPTIMUM SPARK DURATION-to get the very best performance and economy with today's lean carburettor settings
DESIGNED IN RELIABILITY - with the 'ultimate insurance' of a changeover switch to revert instandy to standard ignition

TECHNICAL DETAILS

MIOH EFFICIENCY INVERTER. A high-power, high efficlency, regulated inverter provides a 400 -volt energy source-powerful enough to store twice the energy of ther designs and regulated to provide full output even with the battery down to 4
IPERB DISCHARGE CIRCUIT. A brand now technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ardinary C.D. systams, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay maintains the correct output polarity, thereby preventing unnecessary stress on the maintains the
SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact vott drop, contact shuffle, contact bounce, and external transient which, in many designs, can cause timing errors or damaging un-timed sparks. Only almost eliminated by reducing the contact breaker current to a low level - jus sufficient to keep the contacts clean.

IN MONEY-SAVING KIT FORM at £14.85

Also MOT PRCYCLE THIN OUTPUT KIT at 522 Inc. V.A.T
All you need is a small soldering iron and a few basic tools - everything else is supplied with easy-to-follow instructions.

A complete KIt, Including S-Dec, wire \& battery, for the 16 projects described in Tom Duncan use in many schools: and a welcome gift for ages 11 upwards.

With book, $£ 23.82$
Without book, £21.97 Clear pictorlal instructions for making the following: RAIN DE TECTOR, INT ERCOM, MORSE
BUZZER, BURGLAR ALARM, 3 TYPES OF RADIO, PARKING LIGHT, FLASHING LAMP. ELECTRONIC ORGAN, METRONOME, SIREN, TIMER, COUNTER, FIRE ALARM And now available

ADVENTURES WITH MICROELECTRONICS

A simitar Kit including 'Bimboard' and Integrated Circuits. Sultable for the complete beginner, or those who have already enjoyed 'Adventures with Electronics'

With book, $£ 36.36$
Conversion Kit: With boo kis
With book, £29.51
Without book, $£ 27.31$
Cash or cheque with order, ple

UNILAB LTD. Clarendon Road, Blackburn, BB1 9TA, England. Telephone (0254) 57643

Hobby Electronics, June 1981

Three In Hand

Here we have three neat little handheld games from Computer Games Ltd: Galaxy Invader 1000, Grand Prix and Jet Fighters. All of them are battery-operated and so are great for carrying with you on the long journeys which seem to be an inevitable part of the family summer holiday. To cut down the cost of batteries, mains adaptors are available as an optional extra at $£ 4.95$ for Galaxy Invader 1000 and Jet Fighters. It is not possible to use a mains adaptor with Grand Prix: it uses only three AA-size batteries, and Computer Games considers that the game is unlikely to be played for long periods.

Galaxy Invader 1000

If you like space attacker games, then Galaxy Invader 1000 should appeal to you. It is housed in a particularly attractive yellow and black casing shaped like a missile, with an equally eye-catching three-column LED (light emitting diode) display in green and red. The graphics are neat and easily definable, consisting of standard space attacker-type figures of monsters (in green) and UFOs (in red). The invaders appear at random on the display, moving sideways and down towards your missile base. The UFOs appear only on the top row of the screen and disappear again if you don't manage to hit them. A maximum of two invaders and one UFO appear on the screen at any time.

You are given three missile laun-
chers for each game and shooting down a UFO will gain you 10 points on the accumulating scoreboard on the top of the display. Shooting down an invader will give you between one and five points depending on how far down the screen it gets before you blast it into infinity. When you have accumulated 700 points on the scoreboard you will automatically gain an extra missile launcher and 50 missiles. The game is over when either you have reached 1,000 on the scoreboard and repelled the invasion, or if all your missile launchers are destroyed, or if the invaders capture your missile pad. It also comes to an end if you have fired the maximum of 250 missiles.

There are sound effects with this machine which simulate the firing of your missiles or the demise of your enemy.

The controls of the game are simple: on the left of the case is a rudder for lateral movement across the display, on the right is the 'fire' button and in the middle is the on/off/ reset switch and a skill control which can be set to three different levels, depending on how good you get.

In all, this is a very attractive game, well thought out and straightforward to use. It can stretch the abilities of the most skilled invaders player with its three skill levels and is as authentic as you can get for such a small machine. The case is sturdy enough to stand the wear and tear it is likely to get. At $£ 22.95$ including VAT it should prove to be a very popular game - particularly as with this version you can actually beat them!

Grand Prix

The second CGL offering is a game called Grand Prix. It is a car racing simulation game and this game's case is cunningly shaped like a Formula 1 racing car, made of good solid material.

The display of this game differs from that of the other two in that it is an LCD (liquid crystal display), the type preferred in most new digital watches. The black and grey display shows the three lanes of the race track and indicators for speed, time and lap. On the left of the case is the accelerator lever and on the right the steering key for changing between the lanes.

When playing the game, your car does not in fact move; it is the other cars which whizz past as you dodge them. The speed at which they pass you is determined by your use of the accelerator. There are sound effects to simulate the sound of your exhaust - and the sound of your car crashing! When the inevitable crashes occur your car will disappear for two seconds for repairs.

There are two modes which you can play in: 'lap' mode and 'time' mode. Playing in 'lap' mode will tell you how many laps you have completed in the fixed time of 140 seconds. In 'time' mode, you are told how many seconds it takes you to drive the distance of 800 kilometres.

This is an absorbing game: although you can't actually win, you can improve your reflexes. The display is a little unusual being an LCD, which seems to cause a few problems. LCD displays are notorious for being slow to change, unlike LEDs which are simply on or \triangleright

database t.v. game

FULLY PROGRAMMABLE CARTRIDGE T.V. GAME 14 Cartridges available Normal Price 587.86
NOW REDUCED TO: $£ 59$

SPACE INVADERS

Hand-held Invaders Games available $\mathbf{f 1 9 . 9 5}$ + Invaders Cartridges available to fit + Cogv/aciso CIDIPS G7000 + Carridges also available for DATABASE/INTERTON

CHESS COMPUTERS

TELETEXT

ADD-ON ADAPTOR £190

SPEAK \& SPELL

Normal Price 549.95 NOW REOUCED TO
$£ 39$
Teach your child to
spell properly with this
aid. Fully a
automatic features and scoring. Additional word
modjules available to modules available to
extend the range of

ADDING MACHINE
OLYMPIA HHP 1010

 £34 Uses ordinary paperl No need to buythermal papert Fast odd listing paintea, Fast ©dd listing PRINTEA,
CALCULATOA 2 lines per
second, 10 drant capactry second. 10 digit capacity,
Usos normat adding
machine rolls. Battery or
 THE RADOFIN TELETEXT ADD-ON ADAPTOR Plug the adaptor into the aerial socket of you Colour T.V. and receive the CEEFAX ORACLE television information services THIS NEW MODEL INCORPORATES - Doubte height character facility

Meels thiest BBC \& IBA broadcast specifications Unnecessary to remove the unit to watch normal TV programmes Gold-plated circuin board for rellability
New SUPERIMPOSE News Flash facility
N

POST OFFICE APPROVED TELEPHONE ANSWERING MACHINE

WITH REMOTE CALL-IN BLEEPER

This telephone answering machine is manufatured by Olympia
Business Machines, one of the largest Office Equipment Business Machines, one of the Your remore call-nt oleeper you can receive these messages by lelephone wherever you are in the world. The remore call-th
bleeper activates the Answer/Record Unit. which will at your bleeper activates the Answer/Record Unit. Which will at your
command repeat messages. keep or erase them, and is £135 ince activated from anywhere in the world, or on your return to your
home or office. The machine can also be used for message referral, if you have an urgent appointment, but are expecting an important call. simply record the 'phone number' and location where vou can be reached With optional extra bleepers (13 each) this facility can be exlended to colleagues and members of the family Using a C90 standard cassere you can fecord as many as 45 messages. The announcement can be up to 1 The machis eas io mith full miructions The machine is easylomstall and fornalively a jack pluctions. It is easity wired to your the spade connectors provided or allernalively a lack plug can be provided to plug into a jack socket. Most
important, of course, is the fact that it is fully POST OFFICE APPROVED. The price of E 135 (inc. V A. T.) includes the machine, an extra-light remote call-in Bleeper, the microphone message tape. $\begin{aligned} & \text { telephone can be placed directly on the unit - no additional desk space is required. }\end{aligned}$

FOR FREE BROCHURES-TEL: 01-301 1111

SILICA SHOP LIMITED Dept. HEE 1-4 The Mews, Hatherley Road, Sidcup. Kent DA14 4DX Telephone: 01-301 1111 or 01-309 1111

off. This means that it is sometimes difficult to judge exactly where your opponent's car is when you are travelling at very high speeds, so you crash, thinking the car is somewhere else. This game needs quite a lot of skill to play, and is great fun, and a number of people can compete for the best times. This game is the most expensive of the three at $£ 26.95$, including VAT.

Jet Fighters

Game number three is Jet Fighters, and it looks like the controls of a missile launcher. The relevance of this will become clear as you read on. The game itself is based on the same concept as Galaxy Invaders. The difference is that the enemy takes the form of jet fighters and warships, and you have a missile
launcher to beat off their attack. Unlike Galaxy Invaders, this game is played sideways-on with your launcher on the right and the enemy coming at you from the left. The principle of the game is to shoot down the jet fighters before they shoot you down or land on your base. The warships appear only momentarily, and then disappear if you don't hit them. Like the Galaxy Invader 1000 game, you gain points which are accumulated on the scoreboard. You score three, two or one points for exterminating a jet fighter, depending on its position on the screen, and 10 points for a warship, up to a maximum of 199 points. There are sound effects built in to simulate explosions etc, and a little tune to signify your destruction or your victory. There is a choice of
skill levels and you can be a Private, Captain or General, which you choose depending on how good you are.

Comparatively speaking, this game did not seem as impressive as the other two. The case is not so well finished and the controls didn't seem terribly accurate. The display flickers rather a lot as well (very straining on the eyes), and although it is very similar to Galaxy Invaders it is not quite so addictive. When your launcher is hit you disappear from the screen for a couple of seconds, so when you reappear you are frequently just in the right place to be hit by another missile! Jet Fighters costs $£ 21.95$ and could really do with a few improvements to bring it up to the very high standard of the other two games.

Computer Games Ltd., 214-220 Maybank Rd., Woodford, London E18 1EX (tel 01-504 2255).

Car Radio Do-ityourself Kit From Blaupunkt

As mentioned in Monitor in the May issue, Blaupunkt (Robert Bosch in the UK) was poised to launch four of its car radio and radio/cassette combinations in do-it-yourself installation packs. The four models, supplied along with loudspeakers, wiring, fitting kits and instructions are the Hamburg, Tempelhof CR, Hamburg CR and Mannheim CR. It was the Mannheim CR that HE had an opportunity to review.

After the contents of the yellow take-away box were emptied out on the carpet (radio, two speakers, leads, plastic facia panels, packets of screws and knobs and instruction leaflets), we were ready to go.

The car chosen for the installation was a Ford Escort (1600 Sport), which already had a radio installed.

Instructions

It is worth commenting on the main instruction booklet supplied with the kit. This eight-page booklet contains most of the information you are likely to need for the installation, together with some general information. It starts with details of the tools you will need, lists the contents of the box and follows with a teach-in on radio waves, reception and the automatic suppression unit (ASU) included in all Blaupunkt radios and radio/cassette combinations. The

next four pages or so deal with the installation, including 28 illustrations. Radio interference and its suppression is dealt with in the final part of the booklet and diagrams showing how to connect an extra pair of speakers are given on the back page.

Installation

As mentioned earlier, the Escort Sport 1600 comes with a radio fitted (not a particularly good one was fitted to our test vehicle). This made the job easier, because the supply cables, aerial and its cable and the suppression components were already in place.

We could bend the rear retaining lug on the existing metal carrier to allow for the slightly longer case of the Mannheim CR. The components supplied with the kit would have made mounting possible had this 'modification' not been possible.

Once mounted in place on the 1600's plastic dash extension, the various connections were made to the back of the Mannheim CR, including the earth lead supplied with the kit.

With the mounting and wiring completed, the speakers were laid on the floor of the car and the radio was tested on all functions.

BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY

Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back . . . beautifully!
CASIO VL-TONE (VL-1)
Electronic Mus

B and Calculator
(R.R.P. £39.95)

ONLY£35.95
VL-1: Utilises Very Large Scale Integrated circuit advanced technology. This complete 29-note synthesiser records and plays back. The octave shift switch expands the range of the keyboard to almost 5 octaves.
Preset sounds: Piano, Violin, Flute, Guitar, Fantasy and ADSR (sound wave that can be varied in over 80 million ways).
Auto play: ONE-KEY or MANUAL playing can be recorded and will be played back An the form of a melody
Auto rhythm: 10 built-in rhythms, with variable tempo and balance, can be incorporated in manual playing or added to your recording
Play it any time and practice tempod German Fachinies: LCD numerical display shows pitch, inclu
Calculator: 8 digits. $+,-, x, \div$, square roots, $\%$, and full memory.
Power source: Four AA size batteries or AC adaptor (price 55).
Dimensions: $30 \mathrm{~mm} \times 300 \mathrm{~mm} \times 75 \mathrm{~mm}\left(1^{11 / /^{\prime}} \times 11^{3 / /^{\prime}} \times 3^{\prime \prime}\right)$.
This compact, battery powered lightweighe (438 g . 15.4oz,) an be played anywhere. Available May
A CLASSIC IN ITS TIME

Battery powered, it is ideal for car, caravan, boat, lounge, kitchen, bedroom, office, or as a pocket watch, using the eyelet and leatherette pouch supplied.

PQ-20
ALARM
CLOCK (R.R.P. £14.95) ONLY £12.95

Large LC Display of full digital fime. Symphonic alarm (Mozart, No. 40), or buzzer, with snooze facility. Hourly time signal option: Integral speaker and amplifier. Rapid setting. Accuracy $+1-15$ secs. month. One lithium battery lasts approx. 12 months. Dims.: $9.3 \times 108 \times 48 \mathrm{~mm}(3 / 8$
Similar to PQ-20 but has blue LC display, nightlight, 3 -position volume control. 3 AA batteries last 15 months approx. Dims.: $43 \times 115 \times 7 \mathrm{mmm}(13 / 4 \times 41 / 2 \times 3$ inches). lvory coloured case. (R.R.P. £11.95) ONLY $£ 9.95$.

OUR BEST-SELLING SCIENTIFIC *
CASIO FX-3500P
Statistical regression and integrals.
Non-volatile memories and stores.
38 functional (non-volatile) steps. 2 programme storage capability. Unconditional and conditiona iumps, 7 (non-volatile) memories; one independen 6 constant memories. 18 pairs of parenthesis, nest able in 6 levels.
61 buit-in functions, including:
rithmic regression, power regression. exponential regression and Hyperboliss, sexagesimal and co-ordinates conver sıons.
10 digit mantissa or $10+2$ exponent.
Two silver oxide batteries give approximately 1,000 hours' continuous use with power-saving auiomatic cur-off, with data and memory protection. Dims.: $9 / 32 \times 2 \times 5 \times 5 / 4$ inches.

ALL THIS FOR ONLY £22.95*

* PRICES

 We will BEAT any lower advertised price by 5\% providing we stil make a profit! Prices include V.A. T. and P. \& P. Returnot post service subiect to availability. Send vour order POST; no stamp required.

Send cheques, P.O., or phone your ACCESS or BARCLAYCARD number to:

THESE SPACE INVADERS WILL ALARM YOU The price won't

CASIO'S MOST AMAZING WATCHES EVER

Display: Hours, minutes, seconds, a.m./p.m. day and date, 12 -or 24 -hour format. Auto Calendar: Day, date, month, year. Alarm: 24-hour, with "on" symbol. Hourly Chimes: Time signal every hour, on the hour. Easily switched on or Professional Stopwatch Dual Time: Second ume
Calculator: 8 digits, four functions, with con stants and display symbols, and FINGER TOUCH KEYBOARD.
DIGITAL SPACE INVADER GAME/with sound effects and scoring.
Water resistant case. Mineral glass.
CA-90: $46 \times 36+10.55 \mathrm{~mm}$. Black resin
CA-901 [r.R. . са. 9)
ONLY £29.95

The random digital invaders attack from the bottom right and move across the display Every time you tap AIM your missile number, top right, progresses by I. When your missile number coincides with an invader, tap FIRE and that spaceship will disappear, adding to your score. The game is over if 3 of the 16 spaceships in an encounter penetrate your defences.
There are 2 stages, each stage having 9 encounters. In stage 1 the game speeds up with each encounter and in stage 2 the invaders altack rom a closer position. After stage 2 the gam neverts to stage 1 but the score, displayed afte

CA-90 (r.R. .q.7.95) ONLY $£ 24.95$

SUMMER TIME!

Now is the time to buy a Sports Watch for your holidays and óutdoor activities These models (except HV027) are WATER-RESISTANT TO 100 METRES and suitable for swimming, snorkelling, sailing and most other outdoor sports
SEIKO DUAL DISPLAY
Analogue display of time with sweep second hand. Independent digital display of tim (12- or 24-hour format); day/date calendar; 24-hour alarm function; hourly time signal; $1 / 100$ second stopwatch. Instant setting. Luminous dial. 2 -ycar battery life bezel. 100 -me tre W / R case, $36 \times 40 \times 9 \mathrm{~mm}$ approx.

100 -metre water resistant

All have an easily-read display of full time and calendar, with half-hourly time signals which can be switched on or off. Easy-to-use functions include: 24-hour alarm. Professional stopwatch measuring lap times, etc., to $1 / 100$ second. Countdown alarm timer with repeater memory function. The time is always visible regardless of the display mode. One-touch selection of 12-or 24-hour formai. Micro light for night viewing. ± 15 seconds/month accuracy. Amazing 5 -year battery life. 9.65 mm thick case with mineral glass face.

Loudspeaker Mounting

Under Loudspeaker Fitting in the instructions, the opening paragraph begins: 'Great care must be taken in fitting the loudspeakers'. The choice was in the rear parcel shelf, in the kick pads in the driver and passenger footwell areas or in the doors. The instructions then say: 'If the door assembly can accommodate the depth of the speaker then this is a particularly good place to site them since the door area acts as a sound chamber'.

Fine, we thought, the doors are where they shall be fitted. Investigation showed the depth to be right, so the panel was removed, marked out and a hole was cut using the paper template supplied with each speaker as a guide. A convenient hole was found in the door (made by the undersealers) for the cable and everything went like a dream - until we came to fit the windowwinding handle. We discovered what many a motorist has discovered too late; that is, when the speaker cover was snapped into place, it was too proud to miss being caught by the inside edge of the handle as it was rotated. The choice was simple: either leave the handle off, or remove the speaker. We took the second choice and were left with a hole in the door.

On Test

With a couple of box-mounted
speakers, the Mannheim CR performed well. Apart from the fact that it does not have push-button station selection, the sound quality was very pleasant and of adequate volume. Pressing the Db noise limiter button helps to cut down noise from cassettes.

Problem Solving

HE spoke to Robert Bosch about the speaker problem. Surely flushmounting speakers could have been supplied with the kit? Ron Sherwood, UK product manager of Robert Bosch, said that flushmounting speakers from the Quick Fit range had been considered, but they were more expensive. Quick Fit model 723 speakers cost $£ 9.55$ plus VAT each, compared with $£ 6.15$ plus VAT for each of the model 555 speakers supplied with the kit.

So, if you want to fit doormounted speakers, beware: check that you have sufficient clearance between the window-winding handle and your speaker. Alternatively, you could buy the Quick Fit 723s at extra cost and, as Ron Sherwood suggested, use the speakers supplied with the kit to make up a fourspeaker system.

The 723s, by the way, are only available through specialist outlets for Blaupunkt. We'll try and report on a pair in the next GG\&K supplement.

Blaupunkt Kits

A rough guide to the radios in the four kits is given below.
Hamburg
An AM car radio. The Hamburg has five push-buttons for station selection, one for long wave and four for medium wave. Power output is 7 W and it has a variable tone control. Kit cost is around $£ 53.50$ plus VAT.

Tempelhof CR
An AM car radio with stereo cassette player. The Tempelhof CR has manual tuning of medium and long wave. Power output is $9 \mathrm{~W} /$ channel and it has a variable tone control. The cassette player has electronic speed control, lock-on fast forward wind and rewind and cassette ejection. It switches to radio when the tape ends. Kit cost is around $£ 88.60$ plus VAT.

Hamburg CR

An AM car radio with stereo cassette player. The Hamburg CR has push-button selection of five medium wave stations and one long wave station. Output power is $9 \mathrm{~W} /$ channel and it has a variable tone control. Cassette player functions are as the Tempelhof CR but the cassette player has a luminescent aperture outline for easier access in darkness. Kit price is around $£ 113.60$ plus VAT.

Mannheim CR
An AM/FM car stereo radio and stereo cassette combination. The Mannheim CR has manual station tuning on long, medium and VHF wavebands. Output power is $9 \mathrm{~W} / \mathrm{ch} a n n e l$ and it has a variable tone control. Cassette functions are as the Tempelhof CR and Hamburg CR. It features a pushbutton Db Noise Limiter system for use on cassette playback. Kit price is around £122.70 plus VAT.
Robert Bosch Ltd., PO Box 166, Rhodes Way, Watford WD2 4LB (tel 9244 233).

Moves On The Move

With many people contemplating summer holidays at the moment, the Chess Traveler has appeared on the market at just the right time. This is a machine to while away the long hours of your journey to the sun!

It is a small hand-held chess computer, and as its name suggests is suitable for playing more or less anywhere. It runs for 9 to $\mathbf{1 0}$ hours on alkaline batteries, or a mains adaptor is available as an optional extra. The price is $£ 39.95$ plus a further $£ 4.95$ for the adaptor.

This machine has all the functions you would expect to find on many of the larger machines, including eight skill levels, castling, pawn promotion, and en passant. It accepts special board positions and solves mate-in-two problems, as well as having a multi-move key for
specific openings and simple position verification.

The pieces are of the peg variety, fitting into holes on the chessboard with extra holes for the captured pieces in a game. Positions and moves are entered using the multifunction keyboard and the whole thing is protected with a tinted plastic cover which clips onto the base during play.

In use, the Chess Traveler is simple and straightforward as far as keying in the moves is concerned. Unfortunately the pieces themselves are quite small and awkward to move - they fit rather snugly in the holes, which, although of obvious
advantage in a portable chess machine, means that you tend to knock the surrounding pieces off the board when you make a move! The pieces are also not very easy to identify. For example, the bishops and the pawns are very similar.

In all, this would be quite a nice machine for a beginner to learn on as it is straightforward to use, but it's also capable of playing a mean game of chess at its higher levels. Despite any reservations about the pieces it is probably the best sort of design for balancing on your knee as you're whizzing through the verdant countryside on an Inter-City 125!
Chess Traveler is available from Silica Shop (address on page 31).

EHPar

SEMICONDUCTORS

PLUGS AND SOCKETS

1625
1626
1628
1629
1634
1637
1640
1643
1652
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1689
1670
1672
1674
1675
1676
1677
1678
1679
1680
1681
1682
1684
1685
1686
1687
1688
1689
1692
1693
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
171
1716
1717
171
1719
1720
1721
1722
1723
172
171
1726
1727
172
1729
1730
1

DEPT．HE 6．PO Box 6，WARE，HERTS．
Visit our Shop at： 3 Baldock Street，Ware，Herts．
COMPONENT

PACKS

 60 Precision Resisiors $1-5 \% 101$
100 A porox 18 wall min Resist
6 Pieces Ferrite Rods
60 Metres Single strand wire
15 Reed switches glass type
5 Micro switches assorted types including
6 Assorted Audio jack sockets and plugs
100 Disc ceramic caps mixed values
20 Assorted pots
40 C280 type capacifors metal foil
60 Electrolytics assoried
50 Electrolytics assored 50 Assored polyester／polystyrene
60 Low voltage Electrolytics mixed values up to 10 v
15 Assorted stider pot
10 Dual gang pots
10 Dual gang pots log and lin assorted
10 Assorted switches slide／rocker／mains
3 Relays 24 v coil
20 Assorted knobs push，screw and slider types
4 Wave change switches rotary
1 Pack of assorted PVC sleeving and markers
$100 \frac{1}{t}$ watt resistors mixed values
40 Metres stranded wire assorted colo
10 Assorted Din／sockets／Coax／speakers／phono
10 Assorted plugs Din／coax／speakers／etc． 100 sq in copper clad board single side paper

BABANI BOOKS

```
No.
```

No.
N0N
N0N
BP205
BP205
BP207
BP207
BP207 %ractical Electronics Science Projects
BP207 %ractical Electronics Science Projects
First Book of Diode Characteristics Equivalents and Subs titutes
First Book of Diode Characteristics Equivalents and Subs titutes
Audio Enthusiasts Handbook
Audio Enthusiasts Handbook
Build Your Own Electronic
Build Your Own Electronic
Solid State Novelty Projects
Solid State Novelty Projects
Build Vour Own Solid State Hi-Fi and Audio Accessories
Build Vour Own Solid State Hi-Fi and Audio Accessories
Solid State Shors Wavejects
Solid State Shors Wavejects
50 Projects Using IC CA3130
50 Projects Using IC CA3130
50 CMOS IC Projects
50 CMOS IC Projects
A Practical Introduction to Digital ICs
A Practical Introduction to Digital ICs
Beginners Guide to }8\mathrm{ vilding Electronic Projects
Beginners Guide to }8\mathrm{ vilding Electronic Projects
Essential Theory for the Electronics Hobbyist
Essential Theory for the Electronics Hobbyist
Engineers and Machinists Reference Tables
Engineers and Machinists Reference Tables
Second Book of Transistor Equivalents and Substitutes
Second Book of Transistor Equivalents and Substitutes
First Book of Practical Electronic Projects
First Book of Practical Electronic Projects
Giant Chart of Radio Electronic Semiconductor and Logic Symbols
Giant Chart of Radio Electronic Semiconductor and Logic Symbols
Resistor Selection Handbook (International Edition)
Resistor Selection Handbook (International Edition)
Major Solid State Audio Hi-Fi Construction Projects
Major Solid State Audio Hi-Fi Construction Projects
How to Build Your Own Me:al and Treasure Locator
How to Build Your Own Me:al and Treasure Locator
Electronic Calculator Users Handbook
Electronic Calculator Users Handbook
Handbook of IC Audio Preamplifier \& Power Amplifier Construction
Handbook of IC Audio Preamplifier \& Power Amplifier Construction
50 Circuits Using Germanumm. Silicon and Zener Diodes
50 Circuits Using Germanumm. Silicon and Zener Diodes
50 Projects Using Relays, SCRs and TRIACs
50 Projects Using Relays, SCRs and TRIACs
On and Field Effect Transisto Proc: Calculator
On and Field Effect Transisto Proc: Calculator
Digital IC Equivalents and Pin Connectio
Digital IC Equivalents and Pin Connectio
noar rquivalenis and Pin Connections
noar rquivalenis and Pin Connections
SO Simple L.E.D. Circults
SO Simple L.E.D. Circults
IC555 Projects
IC555 Projects
rojers in Opro-Electronic
rojers in Opro-Electronic
Radio Circuirs Using ICs
Radio Circuirs Using ICs
Electronic Projecis for Beginners
Electronic Projecis for Beginners
Opular Electronic Projects
Opular Electronic Projects
LM3900 Musects
LM3900 Musects
lol
lol
隹隹al Electronic Calculations and Formulae
隹隹al Electronic Calculations and Formulae
Our Elactronic Calculator and Your Money
Our Elactronic Calculator and Your Money
Radio Stations Guide
Radio Stations Guide
How to Build Your Own Solid State Oscilloscope
How to Build Your Own Solid State Oscilloscope
Secircuits Using 7400 Serles ICS
Secircuits Using 7400 Serles ICS
ractical Construction of Pre-amps,Tone Controls. Filters \& Attn
ractical Construction of Pre-amps,Tone Controls. Filters \& Attn
Beginners Guide to Digital Techniques
Beginners Guide to Digital Techniques
*ements of Elactronics - Book 1
*ements of Elactronics - Book 1
lements of Electronics - Book
lements of Electronics - Book
ingle IC Prolects
ingle IC Prolects
eginners Guide to Microprocessors and Computing
eginners Guide to Microprocessors and Computing
Counter. Driver and Numeral Display Projecis
Counter. Driver and Numeral Display Projecis
lectronic Games
lectronic Games
Transistor Radio Faule-Finding Char
Transistor Radio Faule-Finding Char
Mecronic household Projecis
Mecronic household Projecis
Remote Control Proincts
Remote Control Proincts
Electronic Music Projects
Electronic Music Projects
Eectronic Test Equipme
Eectronic Test Equipme
*)
*)
machen
machen
RadiolControl for Beginners - book
RadiolControl for Beginners - book
TITLE Coil Oeslgn and Construction Manual
TITLE Coil Oeslgn and Construction Manual
Coil Oesign and Construction Manual (Eutvalents \& Substitutes

```
Coil Oesign and Construction Manual ( Eutvalents & Substitutes
```

แึํํ

TELEX： 817861

BUDGETSTEREO HEADPHONES

BLACK WITH PADDED EARCUPS MPEDANCE 8 ohms
FREQUENCY RE
30－18．000 HZ
WEIGHT 300 gms O／N 885 £4．20
GOOD QUALITY STEREO HEADPHONES
DOUBLE PADDED HEAD BAND DIRCUL P VENTED PADDED EARPIECES
8 LACK AND ALUMINIUM FINISH
IMPEDANCE 8 ohrns
FREQUENCY RESPONSE
$20-19,000 \mathrm{HZ}$
WEIGHT 350 gms O／N $884 € 8.25$
SUPERIOR QUALITY STEREO HEADPHONES
WIDE BLACK PADDED HEAD
BAND AND MATT
ALUMINIUM EARCUPS
MPEDANCE 8 ohms
FREQUENCY RESPONSE
WEIGHT 290 gms O／N 883 E15．8

ENAM．COPPER WIRE 2 oz．		
365	40 swg	£1．00
366	38 swg	¢0．88
367	36 swg	¢0．90
368	34 swg	£0．82
	32 swg	¢0．80
370	30 swg	¢0．80
	28 swg	¢0．76
372	26 swg	£0．74
	24 swg	£0．66
374	22 swg	¢0．62
	20 swg	¢0． 60
376	18 swg	¢0．60
	16 swg	¢0． 52
378	14 swg	£0．52
TINNED COP．WIRE 40 Z ．		
379	24 swg	¢0．94
	22 swg	£0．83
381	20 swg	£0．88
382	18 swg	¢0．90
383	16 swg	£0．78
HARDWARE IN PACKS OF		
839	OBA lin．Bolt	¢0．70
340	OBA 1／2in．Bolt	E0．40
842	2BA 1in．Bolt	£0．35
843	2BA 1／2in．Bolt	¢0． 30
844	2BA $1 / 4 \mathrm{in}$ ．Bolt	¢0．32
345	4BA 1in．Bolt	£0．28
846	4BA $1 / 2 \mathrm{in}$ ．Bolt	E0． 20
847	4BA 1／4in．Botr	¢0．18
848	6BA in．Bolt	¢0． 24
849	6BA $1 / 2 \mathrm{in}$ ．Bolt	£0．18
	6BA $1 / 4 \mathrm{in}$ ．Bolt	¢0． 20
	OBA Solder Tags	£0． 20
	2BA Solder Tags	¢0．16
	4BA Solder Tags	£0．14
	6BA Solder Tags	c0． 12
855	OBA Full Nut	¢0． 42
	2BA Full Nut	¢0． 26
857	4BA Full Nut	¢0．18
	6BA Full Nu：	¢0． 18
859	OBA Washer	¢0．12
	2BA Washer	¢0． 09
861	4BA Washer	¢0．09
862	6BA Washer	¢0．09
FUSE HOLDERS		
506	20 mm Chassis	Fuse
Holde		£0．14
507	$11 / 4 \mathrm{in}$ ．Chassis	Fuse
		¢0． 14
508	11／4in．Car in line	Fuse
Holde		¢0．12
50920 mm Panel Fuse Hołder		
		¢0．26
0	2in．Panel Fuse H	$\begin{gathered} \text { Holder } \\ \text { £0.32 } \end{gathered}$
TRANSFORMERS		
2021	6．0．6v 100 mA	c0． 90
2022	9－0．9v 3.8 mA	c0．90
2023	12．0．12v 100mA	E1．15
2024	$0.6 \mathrm{~V} 0-6.280 \mathrm{~mA}$	E1．60
2025	$0-12 \mathrm{v} 0-12 \mathrm{v} 150 \mathrm{~m}$	
		¢1．30
2026	6．0．6v 1 Amp	82.40
2027	9．0．9v 1 Amp	82.00
2028	12．0．12v 1 Amp	22.50
2029	15．0－15v 1 Amp	82.75
2031	Multi tap 5 Amp	E3．40
2032	Multi tap 1 Amp	¢4．80
2033	Multi tap 2 Amp	c6．40
2034	0．35v 17 Amp	£4．90
2035	0.55 v 2 Amp	£6．65
2036	0．17v 750 mA	£2．85
2037	Min Audio output	£0． 25
2038	Min Audio Driver	£0．36
2040	0－45－55v 1．5 Amps	
2041	0－55－65v 2 Amp	E8．45
	$0-25 \mathrm{v} 2$ Amps	¢4．50
2043	15－0－15 150mA	$£ 2.40$

Access and Barclaycards accepted－just telephone our Orderline－Ware（STD 0920）3182．All prices exclude V．A．T．，add 50p postage per order．Terms：C．W．O．， cheques，Postal Orders payable to Bi－Pak．

Bullding Site

This month, Keith Brindley proves how easy it is to give your projects a professional appearance. Front panel lettering is easy when you know how

A FINISHED PROJECT is only as good as it looks. It doesn't matter how well it works, how undistorted a thingummy is or how many flashing LEDs an electronic wotsit has got, if it doesn't look good. I mean you can't show it off to the neighbours or to friends if it looks as though it has been dragged through an electrified barbed wire fence backwards, can you? It's the finishing touches which make or break the appearance of your project.

One of the best ways to 'professionalise' your project is to label it, showing the functions of all switches, pots etc, and to give it an individual title. Take a look at some of the projects in HE this month and imagine them without labelling see what I mean?

How Do We Do lt?

We label all our projects by making use of dry transfer lettering systems. A variety of types can be seen in Fig. 1. Letraset, Chartpak, Mecanorma and Blick are just a few of the trade names you will find associated with dry transfer systems. Many readers will know what they consist of -semi-opaque or transparent film sheets, with dry ink letters on the underside. The idea is to lay the sheet on the surface to be lettered and then to rub down the required letter, transferring it from the sheet onto the surface. That's all there is to it really.

You should be able to buy at least one variety of dry transfers at any graphics or drawing office supplier. A lot of booksellers also sell them, so you probably won't have to go far to get what you want.

There are literally hundreds of different typefaces (styles of letters) to choose from. The most popular ones are

Figure 2. Transferring characters from the sheet to the front panel. Here a burnisher is shown in use
duplicated on all manufacturers' systems. The typefaces we use most on our projects are Eurostyle Bold and Eurostyle Bold Extended. But you don't have to use the same type. In fact you can 'personalise' your project by using a typeface of your own choice.

You can also choose the size of the letters which suits you best. The letters are measured by what is known as their point size (for example, 12 pt and 20pt). As a general guide, the larger the point size, the larger the letter. We normally use 10pt for labelling around switches and knobs, and 18pt for titles, etc. A single sheet of each size will provide sufficient letters and numbers for quite a few projects.

4 Figure 1. Examples of sheets of lettering suitable for your projects
Figure 3. To keep the character in a straight line, draw guidelines as shown to line up with the top and bottom of each character

How Do You Do lt?

After you have reached the completion stages on any metalwork on the panel, such as drilling or filing, make sure the panel is grease-free - a quick wipe with a rag dampened with methylated spirits will ensure this.

Now you simply lay the sheet over the panel and position the letter you require over the correct place. By rubbing lightly with a soft pencil or, better still, a tool called a burnisher, the letter can be transferred onto the panel, as Fig. 2 shows.

If you find it difficult to line up the letters, a good tip is to use a guideline. With a ruler and a sharp soft pencil simply draw lines across the panel, as in Fig.3, at every necessary height where letters are planned. Lining up is easy after this as you just position each letter slightly above the pencil line before rubbing down.

Don't worry if you make a mistake and put a letter in the wrong place, or mis-spell a word, because you can remove the boo-boo by covering it with a s. . . all piece of Sellotape and then sharply pulling the tape off. The letters will stick to the adhesive backing of the tape leaving a clear panel again.

When transferring long words, or words positioned above or below switches and knobs, it's a good idea to start with the middle letter of the word and then work backwards and forwards until the word is complete. This makes sure that the word is central and looks correct.

After you have finished labelling the panel you carefully remove the pencil lines with a good clean rubber, as in Fig. 4. Make sure you don't catch any of the letters with the rubber, or you'll have to start again!

Figure 4. Great care is needed when erasing your guidelines to avoid damaging the lettering. Make sure that your rubber is soft, clean and has a sharp edge

Finally, to protect the letters and also the panel from accidental damage from scratching, spray it with an aerosol fixing spray. You'll find a suitable variety to choose from at the supply shop where you got your transfer sheets.

Now you can stand back and admire your project. See you next month.

HE

BRITAIN'S FIRST NATIONAL CB SHOW!

September looks like being a good month for CB'ers! Modmags is making it better yet by bringing you Britain's first ever NATIONAL Citizens' Band exhibition.
Companies from all over the country will be displaying their wares for you to peruse.
Everything from rigs, monitors and aerials, down to components and fixing brackets, will be on show. All the latest gear will be here - some of it for the FIRST TIME IN

THE UK.

```
WHY QUEUEP ORDER YOUR TICKETS NOW FROM:-
    Advance Tickets CB81
    Modmags Ltd, 145 Charing Cross Road,
    London WC2H OEE.
    Please send ..... tickets @ £2.00
        tickets @ £1.00 (OAP or child under 10 yrs)
    To
To
    ...........................................................................
    I enclose PO/cheque for E
```


This is the BIG ONE for breakers.
Whether you're a confirmed
fanatic or an interested beginner. this is the place to be in September!

OPENING TIMES

Friday 11th Sept $10 \mathrm{am}-7 \mathrm{pm}$
Saturday 12th Sept $10 \mathrm{am}-6 \mathrm{pm}$
Sunday 13th. Sept $\quad 10 \mathrm{am}-4 \mathrm{pm}$
Saturday 12th Sept 10am-6pm
Sunday 13th. Sept 10am-4pm

ADDS TOYOUR CAPABILITY

Already used in industry, this solderless breadboard is now available to the hobbyist. Unique because of its universal interlocking facility meaning you no longer need lots of different boards.
Send now for the unique Verobloc.
Order code 200-21092G. £4.16p inclusive.

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hampshire SO5 32R. Tel (04215) 62829

* MPU Section accepts $24,28,40$ \& 64 pin DIL microprocessors
* Auxiliary Areas accept any $.3^{\prime \prime}$ or .6 " RAM, ROM or peripheral chip
* Power Bus Strips on all sides
* 5 incoming turret Power Terminals
* Component Support Bracket included
* Over 1400 contact points
* Alpha-Numeric column and row indexing
* Eurocard size ($160 \mathrm{~mm} \times 100 \mathrm{~mm}$)
* Slots onto all BIMBOARDS
* Non-Slip rubber backing
* Ideal for schools and colleges
* Long life, $<10 \mathrm{~m}$. ohms, nickel silver contacts

The PROFESSIONALS breadboard that BEGINNERS can start on

$-05 S$ INDUSTRIAL MOULDINGS LTD

2 Herne Hill Rd, London SE24 0AU, England Telephone 01.7372383 Telex 919693 Cables \& Telegrams: LITZEN LONDON SE24

Please send me MPUroBreadBoard(s)@£18.
This price includes VAT \& PP, is applicable from Mar. $\overline{1},{ }^{\prime} 81$, but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.

I enclose a cheque/P.O. to the value of $£$.
Name . .
Company
Address

Books from the HE Book Service

SPECIAL OFFER TO READERS OF HOBBY ELECTRONICS oney
ELEMENTS OF ELECTRONICS
Book I
$£ 2.60$
$£ 2.60$
Book II
£2.60
Usual price is $£ 7.80 \mathrm{inc}$ post and packing for 3 volume set. OUR packing $£ 7.00+$ FREE slip case for 3 PRICE $£ 7.00$ + FREE slip case for 3
volumes + FREE Resistor Colour volumes +

28 TESTED TRANSISTOR PRO. JECTS by R. Tarrens .. £1.50 The author has designed developed and built some completely new circuits.
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS by R.A. Penfold $£ 1.50$ Enables the complete beginner to tackle the practical side of electronics.
ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST by G. T. Rabaroe $\mathbb{E} 1.50$ Supplies the hobbyist with a background knowledge.
50 PROJECTS USING RELAYS
SCR'S \& TRIACS by F. G Rayer
..... . 1.50 Gives tried and practical working circuits which should present the minimum of difficulty for the enthusiast to construct.

HOW TO BUILD YOUR OWN METAL AND TREASURE LOCATORS by F. G. Rayer
Contains complete electronic and practical details.on the simple and inexpensive construction of Heterodyne Metal Locators.

HOW TO MAKE Ẅ̄̆ĹKIETALKIES by F.G. Rayor £1.75 IC555 PROJECTS by E. A. Parr ncluded in this book are Basic and General Circuits, Motor Car and Model Railway Circuits, Alarms and Noise Makers as well as a section on the 556,558 and 559 timers.

PRACTICAL ELECTRONIC CALCULATIONS AND FORMULAE by F. A. Wilson ... $\mathbf{£ 2 . 5 0}$ Units and Constants, Direct Current Circuits. Passive Components, Alternating Current Circuits, Networks and Theorems. Measurements

ELECTRONIC SECURITY DEVICES by R. A. Penfold $£ 1.70$ Includes both simple and more sophisticated burglar alarm circuits using light, infra-red and ultrasonics gas and smoke detectors, flood alarms doorphone and baby alarms. etc.

ELECTRONIC PROJECTS FOR BEGINNERS by F. G. Rayer

A newcomer to electronics finds a wide range of easily made projects

POPULAR ELECTRONIC PRO. JECTS by R. A. Penfold $£ 1.70$ Radio Projects. Audio Projects Household Projects and Test Equipment.

HOW TO BUILD YOUR OWN SOLID STATE OSCILLOSCOPE by F, G. Faver E1,75 Enables the enthusiast to simply and inexpensively build his own oscilloscope.

ELECTRONIC GAMES by R. A. Penfold £2.00 In this book the author has designed: and developed a number of interesting electronic game projects using modern integrated circuits.

COUNTER DRIVER AND NUMERAL DISPLAY PROJECTS by F. G. Rayer .. £2.00 Author discusses and features many applications and projects using various types of numeral displays., popular counter and driver IC's etc.

BEGINNERS GUIDE TO MICROPROCESSORS AND COMPUTING bYE.F. Scott

Inoduction to the basic .. $\mathbf{E 2 . 0 0}$ concepts of binary arithmetic: microprocessor operation and machine language programming

ELECTRONIC HOUSEHOLD PROJECTS by R. A. Penfold
£2.00 Circuits range from such things as 2 tone door buzzer' Intercom through Smoke or Gas Detectors to Baby and Freezer Alarms.

A MICROPROCESSOR

 PRIMER by E. A. Parr . . £2.00 A newcomer to electronics tends to be overwhelmed when first confronted with articles or books on microprocessors. This small book will start by designing a simple computer and because of its sim. plicity and logical structure the language is hopefully easy to learn and understand.
50 CIRCUITS USING 7400 SERIESIC'S by R. N. Soar

- $£ 1.65$

The author has compiled 50 in teresting and useful circuits and applications covering different aspects of electronics using these devices.

POPULAR ELECTRDNICS BOOKS

Sinclair. I. R., Introducing Electronic Systems $£ 3.10$ Sinclair, 1. R.. Introducing Amateur Electronics $£ 3.10$ Sinclair, I. R., Electronic Fault Diagnosis ….......... 4.00 Sinclair I. R., Repairing Pocket Transistor Radios £2.90 Sinclair, I. R., Oscilloscope In Use

Sinclair I R Undersiande E4.00 tronic Components $\ldots 5.10$ Sinclair, I. R. Understanding Electronic Circuits \quad| |
| :---: |
| . | Kitchen, H. T.. Handtools For Electronic Workshop Ele..... £3.25 Kitchen, H. T., Electronic Test

£6.20 Capel. V., How To Build Electronic Kits25 Darr. J., How to test almost everything electronic $£ 3.75$ Brown. R. M., How to read electronic circuit diagrams ... $\$ 5.60$

UDIO	
Earl, J., Audio Technicians Bench	E10.7
Manual ¢5.00	Lancaster, D., T.V. Typewrite
\|Earl, J., Pickups and Loudspeakers	Cookbook $£ 7.75$
£5.00	Lancaster, D., Cheap Video Cook-
Earl. J., Tuners and Amplifiers	
¢4.00	Jong. W., IC Timer Cookbook
Earl. J., Cassette Tape Recorders $£ 7.6$
£6.00	Lancaster, D., Incredible Secrer
Earl, J., ABC of Hi-Fi . . . £6.00	Money Machine (a how to co
Capel, V., Microphones in Action	book for setting up your comp
£6.00	or technical business) . : 4

Capel, V., Improving Your Hi-Fi
£5.00
Capel, V. Creative Tape Recording £5.00
Hellyer, H. W., Tape Recorders £5.00
Sinclair, I. R., Audio Amplifiers For Home Construction £6.00

RADIO CONTROL

Drake, J., Radio Controlled Helicopter Models £4.95 Jeffries, C. R., Radio Contral For Model Yachts $£ 3.85$ Safford, E. L., Radio Control Manual

COOKBOOKS

Tracton, K., BASIC Cookbook
£4.10
Lancaster, D., TTL Cookbook
E7.55.
Lancaster, D., RTL Cookbook
£4.65
Lancaster, D., CMOS Cookbook
E8. 20

BEGINNER'S GUIDE

Sinclair, I. R., Beginner's Guide To
Tape Recording
DUESTIONS AMO ANSWER
SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE BEGINNER
Coker, A. J., Q \& A Ón Electric Motors £2.50 Hellyer, H., \dot{Q} \& \dot{A} On Radios and T.V. £2.50 Hibberd, R., Q \& A On Integrated Circuits Jackson, K., Q \& A On Electricity

E2.50
Brown. C. Q \& A On Hi-Fi $£ 2.50$ Brown. C., Q \& A On Transistors
Brown, C., Q \& A On Electronics £2:50
Reddihough, J., Q \& A On Colour
Miller, H., Q \& A On Electric Wiring
$\mathbf{2} 2.50$

CONSTRUCTOR GUIDES
PROJECT BOOKS
Marston. R. M., 110 Cosmos Digital IC Projects For The Home Constructor £4.95 Marston, R. M., 110 Wave Form Projects For The Home Constructor $\varepsilon 4.95$
Marston, R. M., 110 Op Amp Pro jects For The Home Constructor $£ 4.95$
Marston. R. M. 1.10 Semiconducto Projects For The Home Constructor £4.95
Marston, R. M., 110 Thyristor/ SCR Projects For The Home Constructor £4.95 Marston, R. M., 110 Electronic Alarm Projects For The Home Constructor $£ 4.95$ Marston, R. M., 110 Integrated Circuits Projects For The Home Constructor £4.95 Marston. R. M., 20 Solid State Profects For The Car and Garage

Marston, R. M., 20 Solid Stat
Projects For The Home $\quad \mathbf{4 . 9 5}$

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:
Hobby Electronics Book Service
Modmags Ltd
145 Charing Cross Road \&rices may be subject to change without notice
London WC2H OEE

Electronic Organ-2

IF YOU'RE UP-TO-DATE with your project so far, you will have a baseboard with all hardware attached, including the keyboard, control panels and PCBs. You will also have built and tested Board 1 which contains the project's power supply, pre-amplifier and power amplifier, and filter and stops circuitry.

There'are two jobs to do this month: build and wire up Board 2 (the master tone generator PCB), and make and fit all the key contacts to the keyboard.

Construction

Construction of the PCB is straightforward. Insert and solder all printed circuit board pins and the link first. Then do likewise to the 16-pin IC holder.

Following the overlay details in
Fig. 2 insert and solder all resistors and capacitors, then semiconductors, and lastly the coil. Make sure all polarised components are correctly inserted.

Fit IC1 to its socket, checking that it is the right way round. The board can now be screwed into position on the PCB guiderails.

Using thin multi-strand wire, make all connections from Board 2 to the three potentiometer controls of vibrato depth, vibrato speed and pitch. Finally connect three power supply leads, $+12 \mathrm{~V}, 0 \mathrm{~V}$ and -12 V , from the board to Board 1. Figure 3 shows the edge of Board 1 where power connections should be made, and also shows the positions of points 1, 2 and 3 which were accidentally not shown (oops) last month.

Now, with the aid of Board 1, you can test Board 2. Connect a loudspeaker to the speaker output jack socket of the organ and turn the organ on. Attach one end of a length of wire to one of the filter inputs at the right-hand side of Board 1 (it doesn't matter which,
but make sure you don't connect it to the point at the top edge, beside capacitor C10 - this is a power supply point).

Using the other end of the wire touch each of the 12 outputs from IC1 of Board 2 in turn. These outputs encircle the IC at a distance of about $1 / 2^{\prime \prime}$.

If all is working you will hear one note from the top octave at each point, 12 notes making the complete octave.

Useful Contacts

The contacts are made using small strips (about $1 \frac{1 / 2 \prime \prime}{\prime \prime}$ by $3 / 16^{\prime \prime}$) of precut phosphor-bronze. Figure 4 shows details of one pair of contacts and from this you can see that they are all mounted onto lengths of copper laminate PCB, which are in turn mounted onto a wooden batten. Each pair of contacts is made from one straight piece of phosphor-bronze and one shaped piece.

First, glue the lengths of PCB onto the

> Here is the second part of our organ project, which gives details of how to make your own keyboard contacts at a small fraction of the cost of commerciallyavailable types

wooden batten using good quality contact adhesive. The lengths of PCB (two or more) with continuous areas of copper should all go along one edge, and similarly the lengths with broken areas of copper should go along the other edge. Both types of PCB lengths should be glued copper side up.

When the glue is thoroughly dry, link the lengths of continuous copper strips where they meet by soldering short pieces of tinned copper wire across the breaks.

Next glue the whole wooden batten, complete with PCBs, onto the underneath of the keyboard, parallel to and $1^{\prime \prime}$ away from, the key actuator tips. Allow the glue to dry.

Now comes the monotonous bit! Position one length of phosphorbronze strip onto the left-hand edge of the continuous strip PCBs so that it rests on the key actuator plastic tip, then solder it carefully in place as shown in Fig. 4. Repeat this for the other 59 straight key contacts.

The shaped key contacts are formed with the use of (ideally) a pair of flat-nosed pliers. The contact shape is not critical as, even after soldering into position, minor adjustments can be made by hand where necessary. Make and solder. each shaped contact into place, individually.

Finally, adjust the contacts so that there is approximately 1/16" gap between each shaped and straight key contact.

This whole process of making the contacts is quite timeconsuming (it will probably take you about four hours) but provides a cheap yet reliable method of keyboard switching.

That's all for this month (you can breathe a sigh of relief!).
Next month we'll move on to
Boards 3 and 4.

Parts List
The list below consists of the parts needed for this month's constructional part of the project.

RESISTORS	
R1	$22 k$
R2	47 k
R3	3 M 3
RU	10 k
R5.6	100 k
R7.10	1 kO
RB	$1 \mathrm{k8}$
R9	220 k
R11	22R

POTENTIOMETERS

RV1	25k linear potentiometer
RV2	10k linear potentiometer
RV	2kO linear potentiometer

CAPACITORS

C1,2,3
220 n polyester

FROM BOARD 1
Figure 2. Overlay of Board 2 and connection details

100 n polyester 330 p silver mica or polystyrene
470 n .16 V tantalum
SEMICONDUCTORS
IC 1 AY-1-0212 top-octave
01.2.3 generator

BC 183 NPN transistor VV, 400 mW zener diode

MISCELLANEOUS

Coil
TOKO Y17065
120 phosphor-bronze strips (approx size $1 / 2^{\prime \prime}$ by $3 / 16^{\prime \prime}$)
Strips of copper laminate (plain and etched to suit) Wooden batten

How It Works

Board 2 is the Master Tone Generator Board.

The output from a voltage controlled oscillator (VCO) is divided down into 12 separate frequencies which form the notes of the top octave of the organ.

A low-frequency sinewave also can be switched in, to modulate the VCO's output frequency and provide a vibrato effect.

Transistors Q1 and Q2, along with the coll and other associated components, form a high-frequency voltage controlled oscillator, the main frequency of which is adjustable by the position of the ferrite slug in the coil. Other control inputs come from pitch control RV3 and the low-frequency sinewave oscillator output from RV2.

Integrated circuit IC1 is a top-octave generator. Its job is to take the highfrequency signal from the VCO and produce from it 12 subdivided signals corresponding to the 12 semitones of a musical octave. The IC consists of 12 divider circuits, each of which divides the input signal by an exact integer to produce the scale of the top octave of the organ. Thus the pitch of the whole octave is defined by the one oscillation frequency.

A low-frequency (about 2 to 8 Hz) sinewave oscillator is formed around transistor 01 and its frequency can be adjusted by pot RV1. The amplitude of the output signal can be varied by RV2.

Figure 3. The edge of Board 1 where power
connections are taken to Board 2

Figure 4 (above). Details of one key contact. This should be repeated along the length of the keyboard, until all 60 notes have a working contact

Buylines

A limited number of kits for the HE Organ can be obtained from:

Mr A. T. Hawkins
23 Blenhelm Road
St Albans
Herts AL1 4NS
for the all-inclusive price of $£ 95$. The kits contain all metalwork, hardware and PCBs, as well as the keyboard and components. You only need to supply your own baseboard and case.

For those readers who would prefer to buy the components themselves, Mr Hawkins will supply the keyboards separately. None of the other items should be difficult to find.

FRE OUR CURRENT BARGAIN LIST WILL
transmitter surveillance 。
Tinv, easily hidden but which will enable conversation to be picked parts and clreuil. $£ 2.30$.
RADIO MIKE.
Ideal for discos and garden parties, allows complete freedom of
movements. Play through FM radio or tuner amb. 66.90 comp. ki
SAFE BLOCK
Mains quick connector will save you valuable time. Features include
quick spring connectors, heawy plastic case and auto on and off swich. Complete
LIGHT CHASER
GIGHT CHASER
Gives a brilliant display - a psychedelic light show for discos, par-
ties and pop groups. These heve three modes of flashing, two chase ties and pop groups. These have three modes or hashing, two cha
patterns and a strobe effect. Total output power 750 watts per channel. Comlete kit. Price $£ 16$. Ready made up $£ 4$ extra.
FISH BITE INDICATOR
Enables anglers to set tp several lines then sit down and read a boo
emits a shrill note. Kh. Price $\mathrm{E}^{4.90}$.
6 WAVEBAND SHORTWAVE RADIO KIT
Bancspread covering 13.5 to 32 metres. Based on circuit which Bancospread covering 13.5 to 32 metter. Based on circuit which
appeared in a recent issue of hadio Constructor. Complete kit in.
cludes case materials, six transistors, and diodes. condensers, resistcludes case materials, six transistors, and diodes, condensers, resis.
ors, inductors, switches, elc. Nothing else to buy if you have an ors, inductors, switches, erc. Nothing else 10 buu if you have an
amplifier tor
and amplifier 10 co
Price $£ 11,95$.
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $£ 2.30$. Crystal arpiece $65 p$. High resistance headphones
Kit includes chassis and front but not case.
RADIO STETHOSCOPE
Easy to tault find - start at the arial and work towards the speaker

- when signal stops you have found the fault. Complete kit $£ 4.95$. INTERRUPTED BEAM
This kit enables you to make a switch that will trigger when a
steady beam of infra-red or ordinary light is broken. Main components - telay. photo rransistor, resistors and caps etc. Circuit diagram
but no case. Price $£ 2.30$
OUR CAR STARTER ANO CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can star car oft mains or bring your battery up to full charge in a couple of hours. The kit comprises: 250 w mains transformer, two 10 amp bridge rectitiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shelf in the
garage, whichever suits you best. Price $£ 11.50+£ 250$ post
GPO HIGH GAIN AMPISIGNAL TRACER in case measurin
 state amplifier designed for use as a signal racer on GPO cables, etc With a radio th functions very well as a signal tracer. By connecting a simple coil to the input socket a usetul mains cable tracer can be made. Runs on standard $41 / 2 \mathrm{y}$ battery and has input, output sockets
and on-off volume control, mounted flush on the top. Many other uses include general purpose amp, cueing amp, elc. An absolute bargain at only $£ 1,85$. Suirable 80 ohm earpiece 69 p.

```
NEW KIT THIS MONTHI
CB RADIO - Listen in with our 40 channel monitor.
Unique design en
Complete kir with'case and instructions only £5.99.
```


8 POWERFUL BATTERY MOTORS

WATERPROOF HEATING WIAE
60 ohms per vard, this is a heating element wound on a fibre glass coll and then covered with p.v.c. Dozens of uses - around watry
pipes. under grow boxes in gloves and socks. 23p per metre. COMPONENT BOARD Ref. WOggs
This is a modern fibreglass board which contains a multitude of very usefut parts, most important of which are: 35 as sorted diodes and rectifiers including 43 amp 400 V ivpes (imade up in a bridge) 8
transistors type BC107 and 2 ivpe BFY. 51 electrolytic condensers SCR ref 2 N 5062 , 250uf 100v DC and 100 fl 25 v DC and over 100 other parts including variable, fiked and wire wound resisiors. electrolytic and other condensers. A real snip at $£ 1.15$.
FRUIT MACHINE HEART. 4 wheels with all fruits, motorised and with solenoids for stopping the wheeels winth \& little ingeruity you can
defy your friends getting the "jackpor". $£ 9.95$. $E 4$ carriage. 4. CORE FLEX CABLE

White pve for telephong extensions, disco lights, etc. 10 metres $£ 2$ 100 weres
MUGGER DETERRENT
A high note bleeper, Dush larehing switch, plastic case and hattery
connector. WIl scare away any villann and bring help. $£ 2.50$ com
EXTRACTOR FANS
Mains operated - ex. Computer 5" Woods extractor 6" Woods extractor
£6.90 Post $£$
$6^{\text {6 }}$ Plannar extractor $4^{\text {" Muffin }} 115 \mathrm{v}$. Mulfin 230 v . 4.75 Post 50%.

PUSH BUTTON G.PO. TELEPHONES
FOR E25 (quickly recoverable in saved timel you will improve your amage and efficiency with this push button desk tetephone,
ex. G.P.O. thoroughly reconditioned, can be yours in a few days, ex. G.P.O. 2horoug
if you send roday.
(Nor licenceable in the U, K

SUPER HI-FI SPEAKER CABINETS
Made for an expensive Hi-Fi outfit

- will suit any decor. Resonance tree cut-outs for $8^{\prime \prime}$ wooter and 4^{41} eveeter. The front material is carved Oacron, which is thick and
does not need to be stuck in and does not need to be stuck in and
the completed unit is most pleasing. Colour black. Supplied in pairs price $\mathbf{£ 6 . 9 0}$ per pair (this is probably less than the original cost of
one cabinet) carriage $£ 3.50$ the pair

LOUDSPEAKERS
is power rating E 6.90 per pair
Ditto but 8 otms, $£ 11.50$

3 CHANNEL SOUND TO LIGHT. KIT Complete kit of parst for a
three channel sound to light unit controll.
ing over 2000
in ing over 2000
watts of light. ing. Use this at home if
you wish but it
you wish but it
is plenty rugged enough for disco work. The unit is housed in an
attractive two-tone metal case and tas attractive two-tone metal case and has controls for each channel
and a master on/off. The audio input and outpur are by $1 / 4.1$ and a master on/off. The audio input and output are by $1 / /^{*}$
sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socket facilitate ease of connect ing lamps. Special snip
assembled and tested.

THIS MONTH'S SNIP
 UNIVAC KEYBOARD Model No. FI 308.00

Has 57 encoded key switches and 10 mini toggle switches. As well as a P.C.B. with many IC's etc. These keyboards are in very good condition. Price only $\mathbf{£ 1 1 . 5 0 + \text { post }}$ £2.00. Well worth it for the switches alone.

POCKET AUDIO

COMPONENT TESTER

With it you can quickly test diodes, rectitiers, transistors, capacitors, check wiring and p.c. boards tor open circuits, find the
anode and cathode of a docle or rectifier and whether a transisto is PNP or NPN, which are the base collector and emitter connect. ions. Condensers, il bad give a continuous signal but if good, give intermittent signals of varving length depending on their value The test current is very low $(2 \mathrm{UA})$ and the vol tage only 1.4 V , so it is also possible to check MOS devices, as well as sensitive complete with internal battery. which should last many months. Price $\mathbf{E S O}^{\mathbf{4} 5 \mathrm{p} \text { p. }}$
MINI-MULTI TESTER Deluxe pocket size precision mov. ing coil instrument, Jewelled bearings - 2000 o.p. v. mirrored scale.

AC volts $10,50,250,1000$
Continuity and resistanc 0
Continuity and resistance 0.1 meg ohms in
iwo ranges. Complete with test prods and in two ranges. Complete with test prods and in-
struction book showing how to measure cap. scity and inductance as well. Unbelievable

FREE Amps range kit 10 enble you to read
DC current from 0.10 amps directiy DC current from 0. 10 amps, directily on the 0.10 scale , It's free if you
purchase quickly, but of you alread own a Mini-Tester and would like one, send $\mathbf{E 2} .50$.

MULLARD UNILEX A mains operated $4+4$ stereo
system. Rated one of the linest performers in the make a wonderful gift for almost anyone. In easy 70 as semble modular form this should sell at about $£ 30$ - but due to a special bulk buy and as an in. tem complete at only $£ 16.75$ including VAT and post. FREE GIFT - buy this month and you will receive a pair of

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one ofl per 24 hrs, repeats daily automatically correcting for the fengthen switch but you can have it for only $\mathbf{£ 2 . 9 5}$. These are new but without case, but we can supply plastic cases (thase and cover) $£ 1.75$ or metal case with window $£ 2.95$. Also available is adtaptor kit to convert
this into a normai ? hr . time switch but with the added odvantage of up to 12 onl offs per 24 hrs . This makes an ideal con adroller for the imm

DELAY SWITCH
Mains operated - delay can be accurately set with pointers knob for periods of up
10 $21 / 2 h r s .2$ contacts suitable to switch 10 amps - second contact opens a few min. utes after 1 st contact. ©1.95.

LEVEL METER
Size approximately $\%^{\prime \prime}$ square, scaled signal and power but cover easily removable fo
rescaling. Sensitivity 200 UA. 75 p.

STEREO HEADPHONES Japanese made so very good quality
8 ohm impedance, padded, term. inating with stand ard
plug. $£ 2.99$ Post 50 . BRIDGE RECIFIER 1 amp $£ 200$ for $£ 2.50$. 100 for for . $£ 20.00$

TIME SWITCH BARGAIN Large clear mains frequency convolled clock, which will always show you the correct time + start and stop switches
with the dials. Comes complete with knots E2.50.

LAST MONTH'S SNIP - STILL AVAILABLE And it still carries a free gift of a desoldering pump, which we are
currently selling at $£ 6.350$. The snip is perhans the most useful down parcel we have ever offered. it is a parcel of 50 nearly al different computer panels containing parts which must have cost at
least $£ 500$. On these boards vou will find over 300 IC's. Over 300 leasi 5500 . On these boards vou will find over $300 \mathrm{IC's}$. Over 300
diodes, over 200 transistors and several thousand other parts, resist diodes, over 200 transistors and several thousand other parts, resisi
ors, condensors, multi-turn pots, recifiers, SCR, etc. eic. If you act promplly, you can have this parcel tor only 88.50 . Which when you deduct the value or the desoldering pump, works out to just a little
over $4 p$ per panel. Surely this is a bargain you should not miss! When ordering please add $£ 2.50$ post and $£ 1.27$ VAT.

MAINS MOTORS Precision made as used in record players, blow heaters, etc. Speed usuatty 1,400 . All have ample
spindle length for coupling fan blade, Pullev, etc. Power depends on stack siz
$5 / 8^{\prime \prime}$ stack $£ 2.00 ; 4^{\prime \prime}$ stack $£ 2.50 ; 7 / 8{ }^{\prime \prime}$.
 $£ 4.50$. Add $25 \% 10$ motor cost to cover pos.
tage, and then add 15% VAT.

YOUR LAST CHANCE FOR THIS BARGAIN 100 iwist drills, regular tool shop price over $£ 50$. vours for only
$£ 11.50$. With these you will be able to drill metal, wood, plastic, trom the tiniest holes in P.C.B. right up to about " $\%$ ". Don't miss
this snip - send vour order todzy. MAGNETIC LATCH Low voltage (4.8 volt $\mathrm{AC} / \mathrm{DC}$ operation)

TAPE PUNCH

\& READER
For controlling machine tools, etc, motor sed 8 bit punch with matching tape reader. Ex-computers, belleved in good working
order, any nor so would be exchanged. $£ 17.50 /$ pair, Post $£ 3.00$
J. BULL (Electrical) Ltd - Established 25 years. MAIL ORDER TERMS: Cash with order -- please add 60p to all orders under $£ 10$, to offset packing, etc. ACCESS \& BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

0 Level Q\&A

As we near the end of the syllabus, Nick Walton covers two main topics this month: Op Amps and Systems

LAST MONTH WE looked at amplifiers, especially the type you might find in a radio or hi-fi - though in practice these would have much more sophistication. There is, however, another type of amplifier called the operational amplifier, or op amp for short, which we will consider this month, along with the way we can come to terms with difficult circuits by what is known as a 'systems approach'. This will bring together what we have seen in previous articles, and enable us to look at how more complicated systems might be put together.

Understanding Op Amps

So let's start with the op amp and see why it is such a useful and versatile little beast. Actually, the operative word is little because these days about the most common form of operational amplifier is the 741 integrated circuit package, which as you can see from Fig. 1 does not need a crane to lift it, in spite of the fact that a typical circuit for the 741 contains 20 to 25 transistors and 10 to 15 resistors. It has eight legs often in a dual-in-line (DIL) configuration; that is, in two rows of four, as opposed to the pins going round in a circle. When you think that back in the old days an operational amplifier would contain several valves, and now you could fit several 741 s into the volume occupied by one valve, you really do see how things have shrunk. Indeed, all the circuitry lies in an area 1 or 2 mm square, so much of what Fig. 1 shows is merely encapsulation.

Figure 1. Comparison in size between a 741 operational amplifier and a 2 p coin

However, enough of the lyrical 'small is beautiful' bit: let's try to answer the question 'What does it do?' One of its fundamental uses is to perform mathematical operations like add, subtract, multiply and divide, differentiate and integrate in analogue computers. 'What is an analogue computer?' did you say? Well, computers can be divided into two classes: digital and analogue. The first of these uses electronic logic and strings of binary digits O and 1 , and bases all its working on the possible logic gates (NOT, AND, OR, NOR and NAND,
so well expounded by lan Sinclair's series). The other class uses some quantity, most commonly voltage values to stand for numbers; that is, voltage value being analogous to number, or the 'analogue of it. Thus, for example, 1 V might represent the number one, 2 V the number two and so on. Perhaps the neatest illustration of the difference between analogue and digital devices lies in contrasting the electronic calculator (a digital computer at heart) with what people used before calculators became widespread - the slide rule. This uses the length of the slide to be analogous to number, so it is a simple form of analogue computer.

To understand the function of an op amp properly we must take a look at what it does, and throw in a little theory for good measure. The ideal op amp will have four properties. First, it will have an infinitely high gain when there is no feedback (from the output back round to the input). The nofeedback gain is properly called the 'open loop gain', and this is very high - for the 741, it is typically about 10,000 or 100,000 . We shall see in a moment that the gain with feedback can be set entirely by the feedback resistor and the input resistor. The second property is that it needs to have an infinitely high input impedance so that the signal is not reduced by the amplifier drinking up everything that is being offered. In other words it must not load the input signal. Third, it needs to have a low output impedance: theoretically it should be zero but in practice it will be about 100R. This really comes back to something we met in an earlier article where if your voltage source, á battery at simplest, has an internal resistance then the more current you take from it the more voltage you lose across the internal resistance, and the less appears actually across the output terminals. The fourth property is that ideally it will amplify all frequencies by the same amount, from zero (DC) to very high frequencies (a few megahertz).

The circuit representation of an amplifier is a triangle and Fig. 2 is the usual way of representing an op amp. Something you notice immediately is that it has one output but two inputs, called the inverting input and the non-inverting input. You might remember from last month's O Level Q\&A that the non-inverting amplifier will give an increase in output voltage for an increase in input, while the inverting input does the opposite: the output goes up if the input comes down (like umbrellas and rain!).

Figure 2. Circuit representation of an op amp

Virtual Earth

Whichever input you happen to be using, the actual input point where it enters the amplifier is known as a 'virtual earth' and it is not difficult to see how this comes about when one considers the high gain aspect of the amplifier. (Strictly speaking, what is being amplified is the difference in voltage between the two input terminals, though quite often one of these will be earthed.) Consider an op amp with an open-loop gain of 100,000 and suppose also that the positive supply rail is +10 V , which will then of course also be the maximum positive voltage to which the output can swing. Now ask yourself what change of input voltage will cause a swing to +10 V (given this gain of 100,000). Since gain A is equal to

$$
A=\frac{V \text { (out) }}{V \text { (in) }}
$$

V (in) becomes one ten-thousandth of a volt, or 0.1 mV , which is really nothing at all between friends, hence the name virtual earth.

In practice you can easily pick up a stray tenth of a millivolt without wanting to, and thus get a spurious value for the output voltage. It is in these circumstances that the 'offset null' pin can be used to compensate for such a stray voltage.

It is now fairly easy to see how the gain of the op amp can be fixed by means of the resistances round it. Consider Fig. 3. Resistor R(in) is what we call the input resistor and Rf is called the feedback resistor. The input voltage $V(\mathrm{in})$ will be applied as shown in Fig. 3, and the output voltage V (out) will appear as shown. Focusing on R(in), the voltage at the amplifier end is earth (virtually!) and at the other end it is V (in). Thus the voltage across it is V (in) and the current through it (by courtesy of Georg Simon Ohm yet again) is derived from V (in)/R(in).

Figure 3. Circuit arrangement to show that voltage A_{v} is equilvalent to $\mathbf{R f} / \mathbf{R}$ (in)

Similarly for Rf, one end is at virtual earth and the other is at V (out), giving a voltage across it of V (out) and a current of V(out)/Rf or strictly minus V(out)/Rf.

Assuming these currents as being equal we get:
$\frac{V(\text { in })}{R(\text { in) }}=-\frac{V \text { (out) }}{R f}$
and this gives the gain

$$
\frac{V(\text { out })}{V(\text { in })}=\frac{-R f}{R(\text { in })}
$$

as the ratio of the feedback resistor to the input resistor. Notice that to get this result we had to use two of the basic properties of the op amp mentioned earlier, namely that it had an infinitely high gain (to justify saying X was virtually at
earth potential) and that it had infinitely high input impedance (so that no current was actually siphoned off into the amplifier itself - it all went through R(in) and Rf).

The same two vital properties are used when thinking of the op amp as an adding amplifier, as a thoughtful look at Fig. 4 will show. Since X is a virtual earth, then each of the currents i1, i2, and $i 3$ (also equal to $V 1 / R, V 2 / R$ and $V 3 / R$ respectively) must flow through Rf. In other words:

$$
i 1+i 2+i 3=\text { current in } R f=i
$$

so

$$
\frac{V_{1}}{R}+\frac{V_{2}}{R}+\frac{V_{3}}{R}=\frac{-V \text { (out) }}{R f}
$$

making the output voltage depend on the sum of the input voltages.

Figure 4. Op amp used as a summing amplifier
If we were to put a capacitor into the feedback position as in Fig. 5 we get a circuit which produces a steadily rising output voltage for an input consisting of a step. If you are familiar with integration you will see that the output can be regarded as the integral of the input and such an arrangement is called an integrator.

Figure 5. Op amp used as an integrator
We will take as our final brief example the set-up in Fig. 6. Before you read on you might like to try to see why we can regard this as the op amp in a non-inverting mode, and an example of a negative-feedback amplifier. You may remember from the previous article that the use of negative feedback stabilises an amplifier. Here, the effect is to stabilise the output at 10 V . If we imagine an initial condition with the input at 5 V and the output at 10 V , then the voltage at Y between the two equal resistors will be 5 V which is fed back to the inverting input. So, if for any reason the output voltage drifts above 10 V , the voltage at Y will go up and because it is fed into the inverting input, will pull the output down again. The overall picture is that the output is stabilised at 10 V . There's a lot of fun to be had with op amps and much more to them than this brief survey can express.

Systems

I don't suppose there is a single person with an interest in electronics who at some time or another has not taken one

Figure 6. Op amp in non-inverting mode as a negative-feedback amplifier
look at a complicated circuit diagram and thought: "How will I ever understand what is happening in all that maze?"

Even the circuit of a not-very-complicated radio can induce this effect and if you still frequently feel bemused then this part of the article is for you. Help lies in one simple word: systems. In fact, it is rapidly coming into everyday use. We would not, for example, be surprised to hear that a friend had been saving up and was now going out to buy a hi-fi system. What is meant is that this friend will go and buy several different boxes, all of which must be connected together correctly. One box might contain the turntable and pickup. The pickup will be connected first to a pre-amplifier, the function of which is to amplify the minute signals coming in from the pickup (a few millivolts) up to a voltage that could be fed to the power amplifier input. This voltage could be around 1 V . When the signals come out of the power amplifier, they are fed to the speakers. The final voltage at the speaker terminals could be as high as 20 V . It is possible that under some bizarre set of circumstances a complete circuit diagram for the whole lot might be produced, but it is really much more useful to see the various parts of the whole and forget about individual circuit components. The system would look something like that in Fig. 7. Within these boxes we might say there are subsystems; the speaker box could well contain two or three speakers, one for high frequencies (a tweeter), one for low frequencies (a woofer), and perhaps something for the mid range, and this in turn would give rise to the need for a system to feed the correct frequencies to the appropriate speaker by some sort of filter system. Again, the amplifier might have a system (a scratch filter) to cut out very high frequencies that are produced by a scratch on the record. You might also want the facility at the input of the pre-amplifier to allow signals from other sources (with different impedances) to be fed in, for instance from a tape pickup or a radio tuner.

Figure 7. Systems approach to a hi-fi system

Practical Systems

Ramifications are almost endless but the important thing to do is to look initially at the system that concerns you and leave the individual components to a much later stage. In-
cidentally, this is how any troubleshooter will work. He or she will isolate the system or subsystem that is playing up and then narrow the field in logical stages. The garage man who comes to rescue you when you have broken down by the roadside will start by trying to establish whether it is the petrol system or the electrical system that is faulty (or something else altogether). If the fault is electrical, is it the high-voltage system or the low-voltage system?

Our own bodies are a complex mass of interacting systems (with, incidentally, lots and lots of feedback) and while it would be a fiendishly difficult task to represent ourselves fully in a systems block diagram, it would be a very good exercise for you to try to put together a block diagram for a radio system, and perhaps as a useful revision exercise you could look back over some of the previous articles in this series where some of the subsystems (tuning, detection, amplification) have been dealt with.

That just about completes matters for this month. Next month will be the end of the series, signing off with multivibrators and information storage - all coming out about a fortnight before the exam itself. Cheers! HE

ARE YOU SITTING COMFORTABLY?

MK6 - Simple Infira Red TRANSMITTE

held plastic box. Requires a 9V battery. A MK7 - Infra Red RECEIVER. Single channel, range approximately 20 ft . Mains powered with a triac
output to switch loads up to 500 W at 240 Vac , but can be modified for use with 5 to 15 V dc supplies and transistor or relay outputs.
-SPECIAL PRICE MKG and MK7 together. Order as RC500K
MK 8 - Coded Infra Red TRANSMITIER. Based on the SL490, the kit includes 2 IR LEDs, measures only $6 \times 2 \times 1.3 \mathrm{cms}$. and requires a 9 (PP3) batery
MK9
MK 10 - 16-Way KEYBOARD. For use with the MKB kit, to generate 16 different codes for $£ 1.90$ the ML.928 or ML926 receiver (MK12) Kit as lamp brightness, volume, tone, etc. Other functions outputs (0-10V) for controlling such functions an on/standby Output and a toggle output, which may be used for sound muting. Based on M M 922 decoder IC. Includes tits own meins
supply
MK 12 - 16 Channel IR RECEIVER. For use with the MK8 kit with 16 on/off outputs which with further interface circuirry, such as relays or triacs, will switch up to 16 items of equipment on or off remotely, Outputs may be latched. or momentery, dependina on whether the ML926 or ML928 is speciffed.
Ifncludes its own mains supoly. Size $9 \times 4 \times 2$ cms, excluding transformer. Includes its own mains supply. Size $9 \times 4 \times 2$ cms, exclud Mg transtormer.
MK13 - 11.Way KEYBOARD. For Use with MKB and MK11 kits. Transmits programme step + and
E11.95 MK 13 - 11.Way KEYBOARD. For use with MK8 and MK11 kits. Transmi
analogue + and $-(3)$, mute, normalise analogue outputs, an on/standby

LOW-COST, RUGGED TEMPERATURE CONTROL

hgM OUALITY
TEMP. GAUGE $0^{\circ}-120^{\circ} \mathrm{C}$ Remote sensor on 38 capillary, panel mounting 155 mm , dia. ONLY £1.85 (Incl. P\&P)

16 240V RANCO THERMOSTAT
Wide control range (low room temp, to over boiling point) Sensor on $\mathbf{2 2 ^ { \prime \prime }}$ capilliary. $£ 2.30$, including control knob.
RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$
15A 240 V . Sensing coil on 41 in . capilliary. pane mounting with reset button. $£ 1.20$.

BUY ONE EACH OF ABOVE FOR $£ 4.85$

LIGHT DEPENDENT RESISTORS in plastic housing with window, heavy-duty lead. Similar to ORP 61 . You normally pay well over double for resistor alone. Orily 30 p or $£ 2.35$ for 10 .

DOUBLE ENDED SMITHS BLOWERS

2 output apertures, $53 \times 103 \mathrm{~mm}$. Large flange. Only E5.50.

SMALL INDUCTION MOTOR (shaded pole). double ended with $14^{\prime \prime} \times 31 / 2^{\prime \prime}$ shafts, 240 V . E3.25.

BULGIN STRAIN RELIEF SLEEVE 10 FOR $30 p$
USE
POWER RESISTOR, wire-ended, 20 -watt. 410115% Only 50p

RELAYS BY KEYSWITCH ONLY 80 p 2 for E 1.50 5 for $\mathbf{£ 3 . 5 0}$ Panel M.E.S. Bulb Holder. High quality. Red Iens. 30p

GULGIN GLASS FUSES 20 mm 1 A Quick Blow 10 for 40p
(same size as 13A plug fuse but not to BS1 362). Will fit most $11 / 4^{\prime \prime}$ chassis mount fuse holders. 10A quick blow anti-surge, 3 A quick blow
10 (my mix) 40 p ${ }_{100}$ for $£ 3$

Conec CONTACTOR 3 heavy duty normally oper contacts 600 V 35A. 240 V coil
ONLY E4.50.

TOP OUALITY CHROME TOGGLE SWITCHES 2 pole C/O centre off 10A for 63.50 .
for E 3.50 .
2 Pole make, biased off 2A
30p, 4 for E 1

CAPACITOR, 800 V AC RMS, 0.01 MFD .

30p ench

L.E.M. SERVICES 239 RUGBY ROAD LEAMIMGTON SPA cy32 gor WARWICKSHIRE

ADD 50 P P\&P orders over [2.50 post tree

Our new TDR300K Touch Dimmer Kit will ensure that you are. Based on our highly successiul TD300K touch controlled dimmer kit, the TDR300K incorpo
rates an infra red re
ceiver, enabling
the I amp
brightness to be varied and switched on or off by touch or
remotely by means of a small hand held transmitte
The complete kit, which includes easy to follow
and the plastic front plate has no metal
pads to touch, ensuring complete safery.
pads touch, ensuring complete safety. Even a neon is
ellears to come everyone will be ou can have your TDR 300 K kit now for ONLY $£ 14.30$ for the dimmer unit and $\mathbf{£ 4 . 2 0}$ for the transmitter

Envelope Generator

Another simple-to-build yet fascinating musical effect from HE

NOI AN ENVELOPE generator is not a machine that keeps the postman in a job. It is, of course, a musical effect commonly used with an electric guitar (although there is little reason why it can't be used with other instruments) to increase the instrument's already versatile range. It does this by altering the envelope of the signal coming from the guitar in such a way that the overall sound gives you the impression that it is not a guitar at all. Instruments such as oboes, violins etc, can be successfully simulated in this way.

Attack and decay rates are altered by potentiometers and the length of the sound (the sustain) is controlled directly by the musician, holding down the pedal with his
foot for as long as he wants. Thus the major variables of the envelope are all under the guitarist's command.

If you built the Fuzzbox in the March issue of Hobby Electronics (pp 54 to 56), and housed it inside the same style of case that we used, we feel sure that you were impressed by the neat appearance and versatility of the case. Our designers were so pleased with it that they decided to use it for the Envelope Generator too. In fact, the projects can be used as complementary effects to produce further exciting possibilities.

Construction

Build up the printed circuit board (PCB) first, according to its overlay in Fig 2. It's a good idea to use PCB pins for each connection point to controls, switches etc, as this means you can fasten the board into its final position and wire it up last. Insert and solder components
in the following order: resistors, IC socket, capacitors
and the transistor.
Finally, push the IC into its socket - making sure it is the right way round. Remember that the IC will be marked with either a dot or a notch which indicates the end where pin 1 is, and this end should be lined up with the notch shown in the overlay.
Put the board aside now and concentrate on the case.
Assuming that you use the same

style of case as us, your first job is to adapt the internal switch so that it doesn't latch. Unsolder the screened lead which comes attached to the switch and remove it completely from the case.for the time being. Unscrew the two self-tapping screws which hold the switch in place and then remove the switch itself. Underneath the coiled spring which winds around the push-button section of the switch you will see a thin metal catch which engages inside the switch body as the button is pressed, holding it in and releasing it, alternately. Pull back the spring with your finger and, with a pair of fine, snipe-nosed pliers pull out the catch. The switch should now form a momentary action, pushbutton ie, push in - on, release off.

Next, mark and drill the case for the two pots, the bypass switch, and the jack socket and mount them all in their positions. You will have to bend the tags on the jack socket at right angles, in order that the case bottom fits. Secure the PCB to the inside of the case (we found that a pad of double-sided adhesive tape is ideal for this purpose) and then commence wiring up the project. Wire between the pots, SW1\&3, the battery clip and the PCB first, using thin multistrand wire, as shown in Fig 2. Finally, all audio signal leads should be made using thin screened cable, to help prevent interference and noise pickup. The output lead is, of course, the lead supplied with the case, and comes complete with jack plug.

Now you can try out the Envelope Generator with your guitar and see how it sounds. With practice and care you should be able to imitate other instruments very rapidly.

Parts List

Figure 1. Circuit of HE Envelope Generator

\section*{RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)
 | R1 | 10 k |
| :--- | :--- |
| R2 | 4 k 7 |
| R3 | 1 kO |
 POTENTIOMETERS
 RV1 220k linear
 RV2 100 k linear
 100k linear

potentiometer}

CAPACITORS

C1

220n polycarbonate or ceramic
$22 \mathrm{u}, 16 \mathrm{~V}$ tantalum 10 n polyester or ceramic 100n polyester

SEMICONDUCTORS

IC1 MC3340 voltage
controlled attenuator
Q1 BC183 NPN transistor

MISCELLANEOUS

SW2
single-pole, double-throw latching push-button switch
JK1 1 S"" ja
Case to suit (with SW1 - see Buylines)
Knobs to suit
PP3-type battery + clip
8-pin IC socket

How It Works

One of the main parameters which allows us to differentiate between classes of musical instrument is the envelope of an instrument's sound output. Typical envelopes of four common instruments are shown in Fig. 3. Some, like the oboe or the guitar, have a fast attack (rise rapidly in volume at the beginning of the note) and others, like the violin, have a slow one. Similarly, sustain (the overall length) and decay (the fall in volume at the end) vary from instrument to instrument. The HE Envelope Generator controls these variables so that when a guitar is played through it, a different envelope can be impressed on the note. Figure 4 shows how a voltage controlled amplifier (VCA) is used along with a control voltage (which varies as the required envelope) to produce the desired effect.

Figure 3. Envelopes of some common musical instruments

Integrated circuit IC1 is a complete, single-chip VCA and the guitar signal is applied via C1, to pin 1. The output signal comes from pin 7.

Pin 2 of IC1 is the control voltage input and a DC voltage of 0 V gives maximum output; ie, all the guitar signal is fed straight through to the output. Actually, the IC amplifies the signal
somewhat, so the output will be larger than the input by a factor of four. A voltage of 6 VDC at the control input reduces the output signal to zero. Voltages in between the two produce a corresponding level of output.

All we need now is a source of control voltage which varies between 6 V and 0 V (down, then up - not up, then
down, as in Fig. 4) in the form of an envelope.

The pedal's internal switch SW1 is shown in its resting position in Fig. 1. Capacitor C2 is charged up to about 7 or 8 VDC via R1 and RV1. Transistor Q1 acts as a high impedance buffer (ie, it has a high input resistance, therefore it does not discharge the capacitor) in a circuit configuration known as an emitter follower. In other words, the emitter voltage is almost at the same voltage as the base (which is connected to C2). Because of the semiconductor junction between base and emitter, the emitter voltage is about 0.7 V lower than that of the base. Pin 2 of IC1 is therefore at a voltage of about 6 to 7 V and thus no output is obtained, whatever the amplitude of input signal to the IC.

When the foot pedal is pressed, SW 1 connects C2 to RV2 and R2. Therefore, C 2 discharges down to 0 V at a rate determined by the value of RV2. Thus the VCA control voltage falls like wise to 0 V and the guitar signal increases to maximum at the output. Potentiometer RV2 therefore controls the attack rate.

Sustain is set by the length of time the pedal is held down and SW2 is connected to RV2. When the pedal is released, RV. 1 is re-connected and C2 charges up (the decay control voltage) at a rate determined by the pot. Consequently the output signal volume decreases back down to zero.

Buylines

Magenta Electronics produce a kit for the HE Envelope Generator which includes case, PCB and all components and parts for $£ 15.32$. This price includes VAT but not p 8 p.

The case is obtainable separately from Magenta for $£ 5.65$, again inclusive of VAT but not p\&p.

Please add $40 p \mathrm{p} \& \mathrm{p}$, whatever size order you place with Magenta.

Figure 5. Internal view of the case showing how tight a fit it is. Note the use of screened cable for all audio signal-carrying leads

Presensitised PC Boards, Developer. U.V. units. Toyo miniature Fans $230 v$ AC $£ 9.95$ Mini Metal Detector/Voltage Tester for locating cable under plaster $£ 9.95$
Flow/Speed Sensors for monitoring fuel consumption electronically in vehicles
Just one of the exciting Leader range

LB0508A
OSCILLOSCOPE
With 20 MHz DC bandwidth and 10 mv input sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide range of applications.
Send SAE for details of full range.
Marshall's $80 / 81$ catalogue is now available by post, UK 75p post paid Europe 95p post paid: Rest of world $£ 1.35$ post paid.
A. Marshall (London) Lid., Kingsgate House,

Kingsgate Place, London NW6 4TA
industrial Sales: 01-328 1009
Mall Order: 01.624858224 hr service

The larger Catalogue that means

FREE POSTAGE IN U.K. ADDITIONAL DISCOUNTS KEEN PRICES GUARANTEED SATISFACTION GOOD STOCKS

We pay postage

Semi-Conductors • I.C.s • Optodevices • Rs and Cs in great variety - Pots • Switches • Knobs. \bullet Accessories •Tools • Materials • Connectors

ELECTROVALUE

GLOBAL A ELECTRONIC ELECTRONIC CONSTRUCTION KITS SUPER CHIP 2 Full MW coverage, uses I.C. 2N414+2 transistors. easy to build diagrams. Good beginners prolect complete with case and loudspeaker. 28.25 + P\&P 75p SUPEA CHIP 1 Pocket earpiece radio. Performance and looks, as above, complete with easy build plans. $66.95+$ P8P 65P CAYSTAL RADIO For baginners, no batteries required, complete with case and easy bulld plans. £2 25+P\&P60p Money refunded if not satstied provided goods are returned undamaged. Post and packing included unless stated. All units are checked and tested prior to despatch. All items sublect to availability. IOs and Cheques made payabie to: PLASTIC INSTRUMENT CASES $110 \mathrm{~mm} \times 75 \mathrm{~mm}$ in grey-black... $95 p+P \& P 35 p$ CAR RADIO Manual with speakerfixing kit OCEAN CAR STEAEO, with bulit -in a uto, stop. is $25+$ P\&P $75 p$ STEREO Masdphones, B ohm .EI5.95 + P\&P $95 p$ POCKET RADIO AM/FAM/AIR band with speaker $84,95$ PDCKET RADID AM/FM with speaker and E/P HAND ELECTRONIC FOOTDell GBme. $56.95+$ P\&P 75p OUARTZ HALOGEN Handheid spotlamos. Plugs into car cigar lighter. lamps. Plugs into .. EP. $75+$ PKP $75 p$ $\$ 00$ warts Mains Dimmer with magic eyo facility SITCO CASSETTE Recorder D/C, small size 1 B S.R.CT79 Auto Turnta bie with ceramic cartridge .E19.95 + P\&P E2. 50 B.S.M. C1E2 with A.B.C. cartndge plinth and cover E38.50 P8P $£ 2.50$ LOVTRON Pratassional Headohones 416 ohm coiled cord vol/control. \qquad [12 95 + P8P 95p LOBAL ELECTRONIC ENTERPRISES st. John's Wonks. St. John's, Bedfort	

OHIO SCIENTIFIC COMPUTERS. Superboard 3 EL59
Power supply kit $£ 11.95$. Modulator $£ 3.50$. Guard band
kit E 10 lconverts the display to 50 Hz and 32 lines of 32
$\begin{aligned} & \text { chrs., gives } 1.200 \text { and } 300 \text { Baud tape speeds and } \\ & \text { increases the computing speed by } 50 \% \text {. Special }\end{aligned}$
ofter: Superboard $3+$ power supply and modulator
$\mathrm{kit}+$ guard band kit ONLY £172. 4K extra ram $£ 15.60$
Wemon £19.95. Case £27. Cassette recorder £18. Ceg-
mon improved monitor rom $£ 29.50$. Assembler/Editor
lines $\times 54$ characters for superboard TWO $£ 14$.
PRINTERS supplied with free interface and word
t225. Oki Microline 80 £299. Epsom MX70 £253.
SInclatr products only are post free. scile
oscilloscope E139, adaptor Ef , re chargeable batteries
7.95 . xj probe fB .05 , x10 probe $88 . \mathrm{BE}$, cary ease
$\begin{aligned} & £ 8.80 \text {. pfm200 } £ 52.40 \text {, adaptor } £ 4 \text {, case } £ 1.73 \text {, connec } \\ & \text { tor kit } £ 11.27 \text {. PDM } 35 \text { £32.95, adaptor } £ 4 \text {, case } £ 1.73 \text {. }\end{aligned}$
dm 235 £56.50, dm 350 £78, dm450 £107, adaptor $£ 4$
$\begin{aligned} & \text { cass } £ 8.80 \text {, rechargeable batrs. } E 795 \text {. Microvision } T \\ & \text { E69. Adaptor } E 6.95 \text {. }\end{aligned}$
MEMORIES 2114 450ns ER.95 4116 200ns E1.99. 4027
f1.30. All low current.

- battenr eliminator kits 100 ma radio types with press studs $9 \mathrm{fl} 179,9+9 \mathrm{P}$ [250. stabilized 8 -way types $3 / 4 / 26671 / 29 / 1215 / 18 \mathrm{v}$ locma E 3.12 . 1 Amp
 5 V stabilized $11 / 2 \mathrm{~A} \mathrm{f9}, 3 \mathrm{~A}$ f $14,6 \mathrm{~A} £ 20$. 12 V car conver. tor $671 / 2$ gv IAE1.62.
${ }^{\circ} \mathrm{T}$-dec And S-DEC. BAEADBOARDS a-dec fa 59 exp4b £2.64, exp 300 £6.61
*BATTERY ELIminators 3 -way type $67 / 2 / 29 v 300 \mathrm{ma}$ 63.50. 100 ma radio types with press studs $9 \mathrm{v} £ 4.85$, $9+9 \mathrm{v}$ f6.25. Car conv
$\$ 1 / 257 / 29 \mathrm{v} 800 \mathrm{ma}$ £3.04
-TV GAMES AY-38600 + kit 112.98 AY-3.8550 + kit

SWANLEY

ELECTRONICS Postage $£ 3.50$ on superboard, E 4.50 on printers ${ }^{45 p}$ on other orders. Lists 27 p post free. Please add VAT excepl to sections marked with a * which al

Is he a man, a machine or just a figment of HE's imagination? Clever Dick, in whatever form, is back on duty

First letter I received this month, from G.S. Pierce of Halifax, West Yorkshire, contained two rude cards: one for the Editor's car and the other for the smallest room in the building. Thanks for cheering us up, and we'll see if a binder will cure your stomach problem.

Number one letter this month is yet another query about the HE Minisynth.

Dear Clever Dick
I have a question:
How can you prevent "Mini Synth With Memory" (HE, Nov. '80) from making its ignorance warning hum?

I would like to inform you that I have successfully built and installed the "Home Security System" (HE August '79). I have just turned 12 on the 5th February, 1981. I have been reading HE since the first issue appeared in Nov. 1978.
W.E. Meyer

Pretoria, Republic of South Africa
Minisynth is designed around one clever chip, the TMS 1000 N MPO 121, and the warning it gives you if a note hasn't been played for several minutes cannot be suppressed. So you'll have to live with that one.

Congratulations on building the Home Security System: you'll need it to protect all those back-issues.

Nice short one next.
Dear CD

1) Could you tell me where I can get 1:1 transformer; $50 \mathrm{~V}, 2$ A for use in a power supply to isolate the outputs from each other?
2) How about publishing a design for $C B$ in the near future?
R. Sewell

London

P.S. Thanks for a great Mag
P.P.S. Short enough?

The transformer you describe would be very difficult to come by and is likely to be expensive. One way to get the isolation is to use two transformers (each 240/50 VAC) back-to-back (240 V windings coupled) but this arrangement would be costly and inefficient. I dont know what you're trying to do, so it's difficult to give any other suggestions.

For an answer to your second question, see the answer that the Editor gave to V.M. Holness in Your Letters on page 47 of last month's issue.

Dear C.D.
I would like to make the diesel horn (Feb
'81) for my 00 scale railway. This works
from 12 volts, whereas your project only uses 9 volts. Not being made of money, would it be possible to use the track's 12 volt supply.

The IC's could take the 12 volts but the capacitors would have to be 16 or 25 volts. I know it is not your fault, but if there are any of those other people in your office, tell them to use 12 volts instead of the 9 volt power supply.
Peter Day
Camberley, Surrey
Yes you can make use of the 12 V supply, but make sure that it comes directly from the power supply and not through the speed controller first (some of these
controller/power supply units only provide a controlled output). If you did use 12 V direct then the electrolytic capacitors would have to be replaced with higher-voltage types. A better suggestion is to derive a regulated 9 V supply from your 12 V supply.

The trouble with your last suggestion is that most people here are not model train addicts.

Call for help next.
Dear CD
This is the first time I have written to your magazine so could you please please answer my questions.

I would like to know who sells the AY-3-8610 IC and how much it costs. Also could you have a project on making a TV game as I am dving to make one.
P. Smith

The AY-3-8610 is a Superspace TV games chip and, as we discovered, difficult to get hold of. We doubt whether most suppliers want to sell it 'one off' because it is so specialised.

In answer to your second query, we have no plans to publish a TV game project. Because the electronics is so complex in these games we leave them to our sister mag ETI. (A space invasion game was published in the November ' 80 issue of ETI.)

Dear C.D.
l've been wanting to construct a decent spec amp for ages. Seeing the project advertised in March edition of HE for the preamp in April's issue, llooked forward to it with enthusiasm.

Now that I've found it's going to cost me about £62, just for a preamp, I'm quite dejected.

Surely you could've struck a deal for your fans whereas a Hobby Print could be a vailable.

I mean E12 just for a P.C.B.; it's

ridiculous.
Come on now, do your ever faithful fans a favour. We're not all rich.
PK Lad
Ashton U. Lyne, Lancs
I had better make something absolutely clear about HE's hi-fi project: the preamplifier and power amplifier together make a true hi-fi system. Trouble is, good (even moderate) hi-fi costs money. A good hi-fi pre-amp can cost you a lot more than $£ 62$. And if you saw that PCB with all the component position marked out and the copper tracks pre-tinned, you'd see that it's good value for $£ 12$.

But stick with us: we hope to be featuring another much lower-priced system in comming issue - provided we think it is up to scratch.

Last one is from someone describing himself as Prof. S. Unwin.

Dearus Mastermindibold Dick,
Oh, deep joy, deep jov, at writing to your column there is! Howeverlode, problem there is, mine for the asking. Recently fitted headphone socketer fittilode on the taperecording contraption had speakibolds in parallel and sound was very much coming from the centre of the /d. Thenilode, with speakilodes in series, the musipoo was very much surroundsoundibold, although actual watts was reduced oh yes. Could you possibold supply answer in next few weeks?
Await deep joy at vour reply,
Prof. S. Unwin
P.S. Remember, T.X. Radials give maximost milodes.
P.P.S. Actual Question: Why is this?

Well, why is it? Maybe some of you out there will be willing to help the 'Professor' Binder to the reader sending the best suggestion.

Enough is enough for this month. Oh yes, there was something I had to mention: we will be unable to send replies by post for the time being, even for letters sent with an SAE. Sorry about this, but we need some time to clear the backlog of your queries. Stay lucky - and patient.

Famous Names

Heinrich Rudolf Hertz

With 'Radio' as the main feature this month, it seems appropriate to devote this third part of our Famous Names series to Heinrich Hertz - the man who discovered radio waves

AFTER SO MANY years of calling the units of frequency cycles-per-second, it still takes old-timers a while to get accustomed to using the name Hertz. Surprisingly few people associate the name Heinrich Rudolf Hertz with the discovery of radio waves, but the use of Hertz (usually shortened to Hz) to denote frequency shows a deserving recognition of this fact.

Hertz was born in 1857 and after a distinguished school life, he entered Berlin University to study under the celebrated Helmholtz. Helmholtz was one of the last of the great Victorian scientists - one of those men who are equally happy in any branch of science. Two of his contributions to Physics are still remembered in the textbooks: the Helmholtz coils and the Helmholtz resonator. A pair of Helmholtz coils consists of identical coils spaced one coilradius apart, and their peculiarity is that the magnetic field between them varies only slightly from place to place between the coils. The Helmholtz pair is therefore the starting point for any TV deflection coil design. The Helmholtz resonator is a bottle with a narrow neck, and its resonance to sound waves is decided by the volume of the bottle and the dimensions of the neck. If you happen to be in the business of designing cabinets for hi-fi loudspeakers, then the Helmholtz resonator is pretty important. All in all, young Hertz must have had a good grounding both in electromagnetism and in wave motion, and the success of his studies was recognised in the award of a doctorate by the University in 1.880.

He started on a career of research in electromagnetism. In 1883 he became aware of Clark Maxwell's work on electromagnetic theory, a brilliant but neglected work which predicted the existence of waves which would be invisible, but which could travel at the speed of light. Hertz was convinced that Maxwell's theory was correct, and that these waves existed in reality as well as in mathematical equations.

Hertz directed his very considerable experimental ability to the problem of generating and detecting electromagnetic waves. He reasoned that very high frequency oscillations should behave in a way similar to light waves, and decided that the resonant circuit around a spark-gap would probably provide the best conditions fo generating suitable oscillations.

His apparatus, shown in Fig. 1, is now one of the famous landmarks in radio history. It consisted of an induction coil

capable of generating about 30 kV of low-frequency AC, and a spark gap between two copper spheres. The inductance of the leads to the spheres plus the capacitance between the spheres constituted a resonant circuit. The resonant frequency was high, much higher than the frequencies which were to be used later by Marconi and others. Recreation of Hertz's experiment has, in fact, shown that the strongest transmitted frequencies were in the lower microwave range.

The receiver was equally simple, as can be seen from-Fig. 1 - a pair of copper spheres at the ends of short pieces of wire. This constitute what we would now call a dipole aerial, and the principle on which Hertz was pinning his hopes was that electromagnetic waves picked up on the wires would create a sufficiently large electrostatic field to ensure a high voltage across the gap between the spheres. Hertz's ideas worked out perfectly. When the transmitter was sparking away, sparks could also be seen between the spheres of the 'receiver'. There was no connection of any sort between the transmitter and the receiver. None, that is, apart from the electromagnetic waves which Maxwell had so confidently predicted in 1864. It was a perfect vindication of Maxwell's theory - but the evidence was not strong enough for Hertz.

Hertz felt that, in order to vindicate Maxwell's theory fully, he must show that there were waves passing from the transmitter to the receiver, and that these waves were physically similar to light waves. He started on a long and ambitious project of discovery using methods which were ideally suited to the short wavelengths which his equipment generated. Oddly enough, had he generated lower frequencies, his measurements would have failed - these are the sort of happy accidents which continually seem to occur in the history of science.

Practical Measurements

Measurement of the wavelength of the radio waves was the first objective. The standard method of measuring the wavelength of light makes use of wave interference. Light

Figure 1. Hertz's transmitter and receiver. The induction coil is a DC to AC converter producing high-voltage pulses (about 40 kV)
from a source is split into two beams (Fig. 2) and these beams are aimed at a screen. Light rays which have travelled exactly the same distance will reinforce, causing a bright spot, but when the distance difference between the paths is half a wavelength, or any odd multiple ($3,5,7,9$, etc) of half a wavelength, the waves cancel causing a shadow. By measuring the distances between these 'fringes' of light and dark, the wavelength of light can be calculated.

Hertz used this technique, but since the waves could not be seen he had to use small spark-gap detectors instead of a screen. The wavelength of his apparatus turned out to be a few centimetres.

Hertz also measured the speed of the waves, using once again a version of the classic methods for measuring the speed of light. These make use of mirrors revolving so fast that a ray of light which has been delayed by travelling a long distance to a reflector and back finds the mirror at a

Figure 2. The method Hertz used to measure wavelength of light: (a) a slit in an opaque sheet selects one ray of light, which is then split into two by close-spaced splits in another sheet. The image projected on the screen (b), when examined with a microscope, consists of alternate dark and light bands caused by wave interference. The wavelength can be calculated from the distances indicated
different angle when it returns, so shifting the reflection. The amount of the shift, together with the speed of rotation of the mirror and the path distance, can be used to calculate the speed of the light.

To make this measurement, Hertz had first to establish that radio waves were reflected, and he was delighted to find that the newly discovered waves reflected from metal sheets in exactly the same way as light waves do, with the angle of reflection equal to the angle of incidence (Fig. 3). He also found, incidently, that radio waves were refracted; that is, they changed direction as they passed from one material to another exactly as do light waves.

Having made these points, Hertz succeeded in measuring the speed of the new waves. This speed turned out to be 300 million metres per second, the well established value for the speed of light. Hertz now felt that he had indeed discovered some of the waves which Maxwell had predicted. The work had takenihim four years, from 1885 to 1889 .

Figure 3. Wave reflection. Radio waves are reflected from a metal sheet in just the same way as light waves are reflected from any mirror

Road To Radio

In 1889, Hertz was appointed Professor of Physics at Bonn University. His work with electromagnetic waves was over for the time being, and his new line of research was to be on gas discharges, following the work of Geissler. His report, 'Electric Waves', was not published until 1893, because his health was seriously declining a lung infection which he had disregarded was now recurring.

He died in 1894, aged 37 , with a brilliant career behind him, and a promise of much more to come. His 'Miscellaneous Papers' was published in 1894, and his 'Principles of Mechanics' in 1899. These works were not his epitaph, though they hinted at the remarkable discoveries which he might have made. There is little doubt that long-distance radio would have been established much earlier than 1910 had Hertz lived. As it was, his work started an immense frenzy of experimental activity, of which the work of Marconi is best known to us. We shall remember, though, that Hertz's work caused immense excitement, and practically every country can boast of a radio pioneer. Of these who disputed Marconi's claim to be first with long-distance radio transmission, Tesla in Czechoslovakia and Popov in Russia were both serious contenders.

There is no dispute about the source of the work, though. Maxwell blazed the trail, and Hertz built the road along which all the later radio experimenters travelled. Now that we no longer measure magnetic flux in maxwells, it seems entirely appropriate to measure frequency in hertz.

Quick Project:Audio Mixer

Can it be true - a complete multichannel audio mixer project which uses only one transistor? This easily-constructed Reader's Design proves that it is. It's cheap, too - less than just a couple of pounds will buy you all the components.

This simple circuit sums the three audio signals entering at the transistor's base and produces an amplified output from the collector. More inputs can be added if required, each additional input needing a potentiometer, capacitor, resistor and input socket.

Output of the circuit Is approximately 500 mV isufficient to drive most amplifiers) for an input signal of 5 to 500 mV . Thus guitars, microphones and lowlevel audio signals from tapedecks etc, can be mixed to personal requirements.

Use a small metal box to house the project - a die-cast aluminium one is ideal.

All leads from input sockets to potentiometer controls, from the controls to the board, and from the bcard to the output socket should be made using screened cable. Make sure that you connect the screen (not the signal lead) of the cable to 0 V .

Switched potentiometers can be used if you want complete isolation of any one signal.

Figure 1. Circuit diagram

Video Disc Update

Hugh Davies describes recent developments in video disc systems

IN THE DECEMBER issue of HE, the article View Into Video Discs (pp 18 to 22) opened with the statement about the video disc systems:
in 1981 we should start to see them in the UK'. The article went on to describe the activities of the three largest companies - Philips, RCA and JVC - concerned with the development of video disc players (the hardware) and the discs (the software).

At the time of writing (April '81) there are still no discs and players available in the UK. This article gives you a brief update on events.

LaserVision

Philips was originally on target for a May '81 launch of its LaserVision system but has delayed the launch until the autumn. Until December 1980, the system was called VLP - video long play.

According to Philips, a mid-yẹar launch was commercially less at tractive because of the unexpected impact of the recession, and it considered that the autumn would be the right time.

Philips said that, although the players and discs were already in production, several problems had been experienced. One of these had been associated with the master tapes submitted by some of the film companies. A spokesman for Philips said: 'We've been very strict about quality'. Although accurately specified, tapes of inferior quality or incorrect cutting lengths had been submitted. It was also said that the quality of LaserVision is such that any defects in the master tapes are immediately apparent - much more so than would be noticed on video cassette systems.

Another problem was that of low initial yield from the factory producing the discs at Blackburn. Philips has used a different production process in the UK than the one used by Magnavox, its subsidiary in the US. The spokesman said that the factory was not up to sufficient yield yet.

Not only does Philips want to have enough discs for the launch but it also wants enough in reserve for back-up orders.

The LaserVision players are being produced in Holland and Belgium.

Selectavision

RCA launched its Selectavision video disc system to the US trade in March this year. A satellite transmission from New York was used to reach 5,000 dealers. RCA claimed that Selectavision was its biggest launch of a product in business history, with $\$ 20$ million spent on advertising and promotion and with 500,000 disc albums delivered to dealers in 50 American states

According to Ken McKee, manager of RCA:'s European Technical Relations, hi-fi dealers handling video cassette recorders were less receptive to Selectavision than were other dealers, and saw it as a threat to their existing market. A VCR system having many technical features can cost between $\$ 600$ and $\$ 700$, while the Selectavision player has been selling for between $\$ 450$ and $\$ 500$. It appears that customers with money to spend prefer VCR players with all the extra features - including the ability to record. The irony is that although you can't record material onto a video disc, it is likely to produce a higherquality picture and have a longer life than a video cassette.

RCA's target for a launch in the UK is still vaguely pitched at 1982 VHD

Compared with the other two companies, JVC has been bold about the launch dates for its VHD (video high density) disc system. These are October '81 for Japan, February ' 82 for the US and June ' 82 for the UK. A total of 150 disc titles are planned for each launch

According to a spokesman for JVC, the VHD system is undergoing some changes to make it comply with the American consumer standards. One change is to make the player less susceptible to interference from radio transmissions in the band 900 to 1200 MHz - a band likely to be allocated to radio hams in the US and CB-ers in the UK.

The spokesman went on to say that there had been less problems with the discs, which were at present undergoing test pressings with Thorn-EMI in the UK

PARNDON ELECTRONICS LTD.

Dept. No. 22, 44 Paddock Mead, Harlow, Essex CM18 7RR. Tel. 027932700 RESISTORS: $1 / 4$ Want Carbon Film E24 range $\pm 5 \%$ olerance. High quality resistors made under strictiy controlled conditions by automatic machines. Bandoliered and colour coded.
E1.00 per hundred rmixed. (Min 10 per value) £8.50 per thousand mixed (Min 50 per value) Special stock pack. 60 values. 10 off each $£ 5.50$

DIODES: IN4148 3p each. Min order quantity - 15 items
E1.60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed base - solve those
programming problems.
4 Way 86 each 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each.
DIL SOCKETS: High quality, low profile sockets.
8 pin - 10p. 14 pin - 11 p. 16 pin - 12p. 18 pin - 19p. 20 pin - 21 p. 22 pin -23 p. 24 pin -25 p. 28 pin -27 p. 4 C pin -42 p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - U.K $£ 1 \cdot 00$. OVERSEAS $£ 5 \cdot$ CASH WITH ORDER PLEASE

POWERFET AMPLIFIERS \star

ĆȦ3080E	70p ${ }^{\text {2 }}$	on P.F.A. orders Built
CA3140E	45p	
MC3401	30p	
TLO81	29p	POWERFETS
T1082	550	80512 (60v, 1/2A, Pchan) 90p
2102	60p	80522 (60v, 1 1/hA, Nchan.) 85p
2114	240p	VN67AF (60v. 2A, Nchan.) 80p
40018	17p	${ }^{2 S 549}$ (140v. 100w, Pchan.) 340p
40118	17p	2SK134 (140v, 100w, Nchan.) 340p
40138	40p	
40168	409	H1-FI ON TWO CHIPS
555	$25 p$	HA12017 (Preamp 0.001\% distor-
709	150	tion 83dB SN in phono application)
710	${ }^{25 p}$	80 p .
733	500	HA1397 (Poweramp 20 watrs in 88.
741	$18 p$	0.02% distortion (typ) 195p.
78105 78112	$29 p$ $29 p$	Both with data and crrcuirs

SCOPE TRACE OOUBLER P.C.B.
Buit CW shif, chan. select, choprate controls and ins tructions. use-
ful display from DC to 10 MHz . Runs from 9 V battery $£ 9.95$
H.A. 1388 £1.95. Heatsink for above 40 p .
H.E. PUBLIC ADOAESS AMPLIFIER. Component set includling H.A. 1388 and super low nolse input iran
sistor. (Excludes, board, box slstor. Excludes, board, box and
controls). E2.95. controls). $\mathbf{E 2 . 9 5}$
Bargain Packs
200 mixed ceramic capacitors 100 mixed polystyrene capacitors 100 mixed polystyrene capacitors
 Cabie markers, clamps, fuse holders, etc......f. 1.00
cal 300 mixed $1 / A$ and $1 / 2$-watt resistors.................95 150 mixed 1 and 2 -watt resistors..

Minif ralays

12 vminin Reays (continental tyoes)
${ }_{2}^{2}$ pole change over type $1,700 \mathrm{~A}$. \qquad .. .10 for 83.50

or 50.40 Izv Mini Reiays (continantal lyoul | or 50.40 en. |
| :--- | 12v Mini Reiays icontinental typel.

4-pole change over rype 1.1280 R . 4.pole change over rype 1.1280 R .-.....-. 10 for 55.00
2430 or fo Plug in bases to suit to for $\mathbf{5 2} 50$. $\mathbf{5 0} 30$ es. Proiect Boxas
Migh impact boxes (ABSI black. Lids rotained by four
screws into brass inserts. Internal prnted circuit slots screws into brass inserts. Internal printed circuit slat
are provided in boxes Internal dimensions (M ms). are provide
MB1 Length 75×8 Breadth 56×0 epth $35(3 \mathrm{in} \times 2$ in
 M83 $115 \times 95 \times 35(4.5 \mathrm{in} . \times 3.7 \mathrm{in} \times 1.5 \mathrm{nn} . \mathrm{J}$
MB8 $207 \times 122 \times 7718$ lin. $\times 4.8 \mathrm{in} \times 3.0 \mathrm{in}$

Plastic Project Boxes
Olue Box buit to
Blue Bor buit to house, powar supplies, spead con-

P\&P 50p Send s.a.e. for list.
 erials, microphones, etc, etc
POP'S COMPONENTS $\begin{gathered}\text { 38/40 LOWER ADDISCOMBE ROAD } \\ \text { CROYDON. SURREY.01-688 } 2950\end{gathered}$

ADVERTISEMENT INDEX

Maplin ...
Marshalis.
Narndon Electroni
Parndon Electronics
T. Powell

Precision Petite
J. W. Rimmer

Selray Book Co
Silica Shop
Swanley Electronics
Tangerine Computers
Technomatic
Tempus.
TK Electronics
Two \& One Components
Vero Electronics
Watford Electronics
Ambit International
Arrow Audio Centre Bi-Palk Semiconductor

BNRS J. Bull (Electrical) Butterworths

Electron-Kit
?

Infra-red Remote

The second part of this simple-to-build project, designed by TK Electronics, gives details of the Transmitter

IF YOU REMEMBER, last month we gave details of the Receiver/ Controller construction, so this month's episode is taken up with that of the Transmitter. It is a somewhat trickier circuit to build, not because it is any more complex than the Receiver/Controller, but because it is a lot more compact. Design of the printed circuit board (PCB) is, in fact, almost a work of art. When building it up take great care not to form solder bridges across copper tracks on the board and not to overheat components. The procedure is as follows.

Construction

First, insert and solder all components into the PCB, including the push-button PB1, but not the two LEDs or capacitor C1. The overlay in Fig. 2 shows component locations.

Next, fasten the two LEDs to the case using mounting clips, so that
the cathodes of both devices are positioned nearest to the side of the case which the hole for the pushbutton is closest to. Now, cut the LED leads to a length of 7 mm from the box side.

Position the PCB into the case underneath the LED leads so that PB1 fits into its mounting hole, and solder the LED leads to the pads on the board. Do not overheat the LEDs as damage may result and, because they do not emit visible light, it is thus impossible to see if they are not working.

Solder the battery clip to the correct pads on the copper track, ie red to that marked ' + ' and black to that marked ' - ', then solder capacitor C1 on to the same pads making sure that you polarise it correctly.

Finally, connect a battery to the clip, insert it in the case and screw on the case back. The Transmitter is now complete, and you can try it out with the Receiver/Controller.

Figure 1. Circuit of the infra-red transmitter

Parts List

NOTE:
C1 AND BOTH LEDS MOUNT
UNDERNEATH THE BOARD AFTER INSTALLATION INTO THE CASE

Figure 2. Overlay of the PCB

Buylines

Kits for the receiver ($£ 4.83$ including VAT) and the transmitter ($£ 10.35$ including VAT) are avallable from

TK Electronics (HE)
11 Boston Road London W7 3SJ.
Please add 50p p\&p to the cotal order.
The recelver kit includes the PCB and all parts to make up the board; the transmitter kit includes PCB, all parts and the hand-held case. Also supplied with each kit is an instruction leaflet. When building your two kits, follow either the supplied leaflet or our instructions, as small discrepancies will occur in component numbering. Both sets of instructions are, however, correct.

Left. View of the project after the PCB and the two LEDs have been soldered.

Below. Capacitor C1 and the battery leads solder to the back of the PCB.

How It Works

The transmitter consists of an astable multivibrator producing a rectangular waveform, at a frequency of approximately 1700 Hz . Two infra-red LEDs are driven by this multivibrator oscillator and thus emit infra-red light, pulsed at the same frequency.

Transistors 01, 02 form a standard multivibrator circuit, the frequency of which is determined by the value of components R1, R2 and C2. Power to the circuit is controlled by push-button PB1, thus when the transmitter is not in use no current is drawn from the battery.

Infra-red LEDs 1 and 2 are inserted in the collector circuit of $\mathbf{Q} 2$ so that whenever the transistor is on, the LEDs emit infra-red light.

The values of R1, R2 and C2 are such that the two transistors are on, ie they conduct, for about 40×10^{-6} s (40 us) and then remain off for 560 us in every cycle. In thls way the average current drain on the battery is kept to approximately 20 mA , while the LEDs are actually being driven by pulses of over 400 mA . This current is supplisd by C1. Because of the short periods for which the transmitter is in operation, long battery life can be expected.

Breaker One Four

The publishers of HOBBY ELECTRONICS would like to point out that it is as present a contravention of the Wireless Telegraphy Act of 1949 and 1968 to use, manufacture, install or import CB transmitting equipment. It is not the intention of Modmags Lid to incite, encourage or condone the use of such equipment.

Now that the Home Office has published its specifications for the proposed FM CB service, Rick Maybury comments on the implications

AT LAST! The specifications for the new FM CB service have been published, after considerable delay and much speculation. Regular readers to Hobby Electronics and Citizens' Band will find few surprises but before we look at them in detail let's look at some of the background to the campaign so far.

Back in January 1980 the Home Office claimed that there was no possibility of introducing a CB type service in the UK due to lack of frequency space and interference problems. In September the Home Office issued a document entitled 'Open Channel', which set out proposals for a two-way radio service operating on or around 928 MHz . At that time it was claimed that a service operating on 27 MHz was impractical. In February 1981 the Home Office issued a statement saying that it was considering setting up an Open Channel service on or around 27 MHz , but using frequency modulation instead of the American AM (amplitude modulation) system. It also pointed out at that time that there was a potential for a European band that would allow CB equipment from various Common Market countries to operate side by side.

In the last week or so details of the new service have been released to enable manufacturers to prepare for the legalisation in the autumn. Now here's the interesting bit: the service is no longer referred to as Open Channel - in all the documents we've seen so far, it is called Citizens' Band. The frequency allocations for UKCB are outside any other allocation in the world, effectively creating a nonstandard system, unusable anywhere other than in this country. The band in question has somehow been found where apparently no space existed a year ago. One could construe this as being slightly perverse, but taken overall and considering the alternatives it could have been a whole lot worse. We came pretty close to getting nothing at all.

Thank you for being so patient: and now, for anyone who's interested, here are the basic specifications.

Summary Of New Specs

Two services are to be introduced, one on 934 MHz and one on 27 MHz . First 934 MHz :

Frequency range:
Number of channels :20
Channel spacing: 50 kHz
934.025 to 934.975 MHz

Max RF power : 8 watts
Max ERP : 25 watts (3 watts limit on hand-held equipment)

Next 27 MHz :

[^1]The above is the bare bones of it. Figures for harmonic emission, maximum frequency deviation etc, are well within normal international standards.

The first thing that most of you will have noticed is the starting point for 27 MHz - yes, it is well above the FCC and FTZ channels. In fact, it's right out on its own up with the unlicensable and largely undocumented band used by foreign embassies to keep in touch with their mother countries.

Reaction From AM CBers

So far the reaction to this announcement has raised the expected protests from the stalwart AM CBers, and the long-time campaigners for any CB system have raised the odd eyebrow. Radio modellers have naturally pointed out that the ideal solution would be for them to take this new band and let the existing illegal CBers keep what they undoubtedly already have.

I will be reporting on the ultimate outcome of this proposal in next month's BOF after the Home Office has held a series of meetings scheduled for the next few weeks. In these meetings it will be seeking the reactions of interested parties, ranging from radio modellers to the manufacturers. Meanwhile, I suspect that the figures that I have quoted will not be changed by any significant degree - not because I suppose that the objections will not be raised but simply because of the incredibly short notice given to the interested parties to respond. The specs were published on April 21 and the first of the three crucial meetings was held on April 24. The second meeting is (at the time of writing) scheduled for April 29 and

HE

SUBSCRIPTIONS

 Having problems huntingdown your copy of HE each
month? Make life easier for
yourself: for only $£ 10.00$ you
can have it delivered to your
door every month for a year.

Use one of three methods of payment to subscribe to HE:
Barclaycard Enter your Barclaycard number in the space provided on the
 coupon, add your signature, name and address - and we'll do the rest

Cheque or

Postal Order Enter your name, address and the amount in the coupon and send it with your cheque or postal order, made payable to Modmags Ltd.

Subscriptions Dept., Modmags Ltd., 145 Charing Cross Road, LONDON WC2H OEE

I would like to subscribe to 12 issues of Hobby Electronics
VISA

> I WISH TO PAY BY BARCLAYCARD PLEASE CHARGE TO MY ACCOUNT MY BARCLAYCARD NUMBER IS:
-I enclose a cheque/postal order* for $£ 10.00$
signature

NAME

(BLOCK CAPITALS)
ADDRESS

Delete as appropriate

A EXP 650 For microprocessor chips. $£ 3.60$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 5.75$
C EXP 600.6" centre channel makes this the Microprocessor Breadboard. $£ 6.30$
D EXP 4B An extra 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts 8,14, 16 and up to 22 pin ICS. £1.60
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ (Not illustrated.)
\& ITS AS EASY AS 1,2,3 with THE EXPERIMENTOR SYSTEM

```
SCRATCHBOARD EXP 300PC which includes one item. A matchboard
SCRATCHBOARD
``` 2. EXe drilled PCB - £1.20 -BREADBOARD 2. Scratehboard workpads - \(£ 1.50\) an EXP 300 solderless breadboard - \(£ 7.60\) -MATCHBOARD 4. EXP 304 which includes four items. Two matchboards and The above prices do not include P\&P and 15\% VAT
TOMORROW'S TOOLS TODAY
global specialties corporation G.S.C. (UK) Limited, Dept. 14H
 Unit 1, Shire Hill Industrial Estate Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682. Telex: 817477.
\(\Gamma\)
NAME

ADDRESS

1 enclose cheque/PO for \(£\)
or debit my Barclaycard. Access, American Express card
No. Exp. date post immediately
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { A EXP } 650 \\
& \text { E5.00 }
\end{aligned}
\] & Onty. Reqd. & \[
\begin{aligned}
& 8 \text { EXP } 300 \\
& \text { E7.76 }
\end{aligned}
\] & Onty. Read. \\
\hline \[
\begin{gathered}
\text { C EXP } 600 \\
\text { £8.39 }
\end{gathered}
\] & Onty. Reqd. & \[
\begin{aligned}
& \text { D EXP 4B } \\
& \text { £3.50 }
\end{aligned}
\] & Onty. Reqd. \\
\hline \[
\begin{gathered}
\text { E EXP } 325 \\
\text { £2.70 }
\end{gathered}
\] & Onty. Reqd. & \[
\begin{aligned}
& \text { F EXP } 350 \\
& \text { E4. } 48
\end{aligned}
\] & Onty. Read. \\
\hline \[
\begin{aligned}
& \text { G P86 } \\
& \text { £11.73 }
\end{aligned}
\] & Onty : Reqd. & \[
\begin{gathered}
\text { H PB } 100 \\
\text { £14.72 }
\end{gathered}
\] & Onty. Read. \\
\hline
\end{tabular}

Experimentor System
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
1 EXP 300 PC \\
£2.25
\end{tabular} & Onty. Reqd. & 2 EXP 302 \\
£2.58 & Onty. Reqd. \\
\hline \begin{tabular}{c}
3 EXP 303 \\
£9.40
\end{tabular} & Qnty. Reqd. & \begin{tabular}{c}
EXP 304 \\
£11.15
\end{tabular} & Onty. Reqd. \\
\hline
\end{tabular}

If no dealer in your area contact GSC direct.
Global Specialties Corporation (UK) Limited, Dept. 14H
Unit 1. Shire Hill Industrial Estate, Saffron Walden Essex CB11 3AO.

WANTED. Electronic components and test equipment. Good prices given. - Q Services, 29 Lawford Crescent, Yately (0252) 871048, Camberley, Surrey.

DIRECT ETCHING KIT by Chartpak, eight sheets symbols and rules, burnisher, etc. Simply and quickly draft your P.C.B. design ready for etching. \(£ 4.50\) incl. P. \& P. -A.S.R. Business Services, 24 Catherine Street, Salisbury SP1 2DA.

EXPRESS PCB DRILLING SERVICE: All PCB's 0.9 p per hole; postage 18 p (additional boards 4 p). Quantity drilling; any required diameters. PCB, stripboard as. sembly. Components at low prices. Enquiries welcome. S.A.E. details, list, cheque/PO.: RKS Electronics, 13h Queen's Terrace, Sherborne, Dorset DT9 4ED. Tel. (093581) 2488.

HAVE YOU SEEN THE GREEN LIST? HAVE of components (radio, audio and electronic) and electronic items and accessories at unbelie-
vably low prices. Something for everyone. Send 20 p stamps or large S.A.E. for list and receive FREE RECORD SPEED INDICATOR.
MYERS (Dept. H.E.), 14-16 Clifton Grove, Harehills, Leeds 9.

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED L.E.D. DIGITAL ALARM CLOĊKS

(1)

Relurned to Service guarantee period
(2)
guarantee period.
£3.95, inc repeat. S. 8 S P of \(£ 17\) 00. Offered W3.95, inc. VAT. or 3 for \(£ 9.95\), inc. VAT
£31.00. Offered at \(£ 7.95\) inc. VAT each, or 3 for E19.95 inc. VAT
These will be sold as received from our customers with the existing fault(s) and without guarantee. U.K. only

Discounts available on large bulk purchase
PRESCOTT CLOCK \& WATCH CO. LTD.
PRESCOTT HOUSE, HUMBER ROAD, LONDON NW2 6ER

PARAPHYSICS JOURNAL. Russian/ Czech translations. Autogenics (self-training) improves vitality. Psychotronic Generators, !UFOs, contacting extraterrestrials, Kirklianography, telelinesis, levitation, gravity lasers. S.A.E. \(4 \times 9^{\prime \prime}\) : Paralab, Downton, Wilts.

> PMARP POCKET COMPUTERS
> SHARP AT LAST - THE PRINTER FOR PC1211
> CE-122 Printer/Cassett interface \(£ 79.95\) PC1211 with CE-122 printer £172.00
> PC1211 with CE-121 cassette Interface £105.95 PC- 1211 only 992.15 All prices inelud All prices inelude (\(15 \%\)) VAT and UK Delivery

> ELKAN ELECTRONICS
> 28 Bury New Road
> Prestwich, Manchester M25 8 LD

\section*{EDUCATION Inner London Educ cation Authority LONDON COLLEGE OF FURNITURE 41-71 COMMERCIAL ROAD, LONDON E1 1LA Department of Musical Instrument Technology COURSES IN ELECTRONICS
FOR THE MUSIC INDUSTRY}

TEC DIPLOMA IN MUSICAL INSTRUMENT STUDIES
(2-year full time specialising in electronics)
TEC HIGHER DIPLOMA IN MUSICAL

\section*{INSTRUMENT TECHNOLOGY}
(2-year full time specialising in electronics)

\footnotetext{
The electronics options of these TEC courses allow the student to specialise in music industry application. Sultable students would be interested in both music and electronics and wish to combine them within this course. Application forms and further detalls are obtainable from the Senior Administrative Officer at the College.
}

1000's OF ELECTRONIC COMPONENTS FOR SALE. 35p for lists. - John E. Harris, 9 Ivybridge, Broxbourne, Herts. EN10 7LH.

\section*{METAL DETECTORS \\ ALPHA TRIB E29.50. DISC £44.90. \\ Alpha Sales: 11 Mile End Row \\ Blackburn, Lancs. Tel: 025454105 \\ TRADE ENQUIRIES WELCOME}

ZX80 \& ZX81. Join ZX guaranteed. All games/programs guaranteed to work. £5 year. Frustrated National ZX80 club people are welcome. - Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
PRINTED CIRCUITS. Make vour own simply cheaply and quickly! Golden Fotolak light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, \(£ 2.25\); developer, 35 p; ferric chloride, 55 p; clear acetate sheet for master, 14p; copperclad fibreglass board, approx. 1 mm thick, \(£ 1.75 \mathrm{sq}\). ft. Post/packing 75p. - White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

\section*{H. M. ELECTRONICS}

271a/275a Fulwood Road.
Broomhill
Sheffield Si0 380
Hobby Electronics, June 1981

\title{
microtan
}

TANGERINE COMPUTERS get you into computing for less than \(£ 80\) with

\section*{microtan 65}

\section*{a one-board 6502-based microcomputer}

But it doesn't stop there - Microtan is a SYSTEM

Start your expansion with TANEX - cassette interface, \(16 \mathrm{I} / \mathrm{O}\) lines, two 16 bit counter timers, data bus buffering, memory mapping and a further 1 K of RAM. Just plug in extra chips for 8 K of RAM, 16 more I/O lines, two more counter timers and a serial I/O line with RS232/20 mA loop and full modem control.

XBUG - a firmware package with cassette file handling rountines, a line-by-line assembler/dis-assembler, 10K extended Microsoft BASIC (as used by Apple, Tandy and NASCOM)

TANRAM - up to 40 K of extra memory

The system rack houses up to 12 boards. Extra serial and parallel I/O boards offer up to 128 I/O lines (16 eight bit ports) and eight serial I/O ports.

The full system will include high definition colour graphics, A
to \(D\) and \(D\) to \(A\) boards, IEEE 488 interface, PROM programmer, disc controller and TANDOS, a 6502 CPM
system.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.
There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

ELECTRONIC SUPPLIES UJD.

All mail to: P.0. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911```

[^0]: Hobby Electronics, June 1981

[^1]: Frequency range:
 Number of channels: 40
 Channel spacing: 10 kHz

