TWO NEW FEATURES \& CB NEWS INSIDE

For A Down-To-' \quad 'h Approach To Electronics

Evy hidect chios oday? Y Mbesmmised!

MAY 1981
Vol 3 No 7

Editor: Hugh Davies Assistant Editor: Keith Brindley
Drawing Office Manager: Paul Edwards Group Art Editor: Paul Wilson-Patterson BA
Managing Editor: Ron Harris BSc

\star ELECTRONIC ORGAN

First part of our project for DIY musicians 11
VOICE OPERATED SWITCH
With HEVOX you can control circuits with the mere sound of your voice 24
QUICK PROJECT - TWO-DOWN-ONE
Two different voltages from one pair of wires 33
INFRA-RED CONTROLLER
Two part project providing remote power control 49
PRE-AMPLIFIER - 2
This second part deals with case construction 59
AUDIO MILLIVOLTMETER
Simple-to-build, good-looking and functional too 67
PCB FOIL PATTERNS

What goes on underneath our projects
72

FEATURES

* ELECTRONICS IN MUSICAL INSTRUMENTS

Guest writer Tim Orr explains how synthesisers and organs work18

- SUBSTI-TUTORIAL

Useful advice on how to tell one transistor from another . 28
\star GADGETS, GAMES \& KITS
Special FREE supplement on the latest in electronic goodies35

BUILDING SITE
Keep your tranisistors cool . 43

* YOUR LETTERS

The Editor answers 47
OLEVEL O\&A
Enlarges your understanding of amplifiers 53
CLEVER DICK
Readers write back . 57
FAMOUS NAMES
The academic brilliance of Maxwell 63
BREAKER ONE FOUR
WE'VE DONE IT - legal CB in the autumn 71

NEWS \& INFO

Monitor
 6

HE Next Month . 8
Subscriptions . 64
Books From HE . 65
ETI Next Month . 69
Classified Ads . 74

Advertisement Manager: Stephen Rowe Advertisement Representative: Sally Holley Creative Director: Diego Rincón
Managing Director: T. J. Connel\$

θ
 Two

Profile Amplifiers-

Those of you who play with microcomputers will be familiar with the 2×80 from Sinclair Research. Early in March its successor was announced: the ZX81. This new computer features enhanced BASIC and it costs only £49.95 in kit form or $£ 69.95$ ready built. (The $\mathbf{Z X 8 0}$ cost £99.95.)

A total of 22 ICs were used in the $\mathbf{Z} \times 80$: its main processing unit handed the data processing and also drove the display, using one ROM (read only memory). As a result, the data display on a TV screen suffered from 'flicker'

By comparison, the $\mathbf{2 \times 8 1}$ has only four ICs. One of these is a custom device from Ferranti which contains the functions of 18 of the chips in the ' 80 . An additional feature of this device is a flicker-free operation.

The ROM in the ' 81 has double the storage of that in the ' 80 , and it can be plugged directly into the earlier machine. All that's needed is an overlay for the keyboard, which is encouraging for $\mathrm{Z} \times 80$ owners, who might have felt that their machine has become outdated. One problem, though: changing the ROM to the ' 81 type won't eliminate the flicker.

Scheduled for launch in June this year is a new printer for use with the '81. It also can be used with the ' 80 , if the computer is fitted with the ' 81 ROM.) This printer, priced at $£ 49.95$, uses electrosensitive paper and uses two styli, with one in contact with the paper at any time. It will enable a screen-full of information to be 'dumped' to paper in 12 s , or a complete listing of a program to be
made, even if it exceeds screen length. The printer is also claimed to be compatible with Prestel and Sinclair Research has unrevealed plans for this.

Screen display is 32 characters to the line - compatible with the US television market. A total of 40 characters/line are required for Prestel and, as pointed out by Clive Sinclair, managing director of Sinclair Research, this would require a change of the ROM and the reference crystal. He said that his company hadn't decided how to do it yet.

Sinclair Research is also launching into software, in the form of compact-cassettes, each containing between three and seven programs on computer-quality tape. Cost is $£ 3.95$ for each cassette, together with documentation. ITake note, though: ZX81 programs cannot be run on $\mathrm{ZX80}$ without modification, and viceversa. 1

In comments to the Press early in March, Clive Sinclair said that he couldn't understand why the Sinclair system had not been chosen by the BBC for its planned series of computer literacy programmes. (The choice of the Beeb is a computer being manufactured specially for the BBC by Acorn Computers of Cambridge, and based on the forthcoming PROTON - see report in Computing Today, April 1981. page 6.)

Nonetheless, the ZX81, with its improved features over the '80, and with accessories such as printer, software and a plug-in 16K RAM (compatible with the Z $\times 80$) for memory extension, is likely to be highly successful.

Do-lt-Yourself Kits From Blaupunkt

During May, Blaupunkt (Robert Bosch in the UK) is to launch four of its car radio and radio/cassette models - Hamburg, Tempelhof CR, Hamburg CR and Mannheim CR - in do-lt-yourself packs.

Perhaps 'fit-it-yourself' would be more appropriate, because each take-a way pack contains the radio (or radio/cassette combination), two loudspeakers and a fitting kit.

Although the fit ting kit is claimed to add only $£ 1.40$ to the total cost, it enables you to fit the radio or combination in the dash panel (into a 7 by $2^{\prime \prime}$ slot or with just the knobs and control fascia showing) or under the panel.

Included with the kit is a detailed 8-page booklet 'Installing your Blaupunkt auto sound system',
which gives well-illustrated instructions on how to do the fitting. For instance, it guides you on the choice of tools for the job and even includes a useful teach-in on wavebands and fading and interference problems.

What the kit does not include is an aerial (although you are advised on the choice) or any interference suppression components. Future special offers may feature free interference diagnosis, but Robert Bosch sees interference elimination as being a specialist job. (Elimination, that is, not a crackleridden compromise.)

HE hopes to do a step-by-step evaluation of one of these kits and to look at some other Blaupunkt products in a forthcoming Gadgets, Games \& Kits supplement. Stay tuned to this channel.

Details on the Montreal CR and the kit from: Robert Bosch Ltd., PO Box 166, Rhodes Way, Watford WD2 4LB (Tel. 92 44233).

Montreal Has Station Search

Nothing to do with the Canadian city, Montreal CR is a car cassette/radio combination, priced at $£ 162$ plus VAT, from Blaupunkt. It has some of the features usually found on this company's higher-priced models, such as the Banberg OTS ($£ 450$ RRP), notably 'station search

Instead of the conventional chord-and-pulley tuning scale system, the Montreal has a line of 16 LEDs, each indicating one spot frequency on the LW, MW or VHF bands. (Who ever looks at the precise frequency when driving along?)

Station selection on VHF is merely a matter of pressing a two-way rocker switch: the receiver stops at each station in turn as it sweeps up or down the
waveband. A knob has to be twiddled for MW or LW stations.

In common with the Banberg QTS, a quartz crystal controlled phase-locked-loop circuit is used for the automatic tuning. The difference is that the Montreal's tuning circuit is voltage-stabilised (satisfactory for the LED display) while that of the Banberg is frequency-synthesised (a must for digital read-out of frequency).

The price tag of the Montreal may seem high for in-car entertainment, but it's peanuts really. compared with the top-of-therange Berlin 8000 model which sells for around £660 RRP.

Montreal has electronic station programming on VHF, laststation memory on MW and LW and a cassette replay frequency response of 40 Hz to 14 kHz . Audio output power is $10 \mathrm{~W} /$ channel. Illumination is provided on the front panel.

And Now The Bad News

We're sorry to report that Hobby Electronics '81, which was due to be held at the Bristol Exhibition Centre from 29 to 31 May, has been postponed.

Because of lack of support from exhibitors we felt that we could not have put on as good an
exhibition as we would have wished for you. And so we're postponing it until we are better supported and are certain that we can give you 'the best for the West'.

Meanwhile, the Wales and West schools' electronics project competition, which was announced along with the exhibition, is still running. We'll publish more details in the next issue of HE.

Electronics News

Lindström Cutters On Test

We heard recently from Bahco Tools, Oxford, that its'series 80 cutters from Lindström had proven life in excess of a million cuts.

Must be worth trying, we thought, and put a pair of model 8140 diagonal side-cutting nippers on test. (By 'on test' we don't mean repeating the millioncut operationl)

These are without doubt highquality tools intended primarily for production work. In the hob byists hands they should give many years of use. Although the 8140 and 8141 models are not box-jointed (a precision screw and-nut joint is used instead), cutting action was found to be positive.

It is claimed that the screw and nut, as well as the surfaces of the joint, are precision-ground to ensure smooth operation without play throughout working life.

Handles are made from 'nonslip impact-resistant plastic'. These were found to be comfor-

T \& J's Latest Cat

Comprehensive has become the usual word to describe catalogues but it is true of this one from T \& J Electronic Components, which covers a good variety of items, ranging from adaptors to zener diodes.

You should find many of the components and miscellaneous items used in HE projects in this 52-page book. Assorted packs of components are also available (these contain unused - but untested - items), together with selection of tools. PCB
materials and other hardware Cost of the catalogue is 45 p post paid.

T \& J's services include photocopies of data sheets (25p/device) and a component enquiry postal service (SAE required with enquiries). The company has been in operation over the last $21 / 2$ years. Although most orders are handled by post, callers are welcome at the address below.

T \& J Electronic Components, 98 Burrow Road, Chigwell, Essex IG7 4 HB (Tel. 01-500 7073) 9705)

Last Chance To Hear HE Organ

As mentioned in Monitor last month, a special demonstration of the HE Electronic Organ, starting this month on page 11, has been arranged by the Electronic Organ Constructors Society.

This organ is large as HE pro jects go, and so you may like to 'hear before you build'. We think it sounds very good: if you don't believe us, hear it for yourself at 2.30 pm on Saturday 16 May at

St. David's Church Hall,
Lough Road,
London N7
Nearest Underground station is Caledonian Road (Piccadilly line).

New TVs For Old

No, not a special offer, but some incorrect information in the March ' 81 issue on one of the TVs shown on the cover of that issue.

The newest TV (centre) was described on the Contents page and in the article The Beginnings Of Real TV as a Colorstar TV made by Ferguson in 1968, on show at the Science Museum. Although noteworthy because it was the first all-transistor TV in the world, the 1968 receiver (model TX2000) was not the one in our pictures.

What we did show was the TX10 from Thorn-EMI, an example of which is also on show at the museum.

The TX 10 is currently in production (first introduced in 1980), and it features some important technical advances. These include a chassis isolated from the mains supply and a single modular PCB. (The PCB is made up as one board in production and then 'cracked' into two and folded into an L-shape.) This chassis will take 90 or 110° tubes ranging in size from 20 to 26". Operation is from 165 to 265 VAC, and black level power consumption is only 70 W .

Component count is low, and it uses a SAW (surface acoustic wave) filter in its IF (intermediate frequency) section. This results in a dramatic reduction in IF coils.

Amateur Radio Rally In Kent

A radio rally and exhibition is to be held on Sunday 3 May at the YMCA Sportscentre, Melrose Close (off Cripple St), Maidstone, Kent.

Doors open at 9 AM Itrade halls 11 AM) untll 5 PM, and many items of interest to the radio amateur and electronics enthusiast alike will be on show HE was told that a good variety of electronic components will be on sale in an 'Aladdin's cave'.

The Amateur Radio Society running the event has been in existence since before the last War, and it is closely associated with the YMCA. All proceeds from the event will go to the Maidstone YMCA and ARS funds.

Put Your Club On The Map

We would like to have details of all electronics and amateur radio clubs operating in the UK. If we get sufficient response then we will publish a regular list in HE giving details of coming events.

It is HE's policy to give as much support as possible to groups or individuals participating in electronics - as a hobby.

Frequencies On Display

If you have $£ 77.55$ (plus VAT) to spend and would like to measure frequencies between 5 Hz and 100 MHz or more then the MAX-100 portable frequency counter could be the answer.

Available from Global Specialities Corporation (used to be known as Continental Specialities Corporation), the MAX-100 has eight 11 mm -high LED digits and it can be operated from alkaline or NiCad rechargeble cells or from a 7.5 V to 10 V supply.

Frequencies up to 999999

Hz are displayed directly, and above 1 MHz a decimal point indicates the MHz position. 'Battery low' is indicated by the entire display flashing.

The MAX-100 comes complete with input cable, terminated in crocodile clips, and is supplied in a carrying case. A number of options are available, including the PS-500 prescaler ($£ 30$ plus VAT) to increase the measurement range up to 500 MHz .

Overall size is 45 by 143 by 197 mm and weight is $680 \mathrm{~g} \mathrm{in-}$ cluding batteries.

More information from: Global Specialities Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO (Tel. 079921682).

MONTH. NEXT MONTH. NEXT MONTH. NEXT MONTH.

Radio

This article traces the development of radio, from the earliest concepts, through tuned-radio-frequency receivers to modern-day superheterodyne types. As you will see from Radio, there's more to the average 'tranny' than many people realise.

News And Information

For all ages, for all interests, there'll be something for you next month. Projects, regular features, your own letters and viewpoints, CB are all in Hobby Electronics - the magazine that's written for the electronics enthusiast and hobbyist.

Items mentioned here are those planned, but unforeseen circumstances may affect the actual contents

Hobby Electronics, May 1981

Chokes. block filters, ceramic filters, resonators, IFTs, oscillator coils, audio filter blocks etc

LOW PASS FILTERS

Now from 10 kHz to 20 MHz TOKO's recently expanded LPF series covers from the audio spectrum through to 20 MHz in a series of LPFs for mpx, video, radio etc.

2 \& 3 elements available Featuring low insertion losses, -80 dB at the $+/-21.4 \mathrm{MHz}$ points. Ask for details.

The LPFs are based on $7 \& 10 \mathrm{~mm}$ formats with up to 4 LC tuned elements per block. Many stock types available.

CIMEIT international
 TEEEPHONE (STO 0277) 230909 TELEX 995194 AMBITG POSTCODE CM14 4SG

Electronic Organ

This is the ideal project for the home constructor with an interest in music. Our do-it-yourself electronic and polyphonic organ is no toy but a real musical instrument yet it should cost you under $£ 100$

ONE OF THE MOST expensive single items in an organ is the keyboard and inevitably (in an effort to keep the total price as low as possible), manufacturers often skimp in this area by using a short type of, say $31 / 2$ octaves (ie from tenor F to the C two octaves above middle C). This is a pity, because genuine organ music is written for a longer keyboard extending down to the C , two octaves below middle C.*

Our organ has a keyboard of five octaves; ie, 60 notes. This long span is advantageous to the music student learning to play organ at home, and to the on-stage performer. And yet we have still kept the overall price low by avoiding the use of expensive (about 30p each note) electrical contacts. Instead, the HE Organ uses contacts which are made at home by the builder for a total cost of just a few pence.

Included in the organ is a 2 W monitor amplifier which is sufficient to drive a loudspeaker at sufficient volume for home listening. This monitor amplifier can also drive a pair of headphones. There is a provision to connect the organ to an external power amplifier if greater volume is required. These three listening modes therefore allow the organ's use in at least three ways:

- as a practice instrument
- for family pleasure
- as a concert instrument.

A modular construction of four printed circuit boards (PCBs) enables the hobbyist to build up each section
step by step, rather than relying on one large board with everything on it. This is better when building such a large and complex circuit because each stage can be tested before moving on to the next, and faults lif they occur) can be more easily found and repaired.

Housing for the HE Electronic Organ is left up to the reader as we appreciate that many of you will have different ideas on how an organ should look. A view of a typical layout of the project can be seen in the photographs of our prototype but this needn't be adhered to if you prefer another. As you can see, the overall dimensions are governed largely by the length of the keyboard. You should find our layout the easiest to follow.

Construction

Plan out and mount: the keyboard, the PCBs (on their guide rails), the three control panels and all electrical hardware on the baseboard. Figure 6 shows a plan view of the layout.

The keyboard is fastened by first mounting it on two wooden blocks (about $1^{\prime \prime}$ square and $5^{\prime \prime}$ long), one at each end of the keyboard. Two 1" hinges should be screwed onto the back end of these blocks and the whole keyboard then screwed to the baseboard so that the hinges allow it to be lifted into a vertical position.

Next, mount the PCB guide rails (made from two $25^{\prime \prime}$ lengths of $3 / 8^{\prime \prime}$ aluminium angle bracket) using four
small lengths of bracket. Screw the small pieces to the longer lengths using self-tapping screws and then to the baseboard using ordinary screws. You will have to drill the angle bracket to fit the self-tapping screws. Figure 1 shows the arrangement.

Figure 1. Section view of a PCB guiderail
Drill and fasten the PCBs to the guide rails in the positions shown using self-tapping screws, and leave them for the time being.

All three control panels should next be fastened to the baseboard and the four pots, three jack sockets, neon, fuse and holder, and grommet should be secured in their places. Mount the transformer on the baseboard so that its secondary windings connections (ie $0 \mathrm{~V}, 12 \mathrm{~V}, 0 \mathrm{~V}$, 12 V) can be soldered directly to the AC connection points on Board 1 later. Similarly, screw (or simply glue) the five-way terminal block at the side of the transformer so that short covered connections can be made from the transformer primary winding directly to it. The photograph in Fig. 5 shows how your project should look at this stage.

Now, remove Board 1 from the guide rails and commence component insertion. Start by inserting and soldering the 23 PCB pins followed by all resistors, IC sockets (for IC2 and 3) and capacitors. Make sure that the polarised capacitors are the right way round.

Incidentally, a good tip when bending resistor leads immediately prior to insertion, especially when there are a large number as in the HE Organ, is to use a home-made jig no, put your fiddle down, it's not a barn-dance but a short piece of wood, $1 \frac{1}{2} 2^{\prime \prime} \times 3 /{ }^{3 \prime \prime}$ in cross-section.

As you select each resistor for insertion and soldering, rest it across the $3 / 8$ " edge of the jig and bend down the leads against the wood. The resistor should then drop into its location ready for soldering.

The metal tab of integrated circuit IC1, a 12 V voltage regulator, is internally connected to the centre pin. Cut off this centre pin close to the body. Now insert and solder this IC, bend it back onto the board, and mark and drill the board so that you can bolt the IC down - the bolt makes an electrical connection between the earth track underneath and
the metal tab (which is earthed) of the IC. Just before bolting the IC down, clean the copper track underneath around the bolt hole to ensure a good connection.

Screw the PCB back onto the guide rails and then wire up this board as shown in the connection diagram in Fig. 7. Start with the mains wiring and cover any open connections with heat-sink sleeving, to prevent probing fingers having a shocking experience. Remember that 240 VAC can be dangerous, so be extra careful - we want you to buy HE again next month.

Electronic Organ

Figure 3. Overlay of Board 1

Figure 4. Close-up details of Board 1 wiring. Try to keep all mains leads away from low-level signal leads to prevent interference

Figure 5. (Below layout of project before PCB consturction or wiring-up

Wire up the low voltage circuitry next and finally tie any groups of wires together using cable ties - or simply string - for neatness.

This board is now ready for testing. Connect a loudspeaker (any speaker with an impedance of 4R or over, and which can handle 2 W or more) to the amplifier output via a $1 / 4$ " jack plug and lead.

Switch on. The neon should light up indicating a 240 VAC mains consection. With a multimeter check that between points 1 and $2(-$ vel lead on $1,+v e$ on 2) there is 12 VDC . Then, check that between points 3 and 1 (- vel lead on $3,+$ ve on 1) there is about 15 VDC .

Next, if you have a signal generator or an audio source of some description (eg, the pre-amplifier output of a cassette deck), take its earth connection to an earth (0 V) connecton on Board 1, and take the signal lead to each of the filter inputs. You should get a filtered sound at the
loudspeaker, adjustable by RV1 to 6 (depending on which filter section has been selected with the bank of five stop switches). Output amplitude should be adjustable by volume contool RV7. If all these functions operate then you can be fairly sure that you have a working board.

Figure 6. Layout of main parts of HE Electronic Organ (not to scale). These comprise the keyboard, PCBs, transformer T1 and its terminal block, stop switches and brackets holding control potentiomenters, sockets, neon indicator, fuse and mains cable grommet

Figure 7. Connection details of Board 1

Buylines

A limited number of kits for the HE Organ can be obtained from:

Mr A. T. Hawkins
23 Blenheim Road
St. Albans
Herts. AL1 4NS
for the all-inclusive price of $£ 95$. The kits contain all metalwork, hardware and PCBs, as well as the keyboard and components. You only need to supply your own baseboard and case.

For those readers who would prefer to buy the components themselves. Mr Hawkins is willing to supply the keyboards separately. None of the other items should be difficult to find.

Parts List

The following list consists of the parts needed for this month's construction ie, the HE Organ printed circuit board 1 and all metalwork and hardware.
RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)
R1 820R
R2, 3, 28, 31.
32, 35, 36 22k
R4 2R7
R5 82R
R6, 30, 41 220R
R7, $10,13,16$.
19 6k8
R8, 11, 14, 17.
20 330k
R9, 12, 15, 18,
21, 22, 23, 24,
25,
26,42,43 10k
R27 220k
R29 330R
R33, 34, 39, 4047k
R37, 38 33k
POTENTIOMETERS
RV1, 2, 3, 4, 5 47k miniature
horizontal preset
RV6 10k miniature
horizontal preset
RV7 100k miniature
horizontal preset

25k logarithmic potentiometer with double-pole, doublethrow mains switch (SW1)

CAPACITORS
C1, 2
C3
C4, 9, 27, 31,
33
C5, 8, 18, 19,
20, 22, 23
C7
C10
C1 1

coramic

C12, 15, 16, 3047n polyester
C6, $13 \quad 22$ n polyester
C14, $17 \quad 10$ n polyester
C21, 24, $25 \quad 220$ n polyester
C26, $28 \quad 1 \mathrm{uO}, 16 \mathrm{~V}$ electrolytic
C29
C32, $34 \quad 470 \mathrm{n}, 16 \mathrm{~V}$ tantalum
SEMICONDUCTORS
IC1 7812, voltage regulator
IC2 LM380, 2 W amplifier

IC3 741 operational amplifier
Q1
CIB3 transistor

MISCELLANEOUS \& HARDWARE
SW2-6 bank of 5 stop
switches
$240 V / 12 V+12 V$
transformer (centre-
tapped secondary
winding)
Fuseholder + 1 A fuse
5-way terminal block
Rubber grommet
Mains indicator neon (with integral resistor)
$2 \times 1 / 4^{\prime \prime}$ mono jack sockets
$1 \times 1 / 4$ " stereo jack sockets
Cable ties
3 control panels approximately $5^{\prime \prime}$ by $3^{\prime \prime}$ (made from aluminium sheet)
2 lengths ($25^{\prime \prime}$) of $3 / \mathbf{"}^{\prime \prime}$ aluminium angle bracket
4 lengths (${ }^{\prime \prime}$ ") of $3 / \mathbf{a}^{\prime \prime}$ aluminium angle
bracket
2 blocks wood ($1^{\prime \prime}$ sq) approximately $5^{\prime \prime}$
long
2 hinges ($1^{\prime \prime}$)
Five octave keyboard (see Buylines)
Four printed circuit boards

The 60 notes of the organ are all generated from a single high frequency oscillator, running at about 500 kHz . The signal from this oscillator is applied to a top-octave generator which divides the 500 kHz into the 12 different notes making up a top octave.

These 12 separate notes are now further divided into five octaves, thus producing a total of $12 \times 5=60$ notes.
Pressing a key on the keyboard allows that note to pass, via one of the five octave buses, to the fiter and stops circuit, which shapes the notes producing the familiar organ sound.

A pre-amplifier and power amplifier are used to amplify the signal to a level suitable to drive a separate loudspeaker.
The diagram above shows how the circuit is sub-divided into four main parts, each one being built into a separate printed circuit board. The power supply for all four boards is included on Board 1.

Board 1 contains the power supply, the power amplifier, the filter and stops cicuitry and the pre-amplifier.

The positive power supply is formed around a standard voltage regulator IC providing up to 1 A or current at 12 VDC Most circuits in the HE Organ require only this single supply. However, the top octave generator on Board 2 needs a three-rail supply (ie, $+12 \mathrm{~V}, 0 \mathrm{~V},-12$ V) but it only draws a few mA of current. This being so, a - ve supply needn't be of the same complexity as the above
+ve supply. Diode D5 provides halfwave rectification of the 12 VAC from the transformer T1, and capacitors C1,2 and resistor R1 give adequate smopthing and filtering.

Integrated circuit IC2 is the familiar LM380, a 2 W amplifier IC, and this drives a loudspeaker via JK1, or headphones via JK2.

Each octave of notes generated passes through its own filter section (eg, C11-13, RV1, R22 for the first octave bus) and the preset within the filter
allows the user to adjust the flute tone balancing between each octave to his or her own requirements.

Transistor 01 mixes the signals from the five buses and preset RV6 sets the loudness of all flute tones.

Switches SW2-6 form the bank of five stop switches, selecting flute or string sounds, which are mixed and amplified by IC3, a pre-amplifier with variable galn set by RV7.

Electronics In Musical Instruments

ELECTRONIC MUSICAL INSTRUMENTS have always kept pace with developments in electronics. Up to 1960 most electronic circuits were designed around thermionic valves. These devices were fine for power amplifiers using only five or six valves but for the complex functions of, for example, an electronic organ, they were impractical. Most musical instruments of this period used mechanical sound generators (such as the tone wheels used in organs). The only job for the valve circuits was to amplify the signals from these generators.

The introduction of transistors enabled more complex circuits to be produced. Transistors were smaller and cheaper than valves and required much less power. (They also produced much less heat.) Early transistorised organs, for instance, made use of multivibrator circuits to generate the top-octave tones. These tones were then divided down by discrete transistor flip-flop circuits, to generate the tones for the lower octaves. A five-octave organ built along these lines might well have used several thousand components!

Around the end of the sixties a new type of device came to the public's attention, the music synthesiser. The synthesiser was greatly popularised by Moog and ARP in America and EMS in the UK. The device was a collection of all the common sound-generating and signal-processing systems that were being used in electronic music studios, but packaged into one machine. The early synthesisers were implemented with discrete transistor designs and were therefore limited in the range and quality of their performance. Tuning and stability of their oscillators was a major problem. The great increase in the number of integrated circuits available in the seventies made the job of electronic musical instrument design much easier and enabled far more ambitious projects to be undertaken. This generated a vast growth in the synthesiser and organ market.

There is now an enormous selection of products for sale. These include guitar, flute and drum synthesisers, keyboard instruments that simulate strings, brass, piano and virtually every natural instrument ever made, electronic echo units, devices that transpose the pitch of natural sounds, devices that can make musical instruments talk, and many others. And of course, the ubiquitous microprocessor has now found its way into the market. Inikially it was used just to do simple jobs such as remembering sound structures and tuning oscillators, but it is now being used to control systems where the sounds are created digitally.

Apart from microprocessors, there are now several chips available which are totally dedicated to music production. One recent arrival, the Casiotone 201 electronic musical
keyboard, uses only two LSI (large-scale integrated) chips to perform all the electronic functions inside the machine, a far cry from the several thousand parts that were used in keyboard instruments 15 years ago.

Electronic Organ Systems

Many instruments are based on the electronic organ principle. In this, the top octave semitones of the keyboard are generated and then divided down by binary dividers to produce the tones for the lower octaves (see Fig. 1 and the HE Organ project this month). Several manufacturers make topoctave generator chips for this purpose, all of which operate in the same way. A high-frequency clock (about 1 MHz) is divided by $239,253,268$ etc, and these divisions generate audio-frequency tones with a semitone spacing. The notes are not perfectly tuned, the usual error being about 1 cent or less (1 cent $=1 / 100$ of a semitone, which is acceptable for most applications). The low cost of these chips has resulted in their widespread use. Where higher quality results are required individual oscillators (tunable inductor/capacitor devices) can be used for the top octave. In fact some organs use a separate oscillator for each note.

By controlling the envelope of the signal and by filtering it through a voicing network (see Fig. 2) it is possible to simulate the characteristics of many musical instruments. String and brass ensembles and electric pianos work on this principle. Figure 3 shows a typical non-dynamic electric piano circuit. With the key not pressed, capacitor C1 is charged up to +12 V . When the key is pressed C1 is discharged into the network and so the voltage at point 1 discharges exponentially (see curve for point 1). When transistor Q1 is ON, it will short point 2 to ground. The transistor is turned ON and OFF by a mixture of two squarewaves F1 and F2. Thus the result of mixing these two is that Q 1 is ON for one quarter of the period and OFF for three-quarters of the period. The result of this is that Q1 chops the waveform at point 1 at the frequency of F1 generating the waveform at point 2 . If Q 1 was controlled by a squarewave then the resultant output would only contain odd harmonics. However, by mixing F1 and F2 the output has both odd and even harmonics, which results in a much more interesting sound. If the key is released before C1 has fully discharged then the discharge curve is much faster because the value of C 2 is much smaller than that of C1. This difference in discharge rates simulates the damping of the strings as the key is released.

© Copyright MODMAGS Ltd.
Figure 1. Block diagram of typical manalithic top-octave generator

(c) Copyright MODMAGS Ltd.

Synthesiser Systems

The music synthesiser is based on the principle of voltage control. Sounds are generated and processed by a set of voltage-controlled stages, as shown in Figs. 4a to 4d. By voltage controlling these stages, the fundamental parameters that characterise the sound structure are also controlled.

The VCO (voltage controlled oscillator) shown in block form in Fig. 4a, generates the fundamental tones of the instrument. The control law is musical; that is, the pitch of the oscillator increases by one octave for a 1 V increase in control voltage. The control voltage is often generated by a conventional keyboard. Control voltages may be added together, so it is possible to perform transpositions and vibrato while still controlling the pitch from a keyboard. A choice of output waveforms is usually available. For example, a sawtooth waveform has both odd and even harmonics. The squarewave has only odd harmonics as does the triangular wave. By modulating the squarewave, a mixture of both odd and even harmonics can be produced. By controlling the VCO frequency and harmonic structure and by simply mixing together the outputs of several VCOs, rich and interesting sounds can be created.

The VCF (voltage controlled filter) as shown in Fig. 4b, is used to filter or colour an audio signal. The most common filter is the lowpass version, which attenuates all frequency components above the cut-off frequency. If a high resonance variety is used then the harmonics of the input signal ring as the filter resonant frequency is swept past them. Other frequency responses, such as bandpass and highpass are sometimes used.

The VCA (voltage controlled amplifier) generates amplitude contours (see Fig. 4c). A plucked instrument has an amplitude envelope that attacks (rises) very quickly and then decays slowly. A VCA can be used to synthesise this, where the control voltage input defines the envelope contour of the audio output.

Normally, the VCF and the VCA are driven by an ADSR (attack, decay, sustain and release) device (see Fig. 4d). It is the ADSR that is used to generate the amplitude contours and filter sweeps. The A,D and R parameters define the exponential time-constants of their respective portions, and the S parameter is a sustain level. The gate signal is derived from the keyboard; that is, when a key is pressed the gate signal goes high.

Figure 2. Block diagram of typical organ or electric piano system

Figure 3. Envelope-shaping circuit for electric piano, and waveforms at various stages of processing

Figure 4. Principal voltage controlled stages found in a synthesiser: a) voltage controlled oscillator, b) voltage controlled fliter, c) voltage controlled amplifler, d) attack, decay, sustain and release stage (envelope generator)

A typical synthesiser arrangement or 'patch' is shown in Fig. 5: it is known as a voice. Two VCOs are used to generate a rich sound: the VCF filters this sound and the VCA generates an amplitude contour. Two ADSR units are used: one sweeps the filter and the other generates the contour for the VCA. The original synthesisers were all monophonic (you could only play one note at a time). The problem with

making, say, an eight-note polyphonic unit (where you can play up to eight notes on the keyboard at once) is that you need eight complete synthesiser voices. Each must be entirely voltage controlled and all their parameters must keep closely in step. This problem has been overcome by the integration of synthesiser units, namely the VCA, VCO, VCF and ADSR. These days the design of synthesiser voices has been simplified, and the complete assemblies are small and reasonably priced.

Polyphonic synthesisers produce a very interesting 'rich' sound as opposed to monophonic ones which often sound 'thin'. One problem with a polyphonic system is that it might contain 16 VCOs , all of which will tend to drift in frequency. Tuning 16 VCOs by hand is a very difficult job and it can take a long time. This problem can be overcome by using a microprocessor to do the tuning. The microprocessor looks at the pitch of all the VCOs and generates correction voltages to maintain the correct tuning, as shown in Fig. 6. The microprocessor also can be very useful in other ways. It can be used to store pre-set patches which can be recalled instantly. It can also scan the keyboard and determine which notes are being played. All this makes a microprocessorcontrolled polyphonic synthesiser a very powerful musical instrument indeed.

Digital Synthesis

All waveforms are constructed from harmonics. A squarewave consists of a fundamental harmonic plus an infinite series of 'odd' harmonics; that is, the third, fifth, seventh, and so-on. The amplitude of each harmonic is inversely proportional to its frequency. A squarewave could be synthesised by adding together all the harmonics in the correct proportion. For practical purposes a machine to do this might use only 32 harmonics. Although it is possible to hear the pitch of harmonics above number 32, they become inaudible when combined with the total sound. An analysis of natural sounds shows that their harmonics vary with time in a very complex manner. It is not possible to synthesise natural sounds with any great accuracy using conventional analogue techniques. Use of a swept lowpass filter to reshape a sawtooth waveform is no way to synthesise a highly complex waveform.

A machine that can define up to 32 harmonic envelopes, (such as those shown in Fig. 7), as a function of time would have to be very sophisticated. This is how digital synthesisers produce sounds: a harmonic envelope 'map' is produced for a particular sound. When a note is pressed on the keyboard, the pitch of the note is delivered to a vacant voice module. The voice has what is termed a look-up table from which it can obtain any one of 32 harmonics, the fundamental being defined by the pitch signal sent to the voice. The voice then extracts each harmonic and multiplies it by the amplitude parameter at that point in time (the amplitude parameter is obtained from the harmonic map). It then adds all the signals together and puts the result into a DAC (digital-to-analogue converter) to recover the waveform. The resultant waveform is the product of harmonic synthesis. Some systems employ a VDU (visual display unit) and a light pen for inputing data. Digital synthesis employs a lot of expensive hardware plus the invisible cost of the software. You can define the structure of your sound preclsely using this technique, but to define every waveform can be very timeconsumingl You can instead use the information compiled by other operators, and this is usually avallable in filing systems such as floppy discs.

We next look at some current electronic instruments.

Glossary

To describe the operation of synthesisers it has been necessary to use a few terms and abbreviations that may be unfamiliar to some HE readers. Printed below are some of the less-common terms and abbreviations used in this article.

amplitude contour	Shape of the complete 'sound' of a note, from where it rises in volume at the beginning, to when it dies away at the end		unit (ALU), accumulator, instruction register, randomaccess memory (RAM), read-only memory (ROM) and clock generator
bandpass filter	Electronic filter that will oniy allow through a band of frequencies between sharply-defined limits (eg all frequencies between 2 kHz and 6 kHz , but none below 2 kHz and none above 6 kHz)	multivibrator parameter	Simple astable (oscillator) circuit providing squarewave output signal Characteristic of electronic stage or circuit (eg signal amplitude of an amplifier stage)
compression	Effect of making all input signals, whatever their amplitude, sound a similar volume at the output	patch	Way in which sound generating or sound processing stages or modules are coupled together electronically to produce desired voice or sound
exponential	Signal amplitude rising or falling at a rate determined by. how much the amplitude differs from its final value ie, the closer the amplitude is to lts final value, the slower it changes to get there	polyphonic	Comprising many voices or sounds (such as those produced by several keys played together)
flip-flop	Simple bisteble circuit which divides the frequency of an applied squarewave signal by two	portamento	Gliding from one pitch to another
floppy disc	Flexible plastic disc coated with metal oxide, used to record computer or microprocessor data in a permanent form	software	Programs for a computer or computer-controlled synthe siser system
		tone wheels	Magnetic toothed wheels used in early electronic organs. As the wheels are rotated, an electromagnet
hardware	Physical components of a computer or computer system		detects the pulses produced by each passing tooth. Thus the faster the wheel is spun on its shaft, the higher the frequency of the tone, made up of a chain of pulses.
Mexa-distortion	Effect provided by Roland GR-300 Polyphonic Guitar Synthesizer. It enables the 'fuzz' effect to be applied to individual guitar strings		If another wheel, having half the number of teeth of the first wheel is fixed to the same shaft, then its derived pitch will be one octave lower than that of the first
highpass filter	Electronic filter that will only allow through frequencies above one sharply-defined frequency (eg all frequencies above 2 kHz , but none below $\mathbf{2} \mathbf{k H z}$)	voice	Sound produced by a combination of electronic devices or stages (eg synthesised piano sound)
light pen	No, not the opposite of a heavy one, but a hand-held probe which has a photocell at its tip. Information dis played on the screen of a specially-adapted VDU can be changed by bringing the probe in close contact with individual displayed characters	writing spead	Rate at which waveform information, in digital form, can be recorded
		ADSR	Attack, decay, sustain and release (envelope generator)
		DAC	Digital-to-analogue converter
look-up table	Electronic store or memory of data in digital form. In synthesisers, this data takes the form of waveform information	VCA	Voltage controlled amplifier
		VCF	Voltage controlled filter
lowpass filter	Electronic fliter that will only allow through frequencies below one sharply-defined frequency (eg all frequencies below $6 \mathbf{k H z}$, but none above $6 \mathbf{k H z}$)		Voltage controlled oscillator
	below 6 kHz , but none above 6 kHz) Integrated circuit containing main processing functions of a simple electronic computer; that is, arithmetic logic	VDU	Visual display unit - a cathode-ray tube (CRT) monitor, similar in appearance to a TV, but for display of data or graphlcs derived from a digital source leg, computer or microprocessor)

 synthesiser from Casio

Casiotone

Casio, the company that brought you a wide variety of calculators and digital wat ches, has now moved into the music market, with a range of keyboard in struments. Its expertise in LSI digital circuits has enabled it to pack most of the electronics for a polyphonic keyboard instrument into two LSI chips. One such instrument is the Casiotone 201 (Fig. 8) which can play eight notes at once with e selection of 29 pre-set voices. These include electric guitar, harp, glöckenspiel, organ, trumpet, violin and many others

Another instrument, the Casiotone $\mathrm{M}-10$, is portable, with a choice of mains or battery operation, and it has its own speaker. The keyboard has 32 notes and can play eight of these at once with a choice of piano, violin, flute and organ pre-set voices.

Powertran

For those of you who like assembling kits there are many to chose from the Powertran range, and these include the Transcendent 2000 (Fig. 9). This is a monophonic keyboard synthesiser with all the usual synth features. To make the construction as straightforward as possible, the machine is virtually free of wires, with all potentiometers and switches mounted on the PCB.

On of Powertran's most recent kits is a four-voice polyphonic synthesiser (expandable to eight voices), the Transcendent Polysynth. Each voice is a complete synthesiser in itself, containing two VCOs, two ADSR units, a VCF and a VCA. This was only made possible with the recent arrival of Curtis synthesiser chips which provide the VCO and ADSR functions in this instrument. A comprehensive selection of modulation sources and a polyphonic portamento control make the

Figure 9. Transcendent 2000 form Powertran

Eventide

The H949 Eventide Harmonizer, from Eventide Clockworks Inc, is a sound processing unit which can transpose the pitch of the input sound, thus generating a harmony (if the shift is a musical interval). The pitch shift range is +1 octave to -2 octaves. One typical use might be to input a guitar signal, transpose it a fifth and mix the two sounds together, thus producing a synthetic accompaniment True pitch transposition is, extremely difficult using an electronic device. All the frequency harmonics must be transposed without corrupting the time information (For example, speeding up a magnetic tape which has music recorded on it will not only transpose the harmonics but also the time information. In other words, the note may be higher in pitch but consequently shorter in lengthl) The Harmonizer overcomes this impossible problem in the following way. The input signal is turned into a digital code by an ADC, and this code is written into a small digital memory at a fixed speed. It is then (this is the clever bit) read out of the memory at a different speedl Then the code is turned back into a sound by a DAC. If, say, the machine is reading out of memory at twice the rate of the writing speed then the information contained in the memory will be repeated twice; that is, it will be transposed up an octave.

Roland

The Roland GR-300 Guitar Synthesiser enables guitar players to make use of a synthesiser. The guitar that forms part of the system is both a fully functioning
electric guitar and provides a control input for the synthesiser. The GR-300 extracts the pitch of each of the six strings and converts it into a control voltage to drive the VCOs in the synthesiser. Thus the VCOs track with the pitch of the strings. If you 'bend' a note (that is, change the pitch of a note by stretching a string) then the synthesiser generates a bent note. The GR-300 is a six-VCO polyphonic synthesiser with envelope-following, vibrato and VCF facilities. Compression and what Roland terms Hexa-distortion (see Glossary) are also provided. Foot switches are used to change the operating modes.

Oberheim

Oberteim's OB-X is a four, six or eight voice polyphonic music symthesiser. Each voice is a 'standard' vottage-controlled synthesiser containing two VCOs, two ADSRs, one VCF and one VCA. The machine has a memory which can be pre-programmed with up to 32 different synthesiser sound structures, any one of which can be selected at the touch of a button. Virtually all the functions of the panel controls are also voltage controllable and so these may be programmed by the memory.
When a sound has been selected it is then possible to modify its structure by moving the desired parameter control. A microprocessor monitors the panel controls, handing back a particular parameter to manual control when it decides that a control has been moved. Thus it is possible to alter a 'called-up' sound. It is also possible to store your own patches either by writing them into the machine's memory or by recording them onto tape cassette. The tuning of each VCO is automatic: the microprocessor determines a VCO's frequency and, if necessary, applies a correction control voltage to individual VCOs. It is the microprocessor that makes this type of synthesiser powertul. It scans the keyboard and determines which rotes are to be played. \mathfrak{t} generates all the control parameters and tunes all the VCOs. It monitors the panel controls and assigns them to manual control if necessary. It also handies all the memory read/write functions. The result is a potyphonic self-tuning synthesiser with instant patch changing.

Figure 10. Prophet-10 polyphonic music synthesiser from Sequential Circuits

Sequential Circuits

Prophet-10 (Fig. 10), from Sequential Circuits, is another voice based (10 voice) polyphonic synthesiser. It is programmable, and it has two keyboards so that each can play a different five-voice polyphonic sound. There are a total of 64 programs to choose from. This machine also has a polyphonic sequencer option. Music is recorded on a small data cassette as pitch and time information. Six different sequences may be recorded and played back.

New England Digital

Synclavier Il is a digital harmonic symthesiser. Th is polyphonic and is a vailable with 8,16, 24 or 32 voices. Up to 96 separate harmonics can be used to generate one potyphonic voice, and the machine comes with over 64 sounds already programmed in. The hardware consists of a keyboard unit and a computer which is housed in a separate box. The Synclavier has a large digital memory which can be used as though it were a 16 -track recorder. You can record up to 16 different instruments, playing 16 completely different lines on 16 separate tracks, and play them all back at the same time in perfect synchronisation.

Fairlight Instruments

Fairlight CMI is, like the Synclavier II, another digital harmonic synthesiser. Th has an eight-note polyphonic capacity and can generate up to 32 harmonics. Data can be entered via a floppy disc unit, an ASCII keyboard or a VDU/light pen. The harmonic envelopes can be displayed on the VDU and modified by the light pen. It is possible to call up the waveform at any point along the harmonic envelope and to draw it out on the screen.
An audio signal may be inserted in to the machine, being first digitised and then stored in memory. The keyboard can then be used to play the sound and define the pitch. Also included in the CMI is an elaborate sequencer that can replay up to seven sequences while recording another.

Further Reading

Chamberin, H. Musical applications of microprocessors Hayden Book Company, 1980 Hutchins, B. Musical engineens handbook, Electronotes, 203 Snyder Hill Rd., Ithaca, NY 14850, USA, 1975
The BYTE book of computer music, LP Enterprises, Barking, Essex
Solid State Microtechnology, 1979 data book, 2076B Walsh Avenue, Santa Clara, Califomia 95050, USA
Data sheets on a range of devices for electronic musical instruments are also available from Curtis Electromusic Specialities Inc., 10 Highland Ave, LOS GATOS, CA 95030 , USA
 low price. The HFC 60 high frequency counter is based on the very latest LSI technology.

- Bright 8 digit $0.5^{\prime \prime}$ LED display
- Mains input for normal use.
- DC power input, 9-16 volts, for mobile use
- Tough anodised metal case, neat tilt legs.
- Model HFC $60-£ 129.95$ plus VAT (60 Mhz)
- Model HFC 600 with high gain X10 UHF pre-scaler extends operation to full $600 \mathrm{Mhz}-£ 159.95$ plus VAT
- Proportional temperature controlled crystal oven available for both models. Supplied fitted or as easy 'add on' $£ 30$ extra plus VAT

Get full details on these and our other models now. Why pay more?

DRALLIM

DRALLIM DAVIS ELECTRDNICS LTD Brett Drive Bexhill-on-Sea. East Sussex TN40 2JA Telephone (0424) 216611 Telex 95285

ADDS TOYOUR CAPABILITY

Already used in industry, this solderless breadboard is now available to the hobbyist. Unique because of its universal interlocking facility meaning you no longer need lots of different boards.
Send now for the unique Verobloc. Order code 200-21092G. £4.16p inclusive.

No.	Order Code	Description	Size (mm)	Price
1)	10-2845B	Microboard	160×100	5.66
2)	10-2846H	Microboard	160×233.4	12.41
3)	200-21084E	V-Q Board	147.83×73	1.65
4)	09-2196L	Veroboard	160×100	1.63
Carriage \& VAT included.				

Vero Electronics Limited, Retail Dept., Industrial Estate,
Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829

State quantity and order codes required
Name
Address

I enclose Cheque/PO for £ or debit my Barclay Card/
Access No
Exp. date

HEVOX IS AN acronym! No, it's not some new integrated circuit. It stands for Hobby Electronics Voice Operated Switch. Okay, we know you don't spell switch with an ' X ' but that is what it means!

The Hevox will turn on a relay whenever an audio signal of sufficient amplitude is applied to the input. Sensitivity is adjustable and you should be able to rig it up to your cassette recorder lif it's one with a remote control switch) or to your radio transmitter if you're a radio ham. A little judicious juggling of the component values of $C 6$ and R7 will change the response times and you should be able to find values to suit your application. The
circuit operates from a single 9 V battery and current consumption is about 1 mA when quiescent.
However, note that a large battery should be used if the circuit is to drive any substantial load such as a relay. The poor little PP3s, even the alkaline ones, don't like supplying high currents for long!

- In this age of the microchip we decided to design our circuit using transistors for a change, and the ubiquitous BC109 was pressed into service - though almost any smallsignal NPN silicon transistor would do. If you do use a different type, remember to check its pin connections before soldering it into place as transistors are just as fussy
as integrated circuits and will happily blow up if you get it wrong. A printed circuit board was chosen for our prototype because it enables a small and neat unit to be built.

Construction

If you aren't happy with PCBs or have no facilities for making them it's quite okay to employ some other construction method. Whatever method you choose, make sure you keep the component leads short and try to avoid the use of long connecting leads. The circuit is quite straightforward and lends itself to Veroboard design. Sloppy layout and untidy leads can result in spurious radio frequency oscillations which may be difficult to detect and eliminate.

If you use our PCB, start construction by soldering into place the diodes and resistors which lay flat on the board and then mount the tantalum capacitors and upright resistors. The transistors should be soldered in last. Check to make sure that no component leads are inadvertently touching each other or the transistor cans as this could cause a circuit malfunction. If everything looks okay, connect a small relay, or a LED and current limiting resistor, between the collector of Q4 and the positive supply and then couple an audio source to the input - for example a microphone or low level hi-fi output. By speaking or whistling into the microphone you should find a position for RV1 where the relay pulls in and drops out in time with your utterances. To change the response times you can experiment with the values of R7 and C6. Then all that remains is to choose a suitable case to house the project and make the world listen when you talk!

Figure 1 (above). Circuit of HEVOX. Almost any small-signal NPN transistors will work in this project, so don't worry if you can't find any BC109s

Figure 2. Close-up details of the printed circuit board of the project. Make sure that no component leads are shorting together

How It Works

The circuit consists of three main sections. An audio amplifier which drives a rectifier and in turn, a high gain output stage.

A two-transistor direct-coupled amplifier was chosen for the audio amplifier. The expression 'direct coupled' means that no coupling transformers or capacitors are used to pass the signal from one stage to the next. Thus, 02 is direct coupled to 01 . Operation of the circuit can be best understood if you remember that a silicon transistor (eg, BC109) requires about 0.7 V bias across its baseemitter junction to turn on. This is called the 'base-emitter drop' and applies equally to single silicon junctions (ie, diodes). As the emitter lead of 01 is connected to 0 V , we can assume that its base will need to be about 0.7 V positive in normal operation. Bias current for 01 is supplied through R3. As the current flowing through R3 is very small, the voltage drop will be small and you'll find about 0.7 V across R4, C5.

Using the same logic, we can work
out the voltage at the collector of $\mathrm{Q1}$ and Q2. It is important to note that the circuit is self-stabilising. If $\mathbf{Q 1}$ begins to turn on too much its collector voltage will fall, turning off Q 2 and reducing the base drive to $\mathbf{Q 1}$. Conversely if $\mathbf{Q 1}$ turns off, Q2 will turn on more, restoring base drive to 01 which then begins to turn on again until equilibrium is reached. This process is calied negative feedback and sets the DC operating points of the circuit.

To ensure that we end up with an amplifier with some gain, C5 is inserted in the feedback loop to 'decouple' R4. At audio frequencies, C5 presents a low-impedance path to ground and gives the circuit its frequency response. If C5 were reduced in value it would present a higher impedance to the low audio frequencies which would appear at the input as negative feedback, resulting in an amplifier with a
'high-pass' response. It would sound tinny.) Simple resistor-capacitor combinations are frequently used to tailor the response of circuits so that undesired signals are eliminated or suppressed. Capacitor C3 is too small in value to have much effect at audio frequencies but helps to prevent the amplifier from oscillating at radio frequencies as a result of stray coupling and phase shifts within the circuit.

As both $\mathbf{0} 1$ and $\mathbf{Q 2}$ operate in the common-emitter mode quite high gains can be achieved and RV1 enables the input signal to be set to a suitable level. Capacitor C2 blocks DC voltages to avoid upsetting the operation of the circuit.

The amplified signal appears at 02 collector and is rectified by a diode pump' (D1, D2) resulting in a fluctuating DC voltage across C6.

When the voltage rises above 11.4 V (two base-emitter drops) transistors 03 and 04 will turn on. The 'super-alpha' connection of Q3 and Q4 effectively multiplies the gains of the transistors and gains of many thousand times can be obtained. With the components shown, 04 can readily switch a small relay drawing between 20 and 30 mA . Diode D3 is included to prevent back EMF from the collapsing magnetic field of the relay coil from destroying the transistors

Figure 3. Overlay and connection details of the printed circuit board

Parts List

RESISTORS	(All $1 / / \mathrm{W}, 5 \%$)
R1	10 k
R2	4 k 7
R3	100 k
R4,5	1 kO
R6	470 k
R7	270 k

POTENTIOMETER
 RV1 47 k miniature horizontal preset

CAPACITORS

C1,5	$47 \mathrm{u}, 16 \mathrm{~V}$ tantalum
C2,6	$10 \mathrm{u}, 16 \mathrm{~V}$ tantalum
C3	1 nO ceramic
C4	2 u 2 tantalum

SEMICONDUCTORS

Q1,2.3.4 BC109 NPN transistor
D1.2 1N4148 diode
D3
1N4004 diode
MISCELLANEOUS
RLA - small 6-9 V relay
Case to suit (see Buylines)
Microphone (if used)

HE PROJECT KTTS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to construct H.E. projects. Kits include ALL THe ELECTRON. veroboard are, of course, included as speciffed in the original article, we even include nuts. screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of M.E. which includes
the project - you will need to order the instruction reprint as an extra 450 each.

Reprints available separately 45p each + p\&p 40p

3 Channel Sound to Light

500 watts per channel. Independent controls for bass, middle and treble. Full wave output via PL552 socket and PL551 plug. Complete with p.c.b. and case
instructions included with this kit.

Chaser

A psychedlic light show. 3 modes of flashing - two chase patterns and a strobe effect. 3 channel - total output power 750 W per channel. Supplied with plug and socket for output to the bulbs.
Instructions included with this kit.
Sound Pressure Level Meter
Featured in Feb. 81 E.T.I. Uses a precision ceramic microphone. $30-120 \mathrm{~d}$ B sound level. Internal network gives A weighted (loudness) response or flat response for absolute measurements. Suitable for domestic, schools, industrial or disco use.
Instructions included with this kit.
Printed Circuit Boards - Mobby Electronics
Fully etched, drilled and roller tinned p.c.b.s available for most Hobby Electronics projects - send s.a.e. for p.c.b. price lis

Public Address Amplifier 18 watts 12 volt
As featured in H.E. March 81. Make yourself heard with this high powered amplifier. Two inputs one for mirophone and an auxiliary control - allows mixing of music with announcements, etc. Compact unit built in a black anodised aluminium 'sink box'. Uses a 12 volt d.c. supply - so can be powered from a car battery or a mains powered 12 V supply. Uses a special audio i.c. to deliver 18 watts into 4 ohms (2×8 ohms in parallel). P.A. Amplifier kit E16.58. Extras: P.A. Nic E4.40, 8 ohm horm speakers $\mathbf{E 6 . 8}$ each.

Guital Fuzz Box. H.E. March 81
Produce delightful distortion from Produce delightful distortion from simple to build project with foot pedal control. This unir produces a very smooth sound. Circuit is housed in a 'brand new' style of box - complete with a pedal to operate an internal switch. Fealures more controlled distortion and less background noise than most other designs. Guitar Fuzz Box, Mar 81 £9.42.

None of the components in this project are critical and you should be able to obtain the parts listed or suitable substitutions from any of the large mail order companies or through your local stockist.

The case we used was from
West Hyde Developments Ltd.
Unit 9
Park Street Industrial Estate,
Aylesbury, Bucks.
It's order number is Samos 002.
The approximate cost of parts (excluding case and PCB) will be $£ 6$.

1981 ELECTRONICS CATALOGUE

KITS
ICs
TRANSISTORS CAPACITORS

TOOLS
Hundreds of illustrations, product data, sircuits and details of all our kits and educational courses. Up to date delivery. Send 700 in stamps for your copy $(7 \times 10 p$ or 5 x 140).

RESISTORS HAROWARE CASES

ADVENTURES WTH MICROELFGTRONICS

MAGENTA ELECTRONICS LTD.

INTO DICTIAL EEEGTRONIGS

Current H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics. Circuits are built on a plug-in Eurobreadboard. Reprints of back issues avalable 45p each. Eurobreadboard and components for series $£ 18.95$ less batterv. Com ponents only $£ 12.75$

INTO ELECTRONICS GONSTRUGTION

H.E. 6-part Series: Feb. ' 80 to July ' 80 . COVERS THE BASICS OF ELECTRONICS LOTS OF PRACTICAL WORK. Circuits are built on a plug-in Eurobreadboard. REPRINTS AVAILABLE, 45p each part. Eurobreadboard and Components fo Series $£ 15.63$. Components only $£ 9.43$.

H.E.LADDER OF LIGHT, JAN.' 81

Novel 'sound to light' project. Creates a pulsating, rising and falling light show. Will drive up to 10100 W light bulbs either in bar mode - in a line increasing from treble or middle frequencies. Extra with our kit only - additional circuit and components for strobe and chase features. Ladder of Light Jan '81 £29.98. Reprint extra 45p.

MEMORY BANK
SYNTHESISER
Ideal for the music enthusiast and all the
family for general entertainment. Miniature family for general entertainment. Miniature
synthesiser featurling vibrato. synthesiser featurling vibrato. envelope.
tempo, volume and pitch controls. Uses 24 push bution switches in a keyboard style layout Based on a custom designed i.c. The accessible memory stores a 32 beat length played 'live'. Has 4 tunes atready permanently stored in its mermory. Fitted with an internal speaker. Jack socket allows the use
of an external amplifier if wished. Kit conof an external amplifier if wished. Kit con-
tains all the components needed including 2 p.c.b.s and case. Instructions are included with this kit.

3 BAND

 S.W. RADIOSimple T.R.F. Design. Covering most Amateur Bands and Short Wave Broadcast Bands. Five controls. Bandset, Bandspread
Reaction. Wavechange and Attenuator. Coil Reaction. Wavechange and Attenuator. Coil
section is by Wavechange Switch. Use with section is by wavechange Switch. Use with
Headphones or a Crystal earpiece. Kit contains all the components required including the P.C. Board and Case. Instructions are included with this kit.

MAGENTA ELECTRONICS LTD.

HG8, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS., DE13 OUL. 0283-65435. 9-12, 2-4 MON.-FRI. MAIL' ORDER ONLY AOO 40p P\&ap TO ALL ORDERS Wh picas iditue 158 YaI

Irish Republic \& B.F.P.O. Europe de duct 10% from prices showri. Payment must be in sterling.
NO OVERSEAS ORDERS
Access and Barclaycard (Visa) orders accepted by 'phone or post.

The INStructor
 A FULLY CONSTRUCTIONAL PROJECT INCORPORATING AN INS8060

 MICROPROCESSOR CHIPThe Instructor is a low cost assembly which provides a prach introduction to microprocassors and thair functions. It is not a computer but it is a working circuit which allows
microprocessor working to be followed, one program step it a time. Buld the Instructor and you will gain microprocessor experience. The series is based on the INS8060 mieroprocassor IC, also known as the SCMM Mk. 2. Circuits are built on \& plug in Eurobreadbord. Kit is available with or without the breadboard. INSTRUCTOR COMPONENT PACK. Including INSTRUCTOR COURSE NOTES AND OPERATING

C106D ... 56p	2N5457.. 58	Br
TIC46.... 49p	2N5484..63p	BFY52....
OA47..... 11p	40673.... 98p	BFX88 ...
OA90 9p	AC 128 ... 29p	BRY39
OA202... 16p	AC 141 ... 38p	MPSA65
W0.05... 33p	AC $142 \ldots 39 p$	RPY58A
W06...... 47 p	AC176...37p	T1P314... £1
$\begin{aligned} & \text { 25J..... £2.92 } \\ & \text { 1N4001.51/20 } \end{aligned}$	BC 182.... 11p	31 A..
1 N4005...6p	BC182L. 11 p	TIP33A
1N4148....5p	8С183....11p	TIP34A
1N5404.. 18p	BC184L... $11 p$	T1P121 f1.12
1N5408.. 19p	$\begin{aligned} & \text { BC184L...11p } \\ & \text { BC212...11p } \end{aligned}$	TIP2955.69p
BF244B.. 87p MPF102.69p	BC212L 11p	TIP3055.
TIS88A .. 57p	BC213.... 11p	TPSA13.
VN67AF	BC214...11p	2N3053..
£1.21	BC214L.. 11p	2N3055.. 5
2N3819.. 28p	BD131 ... 48p	2N3702.
2N3820.. 78p	BFY50.... 25p	2N3704.

1/4W, carbon film resistors, E12 series, 1R-10M, $11 / 2 p$ each. Min. horiz. presets 100R-4M7, 12p each. Midget pots, Linear, $470 \mathrm{R}-4 \mathrm{M} 7$, 37p each. Log 4 k 7 1 M , Lin. 75 p . Log. 76 p .

Polyester (C280) capacitors 250 V 10nF; 15 nF ; 22 nF ; 33 nF ; 47 nF 7 p ea $68 \mathrm{nF} ; 100 \mathrm{nF} 8 \mathrm{p} .150 \mathrm{nF} ; 220 \mathrm{nF} 12 \mathrm{p}$. 330 nF 15 p .470 nF 20 p .680 nF 28 p . 1 uF 33 p . 1.5 HF 49 p .2 .2 uF 65 p .
Sub miniature plate ceramics 63 V . Values in pF: 2.2; 3.3; 4.7; 5.6; 6.8 ; 8.2; 10; $15 ; 22 ; 33 ; 47$ \& 56 pF 7 p each. 11p. 390pF; 470pF; 1000pF 5p. 2200pF 6 p .3300 pF ; 4700 pF 7 p . 10 nF 13 p . 100 nF 22 p . 47 nF 14 p .
Electrolytic capacitors, AXIAL leads:- $1 \mathrm{uF} / 16 \mathrm{~V}$ 11p; $1 \mathrm{uF} / 63 \mathrm{~V}$, $1 \mathrm{uF} / 100 \mathrm{~V}$ 12p; $2.2 \mathrm{uF} / 63 \mathrm{~V} ; 3.3 \mathrm{uF} / 63 \mathrm{~V}$;

$4.7 \mathrm{uF} / 63 \mathrm{~V} \quad 12 \mathrm{p} ; \quad 10 \mathrm{uF} / 16 \mathrm{~V} \quad 11 \mathrm{p} ;$ $\begin{array}{lll}\text { 4. } 10 \mathrm{uF} / 63 \mathrm{~V} & 12 \mathrm{p} \text {; } 10 \mathrm{~V} \text { 12p; } 22 \mathrm{uF} / 25 \mathrm{~V} & 12 \mathrm{p} ;\end{array}$ | $10 u F / 63 V$ | $12 p ;$ |
| :--- | :--- |
| $22 u F / 63 V$ | $15 p ;$ |
| $23 u F / 40 V$ | | 22uF/63V $15 p ; 33 u F / 40 V, 47 u F / 25 V$

$12 p ; 47 u F / 25 V 12 p ; 47 u F / 40 V$ 15p; $\begin{array}{ll}\text { 12p; } 47 \mathrm{uF} / 25 \mathrm{~V} & 12 \mathrm{p} ; 47 \mathrm{uF} / 40 \mathrm{~V} \\ 47 \mathrm{uF} / 63 \mathrm{~V} & 18 \mathrm{p} ; \\ 100 \mathrm{uF} / 16 \mathrm{~V} & 12 \mathrm{p} ;\end{array}$ $\begin{array}{lll}47 \mathrm{uF} / 63 \mathrm{~V} & 18 \mathrm{p} ; & 100 \mathrm{uF} / 16 \mathrm{~V} \\ 100 \mathrm{uF} / 25 \mathrm{~V} & 15 \mathrm{p} ; & 100 \mathrm{uF} / 40 \mathrm{~V} \\ 18 \mathrm{p} ;\end{array}$ $100 \mathrm{uF} / 63 \mathrm{~V}$ 29p; $220 \mathrm{uF} / 10 \mathrm{~V}$ 15p; 220uF/25V 19p; 470uF/16V 29p; $470 \mathrm{uF} / 25 \mathrm{~V}$ 36p; $470 \mathrm{uF} / 40 \mathrm{~V}$ 55p; $680 \mathrm{uF} / 16 \mathrm{~V}$ 32p; $1000 \mathrm{uF} / 10 \mathrm{~V}$ 30p; $1000 \mathrm{uF} / 16 \mathrm{~V}$ 33p; $1000 \mathrm{uF} / 25 \mathrm{~V}$ 46p $1000 \mathrm{uF} / 40 \mathrm{~V}$ 58p; $1000 \mathrm{uF} / 63 \mathrm{~V}$ 79p; 2200uF/10V 39p; 2200uF/25V 64p; 2200 FF/63V $£ 1.10$.
RADIAL leads:- $0.47 \mathrm{uF} / 25 \mathrm{~V} 81 / 2 \mathrm{p}$; 10uF/16V, 22 UF/16V, $100 \mathrm{uF} / 25 \mathrm{~V}$ 121/20: 100uF/16V, 100uF/25V 121/2p; $220 \mathrm{uF} / 63 \mathrm{~V} 391 / 2 \mathrm{p} ; 1000 \mathrm{uF} / 16 \mathrm{~V} 351 / 2 \mathrm{p}$ $220 \mathrm{UF} / 16 \mathrm{~V} 641 / 2 \mathrm{p}$

Switches

Min. toggle: spst 59p; spdt 69p; dpdt 79 p . Min. push on 18p; push off 22p. Footswitch alt. action: spco $£ 1.39$; dpco E1.88. Rotary switches.
way, $2 \mathrm{p} 6 \mathrm{w}, 3 \mathrm{p} 4 \mathrm{w}, 4 \mathrm{p} 3 \mathrm{w} 69 \mathrm{p}$ each. 12V. 185 R dpco relay E 2.98 .

Soldering

Antex $\times 25$ soldering iron, $25 \mathrm{~W} \mathbf{~} 4.98$ Soldering iron stand £1.99. spare bits (for X25) small, std, large 64p each. How to solder sheet 12 p . Solder bobbin 30p. Desolder pump E5.98. De98 p . Heat sink tweezers 15 p .
 Opto
BPX
2N577 2.24
 TH32 99p TIL78 $.74 p$
L.e.d.s with clips
3 mm : Red $15 p$; Green $18 p$; Yellow 20p. 5 mm : Red 16p; Green 28p; Yel ow 29p.
Fashing I.e.d. 78p. Rectangular red 58p. Mains panel neon 32p Zener diodes $400 \mathrm{~mW}, \mathrm{BZY} 88$. Range 2 V 7 to 33 V 12 p each.

8 pin........... 16p	18 pin........... 22p
14 pin........... 17p	24 pin.......... 48p
16 pin........... 18p	28 pin.......... 45p

Jackson

300 pF dilecon 23.500 pF £2.92. C804 var. capac 10 pF £2.28. $25 \mathrm{pF} £ 2.46 \cdot 50 \mathrm{pF}$ € $2.48_{\text {; }} 100 \mathrm{pF} £ 2.83$ 50pF E3.48. '01' 365 pF £3.48; '02 365 pF £4.49; '02' $208+176 \mathrm{pF}$ £3.98 511 DAF 6.1 drive 5174 ow cost cutters $£ 1.69$. Low cost long nose pliers $£ 1.68$. Wire strippers and cutters $£ 2.48$. P.c.b. assembly jig E11.98. P.c.b. etching kit £4.98. Past 20 Bimboard 1 £6.48. S. Dec $£ 3.98$.
Speakers miniature, 8 ohm 87p; 64.75 ohm 89p. Crystal earpiece 65p. Mag ohm 89p. Crystal earpiece £2.98. Stereo headphones £4.35. Telephone pick-up coil 72p. FM aerial 49p Min. buzzers 6 V 50 p ; 9 V £1.10; 12 V 65p.
PP3 clips 10p; PP9 clips 11p. Panel meters $60 \times 45 \mathrm{~mm} \varepsilon$
$100 \mathrm{uA}, 1 \mathrm{uA}, 1 \mathrm{~A}, 25 \mathrm{~V}$.
Veroboard $0.1^{\prime \prime}$ copper
10 strips, 24 holes $£ 1.20$ per 5.24 S 37 H 78 p . 24 S 50 H 89 p . 36 S 37 H 89p. 36 S 50 H 99 p . Terminal pins $48 \mathrm{p} / 100$. Pin insertion tool $£ 1.69$. Spot face cutter £1.23.

Multimeter type 1. 1000 opv with probes, $2^{\prime \prime} \times 3^{1 / 2}{ }^{\prime \prime} \times 1^{\prime \prime} \ldots$	E6.66
Multimeter type 2. 20,0000pv with probes, $5^{\prime \prime} \times 31 / 2^{\prime \prime} \times 13^{\prime \prime} .^{\prime \prime}$	£11.52
Croc clip test lead set. 10 leads with 20 clips	99p
Connecting wire pack, $5 \times 9 \mathrm{~d}$ coils	65p
Resistor colour code calculator.	21p
Towers International Transistor Selector	£10.35
AM-FM aircraft band portable radio...	¢8.98
2 station desk intercom¢7.48 3 station	c8.98
Plug-in power supply, 4.5V, $6 \mathrm{~V}, 9 \mathrm{~V}, 300 \mathrm{~mW}$	E3.89
Dimmer switch	£3.98
PVC tape -3 reels	34 p
Dentists inspection m	£2.85
Jewellers eveglass	E1.50
Hand magnifier, $3^{\prime \prime}$	£2.99
Illuminated magnifier, $11 / 2^{\prime \prime} . ¢ 1.143^{*}$	E3. 19

Substi-Tutorial

Tangled by transistor type numbers? Infuriated by IC index numbers? lan Sinclair guides you on how to substitute similar devices for specified ones

HOW OFTEN HAVE you looked at a published circuit and wondered how long it would take to get the transistors or IC's? Do you find that you never seem to have a stock of the semiconductors that are needed for our short circuits? Take heart, we all have the same problems - what follows describes some of the ways round these problems.

One obvious way of seeking elusive semiconductors is to look up a chart of direct replacements, which will tell you that a 2 N whatsit is exactly equivalent to a BC thingummyjig. That's sometimes useful, but it usually happens that you haven't any of these either. With a little bit of common sense, though, a stock of three or four types of transistors can be made to substitute for practically anything. My stock list is of five types. Type 1 has to be a good voltage amplifier transistor like the BC109 for substitution into pre-amps. Type 2 is a medium-power general-purpose switching transistor - I use the 2N2219 quite a lot. Type 3 is the PNP version of the 2N2219, which is the 2N2905. Type 4 is an RF transistor, such as the BF182 and finally, I keep a few MJE3055s handy for the high-power stuff.

But can you really slap one transistor type in place of another? You certainly can if you know what you are doing - and by the end of this article you should have a pretty fair idea. It's not such a task really, because different-numbered transistors are not necessarily all that different.

Making Sense Of Type Numbers

Why all the different type numbers? Well, it is largely a matter of history. In the early days of transistors, improved methods of manufacture were being invented almost every week, and the resulting transistors would be given a new range of type numbers. Later on, the numbers kept on coming because the manufacturers used different numbers to represent different grades of the same transistor. Nowadays, we can forget about the pre-historic types - if you find a book which has circuits using 0C72s, you can throw the book away!

Silicon transistors have ruled the roost for more than 15 years now, so that all of this article relates to silicon transistors. What can be substituted for what?

Take a look first at Table 1.This shows the letter codes that are used for European types of transistors. If the first letter is B, it simply means that it's a silicon transistor, but the second one tells you what sort of transistor it is - and that's the useful bit. The usefulness of that second letter is that it is your guide to substitution. All transistors which are roughly equivalent will carry the same coding. For example, if you are looking for an audio transistor, then anything with a BC coding is a pretty good bet.

That isn't the end of it, of course, because there are some differences to look out for. Let's stick to the ' C ' series for the moment. The differences we are likely to find between BC coded transistors are:

- NPN and PNP types
- current.gains ranging from 50 to 500 or so
- differences in maximum voltage and current

Now the codings won't tell you which are NPN and which are PNP, so you need a list of BC types to look that up. As far as the other differences are concerned, it shouldn't be difficult to find a substitute transistor with suitable (average) values of current gain (h_{FE}) and with maximum voltage and current ratings which will suit the job.

Table 1 PRO-ELECTRON code for transistors and diodes
The type number for transistors and diodes consists of two letters followed by a serial number.
The first letter indicates the material
used:
A germanium
B silicon
C gallium arsenide
D indium antimonide
R compounds such as cadmium sulphide
The second letter indicates what the device is used for:
A detecting diode, switching diode, mixer diode
B variable capacitance diode
C transistor for AF, low power
D power transistor for AF
E tunnel diode
F transistor for RF, low power
G assembly of several transistors and diodes in one case
H magnetic sensitive diode
K Hall magnetic detector
L power transistor for RF
M Hall modulator or multiplier
P radiation detector (photocell)
Q radiation generator (LED)
R trigger device (thyristor or diac)
S switching transistor, low power
low power trigger device
switching transistor, high power multiplier diode
rectifier, booster or efficiency diode
voltage reference (zener) diode
We can go a bit further than this, in fact. If you're looking for a transistor which is for a circuit operated at 9 V and with only a few milliamps flowing, any transistor from the same series will dol The only way you're likely to be caught out is by the bias being wrong, because the substitute transistor may have a very different value of $h_{E E}$ I've emphasised very, because any reasonable circuit design will have taken into account the considerable differences in $h_{\text {FE }}$ values you get between transistors of the same type number. Figure 1 shows how bias can be checked and adjusted using the two most common bias methods for single transistors.

Figure 1. Adjusting bias. Whichever of these three bias systems is used, adjusting resistor values will correct the bias. If the transistor is underbiased (collector voltage nearly equal to the supply voltage), reduce R1 or increase R2. If the transistor is over-biased (collector voltage nearly zero), reduce R2 or increase R1

US Types

That's all very well, of course, when the transistors carry the European type marking, but what about the American 2 N series? There's no answer to that, as Eric and Ernie used to say, because the 2 N numbers are simply registration numbers, like serial numbers. All you can guess from them is that a 2N5162 came a bit later than a 2N3711. A few helpful suppliers (are you listening, other suppliers) group their $2 N$ types according to function such as audio, GP and switches, RF, Power, etc, just like the European type groupings.

General-purpose And Audio Transistors

So far, we've been talking about audio transistors, the C types. They're the safest for substitution, because one audio circuit is pretty much like another, and even when they are used in circuits which have little resemblance to audio circuits, one device can usually be substituted for another. Incidentally, a W or Y as a third letter indicates an 'industrial' type, usually meaning closer specifications or higher voltage ratings.

A lot of medium-power switching transistors can be substituted for each other and for BC types. Old favourites for this business include the venerable 2N696, 2N1711, 2N2219, 2N3053 among the US types and the BFY50, 51, 52,. . . among the European numbers. These are all NPN types: the PNP counterparts are BFY38,39,40, . . These medium-power types are very versatile transistors indeed: 1 use them in RF circuits (below 10 MHz), in pulse circuits, in audio circuits and in output stages (around 1 to 1.5 W). They are, in fact, as near as you can get to a universal transistor, and they're ideal for trying out ideas and 'short' circuits. Points you may have to watch when you substitute these for other types are:

- gain is sometimes on the low side, so that some bias adjustment may be needed
- they may result in higher distortion (probably not noticeable unless you have a very high quality audio amplifier)
- the metal cases are connected to the collector, so that they mustn't be allowed to short to each other or to other wires
If the low-current gain is a difficulty, then the devices can be used in pairs, as shown in Fig.2. Providing that the tran-
sistors are not 'leaky' (that is, suffering from high reverse leakage of electrons), no problems should be encountered. Switching circuits such as multivibrators are, of course, ideally suited for these versatile transistors.

Figure 2. Connecting transistors in pairs (Darlington pair) so that the two transistors act as one, but with much higher current gain

RF Transistors

We encounter more serious problems when we start to substitute RF transistors. The general rule, unfortunately, is DON'T! Things may not be quite so critical, though, so let's take a look at what is possible.

The problem with RF amplification is that the capacitances between the electrodes of the transistor play an important part in the action of the circuit. At high frequencies, a lot of the tuning of the circuit may be done by the transistor capacitance, so that substituting one transistor for another may cause tuning changes. Re-tuning is usually necessary even if the correct replacement is used, so that substituting transistors in RF circuits should not be done unless some method of re-tuning is available.

The other effects are more serious. A transistor used as an RF amplifier loads the tuned circuits it's connected to as well as contributing to the tuning capacitance. The loading resistance of the transistor decides such matters as gain bandwidth and stability of the amplifier. For example, if our substitute transistor loads an RF amplifier stage more heavily, then gain will be down and bandwidth will be greater. If the loading is less, gain may be greater and bandwidth less, but oscillation may start. It's not enough, therefore, to replace one transistor in the RF circuit by any other. What we need to do is to look up the inter-electrode capacitances for
each type. Table 2 shows some values for commonly-used RF transistors.

In addition to the above, not all RF transistors will operate at high frequencies. The frequency limit at which a transistor can operate is decided, among other things, by the thickness of the base layer: a thick base means a low frequency. This limit is measured in different ways by different manufacturers. A figure that is often used is f_{T}, meaning the frequency at which the gain is unity. The f_{T} figure for an RF transistor must be well above the frequency at which it is operated.

In general, substitution of transistors which work at the lower frequencies, as in AM (amplitude modulated) mediumwave or long-wave radio, is easy. Substitution of higherfrequency types, such as those in FM (frequency modulated), VHF, TV and Intermediate-frequency (IF) stages is less straightforward and a bit of care is needed to match up the transistor types along with some circuit adjustment. Substitution of really high-frequency types, such as those used in TV tunerheads is just not on, unless you have a lot of experience with these circuits. The trouble here is that the position of every piece of wire is critical in these tuner circuits, as well as the demands made on the transistors.

	Table 2 High-frequency transistors			
	Type	Frequency range	$\mathrm{Cr}_{\text {re }}$	f_{T}
	BF155	UHF	0.4 pF	600 MHz
	BF160	VHF	0.8 pF	600 MHz
	BF161	UHF	0.3 pF	550 MHz
	BF166	VHF	0.4 pF	500 MHz
	BF167	IF	0.15 pF	600 MHz
	BF173	IF	0.23 pF	1 GHz
	BF222	VHF	0.4 pF	400 MHz
	BF233	IF	0.5 pF	500 MHz
	BF271	IF	0.22 pF	900 MHz
	BF272A	UHF	0.05 pF	850 MHz
	BF273	IF	0.41 pF	600 MHz
	BF274	IF	0.41 pF	700 MHz
	BF287	IF	-	600 MHz
	BF288	IF	0.24 pF	500 MHz
	BF316A	UHF	0.25 pF	600 MHz
	BF455	VHF	0.5 pF	400 MHz
	BF479	UHF	-	1.4 GHz
	BF516	UHF	0.05 pF	850 MHz
	BF679	UHF	0.07 pF	1 GHz
NOTE: $C_{r e}$ is reverse capacitance, common-emitter connection. f_{T} is transition frequency: maximum frequency for unity gain, common emitter (Note that the f_{T} for common-base operation is usually higher).				

Power Transistors

That leaves us with the power transistors. The low-power types are easily substituted by the $2 \mathrm{~N} 2219 / 2 \mathrm{~N} 2905$ switching types mentioned earlier, so that failure of the output transistors of a radio or cassette recorder can be dealt with fairly easily, unless ICs have been used. The higher-power types can be replaced except in the highest of hi-fi amplifiers. These circuits are (or should be!) designed around the power transistors, and no substitution is usually possible. For lesser circuits, including, dare we say it, any home-built equipment, any modern high-power silicon transistor should do. My own favourites are the NPN MJE3055s, which are on a TO-92 base, making them easy to mount and heatsink. If you need matched PNP and NPN, then there is a PNP version the MJE2955) but in anemergency, we cancall on the old faithful switching types to make up the circuit shown in Fig. 3. They're not exactly equivalent, but they'll work in most circuits.

Figure 3. Using high-power NPN transistors in a complementary circuit - this arrangement is called a quasi-complementary circuit

Sorting Out The Lead-outs

One problem which is more difficult to deal with is the lead configuration of different transistors. Many transistors use a straightforward e-b-c layout, and these types are easily interchangeable, but arrangements such as e-c-b can sometimes be difficult to fit in if space is limited on the PCB or if the leadout wires are very short. A more awkward problem is knowing what the layout is. Some types of package, such as the TO-5, always have the same leadout configuration, but others including the TO-92 do not. As long as you know whether the transistor is NPN or PNP, the leadout wires can be identified by the following methods.

Multimeter Method

If you have a multimeter, switch it to a low OHMs range and find out the polarity of the test leads. This is important, because most multimeters have their negative (black) lead connected, however indirectly, to the positive terminal of the battery inside the meter (see Fig. 4a). How do you find out the polarity? One way is to connect the multimeter, still set to ohms, to a voltmeter (say reading 0 to 10 VDC). If, for example, the needle of the voltmeter moves in the correct direction when the black lead of the multimeter is connected to the positive terminal of the voltmeter, then the black lead is indeed at a positive potential.

If you haven't got a spare voltmeter then you can try connecting your multimeter, still reading ohms, to a semiconductor signal diode. One end of the diode (the 'anode' end) should be marked with a coloured band or spot. Try connecting the meter leads to the diode lead-out wires: if no (or a very high-resistance) reading is obtained, then try reversing the connections. When the lowest reading (say under 20 ohms) is indicated, the lead connected to the wire nearest the end with the band or spot will be connected, however indirectly, to the negative terminal of the internal battery.

Battery, Meter And Resistor Method

If you are without a multimeter, then try using a battery (1.5 V), a current meter (0 to 10 mA full-scale deflection) and a

Substi-Tutorial

Figure 4. Measuring resistance with a) a multimeter (note polarity of leads), and b) a battery, meter and resistor (see text for details)

resistor (150 ohms) connected as shown in Fig. 4b. This time you will be able to see which lead is connected to which terminal of the battery.

Identifying The Transistor

With either of the above methods, clip the lead which is at a positive potential to one lead-out wire of the transistor under test and connect the other one to each of the other wires in turn. When you find that both connections conduct, the $(+)$ lead is clipped to the base. If you don't find it first time, select another lead-out wire to test. The idea here is that with the base positive, an NPN transistor has a low resistance to either the collector or the emitter. For a PNP transistor, the test method is the same, but the 'negative' lead is clipped to the wire which we assume to be the base.

Integrated Circuits

Last of all, of course, come ICs. Substitution here is seldom possible, apart from replacing manufacturer A's device with one having an identical type number from manufacturer B . When an audio output IC fails (in a car radio, for example) the choice is to replace - if you can ever find a replacement - or to substitute with another type of audio IC. Substitution usually means rewiring, as the pinout (circuit functions of the various pins) is most unlikely to be the same, and a lot of painstaking work may be necessary to get the signal levels right and to prevent instability (oscillation) from occurring.

Digital ICs sometimes allow more scope. You can't swop TTL for CMOS unless you really know what you are doing, but complete circuits designed for one type of logic can usually be built with the other type, remembering that TTL must be operated at 5 V , and that the TL circuits have a low input resistance. Simple gate and flip-flop stages work the same way, but oscillator circuits designed for CMOS will not work with $T T L$ devices because of the difference in input resistance values. Figure 5 shows some typical oscillator circuits.

Display drives. (output voltages for LED or LCD display devices) also differ, but the designs are standardised so that a complete TTL design can be switched for a complete CMOS design. Remember, of course, that TTL circuits need a lot more current than CMOS circuits, so that battery operation is not advisable (even if you have a 5 V battery!!.

There it is then - you can cut down your transistor inventory to just a few main types for most experimental purposes. One item you do need though, is an up-to-date list of transistors with their pinouts!

d

(c) Copyright MODMAGS Ltd.

Figure 5. Digital IC oscillator circuits: a) using a Schmitt gate - the most reliable type of TTL oscillator, b) using three of the gates of a 7400, c) an RC CMOS oscillator. Resistor R2 should be about three times the value of R1, d) a CMOS crystal oscillator - this design uses a very fow supply voltage

HE

Quick Project:Two-Down-One

An easily-built circuit which enables two apparently separate voltage supplies to be taken from one pair of leads. A reader's design for a short circuit that we've selected for a project

This circuit allows you to obtain two sources of voltage from only one pair of wires from a bell transformer. It was designed so that people who have an illuminated door-bell can run a separate bulb over the door number without the need for a second set of wires from the transformer. If you try to use the same pair of wires to run a second bulb the increase in current will probably make the hammer of the bell 'tremble'.

By using only one half of the AC cycle from the transformer to illuminate the bulbs whilst the other half of the cycle rings the bell, the problem is overcome. Diodes D1 to D4 are all that is required to complete the circuit and the whole project fits neatly onto one of our standard-sized 110 strips $\times 24$ holes) piece of Veroboard.

Other uses for the circuit could be to send two separate control signals down the single pair of wires. Finally, take care not to expose the mains tags on the transformer - 240 VAC can be dangarous.

(c) Copyright MODMAGS Ltd

Welcome to HE's new free supplement, which you should find in the centre of
future issues.
Each month, GG\&K will carry items such as:

- What's New - preview of latest products
- News Round-up - recent happenings in gadgets, games and kits market
- On Test - appraisal of selected items
- What's on Show - exhibition previews and reviews

Readers may recall our popular Gadgets \& Games special produced in December 1980. It gave a wide coverage of many items under its two main headings. This new supplement takes in kits as well, and aims to bring you information on new products every month.
This month we look at the Tantel, a Prestel adaptor from Tangerine Computer Systems and two recent products from Casio, the CA-90 watch and the MA-1 alarm clock. We also play with four electronic games and review a couple of kits.

Use Tantel To See Prestel

Prestel seems to be one of those topics that you're either violently averse to or fervently in favour of, like Concorde, nuclear disarmament or The Osmonds. In principle, the system relies on the combination of two previously separate communications media - telephone and television.

The simple act of plugging your telly into the phone line has farreaching implications. Television is a one-way medium. Signals are broadcast from the transmitter to you, never the other way round. The addition of a telephone introduces the possibility of two-way communication. You can get information out of the system and display it on the box. You can also respond to questions on the screen or invitations to order goods, book holidays, hire cars, etc.

Pros and Cons

We looked at the latest Prestel adaptor, a unit from Tangerine Computer Systems. Tantel is an attractive little box about the size of a desk-top calculator. The sloping front panel has a 16-key touch-sensitive control panel and an instruction panel explaining the function of the keys.

Tangerine's national advertising boasts ' 180,000 pages of information instantly available'. That information ranges from the news headlines and sports results to regional events, services, etc. If you want to know, for example, what train to catch to get to Euston by nine o'clock every morning and how much your season ticket will cost, it's on Prestel.

But.

However, we did find that a small fraction of the information was out of date, no fault of Tantel, of course. The biggest disadvantage of Prestel is that you have to pay for it, because you use your telephone to
access information. Much of Prestel's news, weather, sports, travel and other information is also available on teletext, which is free - it's broadcast to anyone who can receive and decode it.

Back to Tantel. How do you use it? The first thing to do is register it with British Telecom. The Prestel computer has to know that you exist and identify your terminal when you switch on. All the necessary leads are supplied. First you plug one end of the UHF lead into the back of your television in place of the aerial lead and the other end into Tantel. Next you plug the funny-looking jack plug into the type 96A socket that BT will come and fit to your telephone. It only remains to plug in the mains lead, switch on and tune a spare channel into Tantel.

You can buy an adaptor that will allow you to plug Tantel and your aerial into the telly at the same time. Otherwise you have to unplug Tantel every time you want to watch Blue Peter.

HH/857

Muhiband Receiver plus 40 -channel CB Monitor. Frequency coverage:
54. $87 \mathrm{MHz} \quad 145-176 \mathrm{MHz}$
$88-108 \mathrm{MHz}$ Plus H1 40 CB Channels $108-145 \mathrm{MHz}$ \qquad
This unit has a telescopic antennar and squelch control, sockets for earphone and external DC power source
£21.95 inc.

The latest from the U.S.A.

PINBALL WIZARD

+ Still available tr
Featured in Nov. Issue of E.T.I. Home TV Game - B/W Kit

Basic Kit $£ \mathbf{2 8 . 9 0}$
Contains everything except box and controls
Box and Controis $£ 6.50$. P.S.U. $£ 3.90$ CEH Car Alarm Kit $\mathbf{£ 1 8 . 9 0}$ Chrome Chime 24-tune door chimes kit £11.50. Builf £15.95

HE MICROBE R/C
 Basic Kit $£ 19.90$
 ELECTRONIC GAMES

Star Chess TV Game............... $£ 63.35$ Database Prog. TV Game $£ 89.95$ Chess Challenger 7 $\mathbf{E 8 9 . 0 0}$ Voice Challenger.. \&230.00 Chessmate 8 level Zodiac Astrology Computer .. £29.95 Electronic Mastermind........... $£ 14.90$ Supersonic Mastermind, new $\quad \geq 1.00$ Basketball $\mathbf{\Sigma 1 9 . 9 5}$ UFO Masterblaster................... $\mathbf{£ 1 9 . 9 5}$ Soccer. f24.95
$£ 24.95$
Boxing.. $£ 24.95$ Jet Fighter, new...................... $£ 22.95$ Radio Control Models-Various

Ball Clock as H.E. offer. Kit £24.95, or ready-built £29.95.
S.a.e. enquiries. Please allow up to 21 days for delivery. ALL PRICES INCLUSIVE

NEED ENCLOSING?

Now. GSC are really in the haldware business, with a series of plastic cases ideally suited to applications ranging from hand-held probes to hi-fi equipment. GSC cases are moulded in robust plastic and come with all the necessary screws, covers and, where appropriate, battery compartments, connectors and transparent panels for displays. And GSC can provide customer-specified variations for large-quantity orders. Fill in the coupon for more details.
GSC (UK) Ltd., Unit 1, Shire Mill Industrial Estate, Saffron Walden, Essex CB11 3 AQ. Telephone: (0799) $21682 . \quad$ Telex: 817477.
 Bold prices include \mathbf{P} \& P and 15% VAT. Please deduct $£ 1$ postage from each additional order. I enclose cheque/PO for $£$
or debit my Barclaycard, Access. American Express card
No
or Tel : (0799) 21682 with vour card number and your order will be in the post immediately.
NAME
ADDRESS
GLOBAL SPECIALTES CORPORATHON
FREE catalogue tick box \square
Global Specialties Corporation (UK) Limited, Dept 14MM
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO
TOMORROW'S TOOLS TODAY

ELECTRDAI•KIT
 Introducing our new CHIP SHOP KITS

Each CHIP SHOP KIT is complete in every way and contains all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a gv battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit. No. 2 - SOLDERING IRON - contains a high quality British soldering iron, a 1 Amp fuse and solder together with straightforward instructions upon how to handle your soldering iron and the best techniques for its use and maintenance.

Kit No. 3 - ELECTRONICS TOOLS - contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.
SOLDER is included with every kit.

All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required).

Kit nos. 1, 10, 11, 12, 13 contain two separate projects.
These kits are becoming available in Hobby and Electronics Stores all over the Country - look out for the CHIP SHOP DISPLAY in your local store.

If you cannot locate a stockist please order direct from Electroni-Kit Ltd. Please add 50p per kit for postage and packing.
Trade and Educational Enquiries welcomes.
Cheque/P.O./Access/Barclaycard (or 23p for full-colour illustrated literature) to DEPT. HECS.

> ELECTRONI-KIT LTD
> RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

With the TV sound turned up, you can hear dialling tones, recorded messages, etc. When your Tantel is commissioned, the computer phone numbers will be remotely programmed into it. Useful features include autodialling (manual dialling also available at the touch of a key) and the ability to record pages of information on a domestic cassette recorder.

Merry Christmas

The information is organised rather like a Christmas tree. You start at the top with page 0 - the main index. If you choose to have a look at the latest news, you can look at the national news headlines or select regional news. When you've selected your region, you can narrow it down even further by using the county-bycounty index. At the end of most pages, you can carry on along that particular branch with more choices of information or return to the main index. If you know what page the information you want is on, you can go straight to that page and miss out all the intervening information.

Impressions

The picture is rock steady and crystal clear. The device is easily controlled, sensibly laid out and

reasonably priced compared with its rivals. We haven't yet worked Tantel into the ground, so these are really first impressions of the system and the first impressions are certainly favourable.

Prestel has been vehemently criticised since its inception because of the enormous public investment which has so far resulted in a relatively small number of users. Small, cheap, easy to install and use
adaptors like Tantel should result in Prestel appearing on more British tellies.... providing the public wants Prestel, but that's another story.

Tantel is available for $£ 170$ + VAT from Tangerine Computer Systems Ltd, Forehill Works, Ely, Cambridgeshire CB7 4AE. Further information is available from Tandata at the same address for the price of a first class stamp.

Space Invaders Up Your Sleeve

These little creatures, in one form or another, get everywhere. Now they're lurking inside the latest watch from Casio - the CA-90.

As an excellent example of the staggering rate of progress of ultraminiaturisation of electronic circuits, this watch offers the following functions:

With all the above contained in one watch module only 46 by 36 by 10.55 mm thick, together with two type 389 silver oxide batteries (life about 15 months), there isn't much room for space invaders. So they have been shrunk down to digits, which advance relentlessly from right to left across the display when the game starts. (Similar in operation to the Casio MG-880 calculator, which also includes the invader game.)

Regular timekeeping	hours, minutes and seconds, with display of day and date
Calendar	month, date and year for about 2
	seconds at the press of a button. The calendar is autoprogrammed until the year 2002
Stopwatch	times events up to 23 hours, 59 minutes, 59.99 seconds (long enough?) with start, stop and lap functions
Alarm	bleeping alarm tone with suppression

Regular

hours, minutes and seconds, with display of day and date

> Calendar
> Alarm
> with suppression

Dual time
facility. Two bleeps on the hour can be selected
one button selects 12 and 24 hour for- mats. Pre-set time, synchronised to normal displayed time, can also be selected
Calculator
standard,+ , x + functions and constant. Eight- digit display, with last two digits 'wrapped around' in position of date digits)
Space Invaders (see below for details)

The object of the game is to first 'aim' - match a number with that of one of the invaders - and then to
'fire' - press a firing button before the leading invader reaches the end of the scale. Just as in the full-scale

mieron

'MICRON' may sound small - but we all know that it's much larger than an atom!
The un-beatable features of Microtan 65 and Tanex have been brought together to give you Micron, a ready built and tested computer of outstanding value. Fully supported by comprehensive documentation, Micron represents an ideal starting point in personal computing. We've taken a full O.E.M. licence for Microsoft Basic, which means that you'll have the support of the most popular Basic available, (as used on PET, APPLE, TANDY etc.). If you want to expand Micron there's no problem, just move into the system rack and choose from the range of Microtan modules. Read the information, study what the magazines have to say about us and compare what we have to offer with other systems, then we feel sure that you'll be convinced that we've produced an excellent product.

- FULLY BUILT, TESTED AND CASED.
- 6502 BASED MICROCOMPUTER.
- VDU ALPHA NUMERIC DISPLAY.
- 8 K RAM.
- 32 PARALLEL I/O LINES.
- 2 TTL SERIAL I/O LINES.
- 1 SERIAL I/O PORT WITH RS232/20mA LOOP, AND 16 PROGRAMMABLE BAUD RATES.
- $300 / 2400$ BAUD FILENAMED CASS. INTERFACE.
- DATA BUS BUFFERING.
- MEMORY MAPPING CONTROL.
- 71 KEY ASCII KEYBOARD, INCLUDING NUMERIC KEYPAD.
- POWER SUPPLY INCLUDED.

TANGPRIN comvin sims imio

 Forehill Works Forehill Ely Cambs England Tol: (0353)3633
microtan 65

The Microtan system is rapidly becoming accepted as the ultimate approach to personal computiog. Start with Hicrotan 65, a 6502 based single board computer, and expand to a powerful system in simple and in-expensive stages. The Microtan system is a concept and not an afterthought, this means expansion is easy and very efficient! Unlike many other systems, you'll find it difficult to outgrow Microtan, and you won't be wasting your money on a product that will only last you a few months! when you are ready to expand, Tanex is waiting. The features offered by Tanex are tremendous, and you can start into them for just $£ 49.45$! Cassette interface, $16 \mathrm{I} / 0$ lines, two 16 bit counter timers, data bus buffering, memory mapping and a further 1 K of RAM are standard. From thereon expansion is simple, just plug in extra integrated circuits to get yourself 8 K of RAM, a further $16 \mathrm{I} / 0$ lines and two more counter timers a serial I/O line with RS232/20mA loop and full modem control, XBUG - a firmware package containing cassette file handling routines, plus a line-by-line assembler (translator) and dis-assenbler, PLUS IOK EXTENDED MICROSOFT BASIC, a suped-up version of the Basic as used by major 'manufacturers such as Apple, Tandy and Nascom, NO OTHER LOW COST MICROCOMPUTER OFFERS YOU THIS SUPERB PACKAGE. O.K. so you want more memory, try Tanram for size! Upto 40 K bytes on one board starting for as little as $£ 50.60$. RAM freaks will be pleased to hear that our system mother board offers page memory logic which will support 277 K Bytes, satisfied? To house these beautiful modules you can choose between our mini-rack (as used on Micron), which accepts Microtan and Tanex, or our system rack pictured above. The system rack will support 12 modules. What are these extra modules? Well for starters there's a couple of I/0 modules, parallel and serial offering upto $1.28 \mathrm{I} / 0$ lines organised as 168 bit ports and 8 serial $1 / 0$ ports respectively. Shortly we'll be introducing high definition (256×256) colour graphics, A to D and D to A modules, IEEE 488 Bus interface, a PROM programmer, disc controller and TANDOS - a 6502 CPM system. So there's plenty to keep you busy. Send for more details, and find out how you can get started for just £79.35!

ALL PRICES QUOTED INCLUDE V.A.T.

AIM 65, KIM 1, SIM 1 USERS- READ ON!

We have produced a T.V. interface module which simply connects to the expansion socket of your computer and produces a display of 16 rows by 40 characters! Of even more interest will be our Buffer module, which allows you to expand into our system rack, giving you access to the full range of Microtan modules.

Please underline the information required. AIM T.V. INTERFACE. MICROTAN SYSTEM. NAME :

ADDRESS:

PLEASE ENCLOSE 12p STAMP. THANK YOU.
invader games, you have 'shields', displayed as three bars next to the aim number. Each time the leading invader 'lands' one of these is destroyed. To complete the picture there is also a 'UFO' coming up at random for bonus points.

All this is accompanied by the usual bleeping sounds you would expect with the game. There are nine rounds after which the more difficult Stage II starts. This second stage also has nine rounds: thereafter (if you succeed this far) you return to the start.

HE gave the CA-90 an on-thearm test and we were generally impressed with its performance. Main niggle was about the size of the function keys: they were found fiddly to operate but there are obvious size restrictions on a watch.

The calculator took some getting
used to after being more familiar with conventional hand-held calculators. The 'clear display' button is sited on one edge while the + , $x,-$ and $=$ buttons are along the opposite edge.

These criticisms applied equally to the game, where you needed great dexterity in a very confined space. We did find, however, that the buttons became easier to use after a few days. (Practice makes perfect?)

We liked it on all other points, though. The display is easy to read, the hour bleep is useful and it is handy to have so many functions in one timepiece.

The CA-90 comes in a resinmoulded case with a combined bracelet of the same material. It is available in two colours: black (CA-90-1) and brown (CA-90-5).

Normal RRP is $£ 27.95$, but it is available at a special discount price of $£ 24.95$ from Tempus, 'Talk of the Town', 19 to 21 Fitzroy Street, Cambridge, CB1 1DB (Tel. 0223312866 /67503).

Wake Up
 To Mozart

Casio's MA-1 alarm clock gives you two alarm functions: repetitive bursts of electronic bleeps or about 30 seconds of a simplified - but recognisable - rendering of Symphonie No. 40 G moll (W.A. Mozart K.550). (This piece was so popular that one arrangement reached the pop charts a few years back.) Volume of both alarm signals can be preset by a three-position slide switch.

If you prefer a snooze function, you are first woken up with the melody followed by an electronic buzzer sound seven times for 60 seconds at intervals of 4 minutes. If you stop the snooze function at any point the whole business, starting with the melody, is repeated after about 7 minutes.

If the hourly time signal is set, 'pips' count down the last three seconds before each hour, with one long peep on the hour.

Hours, minutes, seconds, PM, SNZ (snooze), hourly time (bell
symbol) and alarm are displayed on a blue LCD. This blends in nicely with the blue front bezel but is not as easy to read as some of the dulllooking standard LCD displays.

Case of the MA-1 is in white plastic, with a 30 mm -wide alarm stop button which doubles as backlight switch for the display. Loudspeaker is on the top of the case, with volume, alarm mode select and time setting controls to the right of it. These controls allow adjustment of error up to ± 30 seconds. Accuracy is specified as being within ± 3 seconds/day at 15 to $35^{\circ} \mathrm{C}$.

Power source is three AA-size manganese cells giving, it is claimed, between 1 year and 15 months depending on the type of cell used.

HE view of MA-1? Good value for money (see below for price). Apart from the lack of contrast in the display, the clock has some useful functions.

The RRP of the MA- 1 is $£ 11.95$, but it is available at a special discount price of $£ 9.95$ from Tempus, 'Talk of the Town', 19 to 21 Fitzroy Street, Cambridge CB1 1DB (Tel. 0223 312866/67503)

Kit Review

We looked at two kits from the Chip Shop Kit series from Electroni-Kit. Kit No. 2 is a soldering iron. (No, you don't have to build it yourself.) This kit is really a misnomer. All you have to do is connect a suitably fused (1 A) mains plug. The accompanying information sheet covers care of your new soldering iron and elementary soldering techniques.

So, now you can set about building the next kit that we looked at - Kit No. 19, a four-transistor radio. The step-by-step assembly instructions are just about idiot-proof.

Construction

Construction shouldn't present any problems. All you need supply is a 9 V battery. A clear component diagram shows the positions of all the components on the printed circuit board. We found that excess heat when tinning the three tuning capacitor pads on the PCB (ie holding the soldering iron on them too long), resulted in a puff of smoke as the copper separated from the mica board. If you feel up to it, a simple 'How it Works' section explains. . .how it works.

Sounds

What does it sound like? Well, performance falls somewhat short of hifi as you might expect. Considering that we tried the radio at the top of a building in west London, within a
gnat's whisker of several megawatts of shop and office lighting and heating switching on and off at a rate of knots, reception was surprisingly good. Weaker medium wave stations can be received by attaching a few feet of wire to the ferrite rod aerial - useful if you live in a poor-reception area.

Summing Up

If these two kits are typical of Chip Shop Kits, then they are a good buy for the beginner. Documentation is
brief but complete and clear. The soldering iron comes with all appropriate warnings and advice, and the four-transistor radio assembly instructions assume no specialist knowledge. If you don't have Chip Shop Kit No. 2 (soldering iron) the radio instruction sheet includes advice on the soldering iron you should use and a note on soldering technique.

Once you've caught the electronics bug, you'll want to know why the component bit with the pretty
coloured rings does what it does. The instruction sheet recommends a couple of books which may be of assistance.

Both the above kits cost $£ 5.00$; plus 50 p post and packing charge for each. Around 20 different kits are avallable from the range. Kits and books are available direct from Electroni-Kit Ltd. Rectory Court, Chalvington, E. Sussex BN27 3TD - Tel. 032183579.

Games Review

The Mating Game

The chess computer family grows and grows. If you don't want to shell out $£ 200$-plus for the more sophisticated of the games, Electronic Chess CC- 700 may be more to your liking. At $£ 29.95$ from Kramer \& Co., Electronic Chess is a compact hand-held unit with a magnetic chess set and board.

Playing Around

How do you drive the thing? Power can be provided by a PP3 or a 7V5 $(150 \mathrm{~mA})$ mains adaptor (plug tip positive). Switch on and an 'L' appears on the seven-segment display, requesting a level number. Levels 1 to 6 evaluate the board situation quickly and select the best move. If a satisfactory move isn't found, a more thorough evaluation is carried out. The changeover to a more thorough evaluation is quicker at higher levels. Level seven only carries out the more thorough evaluation. Level eight is used to solve mate in two moves. Don't select level eight unless you have the odd weekend to spare. It can take up to 10 hours to solve a complicated problem. You can change the level in mid-game, though, to speed things up.

Once you've chosen your level, 'BP' on the display asks for a board position. Pressing A gives the conventional board opening position. Pressing B allows you to set up the board as you wish. Now you're faced with an ' O ', requesting an opening game. Keys $1-4$ select a standard opening listed in the instruction booklet. Key 5 chooses one of the four openings at random.
The computer normally plays black unless you select otherwise. From now on Electronic Chess is much
the same as its relatives. It can cope with castling, pawn promotion, en passant capture, position verification, adding pieces to the board, etc. It will even play against itself, if you're into spectator computer chess. Illegal moves are not accepted.

Playtime

The initialisation or setting up procedure may seem to be rather longwinded, but the computer prompts are logical and easily understood (L means level, BP means board position, etc.). You won't have to keep referring to the instructions to decipher strange codes or heiroglyphics. So, no problems there.

All in all, a nice little game at a reasonable price, ideally suited to newcomers to chess who need lots of game practice, but can't always rustle up an opponent of the appropriate skill level.

Electronic Chess is available, cost $£ 29.95$ plus $£ 1.70$ p\&p from Kramer \& Co, 9 October Place, London NW4. Tel: 01-203 2473. A mains adaptor is also available, cost $£ 5.50$. Batteries cost $£ 1.40$ per set.

Watch / Game Combo

Three small watch/game combinations caught our eye. Each game has two options.

The names don't give a great deal away - 'Fire', 'Ball' and 'Vermin'. The object of Fire is to catch tiny LCD figures jumping from a burning building. You can move your pair of rescuers with their catch-net left or right to get underneath the falling figure. BUT the figure bounces when it hits the net, so you have to keep

underneath it until it bounces into the waiting ambulance and you score a point.

If you miss the unfortunate refugee from a flaming demise, he or she (the display resolution makes sexing impossible) becomes a crumpled heap on the ground. The fall is inevitably fatal and an angel appears on the display. If you amass three angels, the game is over. The maximum score you can get is 999 .

Having dealt with Fire in such detail, it is sufficient to say that Ball and Vermin are very similar. Ball involves controlling the hands of a juggler so that he always catches the falling balls and Vermin involves moving a mole-catcher about to hit a mole with a hammer as it emerges from the ground (whatever next?).

One wouldn't describe the games as rivetting after the first few minutes, but they are the sort of games that you might go back to occasionally. So, if the games aren't all that exciting, would you buy Fire or its fellow gadgets as timepieces? That's doubtful. The time is shown in a small area in the top-right corner of the display - the game score position. It would have been preferable to have shown the time in large digits, using most of the display. How accurate is it? The manufacturer claims an accuracy of ± 3 seconds per day.

With a price tag of around $£ 18$, these watch/games seem to be very expensive paperweights for what they do.

Fire, Ball and Vermin are available form NIC, Unit 5, 61 Broad Lane, London N15. Tel: 01-808 0377.

THESE SPACE INVADERS WILL ALARM YOU - the price won't!

The space invaders are back. This time right on your wrist!

CA-90 game

The keyboard is effectively divided in half Any or all of the left-hand buttons $(1,2,4$ $5,7,8)$ become AIM and any or all of the right-hand buttons become FIRE.
The random digital invaders attack from the bottom right and move across the display. Every time you tap AIM your missile number, displayed iop right progresses by 1. When your missile number coincides with an invader, tap FIRE and that spaceship will disappear adding to your score. Since this is a spear game, the earlier you destroy an invader the higher it will score. The game is over if 3 of the 16 spaceships in an encounte
There are 2 stages, each stage having 9 encounters. In stage 1 the game speeds up invaders attack from a closer position After stage 2 the game reverts back to the beginning of stage 1 , but the score, which is added and displayed after each en counter, is carried forward.
Depending very much on your skill, one game can last for as much as an hour or more. The highest score so far will be re tained in a non-volatile memory. (This will be erased if the stopwatch function is utilised).

CASIO'S MOST AMAZING WATCH EVER CA-90 SPECIFICATION

Time: Hours, minutes, seconds, am/pm day and date. One-touch changeover beday and date. One-touch
tween $12 / 24$-hour formats,
Calendar: Automatic; day, date, month and vear pre-programmed until the year 2002 . 8 digits (7 digits for negatives) our basic calculations, with constants fo Alarm: 24 -hour reminder alarm with "alarm on" symbol.
Hourly time signal: Every hour, on the hour. The signal, with display symbol, can e switched on or off.
Stopwatch: Professional $1 / 100$ secone stopwatch measuring net, lap and first and second place times.
Dual time: An alternative time (second time zone) can be memorised. Hours and minutes; 12 - or 24 -hour format.
Tone control: Pitch can be varied in 10 steps.
ame: Additive digital space invade speed game.
Dimensions: $46.0 \times 36.0 \times 10.55 \mathrm{~mm}$. Re in case/strap. Metal keys. Stainless stee back. Mineral glass face.

All this for
ONLY £24.95
(RRP E27.95)

BECOME AN INSTANT MUSICIAN

 NO EXPERIENCE NECESSARYCreate your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back ... beautifully!

VL-1. Utilises very large scale intergral circuit advanced technology. This complete 29 -note synthesiser records and plays back. The octave shift switch expands the range of the keyboard to almost 5 octaves
Preset sounds: Piano, Violin, Flute, Guitar, Fantasy and ADSR (sound wave that can be varied in over 80 million ways).
Auto play: ONE-KEY or MANUAL playing can be recorded and will be played back in the form of a melody.
Auto rhythm: 10 built-in rhythms, all with variable tempo and volume bal ance, can be incorporated in manual playing or added to your recording. niment. Play it anytime and practice German Folk Song with rhythm accompaFacilities: LCD numerical display tempo changes with the tempo control. gramming information. Built-in ampllfier and speaker. Output jack. Pitch control
Calculator: 8 digits, $+, \ldots, \div$, square roots, $\%$, constants and full memory. Power source: Four AA slze batteries or AC adapter type AD-4160 (price £5) Dimensions: $30 \mathrm{~mm} \times 300 \mathrm{~mm} \times 75 \mathrm{~mm}(11 / 81 \mathrm{n} . \times 113 / 2 \mathrm{in}$. $\times 3 \mathrm{in}$) This compact, battery powered lightweight ($438 \mathrm{~g}, \mathbf{1 5 . 4 0 z \text {) can be played }}$ anywhere.

Please order now for May dellvery

OTHER CASIOTONE KEYBOARDS

MT-30 Polyphonic, 22 instruments over 3 octaves. Battery/mains (RRP £115)
CT-301 Polyphonic, 14 instruments over 4 octaves. 8×2 rhvthm accompantments. Vibrato, delayed vibrato. Pitch control. Output jacks. AC only (RRP £285) £245.
CT-401 As CT-301 but with Casio Auto Chord for one finger accompaniment. Plays majcr, minor and seventh chords with bass. Integral sustain and hold. (RRP £345) £295

ILLUSTRATED CATALOGUE

Send 20 p (postage) for detalls of CASIOTONE keyboards, CASIO watches and calculators and selected SEIKO watches.

Offers subject to availability

A CLASSIC IN ITS TIME

You don't have to be a highbrow to appreciate the beauty of this clock. Battery powered, it is ideal for office, lounge, kitchen, bedroom, caravan or boat. Compact and lightweight, it can be used as a travel alarm clock or car clock.

ONLY £9.95
(RRP £11.95)

Blue LCD display, as seen on "Tomorrow's World" 5/3/81. Elimination of polarising filter allows wide angle viewing. Full display of time. Symphonic alarm or buzzer, with snooze facility. Hourly time signal. Integral loudspeaker and amplifier with 3 -position volume control. A large top button gives night ime illumination and switches the alarm off. Alarm function: "Symphonie Nr. 40 G moll" (W. A. Mozart K. 550) for about 30 seconds or buzzer for 60 seconds. Three AA size batteries last approx. 15 months . Quartz accuracy.
Dimensions: $43 \mathrm{~mm} \times 115 \mathrm{~mm} \times 76 \mathrm{~mm}(13 / 4 \times 41 / 2 \times 3$ inches).

CASIO'S BEST SELLING WATCHES

LCD ANALOGUE/DIGITAL ALARM CHRONOGRAPH with countdown alarm AA 81 chrome, s/s bracelet $£ 29.95$. AA-81G. Gold plated £49.95. AA-82. all s/s £39.95. 12 MELODY ALARM CHRONOGRAPHS with countdown alarm. M-12 resin case/strap. E24.95. M1200 all stainless steel $£ 29.95$.
alarm W100 R alarm. W10. Rest case/strap E19.95. Wincel case/resin strap £25.95. W150B Stainless steel case/bracelet £32.50.

Tel. 0223312866

Are your semiconductors too hot to handle? Keith Brindley explains what to do when the heat is on

MOST CIRCUITS and projects that the hobbyist builds don't handle large amounts of power. The formula for power P is given by:

$$
P=I V,
$$

where P is the power in watts, I is the current in amps and V the voltage in volts.

This tells us that a circuit, at 10 VDC , consuming 10 mA of current, would generate

$$
P=0.01 \times 10=10 \mathrm{~mW} \text { of heat. }
$$

Nothing in this typical circuit would even be lukewarm to touch, and so there would be no need to worry about excessive heat.

Things change dramatically if you consider the type of semiconductor circuits broadly known as power stages (high-powered hi-fi amplifiers, DC motor controls etc) running with high current and high voltage. A power stage may take over 10 A of current and at, say 50 VDC the overall power is:

$$
P=10 \times 50=500 \mathrm{~W}
$$

- enough to fry an egg if all the power is dissipated as heat! And all semiconductors are damaged by too much heat, so here we run the risk of 'frying' not breakfast but expensive transistors or triacs.

Figure 1. Showing the voltage developed across a semiconductor power stage, when driving a load

Actually, things aren't just that easy. Let me explain. Figure 1 shows a simplified diagram of the power stage of a circuit, driving a load. The load could be a loudspeaker, or a large motor, or in fact any device which is controlled by a semiconductor power stage. Now, the system would be ideal if the power stage acted as the 'perfect' switch as shown, but, the well known Murphy's Law states specifically that nothing in electronics is ideal. You see, a perfect switch would have zero resistance when closed. Thus, with say, 10 A of current through it, and zero resistance, the power dissipated will be

$$
P=10^{2} \times 0=0 W .
$$

But no semiconductors can exhibit zero resistance. A transistor might only show a resistance of a fraction of an ohm, but at high current it becomes significant and a voltage is developed across it ($V_{\text {ps }}$ in Fig. 1) according to Ohm's Law: $V=1 \times R$.
And using whichever formula for power you wish,

$$
P=I V=I^{2} R=\frac{V^{2}}{R}
$$

you find that a certain amount of power is generated as heat. If the heat causes the semiconductor temperature to rise above the manufacturer's recommended maximum value, irrepairable damage may occur and the device will no longer function, even when it cools down again.

Cool It

Now, obviously this doesn't mean that we can't use semiconductors in power stages, we just have to find ways in which we can keep the semiconductors cool enough to be within the maximum temperature. For this job we use heatsinks. In electronics the term to sink means to take in and use up - thus a current sink will take in and use current, and a heatsink takes in and uses up, or gets rid of, excess heat.)

Various types of heatsink can be bought, shaped to fit all kinds of semiconductor devices. Figure 2 shows a selection, ranging from push-fit or clip-on types (suiting small flexiblelead transistors) to large bolt-on types (meant for high-power semiconductors).

Figure 2. A selection of available heatsinks

DIY

Incidentally, you don't always need to buy a commercially available heatsink, because you can sometimes make your own. In situations where only a small amount of heat is dissipated by a device, a simple piece of metal could do the job (see Fig.3) and the increase in surface-to-air contact obtained with this method may be enough to keep the device cool. Painting the metal with matt-black paint also helps dissipation.

Building Site

In slightly hotter applications you can mount the device on the metal case of your project as in Fig.4. Neither of the above two methods are as efficient as a bought heatsink but as long as the device's maximum operating temperature is not exceeded - who cares?

Figure 3. In many power circuits a small piece of metal, bolted to the semiconductor, will keep the device cool enough

Figure 4. If your project is housed inside a metal case you can use one of the case sides as a heatsink

Compound Interest

As the whole idea of heatsinking is to reduce the build-up of heat on the semiconductor then any method to aid the reduction is a valuable asset. A dry contact between the semiconductor and the heatsink can be quite slow to conduct the heat, and the process can be speeded up, by a factor of about two, by smearing the surfaces with a thermallyconductive silicon compound before fastening them together. A tube of this stuff will iast a long time and it doesn't go 'off', so the initial outlay is well worth it.

Electrical Isolation

Finally, in Fig. 5 is a sneak preview of the power amplifier to be featured as a project next month. This is of particular interest because of the number of transistors mounted on its large heatsink. In all, six devices are mounted (although the same problem will arise if only two transistors are on one heatsink) - and this can be troublesome, because the case of most transistors is internally connected to the transistor's collector. Now, two different transistors may have their collectors at different voltages, so the transistors need to be electrically isolated to prevent short circuits.

Figure 5. When more than one semiconductor is fastened to a heatsink as above, they must be electrically isolated

Special mica washers and insulating bushes are used for this job and can be bought to fit the particular size and shape of semiconductor you use. Figure 6 shows a diagram of a T03 size transistor and how the mica washer is fitted. Remember to smear all four surfaces of semiconductor to washer to heatsink with heatsink compound before bolting them together - although you want electrical isolation you still need heat conduction.

Figure 6. Use a mica washer to electrically insulate the semiconductor from the heatsink

The larger Catalogue that means

FREE POSTAGE

 IN U.K.ADDITIONAL DISCOUNTS
KEEN PRICES GUARANTEED SATISFACTION
GOOD STOCKS We pay postage

Semi-Conductors • I.C.s • Optodevices \bullet Rs and Cs in great variety - Pots • Switches • Knobs. Accessories • Tools • Materials • Connectors

electrovalue

ELECTROVALUE LTO. (Dept. HES) 28 SI. Jude's Road. Englefield Green. Egham. Surrey TW20 OHB
G.S.C. (UK) Ltd., Dept I4F,

Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Telephone: Saffron Walden (0799) 21682 Telex: 817477

ADVANCE ADVERTISING BARGAINS LIST!
Ou FREE Bi.monthly list gives detais of bargains arriving or ius
arrived - of ten bargains which sell out before our advertisement arrived - often bargains which sell out before our advertiseme
appear -it's an interesting list and it's tree - - Usi send S.A.E. appear - it's an interesting list and it's free -
Below are a few of the Baryains still avallable.
TRANSMITTER SURVEILLANCE
Tinv. easily y hdidien but which will enable conversation to be picked parts and circurt. $\mathbf{E 2 . 3 0}$.

- RADIO MIKE

Ideal for discos and garden parties, allows complete freedom of movement. Play through $\mathbf{F M}$ radio or tuner amp. $£ 6.90$ comp. kil. SAFE BLOCK
Marns quick connector will save you valuable time. Features include
quick spring connectors. heavy olastic case and auto quick spring connectorss. . .
switch. Complete kit. $£ 1.95$

LIGHT CHASER

Gives a brilliant display - a psychedelic light show for discos, parties and pop groups: These have three modes of flashing, two chase
patterns and a strobe effect. Total output power 750 watts per channel Comlete kit Prica f16. Ready made uo e4 extra.
FISH BITE INDICATOR
Enables anglers to set up several lines then sit down and read a book. As soon as 0 .
Pricico $£ 4.90$.

6 WAVEBAND SHORTWAVE RADIO KIT

Bandspread covering 13.5 to 32 metres. Based on circuit which appeared in a recent issue of Ractio Constructor. Complete kit in-
cludes case materiats six transistors, and diodes, condensers, resist ors, induct tors, switches, etc. Nothing else to buy if vou have an amplifier to connect it to or a pair of high resistance headohones. PRICE ERT WAV
SHORT
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price $\mathbf{E 2 . 3 0}$. Crystal
earpiece 65 . High resistance headphones (gives best resulis) $\mathbf{5 3 . 7 5}$, Kit includes chassis and front but not case.
RADIO STETHOSCOPE
Easv to fauls find - start at the arial and work fowards the speaker INTE RRUPTED BE AM
This kit enables you to make a switch that will trigger when a steady beam of infra-red or ordinary light is broken. Main compon. ents - relay. photo ransistor, resistors and caps etc. Circuit diagra
but no case. Price $\$ 2.30$
OUR CAR STARTER ANO CHARGER KIT has no doubt saved many motorists from embarrassment in an umergency vou can star
car off mains or bring your battery up to full charge in a couple of hours. The kit comprises: 250 w mains transformer, two 10 amp bridge rectifiers, star//charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the she
garage, whichever suits you best. Price $£ 11.50+£ 2.50$ post
GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring
 With a radio it functions very well as a signal tracert. Bv connecting a simple coil to the inpur socket a useful mains cable tracer can be made. Runs on standard 41/2v battery and has input, output sockets and on-off volume controt, mounted flush on the top. Many othe
uses include general purpose amp, cueing amo, etc. An absolute uses include general
bargain at only $£ 1.85$. Suitable 80 ohm earpiece $69 p$.

FIVE UNUSUAL SWITCHES
For inventors, experimenters, service engineers, students or in
fact anyone innerested in making electrical gacigets. The parcel fact anyone interested in making electrical gadgets. The parcel con tains: - delay switch - motor driven switch - two-way and
off switch - potarity changing switch - and humidity switch. Ou off switch - Dolarititchatging switch - and humidity switch. Our

regular price for these switches bought separately is over $\mathrm{E10}$, but | regular price yor these swe ches bor $\mathbf{E 2} .50$. |
| :--- |
| this month you can have the |

MAINS OPERATED CLOCKS

Where can you buy a precision mains operated electric clock for only $£ 1,25$, The answer is from us, bur you mus
be prepared to buy 8 at a time. Made for famous cookers be prepared to buy 8 al 8 time. Made for famous cookers
these are for normal 250 volt 50 Hz mains and they still have the 25 amp timed on and off switches. They are all brand new and still in original manufacturer's packing. Don't miss this offer. Send $£ 10$ for 8 today, or $£ 2.00$ for

275 WATT TRANSFORMER
With normal mans promary and iwo secon dary windings. The
maior one being 26 volts at 10 amps. the other being 12 volis al 1 amp. Extremely well made transtormer impregnated and varnish ed with a substantual terminal plate on the top. Made for surfac
mounting with periforted clamps for fixing along any edue. mount ing with perfo
$£ 8.50+£ 2.00$ post.
WATERPROOF HEATING WIRE
60 onms per yaro, this is a heating element wound on a fibre glass coil and then covered with p..v.c. Dozens of uses - around water
pipes, under grow boxes in glowes and socks. 23p per metre. CLOCKWORK MOTOR
Preciston movement with a balance wheel and main spring, goes 'or thour at one winding - can be used to operate models, delay
switches, te. etc. 75 . FRUIT MACHINE MEART. 4 wheels with all fruits, motorised and With solenoids for stopping the wheel's with a title ingenuiry you can defy your friends getting the "ackpot". £9.95. $+\varepsilon 4$ carriage
MUGGER DETERRENT
h latchung swich, plas tuc case and battery

. Win scare away any villatn and

TIME SWITCH BARGAIN Large clear mains frequency controiled
clock, which will aiways show you the correct time t start and stop swirches
with the dials. Comes comple with the dials. Comes complete with knobs.
$£ 2.50$.

3 CHANNEL SOUND TO LIGHT KIT
Complete
parts for a

three-channel

sound to ligh
unit controll.
ing over 2000
and
watts of light.
ing. Use this
at home if
you wish but

is plenty rugged enough for disco work. The unit is housed in an atractive two-tone metal case and has controls for each channel.
and a master on loff. The audio inpus and output are by sockets and three panel mounting fuse holders provide thyristor protection. A four pin plug and socker facilrate ease of connectin
ing lamps. Special snip price is $£ 14.95$ in $\mathrm{kl1}$ form or $£ 19.95$
assembed and tested.

REMOTE CONTROL for Sound to Light Systems fours At any other circuit) saves connecting to speaker or amp - ki
consists of 1 watt amplifier, crystal mike, case, sundries and diagram. Price £3.95.
LIGHT EXPANDER AND LATCH for Sound to Light, enables 3,000 watts ad lighting to be controlled by single Kit consisis of latching relay, controt switch, case, sundries and diagram. Price E4.25.

PANEL METERS "AMSTRAD"

We have two 1 foes, both approx 40 mm pex type front. Both have sensitivity pex tyoe tront. Both have sensitivity
$0-100 \mathrm{uA}$, one has a pointer in the centre and the scale cafbrated 3.2. $0 \cdot 1-2 \cdot 3$. The other has the pointer in
the normal position and the scate reads the normal position and the scale reads
0.5 . The interesting feature of these $0-5$. The interesting feature of these
meters is that it illuminated from behind the scale and pointer seem to fluoresce, giving a very pleasing

THIS MONTH'S SNIPI

PUSH BUTTON G.P.O. TELEPHONES For $\mathrm{E25}$ (quicklv recoverahle in saved time) you will burtion desk telephone, ex. G.P.O. thoroughly recon. ditioned, can be yours in a few days, if you send today.

EXTRACTOR FAN

 Mains operated - ex. Compure odss extractor65
75
Post ${ }^{\text {E }}$. 75 Post $£$ E6.90 Post $£ 1.25$
 4. Mulfin 115 4. Muffin 230 v . E5.75 Post 50 P.

8 POWERFUL

BATTERY MOTORS For models, Meccanos, drills, erc. $£ 2.50$.

SPIT MOTORS

These are powerful mains operated induction motors with gear box induction motors with gear box
atrached. The final shath is 8% rod with square hole, so you have altern.
ative coupl ingmethods - final speed ative couplingmethods - tinal s.eed
is approx. 5 revs $/$ min. price $£ 5.50$. Similar motors with tinal speeds of
$80,100,160$ \& 200r.p.m. same price

TAPE PUNCH \& READER cools, eto mot controlling machine Tratching tape resder. Ex-compulers, be lieved in good working order, any not so
would be exchanged. $£ 17.50$ palt. Post

PORTABLE RADIO CASE Size: $11 \times 8 \times 3 \%$ ins
approx. Made from ply wood, pleasingly covered.
Suitable Suitabie for ary normal
radio circuit. Has studs for mounting 5 " speaker
fond the front is drillea o take a tuning conden sor in the centive and
normal controis sither

LAST MONTH'S SNIP - STILL AVAILABLE And it still carries a free gift of a desoldering pump, which we are currently selling at E6.350. The snip is perhaps the most useful
down parcel we have ever offered. It is a parcel of 50 nearly all different computer panels containing parts which must have cost a least 6500 . On these boards you will find over 300 IC's. Over 300
diodes, over 200 transistors and several thousand other parts, resistors, condensors, multıturn pois, recifiers, SCR, etc. etc. If you act promplly, you can have this parcel for only 58.50 , which when yo deduct the value of the desoldering pump, works out io iust a hittle over 4 p per panel. Surely this is a bargain you should not miss!

YOUR LAST CHANCE FOR THIS BARGAIN 100 twist drills, regular tool shop price over $£ 50$, vours for only
E11.50. With these you will be able to drill metal, wood, plastic £11.50. With these you will be able to drill metat, wood, plastic, e
tram the tiniest holes in P.C.B. right up to about $/ \%$. Don $\$$ miss trom the tiniest holes in P.C.B. . rig.
this snip - send vour order today.

MAGNETIC LATCH
Low voitage (4-8 volt AC/DC operation)
COMPONENT BOARD
Ref. WO998
fibreglass board which contarns a multitude of very useful parts, most important of which are: 35 assor ted diodes ransistors type BC 107 and ivpe BFY 51 eletrolytic bondensers. SCR ref 2 N 5062 . 25 Ouf 100 vDC and 100 uf 25 v DC and over 100 other parts including variable, fixed and wire wound resistors electrolytic and other condensers. A real snid at $£ 1.15$.

MINI-MULTI TESTER Deluxe pocket size precision mo ing coll instrument, Jewelled bearings - 2000 o.p.v. mirrore
11 instant range measures: DC voits $10,50,250,1000$. $A C$ voltr 10, 50. 250,1000
OC amps $0-100 \mathrm{ma}$
Continuity and resistance 0.1 meg ohms in
two ranges. Complete with test prods and instruction book showing how to measure capscity and inductance as well. Unbelievable
value at only $56.75+500$ post and insurance.

FREE Amps range kit to enble you to read C curtent from 0.10 amps. directiv on the 0.10 scale. It's free if you
purchase quickly, but of you already Own a Mini-Tester and would like
one. send $£ 2.50$. $\quad \mathrm{AC}$ volts $10,50,250$.

MULLARD UNILEX system. Rated one of the system. Rater one of
innest perflomers in the
the stereo field this would
make a wonderful giff for almost anyone. In easy to assemble modular form this shhuld sell at atout E30 entive for vou to buy this month we offer the sys. em complete at only $£ 16.75$ including VAT and post.
REE GIFT - buy this month and you will rece ive a
Goodman's eliptical 8 " $\times 5^{-}$speakers to maten this amplifier.
VENNER TIME SWITCH Manns operated with 20 amp switch, one on and one olf per 24 hrs. repeats daily
automatically correcting for the fengthen. ing or shortening day. An expensive time Switch but you can have it for only $£ 2.95$ hasese are new but without case, bur we
can supoly plastic cases (base and cover) E1,75 or metal case with window $£ 2.95$. Also avaitable is adaptor kit to convert
mis into a normal 2 hhr. tume switch but With the added advantage of up to 12 on
oft olts per 24 hrs. This makes an ideal con.
oller for the immersion heater. Price of

DELAY SWITCH

bit wirnied - delay can be accurately
to 2% hrs. 2 contacts sur periods of up amps - second contact opens a switch 10 utes after 1 st contact. $£ 1.95$.

LEVEL METER
 rescaling. Sensitivity 200 UA. 75p.

STEREO HEADPHONES Japanese made so very good quality.
8 onm imperdance. pradted term-
inating with standard inating with standard d/
plug. $\mathrm{E2.99}$ Post 60 . BRIDGE RECIFIER 1 amp 400 l 30 each.
10 for $£ 2.50 .100$ for $£ 20.00$
\qquad
-
J. BULL (E BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.

This new page features a selection of your letters to the Editor

HE's Editor receives hundreds of letters from readers each month and finds it impossible to answer evey one of them.
As a help (especially to the Editor!) this new page has been created to enable readers to air their views, make suggestions or put forward questions.
Hugh Davies will try to answer as many letters as he can directly, but only if they are accompanied by a stamped addressed envelope. Please try to keep your letters as short as possible.
Clever Dick, chained in the depths of the HE dungeon, 145 Charing Cross Road, will continue to sigh, smile, rant or rage over his own heap of correspondence

First out of the bag this month (March) is from a reader who, after suffering the consequences of an error in a diagram for one of our projects, had the patience to try again.

Dear Sir,
As a late starter to this electronics game may I first applaud your mag for its contents. I very humbly point out that your Bench amp Hobby Electronics January ' 81 - article is just what we beginners need, with the exception of the two mistakes in the wiring up diagram which I discovered to my cost after using a battery eliminator connected as per the middle of three diagrams $1+$ - wrong way round and transistor 1 out of place). This, as you would imagine, has made me sit up and take notice of what lam doing.

Perhaps you would like to inform other readers of these mistakes as many may not have the patience to try again.
J. Williams

Bradford, W. Yorks
Sorry about the error in Fig. 2, page 38 in the January issue: we covered it (somewhat late, you might say) in the Errata column under Monitor in the March ' 81 issue. (The connections to the battery clip should be reversed and transistor 01 should be moved down one complete strip on the Veroboard.)

Dear Sir,
I should like to take up electronics as a hobby. After buying Februarys H.E mag. I was very interested in the heart beat monitor, and would like to attempt to make one.

How do I get the stuff? What tools would I require? Am I aiming to high? Please help. Anv info would be of great assistance.

At present 1 am a student E.E.G. technician.
R. Sawyer

Ormskirk, Lancs
If you are just starting out in electronics and are considering the Heartbeat Monitor as a first project, then I think that you are definitely aiming too high. It would be better to start off with something simpler, such as the Doorbell Monitor (March ' 81 issue, pp 32 to 33).

Most components are available from the stockists advertising in HE (some offer complete kits). Details of where any components which may be particularly difficult to obtain are usually given under Buylines for each project.

What tools would your require? Have a look a Building Site in the April ' 81 issue for some guidance (pp 29 to 30).

Dear Sir,

According to your Index to volume 2
published in the January 1981 issue of H.E., the November and December 1979 copies of H.E. don't exist!

Furthermore, the November and December 1980 and the January 1981 issue (all from volume 3) have crept in.

I land maybee a few other loonies who have also got all 24 of your mags so farl would appreciate it if you could print a revised index.
M. Osborne

Wokinham, Berks
P.S. I was beginning to lose faith, but the last few issues have been ace.
P.P.S. How about a cheap, simple, short wave receiver which accidently picks up 27 MHz ?

First, the 'November and December ' 79 issues of HE do exist . . . and second, you are the first reader to spot the omissions in our Vol 2 index. Yes, it was as if the whole index had shifted on its foundations, and edged into Vol 3 ! We'll try and sort out the discrepancies in the next index to be published (January '82).

As to your P.P.S., see the comments made in answer to the next letter.

Dear Sir,
Iknow you must be a busy man, but can I take a little of your time, to ask you if you have a circuit diagram for a C.B. unit for the use on the new legalized 27 MHz F.M. band. Could you send me the diagram please, to the above address, or would you print it in the next issue. Thank you for your time.
V.M. Holness,

Ashford, Kent
Unfortunately, I can't help you on at least three counts. First, the exact specification of equipment suitable for use on 27 MHz ' $F M^{\prime}$ has yet to be published by the Home Office. Second, unless you have the specialised knowledge of building something as complex as a multi-channel transceiver or receiver, it would be better to buy one when it becomes available. If the (illegal) AM versions are anything to go by, then your purchase will probably work out cheaper than buying all the individual components. Third, such a project would be too tricky for many HE readers. ISee also Rick Maybury's comments in Breaker One Four on page 61 of the April ' 81 issue.)

Dear Sir, or Ed,
I wish to quote from your magazine Hobby Electronics February 81 edition. On the front cover. "Oscilloscope Feature - How they work and how to use them". I have read this article on How they work etc., but please will you point out where in the article it shows or
explains how to use a scope?
I have read the part on the scope, how to operate and basically what the channels, time base and C.R.O. etc do but you do not stress how to use the probes, where to put them. Let me quote a jigsaw puzzel "You have and know the pieces, now where do you put them".

The main point of this letter is where to place the probe's to find the piece of information I wish to see on the screen.

We are not all experts.

R. Johnson.

Oldham, Lancs
You're not the only reader to comment on the shortage of information in this feature on how to use oscilloscopes. I would like to thank those who wrote in about this - but don't despair! We aim to print a special article dedicated to the use of a simple oscilloscope in the June ' 81 issue.

Dear Sir,
Referring to the current publication of "Hobbies Electronics", being of the older generation. I was extremely interested in the article dealing with the scanning disc etc, relating to the first television efforts.

In 1934 or there abouts I made up, as instructed in the periodical "Wireless World"? a set comprising of scanning-disk, neon bulb, transformer, small, rev. motor. (low revs) coil, plus other items that cannot be recalled.

I wonder if you have any knowledge of such a set, or perhaps you could tell me where I may be able to obtain a set of working drawings with details of components.

For posterity and very old interest I would like to make that particular set just for the sheer enjoyment in doing so.

I know that the impossible does happen sometimes, so perhaps you might be able to assist, if not, well we tried.
J.A. Pearson

Stafford
Several readers lespecially those from the 'older generation') expressed their interest in 'Beginnings Of Real TV', by Ian Sinclair.

More than one mentioned early attempts to building Baird-style receivers based on the scanning disc principle.

I cannot meet your request, but perhaps some of our readers can lend a hand. Send any information you may have (in the attic perhaps?) to me at HE.

That's the lot for this month: we'll try and print a fresh batch in the June issue.

HE

Infra-Red Remote Controller

This easily constructed project lets you control electrical equipment at the press of a remote button. It is designed and produced as a kit by TK Electronics

AVAILABLE TO THE hobbyist are two main methods of achieving simple remote control - infra-red and ultrasonic (we have discounted radiocontrol because of its complexity). Of these two kinds, ultrasonic control has been more popular in the past because of the lack of suitable infrared devices. Recently, however, some new developments on the infra-red scene have led to the introduction of much simpler (but every bit as good) infra-red systems. The system we have chosen for the HE Infra-red Controller uses some of this 'latest technology' to provide remote control of electrical equipment at a distance of up to 30 feet.

Our system can operate in two modes: an alternate on/off action whenever the transmitter is operated; or a timed-on mode (ie, it turns the equipment on for a set period). The constructor can choose whichever mode he or she desires by the positioning of only one component on the printed circuit board at construction stage.

Our infra-red Remote Control project has been available to HE readers for a few months now from TK Electronics. The Transmitter is built into a hand-held case, and being battery operated it is completely portable. The Receiver/Controller will switch up to 2 A of current at 240 VAC (with adequate precautions! see the Construction section). It can be positioned in circuit anywhere between a mains outlet and the equipment to be controlled. For example, you can see that our prototype controller is mounted in a small plastic box and a 13 A mains socket is inserted in the front panel. it is possible that some of our readers will want to build their Receiver/Controller into the equipment to be controlled (the printed circuit board is small enough). However you choose to construct yours, the only point to bear in mind is that a 2 A fuse must be inserted somewhere in the mains lead before the Receiver/Controller.

As the HE Infra-red Controller
consists of two parts; the Receiver/Controller and the Transmitter, we will deal with constructional details of the parts separately. Details of the Receiver/Controller are shown below and those of the Transmitter will follow next month.

Construction

Build up the printed circuit board (PCB) of the Receiver first, following the overlay details in Fig.2. The PCB is very compact, so all low-tevel components (ie, resistors, IC sockets, diodes D2, 3, 4, 5, zener ZD1) should be inserted and soldered first, otherwise you will find their insertion later on tricky. Connect the free end of resistor R6 to point A on the PCB if you require alternate switching action. Connect R6's free end to point B if you require a timed-on action. Use a fine-tipped soldering iron for all joints.

Next insert and solder capacitors, transistors and the triac, making sure

Figure 1. Circuit diagram
(c) Copyright MODMAGS Ltd.
that you have them polarised correctly where necessary. Fit the two ICs into their respective sockets the correct way round.

Cut and strip off three $1^{\prime \prime}$ lengths of mains wire taken from a length of cable and insert one end of each into the three terminals of one side of the terminal block. Tighten down the screws to hold them in. Next push the three free ends of stripped mains cable into the three holes at the bottom right-hand corner of the PCB so that the terminal block fits flush to the board. Solder the three $1^{\prime \prime}$ pieces of mains cable to their three solder pads of track.

Diodes D1 and LED1 can be soldered directly to the board, or fastened to your case's front panel, or, as in our prototype, a mixture of the two methods can be used. In the photograph you can see how we fastened the LED into a clip on the front panel and attached it with flying leads. The photodiode is, however, mounted on short lengths of stiff wire directly onto the PCB so that when the box is closed up D1 is positioned directly behind the front panel. A small hole drilled into the panel allows infra-red light to enter the box.

You must put some form of heatsink onto the triac SCR1 if the

Receiver/Controller is to be used to switch equipment using over 250 W of power. We used a commonly available clip-type of heatsink in the prototype. A discussion of heatsinks and hints on how to make your own can be found in Building Site on page 43.

Finally, details for connecting the Receiver/Controller in the same way as ours, with a 13 A mains socket, are shown in Fig. 2.

Buylines

Kits for the receiver ($£ 4.83$ including VAT) and the transmitter $£ 10.35$ including VAT) are available from

TK Electronics (HE) 11 Boston Road
London W7 3SJ
Please add 50p p\&p to the total order. The receiver kit includes the PCB and all parts to make up the board; the transmitter kit includes PCB, all parts and the hand-held case. Also supplied with each kit is an instruction leaflet. When building your two kits, follow either the supplied leaflet or our instructions, as small discrepancies will occur in component numbering. Both sets of instructions are, however. correct.

Figure 2. Overlay and connection details

Parts List

RESISTORS (all $1 / 4$ W. 5% except where stated)

R1	330 k
R2,6	47 k
R3	680 k
R4,5,8	1 MO
R7.	1 kO
R9	22 R

[^0]
How It Works

Infra-red is the name given to light having a wavelength beyond that of red light. If you look at the region of visible light in the electromagnetic spectrum, below, you will see how visible light, consisting of its various colours, occupies a fixed part of the waveband. Infra-red light is in the region immediately to the left of visible light, and is thus invisible to the eye. (Light, as part of an electromagnetic spectrum, was first conceived by James Clark Maxwell - see Famous Names, page 63.)

Infra-red energy is received by photodiode D1. Transistor Q1 and associated components filter out any infra-red radiations which may be picked up by the receiver from 'natural' sources of infra-red light, such as the sun or tungsten and fluorescent lamps.

Integrated circuit IC 1 amplifies the pulses picked up by the photodiode, its gain being defined by R2 (increasing R2 decreases the amplifier's gain).

The output of the amplifier is rectified by 'diode pump' D2 and 3 . and stored across C7 as a negativegoing pulse which turns transistor $\mathbf{Q 2}$
on. In turn, $\mathbf{Q} 2$ triggers a monostable formed around the first half of IC2. The output of the monostable at pin. 1 is thus high for a period determined by C9, every time the receiver is triggered by infra-red light.

This pulse is then used in one of two modes: either fed directly to the base of Q3, thus turning triac SCR 1 on for the period of the monostable; or fed to a bistable formed by the second half of IC2, which turns Q3 and SCR1 on and off alternately.

A 15 VDC supply for the circuit is taken directly from the mains via C11 and 12, ZD1, D5 and R7.

ANNUNICINTG A NREM SHET n Im Mba smuc

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price $£ 10.00$ per set (we pay the postage)

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals. Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Electronic Organ, Battery Eliminator, Anemometer. Sound Switch Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order Now:
Selray Book Company
11 Aspen Copse,
Bromley
OUR 100\% GUAFANTEE
Kent. BR1 2NZ
Amount enclosed: \mathbf{E}

Name:

Address:

GREENWNELD
 443A Millbrook Road Southampton SO1 DHX

All prices include VAT@15\% - just add 40p post

THE SPECTACULAR 1981 GREENWELD Component Catalogue
Bigger and better than ever!II

- 60p discount vouchers
\star First Class reply paid enve lope
* Free Bargain List

Priority Order Form

* VAT inclusive prices
* Quantity prices for bulk buyers
SEND 75p FOR YOUR COPY NOW!! regulated psu panel
Exclusive Greenweld design, fully variable a
28 V \& $20 \mathrm{~mA}-2 \mathrm{~A}$. Board contains all components except pots and transformer. Only SAE for fuller details.
DISC CERAMICS
0.22 uF 12 V 9 mm dia. Ideal for decoupling 100 or $£ 2.75 ; 1000 € 20$.
0.5 uF 12 V 15 mm dia. $100 \mathrm{£1.50;1000£12}$. Pack of disc cerami

VEROBLDC BREADBOARD

New from Vero, this versatile aid for building
and testing circuirs can accommodate any and testing circuits can accommodate any
size of C. Blocs can be joined together. Bus size of IC. Blocs can be joined together. Bus
strips on X \& Y axis -total 360 connexion strips on X \& Y axis
points for just $£ 4.15$.

ALFAC PCB TRANSFERS

Lines, curves, dots, pads, DIL pads, etc. Pack
DEVELOPMENT PACKS
These packs of brand new top quality compo hents are deslgned to give the constructor a whenever required. They also give a substanliat saving over buying individual parts. K001 50 V ceramic plate capacitors 5%. 10 of each value 22 pF to
tor. PRICE: $\mathrm{EA} . \mathrm{BO}$.
K002 Extended range 22 pF .1 . Values over

1000 pF are of a greater tolerance. 10 of each | value 2227333947566882100120150180 |
| :--- | :--- | $220270333390470560680820 \quad 1000 \quad 1500$ PRICE; $\varepsilon 7.66$.

$K 003 \mathrm{C} 280$ or similar Polyester capacinors, 10 each of the following: $.01, .015, .022$, 033 , 55.40

$K 004$ Mylar capacitors. Small size, vertical mounting 100 V . 10 each of the following | $.001, .0012, .0015, .0018, .0022, ~ .0027, .0033$, |
| :--- |
| $0039, .0047, .0056, ~ .0068, ~ .0082, ~ .01 . ~ T o t a l ~$ | capacitors, PRICE: $£ 4.70$.

K007. Electrolytic capacitors 25 V working,
small physical size exial or radial leads. 10 smal! physical size exial or radial leads. 10
each of the following: $1,2.2,4.7,10,22,47$. 100, IF, Total 70 c apacitors. PRICE: E3.59. K008 Extended range: as above, also includ $\mathrm{ing} 220,470$ and 1000 . F all at 25 V . Total 100 capachors. PRICE: E6,35.
K021 CR25 resistors or similar, miniature $1 / 4$
watt carbon film 5%, as used in nearly al wajects. 10 of each value from 10 ohms to M. E12 series. Total 610 resistors, PRICE: [5.95.
K0.41 Zener diodes. $400 \mathrm{~mW} 5 \%$. 10 of each of
all the values from 2 V 7 to 36 V . Total 280 zen all the values from 2 V 7 to 36 V . Total 280 zen-
ers. PRICE: $£ 15.95$.
K051 LEDs - pack of 60 , comprising 10 each red, green and yellow 3 mm
gether with clips. PRICE: 88.95 .

$$
\text { BARGAIN LIST No. } 13
$$

10 A4 Pages 11 Hundreds of different hems ors. panels. etc. etc. be repeated bargains!

DISPLAYS

2635 Seven seg by NEC, type LD8012. This is wire ended type 43 mm high 11 mm dia tube requiring a heater supply of 0.6 V and 18 V io
Illuminate the segments. Digit height 12 mm
2636 Futuba 7 seg display type DG1001. Fe quires same supply as above. Tube siz 2637 ITT nixie iube GNP 974 , wire anded 40 mm high $\times 17 \mathrm{~mm}$ dia. Digit helght 15 mm Can be operated from 240 V ac mains by put ing 56 k resistor \& rect in series to provide
170 VDC The above displays are all provided with

PLUG TO SOCKET ADAPTORS

P201 $1 / 4 \mathrm{in}$ mono plug 102.5 mm skt
P202 $1 / 4 \mathrm{in}$ mano plug to 3.5 mm skt
P203 $1 / / \mathrm{in}$ mono pluq to phono skt
P204 3.5 mm plug to $/$ ain mono skt
P205 3.5 mm plug to 2.5 mm skt P206 3.5 mm plug to phono skt P207 Phono plug to $1 / 4 \mathrm{in}$ mono skt P208 Phono plug to 3.5 mm skt
P209 Phono plug to 2.5 mm skt P2102.5mm plug to $1 / 4 \mathrm{i}$ m mono skt P211 2.5 mm plug to 3.5 mm sk P212 2.5 mm plug to phono skt P214 $1 / \mathrm{sin}$ stereo plug to 3.5 mm sk+ P215 Car aerial plug to phono skt COMPONENT PACKS

K505 20 ass orted potentiometers, all type
511200 small value $£ 1.70$ rom a fow pF to . 02 uF . Excellent variety $£ 1.20$ 5100 silver mica caps from 5 pF io a few housand DF. Tolerances from 1% to 10%. $K 516$ Transistor Pack. Small signal NPN/PNP transistors in plestic package. Almost all are
marked, full spec devices, but some have bent leads. Over 30 different types have been found by us, inc. BC184/212/238/307/328; F196/7; ZTX107/8/9/342/450/550 etc. Look $\$ 25$.

PANELS

221 Panel with 15236 (2N3442) on small hea sink, 2 N2223 dual transistor, 2 BC108, diodes, caps, resistors, etc
$Z 482$ Potted Oscillator Module works from 120 V , can be used as LED flasher (3V min)
Supplied with connection data, suitable R, C \&
2527 Reed relay panel - contains $2 \times 6 \mathrm{~V}$ eeds, $6 \times 2 \mathrm{~S} 030$ or $2 \mathrm{~S} 230,6 \times 400 \mathrm{~V}$ rects +
2529 Pack of ex-computer panels containing 74 series ICs. Lots of different gates and complex logic. Ailics are marked with type no o supplied. $20 \mathrm{ICs} \mathrm{ET} ; 100 \mathrm{ICs} £ 4$
A504 Black case $50 \times 50 \times 78 \mathrm{~mm}$ with octal base. PCB inside has 24 V reed relay, 200 V 7 A
SCR $4 \times 5 \mathrm{~A} 200 \mathrm{~V}$ rects, etc 60 p

£1 BARGAIN PACKS

 Each pack $\mathbf{1} 1$; any 25 packs $£ 22$| K101 | 16 BC 239 B transistors |
| :---: | :---: |
| K102 | 15 BC349A transistors |
| K103 | 10 BC5468 transistors |
| K104 | 18 BC 182B transistors |
| K105 | 50 1N4148 diodes |
| K106 | 18 BC 184L transistors |
| K107 | 18 BC213L transistors |
| K108 | 2N5060 thyristors, 30V 0.8A T092 case |
| K109 | 15 8C114transistors |
| K110 | BD131 transistors |
| K111 | BD 132 transistors |
| K112 | 12 3A 100V rects, wire ended |
| K113 | 30 DA002 rects 150V 0.5A |
| K114 | 15 XK6116 (BF241) transistors |
| K115 | 18 SP1218 (2N3702) transistors |
| K116 | 10 MPSL01 NPN 140V 092 |
| K117 | 10 BF 450 PNP TV IF amp iransistor |
| K118 | 16 MEs 401 NPN 60V AF low noise |
| K 119 | 10 2N5401 NPN 160 V T092 |
| K121 | 207 V 500 mW zeners |
| K122 | 10 VR525 5.25V 2.2 W zener |
| K123 | 1056 V iW zener |
| K124 | 50.029 F disc ceramic |
| K125 | $2001 \mathrm{k} 5 \% 1 / 4 \mathrm{~W}$ carbon film resis |
| K126 | 100300 pF 63 V polystyrene preformed caps |
| K127 | $2547 \mu \mathrm{~F} 25 \mathrm{~V}$ axial lead caps |
| K128 | 2515 uF 40 V do |
| K129 | 8 A4ll 3 diodes |
| K130 | 25 470R V 0.1 W presets |
| K131 | 10 VA1086 thermistor |
| K133 | 203 way 5 A term blocks |
| K134 | 50 unmarked untested OC71 typ transistors |
| K135 | 304.79 F 10 V radial elecs |
| K136 | AC187k transistors |
| K137 | 189F 100 V non-polarized ceps |
| K138 | 30 1/466 coil former with slug |
| K139 | 40.0259 F 50 V mylar caps |
| K140 | 30.05 do |
| K141 | 40 0.019F 400 V axial caps (C296) |
| K142 | 25 wire ended neons std size,90 |
| K143 | 200 squares mica insulation 25 mm |
| K144 | 30 IR5 3W wirewound resistors |
| K145 | 1015009 F 16 V caps - radial PC mntg. |
| K146 | 25 3309F 4 V axial caps |
| K147 | 1509F 350V caps - radial PC mntg. |
| K148 | 30 transformer former type $\times 228$ |
| K149 | 12 Ferrite rad type X036 |
| K150 | 10 switches type W430 |
| K151 | 120.12566 red LED's |
| K152 | 100.266 red LEDs |
| K153 | 30 T05 heat sinks, same as G104 |
| K154 | 155 pin 180 Din socket. clip fix |
| K155 | 100 metres thin flex ($10 \times 2 \mathrm{~m}$ lengths) |
| K156 | 15 1/466 chassis mntg fuseholder |
| K157 | 1216 pin QIL-OIL IC sockets |
| K 158 | 6 SPCO centre off white rocker switches |
| K159 | 200.3 W presets $500 \mathrm{k} V$ with knurled |
| knob | |
| K161 | 200.3 W presets 2 k 5 V |
| K162 | 200.3 W presets 2 M 5 V with knurled |
| knob | |
| K163 | 400 15R 1/aW 5\% preformed vert mntg |
| K164 | $5022 \mathrm{pF} 2 \%$ silver mics caps |
| K165 | 20 Sub-min reed switch, body 20 mm |
| K166 | |
| K166 | 1003300 pF 630 V potvester PC inntg |
| caps | 50 AA144 diode preformed as above |
| K169 | 30 BV2 400 mW zener as K167 |
| $K 171$ | 2511 V do |
| K173 | 121.59 F 25 V tant bead caps |
| K174 | 120.479 F 25 V tant bead caps |
| K176 | 24 150R 0.IW vert presets |
| K177 | 24.470 0.1W horiz presets |
| K178 | 24.470 CO O.1W vert presets |
| K179 | 242 k 0.1 W horiz presets |
| K180 | 242 k 0.1 W vert presets |
| K181 | 242 k 20.7 W horiz presets |
| K185 | 200 1R 1/2W CF preformed Rs for horiz mntg .15 mm centres |
| K187 | 18 PE5030 NPN Si TO92 transistors. \checkmark ce 35 V , Hfe 75 |
| K188 | 18 F544 PNP Si TO92 transistors. Vce 20V. He 300 |
| K189 | 301 N649 600V 0.4A diodes, preformed for H mnitg. |
| K190 | 16 BZY858V2 250 mW zener diodes |
| K199 | 8 BY $300 / 600$ 'Top Hat' switching diode 600V6A |
| K192 | 25 RGP10B 100V 1A switching diode |

OLevel O\&A

Amplifiers are on the menu this month. Nick Walton looks at amplifier operation and explains impedances and feedback

IT IS VERY difficult to penetrate far into the world of electronics without coming across the word amplifier (look, there it is alreadyll, so this month we will try to consider it in some detail.

Basically an amplifier is a device which will produce a big signal from a small one: it makes an electrical mountain out of an electrical molehill you might say. This idea can often lead the newcomer into believing he or she is getting something for nothing - but alas, life is not like that. So it is probably worth sneaking a quick look into our amplifying black box. This is not because we would ever be required to know details of amplifier circuits but because it can help us firm up on general principles of things already covered, like Ohm's Law. Our quick look will also help in understanding the process of amplification.

Amplifier Principles

Suppose, then, that our peep reveals a positive and negative supply line, a couple of resistors and a transistor, arranged as in Fig. 1. We see that the transistor is connected in series with the 1 kO resistor across the supply lines. Sometimes the transistor conducts well (if given a suitable base current) and sometimes, with no base current, it acts like a very high resistance. Now how does Ohm's Law apply to two (fixed) resistances in series? Perhaps you were a one-resistance person when it came to Ohm's Law, but if you expand your horizons to two resistances, you discover an extremely useful result. This is that the voltage dropped across two resistors in series is in proportion to the values of the resistors themselves.

Figure 1.
Simple amplifying circuit
© Copyright MODMAGS Ltd.

To amplify (!), let us suppose in Fig. 2 that R1 has a resistance of 1 kO and R 2 has a resistance of 5 kO . It does not take a genius to discover that the current flowing down the pair of them is 1 mA (voltage divided by total resistance). Now considering the resistors separately and doing $\mathrm{V}=\mathrm{IR}$ on each we find that the voltage across R1 is 1 V and that across R2 is 5 V . Thus a one-to-five ratio applies to the voltage dropped across R1 compared with the voltage dropped across R2, and this is the same ratio as R1 to R2 lin ohms).

Try for yourself a similar analysis if we keep R1 as 1 kO and drop $R 2$ to 200R. Now more voltage is dropped across R1 than R2 in a $5: 1$ ratio.

Finally, if R2 is very much larger than R1 (perhaps 1 MO compared with 1 kO), then by far the most voltage is dropped across R2. The actual ratio is one to a thousand, all but a tiny bit, and if the value of R2 is tiny compared with R1 then virtually all the voltage is dropped across R1. So if R2 could change as suggested in the examples above, the voltage at the junction between R1 and R2 (marked as X in Fig. 2) could vary from about 6 V to about OV .

Figure 2. Using two resistors in series to demonstrate how the circuit in Fig. 1 operates. The voltage drop across R1 and R2 is measured from point X
© Copyright MODMAGS Ltd.

Transistor As An Amplifier

Having bent your mind round that little chunk of theory you could be forgiven for wondering what on earth it has to do with transistors and amplifiers. The answer is that with R2 changing its value from being a very high resistance to a low one it is doing what a transistor does when you alter its base current. Indeed the very name transistor is a shortened version of 'transfer resistor' which was the phrase used by the original inventors to describe its behaviour. If you can lash up the circuit in Fig. 1 and have access to a reasonable voltmeter or two, then there is a most instructive experiment you can do to investigate the amplifying action of this circuit. Suppose we regard the input as being at the free end of the $15 k$ resistor (point A) and the output at the transistor's collector C ; ie, between the transistor and the 1 kO resistor. The aim is to investigate how changes of voltage at the input affect the output voltage. Both voltages are measured relative to the negative or zero șupply line - the bottom line in the diagram. The complete setup is shown in Fig. 3, which is the same as

Figure 3. Circuit to investigate operation of simple one-transistor amplifier

Fig. 1 but with the addition of two voltmeters to measure the input and output voltages, called V (in) and V (out), and also a 10 k potentiometer to allow different values of input voltage to be set. Iff by any chance you happen to be at a school which runs the Nuffield A-level Physics course and you have a friendly physics teacher he or she might give you access to something called a basic unit which is effectively Fig. 1 already made up for you.) Do the experiment if you possibly can and plot the graph of output against input voltages. If you cannot do it because you are reading this article in the bath or like Einstein you prefer thought experiments, the results you should get are shown in Fig. 4. Details will vary but you should certainly end up with a graph where the output voltage drops steeply and uniformly from near 6 V to about 0 V over a variation of the input voltage of something like 0.5 V to 1 V .

Figure 4. A plot of V (out) against V (in). This can be called the transfer characteristic
© Copyright MODMAGS Ltd.

Close examination of this graph can tell us quite a lot. Suppose for example that the point P shown on the graph has 5 V for output voltage and 0.6 V for the input voltage. At Q we have come down to an output voltage of just 1 V and also 1 V for input voltage. Suppose further that we have what is effectively a straight line between P and Q, then the crucial question to ask is 'What change of output voltage has been caused by what input voltage change?' - between P and Q , that is. Looking at the graph we can say that the output voltage dived down from 5 V to 1 V (a change of 4 V) as a result of the input going from 0.6 V to 1 V (a change of 0.4 V). Notice the factor of ten between the output and input voltage changes. Thus in the PQ region (called the linear region because the graph is straight) we can say that a small change of input voltage will cause a tenfold change in output voltage. In the jargon we say that the voltage gain, or amplification, is 10 . Properly, the voltage gain is defined as the ratio of change in output voltage to change in input voltage, and it is often denoted by $\mathrm{A}_{\mathrm{v}^{\prime}}$ given by:

$$
A_{v}=\frac{\text { Change in output voltage }}{\text { Change in input voltage }}
$$

If we had done a similar thing with currents instead of voltages we could have found the current gain to be the ratio of change in output current to change in input current (A_{i}), given by:

$$
A_{\mathrm{i}}=\frac{\text { Change in output current }}{\text { Change in input current }}
$$

Last but not least we often want to calculate the power gain of the amplifier, and since power (in watts) is the product of volts and amps it is not surprising to discover that power gain A_{p} is the product of voltage gain A_{v} and current gain A_{i}, where $A_{p}=A_{v} \times A_{i}$.

Input \& Output Impedance

If we now pop the lid back on the box and let it revert to being a device with an input and an output, we now have to consider the important idea of input and output impedance. Let us think of the output terminals as being a source of voltage available perhaps to drive a loudspeaker. You are probably aware that a pure voltage source hardly ever exists on its own, but between those terminals lurk some ohms hidden away waiting for a chance to make things difficult. When you first meet Ohm's Law you are presented with the idea of a battery that is merely a source of, say $11 / 2 \mathrm{~V}$ and it happily produces that voltage regardless of what current is drawn. But sadly, real batteries just do nat live up to these high expectations and there is always a resistance between the terminals, even though it can often be ignored.

Now it is a fact of electrical life that if you have a resistor (we'll call it the external resistor) in a circuit with one of these real-life batteries containing real internal resistance then the way to get the maximum power transfer into that external resistor is not, surprisingly, to make it as small as possible (to maximise the current). Instead, the external resistance must be made equal to the internal resistance. The proof of this is not easy, but it can be verified by considering a simple circuit like that shown in Fig. 5. Let the external resistance R take values ranging from $4 R$ to $8 R$ and, for each value chosen, find the current in the circuit (by dividing the voltage -12 V - by the total resistance present; ie, 6R for the internal resistance, plus the chosen R value). Power in R is most easily found from 12R, and we discover that it reaches a maximum value of 6 W when R is given the value of $6 R$; ie, the same as the internal resistance value. The same result holds for any source of voltage and, of course, that includes the output of an amplifier which also has ohms lurking internally between its terminals. This is referred to as being its output impedance, and if we are to maximise the power transferred to our speaker with its 8 R speech coil, then we need the output impedance of the amplifier also to be 8R. This is what is called impedance matching and a similar exercise needs to be performed at the input where we might need to match the impedance of, say, a record player's pickup with the input impedance of the amplifier used. As mentioned in the December article, if you have problems, for instance in matching your output impedance to a speaker, you can always connect the speaker to the amplifier through a transformer with a suitable turns ratio (where the impedance ratio is equal to the square of the turns ratio).

Figure 5. Battery with internal resistance of 6R connected to an external resistor R

Applying Some Feedback

When you have an amplifier it is quite common to take some of the output signal and feed it back to the input. This is called feedback and depending on whether the bit of output signal tends to reinforce or oppose the input signal it is called positive or negative feedback. A public address system
which starts to howl is a good example of positive feedback producing a state of unwanted oscillations. The howl occurs when the microphone is positioned close to the speaker. The microphone will pick up a little noise from the speaker, and this will be amplified by the system and come out of the speaker much louder. This in turn gives a larger signal to the microphone to feed in to the amplifier and very quickly the whole works is screaming at you at full blast.

If you actually want to produce an oscillation, clearly you can do it with positive feedback. A microphone with a speaker close to it is not the only way to get an amplifier to chase its tail: a direct connection can be used. Oscillators fall into two main groups: those producing a sine waveform llike our old friend AC - see Fig. 6a) and those producing a nonsinusoidal form, the most common of which are probably squarewaves or sawtooth waves (Figs. 6b and 6c).

I wonder into what category of oscillator you would put the brainchild of a Victorian inventor who is supposed to have attached a small musical box inside a young lady's dress. It was so arranged that when she sat down it started to play the national anthem and being a well brought-up young lady, this would oblige her to rise to her feet. The act of standing up would switch off the musical box thus leaving her with no reason for standing. So she would sit down again, which activated the musical box again

Figure 6. A variety of oscillator waveforms: al sinewave. b) squarewave, c) sawtooth

Negative Feedback For Stability

I'll end on a somewhat negative note and not far from where we began. One of the problems with a very simple amplifying circuit such as the one we saw in Figs. 1 or $\mathbf{3}$ is that it is not very stable: in other words it can change the way it performs without warning. The transistor may get warm and this could alter its gain which in turn might lead to the need to alter the biasing. A well established and simple way of beating this problem is to use negative feedback.

Referring back to the circuit in Fig. 3 and its input-output characteristic shown in Fig. 4 (otherwise called the transfer characteristic) we see that as the input voltage goes up the output voltage goes down; that is, for the linear region between P and Q . Here, feedback is negative because the output is going down when the input is going up, so they act in opposition. The overall effect is to stabilise the system but if you were able to do an actual experiment on a simple amplifier, for instance the basic unit mentioned earlier, you would remember it far better. The circuit in Fig. 7 looks worse than it really is. We have three things to input: the bias to hold the transistor at the correct operating point (via R2), the end of the feedback loop (to R1) and the signal input from an oscillator (via C1). We set the oscillator to produce small oscillations at a suitable frequency (100 to 1000 Hz) which are then amplified with the feedback loop disconnected. As
the amplitude of the input oscillations increases the signal becomes distorted - the top and bottom of the signal seem to get clipped off, as in Fig. 8, because the input signal is now going outside the PQ range of output, which would really like to extend beyond the voltage limits of the supply lines. These bits are shown dotted in Fig. 8b. If you now connect up the feedback loop, this effectively reduces the signal ultimately going in and thus the output signal now stays within the allowed range and is not distorted. This is why negative feedback is said to help prevent or reduce distortion.

If you have survived this far, you have done pretty well, especially if it is all new to you. Try another reading later, perhaps after you have put the finishing touches on your project or chosen topic - or if you are reading it purely for pleasure, when it has had time to sink in. It's a bit like John Ebdon, who used to finish his broadcasts: 'If you have been, thanks for listening'. And how did you listen? No doubt by courtesy of an amplifier carrying lots of negative feedback. Cheers!

© Copyright MODMAGS Ltd.
Figure 7. Circuit which can be used to investigate strong negative feedback

Figure 8. Comparing amplifier input and output waveforms: a) output waveform is linear (undistorted) copy of input waveform because input signal swings between points P and Q on the straight part of the characteristic, b) output waveform becomes 'clipped (distorted) because input signal swings beyond the range of PQ

ЈUMP TO IT!
 Climb aboard the breadboarding

 bandwagon with GSC's new WK-1 wire jumper kit - just what you've always wanted to make -breadboarding easier and quicke than ever before. Here, in one
neatly compartmented box, are all
those different lengths of insulated
hook-up wire you need - 25 pieces of
each, in 14 lengths ranging from 0.1 inch
to 4 inches. What's more, the GSC kit makes
your job even easier by colour-coding all the different lengths and providing a quarter-
inch length at each end with the insulation stripped off and bent through 90°. So GSC jumper wires come ready to plug straight into your quick-test sockets, bus strips or breadboard system. No more fiddling around with wire cutters, strippers or pliers - everything you need in one box. Take the plunge right now by filling in the GSC coupon.
GSC (UK) Ltd., Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
 or debit my

Clever

Problems, suggestions and confusion: Clever Dick does his best to sort them out

I JUST NOTICED that HE's got a new letters page (Your Letters page 47). Desplte the description of my office, it's business as usual from CD.

Righto, into the first one.
Dear Clever Dick.
I have some difficulty with a project described in last Year's March edition of your magazine, Hobby Chit-chat, Fig. 10.

The llght chaser is not working properly. Instead of all lights except one lighting up and the blank moving across the board, all lights are simply flashing on and off. My wiring is correct and lam wondering whe ther the projact is fautty.
Patrick Dean,
1420 Braine l'Alleud, Belgium
This one really confused us: the project 'Light Chaser' was published in the March 1979 issue (pp 7 to 10) but it had no Fig. 10 - and no errors as far as we are aware.

The feature 'Chit-chat' in the June 1980 issue contained a collection of circuits using LEDs. Figure 10, page 51, shows an 'intermittent moving dot display with 50% blank period'-(getting warm?). No errors as far as we know. Must be a dud IC.

Someone with a suggestion next.

Dear Clever Dick.
I think it would be a goodides to make a chart of 'dry' battery milliamp hour figures or something similar. Car batteries have them, so why shouldn't dry ones. Has anyone produced such in formation or is this a chance for the HE workshop to prove its proficiency. It would be useful to know the figures for various types of battery eg - voltage, size, brand etc. The constructor or designer would find this useful for running cost calculations - after all, electronics needs batteries and this information would bind up the hobbvist's problems.
(N.B. the word bind).

John Boothroyd
Gaydon, Warwick.
Nice suggestion, we'll consider it for a future issue, but somehow I couldn't link 'bind' with battery - must be a bit under-charged.

A 'quickie' next. (Definitely the best ones, these).

Dear Clever Dick,
Can your minisynth (Nov/Dec 1980) be modified to produce more effects by adding more components e.g. another oscillator and if so could you do an article on it? Also, would you please announce increases in the price of H.E. prior to their happening.

Greham Jepps
Keith, Banff'shire
Minisynth was a self-contained project and not really intended for enhancement or modification. Once the HE office is cleared of the clutter
of organ keyboards, components, notes and musicians, maybe we'll think up another synth project that'll do a few more tricks than the last one.

If we get enough warning we'll try and give you advance warning of price increases.

Dear CD,
I am twelve and have just started getting interested in electronics. However I have found that your magazine is a bit beyond me. Therefore could you suggest an Electronics magazine for beginners?

Also I would like to know how one works out the amount of resistance needed in a circuit?
O. Devine

Farnham, Surrey
P.S. Thank you for a superb mag.
P.P.S. Is a binder available at the 'moment please?II

Sad to read that you think HE is a bit beyond you. We've got a few ideas in hand for those starting out in electronics - so stick with us.

A simple guide to resistance in circuits was given in O Level 0 \& A, HE November 1980 , pp 49 to 51 . Unfortunately, we have a high resistance to free binder grovellers.

Problems with a pre-amp next.
Dear C.D.
I have been struggling with the "HE Guitar Preamp" from the November ' 80 issue of Hobby Electronics, for nearly 3 waeks now. For some reason it does not workl

I have checked all the components, connectlons efc. with both meters and oscilloscopes. As far as I and the people I have consulted can tell there is absolutely nothing wrong with the actual circuit board. Would it have any great affect if the treblo potentiometer was only 470k and not 500k? We also wonder if the negative terminal on the battery should be connected to anything other than the one terminal on the jack socket? N.J.M. Freeland

East Grinstead, Sussex.
There were two errors in this article. First, in the circuit shown in Fig. 1, page 36, capacitor C7 should have been 22 u , not 22 n as shown. Fault number two could be the cause of the trouble, though. There should be a break in the track (Fig, 2) at point J8

In this kind of circuit, you wouldn't notice the difference between a 470k potentiometer and a 500k one.

The battery wiring to Jack 1 was correct: pulling out the plug switches off the circult.

The next reader Is very close to discovering my true identity.

Dear C.D.
Are you a joint affort between Charles + Diena? Well donal I'm glad you've got someone nice.

Now then. I intend to build the 6-Watt siren, featured in March '80. Three questions, five points each, here's your starter for ten.
8). Could the circuit run off 9 V , if so does it need changing? Would it be as loud?
b). Could the speaker be substituted for a tweeter (8R) Would this affect the volume?
c). Could a VN66AF be substituted for the VN6 7AF?

Have you noticed - I haven't asked for a binder. And all those loose copies of H.E. I have lying around at home too . . shame innit? though I really would like to keep them in one place (HINT).
John Davies
Blackpool, Lancs

Answers:

a) Yes it will work from 9 V but it won't be as loud. And there's no way you could easily modify the circuit to boost the power for 9 V operation.
b) Not advisable to substitute a tweeter, because even if its power rating is the same, it may not be able to handie some of the lowerfrequency tones from the siren.
c) Yes, you can substitute the VN66AF for the VN67AF.

Shame, innit, about all those loose copies.
Last, one from South Africa.
Dear Dick,
Firstly I must congratulate you on your excellent mag. I've been reading HE ever since it began. I occasionally miss out an issue but, thanks to your very efficlent backnumbers dept., I now have a complete set.

Secondly, I would like to correspond with British electronics enthusiasts of my own age group ie. 12 - 15 YRS (| am 14 years old). If you know of anyone who may be interested, please let me know.
Warren Williamson
Cape Town, South Africa
Well, drop us a line if any of you would like to correspond with Warren.

This month's binder goes to John Boothroyd, by the way, for some subtle groveiling.

See you in time for the grovelling season.
HE

GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally designed for installation into a music centre Supplied as two separate built and tested units which afe easily wired logether. Note: Circuir diagram and interconnec ling wiring dagrams supplied. Rotery balance, treble, bass. Pu th-burton controls: Mono, Tape, Disc, AFC, FM (VHF) LW, MW, SW. Power Ourput: 7 watts RMS per channel, at better than 2% THD into 8 ohms. 10 watts speech and music. Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ within $\pm 3 \mathrm{~dB}$. Tape Sensitivity: Outpu - typically 150 MV . Input - 300 mV for rated outpur. Disc Sensitivity: 100 mV (ceramic cartridge). Radio: FM (VHF). $87.5 \mathrm{MiHz}-108 \mathrm{MHz}$. Long wave

Stereo Cassette Tape Deck Module comprising of a top panel and tape mechanism coupled to a record/play-back printed board assembly. Supplied as one complete unit for horizontal installation into cabinet or console of own choice. These units are brand new, ready-built and tested.
Features: Three digit tape counter. Auro-stop, Six piano type keys, record, rewind, fast forlevel control. Main inputs plus secondary inputs for stereo microphones. Input sensitivity 100 mV to 2 V . Input impedance 68 K . Output level 400 mV to both left and right-hand channels. Output impedance 10 K . Signal to noise ratio 45 dB . Wow and flutter 0.1%. Power supply requirements 18 V D.C. at 300 mA . Connections the left and right-hand stereo inputs and outputs are via individual screened leads all terminated with phono plugs (phono sockets provided). Dimensions: Top panel $51 / 2 \mathrm{in}$. $\times 111 / \mathrm{ain}$., clearance required under top panel $2^{1 / 4 i n}$.
Supplied complete with circuit diagram and connecting diagram
Price $£ 25.70+£ 2.50$ postage and packing Supplementary parts for 18 V D.C. power supply (transformer, bridge rectifier and smoothing capacitor) $£ 3$

TYCHNLCRE TREINING IN ELECMRONHCS RND HㅍFCOMMUNICRTIONS

ICS can provide the technical knowledge that is so essentiol to your success, knowledge that will enable you to take advant. age of the many opportunities open to the trained man. You sludy in your own home, in your own time and at your own pace and if you are studying for an examination ICS guar antee coaching until you are successful

City \& Guilds Certificates
Telecommunications Technicians Radio Amateurs
Electrical Installation Work

Certificate Courses
 Colour TV Servicing
 Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Andio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET
To: International Correspondence Schools
11 Dept.262GIntertext House, London SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address

Marshall's
CRIMSON ELEKTRIK HI FI MODULES
CE 608 Power Amp £20.09
CE 1004 Power Amp £23.43
CE 1008 " " £26.30
CE 1704 " " £33.48
CE 1708 " " $£ 33.48$
CPS 1 Power Unit $£ 19.52$
CPS 3 " " £23.52
CPS 6 " " $£ 30.00$
CPR1 Pre Amp $£ 32.17$
CPR1S " " £ 42.52
SINCLAIR INSTRUMENTS Digital Multimeter

PDM35 £ 34.50;
" DM235£ 52.50
" DM350 £ 72.50
" DM450£ 99.00
Digital Frequency Meter PFM200 £ 49.80
Low Power Oscilloscope
SC1 $10 £ 139.00$
TF200 Frequency Meter
£145.00
TGF105 Pulse Generator
NEW:
E. 85.00

LCD Multimeter
TM351|£99.00
LCD Multimeter
TM352 £49.95
Prescaler
TP600 $£ 37.50$

New

Presensitised PC Boards, Developer. U.V. units.
Toyo miniature Fans 230v AC $£ 9.95$
Mini Metal Detector/Voltage Tester for locating cable under plaster $£ 9.95$
Flow/Speed Sensors for monitoring fuel consumption electronically in vehicles
Just one of the exciting Leader range
LB0508A
OSCILLOSCOPE
With 20 MHz DC bandwidth and 10 mv input. sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide range of applications.
Send SAE for details of full range.
Marshall's 80/81 catalogue is now available by post, UK 75p post paid Europe 95 p post paid: Rest of world $£ 1.35$ post paid.
A. Marshall (London) Lid., Kingsgate House

Kingsgate Place, London NW6 4TA
Industrial Sales: 01.328 1009
Mail Order: 01.6248582 24hr service.

ILP HI FI MODULES Power Amplifiers HY30 £ 7.29 HY60 £ 8.33 HY120 £17.48 HY200 £21.21 HY400 £31.83 Pre Amplifiers HYG £ 6.44 HY66 £12.19 Power Supplies PSU30 £ 4.50 PSU36 £ 8.10 PSU60 £13.04 PSU70 £13.04 PSU180 £21.34
MULTIPLEX NICKEL CADMIUM CELLS Type S101 (HP4) £0.98 Type SubC (HP11) £ 1.75 Type SubD (HP2) £ 1.95 Friwo Chargers for above Penlight 4: accommodates $1-4$ size HP7 £5.50 Combibox FW611: accommodates HP7, HP11
£13.25
NOTE ALL PRICES NET. EXCLUDING VAT. POSTAGE/PACKING.

$£ 299$ + VAT

Also 'elsil thops: 375 Edgware Rosd, Lendon W2. 40 Cricklewood Broadwew, Landion NW,
GInsgow. 10BA Stokes Crot? Brimel.

HE HF-ff Amplifier System Pre-amplifier -2

The second part of our pre-amplifier project gives advice on housing and discusses power supply details

THE CASE USED with the HE Preamplifier is supplied with a satinfinished front panel and this panel is easily scratched, so take care - we advise that you set it to one side and leave the metalwork involved with it till last.

The rest of the case is black plastic coated and quite scratch resistant so you can commence housing your printed circuit board without fear of ruining the Pre-amplifier's appearance. The completed PCB is shown in Fig. 1 and is how your board should look at this time. Begin by mounting the board to the base of the case using four mounting bolts and small spacers, allowing about $3 / 8^{\prime \prime}$ between the case and the underside of the PCB. The board should be positioned so that when the back panel is put in place, the panel is flush to and touches the rear edge of the board. Remember that the phono sockets stick out past the edge of the board and therefore the panel won't fit until cutouts for the sockets have been made. Now, fasten the board down with four nuts and washers.

Mark and cut out the rear panel for the ten phono sockets and also the 5 -pin DIN socket (used as the power supply connection). The panel can now be bolted onto the case, and you should then make the power supply connections from the board to the DIN
socket; ie, 0 V to pin 2 of the socket and the two 12 V connections to pins 1 and 3 fit doesn't matter which way round the two 12 V connections go!).

Also, make a connection from OV on the board to a solder tag, and secure this firmly to the PCB mounting bolt close by. Efor

Figure 1. Complete PCB just before housing into its case

Figures 2 and 3 show the cut out and connection details of the project at this stage.

Next comes the tricky bit - drilling and filing the front panel cutouts. Mark out and drill all holes on the inside (the non-satin-finished side) of the panel. The holes for volume, balance and tone control spindles and the LED are all $1 / 4^{\prime \prime}$ diameter, and are therefore easy. You will, however, need to file out the switch holes to fit the switch buttons. Figure 4 is a photograph of the filed-out hole for the SW2 switch buttons of our prototype' and shows the general idea. Most of these holes can be made by drilling, but the edges

Figure 2 (above). Cutout details of the rear panel

Figure 3. Internal photograph of the Preamplifier showing power supply connection details

Figure 4. By carefully filing out the switch holes you can make your project look as good as ours
are best finished using needle files this is a long and painstaking job but worth the time and trouble of doing well.

Finally, bolt on the front panel with $1 / 4^{\prime \prime}$ spacers between the panel and the case. The panel should be inset only about $1 / 16^{\prime \prime}$ from the front edge of the case giving a very neat appearance. Insert LED 1 into the panel using its clip and then connect it to the two terminals on the switch, as shown in last month's overlay of the PCB. You can see the project as it should now look, in Fig. 5.

May The Power Be With You

In the power supply diagram last month, the section of the supply shown in a broken-lined box is extraneous to the Pre-amplifier and should be housed separately. If you in-
tend building the Power Amplifier to be described in next month's issue you will find that a suitable 12 VAC outlet to power the Pre-amplifier is included. However, if you don't build the Power Amplifier you will need to build a 12 VAC supply for the Pre-amplifier and construction is as follows:

The supply shown on page 59 consists of a mains transformer with a 240 VAC primary winding and either 24 V centre-tapped, or two 12 V secondary windings, and a fuse and an on/off switch. Mount the components in a small metal case and make a point of providing a good earth connection to the case. This not only gives protection if a short circuit occurs, but reduces the alternating magnetic field around the box which might otherwise cause hum pickup problems with the Pre-amplifier.

As you can see, we used a Sink Box to house our power supply, but any metal case large enough to take the transformer, with adequate clearance from any terminals, will be fine. Insert a 5 -pin DIN socket in the back of the case. Connect the centre connections

Figute 5. Inside view of completed front panel
of the transformer (ie, $\mathrm{O} V$) to pin 2 , and the two 12 V connections to pins 1 and 2 of the socket - in other words the socket should be wired in the same way as the socket on the Pre-amplifier case.

A 3-core lead, with a 5 -pin DIN plug at each end should be used for power connections between the supply and the Pre-amplifier. Make sure you connect corresponding pins of one plug to the same pins of the other plug.

GUITAR PHASER	2085	Sept. 80	£9.60	HOBBYTUNE	20	Oct. 79	£18.00
BENCH POWER SUPPLY UNIT	2087	Sept. 80	£25.00	MULTI OPTION SIREN	2036	Oct. '79	£10.50
DEVELOPMENT TIMER	2086	Sept. ${ }^{80}$	E8.75	analogue audio			
TOUCH SWITCH (on Vero)	2084	Sept. 80	£4.50	FREQUENCY METER	2035	Oct. '79	£15.00
AUTO PROBE	2083	Sept. 80	£3.00	COMBINATION LOCK	2029	Sept. '79	£12.50
REACTION TIMER	2082	Sept. ${ }^{80}$	£26.50	*Starburst	2030	Sept. '79	£14.50
MICROMIXER (on Vero)	2081	Sept '80	¢8.50	LAMP DIMMER	2031	Sept. 79	£6.50
EQUITONE CAR EQUALISER	2052	Aug. '80	£13.30	ULTRASONIC SWITC	2032	Sept. 79	£21.00
GAS DETECTOR	2055	Aug. ${ }^{80}$	£22.00	CONSTANT VOLUME AMPL	2028	Aug. 79	£11.50
PASS THE LOOP GAME	2056	Aug. '80	£12.00	INJECTOR TRACER	2027	Aug. ${ }^{79}$	£4.50
RADIO TIMER (on Vero)	2057	Aug. 80	£5.50	LED TACHOMETER	2026	Aug. 79	£14.75
MOVEMENT ALARM (on Vero)	2054	Aug. 80	£5.00	BABY ALARM	2025	July 79	E13.50
OP. AMP CHECKER (on Vero)	2053	Aug. 80	£4.00	POINTS SWITCH	2024	July 79	£12.50
CAR BOOSTER (no speakers)	2050	July '80	£18.00	LINEAR SCALE OHMMETER	2023	July ${ }^{79}$	£14.00
HAZARD FLASHER	2048	July '80	£10.50	SHARK	2022	July ${ }^{79}$	£22.75
*PUSH-BUTTON VOLUME				G.S.R. MONITOR	2019	June '79	£10.50
CONTROL	2047	July '80	£19.50	ENVELOPE GENERATOR	2020	June '79	£11.79
SOUND FLASH TRIGGER (on V	2049	July ${ }^{\prime} 80$	£3.50	DRILL SPEED CONTROLLER	2021	June '79	£7.00
2 WATT AMPLIFIER (on Vero)	2046	June '80	£3.90	WHITE NOISE EFFECTS UNIT	2018	May '79	£16.85
METRONOME [on Vero)	2051	June '80	£3.50	PARKING METER TIMER	2017	Мау ${ }^{79}$	£6.70
MICROBE R/C SYSTEM				DIGIBELL PROJECT	2016	May '79	$£ 5.00$
[less Servos]	2045	June ${ }^{80}$	£17.50	VARIABLE POWER SUPPLY			
FOG HORN	2044	June '80	£4.50	0.30V 1 AMP	2015	May '79	£30.00
*EGG TIMER	2043	June '80	£6.50	TRANSISTOR GAIN TESTER	2076	April '79	E6, 0
MINI CLOCK	2010	May ${ }^{80}$	£26.00	CISTERN ALARM	2075	April '79	£5.50
5080 PRE-AMP	2011	May ${ }^{80}$	£32.00	MODEL TRAIN CONTROLLER	2074	April 79	£26.00
TRACK CLEANE	2012	May ' 80	£7.75	PHOTOGRAPHIC TIMER	2073	March '79	£14.50
*R/C SPEED CONTROLLER	203	April '80	£9.60	TONE CONTROL	2072	March '79	£9.00
HOBBY COM	208	April '80	£28.60	CASANOVA'S CANDLE	2071	March '79	£7.50
ElECTRONIC IGNITION	202	April '80	£18.25	SHORT WAVE RADIO	2066	Feb. ' 79	12.50
DIGITAL FREQUENCY METER	209	April '80	£27.75	SINE/SQUARE WAVE			
SHORT WAVE RADIO	2080	March '80	£19.50	GENERATOR	2067	Feb. '79	£22.50
TOUCH SWITCH	2079	March '80	£5.00,	SCRATCH AND RUMBLE			
5080 PSU MODULE	2078	March '80	£29.50	FILTER MONO	2068	Feb. '79	22.5
SYSTEM 5080A	2077	March '80	£15.00	SCRATCH AND RUMBLE			
PASSION METER	206	Feb. ${ }^{\text {80 }}$	£5.00	FILTER STEREO	2069	Feb. '79	£25.00
WIN INDICATOR	2042	Feb. ${ }^{80}$	£9.00	CAR ALARM	2070	Feb. '79	£8.50
INFR RED REMOTE CONTROL	207	Feb. '80	£19.35	FLASH TRIGGER (less flash gun]	2065	Јan. '79	10.50
SCALEXTRIC CONTROLLER	2041	Jan. '80	£52.50	TOUCH SWITCH	2063	Jan. '79	£5.50
CROSSHATCH GENERATOR	204	Jan. ${ }^{80}$	£11.25	VARI-WIPER	2064	Jan. 79	£8.00
DIGI-DIE	205	Jan. ${ }^{80}$	£5.50	GRAPHIC EQUALISER	2062	Jan. '79	£25.00
RING MODULATOR	201	Dec. ' 79	£8.50	PUSH-BUTTON DICE	2061	Dec. '78	£6.00
SCALEXTRIC CONTROLLER	2039	Dec. 79	£21.50	AUDIO MIXER	2014	Dec. ${ }^{78}$	£20.30
BARGRAPH CAR VOLTMETER	2040	Dec. 79	E6.60	bedside radio	2058	Nov. 78	£12.50
GUITAR TUNER	2038	Nov. '79	£8.50	STEREO AMPLIFIER (HOBIT)	2059	Nov. '78	£52.50
*R2 D2 RADIO	2037	Nov. '79	¢8.60	WAA-WAA PEDAL	2060	Nov. 78	£30.00
TANTRUM	2033	OCLI ' 79	£37.50				

IONISER KIT: ZD13: This negative ion generator gives you power to saturate your home with millions of refreshing ions, without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean air, crisp and wonderfully refreshing. All parts p.c.b. and full instructions £10. A suitable case including front panel neon switch, etc.. available at $£ 8$ extra.

PLEASE NOTE OUR NEW ADDRESS

LATE EXTRA				
Watchdog Intruder Alarm	zD89	OCT.		£15.75
Temperature Controlled Soldering Iron	zD90	OCT	80	£9.00
Freezer Alarm (on Vero)	ZD91	ост.	'86	£8.50
Tug O' War Game	2094	OCT	'80	£12.50.
Nobell Doorbell	ZD93	OCT.	80	£9.75
Kitchen Timer (on Vero)	ZD92	OCT	'80	£5.50
Light Dimmer	Z088	OCT	'80	£5.00

All kits contain components as specified plus Texas I.C. sockets, where required, also connecting wire.

FAIRČHILD FLV150 red. 2 LEDS, 10 for $£ 1.00,100$ for $£ 7.50$ DALY ELECTROLYTIC CAPACITORS 2000uF $100 \mathrm{v} £ 1.50$ PHILIPS SCOPE Tube 5" CV2 191/DG-13-2 £10

If you do not have the issue of H.E. which contains the Project, we can supply a reprint at 40 p extra. Please add 30 p post and packing. Add 15% VAT to total order. Callers please ring to check availability of kits.

T. POWELL

ADVANCE WORKS
44 WALLACE ROAD, LONDON, N. 1

Minimum telephone Orders $£ 5$
Minimum Mail Order £1

Famous Names James Clark Maxwell

This is the second part of our new series about some of the men who have made enormous contributions to electricity and electronics. Many of these started out as practical engineers who soaked up a lot of theory as they went along. James Clark Maxwell was not one of these: he was an academic of great brilliance who, in one single act of genius, directed the efforts of engineers to a complete new world - the world of radio waves

MAXWELL WAS BORN in 1831, and had a brilliant school career, followed by an equally brilliant university course at Edinburgh. By the age of 19 he had already had two papers published by the Royal Society, which led him directly to Cambridge, first to Peterhouse and then to Trinity. He graduated in mathematics in 1854, and achieved such distinction in theoretical physics that he was appointed Professor of Physics at Marishal College, Aberdeen, in 1856, aged 25 .

His main interest at that time was the kinetic theory of gases: the idea that gases consist of molecules which are continually in motion, and which are, on average, large distances apart compared with their own diameters. Nowadays, anyone who does A-level physics at school learns simple kinetic theory, but the theory which Maxwell produced was as far beyond simple kinetic theory as a home computer is beyond a one-transistor amplifier.

All very academic, you might say, and nothing to do with electronics? Well, as it happens, the way that molecules in a gas behave is often very similar to the behaviour of electrons inside a conductor, so that the mathematical methods which Maxwell devised have been very useful to later researchers. They did Maxwell's career quite a lot of good too. In 1860 he was appointed as Professor of Physics at Kings College, London, where he remained until late in his life, when he became the first Cavendish Professor of Physics at Cambridge.

What was the work which justified these plum academic appointments? Most of them would take too long to explain, but one is of such outstanding importance that we have to take a stab at it, even at the risk of missing out bits in order to simplify what it's all about. That one was the theory of electromagnetic radiation, Maxwell's masterpiece.

In the 1860 s, electrical theory was doing quite nicely, thank you. Ohm and Kirchoff had established the laws which are as familiar today as they were then and which are the fundamentals of electrical circuit theory. Thanks to the practical work of Faraday and the theory of Biot and Savart, electricity and magnetism were recognised as being two aspects of the same thing. For some time also, electrostatics had also been recognised as being part of electricity, but the place of
electrostatics in relation to electricity (that is, electrical current flow) was not sufficiently recognised. It's easy for us now to see that electrostatics is the study of electrons at rest, and current electricity is the study of moving electrons. It wasn't quite so easy in the 1860 s because the electron hadn't been discovered: it was only dimly suspected.

Maxwell was not impressed by this apparent progress, because he sensed something missing. Even now, over a hundred years later, it's not easy to describe what was missing without using the natural language of physics, which is mathematics. The mathematics that's needed is a bit above A-level standard, though, and we'll have to make do with second best - a bit like describing music with colours.

Distinguishing Lines Of Force

Maxwell, so like Faraday before him, was fascinated with 'lines of force'. Let's refresh our memories on this topic Take a bar magnet, place a sheet of glass over it, and sprinkle iron filings on top. Now tap the plate, and the filings take up the pattern which we call the lines of force. These lines are just a contour map of the strength and direction of the magnetic field around the magnet - or are they? Maxwell, like many theoretical physicists before him, saw these lines as being something much more significant - a visible indication of invisible strains in the material around the magnet. Each line of force around a magnet is just one kind of line of force. An electrostatically charged object can also reveal lines of force - electrostatic 'lines' - which behave quite differently from the magnetic ones.

In the midst of all the work which was going on with regard to electric current in conductors, Maxwell took quite a different view. To him, a conductor was simply where an electrostatic line of force ended or started, and around which a magnetic line of force was coiled. Maxwell's interest was drawn to the space around the conductor, the space which supported these invisible lines of force. By one deduction, he predicted an effect which was not confirmed for twenty years but which has totally altered the world. That deduction was displacement current.

Famous Names

Another Kind Of Current

In the 1860 s three effects were well known. One was that an electric field in a conductor (produced by a voltage applied between the ends of the conductor) caused a current.

That little lot was the work of Georg Simeon Ohm. They knew also that a current flowing through a conductor caused a magnetic field: this had been the work of Oersted. Finally, as a result of Faraday's painstaking work, they knew that a changing magnetic field would create a voltage. All these three effects can be described in equations, which Maxwell wrote down and studied, as many must have done before. Maxwell saw something missing, a fourth equation which was needed to complete the set. His genius was not only to see that something was missing but also to predict what it must be. His deduction was that a changing electrostatic field should behave like a current, but a current which should be able to exist in space without conductors. Maxwell called this a 'displacement' current, and he saw this as a normal part of any alternating current circuit which included capacitors.

Maxwell laid his displacement current equation alongside the others, and saw a familiar pattern. Merged together, these four separate equations formed a single equation, an equation well known to physicists as that of a wave. What it boiled down to was that changing electrostatic and magnetic fields could cause a wave motion. More remarkably, the equations enabled the speed of this theoretical wave to be calculated, and the calculated value was identical to the measured speed of light.

Maxwell published the details of his remarkable theory at once. His conclusions were completely revolutionary. Light, he maintained, was an electromagnetic wave, and not a
completely separate effect. More important, there must be a complete family of such electromagnetic waves, all capable of travelling through empty space at the same speed of three hundred million metres per second, all capable of carrying energy from one place to another through empty space. These waves, he predicted, would differ only in having different frequencies and wavelengths.

Maxwell's work was politely ignored. It was regarded as an interesting piece of academic research, but without practical applications. Don't feel too superior, because the same is said about nearly every great scientific discovery - as much now as it ever was. Remember that light seemed unaffected by electric or magnetic fields - though Faraday had shown that the plane of polarisation of light could be rotated by the effect of a magnetic field on a crystal. Remember also that there was no evidence for any of these other electromagnetic waves at the time. The evidence was to come later when Heinrich Hertz discovered radio waves, measured their speed, and showed that these were indeed the waves which Maxwell had predicted. By that time though, Maxwell's career had come to an end with his death in 1879.

One little side-line is worth noting, and it also illustrates a very practical side to Maxwell. In the middle of his work on electromagnetic waves, Maxwell produced the first colour photograph. He had seen that a colour photograph could be produced by projecting three images, one in each primary colour, so that they superimposed. This was in 1864 , and it was some ninety years before family photograph albums were being decorated with colour photographs as a matter of routine. With that, and the prediction of radio waves, how much more ahead of his time could he be?

HE SUBSCRIPTIONS

Having problems hunting down your copy of HE each month? Make life easier for yourself: for only $£ 10.00$ you can have it delivered to your door every month for a year.

Use one of three methods of payment to subscribe to HE:

Barclaycard Enter your Barclaycard number in
 the space provided on the coupon, add your signature, name and address - and we'.ll do the rest

Cheque pr Postal Order Enter your name, address and the amount in the coupon and send it with your cheque or postal order, made payable to Modmags Ltd.

Subscriptions Dept., Modmags Ltd. 145 Charing Cross Road, LONDON WC2H OEE

Books from the HE Book Service

SPECIAL OFFER TO READERS OF HOBBY ELECTRONICS ONLY
ELEMENTS OF ELECTRONICS
Book I
£2.60 Book II
$£ 2.60$
Book III
$£ 2.60$
Usual price is $£ 7.80$ inc post and packing for 3 volume set. OUR PRICE $£ 7.00$. + FREE slip case for 3 volumes + FREE Resistor Colour Code Disc.

28 TESTED TRANSISTOR PROJECTS by R. Torrens .. E1.50. The author has designed developed and built some completely new circuits.
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS by R. A. Ponfold 81.50 Enables the complete beginner to tackle the practical side of electronics.
ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST by G. T. Rabaroe £1.50 Supplies the hobbyist with a back. ground knowledge.
50 PROJECTS USING RELAYS,
SCR'S \&. TRIACS by F. G.

Rayer

Gives tried and circuits which should pral working minim which should present the mimum of difficulty for the enthusiast to construct.

HOW TO BUILD YOUR OWN

 METAL AND TREASURE LOCATORS by-F. G. Rayer£ 1.25
Contains complete electronic and practical details.on the simple and inexpensive construction of Heterodyne Metal Locators.

HOW TO MAKE 'WALKIKETALKIES by F. G. Rayor £1.75 IC555 PROJECTS by E. A. Parr Included in this book are Basic and General Circuits, Motor Car and Model Railway Circuits, Alarms and Noise Makers as well as a section on the 556, 558 and 559 timers.

PRACTICAL ELECTRONIC CALCULATIONS AND FORMU. LAE by F. A. Wilson . . $\mathbf{£ 2 . 5 0 0 ^ { \circ }}$ Units and Constants, Direct Current Circuits, Passive Components, Alternating Current Circuits, Networks and Theorems, Measure. ments.

ELECTRONIC SECURITY DEVICES by R. A. Penfold 11.70 Includes both simple and more sophisticated burglar alarm circuits using light, infra-red and ultresonics gas and smoke detectors, flood alarms doorphone and baby alarms. etc.

ELECTRONIC PAOJECTS FOR BEGINNERS by F. G. Rayer
£1.60 A newcomer to electronics finds a wide range of easily made projects.

POPULAR ELECTRONIC PRO-

 JECTS by R. A. Penfold $£ 1.70$ Radio Projects, Audio Projects Household Projects and Test Equipment.HOW TO BUILD VOUR OWN SOLID STATE OSCILLOSCOPE by F. G. Rayer £1,75 Enables the enthusiast to simply and inexpensively build his own oscilloscope.

ELECTRONIC GAMES by R. A. Penfold $£ 2.00$ In this book the author has designed and developed a number of interesting electronic game projects using modern integrated circuits.

COUNTER DRIVER AND NUMERAL DISPLAY PROJECTS by F. G. Reyer . . $£ 2.00$ Author discusses and features many applications and projects using various types of numeral displays. .popular counter and driver IC's etc.

Capel, V., Improving Your Hi-Fi £5.00 Capel, V., Creative Tape Recording £5.00
Hellyer, H. W., Tape Recorders £5.00
Sinclair, I. R., Audio Amplifiers For Home Constructione. ©6.00

RADIO COMTROL

Drake, J. Radio Controlled Helicopter Models £4.95 Jeffries, C. R., Radio Control For Model Yachts $£ 3.85$ Safford, E. L., Radio Control Manual £3.00

cookrooks

Tracton, K., BASIC Cookbook 84.10 Lancaster, D., TTL Cookbook

¢7.55

Lancaster, D., RTL Cookbook
Lancaster, D., RTL Cookbook $£ 4.65$
Lancaster, D., CMOS Cookbook ع8.20 Jong, W. IC Op Amp Cookbook 210.00 Lancaster, D., T.V. Typewriter Cookbook $£ 7.75$ Lancaster, D., Cheap Video Cookbook $£ 7.00$ Jong, W., IC Timer Cookbook £7.65
Lancaster, D.. Incredible Secret Money Machine (a how to cook book for setting up your computer or technical business) ... £4.95

OUESTIONS AND ANSWERS
SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE BEGINNER.
Coker, A. J., 0 \& A On Electric Motors …........ $£ 2.50$ Hellyer, H., Q \& A On Radios and T.V. $£ 2.50$ Hibberd, R., Q \& A On Integrated Circuits $£ 2.50$ Jackson, K., O\& A On Electricity
Brown, C., Q\&AOn HiFi £2.50 Brown, C., Q \& A On Transistors Brown, C., Q\& A On Electronics Reddihough, J., Q \& A On Colour T.V. £2.50
Miller, H. O\& A On Electric Wiring

CONSTRUCTOR EUUDES

Graham, P., Simple Circuit Building $£ 3.40$
Colwell, M. Electronic Diagrams
$£ 3.40$
Colwell, M., Electronic Components §3.40
Colwell, M., Printed Circuit Assembly £3.40 Ainslee, A., Practical Electronic Project Building $£ 3.40$
Colwell, M., Proiect Planning and Building 83.40

BEGIMMER'S EUIDE

Sinclair, I. R., Beginner's Guide To
Tape Recording....${ }^{2} .25$

BEGINNERS GUIDE TO MICROPROCESSORS AND COMPUTING by E. F. Scott
. §2.00
Introduction to the basic theory and concepts of binary arithmetic microprocessor operation and machine language programming.

ELECTRONIC HOUSEHOLD PROJECTS by R. A. Penfold

ع2.00
Circuits range from such things as ' 2 tone door buzzer' Intercom through Smoke or Gas Detectors to Baby and Freezer Alarms.

A MICROPROCESSOR

 PRIMER by E. A. Part . . £2.00 A newcomer to electronics tends to be overwhelmed when first con fronted with articles or books on microprocessors. This small book will start by designing a simple computer and because of its sim plicity and logical siructure the language is hopefully easy to learn and understand.
50 CIRCUITS USING 7400

 SERIES IC'S by R. N. Soar£1.65
The author has compiled 50 in teresting and useful circuits and applications covering differen aspects of electronics using these devices.

Sinclair, I. R., Beginner's Guide To Integrated Circuits 4.25

Sinclair, 1. R., Beginner's Guide to Audio 4.25
King, G. J., Beginner's Guide To
Radio 25
King, G. J., Beginner's Guide To
Television £4.25
King. G. J. Beginner's Guide To
Colour T.V. $£ 4.25$
Guilou, F., Beginner's Guide To
Electric Wiring £4.25

PROJECT BOOKS

Marsion, R. M., 110 Cosmos Digital IC Projects For The Home Constructor $£ 4.95$ Marston, R. M.. 1 io Wave Form Projects For The Home Constructor $\AA 4.95$
Marston, R. M.. 110 Op Amp Pro
84.95

Marston, R. M. 110 Semiconductor Projects For The Home Constructor
$£ 4.95$
Marston, R. M., 110 Thyristor SCR Projects For The Home Con structor $\mathbf{\Sigma 4 . 9 5}$ Marston, R. M.. 110 Electronic Alarm Projects For The Home Con structor £4.95 Marston, R. M., 110 Integrated Circuits Projects For The Home Constructor £4.95 Marston, R. M., 20 Solid State Projects For The Car and Garage £4.95
Marston, R. M. 20 Solid State
Projects For The Home .. §4.95

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling oniy please) and send to:
Hobby Electronics Book Service
Modmags Ltd
145 Charing Cross Road
London WC2H OEE

GIECTRONIC IGNITION

 SAVES PETROLMore and more new cars use electronic ignition to give the best performance and specification by fitting the latest TOTAL ENERGY OISCHARGE electronic system.
TOTAL ENERGY DISCHARGE gives all the advantages of the best capacitive discharge ignitions:

- Pert Performance - higher output voltage.
- Improved Economy-consistent high ignition performance
- Eetter eterting-full spark power even with low battery.

Smooth Perforg-prevents contact wear without contactiess' errors
PLUS
SUPER HIGH POWER SPARK $-31 / 2$ times the energy of ordinary C.D. systems.
OPTIMUM SPARK DURATION-to get the very best performence and economy with today's lean carburettor settings.
DESIGNED IN RELIABILITY-with the 'ultimate insurance' of a changeover switch to evert instantly to standard ignition.

TECHNICAL DETAILS

HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-powerful enough to store twice the energy of other designs and regulated to provide full output even with the battery down to 4

ER DISCHARGE CIRCUIT. A brand new technique prevents energy being rehected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times cause rapid ignition ordinary C.D. systems, generating a spark powe ignition delay associated with lower power 'long burn' inductive systems. In addition this circult maintains the correct output polarity, thereby preventing unnecessary stress on the H.i. system.

SOPMISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact volt drop, contect shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only almost eliminated by reducing the contact breaker current to a low tevel - just sufficient to keep the contacts clean

IN MONEY-SAVING KIT FORM at $£ 14.85$

All you noed is a small soldering iron and a few basic tool with easy-to-follow instructions.

FITS ALL $6 / 12$-volt NEGATIVE EARTH VEHICLES ELECTRONIZE DESIGN 2 Miltide Roed, Four Ocks Sutton Coldfield, West Midlends, E74 4DO

POPS

Audio and Radio Panels. Damaged or incomplete, Thorn manufactured. Hundreds of modern usable resistors, caps, tants and clectrolytics, trimmers resistors, caps, cants and electrolytics, trimmers
mini toko IF and Osc, coils $463-107$, 31b, lots 56 . * Two-puge Stereo Pre-amp Module. On 6in. $\star \times 71 / 2 \mathrm{in}$. P.C.B. 5 plumpons for selecting 4 Phono, tape, inout. Aus. mains on/off. Re-
quires 2 w. rin, gives
tiv. out for 70 mV in. 4 quires 20 v . rall, gives $1 / 2 \mathrm{v}$. out for 70 mV in. Suitable for driving tiem (3) from ceramic carridge. £6. Stereo Power Amp Module. 25 w. per chan-
nel with 42 v . rail into 8 ohms. Kiit comprising nel whit 42v. rail into 8 ohms. Kit comprising a resision, caps, rassistors, p.c.b., etc.
dith really compretensive instructions and
diagrams. Uses Tip 33 an 3 3a outpur urandagrams. Uses Tip 33a 34 A outpu tran-
 ع14.
Power Components suízable for above Power th and Pre-amp Modules. Heavy-duty ransfor- 4 mer, 36 v . ct st $21 / 2$ amp. Plus windings for
powering cassette and pilot lamper, etc. High
nipole cap 3300 uF . Bridge Rec. st 2 amp. E7.

POPS COMPONENTS
38/40 LOWER ADDISCOMBE ROAD, CROYDON, SURREY 01-688 2950

U.H.F. Modulator. Viden or puttern gen. In. Ae plug. In small neat metal box. وv. supply at few me plug. In m .
12-volt Mini Relays (Contisental type),
2 -pole change over Type 1700 ohm coil; Type 2 4 pole changeover Type 1280 ohm coil; Type 2 430 ohm coll, c0. 80 each; 55 for 10 .
Plug-in bases to suit $£ 0.30$ cach, $£ 2.50$ for 10 .
Small neat bor tith 3 push-bution switches. 3
screened leads with din plus 5 and 7 pin 2 din sockers. A.D. 161 and $71 / 2 v$. zennet, etc. (made by Philips), 81 each.
12-a-12v. Transformer. Giving 12v. Bi-phase Rec. at 400 mA . On p.e.b. with diodes, to use as power supply, etc. $\{1$ each.
SOLAR CELLS. Giving 20 mA at $1 / 2 \mathrm{v}$, in daylight,
C 1.50 each, 13 per 10. SOLAR MOTORS 1 liz
SOLAR MOTORS. $11 / 2 \mathrm{v}$. motor, free running at etc., with 3 solar cells in daylight, $£ 2$ each.
 contact bars giving 204 connections. Possible D.1.L. with easily made adaptor (previously sold at C6. 50). Our Price $£ 3.95$.
P\&P. 60 p . Send S.a.e. for list and receive FREE
GIFIII Many bargains in component packs GIffil Many bargains in component packs: Resistors, Claps. Plugs and So
etc. Also Relays, S.C.R.s. Triacs.

CA308GE CA3140E MC3401	$\begin{aligned} & 700 \\ & \text { 45p } \\ & \text { 30p } \end{aligned}$	
		POWERFETS
TLOB ${ }^{\text {che }}$	290	BD5 12 (60v, 1Y/. Pehan) 90p
${ }_{2102}$	60 p	10522 (60, 11/2A, Nchen) 85p
2114	240p	VN67AF (60v_ 2A. Nchan.) 800
40018	17p	[2S49 (140v. 100w, Pchan.) 340p
40118	17p	,2SK134 (140v. 100w. Nehan.) 340 p
40138	400	
40168	40p	HI-FI ON Two CHips
555	$25 p$	HA12017 Preamp 0.001\% distor-
709	15p	tion 830B S/N in phono applicatinn).
710	25p	$80 p$.
733	50p	HA1397 (Poweramp 20 watls in 80
741	$18 p$	0.02\% distortion (iyp) 195p.
78105	29p	Both with data and circuits

SCOPE TRACE DOUBLER P.C.B. Buil CW shif, chan. select, cho-
prate comtrols and instructions. useful display from OC to 10 MHz . Runs HA 138 E10 H.A.
40 p .
H.E. PUBLIC ADORESS AMPLIFIEA. Component set including H.A. 1388 sistor. (Excludes. board, box and
controls). $E 295$. controls). $\mathbf{2 2 . 9 5}$.
J. W. RIMMER - 303587^{1}

Audio Millivoltmeter
 For the hobbyists who like to make their own test gear, this simple-to-build project is ideal

ANYONE WHO TAKES up electronics as a hobby soon accumulates various pieces of test equipment. One of the most essential is a multimeter, of course, but nevertheless, it still has its limitations. Perhaps the most serious drawback, particularly if you count audio as one of your interests, is the instrument's inability to measure small AC voltages. Help is at hand though - all you need is the HE Audio Millivoltmeter described hera, and you will be able to measure the frequency response of a power amplifier, check the action of tone controls, and work out signal-to-noise ratios etc.

Described simply, the project is a sensitive voltmeter with a switchable full-scale deflection (FSD) of 10 mV to 10 VRMS. (RMS means root mean squared - you can think of this as being the average size of an AC voltage). Unlike most published circuits which do the same job, this one uses only one IC and as such the project is simple-to-build and an ideal project for beginners and longstanding hobbyists alike.

Uses

There are many uses for an accurate millivoltmeter such as this, but lack of space rules that we can only state two of the most important:

- Because the circuit is ACcoupled it can be used to measure small AC voltages superimposed on a DC voltage. Typical of such measurements is the determination of ripple voltages on power supplies. Let us explain!

A mains-operated power supply unit (PSU) never gives a completely smooth output, but always shows a 'ripple' (an up and down motion of a few millivolts impressed on the DC voltage). The AC coupling of our millivoltmeter, because of capacitor C 1 , means that the meter will totally ignore the standing DC voltage. A 'good' PSU should exhibit a ripple of less than about 1% (120 mV with a standing voltage of 12 VDC).

- The frequency range of the meter extends up to about 200 kHz and so it can be used to measure the frequency response of power amplifiers. To do this a signal generator which will supply sinewaves is also required. The generator output is fed into the input of the amplifier and the amp's output is monitored with the millivoltmeter.

Now, the frequency response of an amplifier is defined by what engineers sometimes term 'the -3 dB points' - the two points at the lower and upper end of the amplifier's frequency range where the output voltage amplitude exhibits a size reduction of 3 dB . In case you are wondering, a fall of 3 dB means a reduction in voltage amplitude of

$$
\sqrt{\frac{V}{2}}
$$

where V is the maximum amplitude.
Simplifying,

$$
\begin{aligned}
\frac{V}{\sqrt{2}} & =\frac{V}{1.414} \\
& =0.707 \mathrm{~V} .
\end{aligned}
$$

So, the -3 dB points occur at the frequencies where the amplitude falls to 0.707 times the maximum.

Feed a 1 kHz sinewave into the amplifier's input and adjust the volume control until a reading of 7 V is indicated on the meter. Now sweep the sinewave frequency downward until the meter reads 5 V . It just so happens that:
$0.707 \times 7 \mathrm{~V}=5 \mathrm{~V}$,
so at this point the response of the amp has fallen by 3dB.

Repeating this procedure for high frequencies will reveal the upper -3dB point by the meter reading falling to 5 V again.

Construction

Start construction with the Veroboard. Carefully make the breaks in the tracks, indicated in Fig. 2 using a cutting tool or a small (about $1 / \mathrm{s}^{\prime \prime}$) hand-held drill bit. Check that no small pieces of copper swarf produced by this track-cutting process bridge adjacent tracks, forming short circuits.

Now, insert and solder each component into the board as shown in Fig.2, starting with the resistors, followed by capacitors and finally the semiconductors. If you wish, an IC socket can be used to hoid IC1.

Next mark, drill and cut out the holes in the case to take the meter, the two switches and the phono socket, and fasten them into the case.

Finally, mount the circuit board in the case and then wire-up your project as the connection details show. Note that the input lead (both inside the project and also the probe lead) should be of screened cable, which will be necessary with a circuit having such a high gain and high input impedance. The screened cable will help to reduce interference and hum pick up which, because the hum and interference are AC, would give a false reading on the meter.

The Audio Millivoltmeter requires no setting up since the resistors have been scaled to read the RMS value of sinewaves. Simply switch on and you're ready to go.

NOTE:
D1 IS ARE 1N4748

Buylines
The only component which may be difficult to obtain is the meter, M1. This is a type (series 920) stocked by Ambit International.

Vero Electronics Lid can supply the case (order number 65-2760D) for £4.00 including p\&p. Please add VAT at 15%.

The approximate cost for components (excluding the case and Veroboard) should be about $£ 12$.

How It Works

The small AC voltage under measurement is first amplified by a high-gain amplifier with four switchable gains. Conversion of AC to DC is done with a bridge rectifier in the feedback loop of the amplifier. This speeds up the action of the circuit of the milivoltmeter and also makes it more accurate. A moving-coil meter is then used to measure the amplified and rectified voltage.

Integrated circuit IC1 forms the high-gain amplifier and is in a noninverting configuration. This type of circuit allows a very high input resistance to be obtained which does not 'load' the circuit whose voltage is under test. Switch SW1 connects various resistors (R5-8) into circuit, each having a different value, to define the gain of the amplifier.

A bridge rectifier is formed by diodes D1 to D4, within the feedback loop of the amplifier. The output of the bridge rectifier is connected across M1 in series with R9, and thus the measured voltage is displayed on the meter scale.

Resistor R9 and transistor Q1 act as an overcurrent monitor to protect the meter if the measured signal is much larger than is necessary to drive the
meter to FSD. Their action is quite clever and depends on the fact that the voltage beiween the base and the emitter of the transistor needs to be over 0.7 V before the transistor conducts and, under normal conditions, the voltage across R9 remains less than 0.7 V . However, if too large a voltage measurement is attempted, more current will be driven through R9 and the meter. From Ohm's Law:

$$
V=I \times R
$$

So, as the current, I, goes up, the voltage must tool

As soon as the voltage reaches 0.7 V . transistor 01 conducts and prevents any further current flowing through R9 and M1.

Internal photograph of the Audio Millivoltmeter

Parts List

Figure 2. Veroboard layout of the project, showing component positions, track breaks underneath the board and connection details. Make sure you use screened cable for the input lead

CIRCUIT DIAGRAMS/OVERLAYS/

FLOWCHARTS!

Do you require professionally drawn Circuit diagrams, Overlays, Flowcharts etc. drawn to your own designs? MM Design \& Print offer a quick, accurate and cheap Technical Illustration and lettering service to readers of Hobby Electronics. We illustrate anything from a one transistor amplifier to a full Hi-Fi stereo design, with finished artwork supplied to your specification.
For further details please ring Paul Edwards, on 01-437 1002/7 extension 29, or write to the address below.

A complete Kit, Including S-Dec, wire \& battery, for the 16 projects described in Tom Ouncan's book 'Adventures in Elecironics' publishod by John Murray. No soldering. Adopted for class

With book, £21. 34
Clear pictorial instructions for making the following: RAIN OETECTOR, INTE RCOM, MORSE BUZZER, BURGLAR ALARM, 3 TYPES OF RAOIO, PARKING LIGHT, FLASHING LAMP, ELECTRONIC ORGAN, METRONOME, SIREN, TIMER, COUNTER, FIRE ALARM And now available:
ADVENTURES WITH MICROELECTRONICS
A similar Kit including 'Bimboard' and Integrated Circuits. Suitable for the complete
A similar Kit including 'Bimboard' and Integrated Circuits. Suitable for the
beginner, or those who have already enjoyed 'Adventures with Electronics'
With book, $£ 33.11$
With book $£ 26,90$
$\begin{array}{ll}\text { Conversion KIt: } & \begin{array}{l}\text { With book, } £ 26.90 \\ \\ \text { Without book, } £ 24.90\end{array}\end{array}$
Cash or cheque with order, please, to

UNILAB LTD. Clarendon Road, Blackburn, BB1 9TA, England. Tolephone (0254) 57643

OHIO SCIENTIFIC COMPUTERS New Series 2 OHIO SCIENTIFIC COMPUTERS New Serios 2
Challenger C1P Cheapo 4K version. fzan.
Ohio 8k version $£ 259$. SPECIAL OFFR: Superboard 3 with free power supply and modulator kit and guard band kit (gives $32 \times$ 32 extended display, 1200 and 300 baud tape
speeds, 50% higher computing speed and 50 Hz conversion) E159 the lot. Guard band kit also sold separately, $£ 10$. 4K extra ram,
£16.95. Case $£ 27$. Casserte recorder $£ 17$. CegE16.95. Case £27. Casserte recorder £17. Cegmon improved monitor rom e29.50. Assem-
bler/Editor $£ 25$. Word processor $£ 10$. Display expansion kit, 30 lines $\times 54$ characters for superboard TWO, $£ 20$.
PRINTERS supplied with free interface and word processor for Superboard and UK 101.
Seikosha GP80 £225. Oki Microline 80 ع299. Base 2800 MST f299. \star SINCLAIR PROOUCTS only are post free.
 X10 probe $\mathrm{E8.86}$, carrycese $\mathrm{E8.80}$. Pfm200 £52.40, adaptor $£ 4$, case $£ 1.73$, connector kit
$\mathbf{£ 1 1 . 2 7 . ~ P D M 3 5 ~} £ 32.95$, adaptor $\mathbf{£ 4}$, case $£ 1.75$ OM235 £56.50, DM350 $£ 78$, DM450 £107,
adaptor $£ 4$, case $\mathbf{E 8 . 8 0}$, rechargeable batts adaptor $£ 4$, case $£ 8.80$, rechargeable batts.
£7.95. MEMORIES 2114 A50ns, $£ 2.15$; 4116 200ns
£2.83: 4027 , £1.30. All low current. £2.83: 4027, £1.30. All low current.

- battery eluminator kits, 100 ma radio types whth press studs, 9 v . $£ 1.79 ; 9+9 \mathrm{v}$.
 $6 / 1 / 2 / 9 / 12 / 15 / 18 \mathrm{v} \quad 100 \mathrm{ma}$. $\mathrm{E3.12:} 1 \mathrm{amp}$
$\mathrm{EB.30}$. Stabilised power kits, $2-18 \mathrm{v}$., 100 ma £8.30. Stabilised power kits, $2-18 \mathrm{~V}, 100 \mathrm{ma}$.
$£ 3.12 ; 1,30 \mathrm{v}$. $1 \mathrm{~A} £ 8.50 ; 1-30 \mathrm{~V} .2 \mathrm{~A}, \mathrm{E} 5.30$. TIL and computer supplies, 5 V, stabilised, $1 / 2 \mathrm{AR}$,
$\mathrm{E9}$; 3 A £14; 6 A £20. 12 v . car convertor, ET-OEC AND S.OEC BREADBOARDS, 1 -dec, £4.59; expAb. E2.64; $\operatorname{exp300,£8.61.}$ $6771 / 2 / 9 v ., 300 \mathrm{ma}, £ 3.50 ; 100 \mathrm{ma}$ radio types with press studs, $9 \mathrm{v} . . \mathrm{E} 4.95 ; 9+99 \mathrm{v.}$,66.25 ; car convertor, 12 v . input, output $41 / 2 / 6 / 71 / 2 / 9 \mathrm{v}$, HTV GAMES, AY-3-8600 + kit, E12.98. AY-3.
$8550+$ kit, E5.26.

SWANLEY ELECTRONICS

Postage $£ 3.50$ on superboard $\mathbf{E 4} 50$ on prin ters and 45 p on other orders. Lists 27 p pos ree. Please add V.A.T. except to sections marked with a thich already include it.

PARNDON ELECTRONICS LTD.

Dept: No. 22, 44 Paddock Mead, Harlow, Essex CM18 7RR. Tel. 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors made under stricily controlled conditions by automatic machines. Bandoliered $£ 1.00$ per hundred mixed. (Min 10 per value) E8.50 per thousand mixed (Min 50 per value) DIODES: IN4148 3p each. Min order quantity - 15 items
£ 1.60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed base - solve those
programming problems.
4 Wrogramming problems. 86 p each 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ eac
DIL SOCKETS: High quality, low profile sockets.

$$
8 \text { pin-10p. } 14 \text { pin-13p. } 16 \text { pin - 15p. } 18 \text { pin - 19p. } 20 \text { pin - 25p. }
$$ 22 pin -29 p. 24 pln-35p. 28 pin - 39p. 40 pin -57 p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN. ORDER - U.K. £1.00. OVERSEAS £5 CASH WITH ORDER PLEASE

hematie conthal kits

MK6 - Simple Infra Red TRANSMITTE
held plastic box. Requires a 9V battery.
MKC7 - Intra Red RECEIVER Sinte ch
MK7 - Inira Red RECEIVER. Single channel, range approximately 20 Ht Mains powered with e4.20 transistor or relay outputs.
*SPECIAL PRICE . MK6 and MK7 together. Order as RC500K
MK8 - Coded Infra Red TRANSMITIER. Based
MK8-Coded Infra Red TRANSMITTER. Base
$6 \times 2 \times 9.3 \mathrm{cms}$ and requires a $9 V$ (PP3) battery.
MK9 - 4 Way KE YBO ARD. For use with the M
he MK8 kit, to ma
Hay KEYBARD. For use with
MK10-16-Way KEYBOARO. For use with the MK8 kit, to generate 16 different codes to decodin 90
The M11-10 On-Off Channel IR RECEIVER with 3 analogue ourpurs (0 - 10 V) for controlling as lamp brightness, volume, tone. etc. Other functlons include an on/standby output and a toggle output, which may be used for sound muting. Based on ML922 decoder IC. Includes its own mains
supply
MK12 $\mathbf{1 6}$ Channel IR RECEIVER. For use with the MK8 kit with $16 \mathrm{on} / \mathrm{off}$ outouts which with further Mnterface circuitry, such as relays or triacs, will switch up to 16 items of equipment on or off remothely. interface circuiry, such as relays or riacs, Will switch up to t6 items of equipment on or of remoiely.
Outputs may be latched or momentar, dependina on whether the ML926 or ML928 is specified.
Includes its own mains supply. Size $9 \times 4 \times 2 \mathrm{cms}$, excluding transtormer. Includes its own mains supply. Size $9 \times 4 \times 2 \mathrm{cms}$, excluding transformer.
MK13 111 Way KEYBOARD. For use with MK8 and MK 11 Kits. Transmits programme step + and
analogue + and $-(3)$, mute, normalise analogue outputs, an on/standby
E4.35
 ant i, hation AY-5 1230.2 Clock 1 mel A. 3-1270 Thermometer M377 Dual 2 W Amp LM379S Dual 6 W Amp LM 3802 W Audio Amp LM382 Dual/ low noise Preamp
IM386 250 mW low voliage Amp (M) 830 Fluid Le vel Detecior (M2907 I-v Converter (18 pin) IM2917 iv Converter
IM
IM IM39 I Thermometer MM74C911 4 digi" display controiter MM74C915 7 segment-8CD converner
MM74C915 4 dian Etr with / seal S5668 Touchdimma SL440 A.C. Power Control TBABOOD 5W Audio Amp TBAB10AS $7 W$ Audio Amp
TDA 1024 Zero Vollage Swich TDA 1024 Lero Voltage Swn
TDA2020 20 W Audio Amp 2NIO34E Timer All ICs suoplied with daus sheels
Data Sheels only 10, each device

UWOS POWER EETS

BOXES

EVERY DOOR SHOULD HAVE ONE

Our new TDR300K Touch DImmer
Kit will ensure that you are. Based on our highly successful TD300k touch controlled dimmer kit, the TDR300K incorpo rates an infra red re ceiver, enabling
the lamp
brightness to be varied and switched on or off by touch or remotely by means of a small hand held transmitter. The complete kit, which includes easy to follow and the plastic front plate has no metal pads to pouch ensuring complete safety pads to touch, ensuring complete safety. Even a neon is included to help you tocate the switch in the dark.

In years to come everyone will be selling remote control dimmers, but you can have your TDR300K kit now and $£ 4.20$ for the transmitter.

70

So it's FM in Autumn, but what does this mean in practice? Rick Maybury gives his views

UNLESS YOU'VE BEEN LIVING in a cave for the past few weeks you will have heard all about the recent Home Office announcement. Broadly speaking, it now means that by the Autumn we will have in this country a personal two-way communications system. Much has been said about the wisdom of adopting an FM service in favour of an AM system. In general, two points have been raised that I would like to clarify.

First range. The range is dependent on two factors, namely frequency and power. We can forget antennas for a moment as there are no differences between AM and FM antennas. Taking this all into account there should be no significant difference between two similar CB rigs, one using FM and one using $A M$. In practice the FM rig will be marginally better because of a phenomenon called the capture effect.

Second cost. I have been hearing countless tales of FM rigs costing upwards of $£ 400$ etc. This will not be true. In fact $F M$ equipment is actually cheaper to manufacture, and development work will be minimal as FM equipment for CB has been around for some time.

I can now reveal that one major British company is about to announce a range of six. CB rigs operating on 27 MHz FM , costing from $£ 69.95$. The base station model will be £99.00. I can’t reveal this company's name just yet but read Citizens' Band (May issue) for more details.

Worse or Better Service?

Taking these two facts into consideration there is no reason to suppose that an FM service will be any worse than the current AM service. I suspect that it could be better, especially when you consider the problems with AM interference (TVI and radio control) and high levels of skip activity at the moment. There are still a lot of problems to be ironed out, not least the exact specifications for the new service. This I hope will be published by the time you read this. I hope to have more details next month.

Record Turn-out?

If you have been reading the CB press lately you will know that there are at least 10 CB exhibitions planned for the next six months. Last month I went along to the First National CB Eyeball and Family Jamboree. This was held on March 22 nid at Donington Park Race Track. To set the scene, I should first tell you that this was a bitterly cold day: it was very windy and there was snow, sleet and rain to liven up the proceedings. An estimated 20,000 (yes, twenty thousand) turned up to witness what must be the largest CB gathering in this country. Trade stands from all over the country were selling equipment, accessories and even rigs, and the organisers laid on a number of events for the breakers. It was a very good day for everyone, especially the gentleman selling straight 40 -channel AM rigs at $£ 120$.

Look out for reports on the forthcoming CB eyeballs in the coming months. In the meantime, well done to the organisers at Donington and look forward to seeing you next year, perhaps?

PCB FOIL PATTERNS

Above. Hevox PCB pattern

HE Electronic Organ, Board 1 foil pattern

SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H OEE. TEL: 01-437 1002 Ext. 50.

ADVERTISEMENT INDEX

ADVERTISEMENTINDEX	
Ahlers Elektronika 28 Akhter Instruments.............. 48	Magenta Electronics 26 \& 27 Maplin 76
Ambit International....................... 10	Marshalls....................................... 58
Arrow Audio Centre 52	NIC Models.................................... 36
Bi-Pak Semiconductors 32	Parndon Electronics 70
BK Electronics 58	Pops Components 66
BNRS.. 73	T. Powell...................................... 62
J. Bull (Electrical) 46	J. W. Rimmer .-.............................. 66
Circolec... ${ }^{23}$	Selray Book Co 52
Drallim Davis................................ ${ }^{23}$	Silica Shop 34
Electroni-Kit............................. 36	Swanley Electronics....................... 70
Electronize Design 66	Tangerine 38 \& 39
Electrovalue _i......................... 45	Technomatic................................ 17
Global Electronics 73	Tempus....................................... 42
Greenweld 52	TK Electronics 70
GSC...............................36, 45 \& 56	Unilab Ltd 70
Heath Electronics 56	Vero .. 23
Henry's Radio..................................... 45	Watford Electronics 96
ILP .. 4 \& 5	
Lightening Electronics 56	Wintjoy 75

Hobby Electronics, May 1981

Abstract

BRAND-NEW-NOT SURPLUS. 741s at 23p. 0.25 -watt resistors. Any selection £1.60 per 100 . P. \& P. 25p. - Systematics, Hazel Road, Woolston, Southampton SO2 7 GB .

2X80 five games £3. Pontoon, space games, typed sheets. - Ralphs, 1 Duxford Walk, Manchester M10 9JN.

DIRECT ETCHING KIT by Chartpak, eight sheets symbols and rules, burnisher, etc. Simply and quickly draft your P.C.B. design ready for etching. $£ 4.50$ incl. P.. \& P. - A.S.R. Business Services, 24 Catherine Street, Salisbury SP1 2DA.

READY-MADE P.C.B.s FOR POPULAR IC CIRCUITRY

Roller-tinned Glass Fibre boards, pre-drilled and marked to show component location. Range covers Counter Displays, Multiplexers, Drivers, Waveform Generators, Audio Amps and Pre-amps, Power Supply Regulators, Timers, Power Supplies, etc. We also stock Fibre Optics for Opto-Electronic Projects.

Send $14 p+$ s.a.e. for ists

D'JUSON LTD.
60 Quen Street, Maidenhead, berks.
'LEARNAKIT' oscilloscope, ideal for student/hobbyist, £30; also push-button Radiomobile, £20. - Rowley, 141 Cranley Gardens, N10 3AG. Tel: 01-883 3686.

Conquer the chip.

Be it a career, hobby or interest, like it or not the Silicon Chip will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain,
through us, in simple, easy to understand
stages.
Learn the technology of the future
today in your own home.
MASTERELCTRNOS LEARN THE PRACTICAL WAY
Building an oscilloscope. Recognition of components

- Understanding circuit diagrams. Handling all types Solid State 'Chips'.
- Understanding circuit diagrams. Handling all types Solid State Chips

Carry out over 40 experiments on basic circuits and on digital electron
Testing and servicing of Radio. T.V., Hi-Fi and all types of modern

computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW
THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. Special educational Mini.

Computer supplied ready for use. Self Test program exercise.

- Services of skilled tutor available.

MASTER THE REST

- Radio Amate urs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology
- Kits for Signal Generators - Diģital Meters etc.

EDUCATION
Inner London Education Authority LONDON COLLEGE OF FURNITURE 41-71 COMMERCIAL ROAD, LONDON E1 1LA Department of Musical Instrumient Technology COURSES IN ELECTRONICS FOR THE MUSIC INDUSTRY

TEC DIPLOMA IN MUSICAL INSTRUMENT STUDIES
(2-vear full time specialising in electronics)
TEC HIGHER DIPLOMA IN MUSICAL
INSTRUMENT TECHNOLOGY
(2-year full time speciallising in electronics)
The electronics options of these TEC courses allow the student to specialise in music industry application. Suitable students would be Interested in both music and electronics and wish to combine them within this course. Application forms and further details are obtainable from the Senlor Administrative Officer at the
College.

PRINTED CIRCUITS. Make vour own simply cheaply and quicklyl Golden Fotolak light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$; developer, 35 p; ferric chloride, 55 p; clear acetate sheet for master, 14 p; copperclad fibreglass board, approx. 1 mm thick, £1.75 sq. ft. Post/packing 75p. - White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

```
&1 BARGAIN PACKS
All packs f1 EACh BARGAIN PACKS
Al packs f1 each; any 12 fo 
PC1850.02 discs
PC1925 90V neons
*
PC21740018
PC2274011B
PC2434017A
Send SAE for 8 page list/enquiries. Mail only PC ELECTRON
\/2 1, Thornhill, Romsey Road, Whiteparish, Sallsbury SPS
```


If you find an ad unacceptable, don't turn the page: turn to us.

PARAPHYSICS JOURNAL. Russian / Czech translations. Autogenics (self-training) improves vitality. Psychotronic Generators, UFOs, contacting extraterrestrials, Kirklianography, telelinesis, levitation, gravity lasers. S.A.E. $4 \times 9^{\prime \prime}$: Paralab, Downton, Wilts.

TRS-80 OR 2×80.4 games on cassette. TRS-80, £3.50. ZX80, \mathfrak{E}. SAE details/list. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
50 MIXED ICs, transistors, diodes £3. Bargains list 15 p. Sole Electronics, (HE), 37 Stanley Street, Ormskirk, Lancs

CB SPARES

Japanese original transistors and integrated circuits.
Largest selection in Britain at very low prices.

Write or phone for free list. McLAUGHLIN ELECTRONICS 44 Carlisle Road, Londonderry N. Ireland, BT486JW Tel: (0504) 65002

```
BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED L.E.D. DIGITAL ALARM CLOCKS
```



```
Refurned to Service
Department within
guarantee period.
(2)
With alarm repeat. S.R.S.P. of \(£ 17.00\). Offered a £3.95, inc. VAT, or 3 for \(£ 9.95\), inc. VAT
2. With luxury lamp and repeal alarm. S.P.S.P.
£31.00. Offered at \(£ 7.95 \mathrm{inc}\). VAT each, or 3 for \(E 19.95\) inc. VAT.
These will be sold as received from our customers with the existing lault(s) and without guarantee. U.K. only
Discounts available on large bulk purchase
PRESCOTT CLOCK \& WATCH CO. LTD.
PRESCOTT HOUSE, HUMBER ROAD. LONDON
```


WANTED. Electronic components

 and test equipment. Good prices given. Q Services, 29 Lawford Crescent, Yately (0252) 871048 , Camberley, Surrey.TELEPHONE ANSWERING MACHINE. Build your own for under f 10 plus any cassette recorder. Send $£ 3$ for circuit and plans. S. D. Cross, 24 Thorney Road, Streetly, Sutton Coldfield, West Midlands.

100 IN4148, £1; 150 Resistors, £1; 100 Capacitors, f1. P. \& P. 25p. S.A.E. lists. Dept. H, D.B. Products, P.O. Box 8, York, YO1 1FT.

BREAKER, BREAK

Bulld your own CB rig (27 mhz tranceiver), full circuit diagram and parts list. All components available in UR Send large S.a.e. and $\mathrm{E2.95}$ to P. Sher I'm Down and On the Side.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE, S.A.E. FOR LISTS £1,45 for Booklet. "Nickel Cadmium Power" plus Catalogue. "New range of sealed lead now available". Write or call: Sandwell Plant Ltd., 2 Union Drive, BOLDMERE, SUTTON COLDFIELD, WEST MIDLANDS. O21.354 9764

ELIEGTRIFY YOUR SALES! • CLASSIFIED ADVERTISEMENT

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15

Please place my advert in: Electronics Today International (Delete as applicable)

Advertise nationally in Electronics Today International/Hobby Electronics. Simply print your advertisement in the coupon here leftl. indicating which magazine you require. Or zelephone for more information.

Name

Address

Tel. No. (Day)

Send, together with your cheque to: Jenny Naraine, ETI/HE,
145 Charing Cross Rd., London WC2H OEE. Tel: 01-4371002 Ext. 50.

CTDPAM ANTENNAS

WRITE OR CALL FOR FULL INFORMATION FROM: WintjoYltid. tel. walton-on-thames 103 HIGH STREET (STD 09322) 48145 SHEPPERTON MIDDLESEX TW17 9BL ENGLAND

Make it for a Song!

The New Maplin Matinée

 $\underset{\substack{\text { Amazing Value } \\ \text { For Only }}}{\mathbf{4} 299.95}$$+£ 99.50$ for cabinet if required.

Easy to build. Latest technology - means less cost, less components and 80% less wiring. Comparable with organs selling for up to $£ 1,000.00$. Two 49 -note manuals. 13 -note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8 -instrument voicing. Major, Minor and ${ }^{2 /}$ Seventh chords Unique walking hass lines with each rhythm. Unique countermelody line with each rhythm. Truly amazing value for money. Full construction details in Electronics \& Music Maker magazine.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page atter page of invaluable data. Get a copy now - it's the one catalogue you can't afford to be without.

[^1]
กาำเp니ำ

Maplin Electronic Supplies L.td.
All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR
Telephone: Southend (0702) 554155. Sales (0702) 592911
Shops:
159.161 King Street, Hammersmith, London W6. Telephone: (01) 7480926 284 London Road, Westclitt-on-Sea, Essex. Telephone: Southend (0702) 554000 Both shops closed Mondays.

[^0]: CAPACITORS
 C1,3,4,7.8 100 n polyester
 C2,6,10 1 n ceramic
 C5 100p ceramic
 C9 1u0. 63 V printed circuit
 mounting electrolytic
 C11 470u, 16 V printed circuit mounting
 electrolytic
 C12 1 u0, 400 V polyester
 SEMICONDUCTORS

 | IC1 | SL480 infra-red pre- |
 | :--- | :--- |
 | | amplifier |
 | IC2 | 4013 dual D flip-flop |
 | Q1,2 | BC212 PNP transistor |
 | Q3 | BC182 NPN transistor |
 | SCR1 | TIC206D triac |
 | D1 | SFH205 photodiode |
 | D2,3,4 | 1N4148 diode |
 | D5 | 1N4001, 1 A diode |
 | LED1 | $0.2^{\prime \prime}$ red LED |
 | ZD1 | 15 V zener diode |

 ## MISCELLANEOUS

 3-way terminal block
 8-pin IC socket
 14-pin IC socket
 Heatsink (to suit triac SCR1)
 13 A mains socket
 Case to suit (ours is 202-21040F from Vero)
 Rubber grommet
 Cable ties

[^1]: Post this coupon now for your copy of our 1981
 catalogue price $£ 1$.
 Please send me a copy of your 320 page catalogue. I
 enclose $£ 1$ (Plus 25 p p\&p). II am not completely
 satisfied I may return the catalogue to you and have my
 money refunded. If you live outside the UK send $£ 1.68$
 or 12 International Reply Coupons.
 I enclose $£ 1.25$.
 Name.
 Address.

