CB RADIO - NEWS AND VIEWS INSIDE Hobby
Elertronics


Special feature on preparations for first flight
can be used with other audio systems special kit offer • no circuit wiring
harmless version of a deadly game


Warns you of low fluid level
modulates your music two other projects for you to build - see inside

# Everwondered Who buys electronics today? Y Mbesmmised! 

 ander ectronics mete is rapidy expanding, Whelher it's its $\quad$ gincreasingly deficiti to heclym the the atest drivelon mis. Ortoget them:Than thes whero we conlein. We arobably hthe just what rand looking cud a lot more hesides. We sloch aliftic top makis. at prices will just make yeu love us. Simplyphonge, write of wex Wix,n Ltd., 103 High Stmet, Shepperton, Mi dlevex TV 79 BL,


APRIL 1981
Vol. 3 No. 6

Editor: Hugh Davies Assistant Editor Keith Brindley Drawing Office Manager: Paul Edwards Group Art Editor: Paul Wilson-Patterson BA Managing Editor: Ron Harris BSc


FEATURES

## PROJECTS

## PRE-AMPLIFIER

First part of high fidelity soundsystem . . . . . . . . . . . . 11
SUPER SIREN
Noises galore25

DOORBELL MONITOR
Who's been knocking at your door? . . . . . . . . . . . . . . . . 32
GUITAR TREMOLO
Up and down-automatically . . . . . . . . . . . . . . . . . . 39
SHORT CIRCUIT - READER'S DESIGN
Direct Reading Ohmmeter 45
RUSSIAN ROULETTE GAME
Click, click, click, click, click, bang46

WINDSCREEN WASHER ALARM
A project for the motorist 53
PCBFOIL PATTERNS
Tracklayouts for those who make their own PCBs65

ANATOMY OF A SPACE SHUTTLE
Inner secrets of an outer-space ship

* PROJECT DESIGN COMPETITION

Your chance to help the handicapped.
BUILDING SITE
From hand-held tools to capacitor colour code

* FAMOUS NAMES

New series, starting with Michael Faraday
35
OLEVELO\&A
A close look at transducers
49
CLEVERDICK
More of your letters, picked from the postbag
57
BREAKER ONE FOUR
Legal CBimminent? Preparations in advance


Monitor

## NEWS\&INFO

HE Next Month
The HOBBY ELECTRONICS Bristol Exhibition . . . . . . . . 21

* Oscilloscope Offer . . . . . . . . . . . . . . . . . . . . . . . . 43

Back Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

* Ni-Cad Cell\& Charger Offer . . . . . . . . . . . . . . . . . . 59

Books From HE . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Hobbyprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Classified Ads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Advertisement Manager: Stephen Rowe Advertisement Riepresentative: Sally Holley
Creative Director: Diego Rincón
Managing Director: T. J. Connell
Hobby Electronics is normally published on the second Friday of the month prior to the cover date.
Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-437 1002. Telex No. 8811896 . Published by Modmags Ltd.
Distributed by Argus Press Sales \& Distribution Ltd, 12-18 Paul St., London EC2A 4JS. Printed by QB Ltd., Colchester. Covers printed by Alabaster Passmore.
Copyright: All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing of kits of the projects must be sought from the Publisher. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally. OCopyright 1981 Modmags Ltd ABC Member of Audit Bureau of Circulation.



# Monitor 

## Miniature Flat Screen TV

Clive Sinclair, managing director of Sinclair Research, announced in February that his flat screen TV tube was about to go into production.

This tube, which is only about $4^{\prime \prime}$ by $2^{\prime \prime}$ by $3 / 4^{\prime \prime}$ deep, will be incorporated in a miniature monochrome set, combining FM radio.

The prototype receiver is only about $6^{\prime \prime}$ by $4^{\prime \prime}$ by $1^{\prime \prime}$, so it's truly pocket-sized. The production model is expected to be on sale early next year, at a cost of about $£ 50$. It is estimated that the set's batteries should give more than

15 hours viewing time.
Research and development, in conjunction with the National Research and Development Corporation, has taken five years.

A total investment of $£ 5 \mathrm{~m}$ is to be spread over four years up to 1985. Phase one (up to 1982) will require $£ 1.25 \mathrm{~m}$ investment. The Scottish Economic Planning Department will supply $£ 1.5 \mathrm{~m}$, while $£ 1.1 \mathrm{~m}$ will be made available from a Regional Development Grant. Sinclair Research is to supply the remainder.

Production of the tubes and the sets will start in 1982 in Dundee, providing employment for an estimated 250 people in the first year. This figure could rise to 1000 by 1985.

## Guide to CB Language

Small enough to tuck into your pocket (105 by 150 by 8 mm ), CB in GB gives you a comprehensive guide to CB slang.

Of course, until CB becomes legal, it is doubtful whether more
than (what is the latest estimate?) say. 800000 people would find a use for it! But a least you can get some practice with the lingo - at a cost of $\mathbf{£} 2.20$.

CB in GB was compiled by Steve Braithwaite, and is publish: ed by The Cherwell Press, 2 Station Field Industrial Estate, Kidlington, Oxford OX5 1JD.


LED display screen and provides a variety of maze games of varying degrees of difficulty. (These are especially difficult when the obstacles are made invisible!) It costs around $£ 37.50$.

Milton is what is claimed to be a 'talking computer'. It begins with: 'You've turned me on. I'm Milton - who's out there? Hee hee hee - pick your play'. And you can select one of three word games for one or more players. Price is around $£ 48$.

More electronic toys will be included in next month's Gadgets, Games \& Kits supplement.

So many toys and kits were on display at the British Toy \& Hobby Fair, held at Earls Court, London between 31 January and 4 February, that we couldn't possibly give a fair coverage in such limited space. The interest for HE, as you can imagine, was in electronic games rather than cuddly toys, two examples of these games being Split Second from Palitoy and Milton from Milton Bradley.

Split Second incorporates a

Society. It will take place at 2.30 pm on Saturday 16 May at: St. David's Church Hall,
Lough Road,
London N7
The nearest Underground station is Caledonian Road (Piccadilly line): so don't miss this opportunity to see and hear a project before you build it.

## Electronics News

## Selectavision For United States

Selectavision - RCA's video disc system - is due for its launch in the US on 22 March 1981. (Details of the system were given in View Into Video Discs, HE December 1980, pp 18 to 22.1

RCA gave a special presentation to 5000 dealers throughout the US during February this year using satellite transmission from New York.

Initial price for the system is estimated as being 'just below $\$ 500^{\prime}$.

The CED (capacitance electronic disc) can store a two hour programme (that is, 60 minutes/side), but it is expected that average programme length will be 90 minutes. Discs will cost initially between $\$ 15$ to $\$ 25$ depending on programme material. A total of 100 titles will be launched initially.

As mentioned in View Into Video Discs, the Selectavision machines will be for mono sound. But a stereo version is to be launched in Europe during 1982. (The Japanese will probably have stereo versions by this time too.)

A mono launch has been made in the US because there are no stereo TVs, most films are in mono and it has helped to keep the cost of the system down.

We plan to take another look at video discs later this year, to keep you informed of developments.

## We've Had Enough

That's itl We can't take anymore.
Our technical department is so overloaded that we have had to make the decision to call a halt to telephoned technical enquiries. However, our written technical enquiry service is still operating.

But please remember, if you have a project enquiry we can only answer it if you send a SAE with it.

We cannot answer any queries regarding modifications to our designs.

## Note For Our Overseas Readers

Payments for backnumbers, subscriptions, specials etc arrive at Modmags in an interesting variety of forms.

We'd like to make it clear that we can only accept payments from overseas in one form: Sterling Banker's Orders, made payable to Modmags Ltd.

Not quite Electronics News, but it will help speed up our service to out side the UK.


## Keeping Things Tidy

Three products from Edward Roland's recently-introduced range should help you keep your electronic components and odds and ends in order: a multi-drawer storage cabinet and 10 - and 14-compartment cases.

Overall size of the cabinet is $113 / 4^{\prime \prime}$ by $51 / 2^{\circ}$ by $51 / 2^{\prime \prime}$. and it contains 10 see-through drawers mounted in a dark brown cabinet. Cost is $£ 7.75$.

## Important Notice

Readers have recently confused Electronics Today Limited as being associated with the ownership of our Magàzine, Electronics Today International. Our Magazine is owned by Modmags Limited, part of the Argus Press Holdings Limited Group of Companies.

Electronics Today Limited advertises in our Magazine as "Metac", but so as to prevent any further confusion we wish to make it clear that Electronics Today Limited is not owned or managed by any member of the Argus Press Holdings Limited Group of Companies.

The 14 -compartment case is $13^{3 / 4^{\prime \prime}}$ by $9^{1 / 2^{\prime \prime}}$ by $2^{\prime \prime}$, finished in beige and has a clear lid with a clasp. It has various-sized compartments. Cost is $£ 5.75$.

The smaller case $110 \frac{1}{2}$ " by $51 / 2^{\prime \prime}$ by $11 / 4^{\prime \prime}$ ) has 10 equal-sized compartments, a hinged lid and it costs $£ 2.40$.

All the above prices include VAT and post and packing in the UK

Edward Roland Ltd., 215 Putney Bridge Road, London SW15 2NY.

## Errata

And now for a compilation of the errors arising in January's projects.

In the Ladder-of-Light sound into-light module there should be a link joining pins $6 \& 7$ of IC 1 and there should also be a track break under C5.

The Bench Amplifier has two faults - the battery clip is shown reversed (oops) and transistor Q1 should be moved down one complete strip, le it should mount into strips E,F and G not D,E and F.

Finally, the Chuffer project suffered wrong numbering - the lefthand capacitor C9 in Fig. 3 should in fact, be C8.

## Another Thandar Digital Multimeter

The last Thandar DVM that we looked at in Monitor was the TM352, in the November 1980 issue. (We compared the TM352 with the TS 1000 from Eagle International.)

Latest from the Thandar siable is the TM354 which, at $£ 39.95$ plus VAT, is seen by Sinclair Electronics as one of the lowest-priced hand-held multimeters on the market.

Main features are a 2000 hour battery life and protection on all 14 ranges. It has a $31 / 2$-digit LCD display ( $0.5^{\prime \prime}$ characters) and is supplied with test prods and an ABS case 155 by 75 by 30 mm . Weight is 165 g without batteries. It uses a 9 V alkaline battery (not supplied). Diode check facility is included.

A brief specification is given below:

Input impedance 10M (DC),
4.5M (AC)

| DC voltage | $0 \vee$ to 1000 V in four ranges |
| :---: | :---: |
| AC voltage | 0 V to 500 V in two ranges |
| DC current | 0 mA to 2000 mA in four ranges |
| Resistance | OR to 2000k in four ranges |
| Accuracy | Example: $\pm 0.75 \% \text { of }$ <br> reading + 1 <br> diglt' on 2 V and <br> 20 VOC ranges |

Further details from: Sinclair Electronics, London Road, St Ives, Huntingdon, Cambs PE17 4HJ (tel. 048064646 )


## NEXT MONTH. NEXT MONTH. NEXT MONTH. NEXT MONTH. NEXT MONT



THE MAY ISSUE IS ON SALE APRIL 10th

## EXTRA EXTRA - READ ALL ABOUT IT!

 Judging by the telephone queries and the reader response we get every time we publish articles on new electronic games or gadgets, you obviously reckon that we are the undisputed experts on the subject (we don't disagree!). Well, starting from next month you'll get an added bonus whenever you buy HE in the form of an 8 -page pull-out supplement on the latest in gadgets, games - and kits. And we're calling it just that - Gadgets, Games \& Kits.In this new monthly feature we'll be covering all the latest devices on the scene - we'll keep you right up to date on this rapidly moving area in electronics, with reports, tests and news.

## ELECTRONICS IN MUSICAL INSTRUMENTS

We invited Tim Orr to write this special feature on how electronic instruments have made dramatic changes over the last few decades. He describes, for instance, the functions of active devices (valves, transistors and ICs) during this time, and the impact of speciallised large-scale ICs. (The circuit of a complete musical instrument now can be contained in a handful of these ICs.) He also gives a round-up of some of the latest instruments to hit the music world.

## INFRA-RED CONTROLLER

Our IR Controller project consists of two parts: a transmitter which emits invisible beams of infra-red light and a receiver to detect them. Connect the receiver to any mainspowered electrical equipment, up to 500 W leg your hi-fi, TV, bedside lamp, etc) and you can switch them on and off remotely.

## ELECTRONIC ORGAN

At last! A home-constructor's dream come true - a cheap-to-build (under f 100 ) five-octave organ!

It features a 2 watt monitor amplifier with headphone output for home and private use, and a pre-amp output to play it through a higher powered amplifier for concert use. Five voices and a tremolo effect are also included. Interwiring is kept to an absolute minimum and the four circuit boards have easy layouts. Don't miss it!


[^0]

## A CLASSIC IN IT'S TIME

You don't have to be a highbrow to appreciate the beauty of this clock. Battery powered, it is ideal for office, lounge, bedroom, caravan or boat.


Large blue LCD display of full digital time. Symphonic alarm or buzzer, with snooze facility. Hourly time signal. Integral loudspeaker and amplifier with 3 position volume control. Built-in night time illumination. Alarm: "Symphonie Nr 40 Gmoll " (W. A. Mozart, K.550) for about 30 seconds, or buzzer for 60 seconds Three AA size batteries last approx. 15 months. Quartz accuracy. Dims: $43 \times 115 \times$ 76 mm ( $13 / 4 \times 41 / 2 \times 3$ inches).

## JOIN THE KEYBOARD REVOLUTION

By closely analysing the natural sound variations in the waves and pitches of different instruments, Casio have been able to trace the characteristics peculiar to each traditional instrument. Pitch, timbre and harmonics have been measured, digitalised and stored in electronic chip memory for falthful and exciting reproduction of the clarity and beauty of the originals.

## CASIOTONE 401



Fully polyphonic. 8-note playing of 14 instruments and sounds over 4 octaves Rhythm accompaniment. 16 different rhythms with full-in auto-rhythm. Casio Auto Chord. Allows one finger accompaniment. Just press one, two or three keys and play major, minor and seventh chords, with bass accompaniment Vibrato, delayed vibrato, sustain and hold are incorporated in the
Vibrato, delayed vibrato, sustain and hold are incorporated in the at-a-glance, simple to use operational panel. Pitch control makes group tuning easy. lightweight ( 28.2 jb .) allows plaving anywhere there is an A.C. socket. Stand $\varepsilon 39$

## CASIOTONE 301

The same size and basic specification as the 401 above, the 301 does not have Casio Auto Chord or built-in sustain and hold facilities. There are 8 rhythm volces with a variation on each. Weight 271 bs .

## CASIOTONE MT-30



Fully polyphonic playing of 22 instruments and sounds over 3 sound memory lets you switch between pre-selected sounds without pause. Built-in vibrato and sust ain functions greatiy enhance the overall musical effect. Compact $23 / 8 \times 223 / 4 \times 61 / 2$ inches, with built-in amplifier and loudspeaker. Battery/mains power source and lightweight ( 6 lb .) allows playing anywhere.

## CASIOTONE 201 and M-10

201. Mains version of the MT-30, 29 instruments over 4 octaves. $\mathbf{£ 2 4 5}$ M-10. Four instruments over $21 / 2$ octaves. Battery/mains. E69.

## CASIO CALCULATORS

BQ-1100 Biolator calculator, with calendar, two alarms, countdown alarm, stopwatch, time memory, three date memories ( $£ 17.95$ ). £14.95.
MG•880 Digital space invader game and calculator. £10.95 .
SEND 20p (postage) for oup illustrated catalogue of Casio watches and calculators and selected Seiko watches.

## KEEP A DATE WITH GASIO

Yo always wanted a musical calculator with date memories and date/time a!arms

- HERE IT IS!
UC-365 Universal Calendar


Clock, universal calendar, date memories, daily alarm, two daily or date/time alarms, hourly chimes, stopwatch, countdown alarm, time memory, calculator. Clock display: Hours, minutes, seconds, am/pm, or hours, minutes, full calendar. Calendar: Pre-programmed from 1901 to 2099 . Full month display.
Oate memories: Any day or days pre-setable within 12 month period. (Birthdays, etc.).
Alarms: Alarm 1 - Daily alarm. Alarm $2 \& 3$ - Daily alarms or time alarms on pre-set dates, (Pré-programmed melodies or electronic buzzer).
Stopwatch: $1 / 10$ second to 24 hours; net; lap and first and second place. Or
Time memory: 24 -hour system. The time of any other zone can be stored. batteries last approx. one year. RRP f22.95. $1 / 4 \times 41 / 2 \times 21 / 2$ inches. Leatherette wallet with window.
UC-360. Card-sized version of above. $7 / 32 \times 35 / 8 \times 23 / 6^{\prime \prime} . \mathbf{£ 1 9 . 9 5}$. £19.95
UC-3000. Office desk version. Angled display, $13 / 4 \times 4 \times 61 / 4^{\prime \prime} . £ 27.95$.

## CASIO'S AMAZING NEW FX-3500P

Programmable. Non-volatile memories and stores. Statistical regression and integrals.
38 functional (non-volatile) steps, 2 programme storage capability. Unconditional and conditional jumps, 7 (non-volatile) memories, one independent, 6 constant memorles, 18 pairs of parentheses, nestable in 6 levels. 61 built-in functions, including: Integrals (Simpson's rule). Linear regression, logarithmic regresslon, exponential regression and power regression. Hyperbolics, sexagesimal and co-ordinates conversions. 10 silver manissa or $10+2$ exponent. Two silver oxide batteries give approximately 1,000 hours contf wous use whth power-saving autoDims: $9 / 32 \times 21 / 8 \times 51 / 4$ inches. Supplied with leatherette wallet.

## ALL THIS FOR ONLY £22.95



FX180P. Hand held version without hyperbolics $2 \times$ AA battertes, $3 / 4 \times 3 \times 57 / 8 . £ 19.95$ FX-2700P. As FX3500P but $8+2$; without integrals, regression, 1 program... $£ 19.95$ FX-8100 scientific with clock, calendar, alarm, chimes, stopwatch, etc. ........ $\mathbf{£ 2 4 . 9 5}$

## CASIO'S BEST SELLING WATCHES



LCD ANALÖGUE/DIGITAL ALARM CHRONOGRAPH, with countdown alarm. AA-81 chrome, s/s bracelet £29.95. AA-81G Gold-plated $£ 49.95$. AA-82. All-stainless steel, £39.95.
12.MEL D 200.

100-METRE WATER RESISTANY Alarm chronographs with countdown alarm. W. 100. Resin case/strap £19.95. W-150C Stainless steel case/resin strap £25.95. W 150B Stainless steel case/bracelet $\mathbf{E} 32.50$.
NEW! ${ }^{\text {F-500 }}$ sports chrooograph. Resin case/strap $£ 9.95$

## HE HF-f Amplifier System-1

## Pre-amplifier



The first part of an exciting new stereo amplifier system, this high quality pre-amplifier adds a new meaning to the term 'wireless'. Its one-board construction means that it is easy to build with none of the wiring problems usually associated with audio projects

IT HAS BEEN over a year since we last published a high-quality stereo amplifier (5080 System, March 1980). But even that system, good as it is, does not compare with our latest amplifier, the first part of which (the pre-amplifier) is given here. In a couple of months' time, after we've dealt with the pre-amplifier, the power amplifier will be described. Either of these two units can be used with an existing system, so if you simply wish to upgrade your present hi-fi system with a higher quality preamplifier or power amplifier then this is your chance. The power amplifier is also ideally suited as a high power disco amplifier. However, if you build the complete HE Amplifier you will be rewarded with a low-distortion, lownoise lyet high-power - up to 100 W per channel) stereo hi-fi amplifier.

## Board With Life

From the photographs you can see that the pre-amplifier is built totally on one board. All switches, pots, input and output connectors and the power supply are on this board, which means that there are no interconnections which might cause interference or wiring errors. The board is available with the component layout printed onto it so you shouldn't go wrong. You simply
line up each component from the circuit diagram and insert it in its marked place on the board.

The pre-amplifier accepts inputs from the magnetic (phono) cartridge of a record deck, a tuner or a tape recorder (cassette or reel-to-reel). Switch SW2 selects the one required. Stereo (two physically separate channels) or mono mode (two channels with a common signal) is also selected by SW2. Bass, treble, balance and volume controls cater for individual tonal and volume requirements.

## You Pays Your Money . . .

Designed around standard 8-pin operational amplifier ICs (op amps) the pre-amplifier will run happily on the good old 741 s . But, if you want really top-class performance then we advise that you use the higher-quality op amps with the numeric coding 5534. These are, inevitably, more expensive but worth the difference if you can afford them. A suitable compromise is to use 5534 s for the phono input stage (IC1 and IC101) with 741 s as all other op amps: This is because the phono stage is a highgain amplifier and any noise introduced by the op amp itself is thus amplified and made more apparent.

## Construction

The pre-amplifier board from Capricorn Electronics is shown in Fig. 1 and you can see that all component positions are printed in white. So using either the board's component markings or our own overlay shown in Fig. 6 . the PCB can be built up. The following procedure applies to our overlay.

Insert and solder the components of the power supply first (ie, R20, 21 and 24, C25 to C30, IC4 and 5, SW1, the 100 mA fuse plus holder, BR1, and the link underneath the body of C29). If you have a transformer which supplies $\pm 12$ VAC you should now connect it to the input of the power supply and


Figure 1
The screened printed circuit board from Capricorn Electronics
check, using a multimeter, that you have $\pm 15$ VDC at the output (ie, between the -15 V rail and 0 V there should be a potential difference of 15 V , and between 0 V and the +15 V rail also should be 15 V ). The board at this stage is shown in


Next, insert and solder all links, IC sockets and the input/output phono connectors, followed by the resistors and capacitors for the rest of the circuit. All tantalum capacitors must be polarised as shown in the overlay.

The bank of three push-button signal switches (SW2) should be soldered into place, making sure that it is flush to the surface of the board. Now, with a small file (a needle file is ideal) carefully clean up the left-hand, outside edge of the switch bank so that it can be soldered. Just to the left of the switches is a solder point and you should now insert and solder
a short link between this point and the switch body. This earthing of the switch body will help shield against interference.

Put the four pots in next, but make sure they are squarely lined-up before you solder them. Then, using your file, scrape a small notch in the centre-top of the body of each pot, of just sufficient depth to remove the plating. Solder a length of tinned, single-strand wire along the top of the pots; that is, to the notch prepared on each one. Just to the left of the Balance pot is a solder point on the board and a link between this point and the wire over the pots should now be made, again to help


Figure 4. Circuit diagram of one channel

Figure 3.
Power supply circuit diagram

NOTE:
LEFT-HAND CHANNEL COMPONENTS
ARE NUMBERED 101,102 , etc OR NE5534


## Pre-amplifier

reduce interference.
Finally, insert the six op amps into their sockets and the board is finished. The photograph in Fig. 5 shows the completed board and you should be able to see the earthing links to the pots and switch bank. That concludes the constructional procedure for this month. Next month we describe the housing of the pre-amplifier and also give details of a suitable AC supply to run it.


Figure 5.
A completed pre-amplifier board


Capricorn Electronics, of 281 Balmoral Drive, Hayes. Middx. is offering a variety of kits for the home constructor:

- Blank, fully labelled PCB. .
£12
- PCB + switches, pots and phono connectors
f24
- As above + all components except op amps . . . . . .
- XR/NE5534AN op amps ( 6 off)
- Undrilled case intend to build the power amplifier £4.50

Capricorn Electronics will supply a circuit diagram and parts list with each kit of parts.

Please add $£ 1.50$ for $p \& p$.


Figure 6. PCB overlay showing the positions of all components
© Copyright MODMAGS Ltd.


## How It Works

The main parts of an amplifier system are shown in Fig. 7 These separate parts exist in any system, whether it is of modular construction (like ours) or in one case.

The pre-amplifier introduces voltage gain; ie, the output signal amplitude is larger than at the input. But it takes a large amount of power to drive a loudspeaker (more than the pre-amplifier would be able to supply) so the signal now has to undergo power gain via the power amplifier.


Figure 7
Figure 8 consists of a block diagram of one channel of the HE Pre-amplifier and this shows how the device can be broken down into smaller sections.

## Phono pre-amplifier

The output from the magnetic cartridge of a record deck has not got what is termed a level response. In fact, the higher frequencies (treble) have a much greater amplitude than the lower (bass) frequencies. The phono pre-ampincludes an equalisation network to counteract this amplitude difference and so its output has a level response. The cartridge signal is also amplified by this stage to a size similar to the signals from a tape deck or a tuner. Integrated circuit IC1 and its associated circuitry (IC101 for the other channell provides the amplification and equalisation necessary, according to the RIAA (Record Industry Association of Americal standard curve for recordplaying equipment.

## Input selection switch

Input selection between phono, tuner and tape inputs and tape output is made by switch SW2, and the chosen signal is passed onto the tone control stage. Part of SW2 can be also used to directly
connect the two signals at this point so that it functions as a stereo/mono switch.
Tone control stage
This stage consists of two op amps per channel, the first of which. IC2 (IC 102). is used as a buffer amplifier to produce a high-impedance input to match the output of a tuner, a tape player or the phono pre-amp. The buffer also has a low output impedance suitable to drive the next op amp circuit IC3 (IC 103) which has a tone control network in its feedback loop. The network is a standard arrangement providing bass and treble control to suit individual listening requirements.

## The power supply

Most op amp circults (those in the HE Preamplifier belng no exception) require a three-rail supply (ie $+V, 0 \mathrm{~V},-\mathrm{V}$.) and the power supply section uses two commonly-available ICs to provide this. These integrated circuits need only a smoothed DC voltage at their inputs to give a stable, fixed output voltage. An off-board transformer provides the preamplifier with $\pm 17 \mathrm{VDC}$ (ie $12 \mathrm{~V} \times 2$ ). Integrated circuits IC4 and IC5 then stabilise and regulate this voltage to exactly $\pm 15 \mathrm{VDC}$.


Figure 8

Parts List
RESISTORS (All $1 / 4$ W. $5 \%$ )

| 101 | 47k |
| :---: | :---: |
| R2,102,5,105 | 1 MO |
| R3,103 | 1 k 2 |
| R4, 104,7,107. |  |
| 10,110,24. |  |
| 124,25,125 | 10 |
| R6, 106 | 220 |
| R9, 109 | 22k |
| R11.111.14. |  |
| 114 | 10k |
| R12.112,13, |  |
| 113,16,116, | 1k5 |
| R15,115 | 33k |
| R17.117.18, |  |
| 118 | 5k6 |
| R19,119 | 100 |
| R20.21 | 4 k 7 |
| R22,23 | 47R |

POTENTIOMETERS
RV1

RV2,3,4 printed circuit mounting + 40 clicks 100k linear, dual printed circuit mounting + centre click

## CAPACITORS

C1,101,26,28 220n polycarbonate
C2,102,16,
116,24,124 $22 \mathrm{u}, 16 \mathrm{~V}$ tantalum
C3. 103
750 p polystyrene
C4. 104
3n3 polystyrene
C5.105,7.107.
9,109,10,110
11.111.13.

113,15,115,
20.120
$10 \mathrm{u}, 16 \mathrm{~V}$ tantalum
C6,106,8,108
12,112,14.
114,21,121,
22,122
C17.117
C18,118,19.
119
47 polycarbonate
C25,125
70p polystyrene
C27.31 470n polycarbonate
C29,30 1000u, 25 V
electrolytic
SEMICONDUCTORS
IC1,2,3,101,
102.103
(see text)
IC4 7815, voltage
IC5 7915, voltage
$1 \mathrm{~A}, 250 \mathrm{~V}$ bridge
rectifier
LED1 red LED
MISCELLANEOUS
SW 1
double-pole, doublethrow, printed circuit mounting push switch bank of three doublepole, double-throw, signal push switches
10 printed circuit mounting phono connectors
Printed circuit mounting fuseholder + 100 mA fuse 4 knobs to suit
Case to suit (see Buylines)
5-pin DIN socket
-Note: in the series R1 to R25 (channel 1) there is no R8. In the series R101 to R125 (channel 2) there is no R121 or R122


# ANATOMY OF A SPACE SHUTTLE 

As the dawn of a new Space Age approaches, lan Graham reports on the fortunes of the first true spacecraft - the Space Shuttle


ONCE UPON A TIME in wartime Germany, a number of brilliant rocket engineers developed the concept of the long-range rocket. Von Braun's V-2 was not an end in itself, but merely the beginning of a series of military rockets. There were plans afoot to upgrade the $\mathrm{V}-2$ and make provision for a pilot. It would have taken off like a rocket and landed like a glider on an air strip. It might have been launched atop a powerful booster rocket. That early idea on a drawing board is no longer a fairy tale.

## First Steps To Space

In the early 1950 s the Bell Aircraft Corporation, whose X-craft had provided invaluable experience in high speed, high altitude flight in the atmosphere, produced an interesting design - the Bell Bomi. The Bomi was a two stage craft featuring a winged booster and a small piggy-back upper stage. Similar design ideas appeared at about the same time from a number of European aircraft manufacturers and research establishments. One design proposed by the Boeing Corporation and commissioned by the USAF was axed in 1963 before construction could begin.

In the mid-1960s several lifting bodies were flown from B-52 bombers. The lifting body was an attempt to solve the re-entry paradox. Conventional vehicles capable of flying in the atmosphere and coming down to a controlled landing have wings and tailplanes which would burn off during re-entry. However, blunt-nosed vehicles, which can withstand the heat of re-entry are relatively unmanoeuverable in the atmosphere. The stubby wingless wedge-shaped lifting body was a compromise between the two. A series of these vehicles were flown right up to 1975.

## Birth Of An Enterprise

The present Space Shuttle project began in 1968 with NASA's official


Enterprise is rolled out onto the tarmac - minus the aerodynamic cover which normally covered its engines for atmospheric test flights.
adoption of the programme. The initial design proposal was ambitious and lacked flexibility. By the beginning of the 1970 s it was clear that a completeIy re-usable Shuttle system would not be funded by the White House. To bring the project within the cash limits set, the designers proposed that the Space Shuttle Orbiter would be launched with a huge external fuel tank instead of a manned Booster. This also allowed the size of the Orbiter to be reduced, because much of its fuel would be carried externally.

In comparison with the ambitious designs that had come and gone with contracting budgets, the configuration finally adopted may seem to be a relatively low technology solution. In fact, nothing could be further from the truth. The Space Shuttle is undoubtedly the most complex project yet undertaken by NASA and its contractors.

## Powerful Problems

The power and re-entry problems called for revolutionary solutions. Power is supplied by three main engines mounted in a cluster immediately beneath the rear tailplane. They burn liquid hydrogen and oxygen at a very high pressure. Their thrust-to weight ratio-is the highest of any engine yet developed, although at just over 4 m tall each is smaller than the F-1 engine used in the Saturn $V$ first stage. The thrust is variable from 65 to $109 \%$ of rated power to keep acceleration within comfortable limits for different payloads. They're also responsible for steering the craft. Each engine can swivel $10.5^{\circ}$ up and down and $8.5^{\circ}$ side to side.

Unlike earlier engines, the fuel is not simply pumped into a combustion chamber and burnt. The Shuttle main engines employ a two stage cycle. The fuel is only partly burnt at low temperature and high pressure and then completely burnt in the main combustion chamber, This is about $99 \%$ efficient.

## Cost Cutting

It's not an exaggeration to say that the Shuttle main engine has broken new ground in space propulsion. The engine development has been fraught with technical problems from the beginning. To cut costs, NASA departed from its


Fig. 1 The Space Shuttle's thermal protection system RCC - re-inforced carboncarbon; HRSI - high temperature, re-usable surface insulation; LRSI - low temperature, re-usable surface insulation; FRSI - coated Nomex felt, re-usable surface insulation. The carbon nose must withstand a temperature of over $1200^{\circ} \mathrm{C}$ again and again, flight after flight. The leading edges of the wings reach almost $1400^{\circ} \mathrm{C}$


The test craft 'Enterprise' made its first flight from the back of a NASA 747. The aft section was covered by an aerodynamic shroud as this was an unpowered glide test


A Lockheed technician examines some of the odd-shaped silica tiles that will shield the Space Shuttle during re-entry. Each tile is carefully milled on the underside to match the contour of the particular spot it will cover on the Shuttle. For this reason, no two tiles are exactly alike. The tiles are made in two forms - LI-900 (Lockheed Insulation, 9 pounds per cubic foot) and LI-2200 (22 pounds per cubic foot). Lockheed Missiles and Space Company manufactured more that 24,000 tiles for the Shuttle at its plant in Sunnyvale, California
usual practice of proving every individual component on the test bed before building it into the working system. Consequently, when fuel lines split or valves blew, these otherwise minor failures resulted in major (and expensive) engine damage. In short, the engines blew up. There were a number of serious fires. When a simple hydrogen nozzle broke, the interior of one engine was sprayed with burning hydrogen, reducing it to an expensive molten scrap heap.

In the silence of space the Space Shuttle is manoeuvred, not by the main engines, but by two orbital manoeuvring engines (mounted above the main engine cluster) and some 46 small rockets mounted in the nose and tail.

Internal power is provided by two independent electrical and hydraulic systems. Hydraulic power for movement of the control surfaces, landing gear, etc. is provided by hydrazinepowered gas turbines. Electrical power ( 14 to 36 kW ) is supplied by conventional hydrogen/oxygen fuel cells, producing drinking water as a by-product.

## A Telling Tile

Once the craft is in orbit, the next problem is to get it back to Earth in one piece. All spacecraft until the Space Shuttle had been fitted with heat shields which could only be used once - obviously unsuitable for use on a reusable spacecraft. The one-shot resin mixture melted and boiled, dissipating $1700^{\circ} \mathrm{C}$ or so.

The Shuttle's thermal protection system uses a number of different materials ranging from a fire-proof felt on part of the upper surface to the now famous (or infamous?) ceramic tiles. Although there are over 30,000 tiles,

## ANATOMY OF A SPACE SHUTTLE

no two are identical. They are different shapes and sizes designed to cling to the subtly curved skin of the spacecraft. The main problem here was that they did not cling to the skin. In fact, when the Shuttle was carried from the West Coast to Cape Canaveral on the back of a 747 jetplane, a total of 7,500 tiles were damaged, many of them coming away from the skin altogether. It was found that, not only were the tiles themselves mechanically too weak, but also the method used to stick them to the skin was not up to the job. This discovery resulted in round-the-clock work at the Cape to re-treat, re-install and test thousands of tiles before the Shuttle (named Columbia) was rolled out at the beginning of January.

## Orbital Trials

Until now, all spacecraft intended for manned operation have undergone unmanned trials to prove the system. However, Columbia's first orbital flight will carry Commander John Young and Co-pilot Robert Crippen, so the system has to work first time. The test craft, 'Enterprise' named after the 'Star Trek' starship, has been flown in the atmosphere, but the complex computerised re-entry navigational and control programmes have only been tried in simulation.

## Flight Plan

Before lift-off, the Shuttle is strapped to its external tank and two solid-fuel reusable boosters (SRBs). It is mounted end-on on the launch pad and blasts off in the familiar way. At $44,200 \mathrm{~m}$ the SRBs fall away and are recovered from the ocean to be used again for about 20 flights. The Orbiter continues to burn fuel from the external tank until just before it reaches orbit. The tank is then jettisoned and breaks up in the atmosphere.

The first mission will last little more than two days - 54 hours, in fact. Then the Orbiter will head towards Earth again at $14,000 \mathrm{MPH}$. Once back in the atmosphere, it will glide down to a one-and-only chance for a landing. Earlier plans had called for in-board jet engines for powered landing, but they were axed to save money. The multimillion dollar Space Shuttle will land like an 80-ton glider. Young and Crippen have to get it right first time.

## The Last Days

At the time of writing, there are still hurdles to overcome beforelaunch. The external tank has to be fuelled with a total of over half a million gallons of li-


NASA's Space Telescope will be placed in orbit by the Space Shuttle in the 1980s. Lockheed Missiles and Space Company are building the basic structure for the gigantic telescope - the Support Systems Module. Operating well above any interference from the Earth's atmosphere, the telescope will be able to look seven times deeper into the heavens than ground-based instruments. It will be able to see objects 50 times fainter and view them with a clarity 10 times better than ever before. Once in space, the telescope will be able to lock onto celestial objects with absolute alcuracy for as long as 30 to 40 hours
quid hydrogen and oxygen. It remains to be seen how the structure will react to such low temperatures. The main engines are to be fired before the big day. It will be the first 20 -second firing of all three engines together.

## Clouds On The Horizon?

So, things can still go wrong even at this late stage. It's difficult not to see clouds on the Shuttle horizon. The launch date has been put back time and time again and the project has gone millions of dollars over budget. But now it's on the launch pad on the last lap of its Earthbound existence. It has been hailed as the first true spacecraft, opening the way for the industrialisation of space. Many of the ambitious suggestions for elaborate space stations built from materials carried up into orbit by the Shuttle are undoubtedly still far in the future - technically possible today but prohibitively expensive. However, when the Shuttle goes operational (planned for 1982) it will have proved its prime function of flying again and
again to orbit and back. It will be used as a launch platform for satellites, a research platform (three scientists can be carried in addition to a crew of four) and a repair and maintenance station for craft already in orbit. If it is shown to be cost-effective to the commercial community, its guaranteed flight schedule and flexible operational potential are sure to be exploited. The grander plans, however, will have to remain on the drawing board until there is an upturn in the world economy or until spaceflight again becomes feasible or necessary to national security.

I have no doubt that if the rumoured Soviet Space Shuttle were to be photographed on the launch pad, the flow of money from Washington to NASA would increase. The decisions which determine space project budgets are inevitably influenced by an amalgam of constantly changing factors - general economic trends, the priorities of central government, national prestige, national security, costeffectiveness: the list is almost as infinite as outer space itself.

## MAGENTA ELECTRONICS LTD.

## H.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to construct H.E. projects. Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards (fully etched, drilled and roller tinned) or veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated, BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of H.E. which includes the project - you will need to order the Instruction reprint as an extra 45p each.
PUBLIC ADDRESS AMPLIFIER, Mar ' 81
$£ 16.56$
Extras - horn speakers
. 6.83 each
PA mic £4.40
FUZZBOX, Mar'81 59.41

WINDSCREEN WIPER CONTROLLER, Mar '81 .......................... £6.98
STEAM LOCO WHISTLE, Mar '81 ..................................................... £11.15
PHOTOGRAPHIC TIMER', Mar'81 .......................................................... E2.99
HEARTBEAT MONITOR, Feb ' 81 .................................................................................. 21.28
HIGH IMPEDANCE VOLTMETER, Feb ' 81 ................................................... 88
AUDIO SIGNAL GENERATOR Féb ' 81 ........................................ $£ 17.21$
BACKGRUND NOISE SIMULATOR, Feb '81................................ £. 6.43
TWO-TONE TRAIN HORN, Feb '81 .............................. £4.77 less case
MEDIUM WAVE RADIO, Feb '81 ............................................................ 6.98
BENCH AMP, Jan' 81 .............................................................................. $£ 9.19$
NICARD CHARGER, Jan '81 ......................................................... £6. 98

CAR REV COUNTER, Jan 81, less case....................................................... 21.20
Case extra................................................................................ E5. 98
DIGITAL SPEEDO, Dec. '80.................................................................... 35.89
MODEL TRAIN CONTROLLER, Dec. '80 .......................................... 16.86
BATTERY CHARGE MONITOR, Dec.'80 ...................................... £4.91
JACK LEAD TESTER, Dec. '80 ....................................................................... 1.99
STEREO POWER METER, Dec. '80................................................... £18.98
PARTY GRENADE, Nov ' 80
£5.57 inc. test leads
TRANSISTOR TESTER, Nov' 80
DOUBLE DICE, Nov ' 80
£13.80
GUITAR PRE-AMP, Nov 80 ............. £5.65 case (diecast) extra £2.99
BATTERY ELIMINATOR, Nov '80 .................................................. £14.88
NOBELL DOORBELL, Oct. '80...................................................................... 11.98
INTRUDER ALARM, Oct. '80.................................................... 1783
FREEZER ALARM, Oct. ' 80 with probe ........................................ $£ 9.42$
TUG O' WAR, Oct. '80 .............................................................................. £16.98



GUITAR PHASER, Sept. '80.......................... 34 less case \& 13.84
BENCH PSU, Sept. ' 80
EQUITONE CAREQUALISER, Aug. '80 .............................................. 14.98
OP AMP CHECKER, Aug. '80................................................................ £4.55
MOVEMENT ALARM, Aug. ' 80 ......................................................... £5.68

PASS THE LOOP GAME, Aug. '80............................................................ £13.98
SOUND OPERATED FLASH TRIGGER, July ' 80 , no skt............ £4.59
18W + 18W CAR STEREO BOOSTER, July' 80 .......... £29.98 (stereo)
FOG HORN, June ' 80
$£ 5.65$
$\mathbf{f} 99.98$
5080 PRE-AMP, May '80 ........................................................ $£ 39.98$
SPEED CONTROLLER FOR R/C, April ' 80 ............... £ 14.92 less case
DIGITAL FREQUENCY METER, April ' 80 .............................. E35. 78
HOBBYCOM: TWO WIRE INTERCOM, April ' 80 ..... £ 33.95 (Master)
HOBBYCOM: TWO WIRE INTERCOM, April ' 80 ..... £ 33.95 (Master)
Sub Station ......................................................................................each
Sub Station
ELECTRONIC IGNITION (CD), April ' 80
.38 each
$\mathbf{f} 20.87$
WIN INDICATOR, Feb. ' 80 (with switches)
$\mathbf{~} 13.92$
DIGI-DICE, Jan. '80.
$£ 9.98$
BARGRAPH CAR VOLTMETER, Dec. 79
$£ 7.33$ less case
RING MODULATOR, Dec. '79.
$£ 12.95$
$\mathbf{5} 10.98$

HOBBYTUNE, Oct. '79
f26.98
ANALOGUE FREQUENCY METER, Oct. '79 ............................... $£ 15.52$
MULTI-OPTION SIREN, Oct. '79................................................. £15.98

HOME SECURITY UNIT, Aug. ' 79 .............................. $£ 28.56$ less siren
SIREN
$£ 5.09$ less case

INJECTOR TRACER, Aug' 79
£4.34
CONSTANT VOLUME AMPLIFIER, Aug. ' 79
£15.60
LINEAR SCALE OHMMETER, July'79....
f 15.60
f 15.98
SHARK, July' 79
f 15.98
GSR MONITOR, June ' 79
$\pm 25.98$
ENVELOPE GENERATOR, June' 79
$£ 9.63$
WHITE NOISE EFFECTS ÚNIT, May
f 14.98
TRANSISTOR GAIN TESTER, April ' 79
PHOTOGRAPHIC TIMER, Mar. ' 79
17.98

CAR ALARM, Feb. '79
SCRATCH/RUMBLE FILTER, Feb.' 79.
$\begin{array}{r}\mathrm{£} 10.98 \\ \hline\end{array}$
f25.48 Mono £29.98 Stereo
PUSH BUTTON DICE, Dec. '78
E6.98

80/81 ELECTRONICS CATALOGUE

KITS
Hundreds of illustrations, product data, circuits TOOLS

## TRANSISTORS

CAPACITORS
and detalls of all our kits and educational courses. Up to date price list included. All products are stock lines for fast dellvery.
Send 70 p in stamps for your copy ( $7 \times 10 \mathrm{p}$ or 5
$\times 14 \mathrm{p}$ ). $\times 14 p$ ). RESISTORS HARDWARE CASES

## ADVENTURES WITH ELECTRONICS bywom

An easy to follow book suitable for all ages, ideal for beginners. No Soldering. Uses an 'S Dec' breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S Dec and the components for the projects.
Adventures With Electrondics E .90 .

## ADVENTURES WITH <br> MIGROELECTRONIGS

Same style as above book. 11 projects based on integrated circuits - includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes Bimboard 1 plug-in breadboard and the components for the projects.
Adventures with Microelectronics $\mathbf{C} 2.35$
Component pack $£ 27.95$ less battery.

## H.E.LADDER OF LIGHT, JAN.' 81

Complete kit for this novel project includes all components and case for the control module.
EXTRA included with our kit only: additional circuit and components for
strobe and chase features. LADDER OF LIGHT. JAN '81 £29.98 + 40p p\&p.

## H.E. MEMORY BANK SYNTHESISER NOV. '80

Complete kit for this exciting project, includes i.c. with socket, 2 pcbs, case etc. The custom designed i.c. at the heart of this project generates musical sounds which can be stored in its own memory. Features include memory
erase, vibrato, speed and depth controls, variable pitch, chord and tremelo St.
Synthesiser' Nov. '80 + Dec. '80 £33.95

## INTO DIGTHAL ELEGTRONIGS

Current H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics. $45 p$ each. Eupobreadboard and components for series $£ 18.95$ less battery. Com ponents only $£ 12.75$.

## INTO ELECTRONICS CONSTRUCTION

H.E, 6-part Series: Feb, '80 to July '80. COVERS THE BASICS OF ELECTRONICS LOIS OF PRACTICAL WORK. Circuits are buit on a plug-in Eurobreadboard Series $£ 15.63$. Components only $£ 9.43$.
TOWERS INTERNATIONAL TRANSISTOR
SELECTOR E10.50.
ANTEX SOLDERING IRON 25 W e4 98.
SPARE BTV IM STAND $£ 1.98$.
SOIRERITS. Small, standard, large 65p each. SOLDEA. Handy size 98p.
EUROBREADEOARD E6.20.
LOW COST LONG NOSE PLIERS $£ 9.68$
LOW COST CUTTERS $£ 1.69$.
P.C.B. ASSEMBLY JIG E11.98.
P.C.B. ETCHING KIT E4.98.
P.C.B. ETCHING KIT EA.98.
AM-FM AIRCRAFT BAND PORTABLE RADIO

E8.98.
WIRE. STRIPPERS AND CUTTERS $£ 2.48$
MULTIMETER TYPE 1. 1.000 O.p.V. with
Probes $2^{\prime \prime} \times 3^{1 / 2^{\prime \prime} \times 1^{\prime \prime}} \mathbf{~ E 6 . 6 6 .}$

probes $5^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1 / 4^{\prime \prime} £ 11,52$.
ELEPHONE PICK.UP COIL 72 p .
CAYSTAL MICHOPHONE INSERT 58p.
98 p .80 ohm E1.56.
PILLOW SPEAKER, 8 ohm 98 p .
EARPIECES. Crstal 65 p . Me pnetic 18 p .
MONO HEADPHONES. 2 K 陏
sensitive f2.98.
HEAT SINK TWEEZERS $15 p$.

## 3 BAND S.W. RADIO

Simple T.R.F. Design. Covering most Amateur Bands and Short Wave Broadcast Bands. Five controls. Bandset, Bandspread
Heaction. Wavechange and Attenuator Coil heaction Wavechange and Attenuator. Coil
section is by Wavechange Switch. Use with Headphones or a Crystal earpiece. Kit con toins ail the components required including the P.C. Board and Case, Instructions are KIT £18.97. Headphone extra E2.98.

## SOLDER BOBBIN 30p. <br> DESOLDER PUMP £5. 98

ROC CLIP TEST LEAD SET. 10 leads with 20
CIIDS $99 p$. VERO SPOTFACE CUTTER E1.21. RESISTOR COLOUR CODE CALCULATOR 21p. STEREO HEADPHONES. 6 ohm . Padded £4.35. LESOLDERING BRAID 69p.

## MAGENTA ELECTRONICS LTD.

HG8, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS, DE13
OUL. 0283-65435. 9-12, 2-5 MON.-FRI. MAIL ORDER ONLY
ADD 40 P P. BP . TO ALL ORDERS. ALL PRICES INCLUDE $15 \%$ V.A.T. OFFICIAL ORDERS FROM
SCHOOLS ETC. WELCOME
SCHOOLS ETC. WELCOME.
ENQUIRIES MUST INGLUDE S.A.E.
OVERSEAS: SENO ORDER WITH 3 INTERNATIONAL POSTAL COUPONS WE WILL QUOTE EXACT PRICE BY AIR MAIL.
EIRE \& BFPO ORDERS
U.K. PRICES - LESS $10 \%$

ICOVERS V.A.T. REFUND \& EXPORT DOCUMENTS). PAYMENT: STERLING U.K, BANK DRAFT. ENOUIRIES: ENCLOSE 2 INTERNATIONAL POSTAL COUPONS.


COMPUTERS • AUDIO © RADIO © MUSIC © LOGIC © COMPONENTS • CB HOBBY ELECTRONICS GOES WEST
London has more than its fair share of electronics shows, but we know that electronics enthusiasts are by no means limited to the capital. For that reason the first annual Hobby Electronics Show is to be held in Bristol - centre of the South-West.

## What's to see there? <br> - major electronics component suppliers <br> - special exhibition offers

- Wales \& West schools' electronic project competition (*has your school submitted an entry yet? Available from Hobby Electronics 81)

TICKETS - at the door - ADULT : £1.00. CHILD, STUDENT, OAP : 50p. GAMES - KITS - TEST GẸAR • MAGAZINES • SPECIAL OFFERS • BOOKS OPEN DAYS :
Friday May 29th : 10am - 7pm Saturday May 30th : 10am - bpm Sunday May 31st : 10am - 4pm

## BRISTOL EXHIBITION CENTRE

# COMPETITION Project Design for the International Year of Disabled Persons 

Could YOU design an electronic aid for a disabled person? If you can then you could win a first prize of $£ 200$ cash

1981 has been designated the International Year of Disabled Persons, and HE is running a competition to enable its readers to submit their designs for electronic aids for the disabled.

We place no restrictions on the area of electronics that you wish to use: transistors, integrated circuits, valves (if it is impossible for semiconductors to do the job!), electromechanical aids (electronically controlled), computer programmes - the choice is yours.

The only restriction we place on entries is that of ORIGINALITY: the design must be original or an original adaptation that has not been published or marketed.

## No Design Is Too Small

Entries can be as simple or as complex as you like, but we envisage that the winning entries will be ingenious solutions to a problem or problems encountered by a disabled person rather than an enormous (and expensive) box of tricks.

We will, if necessary, segregate designs into 'classes of complexity' or specific types. We may also make some allowance for the age of the entrant (say for those received from entrants under 18).

First Prize $£ 200$ cash
Second Prize Kikusui 538A oscilloscope

PLUS Three runners-up prizes

Closing date for the competition is 31 July 1981 - so you have plenty of time to get designing! No correspondence will be entered into after this closing date.

As a guide, set out your design along the lines of an HE project - we will publish the winning designs.

Send your design to:
Project Design Competition, Hobby Electronics, 145 Charing Cross Road, LONDON WC2H OEE

AND include with it the following:

- the completed entry form (see below)
- written details of your design \& drawings or black-and-white photographs
- suitable-sized stamped addressed envelope (if you wish to have your material returned) If your design is 'boxed' or breadboarded, keep it intact until two weeks after the closing date: if you haven't heard from us by then you can assume that your design is not among the winning entries (a daytime telephone number would be very helpfull.



## The Winner



Here we see Anthony Clarke, of Spondon, Derby, receiving the first prize in our Electronic Games Competition (HE January 1981) from Jim Connell, managing director of Modmags Ltd. The prize was a Rowtron programmable TV game, with an assortment of games cartridges.
SECOND-PRIZE WINNER Jeff Jones, of Risca, Gwent, received a hand-held Jet Fighters game (Computer Games Ltd.) instead of the Space Invader game from Entex. (Our Space Invader game vanished!)


| GUITAR PHASER | 2085 | Sept. '80 | £9.60 | HOBBYTUNE | 2034 | Oct. ${ }^{79}$ | £18.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BENCH POWER SUPPLY UNIT | 2087 | Sept. '80 | $£ 25.00$ | MULTI OPTION SIREN | 2036 | Oct. 79 | £10.50 |
| DEVELOPMENT TIMER | 2086 | Sept. 80 | £8.75 | ANALOGUE AUDIO |  |  |  |
| TOUCH SWITCH (on Vero) | 2084 | Sept. 80 | £4.50 | FREQUENCY METER | 2035 | Oct. ${ }^{\prime} 79$ | £15.00 |
| AUTO PROBE | Z083 | Sept. '80 | £3.00 | COMBINATION LOCK | 2029 | Sept. '79 | £12.50 |
| REACTION TIMER | 2082 | Sept. 80 | £26.50 | *STARBURST | 2030 | Sept. ' 79 | £14.50 |
| MICROMIXER [on Verol | 2081 | Sept. 80 | £8.50 | LAMP DIMMER | 2031 | Sept. 79 | £6.50 |
| EQUITONE CAR EQUALISER | 2052 | Aug. 80 | £13.30 | ULTRASONIC SWITCH | 2032 | Sept. ${ }^{79}$ | £21.00 |
| GAS DETECTOR | 2055 | Aug. '80 | £22.00 | CONSTANT VOLUME AMPLIFIER | 2028 | Aug. '79 | £11.50 |
| PASS THE LOOP GAME | 2056 | Aug. '80 | £12.00 | INJECTOR TRACER | 2027 | Aug. ' 79 | £4.50 |
| RADIO TIMER (on Vero) | 2 D 57 | Aug. 80 | £5.50 | LED TACHOMETER | 2026 | Aug. '79 | £14.75 |
| MOVEMENT ALARM (on Vero) | 2054 | Aug. 80 | £5.00 | BABY ALARM | 2025 | July ${ }^{\text {P }} 9$ | £13.50 |
| OP. AMP CHECKER (on Vero) | 2053 | Aug. 80 | £4.00 | POINTS SWITCH | 2024 | July '79 | £12.50 |
| CAR BOOSTER (no speakers) | 2050 | July '80 | £18.00 | LINEAR SCALE OHMMETER | 2023 | July 79 | £14.00 |
| HAZARD FLASHER | ZD48 | July '80 | £10.50 | SHARK | 2022 | July ${ }^{\text {' } 79}$ | £22.75 |
| *PUSH-BUTTON VOLUME |  |  |  | G.S.R. MONITOR | 2019 | June '79 | £10.50 |
| CONTROL | 2047 | July '80 | $£ 19.50$ | ENVELOPE GENERATOR | 2020 | June '79 | £11.79 |
| SOUND FLASH TRIGGER [on Vero) | 2049 | July ${ }^{\circ} 80$ | £3.50 | DRILL SPEED CONTROLLER | 2021 | June '79 | £7.00 |
| 2 WATT AMPLIFIER (on Vero) | ZD46 | June '80 | £3.90 | WHITE NOISE EFFECTS UNIT | 2018 | May ${ }^{\prime} 79$ | £16.85 |
| METRONOME (on Vero) | 2051 | June '80 | £3.50 | PARKING METER TIMER | 2017 | May '79 | £6.70 |
| MICROBE R/C SYSTEM |  |  |  | DIGIBELL PROJECT | 2016 | May '79 | $£ 5.00$ |
| [less Servos] | 2045 | June '80 | £17.50 | VARIABLE POWER SUPPLY |  |  |  |
| FOG HORN. | ZD44 | June '80 | £4.50 | O.30V 1 AMP | 2015 | May '79 | £30.00 |
| *EGG TWWER | 2043 | June '80 | $\underline{6.50}$ | TRANSISTOR GAIN TESTER | 2076 | April '79 | £6.50 |
| MINI CLOCK | 2010 | May ${ }^{\text {8 }} 8$ | £26.00. | CISTERN ALARM | 2075 | April '79 | £5.50 |
| 5080 PRE-AMP | 2011 | May '80 | £32.00 | WODEL TRAIN CONTROLLER | 2074 | April '79 | £26.00 |
| TRACK CLEANER | 2 D 12 | May ${ }^{\text {80 }}$ | £7.75 | PHOTOGRAPHIC TIMER | 2073 | March '79 | £14.50 |
| \#R/C SPEED CONTROLLER | ZD3 | April '80 | £9.60 | TONE CONTROL | 2072 | March '79 | $£ 9.00$ |
| HOBBY COM | 208 | Aprll '80 | £28.60 | CASANOVA'S CANDLE | 2071 | March '79 | £7.50 |
| ELECTRONIC IGNITION | 202 | April '80 | £18.25 | SHORT WAVE RADIO | 2066 | Feb. '79 | £12.50 |
| DIGITAL FREQUENCY METER | 209 | April '80 | £27.75 | SINE/SQUARE WAVE |  |  |  |
| SHORT WAVE RADIO | 2080 | March '80 | £19.50 | GENERATOR | 2067 | Feb. '79 | £22.50 |
| TOUCH SWITCH | 2079 | March '80 | £5.00 | SCRATCH AND RUMBLE |  |  |  |
| 5080 PSU MODULE | 2078 | March '80 | £29.50 | FILTER MONO | 2068 | Feb. '79 | £22.50 |
| SYSTEM 5080A | 2077 | March '80. | £15.00 | SCRATCH AND RUMBLE |  |  |  |
| PASSION METER | 206 | Feb. '80 | $£ 5.00$ | FILTER STERED | 2069 | Feb. ' 79 | £25.00 |
| WIN INDICATOR | 2042 | Feb. '80 | £9.00 | CAR ALARM | 2070 | Feb. ' 79 | £8.50 |
| INFR RED REMOTE CONTROL | 207 | Feb. ${ }^{80}$ | £19.35 | FLASH TRIGGER (less flash gun) | 2065 | Jan. '79 | £10.50 |
| SCALEXTRIC CONTROLLER | 2041 | Jan. 80 | $£ 52.50$ | TOUCH SWITCH | 2063 | Jan. '79 | £5.50 |
| CROSSMATCH GENERATOR | 204 | Jan. 80 | E11.25 | VARI-WIPER | 2064 | Jan. '79 | £8.00 |
| DIGI-DIE | 205 | Jan. 80 | £5.50 | GRAPHIC EQUALISER | 2062 | Jan. '79 | £25.00 |
| RING MODULATOR | 201 | Dec. ' 79 | £8.50 | PUSH-BUTTON DICE | 2061 | Dec. '78 | £6.00 |
| SCALEXTRIC CONTROLLER | 2039 | Dec. '79 | £21.50 | AUDIO MIXER | 2014 | Dec. '78 | £20.30 |
| BARGRAPH CAR VOLTMETER | 2040 | Dec. '79 | £6.60 | BEDSIDE RADIO | 2058 | Nov. ${ }^{78}$ | £12.50 |
| GUITAR TUNER | 2038 | Nov. '79 | £8.50 | STEREO AMPLIFIER (HOBIT) | 2059 | Nov. ${ }^{78}$ | £52.50 |
| *R2 D2 RADIO | 2037 | Nov. '79 | E8.60 | WAA-WAA PEDAL | 2060 | Nov. ${ }^{78}$ | £30.00 |
| TANTRUM | 2033 | OCI. ${ }^{\prime} 79$ | £37.50 |  |  |  |  |

IONISER KIT: ZD13. This negalive ion generator gives you power to saturate your home with millions of refreshing ions, without fans or moving parts if puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean air. crisp and wonderfully refreshing. All parts p.c.b. and full instructions $£ 10$. A suitable case including front panel neon swlich, etc., available at $£ 8$ extra.

## PLEASE NOTE OUR NEW ADDRESS

LATE EXTRA

| Watchdog intruder Alarm | 2D89 | OCT. ' 80 | £15.75 |
| :---: | :---: | :---: | :---: |
| Temperature Controlled Soldering Iron | 2D90 | ОСТ. '80 | £9.00 |
| Freezer Alarm (on Vero) | 2D91 | OCT. '86 | $£ 8.50$ |
| Tug O War Game | 2D94 | OCT. '80 | £12.50 |
| Nobell Doorbell | 2 C 93 | OCT. ' 80 | ¢9.75 |
| Kitchen Timer (ori Vero) | 2D92 | ОСТ. '80 | £5.50 |
| Light Dimmer | 2D88 | OCT. '80 | £5.00 |

All kits contain components as specified plus Texas 1.C. sockets where required, also connecting wire.

FAIRCHILD FLV150 red. 2 LEDS. 10 for $£ 1.00,100$ for $£ 7.50$ DALY ELECTROLYTIC CAPACITORS 2000uF $100 \mathrm{v} £ 1.50$ PHILIPS SCOPE Tube $5^{\prime \prime}$ CV2191/DG-13-2 £10

If you do not have the issue of H.E. which contains the Project, we can supply a reprint at 40p extra. Please add $30 p$ post and packing. Add $15 \%$ VAT to total order Callers please ring to check availability of kits.

## T. POWELL

ADVANCE WORKS
44 WALLACE ROAD, LONDON, N. 1


Minimum telephone Orders $£ 5$
Minimum Mail Order £1

# Super Siren 


#### Abstract

Be the first human in your galaxy to build this spaceage siren and enjoy spurious sub-ether emissions in the comfort and privacy of your own home


NOW A MULTITUDE of modulations. can be yours for just a few pounds' outlay and a couple of hour's work. Thrill to the whoops, whines and squeals as the unit responds to your hands-on control or switch to automatic and enjoy the demented twittering of an electronic aviary. Every resistor in this circuit may be varied to adjust one of the output parameters so there's plenty of scope for experiment. Of course, not all combinations of values will result in a sound you can hear but it's fun finding out. Additionally there are two switched inputs which enable you to select the modulating signal and the blanking pulse if required.

The heart of the circuit is the astable oscillator built around IC1f (see Fig.1). This is a conventional Schmitt trigger design which has been modified by the addition of a diode in the feedback loop so that a short positive pulse is produced when the voltage across C 6 falls below the Schmitt threshold level. The frequency of the output is varied by controlling the discharge rate of C6. Electronic control is achieved through the use of a transistor. The modulation is applied via a resistive divider to the base of Q1. Section d of IC1 forms the slow-speed oscillator whose input drives Q1. Both triangle and square-wave signals are available and IC1 e may be switched in to blank the oscillator on selected half-cycles. Of course, the rise and fall times of the slow-speed oscillator are independently adjustable.

## Ring A Ring Of Noises

Believe it or not we provided all the

connected in a 'ring of three' circuit. That's just like the familiar one gate astable except that each stage now gets its feedback via the other two gates. This results in three squarewave outputs shifted in phase by 120 degrees when equal value resistor-capacitor networks are used.

What does it do? Well with the right component values it makes a noise like a demented canary keeps your pet budgie happy but it drives the cat wild! Just like the rest of the circuit you can experiment with the values of the resistors and capacitors to obtain special effects. Try connecting diodes in series with resistors R1,3,6 (anode to the IC output, cathode to the resistor) and see how it modifies the output.

## Pulse Power

Though the circuit will drive a loudspeaker directly, no fancy amplifiers are used. In fact a glance at the circuit diagram will show that just one odd-looking transistor is used. This is a state-of-the-art VMOS transistor. It works just like the fieldeffect transistors in the CMOS chip IC1 but its special physical geometry enables large currents to be handled. The volume level and current consumption of the unit will depend on the supply voltage, speaker impedance and width of output pulse. By using a value of 1 kO for R11 șhort (twenty microsecond) pulses are produced at the output. These may be lengthened by
value of R11. If Q2 gets hot - use a heatsink. It's a very rugged device so don't be afraid to experiment.

## Construction

Modular circuit design makes construction a cinch. If you can, we recommend you use our PCB design. It prevents wiring errors (okay - so prove us wrong if you mustl) and facilitates testing and circuit modification. There are no special problems so if you're happier with some other method - use it. Present day CMOS chips seem very resistant to damage from static discharge but it's a wise precaution to use an IC socket. If you use our PCB then insert the socket and add the other components working outwards from it . . . . R2,R4, C2,3,4,R1,3,6 etc. It's less fiddly that way.

It would be nice to make a unit where all the resistors were variable but to start you off we've designed the board to accommodate the essential ones. Miniature horizontal pre-sets can be used or wires may be taken to panel-mounted potentiometers for easy operation. Once the unit's working you'll probably want to remove R9 and replace R8 with a 1 MO or 2 MO potentiometer so get it going and try it out before you finalise the panel design. The value of Rx will set the minimum operating frequency of the oscillator so you may want to use a panel-mounted pot for that too!


Figure 1. Circuit diagram

Excepting C1 which is electrolytic, we used tantalum types for the polarised capacitors. They cost a little more but they are small, pretty(?) and have very low leakage values provided you connect them the right way round. Remember that a tantalum cap often fails when subjected to a reverse voltage as low as 3 V so get it right the first time! Diodes, however, will seldom be damaged when accidently reversed but the circuit won't do what you expect.

Take the usual precautions when handling IC1. It's the most expensive single component. The VMOS transistor Q2 is fully protected against static discharge so no problems there. Take care not to overheat any component. Use a small soldering iron of 15 to 25 watts and you should be okay.

## Light The Blue Touch-Paper and

When all the components are soldered into place, insert IC1 (the right way round), connect a loudspeaker of 3 ohms impedance up; eight or sixteen ohms is a good value to try, and apply 9 to 12 V to the circuit. With point SW2, A opencircuit, the result will depend on the value of Rx. If you used a pot try varying the resistance. You should be
rewarded with a variable-pitch tone. By connecting point SW2, A via the switch SW2, to points SW2,2,3 and 4 in turn you should obtain a twittering sequence of tones, a warbling tone adjustable by RV1, RV2 and a 'two-tone' sound. Switching SW1 to $(+)$ or ( - ) will blank one of the tones. Note that this still happens when A is modulated by the random modulation. Use RV1, RV2 to adjust the mark-space ratio or switch SW1 to 'centre position' to obtain a continuous output.

If you get no output check Q2. If it's hot switch off and make sure there are no shorts on the board. Check that D4 is connected the right way round. If you still have problems, disconnect D3 and Q1. The circuit will oscillate using only D4,R11,IC1, C6 and about 100 k for Rx. If you don't hear any sound from the loudspeaker, check the output of IC 1 by connecting a crystal earpiece between pin 8 and ground ( 0 V ).

By connecting two resistors in series across pin 8 and ground you can provide an output for your hi-fi. Choose a ratio to provide the correct signal level. About 100 mV should be right for the 'line' input of your amplifier, and for this voltage use 8 k 2 and 100R. Select the siren sound of your choice, switch on the afterburner, and give your ears a treat

## Parts List

| RESISTORS (All $1 / \mathrm{W}, \mathbf{~ W}, 5$ ) |  |
| :--- | :--- |
| R1,8 | 100 k |
| R2,4,5 | 10 k |
| R3 | 120 k |
| R6 | 150 k |
| R7,10,11 | 1 kO |
| R9 | 33 k |

## POTENTIOMETERS

RV1,2
47k miniature horizontal preset or linear potentiometer
RV3 100k miniature horizontal preset or linear potentiometer

CAPACITORS (All 10 V working or greater)
C1
1000 n electrolytic
C2,3.4
100n tantalum
C6 100n polyester

## SEMICONDUCTORS

IC1 4584B (40106B, 74C14) hex Schmitt trigger
Q1. BC109, NPN transistor
02 VN67AF, VMOS
power.FET
D1,2,3.4 $\quad$ N4148, diode
miscellaneous
SW1
single-pole, double-
throw, centre-off
toggle switch
3R or greater,
miniature loudspeaker
3 position rotary switch
9 V battery + clip

## How It Works

Schmitt inverter IC 11 is connected as an audio frequency voltage-controlled oscillator. Output pulse width is set by choice of R11. Frequency varies according to the value of $R x$ and the base drive into Q1. Electronic control is achieved by modulating the potential divider connected to the base of Q1. A VMOS transistor switched by IC1f output directly drives a loudspeaker.

Modulating voltages are obtained from a slow-speed astable built around IC1d. Rise and fall times are independently adjustable using RV1, RV2 and triangle and squarewave outputs are available. Care should be taken not to load the triangle output excessively or IC1d will be unable to drive C5 past the positive point and oscillations will cease. There are no limitations on the square wave output. Either half cycle may be blanked by connecting D3 anode to IC 1 pin 10 or 11 via SW1. With SW1 in 'centre-off' position, continuous output will be obtained.

A pseudo-random output is available from the junction of resistors R1,3,6. These are driven from the outputs of a 'ring of three' oscillator bullt around IC 1a,b,c. Frequency of operation of this section is controlled by choice of C2,3,4 and adjustment of resistors $\mathrm{R} 2,4,5$. Change all values equally to maintain identical mark-space ratios or experiment whth the effect of altering just one value. Capacitor C1 provides overall decoupling and the circuit should be powered from a 9 to 12 V supply. Take care that the maximum voltage rating of C5 is not exceeded.

## Buylines

The VMOS transistor is available from JW Rimmer Ltd. All other components should be readily available from usual suppliers. The total cost of components (excluding case and PCB) should be around £10.


Figure 2. Overlay of the PCB




## ADDS TOYOUR CAPABILITY

Already used in industry, this solderless breadboard is now available to the hobbyist Unique because of its universal interlocking facility meaning you no longer need lots of different boards.

## Send now for the unique Verobloc. Order code 200-21092G. £4.16p inclusive.

|  | AND VERO HAVE <br> ADDED TO THEIR <br> TRADITIONAL RANGE OF HIGH QUALITY BOARDS, <br> ALSO EX-STOCK. |  |  |
| :---: | :---: | :---: | :---: |
| der | Descripion | Size (mm) | Price |
| 10-2845B | Microboard | $160 \times 100$ | 5.66 |
| 10-2846H | Microboard | $160 \times 233.4$ | 12.41 |
| 200-21084E | v.a Board | $147.83 \times 73.66$ | 1.65 |
| 09-2196L | veroboard | $160 \times 100$ | 1.63 |
| Carriage $\&$ Vat incuuc |  |  |  |

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hampshire SO5.32R. Tel (04215) 62829

Access No
Exp. date



D-AㄴIM


DRALLIM DAVIS ELECTPONICS LTD
Bretl Drive, Bexhill-on-Sea, East Sussex TN40 2JA Telephone (0424) 216611 Telex 95285
Agency enquiries invited


ANNMNDCINTE


This 5 volume set contains over 500 pages Bound in stiff linen. Cover size $81 / 2$ in $\times 5$ in Price $£ 10.00$ per set (we pay the postage)

Book 1. Introducing Electronics Book 4. Meters/V oltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjovable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radlo Thermometer, Ice Alarm

Order Now:
Selray Book Company
11 Aspen Copse,
Bromley,
OUP 10ロ\% GUARANTEE

Kent. BR1 2 Nz ination, your money will be refunded by relurn of post.

Amount enclosed: £
Name:
Address:

## Building Site

In this month's episode, Keith Brindley offers some good advice on the tools to buy and use if electronics is your hobby and then shows how easy capacitor codes can be to understand

NO DOUBT, YOU will have heard the old proverb 'A bad workman blames his tools'. Well you'll be pleased to find out that it doesn't apply to electronics. In our field, if you haven't got the tools for the job you will never be a good workman - it's as simple as that! Electronics isn't a 'hammer and adjustable spanner' hobby but an art.which can be easily mastered if you have the right tools.

Two tools which I'd recommend you buy are a pair of fine, snipenosed pliers and a pair of sidecutters. Both are invaluable aids to circuit board work when project building. Remember that the circuit board (either PCB or Veroboard) is the 'heart' of your project and if it doesn't work then neither will the whole project.

Buy the best tools you can afford - it's not that the tools are particularly expensive (reasonable pliers and cutters will cost about $£ 6$ to $£ 10$ ) but quality is usually in proportion to cost. Those shown in Fig. 1 are high-quality tools for engineers at top-of-the-range prices. They are part of the HE workshop toolkit and we use them every day, so the cost is small compared with the usage.

A good set of such tools, treated reasonably, should last a lifetime. But if you treat them badly they might only last a couple of months - there's nothing more heartbreaking than watching the tip of your prized sidecutters bounce off all four walls of the room, as you attempt to cut 15 amp cable with them. The moral is simple: never use your tools for anything other than what they're made for.

## Sidecutters

The main use of sidecutters is to cut off excess portions of component leads after a component has been


Figure 1. The HE workshop's very own sidecutters and snipe-nosed pliers


Figure 2. Trimming component leads after soldering. Make sure to cut the lead as close to the soldered joint as you can


Figure 3. Snipe-nosed pliers can be useful as a heat-shunt to protect heat-damageable components when soldering
soldered into the circuit board. This trimming of leads ensures that short circuits between them cannot occur and that your project has more chance of working.

Incidentally, it's bad practice to insert all (or even just a few) components together before soldering them into place, for the simple reason that once you invert the board to start soldering, inevitably some fall out of position. By the time you have soldered all the leads and turned the board back up again, you will find that half the components are sticking out of the board at all sorts of funny angles and places. Without a doubt, some of the leads will short together. The only simple answer to this problem is to insert and solder each component separately - one at a time.

## Other Uses

You can use sidecutters to cut thin wire. But make sure that the wire is thin. Don't, as we've already said, use your sidecutters to cut thick mains cable. Similarly, you mustn't use your snipe-nosed pliers for tightening or loosening nuts and bolts or for other heavy work. Remember that they are precision instruments and can be damaged by rough handling.

Your 'snipes' are mainly used to bend component leads before insertion into the board, or to preform wire links. Because they are so fine the lead can be bent, close to the component body, without causing fracture.

Whenever you are soldering components which can be damaged by excess heat (for example, certain semiconductors) into the board, snipe-nosed pliers can come in handy as heat shunts. By holding the component lead with the pliers on the component side of the board, while soldering the lead on the copper side, any heat being conducted up the lead towards the device itself is deflected into the comparitively large mass of the pliers and absorbed. It's an old trick but one well worth remembering.

## Capacitors

I receive a number of enquiries regarding the coding of capacitor values so I reckoned that now was a good time to do a bit of brushing up on the topic. In broad terms, capacitors are normally either colour coded or numbered (although the numbers very often don't seem to mean much to our readers).

The colour code (for the first three bands, at least) is the same as the resistor colour code; that is:
black $=0$
brown $=1$
red $=2$
orange $=3$
yellow $=4$
green $=5$
blue $=6$
violet $=7$
grey $=8$
white $=9$

When used for capacitors, the code stands for the number of picafarads $\left(1 p F\right.$ or $\left.1 p=1 \times 10^{-12} F\right)$. Let's have an example (see Fig.4).

© Copyright MODMAGS Lid.
Figure 4. A typical colour-coded capacitor

Yellow $=4$, Violet $=7$ and Red $=2$ ie 47 followed by two zeros. So the value of the capacitor is $4700 \mathrm{pF}=4.7 \mathrm{nF}$ or 4 n 7 .

The last two bands of colour on the capacitor body stand for the tolerance:

$$
\begin{aligned}
\text { black } & =20 \% \\
\text { white } & =10 \% \\
\text { green } & =5 \%
\end{aligned}
$$

and the working voltage - the maximum voltage which the capacitor can withstand without damage:

$$
\begin{array}{ll}
\text { red } & =250 \mathrm{~V} \\
\text { yellow } & =400 \mathrm{~V}
\end{array}
$$

The value of numbered capacitors is just as easy to follow. For example a capacitor of value $27 n(27 \times 10-9 F)$ will normally be numbered 273 . The first two figures stand for the numerical value (27), and the third figure tells you the number of zeros (3):
ie $27000 \mathrm{pF}=27 \mathrm{n}$. Simple, isn't it See you next month.

HE
the soll is "too wet" or "too dry". You don't even need green fingers.

## EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP' Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4 B .

EXP 325 £1.60 The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP 350 £3.15 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including two 20 point bus-bars.

## EXP $300 \mathrm{c5} .75$ The

 most widely bought bread-board in the UK With 550 contact points, iwo 40 pointbus-bars, the EXP 300 will accept any size IC and up to $6 \times 14$ pin DIPS.Use this breadboard with Adventures in Microelectronics

EXP 600 f6. 30 Most MICROPROCESSOR projects in magazines and educational books are buitt on the EXP 600


EXP 650 £3.60 Has $\cdot 6$ "centre spacing so is perfect for MICROPROCESSOR applications.


EXP 4B ©2.30 Four
more bus-bars in
'snap-on" unit


The above prices are exclusive of P\&P and $15 \%$ VAT

## THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately global specialties corporation -

G.S.C. (UK) Ltd, Dept. 14 TT Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex C811 3AQ. Tel: Saffron Walden (0799) 21662 Telex: 817477

## No. 11 DIGITAL ROULETTE

The suspense and excitement of the casino in your own home. Just press the button, the circle of lights go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.
No. 12 EGG TIMER
How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking nowl

Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph:


You will need: Oné EXP 300 or EXP 350 breadboard 15 silicon diodes
6 resistors 6 Light Emitting Diodes
Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

For full detailed instructions and layouts of Projects 10, 11 and 12, simply take the coupon to your nearest GSC stockist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1, 2 and 3 , or 4,5 and 6, or 7,8 and 9 , please tick the appropriate box in the coupon.

## PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kıts.


PB6 Kit, 630 contacts. four 5 -way binding posts accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT $£ 9.20$


PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy PROTO-BOARD 100 KIT $£ 11.80$

Just clip the coupon
Give us your name and full postal address (in block capitals). Enclose cheque, postal order or credit card number and expiny date, indicating in the appropriate box(es) the breadboard(s) you require

Y OF PROJECTS 7.8 and 9.
For immediate action
The GSC 24 hour, 5 day a week service.
Telephone (0799) 21682 and give us your Access, American Express or Barclaycard nuriber and your order will be in the post immediately.

| EXPFRIMENTOR BREADBOARDS | CONTACT | IC CAPAEITY 14 PIN DIP | UNIT PRICE INC PGP \& $15 \%$ V A T | $\begin{aligned} & \text { Oiy } \\ & \text { rea } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| EXP $30 \%$ | 130 | 1. | \& 2.70 |  |
| EXP 350 | 270 | 3 | ¢ 4.48 |  |
| EXP 300 | 550 | 6 | £ 7.78 |  |
| EXP 000 |  |  | E 8.3 |  |
| EXP 0 | 270 | use with 06 pitch Dup's Strip Bus-Bar | £ 5.00 |  |
| EXP 4B | Four 40 Point Bus Bars |  | - 3.50 |  |

## NAME.

ADDRESS

I enclose cheque/P.O. for E Debit my Barclaycard, Access, American Express card No Expiry date

| PROTO BOARDS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PB8 | 630 | 6 | £11.73 |  |

If you missed project No's 1 to 9 tlck box.
For Free catalogue tick box
GSC (UK) Ltd., Dept.14TT, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO
$\rightarrow$ Tel: Saffron Walden (0799) 21682. Telex: 817477

# Doorbell Monitor 

## A simple-to-build and cheap project for the home, which constantly monitors your doorbell and tells you if you've had a caller whilst you've been out

SOMETIMES IT CAN be helpful to know if there has been a caller while you have been away from the house, and this simple gadget can be used to indicate whether or not the doorbell has been operated. The project uses one of the cheapest and most commonly available ICs around in a novel circuit design which is simplicity itself to build. It has an indicator light which is normally switched off, but turns on and is held in this state if the doorbell is operated.

## Construction

A suitable 0.1" matrix Veroboard layout for the circuit is shown in Fig. 2. The board has 11 holes by 12 strips and there are six breaks in the copper strips. These breaks should be made before any components or links are inserted and soldered, by using the standard cutting tool or, alternatively, a hand-held 3 mm drill bit. Hold the cutting edges of the tool or bit against the hole where the break is to be made and twist gently clockwise until a neat circular break in the copper is made. Check that any loose swarf is removed, thus reducing the possibility of unwanted short circuits between adjacent tracks.

Next, insert and solder each wire link, followed by the IC socket if you use one, and finally the other components as shown in Fig. 2. IC1 is a CMOS device and can be damaged by static discharge if handled incorrectly. It should be the last component to be connected into circuit and should be left in its protective packaging until then. If you use an IC socket it only remains to insert the chip into its socket, being careful not to touch the pins of the IC. If you haven't used a socket and you intend to solder the IC directly into the board then you should use a soldering iron with a earthed bit.


The incoming signal from the bell is rectified, which provides either a positive signal (bell on) or nothing (bell off) to the electronic latch. Whenever a caller rings the bell, the latch output therefore becomes positive and holds the LED on.


The unit is based on a CMOS 4001 IC which is a quad 2 -input NOR gate. Only two of the gates are used, and these both have their inputs connected together so that they act a straightforward inverters. The inputs of the unused gates are connected to earth so that they cannot operate spuriously.

The two inverters are connected in series so tht the output assumes the same logic state as the input. At switch-
on C1 will be uncharged, and therefore takes the input to the low logic state. The output assumes the same state, and latches the circuit in this condition because of the feedback through R2. The LED indicator LED 1 is driven from the output via current limiting resistor R3, and will obviously be switched off with the output in the low state.

If the doorbell is operated, a voltage will be fed to the bell, and this will appear
across the input of the monitor. In a normal mains-operated bell circuit the bell is powered via a step-down transformer which provides an AC voltage of a few volts to the bell. On positive-going AC half-cycles D1 will conduct, and the input of the circuit will be taken to the high state. The output also goes high and the positive feedback through R2 latches the circuit in this state. D1 does not conduct on the negative-going AC cycles, so the input signal cannot return the circuit to its original state. The indicator light therefore remains switched on until the user resets the unit by momentarily switching off using SW1.

The unit will also work with batteryoperated bells having a supply voltage of about 6 V to 9 V , but the input must then be connected with the correct polarity. The circuit has a negligible current consumption in the standby mode, and the consumption is only about 2 mA when the LED is switchad on.


## Buylines

None of these components are hard to come by and should be found at most component stockists. The approximate price for the parts in this project will be around $£ 3$.

$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
© Copyright MODMAGS Ltd.

Figure 2. Veroboard layout, connection details and track breaks



# PATH SERVICES 

Packs of components @ 60p each. Post 40p + 15\% VAT 10 or more packs post free.

PAO1 100 asstd. carbon resistors. PA02 200 asstd. preformed Resistors. PA03 20 asstd. Wire Wound Resistors. PA04 100 asstd. Mica/Ceramic Capacitors. PA04 50 Poly Capacitors.
PA06 30 asstd. Electrolytic Capacitors. PA07 10 Tantalum Capacitors $.68 \mu^{\dagger}, 50 \mathrm{~V}$ PA08 10 Tantalum Capacitors 4.7 HF F VV . PA09 10 Tantalum Capacitors $5.6 \mu \mathrm{~F}$ 6V PA10 20 Tantalum Capacitors asstd. PA1 6 Ei0 Transisiors.
PA13 1000 C71 Transistors UM. UT. PA14 50 Germanium Diodes UM. UT PA145 50 Silicon Diodes UIM UTT PA16 301 Amp Rect Diodes UT. PA17 40400 mW Zener Diodes UM. UT. PA18 9 Variable Resistors. PA19 21 Amp Brid ge Rect on Bd with Cap. PA20 1 Transformer 5-0-5@250mA.

PA21 7 Red LEDs . 125 nn.
PA22 7 Red LEDS . 2 in.
PA23 10 asstd. LEDs.
PA24 1 Comp. Panel with useful components.
PA25 15 Glass Reed switches (ex-equip.).
PA26 12 asstd. Fuses.
PA272 2 Plastic Toggle Switches.
PA28 6 Slide type Switches.
PA293 V3 type Micro Switches.
A30 4 assta. Micro Switches.
PA31 3.1 marrix Blob Board $21 / 2 \times 5$. PA33 8 PP 3 Battery Clips.
PA34 60 sq. ins. of Copper Lam Board. PA34 5 sa. ins. or Copper Lam Board.
PA35 $/ 1 / 1 \mathrm{p}$. pkt. Ferric Chloride +40 p post.
PA36 100 asstd PA36 100 assid. Transistors UT. PA38 220 Turn Presats 200 K . UT = Untested. UM = unmarked.

Full Vero range by post (Cato 40p post paíd) List of microwave devices SAE please PCB Fotoboard + accessories
Electronic Components List 30p (Free with orders)
P.A.T.H. ELECTRONIC SERVICES 369 Alum Rock Road, Birmingham B8 3DR

## DO YOU EVER NEED A FEW MORE HANDS? ABSONGLEN ANNOUNCES THE NEW MINIBENCH II*

- Just a squeeze needed to clamp or release the circult board
- Adjustable minlmum jaw aperture
- Jaws flip over for work on either side of circuit board.

Rubber-lined jaws for circuit board protection and maximum grip
Single wing nut adjusts lriction control and jaw attitude
Crocodile clips mounted on flexi-arms hold components exactly where needed.
Crocodilitar mounta is lor
Lens similarly mounted is ideal for close work and spotting those solder bridges Flexi-arms are mounted on the jaw assembly to keep station with the circuit 6 board.
6 separate flexi-arm mounting positions.
A typical configuration would consist of 2 flexi-arms with clips and one with lens,
Attractive two-tone stove enarnelled finish
Built to last a lifetime.

## TO: ABSONGLEN LTD. DEPT, HE

Name
Address


Patented

Please supply
Minibench II £12.95
Flexi-arms with Clips@ $£ 4.75$ each
Flexi-arms with Lens @ £5.75 each
Postage and packing $\mathbf{E 2 . 2 5}$

* Price applicable to Minibench purchasers

Remittance
enclosed for

# Famous Names Michael Faraday 



To follow What's In A Name, we present a new series about some of the pioneers of electrical and electronic science. First we look at the lives of some of the famous names associated with the discovery of electricity. Later we look at some of the pioneers of electronics, a science which grew from the understanding of the principles of electricity. We begin with one of the most practical and communicative discoverers: Michael Faraday

EVER FELT TOTALLY baffled by a bit of theory? Ever found that you could learn more with a hot soldering iron in your hand than using a book? Take heart, for your condition is in some respects like that of Michael Faraday, who did more for the progress of electricity than almost anyone else in the history of this subject.

Faraday was born in 1791, at Newington, Surrey, the son of a local blacksmith who must have taught him much about the machines of the day. These, remember, were times of considerable and violent change. The Americans had successfully declared unilateral independence (translation: they threw us out), the French were having a revolution (translation: killing each other), and machines had been invented to do the work of three men and a boy! The results were that there was a huge expansion of trade, a demand for machine-made goods, and jobs for anyone who wanted them There's nothing new under the sun the Luddites broke machines because they thought there would be less
employment, yet within a few years there was such a scarcity of people to do the jobs that children were working in factories. Our modern Luddites are busy opposing microprocessors right now - with the big difference nowadays that it didn't start here, and no-one is forced to build his factories here in the UK.

In Faraday's youth, the blacksmith was the man who was the machine repairer, because his skills were well fitted to this job. The family moved to North London, to take advantage of this new and lucrative source of income but Michael, at the age of 14, decided that he would not be a blacksmith, and was apprenticed instead to a bookbinder who also had a bookselling business. As he bound the books, Faraday read them and was fascinated by the many books dealing with physical science. Determined to increase his knowledge, he went to hear Humphry Davy lecture at the Royal Institute. This experience convinced him that he should make his career in scientific research, and he
wrote to Davy asking for a job, enclosing a complete transcript which he had prepared of the lecture he had attended. Davy was impressed and appointed Faraday, now aged 21, as his assistant at the Royal Institute.

Davy did not regret this step Faraday proved to be an extraordinarily astute experimenter, able to devise apparatus to prove or disprove any theory which might be put to him.

One early opportunity occurred when the Danish scientist, Oersted, reported that a magnetic field existed around any wire which was carrying an electric current. Faraday at once repeated Oersted's experiments to confirm the principle, and then went on to construct an ingenious piece of apparatus, shown in Fig. 1, which demonstrated the shape of the magnetic field. By passing current through the wire and the mercury, Faraday showed that the magnet moved in a circular path around the wire a path which he concluded must be the shape of the magnetic field round the wire. Davy and Faraday also saw that


Figure 1. Faraday's motor experiment. A magnet was fastened inside a pot containing mercury. When a wire was dipped into the mercury, and current was allowed to flow through the wire, the wire rotated around the magnet
this device converted electric current into mechanical movement, and so the electric motor was born.

The two men worked as a team, touring Europe with lecturedemonstrations concerned with discoveries which they had jointly made. These tours put them in touch with many of the most famous. names in electrical science, in particular Biot and Savart, who were working on a theory of magnetism, and these subjects were to remain the most
fascinating of all for Faraday. In 1825, aged 34, he was appointed as Director of Laboratories at the Royal Institute and one of his first actions was to start a series of formal lectures, to be held each Friday, describing new advances in some branch of Science. These Friday lectures have continued ever since, along with the Christmas Lectures to Schools, which Faraday also started. Faraday had a gift for clear and simple language, and his lectures were invariably crowded out. This is one
aspect of Faraday's work which is often overlooked, and we may probably never know how many students were set an excellent example both by Faraday's meticulous practical work and by his clear and concise lectures.

In 1831, Faraday published the results of work which was to mark a huge step in our understanding and application of electricity. The experiment was the 'induction ring' - an iron ring (Fig. 2) with two separate windings. One winding was connected through an on/off switch to a battery, and the other winding was connected to a sensitive galvanometer. Faraday was looking for a way to convert magnetism to electric current, and his was the first of many such attempts to succeed. There were two reasons for this. One was that Faraday had built his own apparatus in his usual meticulous way, and the galvanometer in particular was very much more sensitive than most. The other was that Faraday observed and noted everything. On this occasion he observed and noted something which earlier researchers might not have bothered about: that the galvanometer needle flicked each time the switch was made or broken. Everyone expected that the galvanometer would read continually while current was flowing from the battery, and disregarded these transient effects. To Faraday, these were the important results, and he concluded that a current flowed to the galvanometer only when the current from the battery was changing. He had, of course, discovered the transformer principle and by doing so, laid the foundation for all our use of electricity. It was only a small step onwards to disconinect the battery and show that a magnet pushedinto or out of the iron ring would also cause the galvanometer to deflect. The essential point, which no-one else had grasped, was that change was the key, change of current when the arrangement was used as a transformer, or change of position when the arrangement was used with a magnet.

The next step was to produce a continuous current from continuous. motion. Faraday realised that a practical generator must use circular motion, and devised the disc dynamo (Fig.3) which we now call a homopolar generator. As shown, it consisted of a copper disc rotated between the poles of a strong magnet. Rubbing conneçtions were made to the shaft and also to the rim of the disc, and a small

## Famous <br> Names


© Copyright MODMAGS Ltd.

Figure 2. The iron ring experiment. Faraday found that the arrangement, the first transformer, produced a pulse of current indicated on the galvanometer, at the instants when the switch was opened or closed


Figure 3. The homopolar generator. The disc revolving between the poles of the magnet generates a small voltage between the contacts, its magnitude depending on the speed of the disc and the strength and size of the magnet
voltage could be detected when the disc was spun round. Oddly enough, this arrangement, which has only ever been a curiosity in the past, is now coming under investigation again. The reason is that though the voltage is very low, the current can be very large, and low-voltage high-current supplies
are just what we need for modern semiconductor circuits. Since the output of the homopolar generator is DC, not just a full-wave rectified output such as we get from most dynamos, the homopolar generator is ideal for providing an emergency supply for electronic equipment.

Faraday was content to move on to other topics, and leave the development of the dynamo to others, later, notably Siemens and Edison. His interest was still in the understanding of the mysterious relationship between electricity and magnetism, and he was fascinated by the representation of magnetism in terms of lines of force, an idea which he could express as a drawing. His intuitive feeling was that electrostatics, current electricity, and magnetism must be part of the same thing, but he lacked the mathematical facility to prove what he was sure must be true. The complete proof was left to Clark Maxwell just after Faraday's death.

By 1844, Faraday was busy tying up other aspects of electricity, still pursuing his hunch that electricity was the key to all science. In his early years withDavy, hehadmade manychemical investigations, some of which had been concerned with glass. Now glass is not a single chemical compound but a mixture, and so thousands of different types of glass can be made. One which Faraday had made and christened 'heavy glass' turned out to be quite remarkable. This particular glass polarised any light which passed through it, acting in the way we all know now from Polaroid sunglasses. What was extraordinary about Faraday's 'heavy glass' was that the polarisation varied when a magnetic field was applied to the glass. To be precise, the plane of polarisation was rotated when a magnetic field was applied. This was a clear indication of a link between light and magnetism, and the 'Faraday rotation' as it is called is an effect which is used nowadays to control laser beams, enabling us to modulate a laser beam directly by an electric current.

Faraday retired in 1858, after a career which had touched on and improved practically every branch of science. We've concentrated here on just a few of his major discoveries, leaving out all his chemical and electrochemical work, which included the discovery of electroplating. He died in 1867, an experimenter of genius with a teacher's gift of clear explanation. He left behind him an extraordinary number of discoveries which still bear his name, an organisation which still. delivers lectures in his name, and a new branch of engineering - electrical engineering. Few men have made such an overwhelming contribution to our present century.


LAST MONTH'S SNIP STILL AVAILABLE



 promiplls.




MAINS MOTORS precision made a used in record players, blow heaters, etc. spire usually 1,400 . All have ample
spindle length for coupling tan blade
 stack $£ 3.00$; 1 " stack E3.50; 1 \%./ stack rage. and then add 15\% VAT

YOUR LAST CHANCE FOR THIS BARGAIN E11.50. Wins, regular fool shoo price over 250 ,


MAGNETIC LATCH Low voltage (4. 8 .
Only $£ 1.50$ each.

PUNCHED TAPE


EQUIPMENT
matching tape reader. Ex-compulers, believed 8 bit punch with matching tape reader, Ex-computers, believed ingood working
order, any not so would be exchanded. $£ 17.50 /$ pair. Post $£ 3.00$.


SOLENOID WITH PLUNGER Mains operated ET .9
$10-12$ volts $D C$ MOTORISED DISCO SWITCH

With 10 amp changeover switches. Multi-:
adjustable switches all rated at 10 amps. adjustable switches all rated at 10 amps,
in is would provide a magnificent display For mains operated 8 switch model
$£ 6.25,10$ switch model $£ 6.75,12$ switch


## PANEL METERS

Japanese made, full vision front, size $2 \%^{\prime \prime}$
$\times 2 \%$ ". $0-100$ प A $£ 2.85$ similar





SUPER HI-FI SPEAKER CABINETS
Mate for an expensive Hi Gi our in
will suit any decor. Resonance Then cutouts for $8^{\circ \prime}$ woofer and
$4^{\prime \prime}$. $4^{*}$ " Inverter. The front material is carved Dacron. Which is thick and
thess not need to be stuck in and thess not need to be stuck in and
the completed uni is mos! pleas.
 in ice f6.90 we y pan likes is prob-


meter, 4 ohms 35 Ditto but 8 ohms, $£ 11.50$ Ditto but 8 ohms, $£ 11.50$
per pair. Post $£ 2.00$.

ELECTRONIC VOLT METER/ SENSITIVE RELAY
Consists of a $4 \%{ }^{\prime \prime}$ square drop through panel volt meter. 0. 10
fed. Built into the front of the fed. Built into the front of the
meter are two screw adjusters meter are wo screw adjusters
which move two pointers, up and which move two pointers, up and
down the ate, to set a minimum and maximum. A unique "under" operates one of two reed relays to
bring an under' or "over' circuit int
 action. The scale plate is de tractable via two screws to be calibrat-
ed to your own Individual requirements. The 10 transistor and 'over' circuit is completely separate from the meter movement 30 does not have to be connected to use this as a standard 0.1
meter. Many uses including level controls, 1 aet contos, meter. Many uses including level controls, light controls, auto ta
tery chargers, alarm units, etc. Manufacturers list price of over tery chargers, alarm units, etc. Manufacturers list price of over
$\mathbf{£ 1 2 0}$ each. An unbelievable snip at $\mathbf{£ 9 . 9 5}$ (less than the value


3 wave band radio with stereo amplifier. Made for incorporation in a higheclass radiogram, this has a quality of out
put which can only be described as superb. It truly hi-fi. The chassis
e is approx. $14^{\prime \prime}$. Push but lie e is approx. $14^{\circ}$. Push but
select lon, medium, short
Controls are hut a. and gram. Controls, are balance, vol-
me, treble and has. Mains power suppl The output is $6+6$ watts. Brand new and in pertec MULL ARD UNILEX A mains operated $4+4$ s
system. Rated one of the
finest performers in the
stereo field this finest performers in the
stereo field this would make a wonder fut gift for
almost anyone. In easy to assemble
 modular form this should sell at about E30
centive for you to buy this month we offer the sss. ter complete at only $£ 16.75$ including VAT and post. FREE GIFT - buy this month and you will receive a pair o
Goodman's elipucal $8^{\prime \prime} \times 5^{\circ}$ speakers to match this amplifier.
 VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs . repeats daily
automatically correcting for the lengthen automatically correcting for the lengthenswitch but you can have it for only $\mathrm{Ez.95}$
These arc new but without case, but we can supply plastic cases (base and cover) £1.75 or metal case with window $\mathbf{£ 2 . 9 5}$. Also available is adaptor kit to convert
this into a normal 24 hr this into a normal 24 hr , time switch but
with the added advantage of up to 12 on offs per 24 hrs . This makes an ideal con
olla for the immersion heater. Price of CH DELAY SWITCH Mains operated - delay can be accurately
set with pointers knot for periods of up
to 2 k hrs. 2 2 contacts suitable to switch 10
amps - second contact opens a few min.
utes after 1 st contact. $£ 1,95$. LEVEL METER Size approximately ${ }^{1 / 4}$ " square, scaled signal
and power but cover easily removable for and power but cover gassy removable
rescaling. Sensitivity 200 uA . 75 p .

ADVANCE ADVERTISING BARGAINS LIST! Our FREE moninly list gives de tails of bargains arriving or just
arrived -often bargains which sell out before our advertisement arrived - often bargains which sell out before our advertisement
appear -it's an interesting list and it's le - just send S.A.E. appear - it's an interesting list and in's tree.
Below are a lew of the Bargains still available. TRANSMITTER SURVEILLANCE
TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can be
parts and circuit. E2.30.
RADIO MIKE
Ideal tor discos and garden part ties, allows complete free dom of
movement. SAFE BLOCK
Mains quick connector mill save you valuable tome. Features include quick spring connectors, heavy plastic case and auto on and off switch. Complete kit. E1.95.
LIGHT CHASER
LIGHT CHASER
Gives a brilliant display Gives a brilliant display - a psychedelic light show for discos, par.
ties and pop groups. These hove three modes of Hashing iwo chase ties and don groups. These have three modes of trashing, two chase
patterns and a strobe effect. Total output power 750 watts per channel. Complete kit. Price $£ 16$. Ready made up $£ 4$ extra. FISH BITE INDICATOR
Enables anglers to set up several lines then sit down and read a boo As soon as on
Price $£ 4.90$.
6 WAVER AND SHORTWAVE RADIO KIT
Bandsprean covering 13.5 10 32 metres. Based on circuit which Bandsprean covering 13.51032 metres. Based on circuit which
appeared in a recent issue no Ratio Constructor. Complete kit in. clucks case materials, six transisimers, and diodes, condensers, resist
orr, inductors, swichims, utc. Nothing else to buy if you have an ampiffier to connect il it it as nair it high resistance headphones. Price E11.95. SHORT WAVE CRYSTAL RADIO
 earpiece 65 . high instancy:
Kit includes chassis and from tut non case, gives hest results) $£ 3.75$. RADIO STETHOSCOPE
Easy to faulty ind start at the aral and work towards the speaker

- when signal stops you have founts the fault. Complete kit $£ 4.95$. INTERRUPTED BEAM
steady beam of infra -rect or ordinary light is broken. Main compo ens - relay, photo transistor, resistors and caps etc. Circuit diagram OUR CAR STARTER A OUR CAR STARTER AND CHARGER KIT has no doubt saved
many motorists tom embarrassment in
 bourg. The kif comprises: 250 mains transformer, two 10 amp
bridge rectifiers, starl/charge switch and full instructions. You ca assemble this in the evening, box it up or leave it on the shelf in the
garage, whichever suits you best Price $\varepsilon 11.50+\varepsilon 2.50$ post GPO HIGH GAIN AMPIGNAL TRACE A E I2.50 posit. GPO HIGH GAIN AMP/SIGNAL TRACER. In case measuring
only $5 \%$ in 3 3 in $\times 1 \%$ in is an extremely high gain ( 70 dB) solid only 5 \%in $x 3$ \%in $x 1$ in in is an extremely high gain ( 70 dB) solid
state amplifier designed for use as a signal tracer on GPO cables, etc
We With a radio it functions very well as a signal tracer. By connecting a made. Runs on standard $4 \% \%$ battery and has input, output sockets
mater and on- off volume control, mounted flush on the top. Many other
uses include general purpose amp, cuing amp, etc. An absolute uses include general purpose amp, cueing amp, etc. A.
bargain at only $£ 1.85$. Suitable 80 hm earpiece 69 p .
3 CHANNEL SOUND TO LIGHT KIT
Complete kit of parts for a three-channel sound to light unit con. but it is more than rugged enough tor Disco work. The unit is ho ed in an attractive two-tone molal case and has controls for each channel. and a master on/off. The audio input and output are by
sockets and three panel mounting fuse holders provide thyristor sockets and three panel mounting fuse holders provide thyristor
protection. A four pin plug and socket facilitate ease of connect ting protection. A Pour. pin plug and socket facility
lamps. Price $£ 14.95$, complete kit and case. 8 POWERFUL BATTERY MOTORS
en tool planes, boats etc. 82.5 60 ohms per yard, this is a hear 60 ohms per vard, this is a heating element wound on a fibre glass
coil and then covered with p.v.c. Dozens ot oses pipes, under grow boxes in gloves and socks. 23 p per metre. COMPONENT BOARD Ref. WO998
This is a modern fibreglass board which contains a multitude of
very useful parts, most important of which are: 35 assorted diode
 transistors type BC 107 and 2 type BFY 51 electrolytic condensers.
SCR ret $2 \mathrm{~N} 5062,25$ Out 100 DC and 100 l 25v DC and over 100 other parts including variable, fixed and wire wound resistors. electroly tic and other condensers. A peal snip at $£ 1.15$.
FRUIT MACHINE HEART. I wheels with all fruits, motorised and with solenoids for stopping the wheels with a little ingenuity
defy your friends getting the "jackpot". $£ 9.95 .+£ 4$ carriage. de soldering pump
Ideal for removing components from impurer boards as well as to 4 -CORE FLEX CABLE
White pvc for telephone extensions, disco lights, etc. 10 metres $£ 2$. MUGGER DETERRENT
 HUMIDITY SWITCH
American made by Honeywell. The action of this device depends sensitive microswitch. Very sensitive breathing on It for instance switch it on, Micro 3 amp at 250 V ac. Only El. 15. EXTRACTOR FANS - Mains Voltage
Ex-Compurer, made by Woods of Colche ideal also as blower; central heating
systems systems, fume extraction etc. Easy fixing
through panel, very powerful 2.500 rom


$\square$


## TINE SWITCH BARGAIN

 Large clear mains frequency controlledclock, which will always show you the correct time start and stop switch
es with dials. Complete with knobs.
J. BULL(Electrical) Ltd.
(Dept. HE), 34-36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH 16 $30 U$.
J. BULL (Electrical) Ltd - Established 25 years. MAIL ORDER TERMS: Cash with order . please add 60 p to all orders under $£ 10$, to offset packing, etc. ACCESS \& BARCLAYCARD WELCOMED. Our shop is open to callers. BULK ENQUIRIES INVITED. Telephone: Haywards Heath (0444) 54563.


A TREMOLO MAY NOT be the latest electronic musical effect but, like the fuzz effect produced by the HE Fuzzbox (see last month's issue) it has remained popular. Our simple design is primarily intended for use with a guitar, and has both variable frequency and depth controls. It gives excellent results and has a low noise level.

The tremolo effect is very simple in principle, and just consists of an automatic volume control that varies.
the volume up and down at a typical rate of a few times per second. Obviously this effect could be produced manually, but it is usually far more corivenient to have a unit that produces the effect automatically using an oscillator driving a voltagecontrolled attenuator (VCA).

## Construction

As this unit is likely to receive a fair amount of rough treatment it is advisable to fit it into a very strong

case, and a diecast aluminium box is ideal. However, any strong case of metal construction (to shield the circuitry against interference pick-up) is suitable. Switch SW1 is a heavy duty, successive operation (ie push on/push off) switch, and this is mounted on the top panel of the case so that it can be operated by foot. The other controls and sockets are fitted along two sides of the case. On our unit SW2 is part of input socket SK2. but a separate switch can of course be used here is preferred.

The other components are fitted onto a $0.1^{\prime \prime}$ matrix Veroboard, 15 strips by 37 holes, and this is cut down from a board $3.75^{\prime \prime}$ wide using a hacksaw. Then the two $1 / \mathrm{m}^{\prime \prime}$ diameter mounting holes are drilled and the breaks in the copper strips are made, after which the board is ready for the components and links to be fitted into place. Integrated circuit IC1 has a MOSFET input stage, and to avoid damage due to high static charges we strongly advise you to use an IC socket with this device. It should be the last component to be fitted to the board and should be left in its protective packaging until that time. Handle the device as little as possible.

Once the board has been wired up to the controls, sockets, and battery clip, as shown in Fig. 2, it can be mounted inside the case using M3 or 6BA fixings.

Once completed, the unit is wired between the guitar and the amplifier (the circuit is automatically switched on when the guitar lead is plugged in, and switched off again when the lead is unplugged from SK2). With RV2 adjusted for zero tremolo, RV3 is adjusted by trial and error to give the same volume with the unit switched in or out of circuit using SW1.


Figure 1. Circuit diagram

## How It Works

The HE Tremolo consists of two main parts: a voltage-controlled amplifier and a squarewave oscillator to generate the control voltage. The squarewave is filtered by a resistor/capacitor combination to change it into a close approximation of a triangular wave.

The tremolo effect is produced by changing the amplitude of the guitar signal according to the rise and.fall of the triangular wave thus producing the output waveform shown. This combined waveform consists of the original guitar signal amplitude modulated by the triangular wave.

Figure 1 shows the circuit of the tremolo unit, and it consists of three main sections: an oscillator based on IC1, a VCA using Q1, and a pre-amplifier which uses $\mathbf{Q} 2$.

The oscillator is a well-known configuration, and this generates a squarewave output at pin 6 of IC1. This is not the ideal waveshape since it would result in the output signal simply being switched between two volume levels, whereas we really require a smooth variation between the two extreme volume levels. The output of the oscillator is therefore coupled via C4 and 'depth' control potentiometer RV2 to a simple RC
filter which consisted of R5 and C5. This 'smooths' the squarewave into a much more suitable (sawtooth-like) waveform. Potentiometer RV1 is the tremolo frequency control, and it gives a range of roughly 1.5 to 10 Hz . Capacitor C3 is used to suppress high-frequency harmonics on the output signal of IC1 which could otherwise leak into other parts of the circuitry giving unwanted 'clicks' on the output signal.

Transistor Q2 is used as a commonemitter preamplifier stage with unbypassed emitter resistor R11 being used to introduce negative feedback

(c) Copyright MODMAGS Ltd.
which reduces the voltage gain of the stage to a suitable level (about 6 times). It also boosts the input impedance of the stage to a level that gives a good match for an electric guitar pick-up.

The output of Q 2 is coupled by C 7 to the VCA formed by R8 and the drain-tosource resistance of Q1. Preset RV3 and resistor R6 are used to give a controlled reverse bias to the gate of Q1 via R7, and this is adjusted to give a drain-to-source resistance in Q1 that gives roughly unity voltage gain through the circuit under quiescent conditions (ie with zero modulation signall. If RV2 is advanced to give a small modulation signal, this is coupled to the gate of 01 by C9. Here it varies the gate voltage slightly. giving consequent changes in the drain-to-source resistance of Q1 and the gain through the circuit. This gives the tremolo effect. Adjusting RV2 for a larger modulation signal gives larger and more rapid changes in the amplitude of the output signal and a more 'aggressive' tremolo effect.

Switch SW1 enables the tremolo circuitry to be bypassed when the tremolo effect is not required, and SW2 is the ordinary on/off switch. The circuit has a current consumption of only about 2 mA . and a small (PP3 size) 9 V battery is sufficient to give many hours of operation.

## Guitar Tremolo



## First the EuroBreadBoard Now the EuroSolderBoard



## Design on a EuroBreadBoard - Instal on a EuroSolderBoard

## First the EuroBreadBoard

Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ( $<10 \mathrm{~m}$ ohms) nick el silver contacts
$£ 6.20$ each or $£ 11.70$ for 2
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia $\mathbf{f i x i n g}$ holes.
£2:00 for set of three ESB's

## And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £7.25 including VAT \& PP

## Snip out and post to David George Sales,

Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU

## David George Sales, HE4

Unit 7. Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU. Please send me:-

|  | 1 EuroBreadBoard | $@ £ 6.20$ | $\bigcirc$ |  |
| :--- | :--- | :--- | :--- | :--- |
| or 2 EuroBreadBoards | $@ £ 11.70$ | $\bigcirc$ | Please |  |
| or | EuroSolderBoards | $@ £ 2.00$ | $\bigcirc$ | Tick |
| or | 1 EuroSolderSucker | $@ £ 7.25$ | $\bigcirc$ |  |

All prices are applicable from Jan. 1st 1980 and include VAT and PP but add $15 \%$ for overseas orders.

Name
Company.
Address.

Tel. No.
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

## EVERCO

Multiband Receiver plus 40 -channel CB
Monitor. Frequency coverage:
54. $87 \mathrm{MHz} \quad 145-176 \mathrm{MHz}$ $88-108 \mathrm{MHz}$ Plus H 140 CB Channels
08.145 MHz This unit has This unit has a relescopic antenna and squelch control, sockets for earphone IDC power source.
$£ 21.95$ inc. VAT $+75 p$ P\&P


PINBALL WIZARD
wstil available *
Featured in Nov, issue of E.T.I.
Home TV Game - B/W Kir
Basic Kit £28.90
Contains everything except box and
controls
Box \& Controls £6.50. P.S.U. £3.90 CEH Car Alarm Kit £ 18.90
Chroma Chime 24 fune door chimes ki E10.75. Built E15.95

## HE MICROBE R/C

Basic Kn
PCBs and all PCB components

## ELECTRONIC

 GAMES
## Star Chess T/V game

 Database Prog T/V game Chess Challenger 7 Voice Challenger Chessmate 8 leve Zodiac Astrology Computer Electronic Mastermind Supersonic Mastermind Mattel Subchase. New Mattel Armor Battle. New Enterprise 4 in 1 Gataxy Invaders. New -Radio Control Models-Various 663.35689.95 889.95
689.00 899.00
$ع 160.00$ £160.00
$£ 230.00$ $\quad 230.00$
$\mathbf{5} 59.95$ $\mathbf{8} 9.95$
$\mathbf{£ 2 9 . 8 5}$ E 14.90 821.00 $\varepsilon 17.90$ \&17.90 E22.90 C 22.95 Ball Clock as H.E. offer, Kit £24.95, or ready-built $£ 29.95$.


UN
61 BROAD LANE, LONDON N. 15 4DJ
Day 01-808 0377; Eve 01.889 9736

## LOW-COST, RUGGED TEMPERATURE CONTROL <br> HIGH QUALITY <br> TEMP. GAUGE $0^{\circ}-120^{\circ} \mathrm{C}$ Remote sensor on $38^{\prime \prime}$ capillary, panel mounting <br> dial 55 mm . dia <br> ONLY £1.85 <br> (Ind. P\&P)

16A $240 V$ RANCO THERMOSTAT
Wide control range (low room temp. to over boiling point) Sensor on $\mathbf{2 2 ^ { \prime \prime }}$ capilliary. $\mathbf{2 . 3 0}$, including control knob.
RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$
15 A 240 V . Sensing coll on 41 in . capilliary. panel mounting with reset button. $\mathbf{£ 1 . 2 0}$.

BUY ONE EACH OF ABOVE FOR £4.85

LIGHT DEPENDENT RESISTORS in plastic housing with window, heavy-duty lead. Similar to ORP 61. You normally pay well over double for resistor alone. Only $\mathbf{3 0 p}$ or $£ 2.35$ for 10.

## DOUBLE ENOED SMITHS BLOWERS

2 output apertures, $53 \times 103 \mathrm{~mm}$. Large flange. Only c5.50.

SMALL INDUCTION MOTOR (shaded pole), double ended with $1 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$ shatts, 240 V . $\mathbf{~} 3.25$.

BULGIN STRAIN RELIEF SLEEVE 10 FOR 30p
USEFUL RUBBER GROMMETS. Fit $3 / /^{\prime \prime}$ hole. 10 for 20p.

POWER RESISTOR, wire-ended, 20-watt. 410s 5\% Only 50p.


Panet M.E.S. Butb Holder High quality. Red lens. 30p

## BULGIR GLASS FUSES

20 mm 1 A Quick Blow
10 for $40 p$
${ }^{10}$ (same size as 13 A plug
tuse but not to BS 1362). Will fit most $11 / 4^{\prime \prime}$ chassis mount fuse holders. 10A quick blow 5 A anti-surge, 3 A quick blow 0 (ony mix) 40


GEC CONTACTOA 3 heavy duty normally open contacts 600 V ONI Y 4.50
TOP OUALITY CMROME
TOGGLE SWITCHES
2 pole C/O centre off 10 A
$240 \mathrm{~V}, 80 \mathrm{p}, 2$ for $\mathrm{E1.50,5} 5$
for $£ 3.50$.
2 Pole make, biased off 2 A
240 V .
30p. 4 for $£ 1$

CAPACITOR, 800 V AC, RMS. 0.01 MFD.

30p esch

ADD 50p P\&P
ORDERS OVER
E2,50 post free


HERE'S a second chance to own the most valuable aid to the electronics hobbyist AN OSCILLOSCOPE. With a screen size of 75 mm and a band width of DC to 5 MHz the Kikusui 538A will enable you to 'see' how circuits are working instantly.
Apart from the CRT, semiconductors are used throughout the circuit: the 'scope is ready to operate in under 20 seconds. It comes complete with operating manual containing full details of operation, maintenance, calibration and circuits.
All-inclusive cost of the 538A, delivered to your door, is only $£ 95$. Each 'scope carries a full one-year guarantee.
We had an overwhelming demand for the 538A when it was first offered in the February ' 81 issue of HE : the entire stock was cleared in the first two weeks!

BRIEF SPECIFICATION


So don't miss this second chance to own a highquality 'scope . . . and choose between TWO methods of payment: Barclaycard or cheque

Enter your Barclaycard number in the space provided on the coupon, add your signature, name and address - and we'll do the rest
Enter your name, address and the amount in the coupon and send it with your cheque, made payable to Modmags Ltd.

Please also specify the number of 'scopes you require
SEND ALL ORDERS TO:
HE Scope Offer, Modmags Ltd., 145 Charing Cross Road, LONDON WC2H OEE
Please note that the offer applies to UK mainland only: allow 28 days for delivery




## The larger Catalogue that means

FREE POSTAGE IN U.K. ADDITIONAL DISCOUNTS
KEEN PRICES

GUARANTEED SATISFACTION GOOD STOCKS

We pay postage

> Semi-Conductors •I.C.s • Optodevices $\bullet$ Rs and Cs in great variety - Pots • Switches • Knobs. Accessories •Tools • Materials • Connectors

## electrovalue

ELECTROVALUE LTD. (Dept. HE4j 28 St. Jude's Road, Englefield Green, Egham, Surrey TW2O OHB Telephone: (STO 0784) (London 87) 33603. Telex: 264475

## GEC AM/FM STEREO TUNER

 AMPLIFIER CHASSIS. Originally designed for installation into a music centre Supplied as two separate built and tested units which are easily wired together. Note: Circuit diagram and interconnecting wiring diagrams supplied. Rotary Controls: Tuning, on off volume, balance, treble, bass. Push-burnon con-trols: Mono, Tape, Disc, AFC, FM (VHF). LW. MW. SW. Power Outpur: 7 walts RMS per channel, at better than $2 \%$ THD into 8 ohms. 10 watts speech and music. Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ within $\pm$ 3dB Tape Sensirivity: Output - typically 150 MV . Input - 300 mV for rated output. Dise Sensitivity: 100 mV (ceramic cartridge). Radio: FM (VHF), $87.5 \mathrm{MHz}-108 \mathrm{MHz}$. Long wave
$145 \mathrm{kHz}-108 \mathrm{kHz}$. Medium wave

$520 \mathrm{kHz}-1620 \mathrm{kHz}$. Short wave. $5.8 \mathrm{MHz}-16 \mathrm{MHz}$. Size: Tuner $-23 / 4 \mathrm{in}$. $\times 15 \mathrm{in} . x 71 / 2$ in approx. Power amplifier 2 in . $x / 1 / 2 \mathrm{in}$. $\times 41 / 2 \mathrm{in}$. approx. 240V AC operation. Supplied complete with fuses, knobs and pustbuttons, and LED stereo beacon indicator. Price $£ 21.50$ plus £2.50 postage and packing.


Stereo Cassette Tape Deck Madule comprising of a top panel and tape mechanism coupled io a record/play-back printed board assembly. installation into cabinet or console of own choice. These units are brand new, ready-built and tested.
Features: Three digit tape counter, Auto-stop. Six piano type keys, record, rewind, fast for: ward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. input sensitivity loomv to $2 V$. Inpur impedance 68 K . Output nels. Output impedance 10 K Signal to noise ratio 45 dB . Wow and flutter $01.1 \%$ Power supply requirements 18 V D.C. at 300 mA . Connections the left and right-hand stereo inputs and outputs are via individual screened leads all terminated with phono plugs (phono sockets provided). Dimensions: Top panel $51 / 2 \mathrm{in}$. $\times 111 / 4 \mathrm{in}$., clearance required under top panel $21 / a i$.
Supplied complete with circuit diagram and connecting diagram.
Price $£ 25.70+£ 2.50$ postage and packing. Supplementary parts for 18 V D.C. power supply itransformer, bridge rectifier and smoothing capacitor) £3. B.K. ELECTRONICS 37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5Tv 8ARCLAYCARD


## Short Circuit

## Direct Reading Ohmmeter

This is a useful piece of equipment for checking unknown resistors, continuity of coils, transformer windings etc. Designed around a 741 operational amplifier it has the advantage that once the meter dial is calibrated, resistance can be read directly from the scale without the usual cramping at the lowresistance end.
The meter can have any internal resistance, but it must be made up to 3k by an external resistor R7. The prototype used a meter with an internal resistance of 100R. It is a good idea to make up the meter resistance to a round value of say, 300R, by a small resistance so that you aren't left with an awkward value for R7.
The complete unit is self-zeroing and is protected against opencircuit or unknown resistance at Rx by diode D1.

(c) Copyright MODMAGS Ltd.

All short circuits are offered as suggestions only. To the best of our knowledge they are fully working designs, but we have not tested them. If you have an original design which you would like to see published as a Short Circult, send ht to us - we will pay for all circuits published.



## Game

RUSSIAN ROULETTE as a game apparently originated in the officers' mess of army posts around the world, where shell-shocked officers would gamble with their own lives merely as a relief to boredom. The idea was to load one bullet in the chamber of a revolver, then to spin the chamber so that nobody would know exactly where the bullet was in relation to the firing pin. One of the men would then hold the gun pointed to his own head, pull the trigger and - if he was lucky (an average of 5 out of 6 times) - click, if not (1 out of 6) - bang.

The HE Russian Roulette Game harmlessly imitates the real thing. It uses an integrated circuit to clock in a cycle of six, simulating the six bullet spaces of the chamber. By operating the spin switch the 'bullet' is automatically moved round - the chamber is spun. Each time the 'trigger' switch is pressed, the bullet comes one step closer to the 'firing pin', which is a LED in our game. When the bullet reaches the firing pin

This one will just kill you - a hamless electronic simulation of a dangerous game. Save the expense of redecoration: better still, save your life - with this fun-filled game from HE
the LED lights, 'killing' the last player who pulled the trigger. The winner of the game is the last one left - he buys the next round of drinks.

As you can see, we managed to fit our prototype inside the handle of a full-sized polystyrene model of a gun (a 4 " Smith \& Wesson 44 Magnum). There is of course, no reason why an

Our prototype fits inside the adapted handle of a 44 Magnum model gun made by L\&S Co., Ltd.

Parts List

| RESISTORS (All $1 / 4 W, 5 \%$ ) |  |
| :--- | :--- |
| R1.2 | 18 k |
| R3 | 330 k |
| R4 | 470 R |
| CAPACITORS |  |
| C1.2 | 100 n ceramic |
|  |  |
| SEMICONDUCTORS |  |
| IC1 | 555 timer |
| IC2 | 4017 decade |
|  | counter/divider |
| LED1 | red LED |

## MISCELLANEOUS


single-pole, singlethrow miniature toggle switch
SW2 double-pole, doublethrow miniature toggle switch
PB1 single-pole, singlethrow, momentary action push switch
9 V battery + clip (PP3-size)
Case to suit

## Buylines

The parts for this project (excluding the PCB and whatever housing you use) will cost about E 6 . You should have no difficulty in obtaining components.

Any good model shop should be able to help with a suitable model gun. Be careful to choose one which has enough room inside to house the project.


Figure 1. Circuit diagram
© Copyright MODMAGS Ltd.
Figure 2. Overlay of the printed circuit board, whose foil pattern is on page 65


## How It Works

An oscillator clocks the counter whenever the spin switch is pressed. Upon release the state of the counter is not known. Pressing the trigger switch clocks the counter on, one step. If that is the number one output, the LED lights indicating that the bullet has been fired.
(c) Copyright MODMAGS Lid.


The oscillator is formed around a 555 astable multivibrator circuit operating at about 250 Hz . This frequency is defined by the resistor/capacitor chain R1,2 and C1 according to the formula:

$$
f=(R 1+2 R 2) \times C 1
$$

Switch SW2 is the spin switch, which
does two jobs when pressed: it connects the oscillator to pin 14, the clock input of the 4017 counter, and it isolates the LED so that it cannot flash. Releasing SW2 stops the 4017 from clocking. Each press of the trigger switch, PB1, provides one pulse to the clock input and thus moves the 4017 on one step. When the output of the counter corresponds to the LED connection the LED lights up.

## ELECTRO SUPPLIES




AC volts:- $\quad 0-10-50-100-250-500-1000$ :
DC volts:- $\quad 0-0.5-5-25-125-250-500-j=\infty$ OC current:- $0-50 \mathrm{ma}-0.5 \mathrm{ma}-250 \mathrm{ma}$ 位 Resinance:- $0-3 \mathrm{Kohms}-300 \mathrm{Kohms}-3$ meg ohms Deibels:- $\quad-2010+63 \mathrm{db}$
Dims:
$127 \times 90 \times 32 \mathrm{~mm}$
Dims:- $\quad 127 \times 90 \times 32 \mathrm{~mm}$
Please add 30 p P.P. per unit order as MT 7

High velocity mylar diaphragms. Coiled lead.

Please add 30 p P.P. per unit order as PH 12


## Headphones

 order as PH 12

## RROW ADO GENTRE

Prices include VAT, please add 50p P\&P

| MAIL OROER DEPT. | RETAIL SHOP |
| :---: | :---: |
| (Callers please phone firs) | (Open 6 days) |
| BOWNESS MILL, SHAWCLOUGH RD | GA TDOD ST |
| WATERFOOT, ROSSENDALE, LANCS | MANCHESTER |
| TEL: ROSSENDALE 5556 | (next to Victoria Stn.) |
|  | TEL: O61-834 1185 |

LM1011N (DOLBY BI/C)

LM1011N (DOLBY BI/C)

LM1011N (DOLBY BI/C) .....  ..... £2.50 .....  ..... £2.50 .....  ..... £2.50
TDA2020 (20 watt amp)
TDA2020 (20 watt amp)
TDA2020 (20 watt amp) ..... £2.00 ..... £2.00 ..... £2.00
MM53100N (TV clock timer)
MM53100N (TV clock timer)
MM53100N (TV clock timer) ..... 00 ..... 00 ..... 00
AY-5-1013 (UART)
AY-5-1013 (UART)
AY-5-1013 (UART)
AY-5-1013 (UART) ..... £2.00 ..... £2.00 ..... £2.00
SPECIAL OFFERS
SPECIAL OFFERS
SPECIAL OFFERSFOOT, ROSSENDALE, LANCS MANCHESTER TEL: 061-834 1185


# Conquer the chip. will revolutionise every human activity over the next ten years. 

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home. WHSE: ELGIUNUC LEARN THE PRACTICAL WAY

- Building an oscilloscope. Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi. Fi and all types of modern computerised equipment.


## MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS. - Complete Home Study library. - Special educational MiniComputer supplied ready for use. Self Test program exercise. - Services of skilled tutor available.

## MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.


# 0 Level Q\&A 

## It's time to talk about transducers. Nick Walton explains what they are, what they do and where you'll find them being used

We have transducers on the bill of fare this month and we will be meeting mike as well - but more of him anon. Whatever is a transducer? Well, I have seen it described as a device which changes one form of energy into another and while that is the basic idea, it is somewhat incomplete. In the same way you could describe your own body as a transducer as it spends a lot of its time changing energy of one sort into another, but as an example it just does not feel right. So we have to settle for a definition something along the lines of a device which receives a signal (or series of waves) in one form and produces a corresponding signal or series of waves in another energetic form. An excellent example of this is the loudspeaker. It spends its time receiving alternating currents from the output of an amplifier and faithfully converting these into movements of a stiff paper cone. These movements in turn cause small changes of air pressure which our ears perceive as sound. So while the energy change bit does take place we can also say that the form of the output is a faithful reproduction (!) of the input.

Hopefully you can see the same idea coming over from the function of a microphone which does the reverse of a loudspeaker: sound vibrations go in and corresponding electrical vibrations come out and are fed usually to the input of an amplifier.

Today there is quite a range of devices all busily transducing, some in an obvious way and others not quite so obviously. Perhaps you can now understand why our syllabus mentions, apart from the speakers and mikes we've already mentioned, the following things as transducers: record player pickups, the thermocouple (a junction of two metals between which there appears a voltage when the junction is heated), various light sensitive devices which conduct better or give rise to a voltage under the influence of light, and our friend the thermistor (pushing it a bit, you might think) which drops its resistance as its temperature goes up.

If you want a really one-up transducer, then how about the photocoupler? This is a combination of light-emitting diode, itself a sort of transducer which emits its light (derived electrically in the first place) and a photo-transistor which changes its conduction according to the level of light incident on it. The two parts of the circuit can be electrically separate from each other. Applications of this transducer are found in oscilloscopes for controlling the grid of the tube and also in the control of thyristors. Surprisingly, this photocoupler can operate at frequencies in the kilohertz range.

Usually, a transducer is what is called 'passive'; that is, its energy output is derived solely from the input energy. If it derives energy for its output from a source other than just the input waves it is referred to as being 'active'.

## Left-handed Look At Loudspeakers

Let us now look at our transducers in more detail, and if we first consider the loudspeaker some further basic electromagnetism might not come amiss. A proper understanding of the loudspeaker involves something called Fleming's left-hand rule. (This was named after Sir John Ambrose Fleming: a physicist who lived to the ripe old age of ninety five during which time he
invented and developed the thermionic diode for which he coined the name guess what - the valve.) If you remember back to the December issue, we looked at magnetic field lines or lines of force. Magnetic behaviour can be explained by regarding lines of force wanting to shorten themselves. Thus a north pole of one magnet near a south pole of another can result in the two being drawn together (Fig.1). Suppose we now have, going straight through this field, a current-carrying wire represented by the cross midway between the poles with circular lines of force round it, as shown in Fig.2. There will be a force pushing downwards on the wire and you can think of this as coming about because the north-south field lines want to shorten themselves. It's a bit like a catapult with the wire as the stone and the stretched field lines as the stretched elastic under tension. So we have a right angle between each of the three quantities we are dealing with. That is, the magnet's field (left to right across the page), the conventional current direction (perpendicularly to the page) and the force pushing the wire towards the bottom of the page. Any two you choose will be at ninety degrees to each other.

These directions follow the way your left hand goes if you do a 'thumbs up'. With your hand in this position, point to someone facing you (without, of course, changing the position of

© Copyright MODMAGS Ltd.
Figure 1. North and south poles of perma* nent magnets attract each other
(c) Copyright MODMAGS LId

Figure 2. How a current-carrying wire
 behaves in a magnetic field

WIRE CARRYING CURRENT DOWN INTO THE PAPER


Figure 3. Illustrating Fleming's Left-hand rule
your thumb) and straighten out your big finger (see Fig. 3). The First finger represents the field, the seCond finger represents the current (conventional positive-to-negative flow, that is) and the Thumb represents the thrust on the wire. You could use the ' $m$ ' in thumb to stand for motion of the wire except that it may not always move but there is always a thrust or force on it.

And what is the neatest example of Fleming's left-hand rule? You've guessed. It is the loudspeaker, once you realise that the clever bit is the shape of the magnet. A section of the whole speaker is shown in Fig.4, and details of the permanent magnet assembly are shown in Fig.5. While Fig.5a shows a side section of the magnet,Fig. 5 b shows a view on-axis - in other words, what you would see if you tore out the cone and the speech coil. Actually I am not just being vandalistic. If you can get hold of an old wrecked speaker you can learn a lot by cutting it up as far as possible to look at the coil and the shape of the permanent magnet. The poles are as close together as they can be, leaving just enough of a gap to let the coil slip in as indicated.

Now, looking at the top half of Fig. 5a and putting in the $x$ symbol to represent the wire of the coil at that point going away from you, we get to Fig.6. Now give that the Fleming lefthand treatment first finger downwards from the top of the page to the bottom, second finger down into the page) and you either discover your thumb is pointing to the left side of the page, or that you have dislocated your shoulder. Try turning the magazine round instead of yourself - you'll find it's a bit lighter. So with the current in that direction the coil is pushed to the left. You should also check that the lower half of the coil is also pushed to the left - otherwise you could have

Figure 4. Section through a loudspeaker, perhaps the best-known transducer of all
a

b

(c) Copyright MODMAGS Ltd.

Figure 5. Loudspeaker permanent magnet: a) side section showing north and south poles and position of speech coil, b) view into centre pole of magnet, from cone side

(c) Copyright MODMAGS Ltd.

Figure 6. Current-carrying wire in a magnetic field - this time between the north and south poles of the magnet shown in Fig. 5a
problems! Then, if a split second later the current flows in the other direction, further attempts to dislocate your shoulder (it must still be the left shoulder) should reveal the coil moving further into its little gap or towards the right of the page.

## Mike The Transducer

Now let's put mike under the microscope as our next transducer.

The earliest type of microphone used was the carbon granule type. It did not exactly work as a piece of hi-fi equipment at the turn of the century and it is still used by British Telecom in telephones - and it still does not work very well. It has the great merit, however, of being cheap and simple (you can pick them up in surplus shops for as little as 10 to 20 p ) and it just works by the sound waves squeezing the granules a bit more tightly together, thus lowering their electrical resistance and so allowing more current to flow. The idea is illustrated in Fig. 7. Actually, they do not really do


Figure 7. Side view of typical carbon microphone
such a terrible job when you consider the high expectations we have of microphone behaviour. The mike is expected to respond to air displacements of a ten millionth of a millimetre, which corresponds to an air pressure change of a hundred millionth of atmospheric pressure, all this giving rise to about a million millionth of a watt of power being handled. If that is not sufficiently brain boggling then remember that we expect it to respond over the entire frequency range which our ears can hear, which is usually taken to be from a lower limit of 20 Hz (ie 20 vibrations per second) to 20 kHz (ie 20 kilohertz, which is twenty thousand vibrations per second).

Hertz, incidentally, was a shortlived German physicist who discovered radio waves in 1888 aged 31 and died aged 36 . He will be the subject of the new Famous Names series in a few issues' time.

Two mikes we need to consider in detail are the moving-coil and crystal types. The moving-coil bears a striking similarity to the moving-coil speaker. Indeed you can use a speaker as a microphone if you have to. The action is that of a speaker in reverse since the

## O Level Q\&A

sound waves are producing movements of the diaphragm which moves the coil in the field of the permanent magnet, thus inducing voltages in it.

A not-too-distant relation is the ribbon microphone, which uses just the same induction principle but with a corrugated aluminium alloy ribbon whose movement in the permanent magnet's field does the induction bit.

A condenser microphone (more correctly referred to as a capacitor microphone) gets the electrical fluctuations by a change in capacitor plate separation and hence in capacitance, but the crystal mike uses a different principle altogether, the piezo-electric effect. This is an effect found in some crystals, notably quartz, where small strains imposed on the crystal result in small voltages across it.

## Pick Up A Transducer

Indeed the piezo-electric effect is used in the crystal pickup of a record player - yet another type of transducer we have to consider - where the varying strains are transmitted from the stylus moving along the groove. It is a deceptive little path that groove. Did you know that in some highly magnified pictures of the grooves of unplayed records it is possible to see the groove turning through a complete right angle? No wonder they wear out quickly, especially when you consider that early pickups had a tracking weight of up to about two hundred grams whereas today the technology is such that they can manage on a fraction of a gram. Crystal pickups usually give more output than magnetic pickups, though this is not true for the latest type of ceramic crystals that are used. One of the earlier difficulties was that the best piezo-electric crystals were deliquescent (dissolving in water absorbed from the air), so unless the manufacturer took precautions you could have the crystal picking up water from the atmosphere and dissolving itself in a little puddle by the turntable. So how about 'crystal pickup' as a suitable name for your next puppy?

Assuming that the crystal stays undissolved, the output is given in RMS volts for a certain stylus velocity (RMS volts is the 'root mean square' voltage which for our purposes is just a kind of average voltage). For instance, you might meet a pickup with a specification given as one $\mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. This just means that when the stylus is moving over the record at a speed of one $\mathrm{cm} / \mathrm{sec}$ the output is 1 mV (millivolt). There can be a slight problem here
because if your disc is rotating at a steady $331 / 3$ RPM, the rim of the disc is travelling twice as fast as a point half way in towards the centre. Since if the speed is halved, the output voltage is also halved, pickup manufacturers have to build in some compensation to their pickups. Without this compensation you would get a progressive diminuendo from the first groove to the last, which might not suit everybody.

Magnetic pickups are the only other sort we have to consider, and yet again we meet our old friend the moving coil. Small wire coils are still used and they. still vibrate in the field of a permanent magnet, but the very latest use a printed coil of mass about 150 micrograms (one microgram is one millionth of a gram) on a one millimetre square wafer. The big advantage of this reduction in size and weight is that the magnet can be mounted sitting virtually on top of the stylus and this improves the reproduction even more (see Fig.8).


Figure 8. Modern type of moving-coil pickup

## Thermocouples, Thermistors \& Lightsensitive Cells

If you bend your imagination a bit you might be able to admit thermocouples and thermistors into our crowd of transducers. If you really cannot make that leap, don't worry but you still have to know about them! A thermocouple at its simplest is a couple of different bits of wire leg copper and iron) twisted'together with their free ends connected to a sensitive microammeter. Heat them up and - lo and behold - you see a small current flow. Strictly you should have two junctions, one hot and the other cold, and you'd get a voltage developed between them, as indicated in Fig.9.

In the first example, we were using one of the microammeter or galvanometer terminals as the cold junction. The thermistor, on the other hand, is just a circuit component

(c) Copyright MODMAGS Ltd.

Figure 9. Operation of a thermocouple
whose resistance drops when you heat it, unlike a metal whose resistance increases with temperature. A thermistor can be made of carbon or some metal oxides and can be used as the sensing element in a simple temperature alarm circuit: a thermistor could have been used in the HE Freezer Alarm project described in the October 1980 issue.

Recently I was pulling an old telly apart and found a couple of thermistors whose function was to offer a high resistance when you first switched on, thus keeping current down till things reached their working temperatures.

The last class of transducers to be covered are light-sensitive devices, and these fall naturally into two categories - those that produce a voltage when exposed to light, hence called photovoltaic transducers, and those whose resistance is dramatically altered by light, known as photoconductive cells. Selenium cells and silicon cells fit into the photovoltaic category and probably the best known use of these is in satellites where there is all the sunlight you need to stimulate the cells to produce the electricity required to keep the electrical systems going. I did hear of an American who, in sunny Arizona, built a car whose roof was entirely covered with solar cells .

For photoconductive cells, cadmium sulphide is probably the most common compound used. A strip of it can have a resistance of about a hundred ohms in sunlight but it can rise to ten thousand times that value (over a megohm) in total darkness. The cells can therefore be used as the detector bit of, say, an automatic parking light or in some sort of packet-on-a-production-line counting device.

At this stage my energy output is exhausted, and I hope you consider your energy input was worth while and that with all this talk of photosensitivity you are well enlightened and fully transduced. I trust the project and the essay topic are taking shape. Stuck for a topic did you say? Why not something on transducers...?! See you next month. Cheers!

## PARNDON ELECTRONICS LTD．

Dept．No．22， 44 Paddock Mead，Harlow，Essex CM18 7RR．Tel． 027932700 RESISTORS ne．High quali resistor and colour coded．
£1．00 per hundred mixed．（Min 10 per value） e8．50 per thousand mixed．（Min 50 per value） Special stock pack． 60 values． 10 off each $\mathbf{£ 5} 50$

DIODES：IN4148 3p each．Min order quantity－ 15 ftems
E1． 60 per hundred
DIL SWITCHES：Gold plated contact in fully sealed base－solve thos
rogramming problems．
4 Way 86 p each． 6 Way $£ 1.00$ eac̀h． 8 Way $£ 1.20$ each
DIL SOCKETS：High quality，low profite sockets，
8 pln－10p． 14 pin－13p． 16 pln－ 15 p． 18 pin－ 19 p． 20 pin－ 25 p $22 \mathrm{pin}-29$ p． $24 \mathrm{pin}-35$ p． 28 pin－39p． $40 \mathrm{pin}-57$ p．

ALL PRICES INCLUDE V．A．T．\＆POST \＆PACKING－NO EXTRAS
MIN．ORDER－U．K．©I 00．OVERSEAS 〔5－CASH WITH ORDER PLEASE

## Rapid Electronics



A10 10 PPं3 battery leads A72 $\quad 103.5 \mathrm{~mm}$ jack plugs A73 103.5 mm jack sockets A75A 5 Standard jack plugs A84A 55 pin 180 DIN plugs A85A 55 pin 180 DIN socket C21 5 Min ．slide switches C28 5 Push to make switches C29 5 Push to break switches C50 208 pin DIL sockets 2014 pin DIL sockets C52 2016 pin DIL sockets 22 E10 Resistor kit． 650 resistors $1 / 4$ W 10 ea value 4.7 to $1 \mathrm{M} \quad 480 \mathrm{p}$ Single potentiometers $5 \mathrm{~K}-1 \mathrm{M} \log$ in lin Slide potentiometers． 60 mm ravel． $5 \mathrm{~K}-500 \mathrm{~K}$ log or lin 10100 K min ．presets 10 lu 63 V electrolytics 104 u 763 V radial elec． 1010 H 25 V radial elec． 10100 u 25 V radial ele 100.01 C 280 polyester 100.01 C 280 polyester 10 BC107 transistors 10 BC108 transistors 10 BCl 09 transistors 10 BC214L transistors 27A 52 N3819 transistors 311 BD131 transistor 312 1BD132 transistor

Pack No． 50 p
80 p 1 BD139 transistor $43-578105$ regulators 17805 regulator F47A 17812 regulator F49A 17905 regulator F53 1 LM317T variable reg． LM323K 3A 5V reg 20 1N4002 diodes 2 W005 bridge rectifiers 60100 1N4148 diodes C106D thyristors 00.2 in red LEDs 100.2 in green LEDs 100.2 in yellow LEDs 200.2 in LED clips 00.125 in red LEDs 100.125 in green LEDs 100.125 in yellow LEDs 200.125 in LED clips FND500 CC display 5741 op amps．
5 CA3140 op amps．
LM301A op amps
1 L．M324 op amps．
LM3914 LED bar graph
LM3914 LED bar graph
NE556 timer
TL081 op amps．
TL081 op amps．
4013 CMOS
4017 CMOS
14049 CMOS

All prices include VAT．Please add 50p postage and packing．Send s．a．e．for our complete catalogue

Rapid Electronics Limited
Hillerof House，Station Road，Eynsford，Kent
A NEW ADVENTURE IN COOKING！
COMPONENTS AND CHIDP FROM
Fast Service

| COMPUTERGRADE HIGH AIPPLE CAPS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ma | voits |  | Oimmm | Pruce | pp |
| $1500 \cdot$ | 100 |  | B0 $\sim 35$ | 700 |  |
| 2200 | 40 |  | 50 － 25 | 1500 |  |
| 3300 | 25 |  | 50．25 | 1500 |  |
| $3300 \cdot$ | 63 |  | 115：35 | ${ }^{\text {a0p }}$ |  |
| 3300. | 150 |  | $100 \cdot 65$ | 1200 |  |
| 4700 | 75 |  | 115 \％ 35 | 1900 |  |
| 11000 | 25 |  | 68 － 50 | 1800 |  |
| 15000 | 16 |  | 880．35 | 1800 |  |
| 15000 | 40 |  | 115.35 80.50 | ${ }^{1900}$ |  |
| 22000 | 16 |  | 80．50 | ${ }^{2200}$ |  |
| 22000 | 25 |  | 115：33 | 2500 |  |
| 28000 | 25 |  | 105 $\times 70$ | ${ }^{2700}$ | ${ }_{80}^{80}$ |
| 34000 | 50 |  | 145 ： 75 | 3500 |  |
| ${ }^{64000}$ | 40 |  | 115 － 75 | 5900 | 800 |
| 68000 | 16 |  | 115 660 | ${ }^{5750}$ | ${ }^{800}$ |
| 138.000 160.000 | 10 30 |  | $145 \times 75$ $220 \times 75$ | 6000 7500 | 120p |
| al trpes have screw terminals <br> －EX－EQUIPMENT．TESTED |  |  |  |  |  |
| P．C．B．EOGECONNECTORS |  |  |  |  |  |
| Pinch W | Ways | － | Pnce |  |  |
| 01 |  |  |  |  |  |
| 0.1 | 36 |  | 1900 |  |  |
| 0.1 | ${ }_{54} 5$ | BC | 2450 |  |  |
| 0．1＂ | ${ }_{5}^{54}$ | ${ }_{\text {AC }} \mathrm{C}$ | 1100 |  |  |
| O1－1－ | 85 85 | ${ }_{\text {AC }} \mathrm{AC}$ | 2009 4000 |  |  |
| 0.15 | 12 | ${ }_{\text {a }}$ | 750 |  |  |
| $015{ }^{\circ}$ | 25 | BC | 1200 |  |  |
| 0.15 | 56 | BC | 325p |  |  |
| 0156 | 12 | PET | 1500 |  |  |
| $0.156^{\circ}$ | 28 | BC | 1900 |  |  |
| 0． $855^{\circ}$ | 36 | BC | 2000 |  |  |
| $-A=$ SINGLLE SIDED $B=$ DOUBLE SIDED <br> $C=$ SOLD TAG D WIRE WAAP <br> ALL GOLD PLATED EASILYCUT TOSIZE |  |  |  |  |  |
| VOLTAGE REGULATORS |  |  |  |  |  |
| Type | V | A | Case |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| ${ }_{\text {LM723 }} \stackrel{7815}{ }$ |  | 12 | 103 |  |  |
|  |  |  | DIL | 35p |  |




| TRANSISTORS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2N4697 | 220 | AD162 | 40 p | BC251A | 15p |
| 2N6e9 | 35p | ${ }^{\text {a }} 108$ | 10p | BC252 | 16p |
| 2N706A | 250 | BC109 | 100 | ВС327 | 130 |
| WN136A | 250 | BC14 7 | 7 | вС337 | 139 |
| 2 N 2646 | 45p | BC148 | $7 p$ | 日C338 $^{\text {c }}$ | 140 |
| 2N2904 | 23 p | BC149 | 7 p | вС348 | 150 |
| 2N2906 | 230 | 8C157 | 野 | ${ }^{\text {BC547 }}$ | 120 |
| 2N2926 | 70 | ${ }^{\text {BCO}} 159$ | 10 p | ${ }^{\text {BC }} 548$ | 89 |
| 2N3053 | 250 | ${ }_{8 C 167}$ | 109 | ${ }^{\text {BC }} 549$ | 9 |
| $2 \times 3055 \mathrm{H}$ | 600 | 8С¢70 | 10 p | $8^{8 C r} 338$ | 1200 |
| 2 N 3440 | 60p | BCITOA | 11p | $\mathrm{BO}_{24} 2 \mathrm{C}$ | ${ }^{300}$ |
| 2N3442 | 1200 | BC170C | 12p | BF258 | 350 |
| 2N3702 | ${ }_{80}$ | EC174 | 10p | BFT60 | 280 |
| 2Na703 | 80 | bCitia | $11 p$ | 3FW22 | 200 |
| 2N3704 | 80 | BC172A | 10p | BFY50 | 280p |
| 2wa7\％ | 1500 | BC1728 | 10p | M1000 | 959 |
| 2N3906 | 150 | $8 \mathrm{CL172C}$ | 10 p | Mu4030 | 2250 |
| 204304 | 200 | 8C172 | 10 p | MPU131 | 25p |
| 2N4354 | 500 | BC173C | 100 | TPP29 | 400 |
| 2N4352 | 500 | EC1748 | 100 | tipza | 300 |
| $2 \mathrm{NS447}$ | 100 | BC182L | 100 | tip3oa | 420 |
| 2NS449 | 12p | BC2078 | 150 | Tip31 | 269 |
| 2N5943 | 55p | $8 \mathrm{Cc217}$ | 80 | $27 \times 108$ | 80 |
| 2N6385 | ${ }^{1250}$ | BC213A | $8{ }^{80}$ | $21 \times 314$ | 200 |
| ${ }_{\text {A Cris }}$ | ${ }^{750}$ | ${ }_{\text {BC250a }}$ | ${ }_{1}^{12 p}$ |  |  |

SPECIAL OFFERS
200 NS RAMS 8 for $£ 19.95$ 2114L－3 300 NS HAMS 8 tor $\mathbf{5 2} 50$ 650 NS RAMS 8 for $£ 5.50$ ENOUIPIES MOST WEL COME

Electronic Components and Equipment purchased for cash

## ［brciatcaro DISPLAY ELECTRONICS 64－66 Melfort Road Thornton Heath，Croydon，Surrey CR4 7RN Telephone Orders：01－689 7702／01－689 6800

## Please add 50p Post and Packing



## Fed up with dirty windscreens? The problem can be solved with this all-electronic circuit which gives you an early waming when the fluid in your windscreen-washer bottle is getting low. It's a fun-to-build, simple and cheap project

IT IS REMARKABLE how purposebuilt integrated circuits can be made, by modern-day processes, to fulfill functions which, only a few years ago, would require complex transistor (or worse still, valve) circuitry. The IC used in this project is a case in point. Its official title is simply a 'fluid detector' and with only six other readily-available and cheap components it can be used to detect whether the level of fluid in a container is above or below a predetermined height. A similar circuit ten years ago would have used about a dozen separate
transistors and twenty or thirty other components.

This project uses one IC, the LM1830, to automatically alert the motorist to the fact that the fluid in his/her windscreen-washer bottle is getting low and shortly will run out. A stop can then be made at the next service station, to refill the bottle before the car in front splatters mud on your windscreen and to your annoyance you find that you can't clean it off because the washer bottle is empty.

A light-emitting diode (LED) comes on whenever the fluid level is low and
tells you to refill the bottle as soon as you can.

## Construction

Construction of the project couldn't be simpler. There are only seven components to fit onto the Veroboard and only eight track breaks to make underneath. Track breaks can be made with either the correct cutting tool for the job or a small (about 3 mm ) hand-held drill bit. Whichever you choose the method is the same: hold the tip onto
the hole in question (indicated in Fig.2) and gently rotate it clockwise until the copper strip is cleanly broken. Check that no swarf remains lying across adjacent tracks because this might cause a short circuit.

Next, insert and solder all componets and the single link. Use an integrated circuit socket for IC1 to plug into and check that IC1 and C3 are the correct way round. The LED can be used to mount the board into its case (or onto the fascia panel of your car) if you take care.

The probe will vary from car to car and obviously we can't provide details for all applications. However, Fig. 5 shows one suggestion of how you may construct yours but it all depends on individual washbottles. All that you need to do is make sure that the probes are made of nonrusting material (stainless steel rod is ideal - see Buylines) and that they don't touch each other. Set them to be the required distance from the bottom of the container. Then, when the fluid level gets below the probe height - on goes the LED to warn you.

The circuit draws only 10 to 20 mA so the in-line fuse (which you must use) should have a value of about 100 mA .


© Copyright MODMAGS Ltd.
Figure 2. Veroboard overlay, component
locations and track breaks underneath


Figure 1. Circuit diagram

## Parts List

| RESISTORS (All $1 / 4 W, 5 \%$ ) |  |
| :--- | :--- |
| R1.2 | $470 R$ |
| CAPACITORS |  |
| C1 | $1 n 0$ polystyrene |
| C2 | 47 n ceramic |
| C3 | $47 \mathrm{u}, 16 \mathrm{~V}$ electrolytic |

SEMICONDUCTORS
IC 1
LM1830 fluid detector red LED + mounting clip

## MISCELLANEOUS

10 strip $\times 24$ hole, 0.1" Veroboard In-line fuseholder +100 mA fuse

## Buylines

The components for this project should cost less than $\mathbf{£ 4}$. If you have any trouble obtaining the LM 1830 try TK Electronics, who stock it and advertise in Hobby Electronics.

You can obtain stainless steel rod from:

George King Metals Ltd. 224 Tooting High Street, London SW 17 OSQ. who will supply two 1 ft lengths of $1 / \mathrm{m}^{\prime \prime}$ diameter stainless steel rod for 50p inclusive of VAT and $p \& p$.

## Windscreen Washer Alarm

## How lt Works

Integrated circuit IC1 generates a small voltage at its output which is applied via the probes to the fluid (see Fig. 3 below). When the resistance of the fluid increases over a pre-determined amount (due to the water level dropping below the height of the probes) the IC turns the LED on.


Figure 4 (right) shows the inside sections of the IC in greater detail. The regulator allows the IC to be used over a wide range of voltages ( 8 V to 28 V ). When the probe resistance is less than the internal resistance ( $R_{\text {int }}-13 k$ ) as it will be if the level of fluid is above the bottom of the probes, then the output of the detector is high, turning on the transistor and also the LED.

If the probe resistance is above 13 k the detector turns off the transistor and the LED goes off.


## ELECTRDITVKIT

## Introducing our new

 CHIP SHOP KITSEach CHIP SHOP KIT is complete in every way and contalns all the components necessary to build and operate the project described. All you need is a Soldering Iron (see Kit No. 2) and a $9 v$ battery. Each kit includes step-by-step instructions on construction and detailed educational notes about the individual circuit, together with advice about soldering techniques.

Kit. No. 2 - SOLDERING IRON - contains a high quality British solderlng Iron, a 1 Amp fuse and solder together with straightforward instructions upon how to handle your solder ing iron and the best techniques for its use and maintenance.
Kit No, 3 - ELECTRONICS TOOLS - contains a selection of useful tools for anyone starting in electronics, together with instructions about the use and care of your equipment.

SOLDER is included with every kit.
Kit. No.
1(a)
Morning Call plus
Price

1(b) Transistor Tester
$£ 5.00$
$\begin{array}{ll}2 & \text { Soldering Iron ........ } \\ 3 & \text { Electronics Tools .... } \\ 4 & \text { Electronic Organ .... }\end{array}$ 55.00 53.50

Morse Code Trainer and Siren Oscillator............ $£ 4.00$ Light Operated Burglar Alarm............................... £4.00
Buzzer - Aircraft £3.00
$\qquad$
$\qquad$ Lie Detector £3.00
10(a) Lamp Flasher plus
10(b) Sleep Inducer ...........................................................................
10(b) Sleep Inducer
11)a) Cat Sound plus
Cat Sound plus
Night Light Reminder ............................................. £4.50
Bicycle Horn plus
Electronic Shocker........................................................... 55.00
13(a) Light Sensitive Alarm plus
Electronic Lamp ................................................................... 54
14 2-Transistor Radio............................................................. $£ 4.00$
15 Morning Alarm............................................................................................. 4.00
16 American Police Siren ...............................................................................................................
Two-way Interphone...................................................... $\mathbf{E 5 . 0 0}$
4-Transistor Radio..................................................... $£ 5.00$
Clicker-Helicopter Oscillator....................................... £3.00
All kits packed individually in attractive boxes. Loudspeakers are included with each kit (except nos. 2, 3, 14 where they are not required)

Kit nos. 1, 10, 11, 12, 13 contain two separate projects.
These kits are becoming available in Hobby and Electronics Stores all over the Country - look out for the CHIP SHOP DISPLAY in your local store.

If you cannot locate a stockist please order direct from Electronl-Kit Ltd. Please add 50p per kit for postage and pack ing.
Trade and Educational Enquirles welcomes.
Cheque/P.O./Access/Barclaycard for 23p for full-colour illustrated literature) to DEPT. HECS.

## ELECTRONI-KIT LTD. <br> RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

## Clever answers a few more queries

BACK IN THE January issue of HE we asked if any of you were younger than Martin Green (he was 13 at the time). Ask a silly question . . . get a lot of answers! We had to open a 'youngest HE reader' file to cope with the volume of letters.

Right then, who is the youngest reader? Well, here's one I don't believe.

## Dear Educated Richard,

In reply to your request for your youngest reader, so as you can give me a binder, it is possibly me. I am 5 months old + have been reading H.E. for the last 4 months. You may think that your fantastic magazine a little advanced for my tender years, but personally I find you style of writing perfect for my age group.
R. Holland

To whom it may concern:- / certify that this letter has been written by my 5 month old son.

## R. Holland

P.S. Isn't his. handwriting remarkably similar to mine.

Sorry - don't believe you - 1 personally think you're 500 months old. Now for the real winner (determined by all the letters received until the time of going to print): Andrew Bolter, aged 10 years, of Willsbridge, Bristol. He'll be receiving this month's binder. Closest runner-up was Jonathan Wolff, aged 10 years, 9 months, of Boxmoor, Herts.

Now onto some serious business.

## Dear Intelligent Richard,

With Reference to the NiCad Battery Charger circuit in your January edition I am a little puzzled about the arrangement of $Q 1$ (TIP4 1 A). Do I take it that the terminals of this transistor are - from Left to Right - B.C.E.?

Also, in your sistèr mag, E.T,I. there are construction plans for a Differential Temperature Switch, on P.C.B. I have
been trying to work out how I could adapt this for vero, but so far without success. Please could you help?
Ta Muchly
A. Harrison

## Cramlington, Northumberland

P.S. I am not in the habit of extracting the Michael from people's names!
P.P.S. Martin Green is not H.E.'s youngest reader (Jan. issue), I'm 12 years old. Do I deserve a binder?

In answer to your first query, yes: looking down on Q1 (from the board side) the pins are BCE, with the emitter nearest the bottom of page 51, and the heatsink tab of Q1 to the right.

As to converting a PCB design to one on Veroboard, all I can say is that usually the simpler circuits are suitable for Veroboard: those like the Diff Temp Switch can require too much crosslinking.

OK, Martin Green is not HEs youngest reader but that doesn't mean that you get a binder!
We received a mixed reaction to the letter from D.S. Nightingale, published in last month's CD. Only one 'nasty' letter was received, from W.H. Biddlecombe of Paisley, Scotland, who started with 'Thank goodness for N.S. Nightingale, Essex. I thought it was just me - now l know better' and ended with 'P.S. You know what you can do with your binder'. Several readers sprang to HE's defence. Cheers to all those who wrote in expressing their loyal 'support.

Nice short one next.

## Dear C.D.

(1) Could you tell me where. I can get hold of ferric chloride and p.c.b. board as I hope to make my own.
(2) I've made the Nicad Charger in the Jan. issue but it makes a loud buzzing sound. What can be done to stop it.
(3) I think H.E.s the best mag out.
D. Young

Ewell, Surrey

One suggestion for ferric chloride and PCB laminate is to order a complete kit: -100 sq ins copper clad board, Ferric chloride, Etch resist pen, abrasive cleaner, two miniature drill bits, etching dish and instructions', cost £ 4.95 plus $40 p$ p\&p, from Greenweld, 443F Millbrook Rd., Southampton SO1 OHX (tel. 0703 772501).

Buzzing noises? Either something's shorting and the transformer is 'saturating' (and overheating), or the transformer has loose laminations. If the circuit's OK, check that the transformer is screwed down well to the board. If you're still out of luck, send for a replacement transformer.

Just one more, this time from Spain.

## Querido Ricardito el Inteligente,

I'm very interested in construction of the "Phase One", phaser published in HE a few months ago. Myproblem is more electromechanical than electronic: where can I find a miniature footswitch libe the one in the photos?
"Help me if you can, I'm felling down".

From the city of the Hanging Houses, my best wishes.
J.M.C. Arillo

Cuenca, Espana

Before you fell to your death, you can get the switch for the job (DPDT, 6 amp, heavy-duty push-button switch) from Watford Electronics 35 Cardiff Road, Watford, Herts, England. Cost is $£ 1.72$ inc. VAT, plus 50p p\&p (to Spain, that is): total cost $£ 2.22$ Ster/ing.

I must go back now to my work on the robot editor for HE (a sort of unintelligent HEBOT). Meanwhile, keep those letters short (I print them exactly as they are written, by the way) and remember: I can't answer every query sent in. Look after yourselves.

HE


Sole UK Distributors PRECISION PETITE LTD., Dept. H.E. 119a HIGH ST. TEDDINGTON, MDX. Tel: 01-977 0878

## LIGHTNING ELECTRONIC COMPONENTS

1981 Catalogue - Send 40p for your copy NOW
*Comes with 60p worth of discount vouchers.
Lightning
Components
Resistors
Capacitors
Semiconductors
Hardware
Tools - Meters
PCB Materials
Knobs - Books
Indicators

## Lightning Electronic Components

Freepost TAMWORTH, Staffs. B77 1BR

2
210 harthervire Roud, irentuand, Essen

## Ni-Cad BATTERY CHARGER SPECIAL OFFER for HE readers

## THE CHARGER

With the Jeckson BC-2203 three-in-one charger you can charge three popular sizes of Ni-Cad cell:

- AA (HP7-size) - as used in radios, shavers, photographic equipment, calculators, torches and many HE projects
- C (HP11-size) - as used in torches, toys, and electric toothbrushes
- D (HP2-size) - as used in large portable radios, radio/cassette players, torches and bicycle lamps
The BC-2203 is versatile too: four of the same-size cells or mixes of two sizes can be charged together, such as two AAs and two Ds. Also, single sets of two can be charged, and an 'on charge' LED indicator is provided for each set.
Operation is simple: telescopic spring-loaded contact heads self-adjust for each battery size, so there's no need to fumble when inserting or removing cells.
A snap-tight translucent plastic cover keeps the battery tray dust-free.


## THE OFFER

Not only a three-in-one charger, but a choice-ofthree offer!

* one BC-2203 charger with four Ni-Cad AA-size cells - only $£ 9.95$
$\star$ one BC-2203 charger with four Ni-Cad C-size cells - only $£ 13.60$
$\star$ one BC-2203 charger with four Ni-Cad D-size cells - only $£ 15.70$
All above prices are inclusive of VAT but exclusive of post and packing, at 50p extra
AND we offer THREE methods of payment: Barclaycard, cheque or postal order


Enter your Barclaycard number in the space provided on the coupon, add your signature, name and address - and we'll do the rest
Enter your name, address and the amount in the coupon and send it with your cheque or postal order, made payable to Modmags Ltd.


Send all orders to:
HE Charger Offer, Modmags Ltd., 145 Charing Cross Road, LONDON WC2H OEE

Please note that the offer applies to the UK mainland only: allow 28 days for delivery

YES, I would like to take advantage of HE's special charger offer for:

## No.

- BC-2203 charger and four AA-size Ni-Cad cells Ordered (10.45 inc. p\&p)
- BC-2203 charger and four C-size Ni-Cad cells (£14.10inc.p\&p)
- BC-2203 charger and four D-size Ni-Cad cells (£16.20inc.p\&p)

Total £

## WISH TO PAY

 BY BARCLAYCARD PLEASE CHARGE TO MY ACCOUNT MY BARCLA YCARD NUMBER IS:

I enclose a cheque/postal order* for
SIGNATURE
NAME
(BLOCK CAPITALS)
ADDRESS

# Books from the HE Book Service 

## SPECIAL OFFER TO READERS OF HOBBY ELECTRONICS ONLY <br> ELEMEN'S OF ELECTRONICS <br> Book I <br> $£ 2.60$ <br> Book II <br> $£ 2.60$ $£ 2.60$ <br> Usual price is $£ 7.80$ inc post and packing for 3 volume set. OUR PRICE $£ 7.00$ + FREE slip case for 3 volumes + FREE Resistor Colour Code Disc.

28 TESTED TRANSISTOR PROJECTS by R. Tortens .. £1.50 The author has designed developed and built some completely new circuits.
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS by R. A. Penfold 81.50 Enables the complete beginner to tackle the practical side of electronics.
ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST by G. T. Rabaroe ........ £1.50 Supplies the hobbyist with a background knowledge.
50 PROJECTS USING RELAYS,
SCR'S 8. TRIACS by F. G. Rayer
Gives tried and practical working circuits which should present the minimum of difficulty for the enthusiast to construct.

HOW TO BUILD YOUR OWN METAL AND TREASURE LOCATORS by.F. G. Rayer
£1.25
Contains complete electronic and practical details. on the simple and inexpensive construction of Heterodyne Metal Locators.

HOW TO MAKE WALKIETALKIES by F. G. Rayer $£ 1.75$ IC555 PROJECTS by E. A. Part $£ 2.00$
Included in this book are Basic and General Circuits. Motor Car and Model Railway Circuits, Alarms and Noise Makers as well as a section on the 556, 558 and 559 timers.

PRACTICAL ELECTRONIC CALCULATIONS AND FORMU. LAE by F. A. Wilson £2.50 Units and Constants, Direct Current Circuits, Passive Components. Alternating Current Circuits, Networks and Theorems, Measurements.

ELECTRONIC SECURITY DEVICES by R. A. Penfold $£ 1.70$ Includes both simple and more sophisticated burglar alarm circuits using light, infra-red and ultrasonics gas and smoke detectors, flood alarms doorphone and baby alarms, etc.

ELECTRONIC PROJECTS FOR BEGINNERS by F. G. Rayer

A newcomer to elecironics finds wide range of easily made projects.

POPULAR ELECTRONIC PRO.
JECTS by R. A. Penfold $£ 1.70$
'Radio Projects, Audio Projecis Household Projects and Test Equipment.
how to build your own SOLID STATE OSCILLOSCOPE by F. G. Rayer
. $£ 1.75$
Enables the enthusiast to simply and inexpensively build his own oscilloscope.

ELECTRONIC GAMES bY R. A. Penfold . . . .......... $£ 2.00$ In this book the author has designed and developed a number of interesting electronic game projects using modern integrated circuits.

COUNTER DRIVER AND -NUMERAL DISPLAY PRO. JECTS by F. G. Rayer . . £2.00 Author discusses and features many applications and projects using various types of numeral displays, popular counter and driver IC's efc.

BEGINNERS GUIDE TO MICROPROCESSORS AND COMPUTING bYE. F. Scott . . . . $£ 2.00$ Introduction to the basic theory and concepis of binary arithmetic. microprocessor operation and machine language programming.

ELECTRONIC HOUSEHOLD PROJECTS by R. A. Penfold
... £2.00
Circuits range from such things as ' 2 tone door buzzer' Intercom through Smoke or Gas Detectors to Baby and Freezer Alarms.

A MICROPROCESSOR
PRIMER by E. A. Part .. £2.00 A newcomer to electronics iends to be overwhelmed when first confronted with articles or books on microprocessors. This small book will start by designing a simple computer and because of its simplicity and logical structure the language is hopefully easy to learn and understand.

50 CIRCUITS USING 7400 SERIES IC'S by R. N. Soar
£1.65
The author has compiled 50 interesting and useful circuits and applications covering different aspects of electronics using these devices.

## POPULAR ELECTRDNICS BDOKS

Sinclair, I. R., Introducing Elec. tronic Systems …....E3.10 Sinclair, I. R., Introducing Amateur Electronics $\because$ Electronic $£ 3.10$ Sinclair, I. R., Electronic Fault Sinclair 1. R., Repairing Pocket Transistor Radios .....E2.90 Transistor Radios
Sinclair, I. R., Oscilloscope in Use
E2.90 ¢4.00

Sinclair, I. R., Understanding Electronic Components....$£ 5.10$ Sinclair, 1. R. Understanding Electronic Circuits $\ldots . . . . . .$|  |
| :---: | :---: | Kitchen, H. T., Handtools For Electronic Workshop ....... £3.25 Kitchen, H. T., Electronic Test Equipment

Capel, V., How To Build Electronic Capel, V., How To Build Electronic
Kits Darr. J., How to test almost everything electronic ........ £3.75 Brown. R. M., How to read electronic circuit diagrams ... $£ 5.60$

| AUDIO | Jong, W., IC Op Amp Coot |
| :---: | :---: |
| Earl, J., Audio Technicians Bench | 210.00 |
| Manual . . . . . . . . . . . E5.00 | Lancaster, D., T.V. Typewriter |
| IEarl, J., Pickups and Loudspeakers | Cookbook ........ $¢ 7.75$ |
| $£ 5.00$ | Lancaster, D., Cheap Video Cook- |
| Earl, J., Tuners and Amplifiers | book ........... $£ 7.00$ |
| £4.00 | Jong. W., IC Timer Cookbook |
| arl. J., Cassette Tape Recorders | $¢ 7.65$ |
| £6.00 | Lancaster, D., Incredible Secret |
| ABC of $\mathrm{Hi-Fi} \ldots \mathrm{E6.00}$ | Money Machine fa how to cook |
| ,el, V., Microphones in Action | ook for setting up your computer |
| ¢6.0 | or technical business) ... £4.9 |

Capel. V.. Improving Your Hi.Fi
Capel, V., Creative Tape Recording
Hellyer, H. W., Tape Recorders
$€ 5.00$
Sinclair, I. R., Audio Amplifiers For Home Construction ..... £6.00:

## RAOIO CONTROL

Drake, J., Radio Conirolled Helicopter Models .... 84.95 Jeffries, C. R., Radio Conirol For Model Yachts ........ £3.85 Safford, E. L., Radio Control Manual ¢ 3.00
cookbooks
Tracton, K., BASIC Cookbook
Lancaster, D., TTL Cookbook
8.10 ¢7.55
Lancaster, D., RTL Cookbook
84.65

Lancaster, D., CMOS Cookboo
ok
E8.20
Jong. W., IC Op Amp Cookbook
Lancaster, D., T.V. Typewriter Lancaster, D., Cheap Video CookJong. W., IC Timer Cookbook
c7.65
Money Machine fa how to cook book for setting up your computer (2...

QUESTIONS AND ANSWERS
SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE BEGINNER
Coker, A. J., Q \& A On Electric Motors . . . . . . . . . .... ©2.50 Hellyer, H., O \& A On Radios and V $\mathbf{V}$. 50 Hibberd, R., O \& A On Integrated Circuits ............ $\mathbf{2 . 5 0}$ Jackson, K., Q \& A On Electricity
 Brown, C., Q\& A On Transistors

Grown, C., Q \& A On Electronics
$£ 2.50$
Reddihough, j., Q \& A On Colour T.V. M E2.50 Miller, H., Q \& A On Electric Wiring $\varepsilon 2.50$

## CONSTRUCTDR GUIDES

Graham, P., Simple Circuir Building Colwell, M., Electronic Diagrams £3.40 E 3.40
Colwell, M., Printed Circuit Assem bly ......................... $\mathbf{5 3}$ Project Building Colvell, M., Project Planning and Building ng and
$\mathbf{\$ 3 . 4 0}$

## BEGINNER'S GUIDE

Sinclair, I. R., Beginner's Guide To
Tape Recording

Sinclair, I. R., Beginner's Guide To Integrated Circuits $£ 4.25$ Sinclair, 1. R., Beginner's Guide to Audio . . ............. 44.25 King, G. J., Beginner's Guide To Radio . . . . . . . . . . . . $£ 4.25$
King, G. J., Beginner's Guide To Television ............. £4.25
King, G. J. Beginner's Guide To Colour T.V. ......... 4.25
Guilou, F., Beginner's Guide To Electric Wiring ........ 4.25

## PROUECT BODKS

Marsion, R. M.. 110 Cosmos Digital IC Projects For The Home Constructor ......... $£ 4.95$ Marston, R. M., 110 Wave Form Projects For The Home Constructor

Marston, R. M., 110 Op Amp Projects For The Home Constructor $£ 4.95$
Marston, R. M. 110 Semiconductor Projects For The Honte Constructor
Marston, R. M., 110 Thyristor/ SCR Projects For The Home Constructor .................. 4.95 Marston, R. M.. 110 Electronic Alarm Projects For The Home. Con structor ................ £4.95 Marston, R. M., 1 io Integrated Circuits Projects Fbr The Home Consiructor ..............95 Marston, R. M., 20 Solid State Projects For The Car and Garage

Marston. R. M., 20 Solid Siate

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:
Hobby Electronics Book Service
Modmags Lid
145 Charing Cross Road

* Prices may be subject to change without notice.

London WC2H OEE.

#  <br> Breaker One Four 

The publishers of HOBBY ELECTRONICS would like to point out that it is at present a contravention of the Wireless Telegraphy Act of 1949 and 1968 to use, manufacture, install or import CB transmitting equipment. It is not the intention of Modmags Ltd to incite, encourage or condone the use of such equipment.

## Legal CB at last? Rick Maybury looks at some of the preparation required, discusses a few more rumours and names the winner of his DV27 competition

ALTHOUGH, at the time of writing the Home Office has yet to make a public announcement regarding the legalisation of CB there can be few doubts remaining as to the final outcome. If, for one moment, we can assume CB has been legalised - and it may well beby the time you read this, there are a number of things we must consider.

First and foremost must be the setting up of a national organisation to oversee the running of the service. Such an organisation should, to be absolutely effective, be nongovernmental. We can, for instance, look to the radio amateur network for guidance. The RSGB (Radio Society of Great Britain), although possibly a little conservative in its outlook for CB, does manage to represent the interests of its members. Hopefully such an organisation could be set up very quickly indeed: perhaps there could be a coalition between the clubs?

Point number two concerns the method by which $C B$ in the UK is administered with regard to emergency channel monitoring. Already THAMES and REACT International have proposals for an emergency service but these must be co-ordinated, particularly in terms of designated channels for emergency use. It may be a good idea to take a note of some of the emergency systems operating on the Continent. Sweden in particular is worth mentioning, because two channels are in use, one for motorists and one for small boats. In both cases the monitoring services have adopted a selective call facility. That means that only calls preceeded by a tone burst generated by the rig will open the squelch of the monitoring services' equipment.

Selective call facilities in general are also worth adopting, particularly for small businesses, where the large capital outlay for a two-way radio system would be prohibitive. The Swedish system allows a number of rigs with a simple
modification to be used only when the call is preceeded by a coded tone burst.

My last point, and one that I feel (and hope) will be sorted out before any rigs go on sale concerns type approval. This aspect of CB is often ignored but it is a simple prerequisite of any kind of radio transmission system that the equipment must meet the specifications laid down by the Home Office. Taken a stage further it is logical to assume that rigs that have in some way failed or gone faulty will only be repaired by personnel who have the appropriate qualifications. Being able to give a rig 'a quick twiddle' will not be enough: absolute chaos will ensue if any Tom, Dick or Harry is allowed to repair rigs. One last thought though: what will happen to the half million or so rigs that do not conform to HO type approval; ie, all those that are in use today. I suspect that some kind of amnesty will be announced. This will allow anybody with an old AM rig to hand it in at a Police Station without fear of prosecution. I feel that this will not be too successful, but what are the alternatives?

## News Round-up

Back to lighter matters with a quick MAYDAY... round up of the month's news. MAYDAY... In the past I have tried to give
you the names and ad-
 dresses of all the clubs that write in to the BOF office. I'm

## GLOBAL

## ELECTRONIC CONSTRUCTION KITS

SUPER CHIP 2
Full MN coverage uses IC. $\mathrm{ZN} 414+2$ transistors
easy to build diagrams. Good beginners project com-
plete with ca sipand loud speaker. $68.25+P \& P 75$ SUPER CHIP 1
Pocket earplece radio. Performance
above, complete with easy build plan
$\mathrm{EF} . \mathrm{g}_{5}+\mathrm{PaP} 550$ chystal radio
For beginners, no battrries required, complete with case and easy build plans.
Money refunded if not satished provided goods are Plurned undamaged.
Post and packing included unless stated.
All units are checked and feste
All rems subiect to availablity.

DHIO SCIENTHFC COMPUTERS New series 2 Challenger C1P Cheapo 4K version ©202. Ohio $8 K$ version E259. Special offer:- Superboard 3 with free power supply and modulator kit and
guard band kit (gives $32 \times 32$ extended display. 1200 and 300 baud tape speeds, $50 \%$ higher computing speed and 50 Hz conversion) H 159 the lot. Guard band kit also sold separately $£ 10$.
$4 K$ extra ram $£ 18.95$. Case $£ 27$. Casserte recordep 4K extra ram £18.95. Case £27. Casserte recorder
E17. Cegmon Improved monitor rom £29.50. As. ti7. Cegmon Improved monitor rom E29.50. As. expansion kit, 30 fines $\times 54$ characters 'for Superboard TWO E20.
PRINTERS supplied with free interface and word processor for Superboard and UK101. Seikosha
GP80 $£ 25$. Oki Microline B0 $£ 329$. Base 800MST E299.

SCINCLAIR PRODUCTS only are posi free.
 chargeable Batteries $£ 7.95, \times 1$ Probe $£ 8.05, \times 10$
Probe $£ 8.86$, Carry Case 88.80 . PFM200 $£ 54.50$, Adaptor E4, Case $£ 1.73$, Connector Kit $£ 11.27$.
 £56.50, DM 350 £ 78.50 , DM4 50 £107.95, Adaptor
£4, Case £8.80, Rechargeable batteries $£ 7.95$. £4. Case £8.80. Rechargeable batteries $£ 7.95$.
Microvision $T V$ £6s. Adaptor $£ 6.88$.
MEMORIES $2114450 \mathrm{~ns} £ 2.15 .4116$ 200ns $£ 2.83$. MEMORIES 2114 450ns $\varepsilon 2$

* battery eliminator kits 100 ma radio ypes with press-studs $9 \mathrm{v} £ 1.79,9+9 \mathrm{v} ~ £ 2.50$.
Stablized 8 -way types $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18$ Stabilized 8 -way types $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18$
$100 \mathrm{ma} ~$
53 100 ma £3.12, $1 \mathrm{Amp} £ 8.30$. Stablized power kits
$2-18 \mathrm{v} 100 \mathrm{ma}$ £ $3.12,1-30 \mathrm{v} 1 \mathrm{~A} £ 8.50,1-30 \mathrm{v} 2 \mathrm{~A}$ 815.30. TTL and computer supplies 5 V stabilized 11/2A $\mathrm{C9}, 3 \mathrm{~A} \mathrm{£12,6A} \mathrm{E20}$. 12v car convertor 6/71/2/9v 1A \&1.62.
TT-DEC ANO S-DEC BREADBOARDS
E3. 79,1 -dec $£ 4.59$, exp4b 22.64, exp $300 ~$
56.61 - battery eliminators 3-way type $6 / 71 / 2 / 9 \mathrm{~V}$


$\star$ TV GAMES AY-3-8600 + kit E12.98. AY-3.8550


## SWANLEY ELECTRONICS

Owet ME 32 Goldsel Pd Swanler, Kent
Post $45 p$ extra. Add VAT except on sections
marked . Lists 27 p post fiee. Phone Swanley marked. Lists 27 p post free. Phone Swanley

## GHETRONIC 1GNTION SAVES PETROL

More and more new cars use elctronic ignition to give the
best performance and best performance and economy. Bring YOUR CAR Up to top speciitication by fitting the latest TOTAL ENERGY
IDISCHARGE electronic

TOTAL ENERGY DISCHARGE gives all the

## dvantages of

- Paek Performence - higher output voltage
- Improved Economy-consistent high ignition performance
- Better Starting-full spark power even with low battery.
- Accurate Tisming-prevents contact wear without contactless' errors


## PLUS

SUPER HIGH POWER SPARK $-31 / 2$ times the energy of ordinary C.D. systems OPTIMUM SPARK DURATION-to get the very best performance and economy with roday's lean carburettor settings.
DESIGNED ITN RELIABIUTY -with the 'ultimate insurance' of a changeover switch io revert instantly to standard ignition

## TECHNICAL DETAILS

HIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-powertul enough to store twice the energy of other designs and regulated to provide full output even with the battery down 104
vols.
PERE DISCHARGE CIRCUIT. A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.O. Systems, generating a spark powerful enough to associated with lower power 'long burn' inductive systems. In addition this dircuit maintains the correct output polarity, thereby preventing unnecessary stress on the maintains the
H.T. system.
SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can ca use timing errors or damaging un-timed sparks. Only almost eliminated by reducing the contact breaker current io a low level - jusi sufficient to keep the contacts clean.

IN MONEY-SAVING KIT FORM at $£ 14.85$ Inc. V.A.T.
All you need is a small soldering iron and a few basic tools - everything else is supplied with easy-to-follow instructions.

FITS ALL 6/12-volt NEGATIVE EARTH cars ELECTRONIZE DESIGN
2 Hilisid Road, Four Oaks
Surton Coldfield, West Midlands, B 74400 Phone 621-3085877

## SPRING TIME IS SALE TIME

| Closing date 31.4.81 |  | LEDs 0.2' | $15 \times 8 \mathrm{BC}_{1}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $6 \times 555$ | f1.00 |  |  |  |
| 6x ${ }^{1} 71$ | 90. | 10 each red, green, vellow | 50 | $15 \times$ BC212 |
| (15x8 pin |  |  | E4.00 | Voliage |
| $12 \times 14$ pin | ¢1.00 | $2 \times$ TC2260 84/400V Triacs | E1.00 | $2 \times 7912$ |
| $10 \times 16$ pin $8 \times 12 \mathrm{pin}$ | E1.00 | $2 \times$ TIC2360 12A 400 V Triacs | ¢1,35 | ${ }_{2 \times 7812}$ |
| $6 \times 22$ pin | E1.00 |  |  | $6 \times \mathrm{CO} 4011$ |

$\star$ BONUS $\star$ Further $5 \%$ discount if you buy the lot! ( $£ 24.75+$ VAT)

| MINI XITS |  |  |  |
| :---: | :---: | :---: | :---: |
| There tiis form inetul subrystems which may be incorporated into ariget dessipns or ured alone Kins include PCB shori instivctions end all com. ponents twenmostat <br> Uses LM391t ic to sense temporature $180^{\circ} \mathrm{C}$ <br> maz) and trac to smich neater 1 kW |  |  |  |
| mik 2 sotio gtare nelay tom logic Oplo isolated with tero village switening Supolied winout lrat Setect the <br> required itioc hiom our ipage $\quad \mathbf{2 . 6 0}$ <br> mK3 GARIDOT DISPLAY <br> Displays an analogue voitage on a theser to <br>  slached to obtern 20 to 100 etement drplays MKA PROPORTIONAL TEMPEMATUNE COMTMOU: <br> Based on the TOA 1024 Zero voltage swich this ku may be wired to torm bursi five powe contriller or or propot tional temperature controler enabing ine temperature of an enclos. Ure to de mamanned io within O $5 \mathrm{C}_{3 \mathrm{KW}} \mathrm{ES.B5}$ <br> MK5 MAINS TIMER <br> 3kwes.bs <br> Based on the 2N1034E fimer IC ithis kul will switch <br> a mains load on lor off) for a preset tume from 20 munutes to 35 thours Longer or shorter periods <br> manules to 35 hours Longer of shorter periods may be realised by minor component changes <br> Marimum load 1 KW |  |  |  |
|  |  |  |  |
| TAIACS |  |  |  |
|  | 400 V Plastic Case (Texas) |  |  |
|  | $\begin{array}{ll} 3 A & 49 p \\ 8 A & 58 p \end{array}$ | 16 A | 95p |
|  | 12A 85p |  |  |
|  | 6A with triger |  | 88 p |
|  | Olac 18p |  |  |

'DISCO LIGHTING KITS
Exan unil has 4 chamnels srated at tKW at 240 V per channell which switch lamos 10 provide sequencing
etifects, contoclied manually or by an oplional opio
solated audio input OL1000k. This kif feafures a b-direction sequence, speed of sequence and frequency of direction chang rates master dimming conitrol.
DIZ
E14.80 featuring unidiracirer cost version of the above. veriable by means of a presel pot. Outputs switened unterierence 10 minimum.
Optional Opio Input. OLA

## $£ 8.00$ $£ 1.60$

## INTEGRATED CIRCUITS

| 555 Timer <br> 74100 Amp Ar-5-1224 Cloce | 21p |
| :---: | :---: |
| av. $5.1230 / 2 \mathrm{Cloca/Tmer}$ | 56 |
| AY. 3,1270 Tnermometer |  |
| 106 DVM ICCO |  |
| lover |  |
|  |  |
| 30 2Wucio Am |  |
| 382 Dual How nois |  |
| (M366250mW low voltage |  |
| LM 1830 Fluic level | 50 |
| LM2907.iv Converier 18 | ${ }_{61.60}$ |
| IM 3909 IED Flasher Osccllator | 100 |
| nomele' |  |
| LM3915 - Dol Bar Diver (log) | 20 |
| 44C914 0 Ong display | 50 |
| MM74C915 7 segment. BCD $^{\text {conver }}$ |  |
| S566B Touchdimmer |  |
| SL440 A.C. Power Controt |  |
| SN76477 Complen Sound Generator | 2.52 |
| 8005 S |  |
| ab10as lwaudio amp |  |
| A 1024 2eco Vohage Switc | 20 |
|  | ¢12.85 |
|  | 1.80 |

Dala Sheets only top each devic

## ARE YOU SITTING COMFORTABLY?

Our new TDR300K Touch Dimmer
Kit will ensure that you are. Based on our highly successful TD300K touch controlled dimmer the TDR300K incorp rates an Infra red re ceiver, enabling the lamp
brightness to
brightness to be varied and switched on or off by touch remotely by means of a small hand held transmitter. The complete kit. which includes easy to follow and the plastic front plate has no metal and the plastic front plate has no metal Even a neon is
pads to touch, ensuring cotmplete safety. Eve included to help you locate the switch in the dark.

In years to come everyone wili be
selling remote control dimmers, but selling remote control dimmers, but
you can have your TDR 300 K kit now you can have your TDR300K kit now
for ONLY 14.30 for the dimmer unit and $£ 4.20$ for the transmiter.

## REMOTE CONTROL KITS

MKB - Simple Infra Red TRANSMITTE
 MK7 - Infra Red RECEIVER. Single channel, range approximately 20 A . Mains powered with a triac
output to switch loads up to 500 W at 240 Vac , but can be modified for use with 5 to 15 V dc supplies and Transistor or relay outputs.
SPELAL PRICE MKKG and MK7 rogether. Order as RC500K69.00
$\varepsilon 12.50$

$6 \times 2 \times 1.3 \mathrm{cms}$. and requires a 9 V (PP3) battery. MK9 - 4 Way KEYBOARD. For use with the MK8 kit, to make a 4 -channel remote control transmitter. 90 MK10-16-Way KEY8OARD. For use with the MK8 kit, to generate 16 different codes for decoding by The ML9 11 - 10 On-Off Channel IR RECEIVER with 3 analogue outputs ( $0-10 \mathrm{~V}$ ) for controlling such functions as lamp brightness, volume, tone, etc. Other functlons include an on/stand by output and a toggle output, which may be used for sound muting. Based on ML922 decoder IC. includes its own mains
supply MK 12- 16 Channel IR RECEIVER. For use with the MK8 kit with $16 \mathrm{on} / \mathrm{off}$ outputs which with further
interface circuitry, such as reloys or triacs, will switch up to 16 items of equipment on or off remotely. Outputs may be latched of momentary, dependina on whether the ML.926 or ML928 is specified MK13-11-Way KEYgOARD. For use with MKE and MK11 kits. Transmits programme step + and -

## 

## 14. TK Electronics

(W.E.). 11 Boston Road, London. W7 35J Tel: 01 -579 9794 and the TDE/K Extension Kit for 2. way switching, etc, is $£ 2$.
sorry to say that shortage of page space now precludes this particular service. I now have over 200 clubs on my files so you'll have to look at a copy of 'Citizens Band' for the latest information. (Sorry Mr Editor but you can't begrudge me the odd plug. *)

Video fans will be interested to know that Convoy, the film and record that started this whole business, is now available from EMI. Both of the popular formats (VHS and Betamax) are available and the code numbers to look for are: EVH 20231 and EVX 40231.

Rumours have been flying about right, left and centre about the issue of CB licences. One of our informants told us that a company often called upon to print official documents was actually printing the licences. A phone call to the company concerned revealed absolutely nothing, however. Our informant went on to give details about the form and even promised to try and obtain a sample. Although we haven't yet seen this form (nor am I too hopeful) the details we have do sound feasible and are in keeping with what we do already know. It will be interesting to know who will get licence 00001: how about us Mr. Home Secretary - ?

Still with the rumours, I keep hearing about rigs that have been confiscated by the Customs \& Excise and being returned in plastic bags with seals that read something like 'Don't Open Till Christmas' or some such similar message. I haven't seen one myself, nor have I met or spoken to anyone that has: just a lot of people who know someone, etc. A genuine HE Binder to the sender of one of these elusive wrappings to the BOF office.
*Rick's main occupation now is to edit Citizens' Band - Ed


## DV27 Competition

And finally, I have collated the results of my little competition last month to find the vendor of the cheapest DV27. A number of you have told us about Midland Telecom, 113 Flaxey Road, Milton Keynes, which sells the redoubtable DV27 for an incredible $£ 3.90$.

First letter out of the BOF hat with this information came from 'Little Hitler'. Congratulations - and your Tee-Shirt is on the way.

Time's up for another month. Stay Lucky out there in CEEBEELAND and see you all next month, hopefully with some very good news.

HE

# HE SUBSCRIPTIONS 

## Having problems hunting down your copy of HE each month? Make life easier for yourself: for only $£ 10.00$ you can have it delivered to your door every month for a year.

Use one of three methods of payment to subscribe to HE :

Barclaycard Enter your Barclaycard number in the space provided on the coupon, add your signature, name and address - and we'll do the rest

Cheque or Postal Order Enter your name, address and
 the amount in the coupon and send it with your cheque or postal order, made payable to Modmags Ltd.

Subscriptions Dept., Modmags Ltd., 145 Charing Cross Road, LONDON WC2H OEE


# PCB FOIL PATTERNS 




The foil pattern of HE Super Siren

HE Russian Roulette foil pattern

## ADVERT INDEX




PARAPHYSICS JOURNAL. Russian / Czech translations. Autogenics (self-training) improves vitality. Psychotronic Generatorss UFOs, contacting extraterrestrials, Kirklianography, telelinesis, levitation, gravity lasers. S.A.E. $4 \times 9^{\prime \prime}$ : Paralab, Downton, Wilts.


TRS-80 OR ZX80. 4 games on cassette. TRS-80, £3.50. ZX80, £3. SAE details/list. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

SMALL REED SWITCHES, 10p; large magnets, 20 p ; small red/green Leds, 14 p ; 30 untested I.C.s, 35p. Postage 25p. Grimsby Electronic Components, Lambert Road, Grimsby. Humberside. List 15p.

BRAND NEW, not surplus. 741s at 23p; Watt Resistors, any selection, £1.60 per 100. P. and p. 25p. - Systematics, Hazel Road, Woolston, Southampton SO2 7GB.

WANTED. Electronic components and test equipment. Good prices given. - O Services, 29 Lawford Crescent, Yately (0252) 871048 , Camberley, Surrey.


SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H 0EE. TEL: 01-437 1002 Ext. 50.

PRINTED CIRCUITS. Make your own simply cheaply and quickly! Golden Fotolak light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$; developer, $35 p$; ferric chloride, 55 p; clear acetate sheet for master, $14 p$; copperclad fibreglass board, approx. 1 mm thick $£ 1.75$ sq. ft. Post/packing 75p. - White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

## MAIL ORDER PROTECTION SCHEME

you order goods from mail order advertisers in this magazine and pay by post in advance of delivery, this publication Electronics Today Internationai will consider you for compensation if the advertiser should become insolvent or bankrupt, provided:

You have not received the goods or had your money returned; and
2. You write to the publisher of this publication Electronics Today international explaining the position not eartier than 28 days from the day you sent your order and not later than 2 months rom that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment. is required.
We guarantee to meet claims from readers as soon as possible with the above procedure declared bankrupt or insolvent to a limit of £ 1,800 per annum for any one advertiser so affected and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures has not been complied with, at the discretion of this publication Electron/cs Today international, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payments made in response to catalogues, etc, recevved as a resuit or answering such advertis
Classified advertisements are excluded.

## CB SPARES

Japanese original transistors and integrated circuits.
Largest selection in Britain at very low prices.

Write or phone for free list.
McLAUGHLIN ELECTRONICS
44 Carlisle Road, Londonderry N. Ireland, BT48 6JW

Tel: (0504) 65002

50 MIXED ICs, transistors, diodes $£ 3$ Bargains list 15p. Sole Electronics, (HE), 37 Stanley Street, Ormskirk, Lancs.

## SHARP POCKE COMPUTERS

PC 1211 Pocket Computer with CE 121 Cassette Interface

E105.95
Printer not available until end of April.
Free Papermate pen with all orders. All prices include $15 \%$ V.A.T. and U.K. delivery.
ELKAN ELECTRONICS, 28 Bury New Road, Prestwich, Manchester, M25 8LD.

## YOUR OWN PERSONAL TOOLKIT

Smar zip-up case, removable tool paliet, black nyl, top-quality British tools, pencil bit iron, radio side cutters and pliers, small and large screwdriver, one cross point, B.A. nut spanners 6, 4, 2 and 0. Price E25 + £ 1.50 p. \& p.
Kitonics, 7 The Meadows, Berwick-upon-Tweed

TELEPHONE ANSWERING MACHINE. Build your own for under $£ 10$ plus any cassette recorder. Send $£ 3$ for circuit and plans. S. D. Cross, 24 Thorney Road, Streetly, Sutton Coldfield, West Midlands.

100 IN4148, £1: 150 Resistors, £1: 100 Capacitors, E1. P. \& P. 25p. S.A.E. lists. Dept. H, D.B. Products, P.O. Box 8, York, YO1 1FT.


## ELEGTRIFY YOUR SALESI - CLASSIFIED ADYERTISEMENT

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
| 10 | 11 | 12 |
| 13 | 14 | 15 |
|  |  |  |
|  |  |  |
|  |  |  |

Advertisé nationally in Electronics Today International/Mobby Electronics. Simply print your advertisement in the coupon which magine you require. Or telephone for more information.

## Name

Address

## Tel. No. (Day)

Send, together with your cheque to: Jenny Naraine, ETI/HE,
Please place my advert in: Electronics Today International (Delete as applicable) Hobby Electronics

Tharing Cross Rd., London WC2H OEE. Tel: 01-437 1002 Ext. 50.

## THE CB ANTENNA THAT REALLY "ZAPS" IT OUT

## FFirestik' ANTENNAS



WRITE OR CALL FOR FULL INFORMATION FROM: WintjoYLTD. tel. waltón-on-thames 103 HIGH STREET (STD 09322) 48145 SHEPPERTON MIDDLESEX TW17 9BL ENGLAND

## Make it for a Song!



# The New Maplin in Matinée 

## Amazing Value For Only

Easy to build. Latest technology - means less cost, less components and 80\% less wiring. Comparable with organs selling for up to $£ 1,000.00$. Two 49 -note manuals. 13 -note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8 -instrument voicing. Major, Minor and Seventh chords. Unique walking bass lines with each rhythm. Unique countermelody line with each rhythm. Truly amazing value for money. Full construction details in Electronics \& Music Maker magazine.


The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. Get a copy now - it's the one catalogue you can't afford to be without.


## กา1ำ닌

Maplin Electronic Supplies Ltd
All mail to: PO. Box 3, Rayleigh, Essex SS6 8LR
Telephone: Southend (0702) 554 155. Sales (0702) 552911
Shops:
159-161 King Street, Hammersmith, London W6. Telephone: (01) 7480926. 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000. Both shops closed Mondays.

Catalogue now on sale in all branches of WHSMITH 促 Price $£ 1.00$


[^0]:    tems mentioned here are those planned, but unforeseen circumstances may affect the actual contents.

