

For A Down-To-Earth Approach To Electronics

Special-offer kit

Speedometer for your bicycle -no moving parts

Guitar FUZZ Box -musical distortion for under £10

Everyondesef

 Wothe rectiontist oday? - Wbesmmised! fik devel ins. Orto set them
 looking - id a lot more herdes. We stoc the he top mithes. at pricest will usit make cul love us simplyphoné wite of tex Wistu) Ltd, 103 High streat, Shepperton, Mit deex iwag 9 BL England, Tel. Walton-on Thames (STp 09322) 48145 ar avilid 9 BL ,

Oftist simply call us.

TON AHLERS
 ELEKTRONIKA B.V.

Aalsmeerderdijk 349, 1436 BH Rijsenhout Holland, tel. $010312977-28611$ (4 lines), telex 15181 tonel nl. (near Schiphol Airport)
Even theold

Editor: Hugh Davies
Assistant Editor: Keith Brindley Editorial Assistant: Tina Boylan Drawing Office Manager: Paul Edwards Group Art Editor: Paul Wilson-Patterson B.A. Managing Editor: Ron Harris B. Sc.

This month's cover shows three notable receivers from the history of TV. Left is a cut-away Colorstar TV made by Fergusson in 1968 (on show in Science Museum). Centre is a Baird prototype made by the Plessey Company in 1928. It had a 30 -line, vertically-scanned picture with a frame rate of 50 frames/second, and is on view at the ITA Gallery, Brompton Road, London. In the background is an elegant model 702 receiver made by Marconiphone in 1938 (also on show in Science Museum). More details on these TVs is given under The Beginnings Of Real TV on page 18.

PROJECTS

PUBLIC ADDRESS AMPLIFIER

Now you can really be a loud-mouth 13
WINDSCREEN WIPER CONTROLLER
Just the thing for bad weather 30
STEAM LOCOWHISTLE
Last part of our train sound effects serie's 33
BICYCLE SPEEDOMETER
A digital delight 37
SHORT CIRCUIT
Experimenters' corner 46
FUZZBOX
Controllable guitar distortion 54
PHOTOGRAPHIC TIMER
Built in a flash? 58
PCB FOIL PATTERNS
Right at the bottom of the projects 65
FEATURESMONITOR6News, news, and nothing but the newsMOVE TOWARDS MICROCASSETTES10
A special feature on the smallest of audio cassettes THE BEGINNINGS OF REAL TV 18
Before/Cs, before trannys, before valves COMPETITION RESULTS 24
The winners of our January competition BUILDING SITE 27
Tohelp you connect
CLEVERDICK 41
A lively selection of letters
INTO DIGITALELECTRONICS 43
Delving deeper into micros
OLEVELQ\&A 48
Allabout test gearWHAT'SINANAME53You can't touch it
BREAKER ONE FOUR61
Citizens on the air
NEWS\&INFO
HENext Month 8
Hobbyprints 64
SPECIAL OFFER SUBSCRIPTIONS 66
Classified Ads 66

Hobby Electronics is normally published on the second Friday of the month prior to the cover date.

\section*{The range grows

bigger...better...
Profile Amplifiers- Two New Series
 Load impedance all models $4 \Omega-\infty$ Input impedance all models $100 \mathrm{X} \Omega$
Input sensitivity all models 500 mV Frequency response all models

THE $50 \mathrm{KHz}-3 \mathrm{~dB}$ THE NEW PROFILE EXTRUSIONS
 }

if they were the result of shrinking powder applied to the fult-scale models - such was the attention to fine detail.

Lord Gretton, president of The Society of Model and Experimental Engineers, was to have opened the exhibition but, unfortunately, was ill in hospital at the time. His son, John Gretton, who is a keen locomotive enthusiast himself, took his place.

Possibly because it followed a Bank holiday, Friday 2 January was ainnost the busiest day - but it was just beaten by the final Saturday.

Now we had some idea of how

50th Model Engineer Exhibition - Record Attendance

To the surprise of the organisers, attendance at this year's Model Engineer Exhibition, the 50th in its 73-year history, exceeded 81,000. (And we thought just over 17,000 was a large tum-out for Breadboard 8011

It was also the largest exhibition since it started in 1907 and for this reason it was held at the Wembley Conference Centre, running from 1 to 3,5 to 10 January.

HE visited the exhibition on Friday 9 January, and although most of the exhibits on display were mechanical or electro-mechanical in operation, we still thought it well worth the visit.

No sooner had we gained entry to the Centre we found ourselves sulrounded by every conceivable type of model: from locomotives to sailing ships and from aeroplanes and cars to military models.

Of particular interest to electronics enthusiasts ware the radiocontrolled models, and plenty of
space was allocated to these. Provision had been made in the lecture theatre for indoor 'round the pole' flying of model aircraft and for racing of model cars. (A safety net had been fitted between the stage and the auditorium.) On the roof outside the concourse a poot had been installed for model boats. Visitors were encouraged to enter competitions with their own models.

Stands in the exhibition catered for every need of the hobbyist, ranging from raw materials to the finishod items. And if you didn't have a fully-equipped machine shop in the shed at the bottom of your garden then you could buy one of the many different varieties of model kits, some with pre-finished and prepainted components.

For the die-hards who insist on making even the last nut and boht, there were took. H you wanted a lathe or a drilling machine, they were there. If you wanted a jeweller's vice or a set of miniature screwdrivers, they were there too. But most important of all, there was help. Many

Tiger Moth on show at MEE. It was built by Ron Chivrall, who took Championship Cup for aircraft models. Detail extends to the tail trim system and cockpit instruments. Ron flew the real machine at Fair Oaks, Surrey
of the staff on the stands are hobbyists themselves and were keen to help and advise on visitors' problems.

Even the electronics enthusiast would benefit from a visit to the ME exhibition because of the wide selection of tools on show. In common with most exhibitions there were some interesting offers. And even the casual visitor must have been impressed by the care that had gone into those models. Some of the locomotives, for example, looked as

Stable Supply From Italy

This could be the kind of mains power supply offer you can't refuse . imported from ltaly. Model BRS27 is made by Bremi and gives a regulated fixed output of 13.8 VDC at 3 A maximum.

Stability is specified as being better than 0.1% with mains variations of 10% or load variations from 0 to 2.5 A. It includes an electronic current limiter, and ripple is specified as being 1 mV with 2.5 A load.

The supply comes in a robust black-finished steel box 173 mm wide by 90 mm high by 138 mm deep. Output sockets, mains switch
busy this exhibition was by the length of the queue on the Friday we made our visit. If you are interested, it would be better to get your tickets in advance and stroll past the queve in a leisurely manner. They are advertised during November and December in MAP model magazines, namely: Aeromodeller, Clocks, Military Modelling, Model Boats, Model Engineer, Model Railways, Radio Control Models. Radio Modeller, Popular Crafts, Scale Models, and Woodworker.
and red indicator lamp are mounted on the front panel.

According to George Philips, managing director of the suppller, Open Channel Telecommunications, N. London, cost of the BRS27 is likely to be ' $£ 16.95$ or under'.

He mentioned that another power supply, having the same eloctrical specification as the BRS 27 but with lighter gauge steel for the box will be available shortly and will cost only $£ 6.75$.

What would you use 13.8 VDC at around 2.5 A for? One obvious application which comes to mind is equipment intended for mobile use, such as Citizens' Band rigs when these become legal.

Contact Open Channel Telecommunications, 407 Lordship Lane, London N17. Tel. 01-8085656.

Recorders

Two miniature hand-held recorders, models D6700 and D6710, are due for release by Philips Audio in March 1981.

Unlike Philips' Pocket Memo Range, which uses minicassettes giving 15 minutes playing time on each side, these two use microcassettes, which double this

New Catalogue From Heath

Heath Electronics (UK) has produced its winter 1980-81 catalogue which is filled, as usual, with a mouth-watering selection of electronic kits.

One new kit is the Heathkit Ultrasonic Minuteman II security alarm system. This enables property to be protected inside and outside. Up to three ultrasonic detectors can be used, together with indoor/outdoor loudspeakers, key operators, magnetic door controls and window foil or other closed-circuit detector devices. Master ultrasonic control/detector GD-1800E protects an area up to 300 sq . ft . and the kit costs £141. Accessories include 'stave' ultrasonic kits at $£ 52$ each, key operators (for doors, closedcircuit loops etc) at $£ 24.50$ each and an all-weather alarm ('sounds loud wail') at $£ 23$ each.

Another new kit is the GC-1720
digital wall clock, $5 \frac{1}{4} 4^{\prime \prime}$ high by $71 /$ " $^{\prime \prime}$ wide by $11 / 2^{\prime \prime}$ deep (133 by 181 by 38 mml . Accuracy is claimed to be +1 minute a year, and the clock is claimed to run for two years on one 1.5 V alkaline cell. Time is displayed on four 1 " liquid-crystal displays in 12 or 24 hour format. The GC-1720 costs $£ 43.70$.

Four new electronic weather forecasting aids include the ID-1890, a microprocessor-based digital wind computer and clock/calendar. Wind direction is displayed on a 16 -point compass dial, and speed can be converted and displayed in MPH, KPH or knots. It will even store 'gust information', in terms of wind speed, direction and the time at which the gust occurred. Definitely for the serious sailor, the ID-1890 kit costs $£ 158$ ($£ 253$ assembled).

Heath is also offering some more teach-yourself courses, and these include weather forecasting ($£ 55$), optorlectronics ($£ 46.50$) and programming in COBOL (£90).

ambitious readers who may like to experiment with breadboards. Certainly, the wire gauge is much too fine and delicate for permanent hook-ups. (See this month's Building Site for guidance on the right choice of wire for the job.)

Main feature of the wiring pencil is its light weight: our sample was only 25 g 10.88 oz) including the bobbin. Cost, including two babbins of wire and instructions, is $£ 5$:

Another wiring tool available from the supplier, J.H. Equipment, Lancs., strips the coating from the wire before it is wrapped. Thus there is no need for soldering. John Hancock, managing director, described this as more of an industrial tool. costing $£ 16$.

Both toots are imported from Vector Electronic Co. Inc., California, USA. Hancock said that he hoped to offer a kit soon comprising the p-173 Wiring Pencil and some circuit boards.
J.H. Equipment Lid., 91. Red brook Road, Timperley, Trafford, Lancs.

Full details of these machines, and of the likely impact of microcassettes on the market are given in this month's special news eature of page 10.
Further details on the D6700 and 6710 are avalable from: Philips PO Box 298, City 420 to 430 London Road, Croydon, Surrey CR9 3QR.

Can You Design For The Disabled?

We're giving you, as a reader of HE the opportunity to design a project for a disabled person - and a chance to win a prize for your entry.

Did youknow that at least 10\% of the population of any country suffers from some form of physical or mental disability?

Now, 1981 has been proclaimed by the United Nations General Assembly as the International Year of Disabled Persons (IYDP).

So, in the April issue we are running a Design Competition to enable readers to do their bit and try to help the UN in its aims. We reckon that with all the brain potential out there, some of you will have

Wire Up Your Boards With A Pencil

Looking a little like a red plastic carrot with an obliquely set metal probe at its tip, the Vector Wiring Pencil model p-173 can be used for point-to-point wiring of circuit boards. t is supplied with two 20 mm diameter metal bobbins of fine-gauge coated copper wire, each with a differentcoloured coating for identification.

One of the bobbins is loaded into the cap of the tool and the wire is threaded out through the probe tip. The wire feed can be controlled by hand pressure on the bobbin, the rim of which protrudes slightly from the cap.

Wire is routed around the circuit board (plain board, that is, the type having no laminated copper strips) from component-to-component or pin-to-pin. At each connection point, the wire is wrapped around the wireend or pin and soldered in place (the coating melts when a soldering iron is applied to it).

Although we can't recommend it for HE projects, which generally

Hobbyprint Erratum

It has come to our notice, this month, that Hobbyprint Y (December 1980) has the Minisynth Keyboard printed on it at 60% full size. If you remember, we had to reduce it in size to get it on the foil pattern page, but somebody forgot to enlarge it again for the Hobbyprint. Do not despair, the error is being rectified!

Look for the April issue. You cant afford to miss it!

Anatomy Of The Space-
 Shuttle

A special HE report on the forthcoming NASA Space-Shuttle launch. We investigate what the technical problems have been, why it's overdue, and give you a timetable running up to the launch and beyond

Tremolo

Just the effect you want for your guitar to complement the Fuzzbox in the March issue, although it will work with any eectronic musical instrument. Simple-to-build, even simpler-to-use yet it won't burn a hole in your pocket

Russian Roulette

A novelty game designed to eliminate the players - without any mess whatsoever

- COMPETITION - STOP - NEXT MONTH'S ISSUE OF HOBBY ELECTRONIC - STOP - PROMOTING THE UNITED NAT STOP - QUERY - DO YOU THINK YOU CAN DESIGN AN ELECTRONIC AID TO HELP A HANDICAPPED PERSON - STOP ANY ELECTRONIC AID - SOLID-STATE, COMPUTER PROGRAM, STOP - PRIZES TO - ANY ELECTRONIC AID

High Fidelity Comes To HE
Announcing a special audio project for HE : a hi-fi, high-power amplifier system which you can tailor according to your budget by making use of our special-offer kits. We start with the preamplifier in the April issue. This pre-amp requires no wiring except for the leads to the power supply! You can use it with your own amplifier too

Windscreen Washer Alarm

For the motorist who's fed up with cleaning his windscreen by hand because his washer bottle has run dry. As soon as the fluid drops below a' predetermined level a 're-fill me' alarm is displayed

Plus:

News, views and info on CB, circuits, recent developments in electronics everything for the electronics enthusiast and hobbyist - things you can't afford to miss. Get It!

[^0]
WATFORD ELECTRONICS

MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / \mathrm{s}$
ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS
DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ INSTITUTION' OFFICIAL ORDERS ACGEPTED. TRADE AND EXPORT INOUIRY POSTAGEAT COST, AIR/SURFACE. ACCESS ORDERS WELCOME.

VAT

Mowphe Froes Cer Panding Sple
 POLYESTER CAPACITORS:

$4 \mu 7 \mathrm{Es} \mathrm{p}$.
(000V: 1nf $87 \mathrm{p} ; 10 \mathrm{n} 30 \mathrm{p} ; 15 \mathrm{n} 40 \mathrm{p} ; 22 \mathrm{n} 30 \mathrm{p} ; 33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{n} 42 \mathrm{p} ; 100 \mathrm{n} 42 \mathrm{p} ; 470 \mathrm{n} 3 \mathrm{p}$.

 TAG-END TVPE $450 \mathrm{~V}: 100 \mu$ F A5p; $70 \mathrm{~V}: 4700,245 \mathrm{p} ; 44 \mathrm{~V}: 3300$
$2200110 \mathrm{p} ; 40 \mathrm{~V}: 4700160 \mathrm{p} ; 25 \mathrm{~V}: 10.000320 \mathrm{p} ; 15.000345 \mathrm{p}$.
OPTO
ELECTRONICS
LEDs plus clips
LEDs

30p: $10-88 \mathrm{pF} 3 \mathrm{E}$ 100-580 DF $30 ; 400.1250$ of 48

 SILVEM MICA Values in pFI $2,3.3$.$4.7,6.8,8.2,10,15,18,22,27,33$.
$39,47,50,56,68,75,82,85,100$, $120.150,180 \mathrm{pf} 1 \mathrm{I}_{\mathrm{p}}$ each: 200,220 ,
$250.270 .300,330,360,390,470$,
$600,800.82021 \mathrm{p}$ nach: 1000.1200, 1800,2200
$60 p$ each. CEWAMIIC CAPACITORS sov: 0-5pf
to 10nf 4p: 22 n to $47 \mathrm{n} 7 \mathrm{7p}$. 100 n . YURO EREADBOARD Es.20.
 20

Move Towards Microcassettes

You may have heard of microcassettes being used in dictating machines. Hugh Davies looks at how they could come to compete with compact cassettes in hi-fi recording

During the last year, a revolution in miniature has been taking place in the recording tape industry over the smallest audio cassette of all - the microcassette. From the results of development work in Japan on metalpowder tapes, microcassettes are to become available for high-quality (if not high-fidelity) recording.

To put this in perspective, a microcassette is only half the size of the popular compact cassette (the compact cassette is 100 by 64 by 12 mm compared with only 50 by 30 by 8 mm for the microcassette).

Microcassettes are not new: Matsushita and Olympus, working closely together, produced the first one in 1974. That's over six years ago, so why the revolution? The reason is that it is only in the last few months that the tapes have had any claim to high-quality reproduction. Standard ferro (ironoxide) microcassettes are only suitable for speech or medium-quality audio reproduction, and for this reason their use has been restricted to hand-held recorders suitable for use as miniature dictating machines.

During 1980, some of the leading Japanese tape recorder manufacturers, principally Matsushita and Sony, showed that microcassettes, using special metal-coated tape, were capable of producing high-quality sound, approaching the performance of 'metal' compact cassettes. (Metal-coated
tapes have a very high signal-to-noise ratio, and allow true hi-fi recording in cassette form.) Matsushita, for instance, has been working on its Angrom metal tape for microcassettes. The metal coating is evaporated onto a plastic base using what Peter Hamblin, Marketing Manager of Panasonic (part of Matsushita), described as 'a highly complex production process'. Playing time for this tape, he claimed, is 90 minutes/side at $2.4 \mathrm{~cm} / \mathrm{s}$ (half the speed of a compact cassette), or 3 hours at $1.2 \mathrm{~cm} / \mathrm{s}$. (Most microcassette recorders offer both of these speeds.)

He said that a high-frequency (treble) response approaching 14 kHz was possible, although the problem of getting adequate low-frequency (bass) response had yet to be resolved.

The tapes look exciting, but what is there to play them on? The answer is very little - in the UK. It appears that because all the development work has taken place in Japan, all the really interesting machines are being held there for the time being. But that is not to say that the rest of the world has been left in suspense. It is understood that Sanyo demonstrated a mains-operated microcassette deck at the Hi-fi show in Dusseldorf; Germany as long ago as August 1980. Matsushita claims to have demonstrated a similar machine in the recent Tokyo exhibition. And Sony, which claims to hold 50% of the market for microcassette dictating machines, has also been active.

Microcassettes In the UK

Somehow, in the UK, we always seem to have to wait longer than everyone else for new ideas. It looks like being several months before high-quality or even hi-fi microcassettes and their recorders reach Britain. But meanwhile some of the currently-available minicassette 'hardware' using the standard tape is interesting in itself. Unlike compact cassettes, ferro and metal microcassettes can be played on the same machine without any need for readjustment of recording bias.

Microcassette recorders currently available in the UK are battery-powered and hand-held, and the playback quality of standard microcassettes is acceptable in such applications. Up till now, the machine market has obviously been dominated by Japanese manufacturers such as National Panasonic, Olympus, Sanyo, Sony and Sharp. But now the Dutch giant Philips has entered the market with two new recorders, with microcassettes compatible with the Japanese microcassettes to match. These products are due for release in March 1981. What is significant about this move is that it was Philips which produced the compact cassette back in the 60's, and it has ignored short-lived wonders such as 8 -track and EL cassettes until microcassettes came along.

A Philips' spokesman told HE that: 'Phillips are not known to back losers' adding that the microcassette could take off as did its big brother the compact cassette.

Microcassette Construction

A microcassette is a truly scaled-down version of the compact 'cassette because, like the compact cassette, the tape is moved by a pinch wheel (a similar mechanism is used on open-reel recorders). Thus the tape moves at a constant speed as it is transferred from one reel to the other.

Another type of cassette, slightly larger than the microcassette, is the minicassette. This has been used mainly in dictating machines such as those in Philips' Pocket Memo range, but because the tape drive is indirect (the tape is moved by rotation of one of the cassette sprockets), tape speed is not constant over its length. This method of drive is known as 'rim drive'.

Comparison of microcassette and compact cassette

Philips' D6700 and D6710

The D6710 is a hand-held microcassette recorder 130 by 65 by 24.8 mm with a built-in electret microphone. We tested a sample D6710 at HE and found the microphone to be extremely sensitive. You didn't have to clutch the machine to your mouth (as was necessary with a sample 0085 Pocket Memo we tried) but could, under quiet conditions, leave it on the table to record a conversation. Sound output, specified as being 0.22 W maximum, was quite adequate too, considering that the recorder runs from only 3 VDC, supplied by two HP7-or AA-sized cells. It is claimed by Philips that the energy requirements, compared with an equivalent compact cassette machine, are cut by more than 50% - starting, presumably, with the need for only two cells. (Compact cassette recorders, providing Joudspeaker output, usually need four or six cells.) Sockets are provided for external 3 VDC .supply, earphone/line output and microphone/line input.

Two standard playing speeds (1.2 and $2.4 \mathrm{~cm} / \mathrm{s}$) can be selected, and other features include a 'silent' tape stop, a three-digit counter and an automatic recording level control.

Price for the D6710 is estimated by Philips to be $£ 64.95$. A similar model, the D6700, is due for release around the same time and is likely to be about $£ 10$ cheaper. It will have no automatic tape stop, no counter and will have a cheaper finish. These two machines will enable Philips to 'test the market' for microcassettes.

Sanyo M5850

One combined microcassette recorder and FM/AM radio released a few months ago is the M5850FG from Sanyo. Although the radio section is restricted to $\mathrm{VHF}(88$ to 108 MHz) and $\mathrm{MW}(525$ to 1605 kHz) and it may lack the sensitivity and sound output of a similarsized radio receiver, the microcassette section has the same functions as Philips' D6710. It runs from 4.5 VDC, supplied by three HP7- or AA-sized cells. A 'beat 1 and 2 ' switch is included to allow the erase oscillator frequency to be shifted should it produce a heterodyne note with an incoming radio signal. Apart from having a pressbutton dial light, indicators are provided for battery/power and recording.

If the D6710 costs you about $£ 65$ then the M5850FG will cost you around $£ 25$ more for the radio facility.

Approximate weight (with batteries) of the M5850FG is $450 \mathrm{~g}(1 \mathrm{lb})$ compared with $280 . \mathrm{g}$ (10.25 oz) for the D6710.

Microcassette (left) and minicassette

What Is To Come

The above machines are examples of what is available for microcassettes at present, but what about the future? Japanese companies are working to perfect metal tape to meet hi-fi standards, and present progress looks encouraging. What we are likely to see from equipment manufacturers are more miniature radio receiver/ microcassette combinations, with the strong possibility of stereo versions appearing later this year. It is also likely that microcassette equipment will become available for use in the car.

When Sony was asked about its plans for microcassette hardware, it said that it had nothing comparable with Sanyo's microcassette radio/recorder at present. Sony would prefer to include long-waves with the MW and VHF wavebands on any microcassette radio recorder it introduced to the UK market. It is likely to concentrate only on recorders for the next 12 months. A new range of 'budget to top-end' recorders is planned for the Spring and Summer.

Meanwhile, at HE, we'll keep an eye on the progress of microcassettes and we aim to produce a feature article in a few months time on the cassettes and the equipment available for playing them.

Philips D6710 microcassette recorder, Sanyo M 5850FG microcassette recorder/radio and Philips 0085 pocket memo. Microcassette and minicassette tapes are shown side-by-side in the foreground

Make yourself heard above the crowd with this high-power, battery-operated, low-cost
amplifier - ideal for any public gathering. A kit is available at a special-offer price

SPRING IS THE TIME of year when fêtes, fairs, garden parties and other outside gatherings start to be organised, so we reckoned that now was the time to launch this project to help defeat the problem of trying to address every member of a large crowd. You won't have to shout your voice hoarse anymore once you've built the HE Public Address Amplifier because with suitable horn speakers and a microphone (see Buylines for a suggested source) your voice will be lifted above the merry throng to an almost ear-piercing level.

A simple circuit provides 18 watts RMS into 4R-impedance speakers, the
supply being a standard 12 V car battery. Power also can be taken directly from a nearby car's electrical circuit, say by plugging into the lighter socket. Alternatively a 240 V operated 12 V power supply can be used if you have access to mains.

There are two inputs - for a microphone and an auxiliary line each with an individual volume control to allow mixing of voice with, say, background music or a guitar or other instrument.

Based around an IC, the HA1388, the whole circuit is constructed neatly on Veroboard which can then be built into a 100 mm Sink Box. Way back in

July 1980 you may remember that we used both the HA1 388 and the Sink Box in our popula Car Booster amplifier. The IC provides a highpower audio output, with a lowvoltage power supply and the box provides a rugged housing - both are ideal for car or mobile use.

Construction

Take extreme care when building up your project. We show details for Veroboard but there is nothing to stop you designing your own PCB if you want a smaller board: just remember that parts of the circuit require large
amounts of current so keep the tracks wide. If you use Veroboard make all track breaks first in the usual way and then solder in the links.

Insert and solder all components, resistors first, followed by capacitors and finally semiconductors, leaving IC1 till last. Figure 1 shows the insertion details of IC1. Unusually, it is

Figure 1. Correct mounting procedure for IC1. below the board.
mounted underneath the board and needs to be the correct distance from it, as shown. This positions the IC in the correct place for bolting it onto the underneath of the case so that the metal surface of the Sink Box can act as a heatsink and dissipate the large amount of heat which the IC generates at full output. You must take care when mounting the chip on board to ensure you don't damage it. That finishes construction of the

Veroboard itself, although if you wish you can use connecting pins to help when making the off-board connections.

Next comes the job of fixing the board into the case. The box is all metal of course, and so the underneath of the Veroboard needs to be insulated from it, by glueing two small strips of paxolin or plastic to the case bottom. Also, two similar pieces can be glued to the sides thus providing a guide rail for the board to slide into. Two bolt holes should be drilled to enable the IC to be fastened down. No insulation measures need to be taken here as the metal plate on the back of the IC is intermally connected to OV , thus the whole box will be at this potential. (This is a point you should bear in mind if your vehicle is of the positive-earth type. If so, insulate the box from the car chassis rather than the IC from the box).

Mark and drill the two end panels for input and output sockets, potentiometers and power cable and then fit all controls and sockets ready for final wiring-up. Carefully follow the details in Fig. 2 and solder all connections. Note that screened cable should be used at the input.

Parts List

RESISTORS (All \% W, 5\%)	
R1.5	100k
R2,6,8,9	47k
R3, 7	4 k 7
R4	220k
R10,11	2R2
POTENTIOMETERS	
RV1	100k logarithmic with single-pole, single-throw
	switch
RV2	100k logarithmic potentiometer

CAPACITORS
C1,2,13,14 100n polyester
C3,5 220n polyester
C4 $10 \mathrm{u}, 16 \mathrm{~V}$

C6.9	$100 \mathrm{u}, 6 \mathrm{~V}$	All printed
C7	$100 \mathrm{u}, 16 \mathrm{~V}$	cIrcuit

C7	100 l
$\mathrm{C} 10,16 \mathrm{~V}$	100 u

$\begin{array}{ll}\text { C10.11 } & 100 \mathrm{u}, 10 \mathrm{~V} \text { mounting } \\ \mathrm{C} & 47 \mathrm{u}, 6 \mathrm{~V}\end{array}$

C8	$47 \mathrm{u}, 6 \mathrm{~V}$
C 12	2200 V

SEMICONDUCTORS

$\begin{array}{ll}\text { IC1 } & \text { HA1388, power amplifier } \\ \text { 01 } & \text { BC184 NPN transistor }\end{array}$ D1 1N5401, 3 A diode

miscellaneous

Case to suit (see Buylines)
Knobs
2×5-pin, 180° DIN sockets
$2 \times$ speaker DIN sockets
Cable grip, in-line fuse holder + 3 A fuse 27 hole $\times 33$ strip 0.1" Veroboard Microphone and speakers to suit (see Buylines)

Public Address Amplifier

Figure 3. Circuit diagram of the HE PA Amplifier
Figure 2 (below). Veroboard layout, connection details and underside board view showing track breaks and component locations. Note the two solder tags which bott to IC1's body

Public Address Amplifier

Note also that fairly heavy-gauge cable is necessary for the power and output connection because a lot of current will be flowing through them at times. Use of fine-gauge wire will result in loss of power and possible audible instability. Use sleeving, if you have any, to cover all soldered connections thus helping to prevent short circuits.

Finally make sure you connect an in-line fuseholder with a 3 A slowblow fuse in the power lead, then if things do go wrong with all this current flowing around, damage to the circuit can be avoided.

From this photograph of the back of the Sink Box you can see how IC1 is bohed to the bottom of the case. This provides both excellent heatsinking and a good earth point for the solder tags

Integrated circuit IC1, the HA1388 is a high-gain, high-output power amplifier which requires a low-voltage power supply of 8 to 18 VDC maximum to operate. Maximum output power is 18 watts RMS at 13.2 VDC, this being the approximate voltage present in a car electrical system. The IC will drive a speaker/speaker system of 4R minimum impedance with full power output.

Sensitivity of the amplifier is exceptionally good, only a few mV at its input terminal (pin 3) being required to drive the output to full power. It also has a reasonably high input impedance which

Buylines

How It Works

enables it to be driven directly from most signal sources.

The signal from a microphone is amplified by Q1 and associated components R1 to 7. C1 to 4, by a factor of 10 so it is about the same amplitude as the line input signal (auxiliary) from say, a cassette player or even an electric guitar. Both input signals are then mixed by RV1 and RV2 and applied to the main amplifier IC.

Diode D1 is in circuit to ensure that no damage will occur if power is inadvertently connected in reverse and capacitor C12 helps to smooth out the many voltage fluctuations which often are inherent in mobile applications.

Special Offer Kit

If you wish to buy all parts for the Public Address Amplifier together, Magenta Electronics will supply everything (case, Veroboard, pots, knobs, components etc.) down to the last nut and bolt, for the special offer price of $£ 16.56$ inc VAT. Please add p\&p at a standard rate of 40p.

We also obtained our two rearentrant horn speakers and the hand mike from Magenta. The speakers cost $£ 6.83$ each and the mike is priced at £4.40. Remember the 40 p standard charge for p\&p applies whatever the total cost of your order.

Below you can see the insides of the HE Public Address Amplifier. Keep the wiring as neat as you can and use sleeving at connection points

BUILDING YOUR OWN HI-FI SYSTEM?

GET A PROFESSIONAL FINISH TO YOUR OWN TAILOR-MADE SYSTEM BY PURCHASING A SMÓKED ACRYLIC LIFT-OFF LID WITH CONTRASTING BLACK ABS LEATHER GRAINED BASE DIRECT FROM THE MANUFACTURER BY POST.

INTERNAL SIZES:

MODELA
Lid: $175 / 8^{\prime \prime} \times 121 / 2^{\prime \prime} \times 3^{3 / 4} 4^{\prime \prime}$ TAPERING TO $3^{\prime \prime}$

MODEL B
Lid: $313 / 9^{\prime \prime} \times 14^{3 / 6} 9^{\prime \prime} \times 3^{1 / 22^{\prime \prime}}$. Base: $31^{1} 1^{\prime \prime} \times 147 / 8^{\prime \prime} \times 23 / 8^{\prime \prime}$
Base: $173 / 4^{\prime \prime} \times 121 / 2^{\prime \prime} \times 3^{\prime \prime}$
State model required and send cheque or P.O. for the amount quoted (VAT \& Postage paid) to:
TAURUS PLASTICS LTD.
2 CHARLES ST. WALSALL WEST MIDLANDS

BIORHYTHMS ARE BAGK!

With just about everything else except the kitchen sink

CASIO BQ-1100 BIOLATOR/ WATCH

Clock, calculator, 2 slarms, countdown alarm topwitch, time memory, three dite memories. biortythm and date calculations, calculator. Clock. Hours, minutes, seconds, am/pm. Day/date. Univaras calondar. Pre-programmed 1901 to 2099. Day, date, month and year display. Alarm. Two separate alarms. 24 -hour system Coumdown alarm. $1 / 10$ second to 24 hours, or Stopwetch $1 / 10$ second to 24 hours. Net times, or Calculator 8 digits Full memory Sq rots $\%$. Calculations, Any monthly calendar from 1901 to 2099 can be displayed and utilised.
Biorhythm calculations Forec
emotional and intellectual perform your physical Chart your peak, ebb and critical dayance potential to avoid mistakes. Two silver oxide batteries tas approx 1 year.

ALL THIS FOR ONLY £14.95

CASIO'S AMAZING NEW FX-3500P

Statistical regression and integrale. Non-volatile
nomories and stores.
38 functional (non-volatile) steps. 2 programme storage capabllity. Unconditional and conditiona constant memories. 18 pairs of parentheses nestable in 6 levels.
61 built-in functions, including: Integrals (Simpson's rule). Linear regression. logarithmic regression, exponential regression and power regression
Hyperbolics, sexagesimal and co-ordinates conversions. 10 digit mantissa or $10+2$ exponent. Two silver oxide batteries give approximately 1.000 hours continuous use with power-saving automatic cut-off, with data and memory protection.
Dims: $9 / 32 \times 21 / 4 \times 51 / 4$ inches. Supplied with leatherefte wallet

ALL THIS FOR ONLY £22.95

FX180P. Hand held version without hyperbolics. $2 \times$ AA bateries, $3 / 4 \times 3 \times 5 \%$. $\mathbf{E 1 9 . 9 5}$ FX-2700P. As FX 3500 P but $8+2$; without integrals, regression, 1 program $£ 19.95$ Now molody atarm clock culculatore. ML2000 $£ 22.95$, UC360 $£ 19.95$, UC365 E19.95.

* star buy for 1981 * Our best selling watch

Writh around 40 functions
LCD ANALOGUE/DIGITAL
Alarm Chronograph with countdown
Analogue. Independent hours K drminutes with synchronous digital seconds. Dual time ability. Digrom. Mours. minutes, seconds, day and date. 1st and 2nd place Start/sond to 2 hours. Net lap and Alanm. For 30 seconds with carousel display. Coumdown Alarm. Normal and net times with amazing "Star Burst" flashing display. Tima Signal. Half-hourly and hourly chimes. Tone control, Lithium battery. Light. Water-resistani case. 8.65 mm thick. Mineral glass.

AA81 Chrome plated £29.95
AA81G Gold plated £49.95

A482 Stainless Stoel £39.95
12 MELODY ALARM CHRONOGRAPHS with countdown alarm. M-12 resin case/strap E24.95. M1 200 all stainless steel $£ 29.95$
100 METRE WATER RESISTANT Alarm chronographs with countdown alarm. W100 Resin case/strap $£ 19.85$. W150C Stainless steel case/resin strap. £25.95. W150t Stainless steel case/bracelet $£ 32.50$.
CASIOTONE KEYBOARDS. New model: CT 30114 instruments and 16 thythm voices
(RRP E325) E275. CT 201 £245, M 10 £69.
SEIKO. New Calculator watch/stopwatch/Five alarms. $\mathbf{6 9 . 9 5}$.
Send 25 p for our illustrated catalogue of Casio and Seiko

PRICES

Include VAT and post and packing. Remember, we will beat any lower advertised price by 5% providing profitl Just send details and your remintance for the protitl Just send details and your remitrance for the lower amount.

Send cheques, PO or phone your ACCESS or BARCLAYCARD number to:
TEMPUS
Dept. HE, Beaumont Contre, 164167 East Rond, Combridgo, CB 1 1DB. Tal: 0223312866.

The Beginnings
 of Real TV

Modem TV has origins dating back to the last century. lan Sinclair traces some of the surprising milestones on the way

Try asking a number of people if they know who invented TV. If they come up with a name at all, it certainly won't be the name of any of the true pioneers of television as we know it today. Would you yourself recognise the names of Nipkow, Rosing or CampbellSwinton? As we'll see, no one man invented TV but of all the contenders, Cambell-Swinton comes nearest to being the inventor of the system we know, even though the technology of the day was unable to permit him to demonstrate how correct his ideas were.

Let's look, then, at the long chain of events which shaped the TV system of today and the men whose efforts made it all possible. We could start with Berzelius in 1817, whose discovery of selenium introduced the first photoconductive element to us. Alternatively, we could choose Becquerel who investigated photovoltaic cells in 1839 and, incidentally, also discovered radioactivity. Probably the best start, though, is in 1873 with the first engineering advances, as distinct from purely scientific discoveries. In that year, the telegraph engineer, Willoughby Smith, published brief details of a remarkable discovery - that selenium was photoconductive. Selenium had been known since Berzelius' discovery of it in 1817 , but it had not been put to any practical uses. Berzelius had noted that it conducted electricity, though very poorly: so that his discovery ranks as the first discovery of a semiconductor. Willoughby-Smith's interest was in using selenium to make high-resistance values for use in measuring instruments. His assistant had noticed that these instruments gave different readings as the light falling on them varied, and had gone on to discover
that the resistance of selenium decreased when the material was exposed to light.

Selenium In Image Transmission

At this time, Graham Bell was working on the device which he was to announce in 1875 - the telephone. The two ideas prompted many inventors to put forward ideas for devices which would transmit images over telephone lines, facsimile transmission as we call it today. One scheme, devised by Carey in 1875 was for a large set of selenium cells linked to a corresponding set of electric lights by cables. It would probably have worked, but needed a large number of parallel lines, one for each cell. An alternative idea which he suggested used only a single wire for transmission, and included, for the first time, the principle of scanning the cells at the 'transmitter'. The scanning mechanism was clockwork, and though the transmitter could have worked, there was no way of syn-
chronising the receiver so that it would correctly 'unscramble' the information coming over the wire.

Need For Scanning

A working model of a facsimile machine was demonstrated in 1881, by Selford Bidwell, to the Royal Institution in London. The transmitter used a single selenium cell, and the image was formed by a pinhole in one end of the box containing the selenium cell. The position of the pinhole could be varied by a set of cams, so scanning different parts of the image in turn over the selenium cell. At the receiver, a picture was re-constituted by electrochemical action using paper moistened with chemicals which changed colour when a current passed through them. It worked - but the synchronisation was purely mechanical the receiver was connected by a revolving shaft to the transmitter. The
 drum system: a) light from different parts of the scene is b) reflected from each mirror as it rotates. A large number of mirrors can be used so that the drum does not have to rotate rapidly. Rotation of the dum causes the reflected beam to scan different parts of the picture
whole machine is in the Science Museum, which acquired it in 1908.

The need for scanning had been recognised, and by the mid-1880s, two important mechanical methods of scanning were well known. Atkinson's mirror drum (1882) used a set of flat mirrors mounted around the outside of a drum. As the drum was rotated, each mirror caused light from a reflected image to scan across a cell (Fig. 1). The Nipkow disc of 1884 used a wheel with holes drilled in it to provide both horizontal and vertical deflection at the same time (Fig. 2), and his Patent of 1884 contained all the details of the apparatus which Baird would later use.

Figure 2. Nipkow disc, the scanning system used by most of the mechanical TV systems

Beyond Selenium

The practical problem which prevented these pioneers from producing a 30 -line TV picture in the 1880s was their use of selenium. Like so many photoconductive materials, selenium has a long time-constant, so that scan rates of more than a few bits (fragments of picture information) per second were impossible. For slow facsimile work, this was of little importance, but for the transmission of any sort of moving picture, the timeconstants were impossibly long. For that reason alone, mechanical TV systems were developed no further at that time, and no new suggestions were put forward.

By 1897, the possibility of allelectronic TV came flickering onto the horizon. In that year, Karl Braun developed a workable cathode ray tube which contained most of the essentials of the tube of today. Although the electron beam was

generated by passing current through a gas at low pressure rather than by thermionic emission, the deflection system and fluorescent screen were virtually the same as those we would recognise today. The possibilities which were opened up by this invention were immediately recognised by research physicists, who seized on the new device as a method of displaying alternating voltages. Engineers took a bit longer to see what might be achieved.

The first recorded suggestion that a cathode ray tube could be used for television seems to have come from Boris Rosing.

Rosing was a teacher with the St. Petersburg Technological Institute, and he wasted no time in applying for a British Patent for his invention. Rosings' TV system used mechanical scanning at the transmit-
ter, by mirror drums mounted at 90° to each other (Fig.3a). One drum revolved fast to provide line scan, while the other revolved slowly to provide frame scan. The cathode ray tube (Fig.3b) was used at the receiver, with its deflection coils fed from generators. The scheme was unworkable because the signals from the transmitter were much too feeble to operate the receiver: no amplification was then possible.

Insight Into Modem TV

At about the same time, A. A. Campbell-Swinton, an engineering consultant, had become interested in television and had concluded that mechanical systems were too primitive. In a letter written to the journal Nature (which is still where you'll find the first reports of significant new

Figure 4. Campbell-Swinton's 1911 patented sketch in simplified form. The sweep voltages were to have been generated by ahemators. because electronic oscillators were not possible at that time

ELECTRON BEAM

ELECTROMAGNETS MOUNTED ON NECK MOUNTE
OF CRT

SIGNALS (VIDEO)
discoveries) he described in outline all the details we would recognise as essential to all-electronic TV. An extract from the letter shows how far ahead his thinking was: ' . . employment of two beams of cathode rays (one at the transmitting and one at the receiving station) synchronously deflected by the varying fields of two electromagnets placed at right angles to one another and energised by two alternating electric currents of widely different frequencies, so that the moving extremities of the two beams are caused to sweep synchronously over the whole of the required surfaces within the one-tenth of a second necessary to take advantage of visual persistence. Indeed, so far as the receiving apparatus is concerned, the moving cathode beam has only to be arranged to impinge on a sufficiently sensitive fluorescent screen, and given suitable variations in its intensity to obtain the desired result. The real difficulties lie in devising an efficient transmitter

It takes only slightly more modern wording to be used as an acceptable description of TV today, yet this was published in 1908. Campbell-Swinton recognised that there was much to do, but in 1911 he took out a patent, and also delivered a lecture to the Rontgen Society in which he gave more details about his proposal. Campbell: Swinton's patented sketch, in simplified form, is shown in Fig.4.

Need For Amplification

As it happened, one of the problems which made early TV experiments impractical was being solved - DeForest
had developed his Audion, the first radio valve, and had shown that amplification of signals was possible. Though Campbell-Swinton was unable to build a working model at the time, Marconi constructed one in 1937 to Campbell-Swinton's original plans, and it was exhibited at the Science Museum.

The first World War put an end to television experiments as such, but had the side-effect of causing a rapid development of radio and in particular the use of amplifying valves: Amplification was no problem in the post-War era, and the ideas which. Campbell-Swinton had so clearly stated were picked up once again. The brilliant engineer, Vladimir Zworykin, who had escaped from Russia to the USA, developed the use of cathode ray tubes for receivers, and also filed a patent for a camera tube which was later developed into the Iconoscope. Philo Farnsworth, working on more conventional lines, developed another type of camera tube which he called the Image Dissector. Every part of CampbellSwinton's scheme could now be assembled - but electronic TV didn't appear.

Looking back, the reason must be the immense publicity which accompanied Baird's experiments: Using the mechanical system of Nipkow and Atkinson, Baird was able to produce crude pictures. Other experimenters, knowing the limitations of the mechanical system, dismissed these results but to the uninformed public, Baird had produced television and noone else had. Work on electronic television suddenly became a secret operation, hindered rather than helped
by secrecy, and with funds always in short supply as speculators preferred to put their money into something they could see working. Television today exists because of the far-sightedness of several large companies who refused to jump on the Baird bandwaggon and who recognised that CampbellSwinton's scheme represented the only true TV system which could eventually be sold to the public. EMI and Marconi in the UK and RCA in the USA must share the credit for the remarkable developments which took place between 1923 and 1936. Because of the secrecy which surrounded the work of the two main teams who were developing electronic TV, it looks likely that neither was really aware of what the other was doing, but the basic scheme which had been laid down by Campbell-Swinton ensured that both were, in fact, working along very similar lines.

Need For An Electronic Camera

In the USA, the team at RCA was led by Vladimir Zworykin, and his interest in television had been aroused in a very direct way - he had been a pupil of Boris Rosing at St. Petersburg before his army service. After his escape to the USA in 1919, when so many army officers were being butchered for alleged lack of sympathy with the revolution, Zworykin joined the Westinghouse Research Laboratories. At Westinghouse, his research project was the construction of an electronic camera tube on the lines which had been proposed by

The Beginnings of Real TV

Campbell-Swinton, though Zworykin has said that at the time he was quite unaware of the work of CampbellSwinton.

Zworykin realised that such a tube would have to incorporate the normal CRT electron gun and deflection coils, but in place of a fluorescent screen it would need to have a 'target' of photosensitive material. The method which Zworykin chose was a photoemissive layer, using a material which emits electrons when struck by light. This isn't the place to look closely at the way in which this tube worked, but briefly the idea was to use the light of an image to cause electrons to beemitted from a set of small insulated dots of photoemissive material. These electrons were then replaced as the beam from the electron gun scanned the target, and the current caused by the replacement of the electrons constituted the signal. Zworykin called this tube 'Iconoscope', and first attempted to take out a patent in 1923. At that time, however, a working model could not be constructed and the patent was not, in fact, granted until 1938. Zworykin had also put a considerable amount of work into the development of the receiver CRT, moving from a device which used both electrostatic and magnetic deflection (Fig.5) to one which in all but dimensions resembles the tube of today.

EMI And The Choice Of Lines

In the UK the research and development effort centred round the newlyformed EMI group. This was a company formed by a merger of the Gramophone Company, Columbia Gramophone Company and a few other smaller companies, and this group had already achieved a mechanical system using 150 lines. At the time of the merger, Isaac Schoenberg, another Russian citizen who had studied at Kiev and had escaped to Britain (in 1915) was appointed as Director of Research. This was probably one of the best arrangements since Rolls met Royce, for Shoenberg had a remarkable ability for spotting engineering genius and for getting ideas put into practice. Two of his team have made their names many times over, A. D. Blumlein, who had the distinction of holding more patents in electronics circuitry than anyone before or since, and Dr. J. D. McGee, who is now Professor at Imperial College, and who then was concerned

with the development of the Emitron camera tube.

When the EMI reseach team was originally formed, its first brief in 1931 was to improve the mechanical system, which was in fact done, first to 180 lines and then to 243 lines. By 1932, however, the engineers were convinced that the mechanical system had too many limitations to be considered seriously and the EMI team, like Zworykin's team at RCA started to concentrate exclusively on electronic methods. The Emitron camera tube was a considerably improved version of the original Iconoscope design, and the work which Blumlein did on such circuitry as timebases, synchronising pulses, video amplifiers and VHF circuits ensured rapid progress. It's worth remembering that everything was novel, there was no experience of such circuitry to draw on. In addition, the handicap of secrecy surrounded the project. There were several reasons for this. Shareholders of the company who had seen the mechanical system wondered why EMI did not put something on the market to counter Baird's efforts. Secondly, no-one was quite sure how far the US efforts had reached. Finally, there was a small but noisy group of left-wing MPs who opposed all forms of research which used money in times of hardship.

Fortunately, Schoenberg was able to persuade EMI's directors of the potential of his system. It's as well for us that he did, because the work of Blumlein on TV circuitry was the pioneering effort which enabled us to develop radar in such a remarkably short time. Incidentally, the development of the Merlin aero engine which
was later to power the Spitfire was also carried out under strong opposition from left-wing MPs, and the project would probably have collapsed but for money donated by Lady Houston. Not surprisingly, the opposition collapsed when Germany invaded Russia!

By 1935, the EMI team had succeeded to a point where an awkward decision had to be made. They could either market a 240 line system there and then, or work on to develop a higher-definition system. Schoenberg took the brave step of deciding to go for a 405 line interlaced scan system, once again plunging into the unknown. It was a remarkably brave step, because the BBC hac been broadcasting on the Baird System since 1929, and the longer EMI waited, the more difficult it would have been to overturn the established system.

Once again, Schoenberg's judgement was correct. A Parliamentary Committee had been set up in 1934 to consider the various TV systems which were available, and to decide if any could be made the basis for regular public-service broadcasting. The Baird transmissions were still experimental, and the BBC was entrusted with the job of putting out the EMI system signals as well.

Once again, EMI was stepping into the unknown. The Baird system, being low-definition and sequentially scanned (no interlace) needed a comparatively small bandwidth and could be broadcast on the short-wave band. The EMI system needed a much greater bandwidth, and had to be transmitted on VHF - a band which was little used. No-one had ever transmitted or received TV waveforms

The Beginnings of Real TV

on these frequencies before, and noone was quite certain whether it could be done or not. The transmitter side of the problem was handled by Marconi's Wireless Telegraph Company las it was called thenl).

The companies found themselves in a two-horse race. Baird's company was using three camera systems. One was a mechanically-scanned camera, using 240 lines with 25 frames per second. The second system used film as a method of televising scenes which the Baird camera could not tackle which was most of them! The mechanical camera required the whole studio to be in darkness except for a brilliantly-lit subject, so that only face close-ups could really be televised live. The intermediate-film system was designed to patch up this immense handicap by filming the live scenes, developing and fixing the film in a time of one minute, and then using the film in a mechanical TV scanner, in which intense lighting could be used. Baird's third camera was an electronic one developed under licence from Philo Farnsworth but not sufficiently advanced to match the EMI equipment.

The tests started on 2 nd November, 1936 at 3.30 PM - and there is a joke in EMI that the last joint was soldered at 3.29 ! Certainly, the

EMI team was working frantically right up to the last moment to perfect their 405-line 50 -field system which was immensely superior in quality to the pictures which the Baird system could offer. Each system was used for a week, alternating between the two.

Arrival Of Modern TV

There was little doubt about which system was superior, but in any case the Baird Company suffered a disaster - a fire at the Crystal Palace destroyed all the equipment, including the Farnsworth camera. The EMI-Marconi system was chosen at about the same time as Zworykin at RCA was announcing the 525-line system which is still used in the USA. Television as we know it had arrived.

It hasn't exactly looked back. Schoenberg, always aiming to improve the system, had discussed with McGee the possibility of a greatly improved camera tube, the SuperEmitron. Once again, late working became the normal way of life in the Research Department and the SuperEmitron was ready for the Coronation broadcasts in 1937. This event provided so many 'firsts' for TV that there isn't room to list them. Every camera
which could possibly be used was pressed into service and the result was an immense success. Despite the fact that there was only one transmitter, at Alexandra Palace, some 23,000 receivers were in use by 1939, and pictures were being received at distances which no-one had believed possible, from Clacton to Brighton.

Then it all ended. The Second World War shut down all work on TV in Europe, and most of it in the USA. The techniques which had been worked out in that breathless period in the 30s were turned to radar use. Tragically, A.D. Blumlein was killed when an aircraft, in which he was conducting radar trials, crashed.

After the war, TV in Britain shakily started again on 405 lines. It seems out of character that Schoenberg should not have insisted on going to a higher line standard then, but the 405 line system seemed adequate at the time, and we are, after all, only saying farewell to it now.

Who invented television, then? It's a complex story, but l'll put my money on Campbell-Swinton, whose scheme was the launching pad on which the EMI team assembled their rocket. Without his vision, we might well have had to import the whole of the technology from the USA.

View into back of Marconiphone TV receiver, model 702, 1938 \{also shown at beginning of article). It has a $12^{\prime \prime}(300 \mathrm{~mm})$ picture tube mounted yertically, which is viewed by means of a surface-silvered mirror mounted in the lid. This was common practice in early receivers, where the tube was too long to be housed horizontally. The tube had an EHT voltage of 5 kV , was electromagnetically deflected but electrostatically focussed

Rear view of Ferguson colourstar TV. 1968. This was the first all-transistor colour TV in the world, and it uses a 25" (635 mm) Thom-Mazda tube. It features modular construction: printed-wiring panels are removable for easier servicing. It was manufactured by Thom Consumer Electronics in Enfield, Middlesex

BI-ANDSANE SALE-8I

	DIODES	
	Oniole	INase
	cose	come
(taxter		${ }_{\text {a }}$
		${ }_{\text {a }}$
边		${ }_{\text {St }}$

Results of HE Electronic Games Competition

We're pleased to announce the results of the competition published in the January 1981 issue of HE. You will remember that first prize was the exciting new programmable TV game from Rowtron, with a selection of cartridges for good measure. Second prize was the hand-held Space Invader game from Entex. We offered one of the latest HE T-shirts to each of the 20 runnersup.

Now for the bad news. No, we haven't lost the entries (or the prizes!) but out of the 400 -odd entries we received, only 17 (4.25\%) got all the answers right! So there was no need for us to worry about using your suggested last line to our limerick in a 'tie-breaker'.

The Winners

1st Prize Anthony Clarke, Spondon, Derby
2nd Prize Jeff Jones, Risca, Gwent

Runners-up

Tufail A. Ansari, Southall, Middlesex Derek Blamire, Llandudno, North Wales R.W. Chandler, Adel, W. Yorks P.C. Clift, Sharness, Gloucestershire Andrew Donaldson, Harpenden, Herts D.F. Downing, Ashiford, Kent
G.U. Fenton, Falsgrave, Scarborough
T. Holt, Codsall, Staffs

Bruce C. Joslin, Henleaze, Bristol
M. Moore, Peterborough, Cambs
G.F.P Room, Corringham, Essex

John Sedgeman, Sherburn Rd. Est., Durham
E.L. Stock, Pontypridd, Mid Glamorgan Stephen Walls, Stockton, Cleveland
David St. George, London
As you can see from the picture right, Sally Holley, HE's new Advertisement Representative, was chosen to draw the winning entries. The draw took place on Thursday 8 January, and we're glad to say that only two entries came in after the closing date of 1 January.

The Answers

Now, before the arguments start, printed below are the original questions together with the correct answers. As we said on the entry form, no correspondence regarding the competition will be entered into, AND the Editor's decision is final.

1) Which component is used as a 'White Noise' generator in the Chuffer project this month? Q3 (Note that 'a BC182L transistor' or just 'a transistor' was not sufficient)
2) What is the maximum power rating of each channel in the Sound-To-Light project? 1.2 kW
3) How many times is the word 'games' used in this month's feature on electronic games? 50

The moment of truth: HE's Sally Holley takes the plunge for the 1 it-prize winner
4) Who sells the cheapest BC 109 amongst the advertisers in this month's HE?
Watford Electronics (Note BC109 not BC109A or other gain derivatives, nor bulk buys or assortments)
5) What is the maximum number of 'revs' that can be displayed on the HE Tachometer project? 7000
6) What is the impedance of the High-impedance Voltmeter that will be appearing in next month's HE?
In excess of 11 million ohms (also correct: over 11 million ohms, over $11 \mathrm{M} \Omega$, or even $>11 \mathrm{x}$ $10^{6} \Omega$)

The Limerick

Most entrants had a go at the last line to this, and we must thank David St. George, one of the runners-up, for his observation: 'This is'not a limerick! The last words of the 1 st and 2 nd lines should rhyme!'

This was confirmed by the Concise Oxford Dictionary, which states: 'Kind of humorous verse, esp. five-line form often epigrammatic or indecent, with rhymes aabba...'.

Well, ours wasn't indecent (nor did anybody supply an indecent ending) but it was in abccb form.

Enough of these technicalities: we'll simply present a selection of endings below and leave you to judge which are the best ... or the worst.

Right in the middle of Modmags
Clever Dick was opening his mail As he opened one pack
It. made a loud crack
(You'll notice that we've corrected the 'on pack' error in the original)
And now he reads "H.E." using brail Dan Gillham, Guildford, Surrey
And out poped [!] a man from Mars V. Stanley, Cambridge

It couldn't have been fitted with 'safe fail'
C.T. Hearne, Chalfont St Peter, Bucks

Now Modmags has something for sale David Melvin, Sherborne, Dorset

And out fell "A PET" minus tail Max York, Mundlesley, Norfolk
And his false teeth fell into a pail D. Powell, Prescot, Lancs

And a voice said 'HE is now on sale' J. Burns, Ewell, Surrey

That's a new kind of programming in brail
M. Souter, Sevenoaks Weald, Kent

And out popped Fletch with a wail A. Woodward, Coppull, Lancs

And promptly blew off all his nails S. O'Callaghan, Guildford, Surrey

He found a party grenad [!] from Iraq Andrew Hodson, Kendal, Cumbria
And exploded with a siren-like wail J. Madigan, Crick, Northampton

And his desk was awash with real ale B. Fuller, Keighley, W. Yorks

Good Lord, its [!] short circuits, they're back!
Pete Hodges, Tyseley, Birmingham
IC said CD, and he shouted for joy, A motto, a hat and a toy
Paul A. White, Cookridge, Leeds
'Twas a spaceship in graphic de-tail N.N. Lindsey, Reading, Berks

Rolled over and said "Hows That!" Nigel Schwarz, Temple Cloud, Nr Bristol

And he hosed himself down with Pale Ale
Robert Hannah, Feltham, Middlesex
And blew the Editor to rags!
P.W. Dix, Enfield, Middlesex

And out popped a little alien Who was burnt and all black
Adrian Hallas, Midlothian, Scotland
Now his electronics are hung on a nail Bobby Grindlay, West Calder, West Lothian

Went he as pale as a pail of pale ale! Winston Harratt, Congleton, Cheshire

And shorted his 'Chuffer' to the rail

 H. Edwards, Stockport, CheshireAnd out fell a crate of brown ale David Shea, Old Windsor, Berks

An 'HE' project that didn't fail D.F.Downing, Ashford, Kent

Perhaps we'll make it easier next time: see under Monitor this month for details of our next competition.

GREENWMELD

443FMILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT-Just add 40p post. Tel (0703) 772501

COMPONENT CABINET
 IDEAL FOR THE
 NEWCOMER TO ELECTRONICS

Contains hundrode of brend now resiators,
 vor purssua his hobber mithout tinding himeot short of some vital parts. All perts con nim ind in chaorly

 cisaque or
soonche
ConTENTS
200 w wat resistors
${ }_{70}^{20}$ Wire wound resisto
70 Mriber Capect itors
50 Polvestor Copactions
56 Electrolvic Cappocitors

61 Transistor
12
$i c^{2}$

${ }^{5} 55$ Dhodess and reculifers
Allogether 614 component
P.c. етенimo kit mav V

The bess value in atching kits on the markio1 -
contuans 100 sq ins copper clad boord. Ferric Chlonde. Eleh rosist pop, miniature drill

CALC CHIPS EOpl
Now full sponc. supctied with dala. Type MK 50321 - tull function inc memory. Onty so

8 and 9 dign 7 segment bubble type for above chips - most have minor taults, dud segment. etc.
Mixture of 2 or 3 different types with data. 5 fone Mix
E1.
 $\times 400 \mathrm{rects}$. \& Rs. Only 50 p . 2529 TL pack - Panels with 74 series on
logethet with code sheet. From simule gates to
complea counters. $20 \mathrm{lCs} \mathrm{E1:} 100$ ICs $\mathrm{E4}$.

BUZZERS, MOTORS
2401 powertul GV DC buzaer. all metal construc tion.
2402 Minialla $\times 20 \mathrm{~mm} 85 \rho$.
$24 \times 15 \times 1.16 \mathrm{~mm}$. Very neat 65 p.
$22 \times 12 \mathrm{~V}$. only
-450 tan -450 Minature. 6 V OC motor, high qualhy type
32 mm dia $\times 25 \mathrm{~mm} \mathrm{high}$, with 12 mm spindle. 32 mm dia
Oniy E
2
2459 t 15.230 V ac high torque motor with geared reduction down to 60 rpm . Surdy construction
70 mm dia $\approx 20 \mathrm{~mm}$ Spindia 6 mm dia $\times 20 \mathrm{~mm}$ 70 mm dia x^{2}
long. Only E 2 .
W892 Meavy Dury 12 V relay, ideal for car use single 15 A make contact. Coil 25 R in sealed meta Can with mounting bracket 85p.
W890 DiL Reed relay SPCO 2.4 .10 V . 200 R coil Only $\mathbf{E 2} 20$.
W847 Low protile PC ming $10 \times 33 \times 20 \mathrm{~mm} 6 \mathrm{~V}$
coll. SPCO 3 A contacts. 93 p . coil. SPCO 3A contacis. 93p

VEROBLOC SREADBOARD
New lrom Voro. this versatite ard for bullding and
testing circuit can accommodare any size of IC.
Blocs can be olined together Bus smips on X \& Y Y Blocs can be forned together Bus strips on X \& Y
axis - toral 360 conneaton pounts for just $£ 4.15$.

THE SPECTACULAR 1981 GREENWELD Component Catalogue Bigger and berter than evarlt

60p discount vouchers

- First Class reply pargain Lis!
- Prioriiy Order Form
- Quamity prices for
Free IC Data Sheet

SEND 75p (ine. post) FOR YOUR COPY
buy a complete range of COMPONENTS AND THESE PACKS WILL HELP YOU ALL PACKS CONTAIN FULL SPEC. BRAND NEW
MARKED DEVICES - SENT BY RETURN OF MARKED DEVICES - SENT
POST, VAT INCLUSIVE PRICES

00150 V ceramic plate capacitors. $5 \% .10$ of
 K7.66.
003 Polyester capacitors, 10 each of these values: $0.01,0.015,0.022,0.033,0.047$. itogether tor $\mathbf{5 . 5 . 4 0}$
(004 Milar capacitors, min 100 V type to each

6007. Electrolyic capacitors 25 V working smell physical size. 10 each of these popular values 1 ,
$2.2 .4 .7,10,22.47,1004 \mathrm{~F}$. Tolal 70 for $\mathbf{E 3 . 5 9}$ koos Extonded range as above also includin 220,470 and $1000 \mu \mathrm{~F}$. Total of 100 tor $\mathrm{EE}, 35$. K021 Miniature carbon film 5% resistors CR25 or similar. 10 of each value from 10
series. Total 610 resistors $\mathbf{5 5 . 9 5}$. $K 022$ Extended range. Total 850 resistors from 1R to 10 M Es. 20.
0041 Zener diodes $400 \mathrm{~mW} 5 \%$ BZY88, etc. 10 280 tor value from $\mathbf{~} \mathbf{2 . 7} \mathbf{7}$ to $\mathbf{3 6} \mathrm{V}$. E24 series. Total NEW KO51 LEDs - 10 each red, green at vellow
3 mm \& 5 mm . with clips. Total 60 LEDs tor $E 8.85$

REGULATED PSU PANEL

Exclusive Greenweld design - better spec. than anything on the market being oftered al the price.
Panel $110 \times 82 \times 33 \mathrm{~mm}$ high contains all com. ponents including bridge rectiter and smoothing capactior. Ready built and tested \rightarrow just add $\# 30 V$ 2A transtormer and two pots
voltage and current supply.
SPEC. Output valtage 0.28 V
Output voltage 0.28 V
Output current $20 \mathrm{~mA}-2 \mathrm{~A}$
Source Impedance OR 1
Open circuir ripple 10 mV
Send SAE for full details of the many ways this
useful module can be used togethar with price list useful module can be used, together with price list
of pars for various options. Only $£ 7.75$

TRANSISTOR PACK K516

Take advantage of this unbelievable ofter"
Small signal NPN / PNP transistors in plastic package at an incredibly low. Iow price!! Almosi all are marked with type number - almost all ara full
spec. devices. Some have bent leads. Over 30 ditterent types have been found by us including $\mathrm{BC184/212/238/307/328} \mathrm{} .\mathrm{BF} \mathrm{196/7} \mathrm{:}$ 21/107/8/9/342/450/550, etc. Oniy avalable as a mixed pack at $£ 3$ per 100 , $£ 7$ per 250 .
ELECTRONIC AIR FRESHENER KIT

- Barrery Opersted

Ropleceable Fragrance
Robust Construction
This novel kit contains everything you need to make one of the most advanced air tresheners of its kind. Styled to take its place in any room in yo
home and do its job quienly and unobtrusively home and do its job quienly and unobtrusively
The automatic limeng circuit switches on fan to few seconds at regutar mintrvals to send an odour neutralising fragrance into every comer of your
room. minute timung circuit, miniature O.C. motor and moulded parts in high impact styrene to provide an ONLY $£ 7.95$.

* POWERFET AMPLIFIERS *

PARNDON ELECTRONICS LTD.

Dept. No. 23, 44 Paddock Mead, Harlow, Essex CM18 7RR. Tel. 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors
made under strictly controlled conditions by automatic machines. Bandoliered and colour coded.
1.00 per hundred mixed. (Min 10 per value)
8.50 per thousand mixed. (Min 50 per value)

Special stock pack. 60 values. 10 off each $£ 5.50$
DIODES: IN4148 3p each. Min order quantity - 15 ilems
£1.60 per hundred
DIL SWITCHES: Gold plated contact in futly sealed base - solve those
programming problems.
4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each.
DIL SOCKETS: High qualtry. low profile sockets.
8 pin-10p. 14 pin-13p. 16 pin- 15 p. 18 pin -19 p. 20 pin -25 p. 22 pin- 29 p. 24 pin -35 p. 28 pin -39 p. 40 pin -57 p.

ALL. PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS

MIN. ORDER - U.K £1.00. OVERSEAS E5. CASH WITH ORDER PLEASE

This 5 volume set contains over 500 pages Bound in stiff linen. Cover size $84 / 2$ in $\times 5$ in Price $£ 10.00$ per set (we pay the postage)

Book 1. Introducing Electronics Book 4. Meters/Voltage dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes

The manuals are unquestionaby the finest and most up-todate available and ropresent exceptional value
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order Now:
Selray Book Company 11 Aspen Copse,
Bromley.
QUP TOD\% GUAFANTEE
ination, your money will be refunded by return of post Kent. BR1 2NZ

- Amount enclosed: $£$

Name:
Address:

Building Site

What's important about wire? Keith Brindley advises you on the correct types to use in your projects

IF YOU HAVE read the article on the HE Public Address Amplifier project this month then you will have come across the reference (page 13) to different types of wire (screened cable at the input and heavy gauge wire at the output and for the power supply connections). If you are an enquiring reader (and judging by the letters we receive, many of you are), then you may ask why we use one type of wire in one place and yet an entirely different type elsewhere. After all, surely the only real purpose of a piece of wire is to join parts of a circuit electrically, so that a low resistance exists between two points? So why are different varieties used? Well, I gave the clue when I said low resistance. You see, NO wire of any length can have zero resistance. A wire will always possess a finite resistance, however small, perhaps only a thousandth of an ohm (0.001 R). Now, resorting to a bit of electronics theory, Ohm's Law states clearly the relationship between voltage, current and resistance, given by:

$$
V=I \times R \text {, }
$$

where V is the voltage, I the current and Rthe resistance. Putting a few numbers in this equation, say a length of wire has an overall resistance of 0.1 R and the current through it is 5 A . The voltage between one end of the wire and the other will be:

$$
\begin{aligned}
\mathrm{V} & =5 \times 0.1 \\
& =0.5 \text { volts }(0.5 \mathrm{~V}) .
\end{aligned}
$$

Now, 5 A may seem to be a very large current and you could be forgiven for thinking that none of your projects would ever pass such an amount, but you would be wrong. Take the PA Amplifier for instance: although it probably draws an average current of only a few hundred milliamps (mA), during large-volume peaks the current surges can be around and over 5 A . So, with this project, it is possible that 0.5 V could be easily 'lost' along a length of cable having the above specifications.

A voltage on the connecting wire means that a voltage drop occurs between the two circuits connected by the wire and Fig. 1 shows this graphically. In this example, two leads are connected between a power supply and a

circuit. Any voltage drop across one lead will be mirrored in the other, because they both have about the same resistance and not all the power available is passed onto the following circuit. The result is that not only does the voltage across the circuit vary with current flow, but the earth rail of the circuit (which should be at 0 V) changes in voltage: thus it is 'floating'. In an amplifier, particularly one producing more than a couple of watts output, a floating earth can result in instability and unwanted noises from the loudspeaker.

The only solution to the above problem is to use the correct thickness of wire for the job. Make sure you choose the wire by its current rating, such as 1 A, 2 A etc. Figure 2 shows a selection of wires ranging from 0.5 A rating to 10 A rating.

The wire recommended for most HE projects is multi-strand wire, which is a collection of strands of the conducting material grouped together and covered with insulating material. The wire can be classified by the number of strands in the group and the.thickness of each one (e.g. 10/0.1 - a group of ten strands, each 0.1 mm thick). However, another category is the single-strand type, which is, as its name suggests, one single length of wire. Inevitably, singlestrand wire is more brittle than its multistrand counterpart, so if you use it to wire up one of your projects, be warned that if any movement of a connection occurs, the wire might break. I would always advise you to use only multi-
strand wire to wire-up a project. You should certainly never use single-strand for wiring to mains plugs.

So where do you use single-strand? There are three main places, each using a different variety or single-strand wire:

- on a breadboard (see Fig. 3) where connections are made from one socket to another. You shouldn't use multi-strand here because the thin strands tend to break off and get stuck inside the sockets
- as a link on a circuit board. Tinned copper, single-strand uninsulated wire is ideal and makes really neat links
- to make a coil. Certain circuits require an inductor and often these can be hand-made by winding a number of turns of single-strand wire on an insulated former. To prevent shortcircuits between the turns, the wire needs to be insulated, and the standard procedure is to use coated wire which has a layer of polyurethane on it. Making the connections at the ends is easy: you can either scratch off the last $1 / 4$ " or so of insulation with a sharp knife (watch your fingers) or, with a hot soldering iron, melt it off

Finally we come to screened leads, which are normally used at the inputs of high-gain amplifiers to help prevent interfence. The main cause of the interfence is capacitive pickup and Figs. $4 \& 5$ show the principle of its action and how to prevent it. In the examples shown, a high-gain amplifier is used to raise the output signal of a microphone to the level required to drive a loudspeaker. The two connec-

Figure 2. Examples of some different thicknesses of wire with current ratings of $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2.5 \mathrm{~A}$ and 13 A

Figure 3. A breadboard circuit which use single strand wire for all connections
ting leads are separate pieces of wire. In an ideal world this simple circuit would work but, especially in electronics, the world is far from ideal. You see, any two
wires not in electrical contact but lying close beside each other form a capacitor - usually represented by two conductive plates separated by an in-
 from capacitive pickup
 screened cable
sulator. So between our two amplifier leads and also between the signal lead and the mains lead in Fig. 4, capacitances exist and are indicated by capacitor symbols. These two capacitors form a potential divider and a small part of the mains voltage is superimposed on the signal lead. The amplifier, as you would expect, amplifies this with the result that a 50 cycle-per-second (Hz) 'hum' is heard from the loudspeaker. This frequent problem is called 'mains hum'.

The earthed screen of screened cable effectively eliminates (or at least greatly reduces) the capacitance between the signal lead and mains lead because of the electrical barrier it places between the two. Thus very little superimposed mains voltage exists on the signal lead.
You might ask why we don't use screened cable everywhere, say for the speaker leads: surely they pick up interference too? Well, of course they do but remember it's just a tiny amount which won't be heard through the speaker. It's a different story at the amplifier output - any tiny amount picked up is amplified until it is large enough to be heard.

Well, that about wraps it up for this month. We've seen most of the sorts of wire we're likely to meet in projects. The important thing is to use the right kind of wire at the right place; follow any guidance given in the text and you shouldn't go wrong

MAGENTA ELECTRONICS LTD.

H.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to construct H.E. projects. Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards (fully etched, drilled and roller tinned) or veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of H.E. which includes the project - you will need to order the Instruction reprint as an extra 45p each.

80/81 ELECTRONICS CATALOGUE

KITS ICs TRANSISTORS CAPACITORS

Hundreds of illustrations, product data, circuit TOOLS courses. Up to date price list included. All pro ducts are stock lines for fast delivery by FIRST. CLASS POST.
Send $70 p$ in stamps for your copy $(7 \times 10 p$ or 5 $\times 14 \mathrm{p}$).

RESISTORS HARDWARE

CASES

ADVENTURES WITH ELECTRONICS Siviom

An easy to follow book suitable for all ages, ideal for beginners. No Soldering. projects - including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S Obc and the components for the projects. Adventures With Electronics $£ 1.90$.
Component pack $£ 16.72$ less battery

ADVENTURES WTH MICROELECTRONICS
 Same style as above book. 11 projects based on integrated circuits - includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes Bimboard 1 plug-in breadboard and the components for the projects.
 Adventures with Microelectronics $£ 2.35$
 Component pack $£ 27.95$ less battery

U

INTO DICHITAL ELECTROIIGS

Cuprent H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics. Circuits are built on a plug-in Eurobreadboard. Reprints of back issues available 45 each. Eurobreadboard and components for series $\mathbf{£} 18.95$ less battery. Com ponents only $£ 12.75$.

INTO ELECTRONIGS CONSTRUCTION

H.E. 6-part Series: Feb. '80 to July '80. COVERS THE BASICS OF ELECTRONICS LOTS OF PRACTICAL. WORK. Circuits are bulit on a plug-in Eurobreadboard. REPRINTS AVAILABLE, 45p each part. Eurobreadboard and Components for Series $£ 15.63$. Components only $£ 9.43$.
TOWERS INTERNATIONAL TRANSISTOR SELECTOR £10.50.
ANTEX SOLDERING IRON 25 W £4.98
SOLDERING IRON STAND E1. 98
SPARE BITS. Small, standard, large 65p each. EUROBREADBOARD $\mathbf{E 6 . 2 0}$
LOW COST LONG NOSE PLIERS $£ 1.68$
LOW COST CUTTERS 61.69 .
P.C.B. ASSEMBLY JIG $£ 11$
P.C.B. ETCHING KIT $£ 4.98$.

AM-FM AIRCRAFT BAND PORTABLE RADIO
E8.98.
E8.98. STRIPPERS AND CUTTERS $£ 2.48$.
WUL

probes $2^{\prime \prime} \times 31 / /^{\prime \prime} \times 1 " 66.66$,
MULTIMETER TYPE $2.000 ~ o . p . v . ~ w i t h ~$

CAYSTAL MICROPHONE NSEETT 58p.
SPEAKERS MINIATURE, 8 ohm B7p. 640 hm
98 p .80 ohm E1.56.
PLLOW SPEAKER.
EARPIECES
MONO HEADPHONES. 2 K Padded. SU
sensitive © 2.98 .
HEAT SINK TW

3 BAND S.W. RADIO

Simple T.R.F. Design. Covering most Ama-隹解ds. Five controls. Bandset, Bandspread Reaction. Wavechange and Attenuator. Co section is by Wavechange Switch. Use with
Headphones or a Crystal earplece. Kit con Headphones or a Crystal earplece. Kin con
tains all the components required including the P.C. Board and Case. Instructions are included with this hit
KIT $£ 18.97$. Headphone extra $£ 2.98$.

MAGENTA ELECTRONICS LTD.

HF7, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS, DE13 OUL. 0283-65435. 9-12, 2-5 MON.-FRI. MAIL ORDER ONLY ADD AOP Papp. TO ALL ORDERS. ALL PRICES INCLUDE 15% V.AT. OFFICIAL ORDERS FROM SCHOM ETC. WELCOME.
ENQURIES MUSTNCLUDE S.A.E. 3 INTERNATIONAL POSTAL COUPONS WE WILL QUOTE EXACT PRICE BY AIR MAIL.
EIRE \& BFPO ORDERS
U.K. PRICES - LESS 10%
(COVERS V.A.T. REFUND \& EXPORT DOCUMENTS). PAYMENT: STERLING U.K. BANK DRAFT U.K. POSTAL ORDERS OR U.K. CHEQUE.
ENQUIRIES: ENCLOSE 2 INTERNATIONAL POSTAL COUPONS.

Windscreen Wiper Controller

An easy-to-build project for the car owner, to stop those smeary windscreens at the flick-of-a-switch

Windscreen Wiper

Controller

YES, ITS YET another design for a windscreen wiper controller, but in addition to giving single, intermittent wipes, this one can also be used to give several sweeps of the windscreen followed by a pause for a similar length of time. This second mode of operation can be very useful under certain conditions where single strokes of the wipers just tend to smear the screen, possibly even making things worse rather than better.

This circuit is suitable for use with 12 V positive- or negative-earth systems. The wipers are controlled by a pair of normally-open relay contacts which are wired across the ordinary wiper switch, and adding the wiper controller does not affect the operation of this switch. Continuous operation of the wipers can therefore be obtained by using the wiper switch in the usual way.

Construction

The component layout and wiring of the wiper controller are shown in Fig.2. As you can see, we have used one of our usual 10 by 24 hole pieces of $0.1^{\prime \prime}$ matrix Veroboards, and so the unit is constructed using the usual techniques.

The unit is small enough to fit into virtually any of the numerous plastic cases that are available these days. The relay is not mounted on the component panel, but is mounted on the case instead. Modern relays normally have plastic housings, and the most convenient way of mounting these is to simply glue them in place using a really strong adhesive such as an epoxy type.

How It Works

The circuit diagram of the wiper controller is given in Fig. 1, and the unit is based on an operational amplifier used in a simple oscillator circuit.

A popular type of oscillator is used, and with switch SW1 in the position shown there is a square wave output from the oscillator at pin 6 of the IC1. The circuit operates by first charging C 2 from the output of IC1 via RV1 and R4, and then discharging it through the same path. Thus the charge (IC 1 output high) and discharge times (IC1 output low) are equal, and the square wave output is generated. Integrated circuit IC1 is used to drive the relay by way of Q1. This device is used as an emitter-follower buffer stage that provides the relatively high operating current required by the relay compared with the current drawn by the rest of the circuit. A pair of normally-open relay contacts operate the wipers during the periods when the output of IC 1 is high, but switch them off during the periods when IC1's
output is low, giving the required intermittent operation.

If SW 1 is switched to its central position, D1 and R3 are connected across RV1 and R4 and thus affect the timing of the circuit. The discharge time of C2 is not significantly affected because D1 blocks any current flow in this direction, but D1 permits a charge current to flow through R3. Because of the low value of R3 this gives a reduced charge time (and time for which the output of IC1 is high) of only about half a second. Thus the relay is only briefly pulsed on, and single, intermittent wipes of the screen are provided.

Potentiometer RV1 controls the time between single wipes of the screen, and in the other mode of operation it governs both the on and off times of the wipers. It gives a range of approximately 5 seconds to 50 seconds.

The third position of SW1 is used to switch the unit off.

Figure 1. Circuit diagram of the HE Windscreen Wiper Controller
Figure 2. Veroboard layout, underside view and connection details

Parts List

RESISTORS (All $1 / 4$ W, 5\%)
$\begin{array}{ll}\text { R1,2,5 } & 3 k 9 \\ \text { R3 } & 6 k 8\end{array}$
R4 47k
POTENTIOMETER
RV1 470k linear potentiometer
CAPACITORS
C1,2 $100 \mathrm{u}, 10 \mathrm{~V}$ electrolytic
SEMICONDUCTORS
IC 1
LF351 or TL081CP, bifet operational amplifier
D1.2 1N4148, diode
Q1 BC109, NPN transistor

MISCELLANEOUS

SW1 four-pole, three-way rotary swlich
RLA $\quad 12 \mathrm{~V}$ relay $185 R$, with at least one set of heavy-duty,
normally-open contacts
Case to suit
10 strip x 24 hole, 0.1" Veroboard
Knobs

Buylines

> All the components are straightforward types with the possible exception of the relay. This should have a coil operating voltage of 12 V and a resistance of about 185 R or more. It must also have at least one make contact (or a changeover contact used as a make type) having a current rating of 4 A or more at 12 VDC . Suitable types are available from Maplin (eg the 'Relay Flat 12 V).
> The parts for your project will cost. you about $£ 7$ excluding the case.

$$
\begin{aligned}
& \text { Semi-Conductors } \bullet \text { I.C.s • Opto- } \\
& \text { devices } \bullet \text { Rs and Cs in great variety } \\
& \bullet \text { Pots } \bullet \text { Switches } \bullet \text { Knobs. } \\
& \text { Accessories } \bullet \text { Tools } \bullet \text { Materials } \\
& \text { Connectors }
\end{aligned}
$$

electrovalue

 FREFORTHE
 TW20 OHB Telephone: [STD 0784) (London 87) 33603. Telex: 264475

Conquer the chip. will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

MASTER ELECTRONICS LEARN THE PRACTICAL WAY BY SEEING AND DOING

- Building an oscilloscope. Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips".
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computer ised equipment.

MASEE MNIMJEDS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational Mini Computer supplied ready for use. - Self Test program exercise.
- Services of skilled tutor available.

MASTER THE REST

- Radio Amate urs Licence. - Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. - Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

Steam

 Loco Whistle
This third and final part of our model train sound effects series. We provide details of how to combine steam whistle, two-tone hom and chuffer projects in one box

OUR LAST MODEL train sound generator of this very popular series (see January and February issues for Chuffer and Diesel Horn projects) is a realistic steam locomotive whistle, created electronically.

Four transistors are used to generate the whistle sound and a single integrated circuit mixes this sound with that produced by our two previous train sound effects circuits.

The whistle can be built and used individually or as an integral part of a complete sound effects unit, built in one case like ours.

Construction

The whistle is built on a printed circuit board (PCB) so construction is very

Figure 1. Overiay and connection details for the project. The foil pattem is found on page 65
easy. Follow the layout in Fig. 1 inserting and soldering each component in turn, starting with the resistors followed by capacitors and finally semiconductors. The IC is cheap (a 741) so you may not feel it worth the cost of a holder. If so, solder it carefully, allowing each pin to cool before soldering the next.

Connection details for this project are given also in Fig. 1 and this shows where the other two sound effects are connected if you put them all together in one case, as we did. Drill the case for all connections and switches and simply parallel connect the power supply ie the 9 V battery, to each circuit at the board side of the on/off switch. The output lead from the whistle board to the output jack socket should be a screened lead, with the shielding taken to OV .

If you intend to connect your projects together, you will need to make a slight change to the Two-tone

Train Horn board, and this modification is shown in Fig. 3. Simply unsolder and take out capacitor C5 and insert the two resistors Rx and Ry as shown. The output from this board was originally fed to a loudspeaker and the resistors simply act as a potential divider, dropping this output level to one which suits the input of the mixer formed by IC1.

\square

Buylines

All components should be easily obtained and the total cost lexcluding case and PCB) should be around $£ 12$.

The case we used is from the Samos range stocked by West Hyde and its number is 006.

Parts List

RESISTORS (All Y/W, 5\%)	
R1,2,8,18	100 k
R3,11	47 k
R4,12	1 MO
R5	12 k
R6	6 k 8
R7	470 k
R9	15 k
R10	1 k
R13,14	82 k
R15,16,17	22 k
R19	27 k
POTENTIOMETERS	
RV1,2	1 MO miniature horizontal
RV3	preset
	22 k miniature horizontal
	preset

CAPACITORS

C1,2,-

14,15	4n7ceramic
C3,16	47 nceramic
C4,13	10 n polyester
C5	$470 \mathrm{n}, 35 \mathrm{~V}$ tantalum
C6,7,8,9,	100 n polyester
$10,11,12$,	
17	
SEMICONDUCTORS	
IC1	741 operational amplifier
Q1-4	BC182L NPN transistor
MISCELLANEOUS	
SW1	single-pole, single-throw
	toggle switch
PB1	push-to-make switch

Case to suit (see Buylines)
Battery + clip

Figure 2. Circuit diagram of the Steam Loco Whistle

Figure 3 (right). The modification to the Two-Tone Train Horn board - take out C5 and insert Rx and Ry

How lt Works

The waveform of a steam whistle is a complex combination of two main things: white noise and an audio frequency oscillation. Both are fairly easy to recreate electronically.

White noise is usually made by a 'noisy' zener diode, the output being amplified to the required level. The generator we used is of the same type as in the 'Chuffer' project of January's issue; le, a transistor (Q1) biased into zener mode and a simple transistor amplifier (Q2).

The audio frequency oscillation is a straightforward mixture of two similar (but not identical) sinewaves, which after their addition produces a more complex waveshape than either of the two individual waves. The sinewave generators are known as 'Twin-T' oscillators because the feedback components (eg R1,2 and C3, and C1,2 and R5) around the transistor (Q3) are in the shape of two letter Ts. The frequency is set by the values of the feedback components and
in this circuit is fixed. The other oscillator frequency is variable because one of the resistors is replaced by a preset (RV3). At RV3's mid-position the frequency Is about the same as that of the other oscillator.

Preset RV1 mixes the two sinewaves so that an appropriate waveform is obtained. Similarly, RV2 mixes this waveform with the white noise produced elsewhere in the circuit. Adjustment of the three presets will result in the required sound.

Integrated circuit IC1 is an operational a mplifier used as a simple mixer/amplifier which combines the steam whistle, chuffer, and two-tone horn sounds into one, suitable for amplification by an external amplifier (say your stereo system).

The gain of the mixer is determined by the ratio of R20 to the input resistances, R17.18 or 19, of the channel concerned and so by varying the chosen resistor the levels of the individual sounds in the mix can be altered to suit.

Get a great deal from			
CRIMSON ELEKTRIK HI FI MODULES			ILP HI FI MODULES Power Amplifiers
$\begin{aligned} & \text { CE } 608 \\ & \text { CE } 1004 \end{aligned}$	Power Amp	£20.09	
	Power Amp	£23.43	HY50 £ 8.33
CE 1008		£26.30	HY120 £17.48
CE 1704 CE 1708		£33.4	HY200 £21.21
		£33.48	HY400 £ 31.8
$\begin{aligned} & \text { CE } 1708 \\ & \text { CPS } 1 \end{aligned}$	Power Unit	£19.52	Pre Amplifiers
		£23.52	HY6 £ 6.4
		30.00	HY66 £12.19
CPR 1 CPR1S	Pre Amp	£32.17	Power Supplies
		£42.52	PSU30 £ 4.50
SINCLAIR INSTRUMENTS			PSU36 £ 8.10
Digital Multimeter			PSU60 £13.04
PDM35 £ 34.50			PSU70 £15.92
DM235 £ 52.50			PSU180 £21.34
1350 £ 72.50			MULTIPLEX NICKEL
"'sial Frequency Meter 9.00			CADMIUM CEL
			Type S101 (HP4) £0.98 Tyoe SubC (HP11) £ 1.75
PFM200 £ 49.80 Low Power Oscilloscope			Type SubD (HP2)
			Friwo Chargers for above
SC110 £139.00			Penlight 4: accommodates
$\begin{aligned} & \text { TGF } 105 \text { Pulse Generator } \\ & \text { £ } 145.00 \\ & \hline \end{aligned}$			${ }^{1-4}$ size HP7 $£ 5.50$
			Combibox FW61
NEW ¢ 85.00			accommoda
LCD Multimeter TM351\|£99.00			
			N
			NET. EXCLUD
Pr	TM35	9.95	VAT.
			POSTAGE/PACK

New
Presensitised PC Boards, Developer. U.V. units.
Toyo miniature Fans 230v AC $£ 9.95$
Mini Metal Detector/Voltage Tester for locating cable under plaster $£ 9.95$
Flow/Speed Sensors for monitoring fuel consumption electronically in vehicles
Just one of the exciting Leader range

f 299 + VAT
LB0508A OSCILLOSCOPE
With 20 MHz DC bandwidth and 10 mv input sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide range of applications.
Send SAE for details of full range. Marshall's 80/81 catalogue is now available by post, UK 75p post paid Europe 95p post paid: Rest of world $£ 1.35$ post paid.
A. Marshall (London) Ltd., Kingsgate House,

Kingsgate Place, London NW6 4TA.
Industrial Sales: 01.3281009
Mail Order: 01-624 8582 24 hr service.

Alse ratal shops: 325 Edgware Rond. Lendon W2. 40 Cricklewood Broadway, Landon NW2. 85 Wast Aegunt St. Glasgow. 1084 Siokes Crait, Bristol.

ARE YOU INTERESTED IN ELECTRONICS?
 THEN YOU SHOULD KNOW ABOUT VERO
 We manufacture a wide range of products for the electronics industry and can make available to you a selection suitable for project work. We offer you a large choice of Veroboard and circuit board accessories, including the latest solderless breadboard - VEROBLOC, which enables you to use those valuable components time and time again. Use a piece of Veroboard to save a successfully completed circuit and choose a box or instrument case from our vast range to give your project that professional touch

For further details and a copy of the brochure please fill in the coupon below.
Vero Electronics Ltd.
Retail Department.
Industrial Estate.
Chandler's Ford.
Hampshire. SO5 3ZR.
Tel. (042 15) 62829

Vero Hobbyist Brochure.
I enclose 40p. for package and postage

Name

POPULAR KITS AND PARTS

TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Ca
parts and circuit $£ 3.30$
RADHO MIKE
Ideal for discos and garden parties. allows complete freedom of SAFE BLOCK
SAFE BLOCK
Mains quick connector will save you valuable time. Features inMains quick connector will save you valuable time. Features in-
clude quick spring connectors, heavy plastic case and auto on and
off switch. Complete kit $£ 1.95$. of swich Comprete ki E1.95.
LIGHT CHASER
Gives a brilliant display - asychedelic light show for discos,
parties and pop groups. These have three modes of lashing parties and pop groups. These have three modes of flashing, two
chase-patterns and a strobe effect. Total output power 750 watts chase-patterns and a strobe effect. Total output power 750
per channel. Complete kit. Price $£ 18$. Ready made up $£ 4$ extra.
FISH BTTE INDICATOR enables anglers to set up several lines then
sit down and read a book. As soon as one has a bite the loudspeaker emits a shrill note. Kit. Price $£ 4.90$.
6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering 13.5 to 32 metres. Based on circuir which appeared in a recent issue of Radio Constructor. Complete kit, resistors, inductors, switches, etc. Nothing else to buy, if you have resistors, inductors, switches, etc. Nothing else to buy, if you have
an amplifier to connect it to on a pair of high resistance
headphones. Price $£ 11.95$.
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price E2,30. Crystal earpiece $65 p$. High resistance headphones lgive best resulis|
$\mathbf{£ 3} 35$. Kit includes chassis and fron but not case
RADIO STETHOSCOPE
Easy to fault find - start at the aerial and work towards the
speaker - when signal stops you have found the fault Complete speaker
kit $£ 4.95$.
INTERRUPTED BEAM KIT
This kit enables you to make a swlich that will trigger when a steady beam of infra-red or ordinary light is broken. Main components - relay, photo transistor,
diagram but no case. Price $£ 2.30$.
OUR CAR STARTER AND CHARGER KIT has no doubt saved many motorists from embarrassment in an emergency you can start car of mains or bring your battery up to full charge in a couple of
hours. The kit comprises: 250 w mains transformer, two 10 amp oridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening, box it up or leave it on the shel
garage, whichever suits you best. Price $\mathrm{E} 11.50+\mathrm{E2} .50$ post.
G.P.O HIGH GAIN AMPISIGNAL TRACER. In case measuring only amplifier designed for use as a signal tracer on GPO cables etc. With a radio in functions very well as a signnal tracer. By connecting
a simple coil to the input socket a useful mains cable tracer can be a simple coil to the input socket a useful mains cable tracer can be
made. Runs on standard $41 / 2 v$ battery and has input, output sockets
 uses include general purpose amp, cueing amp etc. An absofute

VU METER
Edgewise mounting through hole size $1^{3 / 4^{\prime \prime}} \times{ }^{\text {/ } / 8^{\prime \prime}}$ approx. These
arg 100 mlcro amps f.s.d. and fitted with internal 6 volt bulb for scale illumination, also have zero reset. The scale is not calibrated but has very modern a ppearance. Price $£ 2.88$.
BALA
17/Bin SQUARE PANEL METER. Eagle full vision plastic fromt, 50
UA. Price $£ 4.60$. 1 mA Pric $£ 4.03$.
WATERPROOF MEATING WIRE 60 ohms per yard. This is a heating element wound on a fibre glass coil and then covered with p.v.c. element wound on a hiore ${ }^{\text {Dozens of uses }}$ around
gloves and socks. 23 p mets .
DIAL INDICATOR. As used in tooimaking and other precision mearsuring operations, the famous John Bull accurately shows difterences of .01 mm . A beautifully made precision instrument, price
in most toolshops would be $£ 12-\mathrm{E} 95$. We have a fair quantity. Price E9.20.
COMPONENT BOARD Ref. W0998
Thls is a modern fibreglass board which contains a multitude of very useful parts, most important of which are: 35 assorted diodes
and rectifiers including four 3 amp 400 v types (made up in a and rectifiers including four 3 amp 400 v types (made up in a
bridgal, 8 transistors, type $8 C 107$ and 2 type BFY51, electrolvtic and over 100 other parts including variable, fixed and wire wound resistors, alectrolytic and oiner condensers. A reaine HEART. A wheels with all fruits, motorised and with solenouds for stopping the whels with a littie ingenuity you OESOLOERING PUMP
Ideal for removing cornponents from
for service work generally. Price $£ 6.35$
4-CORE FLEX CABLE
White pve for telephone extensions, discolights, etc. 10 metres $£ 2$.
100 mettes $£ 15$. Other multicore cable in stock. MUGGER DETERAENT
A hightnote bleapeper, push latching switch, plastic case and battery
connector. Will scare away any villain and bring help. $£ 2.50$ comconnecto
plete kit.
plete kit.
HUMIOITY SWITCH
American made by Honeywell. The action of this device depends American made by Honeywell. The action of this device depends
upon the dampness causing a membrane to stretch and trigger a
sensitive microswitch. Very sensitive breathing on it for instance. sensitive microswitch. Very sensitive breathing on
will switch it on.Micro 3 amp at 250 V a.c. Only E 9.95

MINI-MULTI TESTER

Deluxe pocket size precision moving coil instrument, jeWelled bearings-2000 o.p.v. mirrored scale.
11 instant ranges measure
DC voits $10,50,250,1000$
DC volts $10,50,250,1000$.
AC volts $10,50,250,1000$.
DC amps 0.100 mA .
Continulty and resistance 0.1 meg ohms in two ranges. Complete with Test Prods and instruction book showing how to measure capacity and inductance as well.
Unbelievable value only $£ 6.75$ +50p post and insurance.
FREE Amps ranges kit to enable you to read DC current from 0.10 amps, directly on the $0-10$ scale. It's free if you purchase quickly but if you already own a mini-
tester and would like one, send $\mathbf{2 5 0} 5$. tester and wouid like one, send $\mathbf{E 2} .50$.

SUPER HI-FI SPEAKER CABINETS Made for an expensive Hi-Fi outfit will suit any decor. Resonance free cut-outs for 8 in wooter The front material is carved Dacron, which is thick and does not need to be stuck in and the completed unit is most pleasing. Colour black Supplied in pairs. Price $\mathbf{E 6 . 9 0}$ per pair fthis is probably less than the origina cost of one cabinet). Carriage $£ 3$ the pair.
RADIO CHASSIS BARGAIN
3 waveband radio with stereo amplifier. Made for incorporation in a highout put which can only be described as superb. It is truly hi-fi. The chassis size is approximately $14^{\prime \prime}$. Push buttons' select long, medium, short and gram. Controls are balance, volume, treble and bass. Mains power supply. The output is $6+6$ watts. Brand new and in perfect working order, offered at less than value of stere0 amp alone,
Mamely E6.90. Post $t 2.00$.
 ing V. A. T. and postage.
FREE GIFT - Buy this you will receive a pair of Goodo man's elliptical $8^{* *}$

THIS MONTH'S SNIP

TMERMOSTAT ASS are the CURRENT STATS which will open to protect devices against overload, short circuits etc. or when fitted sey In front of the element of a blower heater, the heat would trip the stat, APPLI
ANCE STATS, one for high temperatures, others adjustable over a range of temperatures which could include $0-100 \mathrm{C}$. There is also a THERMOSTATIC POD which can be immersed, an oven stat, a
calibrated BOILE STAT, finally a ICE STAT which fitted to your waterproof heater element up in the loft could protect your pipes from freezin. Separately these thermostats would cost around
about $£ 15$ - however, You can have the parcel for $£ 2.50$.

3KW MODEL f6.95+£1.50 P \& P

IT'S FREE
Our monthly Advance Advertising Bargains Liat gives ddaxils of
bargains arriving or just arrived - often bargains which sell out before our advertisoment can appear - lt's an interesting list and t's free-just send S.A. E. Below are a few of the Bargeina still avall
DUE TO TNE HIGH \& RISING PRICES OF FUEL many companies and probably many touseholders are looking around for ways of
saving some of this cost. One Company bought a number of fans from us and fitted these in the ceilling of their workshops where the hot air tends to collect and they blow this hot air downwards Another Company has bought fans trom us to suck the exhaust pipes, the asbestos pipes being in a separate chamber whict becomes a hot nir chamber, the hot air from this is blown through
ducting to wherever it is needed. Basically, they have cut out the normat chimeney and replaced this with one of our high power
extractor fans. If you have any other good Ideas on heat cost saving, let us know and we will pass it on to other readers.

EXTRACTOR FANS

chester; ideal also as blower; central heating, systems, fume extraction, etc.
Easy fixing through panel, very powerful 2,500 r.p.m. but quipe runt
ning. Choce of 2 sizes, $5^{\prime \prime} ~$
E6.50, $6^{\prime \prime}$
£6.50; post fl per fan. All mains
operated.

PING PONG BALL BLOWER-UPPERS
Have you got to organise a party or charity fund-raising event? and down and being caught. We have some powertul blowers and these should be ideal for this, and of course for more serious purposes. They are 4 -stage blowers, coupled to synchronised AC mains motors of approximately $1 / 8 \mathrm{~h} . \mathrm{p}$. They have a terrific suction RECHARGEABLE SOLID GEL BATTERY. 12V 5AH, new and unused, made by or for Elpower Corporation of California. Dimensions 6 in. long, $33 / 4 \mathrm{in}$. high and $21 / 2 \mathrm{in}$. wide. Regular price of similar batteries.
E.H.T. UNITS. One of our specialities has always been E.H.T, trans ormers, and we probably have bigger stocks than most of our contemporaries. It is surprising what uses these high voltages can
be put to - killing flies and weeds. lighting central heating boiters lifting paper, extracting dust. etc. A new one this month is 14.5 KV (dc) 0.5 mA . Made by ADVANCE ELECTRONICS, this unit is completely enclosed and has input and output sockers- size of the
unit is approximately 6 in. x 3in. $\mathrm{x} 33 / 4 \mathrm{in}$. Price is E 15.38 , posi E 1 To remind you of the E.H.T. Transformers we stock, here is a lis To remind 3 mA ox equipment
5 KKV 5 mA ex new equipmen
5 KV 5 mA ex new equipment
5 KV 5 mA whith outer casing and E.M.T. outlets
8.5 KV 10 mA totally enclosed with E.H.T. outlets
€2.90
$\varepsilon 7.15$
£. 45
$£ 13.50$
LEDS are used Increasingly and are now being recommended for nesrly all indicators and for games and novelties. Due to a fortuThese are the small ones equivalent to the TIL 209. Bulk price E60,00 per $1,000+$ VA. T.
FIG. 8 FLEX is always in demand. We are able to offer white Fig, 85
 lead, suitable for speaker extensions, 50 metres $\mathbf{E 3} .3$.
300 WATT MERCURY VAPOUR LAMP. Mazda, ref $90-5104$ MAT/V blended. These give a really powerful light but, of course, have to
be used with their correct control gear. We are expecting to get this control gear early in the New Year. Price of the lamp is $£ 3.38+25$ p. Post50p.
ANTI-FROST THERMOSTAT. The normal refrigerator type thermostat switches off as the temperature falls and so is not suitable for anti-frost devices. However, we have the Ice-stat - this switches on as the temperature falls and is set to switch on just above freezing point. It is a skeleton type stat so would require boxing but the price is modest at E . 10 .
THIN CONNECTING WIRE 500 metre drums, 7 stranded copper
SUPER BREAKDOWN PARCEL with free gith of a desoldering pump, perhaps the most useful break-down parcal we have ever offered. Consists of 50 nearly all different computer panels on
which you will find: over 300 iCs , over 300 diodes, over 200 tran. sistors and many hundred other parts, resistors, condensors, multi turn pots, rectifiers, SCR etc. etc. for only E8.50, which when you deduct the value of the desoldering pump, works out to ju
over $4 p$ per panel, $+\varepsilon 1.27$ VAT $+£ 2$ post (it's a big parcell.

TIME SWITCH BARGAIN. Large clear mains trequency controlled clock, which will always
show you the correct time + star and stop switch
$£ 2.50$.

3-CHANNEL SOUND TO LIGHT KIT Complete kit of parts for a three-channel sound to light unit
controlling over 2,000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for Disco work. This unit is housed ingen atractive two tone metal case and has controls for each channel, and a master on/off. The audio input and
output are by $1 / 4^{" 1}$ sockets and three panel mounting fuse holders output are by $1 / a^{" \prime}$ sockets and three panel mounting fuse holders
provide thyristor protection. A four-pin plug and socket facilitate provide thyristor protection. A fou-pin plug and socker facimate

SUPER CONSTRUCTOR'S SNIP

Here's a super bargain for you. 100 twist drills, requiar toolshop price over $£ 50$, yours for only $£ 11.50$. With these you will be abie to drill metal, wood, plastic, etc Don't miss this snip - send your order today.
TERMS: Cash with order-but orders under $\mathbf{£ 1 0}$ must add 50 p to BULK ENQUIRIES INVITED. PHONE HAYWARDS HEATH 54563 ACCESS \& BARCLAYCARD WELCOMED
(Electrical) LTD.
(Dept. HE), 34-36 AMERICA LANE HAYVIARDS HEATH, SUSSEX, RH16 3QU

XTENSION LEAD BARGAIN. We all know how weather, p.v.c. leads lose a lot of their flexibility, in fact some pur Wede p.v.c. can be quite stiff and awtward, ond will not stay uitable for lead lamps, vacuum cleaners, in fact any portable device which does not need an earth. The regular price of this very
flexlble cable which is suitable for up to 7.5 amos is 300 per metre, flexible cable which is suitable for up to 7.5 amps is 30 p per metre, can buy 50 metres for $£ 5.00+75 p+60 \mathrm{p}$ post or 250 metres for
EXTPA 22.00 EHTWEICHT MEADPHONES Stereo bit only 50 grams lapprox. 2oz.) Intended for use whilat playing your instrumert in a bend. or in normial head phons operation. Japanese made, and extremely good quality. $\mathbf{\varepsilon 7 . 0 0}+\mathrm{£1} .10$.
COMPUTER CORNER. PRINTER TERMINAL UNIVAC reference CT1000, this is a floor standing mains operated printer, which takes a $14^{\prime \prime}$ wide paper complete with electronics - in a good
clean condition, but untested, price; $£ 75+£ 11.25$, plus delivery at
B-BIT PUNCH AND READER UNIVAC. Combined is a neat case, this is their model no. 0925-15. Made by the Roytron Company of america, Roytron number being $572-1$. This s a desk standing The case has a perspex yiew window and drawer below to hold the ape. Complete with electronics and in very clean condition. Price $25+83.75$. Post 84.50 .
UNIVAC KEYBOARD MODEL NO. F1303-00. A neat keyboard, probably made to be used with the 8 bit punch and reader. Hes 57
encoded keys and 10 function switches on a line along the top. The legends on these switches are: auto-manual, monitor off, run-stop, on-line-off-line, keyboard off, printer off, reader off, punch-off, card reader-off, card punch-off. Wo have only a few of these, in as new
condition. Price $£ 20+£ 3$. Posi $£ 2$. BIG ELECTROL YTICS. Bargain parcel of big electrolytics 8 for $\mathbf{E 3 . 3 \mathrm { L }} \mathrm{inc} \mathrm{VAT} \& \mathrm{P} /$.P .

Bicycle Speedometer

$0-99$ MPH in sixty minutes - that's how long it will take you to build this all electronic, solid-state speedo.

Figure 1. Circuit diagram of the HE Bicycle Speedometer

Okay, so it doesn't speak your weight, but it won't burn a hole in your pocket either!

Construction/Setting Up

Nothing to cause any problems here. As usual we'd recommend you use sockets for the ICs. If you use our PCB design you should have success first time though the circuit is simple enough to be put together on Veroboard or whatever comes to hand except for the original breadboard which went out of fashion when ICs arrived. You try knocking nails into a piece of wood the size of a postage stamp and anyway, you would look silly with a breadboard between the handlebars!

Reed switches come with two main switch actions, either singlepole, single-throw or single-pole, double-throw (changeover). You can use two of the former or simply one of the latter (with its centre contact connected to the common point on

Figure 2. Overlay and connection details. Remember that SW1 and SW2, the reed switches, can be combined as one changeover type reed switch
the circuit board for the two switches (see Fig.2).

Reed switches are usually supplied as glass tubes with the switch contacts brought out to tags at either end. For better protection against the elements we used a single-pole, double-throw type which is sealed inside a waterproof housing (see Buylines). This is more expensive than the open-wired types, but it comes complete with a moulded mounting tab.

The relationship between wheel diameter, gate period and number of magnets required is not a simple one. Toy bikes and bikes with 'baby' wheels will get away with one or two magnets. To obtain a reasonable gate period with larger wheels you'll need to use more magnets. In practice, fix between five and 10 small magnets (the type usually supplied with reed switches) around the rim of the wheel (the more the merrier). To stop them falling off it's best to glue them in place or secure them with pads of double-sided foam tape. Once fixed, a dab of paint or varnish will prevent them from going rusty. Connect a 1 MO potentiometer or preset at the Rx position, get on your bike and adjust the pot until you get the right speed reading. Now, measure its value and make it up from fixed value resistors or just fasten the pot or preset onto the board there's plenty of room.

If you use separate reed. switches, make sure that both are never on at once or the battery will be short circuited through them. To safeguard against this you can connect 10 k resistors in series with the wires from the battery.

Ideally you'll need a box with a clear lid (like ours - see Buylines) so you can see the display without having to cut holes in the box, which would let in water. It's best to mount the box using a Terry Clip, centrally on the handlebars so that, if the bike takes a tumble no damage will be done. Lacquer the back of the board so that if any condensation appears in the box no shorts will result. The circuit takes about 40 mA of current when running so two batteries in parallel are advisable and there's just enough room under the PCB to site them.

Alternatively, you might like to make a proper facia panel to hold a whole set of instruments loil pressure, ammeter, etc!?) Watch this space!

How lt Works

Figure 3. Waveforms within the circuit, not
to scale
A low-frequency astable oscillator provides the master clock for the circuit. IC1a, R2, C1 take care of this. Pulses are then differentiated and squared up by IC 1 b and IC1 c to provide clock enable and reset signals. Figure 3 shows this in detail.

Integrated circuits IC2 and 3 form a two-digit counter and display driver, which needs only correct timing and clock pulses to operate both 7 -segment displays. While IC1b's output is low the counters are enabled and clock pulses from IC 1 d cause the counters to advance. When IC 1b goes high the counters are disabled and the count is displayed on the $\mathbf{7}$-segment displays. The combination of IC1d and IC1e forms a simple but effective debouncing circuit. Some form of signal conditioning circuit like this is nearly always required when mechanical switches are interfaced to digital counters. Resistors R4 through R17 limit the current in the displays and C4 provides overall decoupling.

Buylines

The semiconductors for this project are obtainable from Technomatic. All other parts should be easily found. One exception could be the hermetically-sealed reed switch mentioned under Construction/Setting Up. This is an RS Components type but it can be ordered through your component stockist. Stock number 339-213.

Approximate price for components (excluding case) is between $£ 10$ and $£ 15$. The case we used is from West Hyde Developments (tel no. Aylesbury 0296 20441) and is type BOC 430G.

Side view of speedometer, showing the two batteries mounted under the PCB

Bicy||le Speedometer

Rider's view of speedometer
HE

The 2011 sweeps the board at only 975

Get all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves - even a separate TTL square wave output. Plus high- and low-level main outputs.
An applied DC Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 with an AC signal. A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board. For immedlate action - The C.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard number and your order will be in the post immediately or just clip out the coupon.

* price excluding P\&P and 15\% VAT

CONTINENTAL SPECIALTIES CORPORATION

C.s.C. (UK) Limited Dept. 14HH

Unit 1, Shire Hill Industrial Estate,
Saffron Waiden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682 Telex: 817477

Continental Specialties Corporation (UK) Limited Dept. 14 HH Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB1 1 3AQ

| Model 2001 Sweepable
 Function Generator | £87.98. (inc. P\&P
 and 15% VAT | Onty
 Reqd. |
| :---: | :---: | :---: |\quad For FREE catalogue

Clever Dick

A good variety this month: from geiger counters to motor bikes, and from Bristol to black chips

Letters, letters, letters, still flooding in . . . Imust askHE's Editor to add 50p to my weekly wage for the trouble.

Let's start off with a nice friendly one from someone who really appreciates HE:

To whomit may concern,

My wife purely by an accidental, act of fate bought Hobby electronics instead of E.T.I. Man I have never read such rubbish. Who the hell wants to build a 'background noise simulator', the idea is totally useless and as for the Heart beat Monitor that has to be operated by a push Button Switch, well!

And what about that stupid idiotic cartoon that page could have been used for adverts of which there are already $1 / 3$ of the magazine given overto.

Then there's the "pocket" M.W. Radio, verynovel $1 / 2$ footlong, two 109 s and cost 57 ?

Why is your magazine made up from Everyday electronics throw outs?

The only thing worth looking at was the T. shirt ad. and even she was a flop! D.S. Nightingale, Essex

All I can say is that, in a forthcoming issue, we'll have an electronic probe for use with the Heartbeat Monitor project. And no, our magazine is not made up from Everyday Electronics' throw-outs - we're sure EE can't afford to throw its articles away.

The next letter definitely 'cheered' us up:

Dear CD.

In your February edition of HE you printed my letter and called me a nutter - you also told me next time I was feeling rich to send my money to your beer fund, so here it is: it should be enough to buy someone a pint. Onto more serious matters - In your electronics digest volume 1 number 1 (0.67) you show the circuit for a geiger counter. I have built it but cannot find a Geiger tube. Please tell me who sells them. (Type CV2249)

M. Broughton

S. Yorks

You've embarrassed us with your contribution to our fund: cheers.

As to who sells a Geiger tube, we found that Henry's, 404 Edgware Road, London W2 1ED, stocks two types: CV2246 and CV2247. We understand that they are both 350 VDC working and cost $£ 3$ each.

On to two wheels for the next one:

DEAR Richard of the High I.Q.

I have a single cylinder 4 -stroke motor cycle with a six volt electrical setup. Is there any way / can adapt your car speedometer or tachometer to work on my bike it need onley work in top gear, the speedo that is.
K. Lawry

Bristol
P.S. Thanks for a great mag.
P.P.S. Lettershort enough?

First things first: no, the speedometer circuit won't work from a 6 V supply because its pre-amplifier is biased for 12 V operation. But the rev counter (tachometer) will work from 6 VDC. (Why onley in top gear we wondereyd.)

Second: yes, nice and short thanks very much.

The next one has been buried under the heap for a few weeks, but I thought it worth including as a comment on the 'why are ICs black?' debate.

DearC.D.

I have long suspected that the alleged superiority of you whiteys is a load of bluff and adequately described as 'white noise!' Will your ego be upset if a poor ignorant black girl from South Africa puts you right onblack/Cs?

The modern ICs are part of a world of fantasy and if a member of this world says "That is a black /C" it is merely a part of his mode of living since black is not a colour and as such his claim to see it is balmy. As I know from personal experience a matt black package has the advantage/disadvantage of reducing the temperature differential between the inside and outside.

I know of at least three types of binder but your type will suit me well.
Ms. S. Mayekiso
South Africa

I think that explanation deserves a longdistance binder.

Finally, another one from Bristol:
DearC.D.
Are you a Circuit Diagram?, or maybe a C.M.O.S.,I.C, (e.gCD 4001) Or are you just some common or garden reserchist siting in an office staring at boring letters written by readers?

Anyway, down to the question, Does R. behind a resistor value stand for ohms? and if so why not just put Ω or ohms? Question number 2, is there a simpler way of inserting a C.M.O.S. I.C than using an insertion tool? If so please specity. I think Beasties are superb and want to see more. Thanks for an Excelentmag.
A. Ellis

Bristol
P.S. I don't suppose there is an easier way of getting a binder than spending all that money? (Hint, Hint)

Where a resistor is specified as, for example, 10R then yes, the R stands for 'ohms'. On the other hand, the R can take the place of a decimal point, such as in 2R2 (equivalent to 2.2 ohms). The Ris clearer than the Ω (omega) sign for low values and decimal points have a habit of disappearing.

You can insert CMOS devices without an insertion tool: most modern CMOS devices are a lot less susceptible to damage by static or other electrical discharges to their pins than some of the earlier types. To be safe, make use of the plastic holder or conductive foam in which the device is supplied. Full details were given in Building Site, HE, September 1980, pages 57 to 58 .

We may see Beasties again in HE. True: there isn't usually an easier way of getting a binder than spending all that money.

And that's it for this month. Perhaps next month we'll try and assess from all the letters we've received who is HE's youngest reader. Cheers for now. HE

Self
 Instruction Courses

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,
 debugging, and clear documentation
Book 1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs. BOOK 2 High and low level languages flowchaning; functions; REM and documentation; INPUT, IF....THEN, GO TO; limitations o compuiers, problem definition. BOOK 3 Compiless and interpreters; loops, FOR....NEXT RES TORE; debugging: arrays; bubble soning; TAB BOOK 4 Advanced BASIC; subroutines;
strings: strings; files; complex programming; examples; glossary
Also THE BASIC HANDBOOK (BHB) £11.50 An encyclopaedic guide to the major BASIC dialects. A must if you use other peoples' programs
and: ALGORITHM WRITER'S GUIDE (AWG) £4.00 Communicate by flow chart! Learn to use Yes/No questions for: procedures, system design, safety, legislation etc.

Understand Digital
 Electronics

Written for the student or enthusiast, this
 course is packed with information, diagrams, and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and opera
tion of calculators and computers
BOOK 1 Decimal Octal, hexadecimal, and binany number systems and conversion between number systems; negative numbers; complementary systems. BOOK 2 OR and AND functions; multiple-input gates; truth tables; De Morgan's Laws; canonical forms; logic conven. tions; Karnaugh mapping; three-state and wired logic. BOOK 3 Half, full, serial, and parallel
adders; subtraction; processors and ALU's; multiplication and division. BOOK 4 flip flops: shift regisfers; asynchronous, synchronous, ring, Johnson, and exclusive-OR feedback counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding decoding display-data; register systems; control unit; PROM; address de-coding, BOOK CPU; memory organisation character representation; program storage; address modes; in put/output systems; program interrupts; interrupt priorities; programming, assemblers; com puters; executive programs; operating systems.

DIGITAL COMPUTER LOGIC ELECTRONICS. (DCL) E7.50

A course covering the material in italics above, but at a slower pace (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition.

```
MLEASE SEND ME:
BHB (£11.50)
AWG (4.00)
DDS (&13.50)
DCL (7.50)
```


1) A U.K. cheque or a b.K. postal order INot Eire or overseas)

2) A bank draft, in sterling on a London bank (available at any major bank)
3) Please charge my Access/M.Ch \square Barclay/TrustC/Visa Am. Exp. \square Diners \square 4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour service.

Card No

Signed
THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE. AIRMAIL: Eur, N.Af, Mid.E. add $1 / 3$ to price of books: Jpn. Aus. N.Z, Pcfc add $/ 3$: elsewhere add $1 / 2$

Name

Address.
U.K. Delivery: up to $\mathbf{2 1}$ day

Cambridge Learning Lid., Unit BO, Rivermill Site, FREEPOST St. Ives, Munningdon, Cambs. PE1 7 4BR, England Reg. in Eng. No. 1328762

GEC AM/FM STEREO TUNE AMPLIFIER CMASSIS. Originally de signed for installation into a music centre supplied as two separate built and testec units which are easily wired together Note: Circuit diagram and interconnec ting wiring diagrams supplied. Rotary Controls: Tuning, on /off volume. balance. reble, bass. Push-bucton con W. MW SW Pow Dutput 7 watt LW, MW, SW. Power Output: 7 watts toto B ohms. 10 , watts speech and music Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ within $\pm 3 \mathrm{~dB}$. Tape Sensirivity: Outpur - typically 150 MV . Input - 300 mV for rated output. Disc Sensitivity: 100 mV (ceramic cartridge). Radio: FM (VHF) 87.5 MHz - 108 MHz . Long wave 145 kHz - 10 kkHz . Medium wave.

$520 \mathrm{kHz}-1620 \mathrm{kHz}$. Shori wave. 5. $\mathrm{BMHz}-16 \mathrm{MHz}$. Size: Tuner $-23 / / 3$ in. $\times 15 \mathrm{in}, \times 71 / 2$ in approx. Power amplifier $2 \mathrm{in} . \times 71 / 2 \mathrm{in} . \times 41 / 2 \mathrm{in}$. approx. 240 V AC operation. Supplied complete with fuses, knobs and pushbuttons, and LED stereo 250 indicalor. Price 21 E2.50 postage and packing
TEREO CASSETTE TÄPE DECK ASSEMBLY. Comprising of a top panel record / play back mechanismi coupled to bly. For horizontal installation into cabinet or console of own choice. Brand new, ready built and tested. Festures: Pause control, auto stop, 3 digit tape counter, illuminated twin VU meters with individual level controls, twin mic, input sockets, AC erase system. LED record indicator. (Separate power amiplifier required). Input Sensitivity: 6 MV (with level conirol set at max.). Input imped. loft and right-hand channels 150 MV Outpur Impedance: < 10K Signal to noise ratio: 45 dB nominal. Power Supply Requiremente: 12 V AC at 300M/A.Connections: All cornections oo the unit are via a wander lead terminsted with nine-pin plug (socket provided). Dimensions: Top panel - $111 / 2 \mathrm{in}$. $61 / 2 \mathrm{in}$. Mechanism fits through à cut out $53 / 2 \mathrm{in}$. $x 10^{1 / 2 \mathrm{in} \text {. Clearance required under }}$ top panel $21 / 4 \mathrm{in}$. Supplied complete with circuit diagram etc. Price $£ 30.50$ plus $£ 2.50$ postage and packing. Suitable 12 V
mains transformer $£ 3.00$.

Into Digital
 Electronics

This is the seventh - and last - part of this series. To round it off, lan Sinclair outlines the operation of the microprocessor

The microprocessor is the big chip of all digital chips, and although it's way and above all others in its complication, we've reached the stage where we can understand what it does. This final part, then, is devoted to the microprocessor. There's no practical work this month, because we would need a lot more space to describe a practical layout. One way to get thoroughly acquainted with practical microprocessing would be to refer to the series 'MPUs by experiment' in back numbers of Computing Today. This series ran from July 1979 to June 1980.

What is a microprocessor then? It's a chip which is filled with gates and registers arranged in groups of eight (usually), and with lots of internal connections. What makes it so useful is that the gates can be controlled by signals fed into the microprocessor and can then in turn decide what happens to the next signal or signals along. Everything about a microprocessor is arranged to fit a time sequence, controlled by clock pulses. The sequence never changes - it consists of a set of eight signals which open some gates and close others, followed by more signals which then pass through the open gates. The first set of eight signals is a program instruction, the next lot is data. What's the difference? Only the sequence!

First Mouthful

A group of eight digital signals is called a byte. There's no special reason for having eight. Pocket calculators operate quite happily with four bits at a time, but things can operate faster when we deal with 8 at a time. Large computers deal with 16,32 or even 64 bits at a time,
which speeds some operations up a lot more. Eight just happened to be a useful increase from four without needing a lot more pins on the package.

What can you do with eight bits, then? The answer is eight times as much as you can do with one. You can carry out eight ANDs, eight ORs, add eight-bit numbers, shift left or right - just the sort of digital operations we should be accustomed to by now. Everything the microprocessor does is based on these straightforward digital operations plus one more - the ability to copy a set of eight bits from one register to another. There's nothing novel about the copying (or transfer) action either, it's just an example of using the output of one register as the input of another.

Force-feeding

The microprocessor, then, doesn't do anything which wasn't done by separate chips previously but it takes up a lot less space and costs a lot less as well. For the guy who was familiar with the way computers were designed long before ICs came along, the microprocessor is a simple way of doing what needed a whole lot of circuitry before. When you've come along a different path, however, from linear ICs into digital ICs, it all looks a bit (sorry!) bewildering, with a language of its own which was borrowed from computing. Let's explain, simplify, and cast a little light.

Suppose you want to AND two bits. Simple, use a two-input AND gate (Fig. 7.1a) and the job is done. If you want to AND eight lots of two bits it just means that you use eight lots of AND gates which will have a total of sixteen inputs and eight outputs, as shown in Fig. 7.1b.

That's 24 pins to be connected to a PCB, 24 joints to go wrong and probably two chips on the board. Now the key to the difference between this conventional digital method of gating and the use of a microprocessor is the timing. With eight 2 -input AND gates, you can put in all of your sixteen signals together - you'll have to, otherwise the gates won't operate correctly. The microprocessor. will accept only eight
a

b

Figure 7.1 One operation - ANDing. A
single AND gate (a) can AND two bits. To AND a set of eight bits (b) would need eight AND gates, with sixteen inputs and eight outputs

Figure 7.2 How the microprocessor ANDs bits. One bit is fed in to a register through a gate and is stored in the register. The second bit is then fed in. ANDed, and then the result is fed out. The operation can just as easily be performed with eight bits as with one, and only the eight input pins are needed for the inputs and output, because the inputs are fed in at different times
signals at a time, so the only way we can AND two lots of eight is to feed in one lot, store it in a register, feed in the next lot of eight, store that, and then AND the two lots, and feed the results out. It sounds complicated but in a lot of ways it's simpler. For one thing, we need only eight pins for our eight bits, and we can feed in or out of the same set of eight pins (see Fig. 7.2).

Timing The Feeds

Let's look in detail at what has to be done to AND two lots of eight bits. First of all we need to store the first set of eight bits, the first byte of the mouthful, in a register. There has to be an instruction for this, which will open the correct gates within the microprocessor to transfer our first byte into a register (see Fig. 7.3). For this operation, the register will usually be the main working register of the microprocessor and is called the accumulator. One instruction byte will therefore prepare the path from the eight data pins to the accumulator, and the next byte will be our first set of eight bits which are to be ANDed. Having loaded them in,
we now need to tell the microprocessor what it has to do next. The next byte is therefore another instruction which calls on the microprocessor to AND the bits in the accumulator register with the next set of bits which will be fed in, and to store the result in the accumulator. Quite a mouthful that, so we abbreviated it to AND-immediate.

Following that instruction, the microprocessor expects to find the next set of bits we want to AND with the first lot.

The last operation is to deliver the results, so another instruction has to be sent to the microprocessor calling
on it to connect the accumulator to the eight pins which we used to enter each byte, and so transfer the resulting byte out again. At the end of this instruction, the byte appears on the eight pins (the data pins) and the process is completed. The total score is three instructions in, two bytes of data (the bytes we wanted to AND) input and one byte (the result) output: a total of six steps.

Now, for ANDing two bytes of bits together, you might think that six steps of microprocessor action is a pretty poor exchange for just having a couple of AND chips working on two lots of eight bits. You would be

1. INSTRUCTION: Read a set of data bits
2. DATA (8 bits $=1$ byte) \mathbb{N}
3. INSTRUCTION: AND this byte with the next set
4. DATA (second byte) IN
5. INSTRUCTION: STORE - send the result out
6. DATA (byte sent out) OUT

Figure 7.3 Sequence of operations for an 8 -bit AND. A similar sequence would be used for any other 8 -bit logical operation

Into Digital Electronics

Figure 7.4 Using memory to ensure that instructions and data follow each other in the correct sequence. It is impossible to tell without knowing the sequence, whether a byte is an instruction or data
quite correct, it is a pretty poor exchange, and if you only ever had to AND two bytes together you'd be a mug to go to all the expense and bother of setting up a microprocessor to do it.

Where the microprocessor starts to score is in applications which need more than just a couple of bytes ANDed together. A lot of machinecontrol units would need several boards full of ICs just to carry out one of the operations which they do. Because the microprocessor operates on instructions, you can add more tasks just by adding more instructions. In addition, you can change the instructions without having to change the microprocessor. If you have a digitally-controlled machine which turns out one part, and the controller uses separate gates, then to make it turn out a new part means swopping boards around. That's what's called a hardware exercise. If the same machine were microprocessor-controlled then only the instructions would need to be changed, and that can be a whole lot simpler.

Once Upon A Time

You'll have started to suspect that this microprocessor caper probably calls for close timing, a bit of the old strict tempo. How right you are! Each stage of microprocessor action is started by a clock pulse, and the clock pulse generator is usually a crystal-controlled oscillator working at 1 MHz or more, so that the instructions are carried out pretty quickly. Now that speed, gratifying though it is, leads to further complications. Remember what the sequence of events was? First of all came the instruction (load) which set up the accumulator to receive the first data byte, then the data, another instruction (AND-immediate), more data, the output instruction and data out. If the clocking rate is as high as a 1 MHz oscillator suggests, how do we make sure that we are feeding the correct byte on to the pins at the correct time? Whether we are feeding in an instruction or a piece of data, it's just one byte at a time, and so the sequence just has to be right. How is it all synchronised?

Thanks For The Memory!

Memory is the answer to the problem. Memory is not something mysterious and new, it's just a word for a set of registers. As far as most microprocessor circuits are concerned, a memory will consist of a set of 8 -bit registers, with gates to ensure that only one set of eight bits is connected to the data lines at one given time. The gating system is called addressing, so that when we talk of addressing memory what we mean is passing signals to gates so that one particular register is connected and eight bits can be stored in it or copied from it (see Fig.7.4).

In the early days, addressing was rather primitive and a lot of memories used a sequence principle, so that the first byte stored in was the first byte out, and the rest followed in sequence. We still use this idea for cassette-tape storage - you start at the beginning of the tape and you record or replay until you are finished. For a lot of purposes, though, it can be very much more useful if you can pick a byte out of any part of memory without having to go through all the bytes which were placed there earlier. This idea is called 'random access', and all the IC chip memories that we use nowadays have random access.

It's addressing which makes this random access possible. If you make your gates so that each binary number placed on a set of inputs the address inputs - will connect a different register on to a set of data lines, then you have the random access you need, because you don't need to go through the binary numbers in sequence. The old memory system which didn't use address lines (one byte was connected in or out at each clock pulse) is never used these days.

Getting It All Together

Now we can start to see how the microprocessor can carry out its instructions. To start with, all the signals which it's going to need will be stored in memory chips. Taking our example of the ANDing of two bytes, we would need all six bytes stored in memory. The simplest way to do this would be to store them in the same order as they are used, with the 'load first byte' instruction first and the 'store answer' byte last. All we need then is some method of arranging that a byte is connected to

Into Digital Electronics

the data lines of the microprocessor at each clock pulse, and this is done by 'address lines' from the microprocessor. The address lines come out on pins, usually sixteen of them, which can be connected inside the microprocessor to various counting registers. Their job is to signal to memory which memory byte is wanted.

Sixteen lines allow us to use binary numbers of up to 16 digits, which in familiar terms means a range of 0 to 65,536 . Being able to select up to 65,536 different bytes sounds good, and most microprocessor systems need a lot less, but it's worth remembering that large computers need a lot more memory, which is why microprocessor chips with 24 or even 32 address lines are being developed.

For our ANDing, then, we could arrange things so that the first instruction was connected to the data lines of the microprocessor when the address was 1. (You don't want me to write out fifteen Os and a 1 , do you? I'll stick to ordinary
scale-of-ten if you don't mindl) This address is obtained by a counting register inside the microprocessor whose name is, appropriately enough, program counter. At each clock pulse, the program counter simply advances by one digit unless we instruct it otherwise. When the 'load a byte' instruction has been digested, therefore, the next clock pulse will advance the program counter to 2 , and this has to be the memory address for the first of the two bytes we want to AND. At the count of three, the byte which is stored is the AND-immediate instruction, and address number four brings in the second byte to be ANDed. At step 5 another instruction comes in - an instruction which has quite a different effect, because it commands the microprocessor to send a byte out on the next clock pulse. Clock pulse number 6, then causes a byte to be stored - in this example in memory location number 6.

How do the registers tell the difference between sending a byte from memory to microprocessor
(reading) and sending a byte from microprocessor to memory (writing)? Easy, there's a pin which carries a read/write signal. The signal from this pin is normally logic 1 , so that the microprocessor reads from whichever part of memory has been activated by the address signals. When the WRITE instruction is received the next clock pulse puts the read/write pin to logic 0, and holds it like that until another clock pulse restores it. That way, a similar pin on each memory chip can be held low to ensure that the gates inside the memory chips are arranged to receive a signal (at the register inputs) rather than send one out (from the register outputs).

Yes, of course there's a lot more to it, but this outline should dispel. some of the mystery and explain some of the new words which fly around the microprocessor business. The important point is that once you have swallowed the ideas of digital electronics, microprocessors are just one more byte!

NOTE:
T1 HAS A 4 VAC SECONDARY WINDING LED1 \& 2 CAN BE ANY RED LEDS

Diode-Transistor
 Tester

No apologies are made for including this circuit - there is nothing particularly new about it, but it is very useful when checking diodes and

[^1]LEDs light the device has an opencircuit.

The same method applies to diodes. If the two leads of the diode are plugged into E and C (anode to E) the PNP LED will light up. If reversed the other LED will glow. As with transistors, if both LEDs light the diode is open-circuit.

By plugging in a new transistor
with a known gain and observing the brightness of the LED and the position of RV1, you will get a rough idea of the gain of unknown devices.

If a metal box is used to house this project then it should be connected to the earth point in the circuit.

GUITAR PHASER	2085	Sepl. '80	£9.60	hobbytune	2034	Oct. '79	£18.00
BENCH POWER SUPPLY UNIT	2087	Sept. 80	£25.00	MULTI OPTION SIREN	2036	Oct. ${ }^{\prime} 79$	£10.50
DEVELOPMENT TIMER	2086	Sept. ${ }^{80}$	£8.75	ANALOGUE AUDIO			
TOUCH SWITCH (on Vero).	2084	Sept. 80	£4.50	FREQUENCY METER	2035	Oct. '79	£15.00
AUTO PROBE	2083	Sept. 80	£3.00	COMBINATION LOCK	2029	Sept. '79	£12.50
REACTION TIMER	2082	Sept. '80	£26.50	*STARBURST	2030	Sept. '79	E14.50
MICROMIXER (on Verol	2081	Sept. '80	£8.50	LAMP DIMMER	2031	Sept. '79	£6.50
EQUITONE CAR EQUALISER	2052	Aug. '80	£13.30	ULTRASONIC SWITCH	2 D 32	Sept. '79	£21.00
GAS DETECTOR	2055	Aug. 80	£22.00	CONSTANT VOLUME AMP	2028	Aug. 79	£11.50
PASS THE LOOP GAME	2056	Aug. 80	£12.00	INJECTOR TRACER	2027	Aug. 79	£4.50
RADIO TIMER (on Vero)	2057	Aug. '80	£5.50	LED TACHOMETER	2026	Aug. '79	£14.75
MOVEMENT ALARM (on Vero)	2054	Aug. '80	$£ 5.00$	BABY ALARM	2025	July 79	£13.50
OP. AMP CHECKER (on Vero)	2053	Aug. '80	£4.00	POINTS SWITCH	2024	July ${ }^{\text {'79 }}$	£12.50
CAR BOOSTER (no speakers)	2050	July '80	£18.00	LINEAR SCALE OHMMETER	2023	July '79	£14.00
HAZARD FLASHER	2048	July 80	£10.50	SHARK	2022	July ' 79	£22.75
*PUSH-BUTTON VOLUME				G.S.R. MONITOR	2019	June '79	£10.50
CONTROL	Z047	July '80	$£ 19.50$	ENVELOPE GENERATOR	2020	June 79	£11.79
SOUND FLASH TRIGGER (on Vero)	2049	July '80	£3.50	DRILL SPEED CONTROLLER	2021	June '79	£7.00
2 WATT AMPLIFIER [on Vero)	2046	June '80	£3.90	WHITE NOISE EFFECTS UNIT	2018	May '79	£16.85
METRONOME (on Vero)	2051	June '80	£3.50	PARKING METER TIMER	2017	May '79	£6.70
MICROBE R/C SYSTEM				DIGIBELL PROJECT	2016	May ${ }^{\prime} 79$	£5.00
[less Servos]	2045	June '80	$£ 17.50$	VARIABLE POWER SUPPLY			
FOG HORN	2044	June '80	£4.50	O.30V 1 AMP	2015	May '79	£30.00
*EGG TIMER	2 D 43	June '80	£6.50	TRANSISTOR GAIN TESTER	2076	April '79	£6.50
MINI CLOCK	2010	May ${ }^{80}$	£26.00	CISTERN ALARM	2075	April '79	£5.50
5080 PRE-AMP	2011	May 80	£32.00	MODEL TRAIN CONTROLLER	2074	April '79	£26.00
TRACK CLEANER	2012	May ${ }^{80}$	£7.75	PHOTOGRAPHIC TIMER	2073	March '79	£14.50
*R/C SPEED CONTROLLER	203	April '80	£9.60	TONE CONTROL	2072	March '79	£9.00
HOBBY COM	208	April '80	£28.60	CASANOVA'S CANDLE	2071	March '79	£7.50
ELECTRONIC IGNITION	202	April '80	£18.25	SHORT WAVE RADIO	2066	Feb. ${ }^{79}$	£12.50
DIGITAL FREQUENCY METER	209	April '80	£27.75	SINE/SQUARE WAVE			
SHORT WAVE RADIO	2080	March '80	£19.50	GENERATOR	2067	Feb. '79	£22.50
TOUCH SWITCH	2079	March '80	£5.00	SCRATCH AND RUMBLE			
5080 PSU MODULE	2078	March '80	£29.50	FILTER MONO	2068	Feb. ${ }^{79}$: 22.50
SYSTEM 5080A	2077	March '80	£15.00	SCRATCH AND RUMBLE			
PASSION METER	206	Feb. ${ }^{80}$	£5.00	FILTER STEREO	2069	Feb. '79	£25.00
WIN INDICATOR	2042	Feb. ${ }^{80}$	$£ 9.00$	CAR ALARM	2070	Feb. 79	£8.50
INFR RED REMOTE CONTROL	207	Feb. ${ }^{80}$	£19.35	FLASH TRIGGER (less flash gun)	2065	Jan. '79	£10.50
SCALEXTRIC CONTROLLER	2041	Jan. ${ }^{\text {80 }}$	£52.50	TOUCH SWITCH	2063	Jan. '79	£5.50
CROSSHATCH GENERATOR	204	Jan. ${ }^{80}$	£11.25	VARI-WIPER	2064	Jan. '79	£8.00
DIGI-DIE	205	Jan. ${ }^{\text {80 }}$	£5.50	GRAPHIC EQUALISER	2062	Jan. ${ }^{79}$	£25.00
RING MODULATOR	201	Dec. ' 79	£8.50	PUSH-BUTTON DICE	2061	Dec. ${ }^{78}$	£6.00
SCALEXTRIC CONTROLLER	2039	Dec. ' 79	£21.50	AUDIO MIXER	2014	Dec. ' 78	£20.30
BARGRAPH CAR VOLTMETER	2040	Dec. ${ }^{79}$	£6.60	BEDSIDE RADIO	2058	Nov. ${ }^{78}$	E12.50
GUITAR TUNER	2038	Nov. 79	£8.50	STEREO AMPLIFIER (HOBIT)	2059	Nov. ${ }^{78}$	£52.50
*R2 D2 RADIO	2037	Nov. 79	£8.60	WAA-WAA PEDAL	2060	Nov. ${ }^{\prime} 78$	£30.00
TANTRUM	2033	OCt. 79	£37.50				

IONISER KIT: ZD13. This negative ion generator gives you power to saturate your home with millions of refreshing ions, withoul fans or moving parls il puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean alr, crisp and wonderiully refreshing. All parts p.c.b. and full instructions $£ 10$. A suitable case including front panel neon swilch, etc., available at $£ 8$ extra.

All kits contain components as specified plus Texas I.C. sockets, where required, also connecting wire.

FAIRCHILD FLV150 red. 2 LEDS, 10 for $£ 1.00,100$ for $£ 7.50$
DALY ELECTROLYTIC CAPACITORS $2000 \mathrm{uF} 100 \mathrm{v} £ 1.50$
PHILIPS SCOPE Tube $5^{\prime \prime}$ CV2191/DG-13-2 £10

If you do not have the issue of H.E. which contains the Project, we can supply a reprint at $40 p$ extra. Please add 30 p post and packing. Add 15% VAT to total order Callers please ring to check availability of kits.

306 ST. PAULS ROAD, HIGHBURY CORNER LONDON N1. 01-226 1489

SHOP HOURS:
MON.-FRI. $\quad 9.5 .30 \mathrm{p} . \mathrm{m}$ SAT. $\quad 9.4 .30 \mathrm{p.m}$.

Minimum telephone Orders $£ 5$ Minimum Mail Order $£ 1$

0 Level Q\& A

Test gear's the topic this month, and Nick Walton discusses moving coil meters and oscilloscopes

We will take a rest from high flying theory this month and consider test gear, in other words the basic instruments used by the hobbyist or the electronic engineer, namely the ammeter, voltmeter, and the ohmmeter as well as that highly versatile and useful device the 'scope or cathode ray oscilloscope to give its full mouthful.

Moving-coil Meters

The most common type of meter today (apart from the ever-increasing range of electronic digital meters) is based on the moving-coil movement. This consists of a small coil of wire free to t wist within the magnetic field of a permanent magnet. When the current passes through this coil you will know from a previous article that it creates its own magnetic field. This interacts with the permanent field, resulting in the movement indicated by the pointer. One such meter widely used has a coil resistance of 1000 ohms and a full scale deflection produced by a current of 0.1 mA . This, by Ohm's law, implies a required voltage of 0.1 V for full deflection.

Measuring Amps, Volts and Ohms

You use this basic meter to give you an ammeter which reads currents greater than 0.1 mA by connecting a low value of resistance (called a shunt) in parallel with the coil. For instance, to read up to 1 mA you would choose a shunt resistance value which, for 0.1 V , took all the current except the 0.1 mA you wanted through the coil (see Fig. 1).

Figure 1. To convert a moving-coil meter into an ammeter, you connect a low-value resistance in parallel with it
Thus if the shunt has to take 0.9 mA for a voltage of 0.1 V it works out to be 111 ohms. Measurement of higher current would need lower-resistance shunts whose value can again be
calculated by using Ohm's law.
Whereas the moving coil meter becomes an ammeter by adding a low resistance in parallel, it can be used as a voltmeter by adding a high resistance in series. For instance, to measure a voltage of up to 1 V , we need the resistance in series to account for 0.9 V to leave the desired 0.1 V across our coil. The current in this resistor, which remember is in series with our meter, must be 0.1 mA and the voltage across it is 0.9 V , all of which is shown in Fig. 2. So again with the help of George Simon Ohm we can deduce that it needs to have a resistance of 9 k .

Figure 2. To convert a moving-coil mater into a voltmeter, you add a high-value resistance series with it.

When it comes to making connections in the circuit, it is the ammeter you need to be most careful with. A mistake with it can cost you the instrument, whereas with a voltmeter connected wrongly nothing very much happens. You need not think very deeply to realise why the ammeter is vulnerable. When you want to measure a current in a circuit as in Fig. 3, it is as though you need to cut the wire and rejoin it through the ammeter. Since you do not want to reduce the current by the act of measuring it the ammeter must have as low a resistance as possible (ideally zero, though in practice this cannot be achieved) and this really is the trouble.

Figure 3. How an ammeter is connected into the circuit

For instance, suppose as previously you needed only 0.1 V to drive the pointer to full-scale deflection and in a moment of aberration you connected it across the resistor where there existed a voltage of 5 V , you would be putting

5 V across a meter designed to take 0.1 V ; ie, fifty times too much. This would be the sad end of your instrument so watch out. Actually many ammeters these days are protected by two diodes connected across the ammeter as shown in Fig. 4. At first sight this looks pretty pointless till you remember that even in forward bias a diode needs a definite voltage to make it conduct, for example 0.3 V . Given that the little coil of the meter still needs 0.1 V for full scale deflection, it could probably survive being overloaded to 0.3 V for short periods. Any further overloading will result in one of the diodes conducting quite heavily if necessary thus protecting the instrument itself. But remember the law of nature (Sod's Law) which, when applied here, says that the one ammeter you overload is the one that is unprotected.

Figure 4. An ammeter fitted with diode protection

The voltmeter is not vulnerable like the ammeter. Since voltage is a difference in potential between two points you always connect it in parallel with the component across which the voltage exists. But there is a problem you need to watch and it is called the loading effect. It is tied up with the fact that connecting everything (even a high resistance voltmeter) in parallel with a component does actually provide an alternative route for the current and on occasions this can lead to damage resulting from a bigger current flow than was intended.

Suppose for instance you had a transistor with a resistance of 20k on the base to keep down the base current to, say, 0.1 mA . If you put your voltmeter - whose resistance could be 20k across the 20 k resistor, between $A \& B$ in Fig. 5, the resistance of the combination (voltmeter in parallel with R1) will be only 10 k . This could allow too much base current to flow into the transistor which could cause damage: Manufacturers specify what they call a 'figure of
merit' for voltmeters which is expressed in terms of ohms per volt and is actually the reciprocal of current at fullscale deflection. Generally, the ohms per volt rating needs to be much higher (at least, say, ten times) than the value of any resistance across which you might want to measure a voltage. The higher the ohms per volt rating of a voltmeter the more it costs, but electronic voltmeters are now available with figures of merit in excess of 1 Megohm per volt (ie a million ohms per volt).

Figure 5. A. voltmeter 'loading' the base resistor of a transistor

Ohmmeters are also useful things to have around and the simplest can work using Ohm's Law in the following way. Looking at the circuit in Fig. 6 the unknown resistance is connected between A \& B. Suppose the meter reads up to 1 mA , then if there is noresistance between A and B (ie A and B connected together) the pointer will indicate 1 mA 11 V from the battery and 1 k in the circuit). So this will be marked out on the scale as zero. If the resistance across $A B$ is now $1 k$, the total resistance in the circuit will be $2 k$ so the current will be 0.5 mA on the scale which is where 1 k will be marked on it. It turns out that the scale is back-to-front and not evenly spaced. Even-spacing on an ohmmeter scale needs sophisticated electronics and costs a lot.

Figure 6. A design for a simple ohmmeter

Oscilloscopes

Our final topic is the cathode ray oscilloscope and the fact that it can fulfil so many functions is what makes it so useful. (See The Oscilloscope, HE, February 1981, pp 18 to 22.) Cost varies from about $£ 100$ to several thousand pounds. If you're thinking of buying one then it would be worth look-

Hobby Electronics, March 1981
 next month.

Common to every scope is the cathode ray tube which is illustrated in Fig. 7. At the left-hand end you have a heated cathode from which you are boiling off electrons. Persuade these to move in a stream by applying a high positive voltage at the anode and you have what the early workers called cathode rays isince they originated from the cathode.) Now you play a dirty trick on the electrons which were so keen to reach the attracting anodes. The anodes are in fact ring shaped so the electrons go flying through and hit the screen which is coated with a phosphor compound and which emits light when struck by an electron. The function of the second ring is for focusing purposes.

Deflecting The Spot

Having got a sharp little point on the screen, what shall we do with it? Move it around. Indeed it is the movement which lies behind its usefulness. The movement is achieved by the two pairs of deflector plates. If you know the fundamental principle of electrostatics, namely that unlike charges attract, (that is, a positive charge attracts a negative charge) and that like charges repel, then you will have no difficulty in understanding how the deflector plates do their job. If you apply a voltage between a pair of plates, then this is actually identical to putting some excess positive charge on one plate and negative charge on the other. So when the (negative) electrons of the beam enter this region (called, incidentally, an electric field) they will be attracted to the positive side and repelled from the negative side. Looking at Fig. 7 once again, if we suppose the first set of
plates are charged so that the top plate is positive and the bottom negative then the electrons will be deflected upwards. They will not actually hit the deflector plates because they are travelling too fast and are out of the field before they have undergone any more than a few degrees change of course. The first pair of plates is called the Y -plates after the graph-drawing convention which says that when plotting a graph of y against x the vertical axis is y and the horizontal axis is x. Thus you can see from Fig. 7 that the second set of plates is positioned to deflect the plate horizontally which is why they are called the X plates. Thus the two knobs marked ' X shift' and ' Y shift' on the front panel of the instrument (see Fig.8) simply alter the voltage on the X and Y plates.

But the story does not quite end there and we need to consider refinements to both these controls. In most applications the spot is actually swept across the screen from left to right. It then nips back very smartly and repeats rather like the motion of your eyes as you read this article. The control responsible for this is called the timebase and its settings indicated on the front panel by the control knob are expressed in terms of time taken to cover one centimetre. For instance, a typical setting might be labelled $2 \mathrm{~ms} / \mathrm{cm}$ which means that the spot takes two milliseconds (that's two thousandths of a second) to cover one centimetre of the screen. Mathematical genii will notice that the units are the reciprocal of speed and it is fun to work out how fast the dot is travelling - in this example a mere 500 cm per second. On good oscilloscopes the maximum timebase setting is around one microsecond (ie a millionth of a second) per centimetre. Faster than about $50 \mathrm{~ms} / \mathrm{cm}$ the dot just appears as a solid line as your eye cannot keep up

Figure 8. Front panel of an oscilloscope (Kikusui 538A) showing the various controls
with it. It's the timebase control which enables you to time things since you can relate distance across the screen to time in seconds, milliseconds or microseconds. In one particular application shown in Fig. 9 the bunched-up waves on the left hand side of the screen indicate the time for which a hammer was in contact with a metal rod. Contact ceased when the trace went flat. The bunched-up waves occupy 4 cm of screen and, on a timebase setting of $100 \mathrm{us} / \mathrm{cm}$ we can conclude that 4 cm across the screen accounts for 400 us, the contact time for the hammer.

Figure 9. Using an oscilloscope to time how long a hammer was in contact with a metal rod

Additionally if you measure time intervals, you can measure the time for one complete wave to be displayed on the screen, from which you can find the frequency.

You can also measure voltage on the oscilloscope by using what is called the voltage sensitivity control. This control is calibrated in volts per centimetre on the front panel and it simply indicates how far the spot is deflected for a given voltage. So if you were on $5 \mathrm{~V} / \mathrm{cm}$ setting and the spot jumped up a couple of centimetres as a result of a signal you put in, you would know you had a voltage of $5 \times 2=10 \mathrm{~V}$.

Two great advantages of the oscilloscope as a voltmeter are that it has a high resistance (about a megohm) and secondly that it does not care whether it is looking at DC or AC (any frequency). Perhaps you can see now why anyone with any serious interest in electronics would find an oscilloscope so useful.

That just about rounds things off for this month. Space and time do not permit me to cover logic even though our syllabus requires knowledge or the NOT gate together with the AND, OR, NAND and NOR gates. These are superbly dealt with by lan Sinclair in the October 1980 issue of HE. Similarly, the multivibrator (astable and bistable) will be dealt with elsewhere in HE , so there's lots to read. Cheers!

CORRECTIONS

The gremlins were going strong in the November 1980 article and corrections should read as follows:

The resistance $\mathbf{R}_{A B}$ of two resistors R1 and R2 in parallel should read:

$$
\frac{1}{R_{A B}}=\frac{1}{R 1}+\frac{1}{R 2}
$$

The Ohms' rating (reactance) of a capacitor is given by:

$\overline{2 \pi f C}$

where $\pi=3.14$ as in circles, f is the $A C$ frequency and C is the capacitance.

Also,
Farads $=\frac{\text { coulombs }}{\text { volts }}$
$c=\frac{a}{v}$
A microfarad is one millionth of a farad, and in the December 1980 article the formula relating impedances to tums ratio should read

$$
\frac{Z_{1}}{Z_{2}}=\left(\frac{N_{1}}{N_{2}}\right)^{2}
$$

and in the resonant frequency formula, a square root sign escaped, and it should read:

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

HE

GECTRONIC IONITION SAVES PETROL

More and more new cars use elctronic ignition to give the best performance and economy. Bring YOUR CAR up to top specitication by fitting the latest
DISCHARGE electronic system.

TOTAL ENERGY DISCMARGE gives all the advantages of the best capacitive discharge ignitions;

* Paak Performance-higher output voltage.

Improved Economy-consistent high ignition performance.

* Better Stanting-full spark power even with low battery
* Accurste Timing-prevents contact wear wrthout contactless errors.

Smooth Performance - immune to contact bounce effects.

PLUS

SUPER HIGM POWER SPARK $-31 / 2$ times the energy of ordinary C.D. systems.
OPTIMUM SPARK DURATION-to get the very best performance and economy with today's lean carburettor set tings.
DESIGNED IN RELIABILITY - with the "ultimate insurance" of a changeover switch to revert instantly to standard ignition.

TECHNICAL DETAILS
MIGH EFFICIENCY INVERTER. A high-power, high efficiency, regulated inverter provides a 400 -volt energy source-powerful enough to store twice the energy of other designs and regulated to provide full output even with the battery down to 4 volts.
SUPERB OISCHARGE CIRCUIT. A brand new technlque prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power long burn inductive systems. In addion this circuh H.T. system.

SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

IN MONEY-SAVING KIT.FORM at $£ 14.85 \begin{aligned} & \text { Inc. V.A.T. } \\ & \text { and } P \text {. } \& \text { P. }\end{aligned}$
All you need is a small soldering iron and a few basic tools - everything else is supplied with easy-th-follow instructions.

FITS ALL 6/12-volt NEGATIVE EARTH cars ELECTRONIZE DESIGN
2 Hillside Road, Four Oaks
Sutton Coldfield, West Midiands, 874400
Phone 021-308 5877

Fast Service

COMPUTER GRADE HIGHRIPPLECAPS					
${ }_{1500}$.	Vorls 100		Dimmm	Price	pp
2200 3300	40 25		$50 \cdot 25$ 50.25	$150 p$ 1500	
$3300{ }^{3}$	63		$50 \cdot 25$ $115 \cdot 35$	${ }^{1500}$	
$3300 \cdot$	150		$100 \cdot 65$	1200	
4700	75		115 . 35	190p	
11000	25		$50 \cdot 50$	180p	
15000	16		$80 \cdot 35$	${ }^{180}$	
${ }^{15000}$	40		115.35	${ }^{1900}$	
22000	16.		80.50 10	${ }^{2200}$	
22000	25		115.35	2500	
28000 34000	25 50		105:70	${ }_{3}^{270 p}$	${ }^{\text {80p }}$
34000 64000	50 40		$145: 75$ $\ddagger 15$	350 p 5900	800
68300	16		115×60	5750	${ }_{\text {BOP }}$
138.000	10		145×75	${ }^{8000}$	800
160000	30		220×75	750p	120p
all types mave screw terminals. -EX-EOUIPMENT. TESTED					
P.C.B.EDGE CONNECTORS					
Pitch W	$\begin{gathered} \text { Weys } \\ \hline 17 \end{gathered}$		Price		
	36	Bo	1900		
			245p		
01	54	A	170p		
01	85	BC	400p		
015	12	${ }_{\text {AC }}$	${ }^{75 p}$		
015	25	8 BC			
015	56	BC	325p		
0156	12	ET	150p		
0158	28	BC	190p		
0156	36	BC	200p		
- A single sided b-double sided C SOLD TAG D WIRE WRAP ALL GOLD PLATED EASILYCUT TOSIZE					
VOLTAGEREGULATORS					
$\begin{aligned} & \text { Type } \\ & \text { LM309k } \\ & \text { LM323K } \\ & 7805 \\ & 7815 \\ & \text { LM723 } \end{aligned}$,	, ${ }^{\text {a }}$	Case	Price	
			TO3		
	-5	30	TO3		
	- 5	10	TO220	500	
	-5	12	TO3		
	VAR		DIL	35p	

Low Prices

Great Menu

DISPLAY ELECTRONICS 64-66 Melfort Road
Thornton Heath, Croydon, Surrey CR4 7RN Telephone Orders:01-689 7702/01-6896800

Please add 50 p Post and Packing

All Prices Include VAT
, 000's of Other Items
Hobby Electronics, March 1981

What's In A Name

To end this series, Rick Maybury discusses electronic equivalents to our sensation of touch

THIS MONTH we look at systems and components that duplicate our sense of touch. From the outset it must be said that touch is a fairly empirical term: for instance, it includes the ability to detect temperature change and to sense changes in pressure. By comparison, electronic detectors allow these changes to be measured. Although these measurements may be accurate, they are crude compared with the total sensation of touch at the fingertips. The information transmitted from the fingertips through the nervous system to the brain enables us to process these minute sensations, localise them and, for example, set limits on the temperatures or pressures that we can safely endure. The built-in alarm system associated with these limits is pain!

In this final part of the What's In A Name series we will look at one electronic equivalent of touch sensation, namely that of pressure.

We can detect very small pressure changes with our own senses. For example, we can 'feel' a feather as it is brought in contact with the hand. (Our response to small changes in atmospheric pressure is another example.) Electronic devices have the edge on our own sensitivity, because devices known as strain gauges which detect movement due to a change of pressure or force can measure down to about one millionth of a gram or less. We'll have a look at these first.

Sadly, most electronics enthusiasts will never make use of strain gauges. Sad because these devices are highly versatile measuring transducers which could have many interesting applications for the hobbyist. (Perhaps we'll think of one or two for you to build as future projects in HE.) The most common form of industrial strain gauge uses the now familiar piezo-electric effect. You may remember that we dealt with piezo-electric devices when we looked at microphones. The transducer works by mechanically transmitting movement to a piece of quartz crystal. The structure of the crystal is such that any distortion 'frees' a number of electrons, within the structure, which can then be fed to an electronic circuit for measure-
ment. The number of electrons, or current, that will flow is directly proportional to the amount of movement so we can obtain a direct measure of that movement.

Leaving aside piezo-electric transducers there are a number of other quite familiar components that can be used to detect the movement due to a force. Our old friend the potentiometer is actually a case in point. In its most usual form it can measure a rotary motion in terms of changing resistance. Simple mechanical linkages can change the motion into a linear (straight line) or angular motion that is directly measured as a resistance.

Pressure or force can also be detected simply with the common-orgarden mechanical switch. Of course, a push button or toggle switch will not tell you how much force is being exerted but it will tell you whether the force is there or not. Simple microswitches, for instance, are used in their millions on many types of machinery that require some kind of sensor to detect a predic-
table force and that is in essence what the basic touch receptors found on our own bodies do.

The last type of detector we shall look at is not exactly a purely electronic device but it is worth a mention because of the incredibly small changes it is capable of measuring. The interferometer uses the properties of coherent light to resolve unbelievably small movements between two optical sensors. At present it is possible to detect a movement less than 0.1 um . That's difficult to imagine, isn't it? In terms we can understand, it will measure a movement between two bodies about the size of an atom. Human senses are pretty efficient but it is doubtful whether anybody could feel an individual atom falling onto their skin! We do have one advantage however, the touch receptors in our own skin are about the size of a pin head, and even the wizardry of the silicon chip has a long way to go before it can come up with a transducer as small as that.

HE

```
Movement
of bands
```


Left. Measurement of movement by optical means. Two gratings placed above one-another will produce interference patterns that can be used to determine movement

```
\longrightarrow
Movement
    O1
```

grating

 all the consistent disadvantages with such methods, till eventually we came up. with a new concept around which our design is built. A single integrated circuit, of the operational amplifier family, together with only a handful of passive components (ie resistors and capacitors) are used in the fuzz unit to produce a very 'smooth' sound which we feel is much superior to the usual harsh fuzz.

From the photographs you will see that our prototype is housed inside: a brand-new style of box, complete with a pedal to operate an internal switch. We just couldn't resist being the first magazine to use it for a project and a fuzz box seemed ideal.

There's just enough room inside to fit the circuit, battery, a jack socket and controls, and we can tell that it's going to be a very popular type of housing for projects, particularly in the musical effects line.

Quiescent current drain of the HE Fuzzbox is only 2 mA , so long battery life can be expected and a single PP3-type battery should last for months with normal use.

Because our Fuzzbox operates in an unusual manner we have been able to design it as a low-distortion (hi-fi quality) preamplifier which will amplify the guitar signal level to about four times its original size this can be useful in itself.

Construction

The usual constructional precautions should be taken, consistent with the use of Veroboard (ie make track breaks where indicated and check that no short circuits between adjacent tracks occur). Breaks in track can be made by gently twisting either the correct tool for the job, or alternatively a hand-held, small drill bit (about $1 / 8 "$), against the hole in question until a neat break is formed through the copper strip and the two sides are no longer in electrical contact.

Insert and solder all the.. components, starting with resistors,

Figure 1. HE Fuzzbox circuit diagram. The simplicity of the project makes it ideal for the beginner

Figure 2 (below). Veroboard layout, connection details and underside view of the board showing track breaks

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	
R1,3	47k
R2	4k7
R4	220k
R5	10k
POTENTIOMETERS	
RV1	10k linear potentiometer
RV2	220k logarithmic potentiometer
CAPACITORS	
C1.3	100n ceramic
C2	68p polystyrene
SEMICONDUCTORS	
	LF351 JFET operational amplifier
MISCELLANEOUS	
SW1	single-pole, double-throw slide switch (included in case - see Buylines)
SW2	single-pole, single-throw toggle switch
$2 \times 1 /{ }^{\prime \prime}$ jack sockets (only one needed if	
Battery and clip	
Knobs	
Case to suit (see Buylines)	
10 strip x 24	hole, 0.1" Veroboard

then capacitors and finally the IC as shown in Fig.2. Wiring up should be done as per connection details and then you can test your project. There is little to go wrong so providing your constructional skills are up to scratch the fuzz should voork first time.

Although this project was designed to suit the case featured it will, with care, fit into almost any small case. In the connection diagram in Fig. 2 we have included a jack socket for output, but this is optional. If you use the same case as us which comes complete with output lead, the second jack socket is not necessary, just connect the lead to SW1 as shown.

Intemal photograph of the project showing how tight a fit it all is. Everything should fit neatly into the case with care

Use screened lead for input and output connections (the screen should be connected to OV) thus keeping interference to a minimum

Buylines

The components for this project should cause few problems. IC 1, the LF351, will be obtainable from most mail order companies. The smart case which we used can be bought from Magenta Electronics, and the price, which is complete with lead, plug and switch is £5.65 (inc. VAT), p\&p 40p.

Magenta can also supply a complete kit of parts (including case) for HE Fuzzbox for £9.41. This price includes VAT but please add 40p for p\&p.

How It Works

Most fuzz circults use a high-gain amplifier to boost the output signal of your guitar to a greater level than the amplifier can supply without severe distortion. Figure 3 shows this effect graphically. Distortion (fuzz) occurs purely because the output is clipped by the amplifier saturating and cutting off. Two distinct disadvantages occur with this method - the distortion is very harsh and a lot of background noise can get in the way because of the amplifier's high gain.

Now, it might seem odd to you that we're complaining about too much distortion and noise in a circuit, that at first sight should do nothing but create distortion and noise. The reason for our complaint lies in the fact that the device is supposed to be a musical effect. If you distort the sound too much the musical part of it is overshadowed by the harshness.

So, a fu2z with not quite the distortion (or at least a more controlled distortion) and preferably lower amplification (to keep down the level of background noise), is required. HE Fuzzbox is just that!

Integrated circuit IC 1 is an operational amplifier (op amp) connected as an inverting amplifier with a gain of about five. This means that for an input signal of say, 10 mV from your guitar, the IC's output is 50 mV . The potential divider of R5 and RV2 reduces this to a variable amount of between zero and about four times.

Potentiometer RV1 biases pin 3 the

Figure 3. a) A possible input signal b) The output of a conventional fuzz circuit c) The output of the HE Fuzzbox
non-inverting input) of the amplifiar and hence the amplifier itself, into AC operation, and also provides an earth point for the input and output. By altering the position of RV1 the circuit's earth moves in relation to the power supply rails and therefore the AC signal at the output of the op amp moves up and down with a DC bias. At the lower end of the pot, ie fuzz effect at minimum, the output signal suffers no restrictions from amplifier saturation. The output is merely an inverted, amplified replica of that at the input - and the device functions as a pre-amplifier. As the fuzz control is
moved clockwise the earth moves positive until the output become clipped on the larger positive half-cycles. Figure 3 shows this effect. Further increases in earth voltage, as the pot is turned more clockwise causes an increase in the clipping effect.

The important points to note are that no further gain is required to increase the fuzz effect and clipping only occurs on one half cycle of the waveform. A very 'clean' and controllable distortion occurs which is more musical and more adaptable to the needs of the individual guitarist.

SSB transceiver module - based on G4CLF designs

Add an LO and the RF selectivity, and you have a very simple yet high performance signal processing 'heart' of an SSB transceiver in the range 100 kHz to 1000 MHz (with the correct LO/RF stages). The Ambit 91600 costs just $£ 44+$ vat, and includes an 8 pole SS8 crystal filter, SL. 1600 signal processing circuitry, double balanced schottky diode mixer and full USB/L.SB electronic switching.

The use of 10.7 MHz , instead of 9 MHz (as in the original unit) now enable direct connection to an AMBIT DF7 for 1 kHz frequency readou with far greater ease and accuracy than can be achieved with mechanical dial systems. Buy them both and save 15%.DFM7 $+91600=\mathbf{£ 6 9 . 4 6}$ inc.

The AMBIT catalogue - now with the new Part 4 for 1981 The most complete range of specialist radio components in Europe.

You need all three sections for a complete picture. Each section is revised on a triennial cycle - so this year the part 4 contains the revised remnamts of the original part 1 - plus all the many new items for 1981. $£ 1.75$ for the lot, or 60 peach for parts 28 83, and $\mathbf{£ 0 . 7 5 p}$ for the bumper part four section. (prices include postage).

Special Offers... each catalogue is supplied with a 'special offer' order form that will enable you to save the cost of the catalogues with your first few purchases.

Radio Control Systems

As well as the parts for constructing sophisticated digital proportional radio control systems, we offer kits of parts for complete receivers and transmitters (now including hardware). Only state-of-the art FM systems, readily adapted to 35 MHz if required.

The RCRX4
94445
94445
TX Case
SO1

Moving coil indicator meters; over 10,000 in stock for immediate delivery

* Signal leve The new part 4 catalogue lists many of the stock designs, but a much wider range is available to order (subject to minimum requirements). Meters for nearly all occasions, including precision voltmeter and ammeters.

The Mark III series of HiFi is the ultimate DIY audio system. There are probably more features and facilities to the square inch of front panel than any other commercial Hifi around - let alone DIY systems, From the iwin 500VA PSUs of the HMOSFET 100W power amp, to the 1dB tracking of the DC controlled preamp and the versatility of the CMOS MPU controlled tuner, there is no match for performance. style or sound quality - come and hear for yourself in our foyer

Mark III synthesised tuner $\quad \mathbf{E 1 7 5 . 0 0}+$ vat
Mark III B FM-only tuner $\quad \mathbf{E 1 8 5 . 0 0}+$ vat
Mark 111 OC controlled signal preamp $£ 175.00$ + vat
Mark 111100 W ims/channel MOS PA $£ 160.00$ + vat

c 12:48:

The FC177 (alongside) displays Alvi LO's up to 3.9999 MHz directly and with the prescalar unit (OFM) the system displays SW and VHF in 1 kHz and 10 kHz resolution resp. FC177: £26.16; DFM7: $£ 36.22$ (prices include VAT)

LCD modules: including various clock/timer/alarm systems, DVM clock/timer/alarm systems, OVM serial data decoder/displays. The
clock shown is the CM161
12/2 clock shown is the CM161-12/24 for just £11.44 including VAT.

NEW:
Miniature electrolytics 0.01 CV leakage

Miniature PC mounting 12 v relays $2 A / 24 v$ contacts, single or dual changeover types available

Photographic Timer

You won't get caught in the dark with this one time your photographs to perfection with this cheap-to-build, simple project

We could not be accused of overcomplication with this simple photographic timer project, which uses only about half a dozen components. The unit has a LED indicator which flashes regularly at one second intervals, and it can be employed as a simple enlarger timer, to time exposures lasting several seconds with the camera set to ' B ' or ' T '. There are many other uses for this timer.

It is inexpensive and extremely simple to construct, being well within the capabilities of even a complete beginner: it makes an ideal first project.

Construction

The few components fit easily onto one of our standard size (24 holes by 10 strips) $0.1^{\prime \prime}$ pitch Veroboards, as shown in Fig. 2. Building the component panel could not be easier, but be careful to connect LED1, Q1 and C1 the correct way round, and be sure to connect the battery clip with the right polarity.

Practically any small metal or plastic case should be adequate to house the timer. Indicator LED1 is mounted on the front panel using one of the special panel holders available for the device. This panel holder can provide the mounting for the component board.

Potentiometer RV1 is given the correct setting by trial and error, comparing the flash rate of LED 1 against a clock or watch which gives seconds' indication. In use the unit is started by closing SW1. The shutter is opened or the enlarging lamp is switched on at the first flash, and then the appropriate number of flashes are counted. On the last count, the shutter is closed or the enlarging lamp switched off. The period from switchon to the first flash is slightly more than one second, and should not be used as part of the timing period.

The HE Photographic Timer will fit into any suitable-sized small case and when finished will be a valuable addition to the darkroom

Figure 1 (left). Circuit diagram of this simple project
Figure 2 (below). Veroboard layout, underside view and connection details. Note there are no track breaks

Parts List

RESISTORS (All $1 / 4 \mathrm{~W} .5 \%$)
R1 47 k
R2 220R
\section*{POTENTIOMETER}
RV1 100k miniature horizontal preset
\section*{CAPACITORS}
C1 $10 \mathrm{u}, 25 \mathrm{~V}$ electrolytic
SEMICONDUCTORS
Q1 2N4871 unịunction transistor LED1 0.2" red LED
\section*{MISCELLANEOUS}
SW1 single-pole, double-throw toggle switch
Case to suit

10 strip x 24 hole 0.1" Veroboard Battery and clip

Buylines

All the components used in this project are standard readily obtainable items, and the total price (excluding the case) should be approximately $£ 4$.

How It Works

A unijunction relaxation oscillator makes a good basis for a project of this type since it gives the necessary short pulses of current required to give brief flashes of a LED indicator, and it does not need a stabilised supply to give good frequency stability. A circult of this type is also simple, as can be seen from the circuit diagram (Fig. 1).

There is normally a resistance of a few thousands of ohms between the base 1 and base 2 terminals of a unijunction transistor, and a potential divider circuit is therefore formed by the unijunction device Q1 and resistor R2. Because of the comparitively low resistance of $\mathbf{R} 2$ the voltage appearing across this component is well below the threshold voltage of LED 1, and the latter will not light up. The input impedance at the emitter of a unijunction is
very high under normal operating conditions, and at switch-on C1 charges by way of R1 and RV1.

Capacitor C1 continues to charge until it reaches a charge voltage of about 80% of the supply voltage, and 01 then triggers. This results in the emitter-to-base 1 impedance of the device dropping to a level of just a few ohms. A rapid discharge takes place through Q1 and the paraliel impedance of R2 and LED1, the latter being brought into the state of conduction by the current flow through R2 and the consequent rise in the voltage across this resistor. Because of the low impedance of C1's discharge path its charge diminishes very rapidly to the point where Q1 is no longer maintained in the "triggered state",
and $\mathbf{Q 1}$ quickly reverts to its original state. Thus there is only a brief pulse of current through LED1, and it produces only a brief flash.

With $\mathbf{Q 1}$ back in its original state $\mathbf{C 1}$ is free to charge up once again, but the charge on this component soon reaches the trigger potential of Q 1 once again, causing the device to trigger and discharge C1. This cycle is repeated indefinitely, giving a regular series of flashes from LED1. Potentiometer RV1 controls the charge rate of C1 and in practice it is adjusted to give the required flash rate of one per second.

The current consumption of the circuit is only about 1 to 2 mA , and each PP3-size 9 V battery gives many hours of use.

DIGITAL VOLTMETER MODULE

Fully built and tested, ONLY £11.95. vat

* Raads positive and nagative voltages with a sensitivity of $0-+999 \mathrm{mV}$ and $0--99 \mathrm{mV}$
* Requires only single supply between 7 \& 12 volts (220mA)
* High accuracy $+0.1 \%+1$ digit
* Large bright $0.43^{\prime \prime}$ high efficiency displays
* 4 readings per second sampling rate
* Size only $41 \times 95 \times 10 \mathrm{~mm}$
* Supplied with full data 8 applications information

This brand new, quality module manufactured by Autona Limited (who are one of the U.K's largest module manufacturers) means you can build accurate test equipment, multfmeters, thermometers, etc. easily and at a fraction of the cost of ready-made equipment. Full details are provided showing how to measure A.C. voltage, current, resistance and temperature.

Send your cheque or P.O. ($£ 11.95+£ 1.79$ V.A.T. +50 pp. \& p. = £14.24) now to:-

Dept. HE1

RISCOMP LIMITED 21 Duke Street Princes Risborough Bucks HP17 OAT

BUCKINGHAMSHIRE'S NEW COMPONENT SHOP
For all your Electronic Component needs
Telephone: (084 44) 6326

EVERCO

Multiband Receiver plus 40-channel CB Monitor. Frenuency coverace: 54. $87 \mathrm{MHz} \quad 145-176 \mathrm{MH}$ $88-108 \mathrm{MHz}$ Plus H1 40 CB Channels $108-145 \mathrm{MHz}$
This unit has a telescopic antenna and squelch control, sockets for earphone and external DC power source.

E 21.95 inc. VAT +75 p PaP
S.a.e. enquiries. Please allow up to 21 days for delivery. ALL PRICES INCLUSIVE

Star Chess T/V game	c63.35
Database Prog T/V game	E89.95
Chess Challenger 7	E99.00
Chess Challenger 10	¢160.00
Voice Challenger	¢230.00
Chessmate 8 level	¢59.95
Zodiac Astrology Computer	¢29.95
Electronic Mastermind	E14.90
Supersonic Mastermind. New	¢21.00
Mattel Subchase. New	£17.90
Mattel Armor Battle. New	E17.90
Enterprise 4 in 1	¢22.90
Galaxy Invaders. New	¢22.95
Radio Control Models-Various	
Gall Clock as H.E. offer. Kit $\mathbf{t 2}$ ready-built $£ 29.95$.	$24.95 \text {, or }$

 Breaker One Four

The publishers of HOBBY ELECTRONICS would like to point out that it is at present a contravention of the Wireless Telegraphy Act of 1949 and 1968 to use, manufacture, install or import CB transmitting equipment. It is not the intention of Modmags Ltd to incite, encourage or condone the use of such equipment.

Rick Maybury reports on the response to the Open Channel Green Paper. He has some interesting news snippets too

I'M NOT NORMALLY given to rumour-mongering. In fact, as I've said on many previous occasions, I'm dead against it. But for once, I'm going to do a little crystal gazing, based on several very interesting snippets that have found their way into the HE office. It would seem that our friends in the good old Home Office are a little tired of CB. To them it is a nagging irritant that is not going to disappear: their Open Channel proposal fell on totally uninterested ears. The response to the Green Paper was, according to the HO, in the region of 12,000 responses. This figure is made up of group responses, clubs etc which only count as one response, so the overall figure is probably much higher.

The responses fell roughly into two categories, those from potential industrial and commercial users and those from private individuals. Not surprisingly the commercial and industrial users were not wholly against the infamous 928 MHz OC system, so we might see some developments in that area after all. The responses from private individuals, clubs etc were also predictable in their content. They were almost unanimously in favour of using a 27 MHz system.

Now, the two other snippets that connected together concerned the recent introduction of a CB system in France, very similar to the Dutch system introduced last year, and the hint from someone well connected with the HO that an internal directive had been issued to 'sort it out fast'. The two broadcasting organisations that still occupy the 41 to 49 MHz band (ie the IBA and BBC 405-line TV transmissions) have made it clear that they will not discontinue their service before the appointed date - sometime in 1985 - so it doesn't take much intelligence to work out that there are only a limited number of options open to the authorities.

The most logical step now would be for them to follow the French and Dutch with a rationalised CB system on 27 MHz using a low power output (possibly 2 watts?) and to ease the problems of interference, adopt FM (frequency modulation). It is also worth pointing out that both the French and Dutch have
opted for a limited number of channels, around 20 or 22.
Now, all this is pure conjecture: if I'm wrong I apologise but my sources indicate that some kind of announcement will be made around February or March. I'll say no more, just sit back and wait with everything crossed.

Club Happenings

Back to the more mundane matters now with a round-up of the month's events. Just around early January the Big E club from Tottenham held a 'Come As Your Handle' fancy dress party. The results were, as you can imagine, pretty incredible. I had hoped to show you some pictures of the event but they did not arrive in time. As a postscript to this story, the caterers hired for the party presented the club with an enormous cake complete with a rig made out of icing. Rather than eat it themselves, and I'm sure the temptation was enormous, they generously donated it to the Great Ormond Street Hospital for Children.

We have comprehensive brochures on all products. Plea
32 page catalogue covering most games on the market.

It's easy to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

 A.S.A. Ltd., Brook House, Torrington Place, London WCIE 7HN.Still with the clubs, the Colwyn Bay CB Club organised a New Years' Day pram race and swim. The proceeds from the sponsored swim went to a local childrens' home. In the pictures below you can see the intrepid contestants nearing the end of the race.

We now have well over 100 CB clubs on our files and for a complete list of the major clubs see the club directory in this month's edition of Citizens' Band magazine.

PCB FOIL PATTERNS

Above: The PCB foil pattem of the HE Bicycle Speedometer

Left: The HE Steam Loco Whiste foil pattem

24HR. CLOCK/APP. TIMER KIT	OVM THERMOMETER KIT	AND NOW A DIMMER
	 INTEGRATED CIRCUITS	
		REMOTE CONTROL KITS
tracs	M, MM	
2		ALL COMPONENTS ARE BRAND NZTH ANO TO SPECIFICATION. AOD VAT AT CURRENT RATE TO ABOVE FAICES. SOP PRPMAIL MENT, SENO SAE WIHH ENOURIES. 4 TK Electronics (H.E.). 11 Boston Road, London, W7 3S」 Tel: 01-579 9794

PARAPHYSICS JOURNAL. Russian/ Czech translations. Autogenics (self-training) improves vitality. Psychotronic Generators, UFOs, contacting extraterrestrials, Kirklianography, telelinesis. levitation, gravity lasers. S.A.E. $4 \times 9^{\prime \prime}$: Paralab, Downton, Wilts.

CB ANTENNA TUNER. Matches your rig to disguise antennas and long wires. Get the MOST from your rig. Handles 100W. £19.25 inc. p\&p. PACKER COMMUNICATIONS, Bridge End Barn, Soutergate, Cumbria LA1 7 7TW.

OSCILLOSCOPE OVERLAYS. Cheap alternative to camera. Trace display on to removable transparency, then attach to paper for accurate record. $\mathrm{B} \times 10 \mathrm{~cm}$ grid. 100 for £10. Peak Developments, 66 Millway, Mill Hill NW7 3QY

TRS-80 OR $\mathbf{2 X 8 0} .4$ games on cassette TRS-80, $\mathbb{£ 3} .50 .2 \times 80, \mathbb{£}$. SAE details $/$ list Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
£99 SYNTHESISER D.I.Y. Professional results, easy-build.-S.A.E.: Dewtron, 254 Ringwood Road, Ferndown, Dorset BH22 9AR.

50 MIXED ICs, transistors, diodes £3. Bargains list 15p. Sole Electronics, (HE), 37 Stanley Street, Ormskirk, Lancs.

SHARP POCKET COMPUTERS-

 LOWEST U.K. PRICE!!!PC 1211 POCKET COMPUTER, complete with PC 1211 POCKET COMPUTER, Complete with
CE121 cassette interface PRINTER CASSETTE intertace, CE122.. E59.95 The CE122 combines the functions of Printer and (Casserte Intertace.
PC1211 complete with CE 122 Printet / Casserte intertace 152.00 Kam prices include V.A.T. and U.K. delivery swich, Mencheater, M25 8LD.

All advertisements in this section must be
Closing Date:- 1 st Fri. month preceding publication

Advertisements are accepted subject to the terms and condtions printed on the adverlisement rate caid \{avallable on request)

SPECIAL OFFER SUBSCRIPTIONS

Make a big saving on subscriptions to four of your favourite magazines:

	Current yearly rate	Special offer
Hobby Electronics	$£ 9.50$	$£ 8.50$
Citizen's Band	8.50	7.95
Electronics Today		
International	11.00	9.95
Computing Today	10.00	8.95

But hurry - this offer closes on Saturday 28th February, so choose one of three methods of payment:

Barclaycard Enter your Barclaycard number in the space provided on the coupon, add your signature, name and address - and we'll do the rest

Cheque or Enter your name, address and the Postal Order with your cheque or postal order, made payable to Modmags Ltd.

Subscriptions Offer, Modmags Ltd., 145 Charing Cross Road, LONDON WC2 OEE

THE CB ANTENNA THAT REALLY "ZAPS" IT OUT

"Firestik'
 ANTENNAS

Wintiol
THE ‘CB' PEOPLE

WRITE OR CALL FOR FULL INFORMATION FROM: WintuoYltd. trl. watov.ом.тнамеs 103 HIGH STREET (STD 09322) 48145 SHEPPERTON MIDDLESEX TW17 9BL ENGLAND

Make it for α Song!

The New Maplin in Matinée

 Amazing Value $5005+£ 99.50$ for cabinet if required.For Only

Easy to build. Latest technology - means less. cost, less components and 80\% less wiring. Comparable with organs selling for up to $£ 1,000.00$. Two 49-note manuals. 13 -note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8-instrument voicing. Major, Minor and Seventh chords Unique walking bass lines with each rhythm. Unique countermelody line with each rhythm. Truly amazing value for money.
Full construction details will be in Electronics \& Music Maker magazine.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. Get a copy now - it's the one catalogue you can't afford to be without.

[^2]

กา1ำ니네

Maplin Electronic Supplies Ltd
All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR
Telephone Southend (0702) 554155. Sales (0702) 552911
Shops:
159-161 King Street, Hammersmith, London W6. Telephone: (01) 7480926 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (O702) 554000 Both shops closed Mondays

[^0]: Items mentioned here are those planned, but unforeseen circumstances may affect the actual contents

[^1]: transistors and can save a great deal of time.

 Potentiometer RV1 is kept at maximum resistance when a transistor is plugged into the socket, then slowly decreased until one of the LEDs glows brightly depending on the type of transistor (NPN or PNP). If both LEDs light up, the transistor has a short-circuit: if neither

[^2]: Post this coupon now for your copy of our 1981
 catalogue price £1.
 Please send me a copy of your 320 page catalogue. I
 enclose £1 (Plus 25p p\&p). If I am not completely
 satisfied I may return the catalogue to you and have my
 money refunded. If you live outside the UK send $£ 1.68$
 or 12 International Reply Coupons.
 I enclose $£ 1.25$.
 Name.
 Address...

