CB RADIO-News and views inside

For A Down-To-Earth Approach To Electronics

Everwondect

 Who buys ectionics today? Y Mbesmpised!

Bharlias in eket is rapidy expanding, Whether it's 287wioment access mies ot whinswe eop
 medot sils.Ortose then
 looking - id a lot more hides. We stoc th the top makes.

 England, Tel. Walton-on-Thames (STP 09322 atish and troderut.

$30: 92$

 t.

us.
Ofinst simply call us.

TON AHLERS

ELEKTRONIKA B.V.
Aalsmeerderdijk 349, 1436 BH Rijsenhout Holland, tel. 01031 2977-2 8611 (4 lines), telex 15181 tonel nl. (near SchipholAirport)

Hearty thanks are due to the Physics Dept. of Hammersmith General Hospital for allowing us to take pictures of the cardiograms shown on this month's cover. These waveforms were reproduced from those displayed on a cardiac monitor. See first part of our Heartheat Monitor project on page 13.

FEBRUARY 1981
Vol. 3 No. 4

Editor: Hugh Davies aul Edwards. Group Art Editor: Paul Wilson-Patterson B.A. or: Ron Harris B. Sc.

PROJECTS

HEARTBEAT MONITOR . 13
Direct display of your pulse
HIGH-IMPEDANCE VOLTMETER 26
Three voltage ranges . . . and it won't load your circuit
SHORT CIRCUIT . 30
AUDIO SIGNAL GENERATOR 36
Frequency range 20 Hz to 20 kHz , sine, triangular \& square waveforms
BACKGROUND NOISE SIMULATOR 42
Produces a sound to help you concentrate . . . and relax TRAINSOUND PROJECT 2: TWO-TONE TRAIN HORN . . 48 Produces a realistic. sound triggered from your track MEDIUM WAVE RADIO 56
Low-cost single-waveband radio for use with earpiece PCB FOIL PATTERNS 65

FEATURES

MONITOR

News, kit review, new PCB technique and recent books THE OSCILLOSCOPE 18
What goes on inside and outside this electronic aid CLEVER DICK 25
CD speaks back . . . in his own style
WHAT'S IN A NAME 29
Still dealing with audio, we look at microphones
O LEVEL O\&A 32
A journey into transistors
BUILDING SITE 45
Some more general hints and tips
INTO DIGITAL ELECTRONICS 51
Part 6 leads the way to microprocessors
BREAKER ONE FOUR 61
Latest news from the people's band
NEWS \& INFO
HE Next Month 8
T-shirts 16
Special Offer . . HE Oscilloscope 23
ETI Next Month 40
Books 59
Hobbyprints 64
Advertisement Manager: Stephen Rowe Advertisement Representative: Roy PerrymenCreative Director: Diego RincónMenaging Director: T. J. Connell
Hobby Electronics is normally published on the second Friday of the month prior to the cover date.
Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-437 1002. Published by Modmags Ltd. Distributed by Argus Distribution Ltd, 12-18 Paul St., London EC2A 4JS. Printed by OB Ltd., Colchester. Covers printed by Alabaster Passmore.
Copyright: All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing of kits of the projects must be sought from the Publisher. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally. ©Copyright 1980 Modmags Ltd ABC Member of Audit Bureau of Circulation.

Load impedance both models
$\begin{aligned} & \text { Input impedance both models } 100 \mathrm{~K} \Omega \\ & \text { 4R-0 Input sensitivity both } \\ & \text { Frequency response both models } \\ & 15 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}\end{aligned}$

Load impedance all models $4 \Omega-\infty$ Input impedance all models $100 \mathrm{~K} \Omega$
Input sensitivity all models 500 mV Frequency response all models $15 \mathrm{~Hz}-50 \mathrm{KHz}-3 \mathrm{~dB}$
THE NEW PROFTLE EXTRUSIONS

Philips-Simply Sears Ahead

YOU MAY WELL remember our major feature on video discs a couple of months ago. If you do then you may recall that at that time

Philips was referring to its system with the rather uninspiring title of VLP (video long play). Well, the powers that be at Philips have decided to re-name their product 'Laservision' which they hope will lead to a new market identity. The
worrying thing of course with the term laser is its unfortunate connection with the science fiction death ray. We just hope people will realise that the laser in the disc player is only a few milliwatts.

Still with Philips, they have also

Recent Books

This month's selection concerns electronics and sound recording. Parr, E.A. 'Practical computer experiments' Bernard Babani (Publishing) Ltd., November 1980 (£1.75)
It is made clear from the outset that this book is not about the microprocessor (although it does have a small section on this beast). Instead it is about discrete logic circuits. Main divisions are Control circuits. Digital arithmetic and Computer architecture. Readers do not have to wade through deep discussions on computer theory: rather (in common with most books of this type) they are brought quickly to practical applications and simple circuits to build. Athough some appreciation of electronics is required, the book provides a good introduction to the building blocks of computer systems.

Penfold R.A., 'Popular electronic circuits - book 1 ' Bernard Babani (Publishing) Ltd., November 1980 (£1.95)

Definitely a book for the enthusiast looking for more circuits to build or the person looking for a simple circuit to fit an application. A total of 73 are provided, covering general categories of audio,
radio; test gear, music and the household. Miscellaneous circuits include those for a touch switch, a sound-triggered flash and a rapid Ni-Cad charger.

One miscellaneous circuit of interest is for an 'LED pendant' - a novel way of introducing flashing LEDs to an item of jewellery.

Back-up descriptions of the circuits are clear and concise in the well-accepted style of the author.

Tombs, D. 'Sound recording from microphone to master tape ${ }^{\circ}$ David \& Charles, Newton Abbot, Devon, November 1980 (£7.95)

If you are about to launch into sound recording, or have just been disappointed with your results so far then this could be the book you' ve been waiting for. It gives a comprehensive coverage of microphones,
recording machines, mono and stereo recording and techniques. The final chapter provides guidance on how to set up a recording studio in the home.

Definitely an easy-to-read book to have, to hand for tips on how to solve specific recording problems, such as those encountered with drama and wildlife.

The author is a professional sound recordist who has worked with the BBC's Natural History Unit to pionear techniques for stereo recordings of wildlife.

Practical
 Computer

Experiments

> Popular Electronic Circuits Book 1

announced that the Laservision will be one of the first video playback systems to have a deal with the good old BBC. You can imagine how much material the BBC must have just sitting about doing nothing!

Technical

Queries

TIME FOR ANOTHER one of our reminders about technical enquiries. As you may well know by now we will answer any technical query you may have regarding a project that has been published in Hobby Electronics. We can answer your question in two ways. The first is by telephone on Tuesdays between 3.15 and 5.00 pm . The second method is by post, but, and here's the important part: we can only answer it if you enclose a stamped addressed envelope. We will only answer questions regarding projects that we have published: we cannot advise you on any modifications and unfortunately we cannot undertake to do any design work. Sorry if that sounds a little harsh but we really do have our work cut out producing the magazine each month. If you do send in a postal technical enquiry then please mark your envelope with the name of the project and the month that it appeared and please allow up to 28 days for a reply.

Five Simple-to-build Kits

'You're about to start building an interesting and practical electronic kit', Or at least that's what the instructions say in a new set of simple eloctronic kits from OK Machine 8 Toot U.K. Ltd.

Known as Electronic Hobby Assembly Kits, each one comes in a plastic box 33 by $41 / 2$ by $13 / 8^{\prime \prime}$ (86 by 115 by 35 mm), and contains all the components (resistors, capacitors, transistors, etcl and accessories (wire, screws, terminats, etc). The plastic box is not wasted either: this doubles as a case for the kit.

HE was given samples of the first five to be launched in the UK:

EK1 Quick Reaction ($£ 5.80$) EK2 Electronic Organ ($£ 6.70$) EK3 Digital Roulette ($£ 8.80$) EK4 Electronic Dice ($£ 7.98$) EK5 Morse Code Practice ($£ 3.99$)

These prices include post and packing.

We couldn't resist trying one out and opted for the Electronic Organ. Armed with a self-adjusting wire stripper, we went for the fastest assembly time (around $3 / 4$ hour). The only extras we required were some solder and a 9 V battery. And yes it worked first time, producing very loud tones picked out by a 'probe' over an eight-tone scale.

Despite translation from Japanese, the instructions were easy to follow, and contained passable descriptions
of the components used, and the electrical units ('The farad is a large amount of electricity' amused us). Also given was a list of components (including details of component markings), hints on soldering technique, step-by-step instructions and a 'Here's how it works' paragraph.

Construction was aided greatly by the clear printing on the pre-drilled PCB.

According to James Dornan, Marketing Manager of OK Machine \& Tool UK Ltd., more projects of this type are due for release in the UK. The five mentioned above made their first public appearance at this year's Breadboard exhibition.

Kits EK 1 to 5 are avalable from OK Machine $\&$ Tod Ltd., Dutton Lane, Eastleigh SO5 4AA.

Winner of the Vero 4.30

The day - 27 November: the time -4.30 pm : the place-this year's Breadboard Show, London.

Here we have Mr. M. Clift, of Halesowen, West Midlands, being presented with first prize in Vero's draw of the day by Brian Gay, Sales Director of Vero Electronics.

Hugh Davies, HE's Editor, who was invited to draw the winning ticket, is seen standing on the right. of Mr. Clift.

The prize, a Verowrap Hobby wirewrap tool kit (worth £39.50 + VATI should be useful to Mr. Clift, who is a radio amateur (callsign G3VDM).
See page 10 for report on this vear's exhibition.

Do-it-yourself PCBs

A new range of 'pre-sensitised' PCBs called 'Fotoboards' is available from Marshall Electronics. The boards, designed by Fotomechanics, have a coating of photo-resist which is protected from light by a peel-off plastic sheet.
The printed-circuit pattern (mask) is reproduced on a sheet of clear plastic film by means of a transfer (such as a Hobbyprint), a tape master, photographic film or by other methods such as strip or scribing. With the backing sheet removed and the mask placed in close contact with the board, the exposed areas of photo-resist are flooded with ultraviolet light.

After exposure, the board is dunked in developer and washed In water: it is then ready for etching, washing and use.

Marshall is offering the following items:

- Fotoboards, in standard Eurocard sizes (for example, 100 by 220 mm : $£ 1.95$ single-sided and $£ 2.05$ double-sided)
- Kit for UV exposure unit for developing Fotoboards. Cost is $£ 34.50$., or $£ 19.50$ without box and glass screen
- Developer ($1 / 2$-litre) for £ 1.95 (this developer cannot be sent through the post)
- Drafting kit (grid, layout sheet and three plain sheets) for £ 1.80
- Reel of layout track (86 p) and developing trays (f 1 each)

According to Norman Mallett, Fotoboard's designer, it is important for constructors to learn how to make PCBs in a 'commercial way'.
'Fotoboard', he said, 'is for anybody who is interested in the elctronic technology'

The UV exposure kit comprises two UV lamps and the components to make a 12 VDC inverter to drive the lamps. It is possible to run the unit from iwo 6 V lantern-type batteries. Lamp life is claimed to be in excess of 1000 hours.

According to Mallett, developing time is about 4 to 5 minutes with this unit, but a UV sun-ray lamp could also be used, and would require an exposure time of about 10 minutes. Apparently, even sunlight can be used - but it takes about a day!

The need to warn users about the hazards of exposing the eyes to UV light was raised with Marshall, and assurances were received that the instructions supplied with the kit would contain such warnings.

Beginnings Of Real TV

How did modern TV, something we tend to take for granted these days, originate? Did it have a single inventor? Many of you will not be aware that some of the research work behind TV dates back to 1817 ! For an explanation of how electrons took over from the 'wheels' used in the very early receivers you'll have to wait until the coming issue.

PA Amplifier

If you're planning a Spring fête or an outside gathering this year then you'll no doubt need a public address amplifier (or a very loud mouth) to speak to the millions. Look no further with this project all you need is a car battery strapped on your back (or mounted on a skate board) and people will hear you for miles.

Photo Timer

You are in the darkroom (or bathroom, loo, or wherever else you do your developing) and you need to count developing or exposure time - in the dark. The luminous second hand has fallen off yor timepiece, so how do you do it? The answer is to use this simple-to-build project from HE .

Trainsound Project

This is the third and final project in this series for the model train enthusiast. (There must be more than one reading this!) But, as in last month's issue, we're keeping quiet about what it is. (Yes, we do know what it is!)

Fuzz Box

This is a project which is guaranteed to ruin the sound from your electric guitar. (Mind you, some people love fuzzed music.) So if you want distortion - produced in a novel way

- then build this one.

Bike Speedo

Ever been pacing your 10-speed Tour-de-France ultralightweight bicycle with, say, a Jaguar XJS and been annoyed that you can't read the Jag's speedo? With this project this problem is a thing of the past: it gives you a digital display of MPH, and is robust into the bargain.

Wiper Control

Does this electronic wiper control arrange for the inside of the windscreen to be wiped? Unfortunately it doesn't but it does offer some wiping options that you won't find as standard on some up-market cars.

[^0]

Hobby Electronics, February 1981

Were you at Breadboard 80? Hugh Davies gives a quick pictorial round-up of November's exhibition for the hobbyist

Overwhelming isn't too strong a word to use about the 1980 Breadboard exhibition - at least that's how it felt for us. It was held, as in the previous year, at the Royal Horticultural Halls, London SW1

Total attendance was in excess of 17,000 , with around 2500 crowding the stands on the first day. Wednesday 26 November. The.peak of the five-day event was, of course, on Saturday, with an estimated 5500 visitors. Even Sunday wasn't a day of rest for our exhibitors!

One thing was certain - with so
many people the corridors between the stands were rather crowded, as many of you must have experienced. We plan to widen the corridors in this year's exhibition.

Business was brisk on most stands, and the Modmags stand was no exception. Despite the din of synthesisers, rhythm generators and numerous other electronic gadgets it was good to meet and talk to so many of our readers. Some of the suggestions that we received from you face-to-face will help us to shape up future issues: thanks to all those who made their views known.

We hope that the pictures below help to capture a little of the atmosphere of Breadboard. One of its main aims is to bring electronics - as a hobby - to more people. Judging by the response there is no doubt that it achieved that aim in 1980.

1 Breadboard: a time to look, ask, listen and buy. Visitors had the opportunity to see some of the latest products and to take advantage of the many special offers

3 An indication of the many diffferent electronic games on sale. Incidentally, the notice in the foreground reads: 'Faulty Stereo's Radio/Cass £20.00 ea'. Wonder how faulty?

2 A view down one of the corridors between the stands (see comments above)

4 It's amazing how some exhibitors can remain so calm under battle conditions! Stands like this one with trays containing hundreds of small items proved to be big attractions.

5 A multitude of electronic musical instruments were on show and visitors had the chance to try them out for themselves. This portable organ on one of Maplin's stands appeared to have solved the problem of background noise

7 Just to prove that Breadboard wasn't a mate domain, here's a lady on the left trying to catch the attention of one of the exhibitors. On reflection, though, well over 95% of those attending the exhibition were male - so it's time more women became turned on to electronics

9 'Big ones, small ones, some as big as yer 'ead' according to the old song, and that was certainly true of the many different types of antenna on display. One of our exhibitors came to our stand with a tale of woe: his special CB antenna - the only one of its type in the country - appeared to have been stolen from his stand. He told us later that one of his staff had sold it by mistake

6 If portability wasn't your style then you could have visited the Heath stand. This organ deserves more than a pair of headphones

8 Right in the thick of it on the Modmags stand, the line up behind the counter is Peter Green (Assistant Editor, Electronics Today Intemational), Jim Connall (Managing Director), Hugh Davies and Tina Boylan (Editorial Assistant)

10 Near the end of the day, when the crowds subsided a little, this inflatable robot would go out on patrol from the Wintjoy stand. The fellow in the background appears to be in control

A PROGRAMMABLE THAT THINKS IT＇S A GOMPUTER

For the price of a good scientific

CASIO＇S AMAZING NEW

 FX－3500PStatietical regression and integrala．Non－volatile memories and stores．
38 functional（non－volatile）steps． 2 programme storage capability．Unconditional and conditiona jumps． 7 （non－volatile）memories；one independent． 6 onstant memories． 18 pairs of parentheses，nestable in 6 levels．
61 built－in functions．including：Integrals（Simp－ son＇s rule）．Linear regression，logarithmic regression exponential regression and power regression．
Hyperbolics．sexagesimal and co－ordinates con－ versions． 10 digit mantissa or $10+2$ exponent．Two silver oxide batteries give approximately 1,000 hours continuous use with power－saving automatic cut－off with data and memory protection．
Dims： $9 / 32 \times 2 \% \times 51 / 4$ inches．Supplied with

ALL THIS FOR ONLY £22．95

CASIO EX－2700

Similar to the FX－3500P but without regressional analysis and integrals．Single program storage． 8 digit mantissa or 8 digit mantissa and 2 digit exponent． 50 built－in functions including cube roots．RRP £22．95．ONLY £19．95．

CASIO＇S SUPERCALCS！

FX－8 100

Our best selling scientific

46 scientific functions，clock，celendar，elarm， countdown alarm，Interval alarm timer， $1 / 100$ second stopwatch with lap timing． Calendar．Pre－programmed to 1999．Day，date，monith and year
Alarm．24－hour alarm with hourly chimes
Countdown alarm．Can be set up to 10 hours，or
Interval alam timer up to 10 hours．or．
Stopwatch．Measuring net．lap and first and second place times in units of $1 / 100$ second to 10 hours． Calculator， 8 digits or $\mathrm{B}+2.5$ level parentheses，full access memory．Trigs，logs，hyperbolics，standard fractions．\％，cube roots，pi，sign change．register fractions．\％，
Two silver oxide batteries last approx．I year（con． tinuous）．Dims： $1 / 4 \times 2^{33 / 4} \times 5^{1 / 8}$ inches．Leatherette wallet． ONLY £24．95．（RRP E27．95）
FX－6100．Latest model
Similar to the FX－8100 but without the calendar function，interval alarm timer，hyperbolics or fractions．B digit mantissa or $6+2$
$1 / 4 \times 3 \times 5 \%$ inches．R．R．P．E22．95
£19．95

FX－7100．

Credit card version of FX－6100 with kiss－touch keys．Two silver oxide batteries give approx 1 rear continuous use． $3 / 16 \times 2 \% \times 3 \%$ inches．Wallet．R．R．P．E27．95 $\quad[24.95$

FR 2 A genteman＇s high quality digital watch worth at least $£ 24.95$ on request or you can have a MASTERPACK software kit worth £17．95．Offers subject to vailability．

DID YOU MISS OUT ON THE SPACE INVADERS？

CASIOTONE KEYBOARDS

NEW MODEL．CT－301
Provisional price；under $£ 300$
The revolutionary CT－201
ONLY £245（Trp £285）

A remarkable new concept in electronic keyboard Instruments using a totally new technology Pitch，timbre and harmonics of 29 instruments have been measured．digitalised and stored in electronic chip memory for faithful reproduction．A 4 －sound memory function allows switchin This polyphonic instrument can play
chords of up to 8 notes on its 29 white and 20 black keys spanning 4 octaves．Vibrato and black keys spanning 4 octaves．Vibrato and
tone switches．Foot volume and sustain pedai options．Echo jacks． $3 \times 331 / 2 \times 91 / 8$ inches． Weight 15 lb ．Black or woodgrain finish．AC only．

Include VAT and post and packing．Remember，we will beat any lower advertised price by 5% providing the advertiser has stocks and we still make a small profit！Just send de tails and your remittance for the lower amount．

Price includes VAT，P\＆P．Send your company order，cheque，P．O．or phone your ACCESS or BARCLAYCARD momberto：

Is your heart pounding as you read this? Here's a project that enables you to measure its rate

IMAGINE - your heart rate directly on display. Our Heartbeat Monitor samples a signal corresponding to your pulse and transforms it into a meter display of beats per minute (BPM). In addition to the meter, a LED flashes each time a beat is received.

In this issue we describe the circuit and a simple method of sampling heart rate: you operate a small push-switch each time your heart beats. In a future issue we will describe a sensor which, when it is attached to the body, will enable heart-rate to be detected automatically.

Construction

The PCB is only $23 / 4$ by $21 / 4^{\prime \prime}$ (70 by 57 mm) and very compact so great care should be taken when building it up. Integrated circuit sockets are advised for all four ICs. Remember that IC3 and 4 are fairly expensive but because they are not CMOS types, no special handling precautions are necessary.

Construct the board as you would any PCB, resistors first followed by capacitors (none are polarised) and finally semiconductors (these are polarised, so check carefully that you have them the correct way round, as shown in the overlay in Fig.4).

For initial test purposes LED1 should be hard-wired straight onto the board. Connect the meter, checking its polarity and set RV1 to mid-position. Now, connect a pushbutton switch as shown in the overlay diagram. You are now ready for testing.

Testing

Connect a new 9 V battery and turn on the unit - the meter needle should jump to the right and stay there. Push the button once a second lan ideal timing aid is a watch fitted with a secondhand). At this rate (ie 60 BPM) the needle of the meter should settle at about $1 / 3$ scale. Adjust preset RV1 clockwise or anticlockwise until this is so.
(Confirmation of pulse rate is also
provided by LEDil.
Now; double the rate at which you press the button to twice a second (120 BPM) and the needle should now move up to about $2 / 3$ sçale. If so, all is well.

Calibration

The above method of testing is suitable for rough calibration of the monitor, and is fine for most applications. However, if you require a more exact calibration you will need a calibrated signal generator set at various frequencies:

Sig. Gen. setting (Hz)	Meter Calibration (BPM)
0.8	48
1	60
1.2	72
1.5	90
2	120
3	180

Table 1. Spot frequencies and equivalent beats per minute for calibrating meter against signal generator.

How It Works

 An electrical signal corresponding tothe heartbeat triggers Monostable 1 (IC2a and b) which illuminates LED 1 , to show its 'on' state. The on state of this multivibrator triggers 3 . Monostable 2 (IC2c and d) triggers the sample-and hold, and Monostable 3 resets the counter to zero allowing it to
start counting again. Every heartbeat signal repeats the oparation, producing a reading which corresponds to the heartThe final stage of the circuit is a simple amplifier, IC4b, to drive the meter.
 By sampling the output once per heartbeat
and metering only that sampled voltage a and mous reading can be obtained - we use a circuit called a sample-and-hold for
The overali block diagram of the circuit is shown in Fig.4. The counter and DAC are contained within one device, is formed by an astable multivibrator comprising
 control circuits comprise three monostable multivibrators. The complete
project works in the following manner:
 and the output of the counter will be the
number 200, in binary. This is converted by the DAC to an analogue voltage and is To produce a continuous display on the meter certain things have to be taken into

- The counter in the above sequence - The counter in the above sequence
was stopped by the pulse of the second heartbeat, but to obtain a reading over beat must also reset and restart the counter ready for the next beat. Control
circuits need to be included for this task.
circuits need to be included for this task. squarewave pulses, the binary output will be constantly changing. This would proBINARY OUTPUT
OF COUNTER

There are a number of problems associated with electronic measurement of heart-rate, the main being the slow nature of beats; ie only once or twice per second. For a quick display of heart-rate beats over, say a minute - this is the standard way of checking your own heart-rate y feeling your pulse. Monitor uses a different method to obtain a quick reading. Figure 3 shows the principal parts of the
system: an oscillator producing a square system: an oscillator producing a square 200 Hz , a digital counter which counts the square wave and gives the counted output in binary code, a digital-to-analogue conbinary output of the counter to an analogue (ie DC) voltage; and a meter to measure the DC voltage. The first heart-
beat resets the counter to zero and then beat resets the counter to zero and the starts it. The second beat stops the there will be one second between pulses
and so 200 square waves will be counted

RESISTORS (All $1 / \mathrm{W}, 5 \%$)		SEMICONDUCTORS	
R1,2,3,4		IC1.2	4001, quad NOR gate
R6 ${ }^{\text {8, }}$	2k7	IC3	ZN425E, DAC
R7	120k	1.4	LF353, dual JFET
R8	10k	01	2N3819, N-channel
R10.13	100k		
R11.12	330k	D1.2	1N4148, diode
R14	2k2	2D1	3V9, 400 mW zener
POTENTIOMETER		LED1	$0.125^{\prime \prime}$ green LED
RV1	22 k miniature horizon tal preset	miscellaneous	
CAPACITORS		SW1	single-pole, single-
C1,3,6,8	100n polyester	ME1	200 uA meter (see
C2	2 n 2 ceramic		Buylines)
C4	4 47 ceramic	IC sock	14 pin, 1×16 pin, 1×8
C5	220 n polycarbonate		
C7.9	220 n polyester	Push bu	
C10	1 nO ceramic	Battery	6) + clip

when the Monitor is to be used with a sen-
 described in a future issue.

The Heartbeat Monitor board shown above and right with all connections.

Buylines

The meter we used in this project comes from AMBIT INTERNATIONAL and the type number is 920 . Integrated circuits IC3 and 4 may not be easily obtainable from your local stockist but one or two of the mail order companies advertising in HE have them listed leg Technomatic or Watford).

The approximate price of components (excluding PCB and case) will be $£ 20$.

COVER YOUR COVETED PARTS With the latest-design HE T-shirt

- how to test our Heartbeat Monitor Project!

NO, we're not being sexist: 'I'm a HE man' is still the most popular logo, so we've used it in our latest design, printed red on a blue background.

AND, despite inflation and inflating chest sizes we're offering them (T-shirts, that is) while stocks last at only $£ 2.50$, including post and packing, VAT and humour.

SEND your cheque or postal order today, stating details of your chest (Small, Medium or Large) to:

> HE T-shirts, 145 Charing Cross Road, LONDON WC2H OEE

Allow 10 days for delivery

The Oscilloscope

There's no substitute for 'looking inside' a circuit when you really want to know what's going on. The oscilloscope must surely be the most versatile electronic instrument ever invented. Les Bell and Roger Harrison take you on a guided tour, from how they work to what type to buy

ONE OF THE BIGGEST barriers people face when they take up electronics is cultivating the ability to visualise what is happening in a circuit. It is fairly easy to work out the DC conditions in a circuit, but electronic circuits are generally dynamic in nature; that is, the voltages and currents in a circuit change according to an applied signal or function of the particular circuit (as in amplifiers and oscillators, respectively).

The problem is, you can't see what's happeningl The "good books" may tell you what happens ideally, but the real world is very often quite different.

What's needed is some kind of 'window' into the circuit, to enable you to 'see' what's happening, to get that intuitive 'feel' which will make understanding that much easier. The window is, of course, the oscilloscope. Without it, the circuit designer may very well be 'blinded'.

Oscilloscope Basics

The heart of a Cathode Ray Oscilloscope (CRO) is the cathode ray tube (Fig. 1). It consists of an evacuated, tubular glass envelope, flared at one end. In the tubular portion, or the neck, is an "electron gun". This generates a narrow, focused beam of fast-moving electrons which are directed towards the flared end, past a set of parallel plates (the deflection plates), the large end of the tube being covered in a special coating (on the inside) called the 'phosphor'. When the electrons strike the phosphor, it emits light ('fluoresces') and you see a spot. Spot deflection is achieved by varying the electrostatic field between the deflection plates. Some CRTs use electromagnetic coils around the neck of the tube for spot deflection (TV tubes for example!)

The electron gun contains a heated cathode (K) which 'boils' off electrons. These are attracted to an anode (A_{1})

Figure 1. The intemal structure of a typical
© Copyright MODMAGS Lid. cathode rey tube.
which is very much more positive than the cathode, at least several thousand volts. As they accelerate towards the anode, the electrons pass through a control grid (G), which is a cap of metal around the cathode and somewhat negative with respect to it. This electrode is used to control the brightness of the spot. If the negative potential on G (with respect to K) is increased, fewer electrons will pass and the spot brightness will decrease, and viceversa.

Between the control grid and the focusing grid there may be a second grid, the screen grid, which is usually around 300 V positive. Following the focusing anode $\left(A_{1}\right)$ there is usually a second anode $\left(\mathrm{A}_{2}\right)$. Voltage on the final anode is very high - usually several thousand kV . Alternatively, between the control grid and the second anode, there may be an Accelerator electrode (sometimes called a 'pre-accelerator') at the full final anode voltage. This arrangement constitutes a focusing scheme called an 'einzel lens'. Varying the potential between K and A_{1} will vary the spot size. This is used to focus the spot.

The result of all this accelerating and focusing is a well-focused, high energy beam of electrons travelling straight down the centre of the tube. To deflect the electron beam and create a display,
a pair of electrostatic deflection plates are provided for each axis (X and Y). An electric field will deflect the electron beam, providing spot movement over the face of the tube.

The electron beam passes between the plates in order to be deflected, but after the first set of plates the beam can be anywhere in quite a large area. This means the second set of plates must be larger, with an associated increase in capacitance. Usually, the vertical deflection plates come first, since the Y channels require greater bandwidth, while the X channel or timebase requires a lower bandwidth.

Following the deflection electrodes, many electrostatic CRTs have a postdeflection accelerator which usually takes the form of a graphite spiral around the envelope funnel between the neck and the face of the tube.

Tube Types

Electrostatic deflection types are commonly employed in measuring instruments as they offer much greater bandwidth operation than magnetic deflection tubes which are principally limited by yoke inductance. On the other hand, electrostatic deflection tubes are limited to beam deflection angles less than 20° off axis while electromagnetic systems can achieve a
maximum deflection of $\pm 55^{\circ}$. This is why oscilloscope tubes (electrostatic types) are so much slimmer than TV tubes (which use magnetic deflection) of similar length.

Some demonstration and teaching oscilloscopes use standard TV tubes with magnetic deflection. Whilst the display is much larger than a standard oscilloscope, the bandwidth limitations allow them to display only signals generally less than 100 kHz . Oscilloscopes using electrostatic CR tubes may have band widths of 10 MHz commonly, and up to 100 MHz without using special techniques.

The general purpose of an oscilloscope is to examine voltages (or sometimes currents) as they change with time. There are other modes of operation, but as this is the fundamental one, let's start with it.

In order to display a waveform that is varying with time, we must draw the 'spot' across the face of the tube, from left to right, return to the starting point and repeat. To do all this, the voltage inpressed on the X deflection plates is increased at a linear rate with time, to draw the spot from left to right, then reduced to zero (or the starting voltage) suddenly to return the spot to the starting point, and so on. This establishes a 'time base' as the spot takes a known amount of time to travel from left to right across the screen.

At the same time, the waveform to be examined (suitably amplified) is applied to the Y direction plates. The spot will then trace out a graph of the waveform on the CR tube screen as

Figure 2. Showing how the deflection waveforms applied to the X and Y plates of a cathode ray tube cause the electron beam spot to trace out a faithful replica of the Y -input waveform.

If the time taken for the spot to trave across the screen has a definite relationship to the frequency of the waveform being examined and if the start of the trace (at the left-hand side) is arranged to commence at some definite point on the waveform (ie synchronised), then a stable trace will result on the screen.

For example, say we wish to display two cycles of a 50 Hz mains voltage. The horizontal deflection, or timebase, would have to 'sweep' the spot from left to right in the length of time it takes to complete two cycles at $50 \mathrm{~Hz}-40$ mS . The timebase would make 25 sweeps per second: that is, it would be running at 25 Hz .

In a practical oscilloscope, during the 'return' sweep of the X deflection (the 'flyback'), the electron beam of the CR tube is turned off, or 'blanked', so that it is not displayed - otherwise, the resultant sqiggle would become confused with the desired display!

The signal applied to the X deflection plates of the CR tube is often referred to as the 'sweep' voltage, or just 'the sweep', although the term 'timebase' is generally more common.

Oscilloscope manufacturers include a 'graticule' on the screen of their instruments as a convenient reference, enabling quite accurate time and amplitude measurements to be made. The graticule may be a transparent plastic cover placed over the CR tube face, scored with grid lines at convenient intervals (generally 10 mm) or, as in the more expensive types, it may be scanned directly on the face of the CR tube during manufacture. The latter provides a more accurate reference than having a separate, external graticule.

The general form of most generalpurpose oscilloscopes is shown in Fig. 3. As you can see, there are four basic components: the Cathode Ray Tube, the Vertical Circuits, the Horizontal Timebase Circuits and the Power Supplies.

The Timebase and X Amp

So that waveforms of widely varying frequencies can be displayed, the timebase must be variable over a very wide frequency range. Accordingly, oscilloscopes are made with the timebase 'range' switched at convenient increments. The actual ranges included on an instrument depend on the applications for which it is intended, but typically the minimum sweep rate may be 20 s for a full sweep (generally 2 s/division) ranging up to a maximum of 1 us for a full sweep (0.1 us/division).

The range steps generally go in intervals of $5,2,1$. A vernier control is always provided so that a display may be varied for some convenient purpose.

The timebase generator provides a 'sawtooth' waveform (that's what it resembles) for the X deflection. This is amplified and applied to the X plates of the CRT. The 'width' of the timebase deflection on the CRT depends on the amplitude of the sweep waveform. Thus a width control may be provided by having a potentiometer to control the gain of the X amp. A DC voltage or bias applied to the X plates will determine the horizontal position of the trace on the CRT face. Thus, a potentiometer to vary the DC bias on the X plates is provided as a horizontal position control.

So that the timebase generator may be synchronised to the waveform being examined (to provide a stable trace as explained previously), a 'trigger' circuit is included. The timebase may be triggered internally by sampling some of the signal going to the Y deflection plates or from an external signal. This is very convenient in particular applications which are explained later.

For some particular applications (phase measurement, frequency comparison) a sawtooth sweep is undesirable for X deflection, so that direct access to the X amp is required. For this purpose the input of the X amp can be switched to a front panel socket generally marked horizontal input or an abbreviation of the same.

The Vertical Or Y Amp

The signals one may wish to examine might range from microvolts to hundreds of volts! The lower level signals will require amplification (as the deflection voltages required may be tens of hundreds of volts), the higher level signals will require attenuation. Accordingly, a sensitivity switch is provided ahead of a high gain, low distortion amplifier - the Y amplifier.

The most sensitive range of common oscilloscopes is typically 5 mV to 10 mV per centimetre (one graticule division). More expensive types may have a maximum sensitivity as high as $10 \mathrm{uV} / \mathrm{cm}$. The insensitive end of the range will generally be around $50 \mathrm{~V} / \mathrm{cm}$ for run-of-the-mill CROs but special instruments (eg: those used for electrical supply applications) provide for levels as much as ten times higher. As with the timebase range control, sensitivity steps are generally $5,2,1$ intervals. A vernier sensitivity control is provided for convenience.

The bandwidth of the Y amp is an important factor in the selection and application of an oscilloscope. A general purpose instrument may have a bandwidth extending from DC to 10 MHz or 15 MHz . Inexpensive units may only extend to 3 MHz . Magnetic deflection units Igenerally for demonstration or teaching applications) may only reach $20-50 \mathrm{kHz}$, few struggle as high as 100 kHz . High quality instruments (££££1) may have bandwidths as great as 350 MHz . Special instruments, using 'sampling' techniques, may reach 1 $\mathrm{GHz}(1000 \mathrm{MHz})$.

To examine AC waveforms superimposed on a DC voltage, the Y amp must be AC-coupled. Accordingly, a switch is provided that inserts a capacitor in series with the input.

The range of input sensitivity may be extended by the use of probes which can provide such facilities as very high voltage attenuation and increased input impedance.

The vertical position of the trace is determined by a DC bias applied to the Yplates of the CRT, in the same manner as for the X plates.

The Z Input

If ' Y ' represents the vertical axis and ' X ' represents the horizontal (time) axis, then what on earth is the ' Z ' axis?

The only thing left to vary on a CRT display, after moving the spot vertically and horizontally, is the intensity of the spot. Accordingly, most CROs will include a Z input. In general this allow for blanking and brightening of the display or for making particular types of measurements.

That completes the description of your 'basic' oscilloscope.

Dual-Trace Operation

It is often helpful to be able to display two waveforms at the same time - for example, to measure the phase change on a signal passing through an amplifier stage. This can be achieved in two different ways.

One can simply build two completely separate guns and two sets of deflection plates into a single CRT envelope. These dual-beam CRTs are complex and expensive, and they require two completely separate sets of drive amplifiers - more expense.

The alternative used in most modern dual-beam scopes is 'dual-trace' operation in which a single-beam tube is used to display two traces by switching between them. Two methods of beamswitching are used; one can either switch between traces at the end of each sweep, which is suitable for highfrequency waveforms, or at lower fre-
quencies one can switch alternately between the waveforms as the sweep progresses across the display. The first method is called alternate trace, the second is chopped trace operation.

These basic principles apply to all oscilloscopes, except some types which are intended for specialised applications. Of course, oscilloscopes are more complex than this in practice. Perhaps the best way to see some of the more sophisticated facilities is through the controls on the front panel of an oscilloscope of medium complexity.

Choosing (Not Using) A Scope

There comes a time in every young man's life when he can't figure out what on earth the circuit's doing, so he decides to buy an oscilloscope. Of course everyone has different requirements - digital circuitry, RF, high fidelity, process control, computer equipment - these applications all have widely varying characteristics so what should one look for when evaluating the performance of a CRO?

The most obvious consideration is bandwidth. The bandwidth of a general purpose oscilloscope is the frequency at which the total gain of the

The Oscilloscope

oscilloscope is 3 dB down on its midband performance. There are several limitations on the bandwidth of an oscilloscope, ranging from the bandwidth of the amplifier stages themselves to the time which the electron beam takes to pass between the deflection plates and the amount of energy required to make the phosphor glow. For example, if the input waveform goes through a complete cycle during the time that an electron is passing between the plates, then the deflections will average out, giving a net deflection of zero!

In the DC mode, there is no problem with low frequencies right down to $D C$, particularly when using longpersistence phosphors. The bandwidth figure given in specifications is therefore the upper frequency limit of the scope.

Closely related to bandwidth is the risetime of the scope. This is the time taken for an input square (really square)
wave edge to go from 10% to 90% of its value on the screen. Unfortunately, on high performance CROs, this is well nigh impossible to measure. It is usually calculated from the bandwidth instead, using the formula:

$$
\tau=0.35 / \mathrm{BW}
$$

The vertical amplifier system of a scope should ideally have a risetime five or more times faster than the risetime of the fastest signal it is intended to examine. In this case risetimes measured on the scope will have less than 2% error.

It is generally important to get the highest bandwidth and fastest risetime your money will allow. When examining a square wave signal, for example, Fourier analysis tells us that the square wave is actually composed of a series of harmonics of the fundamental frequency.

If the vertical amplifier and tube of a scope lop off the fifth and higher harmonics, the square wave will be

noticeably rounded. In this case, risetime measurements will be virtually meaningless.

Glitches in digital circuitry will virtually disappear on the narrow bandwidth CRO rendering it almost useless for digital troubleshooting. Thus, although you may be working with quite slow logic, a high speed scope is still very useful. For a typical hobbyist, with no specific requirements or interests, a 15 MHz oscilloscope would probably be ideal.

Probes

A point to watch for, particularly with high frequency scopes is the selection of suitable probes. The capacitance of the probe leads can severely limit the bandwidth of an instrument so it is essential to use the appropriate probes.

Most oscilloscopes have an input resistance of 1 MO and $\times 1$ probes will give this resistance at the probe tip plus a capacitance which is in parallel with the scope input capacitance (usually around $20-30 \mathrm{pF}$). For higher input resistance, $\times 10$ probes are available. They include a 9 MO resistor, thus raising the input resistance to 10 M .

Probes require compensation for capacitance effects which limit their bandwidth. For very wide bandwidth operation, complex compensation networks may be used. Typical probe circuits are illustrated in Fig. 4.

Sensitivity and Accuracy

The sensitivity of an oscilloscope is usually expressed in $\mathrm{mV} / \mathrm{cm}$ or $\mathrm{mV} / \mathrm{div}$, and in general, a higher sensitivity scope is more useful than an insensitive one.

Accuracy, in the absolute sense, is probably less important than with other pieces of test equipment, as an oscilloscope is generally used for qualitative analysis. Most oscilloscopes have an accuracy of $\pm 5 \%$, but as one moves into a laboratory, as opposed to service/general purpose machines, \pm 3% accuracy is more common. It is tempting to suppose that by buying a more accurate oscilloscope, one could save money on other test equipment, but this is not the case. Modern digital test equipment is now quite cheap, while accurate oscilloscopes are not, even leaving aside the inconvenience of making measurements by counting divisions on the graticule.

Other Facilities

In deciding on an oscilloscope, several other factors ought to be taken into consideration. The obvious question is:

Figure 4. Schematic of attenuator probes (a) simplest concept (b) capacitive loading to extend bandwidth (c) inductive.
will I need a dual-trace scope? There is very little to be said about this choice; you pays your money (as much as you can afford) and you takes your choice. Single-trace scopes are becoming quite rare beasties, in fact, as the dual-trace types are considerably more versatile.

The triggering facilities of a prospective purchase should also be carefully examined. It's probably true to say that poor triggering on a scope can render it the greatest bugbear of the user'slife virtually useless, in fact.

Unfortunately, there is no universal way to specify the triggering performance of an oscilloscope. It is best to arrange a demonstration, either by the dealer or by an associate or friend who has used the oscilloscope in question. In any case, it is generally wise to ask around for other users' impressions when considering such a major purchase.

A useful facility on some oscilloscopes is the provision of two timebases with delayed sweep facility. In this mode of operation, for the first timebase, the delaying sweep is triggered by the trigger circuitry, and continues for selected delay time. When this time is reached, the second timebase takes over (usually at a higher speed), providing accurate resolution of an event which can occur some time after the trigger event.

Figure 5. Dual-irace oscilloscopes can be implemented in two ways: using a dual beam (c) Copyright MODMAGS Ltd. cathode ray tube or using a single beam tube and electronic switching of the trace. The block diagram at the top is of a Philips model 3232 and is typical of dual-beam types. The block diagram at the bottom shows the electronic switching technique of obtaining dualtrace operation with a single beam cathode ray tube.

A typical oscilloscope front panel layout.
showing the positions of the major controls.

NOW'S your chance to own the most valuable aid to the electronics hobbyist - AN OSCILLOSCOPE. With a screen size of 75 mm and a band width of DC to 5 MHz the Kikusui 538A will enable you to 'see' how circuits are working instant/y.
Apart from the CRT, semiconductors are used throughout the circuit: the 'scope is ready to operate in under 20 seconds. It comes complete with operating manual containing full details of operation, maintenance, calibration and circuits.
All-inclusive cost of the 538A, delivered to your door, is only $£ 95$.

Don't miss this chance to own a high-quality 'scope . . . and choose between TWO methods of payment: Barclaycard or cheque

BRIEF SPECIFICATION

```
Vertical Deflection
Voltage sensitivity
Bandwidth
    < 10 mV/division
    AC 2 Hz to 5 MHz
    DC DC to 5MHz
        -3dB
Input impedance 1MO\pm5% within 35 pF
Ext. Horizontal Amplifier
Voltage sensitivity < 250 mV/division
Input impedance 1MO 10% within 35pF
CRT }\quad75\textrm{mm}(2.9\mp@subsup{5}{}{\prime\prime})\mathrm{ round screen,
    green phosphor
Power Requirements
Voltage llol
Wattage about 10 VA
Dimensions }202\textrm{mm}\mathrm{ wide by }160\textrm{mm}\mathrm{ high by
    305 mm deep. (7.9 by 6.3 by
    12")
```


OSCILLOSCOPE EXCLUSIVE OFFER for HE readers

Enter your Barclaycard number in the space provided on the coupon, add your signature, name and address - and we'll do the rest

Enter your name, address and the amount in the coupon and send it with your cheque, made payable to Modmags Ltd.

Please also specify the number of 'scopes you require
SEND ALL ORDERS TO:
HE Scope Offer,
Modmags Ltd., 145 Charing Cross Road, LONDON WC2H OEE

Please note that the offer applies to UK mainland only: allow 28 days for delivery

- RADIATION CANNOT BE HEARD, SEEN OR SMELT. - THIS DOSIMETER WILL AUTOMATICALLY DETECT THE AMOUNT OF RADIATION IN THE AIR.
- UNIT IS SIZE OF FOUNTAIN PEN AND WILL CLIP IN TOP POCKET
- PRECISION INSTRUMENT, METAL CASED, WEIGHT 40 GRAMS.
- CONTAINS 3 LENSES. RUGGED CONSTRUCTION MANUFACTURERS CURRENT PRICE OF A SIMILAR MOOEL OVER £ 25 EACH.
British design and manufacture. Tested, calibrated and guaranteed. Ex-stock delivery by return.

404 EDGWARE ROAD, LONDON W2 1 ED Tel: 01-7235095 Telex: 262284 Ref 1400

				miam reon pust rans-	
			and nex and and		
			, ind		
colleges etc) 30 p postage please unless otherwise shown. VAT inclusive prices. S.A.E. for illustrated lists.			PROGRESSIVE RADIO EAPSIDE, LIVERPOOL 12210 ALL ORDERS DESPATCHED BY RETURN PÖST		

WELCOME to the very first Clever Dick of 1981. May I take this opportunity (somewhat belatedly I fear) to wish you all the very best for the coming year and hope that you continue to keep your amazing letters coming.

So now, without more ado here's this year's first letter from
W.Blackledge.

Dear CD,

Despite being impressed by the possibilities of the HE Minisynth, as a musician / am concerned with its limitations.

Is it necessary to programme all 32 notes of the sequence? If this is the case, only time signatures which divide evenly into 32 (or certain added combinations) will be possible. This imposes a limit on tune structuring, 5/4 and 9/8 time signatures being impossible (for example).

Therefore, is there any way in which the sequence may be reset after a chosen number of notes have been played?

W. Blackledge

Leeds

I think that possibly you have misunderstood the workings of the Minisynth. In the first place the memory facility can store up to 32 notes and spaces. You can of course make the sequence as long or as short as you need. The second point is that we never intended the Minisynth to be a serious musical instrument. Of course how it is ultimately used is up to the individual but to talk of its limitations is a little unfair. Remember this though, a semi-professional synthesiser will cost several hundred pounds. Ours, whilst nowhere near as complex as a commercial instrument costs under $£ 30$ to build youself.

Still with the Minisynth we have another letter in the same vein, this time fromC.L.Hutchinson.

Dear Clever Dick,

After taking your mag from the start in November 1978, I have been waiting for a keyboard project in which the chords could be played, in-
stead of these one note at a time things that keep cropping up. If there isn't one in the near future, could you tell me where I can get hold of a project that was in your sistermag (ET) in July 1979, called 'String Thing'.
Yours every month.
C.L. Hutchinson

Rotherham

Firstly thanks for being a regular reader, you must be a man of taste. Your main point concerns our lacking of polyphonic musical instruments. There is a very good reason for this: in general it would be impossible for us to design one that would cost less to build than a commercially-available instrument. Our sister mag ETI does publish such designs, usually in conjunction with a manufacturer: the String Thing was a case in point. Backnumbers are sometimes available but it's always best to check by ringing the backnumbers department on 01-437 1002.

Our sister mag gets another free mention, this time from M . Broughton who has a problem.

Dear CD,

A couple of weeks ago I was feeling rich and silly and I was walking past my newsagents where / noticed an exceptionally large pile of ET/s ithe one with the free PCB on the cover). On impulse / decided to buy sixty. I am now lumbered with fifty seven circuit boards (and three working projects) and I was wondering if anyone would like to buy them back. Please . Help!
M Broughton
Barnsley
Either you are a nutter or you're having us on. If you are a nut case then next time you're feeling rich and silly send your money to the Clever Dick Beer Fund c/o the usual address. Just in case you're serious if anyone writes to us asking for 57 November ETIs, we'll give them your address.
Oh well, back to more down to earth matters. (that's a rather feeble joke but you won't get it until you read the next letter from Pete Czerwinski).

Dear CD,

Here's a nice idea if I do say so myself (and I do).

I go potholing, and I use a lamp known as a carbide lamp. This lamp burns a gas called acetylene. The lamp, whilst giving a good light has some nasty disadvantages. It won't work underwater and is easily extinguished by drips of water and draughts. This leaves the poor potholer in the dark, and is, to put it mildly, a pain in the nether regions. My idea therefore is to use a small back up electric lamp controlled by a light loops, lack of light) sensing switch. Thus when the carbide lamp goes out the circuit would sense the dramatic loss of light and switch on the back-up light. Suitable positioning of the photocell would be needed so as to only sense light from the carbide lamp. This would save potholers many an embarrassing situation. Do I get a binder?

PS. I use the HE Slave Flash Trigger when I go on photographic trips down caves. So far the unit has survived a trip down Pipkin Pot proving that HE projects go where no circuit has gone before. OK, so its a long letter, shoot me!
Pete Czerwinski
Sheffield
Wouldn't dream of shooting you, you've got enough problems without us adding to them. Now, I'm the first to admit that I know nothing about potholing but I find it difficult to believe that potholers rely on acetylene lamps - I thought these holes filled with gas. Oh well, I'll have to take your word for it. Your suggestion for an automatic back-up lamp sounds very sensible, the only modification I would suggest is to replace the opto sensor with a thermal sensor as the lamp could be prone to spurious triggering and the heat of the gas flame would provide a much more positive switching.
Before I go, I must remind you that we can't give written replies - unless it's life-or-death. Until next month, take care.

HighImpedance Voltmeter

A simple-to-construct and useful piece of test gear from HE

ALTHOUGH AN ordinary multimeter can normally be relied upon to tell the whole truth, complete truth, and nothing but the truth, it can sometimes give misleading results when making DC voltage measurements. The problem arises when making measurements on high-impedance circuits where there is a current flow of only a few uA or less. With most multimeters requiring about 50 uA to produce full scale deflection (FSD) of the meter, the current in the circuit under test is obviously inadequate to drive the meter. Thus there might be 6 V at the test point until the multimeter is connected, when the voltage could fall to less than a volt because of the loading effect of the meter. The meter would truthfully record this low reading, misleading the user.

This problem can be overcome by using our high-impedance voltmeter. This uses a current amplifier ahead of the meter circuit to reduce the input current requirement to a level that ensures reliable results when testing any normal circuit. It has three measuring ranges of 1,10 , and 100 V FSD and the input impedance is over 11 megohms.

Construction

The circuit is easily accommodated on one of our standard (24 by 10 holes $0.1^{\prime \prime}$ matrix) Veroboards using the component layout shown in Fig. 2. Resistors R1 to R3 are not mounted on the board as it is more convenient to mount them directly on SW1, as shown in the diagram.

Internal view of the project - everything fits on the inside of the case lid

The two mounting holes and breaks in the copper strips should be made before fitting the components and link wire to the board. As IC1 has a MOS input stage and is vulnerable to damage by large static charges it should be connected last, and should be left in its protective packaging until then. It should either be fitted in a socket or soldered in place using an iron having an earthed bit.

A large mounting hole in the case is needed for the meter, and plastic or aluminium cases can usually be cut quite easily using a fretsaw, or a
coping saw. Another method is to drill a series of closely-spaced holes with an $1 / 8^{\prime \prime}$ drill within a pencilled outline of the hole. The centre piece is then removed with the aid of a small round file, which is also used to provide a smooth rim to the hole.

To calibrate the unit, switch SW1 to the 10 V range, adjust RV1 for maximum resistance (fully clockwise) and connect the positive input to the positive supply rail. Use a multimeter to measure the supply voltage, and then adjust RV1 to give the same reading on ME1. The unit is then ready to use.

Figure 1. Circuit diagram of the High-Impedance Voltmeter

How It Works

The unit is based on an operational amplifier, and has its circult shown in Fig. 1. Operational amplifier IC1 has 100% feedback from its output to its inverting input, and therefore gives unity voltage gain. Resistor R7, preset RV1 and meter ME1 form a voltmeter at the output of IC1, and RV1 is adjusted for a full scale sensitivity of 1 V . Thus an input of 1 V is needed at the non-inverting input of IC1 to produce an FSD on ME1, but IC1 has a MOS input stage that consumes no significent input current.

Most of the input current drawn by the unit is that which flows through input attenuator R1-R2-R3. By means of SW1 this provides three switched attenuation settings of 1,10 , and 100 . giving the unit
its three measuring ranges.
Normally $\mathbf{Q 1}$ is switched off, but if the circuit is overloaded and much more than about 1 V appears at the output of IC1, the voitage fed to Q1's base is sufficient to 8 witch this device on. Diodes D1 and D2 are then effectively connected as a low-voltage zener across the input to IC1, which limits the input voltage to only about 1.3 V. This method of overload protection does not interfere with the accuracy of the unit in normal use, but prevents the meter from being overloaded by more than about 30% (which is now here near enough to do it any harm). The protection circuitry also prevents an excessive input voltage to IC1.

The circult has a current consumption of only about 1.2 mA .

Any of the larger component retailers should be able to supply all the components. Transistor 01 can be any highgain silicon NPN device (BC107, BC 108 , BC109, etc) if you can't obtain a BC207.

You should find that the cost of this project is about $\mathbf{£ 6}$ (excluding the case) depending on where you buy the meter.

Parts List

RESISTORS (All $1 / 4 W, 5 \%$ unless stated)

R1	10
R2	$1 M$
R3	1
R4	4
R5	2
R6	1
R7	6

POTENTIOMETER

RV1 $\quad 4 k 7$ miniature horizontal preset

CAPACITOR

C1 100 n polyester

SEMICONDUCTORS

IC1 CA3140E op amp
Q1 BC207 NPN transistor (see Buylines)
D1, D2 1N4148 diode

MISCELLANEOUS

SW1 four-pole, three-way rotary switch
SW2 single-pole, single-throw
ME1 toggle switch
ME1 100 uA moving-coil panel meter
10 strip by 24 hole, $0.1^{\prime \prime}$ Veroboard
Battery and clip
$2 \times 4 \mathrm{~mm}$ sockets
 part 1)

SSB transceiver module - based on G4CLF designs

Add an LO and the RF selectivity, and you have a very simple yet high performance signal processing 'heart' of an SSB transceiver in the range 100 kHz to 1000 MHz (with the correct LO/RF stages). The Ambit 91600 costs just $£ 44$ tvat, and includes an 8 pole SSB crystal filter, SL1600 signal processing circuitry, double balanced schottky diode mixer and full USB/LSB electronic switching.

The use of 10.7 MHz , instead of 9 MHz (as in the original unit) now enable direct connection to an AMBIT DF7 for 1 kHz frequency readout with far greater ease and accuracy than can be achieved with mechanical dial systems. Buy them both and save 15%.DFM $\mathbf{+ 9 1 6 0 0}=\mathbf{C 6 9 . 4 6}$ inc.

The AMBIT catalogue - now with the new Part 4 for 1981 The most complete range of specialist radio components in Europe.

You need all three sections for a complete picture. Each section is revised on a triennial cycle - so this year the part 4 contains the revised remnants of the original part 1 - plus all the many new items for 1981. $£ 1.75$ for the lot, or 60p each for parts $2 \& 3$, and $£ 0.75$ p for the bumper part four section. (prices include postage).

Special Offers... each catalogue is supplied with a 'special offer' order form that will enable you to save the cost of the catalogues with your first few purchases.

Radio Control Systems
As well as the parts for constructing sophisticated digital proportional radio control systems we offer kits of parts for complete receivers and transmitters (now including hardware). Only state-of-the-art FM systems, readily adapted to 35 MHz if required

The RCRX4 8 channel FM receiver with triple ceramic filtering, complete with case. $\mathbb{E 1 6 . 1 0}$ 94445 4 channel FM transmitter based on ETI October 1980 system $£ 8.57$ 94446 TX Case SD1 $£ 8.57$ 5 channel FM receiver, based on ETI October 1980 system (inc case) Complete transmitter case hardware, with two joystick controllers NE544 based servo driver electronics kit (no mechanics)

- Custom scales OA

- Signal lev

Moving coil indicator meters: over 10,000 in stock for immediate delivery . 'tuning' The new part 4 catalogue lists many of the stock designs, but a much wider *VU range is available to order (subject to minimum requirements). Meters for nearly all occasions, including precision voltmeter and ammeters.

NEW:
Miniature electrolytics 0.01 CV leakage

Miniature PC mounting 12 v relay $2 \mathrm{~A} / 24 \mathrm{v}$ contacts, single or dual changeover types available

SPDT: £1.65 DPDT: $£ 1.85$ sealed against flux
*ideal antenna changeover etc

Clock timer switching

The Mark III Series of DIY HiFi

The Mark III series of HiFi is the ultimate DIY audio system. There are probably more features and facilities to the square inch of front panel than any other commercial HiFi around . let alone DIY system From the twin 500VA PSUs of the HMOSFET 100 W power amp, to the 1 dB tracking of the DC controlled preamp and the versatility of the CMOS MPU controlled tuner, there is no match for performance. style or, sound quality - come and hear for yourself in our foyer.

$$
\begin{aligned}
& \text { Mark III synthesised tuner } \\
& \text { Mark III B FM-only tuner } \\
& \text { Mark III DC controlled signal preamp } £ 175.00+\text { vat } \\
& \mathbf{1} 175.00+\text { vat }
\end{aligned}
$$ Mark III 100 W rms/channel MOS PA $£ 160.00$ + vat

What's In A Name

Listen to Rick Maybury as he discusses devices for detecting sound

OVER THE PAST FEW MONTHS we have been looking at electronic components that duplicate our own human senses. Last month we began to look at electroacoustic devices starting with an introduction to the loudspeaker. Our theme this month is the exact opposite, we will be looking at the microphone, a device that changes sound waves into electrical signals.

It was Alexander Graham Bell who first devised the microphone, or to be more precise, the telephone, as he could hardly have used the microphone on its own. His prototype microphone used the principle of magnetic induction - similar to the principle of operation of the loudspeaker we described last month. Without doubt though, the most common type of microphone in use today is the carbon microphone - found almost universally inside telephone mouthpieces. The carbon mike usually consists of a thin metal diaphragm covering a small cavity filled with carbon granules. Inside the cavity there are two electrodes in constant contact with the carbon granules. Under silent conditions the carbon granules are quite static and exhibit a resistance of a few hundred ohms between the electrodes. When the diaphragm vibrates as a result of being struck by a sound wave the spacing between the granules changes and consequently the resistance between the electrodes changes. Thus the resistance of the microphone changes in sympathy with the sound.
In a Lo-Fi application like telephones the carbonmicrophone is ideal. Sound is converted into large changes in voltage, which means that no amplification is required (over a few miles, that is) between the microphone and the distant earpiece. But frequency response, although fine for the 'phone, is severely limited. Where a little more quality is needed (such as for music and high quality speech) then a variety of different types of electroacoustic devices become possible, all requring amplification of the signals they produce. Next to the carbon microphone the most common type of microphone in use today is the piezo-electric mike.

Referring back to last month's What's In A Name you'll remember that we said that piezo-electric crystals fusually quartz) will physically distort when a voltage is applied across the face of a crystal. Well, the opposite is also true. If piezo-electric crystal is bent, distorted or vibrated then the electrons within the structure become dislodged and appear as a voltage across the face of the crystal. If we mechanically link the crystal to a thin metal diaphragm then any sound wave striking the diaphragm will cause the crystal to vibrate thus generating a small voltage in sympathy with the vibrations.

In practice the crystal microphone has a very high treble response, too high in most cases to be used in serious Hi-Fi applications. For true Hi-Fi the most common type of microphone is the ribbon mike. This consists of a thin metallic ribbon suspended between two permanent magnets. Wires coupled to either end of the ribbon will have a very small voltage developed across them as the ribbon moves between themagnetic fields. The voltage is low because the impedance (ACresistance) of the ribbon is very small compared with that of the connecting leads. In fact the voltage would disappear over a long length of wire! For this reason, a small transformer (usually mounted inside the body of the microphone) is used to convert this low impedance and low voltage to values suitable for an amplifier input.

Lower down the quality scale but using a similar principle is the dynamic microphone. This time, instead of a mechanically fragile ribbon there is a metal diaphragm linked to a thin coil of wire that moves inside a
similar, of course, to the loudspeaker we described last month. This type of microphone is also called moving coil.

The last family of microphones we'll look at are usually known as capacitor or condenser mikes. They operate in exactly the same manner as a capacitor. Two thin metal plates placed very close to each other will exhibit a capacitance between their facing surfaces. When one plate is vibrated by an incident sound wave then the gap between the two plates will alternately increase and decrease causing the capacitance to rise and fall in sympathy. The main disadvantage for ordinary condenser microphones is the necessity of a high bias voltage across the plates, and this problem is solved in the electret microphone. The electret microphone is also a condenser microphone but the high voltage charge is provided by an 'electret' material that has the strange property of possessing a permanent static charge. Although the quality of the electret microphone is not as good as the condenser microphone it does cost about one tenth of the price. This is one reason why many portable cassette recorders have electret microphones built-in.

Well, that about covers sound: next month we shall be looking at the sense of touch and how we go about duplicating it electronically.

Short Circuit

Suppressor Tester
Few motorists think of checking ignition leads or caps, yet these resistive components can be notoriously unreliable. For adequate interference suppression (required by law) the resistance between distributor cap and spark plug must be at least 10K. However, for most efficient operation of the system the resistance should not exceed 20k. Also, any open circuit will allow arcing,
causing high levels of interference and rapid deterioration of the suppression components.

The circuit is based upon a programmable unijunction transistor (PUJT) oscillator which flashes a red LED when the suppressor resistance is correct. The osillator will function only when the voltage on the cathode-gate of Q1 is within its operating range. This voltage is determined by the current flowing through $\mathbf{Q 2}$, which is
controlled by the suppressor resistance connected across the input wires of the tester. Since the position of the working range is determined by component tolerances and by the gain of $\mathbf{Q 2}$ it is necessary to select a value for R7 (between 100R and 10 k).

With an 8 k 2 resistor across the input wires, D1 should give a steady light. With $22 k$ it should not light. Alter the value of R7 until the range of suppressor values
which allows D1 to flash is centred about 15k. The probe can be made from a brass scrow and an old spark plug top. A crocodile clip is used to make the connection inside the distributor cap. No on/off switch is required as current drain is negligible with D1 'off'.

WARNING: the engine must not be running while the suppressor components are being tested.

0 Level Q\& A

At last - we've arrived at transistors. Nick Walton gives you a gentle introduction to these clever little devices

AFTER FIVE ARTICLES we now come to the little beast at the heart of it all and our London Board Syllabus makes it necessary for us to examine the NPN transistor, to explain its action and to sort out some of the technical terms you might meet. If this is all new, you would be well advised to take it a bit at a time.

Last month we saw that by takinga single crystal of pure semiconductor like silicon and diffusing into its crystal lattice certain impurities which had either a valency of three or five it was possible to alter its conduction properties pretty drastically.

The presence of traces of the three-valent substance gives rise to the p-type semiconductor with its excess of positive holes, and the n-type doped with its five-valent impurities gives rise to an excess of conduction electrons. Put p-type next to n-type (in a single crystal, remember) and you have a PN junction which allows conventional current to flow one way only, in fact P to N .

A transistor takes things a step further by adding one more layer (see Fig. 1). So it can either have an n-type layer at each end with a p-type layer sandwiched in the middle (called an npn transistor, the more common sort today) or the n-layer can be sandwiched in the middle with a p-layer either side, called a PNP transistor. A connection is made to each layer and that to the middle is called the base while those to the outside are called the emitter and collector.

Figure 1. Three-layer device is either a pnp or npn transistor (with corresponding circuit symbol)

Transistor In A Circuit

At this stage you might wonder how on earth this makes it one of the most useful devices ever invented. This is not easy to see at first sight, so let us try to examine more closely how it behaves. Put in series with a battery (of, say, 6 V) we seem to be little further on. Figure 2a shows the device connected, Fig. 2b the circuit diagram and Fig. 2c suggests that it is equivalent to two PN diodes in opposition. Whichever way you connect the battery one of the diodes will block any current flow. There is, however, one vital difference between a pair of diodes like this and a transistor. It is that the base layer is made as thin as possible. Starting with Fig. 2 a we add a small battery (the left-hand one in Fig.3) which now puts the base-emitter junction into forward bias. This makes it conduct with electrons moving into the p -region as shown by the array of arrows. But because the base region is made so thin, the electrons which
a

Figure 4. a) how we would theoretically get a transistor to conduct by forward-biasing the emitter-base junction, b) how it is usually achieved in practice (note arrows indicate electron flow)
crude way of showing whether a current is flowing through the transistor. The small base current provided will allow a sufficiently large collector current to flow to light the bulb. The vital thing is to keep your base-emitter junction in forward bias and the collector at a more positive voltage than the base. (Note that since we have been talking about what the electrons have been up to, on this occasion the arrowheads are taken to indicate electron flow).

So what it all comes down to is this: fact number one is that if you just put a voltage between collector and emitter you get no current flow, so the transistor appears to have a very high resistance. Fact number two is that with a forward-biased emitter-base junction (or if you like, the appropriate base current) the transistor will conduct (between collector and emitter) displaying an apparently much lower resistance.

Transistors As Switches?

At this stage it is worth noting one further point. With no base current a transistor does not allow current to flow between collector and emitter and so can be regarded as being a switch in the 'off' (or open) position. Give it the necessary base current and it now conducts. So it can be regarded as being a switch in the 'on' (or closed) position. Indeed descriptions of how circuits work often talk about a transistor being switched on or switched off for just this reason. Actually it is rather a clever sort of switch because it can be switched on and off with no moving parts in the conventional sense; and if you think that the guts of a computer or your calculator consist of a huge number of switches it is good to have all those switches operating with no moving parts (except, of course, the electrons that we cannot see). If you accept that, you might begin to see how the transistor comes in so useful.

Gain And $\mathrm{h}_{\text {FE }}$

If you make a serious study of transistors you will not be able to avoid sooner or later coming across the concept of current gain for a transistor. This is how many times the collector current is bigger than the base current. Looking at Fig. 5, let us suppose that we have a base current $\left(I_{B}\right)$ of 0.1 mA and that this results in a collector current (ll $)$ of 5 mA . Thus the collector current is 50 times the base current

Figure 7. How to measure $V_{B E}$ and $V_{C E}$
Figure 6. Common-emitter input characteristic

AC Conditions

A closely related quantity is one called $h_{f o}$ (where the convention of having lower-case letters refers to the fact that we are considering $A C$). If we put an AC signal into the base we are effectively increasing the base current as the input signal hits maximum. This in turn produces a change in the collector current and this ratio of collector current change to base current change is the way $h_{f t}$ is defined.

The third quantity we have to knock off is called $\mathrm{h}_{\text {is, }}$, and it is the input resistance. Very loosely this is the resistance you 'see' at the input. It is the input voltage (ie base-emitter voltage, $\mathrm{V}_{B E}$) divided by the input current I_{B} (remember resistance is voltage over current - volts per amps is ohms). Its full title is the 'smallsignal short-circuit input resistance'. It is termed short circuit because where we had a collector resistance before (ie, the 1 kO resistor in Fig.5) we now have nothing. Instead we have a short circuit; that is, no resistor on the collector in Fig. 7. It can perhaps best be understood by reference to the graph shown in Fig. 6 which is called the common-emitter input characteristic. It shows how the base current $\left(I_{b}\right)$ and the base-emitter voltage ($\mathrm{V}_{B E}$) depend on each other. It might help to refer back to Fig. 3 and suppose that we are somehow increasing the base-emitter voltage and seeing how the base current changes as a result. Actually, the full details of the circuitry that achieves this are shown in Fig. 7. At, say, a base current value of 0.1 mA we can define the input resistance as a small change in the base-emitter voltage divided by the corresponding small change in base current. Or if you are familiar with graphs, look at the slope (the change in the vertical per unit change in the horizontal) in Fig. 6 at 0.1 mA base current. The slope is in terms of amps per volt, so taking the reciprocal of the slope you have volts per amp or input resistance.

Summary

DC current gain

$$
h_{F E}=\frac{I_{C}}{I_{B}}=\frac{\text { Value of collector current }}{\text { Value of base current }}
$$

AC current
gain $\quad h_{f s}=\frac{\left.\delta\right|_{C}}{\delta \|_{B}}=\frac{\text { Small change in collector current }}{\text { Corresponding small change in base current }}$

Input
resistance
(impedance)
$\mathbf{h}_{\text {ie }}=\frac{\delta \mathrm{V}_{B E}}{\delta \mathrm{I}_{B}}=$
$\frac{\text { Small change in base-emitter voltage }}{\text { Corresponding small change in base current }}$

Load On The Line

The last thing we need to look at is the concept of the load line. To understand this we need to know what we mean by the output characteristic. We can again use the circuit in Fig. 7 to see how the current through the transistor (I_{c}) varies with the voltage across it ($\mathrm{V}_{\text {cE }}$). A graph can be plotted of I_{C} against $V_{C E}$ and the result depends on the base current used. So for a series of base currents we get a series of graphs, as shown in Fig. 8.

© Copyright MODMAGS Ltd.
Figure 8. Collector current (1 d plotted against collector voltage $\left(V_{C E}\right)$ for different values of base current (I_{B})

If you now had a typical single transistor amplifier you could well have the bit of circuit you see in Fig. 9. Note that there is now a resistor R (called a load resistor) between the collector and the positive terminal of the supply. Now, if you draw a graph of how the voltage across the transistor $\left(V_{C E}\right)$ varies with the collector current I_{c} for

(c) Copyright MODMAGS Ltd.

Figure 9. Circuit appropriate to load line (arrows show conventional flow)
a fixed supply voltage, you get the line shown in Fig. 10. As the collector current, which is the same as the current in R, goes up, the voltage across R will also go up giving a smaller voltage remaining across the transistor itself ($V_{C E}$).

(C) Copyright MODMAGS Ltd.

Figure 10. Load line on a graph of collector current (I) against collector-emitter voltage (V_{ck})

Skip the maths if you must, but it is not really all that desperate. It is all based on the idea that the supply voltage $\left(V_{c c}\right)$ is shared between the
load resistor and the transistor. Mathematically this is expressed as:

$$
V_{C C}=V_{R}+V_{C E}
$$

and since by Ohm's Law:

$$
V_{R}=I C R,
$$

then:

$$
V_{c c}=I_{C} R+V_{C E}
$$

which with rearrangement gives:

$$
I_{c} R=V_{c c}-V_{c E}
$$

so:

$$
I_{c}=-\frac{1 V_{c E}}{R}+\frac{V_{c C^{\prime}}}{R}
$$

- We can see from the straight line graph theory ($y=m x+c$) that if you plot I_{C} against $V_{C E}$ for constant R and $V_{c c}$ you get a straight line with the slope $-1 / R$. The negative slope shows that I_{C} increases as $V_{C E}$ decreases. It cuts the Ic' axis at $V_{c c} / R$ when $\mathrm{V}_{C E}=0$. This means that in the extreme case of $\mathrm{V}_{C E}=\mathrm{O}$ land the transistor conducting so well that there is theoretically no voltage across it) all the voltage of the supply is across R. The current I_{c} is given by
$I_{C}=\frac{V_{c c}}{R}$
This is the greatest current that goes through the transistor under these circumstances and it is now said to be saturated (or with no voltage across it to be 'bottomed'). What this really all comes down to is that when we are using the transistor as a simple amplifier the collector current I_{c} will vary under the influence of the changing base current and the corresponding voltage $\mathrm{V}_{C E}$ across the transistor will just move up and down the load line.

Don't spoil your appetite!

I hope you have not found it all too heavy going. The nice thing about transistors is that they still function whether or not you understand what they are really doing. Don't forget the famous mathematician who made the same point by asking: 'Shall I refuse to eat my dinner just because I do not understand the process of digestion?' Even if you have not understood a circuit design, you can still solder in the trannies and they work (you hope!). Talking of which, there is that practical project you should have thought about starting - and you need not look much further than the pages of HE. More next month - keep forward biased. Cheers!

HE

GUITAR PHASER	Z085	Sept. '80	£9.60	HOBBYTUNE	2034	Oct. ${ }^{79}$	£18.00
BENCH POWER SUPPLY UNIT	2087	Sept. 80	£25.00	MULTI OPTION SIREN	2036	Ocl. ${ }^{79}$	£10.50
DEVELOPMENT TIMER	Z086	Sept. 80	£8.75	ANALOGUE AUDIO			
TOUCH SWITCH (on Vero).	2084	Sept. 80	£4.50	FREQUENCY METER	Z035	Oct. ${ }^{79}$	£15.00
AUTO PROBE	Z083	Sept. 80	£3.00	COMBINATION LOCK	2029	Sept. '79	£12.50
REACTION TIMER	2082	Sept. '80	£26.50	*STARBURST	2030	Sept. 79	£14.50
MICROMIXER (on Vero)	2081	Sept. '80	£8.50	LAMP DIMMER	2031	Sept. '79	£6.50
EQUITONE CAR EQUALISER	ZD52	Aug. 80	£13.30	ULTRASONIC SWITCH	2032	Sept. 79	£21.00
GAS DETECTOR	2055	Aug. 80	£22.00	CONSTANT VOLUME AN	2028	Aug. '79	£11.50
PASS THE LOOP GAME	2056	Aug. 80	£12.00	INJECTOR TRACER	2027	Aug. '79	£4.50
RADIO TIMER (on Vero)	2 D 7	Aug. '80	$£ 5.50$	LED TACHOMETER	Z026	Aug. '79	£14.75
MOVEMENT ALARM [on Vero]	2 D 54	Aug. '80	£5.00	BABY ALARIM	ZD25	July '79	£13.50
OP. AMP CHECKER (on Vero)	2053	Aug. '80	£4.00	POINTS SWITCH	ZD24	July 79	£12.50
CAR BOOSTER (no speakers)	2050	July ${ }^{\text {80 }}$	£18.00	LINEAR SCALE OHMMETER	2023	July '79	£14.00
HAZARD FLASHER	2 D 48	July ${ }^{\text {80 }}$	£10.50	SHARK	2022	July '79	£22.75
*PUSH-BUTTON VOLUME				G.S.R. MONITOR	2019	June '79	£10.50
CONTROL	ZD47	July ${ }^{\text {8 }} 80$	£19.50	ENVELOPE GENERATOR	2020	June '79	£11.79
SOUND FLASH TRIGGER'(on Ver	ZD49	July '80	£3.50	DRILL SPEED CONTROLLER	2021	June '79	£7.00
2 WATT AMPLIFIER (on Vero)	2D46	June '80	£3.90	WHITE NOISE EFFECTS UNIT	2018	May '79	£16.85
METRONOME (on Vero)	ZD51	June '80	£3.50	PARKING METER TIMER	2017	May 79	£6.70
MICROBE R/C SYSTEM				DIGIBELL PROJECT	2016	May '79	£5.00
[lass Servos]	2 4 45	June '80	£17.50	VARIABLE POWER SUPPLY			
FOG HORN	ZD44	June '80	£4.50	O.30V 1 AMP	2015	May '79	£30.00
* EGG TIMER	2043	June '80	£6.50	TRANSISTOR GAIN TESTER	2076	April '79	£6.50
MINI CLOCK	ZD10	May ${ }^{\text {8 }} 8$	£26.00	CISTERN ALARM	2075	April '79	£5.50
5080 PRE-AMP	ZDII	May ${ }^{\text {8 }} 80$	£32.00	MODEL TRAIN CONTROLLER	2074	April '79	£26.00
TRACK CLEANER	ZD12	May '80	£7.75	PHOTOGRAPHIC TIMER	Z073	March '79	£14.50
*R/C SPEED CONTROLLER	Z03	April '80	£9.60	TONE CONTROL	2072	March '79	£9.00
HOBBY COM	208	April '80	£28.60	CASANOVA'S CANDLE	2071	March '79	£7.50
ELECTRONIC IGNITION	ZD2	April '80	£18.25	SHORT WAVE RADIO	2066	Feb. ${ }^{\prime} 79$	£12.50
DIGITAL FREQUENCY METER	ZD9	April '80	£27.75	SINE/SQUARE WAVE			
SHORT WAVE RADIO	2080	March '80	£19.50	GENERATOR	2067	Feb. 79	£22.50
TOUCH SWITCH	2079	March '80	$£ 5.00$	SCRATCH AND RUMBLE			
5080 PSU MODULE	2078	March '80	£29.50	FILTER MONO	2068	Feb. '79	£22.50
SYSTEM 5080A	2077	March '80	£15.00	SCRATCH AND RUMBLE			
PASSION METER	206	Feb, '80	¢5.00	FILTER STEREO	Z069	Feb. ' 79	£25.00
WIN INDICATOR	2 C 42	Feb. '80	£9.00	CAR ALARM	2070	Feb. '79	£8.50
INFR RED REMOTE CONTROL	207	Feb. ${ }^{80}$	£1,9.35	FLASH TRIGGER (less flash gun]	Z065	Jan. '79	£10.50
SCALEXTRIC CONTROLLER	2041	Jan. '80	£52.50	TOUCH SWITCH	2063	Jan. '79	$£ 5.50$
CROSSHATCH GENERATOR	Z04	Jan. '80	£11.25	VARI-WIPER	2064	Jan. '79	£8.00
DIGI-DIE	ZD5	Jan. 80	$£ 5.50$	GRAPHIC EQUALISER	2062	Jan. 79	£25.00
RING MODULATOR	201	Dec. '79	£8.50	PUSH-BUTTON DICE	2061	Dec. ${ }^{78}$	£6.00
SCALEXTRIC CONTROLLER	2039	Dec. ' 79	£21.50	AUDIO MIXER	2014	Dec. ${ }^{78}$	£20.30
BARGRAPH CAR VOLTMETER	2040	Dec. ${ }^{79}$	£6.60	BEDSIDE RADIO	2058	Nov. ${ }^{78}$	£12.50
GUITAR TUNER	2038	Nov. '79	£8.50	STEREO AMPLIFIER (HOBIT)	2059	Nov. '78	£52.50
*R2 D2 RADIO	2 D 37	Nov. 79	£8.60	WAA-WAA PEDAL	2060	Nov. ${ }^{78}$	£30.00
TANT	2033	OCI. '79	37				

IONISER KIT: ZD13. This negative ion generator gives you power to saturate your home with millions of refreshing ions, without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean air. crisp and wonderfully refreshing. All parts p.c.b. and full instructions $£ 10$. A suitable case including front panel neon switch. elc.. available at $£ 8$ extra.

LATE EXTRA			
Watchdog Intruder Alarm	2D89	ОСТ. 80	£15.75
Temperature Controlled Soldering Iron	2D90	OCT. ' 80	$£ 9.00$
Freezer Alarm (on Vero)	2D91	OCT. ${ }^{80}$	$£ 8.50$
Tug O' War Game	2094	OCT. 80	£12.50
Nobell Doorbell	ZD93	OCT. 80	£9.75
Kitchen Timer (O Vero)	ZD92	OCT. '80	$£ 5.50$
Light Dimmer	ZD88	DCT. 80	$£ 5.00$

All kits contain components as specified plus Texas I.C. sockets, where required, also connecting wire.

FAIRCHILD FLV150 red. 2 LEDS. 10 for $£ 1.00,100$ for $£ 7.50$ DALY ELECTROLYTIC CAPACITORS 2000uF $100 \mathrm{v} £ 1.50$ PHILIPS SCOPE Tube 5" CV2191/DG-13-2 £10

If you do not have the issue of H.E. which contains the Project, we can supply a reprint at 40 p extra. Please add 30p post and packing. Add 15% VAT to total. order Callers please ring to check availability of kits.

T. POWVEL

306 ST. PAULS ROAD, HIGHBURY CORNER LONDON N1.01-226 1489

SHOP HOURS:

MON.FRI. $9.5 .30 \mathrm{p} . \mathrm{m}$ | SAT. | $9.4 .30 \mathrm{p.m}$ |
| :--- | :--- |

Minimum telephone Orders $£ 5$
Minimum Mail Order $£ 1$
Minimum Mail Order $£ 1$

Audio Signal
 Generator

Our second do-it-yourself test gear project is a simple-to-build signal generator with many features found on expensive designs

THERE IS NO doubt - if you dabble in electronics much and build more than just the odd project, then test gear of all descriptions is a must. Furthermore, if the project is in the audio category, then somewhere along the line you will need an audio source.

Of course, using a bit of ingenuity, the clever HE reader might use the auxiliary output of his stereo system as a signal but there are disadvantages with such a method: neither the amplitude (size) nor the frequency (pitch) of the signal can be accurately specified. What you really need is a signal generator like this project providing a selection of waveforms (sine, triangular or square) with fully variable amplitudes with the added facility of a controllable DC bias to the output signal. All this is achieved with only a two-IC circuit which operates from two 9 V batteries.

Construction

There is nothing critical in the construction of this project if you use our design of printed circuit board. Everything is quite straightforward. Solder in resistors first, followed by capacitors and IC sockets and finally insert the two ICs.

Following the connection diagram in Fig. 2 you should now connect the switches, potentiometers, battery clips and output sockets and test out the project before insertion into its case. Set all presets and pots to midposition and switch on. By connecting the output to a suitable amplifier (eg your stereo system or last month's Bench Amplifier project), adjust the output to a suitable level using the amplitude control, RV6.

Now, turn SW1 to 'sine' and open SW3 (ie switch off the DC

bias). Adjustment of RV4 and RV5 should remove any distortion and a perfectly 'clean' note should be heard. Turn the frequency control RV2 fully anti-clockwise to its lowest frequency setting and adjust RV1 until the lowest note possible from the generator is heard. One further adjustment can be made with RV3 if you have an oscilloscope - varying the preset will alter the duty cycle (best observed on square wave) which should be 50%; ie, high for half the wavelength and low for the other half. If you don't have the use of a 'scope leave this preset at midposition - the adjustment won't be far out.

Finally the project can be housed in a suitable case.

Buylines

Integrated circuit IC1 may be difficult to obtain at your local component stockist but most mail order companies will be able to supply it . All other components should be essily obtained.

The price for this project (excluding the usual case and PCB) should be around £11.

How It Works

Integrated circuit IC1 is a purpose-buitt device, capable of generating sine, triangular or square waveforms (or derivations of these), to a high accuracy. The frequency of the waveforms is primarily defined by the charge and discharge rate of capacitor C2. This capacitor should be, ideally, a type whose value is very stable with temperature - so we specify a mica variety - although others are usable, whth a lower accuracy.

The charge rete of the capacitor is also a function of the value of resistor R3. Likewise R4 controls the discharge rate. For a symmetrical waveform R3 and R4 should be of equal value. Preset RV3
allows adjustment of these two resistors to ensure that the charge rate of the capacitor exactly equals the discharge rate and so the waveform is symmetrical.

The voltage at pin 8 of the integrated circuit also controls the frequency of the generated waveform lover a 1000:1 range). Thus, by sweeping the control voltage on this pin between Vcc and $(3 / 3 \mathrm{Vcc}+2 \mathrm{~V})$ ie 5 to 9 V , the frequency of the waveform varies from 20 Hz to 20 kHz . The control voltage is derived from potential divider RV1,2 and R1.

Presents RV4 and 5 allow sine wave distortion to be minimised to only 0.5% and this is best achieved by listening to the sine wave and adjusting the two
presets until distortion is no longer audible.

The outputs of this integrated circuit are found at pins 2 (sine), 3 (triangular) and 9 (square). Switch SW1 selects one of the wave shapes and connects it to the amplifier circuit of IC2, via RV6, the amplitude control. The amplifier is configured as a mixer although in its simplest mode (ie whth SW3 open) the IC is just an inverting amplifier, whose output is centred symmetrically about 0 V. However, with SW3 closed, a DC bias voltage is mixed with the waveform and the output can be moved up or down in voltage, still having the same AC amplitude.

Figure 1. The HE Audio Signal Generator circuit diagram.

Figure 2. Overlay of the PCB and connection details of the Aui Signal Generator.

Parts List
RESISTORS (All $1 / 4 W, 5 \%$)

R1	$18 k$
R2,7,9	$10 k$
R3,4	$4 k 7$
R5	10 M
R6,8	$15 k$
R10,13,14	$47 k$

POTENTIOMETERS

RV1,3	1 kO miniature horizontal
preset	
RV2	10k linear potentiometer
RV4,5	100k miniature horizontal preset
RV6	100 k logarithmic

CAPACITORS
C1.3.4.
100n ceramic 4n7 mica
SEMICONDUCTORS
IC1 8038 waveform generator IC2 741 operational amplifier
MISCELLANEOUS
SW1
SW2
single-pole, three-way rotary switch double-pole, single-throw toggle switch
SW3
single-pole, single-throw toggle switch
Case to suit
Battery clips and batteries
Knobs, output sockets, IC sockets

MAGENTA ELECTRONICS LTD.

H.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to construct H.E. projects. Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards (fully etched, drilled and roller tinned) or veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of H.E. which includes the project - you will need to order the instruction reprint as an extra 45p each.
BENCH AMP, Jan '81
$£ 9.19$
NICARD CHARGER, Jan ' 81 £6.98
CHUFFER, Jan '81, less case
£6.44

MODEL TRAIN CONTROLLER, Dec. ' 80 £16.86
BATTERY CHARGE MONITOR, Dec.' 80 .. £4.91
JACK LEAD TESTER, Dec. '80
STEREO POWER METTER, Dec. ' 80
£18.98
PARTY GRENADE, NOV' 80
5557 inc test lead
DRANSISTOR TESTER, Nov ' 80
teads GUITAR PRE-AMP, Nov 80 ... £ $£ 13.65$ case (diecast) extra $£ 2.99$
BATTERY ELIMINATOR, Nov '80 ... £14.88
NOBELL DOORBELL, Oct. '80... £11.98
INTRUDER ALARM, Oct. '80.
£17.83
FREEZER ALARM, Oct. ' 80 with probe $£ 9.42$

MICROMIX, Sept. '80...
AUTO PROBE, Sept.
$£ 3.67$ less case
 GUITAR PHASER, Sept. ‘80.. £13.84
DEVELOPMENT TIMER, Sept. '80.. 11.93
BENCH PSU, Sept. '80,.. $£ 28.50$
GAZTEC GAS DETEXTOR, Aug. '80.. $£ 24.98$

MOVEMENT ALARM, Aug. ' 80 .. E4.55
RADIO TIMER, Aug. '80 £5.68
PASS THE LOOP GAME, Aug. '80..................................... £13.98
SOUND OPERATED FLASH TRIGGER, July ' 80 , no skt........ £4.59
$18 W+18 W$ CAR STEREO BOOSTER, July' 80. $£ 5.65$
FOG HORN, June ' 80 ...

SPEED CONTROLLER FOR R/C, April ' 80 £14.92 less case

ELECTRONIC IGNITION (CD), April ' 80 ... 88
PSU MODULE (5080), Mar. '80.. $£ 33.75$

BARGRAPH CAR VOLTMETER, Dec. '79....................... £7.33 less case
RING MODULATOR, Dec. '79... £12.95

TANTRUM STEREO AMPLIFIER, Oct. '79.. 268
ANALOGUE FREOUENCY METER, Oct. '79.................................... $£ 15.52$

ULTRASONIC SWITCH, Sept. 79 E 28.85 less 3 pin mains socket
HOME SECURITY UNIT, Aug. '79........................... £28.56 less siren
SIREN.. £5. 09 less case

SHARK, July' 79 ... £25.98

ENVELOPE GENERATOR, June '79.. 14.98
PARKING METER TIMER, May '79.. $\mathbf{\varepsilon 8 . 7 9}$
WHITE NOISE EFFECTS UNIT, May '79... £17.74

PHOTOGRAPHIC TIMER, Mar. '79.
$£ 16.45$
£10.98
SCRATCH/RUMBLE FILTER, Feb. '79............................... £25.48 Mono e29.98 Stereo
SINE/SQUARE WAVE GENERATOR, Feb. '79........................ £25.78
GRAPHIC EQUALISER, Jan. '79
PUSH BUTTON DICE, Dec. '78
AUDIO MIXER, Dec.' 78
£28.68

BEDSIDE RADIO, NOV.' 78
$£ 25.98$
STEREO AMPLIFIER (HOBIT), Nov. 78
£16.99
£59.50

80/81 ELECTRONICS CATALOGUE

KITS	Hendrads ofillustrations, procuct data, circuits	TOOLS
ICs		RESISTORS
NSISTORS	dicte	HARDWARE
PACITORS	Send 7op in stamps for your copy $17 \times 10 \mathrm{p}$ or 5	CASES

ADVENTURES WITH ELECTRONICS Dixrom

An easy to follow book suitable for all ages, ideal for beginners. No Soldering. urojects - including three radios, siren, Helps you learn about electronic components and how circuits work. Component pack includes an S Dec and the components for the projects
Adventures With Electronics $£ 1.90$.
Component pack $\mathbf{E 1 6 . 7 2 \text { iess battery. }}$

ADVENTURES WWH MICROELFGTRONICS
 Same style as above book. 11 projects based on integrated circuits - includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. for the projects.
 Adventures with Microelectronics $£ 2.35$ Component pack $\mathbf{2 7 . 9 5}$ less battery.

H.E.LADDER OF LIGHT,JAN. ' 81

Complete kit for this novel project includes all components and case for the control module.
EXTRA included with our kit only: additional circuit and components for strobe and chase features. LADDER OF LIGHT, JAN ' 81 £29.98 + 40p p\&p.

H.E. MEMORY BANK SYNTHESISER NOV. 80

Complete kit for this exciting project, includes i.c. with socket, 2 pcbs, case etc. The custom designed i.c. at the heart of this project generates musical sounds which can be stored in its own memory. Features include memory erase, vibrato, speed and depth controls, variable pitch, chord and tremelo etc.
Synthesiser' Nov. '80 + Dec. '80 $£ 33.95$

INTO DIETIAL ELEGTRONIMS

Current H.E. series Part 1 in Sept. '80. Covers digital electronics from the basics. Circuits are built on a plug-in Eurobreadboard. Reprints of back issues available
 ponents only $£ 12.75$.

INTO ELECTRONICS CONSTRUCTION

H.E. 6-part Series: Feb. "80 to July '80. COVERS THE BASICS OF ELECTRONICS LOTS OF PRACTICAL WORK. Circuits are buitt on a plug-in Eurobreadboard. Series £15.63. Components only £9.43.

TOWERS INTER
ANTEX SOLDERING IRON 25 W E4.98
SOLDERING IRON STAND E1.98.
SPARE BITS. Small, standard, large 65 p each. SOLDER. Handy size $98 p$.
EUROBREADBOARD 86.20
LOW COSTLONG NOSEPLIERS $£ 1.68$. LOWCOST CUTTERS £1.69.
P.C.B. ASSEMBLY JIG $£ 11.98$.
P.C.B. ETCHING KIT 4.98 .

AM-FM AIRCRAFT BAND PORTABLE RADIO
C8.98. WIRE STRIPPERS A ND CUTTERS $£ 2.48$.
MULTIMETER TYPE 1. 1,000 O.p.V. with
probes $2^{\prime \prime} \times 3^{1 / 22^{\prime \prime}} \times 1^{\prime \prime}$ €6. 66.000 . 20,000 o.p.v. with
MULTIMETER
probes $5^{\prime \prime} \times 3^{1 / 22^{\prime \prime}} \times 11 / 4^{\prime \prime} £ 11.52$
CRYSTAL MICROPHONE INSERT 58p
SPEAKERS MINIATURE, 8 ohm 87p. 64 ohm $98 p .80$ ohm $£ 1.56$.
 sensitive Ez. 98

3 BAND S.W. RADIO
 Simple T.R.F. Design. Covering most Ama teur Bands and Short Wave Broadcast Reaction. Wavechange and Attenuator. Coil section is by Wavechange Switch. Use with Headphones or a Crystal earpiece Kit con Headptiones or a Crystal earpiece. Kit con tains all the components fequired including lains P.C. Board and Case. Instructions are included with this kit. KIT $£ 18.97$. He adpho

SOLDER BOBBIN 30 p .
CAOC CLIP TEST LEAD SET. 10 leads with 20 clips 99 . . VERO SPOT FACE CUTTER $£ 1.21$ d. Coils $65 p$. RESO STOR COLOURCODE CALCULATOR $21 p$.
STEREO HEADPHONES. 6 ohm. Padded STEREO HEADPHONES. ©4.35.

MAGENTA ELECTRONICS LTD.

HE 6,98 CALAIS ROAD, BURTONON-TRENT, STAFFS, DE13
OUL. 0283-65435. 9-12, 2-5 MON.-FRI. MAIL ORDER ONLY
ADD 40p P.\&P. TO ALL ORDERS. ALL PRICES INCLUDE 15% V.A.T. OFFICIAL ORDERS FROM SCHOOLS ETC. WELCOME.
ENQUIRIES MUSTINCLUDE S.AEE 3 INTERNATIONAL POSTAL COUPONS WE WILL QUOTE EXACT PRICE BYAIR MAIL
EIRE \& BFPO ORDERS
U.K. PRICES - LESS 10%
COVERS VA. TE REFUND \& EXPORT DOCUMENTSI PAYMENT: STERLING UK. BANK DRAFT.
U.K. POSTAL ORDERS O U.K. CHEQUE.
ENOUIRIES: ENCLOSE 2 INTERNATIONAL POSTAL COUPONS

Look out for the March issue on sale February 6th

Sound Analyser

Abstract

Turn your volts and waves into six columns of flashing lights with ETI's Visual Complex Sound Analyser. Plug our six bar display (10 LEDs per bar) into your loudspeaker and transform Tony Blackburn into three bars of instantaneous amplitude in three different bands and three bars of instantaneous frequency in three different bands. Use it as a pretty sound to light display or for amplitude/frequency signal analysis of tape/radio/record programmes.

Noiseless Power Switch

Switch up to 15 A noiselessly with our zero volts switching power switch design. You're probably familiar with that characteristic crack as the fridge or the immersion heater thermostat switches on or off and ruins your tape recording of the 'The Archers'. Our NOISELESS power switch will switch loads from a 10 W light bulb to a 3 kW fire. In addition, the unit can be interfaced to a number of remote control modules, which we're also publishing next month (differential temperature, under temperature and dark activated).

Holography

Normally when you look behind a photograph all you will see is a bill for the processing and printing. However, wander around a hologram and you will find yourself peering behind the image on the plate. You could have a look behind our jumbo-size forks. The hand is real but it hasn't realised yet that the telephone is a hologram. Read Anne Sullivan's explanation of the light fantastic to find out how it's all done. It's simple when you know how.

PHOTO
© BICHAJIAN

Keypad Security System

Baffle the intelligencia of the local criminal fraternity with the ETI Keypad Security System. Use it to protect your valuables in car, office and home. If you don't know the correct combination, try punching in random numbers at your peril. Get it wrong and an on-board alarm sounds. Persevere and still get it wrong and the relay output will sound an external alarm. As the system runs from a 12 V supply the external alarm could be your car horn if you use the system as a car alarm. If you're really persistent, the unit will shut down for half a minute while you tire yourself out.

Articles described here are in an advanced state of preparation. However, circumstances may dictate changes to the final contents.
 Connectors

electronalue

Semi-Conductors • I.C.s • Optodevices • Rs and Cs in great variety - Pots • Switches • Knobs. Accessories •Tools • Materials FREE For RHSKING BURDETT ROAD, WISBECH CAMBS PE13 2PS
TEL: 094563281
TELEX 32630 REPLACEMENT TYPES.
 Telephone: (STD 0784) (London 87) 33603. Telex: 264475

Background Noise Simulator

At last - a psycho-physical project, which helps you concentrate and relax

IT IS A medical fact that human concentration operates in short bursts (up to about 20 minutes) after which the individual requires a few seconds of relaxation before continuing with the work at hand. You can see this effect yourself when reading a book or studying: every now and again you break from concentration and look up, perhaps simply to see what time it is or to make a cup of coffee.

It is also known (and fairly obvious) that the level of background noise can affect the length of concentration bursts - for instance, too much noise prevents you from working at all (just try concentrating when workmen are digging up the road outside!). Not so obvious is the effect caused by too little background noise. Concentration under such a condition becomes very difficult and can be impossible with absolutely no background noise.

Well, the HE Background Noise Simulator has been designed to deal with the last problem. After building this project readers who suffer from lack of concentration, due to lack of background noise, can breathe sighs of relief. Of course, we can't guarantee that you will all be transformed into geniuses able to rewrite relativity theories, but we can promise that you should be able to experiment with some interesting psychological effects. For instance we tried the project out with our colleagues, along the corridor in the Electronics Today International offices and they told us that if we didn't go drown our machine in the nearest bucket of water and let them get back to sleep, they wouldn't invite us to next year's Christmas party. With that threat in mind we left them to it.

(c) Copyright MOOMAGS Ltd.

Figure 1. From this circuit diagram you can see the unusual way $Q 1$ is in circuit:

Construction

This project offers a choice of construction techniques: either Veroboard or PCB can be used to build it up. Overlay and connection details are given for them both in Figs. 2 and 3.

When using Veroboard, remember to break the tracks where necessary, as indicated in the underside view of the board in Fig. 2 and check that no short circuits are formed by loose swarf or solder bridges between tracks. Track breaks can be made using either the correct tool or simply a hand-held $1 / 8$ " drill bit, by holding it on the hole in question and twisting gently clockwise.

Insert resistors first, followed by capacitors and finally semiconductors. The diagrams show component position and connection details. Follow them carefully, making sure all polarised components are inserted the same way round as indicated.
After connection of the speaker and a suitable power supply, the project should work satisfactorily first time. It then only remains to build the board into a suitable case.

Buylines

All parts for this project will be easily obtained and should cost you around $£ 4$ (excluding the case and PCB).

Figure 2. Overlay and connection details - use this if you build the circuit on PCB.

How lt Works

The heart of this project is none other than our old friend the LM3BO. The IC has all the necessary circuitry to form an amplifier with over 2 W of output power. Of course we don't need all of that power in this application - in fact only $1 / 4 \mathrm{~W}$ is ample - but the LM3BO remains one of the cheapest amplifier ICs around (regardless of output power) so we stuck with it.
Transistor 01 forms the noise generator. It is connected in a rather unusual manner (see the circuit diagram in Fig. 1), with its emitter positive relative to its base. In this mode, a transistor is transmogrified into what is essentially a zener diode - a noisy one at that, providing a fairly large amplitude (50 mV) of noise at its base. Integrated circuit IC1 amplifies the noise (RV1 acting as a volume control) to drive the speaker and give the background noise.

RESISTORS R1 $470 k$ R2 $2 R 7$	
POTENTIOMETER	
RV1	100k logarithmic potentiometer
CAPACITORS	
C1	$470 \mathrm{n}, 16 \mathrm{~V}$ tantalum
C2,3	100 n polyester
$\mathrm{C4}$	$10 \mathrm{u}, 16 \mathrm{~V}$ printed circuit mounted electrolytic
SEMICONDUCTORS	
IC1	LM380 2 W power amplifier
	BC109 NPN transistor
MISCELLANEOUS	
SW1 single-pole, single-throw tog	
switch	
IC socket (14-pin)	
Miniature speaker - 64R	
Batterie	es + clips

Figure 3. Veroboard layout and connections along with underside view.

PREHETIN PEMUE MINIATURE DRILLLS AND ACGESSORIIES for all your modelling needs

A choice of three power drills that fit snugly in the hand, so light they enable you to carry out the most intricate tasks - drilling, shaping, cutting, polishing, etc., in the minimum of time.
There are two types of drill stand, plus all the necessary accessories in a range that fills every need.
Send $9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. for full details.

Sole UK Distributars PRECISION PETITE LTD., Dept. H.E. 119a HIGH ST. TEDDINGTON, MDX. TeI: 01.9770878

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2$ in $\times 5$ in Price $£ 10.00$ per set (we pay the postage)
Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjovable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journats.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,
Order Now
Selray Book Company 11 Aspen Copse, Bromley.
Kent. BR1 2NZ
OUA 100\% GUAFANTEE Should vou decide to return the set after 10 dars exam
ination ination, your maney will be refunded by return of post. Amount enclosed: $£$
Name:
Name:
Address:
HE2

Building Site

More ways of how to do it from HE's Master Builder - Keith Brindley

If ever there was a project which has generated enthusiastic interest from readers it's the Jack Lead Tester in the December issue. We've received numerous letters from you suggesting ways in which it could be adapted to test other types of leads. Perhaps the most comprehensive piece of advice came from a Mr. Blair of Lancashire who supplied us with a circuit diagram (see Fig. 1) complete with explanatory text.

I want to talk in detail this month about the fundamentals of project construction using Veroboard or printed circuit (PCB) - and show you one or two hints worth knowing.

Starting right at the beginning, your empty PCB must be spotless and greasefree. This point cannot be overstressed - there is nothing like a dirty circuit board to cause a dry joint and then - wham, the project won't
 of the jack sockets. A 4-pole switch in each part of the circuit also allows a similar connection to a DIN socket. By switching SW1 and 2, the four leads in a DIN cable placed between the two DIN sockets can be tested separately and when there is a DIN cable ending horribly in a co-axial or four phono plugs do not despair. For the latter SW2 is left at position 3 (DIN) and each phono plug is inserted in its turn in the adjacent phono socket and then connected to the appropriate pin of the DIN plug in DIN socket 1 by switching SW1. All you have to remember is which switch does what:

Well, Mr. Blair's suggestion seems fine to us!
work. You can clean your board easily with a clean rag and some methylated spirits. Tinning the board (see Building Site in the December issue) is also helpful but not essential. Incidentally, Veroboard is coated with a solder flux so unless the board is really filthy you needn't clean it at all.

Missing Link

Quite often, links across the board may be necessary and these are best made using short lengths of single-strand tinned copper wire (uninsulated). Carefully bend the end of the link $1 / 4^{\prime \prime}$ or so at right-angles, using a pair of snipe-nosed

Figure 2. Making a link exactly the right size for the circuit board.
pliers and insert this end into its hole in the board. Now, the other end, at the point where it is to be bent to re-enter the board, can be held again with the pliers. Carefully remove the wire without releasing the pliers and bend the link again at right angles fin the same direction as the previous bend). You will now have a link of exactly the right size to fit the board - solder it in, flush to the board.

The technique of using snipe-nosed pliers can also be used successfully to insert passive components (resistors and capacitors!). Their leads should never be bent simply by hand. As a point of good practice the component lead should be held with pliers close to its body and the lead bent on the far side of the pliers - this prevents body fracture.

Figure 3. Make sure your components don't have longer leads above the board than necessary.

Generally speaking, the component should be soldered into circuit flush to the board. If the device needs to be mounted slightly free of the board (to allow for increased heat dissipation) then we'll say so in the construction section of the project.

Figure 4. Typical sizes and types of IC sockets including the 'do-it-yourself' kind.

Figure 5. Break off the top common connector using your snipe-nosed pliers. This leaves one side of a ready-made IC socket.

Semiconductors

Sockets of some description are advised for ICs, for two reasons. The first is that ICs can be the most expensive items in a project so a socket system allows their re-use in future projects (saving your moneyl) The second reason is purely to prevent damage to the chip either by excess heat or static discharge when soldering.

The most common varieties of IC socket consist of a thin body, made of some insulating material, with a number of pins $(8,14,16 \mathrm{etc})$ underneath at the correct spacing (ie two rows $0.3^{\prime \prime}$ apart spaced at $0.1^{\prime \prime}$), which are simply soldered into the board where the IC would have gone. On the top of the body the pins open out to small clips which the IC pushes into and is firmly held by.

Socket to me

Now, such IC sockets can be quite expensive, depending on the method of manufacture and materials used - in fact they can cost more than some of the cheaper ICs available. A cheaper method (only a couple of pence per IC) is a system of 'pins and clips', as above, but without the insulating body. The pins and clips are bought in strips of 60 on a common connector which runs along the top. To use them, first cut off the number you need, say a block of seven (for a 14 -pin IC) and solder this block of seven into the board in the IC holes. Now with a pair of snipe-nosed
pliers (handy tools these pliers, aren't they?), carefully grip the top common connector and twist it from side to side till it breaks off leaving the seven individual pins in the board. Do the same for the other side of seven pins and hey presto - you've got yourself a cheap IC socket.

One word of warning if you use this sort of socket system - remember that the pins are not housed in an insulating body and therefore may accidentally touch each other if bent over. Check that no such short-circuits occur after you insert your IC and before you switch on.

Keeping The Heat Down

Of course, ICs can be soldered directly into circuits (as are other semiconductors such as transistors, diodes etc.) but it's advisable to solder only one lead at a time, letting it cool before moving on to the next - some semiconductors are easily damaged by excess heat and this simple procedure will help prevent unnecessary harm.

My final constructional hint this month is to use circuit board pins to make all offboard connections (eg to pots, switches, batteries etc). This allows you to mount the PCB into its final position in the case before you start wiring up. With the board and all case hardware in position it becomes a fairly simple job to neatly wire up your project with leads of exactly the right length - preventing a 'bird's-nest' ar-
rangement. It's much neater and it's easier trace through if you are faultfiding too!

The Last Word

Remember that 'neatness is the key' when you're building your project. Make that your motto and at least there's less chance that you'll go wrong. Well, time's run out again so l'll just wish you the best of luck with this month's projects and say - see you next month.

Figure 6. PCB pins are useful to make off-board connections.

POPULAR KITS

SUB-MIN MICROPHONE

Size only $1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime} \times 3 / 16^{\prime \prime}$ so small enough for a bugging device, ex-hearing-aids but guaranteed. Price

TRANSMITTER SURVEILLANCE

 Tiny, easily hidden but which will enable conversation to be picked-up weth $\begin{aligned} & \text { matich radio. Can be made } \\ & \text { mate }\end{aligned}$
RADIO MIKE

Ideal for discos and garden parties, allows complete freedom of movement. Play through FM radio or tuner amp. €6.90.
SAFE BLOCK
Mains quick connector wilt save you valuable time Features include
quick spring connectors. heavy plastic case and auio on and oft
LIGHT CHASER
Gives a brilliant display - a psychedelic light show tor discos.
oarrues and pop groups. These have three modes of flashing . Two oartues and pop groups. These have three modes of tlashing, Two
chase-parterns and a strobe effect. Totat output power 750 walls chase-patterns and a strobe effect. Totat output power 750 walts
per channel. Complete kit. Price $\mathbf{~ 1 6}$. Ready made up $\mathbf{E 4}$ extre. FISH BITE INDICATOR enables anglers to set up several lines
then sit down and read a book As soon as one has a bite the GOudspeaker emits a shrill note. Kit. Price E4.90
6 WAVEBAND SHORTWAVE RADIO KIT
Bandspread covering 13.5 to 32 motres.
Bandspread covering 13.5 to 32 metres. Based on circuin which appeared in recent issue of Radro Constructor. Complete kit, includes case marerials, six transistors, and diodes. Condensers.
resistors, inductors, switches, etc. Nothing elise to buy, if you have an amplifier to connect it to on a pair of high reststance headphones. SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model, Price £2.30. Ciystal earpiece K5p. Kigh hasisis and front bui not case.
E3.75. Kincludes chassis
RADIO STETHOSCOPE
Easy to lault find - star at the aerial and work towards the speaker

- when signal stops you have tound the fault. Complare kit $\overline{\mathrm{E}} \mathbf{4} .95$.
interrupted beam kit
This kit enables you to make a switch that will trigger when a steady relay. photo transistor. reslstors and caps. enc. Circuil diagram but mo case. Price £2.30.
OUR CAR STARTER ANO CHARGER KIT has no doubt savad many motorists rom embarrass ment in an emergency you can start
car off mans or bring your bartery up to full charge in a couple of hours. The kit comprises: 250 w mains transtormer, two 10 amp
brudge rectifiers, slart/charge 5 witch and full instructions You can budge recififiers. slart charge switch and fult instructions You can
assemble this in the evening. box it up or leave it on the shelf in the
garage, whichever suits you best. Price garage, whichever suits you best. Price $£ 11.50+\varepsilon 2.50$ post.
G.P.O HIGH GAIN AMP $/$ SIGNA LTRACER. In case measuring
 state amplitier designed for use as a signal tracer on GPO cables otc.
With a radio it funclions very well as a signal tracer. By connecting a sumple coil to the input socket a usetul mains cable tracer can be
made. Runs on standard 41 yvattery and has inout, output sockets made. Runs on standard $41 / 2 v$ battery and has input. Outpul sockets
 MANS ADAPTORS
Why use expensive battenes - operate your radios and equipmen from the mains with these units,
Sincleori gives $9 \mathrm{v} \cdot 100 \mathrm{~mA}-£ 2$. - Altrei gives $6 v 7.5$ or $9 \mathrm{v}-300 \mathrm{~mA}$ - $\mathbf{c} 3.95$ -Crown gives $6 \mathrm{va1} 300 \mathrm{~mA}-£ 2.95$
- Nisth gives 12 v .750 mA - E 3.85
These are all made up complite with msins tead in plastrc cases. We Can atso supply Mains Transistor Power Pack Kif for Voltrage output
anytung trom 3 v to 16 v up to 300 mA - complete kit with double insulated mains rransformer and fult insiructions - $\mathbf{~} 1.05$
$21 / 2$ ROUND PANEL METERS. Alt Hush mounting through $2 \% / 2$ in
round hole, with llange makes item 3 in wide approx Made to stringent Ministy specifications We have the following types in
stock All are moving coil unless orherwise siered Mic RO
 METER. Hot wrre, scaier 0-9 amp Price £2.30. DUAL RANGE VOLT METER. Scale calibrated $0-10 \mathrm{v}$ Bnd 0.250 v Price $\mathrm{E3.45}$.
O.1 MA METER IMA 1.5 d cente zero, scaled 100.0 .100 Pric 0.1 MA METER IMA f. 5 d centre zero, scaled to0.0.100 Price
E3.e5.
 voli bulb tor scala thumination, also have zero rese1. The scal
callbrated bul has very modern appearance. Price $£ 2.88$.
calibrated bul has very modern appearance. Price $£ 2.88$.
BALANCE METEA. Edgewise mounting 100 UA centre zero. ballance
price e 2.30 .
1% in SQUARE PANEL METER. Eagle
50 UA. Price $\mathrm{E4} .60$. \ddagger mA Price E4.03.
WATERPROOF MEATING WIRE. 60 ohms per yard This is a healing element wound on a fibre glass coll and then covered with p VC Dozens of uses - around
gloves and socks. 23p mietro.
DIAL INDICATOR. As used in iool making and other precision measuring operations. Whe lamous John Bufl accurately shows
differences of 01 mm
A bautituly made precision insirument. price in moss 10
Price $£ 9.20$.
COMPONENT BOARD. Ref. WO998 This is a modern fibre glass mpord which of which are a multitude of very usetul parts, most
and

 including variable fixed and wire wound
other condensers. A reat snip al E 1.15 .
FRUIT MACHINE HEART. 4 wheels with all fruits motorised and with solenoids for stopping the wheels with a limte ingenuly you
can defy your frends getting the "jackpot" $£ 8.95+8$ carnage desoldering pump
Tdeal for removing componenis from
service work generally Price $£ 6.35$.
4-CORE FLEX CABLE
White pvc tor telephone exiensions, dusco lights, etc 10 metres $\mathbb{C 2}$. MUGGER DETERRENT
A high-nole bleeper. pust latehing switch. plastic case and batiery
connectort Will scare away any villain and bring help. $\varepsilon 2.50$ complere k_{11}
HUMIDITY SWITCM
American made by Honeywell The action of thus device depends upon the dampness causing a membrane io stretch and trigger a
sensitive microswicch Very sensitive breathing on if for instance sensitive microswuch Very sensitive breathing on if for
will swith it on Micro 3 amp at 250 V a C Only $£ 1.15$.

MULLARD UNILEX

A mains-operated $4+4$ stereo system. Rated one of the finest performers in the stereo field this would make a wonderful gift for almost anyone. In easy-10-assemble modular form this should sell at
about $£ 30$-but due to a special bulk buy and as an
incentive for you to buy this month we offer the incentive for you to buy this month we offer the
system complete at only $£ 16$ including V.A.T. and
 postage.
FREE GIFT - Buy this month and you will receive a pair of Goodman's elliptical $8^{\prime \prime}$ $\times 5^{\prime \prime}$ speakers to match this amplifier.

EXTRACTOR FANS

Ex-Computer made by Woods of Colchester; ideal also as
blower: blower: central heating systems. fume exvaction. erc. Easy
ifxing through panel very powerul 2.500 r.p.m. but quiel
running. Choice of 2 sizes. $5^{\prime \prime} E 5.50,6^{\prime \prime} £ 6.50$; posi C1 per tan.

3-CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for a three channel sound to light unit controlling over 2.000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for Disco work.
The unit is housed in an attractive two-tone metal case and has controls for each channel, and a master on / off. The audio input and output are by $1 / 4^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socket facilitate ease of connecting lamps. Special snip price is $£ 13.50$ in kit form
or $£ 16.50$ assembled and tested.

DRILL CONTROLLER

Electronically changes speed from approximately 10 revs to maximum. Full power at all speeds by finger-tip control. Kit includes all parts, case, everything and full Made-up model

PUNCH TAPE CONSOLES. Comple built desks. The tape punch and the tape reader are set in the top, below in the cupboard is stored the power units and electronics. The keyboard is separate but plugs in and rests on the top of the desk. This is an 8 bit paper tape system. The keyboard is a standard computer type using reed switches ASCII coded. The keyboard has 72 encoded keys. Ofered complere with the data, at only a raction of original cosi, so would be replaced. Please telephone before calling to coilect.

TANGENTIAL HEATER UNIT

A most efficient and quiet running blowertheater b Solatron - standard replacement in many famous name heaters - comprises mains induction mormos tatic safety trip. Simply connect to the mains fo immediate heat. Mount in a simple wooden or metal case or mount direct into base of, say, kitchen unit. Price $£ 5.95$, post $£ 1.50$. Control switch to give

8 POWERFUL BATTERY MOTORS For models, meccanos, drills, remote control planes, boats, erc. E2

MINI-MULTI TESTER
jewelled bearings - 2000 o.p.v. mirrored scale
DC volts $10,50,250,1000$
AC volts $80,50,250,1000$
$D C$ amps $0-100 \mathrm{~mA}$.
Continuity and resistance 0.1 meg ohms in two ranges. Complete with Test Prods and instruction book showing how to measure capacity and inductance as well. insurance.

FREE Amps ranges kit to enable you to read DC current from 0-10 amps. directly on the 0-10 scale. It's free if you purchase quickly but if you already own a mini-tester and would like one, send $£ 2.50$.

TERMS Cash with order-but orders under E10 must add 50 p to oft sel pach

> BULK ENOUIRIES INVITED. PHONE HAYWAROS HE

J. BULL (Electrical) LTD
 (Dept. HE), 34-36 AMERICA LANE

HAYWARDS HEATH, SUSSEX, RH16 3QU

IT'S FREE
Our montuly Advance Adverising Bargains List givar derails out before our advorisoment can mppoes -it's an interesting
 SUPER BREAKDOWN PARCEL with free gith of a desoldermg pump., perthaps the most useful break dower parcel we have ever
offered. Consists of 50 neatly all ditterent con offered. Consists of 50 nearly all difterent computer panels on
which you will hind: over 300 iss . over 300 diodes. over 200

 you deduct the value of the desoideeting pump, works out to iust a
lithe over 4ρ per panel. $+\varepsilon 1,27$ VAT $+\varepsilon 2$ post (it's b big parceli) THIS MONTH'S SNIP. A 3 wave band radio whth stereo

 HuFF, outh1 - wil sur any decor. Resonanance tree cultouls for Bin wooter and Ain tweerer. The froml material is carved Dacron, which
is thick and dios ono needt to be suck in and the compleled uni is
is most pleasing. Colour black Suppled in parts. Price $\mathbf{E} .90$ per
pair. (this is probably less than the original cost of one cabinely).

OCTOBER/NOVEMBEA CONSTRUCTORS' SNIP. Here's super bagain for you $\mathrm{E11.50}$. With these you will be bbice to drill
550 evours for only meal, wood. plastic aic riom ine iniest holes in P.C. .B. right up to aboul 1/in Don' miss his snip - send your order 1oday.
UNILEX OWNERS. Excellent PM speakers, European made. extremely good quality and 15 ohms, the correct impedance tor the Unilex, Hail regular price only $\mathbf{C 2 . 3 0}$ per palr t E , post
MAINS ADAPTORS. Why use expensive batteries - operate

 up in plastic cases complete With mains lead. We can also supply
Mains Transistor Power Pack Kit tor Voltage oulput anylhing from $3 v 1016 v$ up to 300 mA - complete kit ENAMELED COPPER WIRE. We stock this on 110 reels and
$1 / 16$ IVels

$\begin{array}{ll}\varepsilon 3.50+45 p & \varepsilon 1,00+15 p \\ \varepsilon 3.50+52 p & \varepsilon 1,10+16 p\end{array}$
 bi-melal typess and 3 liquid types. There are the current stais which

 temperatures which could include 0.100
thermostatic pod whict can

 lug 57 P.
HiGHOLTAGE CONOENSERS. 1 mtd
2.5 kve E 1.15 .0 .5 mtd 5 kv £1.15. 001 mid 28 kv £2.30.
100 of 150 ot 220 Cit all 10.00 Der CAPACITORS. 47 of 68 pf AC CONOENSERS. In addition 10 the normal uses as motor
Starter, starters, power tactor correction etc. These make very good voltage
droppers tor working low volage appliances irom mains. The
volize voltage working quoted is $A C$ RMS. so these condensers are usuall
sut iable tor working on $D C$ at $2 火 /$ tmes ine quoted $A C$ volitages

 most useful instument. Price E4.99
2 MULTI OPTION SOUND
2 MUITI OPTION SOUND PRODUCER. Also Called
semsational somichsyren, with it you can reproduce. for instance

 . Case 5250 are aporox BATTERIES. Bank of 7 mercuy cells type 625 which

stre	Type	Pruce	Carriage
${ }_{15}$	Smple	10.00	\{1.75
15	hasim,	66.50	¢2.75
1.5	Fraizues 8	${ }^{\text {E9, }} 75$	£. 50
4	Sman	E7.50	
5	fal mon	[11.50	cise
${ }_{16}$		${ }_{\text {c79,00 }}$	¢500

THERMOSTATS, Wall mounting. The Danfoss. a hand.
some 2 ione intended tor lwing rooms but is just as eficicient in a some 2 ione intended for iving rooms but is is ist as elficicent in a
greenhouse or store 11 is sutabie for normal aii temperature cange

PRESET POTS. Jusi arrived a consignment of over $1 / 2$ million
 of 100 for $E 9.50$, types snd valuess to your choicie. But rot less than

BUZZER. 9 V , nice tone, elecironic with tappings lor loud. medium and sott Surtable for instrument test equipment. morse trainer etc

We've had more fun with our train set this month, designing yet another sound

THIS SECOND project in our series of model train sound effects allows you to electronically simulate, with fair realism, the noise of a diesel-train horn. The so is triggered automatically as the train reaches a desired place on the track so you can produce the sound as the train approaches stations, level crossings etc.

The two-IC circuit is simple-to-build and uses readily obtainable parts. Both ICs are 555 s , one of the most common types of integrated circuits available and this accounts for the circuit's simplicity: with only a couple of component changes the 555 adapts to many different applications.

Output power from the HE TwoTone Train Horn is adequate to drive a miniature loudspeaker directly so all that is required is a single 9 V battery to get your circuit up and running.

Construction

Veroboard construction on a standard sized 10 strip by 24 hole board means that this project is quite easy to build. The usual procedures and precautions should be followed but you will find that very few of the components are critical. In fact you may like to experiment with different values to get other sounds.

Make your track breaks first with either the purpose-made tool or simply
a hand-held $1 / \mathrm{s}^{\prime \prime}$ drill bit. Next, insert all links and IC sockets, followed by resistors, capacitors and finally semiconductors.

Figure 2 shows connection details of the project along with overlay and underside-board views and you should follow it carefully.

To generate the two-tone sound automatically, mount a reed switch under the track at whatever location you require. A magnet attached to the bottom of the train will operate the reed switch as it passes. You can connect as many reed switches as you wish, in parallel, to trigger the sound at various places around the track.

How It Works

The sound generating part of this circuit is formed by IC2, a 555 connected as an astable multivibrator. The frequency of the sound varies with the overall charge and discharge times of capacitor C4. So, when the junction of D1 and 2 is high, the frequency of oscillation is set by the current through R4 plus that through R5, charging the capacitor. Similarly, when the junction of D1,2 is low the frequency is set by the current through R5 (no current can flow through R4). When the charge current is less, therefore, the frequency is lower.

Integrated circuit IC1, another 555, forms a monostable mutivibrator with an 'on' time of about 2 s . The multivibrator output (pin 3) is connected directly to the junction of D1,2 and hence when the monostable is 'on' the frequency is higher than when it is 'off'.

A reed switch under the track is operated by a magnet attac hed to the train as it passes and this triggers IC1 into its 'on' state thus generating the two-tone hom sound.

(c) Copyright MODMAGS Ltd.

Figure 1. The HE Two-Tone Train Horn circuit diagram.

Figure 2. Veroboard layout and connection details for the project. Below right is the underside view of the board with track breaks.

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)

R1 330
$\begin{array}{ll}\text { R2 } & 390 \mathrm{k} \\ \text { R3.5 } & 68 \mathrm{k}\end{array}$
R4,6 33k
CAPACITORS
C1 100n ceramic
C2 $2 \mathrm{u} 2,10 \mathrm{~V}$ electrolytic
C3 4u7, 10 V eiectrolytic
C4 47 n ceramic
C5 $100 \mathrm{u}, 10 \mathrm{~V}$ electrolytic

SEMICONDUCTORS

IC1.2 555 timer
D1,2 1N4001 diode

MISCELLANEOUS

SW1 single-pole, single-throw toggle switch
Reed switches + magnets
2×8-pin IC sockets
10 strip $\times 24$ hote, $0.1^{\prime \prime}$ matrix
Veroboard
Miniature speaker (8 to 100 R)
Battery + clip

Buylines
The components used in this project are all easily obtainable and should cost approximately $£ 5$.

BOSS INOUSTRIAL MOULDINGS LTD

2 Herne Hill Rd, London SE24 0AU, England Telephone 01-737 2383 Telex 919693
Cables \& Telegrams: LITZEN LONDON SE24
Please send me MPUroBreadBoard(s) at the special, limited period, introductory offer price of $£ 15.00$.
This price includes VAT \& PP, is applicable from Sept 11980 but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.
I enclose a cheque/P.O. to the value of $£$.

Name

Company
Address

GREENWELD
443FMILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include. V AT-just add 40p post. Tel (0703) 772501

Contwins hundreds of brand now resistors. values caretully chosen to thelp the now construc tor pursue his hobby without finding humvelt Eho of some vital parts. Alt parts contained in cloar $121 \times 165 \mathrm{~mm}$ min 9 drawers into which all parts can be neatly hocated. If bought individually perts
 cheque or P.O. for £34.e5 for immediato de spatch.
CONTENTS:
$2001 / 4$ watt resistors
20 Wire wound resistors
70 Mylar Capacitors
50 Polyester Capacitors
56 Electrotvic Capacitor
61 Trensisiors
12 kcs
20 EDs
55 Diodes and rectifiers
Plus FREE surprise gift

- P.C. ETCHINa KIT mik
contains 100 sa ins copper clad board FercClonde. Etch resust penper clad board. Ferric muniazure dinll bits etching dish and instructions. All for ca.es.
Now full spoc, supplic CHIPs copl!
Now full spec, supplied with data. Typo MK50321

8 and 9 digit 7 segment bubble type tor above chips - most have minor faults, dud segment, etc Mixture of 2 or 3 different types with data. 5 to

EX-COMPUTER PANELS
$25272 \times 6 \mathrm{~V}$ reed relays. $6 \times 2 \mathrm{NO} 20$ or 252306 $\times 400 \mathrm{~V}$ rects, + As. Only 50 p .
iogether with code sheet. From simple gates to
complex counters, $20 \mathrm{ICs} £ 1 ; 100 \mathrm{ICi} \mathrm{Es}$. BUZZEAS, MOTORS Z401 Powerful GV DC buzzer
240) 50 mm dia $\times 20 \mathrm{~mm} 35 \mathrm{p}$. all meral construc
$Z 402$ Miniature type buzzer. 6.9 or 12 V . only ${ }_{-}^{22 \times 15 \times 16 \mathrm{~mm} \text {. Very neat } 65 \mathrm{~s} \text {. }}$
 Only E 1 .
Z459 115 -230V ac high torque motor with geare reduction down to 60 rpm . Sturdy construction 70 mm diâ $\times 20 \mathrm{~mm}$. Sp W892 Heavy Duty 12 V relay, ideal for car use single 15 A make contact. Coil 25 R in sealed metal can with mounting bracke: 85p.
WB90 OHL Reed felay SPCO 2.4 -10v. 200 R con Only E2. 20.
W847 Low prohile PC ming $10 \times 33 \times 20 \mathrm{~mm} 6 \mathrm{~V}$ coil, SPCO 34 contacts. 93_{p}.

VEROBLOC breadioar
Now from Vero, this versatite aid for building and resting curcuits can accommodate any size of IC Blocs can be joined together. Bus strips on $X \&$,
axis - total 360 connexion points tor iust $£ 4.15$.

THE SPECTACULAR 1981 GREENWELD Component Catalogue
Bigger and better then overff

- 600 discount vouchers
- First Class reply paid envet
- Free Bargain Lisı
- Vat inclusive price
* Ouanticy prices for bulk buyers

KEN
NOWI!
BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU ALL PACKS CONTAIN FULL SPEC BRAND NEW POST. VAT INCLUSIVE PRICES.
$K 00150 \mathrm{~V}$ ceramic plate capacitors. $5 \%, 10$ of each value 22 pF to 1.000 pF , total 210 . $\mathbf{£ 4 , 8 0 \text { , }}$ 67.66. K003 Polvester capacitors. 10 each of these values: $0.01,0.015,0.022,0.033,0.047$
$0.068,0.1,0.15,0.22,0.33,0.47,110$ O.068, $0.1,0.15,0.22 .0 .33 .0 .47 \mu, 110$
atiogether for $£ 5.40$. Koget Mylar capacito
all values from $1,000 \mathrm{pF}$ to $10,000 \mathrm{pF}$. Totel 130 for $£ 4.70$.
K007. Electrolytic capacitors 25 V working smal physical size. 10 each of these popular values
$2.2 .4 .7 .10,22,47,100 \mu \mathrm{~F}$. Total 70 for $\mathbf{~} 3.5 \mathrm{~s}$. K008 Extended range, as above, also including 220,470 and $1000 \mu \mathrm{~F}$. Total of 100 for EB_35.
K021 Miniature carbon K021 Miniature carbon film 5% resistors CR25
similar. 10 of each value trom 10 R to 1 M . E1 serias Total 610 resistors $\mathbf{8 5 . 9 5}$.
K022 Extended range. Total 850 resistors from
iR to 10 M 88.20 .
K041 Zener diodes $400 \mathrm{~mW} 5 \%$ B2Y88, etc. 10 of each value from 2.7 V to 36 V , E24 series Tot NEW KO51 LEDs - 10 each red, green \& yello 3 mm \& 5 mm , with clips. Total 60 LEDs for EB .85

REGULATED PSU PANEL
Exclusive Greenweld design - better spec. than anything on the makket being offered at the price. ponents including 3 mm high contains anth capacitor. Ready buita and lestiad -iust adde 30 2A transtormer and two pots for © fully variab d current supp
SPEC: Output voltage 0.28V
Output current $20 \mathrm{~mA}-2 \mathrm{~A}$
Source Impedance OR1
Source Impedance OR1
Open circuit ripple 10 mV
Send SAE for tull details of the many ways thi useful module can be used, together with
of parts for various options. Only $£ 7.75$

TRANSISTOR PACK K51

Take advantage of this unbelievable offerlf
Small signal NPN/PNP transistors in plas package at an incredibly low, low pricell Almost all are marked with type number - almost all are full spac. davices. Some have bent leads. Over 30
different mpes have been found by us including BC 184/212/238/307/328. BF $196 / 7$. $21 \times 107 / 8 / 9 / 342 / 450 / 550$. atc. Only avai able as a mined pack at $£ 3$ per $100, ~ £ 7$ per 250
$£ 25$ per 1,000 .
ELECTRONIC AIR FRESHENER KIT

- Repery Operated

Continuble Fragrance
Continuous Air Frozhening
This novel ktt contains everything you need to make one of the most advanced air fresheners of
is kind. Styled to take its place in any room in you home and do is 10 quetly and unobtrusivedy. The automatic riming circuit switches on a fan for fow seconds at regular intervals to send an odou

The kit includes componenis for EITHER a 4 or 1 minute uming circuit. miniature O.C. motor and
moulded parts in high impact styrene to provide an moulded parts in high impact styrene to provide an
Ba sily maintanned, elegant appearance.
ONty $\mathbf{E} 7.95$

Into Digital Electronics

It's adders and other digital reptiles this month. lan Sinclair takes you from the simplest adders through algorithms to microprocessors

THE GATES AND flip-flops that we've used so far will make a variety of circuits but for some types of circuits which need a lot of gates to construct, an IC which contains all the gates in one chip is easier to use.

One type of gate circuit which is well worth the trouble of making in IC form is the BCD-to-seven-segment decoder which we used last month. Another is the adder, and adders are the circuits we shall start off with this month.

Half An Adder

The simplest adder is called the halfadder, and its truth table is shown in Fig.6.1. It has two inputs, labelled A and B, and two outputs, labelled S (for sum) and C (for carry). Two ways of making a half-adder are shown in Fig.6.2. One uses standard gate units, the other makes use of an AND gate along with a type of gate called the exclusive-OR (X-OR). The X-OR gate has almost the same logic as the OR gate, but does NOT give 1 at its output when both inputs are at 1 (that's what is excludes). Its symbol and truth table are shown in Fig.6.3. The X-OR gates are available in IC form: an example is the 74LS86 quad X-OR gate.

Figure 6.1 Half-adder symbol and truth table
The action of the half-adder is quite simple. Bits at the two inputs A and B are gated so as to produce outputs at S and C. The bits aren't actually added in the sense of being joined up, but the outputs are the values you expect from binary addition. For example, with both inputs zero, S and C are also zero. If either input bit is 1 , then $S=1$ and $\mathrm{C}=0$. If both inputs are 1 , then $\mathrm{S}=0$ and $\mathrm{C}=1$ because in binary $1+1=10(C$ is 1 and S is 0).

A half adder can be used only for the lowest bit of two numbers, because for each other pair of bits, there is a third bit to add in, the carry from the previous addition. For exam-
ple, when we add 11 and 11 , then the lowest bits add to give a sum of 0 and a carry of 1 . The next addition is of bits 1 and 1 with a carry of 1 , so that the final result is 110 . In denary, just in case you're wondering, these numbers are 3,3 and 6 .

Figure 6.3 X OR gate symbol and truth table
A circuit which carries out the function of a full adder is a bit more complicated than the simple halfadder. Figure 6.4 shows a full adder circuit, one half of the circuitry inside the 7482 adder. Each half consists of seven AND gates, an OR gate and an

Figure 6.4 Circultry for a full adder. Inputs are the bits to be added, plus a carry from the previous stage: ouputs are the usual sum and carry bits
inverter. The inputs are the binary digits A and B , with a carry-in CO ; the outputs are the sum S and carry-out C1. The truth table for the full-adder is shown in Fig.6.5.

We can set up an adding circuit on the Eurobreadboard, with the help of the usual range of switches and LEDs. The 74LS82 two-bit adder is a suitable gentle introduction to binary arithmetic; if the 74LS82 is hard to
come by then the old fashioned 7482 can be used in place, though it takes a higher current (about 17 mA). When it's the only chip on the board, that doesn't matter too much, even if you're using battery supplies.

A	B	$C 0$	S	$C 1$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 6.5 Truth table for a full-adder

In the circuit (Fig.6.6) each switch contributes a binary digit. Switches SW1 and 2 give one number, with SW1 giving the higher digit and SW2 the lower. Switches SW3 and 4 are

7482 PINTIN 10C, PIN 14 IN 100
POWER SUPPLY LINKS: 13C TO X1
NORMAL SWITCH CONNECTIONS (SEE FIG 5.2)
switcmes

Figure 6.6 Using the 74LS82 full-adder. The switches provide the inputs, and the LEDs provide the outputs. The 74LS 132 can be removed if desired
used for the second binary number, with SW3 for the higher digit. The outputs are indicated by the LEDs LED2 shows the highest digit, the carry from the second stage of addition, with LED3 showing S2 and LED4 showing S1. The LEDs will therefore indicate the binary output if you read them from left to right.

Set 'em up, Joe, and adjust the switches as shown in Table 6.1, completing the table of outputs for $\mathrm{C}=0$, which will be the truth table for two bits of addition, with no carry-in. Once you've completed that, change the link at line 14C transferring it from $Y 2$ to $X 1$ so that $C 0$ is at logic 1 . Now try the truth table again, filling in the columns under $C O=1$ this time. If you want to see the results in decimal form, you can plug the 74LS48 decoder and the seven-segment

display on to the board (replacing the 74132 and the 74LS76) and connect the lower (A, B) pins of the decoder inputs to the S1 and S2 outputs of the 7482 , with input C coming from C 2 , as shown in Fig.6.7.

Figure 6.7 Connecting the adder outputs to the 74LS48 decoder so that results can be displayed in denary if wanted. The D input of the decoder must be earthed

Multiplexing

There are two other types of circuits that are worth knowing about, though we're not going to use them in this set of exercises. They are both combinational circuits, using gates, and they have a wide range of uses. Figure 6.8 shows the internal circuit of the 74LS157, which is a quad two-to-one line selector or multiplexer. The inputs consist of pairs of binary digits $1 \mathrm{~A}, 1 \mathrm{~B}$ or $2 \mathrm{~A}, 2 \mathrm{~B}$ or $3 \mathrm{~A}, 3 \mathrm{~B}$ or $4 A, 4 B$. There is also a select input and a strobe input.

Figure 6.8 Internal circultry of the 74LS 157. This is why we use ICs!

The strobe input is a 'shut-off' input. With the strobe input high, the outputs are low whatever the input voltages are, so that this can be used to select a zero output. With the
strobe input low, the select input can be used to decide which input is connected to the corresponding output. With the select input low, each Q output is the same as the corresponding A input, and the Binputs are ignored. When the select input is high each 0 output is the same as the corresponding B input, and the A inputs are ignored. We can use this circuit to select either one of the two four-bit numbers to appear on the output pins, or we can reset the outputs to zero by making the strobe input high. The 74LS157 is a comparatively simple multiplexer, and some of the more complex types are even more interesting. The truth table and pinout of the 8230 are shown in Fig.6.9. This IC uses eight inputs, any one of which can be selected by the voltages of three 'address' lines, AO to A2, to appear at the output. An inhibit 1 input will cause the output to be zero for any other inputs. The idea of using three address lines to switch the output eight ways is an important one, and it's used a lot in microprocessor circuits.

Figure 6.9 Pinout and truth table for the 8230
(Signetics) multiplexer

Demultiplexing

A demultiplexer does exactly the opposite. It has a few inputs which can be switched to a large number of outputs. The 74LS138 is our example, whose pinout and truth table is shown in Fig.6.10. The inputs labelled A_{0}, A_{1}, A_{2} are address or select inputs, and the inputs labelled $\bar{E}_{1}, \bar{E}_{2}, E_{3}$ are enable inputs. When either of the E inputs is high, all of the eight outputs will be high, no matter what voltages $(0$ or 1$)$ are placed on the address/select pins. Similarly, if E_{3} is low, the outputs will all be at logic 1. With E_{3} high and both of the E inputs
$\left(\bar{E}_{1}\right.$ and $\left.\bar{E}_{2}\right)$ low, one of the outputs will go low. Which one? That depends on the voltages on the address pins, and the truth table shows which output pin will go low for various addresses. Notice that the address pins have been labelled so that the binary number represented by taking the pin signals in $A_{2}, A_{1} A_{0}$ order is also the number of the output. For example, with $A_{2}=0, A_{1}=1, A_{0}=0$, the binary number is 010 , decimal 2, and it is 2 which is low when this address is selected. Similarly when $A_{2}=1 A_{1}$ $=O A_{0}=1$ (decimal 5), 5 is selected as the low output.

The demultiplexer is a very useful decoder of binary numbers into single lines: the most common numbers of lines are four (two address lines), eight (three address lines) and sixteen (four address lines). There is also a BCD version, the 74LS42, which converts BCD signals on four lines to decimal outputs (0 to 9) on ten lines.

Figure 6.10 Pinout and truth table for the 74LS1 38 demultiplexer

Take it away, Ramsbottom

So far, arithmetic has consisted of addition, using the full adder circuits. In fact, binary arithmetic starts and finishes with addition - there's nothing else! Now, before you write in saying that your calculators can add, subtract, multiply, divide, find square roots and the number you first thought of, hold everything! I didn't say those actions weren't done, what I said was that addition is done in binary and no other action is. The reason is that all arithmetic can be fiddled so that only addition needs to be done, and the only other processes which are needed are the use of shift registers.

I know what the next question is. If you can multiply and divide, take square roots and find sines of angles all by simple addition, why don't we do this in everyday life? The answer is speed. Doing a multiplication or a square root by addition might involve

Into Digital Electronics

several hundred additions, and it's too tedious for a human. For a brainless machine operating as fast as its clock pulse rate will let it, though, there's nothing to it.

Algorithms And Two's Complement

There's nothing to it - at least for the machine. For the guy who designs the machine, though, there's a lot to it. The routines which are used to break down comparatively complicated processes like finding sines of angles into simple additions are called algorithms, and there's nothing simple about most algorithms. They're not new: many of them have been known for centruries and were used long before multiplication tables or other aids to mental calculations existed. We'll look at just two simple algorithms here.

Subtraction is the top priority, because it's a process which is needed just as often as addition. Straightforward binary subtraction (on paper) is illustrated in Fig.6.11, and it would be simple enough to devise a gate circuit which gave the necessary outputs from the two binary number inputs. The reason we don't do this is that we don't need to.

$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ -0 & 0 & 1 & 1 & 0 & 1 & 0 & 1\end{array} \quad$ a-1=1 BORROW 1
 10010101

Figure 6.11 Binary subtraction: 1 from 1 gives 0,0 from 1 gives 1 , and 1 from 0 gives 1 borrow 1. The technique is the same as in scale-of-ten subtraction

By using a subtraction algorithm, we can simply add two numbers in an adding circuit, ending up with the same answer as a subtraction would have given. The algorithm is called 'two's complement' addition.

Two's complement goes something like this. To start with, you must have an agreed size of binary number - four digits, eight, sixteen or whatever. Suppose we settle on eight, which is the number of digits that a microprocessor handles (pocket calculators usually use four). That means we'll always write eight digits even if most of them are zeros. For example, binary 1 will be 00000001 and 2 (binary 10) will be 00000010 . Both numbers are written in this form. The number which is to be subtracted or taken away from the other one is now complemented. That means writing 0 for each 1 , and 1 for each zero: it's the action which an inverter carries out. The complement of 00000101 is 11111010 for example. Then 1 is added to the

b

Figure 6.12 Two's complement subtraction. The number to be subtracted is put into two's complement form, equivalent to placing a negative sign in front. The numbers are then added, and the carry is discarded
lowest bit of the complement. For example, the complement 11111010 becomes 11111011 when the extra 1 is added, and a complement which was 11111011 would become 11111100 (remember your addition $1+1=0$ and carry 1).

This last figure is called the $2^{\prime} s$ complement, and is added to the other number. The result is the number we should expect if a subtraction were carried out. Notice that we deal with 8 -digit numbers only. If there is a carry-out from the eighth place, we ignore it, we don't make the carry into a ninth digit. Fig.6.12 shows some examples of subtractions done using the two's complement algorithm.

Now there's one point you'll notice from all these examples. When you take a large number away from a small one, the result is negative in ordinary decimal numbers, but there's no sign visible in the binary numbers. That's because binary doesn't have signs, only 0 and 1 . Looking a bit more closely, though, you'll see that when a subtraction of this sort has been carried out, the highest order digit (the one on the left, lad, on the left) is always a 1. This is, in fact, how we indicate sign. A zero in the left indicates positive sign, a 1 indicates negative sign.

Simple, isn't it? But what if the number you are using happens to be positive and yet big enough to have a 1 on the left-hand side (any number between 127 and 255 , for example)? Incredibly enough, it doesn't matter! The arithmetic works out correctly no matter how the numbers are arranged, and it's possible to use a few additional gates to signal to you if there's a booboo going on somewhere, like a number which is positive but has a 1 on the left-hand side or a number which should be negative but has a 0 on the left hand side. For the moment, we'll leave that one.

A number which uses the highest order digit to indicate the sign (+ or $-)$ is called a signed binary number, and it's the assistance of such numbers which makes binary subtraction possible with only adder circuits. If, by the way, you need to use
larger numbers than eight bits can cope with (+122 to -128 for signed numbers, 0 to 255 for unsigned) then another eight bits can be used, so that signed numbers up to 32,768 or unsigned numbers up to 65,536 can be used. If that's not enough, a third group of eight can be used, and so on. For very large numbers, scientific notation is used, with each number represented as a binary fraction and a power of two so that it isn't necessary to use a large number of digits to represent very large numbers. Scientific notation in decimal numbers is illustrated in Fig.6.13: binary representation follows the same scheme.

> 1300 IN SCIENTIFIC NOTATION IS 1.3×10^{3} IBECAUSE 1300 IS 1.3×1000 AND 1000×10^{3} । SIMILARLY 101101 CAN BE WRITTEN AS 1.01101×2^{5} OR $.101101 \times 2^{6}$

Figure 6.13 Scientific notation. Any number can be expressed as a small number (or fraction) multiplied by some power of the base. In denary (ten) scale, the base is ten, in binary it is 2 . Scientific notation enables us to work easily with very large or very small numbers

Multiplying The Species

Binary multiplication can also be carried out using adding circuits, but with the addition of shift registers. All multiplication is addition anyhow: when we say 5 by 7 (or 5 sevens), we mean the number we get by adding five sevens together. Even for a machine, this is a bit tedious, and binary multiplication is carried out very simply by adding a shift. The number of adds and shifts is equal to the number of digits in one of the two numbers being multiplied.

Take, for example, the multiplication of 1101 by 101 (13 by $5=65$) which is shown in conventional form in Fig.6.14. The numbers are

$$
\begin{array}{llllll}
& 1 & 1 & 0 & 1 \\
& & 1 & 0 & 1 \\
\hline & & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & \\
1 & 1 & 0 & 1 & & \\
\hline 1 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Figure 6.14 Multiplying iwo binary numbers. When a 1 is used as a multiplier, the number being multiplied is written down, when a 0 is used the result is 0 . These lines are shifted left for each new digit of the muttiplier, and then added
multiplied on paper by using exactly the same scheme as we use when we're multiplying two large scale-of-
ten numbers, multiplying by the units digit, shifting one place and multiplying by the next digit and so on.

What makes this so much easier in binary scale is that the digits must be 0 or 1 . If the multiplication is by 0 , then the result is 0 , if the multiplication is by 1 then the result is a copy of the number which is being multiplied.

For the next digit along, the procedure is the same, except that each digit is shifted one place to the left. The result is added to the first result. This is repeated for each digit of the number which is the multiplier, and the sum of all these steps is the final answer.

Practical Multiplication

It's easy enough on paper, less easy to do in practical terms. Figure 6.15 gives an example of the sort of hardware that is needed - the registers must be large enough to cope with all the figures in the answer. For our example, we've used 8 -bit registers, since this is a very common register size these days. The procedure goes something like this. The number to be multiplied is contained in one register, labelled R1 and the number we shall multiply by in another register R2.

Figure 6.15 An arrangement of registers which could be used to multiply two numbers, provided that the correct sequence of control puises could be obtained

Register R2 is now shifted right by a clock pulse and the digit which comes out is used to control a gate. If this digit is 1 (and in this example it is) then the number in R1 is gated into another register, R3. If the digit from $R 2$ is 0 , then register $R 3$ is cleared, so that it contains 00000000 .

The next clock pulse shifts R1 one place left and latches the contents of R4, one empty register into an adder. At the same time, the number in R3 is also latched to the adder. At the next clock pulse the sum (still 1101) is fed back into R4.

Now that R4 contains 00001101. the process starts again. The digit which comes from R2 on the next clock pulse is zero, so that R3 is cleared, and R1 is then left-shifted again. With R3 cleared, the adder adds 00000000 from R1 and 00001101 from R4, and places the
result, still 00001101 back into R4.
The next clock pulse feeds out another 1 from R2 so that R1 delivers 00110100 (remember it has been shifted twice) into R3 and the adder. This is added to the sum so far, giving 01000001 . When R2 is an 8-bit register, the shifting will continue until eight bits have been shifted out of R2, but since the next five bits are 0 in our example, there will be no change in the final answer which is stored in R4.

This, of course, is just one possible way of arranging a multiplication, and there are many others. In particular, one way shifting is more desirable on each register so that a rotation of seven places may have to be used in place of a left shift if only right shift and rotation are possible. The principles are the important things here, though, namely that multiplication can be carried out using only addition and shifting, and that the same is true of division, though the process is a little more complicated.

Other Tricks

Once you can carry out division and multiplication, all other processes can be done using repeated steps. Just to give an example, Fig.6.16 shows how a square root can be found using division and addition. You make a guess at the root - quarter or onethird of the number is as good as any - and then add the guess number to the result of dividing the original number by the guess. Take half of the sum, and use this as a guess again,

```
FORMULA: RI = 1/2N
    R2= %/2,
    R3 = 1/2 (\frac{N}{2R}+R2)
    N = NUMBER WHOSEROOT IS
    N=1s1 GUESS AT ROOT
    A = 1st GUESS AT ROOT
    R1 = BETTER APPROXIMATION
EXAMPLE;FIND}\sqrt{}{30}\mathrm{ GUESS 7
    R1= 1/2(30}+7)=5.642
    R2 = '/2(5 30428}+5.6428)=5.479
    R3=1/2(5.4996}+5.4796)=5.4772
    (\sqrt{}{30}=5.4772255)
```

Figure 6.16 An algorithm for the square root. Unlike some series of this kind, this one converges rapidly, which means that only a few repetitions are needed to obtain a quite accurate result
going through the same procedure. After a few repetitions, you find that the 'guess' is almost unchanged form one attempt to the next, and so the 'guess' is now a very close approximation to the square root.

This is a good example of an algorithm in action - this example is a good algorithm which ends up with a correct value after only a few repetitions. Similar methods, called iterative (meaning repeating)
methods are used for all the other functions which a calculator uses, from squares through sine, cosine, tangent and their inverses, to logarithms and powers of numbers.

Another Process?

Looking back, we've now used or mentioned quite a large number of digital ICs - enough to construct most of the digital circuits you're likely to come across. Wouldn't it be useful if someone could just make all these chips into one large device which you could connect in any way for any sort of digital circuit?

That's not an original thought, and the answer is that such a chip would have so many pins and need so many interconnections that the job would be impossible. The idea of a 'universal' digit chip is not such an impossible dream, though. It's been done, and the device is called the microprocessor.

How can a chip with only forty pins carry out the job of any number of digital ICs? The answer is one at a timel If you're only carrying out one action at a time, you only have to feed in one group of digits at a time, and all the connections inside the unit can be made or broken by gates. The way we decide what is done is by a program, a set of instructions which cause gates to be opened or closed inside the microprocessor. At each step in a program, bits will be transferred into or out of the microprocessor, or from one shift register to another. These bits can pass through adders, be complemented, gated by AND, OR or XOR gates, shifted or rotated in registers and under go all the various actions which should now be familiar. The important difference which makes it all possible is that the action is always sequential. For example, a microprocessor which is programmed to AND three bits will not carry out the operation in one step the way a threeinput AND gate would. Instead, one bit is put into a register and stored. The next bit is then taken in and ANDed with the first, with the result stored in the same register. Finally, the third bit is taken in (or read) and ANDed with the bit in the register. If this is done fast enough, the results are as useful as those produced by a threeinput gate, with the added advantage that most microprocessors can handle eight bits at a time, so that eight lots of AND-ing can be 'ANDled!

Enough of this, though. We're almost MICROPROCESSING - and I haven't written that yet! HE

Medium Wave Radio

Comb the airwaves with our pocket-sized, low cost personal medium wave radio

THERE HAS BEEN no shortage of designs for simple medium wave personal radios over the past few years, and these almost invariably seem to be based on the popular Ferranti ZN4 14 device. One could be forgiven for thinking that there is no viable alternative to the use of this IC, but it is in fact possible to produce a simple medium wave receiver circuit that will give good results using just a couple of transistors as the active devices. Just for a change then, we decided to use transistors in the present design.

The set provides good reception of reasonably strong signals, and by adding a couple of leads to purposely introduce positive feedback the sensitivity can be boosted to the point where numerous stations can be received at a good volume. The output is for a crystal earpiece - magnetic types are not suitable for use with the set.

Construction

Most of the components, including the ferrite aerial, are mounted on one of our standard size (24 holes by 10 strips) $0.1^{\prime \prime}$ matrix Veroboards. Details of the component layout and wiring of the receiver are shown in Fig. 2.

A P-style cable grip is used to mount the ferrite aerial on the component panel, and apart from this the board is assembled in the usual manner. Be careful that you do not overlook the single break in the copper strips, and it is advisable to make this before fitting the components into place. The leadout wires of T1 are made of a special type of wire called Litz wire łwhich has a very low resistance at radio frequencies) and have readyprepared ends. It is recommended that these leads should be left full length as Litz wire can be difficult to tin with solder, and you may find it

By mounting the project on a suitable board it can be carefully inserted
into a case - such as the one we used for a Keystone camera
difficult to connect these leads if you trim off the prepared ends!

There are a number of plastic cases available which will comfortably accommodate the set, but be careful not to underestimate the size of the case required. The ferrite rod is about 125 mm long and the case must obviously have an internal dimension of at least this figure. A metal case is not suitable as it would screen the ferrite aerial and no stations would be received!

The set should cover the entire MW band if the aerial coil is positioned almost right at the end of the ferrite rod, and it should be glued or taped in place here. The set has a slight excess of coverage and so the position of the coil on the rod is not too critical.

It should be possible to receive a few stations quite well when the set is first tested, but improved results can be obtained by adding the two single-strand insulated leads, as shown in Fig.2. These will increase the feedback applied over the RF amplifier and, up to a point, the closer together the wires are brought, the better the performance of the set. However, bringing them too close will result in the set oscillating and blocking proper reception. The two wires should therefore be positioned as close together as possible without this occurring at any setting of CV1. Once the optimum position has been found, the leads should be secured with insulating tape. If moving the two leads closer together results in reduced performance the phasing of T1 is incorrect, and the two leads from the small winding of T1 should be transposed.

How It Works

Figure 1 shows the circuit diagram of the radio, and the circuit breaks down into three basic stages: an RF (radio frequency) amplifier, a detector, and a single audio amplifier stage.

The RF amplifier uses Q1 as a straight forward common-emitter amplifier which gives high gain. T1 is the ferrite aerial, with tuning capacitor CV1 giving coverage of slightly more than the whole of the standard medium wave broadcast band. The tuned winding of T1 has quite a high impedance, and signals from this winding cannot be fed directly to the relatively low-input impedance of Q 1 as this would give a very inefficient signal transfer and unacceptable results. A lowimpedance coupling winding on T1 is therefore used to match the output of the aerial to the input of Q1.

Coil T1 is connected so that a phase inversion of the signal is produced, and a further phase inversion takes place through Q1. This brings the collector of 01 and the hot end of T1's main winding in phase, and there is inevitably a certain amount of stray feedback between these two points. This feedback results in some of the output of 01 being fed back to the input where it is amplified once again. This boosts the sensitivity and selectivity of the receiver. By purposely encouraging this feedback it is possible to obtain a very substantial increase in performance, although excessive feedback lor 'regeneration' as it is often called in this application) must be avoided. Otherwise the circuit will break into oscillation and the set will not function properly.

The output of 01 is fed to a simple detector circuit which uses diode D1 to provide rectification and C2 to give RF filtering. Resistor R3 gives D1 a slight forward bias which gives improved detection efficiency.

Capacitor C3 couples the audio output of the detector to a second commonemitter stage which uses $\mathbf{Q 1}$ and directly feeds the crystal earphone. The current consumption of the circuit is only about 2.5 mA , and a PP3 size battery is sufficient to give many hours of use.

J	-	-	-	-	0	0	0	-	\bigcirc	-	0	\bigcirc	0	-	0	-	0	0	0	0	-	0	-	
1	0	0	-	-	0	-	0	c	0	-	-	0	-	0	o	0	-	0	0	0	-	0	0	
H	-	\bullet	0	-	-	0	\bigcirc	0	0	\bigcirc	-	-	-		-	-	-	0	-	0	-	0	-	$\overline{0}$
G	0	0	0	-	0	0	-	-	-	0	-	-	0	-	\bigcirc	-	-	0	-	0	-	0	0	0
F	0	0	0	0	0	\bigcirc	O	-	0	-	0	-	0	-	0	0	0	0	-	0	0	0	-	0
E	\bigcirc	0	-	0	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	0	-	0	-	-	-	0	-	-	0	0	0	0	0
D	-	-	-	0	0	0	0	O	0	0	0	0	o	-	o	0	0	0	o	0	-	0	-	-
	0	0	\bigcirc	0	\bigcirc	0	-	-	\bigcirc	-	0	0	-	\bigcirc	0	-	-	-	-	0	0	\bigcirc	0	
8	\bigcirc			0	0	-	0	0	0	-	0	-	-	O	-	-	-	0	0	0	0		-	$\overline{0}$
	0	0	0	0	\bigcirc	0	\bigcirc	O	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	-	\bigcirc	0	\bigcirc	0	

Figure 2. Connection details of the project along with Veroboard overlay and underside track break.

© Copyright MODMAGS Ltd.

Figure 1. The circuit diagram of the HE Miniature MW Radio

FREE

BURELAR ALARM BOOKILI

Our new FREE booklet entitled, 'Planning, Installing and Maintaining Home Intruder Alarm Systems', gives advice on how to do just that.
At Linton Electronics we do not assume that because you are concerned about Home Security you are automatically a leading authority on the subject of Intruder Detection Equipment and Systems.
Our new FREE booklet takes you step by step through the maze of all the different equipments available, explains their various functions, advantages and disadvantages, and does it all in language you can understand.

Our new FREE booklet also gives pointers as to how an intruder in your home might operate, so indicating how your Intruder Alarm System can not only be effective, but cost effective too.
In short, our new FREE booklet has been written to give you confidence in the system you install. As a mail order supplier of Intruder Alarm Equipment we feel that that is important.
Write, or telephone our answering service NOW for your free booklet. We will send your copy by return of post.

4 HELSTON CLOSE, LINTON, burton on trent, staffs. DEI2 GPN

PHONE: BURTON (0283) 761877 24 Hour Phone Answering Service access orders welcome

PARNDON ELECTRONICS LTD.
Dept. No. 23, 44 Paddock Mead, Harlow, Essex CM18 7RR. Tel. 027932700
RESISTORS: $1 / 4$ Want Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors made under strictly controlled conditions by automatic machines Bandollered
C1.00 per hundred mixed. (Min 10 per value) E8.50 per thousand mixed. (Min 50 per value) Special stock pack 60 values. 10 off each $£ 5.50$

```
DIODES: IN4148 3p each. Min order quantity - 15 tuems
```

£1.60 per hundred
DIL. SWITCHES: Gold plated contact in fully sealed base - solve those
programming problems.
4 Way 86 p each. 6 Way $£ 1.00$ each. 8 Way $£ 1.20$ each.

DIL SOCKETS: High quality, low profile sockets:
8 pin-10p. 14 pin-13p. 16 pin- 15 p. 18 pin- 19p. 20 pin- 25 p.
22 pin- 29 p. 24 pin -35 p. 28 pin -39 p. 40 pin -57 p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - U.K £1 00. OVERSEAS 55 CASH WITH ORDER PLEASE

We now supply the extremely reliable and cost conscious LEADER range of testgear.

Please send large SAE for special catalogue. All prices exclusive VAT / carriage.

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc. Available by post, UK 75p post paid: Europe 95 p post paid: Rest of world $£ 1.35$ post paid.

SINCLAIR INSTRUMENTS
Digital Multimeter
PDM35 $£ 34.50$
" DM235 £ 52.50
" DM350 £ 72.50
DM450 £ 99.00
Digital Frequency Meter
PFM200£ 49.80
Low Power Oscilloscope
SC1 $10 \quad £ 139.00$
NEW
TF200 Frequency Meter
£145.00
TGF105 Pulse Generator
£ 85.00
CRIMSON ELEKTRIK HI FI MODULES
CE608 Power Amp $£ 20.09$
CE1004 " " £23.43
CE1008 " " £26.30
CE1704 " ". £33.48
CE1708 " ". £33.48
CPS 1 Power Unit $£ 19.52$
CPS3 " ". $£ 23.52$
CPS6 ". " $£ 30.00$
CPR1 PreAmp $£ 32.17$
CPR1S Pre Amp $£ 42.52$
All Prices + VAT + postage/ packaging
Don't forget! We also carry an
impressive range of semi conductors, passive components, electro
mechanical components, tools etc.

Books from the HE Book Service

SPECIAL OFFER TO READERS OF HOBBY ELECTRONICS ONLY
ELEMENTS OF ELECTRONICS
Book I
Book II
Book III
£2.60 packing for 3 volume set. OUR PRICE $£ 7.00$ + FREE slip case for 3 volumes + FREE Resistor Colour Code Disc

28 TESTED TRANSISTOR PROJECTS by R. Torrens .. £1.50 The author has designed developed and built some completely new circuits.
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS by R. A. Penfold E1.50 Enables the complete beginner to tackle the practical side of electronics.
ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST by ELECTRONICS HOBEYIST by G. T. Rabaroe
Supplies the hobbyist with a blackground knowledge.
50 PROJECTS USING RELAYS,
SCR'S \& TRIACS by F. G Rayer
£1.50 Rayer
Gives tried and practical working circuits which should present the minimum of difficulty for the en thusiast to construct.

HOW TO BUILD YOUR OWN METAL AND TREASURE LOCATORS by.F. G. Rayer -.

Contains complete electronic and practical details.on the simple and inexpensive construction of Heterodyne Metal Locators.

HOW TO MAKE WALKIE. TALKIES by F. G. Rayer $£ 1.75$ IC555 PROJECTS by E. A. Parr
ncluded in this book are Basic and General Circuits. Motor Car and Model Railway Circuits, Alarms and Noise Makers as well as a section on the 556, 558 and 559 timers.

PRACTICAL ELECTRONIC CALCULATIONS AND FORMULAE by F. A. Wilson ... $£ 2.50^{\circ}$ Units and Constants, Direct Current Circuits, Passive Components, Alternating Current Circuits, Networks and Theorems, Measurements.

ELECTRONIC SECURITY DEVICES by R. A. Penfold $£ 1.70$ includes both simple and more sophisticated burglar alarm circuits using light, infra-red and ultrasonics gas and smoke detectors, flood alarms doorphone and baby alarms. etc.

ELECTRONIC PROJECTS FOR BEGINNERS by F. G. Rayer

E1.60
A newcomer to electronics finds a wide range of easily made projects

POPULAR ELECTRONIC PRO. JECTS by R. A. Penfold $£ 1.70$ Radio Projects. Audio Projects Household Projects and Test Equipment

HOW TO BUILD YOUR OWN SOLID STATE OSCILLOSCOPE by F. G. Rayer £1.75 Enables the enthusiast to simply and inexpensively build his own oscilloscope.

ELECTRONIC GAMES bY R. A. Penfold £2.00 In this book the author has designed and developed a number of interesting electronic game projects using modern integrated circuits.

COUNTER DRIVER AND NUMERAL DISPLAY PROJECTS by F. G. Rayer . . $£ 2.00$ Author discusses and features many applications and projects using various types of numeral displays, popular counter and driver IC's etc.

BEGINNERS GUIDE TO MICROPROCESSORS AND COMPUTING bYE.F. Scott
Introduction to the basic the 2.00 oncepts of binary arithmetic concepts of binary arithmetic. microprocessor operation and

ELECTRONIC MOUSEMOLD PROJECTS by R.A. Penfold
$£ 2.00$
Circuits range from such things as ' 2 tone door buzzer' Intercom through Smoke or Gas Detectors to Baby and Freezer Alarms

A MICROPROCESSOR PRIMER by E. A. Parr . . $£ 2.00$ A newcomer to electronics tends to be overwhelmed when first conronted with articles or books on microprocessors. This small book will start by designing a simple computer and because of its simplicity and logical structure the language is hopefully easy to learn and understand.

50 CIRCUITS USING 7400 SERIES IC'S by R. N. Soar ..

The author has compiled 50 interesting and useful circuits and applications covering different aspects of electronics using these devices.

POPULAR ELECTRONICS BOOKS
Sinclair, 1. R., Introducing Electronic Systems£3.10 Sinclair, 1. R., Introducing Amateur Electronics $£ 3.10$ Sinclair, I. R., Electronic Fault Diagnosis £4.00 Sinclair 1. R., Repairing Pocket Transistor Radios $£ 2.90$ Sinclair, I. R., Oscilloscope In Use Sinclair, I. R., Understanding Electronic Components $£ 5.10$ Sinclair, 1. R. Understanding Electronic Circuits $£ 5.10$ Kitchen, H. T., Handtools For Electronic Workshop £3.25 Kitchen, H. T., Electronic Test Equipment 6 Capel, V. How To Build Electronic Kits £3.25
Darr, J., How to test almost everything electronic $\quad € 3.75$ Brown, R. M., How to read electronic circuit diagrams ... $£ 5.60$

AUDIO	
Earl, J., Audio Technicians Manual	Bencti
	¢5.00
IEarl, J., Pickups and Loudspeakers	
	£5.00
Earl, J., Tuners and Amplifiers	
	¢4.00
Earl, J., Cassette Tape Recorders	
	£6.00
Earl, J., ABC of Hi-Fi	£6.00
, Microphones in	Action

Capel, V., Improving Your Hi-Fi $E 5.00$ Capel, V., Creative Tape Recording $£ 5.00$
Hellyer, H. W., Tape Recorders
$£ 5.00$
Sinclair 1. R., Audio Amplifiers For Home Construction $\mathbf{6 . 0 0}$

RADIO CONTROL
Drake, J., Radio Controlled Helicopter Models $£ 4.95$ Jeffries, C. R., Radio Control For Model Yachts $\mathbf{£ 3 . 8 5}$ Safford, E. L., Radio Control Manual £3.00

C00KBOOKS.
Tracton, K., BASIC Cookbock
Lancaster, D.. TTL Cookbook
Lancaster, D., RTL Cookbook
$\varepsilon 7.55$ $£ 4.65$ book £8.20 Jong, W. IC Op Amp Cookbook 810.00 Lancaster, D.. T.V. Typewriter Cookbook $£ 7.75$ Lancaster, D., Cheap Video Cookbook £7.00 Jong, W. IC Timer Cookbook
. 87.65
Lancaster, D., Incredible Secret Money Machine (a how to cook book for setting up your computer or technical business) . . . £4.95

QUESTIONS ANO AMSWERS
SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE BEGINNER.
Coker, A. J., Q \& A On Electric Motors $£ 2.50$ Hellyer, H., O \& A On Radios and T.V.50 Hibberd, R., O \& A On Integrated Circuits
Jackson, K., Q \& A On Electricity nicity
$£ 2.50$ Brown, C., Q \& A On Hi-Fi £2.50 Brown, C., Q \& A On Transistors £2.50
Brown, C., Q \& A On Electronics
${ }^{£ 2.50}$
Reddihough, J., O \& A On Colour T.V. £2.50

CONSTRUCTOR GUIDES

Graham, P., Simple Circuir Building

Colwell, M., Electronic Diagrams | £3.40 |
| :---: |

Colwell, M., Electronic Components £3.40
Colwell, M., Printed Circuit Assem-
Aly $\begin{aligned} & \text { Ainslee, A. Practical Electronic } \\ & \text { E }\end{aligned}$
Project Building $\quad £ 3.40$
Colwell, M., Project Planning and
Building 30

beginnea's guide

Sinclair; I. R., Beginner's Guide To Tape Recording £4.25

Sinclair, I. R., Beginner's Guide To Integrated Circuits £4.25 Sinclair, I. R., Beginner's Guide to Audio j Beginner's Guide \mathbf{T}^{25} King, G. J., Beginner's Guide To Radio
King, G. J., Beginner's Guide To Television £4.25
King. G. J. Beginner's Guide To Kolour T.V. Beginner's Guide $£ 4.25$ Guilou, F., Beginner's Guide To Electric Wiring $£ 4.25$

PROJECT BDOKS

Marston, R. M.. 110 Cosmos Digital IC Projects For The Home Constructor Marston, R. M., 110 Wave Form Projects For The Home Constructor $£ 4.95$
Marston, R. M., 110 Op Amp Pro jects For The Home Constructor
£4.95
Marston, R. M. 110 Semiconductor Projects For The Home Constructor £4.95
Marston, R. M. 110 Thyristor/ SCR Projects For The Home Constructor Marston, R. M.. 110 Electronic Alarm Projects For The Home Con-
 Marston, R. M.. 110 Integrated Circuits Projects For The Home Constructor $\mathbf{~} 4.95$ Marston, R. M., 20 Solid State Projects For The Car and Garage

Marston, R. M.. 20 Solid State Projects For The Home $£ 4.95$

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:

Hobby Electronics Book Service
Modmags Ltd
145 Charing Cross Road

- Prices may be subject to change without notice.

London WC2H OEE

GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally designed for installation into a music centre units which two separate built and together. Note: Circuit diagram and Interconnecting wiring diagrams supplied. Rotary Controle: Tuning, on / off volume. balance, treble, bass. Push-button controls: Mono, Tape, Disc, AFC, FM (VHF), RMS MW. SW. Power Outpur: 7 watts inio 8 ohms 10 wats speech and music Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ within $\pm 3 \mathrm{~dB}$. Tape Sensitivity: Output - typically 150 MV . Input - 300 mV for rated output. Disc Sensitivity: 100 mV (ceramic cartridge). Radio: FM (VHFF). $87.5 \mathrm{MHz}-108 \mathrm{MHz}$. Long wave 145 kHz - 108 kHz . Medium wave.

B.K. ELECTRONICS 37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY BARCLAYCARD

V/SA

* Ske lor currmal lus * onicial orders waiceman Mul pritas

$520 \mathrm{kHz}-1620 \mathrm{kHz}$. Short wave. $5.8 \mathrm{MHz}-16 \mathrm{MHz}$. Size: Tuner $-23 / 4 \mathrm{in}$. $\times 15 \mathrm{in} . \times 7 \frac{1 / 2}{}$ in approx. Power amplifier 2 in . $\times 71 / 2 \mathrm{in}$. $\times 41 / 2 \mathrm{in}$. approx. 240 V AC operation. Supplied complete with fuses, knobs and pushbuttons, and LED stereo E2.50 postage and packing. STEREO CASSETTE TAPE DECK ASSEMBLY. Comprising of a top pane assembly and tape mechanism coupled to a record/play back printed board assemor console of own choice. Brand ready built and tested. Features. Paws. control, auto stop. 3 digit tape counter illuminated twin VU meters with in dividual level controls, twin mic, input sockets. AC erase system, LED record indicator. (Separate power amplifier required). Inpur Sensitivity: 6 MV (with level control set at max.). Input Impedance: 47 kOhms . Output Level: To both left and right-hand channels 150 MV . Output impedance: < 10 K . Signal so noise ratio: 45 dB nominal. Powor Supply Requiremente: 12 V AC at
$300 \mathrm{M} / \mathrm{A}$. Connactions: All connections 300M/A. Connections: All connections to the with nine-pin plug (socket provided) Dimensions: Top panel - $111 / 2$ in $61 / 2 \mathrm{in}$. Mechanism fits through a cut out $53 / 4 \mathrm{in}$. x $10^{1 / 2 \mathrm{in} \text {. Clearance required under }}$ top panel $21 / / \mathrm{in}$. Supplied complete with circuit diagram etc. Price $£ \mathbf{\$ 0} .50$ plus £2.50 postage and packing. Suitable 12 V mains transformer $£ 3.00$.

VATI WIPE wiper delay control

The Vari Wipe provides intermittent
 operation of the windscreen wipers with adjustable control to delay each wipe between 3 and 60 seconds. Set the control to suit the conditions to clear light drizzle, fog, snow, sleet or spray. Easily fitted to British, Continental \& Japanese cars with 12 volt self park wipers. Complete kit contains all components, including timer chip, PCB, case, mounting panel, wire, etc., with full instructions.

VARI WIPE KIT E6.95 inc. P. \& P. ASSEMBLED £9.25 inc. P. \& P. or send large s.a.e. for details Dept HE 2Card Holders Phone 026327244°
FREBPOST Thornton Cleveleys, Blackpool FY5 2:Bi

We've heard a lot of rumours about official CB proposals, but we're still no nearer knowing the truth. Rick Maybury cogitates on recent events

THERE'S AN old joke about the way they measure time in South America: they count in revolutions per minute. In the last few weeks l've been tempted to reckon in demonstrations per month, there have been so many lately l'm beginning to wonder if anyone's taking any notice. Largest one for some time was on the 6 th of December, organised by the UBA. It consisted of a couple of hundred cars doing their best to bring central London to a standstill on a Saturday afternoon. Apart from the obvious annoyance it caused the pre-Christmas shoppers it was largely ignored by the national press and TV. Oh well, it was a nice try.

We've finally heard from the Home Office about the replies to the Open Channel document. It appears that some 11,000 submissions were made and that, according to an official source, was the second biggest response they've ever had. The biggest was to the abortion bill some time ago. The result of the paper will not be made public for some time but an informed source has made it known that they are seriously reconsidering the wisdom of 928 megs as a viable frequency for public two-way radio.

Apart from demonstrations, this month has produced more that the average number of silly rumours. Favourite so far is the one about the licence application forms that someone somewhere claims to have seen. Apparently we are to have CB on 27 megs, with 22 channels FM at 2 watts output. One day we're going to ignore one rumour too manyl Please, next time someone comes up to you with a rumour like that telephone the Home Office to check it out before you call us. We really do feel that it is more likely to know the truth.

Breaker One Four

The publishers of HOBBY ELECTRONICS would like to point out that it is at present a contravention of the Wireless Telegraphy Act of 1949 and 1968 to use, manufacture, install or import CB transmitting equipment. It is not the intention of Modmags Ltd to incite, encourage or condone the use of such equipment.

Club Call

Quite a few new clubs for your notebooks this month but for the most up-to-date club information refer to the club section in Citizens Band magazine.

PLYMOUTH CB CLUB, ‘SINGING

WHEELS'
Correspondent: P Williamson
354 Blandford Road,
Plymouth,
PL3 6HZ
Devon

ISLE OF MAN CB CLUB

Secretary: J Dalrymple
Lower Ballaclucas Farm
Marown,
Isle of Man
BRITISH SIDEBAND NETWORK
For details enc SAE to:
15 Carman Walk, Broadfields, Crawley. West Sussex

DAVENTRY BREAKERS CLUB
Chairman: Gavin Foster
33 The Wye,
Daventry
(Phone 3113)
BURY CB CLUB Secretary: Shady Lady c/o Ripley House Hotel, Northgate Avenue, Bury St Edmunds, Suffolk

HE MICROBE R/C

Basic Kit $£ 19.90$

EVERCO

Multiband Receiver plus 40 -channel $C B$ Monitor. Frequency coverage
54. 87 MHz
$108-145 \mathrm{MHz}$
145.176 MHz

Plus H1 40 CB Channels
This unit has a telescopic antenna and squelch control, sockets for earphone and external DC power source. $£ 21.95$ inc. VAT.

ELECTRONIC GAMES

Star Chess T/V game. Database Prog T/V game Chess Challenger 10 Chess Challenger 10 Voice Challenger Zodiac Astrology Computer Electronic Mastermind Supersonic Mastermind. Ne Mattel Subchase. New Mattel Armor Battle. New Enterprise 4 in 1
Galaxy Invaders. New
$£ 89.95$
$£ 99.00$ $£ 99.00$
$£ 160.00$ $£ 160.00$
$£ 230.00$ $£ 230.00$
$£ 59.95$ $£ 59.95$
$£ 29.95$ $£ 29.95$
$£ 14.90$ E 14.90
£ 21.00 E 17.90 $£ 17.80$ $£ 22.90$ £22.95 Radio Control Models - Various

Ball Clock as M.E. offer, Kit $£ \mathbf{2 4 . 9 5}$, or ready-built £29.95.

PINBALL WIZARD

*Still available * Home TV Game - B/W Kit Basic Kit $£ \mathbf{2 8 . 9 0}$ Contains everything except box and controls
Sox \& Controls £6.50. P.S.U. £3.90 CEH Car Alarm Kit £ 18.90
Chroma Chime 24 tune door chimes kit Chroma Chime 24 tune
SINCLAIR SC 110 IOMHz scope
PFM 200 .
£52.00
$3^{\prime \prime} 5 \mathrm{MH}_{2}$ Oscilloscope .. £113.85
$4^{\prime \prime} 5 \mathrm{MHz}$ Oscilloscope ... £139.90
$5^{\prime \prime} 10 \mathrm{MHz}$ Oscilloscope E169.90 ATARI £138

COMPUTERS-HOME

BUSINESS, ETC

$$
\begin{aligned}
& \text { Pet } 8 k \\
& \text { Pet } 16 k
\end{aligned}
$$

Pet $16 K$
Pet $32 K$
Superboard $114 K$
UK UK 101 kit $4 K$
UK 101 Built $4 K$
Superboard/UK 101 case
Nascom 2 kit
TRS80 16K Level II
514" disc drive for TRS80 51/4 disc drive for TRS80 £271.40 Sotware. Pet/TRSB0/Superbard etc.
Exody Sorceror $\overline{16 / 32 / 48 K}$ from

Renumber prog. 101 8860.00

Rree - Amumber prog iot £4.00
S.a.e. enquiries. Please allow up to 21 days for delivery. ALL PRICES INCLUSIVE

CANVEY ISLAND BREAKERS
Vice President: D Nairn
15 South Parade,
Canvey Island,
Essex

BAT BREAKERS (UBA)

Chairman: C Tugby
6 Woodlands Close,
Tring,
Herts

CB CRUISERS CLUB

Secretary: H Kendall-Jackson
Brackenrigg,
Gannock Park,
Deganwy,
Llandudno,
Gwynedd,
N . Wales

BOTTLE CITY BREAKERS

Secretary: Barry Hatton
22 Robinson Place,
St Helens,
Merseyside

SOUTH MANCHESTER BREAKERS
CLUB
Chairman: R2D2
'El-Pateo'
Stretford Arndale Centre, Stretford,
Manchester

Full reports from all of these clubs appear in the club directory section of the February issue of Citizens Band.

New Monitor

We've seen just about every CB monitor on the market in the last few months but the one we have pictured here is probably the best yet I It's made by a company called Everco and covers the full 40 CB channels. As well as CB it will receive a wide range of other 'specialist' transmissions ranging from minicabs, amateur radio and aircraft landing approach control. All in all this little unit is several times more sensitive and selective than many other so-called monitors. Our review sample was quite capable of resolving individual CB channels, which is the most severe test imaginable, considering the usual congestion. One little touch that sets this monitor apart from other, lesser, receivers is the inclusion of a very useful 'squelch' control that actually works, albeit slowly.

If you would like to examine an example of this monitor then get yourself round to NIC at 61 Broad Lane, Tottenham. If you press $£ 21.95$ into Nick's hot little hand then one of these excellent receivers will be yours.

More Demos

We return to the subject of demonstrations for our last item this month. On the 22nd of November the Plymouth CB Club organised a CB 'Convoy' for about 100 cars, lorries and even a cement mixer. Representatives from as far afield as Exeter, St Austell and London took part on the 30 mile cruise and according to the organiser everything went very smoothly. As you can see from the photograph Andy Donovan (Disco One) was in attendance to keep and eye on things. According to a press cutting from a local paper one local businessman, incensed by the demo, urged the local Customs and Excise to take action against anyone using a CB transmitter during the demonstration. The ironic thing about this man's protest is the fact that he is a national spokesman for the Car Radio Independent Specialists Association and owns a shop called Car Radio in Plymouth itself. I would have thought that a shop like that stood to benefit from the introduction of CB.

The foil pattern of the Audio Signal Generator

Above: The printed circuit board of the Heartbeat Monitor

Below: The Background Noise Simulator

AD INDEX

Earn E20-£100p.w. in your spare time by introducing the revolutionary new Flip-Caller telephone to your friends Flip-Caller telephone to your \mathbf{f}
Features micro-chip controlled Features micro-chip controlled
push-button dialling and memory recall Sells itself Generous commission. For details write to Depi. ETI SUPERPHDRE
P.O. Box 31, Twickentam TW2 5RL

PRINTED CIRCUITS Make your own simply cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board, approx. 1 mm thick £1.75•sq. ft. Post/ packing 60p.-White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.
£99 SYNTHESISER D.I.Y. Professional results, easy-build.-S.A.E.: Dewtron, 254 Ringwood Road, Ferndown, Dorset BH22 9AR.

BURGLAR ALARM EQUIPMENT, TOP quality, brand new. Free catalogue and price list. Sigma Security Systems, 13 St . John's Street, Oulton, Leeds LS26 8JT

Ahters Electronika
Ambit Intornational
Anglio Componenti
Arrow Audro Centre
BK Electronics
BK Electronics
Boas Industrial Mouldings
J. Bull (Electrice)
C.S.C

Elecurovalue
Globel Electronica
Greemweld
Henry'e Redio
ILP
Linton Electonics
Magenta Electronics
Maplin
Marshells
NIC Modals
Parndon Electronica
Precision Petit.
Progressive Radio
Selray Book Co.
Silica Shop
Spimon Dovelopments
Swanloy Electronic:
Technombtic
Tempue
TK Electronics
Vero
Wattord Electronics
West Hyde Developments
Wintjoy

SPARE PARTS

It's easy to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

 A.S.A. Ltd., Brook House,Torrington Place, London WCIE 7HN.
THE CB ANTENNA THAT REALLY "ZAPS" IT OUT

Firestik' ANTENNAS

WRITE OR CALL FOR FULL INFORMATION FROM:
 with thousands of photographs and illustrations and page after page of invaluable data. We stockjust about every useful component you can think of. In fact, well over 5000 different lines, many of them hard to get from anywhere else. Hundreds and hundreds of fascinating new lines, more data, more pictures and a new layout to help you find things more quickly.

Post this coupon now for your copy of our 1981 catalogue price $£ 1$.

กาา1ณనค네ำก

Maplin Electronic Supplies Ltd.
All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155. Sales (0702) 552911. Shops:

Please send me a copy of your 320 page catalogue. I enclose E 1 (Plus 25p p\&p). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the UK send $£ 1.68$ or 12 International Reply Coupons.
I enclose £1.25
Name \qquad

Address

[^0]: Items mentioned here are those planned, but unforeseen circumstances may affect the actual contents.

