

For A Down-To-Earth Approach To Electronics

Eratwond 新

Ho buto e ectronics oday?

 Yo hesmmisedEctronics methet is rapidly expanding. Whether its
 og licreasingly dricu e okeen op with the atest Whet ins. Or to set them
 looking y- id a lot more hesides. We stack it he top makes at pricest on will iust make you tove us. Simplyphone, writeof telex F. England, Tel. Walton-on Thames (STD 09322 M4 8145 and firdequt.

80:92

 \title{
}
 \title{

}

Phe

CHOOSE RN I.L.P MOSEET POWER RMP when it is
advantageous to havea faster slew rate, lower distortionat
higherfrequencies, enhancedthermalstability, the ability
to work with complex loads without difficulty and

Load impedance both models Input impedance both models $100 \mathrm{~K} \Omega$ | Load impedance both models | Input impedance both models $100 \mathrm{~K} \Omega$ |
| :--- | :--- |
| $4 \Omega-\infty 0$ Input sensitivity both | Frequency response both models |
| models 500 mV | |
| | |

Load impedance all models $4 \Omega-\infty$ Input impedance all models lo0K Ω
Input sensitivity all models 500 mV Frequency response all models THE NEW PROFTIE E 5 all models 500 mV Frequency respo
15Hz-50XHz-3dB

The introduction of standard heatsink extrusion for all
I.L.P power amplifiers achieves many advantages: R.P power amplifiers achieves many advantages.
Research shows they provide optimum thermal
dissipation and stability. Slotted shoulders allow easy

EDITORIAL
 Monitor

STEALTHILY, over the last three months, changes have been taking place in Hobby Electronics. Some of these have been in response to comments from the many readers who took the trouble to fill in and return our Survey form (HE August 1980).

You will have noticed, no doubt, that the cover and Contents page haven't been spared: what about the magazine itself?

Judging by the response to our Survey - and the constant flow of letters that we receive HE is meeting most of our readers' needs. But there's room for a few improvements and we've already started on these.

First the projects: we're aiming to make them more interesting and useful without at the same time making them too clever or too expensive. We'll try and keep the balance between simple projects for those starting from scratch to more expensive ones for our more experienced (or ambitious) readers. Whatever the project, we'll help you understand how it works and guide you on how to build it without getting submerged in technicalities.
Second the features: we'll try and dish up some interesting general articles for you and polish up some of the regular ones.

On some magazines the editorial staff sit in an ivory tower detached from their readers, apart from the odd letter of complaint. In the Modmags plastic tower in Charing Cross Road we're right in the middle of things and get plenty of support (and criticism) from our readers. The subject of electronics is exciting and an exciting part of an uncertain future. We aim to present this subject in a digestible form and make it an interesting and absorbing hobby for you.

As one of our readers in South Africa rounded off his letter to us recently, so I will end this Editorial:

Yours - in electronics Hugh Davies EDITOR

Tiny Tape 11

Following our exclusive report last month on the amazing Technicolor mini ature video cassette recorder we have news of yet another mini VCR, this time from Hitachi.

Unlike the Technicolor machine the Hitachi recorder is still experimental but it does have the advantage of having a video camera built-In to the case. This new machine has been provisionally called the MAG Camera and as you can see from the picture it's not much larger than an 8 mm camera.

The MAG uses $1 / 4^{" \prime}$ tape in a compact cassette-type box, and we would hazard a guess that this is the same tape as used by the Technicolor machine which also uses compact cassette-sized tape units. Up to 2 hours recording time is available on this unit, and Internal rechargeable batteries power both the recorder and solid-state camera. All-up weight of the unit is just $2.6 \mathrm{~kg}(5.7 \mathrm{lbs})$ which should prevent too much muscle strain.

As yet Hitachi haven't announced price or probable launch date: this they claim will not be until there have been some International agreements on standardisation. It would seem to us that the battle of the new formats is going to be as bloody as the one currently being waged over VHS and

And again

This is getting monotonous. Here we have yet another tiny stereo cassette player, this time from Hanimex. You all know the score by now so we'll just content ourselves with the price, which is £39.95 and the name, which is HC 300S. At the moment there are around six or seven of these
little units on the market (or there will be in the very near future - in time for Christmas no doubt). We have yet to see one that rivals the Sony Stowaway, and certainly none sound as good. Watch this spece: we'll tell you when we see one!

For more information contact Hanimex UK Ltd. Faraday Roed, Dorcan, Swindon.

Betamax. In the end no-one will win - it'll be the poor old consumer that has to make the unenviable choice of risking money on a system that might or might not become redundant. We just wish these companies would agree on standards before they launch their products and not wait until poor old Joe Public has spent his hard earned cash.

If you've been holding back on buying a chess computer then now may be the time. We have been playing with the cheapest and neatest chess computer we've ever seen. It comes from an American company called Tryrom Inc and is called - rather uninspiringly - Electronic Chess Game. Our resident wizard reports that the game is every bit as good as
the current crop of chess machines costing up to $£ 100$. The machine has eight levels of difficulty ranging from beginner to expert. Facilities include position verification, automatic castling, change sides and piece selection. All of this is contained in a calculator-sized box with a small travelling set of magnetic chess pieces and a wooden chess board. Each game can commence with a number of classic openings or alternatively a random opening once your strategy has been decided.

Taken overall this is an excellent little machine and the incredibly low price of just $£ 29.95$ including board and. pieces represents just about the best possible value for a chess computer. For more details of this machine and a fine selection of other games contact Kramer \& Co., 9 October Place, Holders Hill Road, London NW4.

Staggering Statistic

Have you ever wondered how many colour TV transmitters the BBC operate? No? Well, we'll tel you anyway, on the 7 th of

November the BBC opened their one-thousandth transmitter at Hedlyhope in County Durham. Makes you think about the $£ 34$ licence, almost seems cheap doesn'tit?

Tune Your Guitar By Cassette

Our Guitar Tuner Project (HE November 1979, pp 61 to 62) inspired one company - Tutchings Electronics - to come up with what it claims to be the first guitar tuner on cassefte tape in the world.
While our tuner produces six preset tones, each corresponding to the pitch of one of the guitar strings, this cassette, called simply 'Guitar Tuner', contains recordings of tones and string sounds for classical, acoustic, electric and 12 -string instruments. According to Tutchings, most pupils find it difficult to tune up their guitars by simple tones, and prefer to hear the actual strings. The recordings are backed up by a string-by-string commentary.
Side one of the tape contains classical and acoustic sections, interspaced by what is described as: the frequency tone of the tuning A - 440 Hz - which lasts for $31 / 2$ minutes. The main purpose of this is to assist in finding the acoustic guitar section. It can, of course, also be used for tuning other instruments.
For classical, acoustic and electric guitars you get a 10 second tone of each note, starting with the high E , followed by: ' . . the striking of each string four times
on an accurately tuned guitar". Each section is repeated. Tuning for the 12 -string guitar is more complicated, starting with 'first pair: D in unison' down to 'sixth pair: D covered ...now D covered, octave up'. A chord played on all strings is included at the end of each section.
We tested this cassette on a Phillips N2534 machine, and used the recordings to tune-up a classical guitar and an acoustic guitar. After the tune-up, both were checked against harmonic (open string) tuning, aided with an A (440 Hz) tuning fork. The check showed the tape method to be reasonably accurate, but it must be borne in mind that very few cassette players are capable of running precisely the same speed without some, however slight, 'wow' and 'flutter'. Such irregularities are usually imposed by the transport mechanism. (By the way, the continuous 440 Hz recorded tone was found useful for checking for such irregularities!!

Although not necessarily of hi-fi quality, the tape worked well as a tuning aid. We thought it ideal for the beginner, because most have difficulties with tuning-up (especially after fitting a new set of strings). Guitar Tuner costs £2.50 including post and packing, and is available from: Tutchings Electronics Ltd., 3 Grange Road, Bournemouth BH6 3NY

TV Game In Court

An interesting story has been drifting across the Atlantic for the past few weeks. It concerns a number of disgruntled software engineeers working for Atari. Apparently the gentlemen who used to write the games programs for Atari left the company some months ago to start a company of their own. They formed a small outfit called Activision, specifically to manufacture cartridges for the Atari TV game. Naturally Atari was a little bit unhappy about all this, after all it invented the Video Computer System and saw no reason why somebody else should move in on its territory, particularly ex-employees. Atari proceeded to slap a 20 million dollar lawsuit on Activision. Much of the legal wrangling centred on the name used for one of the cartridges which

had been registered by Atari. The fuss caused by the lawsuit has given Activision an immense amount of free publicity which helped its sales no end. Now it appears the Activision cartridges are soon to be sold on this side of the big pond. Already we have had a couple of samples in the HE of-1 fices. We can safely say that they are every bit as good as the original Atari cartridges. The fact they will cost about 20% less than comparable Atari cartridges will no doubt assure their popularity over here too. Currently there are four games available: Fishing Derby, Checkers, Boxing and Dragster. In the spring we can expect another two cartridges called Skiing and Bridge. Recommended retail price is likely to be around $£ 16.95$ each. It will no doubt comfort owners of Atari machines to know that the quality of these cartridges is such that Atari hasn't actually claimed that these new games will damage its machines. We wonder what will happen when they go on sale over here.

EXT MONTH. NEXT MONTH. NEXT MONTH. NEXT MONTH. NEXT MC

ON SALE JANUARY 16th

First Report

Just hours before we went to press on this issue of Hobby Electronics the 1980 Breadboard Show opened its doors. We couldn't resist showing you a couple of pictures of the proceedings. Within minutes of the show opening hundreds of eager enthusiasts were milling around the dozens of stands crammed with electronic goodies. Look out for a full picture report next month, right here in Hobby Electronics.

You can't actually see it but there are some Space Invader machines on our stand drawing the crowds

Doppler Burglar Alarm

No, it's not a special alarm system for doppler thieves but a highly-sensitive ultrasonic project which uses the doppler principle to detect moving objects entering a field of inaudible sound. It provides a low-cost method of home protection and has other interesting uses.

High-impedance Voltmeter

Standard multimeters have a nasty habit of 'damping' high-impedance electronic circuits when you try to measure component voltages: the meter impedance is just too low. The meter in this project has an impedance in excess of 11 million ohms and will give a true reading of DC voltages in most high-impedance circuits.

Signal Generator

Ever wanted an audio-frequency tone to test your amplifier or other audio project? This generator will enable you to select signals over the audio spectrum.

Yes, that is Brian Rix (third from right) with Ron Harris (right) Editor ETI, Geoff Arnold (Editor PW), Mike Kennard (Editor EE) and Jim Connell (Managing Director Modmags)

Train Sound Generator

Yes - a follow-up to the Chuffer in the January issue. But we're not prepared to say what the sound is this time. So, all you model train enthusiasts, wait until the February issue for the secret to be revealed!

Miniature MW Radio

This is the set you can tuck away in your top pocket (or wherever) and tune into . . . whatever's your fancy. Definitely personal pleasure at low cost.

Background Noise Source

Background what? This is an HE special, a project to soothe your nerves, help you cope with the frantic pace of life in the 80's and relax as you read HE. More details next month.

Oscilloscopes

The oscilloscope is probably the most versatile piece of test equipment available to the amateur constructor. That much we all know, but how many of us know exactly how they work? Well, we're going to put that right next month with possibly the most comprehensive feature on oscilloscopes ever published. If there are any questions you ever wanted answered about 'scopes then you'll find everything you want to know, right here next month don't miss it!

[^0]
WATFORD ELECTRONICS
 35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND

 MAIL. ORDER, CALLERS WELCOME. Tel. Watford 40588/9 ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED, ORDERSDESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ DESPATCHED BY RETURN OF POST. TERMS OF BUSNESS: CASH/CHEQUE/
P.OS OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL
INSTITUTIONS' OFFICIAL OROERS ACCEPTED TRADE INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY
WELCOME. P\&P ADD H0p TO ALL ORDERS UNDER EIO. OVERSEAS ORDERS WELCOME. P\&P ADD AOP TO ALL ORDERS UNDER E10. OVERS
POSTAGE AT COST, AIR/SURFACE. ACCESS ORDERS WELCOME
VAT Export orddran no VAT. Applicable to U.K. Customorzs only
 Ample Free Car Panking space available.

ELECTROLVTIC CAPACITORS: Axial lead type (Vatues are in μ F). 500 V : $1050 \mathrm{p} ; 4778 \mathrm{p}: 250 \mathrm{~V}: 100 \mathrm{65p}$:
63V: $047,1.0,1.5,2.2,25,3.3,47,68,8,10.8 p ; 15,22.47,32,5012 p ; 63.100,27 p ; 50 \mathrm{~V} ; 50$.
 20p: 1000 $1500.30 \mathrm{Op} ; 2200,36 \mathrm{p}$.
TAG-END TYPE: 450V: 100, F 180

Hobby Electronics, January 1981

How vou an have LINEAR RECRESSION alyour fingatips

With the FX-3500P, Casio's new low-cost programmable scientific. An abundance of built-in functions, including Linear Regression. Prov. price: UNDER £30.

THE ULTIWATE WATGHES

*STAR BUY FOR 1980 \#

12 melody alarm CHRONOGRAPHS

Countdown alarm. Date memories
Hours, minutes, seconds, am-pm, 12 or 24 hour. Day, date and month auto calendar Alarm. 7 melodies, one for each day of the week.
Hourly time signal. With "Big Ben" type tune.
Date
Mate momory. Select elther March" or "Trinklied" to be played Countdown alarm. From 1 second to 1 hour After zero count continues positively. Stopwatch. $1 / 10$ second to 1 hour. Net, lap. etc.
Picturesque moving display of notes played. Light. Lithium. Glass. Water-resistant cases. M-12 Resin, s / s trim. M-1200 all $\mathrm{s} / \mathrm{s} 9.0 \mathrm{~mm}$ thick

$£ 19.95$

£24.95

100 METRE WATER RESISTANT

Alarm chronographs with countdown Amazing 5 -year lithium battery life. Hours minutes, seconds, am/pm, day, date and regardiess of display mode. Net.lap, and 1 st and 2 nd. Start/stop signal 10 minute signal. Alarm. Sounds for 30 seconds

LCD ANALOGUE/DIGITAL
Alarm Chronograph with countdown Analogue. Independent hours and minutes with synchronous digital seconds. Dual time ability.
Digital. Hours, minutes, seconds, day and date Sropwnith. $1 / 100$ second to 12 hours. Net minute signals
ninute signals.
Alarm. For 30 seconds with carousel display. Countdown Alarm. Normal and net times to 1 hour with amazing "Star Burst" flashing display
Time Signal. Half-hourly and hourly chimes. Tone control. Lithium battery. Light. Waterresistant case. 8.65 mm thick. Mineral glass. AAB1 Chrome plated $£ 29.95$
AA81G gold plated
$£ 49.95$
AA82 stainless steel
AA83 Dress watch, s/s
£39.95
$£ 44.95$ month. 12 or 24 hour. Time is always visible

Stopwatch. $1 / 100$ second to 1 hour Countdown Alarm. Normal and net times to 12 hours. Start/stop and 10 minute signals. Time signal. Half-hourly and hourly chimes. W-100. Alt resin. W-1508 All s/s. W-150C
(not lllustrated) s / s case/resin strap. E29.95
A250. As above but with standard water-resistant case
S220. As above but with dual tune in lieu of alarms and chimes F 300 Sports Chronograph (right). B digits, hours, minutes, seconds, date and day indica tor. $1 / 100$ second stopwatch; net, lap and 1 st and 2nd place times, to 12 hours. Resin case s / s trim. Water-resistant. Glass. Ligh. $1100 \mathrm{~s}-37 \mathrm{~B}$ Metal version E 17.95 F81 Alarm Chronograph (far right). 8 digit dsplay of hours, minutes, seconds, am/pm and date. 24 -hour alarm, hourly chimes, 1 st \& 2nd place. Resin case/strap. Water resist. Mineral glass. Nightlight.
830s-418. S/s jacket version $£ 19.95$

$£ 12.95$
$£ 24.95$ $£ 25.00$

£15.95

OTHER CASIO WATCHES Romember we will BEAT Lower pricem by 5%
8 digit basic watchea. F7C E8.95. 111 QS-34B £14.95.
Chronographe. $95 \mathrm{QS}-36 \mathrm{~B} £ 19.95,56 \mathrm{AS}-3 \mathrm{BB}$ Digital/analogue $£ 14.95$.
Alarm chronos. B1 OS $-35 B$ all s/s $£ 29.95$ B30GS. 41 B
Alarm chonos. B1.

LADIES' MODELS
870GL-13B gold plated £24.95. B7QL-13B chrome £ 16.95 . Oiner ladies models from £10.95 to £34.95
Ladies' Alarm Warchas. Hounly chimes, calenda
Details on request.

* Providing the advertiser has stocks and we make a amell profitl

[^1]
RETURN OF THE SUPERCALCS!

Clock. Hours, NEW MODELI FX-6100

Clock. Hours, minutes, seconds, am/pm.
Alarm. Alarm signal at pre-set time
Hourly chimes. Every hour, on the hour. Easily switched off.
Countdown alam. (Repeater ilme)
Stopwatch. Normal, net, and lap times to $1 / 100$ second. Calculator. 39 scientific functions. True algebraic logic. 5 level parenthesis, cube roots, standard deviations, R-P and memory, \%.
Approx. 14 months on 2 penlight batteries (AA type). $3 / 4 x$ $3 \times 5 \%$ inches. (RRP £22.95). £19.95
FX-7100, Card version of above with kiss-touch keys $3 / 16 \times 21 / 8 \times 3 \%$. (£27.95). £24.95
FX-8100. Specifications as above plus permanently programmed calendar (1976-1999), day, date, month and year. Also has hyperbolics. $1 / 4 \times 23 / 4 \times 51 / 2$ £24.95

CASIOTONE KEYBOARDS
 - NEW MODELI CT-301 Domestic Kayboord

 Polyphonic playing of 14 instruments plus 16 thythm voices. Dimensions, etc are similar to the CT-201. Woodgrain only. Provisional price; under $£ \mathbf{\$ 0 0}$CT-201. 29 polyphonic instruments over 4 octaves, 4 -sound memory function. $3 \times 33^{1 / 1}$ x 9 \%/ Weight 15 lbs . Integral amplifier and speaker. AC only. (£285) £245

THE SPACE INVADERS ARE BACK!

This time right in your pocket. An action-packed speed
game that will give you hours of skilful emertainment and chair-gripping excitement. Never another dull spare moment. Also an 11 -note melody calculator, pre. programmed "When The Saints Go Marching In". Full memory. \%. Auto power-off facility.
MG-880 (lett)
$1 / 6 \times 24 \times 41 / 2^{\prime \prime}$
51095
(£12.95)
MG-770 (right)
Kiss touch
$5 / 32 \times 3 \% \times 21 / 6$

£12.95 (E14.95)

12 PRE-PROGRAMMED MELODIES

Clock, calendar, 11 -note melody maker, calculator, square. roots. \%. Alarm 1: 7 tunes, one for each day. Alarm 2: a
fixed tune. Hourly chimes. Date memories; 4 anniversary tunes.
Ma-1200 (below). Desk or bedside. Built-in speaker, Volume control. Nightlight. Powered by threé AA size batteries. $19 / 16 \times 6 \times 2^{3 / 4}$ inches.

$£ 19.95$

 (£22.95).
 Kiss keys
Stopwatch $7 / 32 \times 21 / 2$
$£ 19.95$
(£22.95)
Orher Casio calculators, P.O. BEAT lowar prices by 5%

SEIKO

DFT 048 (left) Alarm, countdown alarm, hourly chimes, stopwatch to $1 / 100$ second net, lap, 1 st \& 2 nd.
DFT 038100 me DFT 038100 metr

£49.95

DER 048 Solar powered (right). Weekly programmable alarm, 16 -hour interval countdown alarm timer. hourly chimes, $1 / 100$
second stopwatch. econd stopwatch.
£69.95

DUO DISPLAY Analogue/digital watches from $£ 57.50$

Send 25 p for our illuatratad catalogue of latazt C asio and Saiko producta. Offora are aubject to availability.

[^2]
Sound-into-Light Module

No ordinary sound-into-light display this: by creating a pulsating, rising-and-falling light show it will transform your party or disco. Designed by Magenta Electronics

OH NO, NOT another boring old sound-into-light converter - well yes and no. Yes, it is a sound-into-light converter but no, it certainly is not boring, in either appearance or design. By constructing the HE Ladder-of-Light as a modular design you will be the owner of a very versatile project. The simplest module (as shown here) will drive ten 100 W bulbs either in bar mode fin a line increasing from one end) or dot mode (one bulb at a time) according to the volume of music. All that's required is to connect the Ladder-ofLight to your amplifier or speakers.

By filtering the audio signal through a low-pass, a high-pass or an all-pass filter, the converter is controlled by bass, treble or middle frequencies allowing the display to pulsate in time with music or vocal etc. An adjustable sensitivity level means that most amplifiers regardless of output power, can be used with the project.

The display of bulbs is triaccontrolled with zero-cross detection and triggering to prevent radio frequency interference (RFI), and with no heatsinking ten 100 W bulbs can be used without the triacs overheating. If you wish, the triacs can be fitted with heatsinks thus taking power handling up to the triacs maximum of 1 k 2 W per bulb,
but it is outside the scope of this article to show how this can be done. If you want to increase power handling, remember that the total current consumption of the converter and display must not exceed that available from mains (ie 13 A). Style of the display is largely a matter of personal choice and so we only give suggestions for its constructional details, but designs could be in the form of a line of bulbs, a circle, a spiral etc.

More intricate and eye dazzling displays can obviously be built if more than one module is used so that different coloured bulbs can be used, for bass and treble for example, adding a new dimension.

Construction

Unlike most mains-powered projects lespecially those which control mains voltages via triacs and thyristors etc) we have not used a PCB for constructional purposes, but Veroboard. The main reason for this is that the only mains connection to the board is a neutral connection. However, we must stress that while we have taken every precaution in the wiring of the project, if the mains wiring of the particular application is incorrect (ie
the live and neutral connections are reversed), then the mains and triac board will be potentially live - and prying fingers might pry no more. So take care!
Construction starts with the
Veroboard - a larger-than-usual piece -26 strip by 50 holes, 0.1" matrix. We are assuming that builders of this projects are not beginners so we need not explain all stages of build-up of the board, just remember to make the breaks in the track first. Use pins in the board for all external connections - in this way the board can be fixed in position into the case using plastic mounting brushes (for insulation) before wiring-up starts.

Drill the case for all switches, the pot, neon, cable holder, triac and main board mounting holes, transformers, connector blocks and a rectangular slot in the back panel to allow the cables from all lamps to enter the case. Grommet strips should be put around the slot to prevent chaffing of the cables. Your project can now start to go together as in the connection diagram of Fig. 5 which should provide you with details of the full project minus only the triac board. This is a piece of paxolin on which the ten triacs, 10 fuseholders and the

12-way connecting block fit as you can see in the photograph. These must all be firmly mounted on the paxolin. Solder all 10 triac MT1 terminals together, using a suitable length of single-core, tinned wire and insulate this adequately with sleeving. Each MT2 terminal of the triacs goes to the corresponding fuseholder (again insulated). The final triac connections - the 10 gate terminals - should be taken to the corresponding output of the LM3914 on the main board. Figure 1 connection diagram shows their order.

The other sides of the fuseholders go to the first 10 terminals on the connecting block. The final two terminals of the block are neutral connections, one to the mains input connecting block and one to the main board. These two terminals are joined and then taken to the ten MT1 terminals of the triacs. Figure 1, summarises all connections on this board. Now fasten this board to the back panel using angle brackets and make sure no short circuit might occur between the triac circuitry and the rest of the project.

Figure 2. Circuit diagram

A second paxolin panel should be used over the triac board to prevent the lid from shorting out the connections underneath, if for instance, the case is accidentally damaged.

The project is ready for testing now, with ten bulbs and an audio source. The live connection for each bulb is taken from the mains terminal block and connected to the bulbs in turn.

Buylines

All the components are reasonably easy to obtain, but Magenta Elactronics are producing a full kit of parts for those readers who can't be bothered to buy individual components. This kit is also very reasonably priced at $£ 30.38$ inclusive of case, VAT and postage - all you need is a plug. Not bad, oh? As an added incentive, Magenta have included in this price the circuit for Strobe and Chase facilities. You will find their advertisement on page 24 this month

NOTE

01,2 ARE BC183
O3.4 ARE BC213 D1 - 10 ARE TAG M D4,5's ARE 1 N4001 O4,5,6 ARE 1N40
FSt -10 ARE 3 A

Sound-into-Light Module

How It Works

The HE Ladder-of-Light controls each bulb in the display, according to the amplitude of the applied audio signal. The 10 bulbs are tumed on and off by triacs SCR 1 to 10 in Fig. 2. These triacs can be considered as being electronic switches which are operated by pulses at their gates. The block diagram shown in Fig. 3 shows such a switch capable of turning on one bulb. Although we have only shown one triac, there are ten in the project.

The gate pulse to operate the triac comes from the dot/bar voltmeter IC1, an LM3914, which as our 'regulars' will know (we have used it once or twice beforel drives either a bargraph or dot display, where the number of 'dots' illuminated depends on the applied DC voltage at its input. The LM3914 is most often associated with a 'line of LEDs' display, but this application sees it driving a line of triacs directly.

The DC vottage at the input of the LM3914 voltmeter is derived from the audio input, taken directly from your amplifier output. Transformer T1 is used as an isolating transformer to electrically separate the amplifier circuit from the Ladder-of-Light circuit (only magnetic coupling takes place). From here the signal is switched through a bank of filters (low-pass, high-pass or all-pass) by SW1, which means that various frequency bands - either bass, treble or middle - are used to control the light.

As the audio signal is AC and the required control voltage at the LM3914 is

DC, the signal must be rectified and $\mathbf{0 1}$ with its associated components performs this function. The resultant DC voltage of 0 V to 1.2 V is stored by capacitor C6.
Now, if a triac is turned on half-way through a malns cycle, radio frequency interference (RFI) can occur, because of the sharp edge on the wave - Fig. 4 shows such a waveform. The obvious
way to prevent RFI from occuring, therefore, is to switch on the triac at the beginning of the mains cycle. The block diagram shows a section dedicated to detecting when the mains voltage crosses 0 V , the zero-crossing detector formed by $\mathbf{Q} 2,3,4$ along with associated components. Whenever this O V state occurs the LM 3914 is allowed (given the right control voteage) to turn on the triacs.
 Ladder-of-Light

Abstract

Figure 5. Veroboard layout and underside view showing track breaks

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	C2	$47 n$ polyester		rotary switch
R1 100R ${ }^{\text {R }}$	C3	4 n 7 polystyrene	SW2	one-pole, two-way rotary
R2,3,9,	C4	3 n 3 polystyrene		switch
13,14,	C5	220 n polyester	SW3	single-pole, single-throw
16 10k	C6	$2 \mathrm{~L} 2,16 \mathrm{~V}$ electrolytic		rocker switch
R4,6 4 k 7	C7	1000u, 16 V electrolytic	T1,2	9-0-9 V mains transformer
$R 5$ 47k	SEMICONDUCTORS		FS1-10	3 A fuse + fuseholders
R7 100k			neon with integral resistor cable grip	
R8 560k		LM3914 dot/bar display		
R10,12, 15	01,203,4$01,2,3$	driver 183 NPN transistor		
R11 1k0		BC213 PNP transistor	5-way connecting block (10 A)	
POTENTIOMETER RV1 1 kO linear		1N4148 diode	IC socket (18 pin)	
	$\begin{aligned} & \text { D1,2,3 } \\ & \text { D4,5,6 } \\ & \text { SCR1-10 } \end{aligned}$	1N4001, 1 A diode TAG M9 triac	knobs to	
			2 x angle	ckets
CAPACITORS	MISCELLANEOUS		26 strip x 50 hole $0.1^{\prime \prime}$ Veroboard	
C1 33n polyester	SW1	two-pole, three-way		

I've heard some pretty feeble excuses from people trying to extract valuable binders from the HE staff but this one takes the biscuit. It's so cheeky that lan Malcolm might just get one, if I remember.

Dear Mr C Dick, In my capacity as Chief Tester for the National Binder Inspection Board, I would be very grateful for a sample of your HE binders for close scrutiny.

While I'm writing I may as well ask about the feasibility of constructing a communications system between myself and a pillion passenger fortunate enough to experience the thrill of roaring down the High Street on my big, fast Yamaha.

Most helmets cannot be easily adapted for such a system so your suggestions would be most welcome. I believe that the number of bikers on the road today would justify such a circuit.
Please don't forget the binder - we have a duty to protect the consumer and it is your interest to ensure your binder's get the Board's approval.
lari Malcolm
County Armagh
First things first, the helmet intercom is quite practical, in fact they are manufactured commercially. If you want to make your own then all you'll need are two small amplifiers (we've published many in the past few months) and a helmet headphone/mike kit from Wintjoy Ltd. See the inside back cover for the address. Now, your request for a binder has been considered at length. We've weighed all the pro's and cons ('we know all about cons) and have decided to submit a binder to the Board for testing but we require a 4000 word report by return of post plus $£ 3.95$ to cover our expenses.

Back across the Irish Sea and up a bit we have this letter from Steven Johnson who says:

Dear Clever Dick,

Here are a few questions:
(1) Where can I obtain a 240 volt/12 volt 6 VA transformer for use in the Battery Eliminator project in the November issue?
(2) What's happened to Short Circuits?
(3) Are HE Tee Shirts still available and if so how much do they cost?
(4) Have you ever produced an HE diary?

Thank you for such a magnificent magazine.

PS How's HEBOT?
PPS Your Binders look nicelli Steven Johnson
Co Durham
(1) Nothing special about the transformer, try Watford Electronics, Maplin, Magneta etc. etc.
(2) They're back next month after a short holiday.
(3) The old HE T-shirts have sold out but the NEW design will be on sale shortly: keep your eyes open for details.
(4) No, but you you never know, we just might.

Thank you for such a nice letter.
PS HEBOT is okay and sends his regards to everyone.

PPS Yes they do don't they, why not buy one?

Back in London, Martin Green also asks about the absent Short Circuits.

Dear CD
A few questions:
(1) Where did Short Circuits go, they were brilliant.
(2) Problem: I had a subscription to HE from March '79 to February '80. In January I renewed my subscription, so far I have received every issue except the April issue. Can you help me?

PSAm/HE's youngest reader at 13? Do I deserve a binder?

PPS Thanks for the superb mag Martin Green
London

As I said earlier Short Circuits are back next month. Sorry about the missing issue, but by the time you read this one should have been sent. I don't think you are our youngest reader but if you are we will certainly send you a binder. If any of you lot are younger than Martin drop us a line but remember to get your parents to put a note on the letter so we can be sure you're not having us on.

YO HO HO, Hobby Electronics certainly gets around. WEMN C. Phillips currently floating around somewhere has a 'messy' problem.

Dear Clever Dick,
Being in the Royal Navy and living in a Mess with 29 other people I have a problem. We are all fed up with answering the Mess door only to find that the person required is not in. Could you please design a Mess call-up system. The following idea is proposed.

Each Mess member has a personal number. The caller requiring, for example, Number 18 taps out the numberrequired on a keypad at the door. Inside the Mess two 0.5 inch digit LED displays show the number and a siren sounds for about 5 seconds. To answer the called a Mess member presses either a 'Yes Wait' or a 'No' button which will illuminate one of a pair of LEDs on the door. In the event of the

Mess being empty the 'No'light should come on after 30 seconds and reset for further use.
WEMN C. Phillips
BFPO
Ships
London
Well, that all sounds a little complicated to me. How about a simple intercom like the Hobbycom for instance: We can't really think of anything off hand but our readers have a reputation for coming up with brilliant ideas. If any of you have a suggestion for WEMN Phillips then could you send it to us and we'll forward them. By the way what does WEMN stand for?

Our penultimate letter this month comes from David Livings. David has been having difficulties in obtaining some batteries. This problem took quite some time to sort out.

Dear CD,

Is it still possible to obtain 45, 60 and 90 volt dry batteries for valve equipmant? If so could you please tell me
where I can obtain them and a rough idea about cost. If you can answer this question / will be very grateful.

David Livings

Herts

The problem with this question was that we assumed that such batteries were no longer produced. After several hours head scratching and looking through catalogues from the Vintage Wireless Company we suddenly had the bright idea of looking through the Ever-Ready catalogue. Lo and behold they still make high tension battereies for valve equipment. The nearest ones we could find were the B101 at 67.5 volts. B1 26 for 90 volts. For the 45 volt battery we suggest two B122s $(22.5 \mathrm{~V})$ or one B123 (30 V) and one $\mathrm{B} 121(15 \mathrm{~V})$ in series. As these batteries are for specialist applications you may have to order them through your local retailer.

Just time for one last letter this month, it comes from Colin Mills who is having Multi Option Siren Problems.

Dear CD,
Just a quick one this. I built the Multi Option Siren in the October '79 issue and something seems to be wrong. I can only get a variable oscillation. I remember seeing a correction on it, and after going through all my back copies I find someone has swiped my November '79 issue so I bet it was there. Can you help.

Colin Mills

Rotherham

Of course we can. The problem was on the overlay diagram (Figure 3). The connection for SK 1 was mixed up with the connection for SW1. The wire coming from the junction of R12c and R13 should be marked SK1 not SW1.

Times up once again. Thanks for the hundreds of letters each month, I'm just sorry we can't answer them all. Remember the best chance of being answered is to keep your letters as short as possible. See you next month.

We now supply the extremely reliable and cost conscious LEADER range of

Please send large SAE for special catalqgue. All prices exclusive VAT/carriag̣e.

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc. Available by post, UK 75p post paid: Europe 95 p post paid: Rest of world $£ 1.35$ post paid.

SINCLAIR INSTRUMENTS Digital Multimeter

$$
\text { PDM } 35 £ 34.50
$$

- DM235 £ 52.50
" DM350 £ 72.50
- DM450 £ 99.00

Digital Frequency Meter
PFM200 £ 49.80
Low Power Oscilloscope SC1 $10 \quad £ 139.00$
NEW
TF200 Frequency Meter
£ 145.00
TGF105 Pulse Generator
£ 85.00
CRIMSON ELEKTRIK HI FI MODULES
CE608 Power Amp $£ 20.09$
CE1004 ". ". £23.43 CE 1008 ., \quad.. $£ 26.30$ CE1704 ". ". $£ 33.48$
 CPS3 ." ." £23.52 CPS6 " " $£ 30.00$ $\begin{array}{lll}\text { CPR1 Pre Amp } & £ 32.17 \\ \text { CPR1S Pre Amp } & £ 42.52\end{array}$ All Prices + VAT + postage/ packaging
Don't forget! We also carry an impressive range of semi-conductors, passive components, electro mechanical components, tools etc.

GUITAR PHASER	2085	Sept. '80	$\underline{19.60}$	HOBBYTUNE	2034	Oct. '79	£18.00
BENCH POWER SUPPLY UNIT	2087	Sept. '80	£25.00	MULTI OPTION SIREN	2036	Oct. '79	£10.50
DEVELOPMENT TIMER	2086	Sept. '80	$£ 8.75$	ANALOGUE AUDIO			
TOUCH SWITCH (on Vero).	2084	Sept. '80	£4.50	FREQUENCY METER	2035	Oct. '79	£15.00
AUTO PROBE	2083	Sept. '80	£3.00	COMBINATION LOCK	2029	Sept. '79	£12.50
REACTION TIMER	'2082	Sept. '80	£26.50	*STARBURST	2030	Sept. '79	£14.50
MICROMIXER (on Vero)	2081	Sepl. '80	$£ 8.50$	LAMP DIMMER	2D31	Sept: '79	$¢ 6.50$
EQUITONE CAR EQUALISER	2052	Aug. '80	£13.30	ULTRASONIC SWITCH	2 D 32	Sept. 79	£21.00
GAS DETECTOR	2055	Aug. '80	£22.00	CONSTANT VOLUME AMPLIFIER	2028	Aug. '79	£11.50
PASS THE LOOP GAME	2056	Aug. ${ }^{80}$	£12.00	INJECTOR TRACER	2 D 27	Aug. '79	£4.50
RADIO TIMER [on Vero]	2057	Aug. '80	$£ 5.50$	LED TACHOMETER	2D26	Aug. '79	£14.75
MOVEMENT ALARM [on Vero)	2054	Aug. ${ }^{\text {c }} 80$	£5.00	BABY ALARM	2 D 25	July '79	£13.50
OP. AMP CHECKER (on Vero)	2053	Aug. '80	£4.00	POINTS SWITCH	2 D 24	July '79	£12.50
CAR BOOSTER (no speakers)	2050	July '80	£18.00	LINEAR SCALE OHMMETER	2 D 23	July '79	£14.00
HAZARD FLASHER	2048	duly '80	£10.50	SHARK	2022	July '79	£22.75
*PUSH-BUTTON VOLUME				G.S.R. MDNITOR	2D19	June '79	£10.50
CONTROL	2047	July '80	£19.50	ENVELOPE GENERATOR	2 D 20	June '79	£11.79
SOUND FLASH TRIGGER (on Verol	2049	July '80	£3.50	DRILL SPEED CONTROLLER	ZD21	June '79	£7.00
2 WATT AMPLIFIER (on Vero)	2D46	June '80	£3.90	WHITE NOISE EFFECTS UNIT	2018	May '79	£16.85
METRONOME (on Verol	2 F 1	June '80	£3.50	PARKING METER TIMER	2017	May '79	£6.70
MICROBE R/C SYSTEM				DIGIBELL PROJECT	ZD16	May '79	$£ 5.00$
[less Servos)	2045	June '80	£17.50.	VARIABLE POWER SUPPLY			
FOG HORN	2044	June '80	£4.50	0.30V 1 AMP	2015	May '79	£30.00
*EGG TIMER	$2 D 43$	June '80	£6.50	TRANSISTOR GAIN TESTER	2076	April '79	£6.50
MINI CLOCK	2 D 10	May '80	£26.00	CISTERN ALARM	2075	April '79	$£ 5.50$
5080 PRE-AMP	2011	May '80	£32.00	MODEL TRAIN CONTROLLER	2074	April '79	£26.00
TRACK CLEANER	2 D 12	May '80	£7.75	PHOTOGRAPHIC TIMER	2073	March '79	E14.50
*R/C SPEED CONTROLLER	203	April '80	$£ 9.60$	TONE CONTROL	2072	March '79	$£ 9.00$
HOBBY COM	208	April '80	£28.60	CASANOVA'S CANDLE	2071	March '79	£7.50
ELECTRONIC IGNITION	202	April '80	£18.25	SHORT WAVE RADIO	2066	Feb. '79	£12.50
DIGITAL FREQUENCY METER	209	April '80	£27.75	SINE/SQUARE WAVE			
SHORT WAVE RADIO	2080	March '80	£19.50	GENERATOR	2067	Febs. 79	£22.50
TOUCH SWITCH	2079	March '80	$£ 5.00$	SCRATCH AND RUMBLE			
5080 PSU MODULE	2078	March '80	£29.50	FILTER MONO	2068	Feb. '79	£22.50
SYSTEM 5080A	2077	March '80	£15.00	SCRATCH AND RUMBLE			
PASSION METER	206	Feb. ${ }^{180}$	£5.00	FILTER STEREO	2069	Feb. 79	£25.00
WIN INDICATOR	2042	Feb. ${ }^{80}$	$£ 9.00$	CAR ALARM	2070	Feb. ' 79	£8.50
INFR RED REMOTE CONTROL	207	Feb. ${ }^{80}$	£19.35	FLASH TRIGGER (less flash gun)	2065	Jan. 79	£10.50
SCALEXTRIC CONTROLLER	2041	Jan. 80	£52.50	TOUCH SWITCH	2063	Jan. '79	$£ 5.50$
CROSSHATCH GENERATOR	204	Jan. 80	£11.25	VARI-WIPER	2064	Jan. '79	£8.00
DIGI-DIE	205	Jan. 80	$£ 5.50$	GRAPHIC EQUALISER	2062	Jan. 79	£25.00
RING MODULATOR	201	Dec. ' 79	£8.50	PUSH-BUTTON DICE	. 2061	Dec. ${ }^{78}$	£6.00
SCALEXTRIC CONTROLLER	2039	Dec. 79	£21.50	AUDIO MIXER	2014	Dec. ${ }^{78}$	£20.30
BARGRAPH CAR VOLTMETER	2 D 40	Dec. '79	$£ 6.60$	BEDSIDE RADIO	2058	Nov. '78	£12.50
GUITAR TUNER	2038	Nov. '79	$£ 8.50$	STEREO AMPLIFIER (HOBIT)	2059	Nov. '78	£52.50
*R2 D2 RADIO	2037	Nov. '79	£8.60	WAA-WAA PEDAL	2 6 0	Nov. ${ }^{78}$	£30.00
TANTRUM	2D33	0CI. ${ }^{\prime} 79$	£37.50				

IONISER KIT: ZD13. This negative ion generator gives you power to saturate your home with millions of refreshing ions, without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean air, crisp and wonderfully refreshing. All parts p.c.b. and full instructions £10. A suitable case including front panel neon switch, etc., available at $£ 8$ extra.

LATE EXTRA				
Watchdog Intruder Alarm	zD89	OCT.	80	£15.75
Temperature Controlled Soldering Iron	zD90	OCT.	80	£9.00
Freezer Alarm (on Vero)	ZD91	OCT.	80	£8.50
Tug O' War Game	ZD94	OCT.	80	£12.50
Nobell Doorbell	zD93	OCT.	80	£9.75
Kitchen Timer (on Vero)	zD92	OCT	80	£5.50
Light Dimmer	2D88	OCT.	80	$£ 5.00$

All kits contain components as specified plus Texas I.C. sockets, where required, also connecting wire.

FAIRCHILD FLV150 red. 2 LEDS, 10 for $£ 1.00,100$ for $£ 7.50$ DALY ELECTROLYTIC CAPACITORS $2000 \mathrm{uF} 100 \mathrm{v} £ 1.50$
PHILIPS SCOPE Tube 5" CV2191/DG-13-2 £10
If you do not have the issue of H.E. which contains the Project, we can supply a reprint at 40 p extra. Please add 30 post and packing. Add 15% VAT to total order Callers please ring to check availability of kits.

T. POWVELL

306 ST. PAULS ROAD, HIGHBURY CORNER
LONDON N1. 01-226 1489
SHOP HOURS:
MON.-FRI. $9-5.30 \mathrm{p} . \mathrm{m}$
SAT. 9.4.30 p.m

Minimum telephone Orders $£ 5$
Minimum Mail Order $£ 1$

Top Ten Electronic Games

Looking for an electronic game? Rick Maybury has been playing with over 100 of them recently and reports on his special selection

THE HE OFFICES háve been looking like Santa's grotto for the last few months as a result of our latest special 'Gadgets and Games'. We thought it would be a good idea, with Christmas just a few weeks away, to have an exclusive mini-survey, just for Hobby Electronics. From the hundred or so games we've looked at we have selected just ten. The ten games in our list are those we consider to offer the best value for money, are fun to play with and offer the most in terms of challenge and playability: we'll deal with all of these factors in turn.

Value For Money

This was possibly the hardest criteria to establish. Not all of us are multimillionaires, not least those working for Hobby Electronics. This is especially hard for us to judge as our games are supplied free (though we have to give them back eventually!). The games we have chosen are those that we would probably buy ourselves if we had the money to spare. This may sound rather hypocritical with one game costing nearly $£ 200$ and a couple of others close to $£ 100$ but we sincerly believe that they are worth that kind of money, as much as our cheapest game costing $£ 10.95$ is worth every penny.
Most of the games we've reviewed are, quite frankly, a rip-off. Electronic games manufacturers sometimes seem to think that a couple of flashing LEDs and a squeaking noise can justity a $£ 30$ price tag. Wedon't. We know all about modem technology and how much it costs.

Fun Factor

To scientifically establish whether a game is fun to play or not we lent our sample games to a group of carefully selected juveniles the HE and ETI staff) and listened to their comments. For the most part it was incoherent babble but a clear pattern did emerge. If the game was beaten too quickly a flood of tears resulted in the game being thrown against the nearest wall and a replacement demanded with equal ferocity. If the game was a success then the combined efforts of the

Editor and Assistant Editor were needed to prise the game from its tearful player. This expert panel was also used to judge the value for money of each game. After each game had been returned lone way or another) the gameless employee often enquired how much of his pocket money would be needed to buy one. If our reply was returned with just one swear word the game was cheap. If two or three expletives came forth then it was a reasonable buy. If he or she had to be physically restrained then it was classed as poor value for money and if they laughed then we had to assume the game was considered over priced.

Playability

Again our expert panel's comments were used to classify each game. For this test we divided our testers into three groups roughly proportional to intelligence. This we assumed would give us an idea as to how easily each game could be beaten. The three groups were as follows: Editorial staff (naturally the most intelligent), Artists, (quick on the uptake now and again) and Advertisement department (most of them know how to tie their bootlaces). Each game was given to
the Ad Department first. Most of the 100 games completely baffled this group. Those games that were left unbeaten (or survived intact) were then passed on to the artists. Again the most of the games left met with a dismal fate. Those that were unbeaten were passed on to the Editorial staff (noted for having large brains and heads to match). After exhaustive testing and much head scratching we came up with our final selection.

The Games

Our ten games have been divided into two groups: the hand-held or table-top games and the TV or video games. We'll look at the hand-held games first.

MICROVISION

Not to be confused with titchy tellys this game is the first cartridgeprogrammable hand-held game. It comes in two parts, the display and control module and the memory cartridge that is needed for each game. The display module in unusual in that it uses a $2^{\prime \prime}$ liquid crystal display (LCD) element for each game. All of the graphics are based upon hundreds of square blocks, this may not sound very

of the familiar elements are there including the flying saucer that flits acrfoss the screen from time to time offering bonus points when hit. The limitations of the LED display have meant that the aliens are limited in number but this does not detract from the overall game that is both fast and furious and constantly being played with. Price for this game is around $£ 22.95$.

ADAM

Adam is not new. In fact, like the first Adam, it is getting quite long in the tooth by now. It is a table-top unit that can play four diffferent compelling games. Game number one is called 'Ditto'. This is a sequence game that relies on the player(s) memory to repeat and ever growing sequence of sounds and lights on the four coloured playing keys. If the player fails to get the right combination Adam responds with an electronic 'raspberry' noise. The sequence is, as far as we can tell, limitless. Our best score on Ditto is a 20 -note sequence and we're quite proud of that.
The second game is called Pathfinder and involves the player finding their way out of a hidden maze, again by using the four keys to denote direction of movement of the LED 'man'.

Game number three is called Bounce this is a two or four player reaction game. The players have to press their nearest control key when one of a row of LEDs lights up in the appropriate order. This game is particularly suited to parties where a number of people can join in.

The fourth and final game is not really a game at all. It is called Memory Tune and makes use of the four player keys to record and replay up to 36 notes and spaces. Each of the four individual keys and combinations thereof can be used to create the usual 'doh' 'ray' 'Me' etc. notes and the accompanying song book lists dozens of simple tunes that can be played on Adam's keyboard.

Adam is available under a variety of different names but in general we have found the original Adam to be the cheapest. You can expect to part with £19.95 for this game.

RAISE THE DEVIL

This game is rather inappropriately named because it is actually a LED pinball game. It is an electronic interpretation of the mechanical pinball table that was popular before the video machines took over. This game also comes from Entex (just like Space Invaders) and is well designed and built,
sufficiently so to stand up to the harsh treatment metered out by our assessment panel.

Basically the game board consists of an array of LEDS that variously represent the ball, bumpers or flippers. The game is played in exactly the same way as the full-size pinball and thescoring is displayed on a two-digit, sevensegment display at the top end of the table.

It's worth shopping around for this game: if you're lucky you can pick one up for as little as $£ 19.95$.

ENTERPRISE

Like Adam, Enterprise has been around for quite some time. It is basically a full function calculator that plays games. Three games are included the first two being 'Speedway', a simple reaction game and 'Brain Drain', a hidden code game that bears more than a passing resemblance to the very popular Mastermind game. The third game is called 'Pontoon': we think it is really the gambling game Blackjack but you'll know what we mean if you manage to get your hands on one.

Overall each of the three games is fun to play, and that alone is a good recommendation. Couple this up with a proficient calculator and you have one of the best deals ever for just £19.95.

CASIO MG-880

Our last hand-held game is another game/calculator combination, ideal for whiling away boring business meetings or school lessons. Unlike the Enterprise the Casio MG-880 has just one game but its a good 'un.
The calculator is an LCD full-spec machine that has a musical note assigned to each key so that even sim-
ple sums can become quite jolly. In the game mode the player has to 'destroy' an army of alien digits that try to cross the display. To destroy a digit the player has to match the randomlygenerated alien digit by pressing a button marked 'aim'. This controls the player's gun digit, and each press of the aim button increments the gun digit up by one. When the gun digit and the alien digit match the 'fire' button is pressed and the alien is destroyed. The game starts slowly but gradually speeds up to the point where the expert Editorial button pushers were giving up. At just $£ 10.95$ this is a cheap calculator: with the game its a bargain.

Video Games

The last four games are all video games. They all rely upon a domestic television receiver that can be used as a display. All of these games are in colour and only work on PAL encoded 625 line receivers. That's unfortunate if you've only got a 405 line black-andwhite set but then if you're old fashioned enoughto still use an old set like that some new fangled electronic gizmo like a TV game won't be of much interest to you will it?

MATELL INTELLIVISION

There really aren't enough superlatives in the English language to do justice to this amazing piece of design work. The Intellivision is quite simply the best TV game ever. It is expensive but so are Rolls Royces and there's no shortage of customers for them. We're not going to bore you with long descriptions of how marvellous each game is or how versatile it can be when coupled up to a keyboard unit. All we'll say is find $£ 200$, go to your nearest stockists and buy one: we promise you won't regret it.

"1 TOLD YOU TO LEAVE THE fISH ALONE!"

Intellivision because you are not lucky enough to have $£ 200$ land that's the only permissible excuse) then the Atari programmable TV game is a reluctant second choice. The Atari has been around for a couple of years now so again we'll omit the boring details. Price for the basic unit is currently around $£ 99.00$. For that you get the main console plus an Air-Sea battle game. There are something like 32 other cartridges available costing from $£ 15$ to $£ 35$. Worth looking out for are the Space Invaders games, Surround, Maze, Chess and Superman. The game is well established, new cartridges appear on a monthly basis and at least one other company is producing cartridges for this machine so there is little chance you'll ever get bored with it providing you can keep it fed with new games.

ROWTRON TV GAME

We've included this TV game for two reasons. Firstly it is British designed and built (we're nothing if not patriotic) and secondly the games are unusually fun to play. Unlike the Atari machine more thought seems to have been put into the 'thinking games', games that don't rely purely on manual dexterity. Although only a few cartridges are available at the moment it would seem that Rowtron are busily writing new games right here in this country.

The actual games unit is rather old fashioned looking by contemporary standards and the graphics are not quite up to the excellent Intellivision standards. It is nonetheless an excellent attempt by British industry to regain the market now dominated by American and Oriental machines. (We are sufficiently impressed with this machine to offer it as a prize in our January competition.)

АА

"LOOKS LIKE GRANDAD WON AT 'KING OF
THE JUNGLE' AGAIN!" TEL EUIDIDET

But back to the game: our favourites are undoubtedly the Four In A Row and Maze games. These require a great deal of logical thinking and quick reactions to play. Overall we have no hesitation in recommending this, because the $£ 69.95$ price tag for the game and $£ 11.95$ for, each cartridge makes it an attractive buy for rich dads.

BINATONE 6

At the low end of the TV game market is is the last of our ten games. It is the Binatone 6. The machine is based squarely on the General Instruments AY38500 games chip developed in Scotland about four years ago. It uses the familiar 'ball and paddle' graphics to play Soccer, Table Tennis, Squash and Solo. The rather wicked looking gun supplied with it is used for the two shooting games that make up the fifth and sixth games.

This game is in colour and can be nains powered via an optional adaptor. The sound effects do not come out on the TV speaker! instead they are fed to a speaker within the games console. This game is tried and tested, comes from a reputable manufacturer and above all is almost in the 'pocket money' price bracket. You should be able to find it for as little as $£ 18.95$ complete with the gun.

As you may have gathered the ten games we have chosen are a personal choice. That aside our selection has been arrived at after looking at something like 150 different electronic games. You may have noticed that we have left out specialised games like chess, backgammon and oridge - we felt that they were only of. interest to those people who regularly play those games.

All that remains now is to wish you happy times with the game of your choice and if you're still undecided then why not have a look at a copy of Gadgets and Games for some more hints and tips on how to buy electronic games.

HE

".. AND THIS ONE'S ON SPECIAL.
'COS WE CAN'T FIGURE OUT HOW TO PLAY IT!"
 remember: this game's British.
Our second prize is the very popular Space Invader game from Entex. This is certainly the best hand-held Invader game we've ever seen.
The twenty runners up will all receive the latest Hobby Electronics T-Shirt, never before worn in public. These are strictly limited edition so they'll certainly become collectors' items in the next fifty years or so.
Now how do you win these fabulous prizes? Simple, all you have to do is answer the six simple questions below, complete the phrase and send the answer form, not forgetting your T-Shirt size, to the address below.
Here are the questions:

1) Which component is used as a 'White Noise' gererator in the Chuffer project this month?
2) What is the maximum power rating of each channel in the Sound-To-Light project?
3) How many times is the word 'games' used in this months' feature on electronic games?
4) Who sells the cheapest BC109 amongst the advertisers in this month's HE?
5) What is the maximum number of 'revs' that can be displayed on the HE
Tachometer project?
6) What is the impedance of the High-Impedance Voltmeter that will be appearing in next month's HE?
Complete the following limerick
Right in the middle of Modmags
Clever Dick was opening his mail
As he opened on pack
It made a loud 'crack'
Name
(1)
Address
(2)

(3)
(4)
T-Shirt size (S,M or L)
(5)
(6)
My suggestion for the last line is:
Send this form to: Hobby Electronics Competition. 145 Charing Cross Road London WC2H OEE.
All entries should arrive no later than 1 st January 1981. Winners will be notified by post. No correspondance regarding this competition will be entered in to. The Editors decision is final.

MAGENTA ELECTRONICS LTD.

H.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to construct H.E. projects. Kits include ALL THE ELECTRONIC+ AND HARDWARE NEEDED. Printed circuit boards (fully etched, drilled and roller tinned) or veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C sockets. PRICES INCLUDE CASES unless otherwise stated BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of H . . which includes the project - you will need to order the Instruction reprint as an extra 45p each.

MTARE RST Sept. 79 Oct. 79 …........... E15.98
ULTRASONIC SWITCH, Sept. 79 £28.85 less 3 pin mains socket HOME SECURITY UNIT, Aug. 79 £28.56 less siren
SIREN
28.56 less siren
E5.09 less case

LED TACHOMETER, Aug. 79
$£ 5.09$ less case
$£ 17.98$
INJECTOR TRACER, Aug. ' 79
CONSTANT VOLUME AMPLIFIER, Aug. 79
LINEAR SCALE OHMMETER, July ' 79
E4.34

SHARK, July ' 79
$\varepsilon 15.60$

GSR MONITOR, June ' 79
C25.98
ENVELOPE GENERATOR, JUNe ' 79
$\varepsilon 9.63$
PARKING METER TIMER May' 79
ع14.98
PARKING METER TIMER, May 79 c8. 79
WHITE NOISE EFFECTS UNIT, May 79
$\begin{array}{r}18.79 \\ \text { ع17. } \\ \hline\end{array}$
117.74
£9.98
$£ 16.45$
$£ 10.98$
PHOTOGRAPHIC TIMER, Mar. ' 79
8 Mano
SCRATCH /RUMBLE FILTER, Feb. 79
£29.98 Stereo
SINE/SQUARE WAVE GENERATOR, Feb.' 79
$£ 25.78$
GRAPHIC EQUALISER, Jan. '79
£28.68
PUSH BUTTON DICE, Dec. ' 78
ع6.98
AUDIO MIXER, Dec. ' 78
$£ 25.98$
BEDSIDE RADIO, Nov. 78
$£ 16.99$
STEREO AMPLIFIER (HOBIT), NOV. 78
$£ 59.50$
LATEST KITS: S.A.E. OR PHONE FOR PRICES

80/81 ELECTRONICS CATALOGUE

KITS
ICs
TRANSISTORS
CAPACITORS

Hundreds of illustrations, product data, circuits and details of all our kits and educational courses. Up to date price list included. All products are stock lines or fast delivery by FIRST-CLASS POST
14 p)

TOOLS RESISTORS HARDWARE CASES

ADVENTURES WITH ELECTRONIGS bytom

An easy 10 follow book suitable for all ages, ideal for beginners. No Soldering. Uses an Dec breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, timer. etc. Helps you learn about electronic components and how circuits work. Component pack includes an S Dec and the components for the projecis.
Component pack $£ 16.72$ less batry.

ADVENTURES WITH MICROELECTRONICS

[^3]
H.E.LADDER OF LIGHT,JAN. ' 81

> Complete kit for this novel project includes all components and case tor the control module. 10 individual outputs EXTRA included with our kit only: additional circuir and components for strobe and chase features and chase features. LADDER OF LIGHT, JAN' 81 £29.98 $+40 p$ p $8 p$

H.E. MEMORY BANK -
 SYNTHESISER NOV. '80

Complete kit for this exciting project, includes i.c. with socket, 2 pcbs, case etc "he custom designed i.c. at the heart of this project generates musical sounds which can be stored in its own memory. Features include memory,
-Synthesiser' Nov. ' 80 + Dec. ' $80 £ 33.95$

INTO DIGITAL ELECTRONIGS

Current H.E. series. Part 1 in Sept. '80. Covers digital electronics from the basics. Circuits Eurobreadboard and components for series $£ 18.95$ less battery. Components only £12.75.

INTO ELEGTRONIGS GONSTRUGTION

HE 6-part Géries: Feb. 80 to July 80 . COVERS THE BASICS OF ELECTRONICS - LOTS OF PRACTICAL WORK. Circuits are built on a plug-in Eurobreadboard. REPRINTS AVAILABLE, 45p each part. Eurobreadboard and Components for Series £15.63. Components only $£ 9.43$.
TOWERS INTERNATIONAL TRANSIS
SELECTOR EIO.5O.
ANTEX SOLDERING IRON $25 W$ W EL. 98 .
SOLDERING IRON STAND $E 1.98$.
SPARE BITS. Small, standard, large $65 p$ each
SOLDER. Handy Sía 98 BP .
LOW COST LONG NOSE PLIERS E1.68.
LOW COST CUTTERS 51.69 .
.C.B. ASSEMBLY JIG E11.98.
P.C.B. ETCHING KIT E4.98.

RADIO $E 8.98$.
WIRE STRIPPERS ANO CUTTERS C2.48.
MULTIMETER TYPE 1, 1,000 O. P,
Mrobes $2 \times 31 / 2 \times 1$ E6.66.
Probes $5 \times 31 / 2 \times 1 / / 4$ E 11.52.
TELEPMONE PICK-UP COIL 72 p .
GRYSTAL MICROPHONE INSERT 58 P.
E. $8 \mathrm{ohm} 87_{\mathrm{p}} .64 \mathrm{ohm}$

98p. 80 Ohm E1.56. 8 hm 98p.
EARPIECES. Crysiai 65p. Magnetic 18 p. ONO HEADPHONES. 2K Padded Superior
sensitive E2.98.
MEAT SINK TW

3 BAND S.W. RADIO

Abstract

Bands and Short Wave Broadcast Bands. Five Bands and Short Wave Broadcast Bands. Fiv controls. Bandset, Bandspread Reaction Wavechange and Attenuator. Goil section is by Wavechange Switch Use with Headphones or Constal earpiece. Kit contains all the com Case. Instructions are included P.C. Board an KIT £18.97. Headphone extra £2.98. SOLDER BOBBIN 30p. DESOLDER PUMP E5.9 CROC CLIP TEST LEAO SET. 10 leads with 20 dips 9 PP. 65p. RESISTOR COLOUR CODE CALCULATOR 21p. \&4.35. DESOLDERING BRAIO 69 p

MAGENTA ELECTRONICS LTD.

HE 5, 98 CALAIS ROAD, BURTON-ON-TRE +, STAFFS, DE13 OUL. 0283-65435. 9-12, 2-5 MON.-FRI. MAIL ORDER ONLY
ADD 40p P.aP. TO ALL ORDERS. ALL PRICES INCLUDE 15% V.A.T. OFFICIAL ORDERS FROM SCMOOLS ETC. WELCOME.
ENRUIRIES MUSTINCLUDE S.A.
OVER-EAS: OEND ORDER WITH 3 INTERNATIONAL POSTAL COUPONS WE WILL QUOTE EXACT EIRE A BFPO ORDERS
U.K. PRICES - LESS 10%

COVERS V.A.T. REF + ND \& EXPORT OOCUMENTSI. PAYMENT: STERLING U.K. BANK DRAFT. U.K OOSTAL ORDER S OF U.K. CHEQUE
ENQUIRIES: ENCLO + E 2 INTEREATIONAL POSTAL COUPONS

What's In A Name

This month's sense is sound: Rick Maybury describes some of the devices for producing it

LAST MONTH, you may remember we began a short series looking at electronic systems and components that duplicate our own five senses. For the next two months we shall be looking at the subject of Audio Electronics components or devices that respond to or generate sound. This month we shall look at devices that make noises.

To understand the action of the electronic counterparts of our vocal chords it is first necessary to have some idea of what sound actually is.

Sound is basically a mechanical vibration that can travel through any medium (though not a vacuum) whether it is solid, liquid or gaseous. The old analogy of ripples on a pond is still the best way of visualising a sound wave. If we throw a stone into a still pond then a series of ripples spread outwards from the centre. If we compare this with the action of sound in air we can see that the high point of each ripple or wave corresponds to a peak of air pressure, the trough or low point of each wave corresponding to an area of low air pressure.

You can perhaps understand this better if I tell you the story of a lunatic Frenchman at the turn of the century. He devised and built an enormous whistle, many feet long and several feet wide. A huge blast of compressed air down the whistle produced a note that was only a couple hertz in frequency. It was said that one of his assistants standing in front of the whistle was killed instantly. Although the note was too low to be heard by human ears the pressure wave was so great that, at the high-pressure peak, his body was literally enveloped in compressed air and a quarter of a second later it was subjected to a partial vacuum as he was hit by the low pressure wave. His body was literally sucked apart - a nasty way to go!

If we want to generate sound electronically we have to devise some way of creating high and low pressure waves in the air. The simple way is to take a large flat surface, couple it in the centre to a strong electromagnet and pass an alternating current through the coil of the electromagnet. This will have the effect of moving the flat surface forwards and backwards thus

creating an alternating pattern of highand low-pressure waves. The idea has been refined and improved upon mechanically by exchanging the flat surface for a shallow cone supported in a circular metal frame. We all know this as our old friend the loudspeaker:
The speaker isn't the only device that can make noises. On a smaller scale headphones and earphones use a variety of moving coil, piezo-electric or electrostatic devices to vibrate the acoustic surfaces or diaphragms. The use of the piezo-electric effect in earphones relies upon the mechanical distortion of quartz crystal when a voltage is applied across the face of the crystal. The crystal is then coupled mechanically to the diaphragm. Electrostatic loudspeakers and head-
phones use the attractive and repulsive properties of high- voltage charges on two plates in close proximity to each other. In some older types of loudspeaker the cone was attached to a permanent magnet that was inside an open-wound electromagnet: not surprisingly these are known as moving-magnet loudspeakers. As you can imagine there are dozens of ways electrically and electronically generating sound: the one thing to remember, however, is that all rely upon a mechanical action to create waves of varying air pressure. Next month we'll look at how we can turn these sound waves back into electrical signals and also the similarities between our own ears and electronic microphones.

Personal Tuition and Guaranteed Success

The expert and personel guidance by fully qualified tufors, backed by the ICS guarantee of tuition until successful. Is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best bnd in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Carber Courses

A wide range of other technical and professional courses

404 Edgware Road, London, W2, England 01-7231008/9

NOMPTO TT:
 Climb aboard the breadboarding

 bandwagon with CSC's new WK-1 wire jumper kit - just what you've always wanted to makebreadboarding easier and quicker than ever before. Here, in one neatly compartmented box, are all those different lengths of insulated hook-up wire you need - 25 pieces of each, in 14 lengths ranging from 0.1 inch to 4 inches. What's more, the CSC kit makes your job even easier by colour-coding all the different lengths and providing a quarter-
inch length at each end with the insulation stripped
off and bent through 90°. So CSC jumper wires come
ready to plug straight into your quick-test sockets, bus strips or breadboard system. No more fiddling around with wire cutters, strippers or pliers - evervthing you need in one box. Take the plunge right now by filling in the CSC coupon.

CSC (UK) Ltd. , Unit 1, Shire Hill Industrial Estate, Saffron Walden,
Essex CB11 3AQ. Telephone: (0799) 21682. Telex: 817477.
 I enclose cheque/PO for $£$ or debit my Barclaycard. Access, American Express card No
No Exp. date
will b. will be in the post immediately.
NAME
ADDRESS

Car Rev Counter

Yet another application of the now famous LM3914 dot/bar voltmeter chip - this tachometer project is designed to complement our Digital Speedo in both style and size - fit them both into the same case or use them individually.

NO, IT'S NOT true! We haven't got shares in National Semiconductor, the manufacturer of the LM3914. Neither do we accept bribes (unless they are in cash - used $£ 1$ notes and handed to us in a plain brown envelope). The simple fact of the matter is that the LM3914 is so versatile and adaptable that literally thousands of projects can be built around it, so it is no wonder that we do tend to use it a lot (see our Sound-to-Light Converter in this issue). The HE Rev Counter uses two LM3914s coupled in series mode, so that not just the normal ten LEDs (associated with the chip) but twenty LEDs give indication of engine revs in a directreading, linear display.

You will see from the photographs that we built our model into the same case as the Digital Speedo - that is the reason for the cut-out in the Speedo display board - so that a neat combination of digital-speed and 'line of LED' - revs readouts is obtained which is good enough to take pride of place in either your Metro or your Silver Spirit.
Alternatively both projects can be constructed and used individually (and then you can put one in each car!).

For adaptability, the Rev Counter has been designed so that it can be used with most car engines; ie 4-cylinder 4-stroke; 6-cylinder 4 -stroke; 8 -cylinder 4 -stroke, but it is possible that the device may function with other engines. A simple

The HE Car Rev Counter in the same case as the HE Speedo. Another name for a rev counter is a tachometer - hence the HE Speedotach

calculation tells you if your engine will suit: you need to know the number of cylinders of the engine (n) and how many strokes each cylinder makes between ignition cycles (m). Next, divide the value of n by that of m.

Taking, for example a 4-cylinder 4-stroke engine the calculation is:
$\frac{4}{4}=1$.
The answer for the chosen engine must fall (as in the above example) within the range 1 to 2 . If so, the engine suits the Rev Counter. One final point is that the engine must be petrol-driven as diesel types do not have the necessary ignition circuitry.

(c) Copyright MODMAGS Ltd.

Figure 1. Circuit diagram of the HE Car Rev Counter

A standerd car engine relies on the combustion of an explosive mixture of petrol and air within a confined chamber. The combustion is brought about by a spark generated at the spark plug gap with a very high voltage across it. A particular engine might have two of these explosions per revolution of the engine, thus at say 1000 RPM there will be 2000 high voltage pulses every minute, generated by the elctrical system of the car. Thus, the number of pulses gives a direct measure of the revolution rate of the engine.

Now, a change of voltage within a length of conductor, such as the main high tension lead from the car's coil to distributor, creates a changing magnetic field around the conductor. Similarly, if another length of conductor is placed in

How It Works

also be seen from this diagram that the average voltage at the output of IC1 will be at a maximum when the pulses are close together and at a minimum when the pulses are far apart. Consequently, as the RPM rate goes up so does the average output voltage. The resistor/ capacitor combination R3, 4 and C4 smooths out the voltage so that a steady DC voltage, which changes only with engine speed, is obtained across C4.

The remainder of the circuit, formed by two LM3914s and associated components, is a bargraph voltmeter. This simply measures the voltage across C4 and illuminates a line of LEDs. The higher the voltage, the more LEDs in the line light. Preset RV2 is adjusted so that at a known engine speed the correct LED just lights up.

By connecting point A on the PCB to one of the LED cathodes by a wire link, a facility is used whereby the LEDs in the upper half of the display flash whenever the voltage corresponding to the LED is exceeded. For example, if A is connected to the LED which indicates 5000 RPM, whenever the engine speed reaches 5000 RPM the LEDs in the upper half flash to warn the driver that he is over-revving the engine. If the Tacho is scaled (as ours was) -up to 7000 RPM then any engine speed in the range 4000 to 7000 RPM can be used to trigger this flashing display.

Finally, IC4 is a voltage regulator which provides a stable 5 VDC supply for the LEDs and IC2 and 3 .

Construction

Construction of the PCB is
reasonably straightforward. Insert the four links first followed by resistors, capacitors and IC sockets. All semiconductors (except LEDs) should be put in next, noting correct polarity. Bend the pins of voltage regulator IC4 at right angles, about $1 / 8$ " from the body and mount it flush to the board.

The leads of LEDs 1 to 20 need to
be shaped correctly so that they all fit onto the edge of the board. We used rectangular LEDs which are exactly $0.15^{\prime \prime}$ on their narrowest width, so 20 fit along a $3^{\prime \prime}$ length of board. Each LED fits up to the edge of the board with the cathode above the board and the anode below.
Following the diagram in Fig. 3, and using a good pair of fine, long-nosed pliers, bend the leads at right angles at exactly the distances shown and

© Copyright MODMAGS Ltd.
Figure 3. The leads of all 20 LEDs need to be bent to fit the board
then cut off the excess leads as in the diagram. These measurements are fairly critical to enable the LEDs to fit on the board. When the leads are correctly shaped each LED can then be inserted - this is a fiddly job, so take care not to damage the devices. Solder them in place, making sure they all line up perfectly.

The final thing to do on the PCB is to link up point A to whichever LED you require the flashing display to occur on. If you don't want this facility, simply omit this link.

When completed, the board will slide directly into its case - the DIN style case used in the Digital Speedo. Each circuit, the Speedo or the Rev Counter will work individually so they can be built into separate cases if you wish, but for a really neat project both fit in the same case with excellent results which you can see in the photographs. Note that for correct operation (ie with the LED display reading from left to right), the Rev Counter PCB needs to be 'upside-down' - with the component side facing down.

Only three connections are made to the board, power supply (via an inline 1 A fuse and holder) through the ignition switch circuitry, and the sensor. The sensor is simply a length of thin multi-strand wire which goes from the PCB to the high tension lead between the car's coil and distributor. There is no electrical connection involved - the pick-up is purely electromagnetic. Cable ties can be used to hold the wires.

The procedure for setting up is reasonably easy. Presets RV1 and RV2 are adjusted fully clockwise. Then, with the car engine running at tick-over speed, RV1 is slowly adjusted anti-clockwise until the line of LEDs burst into life. The preset adjusts the threshhold of the Rev Counter and its setting is not in the slightest critical (about mid-position should suit most applications) but it can be used to prevent spurious triggering in certain applications.

Preset RV2 is now adjusted so that a particular LED lights up at a known engine speed. Ideally, for this purpose you will need a calibrated tachometer or rev counter to compare yours with, operating at a set speed of say 3000 RPM. As a last resort (if you can't obtain a calibrated tacho) you can simply adjust RV2 at tick-over till the first couple of LEDs in the line are lit. This is, however, only an approximate calibration and cannot be as accurate as the suggested method.

Figure 4. Overlay of the circuit board

Parts List
RESISTORS (All $1 / 4$ W, 5%)

R1	10 k
R2	68 k
R3	6 k 8
R4	22 k
R5	1 k 2
R6	2 k 2
R7	1 k
POTENTIOMETERS	
RV1	100 k miniature horiz
RV2	preset
	220 k miniature horiz
	preset
CAPACITORS	
C1	$1 \mathrm{n5}$ polystyrene
C2,7,8	100 on resin dipped
	ceramic

100u 16 V printed circuit electrolytic
10 u 35 V tantalum 4 u 735 V tantalum

SEMICONDUCTORS

IC1 555 timer

IC2,3 LM3914 dot/bar display driver
IC4 $78055 \mathrm{~V}, 1$ A voltage
D1,2,3
D4
LED 1-20
regulator
1 N4148 diode
1 N4001 1 A diode
rectangular red LEDs

MISCELLANEOUS
case to suit (see Buylines)
in-line fuse holder $+2 A$ fuse

Buylines

All parts for our Rev Counter are fairly standard and should be easily obtained. The approximate cost of all components (excluding as usual, the case and PCB) should be around £18 - the most expensive items being the 20 LEDs. The rectangular LEDs can be replaced by ordinary circular LEDs if you wish, but they must measure no more than $0.15^{\prime \prime}$ in diameter, or they will simply not fit the

board.

The case is the same as used in the HE Digital Speedo (see this and last month's issue) and is RS Components stock number 508-683. Your local component supplier should be able to obtain it for you. Of course, If you are building both projects they will fit in the same case, saving the need to buy two.

DO YOU EVER NEED A FEW MORE HANDS? ABSONGLEN ANNOUNCES THE NEW MINIBENCH 2*
 'WITH THE MINIBENCH SYSTEM

- Just a squeeze needed to clamp or release the circuit board - Adjustable minimum jaw aparture
- Jaws tlip over for work on either side of circuir board.
- Single wing nut adiusis friction control and jaw attizude. grip
- Crocodile clips mounted on flexi-arms hold components
- Crocodile clip can be used as heat shunt
- Lens similarly mounted is ideal for close work and spotting those solder bridges.
- Flexi-arms are mounted on the jaw assembly to keep station with the circult board.
6 separate flexi-arm mounting positions
- Atypical configuration would consist of 2 flexi-arms with clips and one with lens
- Attractive two-tone stove enamelled finish
- Built to last a lifetime.

TO: ABSONGLEN LTD, DEPT. HE
Name
Address

Please supply:
Minibench $\uparrow 1$ €12.95
Flexi-arms with Clips @ $£ 4.75$ ent.
Flexi-arms with Lens@ E5.75 ent.
Postage and packing- $\mathbf{£ 2 . 0 0}$

- Price applicable to Minibench purchasers
onty
Remittance
enclosed for

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc. are covered in the general price list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised version of pt. 1)

LINEARICS. NUMERIC LISTINGS

$\begin{array}{ll}\text { L200 } & 1.905 \\ 1.953\end{array}$
 U 2378 U 2478
 U 2478 B U 257 B
 U267B LM301H
 LM301N LM308H
 LM308H LM308N
 LM308N CM348N
 | $\mathrm{L} F$ |
| :--- |
| LF |
| L |
| L |
| L |
 CM3

 - $\begin{aligned} & \mathrm{N} \\ & \mathrm{N} \\ & \mathrm{N}\end{aligned}$
 $\begin{array}{llll} & 0.50 & \text { SL6310 } & 2.03 \\ \text { SL6600 } & 2.03 \\ \text { NE560N } & 3.50 & \text { SL6640 } & 2.75 \\ \text { NE562N } & 4.05 & \text { SL6690 } & 3.20 \\ \text { NE564N } & 4.29 & \text { SL6700 } & 2.35 \\ \text { NE565N } & 1.00 & \text { ICL8038CC } & 4.50 \\ \text { NE566N } & 1.60 & \text { MSL9362 } & 1.75 \\ \text { NE570N } & 3.85 & \text { MSL9363 } & 1.75 \\ \text { SL624 } & 3.28 & \text { HA1211 } & 1.95 \\ \text { TBA651 } & 1.81 & \text { HA11223 } & 2.15 \\ \text { UA709HC } & 0.64 & \text { HA11225 } & 1.45 \\ \text { UA709PC } & 0.36 & \text { HA12002 } & 1.45 \\ \text { UA710HC } & 0.65 & \text { HA12017 } & 0.80 \\ \text { UA710PC } & 0.59 & \text { HAA12402 } & 1.95 \\ \text { UA741CH } & 0.66 & \text { HA12411 } & 1.20 \\ \text { UA741ON } & 0.27 & \text { HA12412 } & 1.55 \\ \text { UA747ON } & 0.70 & \text { LF13741 } & 0.33 \\ \text { UA748CN } & 0.36 & \text { SN76660N } & 0.80 \\ \text { UA753 } & 2.44 & \text { L }\end{array}$

UA758 TEA810AS TEAB2OM FREQUENCY DISPLAY 8 SYNTHESISERICS

TCA940E
TDA1028
TDA1029
2
TRA1054

TDA1062 TDA1074A TDA1083 HAL137 TDA1220 | LM1303 |
| :--- |
| LM1307 | MCl 310 P

MCl 330 MC1350 HAL388 MCl496P SLI610P
SLI611P SL1612P SLl613P SLL621P
SLh623P SLL62 SLl625P SLI630P SL1640P
SL1641P TDA2020 CA3080E CA3089E
CA3090AO CA3123E CA3130T CA3189E M3909N LM3915N $\begin{array}{lr}\text { KB4400 } & 0.80 \\ \text { KB4406 } & 0.80\end{array}$ $\begin{array}{ll} \\ \text { KB4412 } & 0.60 \\ 1.95\end{array}$
ITL N and LSN

TL N and LS N		744 3	1.15	$74 \mathrm{LS112}$	0.38
		7444 N	1.12	74 LS113	0.38
7400 N	0.13	7445N	0.94	74 LS114	0.38
74 LSO	0.20	7446 N	0.94	74118 N	0.83
7401 N	0.13	74.547	0.89	74120 N	1.15
$74 \mathrm{LSO1}$	0.20	7448 N	0.56	741212	0.42
7402 N	0.14	$74 \mathrm{LS48}$	0.99	74122N	0.46
74LS02	0.20	$74 \mathrm{LS49}$	0.99	74123 N	0.73
7403 N	0.14	7451 N	0.17	74LS124	1.75
74.503	0.20	$74 \mathrm{LS51}$	0.24	74125 N	0.38
7404 N	0.14	7453 N	0.17	$74 \mathrm{LS1} 25$	0.44
$74 \mathrm{LS04}$	0.24	7454 N	0.17	74126 N	0.57
7405 N	0.18	$74 L S 54$	0.24	74 LSl 26	0.44
74LSOS	0.26	74.555	0.24	74128 N	0.74
7406N	0.28	7460 N	0.17	74132 N	0.73
7407 N	0.38	$74 \mathrm{LS6} 3$	1.24	7415132	0.78
7408 N	0.17	7470 N	0.28	74LS136	0.40
74LS08	0.24	7472 N	U.<8	74LS138	0.60
7409 N	0.17	7473 N	0.32	74141 N	0.56
74.509	0.24	74LS73	0.38	74142 N	2.65
7410 N	0.15	7474 N	0.27	74143 N	3.12
74.510	0.24	741574	0.28	74144 N	3.12
741 LN	0.20	7475 N	0.38	74LS145	0.97
74.511	0.24	7476N	0.37	74147 N	1.75
7412 N	0.17	74LS76	0.38	74148 N	1.09
7413 N	0.30	74LS78	0.38	$74 \mathrm{LS148}$	1.19
7414 N	0.51	7480 N	0.48	74150 N	0.99
74LSLS	0.24	7481N	0.86	74151	0.55
7416 N	0.30	7482 N	0.69	74iS151	0.84
7417 N	0.30	7485 N	1.04	7415 N	0.64
7420 N	0.16	74.585	0.99	74LS153	0.54
745520	0.24	74 LS86	0.40	74154 N	0.96
742 N	0.29	7489 N	2.05	$74155 N$	0.54
74.521	0.24	7490 N	0.33	74 LS 155	1.10
7423 N	0.27	74L590	0.90.	74156 N	0.80
7425 N	0.27	7491 N	0.76	74157 N	0.67
7427 N	0.27	74.591	1.10	74LS157	0.55
74.527	0.44	7492 N	0.38	74 LS 158	0.60
7428 N	0.35	74 LS92	0.78	74159 N	2.10
74.528	0.32	7493 N	0.32	74160 N	0.82
7430 N	0.17	741593	0.99	74LS160	1.30
74is30	0.24	7494 N	0.78	74161 N	0.92
7432 N	0.25	7495 N	0.65	7415161	0.78
74 LS32	0.24	74LS95	1.14	$74 \mathrm{LS1} 62$	1.30
7437 N	0.40	7496 N	0.58	7416 利	0.92
7438 N	0.33	74LS96	1.20	$74 \mathrm{LS163}$	0.78
74LS38	0.24	7497N	1.85	74164 N	1.04
7440 N	0.17	$74 \mathrm{LS107}$	0.38	7415164	1.30
741540	0.24	74109 N	0.63	74165 N	1.05
7441 N	0.74	7415109	0.70	74LS165	1.04
7442 N	0.70	74110 N	0.54	74167 N	2.50
74154	0.99	74111 N			

\section*{$\begin{array}{lll}\text { 74LS169 } & 2.00 & \text { VARICAP } \\ \text { 74170N } & 2.30 & \text { TUNING DIOOES }\end{array}$ $\begin{array}{ll}74 \mathrm{LS} 170 & 2.0 \\ 74 \mathrm{LS} 174 & 1.2\end{array}$ 74151741.20 | 745 I | 0.87 | BA121 | 0.30 |
| :--- | :--- | :--- | :--- | $\begin{array}{llll}74176 N & 1.10 & \text { BB2048 } 0.36\end{array}$ $74177 \mathrm{~N} 0.78 \quad$ BB1058 0.36 $74181 \mathrm{~N} \quad 1.65$ $\begin{array}{ll}74 \text { LS181 } & 3.50 \\ 74 L S 183 & 2.10 \\ 74184 N & 1.35\end{array}$ $\begin{array}{ll}74184 \mathrm{~N} & 1.35 \\ 74185 \mathrm{~N} & 1.34 \\ 74 L S 190 & 0.92\end{array}$ $\begin{array}{ll}74 \text { LS } 190 \\ 74192 \mathrm{~N} & 1.92 \\ 745 S 192\end{array}$ $\begin{array}{ll}7419192 & 1.80 \\ 74193 \mathrm{~N} & 1.05\end{array}$} $\begin{array}{ll}74 \text { LS } 193 & 1.80 \\ 74194 \mathrm{~N} & 1.05\end{array}$ | 74196 N | 0.99 |
| :--- | :--- |
| 74 LS 196 | | 74251971.10 $74198 \mathrm{~N} \quad 1.50$ $74199 \mathrm{~N} \quad 1.60$ 74LES257 1.08 74 LS 2601.53 74LS279 0.52 74 LS283 1.20 74LS293 0.95 74 L5 3650.49 $74 L S 366$

$74 L S 367$
0.43 74 LS 3680.49 $74 L S 3741.80$
$74 L S 377$
7 74 LS 3931.40

TOKO COILS AND FILTERS SEE THE EXTENSIVE SECTION IN OUR NEW PRICE LISTS AND CATALOGUE
LF/HF FIXED INDUCTORS -FULL E12 RANGE
7BA series luht-1mH 0.16 8RH series
100 ull- 3 min 100uH- 3 hit
10 RB series 10RB series
$33 \mathrm{nH}-120 \mathrm{nH}$ 10RaH series $120 \pi \mathrm{H}-1.5 \mathrm{H}$ PIEZO SOUNDER ${ }^{\text {p322720 }}$

$\begin{array}{ll}\text { 78series } & 0.95 \\ 79 s e r i e s ~\end{array}$ 9 series 1.00

 78Mseries 0.65 78Mseries 0.65 CRYSTAL FILTER PRODUCTS LEDS 10.7MHZ 2 POLE TYFES: 10.7MH2 8 ROLE TYPES: | 10 M 4 BL | 15 KHZ | BW |
| :--- | :--- | :--- |
| HW | 14.50 | |
| 14402 | 7.5 KHZ | BN |
| 15.50 | | |
| $10 M 220$ | 2.4 KHZ | SSB | $\begin{array}{ll}10 M 22 \mathrm{D} \\ \text { HE } \\ 2.4 \mathrm{KHZ} & \text { SSB } 17.20\end{array}$ HF FIRST FILTER

B34FBA $34.5 M H z$

RADIO CONTROL CAYSTALS (No sp:
AM TX:
3 rd OT
$\begin{array}{lll}\text { AM/PM RX:- } & 1 \\ \text { 3rd OT 30pF HC25U } 1.65\end{array}$
$\begin{array}{ll}\text { FM TX :- } & \\ \text { Fund 20pF HC25U } & 1.85 \\ \text { Pairs FM } & 3.25 \\ \text { Pairs AM } & 3.10\end{array}$

CRYSTALS

CAYSTA

100 kHZ 455 kHZ

1.0 MHz
3.2768 m

W
4.000 MHz
5.00
3.00
$\begin{array}{ll}4.000 \mathrm{MHz} & 2.00 \\ 4.19439 \mathrm{MIZ} & 2.30\end{array}$
$6.5536 \mathrm{MHz} \quad 2.10$
10.0 MHz
10.6985
$\begin{array}{ll}10.6985 \mathrm{MHz} 2 & 2.50 \\ 10.7015 \mathrm{MHz} & 2.50\end{array}$ $\begin{array}{ll}10.7015 \mathrm{MHzz} & 2.50 \\ 10.245 \mathrm{MHz} & 2.50\end{array}$ 10.245 M
10.7 MHz 11.52 MHz
100 MHz

SCHOTIKY DIODE BAL

SBLI 1-500MHz 4.25 $\begin{array}{ll}\text { SBLI } 1-500 \mathrm{MHz} & 4.25 \\ \text { SBL1-8 } & .1-200 \mathrm{HI} 2 \\ 4.55\end{array}$ $\begin{array}{lll}\text { SBL } 1-\mathrm{x} & 10-1000 \mathrm{MHZ} & 5.75\end{array}$ SRAI . $5-500 \mathrm{MHz}$ SRAL-1 $\cdot 1-500 \mathrm{MHz} \quad 9.25$ SRALH . $5-500 \mathrm{Mlz} 13.35$ SRA3 . 025-200NH2 10.25

Please send an
SAE with all enquiries. Access/Barclayed ($\min £ 5$ please)

TRANSISTORS
AUDIODEVVICES CAPACITORS

$\begin{array}{ll}\text { BC237 } & 0.08 \\ \text { BC238 } & 0.08\end{array}$ | BC 238 | 0.08 |
| :--- | :--- |
| BC 239 | 0.08 | BC307 0.08 BC308 0.08 $\begin{array}{ll}\text { BC309 } & 0.08 \\ \text { BC413 } & 0.10\end{array}$ $\begin{array}{ll}\text { BC413 } & 0.10 \\ \text { BC414 } & 0.11\end{array}$ $\begin{array}{ll}\text { BC415 } & 0.07 \\ \text { BC416 } & 0.08\end{array}$ $\begin{array}{ll}\text { BC4 } 16 & 0.08 \\ \text { BC546 } & 0.12 \\ \text { BC556 } & 0.12\end{array}$ $\begin{array}{ll}\text { BC556 } & 0.12 \\ \text { BC550 } & 0.12\end{array}$ $\begin{array}{ll}\text { BC550 } & 0.12 \\ \text { BC560 } & 0.12 \\ \text { BC6 } 39 & 0.22\end{array}$ $\begin{array}{ll}\text { BC6 } 39 & 0.22 \\ \text { BC640 } & 0.23\end{array}$ $\begin{array}{ll}\text { BC640 } & 0.23 \\ 2 S C 1775 & 0.18\end{array}$ $\begin{array}{lll}\text { 2SAB } 72 A & 0.14 \\ & 0.14\end{array}$ $\begin{array}{ll}\text { 2SD666A } & 0.30 \\ \text { 2SB646A } & 0.30\end{array}$ 2SD668A 0.40 2SB648A 0.40 $\begin{array}{ll}2 S D 760 & 0.45\end{array}$ $\begin{array}{ll}\text { 2SB720 } & 0.45 \\ \text { 2SC2546 } & 0.19\end{array}$ $\begin{array}{ll}\text { 2SC2546 } & 0.19 \\ \text { 2SA1084 } & 0.20\end{array}$ $\begin{array}{ll}\text { 2SC2547 } & 0.19 \\ \text { 2SA1085 } & 0.20\end{array}$ AUDIO POWER OEVICES

$\begin{array}{ll}2 S B 753 & 2.34 \\ 2 S B 723 & 2.34 \\ 2\end{array}$ $25 K 1333.00$
$25 J$
28
2.00
2SK134
2SK135
3.75
2S
$\begin{array}{ll}\text { 2SK1 } & 35 \\ \text { 2SJ } & 3.75 \\ \text { RD535 } & 0.75\end{array}$ $\begin{array}{ll}\text { BD535 } & 0.52\end{array}$ $\begin{array}{ll}\text { BD536 } & 0.52 \\ \text { BD377 } & 0.33\end{array}$ $\begin{array}{ll}80378 & 0.33 \\ 80165 & 0.30\end{array}$ $\begin{array}{ll}\text { BD166 } & 0.31 \\ \text { SMALL } & \text { SIGNAL }\end{array}$ REDEVICES $\begin{array}{ll}\text { BF194 } & 0.18 \\ \text { BF195 } & 0.18\end{array}$ $\begin{array}{ll}\text { BF224 } & 0.22 \\ \text { BF241 } & 0.18\end{array}$ $\begin{array}{ll}\text { BF241 } & 0.18 \\ \text { BF274 } & 0.18 \\ \text { BF440 } & 0.21\end{array}$ $\begin{array}{ll}\text { BF440 } & 0.21 \\ \text { BF441 } & 0.21\end{array}$ $\begin{array}{ll}\text { BF362 } & 0.49 \\ \text { BF395 } & 0.18\end{array}$

BF395	0.18	RADIAL (VERT. MOUNT)
BF479	0.66	(uF/voltage)

$\begin{array}{ll}\text { BF362 } & 0.49 \\ \text { BF395 } & 0.18 \\ \text { BF479 } & 0.66\end{array} \quad$ ALUMIN ELECTROLYTICS (uF/voltage) 1/63,2.2/50,4.7/35 10/16.15/16,22/10 33/6.3.............0.0 47/10.............. . 0.09 10/63,22/50,33/50,
$47 / 16,100 / 16 \ldots . .0 .1$ 47/16.100/16.....0.10 47/63,100/25,220/16 470/6.3...........0.12 100/63,470/16. 1000/10........... 0.18 $1000 / 16,470 / 63 \ldots 0.23$ 1000/63,2200/16. .0.30 $3300 / 25 .$. 1000/100.. . 0.88 AXIAL (HORIZ. MOUNT) $1 / 25,4.7 / 16,6.4 / 25$ $10 / 16 \ldots \ldots . . .0 .0 .08$
$4.7 / 63,22 / 10.22 / 16$

Critermir: 50 V

$224,27 \mathrm{P}, \mathrm{J1F}, 47 \mathrm{P}$
$56 \mathrm{P}, 68 \mathrm{P}, 82 \mathrm{P}, 100 \mathrm{H} .0$
150p,220p,27UP
1NOP, 390P, 470P... 0.05
1NO, $2 \mathrm{~N} 2,3 \mathrm{~N} 3,4 \mathrm{~N} 7, .0 .06$
$10 \mathrm{~N}(0.01 \mathrm{uF}) \ldots .0 .05$
22N.47N. 0.06 MONOLITHIC CERAMIC $10 \mathrm{~N}, 100 \mathrm{~N} . . . \mathrm{C} . .$. . 0.16 FEEDTHK
INO SOLDER IN. ... 0.09 POLYESTEH (SIHMENS) 10 mm LEAD SPACING $10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . . . \mathrm{O} 0.17$
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N} . . . \mathrm{O} 0.19$ $220 \mathrm{~N}, 470 \mathrm{~N}$.
luF. 0
10 mm LEAD SPACINC
$10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} .0 .06$
$220 \mathrm{~N}, 100 \mathrm{~N}, \ldots .0 .08$
20 NWN LEAD SPACING
220N, $330 \mathrm{~N}, 470 \mathrm{~N}$. . . 0.18
5 mm Lead spacinc
 20 Tm LEAD SPACING 220N, $470 \mathrm{~N}$. POLYSTYRENE
10P,15P, 18P, 22P,
27P,47P,56P,68P. . 0.08 27P,47P,56P,68
270p, 330p, 390p...0.09 1NO,1N2,1NS,1N8. . 0.11 2N2,2N7,3N3,3N9. .0.12

TANTALLIM BEAD CAPS
16v: $0.22,0.33$,
$0.68,1.0 \ldots \ldots . . .0 .1$
$16 \mathrm{v}: 2.2,4.7,10$
6v3: 22,47......0.30 $\begin{array}{ll}\text { BFRP1 } & 1.33 \\ \text { BFW92 } & 0.60\end{array}$
BFT95 0.99 $\begin{array}{ll}\text { BFY90 } & 0.90 \\ 40238 & 0.85\end{array}$ RFPOWER DEVICES

UN66AF	
2N 3866	0.85

SMALL SIGNAL
RF FET/MOSFE
$\begin{array}{ll}\text { BF256 } & 0.28 \\ \text { 2SK5 } & 0.28\end{array}$
$\begin{array}{ll}\text { 2SK168 } & 0.35 \\ J 310 & 0.69\end{array}$
$\begin{array}{ll}\mathrm{J} 176 & 0.65 \\ 40823 & 0.65\end{array}$
$\begin{array}{ll}40673 & 35 \times 51 \\ 3 S k 45 & 0.49\end{array}$
$\begin{array}{ll}3 \mathrm{SK} 51 & 0.54 \\ 3 \mathrm{SK60} & 0.58\end{array}$

9.45	3SK60	0.58
8.95	MEM680	0.75
BF961	0.70	

BF960 1.24

LCD Module
CM161.
Miniature clock
$12 / 24 \mathrm{hr}$., alarm
day, dare.
backlight.
All for..... 9.95
$4.7 / 63,22 / 10,22 / 16$
$33 / 16 \ldots \ldots \ldots . .0 .0$ $47 / 25,100 / 16 \ldots . .0 .10$
$100 / 25 . \ldots . . . e^{2} .11$
$1000 / 16 \ldots . . .0 .25$ $1000 / 16$............ 0.25 2200/16, 1000/25. .0. 36
$1000 / 35,4700 / 16 . .0 .45$ 1000/50........... 0.58

RESISTORS

0.25 W , 58 EI 2 CARLOL

 10hm-10M.......... 0.02 0.25 W I8 El2 METAL FILM HORIZ CAREON PRESETS 10 mm TYPEHORIZ CEHMET HRESETS
\qquad
\qquad HORIZ CERMET HRESETS
1k, 10k.......... 0.27

OLevel Q \& A

It's time for some semiconductors. Nick Walton describes how diodes work and how they can rectify, detect, light up and. . . . break down

THIS MONTH we continue our examination of the London Board's Alternative O level Electricity and Electronics syllabus with a look at the way conduction takes place in metals and semiconductors, and this leads us to consider the simplest semiconductor device of them all, the diode. As we will see it is found in many forms and fulfils many functions.

Detailed scientific theories on conduction are complicated and not needed for any O or A level, so what follows is jus't an outline of the scene. As you know, conduction of electricity occurs when the negatively-charged electrons move from one atom to the next pushed by voltage llooked on, remember, as energy in joules supplied to the charge expressed in coulombs). These electrons are the same as those involved in chemical reactions and when performing this chemical role are called valency electrons. They can have differing amounts of energy and these energy values are known collectively as the valence band of energies. But before they can actually leave a particular atom to drift off and help conduct current they need to enter another series of energy levels called the conduction band.

An insulator has its conduction band well above its valence band so in no way will an electron be able to find the energy to move up from valence to conduction band, hence the lack of conduction electrons' and high electrical resistance. Metals on the other hand conduct well because the two bands are close together, sometimes even overlapping, so it is easy for an electron to find its way into the conduction band (Figs. 1a and b). You could say that an insulator holds tight to its electrons while a metal is more permissive and lets them roam.

In between these two extremes come our friends the semiconductors, most commonly silicon and germanium. They do have a distinct gap between the valence and the conduction band (Fig. 1c), and at low temperatures electrons just cannot find the energy to jump the gap. But as things warm up it becomes easier. Ac-

insulator

CONDUCTOR

Figure 1. Conduction bands for a) insulators (well separated), b) metal (very close) and c) semiconductors (small gap)
cording to Bennett in 'Electricity and Modern Physics' (Arnold), at room temperatures 1 in every 10^{14} electrons are in the 'high' state where they are capable of shifting from the valence band into the conduction band.

Moving Holes

Perhaps a little surprisingly this leads not to one type of conduction but two. Clearly the energetic electron that has jumped up into the conduction band is now able to flow, but consider what it has left behind. The atom from which it came now has an unoccupied space or 'hole' which can be filled by an electron from somewhere else. Now this somewhere else can be the valence band (not the conduction band) of a neighbouring atom, to which the hole would now be transferred. Thus ahole can move around and make its own contribution to conduction separate from the electron that left home in the first place. For practical purposes we can regard this hole movement as that of positively charged particles, each unit having a charge equal to that of the electron but positive not negative.

In a pure semiconductor this naturally occurring conduction is described as 'intrinsic'. But the production of conduction electrons and the equivalent number of positive holes does not occur in sufficient quantities for practical advantage. The real use comes about when you increase either the number of conduction electrons or the number of positive holes. This is achieved by a process known as 'doping' which involves putting a different type of atom into your
silicon or germanium crystal. Both these elements have four valence electrons and form a type of pyramidstructured crystal (Fig. 2a), like diamond, in which each atom is doublebonded to four other atoms by a pair of shared valency electrons. This is shown in Fig. 2b, which is just one unit of the crystal and you have to reckon that all the many silicon atoms are attached to four others. If now an atom of comparable size takes the position of one of the silicon atoms in the crystal, and if that atom (eg antimony or arsenic) has five valency electrons, it will use up four of these electrons in the bonding. The fifth is now free to roam the lattice as a conduction electron. Thus the impurity atom appears as a donor of electrons and we have what is called an n-type semiconductor (electrons being negative).

Figure 2. Semiconductor crystal: a) 'diamond' structure (pyramid-like) form in which silicon and germanium crystallise, b) central silicon is bonded to four others, one at each apex of the pyramid

Conversely if an impurity with only three valency electrons (eg gallium or indium) were to take the place of a silicon atom in the crystal there would be a tendency to complete the electron structure, perhaps from a neighbouring electron thus creating a hole. Since holes are regarded as positive, this type of semiconductor with an impurity which accepts electrons (an 'acceptor' impurity) is called p-type.
Now what happens when you have some n-type and p-type semiconductor together in a single crystal? The answer is that you have what is called a p-n junction diode and that it conducts in one direction but not in the other.

Figure 3. p-n material: a) holes in p-type and electrons in n-type single crystal before any Interaction, b) depletion layer formed because of the recombination of electrons and holes, leaving residual negative charge In the p-type region and residual positive charge in the n-type region

p-n Junction Diode

Consider Fig. 3a with p-type semiconductor on the left. It contains positive holes (represented as o^{+}) drifting around though, of course, the net charges balance out. On the right is the n-type material with electrons (represented as - -) drifting around. Sooner or later an electron is going to drift into the left-hand region and fall into a hole, or a hole might drift right and meet up with an electron. Notice that each time an electron moves into the p-type region, it makes it negative and leaves a residual positive charge in the n-type region it has left. Thus a situation develops where at the junction of p-type and n-type, holes and electrons have combined leaving a region depleted of current carriers. This is called the 'depletion layer' and being without carriers it has a high resistance. Furthermore, the n-type region now has a residual positive charge and the p-type a negative charge due to the electron and hole movement.

It might help to picture this imbalance of charge as having the same effect as an imaginary cell connected
up as shown in Fig. 4a. If now an external cell B is connected to our $p-n$ junction with connections shown as in Fig. 4b, the voltage at the positive terminal of this external cell will push the positive holes towards the junction and that of the negative termínal will push the electrons also towards the junction, effectively narrowing the depletion layer and letting current flow. This state is called 'forward

Figure 4. Operation of junction: a) effect of imaginary 'cell', b) external cell B connected to p-n junction in 'forward bias'. The
imaginary cell appears to be connected to © Copyright MODMAGS Lid. assist current flow

Figure 6. Full-wave rectification with two diodes and a centre-tapped transformer
bias'. Looking at it from the point of view of the imaginary little cell, you can see it is connected so as to aid the current flow.

If the external cell is connected the other way round (called 'reverse bias') the depletion layer is widened or our imaginary cell is opposing the external one. Whichever way you look at it, current flow is discouraged and resistance appears high.

Rectification

Perhaps the most important and widespread use of the diode (circuit symbol $\rightarrow 1$) occurs in rectification; that is, changing $A C$ to $D C$. If you apply AC to a diode the current is only allowed to flow one way. Thus a single diode will only let one half of the AC wave through and, for the AC input shown in Fig. 5, the result is the loss of the lower half of the wave. It is necessary to include the resistor (a value of between 100 R to 1 kR will do for this) to limit the current flow. If you want to measure the waveforms indicated in Fig. 5, then connect an oscilloscope first across the secondary winding of the transformer (or other 10 VAC source used) and then across
the resistor. Because you end up with just half the wave across the resistor this process is called half-wave rectification. Apart from demonstrations it is hardly ever used. The reason is that full-wave rectification is easy to achieve with two diodes from a transformer with a centre tap (Fig. 6).

You can save the cost or inconvenience of the centre tap if you use four diodes in a configuration called a bridge (Fig. 7). When the output of transformer A is at positive voltage relative to B then current flows in the diodes D1 and D3 and is blocked by D2 and D4. When B is positive relative to A, D2 and D4 conduct and D1 and D3 block. So the (conventional) current always flows in the resistor from top to bottom.

Smoothing Out the Bumps

Thus we get squirts of DC. The flow builds up from nothing and then drops to nothing, rather like the flow you get when you milk a cow. Putting in a capacitor which takes time to charge up and discharge has the effect of smoothing out the bumps as shown in Fig. 8 and you only get what is called a ripple which is as good an approximation to DC as we require.

Figure 8. Action of a capacitor in smoothing full-wave rectified DC

Diodes for Detection

Another widespread use of the diode is in radios in the process called detection or demodulation. To understand this we need to take a very potted view of what happens in a (non-FM) radio. radio signals are carried at high frequencies: for instance, BBC Radio 4 is transmitted at a frequency of 200 kHz - that's 200,000 waves every second, and what we hear comes about by. changing (modulating) the amplitude (size) of our high-frequency carrier wave, a process called 'amplitude modulation' or AM. Suppose a flute was being broadcast playing a note of frequency 500 Hz . The carrier wave would have its amplitude changed at a frequency of 500 Hz as shown in Fig. 9, though if we wanted to be entirely accurate we would need to draw 400 complete carrier waves for each complete flute wave. Before

Figure 9. Amplitude modulation of a radiofrequency carrier wave
(C) Copyright MODMAGS Ltd

Figure 10. Effect of a diode in demodulating a radio signal before it is fed into the audio amplifier
this can be fed into the audio amplifier and be heard, the bottom part of the signal has to be chopped off and this is done by means of a diode. The result is shown in Fig. 10. The action of the diode here is called detection or demodulation.

Breaking Down a Zener

We have seen that a diode allows current to flow one way but not the other. But any diode will break down if you apply a big enough reverse voltage. With an ordinary diode that is usually the end of its useful life but there is a special sort - a zener diode - which is made so that it breaks down at a precisely-defined voltage and without damage. It has a current-voltage graph as shown in Fig. 11, and the important aspect is the 'knee' on the reverse voltage side. This indicates that when this reverse voltage is reached the diode conducts more and more currrent rather than change voltage. Obviously it can be damaged if you try hard enough and exceed its power rating.

© Copyright MODMAGS Ltd.
Figure 11. Current-voltage curve for a zener diode

The zener diode finds widespread use when a fixed voltage is needed somewhere, for instance in a power supply. Its action can be readily demonstrated with a variable voltage (eg by using a potentiometer) connected across the zener diode in series with a resistor as in Fig. 12. As the voltage is raised from zero the zener will exhibit a high resistance and most if not all of that voltage will appear across it. At 4.7 V (zeners, like resistors, come in preferred values) it. will suddenly start to conduct and it will go on conducting whatever current is necessary to keep the voltage across it fixed at 4.7 V .

Figure 12. Circuit to demonstrate action of a zener diode

Luminous Diodes

There is one other type of diode we cannot overlook and that is because it actually emits light at us from places like the luminous display of a calculator. I do not mean the liquid crystal (non-luminous) display but the red or green type still common. The device is actually called a light-emitting diode or LED. When an electron jumps down into a hole it gives up energy and for a pn junction diode made of heavilydoped gallium arsenide (GaAs) the light emitted is infra-red. The addition of phosphorus to the compound (GaAs PI) brings the light into the visible region of the spectrum. The most restful colour for the eye is green, achieved with a GaAs P and some nitrogen. You can also get LEDs that produce green, orange or yellow light but as yet manufacturers have not been able to produce a blue LED. If they could, they would have red, green, and blue - the primary colours which could lead to interesting possibilities with mixtures. Each numeral in the display on your claculator is merely seven individual long-shaped LEDs arranged in a square figure of eight and each segment can be switched on and off separately (see Fig. 13a). Thus for instance the number six is obtained by having all segments lit except the top right upright, as shown in Fig. 13b.

THIS SEGMENT

Figure 13. Seven-segment display in a calculator: a) make-up of display, b) to generate a 6, all segments are lit up except the top right upright

That just about switches off the display for this month. I hope you managed to recover from the misprints in the November issue. Thanks for staying with me - you must have done or you wouldn't be reading this now-and we'll meet again next month. HE

SEMICONDUCTORS SEND YOUR ORDERS TO DEPT. H.E. 1, P.O. BOX 6, WARE, HERTS. VISIT OUR SHOP AT: 3 BALDOCK ST., WARE, HERTS. TEL: 09203182 . TELEX: 817861

 economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms, but it is now available in quality kit form to fit all vehicles with coil ignition up to 8 cylinders.
ES200. A high performance inductive discharge ignitionincorporating a power integrated circuit (special selection): electronic variable dwell circuit (maximises spark energy at all speeds): pulse processor (overcomes contact breaker problems). Coil governor (protects coil). Long burn output. Negative earth only. Compatible with all rev. counters C300. In it's ready built form (C3000) it came top of all systems tested by an independent national authority July' 79. A high energy
capacitive discharge ignition incorporating a high output short circuit proof inverter, top grade Swedish output capacitor, pulse processor circuit, transcient overload protection. Fast rise bidirectional output ideal for fuel injection, sports carburation, oily engines. Compatible with most rev. counters. (Low cost adaptors available for rare cases. Application list enclosed with each kit. Note: Veluicles with Smiths Jaeger rev. counters code RVI on dial will require adaptor type TCI). What's in the kits. Surefire's own precision anodised aluminium extruded case. P.C. mounted security changeover switch, static timing light. Special selection Motorola semi-conductors. Capacitors, resistors etc. selected atter 5 years experience. Glass fibre pcb, solder. complete down to last washer.
Fully illustrated comprehensive instructions and full technical back up service.

Surverron Systems (UK) Ltd.
Dept. HEq
Bayer Buildinga, Lower Bristol Road, Bath, BA2 3EF. Tol: Bath (0225)
332317
Name
Address

Phone order with Access/Barclaycard
Quantity required \square lenclose

ES200: Neg	£5395	¢11.95	lenclose chq/PO's Cha No.
C300: Pos	¢D795	$\mathbf{f 1 5 . 9 5}$	
C300: Neg $=$	f1796.	$\mathbf{~} 15.95$	
Tacho Adap1. TCl		; $£ 3.90$	

CAR ENTERTAINMENT BARGAINS

Show us that you could have purchased for less within one month of your purchase and we will refund the difference!

STEREO CASSETTE/RADIO.

 MW and Stereo FM radio and Stereo Cassette Player, 8 watts per channel. lockable fast forward and autostop. Includes fitting kit and FREE SPEAKERS. Sold olsewhere for up to £85 (believe it or not). OUR PRICE $£ 45$ ($+£ 1.50$ post). (For negative earth cars only).

- PYE 7-CHANNEL STEREO GRAPHIC EQUALISEF/ BOOBTER AMPLIFIER. 17 walts R.M.S. per channel, Frequency response 20 Hz to $30,0 \mathrm{~Hz}$. -1 dob each channel. Complete with fitelsentiere OUR PRICE S2 (+ £1.20 post).

SUITABLE SPEAKERS FOR EQUALISER. Adjustable angle. heff-mounting, power handling 30 (+ £. 1.20 post).

ELECTRIC ANTENNA. Wing mounting, including switch and fit fing kit. OUR PRICE $£ 10(+£ 1.20$ post)

PLEASE NOTE: These goods are ready built units. All goods guaranteed one year. 10 -day money back offer on all undamaged goods. Goods ex-stock at time of going to press. Send SAE for details.

MINIKITS ELECTRONICS LTD.

88H Hainault Road, Leytonstone, London E11 1EH

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price $\mathbf{£} 10.00$ per set (we pay the postage)

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes

The manuals are unquestionaby the finest and mosi up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction detalls and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm,

Order Now:
Selray Book Company
11 Aspen Copse,
Bromley,
Kent. BR1 2NZ
DUA Tロロ\% GUAFANTEE
Shouion your moner will be refunded by anstion, your moner will be refunded by retufn of post.

Amount enclosed: $£$
Name:
Address:
-

Bench

 Amplifier

 Amplifier}

Just the project you need cheap, simple to build and a very useful piece of audio test gear

Beginners in electronics often assume that the more complex equipment is the more useful it is likely to be in the workshop. In fact it tends to be the more simple pieces of equipment that get worn-out! Probably the most useful items of equipment are a multimeter, power supply unit, a signal source of some kind and a simple amplifier such as the one described here.

Maximum output power of the HE Bench Amplifier is around 150 mW RMS, which should be sufficient for normal test purposes. An output power of about 1 W RMS can be achieved if an 8 R impedance speaker is used in place of the specified high-impedance type; but a large 9 V battery (PP9) or a mains power supply would then be necessary as the current consumption would average over 100 mA at high volume levels. The amplifier should not be found lacking in sensitivity since only about 2.5 mV RMS into 47 k is needed for maximum output, and even low-level signal sources such as guitar pick-ups and microphones will drive it fully.

Construction

The circuit can be built onto one of our standard Veroboards using the component layout and wiring shown in Fig. 2. Break the tracks where indicated using a spot-cutting tool or a hand-held $1 / 8^{\prime \prime}$ drill bit. Hold the tool onto the hole in question and gently rotate it clockwise until the track breaks cleanly. The component layout is very compact, but there should be no problems here, provided modern miniature components are used, and care is taken to avoid accidental solder bridges between the copper strips.

As with any high-gain amplifier, it is advisable to use screened leads at the input so that stray feedback and pick-up is minimised. Using a metal

case also helps to avoid stray pick up of mains hum, etc, but a plastic one like we used is satisfactory for most purposes. The input leads and speaker leads should be kept reasonably well separated so that stray feedback is avoided.

A speaker grille must be made in the case, and this can simply consist of a matrix of small holes about 3 to 5 mm in diameter. This is not as easy as you might think, and must be
done very carefully if a neat finish is to be obtained. The loudspeaker is glued in place using one of the more powerful adhesives that are available (such as an epoxy or cyanoacrylate type), making sure that none of the adhesive is smeared onto the speaker's diaphragm (or on your fingers!).

The circuit is powered by a PP6sized battery, which uses the standard PP3 type battery connector.

Figure 1. Circuit diagram
© Copyright MODMAGS Ltd

Figure 2. Veroboard layout, track breaks and connection details

How It Works

The circuit uses an integrated circuit power amplifier stage preceded by a single transistor preamplifier, as can be seen from the circuit diagram in Fig. 1. A ULN2283B device is used for IC 1, which has its voltage gain set at approxImately 43 dB (140 times) by an interna negative feedback circuit. Capacitor C6 decouples the supply, aiding the stability of IC 1, and C5 decouples the supply to the input stages of IC 1 ; also aiding stability. Capacitors C4 and C7 merely provide DC blocking at the input and output Resistor R6 provides bias for IC1.

Transistor 01 is used as a low-noise emitter-follower amplifier which boosts the sensitivity of the circuit by a factor of ten. The innate voltage gain of the circuit is far higher than is required here, and R3 is therefore used to provide negative feedback which boosts the input impedance of the stage and reduces its voltage gain to the appropriate figure The input signal is applied straight to volume control RV1, and C2 is used to couple the signal from the volume control to the input of Q1.

Because of the very high gain of the circuit it is necessary to roll-off the response at high frequencies to avoid instability. Together, R4 and C3 form a simple lowpass RC filter which is included in the signal path between Q1 and IC1

The output stage of IC1 is in class AB, and the quiescent current consumption of typically 12 mA increases significantly (to a maximum average value of about 40 mA at high output levels. It is therefore necessary to decouple the preamplifier stage from the main supply with R5 and C1 so that low-frequency instability due to feedback through the supply lines is avoided.

Buylines

All components are common types with the exception of the ULN2283B device used for IC 1. This is available from Ambit International, 200 North Service Road, Brentwood, Essex, CM14 4SG.

Approximate price for the project (excluding case) should be about f 6 .

Building Site

What to do with diodes - important practical advice for project builders from HE's Project Editor

NOW, BEFORE WE START I want to make one thing clearl I'm not going to bore anyone with any theory of what a diode is and/or how it works - you can find that out in any number of textbooks on electronics. (It's worth looking at this month's O Level Q\& A too.) I'm going to talk about how we use a diode rather than why. So the only thing to remember as far as we're concerned here is that electric current will flow through a diode in one direction but if the diode is turned round no current will flow - simple, isn't it? The symbol used to represent a diode (see Fig. 1) is a graphical portrayal of this. You can think of it as an arrow head with a bar across the tip of the arrow. The direction of current which will flow (from + ve to -ve) is the same as the arrow head, from anode to cathode. (The terms 'anode' and 'cathode' originated with thermionic diodes.) If the diode is turned round so that the cathode is $+v e$ and anode $-v e$, nothing will happen - it's as if the current has come up against a barrier (the bar in the diode symboll which prevents it from flowing.

© Copyright MODMAGS Ltd
Figure 1. The symbol for a diode
Manufacturers of diodes quite often carry this symbolic representation of a diode over to the markings on the actual diode itself. The two diodes used most often in HE projects are good examples - the 1N4001 and the 1N4148. Figure 2 shows a photograph of these two devices and you can see the bar marked at one end of their bodies. The end with the bar is, of course, the cathode, although it isn't necessary to think of a diode in terms of 'cathode' and 'anode' as long as its body is marked with this bar. All you need to do with such a diode is line up the bar so that it is the same way round as indicated in the circuit diagram.

Figure 2. A 1 N4001 diode (above) and a 1 N4148 diode

Diode Ratings

How does one diode differ from another? Usually in terms of only two parameters: the maximum forward current and the maximum reverse voltage which the diode can handle. For instance, the 1 N4001 has a maximum forward current of 1 A , and a maximum reverse voltage of 50 V , while the values for 1 N 4148 are 75 mA and 75 V . So you'd obviously use the 1 N4001 in a large-current circuit, say a power supply, and the 1N4148 in a circuit demanding less current, say an audio circuit or logic circuit, although the 1N4148 can operate under higher reverse voltage conditions.

Branching Out

Although the above type of diode is the most important, it is by no means the only member of the semiconductor diode family tree. There are a number of different types of diode (tunnel, Gunn, photodiode, to name just a few), but only two are of real importance to the hobbyist. The first is the zener diode and the second is the LED (light-emitting diode). Fundamental to the action of a zener diode is that, in the reverse mode, it maintains a constant voltage across itself, regardless (within limits) of the current being passed through it.

A typical circuit using a zener diode is shown in Fig. 3. Note that the diode appears to be the 'wrong way round' (ie its cathode is positive). Look at the symbol for the zener diode - it's the same as an ordinary diode but with one edge of the bar bent down, signifying that it has a 'breakdown' or constant
voltage. This can be used to advantage as a voltage reference - a very stable DC voltage. The applied voltage at the input to the circuit may vary quite considerably but the output voltage is fixed, and it depends entirely upon the breakdown voltage of the zener.

Zeners are sold by two main ratings, their breakdown voltage and the maximum power they can dissipate. Individual diodes can be selected according to their breakdown voltage, and these vary from about 3 V to over 30 V in approximately $1 / 2 \mathrm{~V}$ steps.

(c) Copyright MODMAGS Ltd.

Figure 3. Typical circuit using a zener diode
The power which a zener diode dissipates should never exceed its power rating and simple calculations can be used to check this. If, in the example shown in Fig. 3, the zener voltage is, say 4 V and resistor R1 is 100R, then the current I through the resistor is, from Ohm's Law equal to:

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R} 1}
$$

Where:

$$
\begin{aligned}
I & =\frac{12-4}{100}=\frac{8}{100} \\
& =0.08 \mathrm{~A} \quad(80 \mathrm{~mA}) .
\end{aligned}
$$

If no current $\left(I_{x}\right)$ is taken by any following circuitry then all the current flowing through the resistor will flow through the zener.

Therefore,
$I_{2}=1$,
and the power P dissipated by the diode is given by:
$P=I V$,
or
$0.08 \times 4=320 \mathrm{~mW}$.
A device should be chosen whose power rating is more than this, eg 400 mW .

Normally, the breakdown voltage of the zener diode will be printed on its body, for example 6V3 - meaning $6.3 \mathrm{~V}(9 \mathrm{~V} 1$ would be 9.1 V$)$. Otherwise the device will probably look identical to any other semiconductor diode and thus have a bar at the cathode end. Remember that a zener diode appears to go the 'wrong way round' in a circuit! If you insert it so that the cathode is negative you may well damage it, because the forward current rating of the zener is quite small.

LEDs

The other important diode-based device is the LED. This produces a coloured glow (of one of three colours, red, green or yellow/amber although a blue LED is currently being developed), when a forward current is applied through it. A typical LED circuit is shown in Fig. 4 and you can see that the symbol of a LED is that of a standard diode but with arrows to indicate that it emits light.

(c) Copyright MODMAGS Ltd.

Figure 4. An LED in circuit
Light intensity of LEDs increases with applied current but the manufacturer will state a maximum forward current

Figure 5. By holding the LED up to a bright light the junction can be seen
beyond which damage may occur. As a rule-of-thumb, a current of 20 mA produces adequate illumination from any of the commonly available LEDs.

Cathodes and anodes of LEDs are marked in a number of ways, depending on the manufacturer. Typical identification marks are painted spots, a notch or flat on the body, or differentlength leads, denoting which lead is cathode and which is anode. These methods are quite standard. What is not standard, however, is whether it is the cathode or the anode which has been denoted by one of these markings: one manufacturer may mark the anode while another may mark the cathode. Don't despair, though, the puzzle is soon solved by a quick check of the published data usually supplied with these devices.
If you have a LED but have no data, there is a simple way of working out for yourself which lead is which. Hold the LED up to a bright light and look through the body. You will see the junction between the two leads where the light is emitted (see Fig. 5). The

Figure 6. By holding a LED resistor and battery in series you can find out which lead is which

Figure 7. Use a fine pair of pliers to hold the diode while you bend the lead
feature to note is that one side of the junction (the cathode) appears to lean over the other.

To confuse the issue at this point, I'm going to add that the rectangular kind of LED used in the HERev Counter project this month (see page 27) has an opaque white plastic shield around the body of the LED (to prevent emission of light from the sides). This means that you can't work out cathode and anode just by looking at it. All is not lost however - with a battery (say a PP3) and a 2 k 2 resistor for R1, you can build up the circuit shown in Fig. 4 simply by holding the resistor, LED and battery, in series in your hands - whichever way round the LED lights is correct and then you can mark or just remember cathode and anode. You can use this technique for any LED (see Fig. 6).

It's worth noting that LEDs aren't usually as easily damaged as zeners, so if you still are uncertain which lead is which, put it in circuit - if it doesn't work, turn it round - you shouldn't damage it.

Cracking Up

Finally, a word concerning the insertion of a diode into a circuit board. Many types of diode (such as the 1N4148, most zeners and some LEDs) have a brittle body. If you bend the leads to fit the board with your fingers, you may crack the casing and the devices can literally fall apart. Using a pair of fine, long-nosed pliers you can prevent damage by holding the diode firmly and bending the lead at the far side of the nose of the pliers. (see Fig. 7).

Diodes with all-glass bodies are also easily damaged by too much heat, so be careful when soldering them into circuits. A good hint is to let the whole area cool down after soldering one lead, before tackling the other. You may waste a minute of your time waiting for the diode to cool, but it could save you the expense and bother of renewal.

Proto-Board

Now circuit designing is as easy as pushing a lead into a hole... No soldering No de-soldering No heat-spoilt components No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without bullt-in regulated power supplies
Use with virtually all parts - most
plug in directly, in seconds.
Ideal for design, prototype and hobby

NO	MODEL NO	No OF SOLDERLESS TIE:POINTS	IC capacity (14.pmolps)	UNIT PRICE	PRICE INC P\&P 15% VA	OTHER features
1	PB6	630	6	9.20	11.73	Kit
2	PB 100	760	10	11.80	14.72	Kit
3	PB 101	940	10	17.20	21.21	
4	PB 102	1240	12	22.95	27.83	
5	PB 103	2250	24	34.45	41.34	
6	PB 104	3060	32	45.95	54.56	
7	PB 203	2250	24	55.15	65.14	5V@1A
8	PB 203A	2250	24	74.70	87.63	$5 \mathrm{~V} \pm 15 \mathrm{~V}$
9	PB 203AK	2250	24	59.00	69.57	$\begin{aligned} & 5 \mathrm{~V} \pm 15 \mathrm{~V} \\ & \& \mathrm{Kit} \end{aligned}$

Tomorrow's tools for today's problems

Digital Speedo-2

 4,

 4,}

Part two of our Speedo project deals with final construction and suggests methods of connecting the pickup sensor to your car

After following last month's constructional advice builders should, by now, have reached the stage where they possess two made-up boards which need only to be connected with 10 jump leads between the two. Figure 1 shows where all interboard connections are to be made - leads of about $4^{\prime \prime}$ length are OK. You can then either cable-tie them or simply leave them all floating.

That almost concludes the building side of the project. After drilling the case at the back and inserting grommets for the power lead and sensor wire, the main board can be inserted into the case between the bottom pair of PCB grooves - which leaves the display board to drop in the front. The acrylic panel should now fit into the front and when the rectangular bezel is clipped in place, all boards should be firmly held in the case.

So far so good, but now we move on to the tricky bit - positioning the pickup sensor on the car. As we explained in the last issue the operation of the sensor relies on the fact that magnets, going past a coil, induce a current in it. From this seemingly simple statement we can see that the magnets need to be positioned on some rotating shaft which rotates with a velocity proportional to the vehicle's linear velocity. It happens that the drive shaft of a car does just that - so the magnets (four in all) are positioned on the shaft in a similar manner to that shown in Fig. 3. They should, ideally, be equidistant around the shaft and first secured with pads of double-sided adhesive foam. The centripetal force which they encounter (remember that at 70 MPH the shaft will rotate at approximately 70 Hz) will be quite large and so the pads should be only a temporary fixing while you fasten the magnets permanently with cable ties. Although the circumference of the shaft will be more than the length of one cable tie, two or more can be con-
nected together to make a longer one.
Two separate bands of ties should be used to hold the magnets to the shaft.

The positioning of the sensor along the length of the drive shaft needs also to be considered and obviously, is dependent on the individual car. Somehow the coil has to be fixed on the body of the car so that it is close enough (within $2^{\prime \prime}$) to the magnets. The rear axle is, of course liable to vertical movement and hence, the drive shaft at the rear is too. So the pickup is best positioned toward the front of the drive shaft: Position the coil so that the magnets are never further away than $2^{\prime \prime}$ from the coil. Care should also be taken to ensure that the coil isn't too close (say less than $1 / 2^{\prime \prime}$) to the magnets to prevent actual contact under bumpy road conditions!

The diagrams give an idea of how we fixed the sensor to the car used. The car had a central, fixed point to the drive shaft (which was actually part of the body) and so the coil was fastened
to a length of aluminium bar, shaped to fit and bolted at each end, to the car floor panel. This is the area where readers may need to put on their thinking caps and use a bit of ingenuity the problems encountered will depend on the particular make and model of car used - we can obviously only give general guidelines for a solution.

In summary, however, it doesn't seem to make any difference to the operation of the Speedo in what polar direction the magnets are travelling. The coil appears to pick up an adequate signal for the circuit to process as long as it is within $2^{\prime \prime}$. The main point, though, is that the central soft metal core of the coil should be perpendicular to the face of the magnets.

It only remains to run a length of screened lead from the coil to the inside of the car and to the Speedo. Power is connected to the Speedo via an in-line fuse (1 A) and the ignition switch and your project is complete.

The two Speedo boards with that of the Rev Counter

Figure 1. Connection details of the two boards of the Speedo

How It Works

The operation of the pickup sensor depends on the elctromagnetic effect of a changing magnetic flux in the vicinity of a conductor - causing a current to flow in that conductor. This effect is also used in the pickup of the HE Tacho project in this issue.

As the magnet approaches the coil in a particular direction a current is induced in it, producing a voltage across the coil as shown in Fig.2. The voltage increases first in one direction and then reverses as the magnet passes the coil lthe magnetic flux changes direction). The output is approximately sinusoidal around the area (waveform a).

If the magnet rotates with a faster velocity the sinusoidal 'blips' occur closer together and (because the change of magnetic flux is more rapid) a larger voltage is produced (waveform b).

The output voltage from the coil is passed onto the rest of the circuit for processing as explained last month.

Figure 3. It's a tight fit - but all three boards of the Speedo and the Rev Counter do fit in the case

Parts List

MISCELLANEOUS

4 small magnets (reed switch type) telephone pickup coil - Altai TC200 cable ties

Buylines

The magnets are standard reed switch operating types and should be available at any good component stockist. Likewise the telephone pickup coll should be no problem - we only specify the particular variety mentioned in the Parts List because it was the first we could lay our hands on. You may like to experiment with other types if you can't obtain that one.

The cable ties are made by Vero.

GロEENWELロ

443FMILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT-just add 40p post. Tel (0703) 772501

COMPONENT CABINET IDEAL FOR THE NEWGOMER TO ELECTRONICS

Contains hundreds of brand now resistors, capacitors, transistors, diodes and I.C. .s. All ustetul values, carafully chosen to help the new construc-
for pursue his hobby without finding himself short of some vital parts. All parts contained in clearly marked bags in a plastic storage cabinet $232 \times$
$121 \times 165 \mathrm{~mm}$ with 9 drawers into which all pans $121 \times 165 \mathrm{~mm}$ with 9 diawers into which all pans can be neaty located. It bought ind widually parts
plus case would cost over ESO but we are offering this for ONLY $£ 33.95+E 1 \mathrm{p} . \mathrm{B}_{\mathrm{p}} \mathrm{P}$. Simply send a cheque or P.O. for $£ 34.95$ for immediate de. sparch.
CONTENTS
$200 \mathrm{l} / \mathrm{m}$ watt resistors
70 Wire wound resistors
70 Ceramic Capacitor
70
Mylar Capacirors
50 Polyesier Capacitors
56 Electrotytic Capaciors
61 Transistors
61 Transistors
$\begin{array}{ll}12 & \text { I. C. } \\ 20 \\ \text { L.E.O. }\end{array}$
55 Oiodes and rectltiers
Alrogether 614 compone
EX-COMPUTER PANELS
$25272 \times 6 \mathrm{~V}$ reed retays, 6×2 SO30 or 2 S 2306 $\times 400 \mathrm{~V}$ recis, + Rs. Only 500 . 2529 TTL pack-Panels with 74 series on.
together with code sheet. From simple gates 10 together with code shieet. From simple gates
complex counters. 20 ICs E1; 100 ICs $\mathrm{E4}$.

COMPONENT TRAY Attractive vellow tray $285 \times 165 \times 42 \mathrm{~mm}$ with clear hinged lid and movable compartments. Up to
15 can be made from dividers supplied. As an 15 can be made from dividers supplied. As an
added bonus, a selection of new surplus come ponents are included. all for the special low price of $\mathrm{E4} .35$.

BUZZERS, MOTORS
401 P RELAYS
Z401 Powertul GV DC buzzer, all motal construc-
tion. 50 mm dia $\times 20 \mathrm{~mm} 85 \mathrm{p}$.
$22 \times 15 \times 16 \mathrm{~mm}$. Very neat 65 p.
-450 Miniatura 6V OC motor. high quality type 450 Miniatura
32 mm dia $\times 25 \mathrm{~mm}$ high, with 12 mm spindle.
Only E 1 .
$2459115-230 \mathrm{~V}$ ac high torque motor with geared
 tomm Only E 2 .
W892 Heavy Duty 12 V relay. ideal for car use singte $15 A$ make contact. Coil 25 A in sealed metal
can with mounting bracket 85 p . W890 DIt Reed relay SPCO 2.4.10V. 200R coil. Only Ez. 20 .
W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6V
coil, SPCO 34 pontacts. 93 p .
VEROBLOC BREADBOARD
New from Vero, this versatile aid tor buliding and resting circuits can accommodate any sure of IC.
Blocs can be joined together. Sus strips on $X \& Y$. axis - total 360 connexion points for jusi $£ 4.15$.

THE SPECTACULAR
1981 GREENWELD Component Catalogue

Bigger and better than overll!

- 60 p discount vouchers

Frrst Class reply paid

- Free Bargain List
* Priority Order Form
* VAT inclusive prices
- Quantity prices for bulk buyers
- Free IC Data Sheel

FrealC Data Stheel
SEND 75 (inc. posi) For Your copy
NOWII
BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU
ALL PACKS CONTAIN FULL SPEC. BRAND NEW
MARKED DEVICES - SENT BY RETURN OF POST, VAT INCLUSIVE PRICES.
K001 50 V ceramic plate capacitors. $5 \% .10$ of each value 22 pF to 1.000 pF . total 210 . $\mathbf{C 4} .80$.
K 002 Extended range 22 pF to $0.1 \mu \mathrm{FF} .330$ values £7.66.
K003 Polyester capacitors, 10 each of thase $\begin{array}{llll}\text { values } & 0.01, & 0.015, & 0.022, \\ 0.033, & 0.047 \\ 0.068, & 0.1 & 0.15,0.22, & 0.33,0.47,\end{array}$ altogether tor $£ 5.40$.
K004 Mylar capacitors, min 100 V rype 10 each all values from 1.000 pF to 10.000 pF . Total 130
for $\mathbf{E 4 . 7 0} \mathrm{l}$ for $\mathbf{4 4} \mathbf{7 0}$.
007. Electrolyhic capacitors 25 V working smal physical size. 10 each of these popular values 1 .
$2.2,4.7 .10 .22,47,100 \mu$ F. Total 70 for $\mathbf{E 3 . 5 9 .}$ K008 Extended range. as above, al so including 220. 470 and 1000μ F. Total of 100 for E6.35. similar. 10 of each value from 10 to to $1 \mathrm{M}, ~ E 12$ series. Total 610 resistors $£ 5.95$.
$K 022$ Exiended range. Total 850 resistors from 18 to 10 M Es .20 .
K041 Zener diodes $400 \mathrm{~mW} 5 \%$ BZY88, etc. 10 of each value from
280 for $£ 15.95$.
NEW K051 LEOs - 10 each red, green \& yellow
3 mm \& 5 mm , with clips. Total 60 LEDs for $\mathbf{\varepsilon 8 . 9 5}$

REGULATED PSU PANEL

Exclusive Greenweld design - better spec. than anything on the market being offered af the price.
$P_{\text {anel }} 110 \times 82 \times 33 \mathrm{~mm}$ high contains all components including bridge rectitier and smoothing
capacitor. Ready buitand tested --iusl ddd a 30 V 2A wansformer and two pots for a fully variable voltage and current supply
SPEC $1 / 2$ Output voltage 0.28 V
/2 Output current 20 mA - 2 A
Source Impedance OR 1
Send SAE for full detals of the many ways this useful module can be used, together with price list it parts for various options. Only $£ 7.75$

TRANSISTOR PACK K516
Take advantage of this unbelievable offerll
Small signal NPN/PNP transistors in plastic Smail signat NPN/PNP transistors in plastic
package at an incredibly low, fow pricell Almost all are marked with type number - almost all are tull spec. devices. Some have bent leads. Over 30 different types have been found by us including
BC184/212/238/307/328.8F196/7. $21 \times 107 / 8 / 9 / 34 Z / 450 / 550$ etc. Only avail.
abie as a muxed pack at $\& 3$ per 100 , 87 per 250 . abie as a mixed pack at $£ 3$ per ' 100 , $£ 7$ per 250 ,
$£ 25$ per 1.000 .
ELECTRONIC AIR FRESHENER KIT

- Bettery Operated

- Replacenble Fragrance

Rontuast Construction
This novel kit contains everything you need to make one of the most advanced sir tresheners of its kind. Styled to take its place in any room in your home and do its iob quietly and unobtrusively.
The automatic timing circuit switches on sfan for few seconds at regular intervals to send an odour neutralising fragrance into every comer of your room
The kit includes componenis for EITHER a 4 or 15 minute tuming circuit, miniature O.C. motor and
moulded pans in high impact styrene to provide an easily maintained, elegant eppearance.
ONLY $£ 7.95$.

TELEVISION SOUND IS GOOD!

Yes it's true-but you'll need to listen through a Minim Television Sound Tuner to be convinced. Music, wildlife, even the news suddenly comes to life when you can hear all the detail that you expect from High Fidelity equipment.

Connect the Minim Television Sound Tuner to the amplifier or music centre or listen directly on headphones so as not to disturb others.

Further information will only cost you $12 p-$ stamp out poor television sound!

Name
Address

HE 1
Minim Audio Limited, Lent Rise Road, Burnham, Slough SL1 7NY. Tel: Burnham 63724
Minim Audio
make a note of our name!

Into Digital Electronics

More advanced circuits this month as lan Sinclair describes how to use binary counter ICs, a seven-segment display and SISO, PIPO, PISO and SIPO shift registers

A BCD COUNTER, a we've seen, can be made from four flip-flop units, with a gate for detecting the ten (1010) output and operating the reset. This BCD counter arrangement is so common that all its flip-flops and gates are manufactured in IC form, ready for use. There are several BCD counter ICs, but the one we'll use is a very common variety, the 74LS90.

The pinout of the 74LS90 is shown in Fig. 5.1. The four outputs are labelled QA-QD, QA being the lowest significant digit (the one on the right hand side when we write a binary number) and QD the highest significant digit. There are two counting inputs, A and B. The A input is an input to one of the flip-flops, whose output, reasonably enough, is QA. The B input is to the remaining chain of three flipflops, which are gated so that they divide by five. For a BCD count, therefore, a connection has to be made from QA to input B, and the signals to be counted are taken to the A input.

© Copyright MODMAGS Ltd.
Figure 5.1 Pinout for the 74LS90 BCD/binary counter chip

There are also four reset terminals. The two terminals marked RO will reset the 74LS90 to zero when both are allowed to go high. For normal counting, therefore, at least one of these inputs must be earthed. Similarly, the inputs marked R9 will reset the counter to nine (1001) unless one of these terminals is earthed. By making use of gating and these reset terminals, various count numbers can be obtained, but the 74LS90 is practically always used just as a straightforward decade (scale of ten) counter with BCD outputs.

We çan try it all out quite easily using the Eurobreadboard. Remove the J-K flip-flops from the board, and plug in the 74LS90 (a 14-pin IC) with its pin 1 on line 10A and pin 14 on line 10B.

Keep your 74LS 132 oscillator in place to provide clock pulses, and make sure that all the switches are wired as they were at the beginning, so that up gives logic 1 and down gives logic 0 - Fig. 5.2 is a reminder of this switch wiring.

(c) Copyright MODMAGS Ltd.

Figure 5.2 The conventional a witch arrangement - a reminder

Now make the connections which are needed to use the 74LS90 as a decode counter, displaying its count on the LED's. The circuit is shown in Fig. 5.3. One of the spare gates of the 74LS132 is used to control the clock pulses, so that SW1 acts as a count/wait switch. Switch SW4 is wired to the reset (0), terminal, so that the counter can be reset with this switch up.

When the wiring is complete, switch on and use SW4 to reset. This counter, like any device containing flipflops, will always give an unpredictable output at switch on, so that it must always be reset after switching on. Circuits (such as computers) which contain a large number of flipflops need what is called an 'initialisation procedure' which resets all the flip-flops, otherwise the circuits would be unusable.

Now watch the LEDs as you switch SW1 up to start the count. The wiring given in the diagram has been arranged so that the LEDs are in the correct order to show a binary number, with OD indicated on the left-hand side and QA on the right-hand side.

Decimal Readouts

All this binary readout with LEDs is very interesting, but for most readouts we want to see decimal numbers which we're accustomed to. To show a decimal digit there are several types of display systems, but by far the most common is the LED seven-segment display. The arrangement of a sevensegment display is shown in Fig.5.4, and it consists of seven bars of LED material arranged in a figure eight pattern. There is often an eighth segment, a decimal point, but this is not activated by the decade counter so we'll ignore it for the moment.

Now at this point we have a problem of a type which gets more familiar (and more complicated) as we go on with digital electronics. There are four outputs from the 74LS90 counter and there are seven segments to drive. In addition, the signals from the counter are TTL signals, 0 V or +5 V , and the signal needed at the display to make a segment glow is about 2 V . We need some method of converting BCD signals into seven segment signals, and TTL levels into LED segment levels. This sort of problem is an interfacing problem, and like most interfacing problems it's solved by using another IC.

Figure 5.3 A clock-pulse oscillator driving the decade counter through a gate. The outputs of the counter are taken to LEDs

Figure 5.4 Layout of a seven-segment display. The lettering which is shown against the segments is always used to indicate these segments

The other IC is a BCD-to-sevensegment decoder. Its inputs are the $B C D$ signals from the counter and its outputs are the seven segment lines. These will still deliver signals at TTL levels, so we connect the decoder outputs to the display inputs by resistors, which will limit the amount of current. without these resistors, the display would be bright, but not for long!

It's straightforward so far, then, but there is one minor complication. There are two varieties of seven-segment displays using LEDs. Each LED in a display has an anode and a cathode. We don't need to have separate connections to each anode and cathode, so we can connect one lot together.

Common-cathode LED displays have one cathode terminal, and the inputs are the separate anode terminals. Common-anode LED displays have one anode terminal, and the inputs are to the separate cathode terminals. Because the display glows when an anode is taken positive or a cathode negative, the two types must use different decoders, or one decoder type, with seven inverters for the opposite type of display.

For our board, the most convenient display is the DL728, available from Maplin (order number FR38R). This is a common-cathode display, and the decoder which goes with it is the 74LS48. We're using 470R resistors to limit the current in each segment to about 6 mA . This is more out of consideration for your power supply than for the display, which could take quite a bit more, up to 20 mA per segment.

Counter Circuit

The circuit for the complete counter and display is shown in Fig. 5.5. We've used quite a lot of the board for this, and several new components. The 74LS48 is placed with its pin 1 in line 18C and pin 16 in line 18D, replacing a 74LS76. Note that this is a 16 -pin chip. Incidentally, the 74LS48 is sometimes quite hard to get - lots of people advertise it but can't necessarily supply it. If you're unlucky, just reorder for the 7448 instead - it will take more current but it operates in the same way. The display is mounted on columns C and D of the Eurobreadboard. The pinout, looking from the top, is shown in Fig. $\mathbf{5 . 6}$ and the mounting position is with pin 1 in line 10C and pin 14 in line 10D. The connections are then as shown in Fig. 5.5. Check your connections before testing the circuit, and then set SW1 down (to isolate the clock) and SW4 up (to reset the counter). Switch SW2 is con-

Figure 5.5 Counter-decoder-display circuit. Connections to the 74LS90 counter are the same as they were in Fig. 5.3, but the outputs Qa to Qd are connected to the decoder inputs, and the decoder outputs are connected through 470R resistors to the display
nected to the LAMP TEST pin of the 74LS48 (line 20C) and SW3 is connected to the RB input (lines 22C, 21C). Indicator LED 1 on the board is connected to the RB output pin of the 74LS48 - we'll explain these RB inputs and output later on. For the moment, keep the SW2 up and SW3 down.

Switch on, and you should be rewarded with a zero on the display, since the counter is reset to zero. With SW2 down, the remaining segment will light up, because the 'LAMPTEST' input does just that - it switches on each segment of the LED display. That way, you can test displays without having to watch each stage of a count. Put SW2 up again, so that the zero shows, and switch SW1 up, to start the count. The display should now start to go through a normal counting sequence $1,2,3$ and so-on up to 9 . On the next clock pulse, the gates in the $74 \mathrm{LS90}$ will reset the counter so that the zero shows again.

Suppose you wanted to display tens and hundreds? It's just a matter of repeating these circuits, and the method is shown in Fig. 5.7, though we haven't room to construct it. The units counter has its QD output connected to the A-input of the next counter, and the ripple-blanking input to the next output as shown. Each counter has its own decoder and seven-segment display.

Ripple-blanking? That's a useful feature of the 74LS48 which we don't need in our circuit, but which is handy when we connect up a lot of counting units together. When the RB connections are 'daisy-chained' (Fig. 5.7) then the display suppresses leading
© Copyright MODMAGS Lid.
DISPLAY
74LS48

1.QB INPUT
2.QC INPUT
3.LAMP TEST
4.RB OUT
5.RB IN
6.QD INPUT
7.QA INPUT
8.EARTH
9.E OUTPUT
10. D OUTPUT
11. C OUTPUT
12. B OUTPUT
13. A OUTPUT
14. G OUTPUT
15. F OUTPUT
16. +5V

PIN	FUNCTION
1	ANODE F
2	ANODE G
3	NOPIN
4	CATHODE
5	NOPIN
6	ANODE E
7	ANODE D
8	ANODE C
9	ANODE DP
10	NOPIN
11	NOPIN
12	CATHODE
13	ANODE B
14	ANODE A

ONLY ONE CATHODE CONNECTION NEED be USED

Figure 5.6 Pinouts for the display and for the 74L.S48 decoder
zeros. In plain English, that means it would never, for example, show 0012 , only 12. The zeros which come before any other numbers are simply not displayed - the ripple-blank input acts to gate them off.

Before we leave counting, there's one important point about the 74LS48. At each of the possible input binary numbers from 0000 to 1111 , there is a different set of digits on the seven output lines. This is a simple form of read-only memory chip, because a definite output is always obtained for each input. If we thought of the 74LS48 as a memory circuit, the inputs A, B, C, D would be called the 'address', and the outputs the data. For example, an address of 1000 (eight) gives a data output of 1111111 (all segments lit). Why readonly? Well, there's nothing we can do to change the data which comes out of the 74LS48. An input of 1000 will always give an output of 1111111 , and we can't make it 1010101 by any sort of juggling with the chip. The memory circuits for microprocessors are also circuits which will output a different set of bits at each input address, and if you're familiar with chips like the 74 LS48, then memory circuits don't seem quite so unfamiliar.

Into Digital Electronics

Figure 5.7 How a count of up to 99 can be achieved. Each dight needs one 74LS90. equivalent to one 74LS48 decoder, and a seven-segment display. The Od of the units counter is connected to the input of the tens counter, and the Od of the tens counter is connected to the input of the hundreds counter. The hundreds and tens decoders have their ripple-blanking connections made so that leading zeros are suppressed

Back to the Beautiful Movers

Decimal counting and display is just a brief interlude in a lot of binary circuits, and we need now to return to shift registers. We make a shift register from four J-K flip-flops, but nowadays, a shift register would be bought as a complete IC. Shift registers, despite the name, aren't used just for shifting, and we need to know a bit more about their uses nowadays, because microprocessors contain a lot of shift registers.

There are four basic types, labelled SISO, PIPO, PISO, and SIPO. As usual, the letters are the first letters of words, S for serial, P for parallel, I for input, 0 for output, and the letters therefore describe how each shift register can be used. In the descriptions which follow, remember that a bit means a binary digit, 0 or 1.

SISO

The SISO shift register is serial in, serial out. A register of this type would have one input and one output, with a clock terminal. A bit at the input is shifted in by a clock pulse, and won't appear at the output until several clock pulses later. How many? That depends on how many flip-flops are in the register, a complete shift through the register will take as many clock pulses as there are flip-flops. It's a useful way of delaying a set of bits on their way through a circuit, or of storing bits for a set number of clock pulses.

PIPO

The opposite extreme is the PIPO register, parallel in and parallel out. We can use this one without ever applying clock pulses, simply as a latch to hold some data bits. If a serial input is also provided, this can rotate a set of bits (Fig. 5.8), so that the bits which you read out are not in the same positions as they were when you put them in. It, too, has its uses.

SIPO \& PISO

The SIPO and PISO are both extremely useful forms of registers. The PISO is parallel in, serial out, so that a complete group of bits can be stored in the register, using one line for each bit, and them read out one by one along a single line. This is how information in groups of bits llike the eight bit unit, or byte, which is used by most microprocessors) can be sent along a single wire to a video terminal, a printer or a cassette recorder. The PISO register is, of course, only a part of the whole system but its part is the important one - conversion from parallel eight bits to serial one-at-a-time.

A SIPO register is the gubbins you need for the opposite conversion. When you have bits in serial form coming along a single line, and you want to assemble them into groups to deliver to some system which deals with groups (display, microprocessor or whatever), then the SIPO register provides the method. The bits enter the serial inputs, are shifted along the register at each clock pulse, and can be read at the parallel outputs after the correct number of clock pulses. We've simplified all this, of course, because there are usually other problems to solve. You have to be sure that when you send bits out serially, each of them is doing something. There's no point, for example, in sending bits at a rate of 100,000 bits per second to a printer
which can cope with only a few hundred bits per second. Taking another example, if you're reading serial bits into a register, you have to make sure that you are grouping them correctly, and not taking some bits from the end of one group and some from the start of the next. There are several ways of ensuring that these actions go smoothly: one of them is the use of bits to identify stop and start, but we don't need to go into these problems right now.

Practical Shifting

What we do need, however, is some first hand experience with a shift register. We could use various IC shift registers to demonstrate all of these actions, or even use a 74LS295, which has both serial and parallel inputs and outputs to demonstrate all four types of registers, but the easiest and least pricy method is just to use the 74LS76s which we already have. After all, it's the actions we want to show, not the look of the IC.

To start off with, then, place the two 74LS76. ICs back on the Eurobreadboard. Integrated circuit ICA should have its pin 1 in line 10A and pin 16 in line 10B and ICB should have its pin 1 in line 18C and pin 16 in line 18D. We'll need the 74LS 132 as well, with its pin 1 on line 19A and pin 14 on line 198 . The power supply connections are as shown in Fig. 5.9 and all the switches are connected conventionally: a reminder is also shown in Fig 5.2.

With these preliminaries over, we can start. The board should now contain the three chips, with power supply links; but no interconnections. Link up the J and K inputs to the Q and \bar{Q} outputs in the usual form of a shift register (Fig. 5.9) and we now have the basic unit which we'll use to demonstrate all the types of shift register.
Start off with SISO. For this one we want to be able to place bits in serially

SWITCH POSITIONS					SETTINGS-			
SW1	SW2	SW3	SW4	A	B	C	D	
L	X	X	X	0	0	0	0	
H	H	X	H	1	0	0	0	
H	H	X	L	0	1	0	0	
H	L	H	X	0	0	1	0	
H	L	L	X	0	0	0	1	

Figure 5.12 Table of switch operations for at the input of F/FA. To do this, we need an inverter between JA and KA, and one of the gates of the 74LS132 can be pressed into service for this task. We'll use a switch to clock the register, SW1, and another of the gates of the 74LS132 is used as a simple debounce circuit for the switch. Switch SW2 is now used to provide the serial input, and LED4 indicates the serial output at QD (Fig. 5.10).

With four flip-flops in the register, any bit placed at the input using SW2 should need four clock pulses from SW1 to complete its movement through the shift register. We must first ensure that all the flip-flops are cleared, and that SW3 has been arranged to do this.

With the circuit wired as shown, turn on the 5 V supply, and reset all the flip-flops, using SW3. Switch SW2 up to place a 1 on the input, and operate SW1 once to shift this 1 to QA. Switch SW2 down so that the input now remains at zero, and operate SW1 three more times. This should result in a 1 appearing at the output (LED4).

The PIPO shift register needs a different set of switch connections, but the NAND gates are not required. Three switches, SW2, SW3, SW4 are used to set the flip-flops, and one to reset (SW1). The switches have been deliberately arranged so that no flipflop can have both set and reset terminals earthed simultaneously (Fig. 5.11).

All four of the LEDs are now used to indicate the state of the register, LED 1, for flip-flop A, 2 for B, 3 for C and 4 for D. With the wiring shown, reset by pushing the slider of SW1 down.

Push the sliders of switches SW2, 3,4 so as to select one flip-flop to set - Fig. 5.12 shows how the switches are set for each flip-flop.Switch SW 1 is then pushed up to set that flip-flop. Unless SW1 is pushed down again, the flip-flops which have been set, indicated by the LEDs, will remain set which is the principle of the PIPO register. We haven't used clock pulses - for this sort of application we don't need them.

Fig. 5.11

Next on the list is the PISO. With our ration of four switches, we can't set the flip-flops individually and still have the register free to be clocked. Figure 5.13 shows the circuit, SW 3 and 4 are used for setting, and SW2 selects set or reset. Switch SW1 lets you isolate the set and reset so that the register can be clocked, using the slow clock pulse generator formed by one of the $74 L S 132$ gates. Indicator LED4 is used to show the state of QD which is the serial output $J A=0, K A=1$, so that the first flip-flop is reset when the clock pulses start. This ensures that the register is emptied by four clock pulses. One of the NAND gates is connected so that clocking starts when the set inputs are isolated.

Figure 5.13 Connections for a PISO register. The connections shown in Fig. 5.11 are removed; the diagram shows the additions to the basic circuit in Fig. 5.9

Wire up, switch on, and use SW2 (down) and SW1 (down) to reset the flip-flops. Now switch SW1 up to isolate the set/reset inputs, and SW2 up to select set. Switches SW3 and SW4 can now be arranged so that either 1 and 3 or 2 and 4 will be set when SW1 is pushed down again. Whenever SW. 1 is pushed up again, the clock pulses will start to operate

Fig. 5.14 The SIPO register connections. Once more, this shows the additions to the circult in Fig. 5.9, with previous additions removed. This also restores the switches to normal operation for the next set of operations to be described next month
the flip=flops, and the bits which have been set will shift right at each clock pulse. After four clock pulses, all the original bits have been shifted out (remember that some of the original bits were zerol and the register is filled with zeros.

The SIPO shift register is easier on switches (Fig. 5.14). This time each LED shows the state of one of the flipflop outputs, and the 'signals' are fed in at each clock pulse. Switch SW4 resets the flip-flops, SW1 is used to switch the serial input high or low, and SW2 is used as the clock pulse generator, along with its debouncing circuit, one of the NAND gates of the 74LS132.

Wire up, switch on, and use SW4 to reset, so that all of the LEDs are extinguished. Now use SW1 to place a 0 (down) or 1 (up) at the input, and load this in with a complete switch cycle (up to down) of SW2. Pick another value (0 or 1) for SW1, and use SW2 again. At eachload, a value will feed into $F / F A$, and the previous value will be shifted along to F/F B. After four clock pulses, the register will be full, ready to read out its content over four lines.

By now we've covered most of the really important basic digital circuits with one important exception - the adder. We'll keep that for next month.

AVOID DANGER from RadIATION WITH OUR RADIATION DETECTOR

Recommended for: Civil Defence, Fire; Hospital, Medical and general use

General Information:

Pocket dosimeters provide an accurate, reliable and immediate method of measuring the integrated dose of radiation received by those exposed to ionising radiation. The dose may be reaci al any time and in any place, providing a source of light is available.

Principle:

The dosimeter is an ionisation chamber type using a quariz fibre electroscope as the indicating element. A microscope is used to project the image of the moving quartz fibre element on to a graticule scate. in qum is supported by a high quality insulator. When the instrument is charged positive charges distribute themselves over the wire electrode and quartz fibre causing the fibre to bend a way from the electrode. The fibre will take up a position depending on the amount of. charge on the system.
When the surrounding air in the ionisation chamber is ionised negative ions will be attracted to the positively charged electrode thereby reducing its charge. The resulting fibre movement will be related directly to the quantity of radiation producing the lonisation. The fibre movement can thus be calibrated the fibre will be propontional to the roentgens received per unit time.

Construction:

The microscope, electrosrope and ionisation chamber are housed in an outer skin which may be of brass or aluminium. At one end of the tubular case is fixed a charging assembly, and at the other an eye prece window.

Each dosimeter is provided with protective end cap translucent window so that the cap need not be removed for reading. humidity, water-immersion and temperature tests.

- BE PREPARED, EVERY HOME
SHOULD HAVE ONE

YOU CAN'T SEE IT

 HEAR IT FEELIT BUT YOU CAN DETECT ITWILL READ X-RAY
\& GAMMA RADIATION

Features:

- THESE UNITS WILL READ aÚTOMATICALLY THE AMOUNT OF RADIATION IN THE AIR
- this Instrument is only a little larger than a fountain PEN
- CLIPS ON TO YOUR TOP POCKET
- WEIGHT LESS THAN $30 Z$.
- CONTAINS THREE LENSES
- fully charged, tested and GUARANTEED
- BRITISH DESIGN AND MANUFACTURE, RUGGED CONSTRUCTION
- MANUFACTURER'S LIST PRICE OF SIMILAR MODEL IS OVER £25
- BUY NOW WHILST STOCKS AVAILABLE. DELIVERY BY RETURN POST

 radiation and detectors.
 proper protective packing.

VIEW THRU

$\operatorname{lic}_{\substack{5 \\ R}}$

Nicad Charger

Recharge your vital equipment with this practical, money saving device from HE

ISN'T IT SAD - just when you want to listen to your favourite radio programme on your little tranny, you inevitably find the batteries are defunct. And don't they cost a lot to replace? Well, here is the answer to all your problems - rush out and buy some nicad cells for your batterypowered calculator, transistor radio or cassette player etc. Although they are more expensive initially, you can recharge them again and again on the HE NICAD Charger, thus saving £££££s overall! With this project whenever your batteries run down an overnight charge will revitalise them to their full vigour.

Nicad cells can be recharged many hundreds of times but they need a regulated charge current. Our charger provides this regulation and, in the mode shown in Fig. 2, it will handle up to six AA sized (HP7 type) cells. It can be easily modified to suit other sizes as described below.

Nicads need a constant current charge. For example AA cells need about a 65 mA charge, for a set period (normally 12 hours and so an overnight charge is ideal). For other sizes of cells, different charge currents are required. The table in Fig. 1. shows typical values of current required for various-sized cells. Altering our charger to suit other cells. is a cinch, as the output current is set solely by R1.

Its value in ohms is equal to:
0.65
the required charge rate in amps
So, for any required charge current, choose the nearest preferred value of resistor to the calculated value.

Output currents of more than 80 mA will require a larger mains transformer because this should have a secondary current rating at least 20 mA more than the charge current.

Higher charge currents might also make it necessary to fit Q1 with a more substantial heatsink.

Construction

The components are mostly assembled on one of our standardsize (24 holes by 10 strips) 0.1 " pitch stripboards as can be seen from the wiring diagram of Fig. 3.
Transformer T1 is not mounted on the board, but is bolted to the inside of the case. For reasons of safety thecase should be a type having a screw-on lid, and must not be a clipon type. If a metal case is used it must be connected to the mains earth. It is likely that T1 will have flying leads rather than tags, and a connector block will then be needed to facilitate the connections between the mains lead and T1. The earth lead to the component panel can also be taken via this block. Connector blocks are usually sold in twelve-way strips, and the required three-way
block can be cut from one of these using a sharp knife.

The output of the unit can be taken to a PP3-type battery connector, making quite sure that it is connected with the correct polarity. Plastic battery holders for AA (HP7) size cells are readily available, and these have a PP3-type connector. These holders connect the batteries in series (connected ' + ' to ' - ') the batteries must never be connected in parallel ' - to ${ }^{\prime}$ - ' and ' + ' o $^{\prime}$ +').

Q1 may become quite hot in use and should be fitted with a small heatsink.

SIZE OF CELL	CHARGE CURRENT (FOR 12hr CHARGE)
PP9	100 mA
AAA	20 mA
AA	65 mA
C	250 mA
D	500 mA

Figure 1. Table of charge curents for various cells.

Parts List

© Copyright MODMAGS Lid.

Figure 2. Circuit diagram

Figure 3. Veroboard layout and connection details. No track breaks are required

Buylines

All components are readily available and the approximate cost will be around $£ 5$. This price excludes the case, of course.

How It Works

The mains voltage is stepped down to a more suitable potential by transformer T1, with D1, D2, anid C1 then full-wave rectifying and smoothing the output of T1 to give a low voltage (about 14 V under load) DC supply. This supply cannot be connected directly across the nicad cells as these have an extremely low internal resistance, and would place virtually a short circuit across the supply. The supply in turn would damage the cells, which should not be charged at a higher current than that recommended by the manufacturer, and would also result in the destruction of the supply circuit!

A current regulator must be included to ensure that the cells are charged correctly, and this is the purpose of $\mathrm{Q} 1,02$, R1 and R2, which are used in a conventional constant-current generator configuration. Transistor 01 is biased hard into conduction by R2, and a current therefore flows through R1, 01, and the cells being charged. The current is limited to a safe level by 02 which becomes biased into conduction by the potential developed across R1. The results in Q2 tapping off some of the base current for Q1, so that the impedance of 01 increases.

Therefore, even with a low im-
pedance across the output, such as that of the nicad cells, the output current passed by 01 is stabilised by 02 at a safe level, since Q2 can reduce the bias on Q1 to practically zero lf necessary. As 02 is a silicon device it requires a base bias voltage of about 0.65 V to br ing it into normal conduction, and so the circuit stabilises with about this potential across R1. From Ohm's Law it can be seen that about 65 mA flows through R1, Q1, and the cells under charge 10.65 V divided by 10 R gives 0.065 A , or 65 mA), which is about the correct charge for AA size cells.

Another year has passed, so it's time once again for the annual HE alphabetical Index. Here we have a complete listing of all of the major features, projects and short circuits from Volume 2 of Hobby Electronics.

PROJECTS

TITLE	MONTH	YEAR	NO	PAGE	Push Button Volume Control	Jul	80	9	37
					PSU Module (5080)	Mar	80	5	19
2 Watt Amplifier	Jun	80	8	54	Radio Timer	Aug	80	10	29
$18 w+18 w$ Stereo					Railway Track Cleaner	May	80	7	45
Amplifier	Jul	80	9	23	Radio Control Speed				
508025 Watt Amplifier					Controller	Apr	80	6	49
Module	Mar	80	5	11	Reaction Timer	Sep	80	11	25
5080 Loudspeaker	May	80	7	64	Rev Counter	Jan	81	3	27
5080 Preamp	May	80	7	28	Scalextric Lap Counter	Jan	80	3	9
Audio Power Meter	Dec	80	2	59	Short Wave Radlo	Mar	80	5	57
Autoprobe	Sep	80	11	37	Sound Operated Flash Trigger	Jul	80	9	11
Battery Charge Indicator	Dec	80	2	41	Sound-To-Light Converter	Jan	81	3	11
Battery Eliminator	Nov	80	1	24	Temperature Controlled				
Bench PSU	Sep	80	11	63	Soldering Iron	Oct	80	12	49
Chuffer Sound	Jan	81	3	54	Touch Switch	Sep	80	11	45
Crosshatch Generator	Jan	80	3	31	Touch Switch	Mar	80	5	44
Development Timer	Sep	80	11	53	Train Controller	Dec	80	2	66
Digi-Dice	Jan	80	3	47	Transistor Tester	Nov	80	1	53
Digital Frequency Meter	Apr	80	6	33	Tug O'War	Oct	80	12	24
Digital Speedometer	Dec	80	2	13	Win Indicator	Feb	80	4	59
Double Dice	Nov	80	1	65					
Egg Timer	Jun	80	8	43					
Electronic Ignition	Apr	80	6	11					
Equitone	Aug	80	10	21					
Fog Horn	Jun	80	8	64					
Freezer Alarm	Oct	80	12	40					
Gaztec	Aug	80	10	57					
General Purpose Amplifier	Jan	81	3	37					
Guitar Phaser	Sep	80	11	49	m 5 ¢	-			
Guitar Preamplifier	Nov	80	1	35					
Hazard Flasher	Jul	80	9	62					
Hebot Part 3	Jan	80	3	56					
Hobbycom	Apr	80	6	17					
Infra-Red Remote Control	Feb	80	4	27	TITLE	MONTH	YEAR	NO	PAGE
Intruder Alarm	Oct	80	12	59					
Jack Lead Tester	Dec	80	2	49	Catalogue Survey	Jun	80	8	58
Kitchen Timer	Oct	80	12	13	CMOS Special	Jan	80	3	23
Light Dimmer	Oct	80	12	33	Electronic Espionage	Jul	80	9	28
Metronome	Jun	80	8	32	Electronics in Photography	Jul	80	9	15
Microbe Radio Control System	Jun	80	8	11	Electronics On Wheels	Mar	80	5	38
Micromix	Sep	80	11	19	Home Electronics	Oct	80	12	44
Micromix	Sep	80	11	19	Intellivision TV Game	Sep	80	11	29
Miniboard'Siren	Mar	80	5	54	In Car Entertainment	Aug	80	10	11
Minicock	May	80	7	11	KEZY Does It	Feb	80	4	38
Minisynth	Nov	80	1	13	Microprocessors Are Easy	Aug	80	10	53
Minisynth II	Dec	80	2	27	Miniature TV Survey	Jan	80	3	15
Movement Alarm	Aug	80	10	49	Narrow Bandwidth Television				
NiCad Battery Charger	Jan	81	3	50	Pt 1	Apr	80	6	40
Nobell Doorbell	Oct	80	12	67	Narrow Bandwidth Television				
Op-Amp Checker	Aug	80	10	62	Pt 2	May	80	7	54
Party Grenade	Nov	80	1	41	PETting it Together	Mar	80	5	24
Passionmeter	Feb	80	4	10	Piezo Electricity	Jul	80	9	56
Pass The Loop	Aug	80	10	41	Power To The People	Feb	80	4	51

Radio Control Model Survey	May	80	7	20
RF Breakthrough	Jun	80	8	37
Solar Cells	Apr	80	6	27
Spacelab	Jan	80	3	38
Story Behind Stereo	Nov	80	1	18
Teletext Explained	Sep	80	11	12
Ten Of The Best	Jan	81	3	18
View Into Video Discs	Dec	80	2	18

GENERAL FEATURES

TITLE	MONTH	YEAR	NO	PAGE
Breaker One Four	Jan	80	3	61
"	Feb	80	4	63
"	Mar	80	5	63
"	Apr	80	6	61
"	May	80	7	35
"	Jun	80	8	23
"	Jul	80	9	49
"	Aug	80	10	65
"	Sep	80	11	67
"	Oct	80	12	71
"	Nov	80	1	71
"	Dec	80	2	71
"	Jan	81	3	61
Building Site	Aug	80	10	26
	Sep	80	11	57
"	Oct	80	12	30
"	Nov	80	1	46
"	Dec	80	2	63
"	Jan	81	3	39
Chit-Chat	Mar	80	5	49
"	Apr	80	6	55
"	Jun	80	8	49
Clever Dick	Jan	80	3	21
"	Feb	80	4	14
"	Mar	80	5	17
"	Apr	80	6	15
"	May	80	7	17
"	Jun	80	8	19
"	Jul	80	9	35
"	Aug	80	10	46
"	Sep	80	11	60
"	Oct	80	12	63
"	Nov	80	1	27
"	Dec	80	2	25
"	Jan	81	3	16
Into Linear ICs Part 7	Jan	80	3	65
Into Electronics Construction 1	Feb	80	4	65
" 2	Mar	80	5	67
" 3	Apr	80	6	67
" 4	May	80	7	67
${ }^{*} 5$	Jun	80	8	67
${ }^{\prime} 6$	Jul	80	9	67
Into Digital Electronics Pt 1	Sep	80	11	30
" Part 2	Oct	80	12	17
" 3	Nov	80	1	29

SHORT CIRCUITS

TITLE	MONTH	YEAR	NO	PAGE
	Jan	80	3	18
Audio Limiter	Feb	80	4	20
Automatic Fader	Jan	80	3	44
Car Cassette Power Supply	Jun	80	8	72
Cassette-Radio Booster	80	4	21	
Christmas Tree Lights Flasher	Feb	80	6	23
Class A Amplifier	Apr	80	8	56
Crystal Calibrator	Jun	80	4	17
Doorbuzzer	Feb	80	4	18
General Purpose Amplifier	Feb	80	9	20
Infra-Red Intruder Alarm	Jul	80	6	48
LED VU Meter	Apr	80	4	18
Metronome	Feb	80	4	17
Morse Practice Oscillator	Feb	80	3	71
Noise Gate	Jan	80	5	72
One Armed Bandit	Mar	80	8	36
Radio 4 Tuner	Jun	80	4	21
Simple MW Radio	Feb	80	4	16
Simple SW Radio	Feb	80	5	33
Sound Operated Switch	Mar	80	9	26
Speech Processor	Jul	80	6	48
Supply Splitter	Apr	80	9	42
Table Lamp	Jul	80	5	52
Thermostat	Mar	80	8	62
Transistor Checker	Jun	80	5	33
Transistor Tester	Mar	80	4	19
Ultrasonic Receiver	Feb	80	4	19
Ultrasonic Transmitter	Feb	80	4	3
Waa-Waa Unit	Jan	80	44	
Water Alarm	Feb	80	4	20
Voice Operated Fader	Jul	80	9	45
ZN1034E Timer	Mar	80	5	23
10 to 30 MHz Preselector	Apr	80	6	23

Add realistic sound effects to your world of trains with this circuit. First of a series of 'funny noises' for model railway enthusiasts

OVER THE NEXT couple of months HE intends to devote project space to the model railwayites - that odd breed of beings who choose to sit at home in the attic or spare bedroom, surrounded by miles of track and scaled-down trains, stations and scenery. And what do they hear as they sit there? Certainly nothing resembling real train sounds.

Now, this sub-world can be made more complete by building some of our model train sound effects starting with the HE Chuffer, a device designed to simulate the sound of a steam train. A preamplified output means that the device can be plugged into an external amplifier (this month's Bench Amplifier is ideal) and preset controls allow it to be used with a wide range of train systems, to give the required sound. The project is purpose-designed to complement the HE Train Controller of last month's issue although it will also perform well with standard (variable resistor type) controllers.

The two IC and three transistor circuit picks up and measures the voltage applied to the track by the controller and converts this into a varied rate of 'chuffs'. The higher the
voltage, the faster the chuff rate. When the train is stationary only a faint background or 'parking' hiss is heard, but as soon as the train pulls away, the chuffs commence slowly at first, until full power is applied, when chuffs are fast and furious as the train hurtles round the track.

Construction

The circuit is built up on a 16 -strip by 26-hole piece of Veroboard. Although this method of construction is very convenient for the hobbyist you must remember that certain procedures must be followed if the project is to be fault-free. The copper strips or track must be broken in the correct places as shown in the underside diagram of the board in Fig. 3. This can be accomplished using a hand-held $1 / \mathrm{s}^{\prime \prime}$ drill bit (if you haven't got the proper tool for the job) but in either case make sure that no loose bits of copper swarf bridge nearby tracks.

Next, insert and solder the wire links into the board as in the overlay diagram. Resistors and capacitors can then be soldered in. Polarised
capacitors need to be inserted the right way round - check them carefully before solderingI IC sockets should be inserted and soldered now.

Finally, all semiconductors should be put in, but like polarised capacitors they should be checked for correct insertion before soldering.

We have included no details of casing the project this month as it is our intention to house it and forthcoming model train sound effects in one case, later.

Setting Up

First set the three preset resistors at mid-position. Connect the circuit to an amplifier and a battery or 9 VDC power supply. Switch on. By adjusting RV3, a white noise signal of up to 100 mV should be available to the amplifier. The setting of RV3 will be best found by experience and personal choice but as a rough guideline only, adjust it till just a faint hiss is heard from the amp.

Now, connect the input of the circuit to your model train track and set a train running around the track at medium speed. Readjusting RV3 should now give a variable output of white noise from sharp clonking pulses to a continuous hiss - choose the best overall sound.

Buylines

All components are common types and should cause no difficulty. The approximate cost of parts will be around $£ 8$.

Figure 1. Circuit diagram of the HE Chuffer
How It Works

The main sound generated by a lfullsized) steam train is a more or less equal mixture of all frequencies - in electronics this sort of sound is known as white noise, so called because of this mixture of a/l audible frequencies (analogous to white lightl). One way of electronically producing white noise is with a transistor connected as 03 in the main circuit diagram in Fig. 1. You will see that its collector is open-circuit and its emitter is, unusually, taken positive relative to tis base. Connected so, 03 acts as a zener diode, maintaining a con-
stant voltage across itself. A white noise signal occurs at its base which is amplified by 03 and fed to IC2.

The 'chuff-chuff' sound required of the circuit is formed by adding an envelope to the white noise. Figure 2 shows this In diagrammatical form. As can be seen, the enveloped white noise means that the noise increases from zero, maintains this maximum level for a while, then decreases back to zero forming a resounding 'chuff' sound. By repeating this envelope every so often

VOLUME
Figure 2. Combining white noise with an envelope

WHITE NOISE
$+$

ENVELOPE

'CHUFF'
as the train goes round the track, the required sound is obtained.

The rest of the circuit is designed to trigger the envelope at a rate which corresponds to the speed of the train; ie, at full speed the chuffs are rapid and at standstill, only a background hiss is heard to simulate a stationary steam engine. To do this the voltage present on the rallway track is rectified and smoothed by BR1, R1, RV1, C1 and C2, to produce a DC voltage which increases and decreases with the speed of the train. This changing voltage is used to power an astable oscillator (IC1-a 555). As its power supply increases and decreases so does its oscillation rate. Preset RV2 gives overall control of oscillation rate (the chuff rate). Transistor 01 buffers and inverts this pulse which is then used to trigger the envelope described above.

Using the train controller, stop the train. Adjustment of RV1 should provide a 'turn-off point' when no modulated noise is available (ie when the train is stationary - no 'chuffs' are heard). Fine readjustment of RV3 will now give a background gentle hiss at this stage, simulating a stationary steam train.

Finally, run the train at maximum speed and adjust RV2 until the required maximum 'chuff rate' is found. It may be necessary to retrim the presets until the best combination of background hiss, stationary turnoff and maximum chuff rate is obtained.

Parts List

RESISTORS (All $1 / 4$ W, 5\%)	
R1	390R
R2	22k
R3	12k
R4	3k3
R5	2k2
R6	6k8
R7	1k
R8	100k
R9	15k
R10	470k
POTENTIOMETERS	
RV1	10k miniature horizontal preset
RV2	47k miniature horizontal preset
RV3	22k miniature horizontal preset
CAPACITORS	
C1	47 u 10 V , tantalum
C2	100 u 6 V 3 , tantalum
C3	2 u 216 V , electrolytic
C4	100n polyester
C5	10 u 16 V . printed circuit mounting electrolytic
C6	680p polystyrene
C7,8	470 n 35 V , tantalum
	1u 16 V, printed circult mounting electrolytic
SEMICONDUCTORS	
IC1	555 timer
IC2	MC3340 voltage controlled attenuator
BR1	$1 \mathrm{~A}, 50 \mathrm{~V}$ bridge rectifier
01,2,3	BC182L NPN transistor
D1	1 N4148 diode
MISCELLANEOUS	
SW1	single-pole, single-throw toggle switch
16 strip $\times 26$ hole Veroboard	
battery clip	

Figure 3. Veroboard layout and underside view, showing track breaks
HE

Digital Designers' Circuit Supplement

In only 10 years digital circuits have shifted from simple single-function chips to microprocessors and horrific dedicated multifunctional devices - creating increasing problems for the digital designer. Tim Orr's Digital Designers' Circuit Supplement helps you make sense of this digital nightmare.

Roulette

At last: a hand-held battery-powered project that brings you the thrills of the casino. ETI's roulette has a circle of LEDs and gives you the choice of biased (in favour of the house) or unbiased (no house) options. It even has sound effects.

NEXT
 MONTH

Look out for the February issue on sale January 2nd

IR Beam Alarm

ETI's IR Beam Alarm features a dual beam IR link. The two beams, a few inches apart, must be broken simultaneously to activate the alarm. So it won't trigger falsely when a fly lands on the transmitter or receiver. The link has a 10 m range and could form the basis of a house alarm system.

SPL Meter

This is a first for a UK electronics magazine: an accurate, calibrated Sound Pressure Level Meter based on a special-purpose, but modestly-priced precision microphone insert. The SPL can be used to check absolute levels of sound level or loudness: use it to set up the graphic equaliser in your hi-fi system!

electrovalue

 FREEELECTROVALUE LTD. [Dept. ME2]. 28 St. Judes Road, Englefield Graen, Egham, Surray TW2O OHB. Telephone: (STD 0784) (London 87) 33603. Telex: 264475

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in . $\times 41 / 2 \mathrm{in}$. ©3, with all symbols for direct application to P.C. board. Individual sheets 30 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Leads and 3 Lead and Pads (6) DILS (7) BENDS 90° and 130° (8) $8-10-12$ T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (1 2) Bends 0.02 (13) Quad in Line

MAIL ORDER PC BOARD

$2^{\prime \prime} \times 8^{\prime \prime} 12$ pieces for
£1.00 post 50p
$3^{\prime \prime} \times 8^{\prime \prime} 7$ pieces for $\varepsilon 1.00$ post 50 p
$4^{\prime \prime} \times 8^{\prime \prime} 6$ pieces for
$6^{\prime \prime} \times 8^{\prime \prime} 4$ pieces for $8^{\prime \prime} \times 8^{\prime \prime} 3$ pieces for £1.00 post 50 p

Some double-sided, same price also $3 / 32^{\prime \prime}$ ss

PLAIN PAXOLIN INSULATION BOARD
 $1^{1 / 32^{\prime} 4^{\prime \prime} \times 8^{\prime \prime}} 10$ pieces tor
 $£ 1.00$ post 50 p
 $1 / 16^{\prime \prime} 4^{\prime \prime} \times 8^{\prime \prime} 6$ pieces for
 post

FRONT AND REAR PANEL TRANSFER SIGNS
 All standard symbols and wording. Over 250 symbols, signs and words

 Also available in reverse for perspex. etc., Choice of colours, red, blue black or white. Size of sheet $1^{\prime \prime} \times 9^{\prime \prime}$. Price $£ 1.20$.
GRAPHIC TRANSFERS WITH SPACE ACCESSORIES

Available also in reverse lettering, colours red, Blue, black or white. Each sheet $12^{\prime \prime} \times 9^{\prime \prime}$ contains capitals, lower case and numerals $1 / 6^{\prime \prime}$ kit or $1 / 4$ kit, $£ 1.20$ complete. State size.

> All orders despatched promptly. All post paid

Shop and Trade enquiries welcome. Special Transfers made to order E. R. Nicholls

P.C.B. TRANSFERS
DEPT ET12, 46 LOWFIELD ROAD STOCKPORT, CHESHIRE. O61-4802179

 (including post, package, etc) is just $£ 125.00$.

SEND YOUR CHEQUE/POSTAL ORDER TO: PHONE OFFER, Modmags Ltd., 145 Charing Cross Road, London WC2H OEE.

PLEASE MENTION HOBBY ELEGTRONICS WHEN REPLYING TO ADVERTS

Add 15% VAT to these prices. Sharp Mz80 Computer with Baste tope and a free tape of approx
 E772. PC1211 £83. CE121 E12. PRINTERS 800 MST £359. Oki Microline $80 £ 349$. Free
interface and word processor for Superboard intertace and word pro
included. Add 15% VAT.
SWAMLEY ELECTRONICS
Dept HE, 32 Goldsel Rd, Swenloy, Kent
Post 40p extra. Prices include VAT unless sated Post 40p extra. Prices include VAT unles's watet
Official and overseas orders welcome. Lists 27 p post
free. Telephone Swanley 64851

GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally de signed for installation into a music centre units which are easily wired Nore: Circuit diagram and interconnec ting wiring diagrams supplied. Rotary Controle: Tuning on/off volume balance, treble, bass. Push-button controls: Mono, Tape, Disc, AFC, FM (VHF) LW, MW, SW. Power Output: 7 watts RMS per channel, at better than 2% TMD into 8 ohms. 10 watts speech and music Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{~Hz}$ within $\pm 3 \mathrm{~dB}$. Tape Sensitivity: Output

- typically 150 MV . Input - 300 mV for rated output. Disc Sensitivty: 100 mV (ceramic cartidge) Fadio: FM (VHF) $87.5 \mathrm{MHz}-108 \mathrm{MHz}$. Long wave $145 \mathrm{kHz}-108 \mathrm{kHz}$. Medium wave:

$520 \mathrm{kHz}-1620 \mathrm{kHz}$ Short wave $5.8 \mathrm{MHz}-16 \mathrm{MHz}$. Size: Tuner $-23 / 4 \mathrm{in}$. $\times 15 \mathrm{in} . \times 71 / 2$ in approx. Power amplifier $x 15 \mathrm{in} . x 71 / 2$ in approx. Power ampling
$2 \mathrm{in} . x 71 / 2 \mathrm{in} . x 41 / 2 \mathrm{in}$. approx. 240 V AC operation. Supplied complete with fuses, knobs and pushbuttons, and LED stereo beacon indicator. Price $£ 21.50$ plus $£ 2.50$ postage and packing
STEREO CASSETTE TAPE DECK ASSEMBLY. Comprising of a top panel assembly and tape mechanism coupled to assembly and tape mechanism coupled to a record/play back printed board assemor console of own choice. Brand new, ready built and tested. Features: Pause control, auto stop, 3 digit tape counter, illuminated twin VU meters with individual level controls, iwin mic, input sockets, AC erase system, LED record indicator. (Separate power amplifier required). Input Sensitivity: 6 MV (with level control set at max.). Input Impedance: 47 k hms. Output Level: To both Output Impedance: <10K. Signal to Output impedance:< ratio: 45 dB nominal. Power Supply Requiremente: 12 V AC at 300M/A. Connections: All connections to the unit are via a wander lead terminated with nine-pin plug (socket provided). Dimensions: Top panel $-111 / 2 \mathrm{in} . x$ $61 / 2 \mathrm{in}$. Mechanism fits through a cut out $53 / 4 \mathrm{in} . \times 101 / 2 \mathrm{in}$. Clearance required under top panel $21 / 2 \mathrm{in}$. Supplied complete with circuit diagram etc. Price $\mathbf{£ 3 0 . 5 0}$ plus $£ 2.50$ postage and packirig. Suitable 12 V
mains transformer $£ 3.00$.

It's easy to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

CITIZENS BAND is the new monthly magazine for all CB enthusiasts.Every month we publish all of the latest news,views and information.Our team of technical reviewers bring you test reports of all of the latest equipment.Our project team get together to design simple and cheap to build projects that are of interest to both CBers and radio enthusiasts alike.And for people with something to say our regular monthly forum 'CB Soapbox' gives anyone a chance to publicly air their views.For those still unsure of the working of CB we have a new monthly feature called 'Inside CB' in which we explain in a simple down-to-earth way how CB works.

CITIZENS BAND will be on sale on the third Friday of each month price just 50 pence.If YOU are interested in CB then you just can't afford to miss CITIZENS BAND'

GADGETS \& GAMES is the answer to all of your problems.Inside this Special edition from Hobby Electronics we have reviewed over 100 of the best electronic Gadgets and Games on the market.From the simplest hand-held LED game to the ultra sophisticated video games right up to the most powerful chess computers,they're all here.

In the Gadgets section we have put together a selection of the most fascinating, innovative and revoloutionary gadgets,from the smallest television set in the world to the worlds first talking language translator. As a special bonus we have also compiled a list of hundreds of software games that can be played on your home computer. All this for just 85 pence.In your local Newsagent NOW.

The publishers of HOBBY ELECTRONICS would like to point out that it is at present a contravention of the Wireless Telegraphy Act of 1949 and 1968 to use, manufacture, install or import CB transmitting equipment. It is not the intention of Modmags Ltd to incite, encourage or condone the use of such equipment.

With issue number one of CITIZENS BAND on the bookstalls and the Breadboard show underway it's been a very busy month. Rick Maybury has the latest news

THIS HAS been the busiest month we can remember for a long time. With the first edition of Citizens Band now on sale and number two just about going to press we've hardly had time to breathe.

The Government Green Paper has just about done its stuff: closing date for replies was a couple of weeks ago, and it now remains for the Home Office to make some kind of recommendation about CB in this country. Whatever it decides will make absolutely no difference to the present situation, because we now reckon there are some 500,000 rigs in the country at the moment and in our opinion that means we have CB. The fact that it is not a legal system is neither here nor there. It is working and seen to be working: we are hearing more and more reports of channel 9 being used for emergency calls and these being acted upon by the Police and Ambulance services. To our rather uncertain knowledge at least three lives have been saved in the past month by the quick actions of CBers. At least one Police force has unofficially admitted that CB has been a help to them on several occasions. The 24-hour monitoring service in London and a couple of other large cities more than justifies the existence of CB.

What happens now will largely depend upon how much notice the Home Office takes of public opinion. Most CBers will agree that 27 MHz is at best a compromise. It is a noisy and to an extent unreliable waveband. We're sure that most CBers are law abiding citizens and would welcome a legal waveband that embodied all of the advantages of 27 MHz without the attendant problems of noise and interference. We could have it tomorrow and it wouldn't cost any more to buy a rig than it does to obtain a 27 MHz rig on the black market. We need a frequency now. Time and time again it has been proven that 928 MHz is totally unsuitable.

We have proved that the VHF band on 41 to 49 MHz would be suitable for such a service. Industry has agreed that the equipment could be manufactured in this country with the consequent improvement in the UK unemployment situation. So why are we waiting? A new series of demonstrations will be starting by the time you read this. You MUST make your feelings known. We know that most of these demos will be arguing for 27 MHz . That's OK but we must admit to ourselves that this cannot really be the final answer. Push for 27 MHz by all means but let the Home Office know that you want a quality system, a system that will give this country a chance to become a world leader in personal communications. OK, enough table-thumping for one month, back to the news scene to see what's been happening.

Mass Eyeball

Cast your minds back a couple of months to the November edition of BOF. You may remember we mentioned the Midlands Radio Fare and Mass Eyeball which was held on the 9th of November. It turned out to be an enormous success, so much so in fact that already the organisers are planning three more functions in the next five months. They are:
Sunday, January 18th 1981 at the Festival Inn, Trowell,
Notts. (Same venue as first Mass Eyeball)
Sunday March 8th 1981 at the Lincolnshire Exhibition Centre, Lincoln.
Easter Sunday, April 19th 1981 at the Festival Inn, Trowell, Notts.
If you would like further details of these events then write to TVC Ltd., Station Road, Long Eaton, Nottingham or phone Long Eaton 62247.

HE MICROBE R/C

Basic Kit
(2PCB's and all PCB componenis) C. B - C. B-C.B aERIALS AND ACCESSORIES Cutter mount ES Boot/Roof/Wing mount Traditional Fibreglass Whip CB Electric Retractable AM/FM / CB Electric Ret Roof mount 20" Glass Whip SWR/Power/F.S. Meter SWR/Power Meter Pre-Amp 20db gain Splitter Box Linear Amps from $£ 15.95$
$£ 19.95$ $\varepsilon 19.95$
$£ 14.95$ $£ 14.95$
$£ 25.95$ $£ 25.95$
$£ 29.95$ $£ 29.95$
$\mathbf{£} 39.90$ $£ 39.90$
619.95 £24.95 $£ 24.95$
$£ 12.95$ E19.95 $\begin{array}{r}19.95 \\ \hline 9.95\end{array}$ $E 59.95$ E18.65 These are a few of the items available

ELECTRONIC GAMES

Star Chess T/V game Database Prog T/V game Chess Challenger 7 Chess Challenger 10 Chessmate 8 level Zodiac Astrology Computer Electronic Mastermind Supersonic Mastermind Mattel Subchase. New Mattel Armor 8attle. New Enterprise 4 in 1
\qquad 663.35 Galaxy Invaders. New $\mathbf{£ 8 9 . 9 5}$
$\mathbf{E 9 9 . 0 0}$ - E99.00 £ 160.00
£ 230.00 $£ 230.00$

$\mathbf{5} 9.95$ $£ 59.95$
$£ 29.95$ $£ 29.95$
$£ 14.90$ £14.90
£21.00 E17.90 E17.90
£17.90 £17.90
£22.90

Radio Control Models-Various
Ball Clock as H.E. offer. Kit £24.95, ready-built $£ 29.95$.

The latest from the U.S.A PHABALL MZARD
*Still available *
Featured in Nov, issue of E.T.I. Home TV Game - B/W Kit

Basic Kit $£ 28.90$
Contains everything except box and
controls
Box \& Controls £6.50. P.S.U. €3.90
CEH Car Alarm Kit $£ 18.90$
Chroma Chime 24 fune door chimes kil E10.75. Built E15.95
SINCLAIR SC1 1010 MHz scope ©145.25
PFM 200 Digital Frequency Meter $£ 52.00$
$£ 113.85$
$3^{\text {n/ }} 5 \mathrm{MHz}$ Oscilloscope .. $\quad € 113.85$ $\begin{array}{lll}\mathbf{5}^{\prime \prime} \\ \text { 5 } \mathrm{MHz} \text { Oscilloscope } & \mathrm{MHz} \text { Oscilloscope } & \text { £139.90 } \\ \text { £169.90 }\end{array}$ ATARI 5138
COMPUTERS-HOME BUSINESS, ETC

Pet 8 k

£458.85 Pet $16 K$ E573.85 Pet 32K $£ 790.00$
 UK 101 kit 4 K $4 K$ Superboard/UK101 case Nascom 2 kit TRSBÖ 16 K Level il 14 line prinevel li 114 line printer kit $\quad \$ 10.00$ $51 / 4^{\text {" }}$ disc drive for TRS80 $£ 271.40$ Software - Pel/TRS80/Superboard Exody Sorceror $16 / 32 / 48 \mathrm{~K}$ from 860.00
84.00

Renumber prog. 101
Froe - Advice/Demonsirations/Cotios
S.a.e, enquiries. Please allow up to 21 days for delivery. ALL PRICES INCLUSIVE

ACCESSORIESACCESSORIES LARGEST STOCKS IN THE MIDLANDS WHOLESALE + RETAIL SUPPLIED

> YES WE CARRY LARGE STOCKS OF CB Equipment including over 50 TYPES of ANTENNA, SWRS, BURNERS, SPEAKERS, POWER SUPPLYS, SUPPRESSORS, PRE-AMPS, CABLES, ETC. PLUS LOTS LOTS MORE!!!

THIS MONTH'S SPECIAL OFFERS

Fully retractable
AM/FM/CB Antenna
with Splitter. Only $£ 18.95$
3/5 amp Power Supply
Only £16.95
DV27 Only £5.95
Magmount
Antenna
Complete $£ 8.95$

敉 TRADE ENQUIRIES INVITED 米

We are Direct Importers and therefore can offer the BEST PRICES AROUND

Club Corner

Literally dozens of new clubs are springing up all over the place. If you've read CITIZENS BAND you'll know that we have published the most comprehensive club listing ever and we will continue to do so every month. Here is this month's selection of new clubs:
WORTH VALLEY BREAKERS COPY CAT CLUB
B. Widsop
c/o 19 Woodhouse Road,
Keighly,
Yorks.
AIRE VALLEY BREAKERS
Call Ch 19 AM or 30 USB.
CB MUSKETEERS
PR. J.L. Smith.
61 Gibbwin
Great Linford, Milton Keynes, Bucks.

> Martholme Grange, Altham, Accrington, Lancashire.
> REDDITCH AREA CB CLUB
> 80 Heronfield Road, Churchill,
> Redditch

ST HELENS CB CLUB
33 Broadway,
St Helens, Merseyside.

Two sneak previews of this year's Breadboard show. Above some of the CB goodies on the Wintjoy stand. Below, Glyn Hall (Wintjoy) menacing the customers asking if he sells rigs.

CB Books

Our last item this month concerns the sudden increase in the number of books about CB. As you might expect most of these works are of American origin and as such can be slightly irrelevant to our own needs. That aside a couple of books we've seen recently are actually applicable to any CB system working on 27 MHz . Best so far is called Modern CB Radio

Servicing. It is published by Hayden and is being imported by NIC. This book costs $£ 4.60$ and believe us, it's worth every penny. The book contains step-by-step instructions that will enable any competeent, electronically-minded person to carry out simple repairs on all kinds of common CB rigs. Mind you, we can't actually encourage anyone to do such a thing - after all CB is illegal and no one really has any rigs that might go wrong

Shop Scene

Walthamstow is fast becoming the North London CB centre as it now boasts two specialist CB accessory dealers. Latest arrival is called Globe Communications. Previously Globe were TV aerial specialists but within the last two months they have turned their attention to selling CB gear. Already they have built up a strong local reputation for low prices and I must admit they're certainly the lowest l've seen in London. Globe is run by Jack Glover, Mick Dingley, (they're the governors) and ably assisted by Jim Wild and Steve Dingly (Mick's son). Globe can be found at 110 Hoe Street, Walthamstow. Phone 521-7221 for details.

And Finally

Just in case you ever wondered how large some CB clubs can get the UBA now boast a membership in excess of 70,000. Impressive eh? Stay Lucky and see you next month.

HE

Complete This Series: 11, 8, 14, 11, 9, 13, $\bullet \bullet$ •••| •••| ••• /

Tricky, isn't it. Here's the answer: 11, 8, 12 and 10, 14, 12. Any wiser?

The key is that these are the days when you have to be in your newsagents this year to get your copy of Hobby Electronics on the day of publication. Remeber the series: $11,8,14,11,9,13,11,8,12,10,14,12$. But don't internalise it too well - the numbers will be different next year
Got a headache, yet? Here's relief: there is a way you can ensure copies of Hobby Electronics automatically - no need to remember dates, no need to rush to the newsagents, no need to impose on your friends to get you a çopy when you go abroad. It couldn't be simpler; just write your name and address on the coupon below and send it to us with a cheque for $£ 9$.

MAIL ORDER CB!

Want to get into CB, but don't know much about it? Try our beginner's package, one 40-channel CB rig (Sam. President or Cobra, usually), one DV27 car aerial (56in. fibreglass whip), plus SWR meter, plus full instructions plus beginner's book The Big Dummy's Guide to CB, package price $£ 99.95$ plus $£ 2.50$ carr. (Roadline), Red Star delivery to your local station $£ 2.50$ extra. Home base station package: one rig, as above, plus M. 117 or GPA27 base aerial (pole mounting). plus 20 yards coax cable, plus Sluk meter, plus 12 v . power uns above) E159.95 plus E3.50 carriage (Roadline), Red Star $£ 2.50$ extra. Heavy-duty chimney lashing kit, plus 5 ft x $11 / 2 \mathrm{in}$. pole, or heavy dury wall bracket. plus 5 ft . $11 / 2$ in. pole, suitable for mounting M. 117 or GPA 27 base station antennas. $£ 9.95$ plus $£ 2.50$ carriage, Red Star $£ 2.50$ extra. President Adams 240 -channel sideband rigs, $£ 165$ each plus $£ 2.50$ carriage; many other bargains in antennas and accessories, 100 many to list here. Walkie-talkies, 100 milliwatt 49 MHZ models with MW radio incorporated (approx. 100.200 yds. range). $£ 33.75$ pair plus $£ 1.25$ postage: 1 watt 29 MHZ units, 1-5 miles range reported by customers. £108.75, pair plus $£ 1.25$ postage. Please ring for prices on your other requirements; sorry, no price lists or brochures at present, as stock is moving too quickly. Access and Barclaycard accepted by phone on all items. Send posia rdeque rders 3.4 days delay for clearance Casplegat TV and Radio, 64 Castlegate, Grantham. Tel. 0476 | 16869 and |
| :--- |

150 ASSORTED RESISTORS E1. 100 Assorted Capacitors £1. 1001 N4148 £1. P \& p. 20p. S.A.E. lists of components, mikes, meters.-Dept. H, D.B. Products, 1 Holly Tce., York YO1 4DS.

BURGLAR ALARM KIT. Contents include control module and steel box, steel bell box (pve coated), keyswitch 106 dB FBI siren, 6 contacts, attack button, 3 pressure pads, batteries, cable clips, screws, instructions £83.30 inclusive Sigma Security Systems 13 St Johns Street, Oulton, Leeds LS26 8JT W. Yorks.

OSCILLOSCOPE. £12. Easy build converter plugs into TV aerial socket and converts to large screen oscilloscope. (Components cost under $£ 12$). Circuit and plans £3. - Kerr, 27 Coles Road, Milton, Cambridge CB4 4BL (Callers by appointment).

ZX80 GAMES. Free Game sent on request Send s.a.e.: Mastercode, Simon Says, Dr. Who, Alien Invader. The 4 on cassette, £3. - Bobker, 29 Chadderton Drive: Unsworth, Bury, Lancs.

AMAZING ELECTRONIC PLANS

Lazers, Burning, Cutting, Rifle, Light Shows. Ultra-sonic Force Fields Weaponry, Satellite TV, Giant Tesla, Split the Atom. Lots more Catalogue 75p

PLANCENTRE

ST. JOHN STREET BRIDGENORTH, SHROPSHIRE

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power celt) replacement at regular intervals. This kit provides the means. We supply eyeglass, nordriver case knife and screwbel case opener. Also one doz assort push-pieces, full instructions and battery identification chart. We then supply replacement batteries - you lit them. Begin now. Send E9 for complete hit and get into a fast-growing business. Prompr despatch.

BOLSTER INSTRUMENT CO. HEI
11 Percy Avenue, Ashford, Middx TW15 2P

If it's a case of making your project look good, then use one of ours. Simply send a S.A.E. for Details and prices.

AADE ENOUIRIES

NVITED

H.M. ELECTRONICS 271a/275a Fulwood Road Broomhill Sheifield S10 380

SPARE PARTS

SERVICE MANUALS
PHONE ORDERS NOW
Most makes inc. Sony, J.V.C., Hitachi etc. HI-FI HOSPITAL (GRS) LTD.
100 Uxbridge Road, W7 100 Uxbridge Road, W7 01-840 1890

$£ 99$ SYNTHESISER D.I.Y. Professional results, easy-build.-S.A.E.: Dewtron, 254 Ringwood Road, Ferndown, Dorset BH22 .9AR.
PRINTED CIRCUITS. Make your own simply cheaply and quickly! Golden Fotolak Light Sensitive Lacquer-now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$. Developer 35 p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board, approx. 1 mm thick E1.75 sq. ft. Post/ packing 60p. -White House Electronicts, Castle Drive, Praa Sands, Penzance, Cornwall.

Earn £20-£100 p.w.

In your spare time
by introducing the revolutionary new Flip-Caller telephone to your triends Features micro-chip controlled push-button dialling and memory recall. Sells itself. Generous commission. For details write to Dept. ETI
TDC SUPERPHATE
P.O. Box 31. Twickenham TW2 5RL
 INDEX

ABSONGLEN LTD

AHLERS ELECTRONIKA
AMBIT INTERNATIONAL
ANGLIA COMPONENTS
ARROW AUDIO CENTRE
BI-PAK SEMICONDUCTORS
BK ELECTRONICS
C.S.C.

ELECTROVALUE
E.M. AUDIO VISUAL

GREENWELD
HENRY'S RADIO
ICS

ILP

MAGENTA ELECTRONOĊS
MAPLIN
MARSHALIS
MINIKITS
MINIM AUDIO
E.R. NICHOLLS

NIC MODELS
T. POWELL

SELRAY BOOK CO.
SILICA SHOP
SURETRON SYSTEMS
SWANLEY ELECTRONICS
TECHNOMATIC

TEMPUS

TK ELECTRONICS
VERO ELECTRONICS
WATFORD ELECTRONICS
WINTJOY LTD

A massive new catalogue from Maplin that's bigger and better than ever before. If you ever buy electronic components this is the one catalogue you must not be without. Over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page after page of invaluable data. We stockjust about every useful component you can think of. In fact, well over 5000 different lines, many of them hard to get from anywhere else. Hundreds and hundreds of fascinating new lines, more data, more pictures and
Post this coupon now for your copy of our 1981
catalogue price $£ 1$ I.
Please send me a copy of your 320 page catalogue.
I enclose $£ 1$ (Plus 25p p\&p). If I am not completely
satisfied I may return the catalogue to you and have
my money refunded. If you live outside the UK send
$£ 1.68$ or 12 International Reply Coupons.
I enclose $£ 1.25$
Name
Address

Maplin Electronic Supplies Ltd.
All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155. Sales (0702) 552911 Shops:
159-161 King Street, Hammersmith, London W6. Telephone: (01) 7480926 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000. Both shops closed Mondays.

[^0]: Htems mentioned here are those planned, but unforeseen circumstances may affect the actual contents.

[^1]: CHRISTMAS POST
 received by 18 th Our return of post service means thas orders received by 18 th December should reach you in time for Christmas, subject 10 availablity.

[^2]: Price includes VAT and P\&P. Send. your company order, cheque, P.O. or phone your ACCESS or BARCLAY. CARD number to:

 Dept. HE, FREEPOST
 164-167 East Road Cambridge CB1 108 Tel: 0223312866

[^3]: Same style as above book. II projects based on integrated circuits - includes dice two-tone doorbell, olectronic organ, MW/LW radio, reaction timer, etc. Component pack includes Bimboard 1 plug-in breadboard and the components for the projects Adventures with Microelectronics $£ 2.35$

