CB RADIO - NEWS AND VIEWS INSIDE

Boost Your Guitar Sound With Our Built~in Pre ~amp

WEVE COME A LONG WAY.

and it didn't take very long either. Electronics have evolved faster than anything else. From Marconi's first crackling morse transmissions to minichip in a lifetime. But space-age technology poses it's own problems to dealers anywhere. The days you strung your own aerial with a length of copper wire bought just around the corner are over. Nowadays, if you want the best youll probably have to go to the States, or Japan, or Denmark...
or you can contact us. We're not just around the corner, but very nearly so. Located just about an hour from London, near Schiphol airport in Holland we have one of Europe's largest collections of aerials, CB equipment, accessories, electronics etc. from all over the world. Whether it's Danish, Japanese, American or anything else, we ve got all the top names at bottom prices. So, plug into the mains and contact

WintioY 103 High Street, Ltd. Shepperton, Middlesex TW 17 9BL, England Tel. WaltonB on-Thames (STD 09322) 48145

Or just simplycall us.

NOVEMBER 1980
Vol. 3 No. 1

Editor: Hugh Davies Assistant Editor: Rick Maybury Editorial Assistant: Tina Boylan Project Editor: Keith Brindley Drawing Office Manager: Paul Edwards Group Art Editor: Paul Wilson-Patterson B.A. Managing Editor: Ron Harris B. Sc.

PROJECTS

MINI SYNTH . 13
Cheap tunes
BATTERY ELIMINATOR . 24
Save pounds
GUITAR PRE-AMPLIFIER . 35
Sounds good
PARTY GRENADE
You'll get a bang from this one
TRANSISTOR TESTER
Cheap checker
DOUBLE DICE . 65
Count on it

FEATURES

Copyright: All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing of kits of the projects must be sought from the Publisher. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally. ©Copyright 1980 Modmags Ltd [ABC] Member of Audit Bureau of Circulation.

SOUTH WALES

FOR TTL, CMOS, LINEARS, DISCRETES, PASSIVES, HARDWARE TOOLS, CASES, TRANSFORMERS ETC. LEKTROKIT, BREADBOARDING AND VERO DEALERS

Come to: STEVE'S ELECTRONICS SUPPLY COMPANY (Formerly Steve's Electronics]

15/17 THE BALCONY, CASTLE ARCADE CARDIFF, CF1 2BU. TEL: (0222) 41905

ELEGTROVALUE

FOR COMPONENTS THAT COUNT

SIEMENS SEMI-CONDUCTOR CAPACITORS FERRITES		NASCOM MICRO COMPUTERS AND ANCILLARIES		VERO BOARDS KITS
ISKRA RESISTORS	RADIOHM POTENTIOMETERS		8READBOARDS	
			SOLDER TOOLS	
	OP TO-ELECTRONICS		SWICCH	Catalogue

ALL GOOD PROJECTS START WITH CATALOGUE 10 IT'S FREE FOR THE ASKING
128 pages packed with almost everything everyone wants. There are attractive discounts and tree postage in UK on orders $£ 5.75$ and upwards ELECTROVALUE LTD. HEAD OFFICE (Mail Orders) $28(\mathrm{H})$ St Judes Road. Engletield Green. Egham, Surrey TW20 OHB Phone Egham 33603 Telex 264475 680 Burnage Lane, Burnage. Manchester M19 INA. Phone: (061) 4324945

Hobby Electronics, November Y 980

Monitor

Cellular Construction

How many times have you been faced with a suspect 'dud' battery with no way of testing it? There's absolutely no excuse any more with this ingenious batteryicell tester/charger! bulb and fuse checker. No, it won't make the tea but that is about the only omission we can see. As you can see from the picture it will accept any cell or battery from the largest to the smallest (including watch and calculator batteries). The bulb tester section will happily accommodate any size of torch or instrument bulb
and the test leads can check fuses and filaments for continuity. With the addition of a simple battery eliminator the unit will charge virtually the whole range of Ni -Cad cells and batteries. By now you should be asking the price of this marvel. You won't be disappointed because it will only cost $\mathbf{£ 1 1 . 9 5 \text { (plus }}$ VAT). It should be in the better electrical and electronics shops about now, ask for the X10 Battery Tester/Charger. If you have any difficulty then contact the importers who are: Northern Technical \& Chemical Services Ltd of Liverpool.

Notes From Casio

Our friends at Casio are back with a vengeance this month with no less than three singing and dancing boxes full of electronic wizardry.
first (and smallest) is an interesting new calculator that not only plays tunes but boasts a devastating and compulsive game that you just cannot put down. The MG-880 is fairly conventional in the calculator department with memory and percentage etc. Numerical keys are all designated with a musical note (do, re, me etc.) so even the most mundane calculations become a musical experience. The game is really clever. You control a 'laser' weapon that must destroy the alien hoards that attempt to cross the LCD screen from right to left. Each alien is represented by a single digit. To destroy the alien you must match the digit with your aim button which steps through the numbers 0.9 sequentially. When the correct digit has been selected the fire button will eliminate the monster. As you might
expect the game starts relatively slowly and speeds up to a superfast speed that is virtually impossible to defeat.

So much for the brainy stuff, the other offerings from Casio are much less demanding. They are a pair of very good-looking electronic organs The smaller of the two is called the Casiotone $\mathrm{M}-10$. It is a fully polyphonic musical instrument offering $21 / 2$ octaves via 32 keys. Four effect keys give piano, violin, flute and organ voices. The $\mathrm{M}-10$ s larger brother is called the Casiotone 201 and covers four octaves. There are something like 30 different voices and effects that should keep the neighbours annoyed for weeks.

Now for the important bit (all bank managers please avert their eyes at this point). The MG-880 game can be yours for just $£ 10.95$. The $\mathrm{M}-10$ is a very reasonable $£ 69.00$ and the 201; a paltry $£ 245.00$. All these prices are inclusive of VAT and P \& P from our good friends Tempus. Find them at: 164-167 East Road, Cam bridge CB11DB.

Déjà Vu

Just as the sun rises each morning you can predict with equal certainty that somebody would try and copy the incredibly successful Sony Stowaway stereo cassette player.

A couple of months ago we told you how the Stowaway was becoming a craze, even at $£ 99.00$! Sony couldn't make enough of them. Now, entering stage left is the Binatone Company with its Hipfi. We had to look at it very closely indeed to make sure it was not a Stowaway with dif ferent makings, they're as similar as that! At the time of writing we haven't had a chance to cast a critical ear to the device but at only $£ 59.95$ it's bound to be a winner. It may even
persuade Sony to drop its price. All of the features of the Stowaway are there, even a 'Talk Line' which bears more than a passing resemblance to the Sony 'Hot Line'. (This is a facility which will allow you to listen to the tape and nearby conversation via the built-in microphone.) The only real difference is the headphones: obviously Binatone couldn't use the amazing MDR3s from Sony. Instead they have developed their own lookalikes which we'll report on in the next issue. Meanwhile if you want to try them out for yourself then get along to Selfridges in Oxford Street. Binatone may be contacted direct at: Binatone House, 1 Beresford Avenue, Wembley, Middlesex HAO 1YX.

News from the Electronics World

Tale Of Two Meters

No not 2 metres, but a couple of digital multimeters, the TS1000 from Eagle International; and the TM352 from Thandar.

Taking the TS1000 first, it has a $31 / 2$-digit LED display (8 mm characters) and provides 16 ranges covering DC and $A C$ voltage, DC current and resistance. Features in clude $h_{\text {FE }}$ and diode test. Despite having an LED display, the four HP7 batteries, claims Eagle, last between 150 and 200 hours. It can also be powered from an external 9 V DC supply. The TS1000 has a two-year guarantee and costs around £60 including VAT.

By comparison, the TM352 has an LCD display (12.5 mm characters). It also has 16 ranges, but in addition to $h_{\text {fee }}$ and diode tests it includes a continuity check, where a buzzer sounds if measured resistance is less than $130 \mathrm{R} \pm 50 \mathrm{R}$. Life of the 9 V PP3 battery is claimed to be in excess of 150 hours. The TM352 has a one-year warranty and costs around $£ 50$.

Both meters incorporate overload protection and are supplied with test leads. A brief, and almost identical, specification for each is given below. Lower figures (such as 100 uV from 100 uV to $\mathbf{1 k V}$) apply to limits of lowest ranges.

Mobile Mayhem

Now be honest with yourself, how much money have you spent on pub Space Invader machines? At ten pee a go you would have been able to buy your very own Space Invader game after only 220 plays. Admittedly this new hand-held version isn't exactly the same as the pub game but it is easily the best portable machine we've seen. It's called Electronic Space Invaders and comes from a company called Entex. The Entex version has two columns of aliens, two laser bases and the obligatory flying saucer, worth 10, 20 or 30 points when hit. Two levels of play are available. Our best score to date is 450 on the 'Pro' level. As the top score is 999 you can see wéve a long way to go. The only real criticism of the game is the lack of brightness on the display. When we first tried it out we thought the batteries were dead, a new set proved us wrong. It only becomes a nuisance in strong light but it is a minus point on an otherwise excellent game. Space Invaders is available from our old friend NIC

Just In Case

Project housings continue to look more and more like commercial boxes - here is a prime example from Vero. It is called simply the Pocket-Size, Hand-Held Box, and measures about $80 \times 110 \mathrm{~mm}$. The cut-out in the top will happily accommodate an LED display or switch panel. In the underside, Vero have sectioned off a battery compartment just right for PP3s or Ni-cads. The slide-off cover allows for easy battery replacement. Inside the case there is room for a PCB measuring up to $71 \times 107 \mathrm{~mm}$ in the bottom section whilst the top half can take another board up to $56 \times 105 \mathrm{~mm}$. The top and bottom sections are held together by four self-tapping screws. For more information on this box and Vero's extensive range of attractive casings contact them at: Vero Electronics Ltd. Industrial Estate, Chandlers' Ford, Eastleigh, Hampshire SO5 3ZR.
 samples in the office and can say with confidence that this is one games company with a lot of original ideas.

Tip Top Shape

Announcing the latest four-hour VHS video tape from IVC. Until now the best you could get was a mere three hours recording time. This new tape, designated the E240 will be undergoing a market trial in the next few months. What am i bid for the Betamix system, do t hear five hours.

Ancient Audio

Way back in the September issue we told you all about the Vintage Wireless Company's interesting publication. Well, if you are interested in vintage radios then you may like to subscribe to the Vintage Wireless Company's newsletter. This is available for just $£ 2.50$ per year ($£ 4.00$ overseas) from: The Vintage Wireless Company, 64 Broad Street, Staple Hill, Bristol BS16 5NL

Clever Clock

Have you noticed the new clock on BBC 2 lately? Chances are you haven't because it looks quite ordinary. Actually it's not what it seems, it is generated electronically, totally solid-state and of course very accurate. Next time it comes on your screen have a close look, it really is ingenious.

Errata

Guess what. There is no Errata this month. We actually got it right. Is this the shape of things to come?

ГH. NEXT MONTH. NEXT MONTH. NEXT MONTH. NEXT MONTH. NEX

ONSALE NOVEMBER 14th

Video Disc Systems

Just as video cassette machines are becoming firmly established next to the family TV, a relatively new method of video playback has been announced. We look at what it is, how it works and what it is likely to cost.

Battery Charge Indicator

Let's face it, not every car has an ammeter, voltmeter or other indication of battery state. But many motorist-readers will have suffered problems with their generators, alternators, regulators, or, of course, batteries. With this second HE car project for the December issue you can have a clear visual display of battery voltage

Jack Lead Tester

Ever been let down on the job? Ever been stuck with a faulty jack plug lead? Many a musician has, that's for sure. The HE jack lead tester is pocket-sized and tells you instantly what the fault is. Not only that, it only costs around £2

Introducing the latest professional state-of-the-art $31 / 2$-digit DMM - at really oldfashioned prices! From just an unbelievable $£ 39.95$ inc. VAT, plus $£ 1.15$ p\&p!

Ampler rents 9.30-5.30

SCOOP PRINTER PURCHASE

PROFESSIONAL EQUIPMENT AT HOBBYIST PRICES SO LOW EVEN OUR COMPETITORS GASP!

TELETYPE ASR33
 ITO TERMINALS
 ILL TERMIPRINTER
 300 BAUD TERMINALS

E 235 + CAR
Fully fledged industry standard ASR33 data terminal. Many features including: ASCII keyboard RS232 serial interface. 110 baud. 8 bit paper tape punch and ready for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order. Options: Floor stand $£ 12.50$ + VAT

$$
\text { Sound proof enclosure } £ 25.00+\text { VAT }
$$

THE CHIPS ARE DOWN

MOSTEK, INTEL, NEG, MOTOROLA IC. PRICES SLASHED!
A massive purchase of brand new "state of the art" data processing equipment enables us to offer the following chips at never, and we mean never to be repeated prices.

$\begin{array}{ll}8085 \mathrm{~A} & \text { Central Processor } \\ 8155 \mathrm{C} & 256 \times 8 \text { Static fam }\end{array}$ 8253C Programmable Interval Timer 8255A Programmable Peripheral Interface 8259A-8 Programmable Interrupt Control $8755 \mathrm{~A} \quad 2 \mathrm{~K} \times 8$ Eprom $161 / 0$ Lines MC6850 2652
 Static 650 ns Rams 8 fo

 $1702 \quad 256 \times 8$ Eprom 256x4 Static Ram 450ns And Remember All Chip Prices Include V.A.Anil above tics are brand new or
P. CB.: Eproms supplied washed.
All full spec. and guaranteed

SEMICONDUCTOR GRAB BAGS'

Amazing value mixed semiconductors, include

 transistors, digital, linear I.C. 's. triacs, diodes, bridgereck. etc. etc. All devices guaranteed brand now, full spec. with manufacturers markings, fully guaranteed
spic. 50 + BAG E2.95 100 + BAGS $£ 5.15$

MUFTI FANS

Keep your equipment col and Reliable with out tested ex. equipment "Mutton Fans" almost silent running and easily mounted Available in
now voltages 110 VAC. $5505 \rightarrow$ op 650 OR 240 v A.C. $55.15+$ pp

electronic COMPONENTS

 \& EQUIPMENT

DISCOUNT
Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap s., P.C.B.'s, Sub-assemblies. Switches don't have sufficient stocks of any one item io include in our ads. we are packing all these io include in our ads. we are packing all these items.
into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what yo pay plus we always include something from our ads. for unbeatable valuell Sold by weight
$2.5 \mathrm{kls} £ 4.75+p p £ 1.25 \quad 5 \mathrm{k} / \mathrm{f} \mathrm{f} \mathbf{6 . 7 5 + p p} \mathrm{f1.8}$ 10kls $\mathrm{f} 11.75+\mathrm{pp} £ 2.25 \quad 20 \mathrm{kls} \mathrm{f} 19.99+\mathrm{pp} £ 4.75$

SHUGART SA800 t 8" Floppy Disk Drives
as new $£ 225.00+$ VAT

$£ 325+$ CAR Made under licence from the world famous GE Co.
The ICL Termiprinter is a small attractive unit with the ICL Termiprinter is a small attractive unit with space available! Brief spec. as follows; RS232 serial interface, switchable baud rates 110,150, 300 , (30 cps), upper and lower case correspondonce type face, standard paper, almost silent runming, form feed, electronic tab settings, suited for word processor applications plus many more features. Supplied in good condition and in work-
ing order. Limited quantity.

MAKE YOUR COMPUTER TALK!!!
VIA OUR EX.GPO MODEM UNITS
Well, not exactly talk, but communicate over a standard dial-up G.P.C. line with any other modem. The modem unit 2A is housed in an attractive fibre glass case measuring only $15^{\prime \prime} \mathrm{w} \times$ $13^{\prime \prime} \mathrm{d} \times 5^{\prime \prime} \mathrm{h}$, inside are the electronics and mains power supply which enable serial duplex data communication between terminallcomputer etc. at any speed up to and in excess of 250 baud (300 at a push). Made to the most stringent, exacting specification for the G.P.O. These units feature Modular plug in P.C.B.'s, internat test points, Standard tone frequencies, Configurable to terminal or computer end, Auto unattended answer, RS232iv24 interface on standard 25 way 'D' socket, etc. etc., supplied complete with dags., at a fraction of $\mathbf{5 5 5 . 0 0}+\mathrm{f4.50}$

NOTE. Units believed working. but untested. unguaran. teed. Peris
G.P.0. lines.

EX STOCK

SOFTY

SOFTWARE DEVELOPMENT SYSTEM INVALUABLE TOOL FOR DESIGNERS, HOBBYISTS ETC
Enables "open heart surgery" on 2708, 2716, etc, Blows, Copies, Reads EPROMS or emulates EPROM/ROM INSITU whilst displaying contents off ROM/RAM on a domestic TV receiver. A host of other features.
Write or phone for more details.
f 115 + VAT \& CARR
You'll never regret buying a SOFTY!

\star RAM AND EPROM STAR OFFERS *

2716 Single $5 v$ rail EPROMS

2716 Three rail EPROMS 2708 EPROMS $411616 \mathrm{k} \times 1200 \mathrm{n}$ sPAMS 8 for

32K $\times 8$ DYNAMIC/STATIC RAM CARDS

 A masterpiece of electronic engineering and our own advantageous buying enables us to bring you a complete memory system at a giveaway price. Originally made for a large processor the RAM card has many features, including on board refresh, internal parity generation and checking. Standard TTL inputs/outputs, $+5,+12,-15 v$ supply rails and its effective STATIC capability make it useable with many CPU's. A fast cycle time of approximately 400 ns make this a snip at only $£ 90.00+£ 3 p$ \& p. Supplied complete with circuits.-

display ic a
£10.25 \& 8.50 \& 8.50 4.95 £28.50

Another great buy. Board contents include 62 Digital I.C.'s all located in 14 pin D.I.L. sockets. Original cost over $£ 90$, our price only $£ 4.95+$ pp 65 p
$5 v$ DC. POWER SUPPLIES
Following the recent "SELL OUT" demand for our 5 v 3 amp P.S.U. we have managed to secure a large quadspec. 240 computer systems P.S.U.'s with the following amps, $7.2 \mathrm{v} @ 3 \mathrm{amps}$ and 6.5 v @ 1 amp. The 5 v and 7.2 v outputs are fully regulated and adjustable with variable current limiting on the 5 v supply. Unit is self The 7.2 v output is ideal for feeding "on board" pegulators or a further 3 amp LM 323K regulator to give an effective 5 v @ 7 amp supply
Supplied complete with circuit at only $£ 10.95+\mathbf{£ 1 . 7 5 p p}$. Believed working but untested, unguaranteed.

KEYBOARDS * Low manceransss
 $\%$

 20AB 95p each lo for to. A.E.L 10 amp 400v ready mounted on $2 f 12 y$hest LOw PRO日ILEIC
LOW PROFHEIC. SOCKETS 80.IL. 10 peach 12 for fl 00 160.1 .1 . Gold Plated mit grade 22 peach 6 for f 1.0 160... 27p each 5 for $£ 100$
220 24011 35p each 3 for $\{100$
OTHER GOODIES

2 Loser Rif. output 40 volts I wall up io 1000 MHZ T.0.5 55p each io for 55.00 sat WN720 E E transisioo 37p each 3 for $£ 100$ LM330NSL6051 140.1 L 2 watt AF amp Bop mach 8 for 66.00
100 of 120 MHZ differential cascade amp 1.00 each 3 for 52.50 each 2 for 51.00
missile dual MOS 128 bu stare shill reg. OC $2.5 \mathrm{MHZ} \mathrm{C1} .50$ each 4 for $\mathbf{~} 4.25$
GE424 zero voltage switch. Iliac SCR relay drive TOS can f 10 each 7 for 6550 "LM384 5 Watt audio IC. 51.50 each 10 for f11.00
FPO37254 NON $50 y 500 \mathrm{ma}$ ra
2 maser 30v 350 ma T018 22 p each 6 for $\{1.00$ 2W5061 60 v 810 ma FO18 27p each 4 for f 1.50 2matis 50 o 日 amps TO220 tsp each 10 lo r E4.00 C10601 400r 5 amps T0202 55p each 10 for $£ 5.00$ TALAS

A special bulk purchase enables us to otter the above keyboard at a lowest ever price 49 coded leys encoded into a direct TL compatible
7 bit output Features such as delayed strobe Deration and rollover protection make this an absolute must for the MPU constructor! Supplied complete with connection diagram the connector, at a secondhand no time to test $=0.00+$ P.P. £1.60

SUPER CASED VERSION Same as above spec but housed in attractive two tone moulded, tie standing case. Unit also includes an all TTL parallel to serial convertor (no details) etc.
$£ 27^{.50+\rho . \rho . ~} 61.85$

TOROIDAL TRANSFORMERS
 All voltages measured off toad

Plugs, Sockets $\&$ Connectors Cannon 'D' Range		
Ways	Plug	Socket
9	$£ 1.03$	$£ 1.26$
15	$£ 1.17$	$£ 2.01$
25	$£ 1.72$	$£ 2.58$
37	$£ 2.35$	$£ 4.14$
50	$£ 2.90$	$£ 5.46$

25 way ex-equip. plug or socket $£ 1.25$

Mini Synth With Memory

Ideal for the music enthusiast, Memory Bank is a single chip miniature synthesiser featuring some basic effects of expensive commercial designs and yet costing less than $£ \mathbf{£} 0$

WELL, WE'VE GOT to admit itl When we first set about producing this project for $£ 30$ we didn't think it was going to be possible. We immediately had visions of banks of circuits each producing a different effect and hundreds of ICs - just how were we going to break this $£ 30$ price barrier? Not to be deterred, we sent out feelers to our many contacts in the electronics market. Finally, word began filtering through of a new IC which would do; not only most of the job itself, but it also had an accessible memory from which to record and recall notes in a sequencial fashion. The name Memory Bank stems from this function - the chip stores a 32 beat-length sequence of notes and spaces and, upon recall, replays the sequences at one of four switched tempos.

The IC in question is of the same family as the doorbell chip - you know, the one which produces
$40006031 / 2$ tunes simply by pressing one button! But - and this is important - not exactly the same one. They are all known under the family number of TMS 1000N and are produced by Texas Instruments. Officially, they are 'dedicated microprocessors' which means that they are, in essence, small computers designed and programmed for one purpose.

Many of the features of Memory Bank stem directly from the chip, as it is so versatile but one or two features are additional, hence the use of a number of components around the IC.

Effective Effects

The main oscillator provides two squarewave output signals an octave apart. Effects pot RV4 allows a controlled variable mix of these two frequencies so that the overall output is not necessarily a pure square wave and consequently more pleasant to the
ear. The frequency of the oscillator can be varied by RV3, the pitch control. Incidentally, a control voltage can be fed to the wiper of this potentiometer to give a VCO (voltage controlled oscillator) function seen in expensive commercial synthesisers.

The envelope control gives a variable attack and decay to each individual note - from a quick staccato effect to a long slow increase and decrease in volume. For instance, set at the longest attack and decay, Memory Bank produces a sound akin to a phased echo. This is perhaps one of the most interesting effects.

Vibrato is a standard effect where by the pitch of the main oscillator is frequency-modulated; that is, the centre frequency of the oscillator is raised and lowered slightly at a variable depth at a variable rate between about 1 to 10 Hz .

Other switched controls allow a

How it Works

IC1 is the heart of the project. Being a Whenever a key is pressed, a NOTE output is two outputs are connected directly across RV4 dedicated device it does much of the donkey connected to a corresponding RETURN input. and so the wiper of this pot gives a straight mix dependent on position, which is amplified by
Q4 and Q5 then fed to the miniature oudspeaker. IC every time a note is played. We have used this facility to trigger a variable envelope
shaper built around Q3 and its associated components. The charge and discharge rate of C 7
defines the slope on the envelope of output defines the slope on the envelope of output trols the attack and decay of each note. This pin 10 output could also be used to trigger voltage in a more complex synthesiser circuit. Finally, Q1 and Q2 are connected as an
astable multivibrator with a variable frequency of between about 1 Hz and 10 Hz . Potentiometer RV1 controls frequency. The output
of the astable is taken via RV2 (depth) to the of the astable is taken via RV2 (depth) to the
main oscillator pot (RV3 - pitch), thus main oscillator pot (RV3 - pitch), thus
modulating the frequency of the main

-aris bist				
RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	RV3,6	22k lin	Q4,5	BC213 PNP transistor
R1,11 330R	RV4	47k lin	D1,2	1N4148 diode
R2,5 5k6	RV5	10k log	MISCELLANEOUS	
R3 47k				
R4 150k	CAPACITORS		PB1 to 28	push-lo-make, release-to-break,
R6 1M	C1	47p polystyrene	SW1,2	single-pole keyboard switches single-pole, single-throw toggle
R7 39k	C2	10 n polyester		
R8,9 22k	C3,4	470n polyester		switches
R10,12 2k2	C5	100 n polyester	$\begin{aligned} & \text { SW3,5 } \\ & \text { SW4 } \end{aligned}$	4-way rotary switches
R13 15k	C6	10u 25 V electrolytic		3-way rotary switches
R14 1k2	C7	100u 16V electrolytic	$\begin{aligned} & \text { SW4 } \\ & \text { JK1 } \\ & 2 \times \text { PP3 ty } \end{aligned}$	Stereo $1 / / \mathrm{in}$. jack socket batteries and clips
POTENTIOMETERS	SEMIC	CTORS	Case to sui	
RV1 1M lin	IC1	TMS1000N MP0121	$9 \times$ knobs	
RV2 4 M 7 lin	Q1,2,3	BC183 NPN transistor	64R minia	loudspeaker

Mini Synth With Memory

On the main board all resistors and capacitors are best inserted first, being careful to polarise C6 and C7 correctly An IC socket is advisable for ICI and this should be put in next. Don't insert the IC yet, however, leave it till last. Semiconductors D1, D2 and Q1 to Q5 can be soldered into position now. Note that there are two varieties of transistor - take care not to mix them up. To insert the transistors, align their flat side to correspond to the flat on the overlay diagram: the transistor will then fit neatly into its correct position on the board. Finally, IC1 should be carefully inserted into its socket. This is quite an expensive device so take your time to prevent possible damage through breaking off any pins.

Construction of the keyboard is simply a matter of inserting the 28 push-button switches. Make sure they are all perfectly flush to the board this makes no difference to electrical connections, it simply looks better if they are visually lined up.

The second and final part of this article next month continues with constructional details of Memory Bank and includes full interconnection procedures along with case details.

Buylines

A full kit of parts for HE Memory Bank has been produced by Magenta Electronics, who advertise with us, on page 38 this month. All parts (excluding as usual the case, but including the PCBs and IC socket) will cost you only $£ 28.50$ including p\&p and VAT.

If you wish to house your Memory Bank in the same case as we did, Magenta can supply one (when ordered with the kit) for an extra £5.80 including P8p and VAT.

All Keyed Up

Obviously we couldn't produce the project with a standard piano-type keyboard - that alone would cost more than the price limit of $£ 30$ hence the use of push-button switches. But a musical-style layout with 24 buttons from A to G sharp two octaves above was maintained with all tones and semitones in between. An extra four switches to the right of this keypad control the 'record into memory' functions:
Erase - erases the present contents of memory
Space - records a single note-length space
Backspace - cancels the previous note recorded (useful if a mistake has been made)
Replay - recalls and plays the whole recorded sequence.

Upon switch-on, one of four switched tunes stored in the chip's permanent internal memory is automatically recorded into the accessible memory, after which it can be replayed or erased if desired. These tunes are: Oranges and lemons; When the Saints go marching in; Yankee doodle; and Holahi. Jack socket JK1 allows you to play through an external amplifier for extra volume. Insertion of
a $1 / 4$ inch jack plug will cut off the internal speaker and provide a low level signal to the external amplifier.

Now what else can Memory Bank do? Oh yes, we almost forgot! After a few minutes of not being used - if it hasn't been switched off - the IC produces a warning tone for a few seconds to tell you that you haven't turned off the power. This helps prolong battery life.

Memory Bank Construction

Construction procedure this month consists of making up the two PCBs from the overlay diagrams shown. Neither board should cause much difficulty, but there are one or two points to note.

MASTER ELECTRONCS

LEARN THE

 PRACTICAL WAY BY SEEING AND DOING
MASTER COMPUTERS

- Complete Home Study library.
- Special educational Mini-Computer supplied ready for use.
- Self Test program exercise.
- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. Semi-conductor technology. - Kits for Signal Generators - Digital Meters etc.

Please send your FREE brochure without obligation to:- Name \qquad Address \qquad \qquad BLOCK CAPS PLEASE	I am interested in :- PRACTICAL ELECTRONICS \qquad COMPUTER TECHNOLOGY \qquad OTHER SUBJECTS \qquad (please state your interest) \qquad
BRITISH NATIDNAL RADID	ELECTRDNICS SCHDOL
4 CLEVELAND ROAD, JERSEY, CHANNEL ISL ANDS.	HE/11/811

Story Behind

Stereo

We have become complacent over the past few years. Technological developments come so quickly that we rarely pause to consider how they were developed. lan Sinclair looks into the (surprisingly) long history of stereo and where future research may lead

NOW THAT we have the technical ability to process almost anything with electronics, it's interesting to note how many ideas which have been around for a long time are now being used at last. Stereo sound was one of the first of these ideas to be picked up, particularly when transistors became cheap enough to allow two amplifiers to be built for a price which previously bought only one. In this article, we'll try to trace the shaky beginnings of today's stereo.

Musicians have, of course, played with different arrangements of choirs and orchestras for centuries, and in many cathedrals, carefully chosen seating arrangements for the choristers were found by trial and error to give much clearer sound over a large space. By contrast, many composers preferred to write for small groups of players, deliberately avoiding the large spread of sound of the full orchestra.

The effect of the arrangement and spacing of sound sources which was well known to musicians was not lost on the physicists either, though it took some time before their knowledge of sound waves was sufficient to match up to the needs of analysing something so complex. Much of our knowledge of sound waves was laid down by the great physicist Helmholtz, and carried on by Lord Rayleigh of Terling, Essex. Rayleigh's Theory of Sound, published in 1896, is still the sourcebook for anyone investigating sound waves, and his work is the real starting point of the stereo systems which were developed after that time.

Rayleigh conducted a large number of experiments to find what factors determined how the human hearing system could 'localise' sound; that is, discover where the source of a sound
appeared to be. One of his classic experiments involved fitting a listener with a pair of tubes, one to each ear, and sounding identical tuning forks at the end of each tube. He used this scheme for tuning forks with a wide variety of pitches, and found that the listener, who was blindfolded, imagined that the sound was directly in front of him when the higher-frequency tuning forks were used. This illusion did not persist when low frequencies were used, and could be restored only when a single fork was used and its sound taken through tubes of equal lengths to both ears.

Phased Forks

Rayleigh's conclusions were that the information on sound direction which we obtain arises in different ways at different frequencies. At low frequencies, it is phase differences between waves which carry the sensations of direction. Since he could not ensure that two tuning forks stayed in phase, the listener was unable to locate the source of low notes from two separate forks. At high frequencies, phase differences seemed less important, and the most important factor was the intensity of the sound; the direction of the sound always seemed to be towards the louder sound.

Rayleigh's experiments and theory weren't at all ahead of technology. Some fourteen years earlier, a telephone engineer in Paris had patented a system for enabling latecomers to a theatre to hear a realistic performance. His ideas was to use two microphones, one on each side of the stage. Each listener had also two earphones, left and right, so that the effect was that of headphone stereo. Since no amplification was needed, the system
was quite practicable, and was, in fact, exhibited in action in 1881.

The lack of amplification in all early sound systems forced inventors to concentrate on headphone systems. Now, though headphones produce interesting effects, there is a vast difference between the sound heard on headphones, with its artificial separation, and the sound you hear live, or through loudspeakers. A good description of the difference is that headphone sound always makes your ears feel fifty feet apart, and this must be caused by the complete separation of signals which doesn't happen under normal listening conditions.

Early attempts at providing some form of loudspeaker stereo had to use the horn gramophone, and some of these were actually made. There is a photograph in the Science Museum of the 'Columbia Multiplex Grand', a cylinder gramophone with three pickups and horns, playing a cylinder with three separate tracks. Unfortunately, we can't tell now whether these were three tracks in the sense we would use now; ie, if they were simply three tracks of different instruments, using the horns as a form of mixer. These attempts came to nothing.

Two Channel Radio

World War I turned inventor's minds to less harmless pastimes, and at the end of the conflict, the new possibilities which were opened up by radio broadcasting began to excite considerable interest. One scheme which was tried in 1925 was the separate broadcasting of two channels on different wavelengths. The medium-wave bands were not so crowded then as they are now - you
didn't get the call-sign of Radio Bohemia continually coming over the station you wanted in those days!

In Berlin, stereo experiments were carried out using 430 and 505 metre transmitters, and at New Haven, Connecticut, station WPAJ won a place in history as a stereo transmitter using 270 metres and 227 metres. Details of the Berlin system are lost, but the New Haven system is quite well documented. At the studio, the microphones were seven inches apart, a distance which had been picked by trial and error.

Station WPAJ had to bow to its listeners, though. Most listeners, still using headphones, didn't like the effect, which in any case was available only to listeners with two receivers. For the less well off, the reception of only one of two stereo channels was not a particularly good deal, and the scheme was abandoned.

For The Record

Curiously enough, disc stereo was not in such an advanced state. It's curious because all the information that was needed was already present. The early cylinder recordings had used what was known as 'hill and dale' recording (Fig.1) - the sound waves were recorded as a pattern of vertical bumps on the cylinder. Emil Berliner's flat discs of 1888 used lateral recording, the familiar groove which waves from side to side. It must surely have occurred to many inventors that it should be possible to record one programme on a vertical recording and another on a lateral recording in the same groove - and yet there's no trace of it.

Figure 1. In the early years of this century, both lateral (side-to-side) and vertical (hill and dale) recordings could be bought. No one seems to have seen that both types of cut could be made on a single track.

Stereo as we know it has its roots in the work of one man - Alan Blumlein of EMI. Blumlein was probably the ultimate virtuoso of electronics; his patents cover all aspects ranging from stereo sound through most of television to radar. What he might have eventually accomplished is something we can only guess at, because he was killed in an air crash, during radar tests, in the early days of World War II.

His work at EMI started in 1929, and by 1931 he had taken out the patent
which forms the foundations for most of today's stereo systems. This patent, number 394325 if you want to look it up, outlines all the requirements that we use today, and suggests in particular, the use of sum and difference rather than straightforward L and R sound channels. The important point about a sum-and-difference system(Fig.2) is that the sum signal is a normal mono signal, which can be used by mono equipment, and the difference signal is of comparatively small amplitude, easier to transmit. The sum-and-difference system has survived in FM stereo, though it was not used for either tape or disc stereo systems after World War II. The principles were revived, however, for most of the so-called 'quad' systems.

Figure 2. Blumlein's sum-and-difference method. The important point is that the sum signal is the normal mono signal, and the difference signal is at a much lower amplitude.

By 1932, Blumlein had turned his attention to the problem of coding two separate signals onto discs. The obvious method, stemming from gramophone history was to use both lateral and hill and dale recording on the same groove. This isn't entirely satisfactory, because one of the reasons for abandoning hill
everyone else deserves some sort of explanation. Without going into a lot of detail, any motion in a straight line can be imagined as being caused by two movements at right angles to each other.

For example, if you pull on the two strings illustrated in Fig.4, then the block moves in the straight line which is shown. These two motions at right angles to each other are quite independent - changing one does not affect the other. Translating this into something closer to our applications now, imagine a device which consists of a miniature railway track with a plunger touching the surface of a plate between the rails (Fig.5). If the plate is shaped like a wave, the plunger will be forced to move up and down as the 'truck' is moved along. The up-and-down movement, however, does not cause the truck to move from side to side. Similarly, if the plate is flat, but the 'railway track' is a set of Z bends, the truck and the plunger with it will zig-zag without causing the plunger to move up or down. The two separate motions do not interfere with each other, provided that their directions are always at 90° to each other. We can now imagine that both sets of motions exist, with a wave shaped plate and Z-bends in the track, causing the end of the plunger to move in both directions simultaneously - this is as close as we can come to showing what takes place on a stereo recording. Imagine now that the whole caboodle is tilted through 45° - and you're there!

Figure 3. Groove cross-section - the walls are at 90° to each other, 45° to the horizontal. Each wall is separately recorded on by a hill-and-dale method.
and dale recording was that the pickup could not follow the dales at high frequencies; it simply slipped from one hill to the next. Blumlein suggested that the two walls of the disc, set at 90° to each other (and at 45° to the vertical) could be separately modulated, and this is the scheme which was eventually used.

Degrees Of Stereo

Now earnest students of ' O ' level physics will have realised what the significance of 90° is in all this, but

Figure 4. How forces at 90° to each other can produce movement at 45° to each force.

Figure 5. Independent movements which do not affect each other. The vertical motion in (a) is quite separate from the horizontal motion of (b), but if the two are combined, the plunger will have both types of motion simultaneously.

Fantasy Sounds

By the early thirties, all of the methods for obtaining and transmitting stereo had been worked out. The sum-anddifference coding for radio had been contributed by Blumlein, the $45^{\circ} / 45^{\circ}$ disc was his work as well, and the third system, separate channels on tape was still waiting for further development of tape recorders.

There, for some reason, it rested. It was as if people couldn't take any more novelties, or perhaps that everyone sensed a coming war. Whatever happened, stereo sound didn't change, at least as far as the home user was concerned. Where it all started to happen was where there was money to play with, in the film world. The historic date was 1935, when the Bell Telephone Laboratories demonstrated before the Society of Motion Picture Engineers (SMPTE now, the T standing for Television) a stereo sound system for films, using twin tracks of the conventional type. It made some impression, but only on a few dedicated engineers. The big breakthrough came only in 1941 when Walt Disney Studios made Fantasia, a film of such remarkable originality that it still goes the rounds today. The theme of Fantasia is the fitting of cartoons to music, and Disney's engineers, who had heard the demonstrations in 1935, were convinced that a very large step forward in cinema sound was desirable. They certainly achieved it, after umpteen experiments and as many as ten full scale attempts, they ended up with an eight channel recording system. Their idea, later expressed in an article, was that if this improvement in sound was to catch the attention of the public
it must be a dramatic improvement there was no point in spending a million dollars in making something just slightly better. It's a principle that a lot of inventors ought to remember!

Fantasia certainly made its mark in the USA. No cinema carried the equipment necessary to reproduce the sound tracks, so the Disney Studios devised travelling sound systems, which had to be carted to each cinema and set up where a copy of the film was playing.

Coils And Cutters

By the mid ' 50 s everyone was waiting for stereo to happen, and there were countless proposals, ranging from the well-researched to the simply silly, lined up. As usual someone had to break the ice and take the first step into the water. The someone in this case was that champion of all the innovating companies in electronics, RCA. At that time, virtually all the disc cutting heads were made by one company, Westrex, a branch of Westinghouse. In 1957 RCA instructed Westrex to make them a $45^{\circ} / 45^{\circ}$ stereo cutting head - with the option that if they didn't, RCA would start manufacturing the heads themselves. It was an offer Westrex couldn't refuse, because several other companies were already in the business of developing such cutters, notably Telefunken in Cermany, Decca in Britain and Orotofon in Denmark. Westrex went ahead to develop a type of cutting head which, with later refinements, is still in use today.

The Westrex head uses two separate moving coil assemblies. The movingcoil principle is an old and well known one in the history of disc cutting and
reproduction, and is illustrated in Fig.6. A coil is driven with signals, and its magnetic field, which increases and decreases in step with the signal current, causes variable forces on an iron core. If the coil is suspended on springs, it will move in sympathy with the variations in magnetism, so producing a mechanical movement which keeps in step with the waveform of the signal. This is the motion which is used to operate the cutting stylus, and the Westrex arrangement consisted of two moving coil drives (or motors, as they are called) set at 90° (Fig.6).

Figure 6. Front view (simplified) of a classic type of stereo cutter. The two coils are driven in directions at 90° to each other, so producing a $90^{\circ} \mathrm{cut}$ by the stylus.

Once the Westrex stereo cutter went into production, the manufacturing of stereo discs became possible. By that time, the microgroove long-play disc had been developed also, and the modern stereo disc became a reality.

Through The Air

Stereo radio, as we've seen earlier, actually started much earlier than stereo discs, though the systems which used separate channels broadcast on separate wavelengths were not compatible. Compatibility is always a problem which tends to prevent new systems from being developed for any established process. The argument is that the customer already has equipment which mustn't be made out of date. The fact that advertising is continually trying to tell the same customer that his equipment is out of date is conveniently ignored. The compatibility problem has affected two systems in particular - stereo radio and colour TV. The argument in each case was that the existing owner of radio or TV should continue to be able to receive the same transmissions. This was a reasonable argument in the USA, where millions of customers had mono radio and black/white TV, but it looked a bit less plausible in Britain where few people had FM radio, and the colour TV was to be broadcast on UHF, on a new standard which required new receivers anyway!

The two-transmitter method of

Story Behind Stereo

transmitting stereo is therefore a deadduck as far as compatibility is concerned, and any scheme for transmitting what should be high quality signals on medium wave is a lost cause anyway. It's ironic that the only music on BBC medium-wave, which needs a reasonable bandwidth and quiet background, has just been shifted to the most unsuitable of all the wavelengths, 247 metres. Perhaps they don't really care any more!

As it happened, the first FM transmitter had been built by the beginning of World War II, by Edwin Armstrong, inventor of frequency modulation, and in the post-war years, FM transmitters multiplied rapidly in the USA. The users of FM tended to be listeners who were interested in higher quality reproduction of music, so the FM transmitters were seen as the natural medium for stereo transmissions. The bandwidth of an FM broadcast is much greater than that of medium wave, however, and this, along with the compatibility problem, rules out the use of transmitting each channel on a separate frequency.

Transmission Systems

Once again, the field was open to inventors to devise methods of modulating the two channels onto one single carrier in such a way that an existing one million radios would continue to receive an acceptable signal, but a specially adapted stereo radio would be able to separate the two channels. A large number of proposals were put forward mostly hinging on the use of a subcarrier. A subcarrier is a sinewave which can be modulated by a signal, and which is then, in turn, modulated on to a main carrier along with other signals. This time, the systems had to pass the

scrutiny of the Federal Communications Commission, the body which controls broadcasting technical standards, and it showed! The FCC had previously insisted (1953) that any colour system should be compatible, and it certainly wasn't going to make its rules any easier for half-baked schemes to provide FM stereo.

The system which was eventually chosen was the Zenith Radio, CeneralElectric joint submission. This is the stereo system which, unlike the NTSC colour system, is used world-wide with only minor modifications, and a brief reminder of its principles might be ușeful.

The Zenith GE system (Fig.7) relies on Blumlein's principle of sum and difference signals, $L+R$ and $L-R$. The sum signal, $L+R$ is frequency modulated onto the main carrier in the usual way, so that the user of mono equipment has the same signal input to his receiver as he had before. The carrier is also modulated with two other signals. One of them starts as a subcarrier at 38 kHz , which is amplitude modulated by the difference signal, $L-R$. The subcarrier is then removed, leaving only the modulated sidebands, mainly low amplitude, to be modulated onto the main carrier. The third signal which is modulated onto the main carrier is a low amplitude sinewave at 19 kHz , which is obtained at the transmitter by dividing down the 38 kHz subcarrier frequency.

At the receiver, these signals can be separated without much difficulty (Fig.8). A mono receiver detects only the sum signal, with its normal deemphasis circuits (low pass filter) removing the 19 kHz sinewave (the 'pilot tone') and the sidebands of the sub-carrier. A stereo receiver uses no filtering im-

90 MHz
MODULATEDBY
(a) L+R SIGNAL
(a) L+R SIGNAL
(b) 38 kHz SIDEBAND
(c) 19 kHz SIGNAL
(c) 19 kHz SIGNAL

Figure 7. Stereo transmission. Three signals are modulated on to the main VHF carrier. One is the usual (mono) $L+R$ audio signal, one is the sidebands of the subcarrier (carrying L-R), and the third is a low-amplitude 19 kHz sinewave which is used for decoding at the receiver.

mediately after the demodulator, so that the pilot tone can be detected, amplified and frequency doubled to 38 kHz again. This newly regenerated carrier frequency can now be used to demodulate the subcarrier sidebands (a method called synchronous demodulation is used) to recover the $L-R$ signals. The $L+R$ and $L-R$ signals can be combined to provide the L and R signals which are the stereo channel signals.

On Tape

Tape recorders? Oddly enough, though stereo on tape was used comparatively early by the manufacturers of discs, stereotape for the home user came a lot later. The use of tape was only ever a minority interest in any case, apart from the brief craze for tape-recording in the early sixties, until tape became capable of providing better quality sound at reasonable prices. Though stereo tape recorders eventually became available, with such excellent machines as the Revox providing considerable competition to the best of discs, tape stereo still remained a minority pursuit. Things stayed this way until the cassette developed four channels and efforts were made to sort out the miserably poor signal-to-noise ratio.

Because commercially-made stereo cassettes could be bought, unlike stereo tapes, stereo on cassette flourished despite its technical shortcomings. Rapid development ensured that whatever stereo equipment you bought one year would be out of date by the next year, so keeping manufacturers keenly interested in research. In some cases, the research simply resulted in more shiny cases with less inside them, but some very important advances were made in tape material, in circuit techniques (such as Dolby and dbx), and in convenience (such as being able to set up the recorder easily for different types of tape). Because cassette stereo was the most recently developed stereo system, it's still developing, trying to reach nearer perfection before the next big breakthrough.

The next one? There are digital tapes, laser-read discs, and presumably, laserread tapes all being developed, all with the promise of high packing density (lots of music in a small space) and very low noise levels. That doesn't mean that manufacturers have learned from early mistakes - there are as many systems competing now as ever were, some with such obvious flaws that it's difficult to imagine they were being seriously put forward except as a way of keeping a place in a queue. All we can do is wait and hear!

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards, TV messages from friends and electronic mail.
After completing these books you will have broadened your career prospects and increased your knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$ This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood.

 Everyone can learn from it - students, engineers, hobbyists.

 housewives, scientists. Its four A4 volumes consist of:Book 1 Binary, octal and decimal number systems; conversion between number systerns;
conversion of fractions: octat-decimal conversion tables.
Book 2 AND, OR gates; inverters; NOR and NAND gates; truth tables; intuoduction to
Boolean algebra.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates; duat-input gates.
Book intraduction to pulse driven circuits; R.S and J-K flip flops; binary counters; shift registers: hall-adders.

DESIGN OF DIGITAL SYSTEMS £12.50

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six $A 4$ volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusiveNOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic
conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subrractors; serial and perallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; fing. Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sels; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities, programming; assemblers; computers; executive programs; operating systems and

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas - presenting safety regulations, government legislation, office procedures etc.
THE ALGORITHM WRITER'S GUIDE $£ 4.00$
explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

[^0]
Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle reaily tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC

 $£ 9.00$Booki Compulers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; eriors: coding simple programs.
Book 2 High and low level languages; floweharting; functions; REM and documentation; INPUT, IF...THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR....NEXT, RESTORE: debugging; arrays: bubble sorting: TAB
Book 4 Advanced BASIC; subfoutines; string variables; files; complex programming; examples; glossary.

THE BASIC HANDBOOK $£ 11.50$

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world
A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

ORDER FORM

Please send me the following books:
Digital Computer Logic \& Electronics @ $£ 7.00$
Design of Digital Systems @ $£ 12.50$
Algorithm Writer's Guide @ $£ 4.00$
Computer Programming in BASIC @ $£ 9.00$
BASIC Handbook@ £11.50
ANS COBOL @ £4.40
Your Booklist (Free)
i enclose a "cheque/PO payable to Cambridge Learning Ltd. for E.
("delete where applicable)
Please charge my:
-Access/American Express/Barclaycard/Diners Club/Eurocard/Visa/ Mastercharge/Trusicard

Credit Card No.

Signature
Telephone orders from credit card holders accepted on 04BO 67446 (Ansafone).
Overseas customers (inct. Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.
Name
Address

Cambridge Learning Limited, Unit 86, Rivermill Site
FREEPOST. St. Ives, Huntingdon, Cambs PE1 74 BR, England.
(Registered in England, No. 1328762)

Battery

Eliminato ${ }^{2}$

Don't let the soaring price of batteries worry you. Save your hard earned pocket
money with the help of this simple project

If YOU HAVE battery-powered equipment or projects and seem to be constantly buying cells, then the HE Battery Eliminator is just the job for you. The project gives a variety of switched output voltages $-5,9$ and 12 V , on our prototype - with a maximum output current of over 1 A, from mains 240 V AC. A single IC gives exceptionally good regulation to the required voltage and makes the project shortcircuit proof - it virtually cannot be damaged, provided all components are inserted correctly. The use of this IC, the LM317T, makes the circuit extremely simple to build and operate. Output voltage is set by the value of only two resistors, so a wider range of voltages can be obtained, if you wish, simply by susbstituting different resistor values in their place. Connection to your batterypowered equipment is made with a suitable length of two-core flex with the correct plug on the end. If, like us, you intend to use the Battery Eliminator with a variety of equipment then a 4 way power plug, which gives a choice of different connections, is an advantage.

Construction

The HE Battery Eliminator is built on Veroboard, so you should take the usual steps when constructing the circuit. Follow the overlay diagram carefully, making all links before you insert any components.

Mark and drill the case for all switches, grommets etc., and be careful when wiring up the project because of the 240 VAC mains connection. Although the low voltage, secondary side of the circuit is isolated by the transformer, the primary side is potentially dangerous. Cover all connections with heat-shrink sleeving to give protection.

Follow the connection diagram
carefully and use grommets and cable ties, thus preventing the mains cable from being pulled out or shorted to the case. Remember to fasten the mains earth to the transformer mounting bolt using a solder tag so that the whole metal case of the project is at earth potential. Note how. IC1 is fastened to the case. A mica insulating was ner must
be used to provide electrical isolation with good heat conduction. A spot of heat sink compound wouldn't go amiss here, if you have any - but it's not essential.

Finally, once you have finished wiring up and have thoroughly checked the project through you can switch on and test it.

How it Works

The secondary output of T1 provides an AC voltage of approximately 12 V . This is fullwave rectified by BR1, a bridge rectifier, to DC and capacitor C1 smooths the voltage to a fairly constant level of about 16 VDC.

IC1. is a device known as a voltage regulator, which provides a very constant output voltage, regardless of its input voltage (bearing in mind that the input voltage should always be higher than the required output). The IC develops a reference voltage of 1.25 V between its output and adjustment terminals, ie across resistor R1. The value of R1 is 270R, hence from Ohm's Law:

$$
I=\frac{1.25}{270}=4.6 \mathrm{~mA}
$$

This current also flows through one of the three switched resistors R2, 3 or 4, depending on the position of switch SW2. Again from Ohm's Law the voltage across, for example, the resistor $R 2$ is given by:
$V_{R_{2}}=4.6 \mathrm{~mA} \times 820=3.77 \mathrm{~V}$
Therefore, the total voltage from the 0 V line to the $+V$ line (the output voltage) is:
$3.77+1.25=5.022 \mathrm{~V}$
The calculations for the other two resistors are similar.

Any other voltage within the range 1.25 to 14 VDC can be supplied by IC1 (given that its input voltage is always more than its output) with the appropriate resistors in circuit.

Figure 1. The Battery Eliminator circuit diagram. IC1 keeps the circuit simple yet gives good regulation

Buylines

IC1 is the only component which you may have problems finding from your local supplier. Mail order companies who advertise with us should be able to help. The total cost of components (excluding case) will be approximately $£ 8$

The case we used is one of a range obtainable from Tandy. The stock number is 270-251 and the range is well worth a look, being very good value for money.

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	
R1	270R
R2	820R
R3	1k5
R4	2k2
CAPACITORS	
C1	1000 moun
C2	10u 1
C3	1u16
SEMICONDUCTORS	
IC1	LM31
BR1	1A 50
D1,2	1N400
MISCELLANEOUS	
	1A fus
SW1	doubl switch
SW2	1-pole,
T1 240/12	
case to suit (see Buylines)	
mains neon	
grommets, cable fies, insulating washer	
knob to suit	
10 strip x 24 hole Veroboard	

Figure 4. Connection details. Take care with the mains side of the circuit - heat-shrink sleeving is a good idea

Figure 2. You can see how tightly packed the project is
Figure 3. Veroboard layout of the HE Battery Eliminator. The diagram of the underside shows where the breaks in track should be

high performance electronic ignition,to add power, economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms, but it is now available in quality kit form to fit all

ES200. A high performance inductive discharge ignition incorporating power integrated circuit (special selection): electronic variable dwell circuit (maximises spark energy at all speeds): pulse processor
(overcomes contact breaker problems). Coil governor (protects coil).
Long burn output. Negative earth only. Compatible with all rev. counters. C300. In it's ready built form (C3000) it came top of all systems tested by an independent national authority July' 79. A high energy
capacitive discharge ignition incorporating a high output short circuit proot inverter, top grade Swedish output capacitor, pulse processor circuit, transcient overload protection. Fast rise bidirectional output ideal for fuel injection, sports carburation, olly engines. Compatible with most rev. counters. (Low cost adaptors avallable for rare cases.
Application list enclosed with each kit. Note: Vehicles with Smiths/
Jaeger rev. counters code RVI on dial will require adaptor type TCI).
What's in the kits. Surefire's own precision anodised aluminium extruded case. P.C. mounted security changeover switch, static
timing light. Special se!ection Motorola semi-conductors. Capacitors. resistors etc. selected after 5 years experience. Glass fibre pcb, solder, complete down to last washer.
Fully illustrated comprehensive instructions and full technical back up service.
Suretron Systems (UK) Lid.
Dept. HE8 332317
Name
Address
'Phone order with Access/Barclaycard
Quantity
-

ES200: Neg	EL3.95	£11.95	lenclose cha/PO's Chy No.
C300: Pos	£17 35	£15.95	
C300: Neg	EI795	£15.95	
Tacho Adapt. TCl		$£ 3.90$	

Clever Dick

> Do you know why ICs are usually black? Clever Dick thinks he does. Find out the answer to this and many other really burning questions

I CET ASKED some very silly questions each month: 'where can I buy a PP3?' or 'what does an IC do?'. So you can imagine what we thought when M Turner innocently asked 'why is an IC black?'. It was I who felt silly when I tried to find the answer.

Dear CD,

Has it not occurred to you that Integrated Circuits would be a lot easier to identify if the plastic with which they are covered were made in different colours. CMOS for instance would for instance be a different colour to TTL, linear different to digital and so on. Apart from anything else it would make the boards a lot more colourful, why do they have to beblack?

PS. How about a binder for this super fantastic idea?
M Turner
Bristol
I started by asking all the incredibly intelligent people that work in the office (the HE staff don't actually work but the cleaners were most helpful). After a decent amount of head scratching, no-one seemed to have any realistic (or printable) ideas. The next step was to phone up some IC manufacturers, and so we chose the big three: Mullard, Texas and National. As you might have expected we got three different reasons,
a) it aids heat dissipation
b) it keeps out the light which can upset the operation of the circuit
c) the epoxy resin that is used for IC encapsulation is cheaper to produce in black.

If anyone else has any ideas then please let us know: a binder to M Turner for a very tricky question.

We seem to have gained a reputation for finding addresses for manufacturers of obscure and foreign equipment, and here is this months plea.

Dear Clever Dick,

I have recently acquired a desk type calculator, made in Sweden by a company called FACIT. I wonder if you could give me an address for the company so that I can obtain some spare parts and possibly a circuit diagram. I would be very grateful if you could help me.
GAcreman
Somerset

This was a relatively easy one to track down. A quick call to the Swedish Embassy's trade commission produced two addresses. In this country you can call: Facit Addo Ltd., Maidstone Road, Rochester, Kent. Or if they cannot help you the Swedish Head Office is at: Facit AB Ltd., S-59700, Atvidaberg, Sweden.

Now for something a little closer to home.

Dear CD,

Just two questions: Concerning the Auto Probe in September '80, my wife's pill comes in a bubble pack, would something like an Aspirin container do instead?

Secondly, in your sister magazine ETI in the lune issue they featured a project that could send audio signals down the mains. There was also a feature concerning house wiring that mentioned that the mains could also be used for transmitting control signals. How about a similar circuit (especially the remote control) sometime in HE for lazy people like myself?

Finally, thanks for a great mag, I've bought every one since you started in November ' 78 (isn't that loyal of me?). Now all I need is a binder to put them all in...

PS. I think you are the tea boy (or girl). Dave Hart
Ongar, Essex.

You would need the Aspirin for your headache if you tried to get the circuit into the little hole that most Aspirin bottles have. Perhaps we'll have a project in a bubble-pack soon, you'll just have to 'control' yourself and wait to see!

What on earth is the point of printing a super difficult circuit like that when our sister mag ETI does it all the time? By the way, the circuit for a mains control system will be appearing in ETI in the next month or three - watch out for it. Now about that binder. They are available from our offices for the paltry sum of $£ 3.95$ all inclusive. Keep guessing about my identity, you're getting warmer
Time now for some quick ones.
Is it against the law to operate a radio control jamming transmitter? I want to stop someone who flies his models over my house at six o'clock in the morning. MTF
London
Yes it is and don't do it, you'll kill someone.

Can the frequency of a radio receiver be changed by altering the channel selector assembly?

IMcEvoy
 Merseyside

Sorry, not unless you really know what you're doing and even then it's doubtful

And finálly

Where can I buy PCBs for Hobby Electronics projects?
RichardLong
Norfolk
No problem, just look at some of the advertising in this issue. Most of the companies who supply kits for our. projects will be happy to oblige. See you next month, and please keep those letters short.

Into Digital Electronics

Dust off your Eurobreadboard, we have some practical circuits for you to try out using the theory we covered last month

USEFUL THINGS, gate circuits. In case you've forgotten last month's work, we can make any sort of gate circuit which. has a 1 at the output for whatever pattern of 1 s we want at the inputs. Even if these were the only kind of digital circuits we could make, they would still be useful, but NAND gates can be used to make an even more useful type of circuit, called a sequential circuit or flipflop.

Practice before theory, this time. Build the circuit which is shown in Fig.3.1. The Eurobreadboard switches and LEDs are in their usual places, and the quad NAND gate 74132 has been inserted with its pin 1 in line 19A and its pin 14 in line 19B. The connections are as shown on the diagram. Looks familiar? Yes, if you've built multivibrators with transistors you should recognise this as one of the great multivibrator family. There are no capacitors, though, so this is a form of bistable; and all the resistors are inside the ICs. What makes this important is that it is a simple example of a circuit which, although it's made out of gates, doesn't behave like any of the gate circuits you've built so far.

POWER SUPPLY LINKS:
19B TO $\mathrm{X} 2(+\mathrm{Ve})$
19B TO X2 (+Ve)

Fig.3.1 The circuit for the R-S
flip-flop, showing the
Eurobreadboard link numbers.

Fig.3.3 Using an R-S latch in a burglar-alarm circuit.

Figure 3.2 is a blank truth table for this circuit. Make sure you go through this table in the order which is given, otherwise you may miss the important feature of this circuit. There's nothing accidental about the fact that we have two lines in the truth table for which the inputs, R and S, are both at logic 1

R	S	0
$\left(S W_{1}\right)$	$\left(S W_{2}\right)$	
1	0	
1	1	
0	1	
1	1	

Fig-3.2 Blank truth table for the R-S flip-flop. Make sure that you go through the truth table in the order which is shown.

See the difference? With $R=1, S=1$, the output which is monitored by the LED can be 1 or 0 . What does it depend on? Look at the table again. What decides the value of the output Q is the value it had before the inputs changed to $R=1, S=1$. Now this is quite different from the circuit which we used in Part Two. In these 'combinational' circuits, the output from the gate circuit was decided completely by the combination of inputs: If we had a gate circuit with two inputs and one output, the output would always be the same when the inputs were both 1 s . The circuit we're looking at now doesn't do this. What counts here is the sequence of signals at the inputs, and the output for $R=1, S=1$ depends on this se-
quence - the signals which were there

at the inputs just before this state. If we had $R=1, S=0$ before $R=1, S=1$, then Q is 0 . If we had $R=0, S=1$ before $R=1, S=1$, then Q is 1 . Sequence, not combination, is what matters, so that circuits of this type are called sequentiallogic circuits.

The R-S Flip Flop

This particular one is called the R - S flipflop, with R and S meaning Reset (putting Q to 0) and Set (putting Q to 1). It's the simplest type of sequential circuit, but it's not used very much because of two problems. Problem 1 is that we have to leave out $R=0, S=0$ on the truth table. Why? Well; with that input, the Q output is 1 , and the other output, marked Q is also 1. Now if we used only Q, this might not be too serious, although it's still a nuisance, having another state which causes $\mathrm{Q}=1$. For a lot of flip-flop applications, however, we use Q to provide the inverse of Q (so if $\mathrm{Q}=1, \overline{\mathrm{Q}}=0$ and if $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$), saving another inverter. With $R=0, S$ $=0, \overline{\mathrm{Q}}$ is not the inverse of Q , so our logic goes bananas. Problem number 2 is that the output changes almost instantly when either input is taken to logic 0 . For a number of reasons which we'll look at later, we'd like some control over this.

When the R-S flip-flop is used, it's used as a latch. A latch is our name for a circuit which will hold a bit(binary digit) unchanged for a time, a sort of temporary memory. We can set the R-S latch by making $R=0, S=1$ and reset it by making $R=1, S=0$, and we can store the result by keeping both R and S at logic 1. The outputs Q and $\overline{\mathrm{Q}}$ will stay as they are as long as power is applied and $R=1, S=1$; this is the latching condition.

How about an example? Imagine the R - S latch is connected to operate a burglar alarm (Fig.3.3). The reset button
has been pressed, making $S=0, R=1$ momentarily, so that the output Q is at logic 0 . When the button is released, $R=1, S=1$ for as long as the door and window switches remain intact. Breaking contact on any one of these switches, even momentarily, will cause the input $R=0$ because of the 'pull-down' resistor $R 1$. This makes $Q=1$, and this condition will remain latched even when $R=1$, causing the alarm to sound until the switches are all closed and the reset button pressed. The 'pull-down' resistor is needed because without it a TTL input will remain at logic 1 if the connections to it are broken. Another way in which the R-S flip-flop is used is to control a gate in a counting circuit the gate can be 'opened' by a push button which sets the output of the flipflop, and closed by an 'end-of-count' pulse. The important point is that the R - S flip-flop can be changed over by a very brief pulse at one input, and the output can then be held in its new state.

D-lightful D-ifference

So much for the R - S flip-flop. Incidentally, there seems to be no particular rhyme or reason about how the inputs are labelled. Some texts show the R input to the gate whose output is Q (the scheme we've used here), others show the R input to the gate whose output is $\overline{\mathrm{Q}}$. It doesn't really matter which way round it is, so long as you know the action - a zero at one input will cause a change at the output, and when the inputs are both at logic 1, the output is held latched. An R-S made from NOR gates, by the way, has just the opposite action, latching when $\mathrm{R}=0, \mathrm{~S}=0$ and changing when either input goes to logic 1 . Just as well we don't make much use of them!

We make a lot more use of the next chip, a D-type flip-flop. The example we have is a 7474, and it involves us in a lot of new ideas, one of which is clocking. Start by setting up the circuit in Fig.3.4.

POWER SUPPLY LINKS FOR 74132:
198 TO X2 $1+\mathrm{Ve}$)
25A TO Y1 (-Ve)

Fig.3.4 A pulse generator which makes use of the 7415132 IC. Don't be tempted to use larger resistance values.

We have removed the connections between the 74132 and the switches, and substituted the 560 R feedback resistor, and 470 uF capacitor. Please note, you can't use this circuit with just any old gates. Only the 74132 NAND gate, the 7413 (also NAND) and the 7414 (hex inverter) can be used this way, because they are all of a type called Schmitt gates - more of that later.

Now switch on, and see what LED 1 is doing. If you are so lucky as to get a quick flash at intervals, that's it! The output of this circuit is a pulse, a change from logic 0 - to 1 - to 0 which recurs at regular intervals. Because it ticks away so regularly, we call it a clock pulse.

For any sort of sequential circuit beyond the simple R-S type, a clock pulse is essential. The reason is that the clock pulse can be made to control each step in the sequence, so that any changes which take place will always take place at some particular part of the clock pulse, either the leading edge (the start of the pulse) or the trailing edge (the end of the pulse). This avoids a lot of problems which can arise because of time delays in gate circuits. A single NAND gate will usually manage to respond to an input in about 30 nanoseconds (that's $0.03 u S$). That's fast, but suppose you have a circuit which uses two signals, one of which has come from one single NAND gate and the other of which has passed through about ten NAND gates. No prizes for guessing which signal gets to the circuit first, but suppose we need to wait until both of them are present? A circuit which operates from clock pulses (a clocked circuit) has a built-in time delay, the time between the clock pulses. We could arrange the circuit so that the signals were held in latches until both were present, and then gate them into our circuit by a clock pulse. The next clock pulse then resets the latches, ready for the next lot of signals. Circuits which make use of clock pulses avoid all the problems which time delays can cause in simple gate circuits, and also give us an automatic method of resetting latches. Clock pulses put the sequence into sequential circuits, and allow us to carry out very complicated actions in a surprisingly simple way, because we do only one step at a time. This idea is the germ from which the microprocessor has grown.

Fig. 3.5 Using the D-type flip-flop 74L574. The 7415132 which is already on the board provides the clock pulses.

Coing back to the board, you now have a clock pulse generator ticking away merrily at a nice slow pace. This pace isn't typical, most clock pulses"go a lot faster, 100 kHz or more, but by slowing it down we can see what is going on by watching the LEDs. Switch off now, keep the clock pulse generator in place and put a 7475 on the board, with its pin 1 on line 11A and its pin 14 on line 11 B . The power supply connections are shown in Fig. 3.5 with line 17A connected to line Y1 and line 11B connected to line X 1 . This also shows the symbol for a D-type flip-flop; there are two such flip-flops in the 7475.

Now for your actual flip-flop. Connect up as shown in Fig.3.5. The clock input of one D-type flip-flop is connected to the output of our clock pulse generator. The clock pulse generator circuit hasn't been shown here, only the connections. The D-type input (D for datum - one bit is datum, two or more is data) is obtained from one switch, SW1, and the Q output is connected to LED 1. We can now use SW1 to switch the D input to 0 or 1 , and watch the output LED change - but when does it change? Does it change at the exact instant when you change over the switch?

That's the action. It might not seem very spectacular, but watch this space. What happens is that whatever logic level (0 or 1) is present at the D input when the leading edge of the clock pulse occurs is latched into the output (Fig.3.6). Notice that it's latched - if you stop the clock pulses, the Q output will remain as it is, no matter how the voltage at the D input changes. The other important point is that the leading edge of the clock pulse starts the latching - and this leading edge takes very little time, a few nanoseconds. The $\overline{\mathrm{Q}}$ output is, as its symbol suggests, always the inverse of the Q output.

Now the interesting point about the D-type is that we can actually make use of the time delay between the leading edge of the clock and the appearance of the output. The clock pulse has its effect only while the voltage is rising, not at 0 nor at 1 , and the output reaches its final state some time after the clock pulse voltage has reached 1 . We can

Into Digital Electronics

Fig.3.6 D-type action. The Q-output switches over at the leading edge of each clock pulses to a value equal to the logic level at the D-input.
easily and cheaply in IC form. The one we'll use has the type number 7476, and this particular IC has two J-Ks in its 16-pin package.

The symbol for a J-K is shown in Fig.3.10. It looks a lot more complicated than the flip-flop we've used so far, and it is. The reason is that the $\mathrm{J}-\mathrm{K}$ can replace any other type, and ever since J Ks have been made at reasonable prices, other types have not been needed to anything like the same amount.

Going over the connections to a single J-K in detail, the outputs are the
therefore connect up the crazy-looking circuit of Fig.3.7. Try it, and watch the two LEDs. Led 4 is operated by the Q output of the 7474, and LED 1 is operated by the clock pulse. Notice anything about the flashing rate of LED 4?

POWER SUPPLY LINKS AS BEFORE
Fig.3.7 Toggling a D-type flip-flop. This connection makes the D-type give one output pulse for each two in, but only if the clock pulses have very fast rising leading edges.

It is indeed half of the flashing rate of LED 1, so that the output is a set of pulses at half the frequency of the clock pulses. The circuit is variously known as a toggle circuit, divide-by-two, scale-oftwo, binary divider or bistable. The sixty-four thousand dollar question is, how does it work? The key to it is this business of time delays.

Imagine that the output of Q is logic 1 , so that the output at \bar{Q} is logic 0 . Because \bar{Q} is connected to D, the D input is also at logic 0 , but this doesn't have any effect until a clock pulse comes along. When the clock pulse appears, its leading edge starts the changeover action, but the clock voltage has reached logic 1 before Q has had time to change from 1 to 0 . That's the important point, because when the change takes place, it's too late to have any effect on D until the next clock pulse arrives. A timing diagram will make this a bit clearer. Fig. 3.8 shows the times, not to scale. You can see that by the time Q and $\overline{\mathrm{Q}}$ change, the D input is 'locked out' because the leading edge of the clock pulse has passed, the voltage at the D input has no effect on the output.

The result is the toggling action, with the voltage at Q changing at each clock pulse leading edge, causing an output

Fig.3.8 The time delays which cause the toggling action of the D-type.

Fig.3.9 The divide-by-two action of a toggling circuit.
pulse at half the rate of the input (Fig.3.9). This toggling action is important because it is the method that a lot of counting circuits use - more of that later.

All Right, J-K?

D-type flip-flops have their uses, but the toggling action is reliable only if the risetime of the clock pulse is very short. A much more versatile flip-flop has been evolved over the years, one which doesn't rely on this rise time or on the delay in the circuit. Its full name is Master-slave J-K flip-flop; just to keep your tongue from rattling too much we'll call it the J-K. It's not the sort of circuit you'd want to make up from separate transistors; even if you made it from IC NAND gates you'd need eight of them, but it can be made reasonably

Fig. 3.10 -K flip-flop symbol.
familiar Q and \bar{Q} which we're used to by now. Three of the inputs are also familiar - the clock and the R and S inputs. A clock pulse is taken to the clock input of the J-K, and the action of the J-K very much depends on this clock pulse. The R and S inputs are used to set $(\mathrm{Q}=1)$ or reset $(\mathrm{Q}=0)$ the output at
any time - there's no need to wait for a clock pulse. These inputs are called the asynchronous inputs - they are not synchronised to the clock.

The other two inputs are labelled I and K, and they are used to 'program' the flip-flop. The voltages we set at these inputs will decide what the $\mathrm{J}-\mathrm{K}$ does at each clock pulse. Table 1 summarises what happens.
$\left.\begin{array}{|c||c|c|c|}\hline J & K & \begin{array}{c}\text { OBEFORE } \\ \text { CLOCK } \\ \text { PULSE }\end{array} & \begin{array}{c}\text { OAFTER } \\ \text { CLOCK } \\ \text { PULSE }\end{array} \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1\end{array}\right]$ FO FORCES 0 = 1

SAND R
(CHANGES TAKE PLACE WHEN
S ORR TAKEN TO LOGIC 0)
$S=0, \quad 0=1$
$R=0, \quad Q=0$
S AND R MUST NOT BE TAKEN TO
LOGIC 0 AT THE SAME TIME
Table 1. HK flip-flop action

The important thing now is to try it for yourself and Fig. $\mathbf{3} \mathbf{1 1}$ shows a circuit diagram. We've kept the clock generator in place, but the 7476 plugged in, with its pin 1 on line 10A and its pin 16 on line 10B. Remember that this one is a 16 -pin IC! We also need to make some changes to one switch. Switch 4 is altered as shown, so that there are connections to the R and S inputs, with the switch selecting which of the two is taken low. Taking the R input to logic 0 will reset the $J-K(Q=0)$, and taking the S input to logic 0 will set the $J-K(Q=1)$. With the wiring shown, the J-K will be reset with SW4 down and set with SW4 up. SW3 is used to control the voltage used for R and S, so that we can leave them both isolated (switch 3 up) or have one of these inputs operated (switch 3 down). Table 2 summarises the action of switches 3 and 4 in this circuit.

Switches 1 and 2 are used to control the J and K inputs. These switches are wired in the same way as they were when we started, up for logic 1, down for logic 0. Switch 1 controls), and switch 2 controls K. LED 4 indicates the state of Q .

Start with) $=0, \mathrm{~K}=0$ (SW1 and SW2 both down) and reset the J-K by having switch 3 down and switch 4 down. With these settings, the clock pulse (watch LED 1) should have no effect on Q (watch LED 4). If you now push SW3 up just after a clock pulse,

Fig.3.11 Connecting the HK flip-flop into the board. Note that the connections to switches 3 and 4 have been changed.

Table 2. Action of switches SW3 and SW4 in Fig.3.11.

228 AND 78

 FROM FIG 3.4

POWER SUPPLY LINKS:
14A TO X1i+
13 B TO Y 1 (-)

NOTE: SOME SAMPLES OF 74LS76 MAY NEED 'PULLUP' RESISTORS. IF YOU ENCOUNTER INCONSISTENT RESULTS, CONNECT 1Ok RESISTORS BETWEEN 20 \& X1 AND BETWEEN $1 D$ \& $\times 1$.

	UP	DOWN
SW3	NO ACTION	ACTIVATES
	SORR	
SW4	SET SELECTED	RESET SELECTED

the R and S inputs are released, and whatever happens is caused by $\mathrm{J}=0$, $K=0$.

Nothing? Don't panic - that's what is supposed to happen. With $\mathrm{J}=0$, $K=0$, the $J-K$ is isolated. It saves having to add a gate if we can cut off the JK like this. Just to confirm the action, try again, but this time set switch 4 up, so that Q is set (LED 4 glows) before isolating with SW3 (up). This time the Q output remains set; the clock pulses have no effect.

What we're doing is to hold the output set or reset by using the R or S inputs, and then releasing these inputs by pushing SW3 to give logic 1. Since the set/reset inputs need a logic 0 to operate, this prevents them from acting, so that the $J-K$ is then programmed by its J -K inputs only. With J $=0, K=0$, the state of the Q output is unaffected by the clock pulse.

Now set the switches so that $\mathrm{J}=0$, $K=1$ (switch 1 down, switch 2 up). Go through the same routine again, with switches 3 and 4 down so that Q is reset, then flick switch 3 up. Is there any effect on LED 4? Try again, starting with switch 4 up this time so that Q is set. Does the clock pulse cause any change after SW2 has been pushed up?

When $J=0, K=1$, the next clock pulse will cause the output to go to logic 0 . If the output was already at 0 , of course, the change will not be noticeable, but if the output was at 1 , then the changeover occurs at the clock pulse.

Now try again, with $J=1, K=0$ (SW1 up, SW2 down). This time you'll find that the clock pulse has the effect of setting the output to 1 after the R,S inputs have been released.

Finally, try J $=1, K=1$, and leave SW3 up. What effect do the clock
pulses have on the output now? J = 1, $K=1$ is the toggling connection for the J-K flip-flop. No external feedback links are needed to accomplish this (compare the D-type) and the action does not depend on having a clock pulse with a very fast rise time.

The reason for this advantage is the master-slave principle. The J-K consists of two sets of flip-flops, the master, which is affected by the J, K inputs and the slave which is driven by the master and which in turn provides the outputs. Both of these flip-flops are operated by the same clock pulse, but the master operates on the leading edge of the clock, and the slave operates on the trailing edge. This guarantees a time difference between inputs and outputs, a time difference equal to the time of the clock pulse. At the leading edge of the clock pulse, the master flip-flop is set or reset by the J, K inputs, and its outputs are connected to the inputs of the slave. The slave does not operate, however, until the trailing edge of the clock pulse comes along, and that's when the outputs of the J-K change. By that time, no changes in the inputs can have any effect.

The J - K is such a versatile flip-flop, with so many useful operating conditions that it's seldom worthwhile using any other type. The usual TTL operating conditions apply - any unconnected input will 'float' to logic 1, and it's important not to have both set and reset inputs low at the same time, which is the reason for the connections to switches 3 and 4 in Fig.3.11. These inputs are also known by the names of preset (for set) and clear(for reset).

Quick Flips And Slow Bounces

And now for something entirely different - just to tidy up a few odd points. You'll remember the clock pulse oscillator circuit of Fig. 3.4 which needed to use a form of NAND gate called a Schmitt gate - here's why. Most NAND /NOR gates are simply based on inverting amplifiers with a very high gain.

Fig.3.12 Debouncing a switch, using the 74LS132.

Like any other high gain amplifier, these will oscillate if they are suitably biased, and in the course of changing between logic 0 and logic 1 (or 1 to 0) they pass through a suitable bias voltage. Now if the input pulses are so fast that the gates don't have time to oscillate, that's fine. You can't always guarantee this, though, especially when the input comes from other circuits, particularly operational amplifiers(slow little devils, these). A Schmitt trigger input to a gate has a snap-over action which never allows the gate circuit to oscillate. No matter how slowly the input voltage of a Schmitt gate changes, the output will snap over at a really high speed, and there's a fair difference in the voltage which is needed at the input to switch the output high and the voltage which is needed to switch low. This quantity is

Fig.3.13 Using the R-S flip-flop to debounce a switch.
called the voltage hysteresis. Whenever a signal has to be fed into a digital circuit from circuits which are not digital circuits, Schmitt trigger gates should be used. The symbol which is used to distinguish these gates is a miniature version of the shape of the V out V in graph.

How does a gate like this oscillate? Imagine that the output in Fig.3.4 is at logic 1, and the input is at 0 . The current flowing through R charges up capacitor C, and when the voltage at the input reaches about 2.4 V , the output switches to logic 0 . Capacitor C now discharges through R , until the input voltage reaches its other switching voltage at 0.8 V . At this voltage, the out-
put goes high again and the action starts all over again.

We can use the Schmitt trigger gate also for 'debouncing' a switch. Whenever a switch is closed, the contacts will bounce, so that the switch closes and opens a few times before finally closing. If you're trying to generate one single pulse, this isn't very good, and some method of debouncing' the switch is needed. Fig. $\mathbf{3 . 1 2}$ shows one circuit, making use of the Schmitt trigger NAND gate 74132. The idea is that if the switch bounces open, the voltage at the input of the gate will not change fast enough to allow the voltage to get high enough to operate the gate - the capacitor C1 ensures that. When the switch is closed, C 1 is discharged.

Another method of debouncing a switch is the use of the R-S flip-flop (Fig.3.13). If the switch has touched its contact, the flip-flop will switch-over, and any bounce simply leaves the R and S inputs both at logic 1. As you know by now, having both inputs of the $\mathrm{R}-\mathrm{S}$ at logic 1 leaves the output unaffected, so the switch bounce has no effect on the output. We'll have a look at these debounced switches when we start on binary counters next time.

HE

SUPER OFFER
 to HOBBY ELECTRONICS Readers
 minii 20 multimeter only $£ 19.50$

INCLUSIVE OF POST \& PACKAGE AND V.A.T.

The Mini 20 Multimeter is an ideal instrument for the constructor.

This Special Offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10$ on the normal retail price.

The 21 ranges cover all likely requirements: Operation is straight-forward, just turn the 22 -position selection switch to the required range.

Sensitivity $20 k \Omega / V$ d.c. $4 k \Omega V$ a.c.
Ranges extend from
100 mV to 6000 V d.c. 15 V to 1500 V a.c. $50 \mu \mathrm{~A}$ to 600 mA d.c. $\quad 30 \mathrm{~mA}$ to 3 A a.c. 0 to $2 k \Omega$ 0 to $2 \mathrm{M} \Omega$

Movement protected by internal diode and fuse.
The instrument is supplied complete with case, leads and instructions.

Offer closes December 31 st. 1980. Please allow 28 days for delivery.
\square

Guitar

Pre－amp Got a guitar？Here＇s a way of improving its frequency response and cutting down noise and interference．This may seem too good to be true，but the HE Guitar Preamp can do all these things and a few more

WHY SHOULD YOU need to build a circuit like the HE Guitar Preamp into your guitar？I mean，who wants to take hacksảw，mallet，chisel and Black－and－ Decker to their favourite Les Paul， simply to stick in some classy tone con－ trols？Well，（believe it or not）there is a good reason why：you see，the trouble is that guitar pickups produce only a very low－level signal，usually just a few millivolts．And it＇s amazing just exactly what this signal has to put up with before it comes blasting out of the speaker at 4000 MW audio power．

First this feeble little signal has to fight its way through the passive tone networks and volume control on the guitar．After this，it reaches the outside world through the jack socket on the guitar body．But here it finds itself con－ fronted with a long tunnel－about 20 feet（ 6 metres）of screened cable．Ex－ hausted，it arrives at its destination，the amplifier．Up to this point the signal receives no amplification at all．Instead it relies on the high－gain preamplifier in the main amp to do all the work．

This arrangement，although popular for decades，has some serious pitfalls： －passive tone controls－they do the job but don＇t allow for a great deal of tonal change in the sound．Active con－ trols are much better
－a lowtevel signal in a long lead－ very susceptible to noise and in－． terference pickup．This can be understood more easily as a ratio of signal－to－noise．For instance，consider a noise or interference pulse，with an amplitude of 10 mV introduced along the lead．Your guitar produces a signal of，say 100 mV ，so the signal－to－noise ratio is 10 to 1 ．The result will be an audible click．If，however，the guitar signal is amplified at source to say 5 V ，
then the ratio becomes 500 to 1．Because the noise amplitude remains the same it will be totally masked by the signal． Remember，once the noise or interf－ erence has been introduced it becomes extremely difficult to eliminate－ amplifying the signal at the end of the lead only amplifies the noise too！
－A high－gain preamp is prone to in－ terference itself－and unfortunately a power amplifier is a very good pro－ ducer of interference（because of the high currents roaming around inside it）． It is better to keep the preamp and power amplifier as far apart as possible．

Inserting the preamplifier inside the body of the guitar immediately reduces all these effects and gives an improve－ ment in guitar sound．This is the method we have adopted for the HE Guitar Preamp．The preamp is as close to the signal source as possible and the resultant quality just has to be heard to be believed．

Construction

Although the circuit is rather compact， using Veroboard，its construction is still remarkably easy．Remember to break the copper strips of the board in the correct places before inserting com－ ponents．Either the correct tool or an $1 / 8$ in．drill bit－carefully hand－held－ can be used for this job．Press lightly down on the correct hole and gently twist the tool or drill bit clockwise until the track is broken．Make sure no bridges have been formed between ad－ jacent tracks by loose copper swarf．

The components can now be in－ serted following the overlay diagram of the circuit．An IC socket is advised for IC1 but not essential．Make sure that
all polarised components，C4，C7 and IC1，are the right way round．

After checking that you have no solder bridges across copper tracks， you can commence wiring up the board to pots，battery and jack socket －and final housing．

As you can see in the photographs we housed our circuit inside the body of the guitar，directly underneath the pickup．This is the most advantageous position．However，if you don＇t want to carve up the inside of your Cibson， Guild or Gretsch，build it in a small box outside the guitar：the improvement in performance will still be worth the effort．

You will find it easier to mount all three pots and the jack socket on the front panel before commencing wiring． Solder longer－than－necessary leads on the pots（screened lead need only be used on the volume pot）．Mark them and loosely mount the panel，taking the leads along inside the body of the guitar to wherever the circuit board and battery are mounted．The connec－ tion diagram shows where all connec－ tions from the pots to the board go． Remember C10（we ran out of room on the board！）mounts on the volume pot． Cut the leads to the required length before soldering，and when all connec－ tions have been made，the group of leads，nine in all，can be held together with cable ties to form a neat cable． Finally，earth all pot bodies with one length of wire．You may have to lightly file the body of each pot to clean up the surface before it will solder．

How it Works

The main component, IC1 consists of two separate preamplifiers housed in the same 8 -pin DIL body connected only by a common power supply of between 8 and 30 VDC . Both preamps are identical and are ideally suited for single 9 V -battery operation - current consumption is low, meaning that a PP3-sized cell can be used and has a reasonable life.

The first preamplifier (pins 1,2 and 4) acts as a fixed gain, flat response circuit, meaning that all frequencies within the audio band are amplified equally. The gain factor of this stage is determined by the ratio of R4 to R1. If further gain is required, $R 1$ should be reduced in value. Conversely, if gain has to be reduced, R1's value should be increased. This facility need only be used if the output from your guitar pickup is either less than, or larger than, average. We used a medium-output amplitude pickup and so our value for R 1 provides a good starting point.

The input impedance of this preamplifier is such that the guitar pickup will not be loaded at all.

The second stage is designed around the second half of IC1 (pins 7,8 and 5) and forms an active two-band tone control block. Bass and treble potentiometers are inserted in the feedback loop of this preamplifier, and provide very good control over the desired frequency response.

Potentiometer RV3 can be adjusted for volume. Because the output signal amplitude of the whole circuit is in the region of 2 volts it should be more than adequate for most re quirements. A stereo jack socket is used for the output connections - this provides a useful means of on/off switch for puwer. When a normal mono jack plug is inserted into the stereo socket, the first two connections are shorted by the jack. Thus, if the battery 0 V connection is taken to the circuit via these two connections, power will only be supplied when a plug is in. You must, however, remember to take out the lead, when not using the guitar, to switch off the circuit and save your batteries.

Parts List

RESISTORS (All $1 / \mathrm{WW}$	
R1	330 k
R2	10 k
R3	270 k
R4	680 k
R5,6,7	12 k
R8	47 k
R9,10	31 k 9
R11	18 k
R12	680 R

Figure 2. Veroboard component position and track cutting diagram

Figure 3. Interwiring and overlay diagram for the HE Guitar preamp

Conquer the chip.

 will revolutionise every human activity over the nex't ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own home.

MASTER ELECTRONICS
 BY SEEING AND DOING

- Building an oscilloscope. Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'. - Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi. Fi and all types of modern computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS.

- Complete Home Study library. - Special educational Mini-

Computer supplied ready for use. Self Test program exercise

- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

Please sand you FREE brochure Naine Adaress. \qquad \qquad BLOCK CAPS PLEASE	I aminterestea in ,- PRACTICAL ELECTRONICS COMPUTER TECHNOLOGY \qquad OTHER SUBJEGTS \qquad folase stite your interest?
BRITISH NATIONAL RADID \& ELECTRONICS SCHOOL	
4 CLEVELAND ROAD, JERSEY	HANNEL ISLANDS. HE/11/813

MAGENTA ELECTRONICS LTD.

H.E. PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COM PONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to construct H.E. projects. Kits include ALL THE ELECTRONICS AND HARDWARE NEEDED. Printed circuit boards or veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of H.E. which includes the project - you will need to order the Instruction reprint as an extra 45 p each. NOBELL DOORBELL, Oct. ' 80
£11.98
INTRUDER ALARM, Oct. ' 80
£17.83
FREEZER ALARM, Oct. ' 80 with probe
TUG O' WAR, Oct ' 80
$£ 16.98$
KITCHEN TIMER, Oct. '80 (2\% resistors)
¢7. 34
MICROMIX, Sept. '80 £7.82
AUTO PROBE, Sept. ' 80
£3.67 less case
TOUCH SWITCH. Sept. 80 . 2.34 less case \& contacts GUITAR PHASER, Sept. ' 80 £13.84 DEVELOPMENT TIMER, Sept. ' 80 E13.84 BENCH PSU, Sept. ' 80 £11.93
$£ 28.50$
EQUITONE CAR EQUALISER, Aug. 80
$£ 28.50$
GAZTEC GAS DETEXTOR Aug ' 80
OP AMP CHECKER, Aug. ' 80 4.5

RADIO TIMER, Aug. ' 80
PASS THE LOOP GAME. Aug. ' 80 £13.98
SOUND OPERATED FLASH TRIGGER, July ' 80 , no skt.
£4.59
$18 \mathrm{~W}+18 \mathrm{~W}$ CAR STEREO BOOSTER, July ' 80
FOG HORN June '80 E29.98 (stereo)

5080 PRE-AMP, May 80 $£ 39.98$
SPEED CONTROLLER FOR R/C, April ' $80 \quad £ 14.92$ less case

HOBBYCOM: TWO WIRE INTERCOM, April ' 80
£33.95 (Master)
Sub Station $\mathbf{E} \mathbf{3 8}$ each
ELECTRONIC IGNITION (CD). April 80 £20.87
25-WATT MODULE (5080), Mar. ' 80
£17.98
PSU MODULE (5080), Mar. ' 80
£33.75
WIN INDICATOR, Feb. ' 80 (with switches)
£13.92
DIGI-DICE, Jan. ' 80
$£ 9.98$
BARGRAPH CAR VOLTMETER, DEC. 79
$£ 7.33$ less case
RING MODULATOR, Dec. 79
£12.95
GUITAR TUNER, Nov. 79
£12.95
£10.98
TANTRUM STEREO AMPLIFIER, Oct. ' 79 $£ 79.50$
HOBBYTUNE, Oct. 79
E26.98
ANALOGUE FREQUENCY METER, Oct. ' 79
£15.52
MULTI-OPTION SIREN, Oct. ' 79
£15.52
£15.98
STARBURST, Sept. 79
ULTRASONIC SWITCH, Sept. 79
$£ 28.85$ less 3 pin mains socket
HOME SECURITY UNIT, Aug. 79 £28.56 less siren
SIREN
$\mathbf{£ 5 . 0 9}$ less case
LED TACHOMETER, Aug. 79
£17.98
INJECTOR TRACER, Aug. ' 79
£4.34
CONSTANT VOLUME AMPLIFIER, Aug. ' 79
£15.60
LINEAR SCALE OHMMETER. July ' 79 $£ 15.98$
$£ 25.98$
SHARK, July ' 79
$£ 25.98$
GSR MONITOR. June ' 79 $£ 9.63$
ENVELOPE GENERATOR, June ' 79 $£ 14.98$
PARKING METER TIMER, May • 79
£8.79
WHITE NOISE EFFECTS UNIT, May' 79
£17.74
TRANSISTOR GAIN TESTER, April 79 £9.98
PHOTOGRAPHIC TIMER, Mar. ' 79
CAR ALARM, Feb. ' 79
£16.45
$£ 10.98$
SCRATCH/RUMBLE FILTER. Feb. 79
£25.48 Mono
SINE/SQUARE WAVE GENERATOR, Feb. $79 \begin{gathered}\text { £29.98 Stereo } \\ £ 25.78\end{gathered}$
GRAPHIC EQUALISER, Jan. 79 28
PUSH BUTTON DICE, Dec. 78
$£ 28.68$
AUDIO MIXER, Dec. ' 78
BEDSIDE RADIO, Nov. ' 78 $£ 25.98$

STEREO AMPLIFIER (HOBIT) NOV 78
LATEST KITS: S.E.A. OR 'PHONE FOR PRICES

ELECTRONICS CATALOGUE

Magenta's Catalogue has been carefully designed for Electronics Constructors. Produc data and illustrations make the Magenta Catalogue an indispensable guide for the

build. No minimum order - all products are stock lines. FIRST-CLASS delivery of FIRST-CLASS components.
Send for your copy and see how easy our catalogue is to use. WRITE TODAY enclosing 6 $\times 10 \mathrm{p}$ stamps.

ADVENTURES WITH ELECTRONICS © bivom

An easy to follow book suitable for all ages, ideal for beginners. No Soldering. Uses an "S Dec' breadboard. Gives clear instructions with lots of pictures. 16 projects - including electronic components and how circuits work. Component pack includes an SDec and the components for the projects.
Adventures With Electronics $\mathbf{£ 1 . 7 5}$.
Component pack $£ 16.72$ less battery

ADVENTURES WITH MICROELECTRONICS

Same style as above book. 11 projects based on integrated circuits - includes dice. two-tone doorbell, electronic organ. MW/LW radio, reaction timer, etc. Component pack two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Compon
includes Bimboard 1 plug-in breadboard and the components for the projects. includes Bimboard 1 plug-in breadboard
Adventures with Microelecironics $£ 2.35$
Component pack $£ 29.95$ less battery.

MICROPROCESSORS $\underset{\text { BEG }}{\text { For }}$

We have 2 practical microprocessor courses. Both are ideal for learning about this exciting technology. Educational and interesting with practical work. Details in our catalogue or

H.E. MEMORY BANK SYNTHESISER NOV. '80

Complete kit for this exciting project. includes i.c. with socket, 2 pcbs, case etc. The custom designed i.c. at the heart of this project generates musical sounds which can be stored in its own memory. Features include memory eraen vibyato, speed and depth controls, variable pitch, chord and tremelo etc. 'Synthesiser Nov. 80 - £33.95

INTO DIGITAL ELECTRONICS

Current H.E. series. Part 1 in Sept. '80. Covers digital electronics from the basics. Circuits are built on a plug-in Eurobreadboard. Reprints of back issues available 45 p esch. Eurobreadboard and components for series $\mathbf{£ 1 8 . 9 5}$ less battery. Components only £12.75.

INTO ELECTRONIGS CONSTRUCTION

H E 6-part Series: Feb. ' 80 to July 80. COVERS THE BASICS OF ELECTRONICS - LOTS OF PRACTICAL WORK. Circuits are built on a plug-in Eurobreadboard. REPRINTS AVAILABLE, 45p each part. Eurobreadboard and Components for Series $£ 15.63$.
Components only £9.43.
TOWERS INTERNATIONAII TRANSISTOR
SELECTORR E10.50.
ANTEX SOLDEEING IRON $25 W$ EAL
SOLDERING IRON STAND C2.03.
SPARE
SPARE BITS. Small, standard, large 85 p each
SOLDER. Mandy size 98p.
EUROBREADBOARO E6. 20.
LOW COST LONG NOSE PLIERS E1.97.
LOW COST CUTTERS 61.98 .
P.C.B. ASSEMBLY JIG 1.11 .98

AM-FM AIRCRAFT BAND PORTABL
AADIO E8.98.
VIRE STRIPPERS AND CUTTERS $£ 2.48$.

MULTIMETER TYPE 2, 20.000
Probes $5^{\prime \prime} \times{ }^{\prime \prime} z^{\prime \prime} \times 1 /{ }^{\prime \prime}$ E11.52
TELEPHONE PICK-UP COIL 72p.
CRYSTAL MICROPHONE INSERT 58p.
SPEAKERS MIIIATURE, 8 ohm B7p. 64 ohm
98 p .80 ohm $\mathbf{C 1 . 5 6 .}$
PILIOW SPEAKER,
6"ROUND SPEAKER, 8 ohm 5W $£ 2.28$
EARPIECES. Crystal 55p. Magnetic 18p.
STETHOSCOPE ATTACHMENT. FTIS OU
prece 69p.
sensitive $\mathbf{E 3} .28$.

HEAT SINK TWEEZERS 15p. SOLDER BOBBIN 30 O .
DESOLOER PUMP E5.9.

\section*{HOW TO SOLDER BOOKLE

HOW TO SOLDER BOOKLE
 MAGENTA ELECTRONICS LTD.
 HC 3,98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS, DE13 OUL. 0283-65435. 9-12, 2-5 MON.-FRI. MAIL ORDER ONLY SCHOOLS ETC WELCOME ENQUTRIES MUSTINCLUDE SAE OVERSEAS SEND
 OVERSEAS. SEND ORDER WITH 3 INTERNATIONAL POSTAL COUPONS WE WILL QUOTE EXACT ORICE BYAIRMAII PRICE BY AIR MAIL EIRE \& RFPO ORDERS
 EIRE R RFPO ORDERS UK PRICES - LESS 10
 ICOVERS VAT REFUND \& EXPORT DOCUMENTSI. PAYMENT STERLING U.K BANK DRAFT U.K. POSTAL ORDERS OUK CHEOUE POSTAL ORDERS OI Y K CHEQUE. ENQUIRIES: ENCLOSE ? INTERNATIONAL POSTAL COUPONS.

Bainclarcano

(-x+mer
Ruy it with teceren

'The transistor was the mainstay of modern electronics for three decades. Only during the past couple of years has it become clear that it too will follow the thermionic valve into history. Rick Maybury looks at the history of the transistor

REMEMBER VALVES? They were those glass tubes filled with high voltages and glowing filaments. Way back in 1948, just after World War II a lot of research was being carried out by the Bell Telephone Laboratories in the USA to produce an amplifier that didn't use valves. Research during the early 1900s suggested that materials called semiconductors (see September What's In A Name) could be worth investigating. A team of three men, John Bardeen, Walter H Brattain and William Shockley were looking at the possibility of semiconductor materials changing their resistance when subjected to an electric field. Most of their experiments resulted in dismal failure. (They were actually doing the groundwork for the Field Effect Transistor which didn't appear until 1963.) Their failure to observe the predicted changes in resistance led the team to carry out further experiments on the surface characteristics of certain semiconductor crystals. This involved placing two fine tungsten wires onto the surface of a slice of Cermanium crystal.

Current Affairs

They found that a current change in one of the wires caused a current change approximately five times larger in one of the other wires, the transfer resistor or as we call it now, the Transistor was born!

The first devices became known as the 'point contact transistors' and led to the first practical, commercial device becoming available in 1950. The limitations of the point contact device soon became apparent, the first transistors were largely hand-made. High noise levels generated within the device and difficulty with quantity production led to further research which culminated in 1951 with the filing of a patent by William Shockley for the Junction transistor.

The Junction Transistor

In the point contact transistor the NPN or PNP structure was formed by using a single P or N type base, each of the other two junctions were formed at the point of contact by the fine tungsten wires. Apart from the noise problem the structure limited the power handling capability to a fraction of a watt. The almost microscopic junction was replaced by a slab of either P or N type semiconductor material fused to the base. By making the central base region thinner than the collector or emitter, the power handling, gain and noise figures improved dramatically, it also enabled the growing number of companies manufacturing semiconductor devices to produce transistors in their millions.

The next advance came during the early fifties with the Alloyed Junction Transistors. They used two pellets of Indium placed on either side of a slice of N-type semiconductor germanium. This was put into an oven and heated to $500^{\circ} \mathrm{C}$. The two pellets partially dissolved into the germanium. After connecting the three leadout wires the assembly was then encapsulated into a glass or metal envelope. The famous OC71 was its name, ask your grandad about it sometime.

The Silicon Story

Developments followed thick and fast and the late fifties saw the introduction of silicon as a semiconductor material. Silicon offered several important advantages over germanium as it could withstand higher temperatures and had far lower leakage currents as well as having lower noise characteristics.

The Planar process revolutionised transistor manufacture. For the first time the semiconductor manufacturers could design their product to a given specification. The Planar process is essentially a photographic one. The thicknesses of the semiconductor layers
can be finely controlled. The principle of the process relies on the diffusion of impurities into areas of the substrate defined by exposure of the silicon to a photographic mask. This process is the basis of modern IC manufacture.

In 1962 a further refinement to the Planar process was introduced, this was known as the Planar Epitaxial Transistor process. This involved the use of highly refined silicon designed to have all its component crystals in one plane.

By now the earlier research carried out by the Bell team was beginning to bear fruit. Advances in manufacturing techniques led to the Field Effect Transistor (FET) which made its debut in 1963.

This was the first real departure from conventional semiconductor operation for over a decade. Conventional transistors are commonly known as current amplifiers. You put a small current into the base and it will control a much larger current flowing through the collector and emitter. The FET is basically voltage-operated, similar in many respects to the thermionic valve. (There was even a suggestion some years ago that valves could be directly replaced with FETs with little or no modification to the circuit.)

The FET has become the basic building block for most of the ICs we use today. Their excellent switching characteristics and inherent simplicity make them ideal for logic gates.

As with many scientific developments the wheel turns full circle. The original research work that led to the transistor was in fact looking at FETs which are themselves similar to the valve for which the scientists were trying to find a replacement. The FET didn't appear until 1963, some 15 years after the original research was abandoned, and now it looks as though the FET (in its many guises) will replace the conventional transistor. What next we ask? HE

SEMICONDUCTORS SEND YOUR ORDERS TO DEPT. H.E. 1 1, P.O. BOX 6, WARE, HERTS. VISIT OUR SHOP AT: 3 BALDOCK ST. WARE, HERTS TEL: 09203182. TELEX: 817861

Party Grenade

> This Christmas, we think that you should give your kids (and yourself) a treat and build something with no useful purpose - something just for fun. Designed by Jonathon Scott

IF YOU HAVE kids (or can borrow some), they make a great excuse for building this project! Don't think that it's purely for children; though - judging from the reactions we saw from adults (especially our staff!), the game is just as good for anyone young at heart.

The basic idea started from the old 'hot potato' game in which an object the hot potato - is passed from person to person until some cue occurs, such as the music stopping, as in musical chairs. The holder of the object is then out of the game and it proceeds with one person less. Eventually, all but one person is excluded and he or she wins the game.

In this new version (which the office wag dubbed 'Irish Roulette') the tossed object is a grenade. Once the 'pin' (a shorted 2.5 mm jack plug) is removed, the grenade becomes active. After that, making touch contact between the two PCB plates on the outside of the box causes a capacitor to charge. When it has charged to a preset level, which is the same as saying that the grenade has been handled by the people in the game for the required time, the buzzer goes off - with no damage to life or limb!

The grenade will go off while a particular person is holding it. It is highly
unlikely to go off in mid-air (though very wet hands can leave enough moisture to set it off). The faster your reaction and the quicker you get rid of the grenade the less likely you are to get 'blown up'. The grenade times at a rate independent of damp hands or strength of grip, and is reset by putting the pin back in.

Construction

The first job to undertake is the construction of the PCB. Take care that the diode, capacitor, transistor and the IC are inserted the right way round. As usual we recommend the use of an IC socket.

Mark and drill whatever case you are using to allow for the jack socket, buzzer and two touch contact-plates. The touch contacts are made from shaped pieces of PCB, etched in the pattern shown in the photographs, to imitate the visual appearance of a grenade and are simply glued to the side of the case.

Drill holes in the box underneath the places where the PCB touch contact board wires are to run. It is best to drill the small holes in the boards first to enable you to mark the positions of the
holes to be made in the box. One touch contact can be glued on the outside of the case now, but the one which must cover the screws will obviously need to be left till last.

You can mount your PCB on the inside of the case using nuts and bolts if you wish but we preferred to hold ours down using one of the proprietary brands of double sided, adhesive pads available.

Interconnect the board, buzzer, battery and jack socket as in the diagram, mount the battery using double sided pads or jam it in place with some foam rubber and screw on the lid. Finally, the second touch contact is glued on the remaining side of the case. We found that a few small drops of cyanoacrylate adhesive was best, as it maintains good adhesion during normal use, but the board can be prised sharply off when the time comes to change the battery. Remember to follow the manufacturers' instructions when using the adhesive, it can be dangerous.

The pin is made by simply shorting the two connections together. Then if you drill a small hole through the cover of the plug a key ring can be used as a finger pull.
 your project should go like a bomb!

Figure 2. The circuit diagram is shown below

How it Works

The circuit counts the period of time that the grenade is held after the 'pin' has been pulled and operates the buzzer when this period reaches several seconds.

Initially, a shorted plug (the 'pin') is inserted in JK1, shorting C2. Resistor R1 holds the inputs of IC1a high. Its output is therefore low, so no current flows through R2/D1 (No relation to R2-D2!)

The output of IC1d is high, so that Q1 is biased off and the output of IC1c is held low. Quiescent current flowing in this state is negligible - less than $0.5 u \mathrm{~A}$.

If the device is picked up and the skin resistance of a hand placed across the touch
contacts, the output of IC1a goes high and a small current flows through R2, but C2 remains shorted out by the pin.

When the pin has been removed, however, holding the device causes C2 to charge. D1 prevents rapid discharging when the touch is removed by preventing current flowing back through R2.

When C2 charges to the threshold of IC1b, its output goes low and a monostable formed by IC1c and IC1d turns Q1, and thus the buzzer, on for about a second.

The pin is then replaced to reset the circuit, ready for another attack.

Buylines

The solid state buzzer is about the only component which may be difficult to find. Any of the usual mail order companies should be able to help.

The box is made by Vero and their code number for it is 202-21026G.

Approximate price for the HE Grenade should only be about E3. As usual this does not include case or PCB.

MITRAD

The premier mail order house specialising in quality products and superior after-sales care.

SEIKO QUARTZ LCD MEMORY-BANK CALENDAR WATCH

SPECIAL PRICE ONLY £49.95
 plus 85 p p\&p. Usually $£ 89$ or over.

- Displays hour, minute, second, month, day of the week and date in 12 hour indication - or 24 hour at the touch of a button.
- Button touch also displays month and year and dates for a designated month with Sunday dates flashing.
- Stores dates in memory up to 11 ahead, flashes 'MEMO' on designated dates.
- Illuminated time and calendar display.
- Display flashes when battery nears life end.
- Stainless steel case and wrist strap (adjustable).
In presentation case with instructions.

A LIFETIME WATCH ATA BARGAIN-OF-ALIFETIME PRICE
 Full refund if not completely satisfied.
 Mitrad, 68-70 High Street, Kettering, Northants. Tel: 0536522024

MD609 Gentleman's super slim flag date alarm. Only 4 mm case thickness. Continuous display of hours, minutes, seconds and day; optional display of date, month, year. 24 hour alarm, alarm mode indication. Back light. infinitely adjustable stainless steel strap. Very atest technology.
ع10.95 + 85p p\&p

MD610 Gentleman's dual time melody alarm chrono. Only 5 mm case thickness. Continuous display of hours, minutes, seconds plus date and mode indications. 'Running horse' chrono to $1 / 10 \mathrm{sec}, 12$ hour alarm plays 30 seconds of 'Yellow Rose of Texas'. Infinitely adjustable stainless steel strap.
£ $16.95+85 p$ p\&p

MD605 Ladies musical alarm chrono Continuous display of hours, minutes, seconds; optional display of day, date, month. Auto calendar. Chronograph with lap timing facilities, to $1 / 10 \mathrm{sec}$. 24 hour alarm plays 30 seconds of Beethoven's 'Fur Elise'. Back light. Infinitely adjustable stainless steel strap.
£11.95 + 85p p\&p

MD606 Ladies five function fashion LCD watch with 3 year battery. Continuous display of hours and minutes, with month/date and date/ seconds available. Auto calendar. Only 6 mm case thickness. Back light. Infinitely adjustable stainless steel strap.
$£ 9.95+85 p p \& p$

MD607 Ladies slim 'sugar coated' dress watch. Continuous display of hours and minutes; optional display of month and date. Auto calendar. Back light. Integral watch and strap. in gold or silver finish.
£9.95 + 85p p\&p

Building Site

Do you want to know all about printed circuit boards? Are they as difficult to make as they seem? Keith Brindley explains how easy they really are

OVER THE LAST month or two I have received several requests by readers, to give all the gen about printed circuit boards (PCBs) - why do we use them and how does the hobbyist set about making them him-self (or herself)?

Well, the answer to the first question is simple - we use them because they provide the most convenient and foolproof way of making connections between components, without the danger of short circuits and without the use of a large number of interconnecting wires. In Figure 1 you can see photographs of the top and bottom of a typical PCB showing the copper track attached to the surface of the insulating board. It doesn't take much imagination to picture the project if all connections had to be made with wires. Nothing can beat the neatness of a PCB in project construction and this is the reason why HE and our sister publication ETI have always used PCBs in projects - for your benefit.

As for the second question, there is no mystique to home-made PCBs (the real art is in the foil pattern design). The process is a straightforward, scaleddown version of commercial processes and is suited to the hobbyist in both ease and expenditure. There is no need for elaborate equipment which would be out of the home constructor's price range and likewise you don't have to be an expert. Just a few simple hints should be all that's required to enable anyone to do-it-themselves.

Figure 1: Photographs of the bottom and top of a typical printed circuit board

Figure 2: Above four stages in the life of a PCB

Brass Tacks And Copper Tracks

PCBs start off in life as copper-clad board, the general construction of which can be seen in Figure 2a. The idea is that unwanted areas of copper are removed by a copper-dissolving or etching agent (normally ferric chloride), leaving behind the wanted areas of copper (the foil pattern). It is this pattern that is used to make all the interconnections between components. The foil pattern obviously needs to be protected from the etchant whilst the board is in the etching bath, and this is done with the use of an etch-resistant material usually known as the 'resist'. Figure $\mathbf{2 b}$ shows this. The resist can be any one of several materials - even common-orgarden household paint can be used as long as it is etch resistant. Figure 2c shows the board after it has been etched; the unwanted copper areas have been removed, leaving only the foil pattern which is known as the track. Lastly the resist is removed and the board is ready for drilling and use.

Which Method To Choose

There are at least three main ways in which readers can make their own PCBs in the above manner at a reasonably low cost.

The first is the tracing method. Provided that you have the foil pattern in front of you, it is a simple matter to transfer the outline to a sheet of tracing paper using a soft pencil. Once the pattern has been drawn, turn it upside-

down and copy it on the reverse side. Place this over a clean piece of copper sheet and rub it over with the pencil. When the design has been transferred to the copper sheet fill in the track outlines with a fine brush with either enamel or cellulose paint. When the paint is dry the board is ready for etching.

The next method should be used when making boards which have ICs on them. The important point to remember is that the holes for the IC pins must be correctly aligned. This can be achieved by taping the board (copper-side up) to the underside of the traced pattern (for an HE project, tape the board to the underside of the page where the foil pattern appears). Now, with a sharp pointed scriber or similar tool, carefully mark through, onto the board, every hole position indicated on the paper. Remove the board and apply a resist to fill in the tracks around the holes according to the original pattern. Paint can be used as suggested above but this does
require a steady hand. Alternatively etch-resistant transfers (for component holes) and tape (for the track) can be used. These can be bought from any good drawing office supplier although, inevitably they cost slightly more than paint. Their advantage however, is that they can make a neater PCB.

The remaining method of PCB construction for the hobbyist is the use of our own HOBBYPRINTS. Month by month, HOBBYPRINTS provide a rubdown transfer method of reproducing on to PCB the whole etch-resistant foil pattern for immediate etching use. The photograph shows its use. You'll find an advertisement for HOBBY-PRINTS close to the foil pattern page every month and they are well worth the measly sum involved in their purchase.

Take Care

Etching a PCB need not be tricky but it can be messy if you don't take care. The etchant is usually Ferric Chloride, which can be bought at most chemists or
chemical wholesalers. Now this stuff is nasty. If you get it on your clothes they can literally fall apart. Use a plastic tray or an old food container for the etching bath and be careful how you pour it try not to splash - if you do, wash immediately with cold running water. A good, fresh, strong solution of the stuff will etch your PCB in only a few minutes. A point to bear in mind at this stage is that as the reaction takes place a blackish deposit forms on the surface of the copper. If. this is not removed then further reaction is slowed down. The deposit must be removed by either agitating the etching bath slowly backwards and forwards (extremely carefully) during the process or by making use of the surface tension of the fluid and floating the board copper-side-down on the surface. The deposit falls to the bottom of the bath leaving a constantly fresh copper surface for the reaction to occur. The only disadvantage is that you can't see the surface of the board to judge when the reaction has been completed.

Wash the board thoroughly after it has been etched and clean off the resist (using wire wool or sandpaper) to give a shiny clean copper surface. Finally, all component holes have to be drilled. One of the commercially-available, modellers' drills can be usedfor this, fitted with a 1 mm bit Such drills cost around $£ 10$ but this is money well spent if you are going to construct more than just a couple of PCBs a year. Making your own boards will work out much cheaper than buying them ready-made.

And that's it! The next stage is the insertion of components to complete your project. Nothing to it really is there? - when you know how.

Figure 3. Etching a PCB by floating the board on the surface of the ferric chloride.

Figure 4. A modeller's drill fitted with a 1 mm bit can be used to drill all component holes.

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices list. LINEAR ICS. NUMERIC LISTINGS

TBAL20S	1.00	KB4413	1.95
L200	1.95	KB4417	1.60
U237B	1.28	TDA4420	2.25
U2478	1.28	к84420B	1.09
U2578	1.28	KB4423	2.30
U2678	1.28	KB4424	1.65
LM301H	0.67	KB4431	1.95
IM301N	0.30	KB4432	1.95
LM308H	0.96	KB4433	1.52
LM308N	0.65	.KB4436	2.53
LM339N	0.66	KB4437	1.75
LM348N	1.86	KB44 38	2.22
LF351N	0.38	KB4441	1.35
LF353N	0.76	KB4445	1.29
LM374N	3.75	KB4446	2.75
LM380N-14	1.00	KB4448	1.65
LM380N-8	1.00	NE5044N	2.26
LM381N	1.81	NE5532N	1.85
ZN419CE	1.95	SD6000	3.75
NE544N	1.80	SL6270	2.03
NE555N	0.30	SL6310	2.03
NE556N	0.50	SL6600	3.75
NE560N	3.50	SL6640	2.75
NE562N	4.05	SL6690	3.20
NE564N	4.29	SL6700	2.35
NE565N	1.00	ICL8038CC	4.50
NE566N	1.60	MSL9362	1.75
NE570N	3.85	MSL9363	1.75
SL624	3.28	HA1211	1.95
TBA651	1.81	HA1223	2.15
UA709HC	0.64	HA1 1225	1.45
UA709PC	0.36	HA12002	1.45
UA710HC	0.65	HA12017	0.80
UA710PC	0.59	HA12402	1.95
UA741CH	0.66	HA12411	1.20
La 741 CN	0.27	HA12412	1.55
UA7470N	0.70	LF13741	0.33
La7480N	0.36	SN76660N	0.80
UA753	2.44		

LA758
TBABIOAS FREQUENCY DISPLAY $\left.\begin{array}{|ll|}\text { SAAL } 056 & 3.75 \\ \text { SAAL } 058 & 3.35 \\ \text { SAA1059 } & 3.35\end{array} \right\rvert\,$
TD

-

TLA
TDA
TDA
TDA

TD

HAL
HAL
HAL

$$
15
$$

- TOM
MC
MC
MCMC
MC
HA
HA
HAA
HAL 3
HAL
HAL 38
TDA 1490
MC149
SL161SLL6
SLL61
SLI62SL1621P
SL1623P
SL624C
SL1625p
SLL 626 P
SLL 630 P
SLI640PSLI641P
TDA200
ULN2242A
CA3080ECA3089E
CA3123E
CA3130ECA3130ECA3130TCA3140EMC3357P
IM3900NLM3900N
LM3909N
LI
LM3914N
IM3915N
KB4400KB4400
KB4406
Please send an
enquiries
Access/Barclayo(min $£ 5$ please)
Callers welcome

Callers welcome

VARICAP
TUNING_D $\begin{array}{ll}\text { 74LS169 } & 2.00 \\ 74170 \mathrm{~N} & 2.30\end{array}$

DIOOES

TRANSISTORS

\section*{| BC |
| :--- |
| $B C$ |
| $B C$ |
| $B C$ |
| B |}

BC237	0.08	
BC238	0.08	
BC239	0.08	
BC 307	0.08	
BC 308	0.08	
BC309	0.08	
BC413	0.10	
BC414	0.11	
BC415	0.07	
BC416	0.08	
BC546	0.12	
BC556	0.12	
BC550	0.12	
BC560	0.12	
BC6 39	0.22	
BC640	0.23	
2 CCl 775	0.18	
2SAB72A	0.14	
2506664	0.30	
2586464	0.30	
2SD668A	0.40	
2SB648A	0.40	
2 SD 760	0.45	
2S8720	0.45	
$25 C 2546$	0.19	
2SA1084	0.20	
2 SC 2547	0.19	
$2 \mathrm{SA1085}$	0.20	

All 5 mm or less spacing Chikmit: 50 V

$22 \mathrm{~F}, 27 \mathrm{~F}, 3 \mathrm{3F}, 47 \mathrm{~F}$
$56 \mathrm{P}, 68 \mathrm{P}, 82 \mathrm{P}, 100 \mathrm{P}, 0$
1501,220p,270p
330P,390P,470P... 0.055 1NO,2N2,3N3,4N7. . 0.06 2 ZN, 4 TN. 0.06 20N,47N.... .0 .09 MONOLITHIC CERAMIC 10N, 100 N .
FEETYTHE
INU SOLDER IN. . . . 0.09 POLYESTER (SITMENS) 10 mm LEAD SPACING
$10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N}$.
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}$.0 .17
.0 .19
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}$. .0 .19
.0 .22 luF.
POLYESTER (GENERAL
10 mm LEAD SPACING
$10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 3 \mathrm{~N} . .0 .06$
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}, \ldots .0 .08$
$220 \mathrm{~N}0 .11$
20 mm CEAD SPACING
MYLAR
5 ITm LEAD SPACING INO, $10 \mathrm{~N}, 2 \mathrm{ZN}, 33 \mathrm{~N} .0 .08$ 100N. 0 220N, 470 N . . POLYSTYRENE
10P,15P,18P,22P 27P,47P,56P,68P_ . 0.08 100p,180P,220P, 270P,330P,390P. . . 0.09 470P, 680P,820P...0.10
1NO,1N2,1N5,1N8..0.11 2N2, 2N7, 3N3, 3N9. . 0.12

TANTALLM BEAD CAPS 16v: $0.22,0.33$. $0.68,1.0 \ldots \ldots .0 .18$
$16 \mathrm{v}: 2.2,4.7,10.0 .0 .19$ $6 \mathrm{v} 3: 22,47 \ldots \ldots .0 .30$
$10 \mathrm{v}: 22,100 . \ldots$. 0.35

ALUMIN ELECTROLYTICS RADIAL (VERT. MOUNT) (uF/voltage) 1/63,2.2/50,4.7/3 $10 / 16,15 / 16,22 / 10$
$33 / 6,3$ $33 / 6.3$.
$22 / 16,33 / 10$, 47/10.............. 0.09 47/16,100/16......0.1 47/63,100/25,220/16 470/6.3 1000/10. 1000/16,470/63.....0.0. 0.18 1000/63,2200/16. .0.30
 $1000 / 100$.
AXIAL (HORIZ. MOUNT)
1/25,4.7/16,6.4/25 10/16................ 4.7/63.22/10,22/16 43/16........ 100/25.
$1000 / 16 \ldots, \ldots . .0 .25$
$2200 / 16,1000 / 25.0 .36$ $1000 / 35,4700 / 16 \ldots 0.45$
$1000 / 50 \ldots0 .0 .0$
RESISTORS
$0.25 \mathrm{~W}, 58$ El 2 CARBON
 HORIZ CARBON PRESETS 10 mm TYPE
$100 \mathrm{hms}-2 \mathrm{M} 5$
HORIZ CEMMET HRESETS

O Level Q\&A

Now for some actual components. Nick Walton looks at the most basic building blocks of electronic circuits - Resistors and Capacitors

THIS MONTH we look at two fundamental electronic components; the resistor and the capacitor.

In electronics books and magazines hardly a page goes by without resistance rearing its little ohms sign, because any circuit will offer some sort of resistance to the flow of current. It is defined in terms of our two basic quantities, the ampere (flow of charge, or current) and the volt (the push giving energy to make the charge flow) dealt with last month. Logically the unit of resistance, the ohm, is defined as the resistance that allows a current of one amp to flow when a voltage of one volt is provided. Georg Simon Ohm's law states that current is directly proportional to voltage for steady temperature; that is, treble the voltage gives treble the current and so-on. This relationship was actually discovered by an Englishman, Henry Cavendish, who never bothered to publish his work. Perhaps just as well because when Ohm did so, it was so severely criticised that he lost his job as a school teacher in Germany.

Mathematically, Ohm's law says that:
volt $=$ a constant value (the resistamps ance in ohms)
which is the same as:

$$
\text { volts }=\text { amps } \times \text { resistance },
$$

and

$$
\text { amps }=\underset{\text { resistan }}{\text { volts }}
$$

all of which can be resistancer sumarised in the form shown in Fig. 1.

Another helpful way of looking at resistance coming from the volts/amps idea is to regard, say, five ohms as five
volts per amp; that is, a resistor which needs five volts to produce a current of one amp. Of course this assumes things do not get hot - which is fair enough in theory but not in practice. By the time you are thinking of a 12 kR resistor as 12,000 volts for its statutory one amp current the poor little thing is probably sizzling quietly away - red-hot or better!
where the resistors are connected in parallel. The resistance of the combination, $R_{A B}$, is contained in the formula:

This can be shown by realising that the total current $\mathrm{i}_{A B}$ must be the sum of what is flowing in R1 and R2
$\left(i_{A B}=i_{R 1}+i_{R 2}\right)$ and then by using the Ohm's low triangle to express cur-

Figure 2. Ohmic and Non-Ohmic conductors

Few conductors obey Ohm's law with 100% obedience, but it is still an incredibly useful generalisation. Conductors which show a total disregard for it are called non-ohmic and include many electronic devices like diodes and transistors. A current-voltage graph of a well-behaved ohmic conductor shows a steadily rising straight line in keeping with the 'treble voltage, treble current' proportionality idea. Fig. 2 shows this as well as diode deviations and transistor transgressions.

Sometimes, you have two or more resistors together; they may be in series, as indicated in Fig.3. Here, to get the total resistance you simply add them up, giving $\mathrm{R}_{\text {torai }}=\mathrm{R} 1+\mathrm{R} 2$

The other way of combining them is to 'branch' the circuit as in Fig.4,
rent in terms of resistance and voltage. (Remember that the voltages across $A B, R 1$ and R2 are all the same.) It is useful to bear in mind that with resistors in parallel the resistance of the combination is always less than the value of any individual one.

Figure 3. Two resistors R1 and R2 in series
Such talk of changing resistance leads to thoughts of how a variable resistor might be used. Variable resistors or potentiometers consist of a length ($A B$) of resistance material, sometimes straight, sometimes curved, constructed so that you can use all

Figure 1. The Ohm's Law Triangles

OR

Figure 4. Two resistors R1 and R2 in parallel
or only a part of it(see Fig.5).
Now, if you put a fixed voltage (say 3 volts or 3 V) across AB then you can tap off any value of output voltage up to 3 V depending on the position of the slider. For example, with our 3 V across AB we can get one volt if the slider is a third of

0 is Black	5 is Green
1 is Brown	6 is Blue
2 is Red	7 is Violet
3 is Orange	8 is Grey
4 is Yellow	9 is White

Figure 8. Secrets of the resistor colour code
The first two bands give the first two figures and the third band the number of noughts, as indicated in Fig.8. For instance a value of 47000 R would have

Figure 5. Variable resistance principle
the way up from B. This is called a potential divider or potentiometer or just'pot' (quite legal!).

The variable resistor is also used in a series control system - the sort of thing you use to control the volume of your radio. You might, for example, have one stage of an amplifier in series with the next stage, and you control how much voltage is fed to the second stage by the variable resistor.

Figure 6. The voltage divider or potentiometer

Figure 7. Variable resistor used as a series control

Colourful Codes

Finally, a colourful ending: a resistor's value is not written but denoted by three coloured bands. Each figure 0 to 9 has its own colour thus:
the first two bands yellow (4) and violet (7) and then an orange band to tell you that there are three noughts to follow. The fourth band is a quality band is most frequently silver or gold. Silver means that its actual value is within 10% of what it should be. Gold is 5%. Three other colours of quality band may be encountered: salmon pink is 20%, red is 2% and brown is 1%

Capacitors

The capacitor (old name condenser, ancient name Leyden jar) is a very different little fellow and can best be regarded as being two metal plates, close together but insulated from each other. If you put, say, negative charge (that is, electrons) on one plate, these will repel electrons from the other plate and you end up with an equal amount of positive charge on the other plate. Negative charge on one plate and positive charge on the other is equivalent to saying that you have a voltage across them, because if they were now connected to a resistor a brief current would flow until the charges had evened themselves out again (called discharging a capacitor). So connecting a capacitor to a battery as shown in Fig. 9 charges up the capacitor.

There has been a brief flow of current as charge flowed from the battery onto the capacitor plates. It builds up until there is a voltage which exactly opposes the voltage the battery has to offer, at which stage there is no further current. This is why a capacitor can be used to block direct currents - a function known as a DC block. If we suddently reversed the battery, the
capacitor would discharge and then charge up the opposite way round (Figs. 10a and 10b).

Continually doing this is none other than alternating voltage and the little squirt of current that results each time is

Figure 9. A capacitor being charged by a battery
our old friend alternating current. So while a capacitor will block direct current it is happy to let AC pass. Indeed it even has its own Ohms rating (called reactance) given by:
where $\quad=3.14$ as in circles, f is the $A C$ frequency and C is the value of capacitance, to be dealt with next

Different-sized capacitors clearly need different amounts of charge to produce one volt between their plates. So a capacitor is rated by the number of coulombs of charge it needs to produce 1 V across it. This is expressed in coulombs per volt and one coulomb per volt is known as one Farad.

A one Farad (1F) capacitor would need one whole coulomb to produce one volt across its plates. Thus:

$$
\text { Farads }=\text { coulombs }
$$

or
(where C is capacitance in Farads, Q is charge in coulombs and V is voltage in volts).

Actually a Farad is an inconvenient-
a)

b)

Figure 10. Discharging a capacitor by reversing the battery a) Just after the battery terminals have been reversed, b) Finally fully charged the other way

Figure 11. Combinations of capacitors a) In parallel b) In series (Note that this is the opposite to resistors)
ly large unit - the plates would have to be a few square miles in area - so the most common unit is a millionth $\left(10^{6}\right)$ of a Farad, a microfarad or uR (muff). Sometimes this is still too large and a millionth of a microfarad is used, called a picofarad ($10^{12} \mathrm{~F}$, pF or puff). You occasionally see nanofarads(nF) used, and that's intermediate between muffs and puffs at 10^{9} Farads. Nuff said.

Like resistors you can arraange capacitors in series or parallel: you add together the individual capacitances to get the total combination. When they are in series you have to add their reciprocals to get the reciprocal of the combination(see Fig.11).

We are now ready to consider RC circuits; that is, a resistor and capacitor together in the same circuit. A charged capacitor allowed to discharge through

$$
\begin{aligned}
& \text { (a) INITIAL CURRENT } \\
& =1 \mathrm{~mA}
\end{aligned}
$$

Figure 12. Capacitor discharge through a resistance
a resistor produces a fascinating chicken-andegg situation on careful examination. Suppose a capacitor, charged to 10 V , starts to discharge across a 10000 R (10kR) resistor (Fig.12a). By Ohm's law the initial current is one milliamp (1 mA). But as the charge starts to flow off the capacitor, less charge on the plates means less voltage across them and hence across the resistor. So the current flowing in the resistor drops (see Fig.12b). A graph showing how current decreases as time goes by will look like the one in Fig.13. In fact if the current took, say, ten seconds to drop to half the original value, it would take another ten seconds to drop to half that; thus halving its value every ten seconds. Such a slowing down is called an exponential decrease and is found to pop up all over the scientific scene, especially in radioactive decay and chemical reactions.

If you want to alter how long the capacitor took to discharge in such a circuit you could do so in two ways. You could either get a larger resistance in which case the charge would flow off the capacitor more slowly. (that is, smaller current), or you could begin with a much larger original capacitance which, for its voltage, was carrying a much larger charge. Indeed if you multiply together the R and C values (ohms x farads) you get what is called the 'time constant' of the circuit.

A careful (incredibly intelligent) look at the units of ohms multiplied by farads will reveal that they turn out to be seconds. So the time constant of a circuit with a 1000 uF capacitor $\left(10^{3} \mathrm{~F}\right)$ and a 20kR resistor will be 20 seconds $(20 \mathrm{~s})$. This is the time for the charge (or current) to drop to between a half and a

(b) LATER CURRENT HAS FLOWED,
i.e CAPACITOR HAS LOST CHARGE
SO ITS VOLTAGE IS REDUCED AND

LESS CURRENT FLOWS
third - to be precise to 2.718 - though the significance of this weird number, ' e ' to its friends, is quite another story.

Capacitor Construction

So far as construction goes, capacitors

Figure 13. Current from a capacitor through a resistor. An exponential curve
come in many different shapes and sizes, and with many practical capacitors the plates are rolled up Swiss-roll fashion. Try unrolling a paper capacitor some time. My daughters have discovered, that they make very smart dolly's loo rolls!

The plates can be very thin aluminium foil or a thin silver layer deposited 'on a plastic such as polystyrene, polyester or terylene.

Construction of a polystyrene capacitor
For high values, about 1 uF to 10000 uF electrolytic capacitors ('elcos') are used. These consist of two sheets of aluminium foil separated by paper impregnated with an electrolyte like aluminium borate. A small current forms a very high-resistance aluminium oxide film on the surface of the plates and it is this which acts as the insulator between the plates. Connecting an electrolytic the wrong way round or exceeding the rated voltage can destroy the film. Result? Bang! Wochit!

A selection of capacitors

If you are still awake and totally confused, never mind - that's the lot for this month. Make sure you read lan Sinclair on the digital bit, because that's all part of our course and I will not be duplicating it, though later I shall point out exactly what our course requires digitally. One other thing - start thinking about a project to build and about a case study on a topic you find interesting. Its all go! Watch those electrolytics - take care and see you next month.

PRIME COMPONENTS
 LOW PRICES

741 741500
$74150:$ 74450
74508
741510
741511

ALS

LINEAR	C's	(1)
	${ }_{\text {cosem }}^{885}$	Mctise 900
	cois	
,	\%	
	${ }^{20}$	
(1)311,	cos	
	5is	${ }^{\text {cosigh }}$
	cois	${ }_{\text {lition }}^{11209}$
cosem		(112212
		coill
	cis	disphavs
退	(10\%	cose
citition	coirit	
Xixcemank		15 OLatons
come	9\%	(10)
	120\%	

Steering
£5.45!

SPECIAL OFFER! 4K CMOS RAM (1K $\times 4$) 450 NS ONLY £6.95! (8 for £45)
The TC 5514P from Toshiba, CMOS equivalent of the 2114 !

Low Power dissipation 10WW/BIT (TrP) ${ }^{3}$ OV (STANBY) 10WW/BIT TYP) 5 OV (OPERATING
 10uW/BIT TYP) ${ }^{\circ} 5$ OV (OPERATING
 Data Retention Vol agge 2V Single 5V Power Supply

ull Static Operation
Invee State Output
Input AOutp TIL Compa tible
Fast Access Time 450NS
Toshiba's TC5 514 P (industry type 6514) is a full static read write memory organised as 1024 words by 4 bits using CMOS rechnology.
UItra low

NETN STEREO! S100 SOUND COMPUTER BOARD!
Allows you Under totard computeas control to guenerate an infinite number of special sound effects for games or any olher program. Sounds
can be called in BASIC. ASSEMBLY LANGUAGE etc. Alt
can be called in BASIC. ASSEMBLY LANGUAGE etc.

Two GI Sound computer ICS KIT FEATURE
Uses on Board avdit on Board
On Board proto typing are
Al sockers. paris ard hardware are included
-PC Board is soldermasked. wilk screened with gold
-Eas $\%$. quick and fur to build, with full instructions
Easy. quick and fun to build, with full instructions
Uses Srogrammed I/O for maximum system llexibolity
COMPLETE KIT . . ONLY E59.96, includes 60 page data Manual
AY-3 8910 chip special price with purchase of BARE BOARD (2 chips) E1 1 B
SCL is now availablel Our Sound Command Langugge makes writing Sound Effects programs a SNAPI SCL Ilso includes routines for

SE 01 Sound Effects Kit NEW

One Shot.
and Envelope Controls. A Quad Op Amp IC is used to implement an Adjustable Multiplex Oscillator for even more ver.
satility. The $31 / 4^{\prime \prime} \times 3^{\prime \prime}$ PC Board features a satrity. The $31 / 0^{\times 3}$ "PC Board features a
prototype area to allow for user added Errcuitry. Easily programmed to duplicate Explotion, Phatsar Gunf, Steam Trains, sounds. The unit has a multuple of appl. cations. The low price includes all parts. assembly manual, programming charts, and detailed 76477 chip specificatıons it runs on a 9 V battery (not included). On speaker directly, or the unit can be conresults! (S peaker nat included.)
COMPLETE KIT ONLY £14.99
P\&P 67D + VAT

 he amazing Ar. 3.8910 is a famlastically powertut sound and music gene rator, perfect
tor use whit any 8 -bir microprocessor Contains
3 tone channels. noise generatior. 3 channels of
amplutude controts. 16 -bit enyelope period amplrude controts. 16 -bil envelope period
cmoniol 2 parallet 10 . $30 / \mathrm{A}$ converters plus
much more All in 40 pin DIP. Super easy 10 interface to the $S-100$ or other Busses.
Ondy $E 8.50+V A T$, ,ncluving FREE eprint of
BYYE 79 ariclet Also add $\mathbf{F} 255$ for 60 -page BYTE 79 artic
dara manual
\qquad Pethaps
diecta 150 -plece orchestra bur,
mither microcompute
8910 S BYTE
\qquad
MUSIC FOR YOUR EARS
Bulleis Electronic Music maker wir has a single 28 pin microprocessor Chip with rom that tha thon

The XR2266 Decoder/Sense \& Drive Chip for toy cars that DRIVE LIKE REAL! ONLY E5.45!

This versatule 18 -pin dual in-line IC combines both the decoder and the sense

Steering. lights, indicators, speed control - all from the new XR2266 at only

BOOKS

Please order books by reference no. And lite, and add 50 p post \& packing for each book ordered.
21168 Active Fither Cookbook
21440 Aviation Electronics 3 rd Ed.
21558 Audio IC Op Ampp Applications 2 nd Ed.
21524 The Cheap Video Cookbook

21103 Troubleshooting with the Oscilloscope 3rd Ed
21339 Video Secur
21521 Video Tape Recorsien

Combining 12L and Bipolar circuiry, the ULN-2232A Mohon Delector is a complex opiotinear IC which includes an on-chup photodiode, high-gain logarithmic and linear amps, exiensive digial corcuiry for sound geneition and uming and high-current output divers. Add on five small capacions. a speaker and power source and you turn thi shateof.the art device into a complete Mowion Detector sensinve to small changes in light level as ofunction of the OETALED DEICE OESCRIPTION ANO APPLICATIONS ONFORMATION INCIUOED WITH EVERY URN. 2232 A
 \qquad

£6.95

Dept. HE3, 4 Meeting Street, Appledore, Nr. Bideford, North Devon EX39 1RY. Tel. Bideford (02372) 79507. Telex: 8953084.

Transistor

Tester

Test NPN or PNP transistors quickly and easily with this cheap and simple-to-build project for beginners

OVERKILL: Have you ever heard that word? It means taking a design too far, pushing it from the sublime to the ridiculous by making it too complex when there is a much easier and more economical answer.

Well nobody can accuse our designers of 'overkilling' the HE Transistor Tester. If you take a close look at the circuit diagram you will see that the design is simplicity itself. Only 11 components make up the circuit. That doesn't mean that the HE Transistor Tester is too simple or that it can't be as good as more complicated designs. Far from it - our circuit is all that's necessary to make a good, reliable piece of test gear which is easy to build and exceptionally useful. Now you can test your transistors before use, making sure that they are fully operational. Think how many hours of fault-finding you can save yourself when building projects!

The circuit is built around a twotransistor circuit and uses LEDs to indicate when the transistor under test is operational. A simple potentiometer compensates for different transistor characteristics and its position can be calibrated to give a visual readout of the transistor's current gain.

To test a transistor, start with RV1 at maximum resistance, connect the transistor, and rotate RV1 just far enough to cause the appropriate LED to light. The approximate gain can then be determined from RV1's scale. If the LED remains either switched on or off (regardless of RV1's setting), the test device is almost certainly a dud.

How it Works

To simplify the NPN/PNP switching the unit has separate circuits for testing the two types of device, and this is an economically sound approach because of the simplicity of each section.

If we consider the unit in the NPN mode first, a base current is fed to the test device via SW1, R1, and RV1. By means of RV1 this current can be varied over an approximate range of 0.4 mA at minimum resistance to 0.004 mA at maximum resistance. The current flowing in the collector circuit of the test device coupled to SK1 will be equal to the base current multiplied by the current gain of the device. If this current is about 4 mA or more, the voltage developed across R2 becomes higher than the base threshold voltage of Q1, biasing the latter into
conduction and causing LED1 to light.
In practice RV1 is adjusted for the lowest current that causes LED1 to light, and thus for a nominal 4 mA collector current. The setting of RV1 is then directly related to the current gain of the test device, with minimum resistance corresponding to a gain of $10(4 \mathrm{~mA} \div 0.4 \mathrm{~mA}=$ 10) and maximum resistance to a gain of about $1000(4 \mathrm{~mA} \div 0.004 \mathrm{~mA}=1000)$. Potentiometer RV1 can be fitted with a scale so that current gain can be directly read off.

The PNP test circuit is much the same, but a few changes obviously have to be made to accommodate the change in polarity. Resistor R6 ensures that an excessive current cannot flow if RV1 is adjusted for minimum resistance with a very high-gain device in circuit.

Construction

Figure 2 shows the Veroboard layout and wiring of the tester, and this is all quite straightforward. Follow standard practice when using the Veroboard. If you're not too sure or your memory's a bit hazy, refer to the Construction sec-
tion of the Guitar Preamp, where its use is detailed.

It is advisable to fit RV1 with a large control knob as its scaling is not linear, and becomes cramped at lower gain settings. With the aid of a multimeter used on a resistance range the scale of

Figure 1. The circuit diagram of the HE Transistor Tester.

Figure 3. Above. Internal case photograph

Figure 4.
Right. Underside details of the Veroboard showing track breaks. Make these before inserting the components

RV1 is marked $10,25,50,100,250,500$ and 1000 at settings which give a total resistance of $20 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 200 \mathrm{k}, 500 \mathrm{k}$, 1 M and 2 M across R1 and RV1

Many transistors will readily plug directly into the appropriate test socket (but be careful to connect the test devices correctly). A set of test leads can be made up so that less-
cooperative devices can be checked All that is required is a 3-way DIN plug connected to three crocodile clips by three short insulated leads of different colour.

Buylines

You shouldn't have any problems in obtaining components for this project and the price for the bits and pieces (excluding the case, of course) will be about $£ 5$.

GUITAR PHASER	2085	Sept. '80	$\underline{19.60}$	HOBBYTUNE	2034	Oct. '79	£18.00
BENCH POWER SUPPLY UNIT	2087	Sepl. '80	£25.00	MULTI OPTION SIREN	2036	Oct. '79	£10.50
DEVELOPMENT TIMER	2086	Sepl. '80	£8.75	ANALOGUE AUDIO			
TOUCH SWITCH (on Vero)	2084	Sept. '80	$\varepsilon 4.50$		2035	Oct. '79	£15.00
AUTO PROBE	2083	Sept. 80	E3.00	COMBINATION LOCK	2029	Sepl. '79	£12.50
REACTION TIMER	2082	Sept. '80	£26.50	*STARBURST	2030	Sept. '79	£14.50
MICROMIXER (on Vero)	2081	Sept. 80	£8.50	LAMP DIMMEER	2031	Sept. 79	E6.50
EQUITONE CAR EQUALISER	2052	Aug. '80	£13.30	ULTRASONIC SWITCH	2032	Sept. '79	£21.00
GAS DETECTOR	2055	Aug. '80	£22.00	CONSTANT VOLUME AMPLIFIER	2028	Aug. 79	£11.50
PASS THE LOOP GAME	2 D 56	Aug. ' 80	£12.00	INJECTOR TRACER	2027	Aug. '79	£4.50
RADIO TIMER (on Vero)	2 D 57	Aug. '80	E5.50	LED TACHOMETER	2026	Aug. '79	£14.75
MOVEMENT ALARM (on Vero)	2054	Aug. '80	£5.00	BABY ALARM	2025	July 79	£13.50
OP. AMP CHECKER (on Vero)	2 D 53	Aug. '80	£4.00	POINTS SWITCH	2024	July '79	£12.50
CAR BOOSTER (no speakers)	2 D 50	July '80	£18.00	LINEAR SCALE OHMMETER	2023	July '79	£14.00
HAZARD FLASHER	2 C 48	July '80	£10.50	SHARK	2022	July ' 79	£22.75
*PUSH-BUTTON VOLUME				G.S.R. MONITOR	2019	June '79	£10.50
CONTROL	2 D 47	July '80	£19.50	ENVELOPE GENERATOR	2020	June '79	¢11.79
SOUND FLASH TRIGGER (on Vero)	2 D 49	July '80	$£ 3.50$	DRILL SPEED CONTROLLER	2021	June '79	£7.00
2 WATT AMPLIFIER [on Vero)	2D46	June '80	£3.90	WHITE NOISE EFFECTS UNIT	2018	May ${ }^{\prime} 79$	£16.85
METRONOME (on Vero)	2051	June '80	£3.50	PARKING METER TIMER	2017	May '79	£6.70
WWCROBE R/C SYSTEM				DIGIBELL PROJECT	2016	May 79	$£ 5.00$
[less Servos)	2045	June '80	£17.50	VARIABLE POWER SUPPLY			
FOG HORN	2 D 44	June '80	£4.50	0.30V 1 AIMP	2015	May '79	£30.00
\star EGG TIMER	2043	June '80	£6.50	TRANSISTOR GAIN TESTER	2076	April ' 79	£6.50
WUNI CLOCK	2010	May '80	£26.00	CISTERN ALARM	2075	April '79	$£ 5.50$
5080 PRE-AMP	2011	May '80	£32.00	MODEL TRAIN CONTROLLER	2074	April '79	£26.00
TRACK CLEANER	2 D 12	May '80	£7.75	PHOTOGRAPHIC TIMER	2073	March '79	£14.50
*R/C SPEED CONTROLLER	203	April '80	£9.60	TONE CONTROL	2072	March '79	$£ 9.00$
HOBBY COM	208	April '80	£28.60	CASANOVA'S CANDLE	2071	March '79	£7.50
ELECTRONIC IGNITION	202	April '80	£18.25	SHORT WAVE RADIO	2066	Feb. '79	£12.50
DIGITAL FREQUENCY METER	209	April '80	£27.75	SINE/SQUARE WAVE			
SHORT WAVE RADIO	2080	March '80	£19.50	GENERATOR	2067	Feb. '79	£22.50
TOUCH SWITCH	2079	March '80	$£ 5.00$	SCRATCH AND RUMBLE			
5080 PSU MODULE	2078	March '80	£29.50	FILTER MONO	2068	Feb. '79	£22.50
SYSTEM 5080A	2077	March '80	$£ 15.00$	SCRATCH AND RUNWBLE			
PASSION METER	Z06	Feb. ${ }^{\text {' } 80}$	£5.00	FILTER STEREO	2069	Feb. ' 79	£25.00
WIN INDICATOR	ZD42	Feb. ${ }^{80}$	$\underline{9.00}$	CAR ALARM	2070	Feb. ' 79	£8.50
INFR RED REMOTE CONTROL	207	Feb. '80	£19.35	FLASH TRIGGER (less flash gun)	2065	Jan. 79	£10.50
SCALEXTRIC CONTROLLER	2 D 41	Jan. '80	£52.50	TOUCH SWITCH	2063	Jan. '79	$£ 5.50$
CROSSHATCH GENERATOR	204	Jan. '80	£11.25	VARI-WIPER	2064	Jan. '79	£8.00
DIGI-DIE	205	Jan. 80	£5.50	GRAPHIC EQUALISER	2062	Jan. ${ }^{\text {7 }} 7$	£25.00
RING MODULATOR	201	Dec. ' 79	£8.50	PUSH-BUTTON DICE	2061	Dec. ' 78	$\underline{6.00}$
SCALEXTRIC CONTROLLER	2039	Dec. ' 79	£21.50	AUDIO MIXER	2014	Dec. ${ }^{78}$	£20.30
BARGRAPH CAR VOLTMETER	2040	Dec. '79	¢6.60	BEDSIDE RADIO	2058	Nov. ${ }^{78}$	£12.50
GUITAR TUNER	2038	Nov. '79	£8.50	STEREO AMPLIFIER (HOBIT)	2059	Nov. ${ }^{78}$	£52.50
*R2 D2 RADIO	2037	Nov. '79	£8.60	WAA-WAA PEDAL	2060	Nov. ${ }^{\prime} 78$	£30.00
TANTRUM	2033	0Ct. ' 79	£37.50				

IONISER KIT: ZD13. This negative ion generator gives you power to saturate your home with millions of refreshing ions, without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain filling your room. The result? Your air feels like fresh ocean air, crisp and wonderfully refreshing. All parts p.c.b. and full instructions $£ 10$. A suitable case including front panel neon switch, etc., available at $£ 8$ extra.

LATE EXTRA			
Watchdog Intruder Alarm	ZD89	OCT. ' 80	£15.75
Temperature Controlled Soldering Iron	ZD90	OCT. ' 80	$£ 9.00$
Freezer Alarm (on Vero)	ZD91	OCT. ' 80	£8.50
Tug O' War Game	2094	OCT. '80	£12.50
Nobell Doorbell	ZD93	OCT. '80	£9.75
Kitchen Timer (on Vero)	2092	OCT. ' 80	£5.50
Light Dimmer	ZD88	OCT. ' 80	£5.00

All kits contain components as specified plus Texas 1.C. sockets, where required, also connecting wire.

FAIRCHILD FLV150 red. 2 LEDS, 10 for $£ 1.00,100$ for $£ 7.50$ DALY ELECTROLYTIC CAPACITORS 2000uF 100 v E1.50 PHILIPS SCOPE Tube 5" CV2191/DG-13-2 £10

If you do not have the issue of H.E. which contains the Project, we can supply a reprint at 40 p extra. Please add 30 p post and packing. Add 15% VAT to total order Callers please ring to check availability of kits.
T. POWVEL

306 ST. PAULS ROAD, HIGHBURY CORNER LONDON N1.01-226 1489

SHOP HOURS: MON.FRI. $\quad 9-5.30 \mathrm{p} . \mathrm{m}$.

Minimum, telephone Orders $£ 5$
Minimum Mail Order £1

A EXP 650 For microprocessor chips. $£ 3.60$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. £5.75
-C EXP $600.6^{\prime \prime}$ centre channel makes this the Microprocessor Breadboard. $£ 6.30$
D EXP 4B An extra 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts $8,14,16$ and up to 22 pin ICS. $£ 1.60$
F EXP 350270 contact points, ideal for working with up to $\mathbf{3} \times 14$ pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $\mathbf{£ 1 1 . 8 0 \text { (Not illustrated.) }}$

\& ITS AS EASY AS 1,2,3 with THE EXPERIMENTOR SYSTEM

SCRATCHBOARD	
-BREADBOARD	
-MATCHBOARD	(exter

TOMORROW'S TOOLS TODAY
 C.S.C. (UK) Limited, Dept. 1400 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Walden (0799) 21682. Telex: 817477 :
NAME
ADDR̈ESS
I enclose cheque/PO for $£$
or debit my Barclaycard, Access, American Express card
No. Exp. date
or Tel: (0799) 21682 with your card number and your order will be in the post immediately.

$\begin{aligned} & \text { A EXP } 650 \\ & £ 5.00 \end{aligned}$	Onty. Reqd,	$\begin{gathered} \text { B EXP } 300 \\ \qquad 7.76 \end{gathered}$	Onty. Reqd.
$\begin{aligned} & \text { C ExP } 600 \\ & £ 8.39 \end{aligned}$	Onty. Reqd.	$\begin{aligned} & \text { D EXP } 48 \\ & £ 3.50 \end{aligned}$	Onty. Reqd.
$\begin{aligned} & \text { E EXP } 325 \\ & £ 2.70 \end{aligned}$	Onty. Reqd.	$\begin{gathered} \hline \text { F EXP } 350 \\ \text { £4.48 } \end{gathered}$	Onty. Reqd.
$\begin{aligned} & \text { GPB6 } \\ & £ 11.73 \end{aligned}$	Onty. Reqd.	H PB 100 £14.72	Qnty. Reqd.

Experimentor System

$\begin{array}{\|c} 1 \text { EXP } 300 \mathrm{PC} \\ \mathrm{E} 2.38 \end{array}$	Onty. Reqd.	$\begin{gathered} 2 \operatorname{EXP} 302 \\ \text { E2.79 } \end{gathered}$	Quty. Read.
$\begin{gathered} 3 \text { EXP } 303 \\ \text { E11.04 } \end{gathered}$	Onty. Reqd.	$\begin{gathered} 4 \text { EXP } 304 \\ \text { E11.85 } \end{gathered}$	Qnty. Read.
Boxed prices include P \& P and 15\% VAT			FREE catalo

Continental Specialties Corporation (UK) Limited, Depr. 1400
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
...ASK OUR DEALEBS.

AITKEN BROTHERS,
35 High Bridge, Newcastle Upon Tyne, NE1 1EW. Tel: 063226729.
ARROW ELECTRONICS LTD.,
Leader House, Coptfold Road, Brentwood, Essex. Tel: 0277226470.
BASIC ELECTRONICS LTD.
18 Epsom Road, Guildford, Surrey, GU1 3JN. Tel: 048339984.
BI.PAK SEMICONDUCTORS,
P.O. Box 6, Ware, Herts. Tel: 09203442. F. BROWN \& CO.,

45 George IV Bridge, Edinburgh, EH1 1EJ, Scotland.
Tel: 031225 3461. Telex: 922131.
THE CHILDRENS SHOP \& TACKLE BOX.,
73-75 High Street, Ryde, Isle of Wight. Tel: 098363437.
CUBEGATE LTD.,
301 Edgware Road, London, W2 1BN. Tel: 017243565.
ETESON ELECTRONICS,
15b Lower Green, Poulton-Le-Fylde, Blackpool, FY6 7JL. Tel: 0253885107.
H. GEE ELECTRONIC SUPPLIES, 94a Mill Road, Cambridge, CB1 2BD. Tel: 0223358019.
LEEDS AMATEUR RADIO, 27 Cookridge Street, Leeds, LS2 3AG. Tel: 0532452657. MARSHALLS,
108A Stokes Croft, Bristol. Tel: 0272426801.
85 West Regent Street, Glasgow, G2, Scotland. Tel: 0413324133.
325 Edgeware Road, London, W2. Tel: 017234242.
40 Cricklewood Broadway, London, NW2 3ET. Tel: 014520161.
RASTRA ELECTRONICS LTD.,
275-281 King Street, Hammersmith, London, W6. Tel: 01748 3143. Telex: 24443 RASTRA G.

SHUDEHILL SUPPLY COMPANY,
53 Shudehill, Manchester, M4 4AW. Tel: $061834-1449$.
SPECTRON ELECTRONICS (M/C) LTD.,
7 Oldfield Road, Salford, M5 4NE. Tel: 0618344583.
SWANLEY ELECTRONICS, 32 Goldsel Road, Swanley, Kent, BR8 8EZ. Tel: 032264851.
TECHNOMATIC LTD.,
17 Burnley Road, London, NW10 1ED.
Tel: 01452 1500. Telex: 922800.

TOMORROW'S TOOLS TODAY

Also ask your local stockist.
If no dealer in your area, contact CSC direct.
CONIINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) Limited, Dept. 1400 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel: Saffron Waiden (0799) 21682 Telex: 817477
Hobby Electronics, November 1980

Freepost B	- freepost on orders - access
Birmingham	- VAT Inclusive prices VISA
B19 18R	- ADD 30p P\&P - CHEQUE
021.233.240	24 MR PHONE ANSWERING SERV

fun and entertainment as well as education'
(EVERYDAY ELECTRONICS mag.)
The SR-3A kit (over 100 circuits) and the SR-3A de luxe kit (over 105 circuits) are available again, at little more than their 1977 prices!
Cirćcuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build - and have a lot of fun, too. The kits are safe for anyone.

SR-3A KIT

$161 / 2 \times 10 \times 21 / 2{ }^{\prime \prime} £ 29.95$
Build over 100 projects including 3-TR reflex radio receiver, 3-TR radio receiver with RF amplifier, 2-TR reflex radio receiver, 3-TR amplifier for crystal mike, 3-TR amplifier for speaker/mike, 3-TR signal tracer, Morse Code trainer, 2-TR electronic organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronic gun, 2-TR sleeping aid, high voltage generator, discontinuity warning device, water supply warning device, photoelectric alarming device, 3-TR burglar alarm, 3-TR water supply warning device, 3-TR water level warning device, 3-TR photo-electric alarming device, Morse Code trainer with sound and light, discontinuity warning device with sound and light, water level warning device with sound and light, electronic metronome with sound and light, buzzer with sound and light, wireless mike, wireless telegraph set, wireless discontinuity warning device, wireless water level warning device, wireless water supply warning device, and wireless photoelectric warning device, etc, etc.

SR-3A de luxe KIT

(Illustrated $\left.16 \times 14 \times 31 / 2^{\prime \prime}\right) £ 39.95$
Similar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated control panel.
All kits are guaranteed and supplied complete with extens ive construction manuals PLUS Hamlyn's "All colour' 160-page book "Electronics" (free of charge) whilst stocks last.
Prices include batteries, educational manuals, free book, VAT, P\&P (in the UK), free introduction to the British Amateur Electronics Club.
Cheque/P.O./Access/Barclaycard for 20p for illustrated literature) to DEPT. HE.

Talking Design

We've covered PWM theory: now for something practical. This month's article describes a high-quality PWM audio amplifier you can build

LAST MONTH I described a simple pulse width modulator which was capable of driving small DC motors and lamps. At the time I hinted that this technique was likely to become of major importance in audio amplifiers. This month, as a follow-up, a digital audio amplifier circuit is presented.

PWM amps are not new. Sinclair marketed a 10 W version in the sixties. What has precipitated the recent interest is the advent of digital recording techniques, and the increasing availability of fast switching transistors, especially the VFET.

To refresh your memories, a pulse width modulator is basically a square wave oscillator whose output markspace ratio can be altered by an external voltage. If this voltage is an audio signal and the output frequency is sufficiently high, the average output voltage of the oscillator will be the audio signal. The obvious question is how high does the frequency have to be to encode the full audio band from 20 Hz to 20 kHz ? Surprisingly, thanks to the work of Nyquist, the answer is only 40 kHz . Nyquist showed that a signal, in the form of modulation on a carrier wave, could be fully recovered as long as the carrier was at least twice the maximum frequency of the modulating signal.

Given that information it should be possible to produce a PWM amp with a beefy output stage running at well over 40 kHz that can deliver a signal to a normal loudspeaker. Such a digital amplifier has lots of advantages in terms of performance. If a push-pull output stage is employed, the power devices dissipate very little heat since they are either in saturation or in cut-off.

As long as the signal is linearly transferred into digital form no audio distortion can occur. Similarly, there is no crossover distortion or noise added to the signal. What has prevented all audio amplifiers from being built this way is the problem caused by the electromagnetic radiation at carrier frequency from the speaker leads. A se-
cond problem has been the shortage of devices.

When Sinclair marketed his PWM amp in the sixties, silicon transistors and logic ICs were expensive novelties. Nowadays there is a proliferation of ICs and transistors capable of being employed in such circuits.

The problem of carrier radiation is a vexed one. According to the Post Office, it is quite in order to send 200 kHz FM signals through mains wiring. In fact most domestic appliances produce RF. radiation, as can be confirmed by anyone whose hi-fi equipment is upset by switching 'thumps'. The simplest way over this problem is to place a low-pass filter between the amp's output and the load. Using screened lead with the screen connected to earth is another precaution. With the amp described here RF radiation is not a real problem as long as the filter is incorporated.

Last month's circuit employed a comparator to produce PWM. This time the same result is obtained by using the
audio signal to alter the switching. thresholds of a Schmitt trigger. This trigger is a device that has two switching thresholds, let's call them t1 and t2 (Fig.1). When the input voltage is less than t1 the output is low. As soon as the voltage exceeds t1 it goes high.

Low Down Volts

If the voltage is now reduced, nothing happens until it falls below t2. At this point the output goes low again. (Note that the two threshold voltages t 1 and t 2 are not equal.) This characteristic is known as hysteresis. The \mathbb{Z} indicates a Schmitt device or function and these triggers are usually employed in digital circuits to convert slowly rising and falling waveforms to pulse trains suitable for logic systems. A Schmitt trigger can be made from an op-amp or comparator. Figure 1 also shows an astable similar to one employed last month but this time it is built around an op-amp.

On switch-on, capacitor C1 is discharged, holding the inverting input

of A1 low relative to the non-inverting input. Since this is so, the output will be high. Now, if we make R1, R2 and R3 equal in value, then the non-inverting input will be held at $2 / 3 \mathrm{Vcc}$, because R3 is effectively in parallel with R1. In consequence, C1 will rapidly charge through R4 until the voltage at the inverting input exceeds $2 / 3$ Vcc. At this point A1's output will start going negative. Positive feedback through R3 makes the output's transition from high to low extremely rapid.

A second stable voltage will now be found at the non-inverting input, equal to $.1 / 3 \mathrm{Vcc}$. This time, R3 is effectively in parallel with R2. Capacitor C1 will now discharge via R4 and A1's output stage until the voltage on the inverting input falls below $1 / 3 \mathrm{Vcc}$. The output again goes high and the cycle repeats itself indefinitely.

Because of the influence of R3, A1 acts as a Schmitt trigger, t1 and t2 being $2 / 3$ Vcc and $1 / 3$ Vcc.

Figure 2 shows how this simple circuit can be modified to encode an audio signal into PWM. The audio is simply imposed upon the non-inverting input, thus altering the threshold switching voltages. Resistor R5 prevents interaction between the audio signal and carrier as does R6. Capacitor C 2 isolates DC voltages from the astable. Unfortunately, C1 charges exponentially via R4 so somewhat less hysteresis is applied by making R3 much larger than either R1 or R2. This has the effect of making the switching thresholds very close together and linearising the triángular waveform across C 1 resulting from it being charged through R4.

To produce a good square wave at high frequencies an LF351 op-amp is used. This is a VFET device which features a high slewing rate, that is $13 \mathrm{~V} / \mathrm{uS}$.

The full circuit of the digital
amplifier is shown in Figure 3. Here, the op-amp drives a pair of transistors in a push-pull output stage. These transistors, a BC142 and BC143, are rated at 1 A collector current. As you can see they are connected, without base bias, as emitter-followers. When the output of the op-amp is high, Q2 is in saturation and provides current to the load via the low-pass filter L1, C5 and the output coupling capacitor C6. Incidentally, in class B amps the latter component is often of a lower value. This is a pity since the lower -3 dB point is defined by the size of this capacitor.

As you will remember, the impedance Z of a capacitor is given by:

$$
Z=\frac{1}{2 \pi F C}
$$

where C is in farads and Z is in ohms.

Negative Feedback

The astable has a unity gain and so, to improve the sensitivity, an audio preamplifier stage has been added. This is built around Q1 which is used in the commonemitter mode. Negative feedback, however, is applied from the collector via R3. A collector current of 1 mA has been chosen to allow adequate drive. Resistor R7, therefore, drops 1 V whilst C 3 decouples line ripple to ground. For linear drive the collector is operated at $17 \mathrm{~V} / 2 \simeq 8 \mathrm{~V}$. The value of R4, therefore, is given by 8 $V / 10^{-3} \mathrm{~A}=8 \mathrm{k}$, the nearest value being 8 k 2 .

A BC149 is used for Q1 and this has a gain of 200 minimum at 1 mA . Base current I_{B} is therefore equal to:

$$
\frac{10^{-3} A}{2 \times 10^{2}}=5 u A
$$

 diagram of the PWM amp combining the astable circuit of figure 2 with a push-pull output stage.

The base will be 0.65 V above ground and, taking $10 \times I_{B}$ through R2 and R3, the value of R3 is given by:

$$
\frac{0.65}{5 \times 10^{-5}}=1.3 \times 10^{4} \mathrm{R}
$$

$12 k$ being the nearest value.
Similarly, the value of $R 2$ will be equal to the collector voltage minus the base voltage divided by 50 uA , given by:

$$
\begin{aligned}
R 2 & =\frac{8-0.65}{5 \times 10^{-5} A} \\
& =147 \mathrm{k} .
\end{aligned}
$$

150 k being the nearest value.

Virtual Earth

Using a transistor in this way, with feedback from collector to base forms a'virtual earth amplifier'. This is because the feedback reduces the input impedance. The gain of the stage is set by the ratio of R3 to R1. For a gain of 10, sensitivity 900 mV , a value of 15 k was chosen. Capacitor C1 simply isolates the input from DC from previous stages. A suitable Veroboard layout is shown in Fig.4. In the circuit shown in Fig. 3 we have a classic high-pass filter formed by the speaker impedance Z and C. The lower -3 dB point can be calculated by rearranging the equation for $f 1$ given by:

$$
\frac{1}{2 \pi C Z}
$$

substituting:
$\mathrm{f1}=\frac{1}{2 \times 3.14 \times 2.2 \times 10^{-3} \times 8}=9.05 \mathrm{~Hz}$

The minimum gain of the output transistors Q2 and Q3 is 30 at 1 A. In practice this is the absolute minimum likely to be encountered. The op-amp output can source or sink 25 mA . It follows that the worst-case minimum current that can be fed into the speaker is:

$$
\pm 25 \mathrm{~mA} \times 30=750 \mathrm{~mA} .
$$

Since the speaker impedance is $8 R$, the peak voltage under these conditions is equal to $I R$; that is, $750 \mathrm{~mA} \times 8 \mathrm{R}=$ 6 V , or 12 V peak-to-peak. Since the power output is given by V / R, one could be forgiven for thinking that the output power would be (12×12)/8 $=$ 18W. Unfortunately, you would be wrong!

The output power is the RMS voltage divided by the load. Assuming our output is a sinewave of 12 V peak-to-peak, the RMS value is found by dividing Vpk-pk by 2.8.

The output power (minimum) is therefore given by:

$$
\left(\frac{12}{2.8}\right)^{2} / 8 R=2.29 W R M S
$$

Because of the small voltage drop that occurs across a saturated transistor, the output will be slightly less than this, namely 2 W .

Going back to our astable, the operating frequency has been set at 300 kHz . This gives a full power bandwidth of 10 Hz to 150 kHz ,

Build It Yourself

The construction is quite straightfor-
ward and requires little comment except that it is necessary to ensure that all the semiconductors are correctly orientated and the breaks in the Veroboard tracks are not forgotten.

Although the circuit will operate from 9 V , batteries are not really suitable and any mains PSU offering an output voltage in the range indicated is better.

L1 consists of 60 turns of 0.56 mm enamelled copper wire, pile-wound on a 1 in length of $3 / 8$ in diameter ferrite rod.

When construction is completed, no adjustments need to be made to the circuit. All that is required is an input signal and a speaker.

Our regular monthly feature 'Talking Design' is not aimed at the absolute beginner. Before you tackle any of these projects you should be reasonably familiar with circuit construction techniques.

For a really comprehensive introduction to electronics why not read our special publication 'Into Electronics Plus'. You'll find details of this and all of our other 'Specials' elsewhere in this issue.

Figure 4. The Veroboard layout of the PWM amp. The small crosses (x) indicate breaks in the copper track underneath the board.

HE

Look out for the December issue on sale November 7th.

TRANSCENDENT POLYSYNTH

PROGRAMMABLE DOORBELL

Variety's the spice of life - even where doorbells are concerned. If you've had enough of that boring old 'ding dong' noise coming from your front door, swap it for our programmable doorbell design. It doesn't use complex microprocessor control or expensive PROMs for storing tunes. It's simple to build, based on
 contents.

POPULAR KITS AND PARTS

BURGLAR ALARM CONTROL PANEL Contains labelled connection block, latching relay, test switch and
temovable key control switch. Simplifes the whole inslallation; all you have to do is to take wires to pressure pads and to alarm bell. PRECISION MAINS-OPERATED CLOCK
For only $£ 1,72$. Sounds unbelievable but that's what you can have Hyou send your order right a way. The clocks which have large cleer
dials were made by the famous Smilhs Company tor use with their domestic cooker switch and are brand new
25-WATT MIO-RANGE SPEAKER $51 / 2$
Made by Good
€3.95. Post E 1 .
8 OHM TWEETER

ost 30p
WATERPROOF HEATING WIRE
As used for electric blanke1s, etc. This has dozens of othor
applications - in gloves or socks for people with poor circulation are obvious users. One unusual use suggest wod by a customer is a grow bag heater. The wire which consists of an elemont wound on
glass fibre then PVC covered has a resista nce of 60 ohms per yurd. The price is 23 p ymed.
TELEPHONE PICK-UP coil ataches by suction to phone body,
enabling conversation to be recorded. put through amp or LIGNT CHASER
Gives a bralliant display - a psychedelic light show for discos. parties and pop groups. These have three modes of flashing. 1wo chase panterns and a strobe etfect. Total output power 750 wat1s
per channel. Complete kit. Price $£ 18$. Ready made up $£ 4$ exva.
FISH BITE INDICATOR enables anglers to set up several lines
then sit down and read book. As soon as one has a bite the then sit down and read abook. As soon as one has a bite the
loudspeaker emits a shrill nole. Kit. Price $\mathbf{E A , 9 0}$. © Waveband shortwave radio kit
Bandspread covering 13.5 io 32 metres. Based on circuit which includes case materiats, sse wansissonn. and diodes. condensers,
resistors, inductors. switches, etc. Nothing olse to buy, it you have resistors. . inductors, switches, etc. Nothing else to buy, it you have
an amplifier to connect tit oo a palt of high resistance headohones. an amplifier to
Price efll.95.
3"EDGEWISE PANEL METER
0.25 MA coil made tor the G.P.O. A very
especially when panel space is limited. ©2.90.

BLACK LIGNT. Can add a touch of novelty to parity or disco. We have in stock the Allas 175 watt U.V. Lamps. These plug straigh lamp about the size of the old-fashioned 200 wart lamp. Price
fio. 5 . C 10.35
PANEL METER 0.1 mA
E3.45.
SHORT WAVE CAYSTAL RADIO
All the parts to make up the beginner 8 model, Price $£ 2.30$. Crysul earplece ${ }^{65 \mathrm{p} . \text {. High resistance headphones (giver }}$
£3.75. Kit includes chassis and front but nol case.
RADIO STETHOSCOPE
Easy to fault find - stan at the serial and work towards the speaker

- when signal slops you have found the fault. Complote kit C4. 05 .
IMTERRUPTED BEAM KIT
This kit enables you to make a switch that will trigger when a steady eam oll infra-red or ordinary light is broken. Main components elay. photo transisto.
PUNCHED TAPE EQUIPMENT for controlling machine 1001 s , etc., motorised 8 .blt punch with matching lape reader. En
computers believed in good working order, any not so would be computers believed in good working
exchanged. $£ 15$ the pair. Carriage $£ 3$.
FRUIT MACHINE HEART. 4 wheels with all fruits, Motorised and can defy your inends getring the "jackpot". $\mathbf{6 9 . 9 5}+\mathbf{E 4}$ carriage. desoldering pump
conice work gener ally. Price $\mathbb{E} 6.35$
-CORE FLEXCABLE
Whine puc for telephone extensions. discolighis, erc. 10 meves $\mathbf{C 2}$. MUGGER DETERRENT
A high-note bleeper, push batching switch, plastic case and battery complese kit.
Humiortr switch
American made by Honerwell. The action of inis device depends upon the dampness causing a membrane to stretch and trigger a
senstive microswitch. Very senstive breathing on it for instance senstive microswitch. Very sensitive breathing on n for
will switch it on. Micro 3 amp at 250 V a.c. Only $\mathrm{E} \mathbf{1 . 1 5}$. SAFE BLOCK
Mains quick connector will save you valuable time. Features include
quick soring connectors, heavy plastic case and auto on and off swith. Complete kit E1,95.
V3 MICROSWHTCHES
Over 50,000 in $510 c k ~ \equiv 11250$ AC working. winh 3 silver con tacis for /o circuls - 10 amp 25 each or $\mathcal{L 2 0}$ per $100,15 \mathrm{amp} 35 \mathrm{p}$ each

MAINS ADAPTORS

Why use expensive batteries
operate your radios and equipm
operate your radios and equipm

- Sinclair gives $9 \mathrm{v}-100 \mathrm{~mA}$

Alua gives 6 v 7.5 or $9 \mathrm{v} \cdot 300 \mathrm{~mA}$
$-£ 3.95$
-Crown

C3irfe
C3. 95

These are all made up complete with mans lead in plastic cases. We can
also supply Mains Transisior Powe Pack Kin for Voltage outputannting
trom 3 v to 16 v up 10300 mA from $3 v$ to 16 v up 10300 mA
complete kit with double insulated mans - $\mathbf{~ M} .95$.

MULLARD UNILEX
A mains-operated $4+4$ stereo system. Rated one make a wonderful gift for almost anyone. In easy-to-assemble modular form this should sell at about £30-but due to a special bulk buy and as an incentive for you to buy this month we offer the
system complete at only $\& 16$ including V.A.T. and system co
postage.
FREE GIFT-Buy this month and you will recelve a pair of Goodman's elliptical 8 $\times 5^{\prime \prime}$ speakers to match this amplifier.

VENNER TIME SWITCH mains operated with 20 amp switch, one on and one off per 24 hours repeats daily automatically correcting for the lengthening or
shortening day. An expensive time swith but you can shortening day. An expensive time switch but you can
have it for only $£ 2.95$. These are new but without case have it for only $£ 2.95$. These are new but without case,
but we can supply plastic cases (base and cover) $£ 1.75$ or metal case with window $£ 2.95$. Also available is adaptor kit to convert this into a normal 24 -hour time
switch but with the added advantage of up to 12 on/ofts per 24 hours. This makes an ideal controller for the immersion heater. Price of adaptor kit ls $£ 2.30$.

DRILL CONTROLLER

Electronically changes speed from approximately 10
revs to maximum. Full power at all speeds by finger.tip control. Kit inciudes all parts, case, everything and full instructions, £3.45.
Made-up model £1 extra

DELAY SWITCH

Mains operated-delay can be accurately set with pointers knob for periods of up to $21 / 2$ hours. 2 contaets suitable to switch $10 \mathrm{amps}-$ second
minutes after 1 st contact. £1.50.

NEW KITS

IT'S FREE

Our monthly Advence Advertiving Bargeins List gives detalis
of bergsine avtiving or just ernved often bargeine which sell oun before our mdvertinement can appear-it's an interesting
 Bangains still evailebio from previous lines.
SUPER BREAKDOWN PARCEL with tree gitt of a desoldering purnp. perhaps the most useful break-down parcel we have ever
offered. Consists of 50 nearly all diflerent computer panels on otrered. Consists of 50 nearly all difterent computer panels on
which you will find: over 300 IC.s. over 300 diodes. over 200
transistors and many hundred transistars and many hundred other parts. resistors.
multiturn pots, rectifiers. SCR evc. etc. for only $£ 8.60$. you deduct the value of the desoldering pump. works out to just
 heating jobs any longer chilly evenings - so don'l put off thocks
tangential heater tanis at we will supply the
 Thase prices include VAT but not the control switch. Which is the
inree interlocked rocker type tor the 2 KW . price 0.08 s and the four interlocked rocker type for the 3 KW . price 95°.
12 v MOTOR BY CROUZET - a powerful motor virtually impossible to stop by hand. size approx 2% in long and 2 Vim dial
this is a permanent magnet field type so is revarsible simply by changing polarity and has a relatively cons cant speed with or io large models, or smat machines pultey price $\mathbf{~} 3.98$ ortached. Ideal 12 v MOTOR BY SMITHS INDUSTRIAL $£ 3.85$. these are series wourid end become more powerful in cars. these are series wound and become more powertul as load
increases - they will in fact burn themselves out if over-loaded to increases - they will in fact burn themselves out it over-loaded to
stopping point - not polarity reversible - Gut if you are prepared to
do a lmile unsoldering and rewifing then they will weverse do a imple unsoldering and rewiring then they will everse ap the flick
of a switch. Being series wound they will also work off a.c. mains of a switch. Being series wound they will also work off a.c. mains
infough a mep down transformer and tit you use e veriable voliage type then the motor speed can be varied by the voliage. Size approx
$31 / 2 \mathrm{in}$ Iong by 3 in dia these have a good lenghth of 14 in dia spindle MAINS OPERATED LOW SPEED MOTORS 2 waths type a
 $\mathrm{hrs}, 1 \mathrm{ir} 4 \mathrm{~h} .1 \mathrm{rh}, 2 \mathrm{rh}, 3 \mathrm{rh}, 4 \mathrm{rh}, 12 \mathrm{rh}$,
4 m .8 m .15 mm .200 rm, ait at E 2.85.
motors with gearbox athached the final shat opatated induction square hole, so you have alle instive coupling methods - final
 Motory but with final speed 110 rpm and 80 rpm same price.
'VALL MOUNTING THERMOSTAT by Danloss has a pretty two tone grey case with circular white scale and dlal. Setting
temperature from $0-30 c-13 \mathrm{amp} 250 \mathrm{v}$ contachs. Price $\mathbf{4} 4.60$,
 larger oness). If you can call And colilect thes e these cabinels you can
save yourself the quite considerable postage and you only have to save Yourseif the quire considerable postage and you only have to
buy \& lew 10 get a discount as well. The quantity discount for these
is a speciat rate of 25% it you buy pen is a special rate of 25% it you buy ten or more Note these cabuners
are very good quality (made for Rank Audio Systems) the grill material is Dacrof.
MERCURY BATTERIES. Bark of 7 mertury cells type 625 which are approximately \%in dia. in plastic fube, giving a total voltage of
10.7. Berng a plastic tube it is very easy to break up the batery into 10.7. Being a plastic tube it is very easy to break up the battery into
senaraze cells which could be used for radio control and similar equipment. Cartan of 25 baterise $£ 1.15+85 \mathrm{p}$ post.
WALF-PRICE CABLE OFFERS. We have good 3 tocke of

3-CHANNEL SOUND TO LIGHT KIT

Complete kit of parts for a three-channel sound to light unit controlling over 2,000 watts of lighting. Use this at home if you wish but it is plenty rugged enough fo Disco work.
The unit is housed in an attractive two-tone metal case and has controls for each channel, and a master on /ott. The audio input and output are by $1 / 4^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socket facilitate ease of connecting lamps. Special snip price is $£ 13.50$ in kit form r $£ 16,50$ assembled and tested.

THIS MONTH'S SNIP

Here's a super bargain for you. 100 wist drills; regular toolshop price over
$£ 50$, yours for only $£ 10$ including V.A.T. and post. With these you will be able to drill from the tiniest holes in p.c.b. right up to $1 / 4^{\prime \prime}$ for switches, etc. Don't miss this snip - send your order today.

MINI-MULTI TESTER

Deluxe pocket size precision moving coll inst
jewed bearings -2000 o.p.v. mirrored scale.
11 instant ranges measure:
$D C$ volts 10,50,250,1000.
$A C$ volts $10,50,250,1000$.
AC volts $10.50,250$,
DC amps $0-100 \mathrm{~mA}$.
DC amps 0-100 mA.
Continuity and resistance 0.1 meg ohms in iwo ranges.
Complete with Test Prods and instruction book showing how to measure capacity and inductance as well.
Unbelievable value only $£ 6.75+50$ p pos Unbelievable value only $\mathbb{£ 6 . 7 5 + 5 0 p}$ posi and
insurance.

FREE Amps ranges kit to enable you to read DC current from $0-10$ amps, directly on the 0-10 scale. It's free if you purchase quickly but if you already own a mini-rester and would like one, send $\mathbf{\Sigma 2 . 5 0}$.

BULK ENQUIRIES INVITEO. PHONE HAYWARDS HEATH 54563

J. BULL (Electrical) LTD.
 (Dept. HE, 34-36 AMERICALANE HAYWARDS HEATH, SUSSEX, RH16 $30 U$

Stze	Type	Price	Cartiage
mm		toc metres	
1.5	Snnolt	[400	${ }_{6} 1.75$
1.5	Flal win	c6.50	12.75
1.5	Flal 3-cirs 8 E	[9.75	63.50
1	simple	c7.50	
1	flat inum	111.50	1500
6	Fual 3 -wer	c32.50	55.00
16	- Twe 8 E	67900	\$10.00

lact an electronic megger, which lesis an voltage of around 250 , lact an electronic megger, which lests al a voltage of around 250 .
thus reveating any leaky points. These must have cost at least f 150 each to make. In a portable light weight case, size approt 9 9n π 9in π
Gin with carrying hande. Hias two moving coil panel melers which give cleas readings of resistance from fractions of an ohm ringht up to
100 megs and then to infinity. We have two versions of these Instruments 1) is as good as new and checked and tested before
despatch price $£ 22.50+£ 338$, post $£ 2.50$. 2\} Secondhand models complete and believed to be in working order but not
checked nor guaramteed. $£ 12.50+£ 1.87$, post $£ 2.50$ MAKING A CONVECTOR HEATERT We Can ottor a bank ot tour By comparatively simple switching 8 heat outputs ranging from
approximately 250 watts to 4000 watts can be achieved. The elements which have push on lag connectors, extend to a length of
approx 17 trin trom ther mounting plete. .o $\&$ relatively compoct POSt E1.50. G.O HIGH GAIN AMP/SIBNAL TRACER, Incase measuring
 Witheradio it functions very well as a signat uacer By connecring b
simple coil to the input socket a useful mans cable tracer can be and on-off volume control, mounted flush on the sop. Many ot her uses include general purpose amp. cueing amp etc. An ab
bergain orn 1.85 . Suitbble 80 ohmn earplece 69 .
OUR CAR STARTER AND CMARGER KIT OUR CAR STARTER AND CHARGER KIT hes no doubl saved car off mansis or bring your bantery up to full cherge in you cauple of bridge recirtiers, start/charge switch and flill inmeruc, tions. You con
assembie this in the evening. Box th up of teave tt on the shelf in the garage. Whichever suins you best. Prica $E 11.50+\varepsilon 2.50$ post.
MOUTH OPERATED SWITCH. Made for weshing mecher control water level etc. this is a sensitive low pres surg device which pressure but ail within a normal persons blowing capacity - blow gennly into it and No. 1 switch operates. blow a hatile sironger and
No. 2 operates. blow harder still and No 3 operates. The switch is airtught so the weight of water or other fluid substance could operate
it Undoubtedly a swich writ very many applications. Disc type construction, this is approx $31 / \mathrm{h}$ dia a 1 tin thact - the air entry is appe approx $3 / 16$ in dia - elecirical coniacis we estimate a 10
amp cloa 230 volt - connection by push on tags. Order ref. RS. 4 PE PREPARE D. For possible blackouts and interruptions in electricity supply this winter. Have some emergency lighting 21 m tubes trom 12 V car batrery and the price is $\mathrm{E4.65} 80 \mathrm{p}$ posi complete with hube. please slate which.
BLEEPERS 6 or 12 v battery or
using in most alarm circuits but for car and motor cycie alarms.
These give a loud shrill note. Ametican made by Oetia Alarm. Prico 87p. Large quanitites available
MOTORIZED LIGMT FLASHER. Christmas is coming. so vou "ve got to think about your decorallue lighting. to make this flash we
can offer two motorized units both capable to 2000 watts of light. can ofter two motrorized units both capable to 2000 watts of light.
One $1 / 2$ second fiaher changes every $1 / 2$ second and the 2 second
"lashel changes every 2 seconds. Either yypo $\mathbf{C 6 . 9 0}$.

WE HAVE ALL THE NEW ATARI ${ }^{\text { }}$ VIDEO GAME PROGRAM ${ }^{\text {M }}$ CARTRIDGES.

ATARI

 $+$

 $+$ VAT

 VAT}

TELEPHONE FOR FREE COLOUR BROCHURE 01-301 1111

Double

Dice

Chance your luck with HE's latest game of fortune - for those readers who can't find the energy to shake'em - here's a pair you only have to touch

THE TIME OF YEAR approaches when more games are bought and played than at any other. A large percentage of these games need some system whereby a random number between 1 and 12 can be quickly and easily generated the usual way of doing this is with a pair of dice. A good electronic dice project hasn't materialised in any of the hobbyist magazines recently and so we thought that the time was right for HE to produce a dice to beat all dice. Although quite ingenious in operation, the HE Double Dice is simplicity itself to build - apart from the display there are only 18 other components, and all parts mount on a small PCB.

The display is formed from individual LEDs, seven in each die, grouped together into the well-known dice formation. Five ICs perform all logic, control, counting and driving functions of the circuit and both die displays are completely random and non-synchronised.

The device is touch-controlled simply placing a finger over the two contacts starts operation of the dice. The LEDs light up and are seen to flash at a fast rate (showing that the 1 to 6 sequence is in operation.) Upon removing the finger, the LEDs stop flashing and hold the last number displayed

After a short time, all the LEDs extinguish, showing that the dice is ready for its next cycle of touching and
displaying. The display period is defined, mainly, by the value of capacitor C7, and using the value shown a period of about 5 seconds is obtained. Increasing its value lengthens illumination time and vice versa

LEDs need a fair amount of current to give a reasonable illumination and if they remained on at all times, battery life would be severely limited. The selfcancelling function reduces the average current consumption of the circuit and therefore prolongs battery life.

Side view of the HE Double Dice showing the position of the LEDs

Buylines

You shouldn't have any trouble in obtaining the components for this project.

Approximate price (excluding case and $P(B)$ will be around $£ 7$

Construction

Start construction by inserting the six links into the PCB as shown in the overlay diagram of Fig.2. It is helpful to use a pair of long-nosed pliers to bend the link wires before insertion. Resistors, capacitors and IC sockets if used, should be put in now but leave the ICs till last.

Next, insert LEDs 1 to 14 into the board in the double dice formation. Mount them about 10 to 15 mm above the PCB so that they stand above the maximum height of the othercomponents. Connect the switch, battery and touch contacts (two wires will do for test purposes), plug in the five ICs, switch on and test the project.

Housing the PCB in a case should not be a problem. Suggestions are: either mount your board on the underside of the case lid, drilling holes for the LEDs to mount into, or make a panel out of coloured transparent plastic (or similar) through which the LEDs will be visible.

You can make your touch contacts out of virtually any small pieces of electrical conductor - touch plates are available commercially, of course. We chose to use the heads of metal drawing pins inserted through the case lid. Soldered connections can be made underneath the lid to the board. If you do the same, remember that a metallic lid conducts and the contacts will have to be insulated from it.

Figure 1. Circuit diagram of the amazing Hobby Electronics Double Dice

How it Works

The circuit of the HE Double Dice can be seen in Fig.1. By cross-referring to it, the operation of the dice may be more easily understood. Most of the circuit is duplicated for each dice (IC2, 3 and common components) - the action of the other dice is identical (using IC4 and 5 instead).

Figure 3.

The, LEDs are formed on the PCB to a standard dice configuration as in Fig.3. In this, diagram the individual points have been grouped together into three categories A, B
and C. By looking at the numbers on a dice in turn, a table can be drawn up, as in Fig. 3 to show that all LEDs in any one category must be either on or off at the same time. Therefore, we can consider the groups as single logical levels in a set code. It just happens that the set code is required is part of the binary code, of which the part of interest is shown in Fig. 4 against the corresponding denary, or ordinary number value.

Figure 4.
ICs which count in binary are readily available and the 4522 (IC3) does just that. It is a down counter, meaning that it starts its cycle at binary 15 and counts down to 0. On the next count after 0 it would (normally) reset to 15 and start the cycle over again. However, we have taken advantage of the fact that the 4522 is a programmable counter which can, on a command pulse, be programmed or set to a particular number in its cycle. In our circuit this number is 6 (represented by the logic levels at pins 14,11 and 5 , that is $1,1,0$). The
command pulse is obtained from the output of IC2c, which is at logic 1 only when its three inputs are 0 . These inputs are in parallel with the LED drive outputs of IC3 so that as the number 0 is displayed by the LEDs the counter automatically jumps to the number 6 . The in terval between the count to 0 and the display of 6 is so small that to the human eye it appears that the counter progresses naturally from 1 to 6.

IC2a and b form a simple astable multivibrator which produces a square wave of about 100 Hz and which clocks the counter whenever pin 1 of IC2 is at logic 0 .

The part of the circuit which is common to both sides is that of IC1. Pins 12 and 13 of this IC are held normally low by R1, a very high resistance. The output of IC1d is therefore normally high (the gate is acting as an inverter). If a finger is placed on the touch con tacts, skin resistance takes the input to this gate high, and the output, pin 11, goes low. This pin is connected to pin 1 of the astable which as detailed above, clocks the counter.

As well as enabling the astable, pin 11 is connected to the input of a monostable multivibrator with an 'on' period of about 5 seconds so that as a finger is put on the touch contacts the monostable enters its 'on' state. The output of the monostable is connected to pin 10 of the counter so that during the 'on' state the LED display is allowed to function. At the end of the 5 second on-period the monostable switches off and the display is disabled (the LEDs are held off) thus saving unnecessary battery wastage.

Double Dice

TO TOUCH Figure 2. Overlay diagram for the HE CONTACTS Double Dice

World famous for quality, reliability and value for money. $\mathbf{2 0 , 0 0 0 , 0 0 0}$ customers can't be wrong!
Now Casio, the new technological leaders, take a giant step forward in time with

THE ULTIWATE WATHIES

Analogue Display

Digital Display

You have to hand it to Casio for the best of both worlds! AA81 LCD ANALOGUE /DIGITAL ALARM CHRONOGRAPH

- LCD Anslogue. Independent display of hours and minutes, with synchronous digitat seconds, can be used as a dual time
Digizal. Independent display of hours and minutes, synchronous seconds, day and date
- Auto calendar. Four year calendar is set for 28 days in February.

Professional stopwatch. Measures net, lap and sial and place times in units $1 / 100$ second o 12 hours. A signal confirms start/stop operation
Daily reminder alarm. Sounds at the pre-set time and an amazing "Star Burst" display flashes for 30 seconds
Countown slarm. Measures normal and net times from 1 minute to 60 minutes. 30 second alarm and "Star Burst" display. 10 minute signal. Star/stop signal

- Time signal. Every half hour on the half hour. Every hour on the hour. Two tones
- Tone control. Tone pitch can be varied in 10 steps

Lithum battery. Approx. 18 months life using alarm for 90 seconds and nightlight for 3 seconds daily. ± 15 secs/month accuracy. "Merry-go-round" demonstration display. Water

ONLY £29.95 for around 40 functions. RRP $£ 34.95$

Tune in to Casio. 12 melodies will alarm you - the price won't!
12 MELODY ALARM CHRONOGRAPHS with countdown; date memories

- Time display. Hours, minutes, seconds, am/pm. 12 or 24 hour format

Calendar. Day, date and month auto 4 yrs. calendar

- Daily alarm. 7 melodies. one for each day of the week, including "American Patrol
- Hourly time signal. With "Big Ben' type tune. When date memories are set, the chosen melody is played instead of the time signal. Easily switched on or off
- Date memory. Select "Trinklied" or "Wedding March" to be played instead of hourly chimes on the set day. Press the calendar button for additional renditions.
- Birthday memory. "Happy Birthday" is played instead of hourly chimes, or when the calendar button is pushed. The message "Happy" is also displayed
- Christmas memory. On December 25th "Jingle Bells" is played instead of the hourly chimes
- or when the caiendar function is selected

Countdown slarm. From 1 second to 1 hour. At zero a chime sounds for 10 seconds and the
Stopwatch Net lap and ist $\&$ 2nd
siat/stop $1 / 10$ second to 1 hour. A signal confirms Picturesque moving display of every note 1 minute intervals speaker. Backlight. 2 year battery. Mineral glass. Water resistant case. M-12 Resin case and strap. S/S trim. M-1200 All stainless steel. 9.0 mm thick case

W100
£19.95
£32.50

Price includes VAT and P\&P. Send your company order, cheque, P.O. or phone your ACCESS or BARCLAYCARD number to

THMPUS
Dept. HE, FREEPOST, 164167 East Road, Cambridge CB1 1 DB. Tel: 0223 312866

JOIN THE KEYBOARD REVOLUTION!

WITH THE AMAZING NEW CASIOTONE 201

Pirch, timbre and harmonics of 29 instruments have been
measurued. digitalised and stored in electronic chip memory for lainhtul reproduction. A A-sound memory tunction allows you to change between any 4 pre-selected instrumments at a such. In all
modes inis protessional multi-instrument is polyphonic - it can piby full chords of up to 8 notes together. The 29 white and 20 black kevs span four octaves. The simplet-10-use control panel has a 4 -position Instrument Memory selectior, Vibrato switen. Tone
smich, and Volume convol. Integral speaker. LINE OUT AUXIN Smith, and Volume conurol. Integral speaker. LINE OUT, AUX IN.
ECHO TO And ECHO FROM Jacks. FOOT VOLUME pedal ond SUSTAIN pedal optons
Velvet luack or Woodgrain. Dimensions: $3 \times 331 / 2 \times 9 / \mathrm{n}$ inches.
Weighi: 15105 . AC only

CASIOTONE M-10. Four innatrumente on the move An instrument of the now age. encompassing the finest of the old. 8-note polyphonic playing of piano. organ, violin and filute. 32
keys. 19 white and 13 black, span woo and a half octiaves. kevs. 1 .nstument selectior switch. Vibrato switch. Volume control. Integrai speaker. Output lack for external amplifier, headphones elc.
Mains/battery capability. $2 \times 35 / 255 \%$ inches. 3.516 RRP £79. all this for ONLY £69
Now Conio meone dightal musict

A250
F-300 Sports chronograph

WATCH THIS SPACEWAR

The bored room calculator CASIO M G-880
An ordinary calculator?? Abso.
lutely enthralling. Action-packed lutely enthralling. Action packed spateships. Beas the highest
scorel ti-nore melody maker pre-programmed When the Saints Go Marching In. Full memory, \%, auto-power off. Full memory, \%, $1 / 4 \times 2 \% \times 41 / 2$ inches
(£12.95) £10.95
12 Pre-programmed melodies MELODY 90 (ML-90)

Clock, calendar, stopwatch. cal. culator. 11 -note melody maker.
$\%$ square roots. Alarm $1 ; 7$ tunes. one for each day. Atarm 2 : A fixed tune. Date Memory, tour anniversary tunes. Kiss touch keys.
1 year battory lite. $7 / 32 \times 2 \mathrm{~h} \times \mathrm{x} 4 / 2$ inches (E22.95) £19.95

 11 -note melody maker, calcu
$16 \times 41 / 3 \times 21 / 4^{\prime} .14$ months batteries

All other Casio Calculators. P.O.A.

SEIKO

DUO DISPLAY

rependent analogue display of hours and minutes, with Digital display of ho
houf format). Lows, minules, seconds, am/pm f12 or 24 Day and date auto 4 year calendar function. 24 nour aiarm $1 / 100$ second stopwaten to 11 hour. norma battery with battery life Indicator. Stainless steet. Water resistan. Hardiex glass.
JET 010 (illustrated)

ONLY £62.50

JET
JES 994 (Equivivalent io Hamparne dial
HXOR日)
662.50
652.50

DFT 048

ALARM Chbonograph
Countoun ume
Hours, minutes. seconas. alpha day snd date. 24 hour slarm second to 12 hours.s. ne: lop and and tis 8.2 nd place.
 ONLY £37.50

DFT 038 100 METRE Water resistant
Sumbibe tor swmming. water sking et. $£ 49.95$

DER 048

ALLARM CHRONOGRAPH
Soler Doweroro
Wookly
Countroown Alum
Hours. minutes: seeconds, day, date and monith. Weekiv

 lap. istis 8 2nd place e eiming. Doubbe display function.
ONLY £52.50

F	DER 018
\%	100 METRE
	Water resistant
8	Suitable for swiming, weter sking etc.
863	Functions as DER 048 above.
-	£69.95

See opposite page for ordering details

CB - CONVERTER CB-705

LISTEN TO CB ON YOUR CAR RADIO FOR ONLY £14.99 + VAT

-Listen for speed traps and accident warnings and learn the lingo
(Hear all 40 channels on your medium wave dial)
SIMPLE TO FIT:
FULLY LEGAL

INSTANT
 ORDER FORM

There's not much happening on the legalisation scene this month but elsewhere CB accessory shops are opening almost daily. Rick Maybury has details

THIS HAS BEEN one of the quietest months for a long time. Although our spies tell us that 27 megs is busier than ever (all 40 channels full some nights!) the campaign has slowed down to a crawl. We contacted the Home Office to see how the Green Paper was faring. The gentleman we spoke to didn't want to commit himself to actual numbers but he did say that if he saw another letter about CB in the next ten years it would be too soon. By all accounts the HO are being inundated with responses, keep it up, we're sure they're getting the idea.

Usually we get to hear of a fair number of 'busts' during the month and even these seem to have tailed off: are the PO and HO giving it a rest?

The media are finally realising that CB is here to stay, and this is amply demonstrated by the sudden proliferation of CB magazines on the bookstalls. Everyone seems to be getting on the band wagon (pun intended). We welcome all these new magazines (with one doubtful exception), they are all doing a splendid job.

The accessory scene is also livening up, two new shops in the London area having been opened within a week or so of each other. The first is A Aerials in St James Street, Walthamstow. We hope to be getting down there in the next few weeks - look out for a report next month. The biggest shop to open for a long time was undoubtedly the Citizens Band Radio Centre in Harrow, and we were invited down to the opening - more about that later

Cheap Rigs

We had two surprises this month in the shape of catalogues from companies advertising actual, genuine CB rigs for 27 MHz . In all fairness both companies stressed that these devices were not available in the UK but both openly admit that they do sell their wares over the counter in the Irish

Republic. The first company is called BIS Electronics. They quote a price of just $£ 28$ for the Sharp 2460 basic 40 channel rig in lots of 20 . This is a trade price so add about 33% for the retail price. The second company is none other than Tandy, who have included about half a dozen rigs in their new catalogue. There are no prices for the rigs but again they are freely available in the Irish Republic. The catalogue does, however, give prices on Tandy's very creditable range of accessories including antennas, mikes and connectors etc.

The whole point of this is to show you just how much the equipment really does cost. A year ago we told you how our roving reporter was offered standard 40 channel rigs, brand new in their boxes, for just $£ 3.00$ each. Admittedly this was in the States but you get the idea. If the Government goes ahead with Open Channel on 928 MHz and limits the number of licences to just 150,000 in the first year, then no manufacturer will be able to make the gear for less than $£ 200.00$. If, say, half a dozen companies manufacture the rigs, then with a production run of just 25,000 each they cannot hope to bring the price down to a realistic level. After all, that number is barely more than a pre-production prototype run. Some Japanese companies can make that number of radios in a weekend: they couldn't justify the expense of setting up production lines for such a limited market. Oh well, back to more pleasant matters.

Midlands Radio Fair And Mass Eyeball

A group of businessmen in the Nottingham and Derby area are organising an event called the 'Midlands Radio Fair \& Mass Eyeball'. This will be held on Sunday 9th November. The organisers tell us that it will be run along the lines of an Antique fair with trade stands, a bar (that sounds interesting!) and

Citizen Band, Antennas and Accessories for Marine, RV, Truck, Auto, Van Motorcycles ... Mobile and Indoor/ Outdoor Base Applications

10-4 Good Buddies

Come to us for your
Car Spares - Accessories
Customizing Equipment
229 CHERTSEY ROAD ADDLESTONE, SURREY

TEL.
CHERTSEY (STD 09328) 62556

- 高
 8

catering facilities. The Nottingham/Derby area is one of the most active in terms of CB interest so the organisers expect a good turn out. You may even see the odd refugee from HE wandering about (probably near the bar) so why not pop along and see what's happening.

The venue will be the Festival Inn in Trowell Nottinghamshire. This is situated on the main Ilkeston-Nottingham road, (A609) about 6 miles from Nottingham, approximately 4 miles from Junction 25 on the M1 motorway. The Fairopens at 10am and will stay open till 5 pm . If you want any more information then you can contact the organisers at:

TVC Ltd., Station Road, Long Eaton, Nottingham (Phone Long Eaton 62247).

CB Handbook and National Directory of Handles

This is what you've all been waiting for. The Hobby Electronics CB HANDBOOK AND NATIONAL DIRECTORY OF HANDLES is finally ready. After months of computerised compilation we have collated together thousands and thousands of registered handles into alphabetical and geographical categories. Each handle has been assigned a unique identification code consisting of numbers and letters so there shouldn't be any confusion in future over who was first. Included in the handbook section are features on CB law, all of the currently-used codes, addresses ofall the local and national CB clubs and details of the National CB organisations. Most important of all is the registration form, enabling you to register your handle in the next edition which will be appearing in the next few months. Remember, registration is absolutely free: all you have to do is to get hold of a copy of the CB HANDBOOK AND NATIONAL DIRECTORY OF HANDLES. This special publication is available only from us, it will cost just $£ 1.00$ including post and packing or, if you can get along to the HE offices, only 85 p. We will of course be happy to quote a discount for bulk orders. Get your copy early to avoid disappointment. Please allow 21 days for postal delivery.

Club Call

There can't be many areas without some form of CB club now but we're still getting news of new clubs. As always we're willing to give your. club a mention if you just jot down a few details. Don't forget the address and a word or two about your membership and meeting place. Here is this month's selection.

```
Clog Town Breakers Club
Secretary: CBC
C/O Astley Bridge,
Bolton BL1 6PY
(Phone 0204 50046)
East Antrim CB Club
PO Box }
Antrim
Northern Ireland
Grampian Breakers Club
Secretary: R.T. Strachan
59 Jasmine Terrace,
Aberdeen,
Scotland
```


Please note:

Open Channel CB Club.

F.W. McKeown is no longer the Chairman of the above club. The new Chairman is Mr S.J. Battersby. All correspondence should now be addressed to: The Secretary, OCCBC,
17 Coronation Street, Blackburn BB1 1BS.

Harrow has Jaws

As proof of the ever-increasing interest in CB, yet another accessory shop has been opened - Citizens' Band Radio Centre - at 331/7 Kenton Road, Harrow, Middlesex. It is a family business, run by David, Anita and Irving Jacobs.

David Jacobs spoke about some of the products: most interesting was the Jaws 2 transceiver. This is supplied in kit form (assembled PCB, case, knobs, brackets, screws, etc.). When assembled, it operates only as a receiver thus, it was claimed, meeting the requirements of the law. A full set of components, however, are available for this rig and it costs around $£ 70$. Prospective buyers are warned by staff of the legal position concerning CB

According to David, sixty different types of aerial are on offer, including Avanti, PAL-Firestik and Shakespear. The linear amplifier range covers 25 W to 1 kW . Most popular of these amps seemed to be the Lazer 1000 (switchable for $25,50,75$ and 100 W). Mikes included the popular K40, and Dacron and Alinca were among power supplies on show. It is planned to have a monitor receiver, model 733C, available 'before Christmas'. This will cover AM, FM (56 to 108 MHz) and CB (26.965 to 27.405 MHz) and is likely to cost around $£ 15$.

Stocked for service - view inside Citizens' Band Radio Centre during the press reception

Bold display of CITIZENS' BAND is counterpoised with OPEN CHANNEL outside the shop.

Big Ears Telecommunication Ltd.

 68 NARBOROUGH ROAD, LEICESTER TELEPHONE 0533546031A.C.H. ACCESSORIES

Station Road
Cheadte Hulme
Manchester $061-4853356$ BOLTON GOODIES Abinger Street Burniey
Lancs.
028226250
COUNTRY COMFORT 40 Keys Hill Atherstone
082-77.5998

BIG EARS CB

IF YOU WANT IT WE'VE GOT IT THE BIGGEST SELECTION IN THE COUNTRY

ANTENNA SPECIALISTS MS 264 disguise
antenna - possibly the most popular CB antenna in the U.K. $£ 25.01$ inc. vat
All the above are retail prices and subject to availability
We wish to appoint a limited number of agents throughout the U.K. - contact Marketing Dept.

HOWLEY RACING Winwick Road

 Warrington 0925-51793KEN'S CUSTOM CAR CENTRE
Fawcelt Road
Southsea 0705.831238

SKywave

Curzon Road
Boscombe
Bournemouth

PITSTOP
9 Carlion Parade
Orpington
Kent
01-622-4035
THE VAN SHOP
Roman Road London 01-980-3534 WEEKEND D.I.Y.
Thorn Road Stainelorth Doncaster $0302-841001$

WHEEL \& CUSTOM 143 Rochdale Road Bury
061-764-0554
WHEELS OF DOVER
Snaresgate Street
Dover
0304-207043
WHEELSPIN
15 Staines Road West Sunbury-on-Thames Middlesex Sunbury 83346

For price list please send
$8^{\prime \prime} \times 5$ " sae envelope.

CB VIPS

Mura

Three for the price of one this month - our roving reporter has been to Mura Ltd where Elliot Kahan, David Gross and Ced Crow are running one of the most successful CB accessory shops in the country.

Mura started some two years ago, after Elliot and Ced had returned from a visit to the States. Naturally the lack of CB in this country inspired them to do something about it, they actually started operations with just three antennas! They adopted the name Mura from an American company of the same name, Mura Corporation, one of the largest manufacturers of CB accessories in the USA. Just after Christmas this year they opened their now famous shop in Church Road, Hendon. It didn't take long for them to build up a respectable retail business, mostly by word of mouth, customers now come from all over the country. Much of their business now originates from the nationwide chain of dealerships and few areas are without a Mura stockist. Indeed, whilst we were in the shop one gentleman was busily buying stock for a shop that he was about to open in North London. Some £2,000 changed hands in just under ten minutes. Although Elliot wouldn't be too specific, it would seem that they are enjoying a turnover in excess of this country's current balance of payment. CB must be one of the most successful growth industries in these troubled times.

If you can cast your minds back a couple of months you'll remember our first visit to Mura. At that time they were heavily into antennas (base station aerials a speciality). That is still very apparent, although they can now offer a very comprehensive range of mikes, SWR and test meters, mounting hardware and a rather interesting CB monitor. This particular model is one of the best we've seen: it even has a squelch and noise limiter control. At $£ 14.95$ it has got to be one of the best in terms of value for money, the only problem being that they

From left to right: Ged Crow (seated) David Gross and Elliot Kahan.
only have a limited number of them so you'll have to hurry.
Getting back to the business, they has recently opened a small but worthwhile operation in Tottenham Court Road. That looks set to expand shortly, and Mura are currently thinking about opening another shop very soon.

We asked the lads what they thought about Open Channel. We needn't have bothered as they felt pretty much the same as everyone else. Though perhaps more shrewdly than most, they have already had some sample antennas for 928 MHz . All they need now is some equipment to connect them too. As they pointed out at the time, that is one line that won't be selling too well for a long, long time.

A number of CB magazines were on sale. David said that amateur radio (RSCB) publications had been selling faster than those on CB. In his view, CB was often the first step for some into ham radio, and said: "One in 10 are showing an interest in moving in that direction."

The question of the sale of high-power linear amplifiers (burners) was raised. In David's view, those who bought these had serious intentions of working long distances and would be already using a beam antenna (especially radio hams on 10 metres). CBers, he felt, preferred to stick to a highefficiency aerial rather than use a burner. They realised, he said, that using a high-quality aerial was better than putting ' 1 kW into a coat hanger.

He saw Open Channel as: 'a means of stalling on behalf of the Government and Government bodies'.

He also said that experiments into the use of aerials for 928 MHz (the proposed OC frequency) were being undertaken by one of the Centre's overseas suppliers.

Irving Jacobs had grave doubts about 928 MHz , and saw little hope for British rig manufacturers if this became the accepted band. We would have, he said, 'the best of the boot' if 27 MHz was legalised, reaping the benefits of US experience on this waveband.

An associate company - Open channel radio GB Ltd. has been formed to invest in rig manufacturers - once the proposed OC network comes into being.

Teach Yourself CB

We received a cassette tape the other day from a company called Bridair Audio Promotions Ltd. These enterprising people have produced the very first guide to British CB with their tape called 'Teach Yourself CB'. After slapping it in the HE cassette player we must admit that it sounded rather odd at first. After all, American CB slang explained by someone with a BBC newscaster's accent does sound awkward, to say the least. Actually it did grow on us and after hearing it a couple of times we've got to say that we're impressed. It has been professionally produced and although the commentary is slightly shorter than we would have liked there is a good selection of Country \& Western music (all CB songs) to listen to. All in all a good introduction to British CB, there are lots of helpful hints and tips and it should get a lot of people get acquainted with two-way radio. We will be offering this tape as a special offer in our forthcoming CB publications. If you just can't wait then you can contact Bridair at:

Basement Studios, 158 New Bridge Street, Newcastle on Tyne, NE1 2TE.

Each 40 -minute cassette costs $£ 2.99$ plus post and packing from the above address.

Times up again for another month. Stay lucky and see you in four weeks.

The Largest distributors of CBaccessories in the UK.

Come and see the biggest and best selection of CB radio accessories including:-

MURA CBT 25
SWR/P/AIM

A LARGE SELECTION
OF ALL ACCESSORIES ALWAYS IN STOCK
agents throughout the uk
ABERDEEN: Cheyne Electronics, Crossfields, Turiff, Aberdeenshire. (08885) 254

BLACKPOOL: ADS Electronics, The Ladder Centre, 239 Dickson Road, Northshore, Blackpool
BURY, LANCS: B \&H Electronics, 183 The Rock, Bury, Lancs. $061-7616144$
BURY ST. EDMUNDS: Denver Autos (Skid Parish), Troston, Bury St. Edmunds, Suffolk. Honnington 506 CARLISLE: R \& S Supplies, 29 Lamb Street, Upperby, Carlisle. Carlisle 38172
CHELTENHAM: Breakers Yard, 1 Moorend Terrace, Croft Street, Cheltenham, Glos. (0242) 39783 COVENTRY: CB Specialists Coventry, 79 Far Gosforth Street, Coventry. 020329567
EAST BARNET: Autospar. 271 East Barnet Road, East Barnet, Herts. O1-449 5070
EAST BARNET: Autospar, 271 East Barnet Road, East Barnet, Her
EDINBURGH: Custom Equipe, 131 Fountain Bridge, Edinburgh.
EDINBURGH: Custom Equipe, 131 Fountain Bridge, Edinburgh
GREENFORD: Sound Around, 114 Ruislip Road, Greenford, Middlesex. 01-575 5030
ISLE OF WIGHT: Electronic Pastimes, 29 North Road. Shanklin, Isle of Wight. (0983386) 6103 LEEDS: Hi-Fi Servicing, 26 Moreland Grove, Leeds 17. (0532) 686960
LITTLEHAMPTON: Golden No's, 6 Bayford Road, Littlehampton. West Sussex. (09064) 24858
LONDON (Fulham): Chelsea CB Centre, 73-77 Britannia Road, London SW6 2JR. 01.7313287/8/9
LONDON (West End): Sonic Sound Audio, 248-256 Tottenham Court Road, London, W.1.01-6371908 N. IRELAND: George Ball Discount Sales. Unit 16, Kilwee Industrial Estate, Upper Dunmurry Lane, Dunmurry, Belfast. 0232619725
N. IRELAND: J C Patterson. The Corner House Lisburn, N. 1 . 08462 2034/5
N. IRELAND: McNaulty \& Sons, Belmare St., Enneskellen, N. Ireland. (0365) 4443 ORPINGTON: CB Shack. 16 Mount View Road. Orpington, Kent. (66) 32411
SRPINGTON: CB Shack, 16 Mount View Road, Orpington, Kent. (66) 3241
SCOTLAND: Cheyne Electrical, Crossfields, Turriff, Aberdeenshire. 08885254
SCOTLAND (Greenock): Motor Accessory Centre, 1 Regent Street, Greenock, Scotland. (0475) 25399
SHEFFIED: Steel City Custom, 132 Pennstone Road North, Sheffield. (0742) 346234
STOKE-ON-TRENT: HSBC, 27 Hope Street. Hanley. Stoke-on-Trent. (0782) 273815
TUNBRIDGE WELLS: Charlie Bravo, 103 Camden Road, Royal T μ nbridge Wells. 089234207 WATFORD: Component Centre, 7 Langley Road, Watford, Herts. (92) 45335
WEST BROMWICH: GTTS Electronics, 63 Andrew Road, West Bromwich, West Midlands. (021) 5883396 WIGAN: Car Radio, 8 Darlington Stteet, Wigan, Lancs. (0942) 43101 WORCESTER: DAD, 23 Blackfriars Square, Worcester. (0905) 21919

> 79 Church Road, Hendon, London NW4 Tel: 01203 5277/8

Beasties

ton $83 \mathrm{~dB} \mathrm{~S} \mathrm{~N} \mathrm{in} \mathrm{phono} \mathrm{application)}$ 99p ${ }^{\text {HA } 1397 \text { (Poweramp } 20 ~}$ HA 1397 (Poweramp 20 watrs
0.02% distortion (yyp) 1975 p Both with deta and circuits

PFA 80 80 w into 80 PFA 120 THD $\leqslant 0.008 \%$ S/N 120 dB . Built 113.95.

5 B0512 (60W, 1/2A. PChan.) $80512(60 \mathrm{v}, 1 / 2 \mathrm{~A}$, Phan.)
BD522 (60 v .1 VAA . Nchan.)
 $\begin{array}{ll}\text { VN67AF (60v. 2A. Nchan.) } & 75 \mathrm{p} \\ 2 \mathrm{SJ} 49(14 \mathrm{~N}, 100 \mathrm{w} \text {. Phan.) } & 340 \mathrm{p}\end{array}$ 2S149 (140v, 100 w . Pchan.) ${ }^{340 \mathrm{p}}$
2SK134(140v. 100 w . Nchan.)
340 p
\star POWERFET AMPLIFIERS *

C.B. AERIAL EVERYTHING BUT RIGS

MOBILE STEREO
Dept. HE, 360 York Road, London, SW 18 Telephone 01-8707362
Free fitting on all units purchased from us
bASE ANTENNAE RAIN CAPS

WE ARE SOUTH LONDON'S IN CAR ENTERTAINMENT SPECIALISTS.

WHATEVER YOUR AUDIO PROBLEMS ARE, COME TO US AND WE'LL CURE THEM.

* Come and have a cup of coffee while we fit your stereo
* Wide range of fitting kits ands aerials \star

BARGAIN CORNER

Show us that you could have purchased for less within one month of your purchase and we will refund the difference!

CAR AUDIO

- New 7 Channel Stereo Grapic Equaliser/ Booster Amplifier. 17 watts R.M.S. per channel frequency response 2 OHz to $30,000 \mathrm{~Hz} \pm$ 12 D6 cut/boost on each channel, complete with fitting kit. You would pay $£ 45$ elsewhere. For limited period we offer the unit for the incredible price of $\mathbf{\Sigma 2 6}(+£ 1.20$ post)
- Suitable Speakers for above. Adjustable angle, shelf-mounting, power handling 30 watts $\max . £ 16$ ($+£ 1.20$ post).

Model Stereo Cassette/Radio. M.W. stereo FM and stereo cassette player, 8 watts per channel, fast foreard and autostop. includes fitting kit and FREE SPEAKERS. Sold elsewhere for up to $) 85$ (believe it or not). Our price $£ 45+$ £1.50 post. (For negative earth cars only).
MULTIMETERS © d 1314 A superb 38 range meter. include $50 \mathrm{~K} \Omega$ / VDC move ment, 10 amp DC Scale, res istance up to $100 \mathrm{M} \Omega$. 2 ranges for tes ting batteries. long extraflex leads, batteries included. Usually sold for E35. FOR PERIOD E25 75 p post.

- DT1004 20 $\bar{K} \bar{\Omega} /$ VDC movement, 16 ranges and off position. mirror scale, protected movement, battery included. Usually sold for $£ 16$, our price £ 12
50 p post.

METAL
 DETECTORS:

- Induction Balance Model. Highly sensitive model with speaker and meler, 7-inch search head and telescopic stem. Usually sold for $£ 39.95$. Our price $£ 24.50+£ 1.20$ post.
Yet another stock clearance bargain: A remarkable little BFO detector which will detect a coin in 6-inches of soil. A perfect machine to see if you really have the patience to take the hobby up seriously. $£ 10$ < +90 pence post).
All goods guaranteed one year. 10 day money back offer on all undamaged goods. Goods ex-stock at time of going to press. Send S.A.E. for details.

MINIKITS ELECTRONICS LTD

PCB Foil Patterns

Books from the HE Book Service

28 Tested Transistor Project £1.55 Richard Torrens. The projects can be split down into simple building blocks which can be recombined for ideas of your own.

Electronic Projects for Be ginners £1.65 F. G. Rayer. Divided into 'No Soldering Projects, 'Radio and Audio Frequency, Power Supplies and Miscellaneous.

Practical Electronic Calculations and Formulae . £2.55 F. A. Wilson. A valuable reference for the home and laboratory, containing all the most frequently used, and some of the less well-known. electronic formulae and calculations.

Popular Electronic Projects

£1.75
R. A. Penfold. A collection of the most popular iypes of circuits and projects using modern, inexpensive and freely available components.

Digital IC Equivalents and Pin Connections ...e£2.85 Adrian Michaels. Covers most popular types and gives details of packaging, families, functions, country of origin and manufacturer

Radio Stations Guide £1.75 B. Babani and M. Jay. An invaluable aid to everyone with a radio receiver helping them to abtain maximum entertainment, value and enjoyment from their set

IC 555 Project \qquad . 2.05 E. A. Parr. Circuits are given for the car, model railways, alarms and noise makers. Also covers the related devices 556, 558 and 559 .

Second Book of CMOS IC

 Projects £1.80 R. A. Penfold. Following in the success of the original. CMOS projects book we present the second volume covering all aspects of CMOS technology from multivibrators to triggering devicesElectronic Security Devices E1.75
R. A. Penfold. Full of construc tional circuits covering the most basic security systems to the Ultrasonic and Doppler Shift systems

How To Build Your Own Solid State Oscilloscope
$£ 1.80$
F. G. Rayer. The book contains concise practical instructions so that even an inexperienced hobbyist can construct a fairly sophisticated instrument with the minimum of difficulty and expense

50 FET (Field Effect Transistor) Project £1.55 F. G. Rayer. Contains something of interest for every class of enthusiast. Short Wave Listener, Radio Amateur, Experimenter or audio devotee.

Linear IC Equivalents and Pin Connections ... £3.10 Adrian Michaels. Gives most essential data for popular devices

Essential Theory for the Electronics Hobbyist $£ 1.55$ G. T. Rubaroe gives the hobbyist a background knowledge tailored to meet his specific needs

Beginners Guide to Building Electronic Projects . $£ 1.55$ R. A. Penfold Covers component identification, tools, soldering, constructional methods and examples of simple projects a re given

50 Projects using IC CA3130 . £1.25 R. A. Penfold. Describes audio projects, RF project. Test Equipment, Household and miscellaneous circuits.

50 Circuits Using 7400 Series ICs £1.65 R. N. Soar. The author has managed to compile no less than 50 interesting and useful circuits using this range of devices, covering many different aspects of electronics.

POPULAR ELECTRONIGS

 BOOKSSinclair, 1. R., Introducing Electronic Systems .. £1.95 Sinclair, I. R., Introducing Amateur Electronics . . $£ 1.65$ Sinclair, 1. R., Electronic Fault Diagnosis £3.55 Sinclair, I. R., Repairing Pocket Transistor Radios . . . £2.60 Sinclair, I. R., Oscilloscope In Use
£3.10
Sinclair, I. R., Understanding Electronic Components $£ 4.20$ Sinclair, I. R., Understanding Electronic Circuits . . . $£ 4.20$ Kitchen, H. T., Handtools For Electronic Workshop . $£ 2.95$ Kitchen, H. T., Electronic Test Equipment £5.20 Capel, V., How To Build Electronic Kits
£2.35
Darr, J., How to test almost everything electronic . $£ \mathbf{3 . 7 0}$ Brown, R. M., How to read electronic circuit diagrams
$£ 5.60$

AUDID

Earl, J., Audio Technicians Bench Manual £3.70
Earl, J., Pickups and Loud Speakers …...... £3.70
Earl. J., Tuners and Amplifiers
................... £3.20
Recorders \quad C5.40
Earl. J., ABC of Hi-Fi . $£ 4.35$
Capel, V., Microphones In Ac-
tion $£ 3.15$

Capel, V., Improving Your Hi-Fi
$£ 3.65$
Capel, V., Creative Tape Recording £4.20
Hellyer, H. W., Tape Recorders
£4.45
Sinclair, 1. R., Audio Amplifiers For Home Construction £2.85

RADIO CONTROL

Drake, J., Radio Controlled Helicopter Models
£4.20 Jeffries, C. R., Radio Control For Model Yachts ... £3.85 Safford, E. L., Radio Control Manual $£ 2.60$

COOKBOOKS

Tracton, K., BASIC Cookbook
£4.10
Lancaster, D., TTL Cookbook
$£ 7.00$
Lancaster, D., RTL Cookbook
£4.65
Lancaster, D., CMOS Cookbook
£8.20
Jong, W., IC Op Amp Cook book £10.00 Lancaster, D., T.V. Typewriter Cookbook £7.75 Lancaster, D., Cheap Video Cookbook $£ 7.00$ Jong, W., IC Timer Cookbook £7.50
Lancaster, D., Incredible Secret
Money Machine (a how to cook book for setting up your computer or technical business)
£4.95

QUESTIONS AND ANSWERS

SIMPLE AND CONCISE ANSWERS TO MANY QUES TIONS WHICH PUZZLE THE BEGINNER.
Coker, A. J., Q \& A On Electric Motors £1.90 Hellyer, H., Q \& A On Radios and T.V. $£ 1.90$ Hibberd, R., Q \& A On Integrated Circuits £1.90 Jackson, K., Q \& A On Electricity £1.90 Brown, C., Q \& A On Hi-Fi
$€ 1.90$
Brown, C., Q \& A On Transis. tors Brown. C., Q \& A On Electronics $£ 1.90$ Reddihough, J., Q \& A On Col our T.V.90 Miller, H., Q \& A On Electric Wiring £1.90

CONSTRUCTOR GUIDES

BEGINNER'S GUIDE
Sinclair, I. R., Beginner's Guide
To Tape Recording .. £3.45

Sinclair, I. R., Beginner's Guide To Integrated Circuits . $\mathbf{£ 3 . 4 5}$ Sinclair, I. R., Beginner's Guide To Audio $\mathbf{£ 3 . 4 5}$ King, G. J., Beginner's Guide To Radio $£ 3.45$ King, G. J., Beginner's Guide To Television £3.45 King, G. J., Beginner's Guide To Colour T.V. £3.45 Guilou, F., Beginner's Guide To Electric Wiring
$£ 3.45$

PROJECT BODKS

Marston, R.M., 110 Cosmos Digital IC Projects For The Home Constructor ... £3.95 Marston. R. M. 110 Wave Form Projects For The Home Constructor £3.95 Marston, R. M., 110 Op Amp Projects For The Home Constructor £3.95 Marston, R. M., 110 Semiconductor Projects For The Home Constructor $£ 3.95$ Marston, R. M., 110 Thyristor/SCR Projects For The Home Constructor . . . £3.95 Marston, R. M., 110 Electronic Alarm Projects For The Home Constructor
$£ 3.95$
Marston, R. M., 110 Integrated Circuits Projects For The Home Constructor $£ 3.95$
Marston, R. M., 20 Solid State Projects For The Car and Garage $\mathbf{£ 3 . 2 0}$
Marston, R. M., 20 Solid State
Projects For The Home $£ \mathbf{3 . 2 0}$

[^1]
＇2ロ NORTH BAR BANBURY OXON OX16 ロTF． TELEPHONE BANBUAY Cロ2g51 3677

E－FCTRONICE

 A NEW AND EXCITING HOBBY！！ BIG，WELL ILLUSTRATED BOOK Ideal for beginners－gives lots of general information －explains how to build lots of projects intercom，Rain Alarm， Radios，Organ，Parking Light etc．All parts supplied and can be re－used on special deck provided，so NO SOLDERING is required．Just neeas $4 \frac{1}{2} \mathrm{~V}$ batterv．
£17．50 inc．VAT \＆Post

Also
ADVENTURES WITH MICROELECTRONICS －Explore the world of silicon chips－
All components \＆Deck，£27．95inc VAT \＆Post． Component Catalogue \＆Bargain List 75p
443F Millbrook Road，Southampton SO1 OHX

AVOID DANGER from RADIATION WITH OUR RADIATION DETECTOR
 Recommended for：Civin
 Defence，Fire，Hospital，

Medical and general use

General Information：

Pocket dosimeters provide an accurate，reliable and immediate method of measuring the integrated dose of radiation received by those exposed to and in any place，providing a source of light is available．

Principle：

The dosimeter is an ionisation chamber type using a quartz fibre electroscope as the indicating element． A microscope is used to project the image of the moving quartz fibre element on to a graticule scale． The quartz fibre is mounted on a wire electrode，which
in turn is supported by a high quality insulator．When the instrument is charged，positive charges distribute the instrument is charged，positive charges distribute causing the fibre to bend away from the electrode．The fibre will take up a position depending on the amount of charge on the system．
When the surrounding air in the ionisation chamber is ionised negative ions will be attracted to the positively charged electrode thereby reducing its charge．The resulting fibre movement will be related
directly to the quantity of radiation producing the directly to the quantity of radiation producing the
ionisation．The fibre movement can thus be calibrated ionisation．The fibre movement can thus be calibrated
directly in roentgen units and the rate of movement of directly in roentgen units and the rate of movement of
the fibre will be proportional to the roentgens received the fibre will b
per unit time．

Construction：

The microscope，electroscope and ionisation chamber are housed in an outer skin which may be of brass or aluminium．At one end of the tubular case is
fixed a charging assembly，and at the other an eye－piece window．These two assemblies are soldered into the outer case to ensure a hermetic seal．

Each dosimeter is provided with protective end cap translucent window so that the cap need not be removed for reading．
Dosimeters meet vibration，drop，salt spray， humidity，water immersion and temperature tests．

BE PREPARED，EVERY HOME SHOULD HAVE ONE

YOU CAN＇T SEE IT
 HEAR IT
 FEEL IT but you can detect it

Features：
－THESE UNITS WILL READ aUTOMATICALLY THE AMOUNT OF RADIATION IN THE AIR
－THIS INSTRUMENT IS ONLY A LITTLE LARGER THAN A FOUNTAIM PEM
－CLIPS ON TO YOUR TOP POCKET
WEIGHS LESS THAN 302.
－CONTAINS THREE LENSES
－fully charced，tested and gUARANTEED REFURBISHED BY US
－two free re－charging VOUCHERS WITH EVERY UNIT
－british design and manufac－ tURE，RUGGED CONSTRUCTION
－mamuFacturer＇s list price of SIMILLAR MODEL IS OVER £25
－a Sound investment
．BUY MOW WHILST STOCKS AVAIL－ ABLE．DELIVERY BY RETURN POST
 proper protective packing．

VIEW

 THRULENS

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED L.E.D. DIGITAL ALARM CLOCKS

(1)

Returned to Service Department within guarantee penod

With alarm repeat S.A.S.P of $£ 1700$ OHered al £3.95, inc. VAT, or 3 for $£ 9.95$, inc. VAT.
£3 1.00 . Offered at $£ 7.95$ inc VAT E 19.95 inc. VAT.
These will be sold as received from our customers with the existing fault(s) and without guarantee Discounts avala.K. only
PRESCOTT CLOCK \& WATCH CO. LTD.
PRESCOTT HOUSE, HUMBER ROAD, LONDON NW2 GER

WANTED. Second book of Hi-Fi loudspeaker enclosures by B. B. Babani. Please ring 0297 52566.

SMALL REED SWITCHES 10p. Magnets $8 p$ and $15 p$. Reed Relays 6v, 9v, 12 v 40 p . 30 untested I.C.S. 35p. Postage 22p. Grimsby Electronic Components, Lambert Road, Grimsby. Humberside. List 15 p .

ZX80 GAMES. Free Game sent on request. Send s.a.e.: Mastercode, Simon Says, Dr. Who, Alien Invader. The 4 on cassette, £3. - Bobker, 29 Chadderton Drive, Un. sworth, Bury, Lancs.

Eara £20-£100p.w.

In your spare time by introducing the revolutionary new Flip-Caller telephone to your friends. Features micro-chip controlled push-button dialling and memory recall. Sells itself. Generous commission. For details write to Dept. HE DOLSUPERPHDEE
P.0. Box 31, Twickenham TW2 5RL

MINIATURE MICROSWITCH. Complete with level actuator. Suitable for burglar alarm projects etc. $£ 1$ each inc. V.A.T. and P.R. Clere Electronics Ltd., Kingsclere, Newbury, Berks. 635298574

FOR QUICK AND EFFICIENT SUPPLY OF ELECTRONIC COMPONENTS, tools and books, give us a try! Write, stating components required and we will quote price Orders always pursued in full. -K. E. Witson, 24 Ladbroke Road, London, W. 11

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass. non-
magnetic tweezers, watch screw. magnetic weezers, watch screw.
driver, case knife and screwback case opener. Also one doz assort. push-pieces, full instructions and battery identification chart. We then supply replacement batteries - you fit them. Begin now. Send E 9 for complete kit and get inio a fast-growing business. Prompr despatch.

BOLSTER INSTRUMENT CD. HE11
11 Percy Avenue, Ashford, Middx. TW15 2PB
MIXED. 100 TRANSISTORS £3.50. 25 I.Cs $£ 1.50$. Post paid Early radios Valves. Electronics bargain lists 15 p. Sole Elec tronics, (H/E), 37 Stanley Street, Ormskirk L39 2DH
OSCILLOSCOPE £12. Easy build converter plugs into TV aerial socket and converts to large screen oscilloscope. (Components cost under £ 12). Circuit and plans £3. - Kerr, 27 Coles Road, Milton, Cambridge CB4 4BL (Callers by appointment)

PRINTED CIRCUITS

Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster: Aerosol greatly improved and very much faster. Aelosol cans and full insiructions. Clear Acetate sheet 35p. Ferric Choride 55p. Clear Acetate Sheet
for master 14 p. Copper-clad Fibre-glass Board for master 14 p. Copper-clad Fib
approx. 1 mm thick $£ 1.75 \mathrm{sq}$. ft .

$$
\text { Post/packing } 60 p .
$$

WHITE HOUSE ELECTRONICS
Castle Drive, Praa Sands Penzance, Cornwall

SUPERBOARD II
 STILL the best value in Home Computers. Just compare the features:
 * 8K floating point BASIC in ROM
 * Full ASC 19 keyboard
 * Standard cassette/TV interface
 - RS232 printer interface
 - 4K user RAM
 * Expandible to $32 \mathrm{~K} \&$ dual mini floppy AVAILABLE NOW from
 C.T.S.
 31/33 Church Street, Littleborough, Lancs.

Please ring or write for latest prices Tel: Littleborough (0706) 74342 any
sime

SPARE PARTS SERVICE MANUALS

Most makes inc. Sony, J.V.C., Hitachi etc.
HI-FI HOSPITAL (ERS) LTD 100 Uxbridge Road, W7 $01-8401890$

TOTAL OF 25 INTERESTING TOPICS. Including sirens, test-equipment, electronic music, semi-conductor equivalents and other useful information. £1.60 to: P. McGee, 62 Reva Road, Liverpool L14 6UB

$\mathrm{CB}-\mathrm{CB}-\mathrm{CB}-\mathrm{CB}$

40 CHANNEL RIGS VARIOUS MODELS FULLY GUARANTEED

£65 per unit

Delivery within 1 week!
Telephone Cork (0002) 28571 FOR INFORMATION RE OROERING ETC.

ELECTRONICS

SWR METERS, NOISE SUPPRESSION FILTERS, T.V.I. FILTERS, COPHASORS, ANTENNAS, LEADS AND NUMEROUS OTHER ACCESSORIES.

Microphones, Power Supplies, SWR Meters, Linear Amplifiers, Preamplifiers, Antennas, Frequency Counters etc., etc.

MICROPHONES AND HEADSETS TURNER』 ANTENNAS AND MICROPHONES

SPEECH PROCESSORS AND BASE LOAD ANTENNAS
 Ton Ahlers Elektronika
Mobile and base antennas, power supplies and accessories

$\mathrm{W}_{\text {INTIO }} \mathrm{Y}$Ltd. COMMUNICATIONS EQUIPMENT DISTRIBUTORS

UK RETAIL OUTLETS IN SELECTED AREAS STILL BEING SOUGHT

SEND £1 FOR A COMPREHENSIVE CATALOGUE

Opens Tuesday 16th September, 1980 Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)

[^0]: GUARANTEE No risk to you.
 If you are not completely satisfied, your money will be refunded upon return of the books in good condition.
 CAMBRIDGE LEARNING LIMITED, UNIT 86
 RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON,
 CAMBS., PE1 7 4BR, ENGLAND.
 TELEPHONE: ST. IVES (0480) 67446
 Alf prices include worldwide postage \{airmail is extra - please ask for prepayment invoice).
 Please allow $2 B$ days for delivery in U.K.

[^1]: Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:
 Hobby Electronics Book Service
 Modmags Ltd
 145 Charing Cross Road
 London WC2H OEE

