Hohy meng $45 p$

Short Wave Redio Full Coverage Receiver
25 Matt Amplifier Modules Sounds Good

Parting it Together Bits And Pieces

Touch Switch Digitally Controlled

PSU Module Transformer Offer

IT’S HAPPENIED RICRII! THE PART THREE CRTRLOEIE IS PUBLISHED \& WE HRUE MOUED TO BIGGER PREMIIEES.

Yes its here at last - the all new Part Three Catalogne. Fun for all the fansly and the nastal mplate on all that is new. worthuthe and

 And don't niss our spot the giblon contest. together with a guiz to see if you can spon the diflerences between at nevinlice cave draving and a
Chent diagram of one of our competitors tumen

DOES YOUR ONE GLOW GREEN IN THE DARK ?
Our DFM4 does, since it uses a vacuum fluorescent display for direct readout
of MW/LW/FM. Basically the same as the DFM2, (LCD Version). $£ 24.45$ kit (inc VAT
Transformer with all necessary windings for DFM4 E2.50 inc VAT

Not illustrated here but also now available is the DFMG. This is a vacuum fluorescent display version of our immensely popular DFM3 (LCD). Resolution is $100 \mathrm{~Hz}_{2}$ to $3.9999 \mathrm{MHz}, 1 \mathrm{kHz}$ to 39.999 MHz , and 10 kHz to $200.00 \mathrm{MHz}^{\prime}$; all standard IF offsets (inc. 10.7 MHz on shortwave)

UM1181 VHF band 2 VARICAP TUNERHEAD runed circuit, with image/spurn better than - 80 dB, buftered LO
output, MOSFET RF stage, FET IF preamp. tunes with only 1% to
 911225 FM IF strip with all mod cons for the HiFi quner: All types use $80+\mathrm{dB}$ S/N Hitach, IC, with muting. AFC, AGC, meter outputs lor signal levet and centre zero. IF preamp stage.
Dual linear phase ceramic filters, With MOSFET (AGC d) IF preamp and a 3rd nartow fitter with DC filter selection. Duat B Dual ceramic filters, stingle tuned detector stege $£ 14.95$ inc VAT analyzer lor best THDI
91072 AM RADIO TUNER MODULES - DC TUNED and DC SWITCHED Available February ' 80 All include buffered LO output. mechanical if firter ITOKO CFMOI A $\mathrm{MW} / \mathrm{LW}$ (150 to 350 hHz LW rangel with ferrite rod antenna A As 'A. but also including $S W 1$ or $S W 2$ (specify,) SW1 1.8 to AMHz SW2 $=5$ to 10 MHz
$\begin{array}{llll}\text { One off INC VAT } \\ \text { £14.43 } & \text { B' } £ 1590 & \text { C' } & \text { \& } 17.50 \text { (Custom types OA) }\end{array}$

There is a danger when advertizing in some magazines . that because we do not find space to list everything we sell in every ad that some readers forget about half the ranges we stock. So to summarize the general ranges TOKO Chokes, coils tor AM/FM/SW/ MPX, Audio filters etc Filters: Ceramic for AM/FM C for FM, MPX etc Polyvaricons Cs for radio, clock LSI, radio control MPX decoders etc Dust iron cores for toroids for resonant and EMI filters Toroid mounts
Micrometals

Hitachi Radio/audio/mpx linear ICs 100W MOSFETs, small signa FETs, MOSFETs and bipolar

And the following groups of products from broad range of sources Semiconductors -specializing in radio devices. Plessey SL1600, EUROPE's besi selection of AM/FM and communications devices. Power MOSFETs, WORLD's LOWEST NOISE AUDIO small signal transistors, BAR graph LED drivers for linear and log. CD4000 series CMOS, TTL/LPSNTTL, standard linears $(741,301,3080$ etc). MPUs, memories Small signal transistors from AEG BC237/8/9 families etc. (1000 off $\mathrm{BC} 239 \mathrm{C}: 5.2 \mathrm{p} \mathrm{ea}$) LEDs: AEG $3 \mathrm{~mm} / 5 \mathrm{~mm}$ round, $2.5 \times 5 \mathrm{~mm}$ flat, red, greem, orange, yellow. The best prices you will find for quality products MOSFET for PF sional product MOSFETS for RF signal processing, including the BF960 UHF device and 3 SK 51 for VHF,
Varicap diodes for $17: 1$ capacity ratio tuning

FREQUENCY READOUT LSI from OKL with a one-chip answer to most digital frequency display needs (and various modules)
Crystal and ceramic ladder filters from leading manufacturers, ferrite rods, various ferrite bead and a range of crystals for 'standard' frequencies and both $A M$ and $F M$ radio control at 27 MHz Trimmer capacitors.
METERS - a new range of linear movement types, plus many indicator' types for VU all ypes of tuning indicators etc
SOCKETS a new range that are better quality than Texas low profile, yet better priced Moclules for AM! FM/STEREO, complete kits for tuners, audio amplifiers from Larshol SWITCHES complete low cost DIY system for push button arrays, keyboard switches. DOUBLE BALANCED MIXERS MCL SBL 1 replacement for MD108 etc. And cheaper

OUR LATEST MOVING EXPERIENCE .- At last, we have moved to the address below. There is car parking for customers approaching via North Service Road (an extension of North Road Avenue, entrance opposite the Brentwood Fire Station.) Pedestrian access from the High Street (alongside 117 High Street). The new building is six tımes ligger than our Gresham Road offices, and we will be installing a much expanded sales counter in the fullness of time. NEW TELEPHONE NUMBER (O277) 230909, TELEX NUMBER (as before) 995194 AMBIT G. See You there

Hobby Electronics

PROJECTS
FEATURES

NEWS AND INFORMATION

News, news, news

Sounds excellent
PSU Module19

Cheap deal
Touch Switch44

Do it digitally
Miniboard Siren 55
Short Wave Radio 57

New design

11 Clever Dick
Overseas edition

Short Circuits $23,33,36,52,72$ Books
More novelties
Great reads
24
PETting it Together
Transformer Offer
23
They have the technology
Kit Review
29
Cheap stereo
Electronics on Wheels

Roadworthy resistors
Chit-Chat
More practical circuits
Breaker One-Four
Mike review
Into Electronics Construction
Part two38

49
Our primary offer
Market Place34
Cheaper still
Binders 36Wrap up wellNext Month's HE37Another blockbuster
ETI Coming Soon 48
Big stuff!
Hobbyprints 53
Nubbing down
54
Back Numbers
Still some left
Subsrciptions 54
Why miss out?
T-Shirts 55
Adorn yourself
Specials 66Complete your set67 Mini Ads73

It's all here

Editor: Halvor Moorshead
Assistamt Editor: Rick Maybury
Project Team: Ray Marston, Steve Ramsahadeo, John FitzGerald, Keith Brindley
Production: Diego Rincon, Dee Camilleri Phil Gerring (Photography)
Technical Artists: Paul Edwards, Tony Strakas, Joanne Barseghian
Advertising: Chris Surgenor, Steve Rowe, Sandie Neville, Kate Smith
Admin. Staff: Margaret Hewitt, Bren Good win. Tim Salmon, Tracey Campbell, Loraine Radmore, Lorraine Stout, Halina Di-Lallo, Joan Brimm

Copyright: All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing kits of the projects must be sought from the Editor. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally.

ABC

Hobby Electronics

145 Charing Cross Road,
London WC2H OEE
01-4371002 (4 lines)
Published by Modmags Ltd,
Distributed by Argus Distribution Lid,
Printed by QB Ltd, Colchester
Hobby Electronics is normally published on the second Friday of the month prior to the cover date.

Simply ahead . . ILP'S NEW GENERATION OF HIGH

 have achieved in our new generation of modular units. I.L.P. professional design principles remain- the completely
adequate heatsinks, protected sealed circuitry,
rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have
concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as those revealed by vastly improved pick-ups, tuners,
loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there PERFORMANCE MODULAR UNITS

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$£ 4.64+74$ p VAT

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Dis- tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ +95 p
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance - all models $4-16 \Omega$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz} \cdot 45 \mathrm{~Hz}-3 \mathrm{~dB}$

THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

PSU 30
PSU 36
PSU 50 PSU 70

PSU 90
PSU180
$\pm 15 \mathrm{~V}$ at 100 ma to drive up to
five HY5 pre-amps $£ 4.50+£ 0.68$ VAT for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT for 1 or 2 HY50's $\quad \mathbf{£ 8 . 1 0 + £ 1 . 2 2 V A T}$ with toroidal transformer for 1 or
2 HY120's $£ 13.61+£ 2.04$ VAT
with toroidal transformer for
1 HY200 £13.61+£2.04 VAT
with toroidal transformer for
1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ V AT

NO QUIBBLE

5 YEAR GUARANTEE
7.DAY.DESPATCH ON ALL ORDERS INTEGRAL HEATSINKS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE

- ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pav postage on all letters sent to us bv readers of this journal.

ELECTAONICS LTO.
FREEPOST Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778
Telex 965780

Please supply
Total purchase price $£$
I enclose Cheque \square Postal Orders \square International Money Order. \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

Signature

Monitor

WHATEVER NEXT?

Ignoring for a moment the young lady (if you can) let us describe to you the object of her obvious affection. It is a TR-1200G (as if you didn't know) Tele-Casseiver. (If that sounded like a new word to you, stay tuned). Panasonic, the people who make the TR etc have made up another word for your. More of that later.

The unit contains, deep breath, a 12 inch monochrome TV, FM stereo radio that will also cover MW, SW, and LW, and of course a stereo tape recorder thrown in for good measure. As you would expect the permutations of recordings are such that you can record something whilst doing something else, confusing, isn't it?

Now for new word number two, the manufacturers say that the TR etc is ideal for making the most of 'Simulcast' productions when the TV soundtrack is additionally transmitted on FM stereo radio. Repeat after me, Tele-casseiver, Simulcast, now on your own. Remember them because we may come round your house to test you.

Usually at this point we get to the painful bit, the price. This time, just to be different, the TR
etc seems quite reasonably priced. Considering what you get, a full stereo system (5 W per channel) plus a telly, £225 doesn't seem too bad. On the other hand if you re like us it could be £25 and you still couldn't afford it. Ah well, we can all dream.

By the way the young lady is not included in the price, she's an optional extra

HALVOR GOES WEST

This is the last issue for Hobby Electronics to be edited by Halvor Moorshead. Next month he'll be in ten feet of snow publishing his own magazine in Toronto: the Canadian edition Electronics Today International.

Halvor has been with ETI (HE's big brother) in England since the days when it was a struggling one-year-old. As Editor and Publisher he has been responsible for the phenomenal growth of the magazine and the company. As well as starting the Canadian edition of ETI, back in England Halvor started Hobby Electronics and Computing Today.

Halvor's contribution to the hobby of electronics has been enormous, as any reader of HE, ETI or CT will realise. On behalf of all his friends I wish him success and happiness in North America

HE's new Editor will be me, Steve Braidwood, currently Assistant Publisher at Modmags. I worked with Halvor on ETI in the old days, and kept in close contact as I did my bit for the colonies on the Australian and Canadian editions of ETI. I returned to London last year and was delighted to work for Halvor once again. So its goodbye Halvor and Hello HE men.

ROBOTS, ROBOTS AND MORE ROBOTS

The long-awaited Robot revolution seems to be finally taking off. First the latest news on HEBOT.

Sales of HEBOT chassis have been phenominal, several hundred so far are running about, schools and colleges seem to be taking a particular interest. Lansing Bagnall, the fork-lift truck people, are considering using HEBOT to demonstrate their control systems. Our German and Canadian editions of ETI will be featuring HEBOT, orders for chassis are already coming in. On the home front, Nationwide, the BBC TV current affairs programme, are filming HEBOT for a feature that should be transmitted in early February. HEBOT is now a TV star. One of the more surprising aspects of HEBOT sales has been the númber of Microdrives sold, almost twice as many drive units as chassis pans. How about sending us some pictures of your HEBOT and any improvements or adaptations you have made. Best pictures and suggestions will be featured in the coming months.

On a more sinister note, we've just heard that Mullard, the TV tubemakers, are to lay off 850 workers over the next two years, guess what will be replacing them? You've got it Robots. If HEBOT gets any cleverer the next Editor of HE might just be a HEBOT, watch out Steve Braidwood.

PROJECTS SPECIAL

Dotted around the mag you will see references to our latest special. Don't miss next month's issue of HE for the full unexpurgated details!

Hobby Electronics, March 1980

Monitor

News from the Electronics World

BASICALLY ATARI

TOY CHIPS

Considering the delays we're having getting our single IC radio control system off the ground it was understandably annoying to hear of these new offerings from Plessey.

The pair of ICs in question. (SL490 transmitter and ML928 receiver) were originally developed for remote control systems in TV sets. Much of Plesseys output now ends up in R/C toys, the example shown here is made by a French company. Joustra, who have just ordered half a million of the ICs from Plessey

These ICs, unlike our proposed system, still need quite a bit of external circuitry, in this respect they are quite versatile, finding a good home in remote control systems using anything from ultrasonics to Infra red

We have no details of prices as yet but if you would like some more information contact Plessey at: Plessey Semiconductors Lid. Cheney Manor. Swindon, Wiltshire

Hot on the heels of a couple of other telly game manufacturers Atari have announced their version of the personal computer

The Atari $400 / 800$ series has been designed with expansion in mind. It will happily connect up to all manner of cassette decks floppy disc and bubble memory devices. The computer comes complete with a full colour display on your own telly, four sound 'voices' and the capability for working light pens and high speed printers

The 400 model has $8 k$ RAM, expandable up to 48 k when it becomes the 800 series. Similarly the standard 8 k ROM will go up to the 40 k of the 800 series given time, inclination and money. The machine works in something called Atari Basic and is based on the 6502 Microprocessor IC.

Price wise it looks most attractive, just $£ 400$ for the 400 series model and $£ 750$ for the 800 Launch date should be in June 1980 . Impatient people should contact Ingersoll Electronics Ltd (the importers at 202 New North Road, London N17BL

By the way, it will play games if fed with the appropriate programmes

THIMPLE THERMOMETER

Gone are the days when you were required to squint at a near-invisible line of mercury in a thin, fragile glass tube. By that we mean the electronic thermometer has arrived in all its glory. Latest model to blink its LEDs comes from Simwood Lid. The SM 1 covers the range -55 degrees C to $+1250^{\circ} \mathrm{C}$. The hand-held unit has a three digit display with an accuracy of $\pm 0.15 \%$ and a resolution of $1.0^{\circ} \mathrm{C}$

A switch on the side of the unit is operated everytime a measurement is to be made, battery life is expected to ensure around 2000 operations. In the event of a low battery the display will flash.

The SM 1 comes complete with a carrying strap and case. Further details from Simwood Ltd., Garrett's Hall, Shalford Green, Essex

BOOK REVIEW

Still puzzled by integrated circuits? You shouldn't be, not after reading HE all these months. If on the other hand this is your first excursion into the world of micro-electronics then you would be well advised to read a new (ish) book called Integrated Circuits, Questions and Answers. It comes from the pen of R G Hibberd and is published by Butterworth, price £ 1.55 (ISBN 0408004665)

This little book is probably one of the easiest to follow as it is based on a series of questions and answers. You can literally just pick it up and start anywhere. In the past \mathbf{Q} and A books have suffered from poor indexing, a maddening aspect of any book. This one seems to have overcome this problem, making it quite suitable for quick reference. A handy book to have around

JAWS THE JOB

Have you noticed our new Binders ad? The wording has been changed from the original because of the efforts of one D Bryant. In the original ad we said, (quite lightheartedly)
'Send your cheques, postal order's, gold sovereigns, false teeth or anything negotiable. to

You guessed it, D Bryant sent us his upper set. In return we have sent D Bryant an HE binder, and to discourage anyone else from trying to do the same we have kept his teeth. So if you see a man in the Britsol area walking round with an HE binder in his mouth you'll know why. No more false teeth please, just money (Gold Sovereigns are still OK).

TV EXHIBITION

50 years ago this March Logi Baird's 'Televisor' was finally on sale. The Science Museum in London are celebrating by holding an exhibition called 'The Great Optical Illusion'. It opens in March 1980. Don't miss it. (Look out for our feature on Narrow Bandwidth TV next month).

ERRATA

Now pay attention to this one as it is a bit naughty. On page 32 (Feb HE) Infra Red Remote Control, last paragraph, second col umn should read:-
(1) The EARTHS of the mains input and output

Not Neutrals, this would be most inadvisable, not to say dangerous. Sorry.

FASTER THAN A SCOPE— SAFER THAN A VOLTMETER

plus 15% VAT, plus post and packing
Total £ 34.44 including box and instruction manual.

C.S.C. (UK) Limited Depi 14S Unil 1. Shire Hill Industrial Estate Saffron Warden Essex CB11 3A0 Telzonone Saffron Waiden (0799) 21682 Telex 817477

Instant - simultaneous

 monitoring of the logic state of all IC nodesJust clip it over your IC.
LM-1 Instantly and accurately shows both static and dynamic logic states on a bright 16 LED display
LM-1 finds its own power.
LM-1 cuts out guesswork, saves time, and eliminates the risk of short circuits.
LM-1 is suitable for all dual-in-line logic ICs.
LED on = logic state 1 (high), LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

System5080A

HE introduces a brand new amplifier system beginning with the 5080A POWER AMPLIFIER module.

THE HE 5080A POWER AMPLIFIER MODULE is the first part of an exciting new system in modular amplifiers, which on completion will provide the builder with a first rate stereo amplifier of 25 watts per channel into a speaker impedance of 8 ohms. Elsewhere in this issue is the 5080 PSU - the second part of the system and finally, in a couple of months' time the design will be completed with the pre-amplifier module.

The main advantage of a modular amplifier is that each module can be built separately. This suits the builder who cannot afford a complete kit of components all at once, or the builder who is not too sure of his constructional capabilities and who wishes to test each stage as he progresses. An important secondary advantage of such a method of manufacture is the reduction of interference (causing mains hum) from one device to another. The pre-amplifier in any amplifier system is particularly susceptible to pickup from the power. amplifier and power supply and the only real way to eliminate this is to separate them - the HE 5080 does this.

The overall objectives of the 5080 are that each module, be self-contained, be easy to construct and look good. These aims do not, however, override the quality of the amplifier as a whole, the specifications and performance being within the criteria of "High Fidelity" audio systems.

To this end, distortion (an amount of which is inevitable in any amplifier) in the 5080A power amp module is so low as to be inaudible and the frequency response of it is well above and below the human hearing range.

To any experienced amplifier constructor, the circuit will look fairly conventional, ie the power stage is a Class $A B$ type and the pre-driver stage is a common collector type to provide a higher input impedance to the source. This is not to say that modern techniques have not been utilised in its design. For example, "state of the art" output stage protection is provided by FS1, which prevents excessive current flow due to faults or short circuits in the speaker connections. In the past, there has been a tendency to use semiconductor type current limits which resume normal operation after the fault has

[^0]Fig. 1. Circuit diagram of the 5080A Power Amplifier

How it Works

THE 5080A power amp consists of a Class A input stage followed by a Class AB output stage. A class A transistor amplifier is shown in figure 2. As can be seen, a similar configuration is used in the circuitry around Q1 in the 5080A. The transistor is biased permanently half on so that the output waveform is identical to that at the input. Class A amplification is, however, very wasteful of power because the transistor is always conducting a certain amount of current even when there is no I/P signal, ie, under quiescent conditions. This is not normally important except in power amps, where a large amount of power stands to be lost. So, in the power O/P stage we must turn to a more efficient method of amplification.

In a Class B amplifier the transistors are biased to their cut-off point so that they conduct only over one half of the signal waveform. Therefore, without an I/P signal the power loss is zero (meaning greater efficiency). Obviously one transistor is
needed for each half of the waveform, as in figure 3. But, a transistor's characteristic is not linear near the cut-off point, resulting in crossover distortion where the changeover occurs between each transistor. Moreover because the distortion stays the same size irrespective of the signal size, the relative percentage of distortion increases with a smaller signal.

The answer to the problem is to introduce enough bias to eliminate this distortion. The overall effect is a mixture of Class A and Class B amplifications (called Class AB).

The HE 5080A power amplifier does this by means of a simple voltage regulator around Q3 and RV1. Class AB operation does mean that a certain amount of quiescent current is necessary. This is not, however, enough to represent a great heat loss and therefore this mode still maintains a high efficiency.

Above: PCB foil pattern for the 5080 PA

Above: Overlay diagram of the 5080A
been rectified, but consequently the circuit becomes increasingly more complicated. Most amplifier designers are now turning towards fuse protection as the better method.

Another ultra-modern protection technique is in the use of D 1 and D2 - included to protect both the output

Buylines

First off, let's get the case out of the way. It is available from West Hyde Developments and is their "Sink Box" of length 100 mm . Their telephone number is Aylesbury (0296) 20441.

PCB mounting electrolytic capacitors are available from Electrovalue.

We cannot foresee any more problems with component supply.
transistors and the speaker against sharp transients. The loudspeaker being partially a reactive load can cause large back EMFs to occur around the output stage area, which these diodes eliminate.

Also, our designers' minds turned to the problem of appearance - well, what's the use of a_gadget if it doesn't look good? You can't show it off to the neighbours if it looks like a tobacco tin radio, can you? And, it has got to be neat - as few wires and cables as possible hanging all over the place, tripping you up and bring the specifications down. No - a compact, good looking module is required, as good as or better than those that can be bought.

The case which we used is just the job, constructed of metal it can be used to shield the amplifier from pickup and also be used as the amplifier's own heatsink. The printed circuit board was, in fact, designed specifically for this case and it does provide the amplifier with very smart and functional protection, although it is by no means essential that the same case is used.

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$ except where stated)

R1	1 K 2	
R2	330 K	
R3	68 K	
R4	100 R	
R5	82 R	
R6	270 R	2.5 W
R7	$1 \mathrm{K8}$	
R8,9	$0 R 33$	2.5 W
R10	10 R	1 W

CAPACITORS

C 1
C2,5, 14
C3
C4
C6
C7
C8
C9, 10
C 11
C12
C13
$47 \mu \mathrm{~F} 63 \mathrm{~V}$ PCB elect
100 n polyester
$22 \mu 25 \mathrm{~V}$ elect
$47 \mu 40 \mathrm{~V}$ PCB elect
$5 n$ polystyrene
$470 \mu 10 \mathrm{~V}$ elect
1 n polystyrene
680 p polystyrene
2 n 2 polystyrene
$10 \mu 16 \mathrm{~V}$ Tantalum
$1000 \mu 40 \mathrm{~V}$ elect (see text)

SEMICONDUCTORS

Q1	BC182L
Q2,3	BD 131
Q4	TIP 33A
Q5	TIP 34A
D1.2	1N4002
ZD1	30V 1.3 W

MISCELLANEOUS

Heatsink
PCB fuseholder +1 amp quick blow fuse
Phono socket
2 mm sockets -1 black, 1 red
Rubber grommet
Case - see Buylines

System5080A

CONSTRUCTION

Using our design of printed circuit board, construction is straightforward. Consultation of the layout will tell you that the whole effect is one of neatness. C1 and C4 are PC mounting capacitors - if you have trouble obtaining them a suitable source is mentioned in Buylines. C13 is specified as 100μ F 40 volt electrolytic, but it does need to be quite small (a maximum of 40 mm in length). Various miniature types are available, eg ITT, Plessey etc, but if you cannot obtain one small enough then buy a smaller capacitance value $-680 \mu \mathrm{~F}$ or $470 \mu \mathrm{~F}$ - do not be tempted to use a capacitor of lower working voltage than 40 volts. By using a smaller capacitance value the only effect will be to slightly diminish the bass response, it will probably not even be noticeable.

Q2 is mounted on its own heatsink (plastic package transistor type - see photographs).

Q3, 4,5 are all mounted on a large heatsink. If you use the same type case as you will find that the case can be used as the heatsink and does make for a good looking, neat module.

Whatever heatsink is used the transistors must be mounted using mica washers so that each transistor is electrically isolated from each other and also from the case. It is worth checking with a resistance meter that no electrical connections occur before switch on. The PCB can be bracketed to the end panel of the box and $1 / P$ phono, speaker O / P plugs and power lead can be made through this panel. Note that all external connections to the board are made from this end, meaning that all leads are kept very short, minimising the possibility of untidy flying leads and pickup. The power supply connection can be made with a small plug and socket as in our modules, or to keep cost down via a long lead with a rubber grommet in the case

We used a PCB mounting finger release fuse-holder in order that, when the module is cased, the fuse can be

Two 5080 Amplifier modules removed from their cases.

Close-up of the rear panel of one of the amplifier modules.

Inside the 5080 PSU module. For constructional details see page 19.
removed or inserted easily. Ordinnary PCB types can be used but these make the removal of fuses more awkward. Alternatively a panel mounting fuseholder can be used, connected to the board with flying leads

SETTING UP

Do not attempt to use the amplifier without heatsinks! A heatsink of some description must be fitted before power is applied, either the module case or any ordinary heatsink.

Turn both presets fully anti clockwise, looking from the end away from the connection panel. Insert a 1 amp quick blow fuse in the fuse holder

Next, connect the quiescent current test points using a short wire link. There are now two measurements to be taken:

1) The output voltage should be at about half the power supply potential. This is adjustable by RV2 and should be the first test, using a voltmeter connected to the appropriate test points
2) The quiescent current, adjustable by RV1 and measured using an ammeter connected to the bias current test points (taking the link off first) should be set so that crossover distortion is eliminated. The current with RV1 turned fully anti-clockwise should be no more than 100 mA and is the current through the biassing chain R6, RV1, Q 3 and Q 2 . About 50 mA of quiescent current should be added to the bias current and the final reading should therefore be about 140 to 150 mA , adjusted by RV1

Finally resolder the link across the test points. If any audible crossover distortion occurs when an audio I/P and a loudspeaker is connected, then turn RV1 a shade further clockwise. But bear in mind that the more the quiescent current is increased the hotter the amplifier will run even with no input signal

All of these measurements can be made with the board in its case and only the end panel taken off. HE

SUPER SOUND SAVING! DINDY LOW NOISE CASSETTES

6200
62.50
63.50

	ALL REDUCED! CAPACITOR PAKS
16201 16202	
16203	18 eterromics 1
	24 ALL 3 at SPECIAL PRICE Of
16160 16161	
16162	24 ceramic caps 4700133000%
16163	24 ceramic cass ${ }^{4} 4700$
	All 4 mmPECL
	RESISTOR PAKS
16213	
16214	$601 / 4 \mathrm{w}$ (esisiors $\quad 1 \mathrm{~K} .8 .2 \mathrm{2k}$
16215	60 kw fessis1ors 10 K .82 K
16216	60% w esstors 100 K .820 K
	ALL 4 at SPECIAL PRICE of E1.50
16217	40% westisiors $1000 \mathrm{hm}-820 \mathrm{ohm}$
16218	$401 / 2 \mathrm{w}$ resistors $1 \mathrm{~K}-8.2 \mathrm{~K}$
16219	40% /w resisiors $10 \mathrm{k}-82 \mathrm{~K}$
16220	40% mesistors 100k.820k
	ALL 4 me SPECLAL PAICE of $\mathbf{5 1 . 8 0}$

IC SOCKET PAKS
F.E.T.s

VOLTAGE REGULIATORS

Positive	Csis 10220		Negative	
UA 7805	${ }^{6} 0.65$	uA 7905		
UA7812	${ }_{50} \mathbf{8 0 . 6 5}$	LA 7912		E0.70
UA7818	${ }_{80.65}$	UA7918		60.70
uA 7824	E0.65	UA7924		60.70
uA 72314 pin Dil	¢0.35			

OPTOELECTRONICS				
1510 i511 1512				
L.E.D.s				
	125 Led Ditus		RED	emen
S.			${ }_{\text {Rem }}^{\text {REE }}$	¢ 60.08
(${ }_{\text {Reben }}^{\text {Reben }}$	
+1505	$2 \mathrm{2LE}$ Diflused			to.11
- ${ }^{1} 1503$	(125120.0.tus		Yeklow	${ }_{\text {coin }}^{60.11}$
) 5108	Ster		Yetiow	coil
SJ.82		linating	${ }_{\substack{\text { REE } \\ \text { REE }}}$	${ }_{\text {cose }}^{80.10}$
2nd QUALITY L.E.D. PAKS				
1507	$\begin{array}{cc}10 & \text { assoree } \\ 10 \\ 10 & \\ 125\end{array}$			co.65
(${ }_{\text {S122 }} 123$	${ }_{10}^{10} .^{125}$	${ }_{\text {Re }}^{\text {ReD }}$		co.

L.E.D.CLIPS

60M2.C500 CALCULATOR CHIP

AT
 PRE-INCREASE PRICES! AMPLIFIERS

BI-KITS AUDIOMODULES
 AL $60 \quad 15-25$ watl Audio Amplifier Module 30-50v supply, 89 $\begin{array}{ll}\text { Al80 } & 35 \text { watt Audio Amplifier Module } 40.60 \text { supply cel. } \\ \text { Al120 } & 50 \text { watt Audio Amplifier Module } 50-70 \text { supoly }\end{array}$

STEREO PRE-AMPLIFIER

PA100 Supply voltage 24-36 volts inputs: Tape. Tuner, Mag
MONO PRE-AMPLIFIERS

POWER SUPPLIES

SPM80 $\quad 33 v$ Stabllised supply - $\operatorname{sun} 2 \times$ AL60, PA $100 \begin{array}{r}~ \\ 10 \\ 10 \\ 15\end{array}$ SPM 120/45 45 w waths Stabilised supply - Suit $2 \times$ AL60. PA 100 te 10.40	SPM 120/55	$55 v$ Stablised supply - suit $2 \times$ AL80. PA200 E 5.80
SPM $120 / 65$	$65 v$ Sabilised	SLI250 PA200

- MISCELLANEOUS

	Output 100 mv (${ }^{\text {a }}$
S. 450	Stereo FM Tuner supply voliage $20-30 \mathrm{v}$ - Var tuned
Stereo 30	Complete 7 watt per Channel Stereo Amplifier Boar includes amps, pre-amp. power supply. front pa knobs etc - requires 2050 Transformer $\$ 19$
8 P 124	5 watt 12 volt max. - Siren Alarm Module
GE100MK 11	10 channel mono-graphic equaliser complete sliders and knobs
VPS30	Variable regulated stabilised power supply 2.30 $0.2 \mathrm{amps}$
PS250	Consists - 1 capactor \& 4 diodes for cons unstabilised power supply for Al250 wo 125

0101150					
BA100	c0.08	OA79	¢0.08	IN4005	c0.07
BA14B	E0.13	OA81	¢0.08	IN4006	co. 08
BA 173	c0.13	OA90	¢0.08	in 4007	co.09
BAX 13	¢0.0s	OA91	¢0.08	IN5400	¢0.12
BAX16	¢0.06	OA95	¢0.08	1N5401	¢0.13
OA200	c0.06	IN34	c0.06	IN 5402	co. 14
04202	c0.07	IN60	¢0.07	IN5404	¢0. 15
BY100	c0.18	IN4148	¢0.05	IN 5406	c0.19
BY: 26	E0.12	IN4001	¢0.04	in5407	c0. 23
BY127	ع0.14	in4002	¢0.04	IN5408	c0. 28
0447	¢0.06	in4003	c0.05	1544	60.03
LNE成					
Type	Price	Type	Pric*	Type	Price
CA270	60.95	SL414A	E1.75	tbab 10	¢0.85
CA3089	E1.70	SN76013N	¢1.65	TBA820	¢0.65
CA3090	c3.00	SN 76023 N	£1.60	UA 703	¢0.20
LM380	¢0.80	SN76115	11.60	UA 709C	¢0.25
LM381	E1. 35	TAA550	¢0. 30	WA710	¢0.25
LM 3900	¢0.50	taA621a	¢1.80	UA71]	c0.26
MCi 310 P	E0. 85	tBal20B	ع0.80	7419	c0.16
NE555	c0.18	tbag41a	¢1.10	TAA661	E1.25
NE556	E0.55	T8A800	60.75	TAA6618	¢1.25

SPECIAL OFFER

COMPONENT PAKS

Send your orders to: DEPT. HE3, B1-PAK PO BOX 6 WARE HERTS.
TERMS: CASH WITH ORDER, SAME DAY DESPATCH, ACCESS. BARCLAYCARD ALSO ACCEPTED. TEL: (0920) 3182. GIRO 3887006 ADD 15% VAT AND 50p PER ORDER POSTAGE AND PACKING

Theprofessionalscopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition. The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cosi general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations
The price $£ 219$ plus $£ 17.52$ VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus $£ 12.96$ VAT

Prices correct at tume of gany to press

CALSCOPE DISTRIBUTED BY
Maplin Electronics Supplies Ltd
P.O. Box 3

Rayleigh, Essex
Tel: 0702715155 Mail Order
Watford Electronics,
33-35 Cardiff Road,
Watford, Herts.
Tel: 092340588

Guess who builds this great

Logic Probe...YOU!

With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly--thanks to our very descriptive step-by-step manual - you have a full performance logic probe.
With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic
 with the LPK-1, one of the better tools from CSC.

Clever
 Questions from abroad this month. A prize for the correct translation. At the other end of the scale a problem concerning noisy woodworm. Where will it all end?

RIGHTY-HO, brains in top gear, eyes down for another in our series of answers to burning questions. Jonathan Hill is first away this month.

Dear CD,

As issues 1,2,3,6 and 7 of HE are now unobtainable why don't you start a photocopying service for readers. Your sister magazine ETI runs such a service for around $50 p$ per article. If you would consider this idea I am sure many readers would take advantage of this service. Jonathan Hill, Northampton

Actually we were considering offering a photocopying service but this was planned for next year. We have been genuinely surprised at the speed at which back numbers have sold out. In response to your request we will be offering photocopies of articles. More details next month.

A quick one from Gavin Cawley now

Dear Dick.

Is it possible to put the Multi-Siren and R2D2 radio in the same case, sharing the same power supply and speaker?

Gavin Cawley
Coventry

A quick answer for you Gavin, yes. There will have to be a double changeover switch (DP changeover) to switch from one circuit to the other but apart from that it should be OK. By the way, it won't fit into the original R2D2 case, you'll have to find a larger model for that

Now for something slightly different. Copies of HE reach all over the world, even Belgium. A gentleman called O. Lecoq wrote to us the other day. This is his letter, as he wrote it

Dear Dick Clever,

In the issue HE of January p.22, you announce projects of negativ ion generators. I made one and I feel no well being, only a weight on the chest when I let it function during a night in my bedroom

I think you will be interested by the article "The Invisible Enemy" I join. It was published in the Luxemburgisch newspaper "LUXEMBURGER WORT" of the 20.11. 79
O. Lecoq,

Arlon-Frassem, Belgique

Now to the problem. Mr Lecoq writes English much better than we read Luxemburgish. In fact none of us read this or any other language for that matter. (We even have difficulty with English.) The copy of the article is printed below, can any of your read it, if so could you supply us with a translation. First correct entry receives a brand new HE binder.

Incidentally, we are hoping to review a Negative Ion Generator kit in the next month or two. We'll let you know if we feel any well being

Dor-unsichtbare Feind:

Ozon ist kein Gesundbrunnen

Unter dem Titel ${ }^{\circ} \mathrm{Ozon}$ ist kein Ge suadbrannen". verôfentlichte die bekarinte '. Süddeutsche Zeitung"' am 6. Oktober 1976 einen aufschlußreichen Bericht uber ein Symposion, das in Dus seldorf 250 Wissenschatter und Exper
ten aus 10 Staaten abhielten, um die Gesundheitsrisikem des Ozons'zu unter. suchen und Schutzmaßnahmen auszuarbeiten.
Wir lesen: ..Ozon gilt manchen Men. shen noch immer als, Gesundbrunnen' Ware dem so, so gabe es fur Ozon keinen MAK.Wert (maximale Arbeitsplatzkonzentration wahrend ends achtstundigen Arbeltstages: 0.2 Malligramm im Kubik. meter Luft) und keinen MIK. Wert: Men. meter Luft dürfen als halbstundiger Mit elwert nicht uberschritten werden."

Naturtlach stellen diese Grenzwerte om Gesetzgeber lestgelegt, keine win chens werten Ozonkonzeni rationen da den Arbeitende:: übcrhaupy Eugemurt werden können.

Wir lesen weiter: ,.Ozon beeintrachtig unmitelbar Mensch. Tier und Pflanze"
Da Ozon mitt in der Luft enthatienen Kohlenwasserstoffen reagiert, entstehen nannt. Wir erfahren: Oxidantien se
„Unter dlesen (Oxidantien) sind be onders au nennen die toxischen Stoffe PAN (Peroxyazechylnitrat) und PPN Peroxypropionylmirat), die unter andebewirken, das heißt das Blutbild andern können. (. .) Nur 0,028 Milligramm PAN m Kubikmeter ($\mathrm{mg} / \mathrm{cbm}$) Luft genügen, m Pllanzen nach zweistundiger Ein wirkung zu zerstören; PPN ist fünfmal wirk
.,Gefahrlicher aber ist die unmittelbare blologische Wirkung von Ozon , da es generell schan lange vor den Oxidantien in hohen Konzentratlonen aultreten kann und zu 90 Prozunt vorn menschli. 0.16 Milligrainin ie Kubiknieter sehwa chen berents die Infektionsabwehr, be vorbelasteten Bronchien schadisen Ozon plus Oxidantien bereits im MIK Wert-Bereich ($=0,15 \mathrm{mg} / \mathrm{cbm}$) das Lun gengewebe und die Lungenfunktion ${ }^{\text {* }}$

Ober dle Einwirkung auf gesunde E wachsene erfahren wir: ..Akute Ozon
wirkungen zeigen sich allerdings beim gesuinden Erwachsenen spatestens bei Mengen von 0,4 Milligramm je Kubik meter: , trockener' Mund und Rachen Atembeschwerden. Asthma und har nickige Kopfschmerzen sind Folgen
"Ozon ist nicht nur gifliger als PAN, zondern im Cegensatz zu PAN grelft es vor allem die tiefen Aternwege an."
Interpssant ist es, zu erfahren, dali di Riesenstadt Los Angeles (USA) einen Ozonwarnplan fur die Bevalkerun von $0.2 \mathrm{mg} / \mathrm{cbm}$ (in der Außenluft) sind die Fenster zu schließen und Kinder im Haus zu behalten.
Soweit aus diesem Fachberich
Uber Ozon eflahren wir welter im Buch von Prof. Dr. med. Lucas: ..Das Neue Grobe Gesundheitsbuch ${ }^{*}$. Verlag ..Sudwest", Ausgabe 1979, Seite 73, un ter dem Kapitel ..Wetterfuhligkelt

Dem Ozongehalt der Luft (Gehalt an verdichtetem Sauerstoff) besonders in Bodénnahe, soll ein entscheidender Eirfluß zukommen
Die Encyclopaedia Universalis be zeich inet Ozon als yiltik. sulhat be
schwachen Konzentrationtion. (Bund in
Seite l434) Seite 1434,

Schimblotgernd kann gesagi werden daß Ozonproduktion In geschlossene Räumen, besonders aber inkleinen Rau men wie Kuche und Badezimmer zu
vermeiden ist, da es hier besonders vermeiden ist, da es hier besonder
schrell zu hohen toxischen Konzentra tionen kommen kann.

Wo Ozon unvermedlich ist, z.B. berm elektrischen BogensehweiBen, ist tur ef ne gute Beluftung zu sorgen
-

The article from Luxemburger Wort

To say we get some unusual requests would be something of an understatement. Take this one from Cliff Robertson for instance.

Dear Dick,

Some time ago I heard about the grubs of woodworm beetles gnawing their way through furniture until they were fat enough to emerge and start on the next lot. One can see the exit holes of the beetles on affected furniture, but there may or may not be younger members of the family still munching away inside. Could you devise a microphone /amplifier/headphone set which would enable a doubtful purchaser of a genuine antique to listen to the ravages of the creatures within? Using my tape recorder microphone and stereo headset, possibly with an adaptor to transfer the sound from the Sheraton to the microphone, or perhaps one of the advertisers in HE might like to adopt the idea!

Cliff Robinson,

Isle of Wight

What a brilliant idea! This was put to the project team who shook their wise heads in disbelief. After picking them up from the floor it transpired there may be one or two practical problems. The first would be calibration, how noisy are woodworm? Would they oblige by holding the microphone? Would they eat the microphone? We have decided to throw this knotty problem over to you. Best suggestions will be published in a month or two.

Our last letter this month comes from one J. F Button. Getting extremely good value for money has asks three questions. This just goes to prove flattery will get you everywhere.

Dear Dick,
I am writing for three reasons:

1) To suggest that every now and then you print the names and photos of various members of the staff at HE and ETI.
2) That you design several projects which would all fit onto one big PCB and all use LEDs. (Really just a mini optical effects unit).
3) To congratulate you on running the best electronic magazines there are, namely $H E$ and ETI, which I read and enjoy very much. Keep up the good work.
J. F. Button Winchester

PS: I thought your stand at Breadboard ' 79 was the best - congratulations

Letters of this calibre are always given priority treatment. Who can argue with the truth? Seriously though, your first request has to be denied, most of the staff at HE and ETI are either too ugly or are camera shy. You'll just have to be content with the odd pix that creep into articles and projects now and again. Number two is a little easier, we have published several projects along the lines you suggest and will be designing many more in the months to come. Although we have no definite plans for combining them all onto one PCB it is quite possible that it's something we shall consider.

Lastly, thank you very much for number three and the 'PS. What more can we say

SPARKRITE X5 is a high performance, (eyi) ciladity muductive: discharge electronic ignuition systeme clesigguedfox the: clecetronics D.I Y. world. it has lexen tried, tested and proveri) to tre tutterly retiable Assemblyonlytakes : 2 liours andmstanlation
even less due to the patented 'clip (mi tasy fittincy
The superbtechmeal design of the. Sparkrite circuit elıminates prolslems of the contact breaker There is no misfire due: to contact breaker boumce wheh is ehminatued electronically by a pulse' suppression circuit which prevents the tilut firmeg if tin points bounce open at lugh) R P M
Contact breaker burn is eilmunated iny reducing the current by $95^{\circ} \mathrm{n}$ of the' norm

There is also a unique? (יxtermete:d clwiell
circutt which allows the corl a lemener periox of time to store its emercgy buifore discharyung io the plugs The imit inclueltres buift instatic tuming tieght syatemis fump: 1 oni hight, and security ehtengyenven swite:h Will work all reve cimmiters

Fits all 12 v negative-earth vehicles
with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISESEVERYTHINGNEEDED
Die pressed cast? Readly trilfed. atumumum extruxter
base and heat sink. conl incuminy clips and accussorues All kıt
components areguarantuad for a per iox of 2 years from date of purchase. Fully illustratiodassumbly aurd installation instructions are included

Roger Clark the world famous rally driver says "Sparkriteelectronic ignition systems are the best you can buy.

PSU Module

If you haven't already got a supply for your 5080A power amp modules then you will need one! The 5080 PS is designed for the job.

THERE IS NOT AN AWFUL LOT one can say about a power supply unit. It is a pretty boring project really. Yet most electronic gadgetry just will not work without one. It actually is the work-horse of any mains powered equipment, but is generally forgotten about by most people. The HE 5080 PSU power supply, we hope, will be no exception to the rule. Designed to be trouble free
and easy to build, the supply can be built, tested and used without much fuss.

The 5080 PSU features a dual regulated voltage output of 42 volts DC and 24 volts DC so that it can power two of the 5080A power amplifier modules along with the 5080 Pre-Amplifier module which is still in design stages and will follow in a couple of months time.

Fig. 1. Circuit diagram of the system 5080 PSU module. Photographs of the module are featured in the 8080 Power
Amplifier project on page 11

How it Works

The circuit can be divided into two main parts the 45 volt DC supply, which is a fairly standard transistorised voltage regulator providing a stable supply for up to two 5080A Power Amplifier modules - and the 24 volt DC supply providing a very stable supply for the future pre-amplifier module in the 5080 system.
The 42 volt supply consists of the usual bridge rectifier and smoothing capacitor. A stable 43 volts is given by the series combination of ZD1 and ZD2. Q1 and 2 form a Darlington pair in a series pass regulator configuration to allow the high current
output necessary with power amps.
The 24 volt supply is somewhat more unusual in that a voltage doubler rectifying stage is used around D1, 2 and C3, 4 so that over 24 volts DC is available from 12 volts $\mathrm{AC.ICI}$ is a 24 volt regulator providing up to 100 mA at that voltage - quite ample for most pre-amplifier applications.

FS2 is quoted as a 2 amp fuse - this is essential when the PSU is to supply two power amplifier modules of the 5080 A type. If only one power amplifier is to be run, then lower the fuse rating of the power supply to 1 amp .

PSU Module

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$ unless otherwise stated)

R1	$1 \mathrm{KO} \frac{1}{2} \mathrm{~W}$
R2	100 R
R3	47 K
R4	12 K

CAPACITORS
C1
C2
C3, 4
C5
C6
C7
SEMICONDUCTORS
IC 1
BR 1
Q1
Q2
ZD1
2D2
Miś 2
MELLANEOUS
2200 u 63 volt Elect.
47 u 63 volt PCB Elect.
220 u 25 volt PCB Elect.
1000 u 40 volt Elect.
220 n polyester
100 n polyester

Panel mounting fuseholder +1 amp fuse
PCB mounting fuseholder +2 amp fuse
Neon mains indicator
Radiating fin heatsink for TO 5 transistor
Case (see Buylines)
T1 50 VA or 100 VA mains transformer with 40 volt AC and 12 volt AC windings. (See buylines).

Fig. 3. PCB foil pattern for PSU Module.

CONSTRUCTION

The main construction work concerns the building up of the circuit board, which is fairly spacious and therefore shouldn't be too difficult. C2, 3 and 4 are.P.C.B. mounting capacitors and a suitable source in case of difficulty is given in Buylines.

Q1 heatsink is a radiating fin type, to fit a TO5 transistor.

Q2 is mounted on to the metal chassis of the case using the usual mica washer and heat sink compound to provide electrical isolation - check that this is so before you wsitch on

SW2 is mounted on the circuit board in fuse clips FS 1 however, should be panel mounted on the case, along with SW 1 and the neon indicator

Finally as with any mains powered device, make sure that the chassis case of the power supply is taken to mains earth, with bolt on connection. This is a safety measure in case of any fault

If printed circuit board mounting capacitors are hard to come by, you might try Electrovalue. All other components should be easy to obtain.

Our case was type FP 1B. This is available from Watford Electronics. This case was found to be ideal when a 50 VA transformer was used. If a $100 \cdot$ VA transformer is used, the next case up in the range might be necessary.

Transformer T1, although easily obtainable, may
present some cost problems to your pocket. If this is the case (and even if this is not the case) look at the ad on page 23 of this issue of Hobby Electronics, where lo and behold you will come across the answer to your dreams. Either of these transformers can be used in the 5080 PSU. It would appear that these transformers were purpose-built for the power supply (the truth is that we designed the PSU to suit the transformers).

mevasions
\qquad

$x_{0}^{2 \pi}$

Hobby Electronics Book Service

POPULAR ELECTRONICS BOOKS

Sinclair, I. A.. Introducing Electronic Systems	£1.80
Sinclair, I. A., Introducing Amateur Electronics	£1.55
Sinclairr I. A., Electronlc Fault Oiagnosis	£3.45
SInciair, I. R., Repalring Pockel Transistor Radios	£2.50
Sinclair. I. A., Oscilloscope In Use	£3.00
Sinclair, I. R., Understanding Electronic Components	£4.00
Sinclair, I. R.. Understanding Electronic Circuits	£4.00
Kitchen, H. T.., Handtools For Electronic Workshop	£2.75
Kitchen, H. T.. Electronic Test Equipment	£5.00
Capel, V.. How To Build Electronic Kits	£2.20
Darr. J., How to test almost everything electronic	£3.50
Brown, R. M., How to read electronic cir cult diagrams	£4

AUDIO

Earl. J., Audio Technicians Bench Manual $£ 3.50$
Earl, J., Pickups and Loud Speakars . $£ 3.50$
Earl. J., Tuners and Amplifiers . £3.00
Earl, J., Cassette Tape Recorders . 55.25
Earl. J., ABC of Hi-Fi . $£ 4.25$
Capel. V., Microphones In Action £3.00
Capel, V., Improving Your Hi-Fi . $£ 3.50$
Capel, V., Creative Tape Recording . $£ 4.00$
Hellyer, H. W., Tape Recorders . $£ 4.25$
Sinclair, I. A., Audio Amplifiers For Home Construction £2.75

RADIO CONTROL

Aldridge, D., Transistorised Radio Control For Models £3.50
Drake, J., Radio Controlled Hellcopter Models £3.95
Jeffries. C. R., Radio Control For Model Yachls £1.85
Safford, E. L., Radio Control Manual . $£ 2.45$

COOKBOOKS

Tracton, K., BASIC Cookbook £4.10
Lancaster. D., TTL Cookbook $\Sigma 7.00$
Lancaster. D.. RTL Cookbook £4.65
ancaster. D., CMOS Cookbook £8.20
Jong, W., IC Op Amp Cookbook £10.00
Lancaster, D., T.V. Typewriter Cookbook $\Sigma 7.75$
Lancaster. D., Cheap Video Cookbook £7.00
Jong, W., IC Timer Cookbook £7.50
Lancaster, O., Incredible Secrel Money Machine (a how to cook £4.95

QUESTIONS AND ANSWERS

SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THE beginner.
Coker, A. J., Q \& A On Electric Molors $£ 1.90$
Hellyer. H., 0 \& A On Radios and T.V. £1.90
Hibberd. R., Q \& A On Integrated Circuits £1.90
Jackson. K., 0 \& A On Electricily $\varepsilon 1.90$
Brown. C., 0 \& A On Transistors £1.90
Brown, C., O \& A On Electronics £1.90
Reddihough. J. Q \& A On Colour T.V. $£ 1.90$
Miller, H., Q \& A On Electric Wiring £1.90
CONSTRUCTOR GUIDES
Graham, P., Simple Circult Building £2.60
Colwell. M., Electronic Oiagrams £2.60
Colwell. M.. Electronic Components £2.60
Ainslie, A., Praclical Electronic Project Building £2.60
Colwell, M.. Project Planning and Building £2.60
BEGINNER'S GUIDE
Sinclair, I, R., Beginner's Guide To Tape Recording £3.35
Sinclair, I. R., Beginner’s Guide To Integrated Circuils E3.35
Sinclair, I. R., Beginner's Guide To Audio E3.35
King. G. J.. Beginner's Guide To Radio £3.35
King. G. J., Beginner's Guilde To Television £3.35
King, G. J., Beginner's Gulde To Colour T.V. £3.35
Guilou, F., Beginner's Guide To Electric Wiring £3.35
PROJECT BOOKS
Marston, R. M.. 110 Cosmos Digital IC Projects For The Home Constructor $£ 3.95$
Marston, R. M., 110 Wave Form Projects For The Home Consituctor £3.95
Marston, R. M., 110 Semiconductor Projects For The HomeConstructor£3.95
Marston, R. M., 110 Thyristor/SCR Projects For The Home' Constructor $£ 3.95$
Marston, R. M., 110 Electronic Alarm Projects for The Home Constructor £3.95
Marston. R. M., 110 Integrated Circuits Projects For The Home Constructor £3.95
Marston, R. M., 20 Solid State Projects For The Car and Garage £3.20
Marston. R. M., 20 Solid State Projects For The Home £3.20

> Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Eectronics Book Service (in sterling only please) and send to:

> Hobby Electronics Book Service,
> P.O. Box 79,

> Maidenhead, Berks.

TRANSFORMER OFFER (PSU)

If you are contemplating building the 25 watt amplifer and PSU modules in this month's HE (page 19) then you may be interested in our special Readers Offer this month. We have a fairly limited supply of transformers suitable for the PSU module. These are the same types as used on our prototype. We have two types on offer, the larger of the two is a 100 VA device, it has two 12 V windings and one 40 V winding. The primaries are both rated at 240 V AC. (The smaller model also has a 220 V tapping on the primary).
Both types are available for just $£ 6$, that includes VAT and postage and packing. (Postage on the larger one is nearly $£ 1.50$!) so as you can see it is a very good deal indeed.

When ordering please specify which type you need (S or L). As stocks may be limited we reserve the right to send you the alternative model, so order early.

Personal callers to the HE offices can purchase the transformers for just $£ 4.50$ (inc VAT)

Send cheques, postal orders or gold (not less than
1 oz please) to:
HE TRANSFORMER OFFER.
Hobby Electronics,
145 Charing Cross Road,
London WC2H OEE.

If you think PETs are small furry animals, then read on. Rick Maybury has been looking around the Commodore factory in California where PETs are made.

'SILICON VALLEY: that conjures up all sorts of images. What the papers and TV programmes fail to tell you is that it is an area some 200 miles long. To locate one particular place requires a little more than a vague map and a tentative invitation.

Heedless of these 'minor' problems HE went in search of the Mecca of microcomputers, that well known manufacturer of watches, calculators and of course PET computers, Commodore.

Commodore, or at least, the place where they make PET are to be found in what might be called the heart of Silicon Valley. Santa Clara. Santa Clara, and particularly the Commodore complex is about as easy to find as a proper English chip (potato that is) in the USA.

Having finally arrived we were greeted by our genial host Neil McElwee who conducted our visit.

Before we launch into graphic descriptions of how PETs get put together some information on other Commodore products. The watch and calculators bearing Commodore badges are mostly built in the Far East, however, LCD displays for which Commodore are justly renowned are put together in their Texas plant. Right, back to sunny California

PET, or Personal Electronic Transactor, (not sure what it means either) has become synonomous with home computing. They first sprang upon the unsuspecting
world during 1977, bringing computing in real terms' into the home. During these past two or three years Commodore have managed to knock out something like 80,000 PETs, surpassed only by the amazing Radio Shack (Tandy to us limeys) who claim an impressive 100,000 TRS 80 s on the streets.

SOLAR POWERED

The PET is a rather unholy mixture of modern and' 'ancient' technology. On the one hand we have the relatively old fashioned monitor, the telly bit on the top coupled up to the very latest (well, pretty new considering) IC microprocessor technology. Just to complicate matters, a mechanical tape deck is thrown in for good measure. To date the PET is still the only all-in-one computer system on the market. This curious combination is reflected in the factory complex.

The Commodore factory boast one of the most advanced solar heating and air conditioning systems in the world. Why they should need any kind of heating in California must remain a mystery). Within this ultramodern complex the PET computers are virtually assembled by hand. In fairness though they hope to be using automatic insertion machines for the main PCBs in
the very near future
From beginning to end a PET takes about three days to come together, a bit slow when you consider the average family car is built in just a few hours. Much of the three days period is taken up by what the Americans call 'burn time'. We call it 'soaking', it involves putting the various assembled PCBs through a continuous test cycle for up to 36 -hours.

BIG SCREEN

Looking round the factory it's surprising to see how many varieties of PET there are. Apart from the various permutations of memory size, $8 \mathrm{k}, 16 \mathrm{k}$ and 32 k they also have an intruiging machine called Teachers PET. Far from being designed for whiskey manufacturers it is specifically intended for schools and colleges. To look at it is pretty much the same as a standard PET. Though we're told it has a couple of features that will make teaching the intricacies of computer programming a lot leasier. (Classrooms full of sceptical students, we wish them luck). Most of the PETs under construction now sport the green screen, this is the 9 inch, 40 column item. Commodore are currently introducing a 12 inch screen model, capable of displaying 80 columns and supporting up to 64 k of memory. That means it will be feven smarter. Fascinating as this doubtless is, we tend ${ }^{\text { }}$ only to be interested in how good the games are.

Apart from the PET, Commodore also assemble a noisy device called a line printer. In reality they only manufacture the electronics, the mechanics are off-theshelf items. The same goes for the Floppy Disk units, only the electronics are assembled on-site.

It was interesting to see the PETs undergoing their final checks before packing. A test involves a programme being loaded into the machine from a floppy disk and a trained operator looking at the results on the screen. This must be one of the most boring jobs imaginable, peering day in, day out at rows of meaningless alphanumeric and graphic characters flashing on the screen. Boring or not, their rejection rate and after sales failure rates are impressively low. There is a chance for us humans yet.

The entire factory (the Americans call it a 'facility') is staffed by only 300 people, most of them concerned with PET manufacture. Whilst we were there a lorryload of PETs was being packed up for the UK market, though informed sources at Commodore now predict the next big market to be in Germany.

Commodore are basically a hardware manufacturer; that is to say they have very little interest in the software side, the programmes written for PET. However, at the time of our visit the Gentlemen at the facility were taking great pains to impress us with their new Word Processor package, and most interesting it sounded too. This

Below. The Commodore factory. The sloping roof acts as a solar collector. Inside much of the air-conditioning and heating is also solar-powered. The entire complex is staffed by only 300 employees, most of the component parts of the PET. i.e. metal work is fabricated in other plants.

preoccupation with business use emphasised the current US trends in microcomputing and doubtless the way, we in Europe will be going in the next year or so.

BUSINESS USERS

When PET first came onto the scene most of them went to what we would call the hobbyist market. That is the chap (and probably a good few ladies too) who sit at home writing and running programmes purely for personal use. Today we have the situation where the majority of machines are being brought for business use. Many small companies unable to justify spending thousands of dollars on time sharing or a mainframe system are turning to devices like PET to solve all their paperwork and financial problems. For a very modest outlay a small company can buy a complete package of hardware and software capable of dealing with such diverse subjects as payroll, stock control and invoicing yet still play a creditable game of Star Trek, all at the flip of a cassette tape or floppy disk. Commodore confidently predict this will be the way of minicomputers in the next few years. To this end they are preparing to tool up for the CBM Business system a somewhat serious version of the ordinary PET.

Naturally everyone at Commodore were a little reticent (to say the least) to discussing the future but one helpful gentleman steered us towards a shiny booklet, Commodore's annual report. Without committing himself too heavily he pointed out three very

Above. The sloping roof of the factory acts as a solar collector.

Left. Inside the reception area. The area is spaceheated and air-conditioned by the solar system.

Right. Inside one of the assembly shops. The PET's are built on an assembly-line though much of the work is still completed by hand.
interesting paragraphs which he assured us might answer one or two burning questions. The first states;
". . and work is moving forward on a large area LCD (Liquid Crystal Display) to be employed in computers and selected consumer products".

Could this be a thin screen TV?
The second paragraph is a little more down to earth.
"Other computer enhancements under development during fiscal 1980 will expand the capability of PET systems to a point where they will be able to talk. listen and draw. Development of a next generation computer is scheduled for completion during 1979-80 and introduction by the end of the fiscal year".

Whatever next? A talking PET. Our office PET could tell a tale or two.

Our last clue to the future is a little more concrete, PET owners will be delighted/frustrated to know that; a low cost colour controller to be introduced in fiscal 1980 with the PET system and available for sale to outside customers by the Electronic Components Division".

We are tempted to ask whether combining all of these features, speech, etc, will produce a PET with an LCD display and some very colourful language. Watch this space.

PETting lt Together

Inside a typical PET. The main processor board can be seen on the right hand side of the cabinet. The rows of ICs at the front are the RAMs. The hefty power supply can be seen on the rear, right hand side. The large smoothing capacitor is just below the mains transformer.

All of the current range of PETs share a common chassis. The case is fabricated from mild steel, making it very robust and unfortunately quite heavy.

The electronics are divided into three sections. The main board, that does all of the clever stuff. It sits in the bottom part of the case. This board holds all of the digital bits, an array of large and small ICs in neat rows just beneath the keyboard.

Sitting next to this is the mains power transformer. The incoming mains is stepped down to the various supply levels needed to drive the electronics. The supply for the monitor circuitry also originates here, so it is a pretty hefty device.

The final section is the monitor. This is housed well away from delicate ICs in the top section of the case. It gives an interesting contrast to the neat digital stuff below, looking somewhat similar to a. birds nest, made by a blind bird.

We were interested to ask why Commodore opted for the all-in-one concept. The answer came as something of a surprise. In the US the controls over using UHF modulators are very strict. So rather than
running foul of the all powerful FCC they decided to supply a monitor built in. Incidentally this has a number benefits. Fewer problems arise as a result of poor interconnections between computer and display and the character definition is much better.

As it turned out the in-built monitor was a wise choice. Texas lost several months in getting their computer on the market, purely as a result of having to obtain FCC approval for their modulator.

Another aspect of this unconventional design is the ease of service. Literally everything is readily accessible. The top half of the cabinet tips up into the service position, a very good idea.

It is difficult to comment upon the PETs design, after all 80,000 people can't be wrong. Many lesser computer companies have gone bust building machines with extravagant claims.
The durability of PET is unquestionable though this may work to Commodre's detriment. Newer designs appear almost daily, hopefully PET will also move with the times and a new model should be appearing soon.

FHROWASOMTD electronics 56 FORTIS GREEN ROAD TELEPHONE 01-883 3705 01-883 2289 MUSWELL HILL LONDON N10 3HN			Ti. C. Controllor
your soundest connection in the world of components	Pection in the world of components PLU		
	uperboard	Steric Raws	${ }^{811595}$
NOW AVAILABLE INCLUDED FREELow cost computer in kit form		$\begin{array}{ll}\text { 2102A } \\ 21024-2 & 1.18 \\ 1016\end{array}$	
		2111AA $21124-2$	$81 / 598$ 8728 0.70 100
Low cost computer in kit form UK 101 code modhor and dizansembl Price includes RF modulator a		$\begin{array}{ll}21102 & 1.18 \\ 2114 & 6.17\end{array}$	8729 1.90 8795 1.57 189
	Eter supply	4035 (1000 ns)	
			aTse 1.57
		${ }_{8810} 88$	${ }_{8}^{2005}$
		nom	${ }^{8210}$
		${ }_{2613}^{2613}$ (LC.)	
		MMS230 4.20	8251 8253
Enobles you to choose your foreground, the beckoround colour anywhere on the screen. Flesh any charecter on the screen at will. Full		5.01	8255
		$\begin{array}{ll}8000 \\ 8900 & 5.0 \\ 50\end{array}$	Eaed nome
cocumentation and parts in tit form. Phone for detaile. STOP PRE8s:- The latest edition of our 'STOP PRESS' is now availeble, and contains an up-to-date price ligt showing all the hems that we stock			Mciuli
		0.60	MM6307
FREE copy todey.		Efmome	
All prices ere EXCLUSEVE of VAT. Postepp and pecting 30 p (compurters cherged ef Coeff). CALLERS WELCOME. Hourn 8.00 am-s.00 pm (enter 		1702	$\begin{array}{lll}\text { AY-6-1013 } \\ \text { MM } 6303 & 3.88 \\ 8.85\end{array}$
		2716	TMSEOIINC 4.30

HOW ARE THE INSTRUCTIONS FORR
WHRT TO IO IN THE EVENT OF
FIRE IN THE COMPUER ROOM
COMING ALONG?

Kit Review

INTEGREX 2020 TA

Without doubt the most ambitious and one of the most expensive kits we've ever reviewed. Was it worth it? Read on and find out.

QUITE POSSIBLY the most rewarding kit we've ever built, extravagant claims? We think not, after soldering up some two hundred or so components and to have said kit work first time, how satisfying can you get?

The kit in question is the Integrex S2020 TA Stereo Amplifier Tuner. Integrex are past masters at audio kits, specialising in designs published in a certain 'venerable' electronics journal. Our kit was chosen carefully from their range, taking into consideration cost, specifications and apparent ease of construction. Obviously we had to avoid any previously published designs so we settled for the 2020. The kit will arrive on your doorstep for just £59.95, not bad at all

BEGINNER BEWARE

From the outset it must be said this kit is not for the faint-hearted or clumsy solderers. It is a kit on the grand scale. The instructions assume a basic familiarity with electronics, quite the opposite philosophy to Heathkit
who reckon that if you can read you can build their kits. (And rightly so for their instruction manuals are the best we've ever seen.)

Now for the gripes, the kit arrives carefully boxed, all of the electronic components neatly packaged in the obligatory plastic bag. Unfortunately none of the dozen or so bags bore any identification labels, confusion reigned. Worse was to come. Having warmed up the HE soldering iron and selecting what seemed to be the appropriate plastic bag, construction commenced. About half way through the first hundred or so resistors it appeared that the bag being used had more bits than was necessary for the first stage, indeed several bits did not seem to belong anywhere. We still have a couple of resistors, three transistors and good few nuts, bolts and round things left over. We've often discovered things missing in the past but never a surplus, even allowing for the modifications Integrex suggest for the unit they still remain a mystery. Perhaps they are spares, if this is so then this is a trend we shall encourage.

As it arrives. Unfortunately none of the plastic bags bear any labels, confusing isn't it?

THE ELECTRONICS

Back to business, the electronics are all built up onto two glass fibre PCBs, one for the main amplifier and a much smaller one for the tuner. (Incidentally the amplifier is available as a kit on its own). The PCBs deserve a mention, they are plated, screened and a component legent printed on the topside. All this makes them a positive delight to work with. Construction of the electronics is to work with. Construction of the electronics is the longest job, allow two or three evenings for this and don't forget to tick the bits off as you go along.

The PCB with the first batch of resistors soldered down. Note the excellent component legend.

One or two comments about the electronics before we get to the metal work. The toroidal transformer, a splendidly made device, was just a touch too big, probably this was only the thickness of the covering material but it did necessitate making the mounting hole. a shade larger. Secondly, Integrex would be well advised to supply some IC holders in the kit, they would add pennies to the cost but might save hours faultfinding. Lastly the holes for the PCB mounting pots were too small, they had to be opened out at quite a late stage making life a bit difficult. Small points but they are so easily remedied.

The mains supply area. The toroidial transformer was a slightly 'snug' fit.

BOLT UP

On the home stretch now, the well made aluminium chassis pan accepts all of the various bits and pieces. The channell selector assembly is a trifle fiddly to bolt up
and align with the front panel. Apart from that everything just falls together. Integrex suggest that when mounting the pots the front panel should be used to ensure that everything lines up properly, we didn't, and suffered the consequences accordingly

Once assembled, and before the tuner section is connected the amplifier is set up. This could not be easier, consisting of about four current and voltage readings and two preset pot iwiddlings. Everything checked out OK first time. How about a fault check-list for the not-so-fortunate Integrex?

Next, the tuner section is connected, this is based on a pre-aligned tuner head, the only adjustments to be made are for AFC and background noise. Both are made by ear so no problems here, again a first time success.

All that remains is to bolt up the front panel and slide the whole unit into its attractive solid mahogany case. Our front panel was just a little too long for a comfortable fit, a،couple of strokes with a file soon cured that.

The tuner area. The pre-aligned tuner head saves a lot of trouble.

VALUE FOR MONEY

So, to the important bit. It works extremely well, concensus in the office was most favourable, the claimed 20 watts per channel all seemed to be doing their stuff. Generally it seemed to live up to its

The completed amplifier/tuner prior to sliding into its case.
specifications and produced a very pleasing sound. The tuner section was comparable with any other set we have heard, costing up to three or four times as much. The use of a varicap tuner makes it very convenient to use. How about a little light behind the tuning scale Integrex?

Kit Review

Conclusion? The kit represents very good value for money, if you are in the market for a stereo tuner amplifier look no further. One or two little things outlined earlier need to be looked at by the manufacturers but apart from that we have no hesitation in recommending it. Remember though, it is not for the absolute beginner you at least need to know how to solder. All of the components supplied are of the highest quality and should give years of trouble-free service. In case of problems Integrex offer a repair service. The amplifier specifications are given below. Integrex can be found at: Portwood Industrial Estate, Church Gresley, Burton on Trent.

SPECIFICATIONS

Amplifier Specification

Sensitivity to give 20 watts into 8Ω
Magnetic pick up 2.5 mV
Tape input 130 mV
Radio 130 mV
Input impedance 47k@1kHz
Tape output (low level output) 130 mV via $4.7 \mathrm{k} \Omega$ unaffected by tone or volume controls

Tone controls

Treble $+10-12 \mathrm{~dB}$ at 15 kHz
Bass $\pm 16 \mathrm{~dB}$ at 30 Hz

Unweighted signal-to-noise of complete amplitier
with full amplifier bandwidth
-60dB magnetic pickup
-72 dB radio

Power Output (both channels)
$>20+20$ watts into 8Ω intermittent sine wave $16+16$ watts into 8Ω continuous sine wave
$15+15$ watts into 15Ω continuous sine wave

Harmonic distortion

15 watts into $15 \Omega 0.05 \%$ at 1 kHz
20 watts into $8 \Omega 0.09 \%$ at 1 kHz

Low level distortion

0.16% at 1 kHz 50 mW into 15Ω
0.07% at 1 kHz 50 mW into 8Ω
Frequency response ($16+16$ watts into 8Ω)
-1 dB 14 Hz to 22 kHz
-3 dB less than 7 Hz to 35 kHz
Stability - will drive electrostatic loudspeakers
Output impedance less than 1 milli ohm
Dimensions (sleeve)
Width 391 mm 15.4 in
Height 69 mm 2.7 in
Depth 170 mm 6.7 in

20 Hz to $100 \mathrm{MHz}-£ 77.55$

(+VAT 15\% \& P \& P. £90.91) Export + 10\%

It's an incredible price for a very credible frequency counter . . Continental's MAX-100.

It comes to you from a major American corporatión and has one operating range, and one only: 20 Hz to 100 MHz , minimum. (Guaranteed.)

So we've pensioned off the range selector, and fitted the sharpest of LED displays. (Sheer brilliance.)

We've also designed the MAX-100 around the latest in LSI technology; and built-in high sensitivity, with a 30 mV trigger level; protection against high transients; and an outstanding accuracy of 3ppm. (What performance!)

But, most importantly, the MAX-100 is totally automatic - and available now. In fact, you could have one tomorrow.

Hesitating? Just take a look at the spec. Then, if you're ready to order immediately, call us on (0799)21682. And
your MAX- 100 could be on its way, today! (Continental are great performers, too.)

For data, please use our enquiry number.
Specification * Frequency range 20 Hz to 100 MHz * Input impedance 1 megohm shunted by 56 pF . Sensitivity 30 mV to 300 mV r.m.s., from 20 Hz to 100 MHz * Timebase accuracy 3ppm -Temperature stability 0.2 ppm per ${ }^{\circ} \mathrm{C}$ • Max. ageing rate 10 ppm per year * Overfrequency indication "Low battery power alarm

- Operates from a.c. mains, dry or rechargeable cells, or $12 \mathrm{Vd.c}$. auto battery *Dimensions $45 \times 187 \times 143 \mathrm{~mm}$. ${ }^{*}$ Options: 12 V auto. cigar lighter adaptor; battery eliminator/charger; r.f. antenna; low-loss r.f. tap; and carrying case.

Quality. At a low,low, price.

C.S.C. (UK) Limitea

Depl 1aU Unil!
Shure Hith Inoustrat thentr
Sittron Watane tsen CB11 SAU
Thl Sall on Winkar (0799) 21682
THe, HI/AI?

The NEW Marshall's 79/80 calalogue is just full of components

and that's not all...

\ldots our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories avallable from Marshall's.
These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, I, Cs, Knobs, LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering.
Plus - Many new products and data.
Plus 100's of prices cut on our popular lines including I.Cs. Transisters, Resistors and many more.
If you need components you need the new Marshall's Catalogue.
Available by post 650 post paid from Marahall's, IKingsgate House, Kingsgate Place, London NW6 4 TA. Also available from any branch to callers 50 p.

Revail Smlem: Loneton: 40 Crieklewrood Broadway, NW2 3ET. Tol: $01.4520161 / 2$. Also 325 Edgware Road, W2. Tel: 01.723 4242. Ctasgow; 85 West Regent Street, 62200. Tel:041-332 4133. And Bristol: 108A Stokes Croft, Bristol. Tel: $0272426801 / 2$.

S-2020TA STEREO TUNER AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

As reviewed in this issue
Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}$. 30dB mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD 0.3% Pre-decoder 'birdy' filter.

$$
\text { PRICE: } £ 59.95 \text { + VAT }
$$

We guarantee full after-sales technical and servicing facilities * High performance Amps, Tuners and Dolby units available.
Prepare for B.B.C. Quadrophonic Broadcasts - Send for details of our Ambisonic H.J. decoder

TRANSISTOR TESTER

This very simple transistor tester measures DC current gain in three ranges, with full scale values of 10 . 100 and 1,000 . It will also show whether or not the device under test has a high leakage current.
The basic tests for a transistor are very simple and in order to test for high leakage, it is merely necessary to connect a voltage across the emitter and collector terminals of the test device, and then measure the current flow. In this circuit BY1 is the voltage source, and ME1 registers the current flow. R4 is a current limiting resistor which protects ME1 and the test device from passing an excessive current
Silicon devices have extremely low leakage currents, and if there is any deflection of ME 1 when testing a silicon transistor it certainly means that device is not functional or is connected incorrectly). Germanium devices have somewhat higher leakage currents, and a very small deflection of ME. 1 is acceptable when testing this type of transistor.
The test for DC current gain H(e) is basically the same as for leakage testing, except that a cur-

SOUND OPERATED SWITCH

Sound activated switches are used in many applications, some typical examples being voice operated tape recorders, baby alarms, burglar alarm systems, and VOX ivoice operated switching) systems of radio transmitting / receiving installations. The simple circuit shown here will operate at a distance of up to about 2 or 3 metres
from a voice of average volume slightly less if the xtal microphone insert is replaced by a medium or high impedance dynamic type).

Signals produced by the microphone are amplified by a high gain amplifier which uses iwo stages of common emitter amplification. These iwo stages are based on Q1 and Q2 and use a straight forward capacitively coup. led arrangement. Both transistors are operated at low collector currents in order to give a low noise level and quiescent curfent consumption. C3 rolls off the high frequency response of the circuit and aids good stability.

The output from Q2 is coupled
to a third common emitter stage by C5. This third stage is based on Q3, and is biased by R6 and R7 to a point where Q3 is virtually cut off. There is thus very little voltage developed across load resistor R8 and the input voltage fed to $\mathrm{Q4}$ via D1 is insufficient to switch on this device and activate the relay which forms its collector load. However, when sounds are received by the microphone, a strong signal is received at Q3's base, causing it to conduct heavily on positive going input half cycles. This produces a series of strong negative pulses across C4, charging up this component to an adequate level to switch on Q4 and the relay. A pai
of relay contacts are used to control the supply to the slave equipment. C4 charges via the fairly low impedance of Q3 and R9, giving the circuit a fairly fast attack time. C4's discharge path is through the relatively high impedance of Q 4 's base emitter junction giving a decay time of a second or two. Thus the circuit responds rapidly when a signal is initially received, but the relay does not cut out during the brief pauses that occur during normal speech.

The quiescent current consumption of the circuit is only about $250 \mu \mathrm{~A}$, but this rises to about 35 mA when the relay is activated.

rent is fed into the base terminal of the test device. This causes a larger current to flow in the collector circuit of the transistor, and the current gain is equal to the collector current divided by the base current. If SW2 is depressed, a base current will be provided to the test device by whichever resistor R1 to R3) is selected by SW1

With SW1 in the " 10 " position, a nominal base current of 1 mA is fed to the test device, and it must have a current gain of 10 in order to produce a collector current of 10 mA and give full scale deflection of ME1. Lower levels of current gain give a proportionately lower meter reading. With SW1 in the " 100 " and " 1,000 " positions, the bas
current is reduced to 100 uA and 10 uA respectively, giving the correspondingly higher full scale gain values

PNP and NPN transistors require opposite supply polarities, and SW3 is used to switch the supply polarity to suit the type being tested and to connect ME1 with the correct polarity.

We feel we've got to tell you carefully about this offer. Why? Because our price is so enormously lower than anywhere else you may suspect the quality.

The display is LCD and shows the seconds as well as the hours - and minutes - press a button and you'll get the date and the day of the week.

Press another button for a couple of seconds and you have a highly accurate stopwatch and hundredths of a second displayed and giving the time up to an hour. There is a lap time facility as well - and of course a back light

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed

£11.95

ALARM-CHRONO LCD

This new addition to our unbeatable selection of bargains is no ordinary LCD watch. It's a slim, multi-function, dual time chronograph alarm watch, no less.

This model will show hours, minutes, seconds, date, day of the week, stop watch, split time, alarm and alternate dual time zone - not all at once, of course. There is also a night lighe.

Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The day of the week is indicated by a flag. When used as a stopwatch, the maximum count is 0.1 secs. short of thirteen hours.

£19.95

To:

LCD Watch Offer

 HE Magazine145 Charing Cross Road London WC2H OEE
Please find enclosed my cheque / PO for £ $£ 1.95$ (payable to HE Magazine) for my LCD Chronograph.

Name
Address

To:
ALARM/CHRONO LCD WATCH Offer
HE Magazine
145 Charing Cross Road
London WC2H OEE
Please find enclosed my cheque /PO for $£ 19.95$ (payable to HE Magazine) for my Alarm/Chrono LCD watch.

Name
Address

DIGITAL ALARM

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1 100 is designed for mains operation only ($240 \mathrm{~V} / 50 \mathrm{~Hz}$) with a 12 hour display. AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim-Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9-minute snooze switch is located at the top.
An example of this clock can be seen and examined at our Charing Cross Road offices.
£10.60

To: Hanimex Alarm Offer HE Magazine
145 Charing Cross Road London WC2H OEE
Please find enclosed my cheque/PO for $£ 10.60$ (payable to HE Magazine) for a Hanimex Digital Alarm Clock.

Name To:
CLOCK RADIO Offer HE Magazine
145 Charing Cross Road London WC2H OEE
Please find enclosed my cheque/PO for £17.95 (payable to HE Magazine) for my Clock Radio.

Name
Address

Gar Audio

Full medium and long wave tuning. Complete with speaker and mountings. Suitable for positive or negative chassis. Latest model.

Telescopic Car Antenna

- Induction Balance Model

Built with sensitivity up to 10 in on single coin; fitted with speaker and meter; PP3 battery; 7in dia search head. Telescopic stem. Excellent pin-pointing. positive reaction to non-ferrous, negative reaction to iron. This model's normal price is c39.951

$$
£ 24.50+£ 1.00 \text { Post }
$$

All goods guaranteed one year 10 -day money-back offer. Goods ex-stock at time of going to press. Callers by appointment only please. Send s.a.e. for illustrated leaflet.
Minikits Electronics Lta.
88H Hainault Road Leytonstone London, E. 11

Books from the HE Book

 Service28 Tested Transistor Project 1.55 Richard Torrens. The projects can be split down into simple building blocks which can be recombined for ideas of your own.

Electronic Projects for Beginners
£ 1.65
F. G. Rayer. Divided into 'No Soldering Projects,' Radio and Audio Frequency, Power Supplies and Miscellaneous.

Practical Electronic Calculations and Formulae . $£ 2.65$ F. A. Wilson. A valuable reference for the home and laboratory, containing all the most frequently used, and some of the less well known electronic formulae and calculations.

Popular Electronic Projects
$£ 1.75$
R. A. Penfold. A collection of the most popular types of circuits and projects using modern, inexpensive and freely available components.

Digital IC Equivalents and Pin Connections ... £2.85 Adrian Michaels. Covers most. popular types and gives details of packaging, families, functions, country of origin and manufacturer.
Radio Stations Guide $£ 1.75$ B. Babani and M. Jay. An invaluable aid to everyone with a radio receiver helping them to obtain maximum entertainment, value and enjoyment from their set

Linear IC Equivalents and Pin Connections ... £3.10 Adrian Michaels. Gives most essential data for popular devices.
Electronic Security Devices
$£ 1.75$
R. A. Penfold. Full of constructional circuits covering the most basic security systems to the Ultrasonic and Doppler Shift systems.
How To Build Your Own Solid State Oscilloscope

E1.80
F. G. Rayer. The book contains concise practical instructions so that even an inexperienced hobbyist can construct a fairly sophisticated instrument with the minimum of difficulty and expense.
50 FET (Field Effect Transistor) Project $\mathbf{\Sigma 1 . 6 5}$ F. G. Rayer. Contains something of interest for every class of enthusiast. Short Wave Listener, Radio Amateur, Experimenter or audio devotee.
50 Circuits Using 7400 Series ICs £1.65 R. N. Soar. The author has managed to compile no less than 50 interesting and useful circuits using this range of devices, covering many different aspects of electronics.

Essential Theory for the Electronics Hobbyist £1.55 G. T. Rubaroe gives the hobbyist a background knowledge tailored to meet his specific needs.

Beginners Guide to Building Electronic Projects . £1.65 R. A. Penfold. Covers component identification, tools, soldering, constructional methods and examples of simple projects are given

50 Projects using IC CA3130

$£ 1.25$

R. A. Penfold. Describes audio projects, RF project, Test Equipment. Household and miscellaneous circuits.

IC 555 Project
E2.05
E. A. Parr. Circuits are given for the car, model railways, alarms and noise makers. Also covers the related devices 556,558 and 559

Second Book of CMOS IC Projects $£ 1.80$ R. A. Penfold. Following in the success of the original CMOS projects book we present the second volume covering all aspects of CMOS technology from multivibrators to trig. gering devices.

Note that all prices include postage and packing. Please make cheques etc. payable to Hobby Electronics Book Service (in Sterling only please) and send to:

Hobby Electronics Book Service, P. O. Box 79 Maidenhead, Berks.

HE Binders

Now that Hobby Electronics is in to its second volume the need for a good strong binder is greater than ever.

In line with our policy of value for money, we will outline some of the alternative uses an HE binder can be put to.

(1) Blocking cat-flaps to prevent stray cats from entering your kitchen.
 (2) Blocking off car radiators during cold weather.

(3) Temporary bridges for model train layouts.
(4) Emergency umbrellas.
(5) A hat for HEBOT.

Of course, you could use them for keeping those valuable copies of HE in pristine condition, but that's up to you.

To become the proud owner of these blue bound, gold embossed works of art just send us $£ 3.20$ without delay.

Send your cheque, postal order, pools win or gold fillings (to the value of $£ 3.20$) to;

> Hobby Electronics Binders, 145 Charing Cross Road, London WC2H OEE.

DIGITAL FREQUENCY METER

The most sophisticated piece of test gear to appear in HE so far! Don't let that put you off. our main project next month will be very simple to build and will cost a fraction of a commercially made unit. Once calibrated (that's a doddle too) it will accurately measure frequencies up to 10 MHz in a series of switched ranges. Now you will be able to measure the output of those oscillators, calibrate test gear, even use it to indicate frequency on Long Wave and Medium Wave radios. Why wait any longer? This one is for you.

RADIO
 CONTROL SPEED CONTROLLER

Don't worry. The radio control system is comt ing, meanwhile, how about this neat and simple solid-state motor speed controller for existing systems. If you've got an R/C car with electric motor drive this will be just what you're waiting for

PROJECTS SPECIAL

Next month we hope to bring you news of the Hobby Electronics Projects Special - Volume 1. After months of research we have come up with what we believe will be the last word in specials, and all for just $£ 1.25$

INTERCOM

Until CB gets legalised you will have to content yourself with this really superb intercom. Practise your 10 code, try some slang, we gaurantee it will not contravene any Post Office regulations. Seriously though, a really good two-wire design that will not leave you so poor trhat you can't afford the batteries. It features a calling facility and a massive 2 watt audio output. Perhaps we should have called it a PA system!

SLOW SCAN TV

Almost exactly 50 years ago a new invention was demonstrated for the first time. It consisted of an unweildy mixture of bits and pieces that would not have looked out of place in a scrapyard.

This invention was called a 'Televisor' and by now you may have guessed the inventor's name, Logi Baird. His system for transmitting moving pictures unfortunately lost the race for commercial success to the all-electronic system, the forerunner of our present system.

If you thought the Baird system is now little more than a historical curiosity you would be sadly wrong. Unbeknown to most of us development of the Baird system has been plodding along steadily these past fifty years. The improvement in available technology has made further investigation very worthwhile and we're sure you'll find next month's feature on Slow Scan Television very interesting. It is one of the few fields where the amateur can still make an important contribution

ELECTRONIC IGNITION

After this month's feature on automotive electronics we are following it up with a really professional design for an electronic ignition system. We won't make any extravagant claims for this unit, we don't have to, it will speak for itself

NEGATIVE IONS

Next month we go into the health business, with a review of a kit that will change your life.

We ve had a steady stream of inquiries about negative ion generators in recent months. So, by popular request, before your very eyes, we will review the latest in personal negative ionisers. Called the 'Fusion', the ioniser is available both in kit form and ready built. It's a compact ($41 / 2$ in $\times 21 / 2$ inx $11 / a i n$), battery operated unit complete with a magnetic fixing pad, so you can even use it in your car.

The claims of the effects of negative ions are many and various. Once we ve got our soldering iron out of hock and built the box of tricks, we'll see how many of these claims we can verify.

It's well known that increasing the density of negative ions hurting around your ears can make you feel more awake and alert and dispell the gloom of a smoky atmosphere. They have to be negative, mind you. Positive ions have the opposite effect.

It is also claimed that negative ions can, in some cases, alleviate asthma, allergies and migraine. We have our doubts, but we're going to try it out anyway. By inhibiting the growth of bacteria, they are also supposed to cut down infections caused by air-borne germs. Well, that's a lot to live up to, but watch this space next month (give or take a few pages) for our findings on this new kit.

AS AN INDUSTRY, the world's car manufacturers have always been a pretty conservative bunch. That's not to say that they don't expend a great deal of money and effort on research and development, but the fact is that the nature of their market makes them extremely reluctant to take any risks in terms of putting untried innovations into production. Mud sticks in the automotive business, and a reputation for unreliability due to malfunction of some insufficiently tested piece of equipment would be as easy to acquire as it would be hard to shake off. With very few exceptions, then, the motor industry prefers to tread a safe path and use only technology that has been proven in practice over a long period.

The potential for the utilisation of electronics in motor vehicles is enormous. In all probability, but for the caution and reticence of the major auto makers, many of the possibilities could have been realised in practical use sooner than they have been. Both specialist electronics companies and 'in-house' research departments of the car firms have devised numerous auto-related applications for microprocessors and other types of electronic components, in some instances replacing conventional systems but in others creating entirely new functions. Only in the last few years have these ideas filtered through on to the production line, and then mainly due to outside influences.

Taking a broad view, development has been going on in all three of the world's main motor production centres - the USA, Europe and Japan - but local conditions and pressures have tended to concentrate efforts in differing directions. For instance, due to more congested roads and higher fuel prices, European and Japanese
cars have always been designed in a way which makes them much more fuel-efficient than their American counterparts. Oil shortages and ever tightening engine emission controls in the last few years have left the Stateside giants frantically scrabbling for radical alternatives to keep their own products viable in the face of competition from the imports. Along with lighter, smaller, aerodynamically cleaner bodies and advances in mechanical engine design, electronic ignition and fuel control systems offer them salvation. In Japan, even more stringent emissions regulations have preoccupied the local manufacturers. In Europe, by comparison, much less outside pressure has been brought to bear, certainly in terms of governmental legislation, although of course the overall energy situation has been just as prominent in the designers' minds. Consequently. implementation of electronic options has been more selective and deliberate. A further difference between Europe and the US is that few European car companies have extensive in-house electrical and electronics departments, unlike their American counterparts, though major independent electronics firms have divisions specifically given over to ạutomotive work.

HISTORY

The history of electronics in cars goes back to the late Fifties, when the old DC dynamo-type generator began to be replaced by the alternator, which incorporated at least a semiconductor rectifier, if not at first an integral electronic voltage regulator. Alternators caught on in an increasingly big way, but nothing else of note happened until 1967 when the first electronically controlled fuel
injection system went into mass production. Bendix in America had patented the idea in the mid-Fifties but it was the German company Bosch who put theory into practice.

Electronic ignition was the next major development. Transistor ignition systems using an induction pulse generator had been introduced as early as 1959 but it was the end of the next decade before any entered series production, and then to begin with only 'transistorassisted types retaining the mechanical contact-breaker points. Contactless designs came next and many kinds of both inductive and capacitive discharge variants proliferated on the accessory market. As original equipment, contactless transistor ignition became almost universal on the US scene by 1975 but is still only slowly infiltrating the European assembly lines.

Alongside the primary components in the late Sixties and early Seventies came a sprinkling of ancillary devices - electronic turn signal flasher units, windscreen wiper intermittent switching systems and quartz clocks, for instance - but the widely predicted electronic revolution did not materialise. There was a steady trickle of electronic gadgetry on to the accessory sidelines but, until very recently, no large-scale breakthrough in the OE field.

ENVIRONMENTAL PRESSURE

The last couple of years have brought far-reaching and dramatic changes, particularly on the other side of the Atlantic. Environmentalist pressures, and those of rapidly increasing petrol scarcity and price, have made electronically governed fuel injection systems such as Bosch's several 'Jetronic' variations more and more 'attractive to designers of spark-ignition engines. Such set-ups enable very precise and effective control of a petrol engine's fuel supply. In conjunction with devices which monitor exhaust gas content, closed-loop feedback can be established so that an engine's fuel/air mixture can continuously be regulated at the optimum

Simplified diagram of the Bosch 'Motronic' system:-
point for emissions and economy. On the ignition front, too, a major transition is in progress - from merely contactless ignition to a much more sophisticated type which, as well as creating and supplying a powerful spark, replaces conventional mechanical timing adjustment by a fully self-governing electronic timing system.

ENGINE MANAGEMENT

Partly thanks to technology derived from the US space programme, there is now a sufficiently strong electronic armoury to deal with the difficulties of in-car service. The

The prototype display for ALI. It shows both directional instructions and pictorial warnings of potential road hazards.

and only simple computations are necessary to produce further data such as ETA at a given destination, fuel consumption at any instant or projected quantity of fuel necessary to complete a journey. Additional sensors can add warning capability for things like incorrect level of fuel, oil, coolant, brake fluid, etc, brake lining wear and even tyre pressure; monitoring operation of all bulbs and lamps is equally simple. A check can be fed into a central electronic system of virtually every sub-system and function on the vehicle. To avoid baffling the driver with too much information at once, a single panel display can group the various items of feedback according to relative significance or potential danger and suppress those not wanted for normal driving, only displaying them when a malfunction arises in the relevant area or when requested to do by the driver.

COMPUTER CONTROL

Until recently, the circuitry used in car electronics was largely analogue type. Increasing use will be made of digital circuits, as in modern computer equipment, facilitated by LSI. Currently, two distinct methods of realising the central electronic system concept are being explored, termed a) 'single purpose computer' and b) 'microprocessor' systems. Both consist of MOS (metal oxide semiconductor) based LSI components and socalled 'peripherals' (pick-ups, sensors, etc).

In the single purpose computer system, each individual function has a separate computer circuit, while a central storage element holds only the data for the specific vehicle along with certain fundamental functions which bring about effective interaction of the various individual data processors. The whole system can be built from standardised parts and be expanded without difficulty.

The microprocessor system uses one central computer for all its range of component systems: this holds not just the vehicle data but programmes for each of the individual functions. The main benefit of this type of design is one of economy both of cost and space when a large number of sub-systems are required; it is also highly flexible, as the programme can be altered by a simple change in the central element.

HERE TODAY

There you have an overall view of trends and likely developments. Much has already been achieved, and some of the specific points mentioned deserve a closer look. The name 'Bosch' has already cropped up once or twice, and certainly this firm is in the forefront of the European, if not world, scene. Two of their most interesting projects that have reached production are 'Motronic' and 'ABS'

Motronic is already in service on the BMW 723i. It is an integrated engine control system consisting of a microprocessor, data and programme memory and input/output circuit. Sensors provide it with information on inlet airflow, engine speed, crankshaft position, and engine and intake air temperatures: it then interprets these data and continually, at minute intervals, regulates the quantity of fuel being injected and the point in the combustion cycle at which ignition is taking place, by ireference to predetermined programmes. In other words it provides highly accurate and stable manágement of ;the two essential engine processes.

Advantages to the driver stem from Motronic's ability
to distinguish particular engine conditions - idling, cold-running, over-running and accelerating - from 'normal' running, and compensate accordingly. In practice this means instant starting and totally smooth running during warm-up, regardless of changes in load, circumstances or ambient conditions, the engine operates without any 'flat spots' or hesitation immediately it is set in motion, in winter and summer. Advantages to everyone include impressive reductions in fuel consumption and pollution.

The Motronic system is designed to match the life of the engine, and needs no servicing whatsoever. In fact the only maintenance requirement left on the electrical side of the engine is routine renewal of spark plugs. Motronic additionally makes it possible to adapt engine control to deal with possible future requirements, such as use of alternative fuels or compliance with revised exhaust emission standards.

ABS means, if you untangle the German initials, anti-skid braking. Under development since 1970 in conjunction with BMW and Mercedes-Benz, it utilises sensors to measure the speed of wheel revolutions and send signals to an electronic control unit, which distinguishes whether the wheels are tending to lock as the brakes are applied or are still turning. In the light of this information, the appropriate amount of braking force is then applied or removed from the relevant wheels by a hydraulic unit.

On the road, ABS shows to greatest advantage under wet conditions, when stopping distances are often greatly improved. The system is especially useful in compensating for clumsy or unskilled driving, as it helps maintain directional stability even if the brakes are applied whilst cornering. Technically the circuitry is fail-safe: if a fault in the electronics should by some chance occur this is detected before the brakes are applied, a warning light is activated and the brakes revert to full normal operation. Bosch claim that, in safety terms, $A B S$ is 'the most important development since the seat belt ${ }^{\prime}$

ALI

Another Bosch project which is still at the research stage but could rapidly be put into operation if given the nod by government is known as ALI. Don't ask what the initials stand for this time, but the concept is of a driver aid that gives up-to-the-minute traffic reports and information about weather conditions on the roads ahead. The computers this time are not in the car but are linked to series of inductive loops set into the surfaces of major roads. As an ALI-equipped car passes over each of these loops, a bleep from its information receiver alerts the driver and reminds him to check his ALI screen for updated information - it may, for instance, advise him to turn off at the next junction. All the driver has to do to get continual route guidance is, when commencing his trip, to switch on the device and key in numbers corresponding with his destination.

Instaliation of ALI would, its makers estimate, cost about $£ 30,000$ per mile on the current motorway and major road network, or about 1% of the cost of roadbuilding (only a fraction of which would be accounted for by the actual electronic hardware). The on-vehicle equipment should cost between $£ 70-100$ on a massproduced basis, and in view of impressive-sounding. estimates of an up to 10% overall fuel saving on a motorway network, plus a reduction in both driver
frustration and accidents, the whole system ought to pay for itself within a few years.

HOME GROWN

The leading British auto-electrical company is, without a doubt, Lucas. They, too, have extensive past experience with electronic ignition and petrol injection systems including a joint project with Bosch, the L-Jetronic fuel injection. Foremost among their own current developments is their latest microprocessor controlled injection system which is based on digital circuitry of the type mentioned earlier, rather than analogue as on previous variants. The control unit incorporates the latest LSI techniques, using just two chips to contain all the main fuelling functions. The digital design, Lucas claim, provides more precise control of the fuel supplied to each engine cylinder than was previously attainable. The new system is already in production for Jaguar XJ12 and XJS models, in which applications it has met with a. warm reception from the motoring press, and is also being fitted to SD1 Rovers for the US market.

In the near future Lucas propose their own version of the total 'engine management' package, combining ignition control with the injection on one microprocessor. They point out the comprehensive diagnostic facility this will allow, and make the bold prediction of fuel consumption gains of as much as 25%. They emphasise that to make optimum use of the instantaneous logic available, adjustments based on it must be made as quickly as possible - to this end, they have developed a solenoid with an operation time of well under half a millisecond, which they expect to play a big part in actuating engine control functions in the future.

STILL TO СОME

A couple of more mundane applications of electronics are also just around the corner. Lucas are at present working on electronic control of conventional carburettors to bring some of the benefits of the more sophisticated fuel systems to cheaper cars. Vehicle Condition Monitoring ($V C M$ ') will be available for smaller cars within the next year or so; this will provide an illuminated readout for such things as fluid levels and brake lining wear, and give a check on correct operation of bulbs.

Interior shot of the Aston Martin Lagonda instrument panel. Most of the secondary controls are operated by the labelled touch pads on the console.

ASTON MARTIN

Aside from the work being performed by the big autoelectronics specialists, some car firms in Europe have already taken an initiative by buying-in electronic systems from elsewhere. First, and most brave, were Aston Martin Lagonda. Their unique Lagonda - the world's most sporting limousine or most luxurious sports car, depending on which way you look at it - has featured a fully electronic instrumentation system right from the start. (When the car was initially announced it was intended to incorporate a trip information computer too, but problems in those early days with electromagnetic interference caused that idea to be shelved; now, with the available improved technology, it, could be reinstated.)

The Lagonda's instrumentation package was designed exclusively for AML by a small firm in the USA. It uses a single PCB mounting all instruments and warning lights: these include speedometer, tachometer, clock, total and trip odometers, along with readouts for battery voltage, fuel level, water temperature, oil pressure, oil temperature, plus both internal and external air temperature. The speedometer and odometer readings may be selected in miles or kilometres per hour at will. Two binnacles house touch-sensitive switchgear.

The display panel is blank when switched off, lighting up with red LEDs when in operation. Instead of facing the whole gamut of data all the time, the driver can touch a switch to select 'essential instruments' only, reducing the information in front of him / her to speed, time and fuel tank contents. In this mode, the rest of the display only makes itself visible if a problem arises, in the event of which the relevant readout flashes to attract attention.

AML use Lucas Opus electronic ignition at the moment, and, regarding integrated engine control systems and the like, take the view that they will adopt what their suppliers develop. One thing they do predict is the use of LCDs in instrumentation.

EUROPEAN ELECTRONICS

Talbot (ex-Chrysler Europe) were in a good position while they were still a subsidiary of the American parent Chrysler Corporation to keep tabs on what was going on in the Stateside industry. Their Alpine models were among the first in the popular mass market to feature contactless ignition as standard, and now the SX versions of Horizons and Alpines are equipped with electronic trip computers which, at the touch of a button, give readouts for journey time elapsed, distance covered, fuel consumed, average speed and average rate of fuel consumption.

By contrast, Citroen had no transatlantic connection. The totally electronic completely distributorless ignition system fitted to the downmarket Visa and LN twincylinder models was conceived entirely within France, in collaboration with the Thomson company. It consists merely of two proximity detectors, a vacuum sensor, a coil and - the important bit - a computer. This proximity detectors respond to the passing of a metallic 'slug' attached to the engine flywheel, sending a pulse to the microprocessor with each revolution. The vacuum sensor signals the varying state of engine load. The electronic control centre then chooses the appropriate timing, according to engine speed and inlet manifold depression, for the coil to send HT current to the spark
plugs, at the same time ensuring that it (the coil) is fed sufficient primary current to produce the desired secondary voltage. The system is cheap, absolutely maintenance-free, and produces improvements in almost all aspects of engine behaviour: fuel consumption, exhaust pollution, low-speed torque and acceleration, and cold starting leven with a partially discharged battery for it needs to be cranked at only 20 rpm to produce a spark). Work is continuing on versions for larger engines.

CRYSTAL CONTROL

Other ideas being muttered about on the European scene at the moment include piezo-electric actuation of the injector valves in fuel injection systems, and replacement of the conventional wiring harness or loom with a single feeder wire, multiplexed signals and a decoder at each 'service' point. For instrument displays, electroluminescence seems likely to be the in-vogue medium, with digital circuitry but analogue-type visual presentation. Talking gauges will surely come - Texas Instruments are already developing them in the States.

As repeatedly hinted at, the Americans are ahead of us at least in implementation of a number of the possibilities. Right now a wide range of electronic add-on toys is available for fitment to their cars. If you happen to live on this side of the big pond but find the lure of accessories such as electronic combined analogue/digital display instruments and trip computers irresistable, don't despair. At least one British concern is importing them: Hatton Enterprises, of Langwood House, Epsom Road, Ashtead, Surrey, who handle 'Avatar' instruments and 'Prince On-Board Computers'. Thanks to the conservation-orientated pressures existing in the USA, virtually every car emerging from Detroit in 1980 has (as well as transistor ignition) some kind of electronic fuel metering device, from a basic 'feedback' carburettor system to full analogue or digital electronic fuel injection. Other electronics applications proliferate - electronic level control, electronically tuned radios, electronic speedometers, electronically coded door and boot locks are just a selection of the stock and optional equipment available on vehicles in dealer showrooms this year. Ford give the value of all the electronic components on a 1980 Lincoln Continental Mark VI as around $\$ 1800$ or nearly 10% of its retail price

The trend can only continue upwards. Another authoritative American source estimates that the world automotive industry will use about $\$ 600$ million-worth of semiconductor devices in the 1981 model year, rising to $\$ 1$ billion-worth per year by 1985 - a compound annual growth rate of close to 30%. European crystalgazers are hardly more cautious: Volkswagen, for instance, talk in terms of electronics constituting about 7% of the average car's manufacturing cost by 1988 , compared to around 2% today.

I started this article by talking about the car industry's early reluctance to accept electronics. I'll finish by saying that today it couldn't do without them. Computers are now extensively used in designing new models. They're even running the assembly lines (you must have seen Fiat's brilliant 'Hand-built by Robots' advertising campaign). If there's any way to solve the automotive problems of the next two or three decades, electronics will be the key.

Touch Switch

Bet you'll think this project's a touch of genius. Ten sequential outputs, or build it like a bistable. All under perfect, personal, fingertip control.

TOUCH SWITCHES have begun to appear in all kinds of places . . lifts have them, TVs have them; even personal computers have them. Well, now you can have one too, for the price of a couple of chips and a handful of discrete components.

Now is your chance to get the world under your thumb. Featuring up to ten sequentially selected outputs and an overiding reset input, the project is a cinch to build. Make one for fun or control your radio. Hi-Fi, goldfish, etc.

Many commercial touch sensors rely on the electrical mains for an energising field. This circuit can be powered from a single nine volt battery, a PP3 will do, has low current consumption, uses only a few cheap components and is simple to construct. Also, above all, it is. safe.

CONSTRUCTION

To avoid the introduction of stray circuit capacitances and ensure reliable and repeatable operation, we strongly recommend that our PCB design is used. It is very small and should be quite easy to make or cheap to buy. There is only one link to make on the board. Make sure you get the diode and electrolytic capacitor the right way round. That goes for the integrated circuits too. It is quite okay to use sockets, in fact we would recommend it. That way you can always use the chips again and anyway, sockets make substitution easy if (horror of horrors!) the project fails to work first time.

You can try different layouts for the touch sensors. We made up a special board. At its simplest, a touch sensor could consists of a piece of unetched PCB split

How it Works

The circuit operates by using the hand as part of a capacitor in a critical timing circuit. When the detector contacts are touched, the extra capacitance introduced has the effect of delaying the transmission of a clock edge. The circuitry is driven by one single phase clock generated by ICla whose output consists of a continuous stream of pulses at about one Hertz with a nominal fifty percent duty cycle. A delayed and inverted clock is generated from this signal by IClb whose output drives one of the clock inputs of decade counterdecoder IC2.

This chip does all the work of decoding the clock signals and provides a reset input which can be controlled from the touch circuitry or driven directly by one of the outputs of the chip. For example, to reset to zero after the 'fifth' count has been reached, just connect output 'six' (pin 5, IC2) to the 'auto reset' input at the anode of D1. If no connection is made to D1 then the circuit will cycle through all ten outputs. By connecting output 'two' (pin 4, IC2) to 'auto reset' and taking an output from 'one' or 'zero' (pins 2, 3 IC2), the circuit will operate as a bistable: one touch turning the output on; another touch resetting the output to off. The 'reset' touch contact may be left disconnected in this case.

A certain delay will always be introduced by IC1c, d owing to stray capacitance from the circuit board and connecting leads. This may be nulled out by adjustment of RV1 which should be set to
minimum resistance consistent with reliable operation.
Two suggested output circuits are shown. The first lights a LED when the appropriate output is selected, the other circuit will drive a small relay whose contacts may be used to switch more power.

The touch 'reset' circuit operates in a similar manner to the 'count' circuit. A glance at the timing diagram should make things clear.

Touch Switch

into two copper lands by scoring or filing a line down the middle breaking the copper, but leaving the insulating board intact. Make sure no copper whiskers remain to bridge the copper lands as these would prevent the circuit from working at all. Sensitivity will depend to an extent on the physical size of the touch contacts and the area covered by, for example, the thumb or palm. Reliable operation was obtained using the prototype with the touch contacts covered by a layer of adhesive

Fig. 2. PCB for the Touch Switch

The assembled board, clean and compact

Good soldering pays off. Pračtice makes perfect

plastic film. Use of a coloured film like the sort used to cover books could make an attractive addition to the project. Use your imagination and do not be afraid to experiment. Finally, a word of caution to anyone thinking of controlling mains powered equipment. This is okay so long as you make sure you use a relay whose contacts are rated for the job and keep all mains wiring away from the rest of the project. Build one now and give your projects a little touch of class!

Fig. 3. Overlay diagram for the Touch Switch.

Parts List

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)

R1	$10 M$
R2, 3	$100 k$
R4	$22 k$
R5	$10 k$
R6	$47 k$
R7	$15 k$

POTENTIOMETER

RV1
$220 k$ submin. horiz. preset
CAPACITORS

C1	100n polyester
C2	$10 p$ polystyrene
C3	470μ electrolytic

SEMICONDUCTORS

Q1	BC107
IC1	$4093 B$
IC2	$4017 B$

Buylines

All the components for this project should be readily available from the larger mail-order suppliers

[^1]
RANDOM ELECTRONIC EASY DICE

Self Assemble $£ 3.95$ Ready Built $£ 4.75$ Roll Out Model $£ 5.25$ inclusive vat． ADD 25p．POSTAGE PER DICE SUPER VALUE！

5 FUNCTION RADIO CONTROLLED CORVETTE FULLY ASSEMBLED

£22．50＋60p．p＋p
CLOCK ALARM KIT
FULL INSTRUCTIONS

£12．95＋25p．p＋p
T．V．GAMES B／WHITE £8．95＋25p．p＋p

24 TUNE ELECTRONIC DOOR CHIMES

£14．50＋25p．p＋p

CALCHEC EDUCATIONAL CALCULATOR

 £2．25＋25p．p＋p
ORDER FROM

Menorcrest Electronics Ltd． 1Hatton Court
Ipswich Suffolk
Tel：0473－210151／2

NEW FBOM GASIO

MAJOR PRICE BREAKTHROUGHI High quality water resistant watches at unbeat－ able prices including the first quality alarm
chronograph for UNDER £201
CASIO F－80
Alarm Chronograph 3 －year battery $1 / 10$ second stopwatch to 12 hours．Net，lap and 1 st and 2 nd place times． 24 hour alarm．Hourly chimes．Backlight．Black resin case and strap Stainless steel front and back．Glass．（£24．95）

£19．95

950S－36B Chronograph．As above bui $1 /$ 100 to 7 hours．Dual time． 12 or 24 hours．Full calendar pre－prog．to 2029． 5 year battery． Solid stainless steel case（£24．95）$£ \mathbf{£ 1 9 . 9 5}$ B10S－35B Alarm Chronograph．As above but with alarm and chimes instead of dual time． Solid S／S case（ $£ 34.95$ ） £29．95
1110s－34B． 8 digits，hrs，mins，secs，date， day．Chrome case．S／S braclet $£ 14.95$ Details on request SAE or stamp please
GALCULATING ALARM CLOCKS

MQ－6 Micro Card The Big－Digit Midget！
Pocket watch with fuli auto－calendar $1 / 10$ second stopwatch．Net． lap． 1 st and 2 nd． 8 digit calculator with \％and GT memory，Siylish fob chain，case $3 / 16 \times 13 / 4$
$\times 25 / 8$ （£24．95）
$£ 19.95$
MQ－12 Time Card（Credit Card size），alarms， 1／10 sec stopwatch and full month calendar display（ $£ 24.95$ ）
£19．95
ML－81． 11 note malody maker
Much more musical than the ML－80

Clock． 200 year auto calendar，musical alarms （2）．alarm timer and hourly chimes．1／10 second stopwatch，net，lap and ist and 2 nd place times to 24 hours．Calculator with full memory．\％，V one year battery． $5 / 16 \times 41 / 2$ $\times 21 / 4$ in（£25．95）
£22．95
Probably the world＇s smallest printer
HR－10 Minl Printer
10 digit LCD display．Elec－ tric discharge printing．De－ cimal mode selector．Prints full month calendars from 1901 to 2099．Full access memory．Sign change，\％ keys． 3 way power source 1 $5 / 8 \times 3.12 \times 65 / 8 \mathrm{in}$ （£34．95）

ONLY £29．95

123456789a

回暗（6）
（因）行 苗 國
（4）（4）［5］\times
G（1）（2）（3）

MASTER PACKAGE DEAL Programmables． FX－501P＋FA1＋Master Pack－sottware ki （usually $£ 17.95$ ）for only $£ 5$ £ 59.90 $F X-502 P+F A-1 \mathrm{MP} \quad £ 99.90$ REMEMBER we are never knowingly undersold and will try and beat any adver－ tised price
Our 1980 catalogue of Casio．Seiko etc will be available Feb／March．Price 25p．Price includes VAT．P\＆P．Send cheques，PO or phone your ACCESS or B＇CARD No to：－

THMPPUS
 Dept HE Beaumont Centro $164-167$ East
 Rd．，Cambridge CB 1 1DB Tel： 0223312866

B．K．ELECTRONICS

AM／FM STEREO TUNER AMPLIFIER CHASSIS

originally designed for installation into a music centre） Ready－buill and tested tuner／proamp board and power supply and power a mp board．Easily wired logelhen．
Wote：Interconnection wiring diagram supplies Rotary Controls：Tunisg．on／off volume，balance，Irable，bass． Push－button Controls：Mono．Tape，Disc，M．F．C．．F．m．（VHF）．LW． MW．SW．
Power Output： 7 watts hmS por ct
8 ohms． 10 watts speeth and music．
Frequency Response． $50 \mathrm{~Hz}-20 \mathrm{KHz}$ whthin ± 308 ．
Tape Sensitivity：Output－typically 150 mw．Input－ 300 mv for raled outpul．
Disc Sensitivity： 100 my（ceramic cardridge）．
hadio：FM MHF） 87.5 MHz －108 MHz／Sterso Beacon
Long Wre 145KHz－265KHz．
Modem wrve $520 \mathrm{KHz}-1620 \mathrm{~Hz}$
Short W we 5.8 mHz .16 mHz
Size Tuner $-23 / \mathrm{in}$ ．$\times 15 \mathrm{in}$ ． \mathbf{I} 7／kin．Approx．Powor Amp -2 in ．x T／ann．x 4hiq approz．
240 volt AC opsration．Complate with eirevit diagram． Price $-£ 22.00+£ 2.50$ P \＆P．

LOUDSPEAKERS

High quality full range B inch loudspeakers． 10 wasis AmS．8\％．Aolled sur round with aluminume centre cones $\mathbf{8 9 . 5 0}$ per pair +81.50 P

mail order only

Dept．HE，BK ELECTRONICS 37 WHITEHOUSE MEADOWS，EASTWOOD LEIGH－ON－SEA，ESSEX

Aghtronimstotat international

What to look for in the April issue: on sale March 7th

CIRCUIT SUPPLEMENT

Next months ETI carries something really special - a SIXTEEN PAGE circuit supplement for the experimenter. All the circuits have been tried and tested by us, making this the most reliable reference yet. If there is anything you need a circuit for or any circuits you need something for this is the place to find it. No less than 50 in all. Half a hundred of the best you'll find anywhere.

Well worth keeping for that inevitable future time when you'll NEED ONE or more of the priceless little gems lying amid these pages.

Hobby Chit-Chat

As a follow-up to last month's 'Chit-Chat', we look now at alarm-call generator circuits and methods of connecting them up to self-latching burglar alarms.

IF YOU BUILT or intend to build any of the relay-output burglar alarm circuits described in last month's 'ChitChat' feature, you'll need to couple your circuit up to a suitable alarm-call generator (a bell, siren or electronic siren) in order to make a working burglar alarm system. This month's 'Chit-Chat' tells you how to make those connections and describes some practical electronic siren' circuits that you can build

An alarm-call generator may use the same battery supply as the actual burglar alarm (see Fig 1a) or may be powered from it's own supply battery (Fig 1b). The rules for deciding which alternative to use are quite simple. First, if the burglar alarm and the generator voltages are not the same, you must obviously use individual supplies for each. Second, if the burglar alarm is NOT self-latching via a pair of relay circuits, you should use separate supplies: the reason for this is that the alarmcall generator impresses a lot of 'noise' on it's battery supply and this noise may cause malfunctioning of a non relay-latching burglar alarm that uses the same supply.

Fig. 1. Interfacing a direct-action alarm call gevierator (bell, siren etc) to a self-latching burgular alarm using (a) common or (b) individual supply batteries.

Thus, you can safely use a common supply only if the burglar alarm is self-latching via a relay contacts and if it
has the same voltage rating as the alarm-call generator Four of the burglar alarm circuits described in last month's 'Chit-Chat' were of the self-latching 'relay' type, so from this point on we'll confine the discussion to this type of alarm circuit.

AUTO-TURN-OFF ALARM ACTION.

Once a self-latching alarm has been activated it sounds the generator until the systems batteries run flat if the connections of Fig 1 are used. An alternative action, in which the generator sounds for only a pre-set period (typically 5 to 15 minutes) can be obtained by interposing an auto-turn-off unit between the burglar alarm and the alarm-call generator, as shown in Fig 2. This unit incorporates a relay that closes and completes the generator circuit as soon as the burglar alarm activates, but then automatically turns off and disables the generator after some pre-set period. Fig 2 shows alternative ways of interconnecting the three units when (a) common or (b) dual supply batteries are used.

Fig. 2. Interfacing an alarm call generator to a self-latching burgular alarm via an auto-turn-off unit, using (a) common or (b) individual batteries.

Figure 3 shows the practical circuit of an auto-turn-off unit that gives a basic timing period of 8 minutes: the period is proportional to the Cl value and can be doubled (for example) by giving Cl a value of 200 n

The operating principle of the Fig 3 circuit is quite simple. ICl is a 555 'clock' generator and IC2 is a 14 -stage binary counter which changes state on the arrival of each 8192 nd clock pulse. When power is first applied to the circuit the output of IC2 is set to the 'low' state via C2. As the output goes low the relay is driven on via Q1 and contacts RLA/1 close and complete the
oscillator on and off. The resulting pulsed tone signal is amplified by Q1 and Q2 and reproduced at a level of several watts in the speaker. The available power output of this circuit is limited by the ' 18 volts maximum' of the supply line.

The permissable maximum voltage (and thus the available power output) of the above circuit can be increased by modifying the circuit so that the supply to IC 1 is limited to 12 volts by a resistor and zener diode, as shown by R4 and ZD 1 in Fig 5. This particular circuit generates a 'dee-dah' warble-tone alarm, similar to a

Fig. 3. A practical auto-turn-off unit giving a delay of about 8 minutes. The delay can be increased by using alarger value for C.
supply connections to the IC1 clock generator, which then starts operating. On the arrival of the 8192 nd clock pulse fafter roughly 8 minutes with the component values shown) the output of IC2 flips high and turns the relay off via Q1, thereby opening contacts RLA/1 and breaking the supply connections to the clock generator. The operating sequence is then complete.

Note in this circuit that LED 1 illuminates so long as a voltage supply is connected from the output of the self-latching burglar alarm. The LED thus acts as a visual 'Intrusion Recorder' which continues to glow even when the alarm-call generator has switched off

ELECTRONIC SIREN CIRCUITS

An alarm-call generator can take the form of an electromechanical bell or siren or of an electronic siren or sound generator. In some cases it may be an advantage to use two types of generator, either operating directly in parallel or operated simultaneously via a multi-contact relay. An electronic siren may, for example, be used to sound inside a house while an alarm bell sounds outside.

Electronic 'sirens' can take a number of different forms and may be designed to generate quite distinctive sounds. Figures 4 to 8 show five useful designs that can easily be built by the electronics hobbyist.

The Fig 4 circuit generates a 'bleep-pause-bleeppause' pulsed tone signal. IC 1a-IC 1 b form a 1 Hz astable multivibrator which alternately gates the IC $1 \mathrm{c}-\mathrm{IC} 1 \mathrm{~d} 1 \mathrm{kHz}$

Fig 4. Higher power pulsed-tone alarm call generator.

British police car siren. The circuit is similar to that of Fig 4 , except that the 1 hz astable is used to frequency-shift the IC $1 \mathrm{c}-1 \mathrm{C} 1 \mathrm{~d}$ oscillator.

The frequency-shift 'symmetry' of the circuit

Fig. 5. High-power warble-tone alarm call generator.

Fig. 6. Alternative warble-tone alarm caill generator simulates a British police car siren.

Fig. 7. 'Wailing' alarm call generator simulates an American
police siren.

Chit~Chat

Fig. 8. 'Red-Alert' alarm call generator simulates 'Star Trek' alarm signal.
depends somewhat on the characteristics of the individual chip that is used in the IC 1 position. Figure 6 shows an alternative warble-tone generator that does not suffer from this defect. The modulation frequency of this circuit can be varied via R2 and the 'tone' frequency can be varied via R5.

Figure 7 shows a variation of the above circuit. This particular design generates a 'wailing' or alternately
rising and falling tone, similar to that of an American. police car siren

Finally, the Fig 8 circuit generates a 'zeep-zeep' sound that is similar to the 'Red Alert' alarm signal used in the 'Star Trek' programme. The period or interval of this signal can be varied via R2 and the tone can be varied via R6. This circuit is an ideal project for the. experimenter.

HE

Hobbyprints

We're just etching to tell you about HOBBYPRINTS, we, know you won't be able to resist them. They're so good we've even patented the idea (1445171 and 1445172). If you're board with all those untidy strip boards or semi-permanent bread boards then read on.

After many months of extensive research we think we've come up with the ideal solution (Ferric Chloride?) to all of those problems people have with making really professional PCBs. (Puns come at no extra charge).

Seriously though, the HOBBYPRINT rub-down transter, (very similar to the rub-down lettering) is the answer to the project builders prayer. PCBs take up a disproportionate amount of time, using HOBBYPRINTS a typical PCB can be finished in under half an hour. Because HOBBYPRINTS are produced from our original artwork there's no likelihood of making a mistake. They can even be used as photographic masks for ultra-violet PCB production.

Please note that HOBBYPRINTL is $£ 1$. 20. Print N (Dec HE) is in two parts Part (b) contains the Hebot print and is available for 40 p . Print (a) is still 80 . The HOBBYPRINTS for Jan 80 are in two parts. (a) has the Cap Counter and PSU, (b) has Digi-Die, Hebot Loop Drive and Crosshatch generator. Each costs 80 pence.

ORDER TODAY

Send cheque or postal order (payable to Hobby Electronics) to

HOBBYPRINTS,
 HOBBY ELECTRONICS.
 145 CHARING CROSS ROAD LONDON WC2H OEE.

80p INCLUSIVE OF VAT AND POSTAGE

Please note that Hobbyprint ' L ' is $£ 1.20$ including VAT, as it consists of two sheets.
Please mark the letter(s) of the HOBBYPRINTS on the outside of the envelope

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard
First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
£6.20 each or $£ 11.70$ for 2 including 1 or 2 EuroSolderBoards FREE
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes
£2.00 for set of three ESB's or FREE with every EuroBreadBoard)
And don't forget the EuroSolderSucker
Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pch pads and track. Primed and released by thumb, it costs only £7.25 including VAT \& PP

Snip out and post to David George Sales,
Unit 7, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales, HE 3
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 OAU.
Please send me:-
1 EuroBreadBoard (plus 1 free EuroSolderBoard) @ $£ 6.20$ ○
or 2 EuroBreadBoards
Please
or 3 EuraSolderBoards
@ $£ 11.70$ O Tick
£ 2.00
All prices are applicable from Jan. 1 st 1980 and include VAT \& PP but add 15% for overseas orders
Name
Company
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

Miniboards
 6 WATT SIREN

A state-of-the-art project to terrify intruders and pussy cats. A police-like "de-dah" alarm that produces a 6-watt output in an 8 ohm speaker when powered from a 12-volt battery supply.

THIS NIFTY LITTLE DESIGN uses the very latest advances in semiconductor technology to implement a very compact, inexpensive, yet exceptionally powerful alarm-sound generator unit that can easily be incorpo-: rated into an existing burglar alarm system or similar "security" device. The alarm produces a police-like "dee-dah" signal at levels up to 6 -watts in an 8 ohm speaker when powered from a 12 -volt battery supply and incorporates a number of unusual features.

The alarm circuit incorporates a basic alarm-signal generator, followed by a power amplifier stage. The alarm-signal section of the unit is designed around an inexpensive CMOS integrated circuit that consumes virtually zero "standby" power. The power amplifier stage is a real state-of-the-art device, a low-cost VMOS power FET which also consumes virtually zero current when in the "standby" mode. Consequently, the unit does not need a separate on / off switch and can be left permanently connected to a 12 -volt battery supply. The
alarm can be activated either by closing push-button switch PB 1, or by applying +12 volts to the junction of R1 and R2 (the low end of PB1)

CONSTRUCTION AND USE

The unit uses relatively few components and can be built in less than one hour. The components are assembled on a standard 1 inch $\times 21 / 2$ inch strip of Veroboard, as shown in the photos. Start construction by breaking the copper strips as indicated and then solder the nine wire links into place. Next, solder a suitable IC holder into position and then assemble the rest of the components, taking care to observe the polarities of C1, D1, IC1 and Q1.

When construction is complete, double-check all wiring and then connect the unit to a suitable 8RO speaker and a 12 volt battery supply, connect PB 1 in place and give the unit a functional check by closing the switch. The unit should produce an ear-splitting "dee-

How lt Works

ICla and.IC1b are wired as a slow astable multivibrator and IClC-ICld are wired as a fast astable. Both these astables are "gated" types, which can be turned on and off via PB1. The output of the ICa-IB1b slow astable is used to modulate the frequency of the IClc-ICld fast astable, and the output of the fast astable is fed to the external: speaker via the Q1 VMOS power. FET amplifier stage.

Normally, with PB1 open, both astables and Q1
are inoperative and the circuit consumes virtually zero standby current. When PB1 is closed both astables operate and the frequency of the fast astable is modulated by the slow astable to produce a "dee-dah" signal, which is passed to the speaker via the Q1 power amplifier stage. D1 and Cl are used to ensure that the astable actions are not adversely influenced by voltage transients induced into the battery supply leads via the speaker.
dah" alarm sound. Note that the speaker used in the system must be an 8RO type with a power rating greater than 6 watts

If you want to use this unit in conjunction with an existing burglar alarm system, you can either replace

Parts List

MINIBOARD No. 7	
RESISTORS (All $1 / 4 \mathrm{w}, 5 \%$)	
R1,2	12 k
R3	6 M 8
R4	220 K
R5	68 K

CAPACITORS
C1
C2
$10 \mu 16 \mathrm{~V}$ Electrolytic 100n Polyester 10n Polyester
SEMI-CONDUCTORS

D1	1N4001
Q1	VN67AF
IC1	CD4011B.

MISCELLANEOUS
SPKR
PB1
8RO, 10 watt
Push button switch

Buylines

The only component that is difficult to find is Q1, the VN67AF VMOS power FET. It can be obtained from J. W. RIMMER, 367 GREEN LANES, LONDON N4 1DY. For price, phone 01-800 6667

PB1 with a set of relay contacts that are activated via the burglar alarm system, or possibly can use the burglar alarm to activate the generator directly by applying 12 volts to the R1-R2 junction under the "alarm" condition.

HE

Above. Component insertion layout. Note the orientation of 01.

Below. Underside of the Miniboard 6 watt siren. Ensure that cuts in the track are made in the correct places.

Hobby Electronics, March 1980

TEE SHIRTS

We won't guarantee HE Tee-Shirts will make your soldering any better, we won't even claim it will make your projects work first ime. What we will say is that it will protect your body from harmful Ultra-Violet radiation from the sun, embarrassing Tomato Ketchup stains on your hairy chest and overweight wallets (if bought as directed in sufficient quantity).

Yes folks, for just $\mathbf{£ 2}$ all inclusive you can be the first kid on your block to own a brand new HE Tee-Shirt. If you buy more than one your torso need never be left unprotected whilst your other one is in the wash.

Send your cheque, PO or anything negotiable to: HE TEE
SHIRTS, 145
Charing Cross Rd, London TWC2H OEE.

HOBBY ELECTRONICS PROJECT SPECIAL VOLUME 1

From deep inside the HE specials department comes this once-in-a-lifetime opportunity. You could be one of the first to own a copy of this special re-publication containing 25 of Hobby Electronic's most popular projects. Cover price will be just $£ 1,25$. If you missed them first time around then this is your big chance.

More details next month

ife CAICRUM Ailitl
 GOMING SOON!

ALL COMPONENTS ARE BRAND NEW AND TO SPECIFICATION. ADD VAT AT CURRENT RATE TO ABOVE PRICES PLUS 35 FPRP. MAIL ORDER - CALLERS WVELCOME BY APPOINTMENT.

Short Wave Radio

Far away places with strange sounding names . . . Eavesdrop on the ether with this great project. 1 to 30 MHz in three sensitive and selective ranges.

IN THE BAD OLD DAYS OF RADIO, sometime after the appearance of crystal sets but before the superhet became a practical proposition a breed of radio receiver became popular called a. TRF. The letters stand for 'Tuned Radio Frequency' and the circuits usually contained several tuned (that is highly selective) stages of radio amplification. As superhet (short for superheterodyne) receivers were developed the humble TRF became less popular. Superhets mix a local oscillator signal generated inside the receiver with the received signal to convert all signals to an arbitrary intermediate frequency before amplifying and detecting them. The advantage of this arrangement is that the IF amplifier can be optimised for one particular frequency giving a narrow 'passband' and good selectivity. The vast majority of
modern radio receivers now use superhet circuits, even the cheap transistor pocket portables. Over the years, the radio spectrum has become increasingly crowded; especially the Short Wave bands and this has led to the development of a number of different modes of transmission. Amplitude modulation (AM) where the carrier wave is modulated in strength by the audio signal, is still used universally by commercial broadcasting stations at frequencies below VHF and very simple receivers, even a crystal set, can detect transmissions in this mode. However, many radio amateurs use continuous wave (CW) for morse code and single sideband (SSB) for speech. These signals are best resolved through the use of special detectors or with a direct conversion receiver. Many commercial short wave

The HE short wave radlo spans the world.

Fig. 3. Overlay diagram for the SW Radio.

Use of plug-in coils avoids complicated and
expensive switching.

SWRadio

receivers incorporate two or three detection systems and can cope with most modes of transmission. They may also feature a digital frequency readout covering 0.5 to 30 MHz . Sounds great doesn't it? Of course, such a receiver might cost several hundred pounds.

This version drives a crystal earphone directly. Even cheaper!

CHEAP AND CHIRPY

By contrast, you can listen to the wonderful world of squawk, crackle and pop (music) with the Hobby short wave radio for about a 'tenner'. If you are happy with earphone reception or have your home Hi-Fi handy it will cost even less! You should be able to tune the whole Short Wave band from about 1.5 to 30 MHz using three plug-in coils. Use of a TRF circuit means that no alignment is needed and though there is only one tuned circuit, the receiver is made quite sensitive and selective by applying variable positive feedback: 'reaction' or 'regeneration'. By increasing the feedback until the circuit is just oscillating, it is possible to resolve CW morse transmissions and with care SSB.

Our chart shows what you are likely to find on the short wavebands and where. Although it looks rather sparse, you will probably find that there is not an empty spot on the dial until about 15 or 20 MHz . By far the most interesting reception is provided by the range 4 coil covering about 5 to 15 MHz . You should be able to receive broadcast tranmissions from many foreign stations throughout the range. Using the prototype, we received English language transmissions for Cuba, Israel, Moscow, America, Vatican City, Canada and, of course, the BBC World Service to name but a few. Most stations identify themselves on the hour: Reception will vary during the day and according to the time of year but it is always possible to pick up something and there are numerous beacons and code transmissions scattered around the dial.

CONSTRUCTION

Use of the specified components and our PCB is essential to ensure stability. Radio frequency waves are awkward little things and find their way into everything. Indeed, at very high frequencies they will not even travel down a wire, preferring instead to run along the outside of a conductor.

The variable capacitor and two potentiometers are mounted on the PCB supported by stiff pieces of wire. All the other components with the exception of the loudspeaker mount directly on the board, keeping the component legs as short as possible. Our photo's should give you the general idea.

A mixture of capacitor types is specified. They are chosen both for their physical size and electrical characteristics and you should try to obtain the right types. None of the components are very out of the ordinary. Q1,2,3 are conventional junction FETs and no special handling precautions are required.

The coils plug into a modified B9A PCB mount valveholder. Simply remove the centre spigot and the connectors for all the pins except 1,6 and 7. A short wire link can be soldered between pins 6 and 7 on the range 3 (low frequency) coil effectively connecting both sections of VC1 to the coil when range 3 is selected. In this way, a greater tuning range is obtained. Do not worry that there are no connections to pins 8 and 9 ; this coil is not used. To change range, simply plug in the appropriate coil. VC1 should be the slow motion drive component. Although it costs a little more, it is worth the extra expense and obviates the need for a bandspread control.

Three plug-in coils cover all your favourite bands.
If you do not need the audio amplifier stage, the output from the negative side of C13 will drive an external amplifier or a crystal earpiece directly. The cheaper 80 hm magnetic earphones will not work here. Connect the ground or shield of your amplifier input to OV and the other wire to C 13. A hole is provided on the board for this connection.

In use, the regeneration control RV1 should be advanced until just before the circuit begins to oscillate (stations will be received as whistles when the set is oscillating); this is the most sensitive state. The setting of the 'regen' control will vary over the tuning range and according to the coil in use. To receive morse code CW and SSB, advance RV1 just past the point of oscillation. The SSB transmissions sound like Donald Duck voices and considerable care is needed to resolve them.

The Hobby SW radio offers an economical and simple solution to the problem of getting your ears on the world out there. Build it now and happy listening!

Our chart shows the principal broadcast and 'ham' bands, but there's more out there than you think.

WE DID WARN YOU!

Nobody likes to gloat, but nearly six months ago we warned you about our diminishing stocks of backnumbers. The ones shown here are all that are left! Hobbyprints are still available.

JUNE 79 (Hobbyprint H)

Projects: GSR Monitor, Envelope Generator, Drill Speed Controller.
Features: Citizen Banned, Display Techniques, Moving Coil Meter, Electronics in Music Pt 2, etc.

JULY 79 (Hobbyprint I)

Projects: Shark, Baby Alarm, Point Controller, Linear Scale Ohmeter.
Features: Cassette Decks and Tapes, Binary Numbers, Fixed Resistors, Short Circuits Special, etc.

AUGUST 79 (Hobbyprint J)

Projects: Home Security Sound System, LED Tachometer, Injector/Tracer. Constant Volume Amplifier.
Features: Security Installation, Variable Resistors
Tools, Satellite Power etc

SEPTEMBER 78 (Hobbyprint K)

Projects: Combination lock, Light dimmer, Starburst, Ultrasonic Switch.
Features: Electronic Timekeeping, Thyristors, Radio Control, FET Special

Shown here are all of the backnumbers still available. They are £1.00 each inc. P\&P. When ordering please quote the issue number, i.e. Nov. 78 is issue 1 Vol . 1. Next to each issue is the relevant Hobbyprint code letter, please note that Hobbyprints are still available for every issue

Please send me the following back issues Nos
Cheque/P.O. enclosed £
Hobby Electronics Backnumbers Dept. 145 Charing Cross Road, London WC2H OEE

Name
Address

Hobby
Electranics

OCTOBER 79 (Hobbyprint L see Hobbyprint Ad)
Projects: Tantrum, Hobbytune, Analogue Frequency Meter, Multi Siren.
Features: Home Computing, Electronic Games, Microwave Cooking, Breaker One-Four

DECEMBER 79 (Hobbyprint N)

Projects: Scalextric Controller, Ring Modulator, Bargraph Voltmeter, Hebot II.
Features: TV Receivers, Project Fault Finding, Data Supplement.

JANUARY 80 (Hobbyprint O)
Projects: Hebot III, La/p Counter, Crosshatch Generator, Digi-Die.
Features: Mini TV Survey, CMOS Spread, Spacelab

FEBRUARY 80 (Hobbyprint P)
Projects: Passionmeter, Infra-Red Control, Win Indicator.
Features: Short Circuit Special, Kezy Does It, Power to the People
subsc:ipions

$\odot 18$

To: Subscriptions Hobby Electronics P.O. Box 35 Bridge Street Hemel Hempstead Herts
Name
Address

I would like a postal subscription to HE starting with the
issue. I enclose payment ($£ 6.50$ for UK and Eire, $£ 7.50$ elsewhere, $£ 11.50$ air mail).

VARI WIPE WIPER DELAY CONTROL

The Vari Wipe provides intermittent

operation of the windscreen wipers with adjustable control to delay each wipe between 3 and 60 seconds. Set the control to suit the conditions to clear light drizzle, foo, snow, sleet or spray. Easily fitted to British, Continental \& Japanese cars with 12 volt self park wipers. Complete kit contains all components, including timer chip, PCB, case, mounting panel, wire, etc., with full instructions.

VARI WIPE KIT 56.75 inc. P \& P.

 ASSEMBLED £9.25 inc. P \&or send large s.a.e. for

NEW FROM MAGNUM

DIGITAL INDICATION of RADIO FREQUENCY using a unique combination of FUTABA FLUORESCENT DISPLAY (the 'Green One') and OKI COUNTER / DRIVER

Cómbination 1

OKI MSM 5524RS
OLI MSL 2318
FUTABA 6-LT-09
Crystal
Combination 2
OKI MSM 5525RS
OKI MSL 2318 FUTABA 6-LT-06

Crystal
Combination 3
OKI MSM 55271
OKI MSL 2318
FUTABA 7-LT-02
Crystal

Send today for your Combination (suggested circuit details and FREE I/C Socket are included) änd enjoy "spot on" visual tuning.

OUR NEW CATALOGUE IS NOW READY. Send S.A.E

TRGELUTI RUDIC LtG.

DEPT. E.T.I. 1, 13 HAZELBURY CRESCENT LUTON, BEDS. LU1 1 DF TEL: 05822887

K40RETAIL \&TRADE
 ACCESSORIES

DISGUISED ANTENNAS BASE ANTENNAS

 (inc. Beam, Omnidirectional, Balcony, Loft \& Indoor) ANTENNA ACCESSORIES(inc. Splitter, Cable, PL259, Plugs etc.)

POWER SUPPLIES
 LINEAR AMPLIFIERS
 (up to 200W)

SWR METERS
SWR / POWER METERS
SWR/POWER/MODULATION
METERS
SWR/POWER/ MODULATION/ FIELD STRENGTH METERS

K40 BASE LOAD DV27-all types
DX 27 - inc.'s' type
DK27-with or without
Splitter Box
ELECTRIC AM/FM/CB
(no loading coil)

Special Price Offer £21.38 AM, FM, SW Pre-Scaler
5 digits $+\mathrm{MHz}, \mathrm{KHz}$
3.2768 MHz

Special Price Offer $£ 18.32$ AM, FM
Pre-Scaler
$31 / 2$ digits $+\mathrm{MHz}, \mathrm{KHz}+A M$ FM
6.5536 MHz

Special Price Offer $£ \mathbf{2 4 . 5 7}$

AM, FM, SW

Pre-Scaler
5 digits $+M H z, K H z+A M$, FM
6.5536 MHz

[^2]

Breaker

Send any news. comments, or information you may/have to: Breaker One Four. Hobby Electronics, 145 Charing Cross Road. condon WC2M OEE.

At last, the winners of the Tape Competition and the famous $К 40$ review. Plus, some more clubs for your notebook.

NCLCBR

That stands for the National Committee for the Legalisation of CB. It was set up at the meeting last December as reported in BOF. The committee held its first meeting early in January. The members of the committee have not wasted any time in setting the ball rolling. A demonstration is planned for April the 27 the venue is unclear at the moment but probably around Trafalgar Square London. The next meeting of the committee is planned for Saturday the 9th February. Contact your local club chairman for details.
The demonstration planned for the 26th of January appears to have been a hoax, unfortunately HE goes to press a few days prior to this so we won't know until it's too late. If anyone has got details of CB events please by all means tell us but please no more wind ups

CHANNEL CONFUSION

Have you ever wondered why this feature is called Breaker One Four? Simple, or least so we thought. Channel 14 has been the English breaker channel for about a long as we can remember, except in areas where 14 is unusable due to local interference. It now transpires that most areas north of Birmingham have been using channel 19. Sorry to all concerned but it's a little too late to change the title.

CLUB NEWS

News of clubs is still trickling in. Just. Remember if you want a mention in BOF just drop us a line giving details of your club and where you meet if possible. On to this month's offerings.

CBA-SW
Chairman D J Bennet
7 Wookey Hole Road,
Wells,
Somerset. Tel. 75306
Harrow and Wembley Citizens Band Group
Secretary, Bill Ridgeway
7 Sandringham Crescent,
Harrow,
Middlesex. HA2 9BW
Meeting place: Queens Arms High St Harrow 7.30pm 1 st and 3 rd Wednesdays each month.

CALIFORNIA TEAMING

After BOFs recent jaunt to the USA last year we were surprised to hear from an American Breaker that we
spoke to in the 'States. As we were using CB quite legally we did not mind giving out details of our address in England. A postcard from the 'States arrived just before Christmas giving details of our chat. This is almost the same as the Ham QSL in fact many European countries do send QSL cards for CB contacts.

This set us thinking, we know HE does get around the world, most countries in Europe can buy HE on the bookstalls. So, if we have any CBers in other countries who would like to send us an example of their QSL card we will reciprocate. As it's not illegal to listen to foreign CB we may get some special HE QSL cards made up so we can reply to any overseas stations. Well, how about it.

TAPE COMPETITION

The entries for the competition were a little disappointing, not from the quality but the number. The answers to the questions are as follows
(1) Channel 14 is 27.125 MHz
(2) SWR stands for Standing Wave Ratio
(3) A 'Firestick' is a make of CB antenna

The suggestions for new slang for (a) a production line car, (b) the police and (c) the Home Office were quite good. Alongside the name of each winner we have printed their best suggestion

K Bareham, Surrey. The Home Office-Wave Rovers. Lance Brake-Whitley, Croydon. Production line car-Road Beater.
M D Barson, Whitstable. Home Office-Desk Jockeys
M. Jay London. Home Office-Gear Grabbers
T. Jenkins Devon. Car-Breaker Taker

Dave Finch Southampton. Police-Charlie Clore (Rhyming slang-Law)
E. Peters Dulwich, Home Office-Earwigs
M. Dilton Newcatle. Car-Mouthmobile.

Peter Raines London Police - Blues
J. Wilson Glasgow. Car-voice box

K 40 REVIEW

Bet you're thinking 'How can they test a CB mike when CBs are illegal.' Well, it just so happens we can, almost. Here at HE we have a licensed radio amateur, he comes complete with a transceiver. Problem solved, a genuine
'on air' test. We decided to hook up the K 40 to the rig and try it out on the 11 metre amateur band. (27 MHz is around 10 metres so we're pretty close.)

Before we get to the test proper a few words on what is supposed to happen. You may be familiar with power mikes, they usually incorporate an audio amplifier to 'boost' the level of audio to the rig's input and driver stages. This would hopefully increase the level of modulation giving a stronger signal, in theory at least. The trouble arises when these are coupled up to modern rigs that incorporate compression circuits, designed to reduce the level of strong peaks from the microphone. Result, the signal from the power mike often gets severely clipped and distorted making it worse than ever.

The $K 40$ opened up for inspection

The K 40 works on a different principle. Within the mike case lurks a purpose designed op-amp IC. This 'looks' at the output from the microphone and amplifies the portions of the signal that are below a predetermined level. This increases the amount of signal that reaches the modulator stage resulting in a stronger (though not louder) signal.

The really clever bit of the K 40 design is the FET controlled charging circuit. The K 40 circuitry does not require batteries, instead an electrolytic capacitor is charged from the rigs existing mike leads. When the mike is keyed the IC is powered from the internal capacitor. When the rig is in the receive mode the capacitor re-charges. The current consumption is so low that a two second period of receive will power the mike in the transmit mode for around three minutes.

As an added bonus the K 40 has a 'Hi Lo' switch that increases the treble content (Hi) for operation in crowded cities. The higher frequencies stand a better chance of punching through the mush. Limiter circuits in the mike also maintain a constant input to the rig whether the mike is half an inch or two feet from the mouth. This, is it claimed is especially useful to truckers who have a high level of background noise in their cabs. They just hold the mike as close to the mouth as possible and the background noise is cancelled out.

Finally, the mike has a permanent magnet built into the rear of the case, no hooks or clips needed, just stick it to any metal surface when not in use.

So, does all this fancy stuff live up to the manufacturers claims? In short yes. Our Ham friend reported
excellent 'copies' from as far away as Germany. A comparison test involving the standard mike and the K 40 was favourably reported from the other end. We will continue to review the $K 40$, this time on a mobile 2 metre rig under noisy conditions. In the meantime we would like to thank Wintjoy for the opportunity to test the $\mathfrak{K} 40$ and say that for around 40 quid it's a touch pricey but well worth looking into.

15 PENCE $=$ LEGAL CB?

Our penultimate item this month comes from that well known personality of the Airwaves (Rumour has it he's a licensed amateur) 'Mack The Hack'. He writes to us with a verx worthwhile suggestion.

Would you spend 15 p to help get CB legalised? I'm sure you are all scr eaming 10-4 for sure.

In the recent Commons debate on $C B$. It was stated that 'The Minister (Home Office) has received 3,300 letters on the subject since May. That will be a drop in the ocean compared to the number of letters he will receive during the next few months'

It has been suggested that all interested persons send post cards, (No not QSL cards), to the Minister.

The one I sent with views and greetings from London had this message. 7th Jan. 1980. 1140am GMT. 10-20 Victoria embankment, in 10-33.

Dear William.

10-50 (accident) Blackfriars underpass, traffic tailback to your works 10-20 (Parliament Square) wish you'd been there. If Citizens Band Radio was legal I would have been forewarned and able to have taken alternative route.

Yours faithfully, Mack the Hack.
CB4 UK NOW (please).
This postcard cost $7 p$ and the stamp $8 p$ (2nd class) and was serit to Mr William Whitelaw. House of Commons London.

Whenever I see a situation where $C B$ could have helped I think that I'll send the Rt Hon William Whitelaw another postcard.

Now why don't you do the same. It will only cost you $15 p$ and less time to write than it takes you to read this. Mack the Hack.
We can see nothing wrong with that idea. How about sending a postcard. It might just make the difference.

AND FINALLY....

Lastly a couple of items from Wintjoy Ltd who seem to be just about the biggest dealers of CB accessories in the UK at the moment. They are compiling a map of Great Britain showing each town with its calling channel. If you would like to drop them a line giving details of your local 10.20 they would be most grateful. (This is not as sinister as it sounds, more about this next month). Finally, they would like to apologise for the breakdown of their phones earlier last month. Phone bill has been paid and they've now got their ears on.

LATE NEWS

Just managed to get this in, in the nick of time. A major demo is planned for Sunday, February 23rd. Venue should be Hyde Park, Speakers Corner again. The march should commence around 11 am . See you there.

GREENWELD

443F Millbrook Road, Southampton SO1 OHX All prices include VAT at 15% - Just add 30p post

COMPONENT CABINET
 IDEAL FOR THE
 NEWCOMER TO
 ELECTRONICS

Contains hundreds of brand new resistors, capacitors, transistors, diodes and i.c.s All
useful values, carefully chosen to help the new consiructor pursue his hobby withour finding himself short of some vital partsl All parts contained in clearly marked bags in a plastic storage cabinet $232 \times 121 \times$ 185 mm with 9 drawers into which all parts can be neatly located.
If bought individually parts plus case would oost over 81.55 we are offering this for cheque or PO for $£ 32.95$ for immediate despatch.
CONTENTS
200 1/4 watt resistors
20 Wire wound resistors
70 Mytor Capacitors
50 Polyester Capacitors
56 Electrolytic Capacitors
61 Transistors
12 L.C.s
55 Diodes and rectifiers
Alrogether 614 components
Price includes current catalogue and Green weld pen for reordering supplies. Plus free surprise gift.

VEROBLOC BREADBOARD

New from Vero, this versatile aid for building

 and testing circuits can accommodate any size of IC. Blocks can be joined together. Bus strips on $X \& Y$ axis - total 360 connectionpoints for just $E 3.70$.

3W Amp Module

Ready built and tested, this handy amplifier will prove very useful around the workshop. Just requires 17 V ac source (and 8 R spkr) as bridge rect and smoothing cap are mounted on the PCB. The 4 transistor circuit provides enough sensitivity for most applications Supplied complete with circuit diagram and winng details.

DISC CERAMIC PACK

Amazing variety of values and voltages from a tew pF to 2.2uF1 $3 V$ io 3 kV 1200 \& 1500 $€ 2.251000$ ¢4.00

DIODE SCOOP!!!

We have been fortunate to obtain a large quamtity of untested, mostly unmarked glass silicon diodes. Testing a sample batch signal diodes, high voltage rects and zeners may all be included. These rects and zeners at the incredibly low price of $£ 1.25 / 1000$ ar a bag of 2500 for $£ 225$. Bag of 10,000 £8. Box of $25,000 £ 17.50$.

AERIALS

X901 Telescopic 8 section 970 mm long extended. 175 mm collapsed. Swivel joint. 2BA fixing hole in base. 75p.
$\times 904$ Ferrite rod $140 \mathrm{~mm} \times 9 \mathrm{~mm}$ LW/ MW/ coupling coils, each independently moveable 64p.
X905 As above, but LW/coupling coi together on moveable former 65 p .

THE NEW 1980 GREENWELD

CATALOGUE

FEATURES INCLUDE
-60p Oiscount Vouchers
Quantity prices for bulk buyers Bargain List Supplement
Reply Paid Envelope

- Priority Order Form

VAT inclusive prices
All for only $40 p+20 p$ post
1000 RESISTORS £2.50!! New stock just arrived - Carbon Film $2 \% \&$ preformed leads, ideal for PC mntg. Enormous range of popular mixed values tor just £2.50/1,000; $£ 11 / 5,000 ; £ 50 / 25,000$

INVERTER

Prepare for the Power Cutsl Ready built inverter. $290 \times 55 \times 37 \mathrm{~mm} 24 \mathrm{~V}$ OC in, will power $6 \times 8 \mathrm{~W}$ flourescent tubes. Circuit supplied. Only $£ 2,80$

SCR PANEL \& REED PANELS

2525 Contains 11 800mA 60 V 2N506 SCR's, 116 V8 zeners. 111 N4004 diodes + Rs, Cs etc. Only £1.00.
$25272 \times 6 \mathrm{~V}$ reed relays, $6 \times 2 \mathrm{S030}$ or $2 \mathrm{~S} 2306 \times 400 \mathrm{~V}$ rects, + Rs. Only 50p.

VIRE AND FLEX

Solid core - ideal for breadboards etc $50 x$ 2 m lengths many assoned colours, total 100 m for $\$ 1.30$.
Flex packs $-5 \times 5 \mathrm{~m}$ lengths of multi-strand thin flex, ideal for wiring up circuits. Only 35p.

EX-COMPUTER PANELS

2528 Pack of boards containing 100s Rs, Cs diodes, including at least 50 transistors. Onty E1.20.
2529 TL pack - Panels with 74 series on, logether with code sheet. From simple gates to complex counters. $20 \mathrm{ICs} £ 1.100$ ICs $£ 4$.

VERO OFFCUTS

Packs of 100 sq ins of good size pieces about 4×2 in. in the following types:
5410.1 in . copper clad £1

Also pieces $21 / 2 \times 1$ in. $-10 / £ 1.20100 / £ 9$ $17 \times 3^{3 / 4 i n} \times 0.1$ in sheets, $10 / E 16.50$ Large range of Standard Veroboard and oxes/cases in stock. Details in Catalogue. SCOOPIII Verobox type 2522 , unused but has $31 / 2 \mathrm{in}$. holes in one end and $11 / 8 \mathrm{in}$. hole in the other, so instead of $£ 3.96$, we are selling these at $£ 1.85$.

BUZZERS. MOTORS \& RELAYS

2401 Powerful 6V DC Buzzer, all metal construction, 50 mm dia. $\times 20 \mathrm{~mm} 70 \mathrm{p}$. 2402. Miniature type, Buzzer, 6,9 or 12 V . only $22 \times 15 \times 16 \mathrm{~mm}$. Very neat. $53 p$ 2450 Miniature $6 \mathrm{~V} \overline{\mathrm{DC}}$ motor, high quality type, 32 mm dia $\times 25 \mathrm{~mm}$ high, with 12 mm soindle. Only E1.
W892 Heavy duty 12 V relay, ideal for car use - single 15A make contact. Coil 25R 85 p.
W890 OIL reed relay SPCO 2.4-10V 200 R coil. Orly $\mathbf{E 2 . 2 0}^{2}$

VU METERS

VO0 2 Twin type. 2 metres $\overline{40} \times 40 \mathrm{~mm}$ and driver board, supplied with circuit and connexion data E3.50.
V003 New type, just in. Twin type moulded one piece, $80 \times 40 \mathrm{~mm}$ (no driver board bur suitable circuin supplied) $£ 2.50$

CLOCK CASE BARGAIN

Z4T2 Oval format, overall size $130 \times 68 \times 87 \mathrm{~mm}$ deep, with built in stand. Rear panel drilied to accept 4 switches + alarm 60p.

119d PROSPECT ROAD FARNBOROUGH, HANTS 0252-318141 (EVES \& WEEKENDS)
C. B. CITY is dedicated to all present and future Citizen Band Enthusiasts

We stock a full range of everything you are likely to require and more. If not, we can most probably obtain it

Duff Rig?? Then why not take advantage of our repair service - absolute confidence guaranteed.

Access, Credit Cards accepted

Just send $3 \times 10 p$ stamps for our 16 -page fully illustrated comprehensive catalogue

REMEMBER!! Until C.B. becomes legal we DO NOT sell rigs

Into Electronics

Construction

Part 2
 BY IAN SINCLAIR

The most fundamental device in electronic construction - the transistor. This month lan Sinclair takes a close look at this and other important components.

YOU ENDED UP LAST MONTH with a working circuit, which flashed a couple of LEDs on and off. What makes this circuit electronic as distinct from just electrical is the fact that there are no moving parts in the circuit to cause the flashing, it's all done by these remarkable transistors along with the capacitors, resistors and LEDs

This month we're going to spend some time finding out what a transistor does, and learning a bit about how it does what it does. One way of learning would be to read every book about transistors you could lay your hands on - but the HE way is easier, just stay with us. What we'll do is to build a circuit that helps to explain what the transistor is doing in the circuit, then we'll take it from there.

To work then. Take the components off the board, gently pulling the leads out of the Eurobreadboard holes. Don't pull the leads out violently, because we want to be able to use these components over and over again Providing you don't get the leadout wires too badly kinked at the ends, they should last out this course and still be useful to you for years to come. I find that a pair of tweezers is very useful for taking components off, and also for inserting the leadwires into the holes. Unlike pliers, tweezers can be used in one hand, and they're not so heavy to hold either.

SIMPLE STARTERS

The first circuit is a very simple one. The table of connections is shown in Fig. 2.1, it's just a LED with its cathode connected to the negative $(-)$ lead of the battery - the part of the circuit we usually call earth and its anode connected to a 1 K 5 resistor. There's no connection between the other end of the 1 K 5 and the battery positive $(+)$ lead. Now if you clip the battery on, but leave the + lead free, not plugged anywhere into the board, nothing happens. If you now plug the battery + lead into the board at XI, the LED lights. What does this tell us? The LED lights when an electric current flows through it and current flows only when there is a complete circuit. All familiar stuff, you say? Yes, but we need to bear it in mind when we make the next step.

The next step is to see if enough current will flow through you - yes, you. Touch the lead of the 1K5 resistor which is plugged into XI, and with the other

BATTERY (-) TO 5A

TABLE 1

X1: 1 K 5 to 1 A
1A: LED Anode; 1 K 5 from 1A
5A: LED Cathode; B(-)
Fig. 2.1 A simple LED and resistor circuit.
hand hold the battery + connection. Does the LED light now?
Why not? It's because your resistance is too high. A 6 V battery simply won't pass enough current through you to light the LED. The voltage of a battery measures how much push it can give to an electric current, and 6 volts isn't much of a push. It's just as well, in fact. If a 6 V battery could push enough current through you to operate the LED, you wouldn't feel very comfortable. To be precise, you would suffer electric shock, which is what happens if you touch a high voltage which can pass quite a lot of current through you
OK, so you have a lot of electrical resistance, and a 6 V battery doesn't pass enough current through you to light an LED. Now set up the circuit which uses the table of connections shown in Fig. 2.2. This time we've used a transistor, the 1 K 5 resistor, and the LED in the circuit.

TABLE 2

X1: $1 K 5$ to $1 A ; B(+)$
1 A: LED Anode; 1 K5 from 1A
5A: LED Cathode; Transistor collector 7A: Transistor base
10A: Transistor emitter; B(-)
Fig. 2.2 Using a transistor to control the LED.

The battery + connects to one end of the 1 K 5 resistor at line XI , and the battery negative connects to the emitter of the transistor at line 10A. At the moment, the base of the transistor isn't connected anywhere, just plugged into line 7A. Now there's an electrical circuit present here. Current could flow from the battery + through the 1 K 5 resistor, through the LED, through the transistor collector and emitter leads and so back to the battery. Why doesn't it? We know that current can pass through the resistor and the LED, so it must be the transistor which stops the current. The transistor works in this circuit like a large resistance - it won't allow enough current to flow to light the LED.

Watch this now. Plug a piece of wire into line 7A, so that it connects with the base leadout wire of the transistor. Remember you don't have to force both wires into one hole, any hole in line 7A will do. Hold a bit of this bare wire in one hand (don't let it come against any other part of the circuit) and touch the battery + terminal with the other hand. What happens? What's more important, why does it happen?

RESISTANCE

The glowing LED indicates that there is current flowing between the collector and the emitter leads of the transistor. This didn't happen before, and we reckoned then that the transistor must have a high resistance between its collector lead and its emitter lead. Now it looks as if it has a low resistance between these two leads. Stop touching the wires - and the LED goes out again.

It looks as if a connection to the base lead of the transistor can make the difference between a transistor being a high resistance and being a low resistance. We've found already that we have a high resistance between our hands - we can't pass enough current to light an LED. That small amount of current which passes from one hand to the other seems to be enough, however, to make the transistor change over from being a high resistance to being a low resistance. All it has to do is to flow into the base leadout wire.

Try moistening your fingers, then hold them on the wires again. The LED glows a bit more brightly this time. You don't feel any current flowing through you, though, so you can only be passing a very small amount of current, much less than the transistor allows to pass through the LED.

Stop to gather breath and ideas. A circuit which includes connections to a transistor collector and emitter doesn't pass current unless there's a small amount of current flowing into the base terminal from a positive voltage. That's the way these particular transistors work - they're all of a type called NPN which conducts when both the base and the collector are connected to positive voltages. What this little lot has shown is that the transistor acts as a tap for electric current. A small amount of current flowing through you has caused the transistor to pass a much greater current through the LED. You can think of the base lead of a transistor as acting like a tap which controls the flow of current between the collector and the emitter.

TRANSISTOR TAP

There's an important difference, though. The transistor, unlike a tap, is controlled electrically. The amount of current which flows into the base controls the amount of
current which flows between the collector and the emitter. The name 'transistor' comes from the original name 'transfer resistor', because the discoverers of transistor action noticed that the resistance between the collector and the emitter changed when the amount of current flowing into the base changed. The word 'controls' doesn't just mean that the current can be switched on and off, either, Let's look for a moment at an experiment that we can't do (without a lot of expensive equipment) but whose results are important. Fig. 2.3 shows what's involved. A transistor is connected with its collector and emitter in one circuit, complete with a meter to measure the current (a milliammeter) which flows through the transistor from collector to emitter. There's another meter too, a current meter of the type called a microammeter, which can measure very small currents. This meter is connected to the base of the transistor, and to a current regulator which can control' the amount of current which passes.

Fig. 2.3 The arrdngement which shows how 'a transistor controls current. You don't need to do this one, but you should know about it.

What happens? Well, as you'd expect, passing some current into the base of the transistor causes current to flow between the collector and the emitter. That much we knew already. What is new is how these currents change when we alter the regulator. We'll find that, for example, doubling the amount of current into the base terminal causes the other current, the current between the collector and the emitter, to double also. In fact, any change' we make to the base current causes an exactly proportional change to the collector-emitter current. Mathematically, this is simple proportion, so that the. collector-emitter current is directly proportional to the base current. If we drew a graph, plotting collectoremitter current in one direction and base current along the other direction, the graph would be a straight line.

That's very convenient, because it means that the ratio:-

$\frac{\text { collector-emitter current }}{\text { base current }}$

is constant. Suppose, for example, that the ratio happens to be 100. A ratio of 100 means that the collector-emitter current is one hundred times the base current - always. If the base current happens to be 10 microamps, for example, then the collector-emitter current is 10×100 microamps, which is 1000 microamps (equal to one milliamp). Can we work this the other way around? Yes, if the collector-emitter current is 10 milliamps, then the base current has to be one hundredth of this,

10
100 milliamps, or 0.1 mA .

Into Electronics Construction

VARIABLE VOLTAGES

OK so far? The action of the transistor is sometimes called current amplification, because a small amount of current into the base controls a larger current between the collector and the emitter. Notice one very important point - amplification of this sort doesn't mean making current greater - it means using a small current to control a large one, like making a large-scale copy.

So far, we've been working with just one electrical quantity, current, and we've been relying on the voltage of a battery to keep the current flowing. Will the current flow at any voltage, or do we need a certain amount of voltage to keep current flowing through a transistor? Once again, we can discover this by experiment only if we have suitable measuring instruments, so we'll describe what happens.

Suppose we set up voltage measuring instruments, called voltmeters, to measure the voltage between the base and the emitter and also between the collector and the emitter of a transistor, as in Fig. 2.4. We'll keep the current measuring meters in place also, so that we know when there is a current flowing, and we'll regulate the voltages, not the currents. What would we expect to read from these meters?

Fig. 2.4 Another one you don't need to do for yourself - it shows how the voltage between the base and the emitter of a transistor controls the current.

Well, the first thing we would notice with this small fortune in measuring instruments is that no current flows at all when the voltage reading at the base is only around a quarter of a volt (0.25 V). The meter is connected between the base and the emitter, so that this is the base-to-emitter voltage. That's one important difference between a transistor and a resistor, because a resistor passes current when any voltage is placed across it. The transistor behaves as if there's some sort of switch inside, preventing current flowing.

If we jack up the voltage, slowly and steadily, we see the current start to flow at somewhere around half a volt, between 0.5 V and 0.55 V . Can't we be more precise? No, we can't, because the voltage at which the transistor starts to conduct varies - it depends on the temperature of the transistor for one thing, and also on the transistor itself. That doesn't just mean what type of transistor, but which individual transistor you use. They're not as alike as peas in a pod as far as this is concerned, and even transistors which were made on the same production line and at the same time from the same materials show these differences. It's just something we have to live with.

CURRENT

When current starts to flow in the base-to-emitter circuit, current will also flow in the collector-to-emitter circuit, just as we have now come to expect. Now for another measurement. Let's suppose that the current which flows into the base is a small quantity, ten microamps (written as $10 \mu \mathrm{~A}$), and that we needed a voltage of 0.5 \checkmark to make this amount of current flow. How much voltage do we need to make $100 \mu \mathrm{~A}$, ten times as much, flow? If we were dealing with a resistor, the answer would be simple - ten times as much, 5 V would be needed. How much voltage does the transistor need? Just 0.06 V more, that's all. In our example, that's a rise of voltage from 0.5 V to 0.56 V

Far from making life difficult, this makes transistor electronics rather simpler. When a small transistor is conducting, its base to emitter voltage woll be somewhere between 0.5 and 0.6 V , whether the current is large or small. We've said 'small', because some large power transistors may need a volt or so between the base and the emitter if they are to pass really large currents; we shan't be using that size of transistor in this series.

There's one more trick left up the sleeve. Suppose the measuring circuit is changed to the arrangement shown in Fig. 2.5. The new variable resistor RV2 lets us control the voltage at the collector. Up till now we've left that voltage at 6 V , because the battery supplies 6 V . What happens if we set the transistor conducting, and then start winding this voltage down? The answer, surprisingly, is practically nothing! Once wie set the current flowing, using RV2 to regulate the current in the base-emitter circuit, the collector voltage has very little effect, until the voltage drops right down to about 0.2 V .

Fig. 2.5 This is the last of 'eml It shows how the voltage between the collector and the emitter of the transistor affects (or doesn't affect) the current.

Only when the voltage drops this low (the figure of 0.2 V is called the saturation voltage) does the current suddenly start to drop. What do we make of the show so far? Let's list what the transistor does.

1. The current that flows between the collector and the emitter is always a fixed amount times the current that flows between base and emitter. This 'fixed amount' varies from transistor to transistor.
2. The voltage between the base and the emitter has to be around 0.5 to 0.6 V to keep the transistor conducting.
3. The amount of current isn't affected much by thevoltage at the collector, unless this drops to about 0.2 V or less.

LIGHT LED

Now let's try a circuit. Fig. 2.6 is the table of connections on the Eurobreadboard, which should result in a circuit which lights the LED. The transistor collector is connected to +6 V , and the emitter connects to the 2 K 2 resistor and then to the LED. When current flows, then, it flows through the transistor, the 2 K 2 resistor, and the LED, causing the LED to light.

TABLE 6

X 1 : $\mathrm{B}(+)$; 4 K 7 to 2 A ; Transistor collector
2A: Transistor base; 4K7 to 6A; 4K7 from X1
4A: Transistor emitter; 2K2 to 8A
$6 \mathrm{~A}: \mathrm{B}(-)$; 4 K 7 from 2A: LED cathode
8A: 2K2 from 4A: LED Anode
Fig. 2.6 How the components are connected for an "emitter follower" circuit.

All right? The LED lights when it's connected to the emitter of the transistor. Now change the connections, by taking the end of the 2 K 2 resistor which was plugged into 4 A and now plugging it into 2 A . This is the connection to the base of the transistor. Does the LED light here too?

It does, and the experiment shows that the voltage at the base must be about the same as the voltage at the emitter. This is a different type of transistor circuit, called an emitter-follower, in which we connect the collector of the transistor to the + supply voltage, but we don't connect the emitter of the transistor to the negative supply voltage. Instead, the emitter is connected to a 'load', the resistor, LED or whatever it is we' re controlling with the transistor. We'll look at these different connections again in the next part when we learn a bit more about circuit diagrams. The emitter-follower circuit makes use of the fact that the voltage between the emitter and the base of a transistor is always low, about 0.5 to 0.6 V

WET CURRENTS

Now for this month's project circuit, which makes use of all that we've learned about transistors so far. The circuit is for a moisture detector, useful for showing when your plants are well watered, or if the washing-machine is dripping water, unseen, on the floor underneath. The principle is very simple, it makes use of the first experiment you tried out this month. A very small current into the base circuit of a transistor will cause a much greater current to flow between the collector and the emitter of the transistor. Now water doesn't conduct electric current very well, but it conducts a lot better than air or most dry materials. If we have a couple of wires, one
connected to the positive of the battery and the other to the base of a transistor any slight current which passes from the positive terminal to the base will cause a much larger current to flow through the transistor between the collector and the emitter. The 'slight current' can be caused by water touching both wires, so that the wires act as a sensor or detector of water or steam. One useful way of making this more sensitive is to use two of the copper strips in a sheet of Veroboard (Fig. 2.7) with the wires soldered to the strips, and a piece of cotton fastened across the board. Cotton retains moisture, so that current leaks quite happily from one track to another if any water falls on the detector.

STRIP OF COTTON SECUREOBY ELASTIC BAND

Fig. 2.7 One form of the water detector board.

If you're not too happy with soldering yet (wait until Part 5) then try the scheme shown in Fig. 2.8. This uses a wood or hardboard base with aluminium cooking foil glued to it. The foil is cut with a modeller's knife so that

Fig. 2.8 A version of the water-detector board which doesn't need any soldering.
it's in two separate pieces, with a thin wooden track between them. Electrical connections are made from the aluminium foil into our circuit by bolting the connecting wires to the foil, using small-gauge nuts and bolts and large diameter washers. Remember that only single-coil wire should be plugged into the Eurobreadboard.

That settles the detecting part of it, which can be a long distance from the rest of the circuit if you like. The electronics part of it all consists of two transistors, three fixed-value resistors, an LED, a silicon diode and a component you haven't met before - a 10 K potentiometer. The potentiometer, usually referred to as a pot is a type of resistor with an extra contact whose position can be varied. The one we've used is called a 10 K pot because there's a resistance of 10K (more about these units later) between the two end connections, and this value of resistance is fixed. There's another connection, though, to a contact which can slide over the resistor

Into Electronics Construction

Fig. 2.9 The potentiometer.
materials, and the position of this contact can be set anywhere between one fixed contact and the other by turning the shaft of the pot. Suppose, for example, we connect this pot to +6 V at one end and to zero at the other. We can move the sliding contact to the zero end, making the voltage at the middle contact equal to zero. We could set the contact to the +6 V end, making the voltage at the middle contact equal to +6 V . We can also set the contact half-way, which makes the voltage of the middle terminal equal to +3 V , and we can set the contact so that the voltage of the middle terminal can be any value between 0 and +6 V .

CONNECTIONS

It's a very useful device, and we'll be using it again later in the series. The connections are always the same on these rotary potentiometers. They are set in a row, and when you're looking from the front, looking down the shaft of the potentiometer, then the end which connects to the higher voltage is on your left and the end which connects to the lower voltage is on your right. The moving contact is between them in the middle. That's the way it's going to be connected in this circuit, and that's the way it's connected in most circuits.

The connections can be made by stripping the insulation from an inch or so of single-core wire, and wrapping this bare end several times tightly round one of the potentiometer terminals. This doesn't give as good a connection as soldering, but it'll do for experimenting with provided you don't allow it to loosen too much by moving the whole potentiometer around too much. Fig. 2.10 shows these leads labelled, so that you can see where they plug into the board

Fig. 2.10 Making the connections to the potentiometer for the water-detector circuit.

The rest of the connections are shown in the table of Fig. 2.11. Remember that the transistors must be connected the right way round - you should know by now how to identify the emitter lead of this type of transistor by its metal tab. The LED also has to be the
right way round - though the circuit will still work with the LED connected the wrong way round, there's a chance of damaging the LED. The diode also has to be connected the right way round, otherwise the LED will never light and may possibly be damaged.

Fig. 2.11 The connections for the water-detector circuit.

SETTING UP

How do we use it? The pot adjusts the sensitivity of the circuit for detecting water. You can, for example, place the detector where you want to detect water and turn the potentiometer shaft fully clockwise. If you've connected it the right way round, the circuit should now be at its maximum sensitivity, and a drop of water on the detector plate bridging across the contacts should cause the LED to glow.

Sometimes you don't need so much sensitivity. You can use two bare wire leads in a plant pot, for example, and adjust the potentiometer so that the LED just switches off when the soil is damp enough. Now if you add too much water, the LED glows to warn you!

Suppose you want to use the unit to warn of dryness? It's easy, you just reverse the LED and the diode

Into Electronics Construction

connections as shown in Fig. 2.12. Now you set the potentiometer so that the LED just switches off when the moisture around the detector is getting a bit low, and the LED will shine a warning to you when things are too dry. It would never light in my local!

Fig. 2.12 How to plug in the LED and the diode so that the unit warns of dryness.

Next month - circuit diagrams, and a big step forward in circuit construction

ADDITIONAL SHOPPING LIST

Part 2

These are the extra components which you'll need to add to last month's list for the new work this month.

Resistors:	$1 \times 220 \mathrm{R}$
	$1 \times 470 \mathrm{R}$
	$1 \times 2 \mathrm{~K} 2$
	$2 \times 4 \mathrm{~K} 7$
	$1 \times 10 \mathrm{~K}$

Potentiometer: 10 K miniature type
Hardware: small strip of Veroboard or hardboard (see details in text).

ONE BANDIT

This circuit is designed to give an approximate simulation of a one armed bandit fruit machine, and is only intended for homeentertainment purposes. The unit has three seven segment LED displays, and when a pushbutton is depressed, all display segments appear to light up. When the button is released, a random number is displayed. The idea of the game is to obtain a row of three identical numbers in the display, with (say) 1 point being scored for "000", two points for " 111 ", etc., up to 10 points for "999". The object of the
game is to score as many points as possible in an agreed number of attempts, say 25 or 30 .

The circuit consists basically of a clock oscillator using IC1 and a three stage counter which uses IC2 to IC4. The 4047 CMOS device used in the IC1 position is a monostable/astable device which is used here in the true gating astable mode. Under quiescent conditions R2 takes the gating input (pin 5) low, and prevents the circuit from oscillating. Depressing SW1 takes the gating input high, and starts the circuit oscillating at a frequency which is controlled by R1 and C1. The specified values give an operating frequency of about 10 kHZ , although the exact frequency is unimportant, it just
needs to be reasonably high The display section uses three CMOS 4026 decade counter/ seven segment decoders, which can be used to directly drive high efficiency common cathode displays such as the FND500. DL704, etc. The three display circuits are connected in series, in the normal way, so that one thousand clock pulses take the display through every number from " 000 ' to " 999 ", and then back to '000' again.
Thus, when SW1 is operated the display cycles through every number about ten times per second, with all the display segments appearing to switch on continuously as the action of the distinuously as the action of the dis-
observer to perceive. When SW1 is released, the display is "frozen" at whatever number it happened to be displaying when IC1 ceased oscillation. There is, of course, no way of operating SW1 to definiately obtain one of the winning numbers, and it is purely a matter of chance whether or not one of these is displayed, as is the case with a real one armed bandit machine.

IC1 to IC4 are all CMOS devices, and normal CMOS handling precautions should be observed when dealing with these. The current consumption of the unit can be over 50 mA when certain numbers are displayed, and a large battery such as a PP9 should be used as a power source.

Small reed switches 10p. Magnets 7p. Postage 18p. GRIMSBY ELECTRONICS Lambert Road, Grimsby. Humberside. 100 s of bargains at shop. Components, Vero, surplus etc. List $12 p$

ETI BACK ISSUE REQUIRED. February 79. Good price and P\&P paid. Please contact: G. P. Church, 16 Brocklehurst Drive, Prestbury. Cheshire SK10 4JD

Stereo Slide Controls. 100 K Ohm Linear Pots. 60 mm . strake. 80 mm Fixing. 10 for $£ 4$ post paid. - CASS, 110 Blackmoor Drive Liverpool, L1 2 8RA.

P.C.B.s
 FOR
 リ.5
 PROJECTS

Nov.

Hebot (Board A)	3.00
R202 Radio.	. 30
Guitar Tuner	. 50
Dec.	
Hebot (Board B)	3.00
Ring Modulator	. 90
Speed Controller	2.50
Bargraph car Voltmeter	. 60
Jan.	
Hebot Loop Drive	1.30
Digi Die	1.50
eb.	
Passionmeter	. 1.20
I.R. Control (Set of 4 boards)	4.00
Win Indicator	1.50

Mar
Prices available on request
Please send S.A.E.
Prices include VAT P\&P Mail Order Only Cash with order

S \& G SERVICES (HULL)
43 Wheeler Street, Huil North Humberside

CLASSIFIED INFORMATION

Semi-Display:

1-3 insertions - £4.00 per single column centimetre
$4-11$ insertions - £3 50 per s.c.c.
12 insertions - $£ 3.00$ per s.c.c
Classified:
15 pence per word (minimum 25 words)
Box number $£ 1.00$ extra
ALL ADVERTISEMENTS IN THIS SECTION MUST BE PRE-PAID
Closing date: 2nd Friday in month preceding publication
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
Cheques and postal orders should be crossed and made payable to "Hobby Electronics'

CLASSIFIED ADS, HOBBY ELECTRONICS
145 Charing Cross Road, London WC2H OEE
(Telephone: 01-4371002)

If it's a case of making your project look good, then use one of ours. SImply send a S.A.E. for	
trade enauiries inviteo.	
	H. M. ELECTRONIC 271a/275a Fulwood Road. Broomhill Sheffield S10 3BD
	AMBIT INTERNATIONAL 2
	BI-PAK SEMICONDUCTORS .. 15
	B.K. ELECTRONICS 47
	CALSCOPE 16
	C.B. CITY 65
	CHROMASONICS 28
	C.S.C. 10, 16831
	DAVID GEORGE SALES 53
	E.D.A. 18
	GREENWELD 65
	I.L.P. 4 \& 5
	INTEGREX LTD. 32
	KONA PUBLICATIONS 65
	MAGNUM AUDIO 62
	MAPLIN 76
	A. MARSHALL \& SON 32
	MENORCREST 47
	METAC 74 \& 75
	MINIKITS 35
	NIC MODELS 55
	R.T.V.C. 28
	S. \& G. SERVICES 73
	SPIMIN DEVELOPMENTS 62
C. N. STEVENSON 9	
SWANLEY ELECTRONICS 55TECHNOMATIC 21	
TEMPUS 47	
	T.K. ELECTRONICS 56
	VERO ELECTRONICS 10
	WATFORD ELECTRONICS 7
	WINTJOY LTD. 62

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors Hardware and accessories
Selected range of popular components Full range of HE printed circuit boards normally ex-stock. same day despatch at competitive prices
P.C Boards to individual designs

Resist-coated epoxy glass laminate for the diy man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers and other drawing materials for $p \mathrm{c}$ boards

Send 15p for catalogue.
RAMAR CONSTRUCTOR SERVICES
masone road
STRATFORD-ON-AVON WARWICKs. Te. 4879

100 MIXED components $£ 2.50,100$ mixed diodes 85 p. Leds, 10 mixed colours/sizes, £1.15. Lists 15 p. Sole Electronics, H/E 37 Stanley Street, Ormskirk, Lancs L39 2DH:

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

(1)

(2)

Returned to Service Depariment within guarantee period.
(1) With alarm repeat - S.R.S.P. of $£ 17.00$ offered at $£ 3.95 \mathrm{inc}$ VAT
(2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S.R.S.P © 31.00 -offered at $£ 7.95$ inc. V.A.T
(3) With integral luxury light and repeat alarm also as featured in most major U.K. Mail Order catalogues, S R.S.P. of $£ 32.00$-offered at $£ 7,45$ inc. V.A.T. These will be sold as received from our customers with the existing fault(s) and without guarantee.

Discounts available on large bulk purchases
PRESCOTT CLOCK AND
WATCH COMPANY LIMITED
Prescott House, Humber Road, London NWZ $6 E R$

+8
VISIT OUR ELECTRONIC TIME CENTRES

AND SEE ONE OF THE MOST IMPRESSIVE QUARTZ WATCH RANGESIN BRITAIN

LONDON
327 Edgware Rd,
London W. 2
Telephone: 01-7234753

CASIO CHRONO

 950s-32BStainless steel case.
water resistant to 66 feet. Hours, mins. secs, am/pm year, month, date, day Auto-calendar pre-programmed until the year 2029
$12 / 24$ hour 12/24 hour. Stopwatch function. Range 7 hours. $1 / 100 \mathrm{sec}$
(Mode) Net time / lap-time / (Mode) Net time/lap-tion ist-2nd place time
Dual time function
Accuracy 15 secs per month Battery life approx 4 years.

M22

CASIO ALARM CHRONO 81CS-36B บึ่ากี่งก
Chronograph , ust select the one you like) Hours, mins, secs, day, date. countdown alarm, dual time zone, $1 / 100$ th sec. stopwatch. Lap/split time, 1 st and 2 nd place times. Molody test function
M30

SEIKO

CHRONOGRAPH
NEW STYLE
Hours, mins, secs and day of the week. Month date and day of the week. Stopwatch display Hours, mins, secs po to 12 hours (mins, secs, 1 / 100 secs up to 20 minutes) Lap timing Continuous time measurement of two competitors. Stainless steel mineral glass.

Price only
$£ 39.95$

Price only
£19.95
Same day despatch Price includes
and also day, month and year perpetual automatic calendar 100th sec chronograph to 7 hours.
Net time /lap/time / 1st and 2nd place times. User optional $12 / 24 \mathrm{hr}$ display. 24 hourly chime.
Alarm. User optional. Backlight, mineral glass Stainless steel. Water resistant to
100 t.
Battery life approx 4 years
M25 M25

SEIKO Alarm

 ChronographWith WEEKLY Alarm. Hours, mins, secs, month date, day, am $/ \mathrm{pm}$ Weekly alarm - can be set for every day at designated time e.g. 6.30 am on Mon, Wed and Friday
Alarm set time displayed
above time of day Full stopwatch functions laptime, split etc. including POST \& PACKING $\mathrm{M10}$

DAVENTRY
67 High Street
Daventry, N'hants
Telephone: $0327276545 / 77659$

NORTHAMPTON
St Giles Square, Northampton (Open 1st Feb. 1980)

CASIO F-200 Sports Chrono
 Attractive Man's watch
 in black resin w mineral glass.
 Hours, mins,
 Hours, mins, secs, am/pm
 alpha-numeric day
 Auto-calendar set
 28th Feb.
 Stopwatch working
 range 1 hour,
 units $1 / 100 \mathrm{sec}$. Mode.
 Net Time/lap/time/
 Price only
 £15.95

1 st -2nd place times.
Accuracy approx 15 secs per month.
Battery 12 months
M24

CASIO F-8C

3 Year Battery Life
Hours, mins, secs am/pm, date, day Auto calendar set 28th Feb.
Accuracy 15 secs per
month. Battery life approx 3 years.

Same day despatch

M36

Same day

despatch
including POST \& PACKING

Same day despatch
579 ?
including POST \& PACKING

SEIKO DIGI-ANA

CHRONOGRAPH
Time and Calandar function
Analog part display; $h r, \mathrm{~min}$, sec
Digital part display; $\mathrm{hr}, \mathrm{min}, \mathrm{sec}$
date, day and colon
Stopwatch $-\mathbf{h r}$, min, sec. $1 / 100 \mathrm{sec}$
Lap/stop and stop marks.
Counter function.
Time and calendar setting
function

$£ 79.95$

Same day despatch
including POST \& PACKING
1962

POST COUPON TO: METAC (24-hour despatch centre) FREEPOST (No stamp required), 47a High Street, Daventry, Northants

Please send me
I enclose PO / Cheque value
Barclaycard/Access No

Name
Address

Please complete both coupons
From: METAC Electronics \& Time Centre, (ETI)
47a High Street, Daventry, Northants.
Name
Address

This superb organ - build the first working section for just over $£ 100$ Full specification in our catalogue

Touch operated rhythm generator, the 'Drumsette'. Construction details 25 p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A massive new
catalogue from Maplin that's even bigger and better than before If you ever buy electronic
components, this is the one catalogue the one calalogue you must no be
without. Over 280 pages - some in ful colour-rt's a comprehensive guide to electronic components with hundreds ot photographs and page after page invaluable data. Our br-monthly newsietter contains guaranteed price, special otters and all the tatest news from Maplin.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration Full construction details in our catalogue.

Speakers from $1 / 1 / 2$ inch to 15 inch; megaphone. PA horns, cross overs etc. They're all in our catalogue. Send the coupon now!

ELECTRONIC SUPPLIES LTD

A genuine 150 W per channel stere disco to build yourself. Full specification in our catalogue

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155. Shop: 284 London Road, Westcliff-onSea, Essex (Closed on Monday).
Telephone: Southend (0702) 554000

[^0]: A fine pair, the 5080 Power Amplifier and PSU modules

[^1]: Use of a PCB makes construction a snap!

[^2]:

