nobby sectionics

ambit
 INTERNATIONAL

IT’s HIPPPEnIED RCAII !
 THE PART THREE CRTRLOEUE IS PUBLISHED \& WE hRUE MOUED TO BIGGER PREmises.

Yes it's here an last die all new Part Three Catalogus. Fun for all the famits. and the usual update on all that is new, worthwhike amd

 panel DVM Vel (ondy $\mathbf{C} 19.45$ each + VATI, the new 5 decade resolutim DFM3 for LW HF VHF with LCI) readont. The DFM6 with fluarentent

 circuit diagran of one of our competitor's tunen.

Not illusirated here - but also now available is the DFM6. This is a vacuum fluorescent display version of our immensely popular DFM3 (LCDI). Resolution is 100 Hz to $3.9999 \mathrm{MHz}, 1 \mathrm{kHz}$ to 39.999 MHz , and 10 kHz to 200.00 MHz ; all standard IF offsets (inc. 10.7 MHz , on shortwave)

UM1181 VHF band 2 VARICAP TUNERHEAD
5 tuned circuit, with image/spurti. better than -80as, butfered to

911225 FM IF strip with all mod cons for the Hifi uner: All types use 80 odB SiN Hitach, IC, with muting, AFC. AGC. meter Outouts for signal level and centr reto. UF preamp stage.

 B. Dual cetamic titers, sngle tunert detector stage E14.95 inc VAT 91072 AM RADIO TUNER MODULES - DC TUNED and DC SWITCHED Available Februar ' 80
All include butfered LO outpout. mechanical IF firter ctoко CFMOI . 10 WWning bix. swiching by a single pole to errith
${ }_{B}$ AS A ' but also including $\$ \mathbf{N} 1$ or $\operatorname{sw2} 2$ (specify.) CWith bois 1.8 to 4 MHz SW2 $=5$ to 10 MHz
C Weth both SW ranges
A A

There is a danger - when advertizing in some magazines - that because we do not find space to list everything we sell in every ad., that some readers forget about half the ranges we stock. So to summarize the general ranges TOKO Chokes, coils for AM/FM/SW/ Chokes, coils for AM/F
MPX, Audio filters etc Filters: Ceramic for AM/FM LC for FM, MPX etc. Polyvaricons ICs for radio, clock LSI, radio control, MPX decoders etc Micrometals Dust iron cores for toroids for resonant and EMI filters Toroid mounts
Hitachi Radio/audio/mpx linear ICs 100W MOSFETs, small signa FETs, MOSFETs and bipolar

And the following groups of products from a Aroad range of sources;
Semiconductors -specializing in radio devices Plessey SL1600, EUROPE's best selection of AM/FM and communications devices. Power MOSFETS, WORLD's LOWEST NOISE AUDIO small signal transistors, BAR graph LED drivers or linear and log
CD4000 series CMOS, TTL/LPSNTTL, standard linears (741, 301, 3080 etc). MPUs, memories. Small signal transistors from AEG BC237/8/9 ilies etc. (1000 off BC239C : $5.2 \mathrm{p} \mathrm{ea)}$ LEDs: AEG $3 \mathrm{~mm} / 5 \mathrm{~mm}$ round, $2.5 \times 5 \mathrm{~mm}$ flat. ed, greem, orange, vellow. The best prices you will find for quality products.
MOSFETs for RF signal processing, including the BF960 UHF device and 3SK51 for VHF Varicap diodes for 17:1 capacity ratio tuning

FREQUENCY READOUT LSI from OKL with one chip answer to most digital frequency display needs (and various modules).
Cristal and ceramic ladder filters from leading manufacturers, ferrite rods, various ferrite beads and a range of crystals for 'standard' frequencies and both $A M$ and $F M$ radio control at 27 MHz . Trimmer capacitors.
METERS a new range of linear movemen types, plus many 'indicator' types for VU, all types of tuning indicators etc. SOCKETS a new range that are better quality han texas low profile, yet better priced. Modules for AM/FM/STEREQ, complete kits or tuners, audio amplifiers from Larsholt. SWITCHES complete low cost DIY systems or push button arrays, keyboard switches. DOUBLE BALANCED MIXERS MCL SBLI replacement for MD108 etc. And cheaper.

Hobby Electronics

PROJECTS

Crosshatch Generator
31
The perfect picture

Digi-Dice

47
Throw a six
Hebot III
56
The final part

FEATURES

9 Mini TV Survey
Eyes down
Short Circuits

$18,44,71$

Try 'em out
Clever Dick
Is he really?

CMOS Special23

Do It Digitally
Spacelab
38
Science in space

Index Vol 152

What? Where?
Breaker One-Four 61
Latest news

Into Linear ICs
 The final part

NEWS AND INFORMATION

Monitor 6
Subscriptions 20
Why miss out?
Back Numbers 20
Going fast
Books 30, 54
Cheap reads
Next Month's HE 35
Radio control sepcial
Market Place 36
Cheap time
ETI Next Month 50
Brainy people only
Hobbyprints 60
PCB rub downs
Specials 63
Best sellers
Binders from HE 64
Keep 'em safe
Classifed Ads 73Sell your odds and ends

Hobby Electronics

145 Charing Cross Road,
London WC2H OEE $01-4371002$ (4 lines)
Published by Modmags Ltd,
Distributed by Argus Distribution Ltd,
Printed by OB Ltd, Colchester
Hobby Electronics is normally published on the second Friday of the month prior to the cover date

Editor: Halvor Moorshead

Editorial Asst: Rick Maybury
Project Team: Ray Marston. Steve Ramsahadeo, John FitzGerald, Keith Brindley
Production: Diego Rincon, Dee Camilleri
Technical Artists: Paul Edwards, Tony
Strakas, Joanne Barseghian
Advertising: Chris Surgenor, Steve Rowe, Sandie Neville, Kate Smith
Admin Staff: Margaret Hewitt, Bren Goodwin, Tim Salmon, Tracey Campbell, Loraine Radmore, Lorraine Stout, Marlin Felix, Halina Di-Lallo, Joan Brimm

Copyright. All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing kits of the projects must be sought from the Editor. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally.
$A B C$

Simply ahead... ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain - the completely
adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have
concentrated on improvements whereby our products will meet even more stringent demands such, for example, as
those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system.
I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega$ log.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$£ 4.64+74 p$ VAT

THE POWER AMPLIFIERS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

Model	Output Power R.M.S.	Dis- tortion TYpical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	$240 \mathrm{~W} \Omega$						
into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$	

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{~Hz}-3 \mathrm{~dB}$

PSU 30
PSU 36
PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU 70 with toroidal transformer for 1 or 2 HY120's
$\mathbf{£ 1 3 . 6 1 + £ 2 . 0 4 \text { VAT }}$
PSU. 90
PSU180
1 HY200 $£ 13.61+$
with toroidal transformer for
1 HY400 or $2 \times$ HY 200
$£ 23.02+£ 3.45$ VAT

NO QUIBBLE 5 YEAR GUARANTEE 7.DAY DESPATCH ON ALL ORDERS INTEGRAL HEATSINKS
BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE

- ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

ELECTRONICE LTO.
FREEPOST 4. Graham Bell House, Ropar Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778

Please supply

Total purchase price $£$

I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

Signature .

Monitor

CHEAP GAME

Latest programmable TV game to hit the streets comes from ACE. Most of the games are fairly standard (Atari, Grandstand etc) but one or two really stand out. We particularly liked the Boxing and Shooting Gallery games. The Boxing game has two very colourful gentlemen 'slugging' it out in the ring, the object being to knock your opponent out. The Shooting Gallery has a collection of wildife flying, swimming and running across the screen. Two vicious hunters have the job of trying to shoot as many animals as possible in the time allowed (or alternatively with a limited stock of ammunition). Not in very good taste considering the current interest in Anti Bloodsports, great fun though. All games are in colour with sound effects coming from the 'sets' speaker.

What really sets this apart from the other 'programmables' is the astoundingly low price, just $£ 89.95$ plus $£ 14.95$ each for the 1.4 cartridges available at the moment. ACE tell us that chess and Space War cartridges will be available early in the new year

If this machine sounds like it is for you then your local games shop should have it in stock about now, if for any reason you can't find one then ACE at Unit 3, Fulton Road, Wembley, Middlesex are waiting for a call from you.

CUT ABOVE THE REST

It's a fact of life, whenever you get hold of a new knife one of the first things you will cut with it will be yourself. There is a saying that it is better to be cut with a sharp knife as it doesn't hurt so much

What has all of this got to do with the folding knife shown here? The answer is simple, because it folds up the chances of cutting yourself are minimised but should you be unfortunate/ careless/stupid enough to cut yourself you can comfort yourself that because it is so sharp it won't hurt as much as a blunt blade.

The sharpness is assured by the Vanadium Stainless-Steel blade measuring just over three inches long. When not in use the blade folds in the amber coloured handle. To become the proud owner of one of these cutting tools then Telepro Ltd of Stiron House, Electric Avenue. Westcliff-on-Sea, Essex, would like to hear from you.

Ultrasonic alarms come and go but this one designed specifically for automotive applications, looks very interesting

It's called the Shurlok Detector and is only. slighly bigger than a packet of 20 cigarettes. The small size and minimum external wiring make it ideal for siting under dashboards or other equally 'discrete' places. The alarm operates by sending out a continuous stream of ultrasonics. Should any movement be detected within the 'field' it will trigger the alarm for 12 seconds. The alarm has a further capability for monitoring the car's battery voltage. Should the battery voltage drop for any reason the alarm will also be triggered.

The Shurlok comes with a very compre hensive installation kit and is being offered mail-order only at the moment for just $£ 44.95$ plus $£ 1.50$ P \& P. For more information contact Linkdell Lid, 7 Eastside Road, London, NW1 1 OAY.

SHURLOKS GOOD

MINI-MULTI

This interesting looking little multi-meter comes from Alcon instruments and is called the Mini. 20. As you can see from the picture it has a pretty comprehensive set of ranges. The meter features an anti-parallex mirror on the clearly calibrated scale. Sensitivity is 20 k per volt and accuracy in the order of 2% on the DC ranges and 3% on the AC. Price for the meter is a respectable $£ 27.37$ inc VAT. Contact Alcon Instruments at 19 Mulberry Walk, London SW3 for further details.

JUST IN TIME

Just a quick reminder to say that our technical enquiry service will be on holiday from Dec 14th to January 5th.

News from the Electronics World

AIR TODAY . . .

Have you ever wondered why nearly all radio sets tune over virtually the same set of frequencies? Could it be that these 'lost or missing' bands are completely dead or is it more subtle?

The fact is there are plenty of transmissions that for one reason or another are avoided by the radio manufacturers, these include sensitive' frequencies used by armed forces and police etc which, though, undoubtedly fascinating tolisten to is deemed illegal by the powers that be. One group of frequencies however, the so-salled Air Band is not restricted so we were intrigued to hear of this rather unusual receiver that along with the normal broadcast bands has the provision for monitoring these transmissions.

The receiver in question comes from Ingersol Electronics and is given the inspiring title of the XK 725 (whatever happened to the 724?). A close look at the tuning dial reveals that the FM/VHF band extends from $88 \mathrm{MHz}^{\text {to }} 130$ MHz (most radios give up at 108 MHz).

The set measuring $150 \mathrm{~mm} \times 70 \mathrm{~mm} \times 35$ mm runs from three HP7 type batteries has a buitt-in telescopic aerial and an LED tuning indicator. Interested? Then if you cannot find it at your local radio emporium contact Ingersol at: 202 North Road, London N1 7BL.

PIECE TOGETHER PROBE

Logic circuits are notoriously difficult to troubleshoot. Many fruitless hours can be wasted changing 'suspect' ICs when the fault is (Murphy's Law) usually a poor solder connection or open circuit PCB track. The value of an oscilloscope (if you're rich) or Logic probe in these situations cannot be overemphasised.

Like most types of test equipment. logic probes are essentially easy to build but are rarely constructed until it is too late.

Now there is no excuse, Continental Specialties Corporation (CSC) have got together an inexpensive logic probe kit that will hold its head (or pointed probe) up amongst the best of them. The probe (christened LPK-1) is powered from the circuit under test and shows conventional logic states via two LEDs marked 'HI' and 'LO'

Assembly should prove no obstacle to even the most 'ham fisted' and should make a worthwhile addition to any workshop. CSC can be found at: Shire Hill Industrial Estate. Saffron Walden, Essex CB1 1 3AQ.

SAVE OUR BREN

The lovely Bren Hunter, the lady who looks after all of our Readers Offers has been complaining. It's her feet, she keeps getting orders for backnumbers and subscriptions in letters containing orders for Readers Offers. She has to trek across the office to deliver these rogue orders to the various departments. So, please, if you have any sympathy at all for Bren's feet keep your orders for the three departments separate or Bren will come round your house and beat you up, (she would too).

NEW CATALOGUES

Catalogue time again. Two Interesting ones this month for your perusal.
A rather festive looking catalogue from Heathkit has just arrived. It contains all of their current range of very high quality kits at prices which may look rather excessive at first but then they are the best.

Second offering comes from Hamlin Electronics Ltd. They are probably the foremost supplier of LCD devices and displays. Call them at Diss, Norfolk, IP 22 3AY.

WE'VE GOT IT TAPED

The small picture on our cover shows our feature on miniature Tellys being filmed for a short feature that we hope to show at BREADBOARD. The equipment used comes courtesy of JVC and includes one of the latest home video colour cameras and video tape recorders. We were so impressed with the quality of this equipment it is doubtful whether JVC will ever get their gear back. We would like to thank JVC for the loan and Barbara Riddell and David Watson of Prestige PR Ltd for their invaluable assistance in getting it all together

SCALEXTRIC CONTROLLER

Due to lack of space last month we had to commit the cardinal sin of reducing the PCB foil pattern for the speed controller. If anyone would like a full-size copy of our original artwork then send an SAE to: Controller Foil Pattern, Hobby Electronics, 145 Charing Cross Road, London WC2H OEE.

RADIO CONTROL

Sorry about the lack of Radio Control project this month but the suppliers of the 'dedicated' ICs used in the design have told us there may be some supply problems. So rather than leave you hanging around with half finished projects we decided to postpone if t for a few months until the problems are all sorted out.

BREADBOARD 79

This issue should be out in time for the BREADBOARD electronics show at the Royal Horticultural Hall Westminster (Dec 4th to 8th) If you are in the area why not drop in and say hello. HE, along with our sister magazines ETI and CT have secured the largest stand at the show and all of our major projects along with back issues, readers offers etc will be on show. Look out for the HEBOT display, it promises to be very interesting.

CHANGE OF ADDRESS

NIC Models run by that gentleman Nick Nicholls has just opened up a retail shop at 61 Broad Lane Tottenham London N15. He assures us that he would be delighted to see you and take your money for any of his rather impressive range of goods. How about some more goodies for us to play with Nick?

CHRISTMAS LIGHTS

By now you will probably have heard that despite everything Christmas will again be appearing on December 25th. In view of this, we have taken the liberty of including two festive circuits. Both are Christmas tree light flashers but rely on different methods 10 achieve their effects. We at HE would like to take this opportunity of wishing everybody a very happy Christmas and a prosperous New Year. HAPPY CHRISTMAS

Scalextric

Lap Counter

An ideal companion to last month's Speed Controller. Our 2-track lap counter features infra-red slot-car detection, presettable race laps, count-down lap indication, plus 'lap completed' and 'race won' sound effects.

THE HE DESIGN,TEAM recently acquired a large Scalextric slot-car racing outfit. We were very impressed with the outfit in general, but thought that the mechanical lap counter supplied with the system was absolutely awful. It was so inefficient that it often stopped or derailed the slot-cars and tended to distract the driver's visual attention from the race. So we decided to design a really first class 2 -track electronic lap counter to replace it. The results of our efforts are presented here.

Our lap counter incorporates a number of unique features. It uses an infra-red source and detector, built into the actual slot of each track, to frictionlessly detect the passage of each slot-car as its' slot horn breaks the infra-red beam. The detectors are positioned behind the starting grid. Before the start of each race the proposed number of race laps (up to a maximum of 99) are dialled up on a pair of thumbwheel switches. This number is then loaded into the lap counters via a press-button switch and is displayed on the 7 -segment LED readouts of each counter. This number can be re-entered at any time by simply re-pressing the 'set' button

Once the race has started the appropriate counter decrements by one each time it's slot-car completes a lap and passes the appropriate infra-red detector. A brief $(100 \mathrm{mS}$) audio tone is generated each time the counter decrements. Each counter produces it's own distinctive tone, so the drivers can aurally judge the state of the race without taking their eyes from the track. Eventually, as the winning car completes the last of the pre-set number of laps, the appropriate counter indication decrements to zero and at this point another distinctive tone, of roughly 5 -seconds duration, is generated, indicating that the race has been won. The counter action is then complete

The lap counter incorporates a mains-driven power supply. The counter unit is designed specifically for use with a Scalextric slot-car outfit, but can probably be used with most other makes of slot-car system (the critical factor being the fitting of the infra-red detectors into the slots). The system can be used with any standard, unmodified, slot-car.

CONSTRUCTION: THE TRACK DETECTORS

The first step in the construction of the unit concerns the

The finished unit in its attractive case.
fitting of the infra-red source and detector units to the track. The idea here is to drill a $1 / 8$ inch hole right through each slot rail on a short section of track, as close as possible to the top surface of the slot, as shown in Fig 2. An infra-red light-emitting diode is then fitted in the hole on one side of the slot and an infra-red detector is fitted in the hole on the other side, so that the guide horn of a slot-car breaks the resulting infra-red beam when it passes over the detector assembly.

The most critical factor in this 'fitting' operation, which only takes a few minutes to complete, is to get the drill holes as close as possible to the top of the track. The procedure is as follows

Take a short secton of track. Using a $1 / 8$ inch drill, angled at about 15 deg, drill through the soft plastic and into the metal rail on one side of the slot, as shown in Fig 2 a , so that the drill breaks through the slot rail as close as possible to it's top surface, as shown in Fig 2b. Repeat the operation on the other side of the slot, taking care to align the second hole with the first, as shown in Fig 2c. Now arch the top surface of the flexible track upwards from the slot and push the drill right through the slot so that the two opposing holes align perfectly. Remove the drill and use a fine file to clean up any burrs on the inside of the slot rails

Now push an infra-red light-emitting diode (with gold leads) firmly into the hole on one side of the slot, so that it butts firmly into the slot-rail hole, and push a detector diode (with tinned leads) firmly into the opposing hole, as shown in Fig 2d

Fig. 1. The detector and sound generation logic.

SW1. SW2 ARE BCD THUMBWHEEL SWITCHES
IMAPLIN FF84F, PLUS MOUNTING KIT - FF86TI
Fig. 2. The counter-display circuitry.

LAP COUNTER AND 'GAME WON' CIRCUITRY

Each lap counter contains a series-connected pair of presettable binary-coded-decimal 'down' counters (IC5 and IC6), each with its outputs fed to a 7-segment LED display via a BCD - to 7 -segment decoder/driver (IC9 and IC10). At the start of each race the intended number of laps are dialled up on thumbwheel switches SW1 and SW2 (which have BCD outputs). This number is then loaded into the counters by pressing push button switch PB1. The displays thus indicate the proposed number of laps at the start of each race.
Once the race has started, a 100 mS pulse is generated each time a slot car passes the appropriate track detector. This pulse is fed to the clock input terminal (pin 15) of IC5 and causes the counter display to decrement by one.
The carry-out (pin 7) terminal of each counter IC goes low whenever the counter reading reaches zero. When the pre-set number of laps are completed both counters give a low carryout signal and this condition is detected by IC4c, which produces a 'high' output. This output is used to trigger monostable multivibrator IC3aIC3b, which produces a 5 -second output pulse which in turn gates on astable multivibrator IC2a-IC2d to produce a 'win' tone in the speaker via D3 and Q1. Note that the gated astable used in each of the two lap counters produces its own distinctive tone, so the players can tell which car has won the race or completed the lap by the sound of the generator.

The two lap counter circuits are powered from the mains via step-down transformer T1 and the Q2-Q3 12 volt regulator circuitry.

THE SYSTEM

THE UNIT CONTAINS two identical lapcounter circuits (see the block diagram and the circuit diagrams), each containing a pair of pre-settable down counters with appropriate 'clocking' and 'count zero detection' circuitry. Each circuit also incorporates a gated oscillator, which produces a brief pulse tone each time a
lap is completed and produces a five second tone when the pre-set number of laps are completed. Each lap counter is 'clocked' via an infra-red detector circuit that is wired unobtrusively into the track slot to produce a pulse each time that it is passed by a slot car.

The two counters are powered from a common mains-derived 12 volt supply and have their audio outputs fed to a common mixer/amplifier and speaker. Before the start of each race, the intended number of laps (up to 99 maximum) are dialled up on a pair of thumbwheel switches (which are also common to both counter circuits) and the number is then 'loaded' into the counters by operating a press-button 'load' switch.

Since two lap-counter circuits are identical, only the component numbers applying to the track-A circuit will be listed in the following detailed description of the circuit operation.

THE LAP-DETECTION AND INDICATION CIRCUITRRY

The lap-detection circuitry is rather cunning. A small section of each race track is modified by drilling a hole completely through the track slot, as close as possible to the top surface of the track. An infra-red light-emitting diode (IR LED 1) is then wired into the hole on one side of the slot and an infra-red detector (IRD 1) is wired into the hole on the other side of the slot. Normally, the detector is flooded with infra-red and produces a low voltage at the R1-IRD 1 junction. Each time a slot car passes the detector circuitry, however, it's slot horn breaks the infra-red beam and causes the voltage at the R1-IRD 1 junction to go high.

A positive-going pulse is thus produced at the R1-IRD 1 junction each time a slot car passes the detector. This pulse is amplified and expanded by the IC1-a IC 1b circuitry, to produce a positive-going 100 mS (approximately) pulse at the output of IClb. This pulse causes LED 1 to flash and also briefly gates on a stable multivator ICla-IC2d, to produce a brief tone in the speaker via D3 and Q1. The detector pulse is also fed to the lap counter circuitry via point AA.

Fig. 3. The regulated power supply.
Fig. 4. The track detector interconnections.

END SECTION OF SLOT

B

SLOT RAIL
SIDE SECTION

C

D

IR SOURCE

Repeat the above process on the second track slot and then wire up the two IR LEDS and two IR detectors as shown in Fig 2e, using suitably long lengths of flexible wire to make the connections back to the lap counter unit.

Use of a PCB ensures a neat and reliable project.

CONSTRUCTION: THE LAP COUNTERS

The unit is wired up on two PCBs, one small board being used for the power supply circuit and a large PCB being used for most of the remaining components.

Wire up the power supply board first, noting that transformer T1 is a special PCB-mounting unit (see Buylines). Power transistor Q2 must be mounted on a large heat sink and connected to the PCB via suitable leads (this transistor is mounted on the rear panel of the case in our prototype unit

Construction of the main PCB should present few problems. We recommend that all ICs be fitted to the board via suitable sockets. Start construction by soldering the 40 links to the PCB and then fit the 16 IC sockets in place. Now fit the remaining components to the board, taking special care to note the polarities of all electrolytic capacitors and semiconductor devices. Do not fit the ICs at this stage.

Sockets are provided on the PCB for the four 7segment LED displays. The displays can either be fitted directly into these sockets or can, as in our prototype, be mounted on the case front panel and connected to the sockets via dual-in-line (DIL) insulation displacement connectors, e.g. 'speedblock' type

When construction is complete, fit the PCBs in a suitable case, connect up the two BCD thumbwheel switches (use the Maplin units recommended in Buylines) and the speaker and complete the interwiring. Finally, fit all ICs into place, taking special care to observe the polarity.

Connect the finished unit up to the two sets of track sensors and switch on. A five second (approx) tone should be generated at switch on. Dial up a number on the thumbweel switches and check that the number loads into the counter displays when PB1 is pressed. Move a slot car across a track detector and check that the appropriate indicator LED flashes and a brief tone is generated in the speaker: if this action is not obtained, suspect faulty construction in the track detector. Check that the appropriate counter decrements by one each time a slot car is detected. Finally, check that the win sound (a five second tone) is generated when the counters decrement to zero. The unit is then ready for use.

Scalextric Lap Counter

Fig. 5. PCB for the HE lap counter.

Scalextric Lap Counter

Fig. 7. PCB overlay for the lap counter.

Parts List

We used ribbon cable to interconnect the displays.

Fig. 8. PCB overlay for the power supply.

Buylines

The P.C.B mounting transformer can be obtained from ACE MAILTRONIX LTD of Tootal St, Wakefield (phone 0924250375 for details)

The thumbwheel switches are available from their present catalogue for details.
The TIL32 infra red diodes and TIL7.8 infra red detectors can be obtained from Watford Electronics. WEST HYDE DEVELOPMENTS, order no. BOC 670 (phone 0296 20441)

CAPACITORS
C1, 6, 12, 13
C2, 5, 7,9
C4, 8
C10
C11

MISCELLANEOUS

$2 \times$ Thumbwheel switches (BCD output)
$4 \times 0.3^{\prime \prime}$ seven segment displays
Case to suit
PB1.
5 pin DIN plug and socket
8R Speaker
SPEEDBLOCK type DIL connectors and ribbon cable (if used)

Minature TV Survey

Keith Brindley has spent the last few weeks getting a severe case of eyestrain peering at the screens of the latest crop of mini TVs. Find out now what he sore.

Some of the Mini-TVs we reviewed, picture quality is best judged in the shop, see a selection.

IT SEEMED an easy enough task on first glance! Find out how many portable televisions are on the market (must only be half a dozen or so) - ring up the manufacturers and arrange to review their models and then tabulate the findings and write an article. Well, it would be easy - if there were only half a dozen or so available, the problem is that there are in the region of 60 or 70 , and more than 60% of them are black and white. So even by restricting the survey to only b / w tellys there was still no way that it would all fit into the allotted number of pages. The next stage in elimination was to cut the survey down to TVs with a five inch, or less, screen. Even this leaves the almost unbelievable number of 24 known televisions -
it really began to seem as though the manufacturing and marketing of portable televisions is definitely controlled by a buyers' market and that the companies who produce these sets must be fighting for customers.

As the final report we hit upon the solution that the whole scene should be quickly looked at and "six of the best" chosen and surveyed in the article. These final six were chosen with reference to what we considered necessary in a portable television. The following headings represent those assets which are advantageous in such a TV. Table 1 on page 18 also gives a full description of each device for quick comparison. This table is only meant as a guide

Fig. 1 The Binatone Micro TV

Fig. 2 JVC P100

Fig. 3 The Crown TV65R

QUALITY OF PICTURE

Because the survey initially compares televisions and only compares the radios, cassettes etc as being 'extra' then the picture quality must be of prime importance. To be fair to the companies involved, it should be pointed out that all of the TVs gave a good picture in most places. Each was tried in a number of situations including a crowded department store; on a train journey; in a car; in bed?; and in the HE office. In what must approach 99\% of all test areas all of the models gave a good picture using the internal aerial, however, if you happen to live in that other 1% of places there is no chance of obtaining a good picture without an external aerial

For clarity of detail we could not find any TV which produced a picture like the two micro TVs - at most test areas their picture production was excellent (even on a British Rail train an acceptable standard was maintained the majority of the time!). We have one small grouse over the lack of external contrast and brightness controls on the Binatone Micro though, they are adjusted internally, this means that individual preferences cannot be catered for and we found the contrast down and the brightness up on our set, making a slightly wishy-washy picture.

QUALITY OF WHOLE DEVICE

The 'extras' present on some of the models eg radio cassette, were judged on individual merit, bearing in mind the relative cost. This was the only fair way of comparing those devices with fewer or no 'extras'.

The best radio appeared to be that of the JVC 3060 although there wasn't a great deal of difference between it and the Crown.

The best cassette recorder was undoubtedly that in the Sony 412 which gave reproduction, the like of which we have never heard parallelled in any mono cassette system.

However, the superior sound quality overall was given by the 3060, which offers separate bass and treble controls together with the largest speaker.

PORTABILITY

This is a slightly tricky area, perhaps best tackled by first giving an appropriate definition of what we class as portability. We mean easy to carry - the larger models $(412 ; 3060)$ were 'carry-able', yes, but at the expense of stretched arms if you attempt to carry them any great distance. Mind you, they are infinitely more maneouverable than the so called "portable" 12 inch screen televisions. You surely take our point.

The Crown and Sony 511 were quite easily carried, but still do not compare with the two micro TVs which fulfill all çiteria which we class as portable.

RUNNING COSTS

Given that each television will run for approximately the same period, say $6-8$ hours, on a fresh set of batteries, then we need only compare the price of the batteries to
find relative running costs. The cheapest sets to run were evidently the micros taking four AA sized cells costing about $£ 1$, giving costs of around $15 p$ an hour.

The larger screened televisions need correspondingly larger batteries and more of them. Consequently the running costs of these sets become increasingly disproportionate, around $£ 3$ to $£ 4$ for a full set of D sized cells or about 50 p an hour.

Obviously, rechargeable cells must be the ideal supply, with regards to a portable television - the 3060 and the 65TVR feature the inclusion of a cell recharger which can recharge said cells when a mains point is available. This is a very valuable asset.

All of the models can be powered by mains or 12 V battery (eg a car battery) and running costs are correspondingly much cheaper using these methods of power.

OVERALL VALUE FOR MONEY

Well, it really does boil down to personal choice in the end. All of the models which we surveyed were excellent pieces of equipment, each having their own points of value.

For instance, if portability is your main concern and you wish, or need, to see TV programmes at odd times of the day or when you are travelling, then either of the two micros is your model, depending on whether you also require a radio. However, the P 100 is a fair but more expensive than the Binatone. A small outlay of money extra on the P100 however, can buy you a battery recharger which in the long run will save you money.

We felt the Sony 511 was slightly ungainly in its shape (looking something like ex-army equipment) but also very reasonably priced. It offers typical Sony good quality.

Best value overall is the Crown - apparently last year this model took a large proportion of the market in Britain and in our opinion, quite rightly so. It is a good quality TV which features a good radio, in a stylish cabinet which is not so heavy as to make it too difficult to carry around. It can also be obtained with discount for a very reasonable price. Most extras which the other sets need additionally, are standard with the Crown (including rechargeable cells and a charger).

Either the 412 or the 3060 are a must if good quality cassette and sound are required. These two models really are the tops, so to speak, but as you must expect are slightly higher priced. They can be bought at around twice the price of the Binatone Micro if you shop around and they feature the cassette and radio above that device. Running costs are high but can be reduced with rechargeable cells.

As with most pieces of domestic electronic equipment, shop-around. Many so-called discount houses offer attractive reductions over the High Street shops

One final point worth bearing in mind with miniature TVs. Because the screens are very small the viewing distance must be less than with a conventional TV. Consequently eyestrain may result from prolonged viewing. We advise that mini-TVs only be used for relatively short periods, say a maximum of two or three hours only. Otherwise your eyes will ache too much for you to read next months HE.

HE

Fig. 4 The Sony TV511

Fig. 5 The JVC 3060

Fig. 6 The Sony FX412

	TELEVISION CHANNELS	$\begin{aligned} & \text { SCREEN } \\ & \text { SIZE } \\ & \text { (INCHES) } \end{aligned}$	RADIO BANDS	CASSETTE	AUDIO POWER	SIZE (INCHES)	APPROX WT (Kg)	STANDARD EQUIPMENT	AVAILABLE accessories	POWER	APPROXX RETAIL PRICE
BINATONE MICROVISION	21-68	2	NONE	NO	100 mW	$31 / 2 \times 2 \% \times 7$	2/3	CARAYING CASE EARPHONE VIEWING HOOD	MAINS ADAPTOR CAR SUPPLY LEAD EXT. AERIAL CONNECTOR	$\begin{aligned} & 4 \times \text { AA CELLS } \\ & \text { MAINS } \\ & \text { 1+ADATOR }) \\ & \text { 12V CAR BATT } \\ & \text { (+ LEAD }) \end{aligned}$	¢100
JVC P100	$\begin{gathered} 21-68 \\ +V H F 2-12 \end{gathered}$	2	FM \& MW	NO	150 mW	$6 \times 2 \times 7 \%$	1 Kg	CARRYING CASE VIEWING HOOD EARPHONE MAINS ADARTOR	BATT. CHARGER/ ADAPTOR. fechargeable BATT. PACK. CAR SUPPLYLEAD. EXT. AERIAL CONNECTOR MAGNIFYING HOOD.	4a AA CELLS MAINS AECH. CELLS (4) ADAPTOR) 12V CAR BATT (+ LEAD)	E150
SONY TV 511	21-68	5	NONE	NO	N/A	$12 \times 7 \times 12$	3.3 Kg	EARPHONE MAINS LEAD	CAR SUPPLY LEAD CAR AERIAL	9 DCELLS MAINS 12 VCAR BATT	£115
CROWN TV 65 H	21-69	5	FM. MW \& LW	NO	N/A	$12 \times 4 \times 10$	2.5 Kg	rechargeable cells CELL CHARGER CAR SUPPLY LEAD EARPHONE VIEWING HOOD	NDNE NEEDED	MAINS RECH CELLS CAR GATT	£130
$\begin{aligned} & \text { SONY } \\ & \text { FX } 412 \end{aligned}$	21-68	4	FM, MW \& SW	YES	N/A	$12 \times 4 \times 9$	3 Kg	CASSETTE TAPE EARPHONE MAINS ADAPTOR VIEWING HOOD	CAR SUPPLY LEAD CAR AERIAL	60 CELLS MAINS CAR BATT (+ LEAD)	£160
$\begin{aligned} & \text { JVC } \\ & 3080 \end{aligned}$	$\begin{gathered} 21-69 \\ + \text { VHF } 2-12 \end{gathered}$	3	FM. MW \& SW	Yes	3 WATTS	$16 \times 12 \times 5$	5 Kg	EARPHONE CAR SUPPLY LEAD MAINS LEAD	rechargeable BATT. PACK	6 DCELLS RECH CELLS MAINS CAR BATT	£175

[^0]

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to builda breadboard of any size.
All EXP Breadboards have two bus-bars às an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.

EXP $305 \mathrm{E1.60}$ The ideal breadboard for 1 chip circuits. Accepts $8,14,16$ and up to 22 pin ICs. Has 130 contact points including iwo 10 point bus-bars.

EXP 350 E3. 15 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including two 20 point bus-bars.

EXP $300 \mathrm{E5} .7$ The

most widely bought
bread-board in the UK
With 550 contact
points, two 40 point
bus-bars, the EXP 300
will accept any size IC and up to 6×14 pin DIPS
EXP 600 f6.30 Most MICROPROCESSOR projects in magazines and educational books are built on the EXP 600.

EXP 650 E3. 60 Has $\cdot 6^{\prime \prime}$ centre
spacing so is perfect for MICROPROCESSOR applications

EXP 4BE2.30 Four
more bus-bars in

"snap-on" unit.

The above prices are exclusive of PGP and 15% VAT

CSC (UK) LTD.
Dept 14EE Shire Hill Industrial Estate Unit 1
Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682. Telex: 817477

Available from selected stockists Nelectronics by Numb No No 6 ELECTRONICS BY NUMBERS
 RAIN ALARM

You need never be caught out by the weather again The rain alarm will emit a warning sound whenever there's rain or moisture in the atmosphere. The current drawn from the battery is negligable so it can be left switched on for up to a year!

WOBBLY WIRE GAME

All the fun of the fair, in your own home! Test your skill at building and plaving this version of the popular game, where a 'wand' has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire.

HIGH QUALITY CONTINUITY

TESTER

An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.

Want to get started on building exciting projects but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instruction in our FREE "Electronics by Numbers" leaflets, ANYBODY can build electronic projects.
Look at the diagram, select RI, plug it in to the letter numbered holes on the EXPERIMENTOR BREADBOARD, do the same with the other components, connect to battery and ANYBODY can build a perfect working project.

you will need

e.g. LED Bar Graph (a previous project) components EXP300 or EXP350 D1 to D15 - Silicon Diodes R1 to R6 Resistors A1 to R6 Resistors
LED 1 to LED 6 Light emitting diodes
For the full detailed instructions, including "Electronics by Numbers" circuit diagrams, simply
take the coupon to your nearest CSC stockist or send direct to us and you will receive "THREE FREE PROJECTS FROM CSC'
If you missed Free project No's 1, 2 and 3, please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT $£ 9.20$

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD $100 \mathrm{KIT} £ 11.80$

Back Numbers from HE

FEBRUARY 79 (Hobbyprint D)

Projects: Short Wave Radio. Sine/Square Generator. Scratch/Rumble Filter, Car Alarm Project
Features: Video Tape Recorders, Radioactivity, CA 3130 Circuits, Computer Glossary etc.

MARCH 79 (Hobbyprint E)
Projects: Light Chaser, Tro UT oller, Photographic Timer, Cassanova's
Features: TV 'D
'Sort Gear, SW Aerials, Interfering Waves, Comn -incations Satellites, etc.

JUNE 79 (Hobbyprint H)

Projects: GSR Monitor, Envelope Generator, Drill Speed Controller.
Features: Citizen Banned, Display Techniques, Moving Coil Meter, Electronics in Music Pt 2, etc.

Shown here are all of the backnumbers still available. They are $£ 1.00$ each inc. P\&P. When ordering please quote the issue number, i.e. Nov. 78 is issue 1 Vol. 1. Next to each issue is the relevant Hobbyprint code letter, please note that Hobbyprints are still available for every issue.

OCTOBER 79 (Hobbyprint L see Hobbyprint Ad)
Projects: Tantrum, Hobbytune, Analogue Frequency Meter, Multi Siren.
Features: Home Computing, Electronic Games, Microwave Cooking, Breaker One-Four

NOVEMBER 79 (Hobbyprint M)

Projects: Hebot, R2, D2 Radio, Guitar Tuner
Features: Data Supplement, TV Broadcasting Miniboards.

DECEMBER 79 (Hobbyprint N)

Projects: Scalextric Controller, Ring Modulator, Bargraph Voltmeter, Mebot II.
Features: TV Receivers, Project Fault Finding, Data Supplement.

We regret to say that copies of the November, December, January, April and May issues of Hobby Electronics have sold out (we did warn you!). However Hobbyprints A, B, C, F and \mathbf{G} are still available.

Please send me the following back issues Nos
Cheque/P.O. enclosed $£$
Hobby Electronics Backnumbers Dept.
145 Charing Cross Road, London WC2H OEE
Name
Address
Projects: Combination lock, Light dimmer, Starburst, Ultrasonic Switch.
Features: Electronic Timekeeping, Thyristors, Radio Control, FET Special
subscilpilirs

mir MISS

I would like a postal subscription to HE starting with the
issue. I enclose payment ($£ 6.50$ for UK and Eire, $£ 7.50$ elsewhere, $£ 11.50$ air mail).

ELEVER DIEK STM:

Abstract

Digital Panel Meters and Negative lon Generators are just two of the subjects covered in Clever Dick this month, have you got an electronic problem? Then why not write to Dick.

JUST TO SET THE RECORD STRAIGHT, all of the letters in Clever Dick are genuine. We get many letters a month addressed to this page and we promise you that not even us, with our fertile imaginations could make them all up. Hope that answers your question Mr Tim Cooper.

The Kit Review feature always prompts a few enquiries, this letter from J A Davis raised an interesting point.

Dear Dick,

I am building the PSU which appeared in the May edition of HE and would like to know how the Digital Panel Meter (Kit Review October 79) could be used in place of the moving coil meter used in the design. Could you also suggest a circuit which could run the Digital Meter from the PSU.
J A Davis
Wolverhampton

No real problem here, the Digital panel Meter, built up in the Voltmeter mode and connected across the PSU output should work very well. As for a power supply we would suggest that you retain the PP3 9 V battery for simplicity, the Panel Meter will draw only a few microamps so a good mercury or Alkaline type battery should last well over a year in continuous use.

Thanks to Mr P J Ford of Norfolk for his suggestion about publishing an index, as you will see we have. We will have an Index in HE every year in the January issue.

Now for a very common question regarding availability of components etc, used in HE projects. Richard Savage writes:

Dear Dick,

Following your request for shorter letters and simpler questions

Why doesn't HE indicate the box or case size for a project? This would save guessing games when ordering.

Why is it that, whatever the project, there always seems to be one component not listed in the catalogue, making it necessary to use more than one company with a resulting duplication of posting and packing rates?

Why don't more suppliers offer complete kits for magazine projects, taking the aggravation out of ordering and again the possibility of postage and packaging duplication?

Good magazine, though, hoping to purchase a legal CB rig soon, keep up the good work.

Richard Savage
Wiltshire.

Thank goodness it wasn't a long letter. Right, point number one. From our quite considerable experience we have discovered that only about five per cent of you ever build the circuit exactly as we describe it and if you think about it, that's what it's all about. Experimentation, improvement and variation. After all the only real way to learn about a.subject like this is to experiment. If you just want to blindly build other people's projects there are plenty of other magazines that tell you exactly what to do, right down to the last nut and bolt. At the end of it all you have is a perfect copy of someone else's idea and it hasn't taught you a thing. But, point taken, some of our cases may be a bit out of the ordinary, so if in future we do use something a little 'special' we'll let you know where to get it.

Point two, when we design a project, we try, as far as possible to use easily obtainable components, unfortunately we couldn't stick to just one supplier, that would be favouritism and besides, that supplier may not stock every single component needed. We're afraid it's still going to have to be a case of shopping around. Why don't you try to persuade a local trader, a radio shop, say, to stock a few components, many do.

Lastly, there are kit suppliers around, in fact one major company should be offering a very comprehensive service quite soon. As we said earlier though, most people like to go their own way and that's the best way to learn.

Now for a couple of quick ones, the first from MrE Armstrong asks about international TV standards.

Dear Dick,

Please could you help me? I would like to know what is the difference between PTSC and PAL colour TV systems, are they compatible and is it possible for a device with an NTSC output to be connected up to a PAL TV?

EArmstronḡ
Middlesex.
The simple answer is no, but with several exceptions. We have seen several TV games designed for the American market using the NTSC (National Television Standards Committee or Never The Same Colour, depending upon your sense of humour) that quite happily work on PAL (Phase Alternation Line) sets but on an almost identical set refuses to work at all. Basically PAL was developed from NTSC but there is very little similarity, even the number of lines and frames per second are different, so unless you're either very lucky or prepared to carry out extensive modifications you're stuck - sorry. Now for something a little out of the ordinary.

Dear CD,

As a Hay Fever sufferer I would like to try 'Negative Ion Therapy' but the cost of commercial units is such that are prohibitive, especially for an experiment which may fail. Consequently, I'm writing to ask:- What's inside an loniser? Or, could HE publish a design before the next Hay Fever season starts?

TH Cameron County Devon

This letter started us thinking and may well result in a project soon. As far as we can make out a Neg Ion Generator consists of EHT (Extra High Tension) generator producing voltages in the order of several kilovolts this ionises the air directly, producing that 'Ozone' smell. In the meantime may we suggest that you sniff the back of your TV set as the voltages used to drive the tube are guite good at producing negative lons. But seriously this is an area of reserach that is generating quite a bit of interest at the moment, particularly in the 'States, so it shouldn't be too long before something more concrete is known about this effect which is claimed to cure everything from Hay Fever to broken legs

Lastly we have a request for the address of the supplier of those coloured knobs we use on some of our projects. This comes from David Taylor;

Dear CD,

As a follower of your Hobby Electronics magazine I would like to know where I can purchase the coloured 'chunky' knobs you use on your constructional projects, in Hobbytune and Multi-Option Siren in the October issue, they look very classy

Just to be awkward I would like to ask one last question, could you give me any information on the TIL 209LED. Will continuous use of this device shorten its life?

Congratulations on the CB article.
David K. Taylor
Worcester
Thank you for your comments on CB. Your first question is easy enough. The knobs we use come from Electrovalue Ltd, they can be found at; 28 St Judes Road, Englefield Green, Surrey. TW20 OHB

Your second question may be a little difficult, manufacturers specifications vary considerably but generally they quote figures of several hundred thousand hours continuous use. $(8,000$ hours is approximately one year).
Times up again for another mouth, as this issue is the last one before Christmas I take the opportunity to wish you all a Merry Christmas and a problem free new year. Dick.

Another in our series of popular 'close-ups', highlighting particular components. This month its the turn of the CMOS IC. As usual plenty of buildable, practical circuits

This article has been adapted from ' 50 CMOS Circuits' by R. A. Penfold. It is available from Babani Books price 95 pence.

ALTHOUGH CMOS ICs are a range of digital devices they are suitable for a range of applications which is far more diverse than one might expect. In fact, there can be little doubt that these ICs are the most useful range of digital devices for the average amateur user, and are perhaps even the most useful range of ICs of any type.

When CMOS devices were first introduced in the early 1970 s they were much more expensive than their alternatives in other logic families. This is not the case these days and they are now about the cheapest ICs available. The more simple of the devices in the CMOS range cost less than many ordinary transistors, and on'a cost basis these ICs are just about unbeatable.

Earlier families of digital devices suffer from three main disadvantages which limit their usefulness to the amateur. They require relatively high supply currents (about 20 mA for a simple quad gate IC), supply voltages are rather critical ($5 \mathrm{~V} \pm 10 \%$ for TTL devices for instance), and input impedances are usually rather low. often being only in the region of a few hundred ohms.

CMOS devices do not have any of these disadantages. They require only very modest supply currents. and even some quite complex devices, such as the 4046° low frequency phase locked loop will operate at supply currents of less than 1 mA . Simple gates, when they are in a static condition, use virtually no power at all.

The supply voltage range over which a CMOS device will operate depends upon the suffix given after the type number. The devices usually supplied to amateur users, and specified for the projects in this book, have an ' $A E$ ' suffix. The ' A ' of the suffix denotes that the unit has an operating voltage range of 3 to 15 V and the ' E ' indicates that it is contained in a standard DIL plastic encapsulation.

Input impedance of CMOS ICs are extremely high indeed, being something in the order of $1,000,000$ Megohms. For all practical purposes they can be regarded as having an infinite input impedance, and are voltage rather than current operated devices.

BASIC GATES

The most simple of CMOS devices is the inverter, which uses only two active devices. The circuit of an inverter is shown in Figure 1. This uses a single P Channel Igfet (insulated gate field effect transistor) and one N Channel Igfet. This is, of course, a switching device and the input is therefore only maintained in one of two states. It is either high, which means that it is at or near the positive supply potential, or it is low, which means that it is at or near the negative supply potential. These states are often referred to as logic 1 and logic 0 respectively.

Fig. 1 Basic CMOS inverter circuit.
The output of the circuit can also have only two stable states, and again these are the high and the low states. The purpose of the inverter, as its name suggests, is to have an output state which is the opposite of the input one.
Operation of this circuit is quite simple to understand, An IGFET has a very high drain to source resistance when its gate is at around the same potential as its source. If a forward bias of a couple of volts or more is applied to its gate then the drain to source resistance falls to a value of only a few hundred ohms.

Thus, when the input of the inverter is low Q1 is turned hard on and Q 2 is hard-off, and the output of the device is in the high state. When the input is high, Q1 is off and Q2 is on, and the output is low. The transistors are acting as simple SPST switches and Figure 2(a) shows the effective circuit of the unit in the high output state, and Figure 2(b) shows the effective low output circuit.

Fig. 2(a) The effective high output circuit, and (b), the effective low output circuit.

One could gain the impression from this that the circuit never consumes any current, but this is not the case. The transistors do not form perfect switches, and they have a resistance of a few hundred ohms when on,
and a few thousand Megohms when off. Thus a minute,, but for most purposes an insignificant current does flow through a static inverter

A very brief pulse of current is consumed by the device as it changes state, as in effect, one switch closes before the other opens as the circuit goes from one output state to the other. Therefore, the more frequently the device changes state, the higher its current consumption. When used at fairly low frequencies CMOS ICs have very low current consumptions, but when used at high frequencies the current consumption can rise to many mA per device. Because of this it is usual to confine the use of CMOS ICs to medium and low speed applications.

Many of the projects described in this feature are based on inverters but these are not the type just described. Instead it is more convenient in use to use NOR and NAND gates with the inputs connected in parallel. For most circuits either a 4001 quad two input NOR gate or a 4011 quad two input NAND gate is specified. Four inverters can be made from each device, and they have the same characteristics as the basic inverter just described.

MANUFACTURERS

CMOS ICs are manufactured by more than one company and each company uses a different prefix to the type number. Most CMOS ICs offered to the amateur seem to originate from RCA and have their CD prefix (CD4011AE for example). Some firms offer Motorola devices which have a 1 prefix (such as 14011), and others just give the basic type number. Any of these ICS will work perfectly well in the circuit described here.

CMOS PROTECTION

As many readers will be aware, IGFETS are easily damaged by high voltage static charges. Such charges exist in most households these days due to the widespread use of plastics which tend to generate static charges. Even someone wearing a nylon shirt is said to be a potential source of destruction as far as an IGFET is concerned.

One might think that CMOS devices were very delicate and virtually impossible to use. This is not in fact the case, as all recent CMOS ICs are equipped with internal protective diodes which limit voltages at the inputs to a safe level.

Even so, it is still advisable to obey a few simple rules when handling and using CMOS ICs, these devices are usually supplied with their leadouts embedded in a piece of conductive foam. It is a good idea to leave the device in this form until it is actually going to be used. Do not plug or unplug a CMOS IC from an IC holder while the supply is connected. Make quite sure that the supply is connected with the correct polarity. When using IC holders it is an easy matter to accidentally plug an IC into a socket the wrong way round. This results in the supply being connected with incorrect polarity, and almost certainly causes the destruction of the device when the power is switched on.

In many of the circuits to be described here, some of the gates of an IC are not used. It is not a good idea to simply ignore the unused gates. There is little risk of the gates being damaged by static charges and other
'sources of electrical signals, but these will operate the inputs of the gates.

As mentioned earlier, a static gate uses no significant current, but it is switching continually from one state to the other, it will use supply current. Therefore, the inputs of unused gates should be connected to one or other of the supply lines (whichever happens to be the most convenient), as otherwise stray pick up will operate the gates causing a waste of power.

FINAL POINTS

CMOS devices have a wide operating temperature range, the actual range being -40 to +85 degrees centigrade for the plastic DIL version $(-55$ to +125 degrees centrigrade for the ceramic and flatpack versions). They are therefore perfectly suitable for use in automotive and similar outdoor applications.

If the output of a CMOS device should happen to be accidentally short circuited to one of the supply lines, a current of many mA will flow. The amount of current that flows will depend upon the power supply voltage used, but the resistance of the output transistor which is turned on will limit the output current to a safe level and will protect the device against damage.

CMOS ICs have a high level of fanout as although they have only a comparatively low output current drive capability, input current requirements are extremely low The level of fanout is only really limited by the input capacitance of the devices, and the minimum fanout figure for CMOS devices is 50 .

TOUCH SWITCH

Touch switches seem to have become quite popular these days and although this is probably mainly due to their novelty value rather than any practical advantage, they do have certain practical advantages over more conventional forms of switch. Probably the main one in most applications is that they can be designed to have no moving parts to wear out. This makes them as reliable and hard wearing as the main (electronic) part of the equipment they are controlling.

The circuit diagram of a simple touch switch using a CMOS bistable circuit is shown in Figure 3. This will provide on/off switching for any piece of 9 volt battery operated equipment which does not have a current consumption of more than 100 mA (the maximum operating current for the BC179 transistor).

Fig. 3 The touch switch circuit.

CMOS ICs are ideal for use in this particular application since they can easily provide the necessary very high input impedances, and they also consume no significant current when they are not driving a load. The current consumption of this circuit in the off state is very low, being actually less than 1 micro-amp. There is subsequently no significant battery drain when the equipment is turned off. and the battery life should not be significantly less than if a mechanical switch were used.

Extra current is consumed when the unit is in the on state, this mainly being the base current to turn on Q1 This is unavoidable, but the additional current consumed is less than 1 mA , and is likely to be of no significance in the majority of applications.

The circuit operates in the following manner. When the power is initially connected to the device the output of the bistable will go into the high condition. Q1 is cut off and no power is applied to the load.

It is possible to alter the state of the bistable by touching the lower set of touch contacts. The resistance of the operators skin then takes the input of the bistable low, and the output of the bistable will then also go low. A base current is then applied to $\mathbb{Q} 1$ which is biased into saturation and virtually the full supply rail potential is supplied to the load.

The unit can be switched off again by touching the upper set of touch contacts. The input of the bistable is then connected to the positive supply by way of the skin resistance of the operator's finger, and in consequence both the input and output of the bistable take up the high condition. Q1 is therefore cut off once again, with no significant current being supplied to the load.

R1 provides the necessary latching action by holding the input in whatever state it was in when the finger of the user is removed from the touch contacts. If necessary, the sensitivity of the circuit can be boosted by raising the value of R1. Resistors having values of more than 10 Megohms are not readily available, and so an increased value for R1 can only be obtained by adding two or more resistors in series to make up the required value.
$R 2$ is needed in order to prevent Q 1 from passing an excessive base current. It also limits this current to an economical level. If the unit is being used to control a fairly high current level. If the unit is being used to control a fairly high current load, say 25 mA or more, it is, necessary to reduce the value of R 2 to 1 k .

With a little ingenuity it should not be too difficult for the constructor to fabricate suitable touch contacts. A piece of stripboard can be used to make a very simple but effective touch plate, or an even better one can be etched from a piece of copper laminate board. Even three screws (Pan or Countersunk heads) mounted on the front panel of the main equipment could be used if they are suitably positioned.

CRYSTAL OSCILLATOR

Crystal oscillators have been used since the early days of entertainment broadcasting whenever a highly stable RF oscillator is required. They are probably used more now than at any time in the past, and apart from use in crystal calibration oscillators and similar radio applications they are often used in digital clocks and other digital equipment where they generate a stable time base signal.

Fig. 4 A simple crystal oscillator.

CMOS ICs can be used as the active devices in good quality crystal oscillators having operating frequencies up to about 10 MHz or so. Figure 4 shows the circuit diagram of a simple CMOS crystal oscillator which uses a couple of inverters.

The two inverters are used to provide an amplifier which has its input and output of the amplifier via TC1, and at the series resonant frequency of the crystal (where it has a very low impedance) positive feedback will be applied to the circuit and it will oscillator.

VC1 enables the oscillation frequency of the circuit to be finely trimmed to the nominal frequency of the crystal. If this feature is not required VC1 can be omitted, with the crystal then being connected in parallel with R.1.

At first sight R1 may appear to perform no useful function, but it was found to be necessary to add this as otherwise the oscillator often failed to start when power was applied to the circuit. C1 is the output DC blocking capacitor and C2 is a supply decoupling capacitor.

This circuit seems to operate satisfactorily over a wide range of frequencies with the component values shown,

- and the prototype oscillated properly with any crystal having a frequency from a few tens of kHz to many MHz .

CAPACITANCE METER

Most multimeters are equipped to measure wide ranges of voltage, current, and resistance, but few, if any, are capable of capacitance measurements. As a result of this, most electronics enthusiasts are unable to undertake capacitance measurements. and this must lead to many useable capacitors being discarded simply because their identification markings have become erased. Some means of testing capacitors is also very useful when one is engaged on servicing faulty equipment.

A capacitance meter is therefore a very useful piece of equipment to have in the workshop. A simple capacitance meter can be based on astable and a monostable multivibrator, and it is possible to make one using a single CMOS IC as the only active device. The circuit diagram of such a unit is shown in Figure 5, and this uses a single 4001 IC.

Gates 1 and 2 are connected as the astable circuit and gates 3 and 4 form the monostable multivibrator. The astable operates at a frequency of about 100 Hz , and its output is fed to the trigger input of the monostable. Thus

one hundred times per second the monostable will produce an output pulse. The length of this output pulse is determined by the values of the timing components, and the timing capacitor under test. The timing resistor is one of the four resistors, R3 to R6, and is whichever one is switched into circuit by S1.

By using four timing resistors the unit is able to provide four measuring ranges. These are as follows:

Range 1	0 to 500 nF
Range 2	0 to 50 nF
Range 3	0 to 5 nF
Range 4	0 to 500 pF

The unit thus covers most normal amateur requirements. The circuit values have been chosen so that the monostable acts as a pulse shortener. For instance, with the unit switched to Range 1 and a 500 nF test capacitor in circuit, the output pulse from the monostable will only be about half the length of the trigger pulse from the astable. Lower values of test capacitance will produce an even shorter monostable pulse length.

A voltmeter circuit consisting of M1 and one of the set of four preset resistors (R 8 to R 11) is connected at the output of the moriostable. Each time the output of the monostable goes high, a pulse of current will be fed to the meter. A constant string of pulses are generated when a test capacitor is connected to the unit, and the meter will respond to the average output voltage.

With a 500 nF capacitor in circuit, R9 is adjusted to produce FSD of the meter. If, for instance, a 100 nF capacitor is connected in place of the 500 nF one, the length of the output pulses will only be one-fifth of the previous duration. The rate at which the monostable is triggered is the same, and so the pulses still occur at the same frequency. Therefore, the average voltage across the meter circuit will only be one-fifth of its original level and the meter will read one-fifth FSD.

It will be apparent from this that there is a linear relationship between the meter reading and the value of the test capacitor. The unit thus functions very effectively as a linear reading capacitance meter.

On Range 2 the timing resistor is ten times the value of that used on Range 1. Only one-tenth of the previous test capacity is therefore needed to produce an identical meter reading. For example, 500 nF was needed to produce FSD of the meter on Range 1 whereas only 50 nF will be needed on Range 2. In practice this is not quite the case since the tolerances of the timing resistors
will prevent such a precise relationship from being obtained. In order to ensure that good accuracy is obtained on all four ranges, a different preset resistor for each range is provided in the meter circuit. This enables each range to be calibrated against a close tolerance capacitor.

An alternative approach is to use 1% tolerance components for R3 to R6, and a single calibration preset. The unit would then only need to be calibrated on one range, with good accuracy being automatically obtained on the other three ranges

D1 and R12 are used to stabilise the supply voltage of the circuit and this is essential if consistent and reliable results are to be obtained These are two reasons for this. Firstly, the frequency, of the astable circuit will vary slightly with variations in supply rail potential. If it should speed up at all, then there will be more pulses applied to the meter in a given period of time, and increased meter readings will be obtained. If the speed. of the astable should decrease, then obviously all meter readings will be below.

Secondly the more importantly the output voltage pulses of the monostable are virtually equal in amplitude to the supply rail voltage. If the supply rail alters (due to battery ageing for example), then the meter readings will alter proportionately

A simple battery check facility is incorporated in the circuit, and this merely consists of S2 and R7. When S2 is in the position shown, the circuit functions normally. The meter is connected across the stabilised supply rail when S2 is in the other position. It is connected via R2 which converts the meter into a 0 to 10 V voltmeter. This can be used to monitor the supply potential and when it falls below its nominal level of 7.5 V , this indicates that a new battery is required.

Calibrating the unit is quite straightforward, and four close tolerance capacitors are required for this. For example, a $470 \mathrm{nF} 2 \%$ capacitor could be used to calibrate Range 1 . With this connected across the test terminals and the unit set for normal operation on Range 1, R10 would be adjusted for a reading of 47 on the meter.

It is best not to use a calibration capacitor which has a value corresponding to less than half FSD of the range being calibrated, as this will result in inferior accuracy being obtained. It is advisable to initially adjust all the preset resistors for maximum resistance before commencing calibration of the unit.

FLASHER

Fig. 6 Christmas tree lamps flasher.

Several useful gadgets can be made by using a multivibrator to drive a relay, and a popular example is a Christmas Tree Lights Flasher. This will provide a much more regular flashing rate than can be obtained by using a bi-metal flashing bulb, and the flashing rate can also be made variable. The circuit diagram of this device appears in Figure 6.

The two inverters are connected as a low frequency astable circuit, and the operating frequency of this is variable over a range of about 0.5 to 1.5 Hz by means of R1. The output of inverter 2 drives common emitter amplifier Q1 via R3. R3 is a current limiting resistor.

01 has the relay coil as its collector load, and the relay will be energised when the output of inverter 2 is high. The relay will be of when the output of inverter 2 is low A single set of relay contacts (either normally closed or
normally open ones) are used to control the lights. These will therefore switch on and off at a rate determined by the setting of R1

D1 is a protective diode, and this is needed to protect the circuit against the high reverse voltage which is developed across the relay coil as the power to the circuit is switched off. This voltage is generated by the magnetic lines of force quickly decaying and cutting through the relay coil. Because of the speed at which this magnetic force dies away, quite a high voltage can be produced, but it is at a high impedance. D1, in effect, shorts out this voltage and is protected against passing an excessive current by the high source resistance of the signal. D1 should not be omitted from the circuit as this voltage spike is quite capable of destroying both the IC and Q 1 .

Fig. 7 An automatic parking light.

AUTOMATIC PARKING LIGHT

In applications where a light switch is to be used to operate a low voltage DC load it is usually possible to use a relayless circuit. An automatic parking light for a car is one such example, and a suitable circuit is shown in Figure 7.

Here the circuit is triggered when the light level falls below a level which causes the voltage at the junction of RV1 and PCC1 to exceed the trigger voltage of the Schmitt trigger. The trigger circuit then provides a base current to a high gain Darlington pair using Q1 and Q2 02 is a power transistor which is capable of handling the relatively high current drawn by a parking light. S1 enables the light to be turned on indpendently of the automatic circuitry.

In this circuit the current consumption of the device is of secondary importance since it will be powered from a high capacity car battery. However, it is obviously desirable to have the lamp switching cleanly from one state to the other. Perhaps less obviously it is necessary for the circuit to avoid intermediate output states in order to illiminate the possibility of damage to Q2 due to overheating.

This could occur if Q2 was partially switched on with about half the supply voltage being present at its collector, as it would then have to dissipate several watts of power. This could be overcome by using a large amount of heatsinking for Q 2 , but it is probably better to use a trigger circuit, as Q2 can then only rest in the hard on or fully off state. The dissipation in either case can only be low, as when it is turned hard on very little voltage is produced across it, and when it is turned hard off it passes no significant current. It will dissipate a significant amount of power when it is turned on, and if a high current lamp is being controlled a certain amount of heatsinking will be necessary, but this will only need to be minimal. In all the light switches just described it is possible to adjust the circuit by means of RV1 to produce a switching threshold at almost any required light intensity.

ELECTRONIC EGG TIMER

Simple timers which provide an audible output at the end of a variable timing period are always interesting. Such circuits are limited to a maximum timing interval of only about 10 seconds, because using a longer time constant would result in the tone generator being turned on only gradually, which would obviously not be satisfactory.

The timer circuit shown in Figure 8 uses an $R-C$ timing network and an astable multivibrator tone generator. The multivibrator itself is controlled via a control voltage which is fed to one input of gate 4 . This terminal is normally low and the astable circuit is muted. The output of gates is also normally low with Q1 being cut off and passing no current. This is very important, as if it were normally high, 01 would be biased on and there would be a very high static current consumption.

Gates 2 and 3 are used as the Schmitt trigger, and this has its input fed from an inverter which in turn has its input fed from the R-C timing network. C1 is the capacitive part of the timing network and R1-RV1 are the reistive part.

S1a opens when the on / off witch (S 1 b) is closed and this starts the timing interval. C1 begins to charge up
through RV1 and R1 and eventually the voltage across R1 and RV1 will fall to the transfer voltage of gate 1. When this happens, the output voltage of gate 1 will gradually begin to rise. After a short while its output voltage will reach the trigger voltage of the Schmitt trigger circuit, and the output of inverter 3 will immediately go high. This turns on the multivibrator and the audible alarm tone is produced from the speaker.

When the unit is switched off, S1a discharges C1 and the unit is then ready to start another timing period when it is switched on once again. RV1 enables the length of the timing interval to be varied from less than 30 seconds to more than 6 minutes, and the unit is thus suitable for use as an egg timer, or indeed for a multitude of uses in the house. A timer of this type can be much more useful than one might imagine.

A dial calibrated in minutes should be marked around the control knob of RV1, and there is unfortunately no quick way of doing this. It is a matter of finding all the calibration points using a process of trial and error.

Note that this circuit can only be built using a 4011 IC, as gate 4 must be a NAND type. In actual fact it requires two ICs, since five gates are employed in the circuit and only four are contained in each 4011 IC.

ELECTRONIC GAME

Fig. 9 Simple electronic game.

The diagram above shows that the 4017 IC has ten outputs apart from the usual carry out one. Five of these 'outputs are utilised in the circuit of Figure 9 which shows how the device can be used as the basis of a simple electronic game. It also demonstrates the properties of the 4017 IC.

The two inverters are used in an astable multivibrator, and the operating frequency of this can be varied from less than 1 Hz to over 100 Hz by means of RV1. The output of the multivibrator is used to drive the clock input of the 4017.

The clock enable terminal of the 4017 is connected to earth through R1, and so when S2 is closed and power is applied to the circuit, the 4017 will start to operate. The first input cycle will cause pin 3 (the ' 0 ' output) to go high, and the first LED will light up. At the commencement of the next clock input cycle pin 3 will return to the low state and pin 5 . (the ' 1 ' output) will go high for one complete input cycle. Then pin 5 goes low and pin 1 goes high, and so on until all the LEDs have turned on in sequence.

There is then a pause during which none of the LEDs come on, and this is the period during which the unconnected outputs go high. When all five of these outputs have gone high the cycle starts once again from the beginning, with the five LEDs turning on in sequence followed by a break.

In practice the LEDs are mounted in a row along the front panel of the unit, and the idea of the game is to stop the sequence when the middle LED (D3) is on. The sequence is stopped simply by pressing S 1 which is a push to make non-locking push button switch. When this is operated it takes the clock enable input high, and this blocks the clock signal and holds the 4017 in whatever state it was in when at the instant S1 was closed.

The circuit is reset ready for a new round by releasing S1. The sequence then continues from where it left off. The speed at which the circuit operates, and therefore the degree of difficulty, is controlled by the setting given to RV1. The circuit may appear to be one that tests the reaction speed of the competitor, but it is really more a test of co-ordination and anticipation.

It is possible to use the circuit from a 9 volt supply, but the LED display will not be very bright and it is better to use a supply voltage of about 12 to 15 volts.

This article has been reproduced from 50 CMOS circuits by R. A. Penfold, published by Babani Books price 95 pence. Babani Books, The Grampians, Shepherds Bush Road, London W6 7NF

The NEW Marshall's 79/80 calalogue is just full of components

amcthat's Mot al/ .

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
These include Audio Amps, Connectors, Boxes Cases. Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes. Displays, Heatsinks, I.Cs, Knobs, LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage pegulators, etc., etc
Plus details of the NEW Marshall's 'budget Cresit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering.
Plus - Many new products and data.
Plus 100 śs of prices cut on our popular lines including I.Cs. Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue.
Available by post $65 p$ post paid from Marshall's, Kingegate thouse, Kingsgate Place, London NWS 4TA. Also available from any branch to callers 50 p .

 Regent \$treot, G2 203. Tel. 041-332 4133. And Brintol: 108m Stokes Croft, Bristol. Tal: 0272.426te1/2.

Books from the HE Book
 Linear IC Equivalents and Pin Connections ... £3.10 Adrian Michaels. Gives most essential data for popular devices.
 Electronic Security Devices
 $£ 1.75$

 Service
28 Tested Transistor Pro-

 ject £1. 55 Richard Torrens. The projects can be split down into simple building blocks which can be recombined for ideas of your own.Electronic Projects for Beginners 1.65 F. G. Rayer. Divided into 'No Soldering Projects,' Radio and Audio Frequency, Power Supplies and Miscellaneous.

Practical Electronic Calculations and Formulae . $£ 2.55$ F. A. Wilson. A valuable reference for the home and laboratory, containing all the most frequentiy used, and some of the less well known electronic formulae and calculations.

Popular Electronic Projects

£ 1.75
R. A. Penfold. A collection of the most popular types of circuits and projects using modern, inexpensive and freely available components.
R. A. Penfold. Full of constructional circuits covering the most basic security systems to the Ultrasonic and Doppler Shift systems.
How To Build Your Own Solid State Oscilloscope
81.80
F. G. Rayer. The book contains concise practical instructions so that even an inexperienced hobbyist can construct a fairly sophisticated instrument with the minimum of difficulty and expense
50 FET (Field Effect Transistor) Project £1.55
F. G. Rayer. Contains something of interest for every class of enthusiast. Short Wave Listener, Radio Amateur, Experimenter or audio devotee.
50 Circuits Using $\mathbf{7 4 0 0}$ Series ICs E1.65 R. N. Soar. The author has managed to compile no less than 50 interesting and useful circuits using this range of devices, covering many different aspects of electronics. Sterling only please) and send to:

Essential Theory for the: Electronics Hobbyist $\mathbf{£ 1 . 5 5}$ G. T. Rubaroe gives the hobbyist a background knowledge tailored to meet his specific needs.

Beginners Guide to Building

 Electronic Projects . $\mathbf{£ 1 . 5 5}$ R. A. Penfold Covers component identification, tools, soldering, constructional methods and examples of simple projects are given.
50 Projects using IC CA3130

$\varepsilon 1.25$
R. A. Penfold. Describes audio projects, RF project. Test Equipment, Household and miscellaneous circuits

IC 555 Project

\qquad £2.05 E. A. Parr. Circuits are given for the car, model railways, alarms and noise makers. Also covers the related devices 556,558 and 559

Second Book of CMOS IC

 Projects E1. 80 R. A. Penfold. Following in the success of the original CMOS projects book we present the second volume covering all aspects of CMOS technology from multivibrators to triggering devices.Note that all prices include postage and packing. Please make cheques etc. payable to Hobby Electronics Book Service (in

[^1]
Crosshatch Generator

The HE project team have 'hatched' a new piece of test gear that we believe will be a winner

IF YOU'VE BEEN PAYING ATTENTION over the past few months you may have come to the conclusion that we have a somewhat unnatural interest in television. You would be perfectly correct because we feel that the TV set is probably the most 'domesticated' piece of home electronics. It may not be the most complex in terms of circuit function, everyone would agree that the pocket calculator or digital watch holds that honour but when was the last time you tried to repair an IC?

This project is not designed to make you 'rip' the back off your telly, that would be extremely foolhardy, not to mention downright dangerous but rather, if you do have a fairly good grounding in TV repair and maintenance, provide you with one of the most useful pieces of test gear available to the TV technician

LINING UP

Some basic TV theory now, this device is primarily intended for use with a colour TV using a Delta-Gun tube. As you are probably aware a colour TV uses three electron guns, one for each colour. Because it would be physically impossible for all of the guns to be in exactly the same position, the three 'beams' will have slightly different trajectories. Circuitry within the receiver is designed to 'deflect' the three beams so that they 'strike' only the coloured phosphor dots relating to each gun.

Two methods are used, the first is called Static convergence and relies upon magnets around the neck of the tube to adjust the convergence at the centre of the screen. The second method, the one we're concerned

The HE Crosshatch Generator connected up to a TV set. Convergence errors are most noticeable at the corners of the picture.

Fig. 1. Circuit diagram for the Crosshatch Generator.

How It Works

A TV picture is made up of a series of horizontal lines equally spaced down the screen with the information transmitted in a serial form along with the necessary synchronization pulses. There are 625 lines in each complete picture but these are transmitted as two "frames" each of $3121 / 2$ lines with the second frame interlaced between the first giving a total of 625 lines. This is to reduce the flicker of the picture which would otherwise occur.

To simplify our circuit and prevent a double horizontal line we have used 624 lines which eliminates the interlacing.

To synchronize the TV set we need a 192μ s wide pulse every frame (20 ms) and a $4 \mu \mathrm{~s}$ wide pulse every line $(64 \mu \mathrm{~s})$. All pulses, including the information, are derived from a single 249.6 kHz oscillator IC1. This is divided by 2 in IC2a and then by 2496 by IC 4 giving an output of 50 Hz . This IC is a 12 stage ripple counter which, while normally dividing by 4096, can be forced to divide by 2496 by decoding (IC7) the outputs from the 7th, 8th, 9 th and 12th stages and resetting IC4 back to zero. The output of IC7 toggles the RS flip flop IC5/c, IC5/d which resets IC4 via C5. This flip flop is reset by the decoded output from 4th and 5 th stages of IC4. This occurs 192μ s later; thus the output from IC5/c is the frame sync. pulse.

To generate the line sync, pulse the output from the 3rd stage of IC4 $(15,600 \mathrm{~Hz})$ is used to reset both
halves of the dual JK flip flop IC3. This IC is then toggled by the 249.6 kHz clock until, after three pulses, both " Q " outputs are ' 1 ' when IC $5 / \mathrm{b}$ detects this and disables IC $3 / \mathrm{a}, \mathrm{IC} 6 / \mathrm{b}$ decoded the second of these clock periods and this becomes the line sync. pulse. These pulses are combined in IC6/4 to give a combined sync. pulse.
The 249.6 kHz is differentiated by $\mathrm{C} 2 / \mathrm{R} 3$ and after being squared up by IC6/a is used to generate 16 white spots on each line which results in vertical lines. These pulses are deleted during the frame sync. period to prevent interference to synchronization. Due to variations in the CMOS a trim potentiometer is provided to give equal width to the vertical and horizontal lines.
The horizontal line is generated by IC2/b (JK flip flop) and this IC is toggled by the 8th output (487.5 Hz) of IC4 and is reset by the output of the 4th stage ($64 \mu \mathrm{~s}$ later). This gives a single white line every 16 lines. To prevent this line interfering with the line sync. pulse the output of IC2/b is combined with that of IC5/b which is high for a period $4 \mu \mathrm{~S}$ before the line sync. pulse to 4μ s after the pulse. This gives a short black region on both ends of the line (normally off the screen). The outputs of IC6/b, IC6/b and IC/c are combined by R6-R8 to give a composite video signal. Note that the video information gives positive pulses while the synchronization pulses are negative.

Crosshatch Generator

Fig. 2. Above: PCB foil pattern, take extra care to avoid solder splashes around the IC pads.

	HS LST
'RESISTORS	
R1	1 kO
R2, 7, 8	4 k 7
R3, 4, 5, 6	10 k
R9	330R
R10	110 R
POTENTIOMETERS 5 k miniature preset	
RV2	25 k miniature preset
CAPACITORS	
C1	180p ceramic
C2	22 p ceramic
C3, 8	10 n polyester
C4, 5	100p ceramic
C6, 7	33 u 16 V tantalum
SEMICONDUCTORS	
IC1	555
IC2, 3	4027B
IC4	4040B
IC5	4011 B
IC6	4001 B
IC7	401 2B
MISCELLANEOUS	
PCB as pattern, case toggle switch, 9 V bat	to suit, output socket, single pole ttery, Astec UMIIIIE 36

Buylines

The only component liable to be difficult to obtain is the Astec UHF modulator. These are available from most suppliers of TV game kits, Watford Electronics and Teleplay are examples. Make sure you get a vision modulator, sound modulators look the same but will not work in this application! All the CMOS and other components are widely available. The PCB will be available from usual suppliers who advertise regularly in the magazine.

Fig. 3. Left: Overlay diagram of the Crosshatch Generator, note the position and orientation of all polarised components.
which is called Dynamic convergence and involves 'moditying' the waveshape fed into the Line and Frame scanning signals within the deflection coils around the neck of the tube and sometimes a further set of coils sited behind the 'yoke' assembly to further converge the beams.

In addition to setting up the convergence the pattern produced by the generator can be used to adjust up the Linearity or picture shape of the raster. Further to this it will also act as a general-purpose 'video signal generator'. very useful when dealing with a 'dead' set, particularly during times when there is not a broadcast signal handy.

MODERN MODULATION

Many of the inexpensive pattern generators on the market have no provision for injecting into the RF stages of the TV set, the HE Generator has an on-board UHF modulator enabling it to be directly connected to the set's aerial socket. Because of this the generator also provides its own 'sync' waveforms and this together with the crosshatch pattern is modulated onto a carrier wave operating on channel 36 UHF

CONSTRUCTION

Assemble the PCB according to the overlay taking care to follow the usual procedures when handling delicate components. We mounted the prototype into a small metal case, big enough to accommodate the battery and modulator comfortably. The metal case also gives a degree of protection against drift due to wandering hands, etc and it also provides good shileding

Inside the Generator, everything fits neatly.

ALIGNMENT

The easiest method of alignment is to monitor the output on pin 1 of IC4, connect either a scope or frequency counter to this point and adjust RV1 to give 50 Hz , it's as simple as that.

Connect the unit via a coaxial cable to the TV set (Make sure you use a UHF coax as audio coax will tend to 'cramp' the signal resulting in breakup or sync loss.) RV2 should be adjusted to give vertical lines approximately the same width as the horizontal.

The generator is now ready for use but may we suggest that before you undertake any adjustments of a colour receiver you consult the manufacturers service guide as the convergence circuitry alone may consist of anything up to twenty presets that must be adjusted in a strict sequence.

The professioncl scopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.
The price $£ 219$ plus $£ 17.52$ VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s} t 0100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus $£ 12.96$ VAT
Prices correct al time of going to press
CALSCOPE DISTRIBUTED BY
Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155 Mail Order

Audio Electronics,
301 Edgware Road, London W.2.
Tel: 01.7243564
Access and Barclay card facilities
(Personal Shoppers)
Watford Electronics,
33.35 Cardiff Road,

Watford, Herts.
Tel: 092340588
CALSCOPE

Electronics

Months of fearless research (mainly on calibration) have led to the design we hope to be publishing next month. It is primarily intended to visually display (via a column of LEDs) the degree of passion being experienced by the subject.

Measurement of passion is made by inserting the subject's finger into an orifice in the case to contact with a sensor array. Use of CMOS circuitry enables the unit to function for many months without being switched off. This project, whilst a little tongue-in-cheek should prove a great success at parties and may just provide a few surprises!

KEZY DOES IT

Unless you've heard it you will find it almost impossible to believe. American radio that is Rick Maybury hot foot from Los Angeles brings back a report of one particular AM / FM station KEZY. In a city that has over 80 other stations catering for just about every taste KEZY manages to capture a very large audience. Find out about this and the American radio scene in general in next month's issue.

INTO
 CONSTRUCTIONAL ELECTRONICS

Are you thinking about taking that first step into the wonderful world of electronics? Ian Sinclair begins a major new series just for you.

Many newcomers are often daunted by the thought of building that first project. This series is designed to take you gently by the hand, through the jungle of jargon and coloured bits and pieces and hopefully leave you with the confidence and expertise to tackle just about anything. Much of the series is centred around the Eurobreadboard so why not drop a few hints to Father Christmas so you can be ready

KIT REVIEW SPECIAL

Two kits this month. Even though we've delayed the Radio Control system for a few months we will still be presenting the review of the Servo Kit we hope to be using with the system.

Our second kit comes from THE kitmakers Heathkit. They may be a bit pricey but they are the best. The one we're reviewing is probably one of the finest pieces of test equipment we've ever seen. It's the Digital Multimeter with an LCD readout. If you think a price tag of around $£ 80$ is a bit steep then see what we think next month.

INFRA RED CONTROL
Look out for a new remote control system using Infra Red techniques. Coming next month

The February issue will be on sale January 11th

[^2]

LCD CHRONO

We feel we've got to tell you carefully about this offer. Why? Because our price is so enormously lower than anywhere else you may suspect the quality

The display is LCD and shows the seconds as well as the hours - and minutes - press a button and you'll get the date and the day of the week.

Press another button for a couple of seconds and you have a highly accurate stopwatch and hundredths of a second displayed and giving the time up to an hour. There is a lap time facility as well - and of course a back light.

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed.

£11.95

ALARM-CHRONO LCD

This new addition to our unbeatable selection of bargains is no ordinary LCD watch. It's a slim, multi-function, dual time chronograph alarm watch, no less.

This model will show hours, minutes, seconds, date, day of the week, stop watch, split time, alarm and alternate dual time zone - not all at once, of course. There is also a night light.

Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The day of the week is indicated by a flag When used as a stopwatch, the maximum count is 0.1 secs short of thirteen hours.

£19.95

To:

LCD Watch Offer

HE Magazine
145 Charing Cross Road
London WC2H OEE
Please find enclosed my cheque / PO for £11.95 (payable
to HE Magazine) for my LCD Chronograph
Name
Address

To:
ALARM /CHRONO LCD WATCH Offer
ME Magazine
145 Charing Cross Road
London WC2H OEE
Please find enclosed my cheque / PO for £19.95 (payable to HE Magazine) for my Alarm / Chrono LCD watch

Name
Address

DIGITAL ALARM

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display, AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim-Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9 -minute 'snooze' switch is located at the top.
An example of this clock can be seen and examined at our Charing Cross Road offices.
£10.60

To: Hanimex Alarm Offer HE Magazine
145 Charing Cross Road London WC2H OEE
Please find enclosed my cheque/PO for £ 10.60 (payable to HE Magazine) for a Hanimex Digital Alarm Clock.

Name
Address
CLOCK RADIO

You probably won't believe us as we're selling the goods but we're going to tell you anyway! We have rejected eight clock radios for Marketplace, they were all cheap enough but the quality was so poor that we couldn't have lent our name to them. However, we are now able to offer another portable LCD Clock Radio to you which meets our standards.

The clock is a 12 -hour one with AM/PM indicated and a back light. The radio is Medium Wave with very nice quality for a small speaker. The alarm can be either a beep-beep type or the radio, there's also a snooze facility

The cylindrical construction is in keeping with the very modern styling. The tuning dial is actually incorporated into one of the end caps!

We won't even mention the RRP - but just check on comparable prices - you'll find ours a bargain.
An example of this Clock Radio can be seen and examined at our Charing Cross Road offices.

CLOCK RADIO Offer HE Magazine 145 Charing Cross Road London WC2H OEE
Please find enclosed my cheque / PO for $£ 17.95$ (payable to HE Magazine) for my Clock Radio.

Name
Address

All offers inclusive of 15% VAT and Postage

A re-usable orbital vehicie, Spacalab is being readied for its first flight, scheduled for mid-1981. The first mission will carry 76 scientific and technofogical oxpariments from Eurupean, American and Japanese agencies. The results are likely to have a profound effect on the development of science and technology into the next cemtury. It has been said that the Spacelab missions are a gry ater stepfor mankind than mate fanding on the moon.

DURING THE PAST TWENFY YEARS Quit a gitmber of Wighily treined astrpasuts have boen focketed itrto op oit
 grwrontionts

These atronauts liave to be able te withstand acketernmons of up to about iven tilines that due to grevity of the oarthi is sufaco

However, the kS Spaet Shurtin hould bymome
 ard utier fiopionds to be lifted into orbit muets miory ocomomicafly but then meximum incelefrarion of e
 eath's grvity $\{3 \mathrm{~g})$ end that of a shutrite Pendir? about -15 g .

If is tharefore logicat that the Shutte thoutd be utth
 Lahs'm which scientists. engimens met technticiaris rathey than estronguyts will be uhie to sponduci mxperiments in euth oiblit

No long and rigorous pmotipit innibitig cout on an enyisaged for the Spaculab crew Thase Jsen and women who lly io Spacieltab should be in good healti, but then traming will ke short, and wilf mefude sexnern: trent operestion boufing en tight posits abd ptocol. utes familiarsation vith atere gravity cooditions, asit gises in spaceftigh house-keeping ant Emergencies and ?otal systom simulation.

Spacelab. Whe the Space Shufte. Will be te-usatle progatly about fifry tintes. Tlie Shutre Orbith! whicle. with Spalcelab in its cargo bay will be briostec into anth orbit by two solid fuel boaster rockets jettisoned of a height of 69 km) and by the main enginetsof the thuttie whicle which obain ther fucl from a huge externat fup tank which is jettisoned futt before the orbitel alkitude is atiained

The Shutie and Spacelab, will orbit for up to lwelwe days, although this may be ektended up to thirty doys in later flights.

The nominal duration of a iyprcal mitsition is Jeven deys although the Shutte is a space wehicle, it is unique in that it can land like an aeropiane and will teturn Spaceleb to earth

A team of up to four experimental operators (women as well as men) will be able to work in Spacelab in orbit They will be able to make adjustrients to the orbiting equipment and to control the neasurements being mads.

On their return to zarn they will bring the acquired sata back with thom. The Spacelab crew will eat and
 ing constructed for the European Space Agency by on industrial team of nethly 40 manufactuers it Mg Eumpean countries, the weacter ontractor beling VAFffiplken, ERNO of Bremen, G1

 Wuy spros by the European Spaces Apen $x+$ a-t the US Ftriontin Ancomatries and Space Adpmintith = UASA) in Aufurt 1375 wincripiovides for the delostry R (ANAM सuls whll be topoin ib- fra be launehigut of one inti exyineoring modeh ame cref fighternit.

NASA nin undertaren io buy more Spacelabs trom tre Eurgein Spaca Ajenchis ubject to certain condi

 abolut avcarinter

EARLIER SPACESHIPS

Tho arly astromeuts had to be contern whith vork comfortabis ilving quatters in spacecraff ofesigned to ankurf survival rether than to trizmtath a litege amount of Squipinaent pto orbits.

The fussian Salput (was perhaper e inst orbiting tahomatry designed is camy many intruments into
 loly aperation

This strellite was 14 mounes longith a maximum vimmeter of 4 m . The internat solume of nearly 100 cubic mstres inclupled about 36 cubic nietres for the crew Theyst, and sleep in beds, enjoy a dini groom with o kirchen corn with reheated dishes, and had a bathroom and toilet room

Later Salyut spaceships were of the sone general design, very like that of a submarine; this is not surprising, since in both spaceships and submar ne there is a great pressure difference between inside and pintside the ship.

In 1973 NASA launched the Skylab orbita any scientific space station, this being an extension of the Mercury-Gemini-Apollo programs

The internal volume of Skylab is about 600 cubic

INutues of which abion 100 cubic atetres are Inhabit nole

Salyn mot : Aytah weme launched unmennedt simee if Whe toctur wers to uxplode she staition would be de4troped. Noither can they be biought sately back to wurh zinno they could nint withstand the mecharvical trit thumuit atiminf of (o-mily
The rem of theme shatlots tiretelate had to travel sopurately to and frometive vehitle, Salyut had an engine. Dut Sixylat hatf no erogine of its oven atthought if could the the Apollo thies to which if wats couplted as a kempotive A main disodvantagezit Ueth at these craft is
 funmonall mather procinos itims which the listronauts can

The space availatite in the valueles used ior tramspor2 romen ib ilind from the opilce station is very lincited;

 dequipingit they wore briging back to eant that they could not morit to rauch a ditvice to stop the accidental depretssuntation of the दalt Such problems wilf not coew in this form with fotion Spracelobts

Neither shoult Spacalib vehicies calus danger to Heopit on thu manth. N(ter the fiery ditath of Cosinos
 htict crested in nohthen Ceniads in Ismatry 1978. poojle dou becoming wery of spase sequiptoent which hoy cramh down on to their country even if thele are no

NASA k conconied both about the possiblo hazerds such crate strung a populated recion and also aboubosing its invent
£ 100 entillion.

SPACELAB MOOULES

Spacelab sitation has been designed on a modular at iv caplbe changed to mest specifil, misskin Whe two main components are a pressurfaboratory which proviouts a shirl. ronment and an open pallet in what minting and equipment can be directly exposed to the space ofryiromithent.

The prissonised inodule is made in two seigments. each being a cythotere 1 m in diameter and 27 m long The cor segthent will be used in 7H Spacel̂h missioils in which a prassurfsed module is required, it contains various supporting tazilties (such as data prosessing equipment) and lathoratory facilitios such as woekiag benchies lloor mounted rocks, ett

The serond prustatised module. known es the experiment सम प्रmeit, कs wed to orov.de inore laboratory working spece it with not be used unless this alteitional space is redmed This segment contans only floormounted racks and benches
When wuth segments are aesembled with their end cones, the maximum external length is seven metres.

Five ptillotigments, each three metres long are also availabe. These are designed for large instruments, for experments requiring difect exposure to the space e vironment and for wark requiring unobstructed or broad fields of view For oxample, various telescopes, antenkae sentors ractiometers and radar antennae will be carred in तोt of the pallets. Each pallet can also be sed to cool equipment, to provide electrical power and

To fumish connecions for commanding and acquiting data foom experimuts
 mindule the essentan whprort systems for varieus expermionts, Ancluding power and communication systemit are protected in a smell pressurised and temperature montrotleut housing called an igloo

Thepreesulsed vabin of the Orbiter Shutite vehicte es connecred by a tunnel with the pressurised module of Spacelab. The turntfis segmented so that its length can be changed as equered. An airlock module can be atracheth to the cumnel to provide an additional access to extertial space

Paltor mountod instruments will normaily be powered and controled from within the pressurised module but wath be vontrolad from the orbiter Shuttle vehucle natbin W. ssurfed morule. The ballet can accommodete s varinty of expermments of which manned aitendance is unnecessary but where services such as electrical powir. temperature contry etc are needed.

Several kilowatis, toth $A C$ and DC will be avalable to operate experimentil equipment during a Spacelab mission Continuous veice and dala transmission facities well horithity be trade available between the expetimemts in Spaceab and the ground obsinvers so that the expetenenters can ebtain expert advice rapidty.

The relatomenno between Spacelab and the Shuttle has been comparee win the between traiters dhis
bactors
A number of Spaceldbs are in various states of areparation for theif voyages but relatively few Shurte Drbiter vehicles are required, innce the turnaround time of The Orbirer vehicles is quiteshort.
Maximum use can be made of the Shuttle Orbiter vehicles, while the Spacelabs can be outtited at the user's premises But in most cases, the individuat pxperiments will be brought to a centraltotation and integrated into oneg of the Spacelabs aymark z^{2} :

RLEXUR/LITY

Toe pacelalb missions offer flexibility. The Shuttle Oidtef flight parameters can be varied so that the orbit inclination and the orbit altitude meet the requirements

- If the particular mission concerned. For example, the altitu 9 of the orbit can be varied between 200 km and $900 \% \mathrm{~m}$.

Tre Kennedy Space Centre on the East coast USA will be fred during the first few years of operation of the Shutile providing a possible range of inclinations of 385 to 57 Later the Vandenburg site on the West coast will become availtote and this will make orbital inclinations of up to 104 possible

The arlentamon of the Orbiter vehicle can be adjusted as can the flight time. For extmple, the Orbiter may fly inverted to give a view of the earth
Missiôn flexibility is also provided by the choice of various podule-pallet configurations - such as module only, module plus pallet or pallet only - and variations of the module and pallet lengths.
In general only-oquigment required for a particular mission is carried 50° as to reduce the weight. Up to five pallets may be flown on the Orbiter.
The Spacelab can carfy greatly inereased weight and

ATMOSPHERIC PHYSICS

The first Spacelab flight will be in the relatively low circular orbit of $250 \mathrm{~km}+/-5 \mathrm{~km}$ altitude with an inclination of 57° favourable for experiments in atmospheric physics. İt is expected that important new results about the physics of the atmospnere will de obtaineu during this flight in which various groups from the USA, France and Belgium are involved.

The University of Michigan Group will be responsible for an imaging spectrometric observatory which will simultaneously observe the 20 nm to 1200 nm wavelength region with a resolution varying between 0.3 nm and 0.6 nm over the spectral range. This permits the study of the airglow spectrum by observing radiation emitted by excited atomic and molecular ions and also neutral particles in the atmosphere

The Jet Propulsion Laboratory of California are working on an TMOS (Atmospheric Trace Molecules Observed by Spectroscopy) project using interferometry. Groups from France and Belgium are planning a Grille spectrometer for the high resolution passed through the atmosphere at sunrise and sunset

French and Belgian groups will also study Lyman-Alpha emission by hydrogen and deuterium in the atmosphere.

PLASMA PHYSICS

Plasma physics experiments for the first Spacelab flight have been designed by groups in Japan, the USA, France, Norway, Germany and Austria. Although magnetospheric research is one of the earliest fields of space research, Spacelab offers a new dimension for such work, since on-board particle accelerators can be used to investigate the electric fields parallel to the magnetic field lines; gas plumes, optical and electron detectors and, on later Spacelab flights, small satellites can be employed.

Artifical auroras produced by particle accelerators on board will be observed by a low light television system, whilst natural auroras and the small partical contamination around the Orbiter will be observable:

The latter is an important paramter for the success of the astronomical observations from Spacelab. A similar system for the detection of low-energy electrons can detect the natural electron flux and fluxes induced by the particle accelerators.

SUN-EARTH RELATIONS

Various groups of European and US workers are preparing equipment which will provide data about the influence of the sun on our daily weather. For example, Figure 1 shows that there is a very strong correlation between the 22 year sunspot cycle and the July temperature in central England, but much more information is required about the energy input from the sun to the earth.

Two absolute solar radiometers on the first Spacelab mission will measure the total energy flux from the sun over the whole spectrum from the far ultra-voilet to the far infra-red. It is hoped to achieve an accuracy of 0.1%, which is why two instruments making the same measurements are to be used on the same flight.

A further instrument will measure each part of the solar spectrum over the range 190 to 4000 nm ; three precision monochromators will achieve a relative accuracy of 0.1% and will permit the identification of the particular spectral elements responsible for any changes in the amount of energy reaching the earth.

This work is regarded as the first of three flights spread over a period of about ten years so that long term changes in the solar energy input can be studied.

ASTROPHYSICS

The Far Ultraviolet Space Telescope (FAUST) has been designed for the observation of extended and point sources in the 120 nm to 300 nm wavelength range, flown on previous rocket flights. It can be used for objects down to magnitude 18 .

Another instrument is the wide field camera which will form images of a large fraction of the sky to assist in the study of large scale phenomena in the Universe. A 60° angle will be used with filters for 130-300 nm for stars down to the 1lth magnitude. This camera will be used for investigations of the milky way, nebulae, dark clouds and the distribution of galactic and extra-galactic matter.

Another piece of equipment will involve the use of a. gas-scintillation-proportional counter for X-ray spectroscopy. This will be the first time this tvpe of detector will be used in orbit.

MATERIALS SCIENCES

Quite a number of materials science experiments will be carried by Spacelab on its first mission; they have been designed to test the, capability of the system for producing desired results in conditions

Normalised sunspot cycle (22 years)

July temps central England
$\left({ }^{\circ} \mathrm{C}\right)$

Fig. 1.

of virtually zero gravity rather than to produce materials in, commercial quantities.

A tribology experiment will test the characteristics of lubricants for bearings under zero gravity (such as their spreading, wetting and operating characteristics). A geophysical flow experiment will permit laboratory studies of the dynamics of the oceans and atmospheres of rotating planets and stars; a dielectric fluid will be employed between concentric rotating conductive spherical shells with an electric field between them to generate a gravity-like force in the miniature model. This work is impossible in a ground based laboratory.

There will be a total of 37 materials science experiments in the first Spacelab payload. The equipm ent will include three furnaces and a fluid physics module

EARTH OBSERVATIONS

Two instruments to be carried aboard the first Spacelab flight are designed to test its capability of performing earth-surface remote sensing work. The metric camera will be attached to the optical window of Spacelab to produce small-scale high-resolution photographs of the surface of the earth from space and to test the capability of making maps and revising maps from such photographs at scale of 1:50000 or smaller. The camera is similar to that used on aeroplanes.
The microwave facility is rather remarkable in that is measures the long wave energy spectrum of the ocean waves as a function of wave number and direction. The long wave region of the ocean spectrum (taken as the 10 to 500 metre section) contains the larg est part of the wind-induced surface wave energy. The global distribution of these waves is closely related to the global wind fields and to the atmospheric pressure distribution at sea level. It is intended that this technique will be used from future satellites to help improve weather forecasting.
This microwave facility, which employs a 2 metre by 1 metre antenna, can also be used as a synthetic aperture radar from orbital altitudes. This technique makes it possible to use the craft's velocity for scanning the spatial electromagnetic field near the craft created by backscattering from the surface of the earth. The data obtained should provide an all-weather day and night time surface 'mapping of the earth with high spatial resolution by a process which is the microwave a nalogue of optical holography

LIFE SCIENCES

The Spacelab environment enables experiments to be performed on the behaviour of man and other organisms in a gravity-free environment, whilst the effects of high energy cosmic particles from space can also be investigated. In the life sciences field 16 experiments have been accepted for Spacelab's first flight.

Blood samples will be taken from the crew members at regular intervals during the concentrations after the flight. Other work will investigate how the body fluid pressures will react to near zero gravity, whilst further experiments will investigate any changes in the number of cells in the blood and whether the cells which provide our immune responses are altered.
During their growth plants exhibit helical movements and an experiment with Helianthus annuus will test how this is affected by gravity. Other work will look into the effect produced by the absence of the normal daily variation of light and darkness on a fungus which produces patches of extensive growth once every 24 hours; this may shed light on the 'biological clock' mechanism

Ballistocardiography experiments will record the body accelerations in three dimensions of the crew by attaching accelerometers and the effect on the heart activity and blood movement will be found. The crew members will be equipped with personal miniature tape recorders to monitor their electrocardiograms; electroencephalograms, etc. under gravity free conditions. They will also wear various radiation dosimeters.

Spacelab

volume compared with other space transportation systems, and at relatively low cost. The cargo bay of the Shuttle Orbiter vehicle is 4.5 metres in diameter by 18 metres long

The ability to carry experts in their field with the experimental apparatus so that they can immediately make adjustments will maximise the usefulness of the results obtained. The return of the complete spacelab equipment to the ground after every mission is also very attractive and economical.

Shared mission costs also keep expenditure down, but there are some types of work for which the Spacelab system is not ideal - such as work requiring more time in space than the Shuttle Orbiter is designed to spend.

OVERVIEW

The cost of Spacelab is about 1000 million pounds, provided by ten European countries - Italy, France, West Germany, the United Kingdom, Belgium, Spain, The Netherlands, Denmark, Switzerland and Austria.

NASA provides the launching facilities. The importance of Spacelab can be seen from the following figures of its frequency of Shuttle launchings.

During the first 12 years of Shuttle operation about 1000 payloads are scheduled on 487 flights up to 1992. Spacelab will be caried on 201 or 41% of these flights, the number of Spacelab payloads being 464

The other 54\% of the Shuttle launches will be used for free flying satellites (46% of launches will be for communications satellites, deep spacecraft for interplanetary missions, high altitude explorer craft, research satellites, etc.).

Other Shuttle launches will convey the Space Telescope and various Landsat, Seasat, earth resources, meteorological and astronomical satellites.

The Spacelab missions provide the first opportunity for a European to orbit in space. There will be only one non-American on the first Spacelab flight, which will be the Shuttle's seventh mission.

The European Space Agency put forward 54 candidates (including one woman) who had been preselected to travel on the first Spacelab mission. In May 1978 the Agency selected three of these candidates from whom the one European to travel on the first Spacelab mission will be chosen. The three are

Mr Ulf Merbold, a 37 -year-old German physicist who has worked as a solid state physicist on crystal lattice defects and low temperature physics.

Mr Claude Nicollier, a 34 -year-old Swiss astronomer who has worked on the photomeric classification of the supergiant stars and who is a qualified professional pilot. He is a part time pilot in the Swiss Air Force.

Wubbo Ockels, a 32 -year-old Dutch physicist who has been involved with prompt gamma ray decay and position sensitive detectors, apart from developing a data handling system

These three were chosen from a maximum of five candidates put forward by each country.

The maximum age was 47, a degree was required in natural sciences or engineering with at least five years' experience, and fluency in written and spoken English.

The candidates had to undergo psychological tests to ensure they will be able to cope with the considerable stress of the Spacelab workload and environment. Very good memory and reasoning ability, good concentration, low aggressiveness and high motivation were among the requirements.

NASA has selected Mr Michael L. Lampton, a 37 -year-old-physicist and Mr Byron R. Lichtenberg, a 30 -year-old scientist for the first Spacelab flight. One of these two Americans will accompany the selected European.

The experimenters aboard Spacelab are called the payload specialists. These people are nominated for the flight by the particular organisation which is sponsoring the payload concerned. They are accepted, trained and certified for a flight by NASA.
.They co-ordinate their activities in space with experimenters on the ground and with the crew of the Space Shuttle Orbiter

The Orbiter crew includes its commander, the pilot, and the mission specialist who is responsible for the management of the Shuttle resources and equipment which supports Spacelab.

Experimenters aboard the earlier Skylab craft found it uncomfortably large. The crew found themselves floating out of reach of all of the grip bars, whilst time

EUROPEAN PRIME AND CO-CONTRACTORS

was lost in moving considerable distances and they became tired very quickly.

One cannot use one's lower limbs for walking in conditions of near zero gravity. It was therefore decided that the ideal space station is one composed of compartments, each not much bigger than a man.

In such a compartment a man can stand erect, but can always touch something. This principle has been used in the design of the Spacelab pressure module (which is much smaller than that of the Shuttle Orbiter payload bay), but the bay can be filled with pallets.

The Shuttle Orbiter also contains a two-deck living unit with the control station on the top deck and the quarters for both the Shuttle crew and the Spacelab specialists on the lower deck.

The specialists will work in the pressure module in shifts during missions when this module is carried and will return to the Shuttle-living quarters to eat, sleep and relax.

Salyut I carried 1000 kg of instruments, Salyut 4 more than 2000 kg , but Spacelab will initially carry about 5790 kg , increasing to 9350 kg on later flights in which three pallets are used.

PRINCIPAL USES

The early manned orbiting vehicles involved experimental programs mainly biological in nature. Aboard Spacelab a much wider variety of experiments will be undertaken

Spacelab offers an environment where gravity is extremely small jabout one millionth of that on the earth), although strictly speaking the gravitational field is only zero at the centre of gravity of the whole Orbiter (including Spacelab) when there is no retardation by the atmosphere.

Such a micro-gravity environment should offer entirely new possibilities for separating biological materials to obtain pure preparations of cells for transplantations, for preparing concentrated antibodies for the treatment of certain diseases and for purifying vaccines, etc.

Ultra-pure metals, semiconductors and glasses can be processed for research applications in electronics. Perfect crystals for computers, communications and other electronics uses may be processed in Spacelab as well as new materials of improved strength at high temperatures.

Spacelab will be flown above the atmosphere, so it

Spacelab

will provide for experimental work in the fields of astrophysics, ultra-voilet, optical, infra-red and X-ray stellar, planetary and solar astronomy

Atmospheric ionospheric (plasmas) and magne-s tospheric physics can also be investigated by flying Spacelab at an appropriate height. Remote earth sensing for meteorology, land-use planning, resources, pollution control and other purposes can be carried out with more flexibility than is available from existing satellites dedicated to one of these purposes.

Biological experiments will be some of the most important work aboard Spacelab. There is still much to be learned about the growth and behaviour of cells in conditions of zero gravity - apart from the effect of such an environment on such a complex creature as a man.

It is intended to use Spacelab to study sea sickness phenomena for which purpose a special "sled" has been designed. A man will be rocked in a seat with various amplitudes at frequencies of between 0.01 hz and 1 Hz ; this movement can also be combined with a rotary movement

THE FIRST MISSION

The total number of scientific and technological investigations chosen by NASA and the European Space Agency (ESA) for the first Spacelab mission scheduled for 1981 is 76 ; of these experiments, 60 are European, 15 American and one Japanese.

This first mission has been jointly planned by NASA and ESA, the available Spacelab weight for equipment, power and crew time being shared between these two organisations. The ESA will provide some of the basic experimental equipment such as a microwave sensor, a metric camera and a vestibular sled

About 130 investigators from Europe, 80 from the USA and a few from Canada, India and Japan will be involved in the 76 experiments

The primary objective of the first Spacelab flight will be to verify the performance of the various systems and subsystems. The second objective will be to obtain useful data and to confirm the broad capability of Spacelab for a wide variety of space research

The first flight, will last 165 hours jabout seven day). but the time for experimental work will be 140 hours.

No access to the payload will be available during the final nine days before the launch nor during the first 30 hours after landing.

As the Shuttle verification equipment on the first flight will be much more extensive than on succeeding Shuttle flights, the total payload carrying capacity will be reduced to about 4000 kg and the total energy available to about 100 kW -hr. A total of 100 man-hours will be available from the two payload specialists

The experiments to be performed by the first Spacelab mission have been deliberately chosen from a wide range of disciplines including atmospheric physics, plasma physics, Sun-Earth relations, astrophysics, material sciences and technology, life sciences and earth observations.

CONCLUSION

It is often said by people who know little about the subject that they feel it disgraceful huge sums of money should be spent on space research when man cannot cure many forms of human disease. It seems likely that the availability of the Space Shuttle together with Spacelab will bring an enormous number of advantages to the human race, both to people who are ill and to those in good health, but progress in this expensive field of technology is inevitably limited in pace

However, if one thinks back a few years, one can appreciate how rapidly the developments in space work have actually occurred. Man has been on the earth for a very long time yet it is only in the last twenty-two years that he has been able to leave his world temporarily and return safely to it.

It is interesting to note that the first element of Spacelab hardware has already been delivered to the USA. One of the pallets (fabricated by British Aerospace at Stevenage) was delivered to the Kennedy Space Centre in 1978 so that NASA can use it for Orbital tests of the Space Shuttle in 1980 as part of a pre-operational Orbiter payload.

The Shuttle Orbiter vehicle showing cut-away views of engine, payload and pilot areas.

GREENWELD

443 A Millbrook Foad Southampton S01 OHX All prices include VAT at 15% - Just add 30p post

COMPONENT CABINET IDEAL FOR THE
 NEWCOMER TO
 ELECTRONICS

Contains hundreds of brand new reslstors. capacitors. transistors, diodes and i.c.s All useful velues, carefully chosen to help the new constructor pursue his habby witho find All parts contained in clearly marked bags in a plastic storage cabinet $232 \times 121 \times$
185 mm with 9 drawers into which all parts can be neally located.
If bought individually parts plus case would cost over £45 but we are offering this for ONLY EJ. PO for E 32.95 for immed a cheque or PO for $£ 32.95$ for immediate despatch
CONTENTS
200 1/4 watt resistors
20 Wire wound resistors
70 Coramic Capacito
70 Mylor Capacitors
56 Elyerolytic Capacito
56 Electroytic Capacitors
61 Transistors
12 I.C.s
55 Diodes and rectifiers
Altogether 614 components
Price includes current catalogue and Greenweld pen for reordering supplies. Plus free surprise gifh

VEROBLOC BREADBOARD

New from Vero, this versatile aid for building and testing circuits can accommodate any strips on $X \& Y$ axis - 10 tal 360 connection points for just $\mathbb{£ 3 . 7 0}$.

3W Amp Module

Ready built and tested, this handy amplifier will prove very useful around the workshop Just requires 17 V ac source (and 8R spkr) as bridge rect and smoothing cap are mounted
on the PCB. The 4 transistor circuit provides onough sensitivity for most applications Supplied complete with circuir diagram and
wiring de tails.
Only £1.75. Suitable transformer, £2.20.

DISC CERAMIC PACK

Amazing variety of values and voltages from Amazing variety of values and voltages from
a few pF to 2.2 uF 13 V to $3 \mathrm{kV} 1200 \mathrm{£1} 500$ a lew pF 102.2 uF
£2. 251000 . 4.00 .

DIODE SCOOP!!

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass quantity of untested, mostiy unmarked glass revealed about 70% useable devices signal diodes, high voltage rects and zeners may all be included. These are being offered at the incredibly low price of $\mathrm{£} 1.25 / 1.000$ - or a bag of 2,500 for $£ 2.25$. Bag of 10,000 £8. Box of $25,000 £ 17.50$.

AERIALS

$\times 901$ Telescopic 8 section 970 mm long extended. 175 mm collapsed.
2BA fixing hole in base. 75 p .
$\times 904$ Ferrite rod $140 \mathrm{~mm} \times 9 \mathrm{~mm}$ LW/ MW/coupling coils, each independently $\times 905$ As above
(coupling coil together on moveable former 65 p .

THE NEW 1980 GREENWELD CATALOGUE

FEATURES INCLUDE
60p Oiscount Vouchers

- Quantity prices for bulk buyers - Bargain List Supplement

Reply Paid Envelope
Priority Order Form

- VAT inclusive prices

All for only $40 p+20$ p post

1000 RESISTORS $£ 2.501!$

 New stock just arrived - Carbon Film 2\% \& 5%. $1 / 4$ \& $1 / 2 \mathrm{~W}$, all brand new, but have preformed leads, ideal for PC mntg. Enormous range of popular mixed values for just$£ 2.50 / 1,000 ; £ 11 / 5,000 ; £ 50 / 25.000$

INVERTER

Prepare for the Power Cuts! Ready built inverter, $290 \times 55 \times 37 \mathrm{~mm} 24 \mathrm{~V}$ OC in, will power $6 \times 8 W$ flourescent tubes. Circuit supplied. Only $£ 2.80$

SCR PANEL \& REED PANELS

2525 Contains 11800 mA 60 V 2N5061 SCR's, 116 V 8 zeners, 111 N4004 diodes + Rs, Cs etc. Only 11.00 .

25261024 V reed relays, 221 N4004 10 weird ICs, Rs Cs etc. 60p.
$25272 \times 6 \mathrm{~V}$ reed relays, $6 \times 2 \mathrm{~S} 030$ or $2 \mathrm{~S} 2306 \times 400 \mathrm{~V}$ rects, + Rs. Only 50 p

WTRE AND FLEX

Solid core - ideal for breadboards etc $50 \times$ 2 m lengths many assorted colours, total 100 m for $£ 1.30$.

Flex packs $-5 \times 5 \mathrm{~m}$ lengths of multi-strand thin flex, ideal for wiring up circuits. Only 35p.

EX-COMPUTER PANELS

2528 Pack of boards containing 100 s Rs, Cs diodes, including at least 50 transistors. Ondy E1. 20.
2529 TTL pack - Panels with 74 series on, complex counters. 20 iCs $£ 1.100$ ICs 84

VERO OFFCUTS

acks of 100 sq ins of good size pieces about $4 \times 2 \mathrm{in}$. in the following types:
$K 5410.1 \mathrm{in}$, copper clad $£ 1.50$
$K 5440.1 \mathrm{in}$. plain E 1.50
Also pieces $21 / 2 \times 1$ in. $-10 /$ ¢1.20 100/£9. $17 \times 3 / 3 \mathrm{in} \times 0.1 \mathrm{in}$. sheets, $10 / £ 16.50$
Large range of Standard Veroboard and boxes/cases in stock. Oetails in Catalogue

SCOOPIII Verobox type 2522, unused but has $31 / 2 i n$. holes in one end and 1 hain. hole in the other, so instead of £3.96, we are selling these at $£ 1.85$.

BUZZERS, mOTORS \& RELAYS

2401 Powerful 6V OC, all metal construc. tion, 50 mm dia $\times 20 \mathrm{~mm} 70 \mathrm{p}$.
2402 Miniature type, $3-9 \mathrm{~V}$. only $22 \times 15 \times 16 \mathrm{~mm}$. Very neat 65 p .
2450 Miniature 6 V OC motor, high quality type, 32 mm dia $\times 25 \mathrm{~mm}$ high, with 12 mm spindle. Onty £1
245112 V high torque motor 30 mm dia x 40 mm high, with 10 mm spindle. 65 p . N892 Heawy duty 12 V relay, ideal for car use - single 15 A make contact. Coil 25R
85p.
W890 DIL reed relay SPCO 2.4-10V 200R coil. Only E2.20.

VU METERS

V002 Twin type. 2 metres $40 \times 40 \mathrm{~mm}$ and driver board, supplied with circuit and driver board, suppli.
003 Nw ty
V003 New type, just in. Twin type moulded in one picce. $80 \times 40 \mathrm{~mm}$ (no driver board but sitable circuit supplied) $£ 2.50$

CLOCK CASE BARGAIN

Z472 Oval format, overall size $130 \times 68 \times 87 \mathrm{~mm}$ deeo, with built ta stand Rear panel drilled to accept 4 switches + alarm 60p.

All these advantages... NMMN Instant all-weather starting - Smoother running - Continual peak performance - Longer battery \& plug life - Improved fuel consumption - Improved acceleration/top speed
 Extended energy storage
 inkit form

SPARKRITE $X 5$ is a hugh performance. Icy) quality inductive discharge electronic iggintion system designexd for the electronics D. 1 Y world. It has been tried, lested and provern to be utterly reliable Assemblyonly takes 12 f:oursanclinstallaticus even less due to the patented clip oni easy fitturg , 2

The superb technical clesigu of the? Sparkritecircuit elinumates problems of the contact breaker. There is no misfire dine to contactibreaker bounce which is ehminatedt electronically by a pulse stippression
circuit which prevents the unit firing of the points bounce oper at high R P M
Contact breaker burn is elmmated by

educing the current by 95° of the norm

There is also a unicule extencled ciwells circuit which allows the coil a loncyer period of time to store its energy ixafore discharging to the pligs The ant inclueters built in static timing light. sẙstems function light, and security changeover switch Will work all rev coumters

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISESEVERYTHINGNEEDED
Die pressed case Ready drilled. alumumum extruded
base and heat sink. coil mount ing clips and accessories All kit components are guaranteed for a period of 2 years from date of purchase. Fully illustràted assembly and installatıon instructions are included

Roger Clark the world famous rally driver says" Sparkrite electronic ignition systems are the best you can buy.

HIGH
ELECTRONIC IGNITION

Electronics Design Associates, Dept. HE180 82 Bath Sireet, Walsall, WS1 3DE. Phone: (0922) 614791
Address
\qquad 1 endose cheque PO's to
f
Cheque No.
Send SAE Ab orochure only required

Take a gamble on HE's roll-your-own digital die project.

DIGI-DIE is a solid-state electronic die that gives a visual output on seven light-emitting-diodes, arranged in the pattern of a conventional die face. The die display number changes, in a random fashion, each time a 'spin' button is pressed and released. The electronic die gives very fast 'spin' action, enabling several spins to be made in the time that a conventional die would take to make a single roll, thereby enabling games to be greatly speeded up.

The HE digi-die has a few unusual features. It incorporates an electronic time switch that connects power to the LEDs when the 'spin' button is pressed but then automatically removes the power a few seconds after the button is released. This feature eliminates the need for a separate ON / OFF switch and causes the display to blank automatically when it is not required. All seven LEDs illuminate when the 'spin' button is held down.

The second unusual feature of the unit is its cost. By using inexpensive ICs and ingenious circuit design we've managed to keep the total building cost down to about £3. So how can you NOT build such a splendid project?

CONSTRUCTION

There really is not a lot to say here. Just remember to fit the links to the PCB as indicated and observe the polarities of C1 and the semiconductor devices and

The actual layout is not critical, using our PCB design results in a neat, attractive project.

that's it. We used IC holders on our prototype, but they're not essential if you take sensible precautions when soldering the CMOS ICs in place. Don't forget to check the functioning and polarity of the LEDs before soldering them into place.

If your project doesn't work correctly first time it will be because you've either blown up an IC or have fitted the LEDs the wrong way round.

Fig. 1. Display layout for Digi-Die

Fig. 2. Circuit diagram for the HE Digi-Die

How lt Works

ICla to ICIC are wired as a gated ring-of-three fast astable which has its output fed to the 'clock' input terminal of the 4017 B counter. Nine of the ten outputs of this counter are normally low, but the outputs go high sequentially when the counter is fed with a series of clock input signals. The 4017B is wired as a 'divide-by-six' counter and has its output states decoded by IC3 and fed to a 'die' matrix of seven LEDs, which in turn are gated on or off by ICld. Normally, all LEDs are gated off and the entire circuit consumes a quiescent eurrent of only 1 uA or so.

The circuit action is initiated by momentarily pressing and releasing PB1. As PB1 is pressed the fast astable is gated on and applies clock pulses to the counter. Simultaneously, the input of ICld is pulled low via D1 and the output of ICld goes high
and enables the LED display. Under this condition all seven LEDs illuminate as the counter repeatedly runs through its counting sequence.

When PB1 is released again the astable stops operating, having fed an unknown or 'random' number of pulses into the counter. The counter display 'freezes' at this point, giving some randomly determined fixed display on the die matrix. As PBl is released, Cl starts to charge exponentially via R2 and drives ICld input towards the positive supply rail voltage. Eventually, after a delay of a few seconds, this voltage rises to such a level that the output of ICId switches low and disables or 'blanks' the LED display. The circuit's quiescent current then drops back to a few uA and the circuit action is complete.

$0{ }^{\circ}$		${ }^{\circ} 0$
0.	0	${ }^{\circ} 0$
O_{B}		${ }^{\circ} 0$

Fig. 3. Wiring diagram for the LED display

Fig. 4. PCB foil pattern for HE Digi-Die

Fig. 5. PCB Overlay, watch out for polarised components:

RESISTORS

R1	100 k
R2	470 k
R3	2 k 7
R4	68 k

CAPACITORS
C1
C2
10u electrolytic 330p polystyrene

SEMICONDUCTORS

IC1	4001 B
IC2	4017 B
IC3	4025 B
D1	1N4148
led 1-7	standard $0.2^{\prime \prime}$ red leds

MISCELLANEOUS
PP3 battery. PCB foil pattern. 1 push button (momentåry action).

Buylines

No problems here. All components used in the project are standard items.

Alationions tority

What to look for in the February issue: on sale January 2nd

CMOS 555

Now you all know about the CMOS version of the 555 timer chip - because we told you about it last month in Designers Notebook, so no excuses in the back row please.

Only thing to do now was to get Tim Orr, the country's leading circuit man, to spend a few eons playing with the device and produce one of his superb circuit filled features all across ETIs pages next month. This is good stuff of the highest quality. Be there with your soldering irons, there are circuits for just about everything under the sun - and if we can find a heater element big enough we'll see you with a design for one of them next year.

ONE FIVE THREE SEVEN

Whatdeyer mean that you've never heard of this? Of course you have. It's a brilliant Voltage Controlled Attenuator thingy for which Keith Brindley will explain at least a million applications and designs next month. Well, not actually a million but quite a few. He also gives you a breadboard design to go away and do your own things with. What more could you possibly want? Stand up the boy in the back who said "'Felicity Kendal"

MODULAR SYNTHESISER

Next month ETI presents a new series of synthesiser circuit modules which represent the forefront of modern music technology. Not only that but they're. a bit new as well. And somewhat of a departure for us. The complete design will be a sophisticated machine comparable to the very best available today at any price and with more facilities than the Playboy Club.

However we are aware that not everyone has a use for such a machine, and that there are a large number of you out there who wish to experiment with sound effects circuits, without the requirement for a fully fledged synthesiser system. And So

Our latest machine will be presented in modular form, with each separate unit mounted on a 'front panel' assembly, and housed in a common box. As the PSU requirements will be standardised, you can build as many - or as few - of these superb designs as you need when you need them.

CASIO FX502P/FA1

The best thing since sliced bread. Honest. If you don't believe us read our comprehensive report on this ten program 256 step, 100 label, cassette jumping calculator and music adaptor in next month's ETI.

The abacus will never seem the same again

CASSETTE HEAD DEMAGNETISER

Sometimes we're so ingenious we amaze ourselves! And sometimes we're so dumb we amaze everyone else.

Apart from that though this is a good idea - demagnetising your cassette player heads reduces all the nasty things that you don't really wanna hear anyway and makes those that you do sound even better.

Ours naturally has something a bit special about it something that makes it both easy to use and more effective. But we're not gonna tell you what cos we want yer to buy next month's magazine insteadl

VMOS 2M PA

One for all the hams of th is world. Put some POWER in your words with our VFET Power Amp. Based on the latest circuit techniques this is a design to burn out the receivers of the universe. Don't just broadcast - BROADCAST with ETI!

SIGNAL TRACER

This is instead the only way to find that sinewave that went into that phono socket half an hour ago and hasn't come out yet.

For the sake of all lost waveforms everywhere build this one.

ELETTRDTIVKIT DENSHI KITS SPECIAL OFFER

 4.
 fun and entertainmènt as well as education"
 (EVERYDAY ELECTRONICS mag.)
 The SR-3A kit (over 100 circuits) and the SR-3A

 de luxe kit (over 105 circuits) are available again, at little more than their 1977 prices!Circuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are usedover and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build - and have a lot of fun, too. The kits are safe for anyone.

SR-3A KIT

$161 / 2 \times 10 \times 21 / 2^{\prime \prime}$ £29.95
Build over 100 projects including 3-TR reflex radio receiver, 3-TR radio receiver with RF amplifier, 2-TR reflex radio receiver, 3-TR amplifier for crystal mike, 3-TR amplifier for speaker/mike, 3-TR signal tracer, Morse Code trainer, 2-TR electronic organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronic gun, 2-TR sleeping aid, high voltage generator, discontinuity warning device, water supply warning device, photoelectric alarming device, 3-TR burglar alarm, 3-TR water supply warning device, 3-TR water level warning device, 3-TR photo-electric alarming device, Morse Code trainer with sound and light, discontinuity warning device with sound and light, water level warning device with sound and light, electronic metronome with sound and light, buzzer with sound and light, wireless mike, wireless telegraph set, wireless discontinuity warning device, wireless water level warning device, wireless water supply warning device, and wireless photoelectric warning device, etc, etc.

SR-3A de luxe KIT

(Illustrated $16 \times 14 \times 3^{1 / 22^{\prime \prime}}$) £39.95
Similar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated. control panel.
All kits are guaranteed and supplied complete with extensive construction manuals PLUS Hamlyn's "All colour" 160-page book "Electronics" (free of charge) whilst stocks last.
Prices include batteries, educational manuals, free book, VAT, P\&P (in the UK), free introduction to the British Amateur Electronics Club.
Cheque/P.O. / Access/Barclaycard (or 16 p for illustrated literature) to DEPT. HE.

ELECTRONI-KIT LTD.

RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

Design on a EuroBreadBoard - Instal on a EuroSolderBoard

First the EuroBreadBoard

Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads. 500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nickel silver contacts
£6.20 each or £11.70 for 2 including 1 or 2 EuroSolderBoards FREE

Now the EuroSolderBoard

New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm día fixing holes.
E2.00 for set of three ESB's or FREE with every EuroBreadBoard)

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Tefion tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only E7.25 including VAT \& PP

Snip out and post to David George Sales,
Unit 7, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU
David George Sales,
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE 24 OAU.
Please send me:-
1 EuroBreadBoard
(plus 1 free EuroSolderBoard) @ $£ 6.20$ O
EuroBreadBoards
or 2 EuroBreadBoards (plus 2 free EuroSolderBoards) @ $£ 11.70$ Tick
or 3 EuroSolderBoards
@ $£ 2.00 \bigcirc$
or 1 EuraSolderSucker @ £ 7.25 ○
All prices are applicable from Jan. 1st 1980 and include VAT \& PP but add 15\% for overseas orders.
Name.
Company.
Address.

TeI. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

NDANUBDS

COMPONENTS AND DEVICES

CHIDHAL NDATURDS

CIRCUIT
CONSTMUCINIDN ANID DDSICN
 Brury Noumen
4isti30ridich
Crosing Kour Budiges
Dockish
Blectruvica fom Soraten
Fencinet
䏔 Propent
insumitiontinca
Instant Circull Leyout
Matho PCe:
Naret imetaimiont
Solem
siuntis
Indersmincing Biss
585 Propoch

BDCULAR NDATULAS

May 75
Joty 79
coneto
Miv 79
July. 73
Now 78
Way 79
S"My 79
Jwhe 70
fabin
Dee 78
AuF 76
tan 29.
Iuty 70
Dac 98
Mix) 7 ?

Aug 79 93
27

OT 79

.
0. 79

13
30
Ney 78
anc 78
40.5

Mat 7 ?
Apr 79
Jun 79
55
Why
68

(0)

Pon 70 :
Jan 79
Feb 79
fiem 79
な.r
0 en 79
27

MISCMMLA PROJDCIS

Audio Muser Eiaty atirm	$\begin{aligned} & \text { Oyt } 74 \\ & \text { Dec7 } \\ & \text { July } 79 \end{aligned}$
beurame radio	600 78
Car Austr	Feb 79
Casathova＇s Comblit	Mat 79
Etambiration tock	Sap： 78
Cossuili Vólumo Amplitier	Aug 29
Cistere Marti	Afr 79
giti8bl！	Haty 19
gumithact	70， 78
Thilispend fonamile	Jun 79
Enveloneturneator	Jun 79
Finhtugos	58\％ 19
Sompar \＃qumbor	thin 79
Gsit Thonitar	Jun 19
Fobhyliper	Oel 79
Horne Secatity Symion	Aug 79
tuproute entiond Trus	Nintig
Infent hisacy	
L2mal	Seut 79
IEDTachomiller	Aup 29
thert Crumb	＋1．tion
Hrent Sohin Ohmmofer	Juhy 79
Wethrigirat	Dect 78
todit Talin Controtior	4nt 19
	0×4
forknultant font	Noy 79
Protugiautic Tizior	Mat 19
Ftotal Fiome	Onc78
Whis Swith	futira
Pruer simply	Nry 79
Puelebutan Dica	0uc 38
Scivtch and Aimmbto filur	F日者 7
STMin	tuita
SntatWare hatioi	Febo 79
Singisquasie Wave Soneratiot	Fets 79
	Sent 79
Stumozormplifor	
Hanturnstereo Ampitios	0et 79
Tois Cointrof	Mar 74
Tpuchswien	dini＞9
Trichersor Trstar	A＋－99
tinstoric Switeh	Stmpt 7 ？
Varimipe	dan 79
TVortivareram	\％uv $\frac{10}{}$
White Norise Gerveralor	Nasy 79

SHIORI CLIRCUIIS

AF Whilivaltmere	Jun 79	4.4
ACNeter Bocster	Sopri79	63
Eniste Bulyfar Aktim	Jur． 78	63
Pendmite Radie	Onctio	72
CA308O VCA	Feot 79	32
Giadmal Ammit．	May 79	2.4
CMOS tonit Pratus	＋579	26

M0S Logic Proue	Jut 79
CMOS Manostatate	Dacto
Cornimity Textr	Mtr 79
Elsathe Mrironioft	Jubr 78
Elicuonic Door burzer	Mar 79
Eecriohlic Tharmbmetur	jun 7 er
CET Voltmotw	July 79
Fitsh siame Uen	A H） 79^{7}
Gusand Smpate Detecras	दulu 79
Eusta Practige Amplifer	Auy 78
Fleodotione Amplifier	5 pet 79
If tit Oeshaver	J0n 76
16mithlicomi	Favis
Hums Notch File：	Suc 78
Inseci Prentliam．	Juh 79
Le Ortetor	Msr 79
Loght Sumition．Suthm	Dec 78
Strumer Scile ahmmeter	for 79
fiper tock	Jun 79
Low froturery 9 allifotor	1an 79
thw Rowet Futhing Ligit	Niou78
Mansinserference Suprossion	May 79
Mapic Condle	Juty 79
Meatsuring LIntowimi Capreciters	Nov78
Emind Aitip Atuter	Apr79．
Nano Ams Metor	tuly 79
Ni－Gaucharye	Sept 79
Ficuse Linnte：	Mri 79
Sharso timitit	J0y 79
Onic Transetor Amplifinf	Drove
Phamistinguollats	Jantis
Fwer Supply with tiranyittet	
Proputition	N0v70
FreAmp（Stepped Gain Contmbl	Surves
ESU Whin IC Proguletion	＋1．70
Cumas Thinshtir Crneker	A以明
thinck Trampor Ctlectur｜	Suty 78
Abastion Comm	Mar 39
Fogyutators Booster	Duc 7 7
Ftumbtianct Tnocts volumm	
Control	May 79
flat Stice Por Amp	Jan79
Scritchand Rumbili Fitet：	Aug 20
S．gnat injoctor／trasem	tity 79
Sinple Anvpilisi	Mar 79
Sinple itmer	Mat 715
Itie 10，tryan	Nay 79
ingtiop Amp Oimcilator	Jen 79
Sound figgerterfteun－	Jull 79
Sustain ifinit	sent 79
Timer	Out 79
Touch Swith	JWY 79
Toueh switeh	Ane 79
Trensiuter Powmo Ampitiof	Now 78
Trandistor Toribit	Nov 78
freble beostur．	相19
Trishm Booster	July 10
Tremolo Unit	3un T3
Twa Trantisuor Raifor	Feb 79
Tow Mersphone Anplitiors	Tily 79
Iwo Transistur Nores source	Doe 78
Two Tone Alorm．	Oct 79
LentmblatedPe	Nis 78
Voltige Controlled Fiter	dety 79
Zumar（liode Tionter	Sup\％ 19
5．18 Vott PSU	F0t 79

Hobby Electronics Book Service

POPULAR ELECTRONICS BOOKS

Sinclair. I. R., Introducing Electronic Systems £1.80
Sinclair, I. A., Introducing Amateur Electronics £1.55
Sinclair. I. A.. Electronic Fault Diagnosis £3.45
Sinclair. I. A., Repairing Pocket Transistor Radios £2.50
Sinclair. I. A., Oscilloscope In Use E3.00
Sinclatr, I. A.. Understanding Electronic Components £4.00
Sinclair, I. R... Understanding Electronic Circuils £4.00
Kitchen, H. T.. Handtools For Electronic Workshop £2.75
Kitchen, H. T.. Electronic Test Equipment £5.00
Capel. V.. How To Build Electronic Kits E2.20
Darr, J., How to test almost everything electronic E3.50
Brown. A. M., How to read electronic circuit diagrams £4.10
AUDIO
Earl, J.. Audio Technicians Bench Manual £3.50
Earl, J.. Pickups and Loud Speakers £3.50
Earl. J.. Tuners and Amplifiers £3.00
Earl. J.. Cassette Tape Recorders £5.25
Earl. J., ABC of Hi-Fi £4.25
Capel. V.. Microphones In Action £3.00
Capel. V.. Improving Your Hi-Fi E3.50
Capel. V.. Creative Tape Recording £4.00
Hellyer. H. W.. Tape Recorders £4.25
Sinclair. I. A., Audio Ampllfiters For Home Construction £2.75
RADIO CONTROL
Aldridge. O.. Transislorised Radio Control For Models £3.50
Orake. J.. Radio Controlled Helicopter Models £3.95
Jeffries. C. R.. Radio Control For Model Yachts E1.85
Safford. E. L. Radio Control Manual £2.45
COOKBOOKS

Tracton, K., BASIC Cookbook	£4.10
Lancaster, D., TTL Cookbook	£7.00
Lancaster. D., RTL Cookbook	£4.65
Lancaster. D.. CMOS Cookbook	£8.20
Jong. W., IC Op Amp Cookbook	£10.00
Lancaster. D.. T.V. Typewriter Cookbook	£7.75
Lancaster. O.. Cheap Video Cookbook	£7.00
Jong. W., IC Timer Cookbook	£7.50
Lancaster. D.. Incredible Secret Money Machine (a how to cook	
book for setting up your computer or technical business)	£4.95

QUESTIONS AND ANSWERS

SIMPLE AND CONCISE ANSWERS TO MANY QUESTIDNS WHICH PUZZLE THE BEGINNER.
Coker. A. J.. Q \& A On Electric Motors $£ 1.90$
Hellyer. H.. Q \& A On Radios and T.V. $£ 1.90$
Hibberd, R.. Q \& A On Integrated Circuits ع1.90
Jackson, K., Q \& A On Electricity . $£ 1.90$
Brown, C., Q \& A On Hi-Fi £1.90
Brown. C., Q \& A On Transistors $£ 1.90$
Brown. C.. Q \& A On Electronics . $£ 1.90$
Reddihough, J., Q \& A On Colour T.V. : $\mathbb{1} .90$
Miller. H.. 0 \& A On Electric Wiring . $£ 1.90$

CONSTRUCTOR GUIDES

Graham. P., Simple Circuit Bullding . $£ 2.60$
Colwell. M., Electronic Diagrams . $£ 2.60$
Colwell. M., Electronic Components . $£ 2.60$
Colwell. M.. Printed Circuit Assembly . $£ 2.60$
Ainslie. A., Practical Electronic Project Building $\mathbb{£ 2 . 6 0}$
Colwell, M., Project Planning and Bullding $£ 2.60$

BEGINNER'S GUIDE

Sinclair. I. R., Beginner's Guide To Tape Recording £3.35
Sinclair. I. R., Beginner's Guide To Inlegrated Circuils £3.35
Sinclair, I. R., Beginner's Guide To Audio £3.35
King. G. J., Beginner's Guide To Radio £3.35
King. G. J., Beginner's Guide To Television £3.35
King. G. J., Beginner's Guide To Colour T.V. £3.35
Guilou. F., Beginner's Guide To Electric Wiring £3.35
PROJECT BOOKS
Marston, A. M., 110 Cosmos Digital IC Projects For The Home Constructor £3.95
Marston. R. M.. 110 Wave Form Projects For The Home Constructor £3.95
Marston, R. M.. 110 Op Amp Projects For The Home Constructor E3.95
Marston. R. M., 110 Semiconductor Projects For The Home Constructor £3.95
Marston, A. M.. 110 Thyristor/SCR Projects For The Home Constructor £3.95
Marston, 月. M.. 110 Electronic Alarm Projects for The Home Constructor £3.95
Marston, A. M.. 110 Integrated Circuits Projects For The Home Constructor E3.95
Marston. A. M., 20 Solid State Projects For The Car and Garage £3.20
Marston. 月. M.. 20 Solid State Projects For The Home £3.20

> Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:
> Hobby Electronics Book Service,
> P.0. Box 79 ,
> Maidenhead, Berks.

CMOS		4020	$50 p$	4050	$25 p$
		4022	$50 p$	4060	$80 p$
		4023	$13 p$	4066	$30 p$
		4024	$40 p$	4068	$13 p$
4001	$13 p$	4025	$13 p$	4069	$13 p$
4002	$13 p$	4026	$90 p$	4070	$13 p$
4007	$13 p$	4027	$28 p$	4071	$13 p$
4009	$30 p$	4028	$45 p$	4072	$13 p$
4011	$13 p$	4029	$50 p$	4081	$13 p$
4012	$13 p$	4040	$55 p$	4093	$36 p$
4013	$28 p$	4041	$55 p$	4510	$60 p$
4015	$50 p$	4042	$55 p$	4511	$60 p$
4016	$28 p$	4043	$50 p$	4518	$65 p$
4017	$47 p$	4046	$90 p$	4520	$60 p$
4018	$55 p$	4049	$25 p$	4528	$60 p$
FULL DETAILS IN CATALOGUE!					

TTL		$\begin{aligned} & 7473 \\ & 7474 \end{aligned}$	$\begin{aligned} & 20 \mathrm{p} \\ & 22 \mathrm{p} \end{aligned}$	$\begin{aligned} & 74141 \\ & 74145 \end{aligned}$	$\begin{aligned} & 55 p \\ & 55 p \end{aligned}$
7400	10 p	7475	25p	74148	90p
7401	100	7476	20p	74150	55p
7402	100	7485	55p	74151	40p
7404	12 p	7486	20p	74154	65p
7406	22p	7489	135p	74157	40p
7408	120	7490	25p	74164	550
7410	10 p	7492	30p	74165	55.
7413	220	7493	25p	74170	100p
7414	390	7494	45p	74174	55p
7420	12 p	7495	350	74177	50p
7427	20	7496	450	74190	50p
7430	12p	74121	25p	74191	50p
7432	$18 p$	74122	350	74192	50p
7442	380	74123	38p	74193	50p
7447	45p	74125	35p	74196	50p
7448	50p	74126	35p	74197	500
7454	12p	74132	45p	74199	90p

OPTO

LED's 0.125 in .0 .2 In each $100+$ Red TIL209 TIL220 9p 7.5p Green TIL211 TIL221 13p 12p $\begin{array}{lllll}\text { Yellow TIL213 TIL223 } & \text { 13p } & \text { 12p }\end{array}$ Clips 3p

DL704 0.3 in CC $\quad 130 \mathrm{p} \quad 120 \mathrm{p}$ | DL707 | 0.3 in CA | 130 p | 1200 |
| :--- | ---: | ---: | ---: |
| FND500 | 0.5 in CC | 100 p | 800 |

SKTS

Low profile

 by Texas

Bpin $8 p$ 18pin $14 p$ 24pin $18 p$ 14pin 10p 20pin 16p 28pin 22p 16pin 11p 22pin 17p 40pin 320 3 lead T018 or T05 socket. 10p each Soldercon pins: 100:50p 1000:370p

PCBS

VEROBOARD

Size in 25×1 2.5×3.75 2.5×5
3.75×5 3.75×17 Single sided
pinsper $100 \quad 40$ p 40 w
Top quality fibre glass copper board. Single sided. Size $203 \times 95 \mathrm{~mm}$. 60p each.
'Dalo' pens. 75 p each.
Five mixed sheets of Alfac. 145 p per pack.

RESTSTORS Carbon film resist

 ors. High stabillow noise 5%
E12 series. 4.7 ohms to 10 M . Any mix: $\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 \mathrm{~W} & 10 & 0.90 & 0.80\end{array}$ $\begin{array}{llll}0.25 W & 1 p & 0.9 p & 0.8 p \\ 0.5 W & 1.5 p & 1.20 & 10\end{array}$ Special development packs consisting of 10 of each value from 4.7 ohms to 1 Meg ohm (650 res) $0.5 \mathrm{~W} £ 7.50 .0 .25 \mathrm{~W} £ 5.70$. METAL FILM RESISTORS Very high stability, low noise rated at 1/4W 1%. Available from 51 ohms to 330 k in E24 series. Any mix:

	each	$100+$	$1000+$
$0.25 W$	4ρ	$3.5 p$	3.20

WE WISH ALL OUR CUSTOMERS A MERRY CHRISTMAS AND A
HAPPY NEW YEAR

$0.1,0.15,0.22,0.33,0.47,0.68$
182.2 uF @ 35V
$4.7,6.8,10 u F @ 25 \mathrm{~V}$
22 @ 16V.47@6V.100@3V

MYLAR FILM

$0.001,0.01,0.022,0.033,0.047$ 3p POLYESTER
Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 p$ $0.15,0.22$
$0.33,0$.
0.68

CERAMIC
Plate type 50 V . Available in E12 series from 22pF to 1000 pF and E6 series from 1500 pF to 0.047 uF

RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 V & 0.47 & 1.0 & 2.2 & 4.7 & 10\end{array}$

		22	33	47	$7 p$
	100				
		220		$13 p$	
25 V	10	22	33	47	$20 p$
100				$5 p$	
	220			$8 p$	
			470	$10 p$	
			$15 p$		

CONNECTORS

JACK PLUGS AND SOCKETS

	screened	unscreened	socket
2.5 mm	9 p	13p	$7 p$
3.5 mm	9 p	14p	8 p
Standard	16p	30p	15p
Stereo	23p	36p	18p
DIN PLUGS AND SOCKETS			
	plug	chassis	line
		socket	socket
2 pin	7p	7 p	7p
3 pin	11p	$9 p$	14p
$5 \mathrm{pin} 180^{\circ}$	$11 p$	10p	14p
$5 \mathrm{pin} 240^{\circ}$	13p	10p	16p
1 mm PLUGS AND SOCKETS			
Suitable for low vol tage circuits, Red \& black. Plugs: $6 p$ each Sockets: $7 p$ each.			
4 mm PLUGS AND SOCKETS			
Available in blue, black, green, brown, red, white and vellow. Plugs: $11 p$ each Sockers: $12 p$ each			
PHONO PLUGS AND SOCKETS			
Insulated p	g in red or		9p
Screened plor		- . .	- 13p
Single sock	. 7p	uble socket	100

STEVENSON Electronic Components

CHRISTMAS SPECIALSER
A range of special offer items valid during December. All orders placed for these items must be received during December.

Murata Ultrasonic Transducers, per pair
3500 280p PCB etch kit. Contents:
5 assorted sheets Alfac. Pound of Ferric Chloride. Dalo pen. Fibre glass PCB.

375 p 325p
Resistor Development Pack.
10 off, each $1 / 4 W$ value from 4.7Ω to $1 \mathrm{M} \quad 570 \mathrm{p} \quad 470 \mathrm{p}$
Polyester Development Pack.
5 off, each value from 0.01uF to 2 u 2 . 620p 480p
Texas sockets. Must be in multiples of $\mathbf{1 0 0}$. 8 pin, per 100

750p
14 pin, per 100
16 pin, per 100
Pack of $10 \times$ NE555
900p 1000p

Pack of $10 \times$ PP3 clips -60p 45p
Pack of 10 crocodile leads (20 clips) 175p 90p
Pack of $6 \times$ C106D thyristors 270p 220p
Pack of 70×1 N4148 14Ep 100p
Expo Reliant drill 665p 550p
Expo Titan drill 1030\% 890p
LEDs, Pack of 10×0.2 Red

$$
10 \times 0.2 \text { Green }
$$

10×0.2 Yellow
350p 290p
AY51013P UART
2114 Low Power 300nS
2708 EPROM
360p 325p
535p 450p
750p 590p
SS-2 Breadboards
1085p 990p

PANELMETERS

High quality $2^{\prime \prime}$ wide view meters. Zero adjustment. Back illumination wiring.
Available in $50 \mathrm{uA}, 100 \mathrm{uA}, 500 \mathrm{LA}$, $1 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A} . £ 4.75$ ea. VU meter similar style. $£ 1.40$ ea.

SLIDE POTENTIOMETERS

Good quality 60 mm
travel slider with
80 mm fixing centres.
Available from $5 k-500 \mathrm{~K}$
in \log and linear. 55p each.
Suitable black knobs 6p ea. Coloured knobs 10p ea.
We now offer one of the widest ranges of components at the most competitive prices in the U.K. See catalogue for full details. We welcome callers at our shop in College Rd, Bromley, from Mon-Sat, 9am-6pm (8pm on Weds and Fridays). Special offers always available.
We also provide an express telephone order service. Orders received before 5 pm are shipped same day. Contact our sales office now with your requirements. TELEPHONE: 01-464 2951/5770.
Quantity discounts on any mix TTL, CMOS, 74 LS and Linear circuits: $100+10 \%, 1000+$ 15\%. Prices VAT inclusive. Please add 30 p for carriage. All prices valid to April 1980.
Official orders welcome.
ORDERS DESPATCHED

BARCLAYCARD \& ACCESS WELCOME.

Hebot III

The HEBOT series reaches its conclusion with this article. Here we describe the inductive wire-tracking circuitry with full circuit details. There is also a simple constant-current nicad charger. Full details of all the circuit interconnections are given with notes for expansion. HEBOT is an open-ended project and there is plenty of scope for development. News is beginning to reach us of the two hundred or so HEBOTs already built and we feel sure this is just the start. If you have made any improvements or alterations to YOUR HEBOT we would very much like to hear from you. Watch HOBBY ELECTRONICS for further developments!

You can monitor the loop output current with an oscilloscope.

IN THIS FINAL ARTICLE we will deal with the points arising from the previous two months' designs. Judging from sales of the chassis, we estimate that there may be over two hundred Hebots or sons of Hebot roaming around Britain already. We have seen three of them constructed from kits which all worked first time so if you are having trouble check your soldering and make sure you have inserted all the wire links and connected the flying leads

Before we go on to look at the monster we have created, a couple of points need to be cleared up. Though we used rechargeable nicad cells to power our Hebot, the circuitry will work quite happily with plus and minus six volt supplies when powered by dry batteries. Unfortunately no pads were provided on PCB 1 for the x, y outputs of IC8. Simply solder directly to the copper track between pins 2, 3, and 9, 10 (the x and y outputs respectively).

The second PCB is easier to mount above the first if capacitors C3, 4 are mounted so that they lie sideways. Also, to increase the gain of IC1, 2, 470k resistors should be mounted in parallel with input resistors R1, 2 There are no other changes to make on the first board

On the second board, capacitors C1 and C10 have caused some problems. These capacitors should have a working voltage of at least ten volts. A 47μ capacitor may be used in place of either component. Resistor R4 should be changed from 100k to 270 k and R5 from 820R to 8 k 2 .

Following tests with Hebot tracking a wire energised by the loop driver circuit, it was found that capacitors Cx were unnecessary and wire links should be inserted in their place. Also flying leads should be used to connect pin E to G and F to H as shown in Fig. 1 of the December issue. If you use the REMCON sensor kit it should be assembled and connected as shown in our photographs.

We have arranged our Hebot to perform a 'random walk' until it sees a light (We used a desk lamp placed at ground level) Hebot then steers towards the light unless its pick-up coils detect electromagnetic radiation from an energised loop. Then Hebot will follow the wire loop. If at any time Hebot collides with an obstacle then the normal manoeuvre circuitry takes over to steer Hebot out of trouble. The connections to achieve this behaviour are detailed below

Note the 470k resistors mounted in parallel with the servo input resistors.

Allow some clearance from the PCB for R12 and $Q 2$.

There are connections to both sides of 02 collector. We used solder-tags.

The connections to the manoeuvre circuitry remain the same:
pins 2, 3, IC8 to pin 4, IC4
pins 9,10, IC8 to pin 11, IC4
pin 12. IC 11 (Avoid) to pin 13, IC3
random walk' is achieved by connecting: A to pin 1, IC4
B to pin 12, IC4
+ve supply to pin 10, IC3
the letters refer to pins on the second board
for light seeking connect:
P to pin 14, IC4
Q to $\operatorname{pin} 5$, IC4
the phototransistor collectors connect to N (from right sensor) and O (from left sensor). T to pin 11, IC3

The emitters both go to the negative supply and pins are provided on the board.
The connections for wire tracking are
I to pin 15, IC4
J to pin 2, IC4
M to pin 12, IC3
Hebot's sensors were made from reed relay actuating coils with a resistance of 1.5 k . No cores were found to be necessary. The right sensor connects to pin C while the left sensor connects to pin D. The free ends of the sensor coils should be connected to the adjacent pins which are electrically identical with pin 1, IC !

You should now have used all the inputs to IC4. IC5 is not used and this position may be left vacant. The remaining pins of IC3 should be connected as follows. Pins 1, 2, 3, 4 should be connected to the negative supply. This can be simply achieved by soldering a piece of tinned copper wire across all four pins down to the negative pin as shown in our photos. Pins 14, 15 of IC3 remain unconnected.

Our Hebot emits a sqeak when it detects light. To achieve this connect pin Y to pin T. There are now two connections to pin T. This is okay. You can spot when Hebot detects the wire loop by connecting pin S to pin M. The LED will illuminate when the pick up coils are within range of an energised loop. Also, of course, control is transferred to the wire following circuitry unless Hebot encounters an obstacle

With the Hebot circuitry interconnected as described above, you will have a free roaming robot which can negotiate obstacles, steer towards a light and follow a wire around your home. We found that reliable operation could be obtained with wire-sensor separations of over one inch so Hebot should cope with the thickest pile carpets (though the prototype has an annoying habit of filling itself with fluffl)

The loop driver circuit should be constructed in the usual way. Though not essential, use of our PCB will greatly facilitate construction. Our photos tell all really. We found best operation was achieved with peak currents of 2.5A which gave a mean current drain of 350 mA . Under these conditions Q2 hardly gets warm at all. RV1 works in reverse; when fully clockwise there is no output. About mid-way should produce the desired results.

At this stage of development Hebot is an autonomous machine capable of very engaging behaviour. There is plenty of room for development. Board one will support a further four levels of control enabling more circuits to be accommodated on the chassis or control to be relinquished to an on-board micro-processor or via a link to your home computer. The possibilities are infinite and remember . . We HAVE the technology!

The connections to IC3 and IC4. Note the shorting link at the side of IC3.

The pick-up coils and photo sensors mount conveniently on one PCB.

Buylines

Kit HE 101. (HE Nov 79)
PCB to carry the electronics for Manoeuvre logic circuit, Eight Input priority encoder, Signal Multiplexers, and Micro Drive amplifiers.
price £4.25 P\&P 35p
Kit HE 102. (HE Nov 79)
Impact sensor kit which replaces micro switches Senses which side is in collision and can have height sensing capability also. To be used in conjunction with PCB HE 101. Kit contains fibre glass switch arms, springs, antennae and fixings through existing holes in chassis pan. With full mechanical assembly instructions
price $£ 7.50$ P\&P 35p
Kit HE 113. (HE Dec 79)
PCB to carry electronics for Opto-Inductive following system, sound sensing, and noise emitting circuitry. price £4.20 P\&P 35p

Kit HE 114. (HE Jan 80)
Opto-Inductive sensor kit which fits unobtrusively under the front of the Robot chassis pan to detect both $A C$ pick up from a hidden routing wire and also 'look' for an Infra Red light source. To be used in conjunction with PCB HE 113. Kit contains Mounting panel, Pick up coils, Infra Red detectors with shields, screened leads fixings and full mechanical assembly instructions. Utilises existing holes in chassis pan. price £9.95 P\&P 75p

Prices do not include VAT: Remcon Electronics, 1 Church Road, Bexleyheath, Kent. 01-304 2055

How it Works

Hebot how it works - loop driver
Hebot is able to follow a wire laid on the floor by detecting the magnetic field produced by current pulses flowing in the wire. We tried a number of different arrangements and found that Hebot could follow a single wire carrying current pulses of about two amps at a frequency of around seven hundred Hertz. By using more turns of wire in the loop, accurate tracking can be achieved at lower currents. However, it is difficult to lay out a loop consisting of more than two or three turns of wire and the system chosen represents the best compromise.

Resistor R10 and zener ZD1 provide a stabilised 15 V supply which is smoothed by Cl . A 700 Hz signal is generated by IC1; a 555 timer configured in the astable mode. A diode is used to bypass R2 during the charging cycle. This enables a dutycycle of 50% to be obtained. The approximate triangle waveform at the junction of R2, C2 is buffered by IC2b, a unity gain voltage follower, and appears at pin 7. A bias voltage of about 7.5 V is available at pin 14 and supplies IC2a and RV1. IC2a acts as an inverting amplifier with a gain of about 20 whose input is the triangle waveform from IC 2 b . Adjustment of RV1 enables the output of IC2a to be offset. In this way, the signal at pin 1 may be varied from 0 v to positive peaks of up to 12 V . The remaining section of IC2 together with Q1, 2 and R11, 12 forms a voltage to current convertor. For each volt across R9 at the input pin 10 of IC2c, one amp will flow in a piece of wire connected between the positive supply and the collector of Q2. The maximum voltage that can appear at IC2a output is limited to 12 V with a 15 V supply by the op-amp characteristics. Potential divider R8, 9 limits the input to IC2c to 4 V and maximum output current, in a working circuit, is thus limited to 4A.

A suggested power supply is included here. Though the average current is less than 500 mA
with peak currents of $2 \frac{1}{2} \mathrm{~A}$, the circuit may demand currents of up to 4 A . For this reason, quite high current components have been chosen. If you have a current-limited power supply that can provide 15 V at 500 mA you can connect it in place of the bridge-rectifier and transformer. Use good quality components for the capacitors to cope with the high current pulses.
We tried loops of several shapes and sizes with good results. Hebot can cope with turns of up to one foot radius. Power should be supplied to the loop by twisted wires or figure of eight speaker cable. In this way the fields from the two supply wires cancel out and Hebot will not try to climb into your power supply.

Nicad charger

If you have used nickel-cadmium cells to power your Hebot, you will need a charger. We have included the circuit of a suitable charger which will supply a constant current of $40 \mathrm{~mA} . \mathrm{R} 2$ is the nearest preferred value. With $450 \mathrm{~mA} / \mathrm{H}$ cells a charging current of 45 mA should be applied for fourteen hours. Assuming a Vbe of 0.6 V for Q1 then the theoretical value of $R 2$ to produce a current output of 45 mA is 13.333 ohms. You can check the current by inserting a meter in place of the cells and adjust R2 accordingly. A 120R resistor in parallel with R2 would produce the calculated value of 13.333 ohms.

About 18 V is developed across C 1 . The charging current flows via the cells through Q2, R2. Transistors Q1, 2 form a stabilised current sink. Current flow is determined by choice of R2. A current will flow sufficient to produce a voltage of 0.6 V across R2. This tends to turn on Q1 which 'steals' base drive current tending to turn off Q2. In this way the system reaches a stable operating point.

No PCB is given as the circuit is so simple. A small heatsink should be used with Q2. No other precautions are necessary.

Fig. 1. The loop driver circuit.

Fig. 4. PCB for loop driver.

119d PROSPECT ROAD FARNBOROUGH, HANTS 0252-318141 (EVES \& WEEKENDS)
C. B. CITY is dedicated to all present and future Citizen Band Enthusiasts

We stock a full range of everything you are likely to require and more. If not, we can most probably obtain it.

Duff Rig?? Then why not take advantage of our repair service - absolute confidence guaranteed

Access, Credit Cards accepted
Just send $3 \times 10 p$ stamps for our 16 -page fully illustrated comprehensive catalogue

REMEMBER!! Until C.B. becomes legal we DO NOT sell rigs

Master Electronics The practical way
 No maths needed No dull theory-

[^3]
Hobbyprints

We're just etching to tell you about HOBBYPRINTS, we, know you won't be able to resist them. They're so good we've even patented the idea [$14 \overline{\overline{5}} 171$ and 1445172]. If you're board with all those untidy strip boards or semi-permanent bread boards then read on.

After many months of extensive research we think we've come up with the ideal solution (Ferric Chloride?) to all of those problems people have with making really professional PCBs. (Puns come at no extra charge).

Seriously though, the HOBBYPRINT rub-down transfer, (very similar to the rub-down lettering) is the answer to the project builders prayer. PCBs take up a disproportionate amount of time, using HOBBYPRINTS a typical PCB can be finished in under half an hour. Because HOBBYPRINTS are produced from our original artwork there's no likelihood of making a mistake. They can even be used as photographic masks for ultra-violet PCB production.

Each sheet of HOBBYPRINTS contains all the PCBs for any particular month (an average of four PCBs), so for only 80 pence including VAT and Post and Packing. that's not bad value. For a list of projects refer fo back numbers ad.

ORDER TODAY

Send cheque or postal order (payable to Hobby Electronics) to

HOBBYPRINTS,

 HOBBY ELECTRONICS,145 CHARING CROSS ROAD
LONDON WVC2H OEE.

80p INCLUSIVE OF VAT AND POSTAGE

Please note that Hobbyprint ' L ' is $£ 1.20$ including VAT, as it consists of two sheets.
Please mark the letter(s) of the HOBBYPRINTS on the outside of the envelope

Breaker

Send any news, comments, or information you may have to: Breaker One Four, Hobby Electronics, 145 Charing Cross Road, London WC2H OEE.

Abstract

Do not despair, although the announcement wasn't quite what we had hoped for the battle is far from lost. CB will come and your continued pressure will bring it that bit nearer.

QUITE AN EVENTFUL MONTH REALLY. The great announcement which was due to come from the Home Office failed to materialise at the appointed time (November 15 th or 16 th) and was supposedly delayed until the 25th. At this time (November 26th) we have heard that the Home Office have in fact issued a statement (although we haven't seen it). We understand it to say that they cannot find any 'technical' reasons why CB should not be introduced but they anticipate some problems in the administration of such a service.

If this information is correct, then it would seem that the fight is far from over, although the biggest hurdle has been overcome.

We must now change our tactics, we no longer have to prove that a CB service is needed it is now up to us to show that we can use it responsibly and that any administration can be kept to a minimum.

The obvious answer from the government will probably be along the lines that in these times of government cut-backs it would be foolish to create more 'red tape' but we feel that time and time again it has been shown that a licence fee of around $£ 5.00$ would more than cover any administrative costs and would in fact be self financing.

Several rumours flying about at the moment seem to suggest that there may be a couple of demonstrations in the near future. Before anyone jumps the gun we strongly suggest that some serious talking between the clubs and any other interested parties take priority.

PRESSURE

It is important now, more than ever for local clubs to bring these matters to the attention of their MPs in the first instance and to the Home Office on a wider basis Lobby your MP, write to the Home Secretary now and let them know how you feel.

CB SPECIAL

We are sorry to have to tell you that the CB Special has finally sold out. Our distributors tell us that it has been a runaway success. We are currently toying with a few ideas for the future so keep your eyes peeled in the coming months for news.

CB STICKERS

You guessed it, we've just about run out of stickers too The few we do have left we will be giving away at the Breadboard Show at the beginning of December. Sorry to anyone still without, but don't despair; our future plans may just include some new stickers

MESSAGE TO CLUBS

By the time you read this the proposed meeting between the CB clubs will have taken place. It was moved to December 2nd in view of the delay in the government statement. Look out next month for a full report on just what happened. It should be quite interesting as Patrick Wall MP (chairman of the all-party committee on CB) and representatives from the media will be attending.

MAGAZINES ABOUTTURN

You may have read some of the other electronic journals last month and been surprised how they seem to have changed their attitude towards CB. Could it be that they have been reading $H E$? You never know.

STATESIDE CB

Remember last month's report on US CB? Watch out for a somewhat longer feature on how West Coast CB has been operating. Our reporter has been using CB and had occasion to call on the services of the channel ' 9 ' emergencies service. Coming up soon

CB SLANG

Thanks again to everyone for the hundreds of entries to the slang competition. One of our plans for the future may include a proper CB slang dictionary.

One or two of our regular cartoonists may be doing the illustrations for this special so it should be well worth waiting for. More details in the coming months.

TAPE COMPETITION

Breaker One Four has got ten Cassette tapes to give away. They are entitled 'Everything You Need to Know To Operate a CB Radio'. (American CB that is.) We reviewed this tape some time ago so you should be familiar with it. They come from Dave Mills who is currently selling them for $£ 2.50$ each, so to win one you have got to do some homework.

There are three questions, all of which should be fairly simple.
(1) What is the transmitting frequency of channel 14 (US CB)?
(2) What does SWR stand for?
(3) What is a 'Firestick'?

Lastly give an 'English' slang term for the following (try to be as original as possible).
(1) Production line car.
(2) Police (clean please).
(3) Home Office Wireless Regulatory Department (clean again please).
Please try to keep the slang printable or if that is difficult, genuinely funny. After all the American equivalents, ie 'Bears' and 'Uncle Charlie' (FCC) are not really rude at all.
Send your entries to:
CB Tape Competition.
Breaker One-Four,
Hobby Electronics,
145 Charing Cross Road,
London WC2H OEE.

MORE CLUBS

In response to our plea for more northern clubs we have heard from the CB-NE (Citizens Band Radio North East). They are exceptionally well organised to the extent of having a PR man. They have made several contributions to local TV and radio and are very active in getting publicity for the cause. The man to talk to is lan Morrison at:
CB-NE,
PO Box 61 ,
Sunderland,
Tyne and Wear,
SR3 1 EZ.
Another club worth noting has just opened its doors. Anybody interested in becoming a member should send a postcard to the address below with your phone number if possible.
F. W. McKeown,

29 Russell Avenue,
Preston,
PR15TP
Lancs.
Please keep information for clubs coming in, clubs that we may have already mentioned might like to let us know how they are doing.
That's it for another month, as we said earlier do not despair, we're nearly there. Stay lucky and Breaker Break.

C-Beasties

FANG'S CALING HIS C.B. RIG "Whare CHRRSTMAS" II's GENERATINA so muCH IUTHAEERENKE THAT It's Puritith 'suow' arto Eviey T.Y. Scusey in The Courtry!!

SPECIALS FROM MODMAGS

Mark your envelopes Specials, and send them to Specials, Modmags Ltd, 145 Charing Cross Road London, WC2H OEE.

ETI CIRCUITS

Books 1 \& 2.
Each volume contains over 150 circuits, mainly drawn trom the best of our Tech-Tips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs, and plenty of other useful data. Sales of this publication have been phenomenai - hardly surprising when the circuits cost under Ip each!
£1.50 + 25p P\&P each.

TOP PROJECTS
Book $1+2: £ 2.50+25 p$ P \& P
Master mixer, loow gultar amp.. low power laser, printmeter, transistor tester, mixer preamp., logic probe, Ni-Cad charger, loudhailer, 'scope callibrator, electronic ignition, car theft alarm, turn indicator cancellor, brake light warning, LM3800 circuits, temperature alarm, zerial matcher, UHF-TV preamp., metal locator, four input mlxer, IC power supply, rumble filter, IC tester, Ignition timing light, 50 W stereo amp. and many more.
Book 3: SOLD OUT! Book 4: £1.00 +25 p P\&P. Book 5: $£ 1.00+25$ p P\&P. Book 6: ع1.00 + 25p P\&P.

ELECTRONICS TOMORROW

Comprised entirely of new material, the edition covers such diverse topics as Star Wars and Hi-Fi! The magazine contains projects or everyone - none whe of MPUs audio calcularors and video. How uture or Mi beadio, calenla can you not read it?
$75 p+25 p$ P\&P.

TOP PROJECTS

Book 7: $£ 1.25+25 p$ P\&P.

ER II loudspeaker, CCD phaser, 3-channel tone control, bass emhancer, continulty tester, bench supply, LCD digital multimeter, digital frequency meter, wide range oscillator, ETI wet, egg timer, house alarm, porch light, torch finder, light dimmer, IB metal locater, electronic bongos, puzzle of the drunken sailor, race track, ultrasonle switch, tic-tac radio, rev counter, Transcendent 2000, spirlt level.

ELECTRONICS - IT'S EASY

This very successful beginners' series thas now been reprinted in one volume. The book covers just about every aspect of electronic theory and is ideal for anyone just starting out in this fascinating hobby.
£3.60 +25 p P\&P each

INTO ELECTRONICS PLUS
The complete series of Ian SInclair's series Into Electronics Plus a selection of some of the most popular and rom Home Co £1 + 25p P\&P.

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC- the
 language of the small computer al. γ the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: .problem definition, flowcharting, coding the program, debugging, clear documentation.
Book1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low tevel languages; flowcharting; functions; REM and documentation: INPUT, IF...THEN, GO TO: limitations of computers, problemn definition.
Book 3 Compilers and interpreters; loops, FOR.....NEXT, RESTORE; debugging; arrays; bubble sorting: TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and computers.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables: De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic. Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and ALU's; multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and-synchronous counters; ring, Johnson and exclusive-OR feedback counters; ROMS and RAMS
Book 5 Structure of calculators; kevboard encoding; decoding display data; register systems; control unit; program ROM; address decoding.
Book 6 CPU; memory organisation; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming. assemblers; computers; executive programs; operating systems.

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded, without question, on return of the books in good condition

Please send me:
Computer Programming in BASIC (4 books) @ $£ 7.50$
Design of Digital Systems (6 books) @ £11.50
All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER EXCEEDS $£ 15$, DEDUCT £2
I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£$.
or please charge my Access/Barclaycard/Diners Club etc account no.
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eire) send a bank draft in sterling drawn on a London bank, or quote credit card and number.
Name
Address

Cambridge Learning Enterprises, Unit 40, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

HE EINDERS

This simple questionnaire will establish whether you are eligible to buy one of the new HE Binders.
(1) Do you use HE as a convenient place to flick molten solder?
(2) Does the paper crumble when exposed to ferric chloride?
(3) Does your dog use HE to sharpen his teeth on?
(4) Do your copies of HE bear circular coffee stains?
(5) Do you lose copies of HE?

If you can arrswer yes to any of these questions then send us $£ 3.20$ without delay. By return we will despatch a handsome blue bound binder embossed with gold lettering. You can have any words you like embossed on the binder as long as it's HOBBY ELECTRONICS.

Send your cheque or postal order, gold sovereigns, false teeth or anything we can change into money to:

Hobby Electronics Binders, 145 Charing Cross Road, London WC2H OEE.

Price includes VAT and P\&P.

FROM CASIO - THE NEXT STEP FORWARD IN TIME

FOR THE EXECUTIVE WHO DOESN'T WANT HANDS ON HIS TIME

¿ THIS YEAR'S STAR BUY

 THE NEW 830S - 27B ALARM CHRONOGRAPH Optional display of hours, minutes, seconds, date, am/pm; or alternatively: Hours, minutes, alpha day, date, $\mathrm{am} / \mathrm{pm}$. The automatic calendar is set for 28 days in February. Casio's new Lithium battery lasts up to 4 YEARS or more. The chronograph times in $1 / 10$ second units up to 12 hours, measuring net, lap and first and second place times. An indicator shows the chronograph is running when normal time is displayed. The 24 hour alarm can be set very easily to 1 minute intervals with an indicator to show the alarm is set.In addition the watch can be set to chime every hour, on the hour, with a separate indicator to show this function is on.
A micro light illuminates the display at night time. This superb watch is stainless steel encased, has a mineral glass face and is guaranteed water resistant to 66 feet (2 atmospheres).

F-200 SPORTS

 CHRONOHouse, minutes, seconds am/pm. Day, date. month $1 / 100 \mathrm{sec}$. Day, date. month. Net, lap and 1 st and 2 nd place times. Backtight. Resin case/strap. Mineral glass. W.R. to 66 teet. Silver oxide battery.
(£17.95) £15.95

F-8C Tme / date

3 YEAR BATTERY
Hours, minutes, seconds, date, Mours, minutes, seconds, date,
day, am/om. Auto 28, 30, 31 day calondar. Backlight. Resin case strap. Mineral glass. W. R. to 66 feel.
(E12.95) £10.95
NB. This watch does not have a

CASIO CALCULATORS

Clock calculators: MQ-11 E26.95. AQ-2000 £24.95. CO-82 E14.95. H0-21 E10.95.
Sciemuifice with volanile momory:
FX-310 £17.95. FX-510 £19.95, FX-2600 £19.95. FX-3200 £21.95.
Others: FX-80 E15.95. FX-68 \&19.95.

GET THE MIDAS TOUCH BEFORE YOUR FRIENDS DO
 SUPERSWITCH Midas Touch Dimmer

The softest touch on the brushed aluminium panel of this beautifully styled control is all that is required to switch lights on and off and to vary lighting brilliance.
Touch Midas with the fingerips and the light is on. Touct again and it's oft Allow the finger to rest on the panel and the light intensity changes smoothly through a cycle from bright to dim and back again. Removing the touch during the cycle sets the lighting at the level required. Once set, this brightness level will be
maintained during normal on/off operations. maintained during normal on/off operations
Meets latest BS for
AF interference
£14.95

ALARM CHRONOGRAPHS

Displaying hours, minutes, seconds, day: And with day, date. month and year calendar, pre-programmed to year 2029.

24-hour alarm
Selectable hourly chime facility Backlight
Mineral glass face.
81Cs-368
As above but
Stainless steel case
W.R. to 100 feet
$(£ 39.95) \& 35.95$
CASIO CHRONOGRAPHS
As 81 OS/CS above but with 12 or 24 hour dual time facility instead of alarm and chimes functions. 9505-328 Chrome plated ($\mathbf{(E 2 7 . 9 5)}$ 950s-31B Stainless jacket ($£ 27.95$) 95CS-31B Stainless steel ($\mathbf{(1 4 . 9 5 \text {) }}$
Send $\mathbf{2 5 p}$ for illuswated brochures

810S - 338
5 YEAR BATTERY Chrome plated case W.R. 1066 feet (£31.95) $£ 27.95$
1/100 second chrono
to seven hours. Net. lap and 1st and second place. Selectable 12 or - 24 hour display

$£ 23.95$
E23.95 ع29.95

Price includes VAT, P\&P. Send cheques, PO or phone your ACCESS or BARCLAYCARD number to
THDIPUS
Dept. HE. Beaumont Centre, 164-167 East Rd. Cambridge CB1 18B Tel. 0223312866

Into Linear ICs By lan Sinclair Part 7

In this, the final part of Into Linear ICs, lan Sinclair looks at voltage regulators and Phase Locked Loop Linear ICs, but we're not finished yet. Look out next month for another major new series.

THE LAST BIG important group of linear ICs we need to take a look at is the voltage stabiliser IC. Before we can start on them, though, we need to know why and how voltage supplies are stabilised. Stabilising a voltage supply means controlling it so that output voltage doesn't change. Why should it change? For one thing, the mains AC voltage isn't absolutely constant; you may have seen the way a kitchen light dims when an electric kettle is switched on. More important, any power supply will have some resistance, often called its internal resistance. This resistance behaves like a resistor wired in series with the power supply (Fig. 7.1) so that when current is taken from the supply, the output voltage drops. There's nothing we can do to eliminate this resistance; all we can do is to use transformers with low-resistance; all we can do is to use transformers with low resistance secondary windings, rectifier diodes with low resistance, and so on. As far as battery supplies are concerned, rechargeable cells like lead-acid cells, but we still have this internal resistance present

Fig. 7.1 Internal resistance. (a) Any power supply behaves as if it had two components, a steady voltage supply and a resistor in series. (b) This causes the output voltage to decrease as more current is drawn.

Now a lot of problems are caused by this internal resistance. For one thing, if any pieces of electronic circuitry takes a varying current and the internal resistance of the supply will cause the DC supply voltage to vary when the current varies. Class B amplifier stages, for example, take much more current when they're working at full volume than when they're just ticking over, which means that they have to put up with a lower supply voltage when they're going full blast - and that's not exactly ideal. For one thing it usually means that your stereo amplifier which claims to give 50 watts per channel will have a hard time to deliver 35 W per channel when both channels are working hard - the makers usually point this out in very small print.

Digital circuits which operate with brief pulses of current, also suffer when these pulses of current are converted to voltage pulses by the internal resistance of the power supply, because these pulses can cause unwanted feedback. The remedy in each case is a voltage stabiliser

Now a voltage stabiliser isn't magic, it can't raise the amount of volts on the supply line above the amount the power-pack can supply. What it can do, however, is to keep the supply line voltage steady at a voltage equal to the lowest voltage it would normally drop to.

RASIN THE CURRENT

Let's explain that a bit more clearly. Suppose we have a circuit (Fig. 7.2) which works on a 12 V supply, but because of sudden current pulses, the supply voltage can drop to 9 V . Nothing we can do can make this 9 V rise to 12 V while a lot of current is being taken, but if we started, say, with a 15 V supply, with a bit of luck it might only drop to 12 V at full current. What a voltage stabiliser can do is to regulate the 15 V supply down to 12 V when the circuit is not drawing much current, and to relax control when full current is being drawn, so that the voltage supplied to the circuit is still 12 V . In practice we would probably settle for a 18 V input to the stabiliser circuit to ensure that we could keep the output at 12 V even when the circuit was drawing its maximum current and the mains voltage was a bit low.

Fig. 7.2 How a stabiliser works. The graph shows how the output voltage of a power pack might vary over some time. The dotted line shows the output from a stabiliser fed from the same supply. The stabilised voltage is lower than the lowest voltage to which the supply can drop.

A simple stabiliser circuit is shown in Fig. 7.3, using a comparator and a pair of transistors which keep the output voltage steady. It works something like this. One input of the 741 is returned to a steady voltage which is the voltage across a zener diode. A zener diode has a steady voltage across its terminals, even when the current through the diode varies by quite a large amount. The other input of the comparator is fed with a fraction of the voltage at the output of the stabiliser, so that the comparator will switch over when these two voltages are equal. In the circuit of Fig. 7.3 if the output voltage is low, then the voltage at the - input of the comparator is lower than the voltage fixed by the zener diode at the + input of the comparator, and the comparator output is high. This, in turn, causes the transistors to be biased so that more current can flow, raising the output voltage (because more current through the load must, by Ohm's law, mean more voltage across the load). On the other hand, if the stabiliser output voltage is too high, the - input of the comparator is at a higher voltage than the + input, the comparator output voltage is low, the transistors cut off, and the current shuts off or is throttled back, so allowing the voltage at the output of the stabiliser to drop. As a result, the output voltage of the stabiliser settles at a level which makes the voltages at the two inputs of the comparator equal, and keeps them that way.

Fig. 7.3 A simple stabiliser circuit. RV1 varies the output voftage. The minimum possible output voltage in this circuit is equal to the zener diode voltage. The value of R1 has to be calculated so that the stabiliser will still operate correctly when RV1 is turned to the maximum voltage setting.

The stabiliser circuit of Fig. 7.3 has used separate transistors, but it's much easier to make the whole circuit in integrated form. Another advantage is that it becomes possible, at practically no extra cost, to incorporate various types of protection circuits into the IC, protecting the IC in the event of overheating or excessive current. Voltage stabilisers operate with several volts between the input and the output, and quite large currents can flow, so that there is often a large power dissipation. For example, a 5 V stabiliser working from a 9 V supply and passing 0.5 A has a voltage across it of $9-5=4 \mathrm{~V}$, and a power dissipation, given by VOLTS \times AMPS equal to $4 \times 0.5=2 \mathrm{~W}$. Stabilisers which are intended for this sort of use are provided with metal tabs or studs so that heat-dissipating fins can be attached. The packages which are used for stabilisers are generally the same as those used for power transistors, since the heat dissipating problems are so similar

THE 78 SERIES

One very popular family of stabilisers carries type numbers such as $7805,7812,7815$; the 78 prefix is the family number, and the last two digits indicate the stabilised output voltage. Fig. 7.4 shows the connections for a 781212 V stabiliser. The unstabilised input from the rectifiers and smoothing capacitors must not fall to less than 14.5 V with 1 A flowing, and must not exceed 30 V when no load is connected. The IC has short-circuit protection, so that with the output shorted, the current which can flow is limited to 350 mA . Two styles of case can be obtained, the flat plastic type of the 'top-hat' can; output voltages from 5 V to 24 V are standard. Table 7.1 shows the output voltages, minimum and maximum DC input voltages and the code numbers for these voltage regulator ICs.

Fig. 7.4 The connections for a 7812 regulator. The capacitors must be wired as close to the pins of the IC as possible. They do not replace the smoothing capacitor but are essential for stability.

Type	Voltage	Max.	Ripple Current	Input
rejection	range			

TABLE 7.1 STABILISER IC̄s

TBA435

This is a regulator which is built into a T039 type of case such as is used for small transistors. The unstabilised input voltage can be up to 20 V , and the stabilised output is 8.5 V , which makes this regulator ideal for mains supplies which are to replace batteries, or for running 9 V equipment from 12 V car batteries. The small size of the regulator IC makes it easy to include inside transistor radios or cassette recorders, and the current rating of up to 150 mA is quite enough to cope with most of the applications which would otherwise be powered by a battery. Like all modern voltage stabiliser ICs, the TBA435 has overload and short-circuit protection. Typical circuits are shown in Fig. 7.5; the stabiliser can be used for either positive or negative supplies

These fixed-voltage stabiliser ICs can be used to provide a variable stabilised supply whose voltage is

Fig. 7.5 Using the miniature TBA435 as a regulator for 9 V circuits, positive or negative.
greater than that of the stabiliser IC. For example, we can use a 5 V stabiliser to provide a 9 V stabilised output, but we can't use a 9 V stabiliser to provide a 5 V stabilised output. The circuit for an adjustable voltage supply is shown in Fig. 7.6 This makes use of the connection to the stabiliser IC which normally acts as the earth return for the stabiliser current, and which is normally earthed.

Fig. 7.6 Using a fixed-voltage regulator to supply a variablevoltage outpur.

By returning this terminal to the voltage divider circuit consisting of the fixed resistor R1 and the potentiometer RV1, the stabilised voltage output can be made variable. It's possible to use this circuit to get stablised outputs which are twice the normal voltage of the stabliser or more, but the stability isn't so good, and it's better to use this circuit for a smaller range of variation. For a

Fig. 7.7 Higher fixed voltages can be obtained using a potential divider as shown, with design formula based on the TDA 1405 5 Vregulator IC.

TDA1405 5 V regulator, the formula for the voltage output, using fixed resistors R1 and R2, is shown in Fig. 7.7

Fig. 7.8 Using an IC regulator to control a power transistor so that higher currents can be obtained. Q1 should be on a substantial heat-sink.

The output current from any stabiliser can also be increased by using the IC to control a power transistor. For positive voltage power supplies, a PNP power transistor such as the MJE491 or TIP 2955 can be added to the stabiliser circuit, using the arrangement shown in Fig. 7.8. In this circuit, the supply into the stabiliser IC is taken through a 3R3 resistor which has the base and emitter terminals of the power transistor connected across it. For low currents, the voltage across the $3 R 3$ resistor is less than 0.5 V , and the IC stabiliser handles all of the current, but at currents above about 150 mA , the transistor switches on and provides another path for current. Since the transistor is controlled by the stabiliser IC, the output voltage remains fixed, but the current can be as high as the power transistor will permit - and when a good heat sink is fixed to the transistor that can be pretty high, 5 A or more. We can, of course, combine this extra current circuit with the extra voltage circuit of Fig. 7.7.

SPEED REGULATION

Now for something quite different. Many high-quality modern record players and stereo cassette recorders use DC motors whose speed is electronically regulated. This method of providing a constant speed drive has many advantages over the methods which were previously used, such as mechanical governors or AC motors. The speed regulator supplies the motor with current, and the current supply is regulated so that the motor speed remains constant even if the supply voltage, the load on the motor and the temperature of the motor all vary. Regulators of this kind are particularly, important for cassette players that are intended to be used in cars, because the voltage of a car battery can vary from less than 12 V (everything on, engine not running) to more than 16 V (charging heavily), and there is also a very large range of temperature inside a car, ranging from well below freezing point (in winter) to $35^{\circ} \mathrm{C}$ or more for a car parked in the sun in summer.

The speed regulator operates by sampling the voltage across the motor, which is proportional to the motor speed, and regulating the current to the motor so as to keep this voltage constant. Fig. 7.9 shows the circuit which is used. The resistor R 1 has a value which is about equal to the resistance of the motor, and the variable RV1 then acts as the speed control.

Fig. 7.9 Using the TCA 900 motor speed controller. The resistors RV1 and R1 have to be chosen to match the motor resistance.

CURRENT AMPLIFIERS

Current-difference amplifiers (CDAs) are a type of operational amplifier which for some applications can be more versatile than the 'old faithful' 741. Typical, and by far the best known, of these CDAs is the LM 3900 by National Semiconductor (a similar IC is made by Motorola) which consists of four CDAs in a single 14-pin DIL package. What makes CDAs different is that they don't need the two separate power supplies of the 741, nor do they need a 'half-supply-voltage' on the + input when a single supply voltage is used. Another important feature is that the output voltage of a CDA can be taken much closer to the supply voltage limits than is possible with a 741. We can, for example, run a LM 3900 from a 15 V supply, and drive the output voltage as low as 0.1 V or as high as 14.2 V . A 741 operated from the same supply voltage could not be made to give output voltages so high or so low when single supply voltage is used

At first sight, the CDA looks as if it's identical to any other operational amplifier, but there is a very important difference which is implied by the name - current differencing amplifier. The output voltage of the CDA is controlled by the difference in the currents fed to the two inputs, not the difference in voltage (which is never large enough to be measurable). This makes the bias arrangements for the LM3900 very much simpler than those used for the 741, and the low currents which are needed allow us to use very large resistor values in the bias circuits

The actual voltage at both inputs is about 0.6 V above earth (assuming a single supply line), which is the voltage across a IC transistor junction, and the minimum amount of current which is needed at each input is very small, around 30 nA (a nanoamp, nA , is one thousandth of a microamp). The output can supply a current of up to 10 mA , or sink a current (that is a current going into the output terminal) of just over a milliamp.

Fig. 7.10 shows a typical LM3900 circuit for a voltage amplifier. The bias system for the + input is very. simple - just a resistor connected from the + input to supply positive. This has to be a large value resistor to avoid passing excessive current, and will usually be around 1 M to 4 M 7 . As usual, the operating conditions are stabilised by feedback to the - input, but we have to remember that this is feedback of current, and we're aiming to have the same current flowing into the - input as flows into the + input. Now the current into the + input is fixed by the value of the supply voltage and R1 - it's equal to supply voltage divided by the value of R1

Fig. 7.10 The LM3900 used às a voltage ampllfier. The gain is low in this example, but higher gain figures can be obtained by reducing the size of R3.

- and if we made the value of $R 2$ the same as that of $R 1$, the output voltage would have to be the same as the supply voltage to pass the same current. If we'make R2 equal to half of R1, though, we need only half of the supply voltage at the output to pass the same current through R2 as the full supply voltage can pass through R1. This sets the normal output voltage, with no signal input, at half supply voltage, the value we need for good linear amplification. It's so much simpler than the 741 that you begin to wonder why the LM3900 isn 't used to a much greater extent, especially when you get four amplifier units in one IC. As it happens there are some applications for which the LM3900 can't really replace the 741 , and the very high resistor values are sometimes a nuisance, particularly now when so few components suppliers keep resistors or more than 1 M in stock. Nevertheless, many of the uses we have for operational amplifiers can be filled more easily by the LM3900.

In the circuit shown in Fig. 7.10 the gain is given by, the resistor ratio R2/R3. The input resistance is practically equal to R3, and capacitor coupling is needed because there is a small bias voltage (0.6 V) at the input. With the values shown the voltage gain is 4.5 and the input resistance is 220 k

A complete listing of all the possible LM3900 circuits would take more space than we have (look out for HE Specials on this and other ICs), but Fig. 7.11 shows an interesting circuit - an amplifier with its gain controlled by a bias voltage. The input is to C 1 , but a small $D C$ bias to R2 will alter the gain of the amplifier from around zero, when $\mathrm{Vdc}=0$, to about 12 times when Vdc is about 1 V .

Fig. 7.11 The LM3900 used as an amplifier whose gain is controlled by a DC bias.

CMOS ICs

One type of IC we haven't mentioned so far, mainly because it's used so much more for digital circuits than
for linear types, is the CMOS IC. The letters CMOS mean Complementary Metal Oxide Silicon; the complementary part of the title means that some of the silicon is P-type and other parts N -type, and the metal-oxide part of the name indicates that the currents through the silicon are controlled by the voltage of bits of metal which are separated from the silicon by the insulator, silicon oxide. A CMOS IC is an IC made from field-effect transistors, rather than the familiar junction (or bipolar) transistors, and for some purposes these ICs can provide features which can't be equalled by the more common types of bipolar ICs.
Two features of CMOS ICs are valuable in linear circuits. One is the very high input resistance which can be obtained, and the other is the use of these circuits ass resistors which change value as the voltage bias changes. Before we look at some practical circuits, though, a warning is needed. Because of the very high input resistance, a CMOS input cannot discharge the voltages caused by electrostatic charging. Your body can be charged to several thousand volts by simply walking over a dry nylon carpet, and such a voltage applied across two pins of a CMOS IC from your fingers will destroy the IC completely. A bipolar IC such as the 741 is unaffected because its input resistance is low enough to discharge the voltage harmlessly. CMOS ICs should be kept in the holders in which they are supplied, and connected into the circuit only after all the other components are in place. Many constructors prefer always to use CMOS ICs in holders - so that the Eurobreadboard is ideal - rather than soldering into place. Certainly if these ICs are soldered in, an earthed iron must be used, and the other components must be connected in place first. When several CMOS devices are on one IC, then no inputs must ever be left unconnected. In the Eurobreadboard diagrams which follow, the unused inputs are earthed by wire links which must be in place before the IC is plugged in, and which must not be removed while the CMOS IC is in place. Similarly, the IC must never be plugged in or out while the supply voltage is switched on, and the pins of the IC must never be touched - you soon develop the habit of holding the body of the IC and transferring it from its wrapping to the board or back again without letting the pins come into contact with anything else.

The CD4007 is a versatile circuit which consists of three pairs of complementary MOSFETs inside one package, with enough separate connections to allow the unit to be used for a variety of purposes. The most useful connection for linear circuits is as three separate inverters, as shown in Fig. 7.12. These can each be used ias common-drain amplifiers, as shown in Fig. 7.13 making use of the very high input resistance and the fact that no bias is needed.

Fig. 7.12 The three inverters contained in the CO4007 CMOS IC.

Fig. 7.13. Using one section of the CD4007 as an inverting amplifier.

PHASE-LOCKED LOOPS

The phase-locked loop is a type of IC which is rather more specialised than the ones we've looked at earlier in this series, but it's a circuit which is nowadays used to such an extent that we can't ignore it. The block diagram of a phase-locked loop (PLL) is shown in Fig. 7.14, it consists of an oscillator whose frequency can be controlled by a steady (DC) voltage, along with a phase comparator (or phase-sensitive detector). The phase comparator does pretty well what its name suggests - it compares the phase of two signals and gives an output whose amplitude and sign depends on the phase difference. Let's make that a bit clearer. Suppose we have two inputs A and B to a phase-sensitive detector, and we have sine-wave signals of the same frequency at each input. We can arrange the detector so that if the phase of the signal at A is earlier than the phase of the signal at B, the output of the detector is a positive DC voltage whose size depends on the amount of the phase difference, perhaps 200 mV for every 20° of phase difference

Fig. 7.14 A block diagram of the NE565 PLL.
Similarly, if the phase of the signal at A is later than the phase of the signal at B, the output of the detector is a negative voltage whose size depends on the amount of
the phase difference. The output is zero only when the phases of the two signals are identical, or when the? frequencies are so different that the detector can't operate.

What happens in a phase-locked loop is that external components, usually a resistor and a capacitor, are used to set the frequency of the oscillator inside the PLL IC. Another signal applied to the input will, if its frequency is 'sufficiently close to that of the oscillator, cause the phase detector to generate a voltage. This voltage, the correction signal, is then used to change the frequency of the oscillator (it's a voltage controlled oscillator, remember) so that it is 'pulled in' to be equal to the frequency of the input signal.

How can we use this? One use is in 'cleaning-up' signals. If we have s signal which started as a sinewave but which has been affected by noise, tape drop-outs, or interference, then using it as the input to a PLL will cause the PLL to generate a 'clean' output waveform of exactly the same frequency, and in the same phase as well. This can, incidentally, also be used to remove all traces of amplitude modulation from a signal.

Another application is to FM demodulation. If the
signal into a PLL is an FM IF at a reasonably low frequency the normal IF for an FM receiver is 10.7 MHz , which is a bit high for most IC PLLs), then as the frequency of the input signal changes, the voltage of the correction signal will also change to make the oscillator keep in step. We can make use of this correction voltage - it's the audio signal from the demodulated FM and its voltage is exactly proportional to the frequency of the input.

Other uses? Metal detectors are another obvious use for the PLL, and they are also being seen more and more in the application which they were designed for (the PLL, that is) which is cleaning up the signals from tape recorders to feed into computers, and to convert computer signals into a form which can be transmitted along telephone lines.

We've covered a lot of ground (and circuit board) since we started on Part 1 of this series, and looked at a lot of linear ICs. But now, you should be able to identify how a linear IC is used in any circuit, and your practical experience now lets you construct linear IC circuits with complete confidence. What more do you want? Digital ICs? Watch this space!

HE

CARTOONS

"WHAT MAKES YOU THINK HE HAS A CB?"

24 TUNE DOOR CHIMES

DOOR TUNES $£ 17.13$ + VAT
 Waddmgton's Videomaster announce a doorbell that boesn go Brringgg, Ding Dong of Brwzz. Insizad in plays 24 you select for your mood, the season or the visitor you are expecring to call. Door tunes is not onty great lun and a wonderful ite breaker, but is also very functionally and something tor Chrisimas, something for your continental vishors or your relarions from the slates, and even

 has separate comrois for wolume, tone and lempo.
T.V. GAMES

PROGRAMMABLE E29.50 + VAT

COLOUR CARTRIDGE T.V. GAME

The IV gante can be compareci to an audmn casserte deck and sprogrammed ia play a multurde of difierent games TV game is avalabie which will keep pace with improving technology by allowing you to extend your library of games with the purchase of addriional carrudges as new games are developed. Each cannidge contains up to ten differeng action games and the first carridge contaning len sporis games is incuded free with the console. Other cartidges Grand Prix Motor Racing, Super Wipeout and Stunt Rider
隹 further cartridges are to be released lates this year, induding Tank Battle, Hunt the Sub and Target. The console comes complete with two removable ioystick player controls to enable you to mave in all four dreccions Lupidownirightutefty and buith into these iovssick coniroks are ball serve and targel fire buttons. Other fealures include several difficulty aption switches, automatic on screen diginal scority and colour coding on scores and balls. Litelike sounds ate transminted through the IV's speaker.
simulating the actual game being played
Mampactured by Waddingion's Videomasier and Manvactured by Waddingron's Videomasier and 10 Game COLOUR SPORTSIWORLD E2250 + VAT.
guaranted for one vear.

CHESS COMPUTERS

STAR CHESS - f55.09 + VAT
PLAY CHESS AGAIMST Y YUR PARTNER.
using your own N to display the board and pieces. Star Chess is a new absorbing game for wo players, which with
interest and excise ail ages the unit plugs imo the aerial socket of yout TV sel and dispiays the boand and pieces in full colour lor black and whivel on you! TV screen. Based on fuif colour for back and whitel on you! IV screen. Based on
the moves of chess II adds even more excirement and interest to the garre. For those who have never played, Star, Chess is a novel introduction to the classic game of chess for the experienced chess player, there are whole new dimensions of unprecictabitity and chance added to the strategy of the game. Not only can pieces be taken in
conventional chess ivpe moves, bun each piece can aiso achange chess type moves, bun each piece can aiso complete with a free l8V mains adaptor, full instruclions and twelve months guaraniee
CHESS CHALLENGER $7-$ - 8 B5. $65+$ VAT. \longrightarrow PLAY CHESS AGAINST THE COMPUTE
The sylish, compart, portable console can be set to play at seven difterent levels of ability from beginnei to expert neluding "Mate in wwo" and "Chess by mail". The computer
will only make responses which obey international chess Will only make responses which obey international chess rules. Casting, on passant, and promoting a pawn are of
inctuded as pan of the crmputer's progranime if is included as pant of the computers progranime
possible to enter any given problem trom magaines newspapers or atternatwely establish your own board newspapers or aiternatively establist your own board
position and watch the compurer react. The positions of all pieres can be verfied by using the compuior memony recall Price includes unit wath wood graned housing, and Staunion design chess pieces Compuer plays black or
white and ag anst iseff and comes conmplete with a miains adaphor and 12 months guaramee.
OTMER CHESS COMPUTEAS IN OUR RANGE INCLUOE. CHESS CHAMPION - 6 LEVELS E47.39 + VAT CHESS CHALLENGER - 10 LEVELS - $£ 138.70$ + YAIS.
C163.04 + MULTI-LEVEL TALKING DISPLAY

DRAUGHTS COMPUTERS

HOME COMPUTING BARGAINS. FUll keyboard casserte interface. use vour tv as vdu: - Ohio sdentific superboard "w tully buile 8 K basic 4 K ram.
special offer price now includes free power supply and moduator kit $£ 188+$ val. Tandy TRS80 level 2 SINCLAIR PRODUCTS. New 10 MHz scope E145, PFM 200 £51.95, case £3.40, adaptor £3.40, connector kit $£ 11.27$. Microvision in $£ 91$, adaptor
$£ 6.88$. PDM $35 ~ £ 29.76$, £6.88. PDM35 £29.76, adaptor £3.40 case
£3.40. DM 350 ह71.82, DM4450 £102.17, DM 235 $\mathbf{£ 5 1 . 9 5}$, rechargeatle batts $\mathbf{£ 7 . 9 9}$, adaptor $£ 3.94$. case $£ 9$. Enterprise prog catculator + accessories €22.95.
COMPUTER GAMES Chess Champion $6 £ 49.95$. Chess Challenge: 7 E84, Philips 67000 home
computer $E 149$. Videopaks $£ 12.95$. Atari video computer £147, cartridges £14.85. COMPONENTS IN4148 0.9 p , iN 40023.1 p ,
 of one value. 16 V electrolytics $5.1,2.5,10.22 \mathrm{mf}$ 5 p .100 mf 6p, 1000 mt 10 pp . 1 lbFeCl Cl .30 , dalo pen 84 p .40 sa ins pcb 66 p , polystyrane capacitors
E12 23 V 10 to 1000 pt 3 p . n 2 to 10 n 4 p , ceramic capacitors 50 V E 622 pf to $47 \mathrm{n} 2 \mathrm{p}, z \mathrm{mer}$. 400 mW E24 2V7 to 33v 7p.
TV GAMES AY. $3-8500+$ kit $\mathbf{E 9} 9.53$. Rille kit
E5.27. AY. $3.8600+$ kit 517.28 .5 . [5.27. AY-3-8600 + kit $£ 17.28$. Stunt cycle chip +
kit $£ 16.72$. AY $3-8603$ chip $£ 13.63$. kit $£ 16.72$. AY. $3-8603$ chip $£ 13.63$.
TRANSFORMERS $6-0-6 V 100 \mathrm{ma}$ $€ 2.60 .9 .0 .9 \mathrm{~V} 75 \mathrm{ma} 76 \mathrm{p}, 1 \mathrm{a} £ 2.22,2 \mathrm{a} £ 2.89$.

C AUDIO AMPS with pcb. JC12 6W E2.08. JC20 1OW E3. AY.
BATERY EL
BATTERY ELIMINATORS 3 way Ype $6 / 71 / 7 / 9 \mathrm{~V}$ 300 ma E3.16. 100 ma radio type wht press.studs output $41 / 2 / 6 / 7 y_{s} / 9 \mathrm{~V} 800 \mathrm{ma} £ 2.66$. BATTERY ELMMINATOR KITS 100 ma radlo types with press-5tuds $41 / 2 \mathrm{~V}$ E1.49, 6 V E1.A9, 9 V E1.49. $41 / 2+41 / 2 \mathrm{~V}$ ह1.82, $6+3 \mathrm{~V}$ E1.82, $8 \rightarrow 9 \mathrm{~V} \mathrm{E1.92}$ 18 V 100 ma £2.50, 1 Amp $£ 5.10$, Stabilized power kits 2.18 V 100 ma £2.98, 1.30V $1 \mathrm{~A} £ 5.95,1-30 \mathrm{~V}$
T.OEC AND CSC BREADBOARDS S -dec $£ 4.59$, udeca $£ 4.6$ adaptor $£ 2.31$, exp 4 b £2.64, exp 300 £6.61, $\exp 350$ £3.62, exp $325 ~ £ 1.84$.
BL-PAK AUDIO MODULES BLPAK AUDIO MODULES $\$ 450$ E25.06, AL60
 £8.38. ps 12 £1.58, ma60 £́38.27.

EXTRA CARTRIDGES ROAD RACE - [8.87 + VAT. SUPER WIPEO racing with gear changes, crysh noises SUPER WIPEOUT - 10.17 + VAI. STUNT RIDER Notorcycle rows of up to 24 buses eic.
NON.PROGRAMMMABLE TV GAMES
6 Game - COLOURSCORE II - E1350 + VAT.

\section*{MERRY XMAS - HAPPY NEW YEAR - ORDER EARLY FOR XMAS
 HAND-HELD GAMES
 | Elec. Mastermind | $£ 12.90$ |
| :--- | ---: |
| Digits | $£ 14.95$ |
| Zap | $£ 11.95$ |
| Amaze-a-Tron | $£ 18.95$ |
| U.F.O. Master Blaster | |
| | $£ 24.95$ |
| Enterprise 4 in 1 | $£ 24.95$ |
| Space Alert | $£ 15.90$ |
| Auto Race | $£ 15.90$ |
| Soccer | $£ 21.50$ |
| Atari Touch Me | $£ 26.95$ |
| Destroyer | $£ 16.95$ |
| Football (2 playerl: | $£ 24.95$ |
 KITS

ELECTRONLC CHESS BGARD TUTOR C 17.17 + VAT
A special bulk purchase of these amazing chess reaching machines enables us 10 oifer them 81 only 1919.75 less than a simple bariery operared machine that can actually feach anyone to play chess and improve their game righ! up to championstip level. This machine is not only for total beginners bian also for established players wanting to play berrer chess. Unit connains the electronic chessboard with 32 chess pieces, a 64 page explanatory booklet and a set of 32 progressive programme cards inctuding 6 beginners carcs, 16 check mate posithons, 9 miniature gammes, 5 openings, 3 end games, 28 chess probierts and 2 master
ganies
N.I.C

SEE US ON
61 Broad Lane, London, N. 15
bheadodaro
Day-Tel:01-808 0377 Evg.: 01-8899736

P.C.B.s

for
H.E.

PROJECTS

Nov.

Guitar Tune
Dec.
Hebot (Board B) £3.00
Ring Modulator .90
Speed Controller £2.50
Bargraph Car Voltmeter .. . 60
Jan.
Boards available at $12 p$ per sq inch. (E.G.A. board the size of this $\mathrm{ad}=132 \mathrm{p}$).

Prices include V.A.T. P. \& P
P.C.B.s also produced from customers' own masters, send artwork for quotation.

Mail order only
Cash with Order
to:
S\&G SERVICES [HULL]
43 Wheeler Street Hull, North Humberside

INTRODUCTION TO MICROPROCESSORS AND COMPUTING. 50 pages of diagrams and explanation to get you started. Price $£ 2.30+45 p$ postage
EDUCATIONAL DATA AND TECHNICAL
SERVICES
59 Station Road, Cogenhoe, Northampton NN7 ILU

CLASSIFIED INFORMATION

Semi-Display:
1-3 insertions - £4.00 per single column centimetre
$4-11$ insertions - $£ 3.50$ per s.c.c.
12 insertions - £3.00 per s.c.c.
Classified:
15 pence per word (minimum 25 words)
Box number $£ 1.00$ extra.
ALL ADVERTISEMENTS IN THIS SECTION MUST BE PRE-PAID
Closing date: 2 nd Friday in month preceding publication.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).
Cheques and postal orders should be crossed and made payable to "Hobby Electronics'

CLASSIFIED ADS, HOBBY ELECTRONICS 145 Charing Cross Road, London WC2H OEE (Telephone: 01.437 1002)

AD. INDEX

A.J.D. DIRECT SUPPLIES 72
METAC 74/75
AMBIT INTERNATIONAL 2 NIKITS 37
B.M.R.S. 60 NIC MODELS 72
CAMBRIDGE LEARNING 63
R.T.V.C. 46
C.B. CITY 60 SCOPEX 34
C.S.C. 19 S. \& G. SERVICES 73
DAVID GEORGE SALES 51 STEVENSON 55
E.D.A. 45 SWANLEY 72
ELECTRONI-KIT 51 TECHNOMATIC 22
GREENWAY 72
TEMPUS 64
GREENWELD 45 T.K. ELECTRONICS 49
I.L.P. ELECTRONICS 4-5 VERO ELECTRONICS 71
MAPLN 76 WATFORD ELECTRONICS 7

IN-CIRCUIT TRANSISTOR TESTERS £8

 post free. Also tests loose transistors, thyristors \& diodes. Normal transistor testers (needs 10 mA meter) £4. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.100 MIXED components $£ 2.50 .100$ mixed diodes 85 p. Leds, 10 mixed colours'sizes, E1.15. Lists 15 p. Sole Electronics, H/E 37 Stanley Street. Ormskirk, Lancs L39 2DH.

Quartz Melody Multi-Alarm Chrono For 1980 Try this 34 Function

Count-down Timer

Can be used for a host of applications from boiling an egg to warning you your parking meter is expired. The timer is presettable to 23 hours 59 mins. 00 secs. in 1 min . steps and counts down in 1 sec. steps. It operates quite independently of the other counters and the watch can be in any other mode whilst it is being used.
At the preset time the musical tone will sound for 1 minute.

Alarm

\qquad
The alarm can be set at 1 minute intervals to any time within the 24 hour period A clear firm musical tone sound for 1 minute at the appointed time. An automatic roll-over to the normal time is a feature after the alarm has been read. A clear indicator displays whether the alarm is şet or not.

Time Zone , 2.9818

The time zone enables you to tell the time in two places at once. It can be useful on holiday or business trips. Just programme the second time zone and it will be permanently recorded for your easy reference.

Chronograph

This watch incorporates a sophisticated and very accurate stop/start counter which has many applications in sporting events and timing for recordings etc.
Mode 1: Is the normal stop-watch mode. Stop. Start-Zero.
Mode 2: The lap timer enables first and second past the post times to be recorded. The display is frozen but the counter continues to count
Mode 3: Longer timing intervals, such as journey times, can be recorded whilst the watch is reading its normal time. or the count-down is being used. The counter counts to 1 hour in $1 / 100 \mathrm{sec}$. steps in all its modes

SOLAR QUARTZ LCD
5 Function
Genuine solar panel with battery back-up Hours. mins. secs. Day? date Fully adjusiable bracelet
Back-hight
Back-hight
Only 7 mm thick
£8. 65
Guaranteed same day
dispatch.
M2

QUARTZ LCD
ALARM 7 Function

SOLAR QUARTZ LCD
Chronograph

Features and Specification:
Hour/minute display Large LED display with p.m. and alarm on indicator. 24 Hours alarm with onioff control. Display flashing fol power loss
indication. Repeatable 9 -minute snooze, Display bright/dim modes control. Size: $5.15^{\prime \prime} \times 3.93^{\prime \prime} \times$ $2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. Weight: $1.43 \mathrm{los}(0.65 \mathrm{~kg})$.

£10.20 Thousands sold

Mains operated.

Guaranteed same day despatch.

HOW TO ORDER

Payment can be made by sending cheque, postal order. Barclay. Access or American Express Payment can be made by sending cheque, postal order, Barclay. Access or American Express
card numbers. Write your name. address and order details clearly, enclose 40 pence per single card numbers. Write your name. address and order details clearly, enclose 40 pence per single item for post and packing or the amount stated in the advert. All producis carry 10 day reassurance. Battery fitting and electronic calibration service is available to customers at any Metac shop. All prices include VAT currently at 15% Metac Wholesale:
Metac Wholesale:
Trade enquiries - send for a complete list of prices for all the goods advertised plus many more not shown, also minimum order details.
more not shown, also minimurn order details. 76545 or Edgware Road 01.723475324 hours a day.
ansmern CALLERS WELCOME. Shops open 9.30am-6.00pm.

LADIES DAY WATCH aUARTZ LCD

LADIES FASHION WATCH

 QUARTZ LCDLady's Fashion Watch. Elegant bracelet in bronze gold finish or silver colour. Hours, day, date, backlight and auto calendar Adjustable for the slimmest of wrists.
State colour preference
£14.95
Guaranteed same
day despatch

day despatch.

OUTSTANDING FEATURES

* DUAL TIME. Local time always visible and you can set and recall any other lime zone (such as GMT)
Also has a light for night viewing
CALENDAR FUNCTIONS inc CALENDAR FUNCTIONS includ the date and day in each time zone, CHRONOGRAPH/STOPWATCH displays up to 52 hours, 59 minules
and 59.9 seconds. On command freezes to show intermediate (split/lap) time while stopwatch continues to run Can also switch to and from timekeeping and stopwatch modes without aflecting either's operation. ALARM can be set to any time withina 24 -hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you Guaranteed same day despatch M16

A63-key ASCII keyboard with 625-line TV interface, 4-page memory and microprocessor interface. Details in our catalogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A 10 -channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.

Breadboard 1979 is even bigger Breadboard than last year. lt's miss!
and better should mis one sho the one show no one sho

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well See pages 52 to 57 of our catalogue.

Amassive new calalogue from Maplin thats even bigger and better than before If you ever buy electronic components this is the one catalogue youl must not be without. Over 280 pages - some in tull colour-its a comprehensive guide to electromic components with hundieds of photographs and illustiations andi page after page of invaluable dala.
Ow br-monthly newsletter contanis guaranteed price special oflers and all the latest news tron Mapin.

Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.

A digitally controlled stereo synthesiser the 5600 S with more facilities than almost anything up to $£ 3,000$. Build it yourself for less than $£ 750$. Full specification in our catalogue
coupon now for your copy of our 1979-80 catalogue price 70 p.
Please send me a copy of your 280 page catalogue. I enclose 70p (plus 37p p\&p) If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $£ 1.35$ or ten International Reply Coupons. - International Reply Cour $\begin{array}{r}\text { I enclose } £ 1.07\end{array}$
 D. ienclose $£ 1.07$.

A hi-fi stereo tuner with medium and long wave, FM stereo and UHF TV sound! Full construction details in our catalogue.

A superb range of microphones and accessories at really low prices. Take a look in our catalogue - send the coupon now!

An attractive mains alarm clock with radio switching function and battery back up! Complete kit with base only $£ 18.38$ (incl. VAT \& p \& p) MA1 023 module only $£ 8.42$ (incl. VAT)

ELECTRONIC SUPPLIESLTD

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR Telephone: Southend (07.02) 554155 Shop: 284 London Road, Westcliff-on-Sea, Essex (Closed on Monday).
Telephone: Southend (0702) 554000

[^0]: AUDIO

 When making tape recordings, especialiy of "live" performances, it can be very difficult to set the correct recording level. This can easily lead to an excessive recording level and consequent distortion occurring unless the recording level control is kept well backed off. The price one then has to pay is a low recording level and subsequent low signal to noise ratio. The normal way of overcoming this problem is to use an audio limiter circuit ahead of the tape deck. This device normally passes the signalstraight through to the recorder, but if the input exceeds a preset threshold level it attenuates the signal so that the output level is not sufficient to overload the recorder. In this circuit the input signal is applied to an attenuator which is formed by R1 and PCC1. Normally PCC1 is in total darkness and exhibits a very high resistance (typically a few megohms) causing minimal losses through the attenuator. This stage feeds into the high input impedance of the emitter follower buffer stage formed by Q1 and its associated components, and this ensures little loss of signal level. Thus the input signal is normally fed straight through to the output socket with only a marginal loss of amplitude.

 Some of the output signal is fed from the slider of R4 to a rectifier and smoothing circuit which is comprised of D2. D3, and C4. If the input signa! is sufficiently strong, the positive bias produced by the circuit will be adequate to switch on Q2 and light emitting diode D1 which is connected in its collector circuit. The light output from D1 is aimed at the sensitive surface of PCC1 (the surface to which the leadout wires do not connect) and this causes a large reduction in the resistance of PCC1. This gives the required atte-
 nuation of the signal. The larger the input signal is made, the more strongly D1 glows, and the greater the reduction in circuit gain. This process has the effect of preventing the output level from rising far above the level at which D1 begins to initially switch on. On the prototype this threshold level is at about 230 mV (with R4's slider at the top of its track) and increasing the input level to 4 volts RMS causes the output to rise to only about 320 mV . Higher threshold levels can be obtained with R4's slider adjusted down its track to the
 appropriate point. The attack and decay times of the circuit are both quite short so that the unit quickly responds to changes in signal level and is not normally conspicuous in operation.

 Construction of the unit should be quite straight forward, but the unit must of course be housed in a light proof box so that PCC1 is shield from the ambient lighting. D1 and PCC1 are mounted as close together as possible. The current consumption of the circuit is only about 1 to 5 mA . depending on the input level.

[^1]: Hobby Electronics Book Service, P.O. Box 79 Maidenhead, Berks.

[^2]: The items mentioned here are those plànned but circumstanceş may affect the actual contents

[^3]: Step by step we take you through all the fundamentals of electronics and show you how easily the subject can be mastered.

 1) BUILD AN OSCILLOSCOPE
 2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS
 3) CARRY OUT OVER f) EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK Also
 We provide practical tuition for:- 3) Digital Electronics 1) Radio amateurs licence. \square 4) Computer Technology \square 2) City and Guilds certificates. \square 5) Test instrument kits Mark your interest(s) with an x in box provided. British National Radio \& Electronics School, NAME P.O. Box 156, Jersey, Channel Islands

 ADDRESS
 HE $1 / 80$

 I

