

Tecknawledgey far sule. DIY Hi-Fi will never seem the same again. Ambit's Mark III tuner system is electrically and visually superior to all others. Some options available, but the illustrated version with reterence series modules $£ 149.00+£ 22.35$ VAT With Hyperfi Series modules DR「 DR「
 Digital Dorchester All Band-Broadcast
 all features you would expect of designs of three section you would expect of designs of far greater complexity. The FM section uses a AM employs a double balanced mixer input, stage, with mech anical IF filters. plus aFO and MOSFET product detector for CW/SSB reception. Styled in a matching unit to the Mark 111 FM only tuner, employing the same degree of care in mechanical design to enable easy construction. MW/LW reception via a ferrite rod antenna
 Electronics only (PCB and all components thereon) $£ 33.00+£ 4.95$ VAT
 Complete with digital frequency readout/clock-timer hardware $\quad £ 99.00+£ 14.85$ VAT
 Complete with MA 1023 clock/timer module with dial scale $£ 66.00+£ 9.90$ VAT Hardware packages are available separately if you wish to house your own designs in a
 Hardware packages are available separately if you wish to house your own designs in a professional case structure. Please deducr the cost of electronics from complete prices.
 1215 with usual AM/FM IF offsets for received frequency.
 Low power LCD means no RFI. $15 \cdot 20 \mathrm{~mA}$ at 9 v even with the divide by 100 prescalar. FM resolution is
 July PW feature Complete kit $£ 19.50+£ 2.93$ VAT, built and tested module $£ 27.00+£ 4.05 \mathrm{VA}$ Eomple part two of the catalogue contains details of the MSM5523/4/5/6 range, and the of DFM MSL2318 divide by ten or hundred prescalar IC. The DFM1 combined counter for AM FM SW and direct/clock/stopwatch/timers details available. but SAE please
 \begin{abstract} | MICROMARKET | | | OSTS overflow | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6800P | 650p | 8212 | 230p | 2102 | 170 p |
| 6820P | 600 p | 8216 | 195p | 2112 | 340 p |
| 6850 ${ }^{\text {P }}$ | 275p | 8224 | 350p | 2513 | 754p |
| 6810 | 400 p | 8228 | 478p | 4027 | 578p |
| 6852 | $365 p$ | 8251 | $625 p$ | 2114 | 1000p |
| | 630 | | | | |

 Update your old radio, or build this into a new design

 professional case structure. Please deduct Maintaining our professional approach to home constructor kits, we offer the pulse induction 'Sandbanks'. Now with injectinduction 'Sandbanks. Now with injectenviromental sealing. $£ 37.00+£ 5.55$ vat VHF MONITOR RX WITH PLESSEY IC 4/9 channel version of the PW design but using standard (fundx 9) crystals, and TOYO 8 pole crystal filter with matching TOYO 8 pole crys tal filter with matching transformers. Coil sets from our standard range to cover bands from 40 to 200 MHz Complete module kit $£ 31.25+£ 4.68 \mathrm{va}$
 RADIO and AUDIO MODULES : Consistently the most advanced
 5801 . 4 series: 6 stage varicap tuning, all with oscillator outpu
 $\begin{array}{ll}5803 \text { Oual gate MOSFET RF stages, bipolar miker } & £ 17.45+2.61 \text { VAT }\end{array}$ EF5402 and ulrra wide, range runing system 4 stage varicap tuner with TDA 1062 output. Uses FET/IC input. PIN agc $\frac{\text { FOR } 30.200 \mathrm{MHz}}{\text { The EF series }}$
 20\% of the centre frequencyl in the range described. Details in our price list $\frac{\text { FOR FM IFs at } 10.7 \mathrm{MHz}}{7030}$
 7130 two 6 pole linear phase filter IF with CA3189E £16. 25 + +2.64 VAT ceramic filiters with diode switched narrow filter $£ 24.95+3.74 \mathrm{VAT}$ UECODERS for MPX (STEREO) Varlous fypes, guar antead the LARSHOLT FM TUNERSE TS 7252 MOSFET Fromt end
 $\mathbf{2 5 2}$ MOSFET front end combined with CA3089 IF $£ 26.50+3.97 \mathrm{VAT}$ 7252 JFET front end, combined with IF and decoder $£ 6.50+3.97 \mathrm{VAT}$
 COMPONENTS FOR RADIO/COMMUNICATIONS/AUDIO/TV erc. As usual. Ambit brings you the latest and best, a small selection of which is shown in this acivertisement. The Ambit catalogues contain information on most of the
 with latest developmen RADIO ICS for FM var
 CA3089E
 HA11225 SN76660N
 RADIO R
 TDA 1083 TDA1 220
 IF AMPLI KB4406
 See comms ics also 18 COMMIUNICATIONS
 $\begin{array}{lll}\text { KB4412 } & 2.55 & 38 \\ \text { KB4413 } & 2.75 & 41\end{array}$
 $\begin{array}{lll}\text { KB4413 } & 2.55 & 38 \\ \text { KB4 } & 41 \\ \text { SD6000 } & 3.75 & 56\end{array}$
 SL 1600 series

 FETs, MOSFETs, bipolars. and various others: see PL
 TL:Stundard AMI LP 5chotthY

 Current news: A PCB for the Mullard DC tone and volume control system is now available $£ 3+0.45$ VAT. HMOS PA modules for $60 \cdot 100 \mathrm{~W}-\mathrm{kit} £ 14+£ 2.10 \mathrm{VAT}$. heatsink $£ 4.10+0.61$. FM radio control system crystals $£ 3.75$ pair inc VAT (Sept on). MK50366N: static drive clock/timer IC $£ 3.78+0.57$ VAT. $121 / 2 \mathrm{kzz}$ channel spacing 8 pole 10.7 MHz XTAL filter by TOYO type H4402 £15.50 $+£ 2.32 \mathrm{VAT}$. A further updated pricelist is now avallable, and we would like to gemind you that enquiries can only be answered if accompanied either by an official business letterhead, or an SAE. STOP PRESS: TOKO's new split-apart triple AM tuning diodes are in stock $£ 2.45+\mathbf{3 7 p}$ VAT, (KV1215). S BL 1 diode DBM 1.500 MHz - £4.25+0.64p. Terms: CWO please. Account facilities for commercial customers OA. Postage $25 p$ per order. Minimum credit invoice for account customers $£ 10.00$. Please follow instructions on Catalogues: Ambit. Part i 45 p. Part 250 p 90 p pair. TOKO Euro shortform 20 p . Micrometals toroid cores 40 p . All inc PP etc. Full data service described in pricelist supplements.

Hobby Electronics

PROJECTS

Ruthless Robot
R2D2 Radio 51

AM Android
Guitar Tuner 61
Readers design

FEATURES
Chit-Chat16

Simple Test Gear
Miniboards
20

Six of the best
TV Broadcasting 42

Telly tales
Kit Review
47

Protect your wheels
Into Linear ICs
65.

555 special

NEWS AND INFORMATION
Monitor 6
HE Next Month 35
Do not miss itClever Dick37
Says who?
Marketplace 40
More good buys
Books 49, 56
Now read this
Breaker One Four 57

Channel 35 now
ETI Next Month 63
Check this out
Back Numbers 64
Sold out already
Subscriptions 64
Why miss out
Hobbyprints 72
Perfect PCBs

Hobby Electronics

145 Charing Cross Road,
London WC2H OEE
01-437 1002 (4 lines)
Published by Modmags Ltd.
Distributed by Argus Distribution Ltd,
Printed by QB Ltd, Colchester
Hobby Electronics is normally published on the second Friday of the month prior to the cover date

Editor: Halvor Moorshead
Editorial Aset: Rick Maybury
Project Team: Ray Marston, Steve Ramsahadeo, John FitzGerald, Keith Brindley
Production: Diego Rincon, Dee Camilleri
Technical Artises: Paul Edwards, Tony Strakas, Joanne Barseyhian
Advertising: Chris Surgenor, Steve Rowe, Sandie Neville
Admin Staff: Margaret Hewitt, Bren Goodwin, Tim Salmon, Tracey Campbeil, Lorainie Radmore, Loraine Stout, Marlin Felix, Halina Di-Lallo, Joan Brimm

Copyright. All, material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing kits of the projects must be sought from the Editor. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally.

ABC

Simply ahead. . ILP'S NEW GENERATION OF HIGH

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$\mathbf{£ 4 . 6 4 + 7 4 p}$ VAT

THE POWER AMPLIFIERS

THE POWER SUPPLY UNITS
I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer the other using toroidal transformer to halve weight and height.

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8 Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	$120 \mathrm{~W} \Omega$ into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models 1.00 K
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

PSU 36 for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.27$ VAT PSU 70 PSU 90

2 HY120's £13.61 + £2.04 VAT sformer for 1 or with toroidal transformer for
$1 \mathrm{HY} 200 \quad £ 13.61+£ 2.04$ VAT PSU180 with toroidal transformer for

1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT
$\mathrm{PSU} 30 \pm 15 \mathrm{~V}$ at 100 mV to drive up to
five HY5 pre-amps
$£ 4.50+68 \mathrm{p}$ VAT

NO QUIBBLE

5 YEAR GUARANTEE
7-DAY DESPATCH ON
ALL ORDERS
BUILT-IN PROTECTIVE CIRCUITRY
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE see below

HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

ELECTRONICS LTD.

FREEPOST 6 Graham Bell House, Roper Close.
Canterbury, Kent CT2 7EP
Telephone (0227) 54778
Telex 905780

Please supply
Total purchase price $£$
I enclose Cheque \square Postal Orders \square International Money Order Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

Signature

CUTTING CORNERS

Perhaps, if you've never experienced the delight of using a new pair of side-cutters you'll wonder what we're on about. There really is nothing like it, the almost sensuous way a sharp pair of side-cutters slips effortlessly through wires, fingernails, bolts, in fact almost anything to hand, for a couple of days anyway, until the novelty wears off or they become blunt. So now, enough of all that, its time to tell you all about the new Microshear 11 from the USA, lovely tools these, they are very thin so they'll get into those awkward corners that seem to frequent electronic projects. Anyone familiar with the original Microshears will testify to their usefulness. If you think these are for you why not have a word with the Welwyn Tool Co Lid, who are the sole UK importers at: Stonehills ,House, Welwyn Garden City. Herts.

GENERATION GAME

How long would you say TV games had been around, eight years, maybe ten? Wrong, domestic TV games have only been with us for three years the 'pub TV 'tennis' game for perhaps a couple of years longer. In those five or so years things have moved pretty fast, already we are being warned of the imminent invasion of the fourth generation of TV games. (The first were the 'pub game, the second was the 'dedicated' domestic game that could be hooked up to the home telly, then came the 'programmables', offering an almost limitless supply of games). Now we have the 'computer' games, these offer a degree of user access to the on-board microprocessor, ultimately enabling the budding gamesters to 'write' their own games.

Being an incredibly influential magazine we have managed to get our hands on one of the first examples of the new games in the country. This was the offering from Phillips and came courtesy of our friend lan Jones at Videotime (Wise man that Mr Jones, we would have skinned him alive if he'd given it to anyone else).

The games we had for review.were to be fair, not the best we had seen though. We were definitely spoiled by the excellent Atari so perhaps we shouldn't be too harsh. We did have a lot of fun with it. The computer facility is the interesting part, a full-touch-operated, alpha-numeric keyboard is used to enter the various programmes. It surprised us by employing the Hexadecimal code, somewhat slow and difficult for the absolute beginner to use, perhaps BASIC is on the way. The computer was rather limited in that it could only work on 99 programme steps but the excellent colour graphics and TV sound more than made up for that. If it had come from anyone other than Philips we might have been more impressed but we felt that for Phillips first excursion into the tele-games market it could have been a whole lot more exciting. To become the proud owner of one of these machines first equip yourself with $£ 149.95$ plus $£ 13.95$ for the cartridges and get yourself along to Videotime at: 56 Queens Road, Basingstoke, Hampshire. Now how about that new Matell game Mr Jones?

ALIEN

The gentleman (we think) in the centre of our picture with the hole in his chest is featured in a new film that you may have heard of from 20th Century Fox, called ALIEN. The call of duty and a couple of free tickets prompted us to go along to the press showing of this intriguing new film. Firstly we must say this film is definitely not for the squeamish. It's difficult to review a film when half the time you've got you're eyes tightly shut but suffice it to say it really is a great film.

Without revealing too much of the plot it involved the 'accidental' invasion of a large space freighter by a somewhat unpleasant alien character who takes it upon 'himself' (again that's just supposition) to 'do away with the members of the crew, all very gory and very exciting. Don't miss it. By the way, the creature in the picture is not the alien, he's just had a visit, as shown by the hole in his chest.

WATFORD ELECTRONICS
 35 CARDIFF ROAD, WATFORD, HERTS., ENGLAND MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$

ALL DEVICES BRAND NEW, FULL SPEC, AND FULLY GUARANTEED ORDERS OO. OR BANKERS ORAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL POSTAGE AT COST AIR'SURFACE.

VAT

We stock many more items. If pays to visit us. We are situated behind Wafford Football Saturday $9.00 \mathrm{am}-6.00 \mathrm{pm}$. Ample Free Car Parking space avallable.
POLYESTER CAPACITORS: Axial lead type (Values are in μ F)
$400 \mathrm{~V}: 0.001,0.0015,0.0022,0.0033,0.0047,0.0068,0.01,0.015 \% 0$:

POLYESTER RADIAL LEAD (Values In μ F) 250 V :

 $5,000299 \mathrm{p} ; 25 \mathrm{~V}: 470070 \mathrm{p} 220048 \mathrm{p} ; 325 \mathrm{~V}: 200+100+50+100190 \mathrm{p} ; 32+32175 \mathrm{p}$.
TANTALUM BEAD CAPACI-; POTENTIOMETERS:(ROTARY):OPTO
TORS $35 V: 0.1 \mu F, 0-22,033,0-47$,
 47. $10040 \mathrm{p} .90 \mathrm{~V}: 22 \mathrm{uF}, 3320 \mathrm{p} 6 \mathrm{~V}$:
$47,68,100,30 \mathrm{p} \mathrm{3V}: 68,100 \mu \mathrm{~F}$. 20 p

MYLAR FILM CAPACITORS
$100 \mathrm{~V}=0.001,0.002,0.005,0.01 \mu \mathrm{~F}$
$0.015,0.02,0.04,0.05,0.056 \mathrm{uF}$ $100 \mathrm{~V}: 0.001,0.002,0.005,0.01 \mu \mathrm{~F}$
$0.015,0.02,0.04,0.05,0.056 \mathrm{FF}$
$0.1 \mu \mathrm{~F}, 0.29 \mathrm{p}$
$00 \mathrm{~V}: 0.47$.
MINIATURE TYPE TRIMMERS
$2-5 \cdot 6 \mathrm{pF}, 3-10 \mathrm{DF}, 10-40 \mathrm{pF}$
COMPRESSION TRIMMERS
 POLYSTYRENE CAPACITORS
toof to inF $80: 1 \cdot 5 n F$ to 10nF 10D. SILVER MICA (Values in DFF) 3-3. 75, 82, 85, 100. 120, 150, 180 9p each $220,250,300,330,360,390$
16 p each 1000, 1200, 1800, 2000 20p each SOLDERCON PINS \star
E.E. INTRUDER ALARM
All parts now available

\section*{| | Screened | |
| :--- | :--- | :--- |
| | chrome | |
| 2.5 mm | 130 | |
| 3.5 mm | 15 p | |
| MONO | 155 p | |
| STEREO | 32 p | |}

2.5 mm	chrome		body		metal	
	13		10p		${ }^{80}$	
3.5 mm	15		10p		8	
MONO	25		14 p		3p	
Stereo	32		18 p		5p	
DIN		Plugs	Sockets		IIncine	
2 PIN Loudsphr.345 Pin Audio		10		6p		
		13		10p		0

345 Pin Audio.	13p	10p	20 D
CO-AXIAL			
plastic	10p	12p	12p
metal	18p	180	220

PHONO

assorted colours
Meta' Screened

10 D
150
110

BANANA 4 mm	110	$12 p$
2 mm	100	10 p
1 mm	6 p	6 p
WANDER 3 mm	$8 p$	$6 p$

CAPACITO
Dielectric

astic
ody
$10 p$
$10 p$
$14 p$
$18 p$

SLIDER POTENTIOMETER
$0.25 W$ log and linear values 60 mm
$5 \mathrm{~K} \Omega .500 \mathrm{M} \Omega$ single gang
$10 \mathrm{~K} \Omega .50 \mathrm{~K} \Omega$ tual gang
Self Stick Graduated Bezels
80 D
:---
Self Stick Graduated Bezels

Carbon Miniature High Stability, $\begin{array}{cccc}\text { Low noise } \\ \text { RANGE VAL } & 199 & 100 \\ \text { W } 2-2 \Omega-47 M & E 24 & 1.5 p & 10 \\ \text { W } 2-2 \Omega-47 \mathrm{M} & E 12 & 20 & 1.50\end{array}$ $\begin{array}{lllr}\text { W } 2-2 \Omega-47 M & E 24 & 1.5 p & 10 \\ W 2-2 \Omega-47 M & \text { E12 } & 2 p & 1-5 p \\ W 2-2 \Omega 10 M & E 12 & 5 p & 40 \\ \% \text { Metal FIm } 10 \Omega-1 M \Omega 6 p & 4 D\end{array}$
 LW to MW Converter for Radio 4 LW to MW Converter for Radio 4
Complete kit of parts inc. instruc-
tions. 84.95 inc. VAT tions.
SOCKETS TSUPE BOOARD SP changeover centre off
ROCKER: SPST onfof 10A 250 V
ROCKER: Illuminated (white)
\qquad lights when on: 3 A 240 V

News from the Electronics World

WOODEN METAL DETECTOR

Believe it or not, someone has actually gone to the trouble of developing a metal detector for use on wood, sounds daft, doesn't it? Well, things aren't always what they seem, sawmill operators can lose thousands of pounds if a \log or trunk containing some stray metal (nails etc) should come into contact with one of their very expensive saw-blades.

This new all British (and about time too) instrument comes from a company called Protovale Research Lid. It's called the 'Totalscan' and it employs the pulse induction technique to locate very small metal (ferrous or non-ferrous) objects deep inside most non-metallic materials. The unit has only two controls incorporating a 'self-tuning' feature and is powered by re-chargeable Ni -Cad batteries. Signal strength indicated on an built-in meter and loudspeaker. If you're in the market for such a device, why not give Protovale a call at: Unit S11 SE, Rectory Lane Industrial Estate, Kingston Bagpuize, Abingdon, Oxfordshire.

DISCO SYNDRUM

If you have ever wondered how "That Sound" which you hear on a lot of recent disco records is produced, (You know that peuoom-peuoom noise - well, how would you spell it?) featured on "Ain't No Stopping Us Now" "You Can Ring My Bell" and many others). Hobby gives you the answer. The instrument is called SYNARE 3 (Drum Synth) and is marketed by STAR INSTRUMENTS INC.

Although seemingly complicated to operate at first, (having some 11 controls), a few minutes practice with it should find you proficient enough to repeat any required sound within seconds.

With it's futuristic saucer shape and a wide range of control knobs, other effects can be pbtained by controlling oscillators, filters and envelope shapers, the various sounds can then be built up as desired i.e. from thunder to falling rain - to put it mildly.

Insertion of a standard $1 / 4$ in Jack Plug automatically turns it on so don't leave yer plugs in or yet batteries will be flat. (What shape should they be?). For anyone with the required $£ 370.00$, (and that does include a stand) they may be obtained from: Boosey \& Hawkes (St. Giles Music Centre), 16/18 St Giles High St. London WC2 8LN. Our thanks to Sieve Bruce for lending us a set for review.

TRITIUM TIME

Commodore, one of the more reputable (though somewhat conservative) manufacturers of electronic timepieces are proud to announce a new range of competitively priced LCD watches. (Does anyone still make LED watches?) At the lower end of the range is the 5633 Chrono model, all the standard timekeeping functions plus a chrono, measuring down to oneHundredth of a second. Retail price is expected to be as low as $£ 13.00$ or less.

At the top of the range is an interesting looking Alarm/Chrono featuring a Tritium display, a clever variation on the LCD theme involving a very small (and safe) piece of radioactive material illuminating the screen' at night, effectively doing away with the cumbersome backlight. Price again is refreshingly low at around $£ 25.00$.

The third, and intermediate model is the excitingly titled 153A, this boasts a cunning feature called a 'Snooze Alarm', this will bleep at the appointed hour and if it is ignored, will give a repeat performance some five minutes later, there are two options of this model sporting either four or six digit displays, prices are expected to be around $£ 11$ for the four digit version and £ 15 for the six digit model. The three new additions to the range can be seen on the left of the pic, from left to right, 5673 (Tritium display), 153A and 5633. If you have any difficulty in obtaining a particular model. Commodore now live at: 818 Leigh Road, Slough Trading Estate, Slough, Berks.

BOOK REVIEWS

We have had quite a few books come in for review over the past few weeks, so we thought it was about time we did something about it.

Our first offering is titled: Electricity. Principles and Applications. IISBN 07 -055572-9 McGraw-Hill, Price £8.40 Author Richard J. Fowler). It is a very large book by current standards, hard bound and very well presented. It covers all the basics of Electrical theory and progresses into simple electronic principles. The Appendix and Glossary at the back is a superb source for reference and is almost worth buying for that alone. A superb book, well worth adding to your workshop shelves.

Number two this month is called: The Challenge of Microprocessors. (Michael G Hartley and Anne Bickley. Published by Manchester University Press. ISBN 07-190-0757-7. Price £7.95). We thought it was not so much a technical book, rather a look at the way 'micros' will affect our lives in the years to come, definitely one for the sociologists, a bit too heavy for us.

Our old friend Ian Sinclair is responsible for book number three. Electrical \& Electronic Principles ¡ISBN 408-00433). NewsnesButterworth. Price £3.25) Something of a change of style for Mr Sinclair, he is adopting the American presentation which we must confess is quite attractive. The book is aimed at students on TEC course (unit 76/359) but it could equally apply to City and Guild courses as well. A very worthwhile text book for any student interested in electrical/electronic theory.

Lastly, by coincidence we have another TEC course book, called Electronics for Technicians Level 2, this time covering Electronics II 476 / 010. (ISBN 0-340-23441-5 Hodder \& Stoughton. Authors B. Gillman \& B. Hudgell. Price £2.95).

The book delves a little deeper into the world of electronic theory covering such diverse subjects also as, oscillators, logic and power supplies. Semiconductor theory and transistors are also covered in considerable depth. A must for TEC students on this particular course.

ERRATA

We must be getting better only a couple of little ones this month. The Hobbytune first, we omitted to show the connections for the supply connections, these can be taken to the connections on the capacitor C1. The second problem was with the Multi Option Siren, on the overlay diagram Fig. 3. the connection for SK 1 was mixed up with the connection SW1, in fact the wire coming from the junction of R12, R13 should be marked SK 1 not SW1

Lastly we have the problem of the missing Short Circuit. The particular example we gave on page 36 was a case of right text, wrong diagram (or vice-versa, depending how you look at it) anyway this month we've republished both Short Circuits, this time the right way round (we hope).

COMPETITOR

Sorry about the delay in publishing the results of the 'scope competition, we've only just received the prizes from the manufacturers. Full story next month.

Build the World Famous CHROMA-CHIME

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams

- Handsome purpose built ABS cabinet - Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer - Absolutely all parts supplied including t.C. socket - Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- All programming permanently retained is on chip ROM - Can be built in about 3 hours!
- Runs off 2 PP3 type batteries.
- Fully Guaranteed

* Save paunds an narmal retail price by building yourself.

TMS 1000 N - mp6027A Micro- computer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed. New low price only 84.95 inc. p\&p

R/C MODELLERS - LISTEN FOR THE C.B. MENACE GET A 27 MHZ MONITCR

* Audibly confirm your channel's clear.
* Tunes over whole 27 mhz model band. (CB)
* Receives normal broadcast AM/FM bands as well.
* Sensitive with telescopic aerlal.
* Totally portable.
* Runs on standard batteries.

This neat three band Superhet receiver notonly provides an in valuable service checking your channel and TX. but gives normal broadcast reception when you need ll as well
Costing less than a decent Servo, you'll find it cheap and reassuring Insurance!

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE

Please send me
TO: CHROM ATRONICS, RIVER WAY, HARLOW, ESSEX
NAME
ESS

I enclose cheque/PO value \mathcal{E}
or debit my ACCESS/BARCLAYCARD account no

Signature

GHROMATRONICS

GREENWELD
$443 F$ Millbrook Road Southampton Sロ1 DHX
All prices include VAT at 15% - Just add 30p post

COMPONENT CABINET IDEAL FOR THE NEWCOMER TO ELECTRONICS

capacitors, transistors, diodes and I.C. s. All uset capacitors, rransistors, diodes and I.C.s. All usetui tor pursue his hobby without finding himself shon of some vital paris!
All parts contaned in clearly marked bags in a with 9 drawers into which all parts can be nearly located.
If boughr individually parts plus case would \cos over $£ 45$ tuit we are oftering this for ONLY $£ 31.95$ + E1 P\&P. Simply send a cheque or PO fo CONTENTS
200 t/is watt resistors
70 Wire mound resistior
70 Mylor Capacitors
50 Polvester Capacitors
56 Elecirolytic Capacitors
61 Transistors
12 I.C.
20 LE.D.
百

Peice includes current calalogue and Greenweld
pen for reordering supplies. Plus tree surprise gith

VEROBLOC BREADBOARD
New from Vero, this versatile aid for building and testing circuits can accom modate any size of IC: Blocs and be joined 360 cor. Bus strips on X \& Y axis -

SWITCHES

Push-button banks - 20 types listed on Bargain List No 8. free with cat (45p) or send SAE. Samples
W4 733 interlacking $4 \mathrm{PCO}+2$ indepen dent, 70 p
W481 5 interlocking 4PCO 70p Both types supplied with free knobs
V106 DPCO slide switch $23 \times 15 \times 7 \mathrm{~mm}$ 10/£1.20; 100/£9
107 SPCO min slide switch with 2 wire attached. 10/80p 100/£6
W508 SPCO 5A microswitch with 29 mm lever $20 \times 12 \times 6 \mathrm{~mm} 38 \mathrm{p}$ 10/£3.00 W302 Rocker switch on/off 10A white. 22p $10 / £ 1.80$
W305 Rocker SPCO. centre off. 10A rating white. 30 p $10 / £ 2.30100 / £ 19$

VERO OFFCUTS

Packs of 100 sq ins of good size pieces a bout 4×3 " in the following types
$K 5410.1^{\prime \prime}$ copper clad £ $£ .50$
K544 0.1" plain £1.50
Also. pieces $21 / 2 \times 1^{\prime \prime}-10 / £ 1.20100 / £ 9$ $17 \times 33 / 4^{\prime \prime} \times 0.1^{\prime \prime}$ sheets. $10 / £ 16.50$
Large range of Standard Veroboard and boxes/cases in stock. Details in Catalogue $45 p$.

SCOOP!!! Verobox type 2522. unused bu has $31 / 2^{\prime \prime}$ holes in one end and $11 / a^{\prime \prime}$ hole in the other so inslead of $£ 3.96$, we are selling these at $£ 1.85$

THE AMAZING
GREENWELD
CATALOGUE
features include

- 50p Discount Vouchers

Quantity prices for bulk buyers

- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices PRICE $30 p+15 p$ POST

3W Amp Module

Ready built and tested, this handy amplifier will prove very useful around the workshop. Just requires 17 V ac source (and 8R spkr) as bridge rect and smoothing cap are mounted on the PCB. The 4 transistor circuit provides enough sensitivity for most applications. Supplied complete with circuit diagram and wiring details. Only £1.75. Suitable transformer £2.20.

DISC CERAMIC PACK

 Amazing variety of values and voltages from C2.25 1000 £4.00

DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch signal diod about 70% useable devices may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1000$ - or a bag of 2500 for $£ 2.25$. Bag o $10.000 £ 8$. Box of $25,000 £ 17.50$

VU METERS

vo02 Twin type. 2 meters $40 \times 40 \mathrm{~mm}$ and driver board, supplied with circuit and connexion dala. 2.5
V003 New type. just in. Twin type moulded suitable circuit supplied) $£ 2.50$

CLOCK CASE BARGAIN

272 Oval format, overall siz $130 \times 68 \times 87$ meep, with buil in sland Rear panel

AERIALS

$\times 901$ Telescopic 8 section 970 mm long extended, .175 mm collapsed. Swivel joint 28 A fixing hole in base, $75 p$
MW/coupling coils, $\times 9 \mathrm{~mm}$ LW, Moveable 64 p $\times 905$ As abo
rogether on moveable former. $55 p$

TRANSFORMERS

PA 100 V line speaker type. Pri tapped 0.625 10 C15 100 f 110 Mains or 3 sec indings Mains pri, 3 sec windings. 8, 25 and 40 V 8 to 73 V is therefore obtainable $57 \times 48 \times 36 \mathrm{~mm}$ with flying leads. $£ 1.50$ Mains prı. sec $40 \mathrm{~V} @ 250 \mathrm{~mA} £ 1.75$

BUZZERS \& MOTORS

z401 Powerful 6 V DC, all metal construction. $50 \mathrm{~mm} \mathrm{dia} \times 20 \mathrm{~mm} 70$ p 2402 Miniature type.
$22 \times 15 \times 16 \mathrm{~mm}$. Very neat 65 p
$\mathrm{Z4} 50$ Miniature 6 V DC type 32 mm dia $\times 25 \mathrm{~mm}$ high. with 12 mm spindle. Only $£ 1$
$Z 451 \quad 12 \mathrm{~V}$ high torque motor 30 mm dia x 40 mm high, with 10 mm spindle. 65 p 24526 V DC motor with gearbox giving final shaft speed 700 rpm . Spindle is threaded OBA. Ex-equip ह1
2453 As above, but 300 rpm and unthreaded spindle. £1

Hebot

Combine economy and efficiency, form and function in a realistic, revolutionary and robust robot ready to roam around your residence.

Discussing HEBOT in our workshop. John FitzGerald (seated) designed and buitt it, with Henry Budgett (Computing Today), Halvor Moorshead (HE's Editor) and Steve Braidwood (Assist ant Publisher). In case you've any doubts, the HEBOT is the one on the table.

OF COURSE, the pressing question is, 'will HEBOTs ever replace the family cat?'. Well. We are happy to be able to tell all the feline fanciers out there that the days of the family moggy are not numbered yet. Nonetheless, HEBOT represents the most sophisticated and versatile robot project to be offered to the hobbyist to date throughout Europe. (The Americans have a small robot but it requires an umbilical link to a controller. The Japanese probably did it smaller and cheaper five years ago.)

Hobby Electronics has co-operated with Remcon Ltd, one of the country's leading manufacturers of radio control equipment, to produce a 'classy chassis' we feel sure will become a 'standard' for many years to come

The cornerstone of the design is a hexagonal aluminium chassis pan which carries the micro-drive units, batteries, sensors and PCBs on which are mounted the electronic components. We tried a number of different collision sensors and discovered, as Edison
used to put it, an awful lot of ways NOT to do it. Our prototype features microswitches whose lever arms have been extended with pre-formed lengths of piano wire. However, the production kits from Remcon will probably feature sensors mounted integrally with the chassis pan. Another point worthy of note is our use of a perspex cover for the prototype. The production kit will feature a pre-formed three piece aluminium cover as the perspex version costs more than all the other components put together.

The microdrive units feature a fully enclosed gearbox and five pole motor with the drive wheel mounted on a steel shaft integral with the gearbox. Typical motor drive current is around 150 mA giving between one and two hour's life from 450 mAH capacity nicad cells (AA size). The chassis can turn on its own axis and will carry a payload of up to five pounds weight. Previously published robot designs in other magazines have been let down by poor mechanical design or the use of
difficult to obtain or reproduce electronic components. The precision engineered design from Remcon which has resulted from our consultation with them removes one of the main pitfalls of any project of this type

SUPERLATIVE

If HEBOT's chassis is good (which it certainly is), then words cannot do justice to the electronic design. Though composed of largely conventional circuit elements, the circuit represents a breakthrough in systematic design facilitating development and operation.

The novel feature of this system is the separation of executive and control signals. In a maximal system, up to eight pairs of motor control signals may be present simultaneously with HEBOT 'choosing' between them according to the state of 'priority' input sense lines. A possible arrangement might be

7	\uparrow
6	external control
5	\downarrow
4	'avoid' manoeuvres
3	tracking
2	searching
1	random walk
0	

Level seven has highest priority and zero lowest priority. Assuming HEBOT was not under external control and was neither tracking nor searching then a random walk would be executed. Following any collision, priority sense input three would become active and HEBOT would manoeuvre himself out of trouble before returning control to level zero; random walk. Of course, there is nothing special about the control signals chosen

Our prototype chassis showing micro drive units.

We mounted the PCB above the micro-drive units. The batteries are sited underneath.
and any group of signals could be assigned priorities and connected to the appropriate inputs. Control levels may vary between +5 V i Full forward) and -5 V ifull reverse) with intermediate voltages giving variable speed and zero volts halting the machine. As described here, HEBOT executes all manoeuvres at full speed

We are presenting HEBOT in three parts. This article deals with simple forward motion and manoeuvres following collisions. Part two will describe how to make HEBOT sensitive to specific sources which it will approach or flee from. In part three HEBOT will be internally sensitised to monitor the state of charge of his battery supply and when necessary find and use the recharging station.

HEBOT is an open-ended project whose scope is limited only by your resources of imagination, skill, time and (inevitably) money. Accordingly, the schedule may be changed to accommodate design developments and should in any case be used only as a springboard for your own ideas

CONSTRUCTION

The chassis, aluminium cover and mechanical components are available from Remcon. The electronic components are mounted on one PCB which is supported from the chassis pan by plastic 'clik-fit' pillars

There are a large number of wire links on the PCB which MUST be soldered into place first as many of them pass beneath components. Integrated circuit sockets are recommended for the IC's and normal CMOS precautions should be observed to avoid destruction of the chips by static charges. Flying leads are used to interconnect some of the IC's and should be soldered into place after the other components have, been mounted but before inserting the chips. It is impossible to give precise constructional details for this project which ideally will be developed by the constructor. However, you should find our photos helpful.

If, initially, only four inputs are required then IC5 may be omitted. Uncommited inputs of IC3 should be tied low (to the -5 V rail) and not left floating. We used heat sinks on the motor driver transistors though they hardly get warm at all.

HEBOT opens the door to home robotics. The constructors of today are the engineers of tomorrow. There is not a moment to lose.

How it Works

Circuit operation may be most easily understood by considering the operation of three units separately; the motor servo amp, signal multiplexer and manoeuvre logic. Power for all three is derived from two five volt batteries. If the voltage seems strange, it is because each battery is made from four nickel-cadmium (nicad) cells each having a nominal voltage of 1.25 volts. You do not have to use nicads, ordinary HP7 dry cells will power the circuit quite happily though battery life will be restricted to a couple of hours' operation or less.
The integrated circuits are powered from plus and minus five volts giving an effective voltage of ten volts. The junction of the batteries (0 V) is used only as a bias point for the non-inverting inputs of ICl and IC2 and as a return for the motors.
The servo amplifiers formed around ICl and IC2 could hardly be simpler. Each op-amp functions in a standard inverting amplifier configuration with a gain of one (ie the output voltage equals the input voltage but is of opposite polarity). Transistors Q4, 5 and Q6, 7 function as complementary emitter followers and supply the motor drive current; about 150 mA . ICl and IC2 deserve a special mention. These chips are BIMOS op-amps and feature CMOS output stages enabling the output to swing very close to the supply rails, very important in this application. Ordinary 741 op-amps could be used but would have a very limited and unequal output voltage swing giving low motor drive and loss of torque. The 3130 is a high speed uncompensated device and capacitors C1, 2 are essential to prevent high frequency oscillation which would cause excessive dissipation in the semiconductors and could result in overheating in the motors. Using the circuit shown and our PCB no problems should be experienced.

Control voltages are applied to the servo amps via input resistors R1 and R2. If you follow the connections from these resistors, you will see that they disappear mysteriously into IC4 and IC5. In fact these chips do not alter the control voltages passing through them at all. They are simply multiplexers; an electronic rotary switch used to select control signals. Each chip functions like a four-way two pole switch whose 'position' is determined by the state of three control lines at pins $6,9,10$. The binary 'address' on pins 9 and 10 selects one pair of four pairs of inputs. The most significant address line from IC3 is used to select either IC4 or IC 5 by driving the 'enable' inputs of those chips.

As this signal is inverted by Q1 before being passed on to IC5, only one chip is enabled at any time. The disabled chip behaves as though it were a disconnected switch and exhibits a very high resistance between all inputs and outputs. This arrangement enables any pair of eight possible pairs of control signals to be selected according to the control signals from IC3 and used to drive the servo amps.

IC3 is an eight-input priority encoder. The operation of the chip is quite straightforward. There are eight individual inputs and a single 'enable' input (pin 5) which is tied high to enable the chip. The eight input lines should be held normally low. When any input is asserted high (ie connected to +5 V), the group select (GS) output goes high, enable (E) output goes low and the binary address of the selected input appears on pins 9 (lsb), 7,6 (msb). For example if input ' 3 ' (pin 13) is asserted high then 110 will appear on pins 9,7,

[^0]100
M=X1000000
G = X 1000000000
Dividers
u= \div1000000
n}=\div100000000
p = \div1000000000000

```

Where the numerical value includes a decimal point the traditional way of showing it was, for example. 4.7 k . Experience shower! that printing errors occurred due to acridental marks being
mistaken for decimal points. The Standard now calls for the ex-suffix to be used in place of the decimal point. Thus a 4.7 k resistor is now shown as 4 k 7 . A 2.2 uF capacitor is now shown as 2 u 2 etc .

Some confusion still exists with capacitor markings. Capacitors used to be marked with multiples or submultiples of microfarads - thus 0.001 uF, 470 uF etc. Markings are now generally in sub-multiples of a Farad. Thus
1 microfarat \((14)=1 \times 10^{-6} \mathrm{~F}\)
1 nanotarad \((1 \mathrm{n})=1 \times 10^{-9} \mathrm{~F}\)
1 picofarad \((1 p)=1 \times 10^{-12} \mathrm{~F}\)
OV on our circuits in this series means the same as - ve lan abbrevia tion for 'negative'.

Unless otherwise specitied all components in our drawings are shown as seen from above note however that
component manufacturers often show them as seen looking into the pins.

Pin numbering of ICs - with the IC held so that the pins are facing away from you and with the small cut-out downwards pins are numbered anticlockwise starting with pin number 1 at bottom right.

The thin line on a battery schematic drawing is positive ( + ve or just + ).

If a circuit won't work the most probable causes of trouble in the most probable order of occurrence are:-
(a) Components inserted the wrong way round or in the wrong places
(b) Faulty soldering.
(c) Bridges of solder between tracks (particularly with Veroboard) breaks in Veroboard omitted and/or whiskers of material bridging across Veroboard breaks. -(d) Faulty components

\section*{CMOS IC PIN-OUTS}

As you will probably realise there are several hundred different types of CMOS IC. To publish the Pin-Out diagrams of them all. would require a book larger than HE itself, let alone an eight page Data Supplement.

So with the help of our learned friends from the HE workshop we've got together all of the most commonly used CMOS IC Pin-
outs and tried to cram them into the following two pages.

Several of these ICs may be new to you but don't worry, if we haven't used them already you can be sure we will be doing so in the near future. Next month we will be giving the same treatment to the multitude of ICs that belong to the TTL family.

CD 4000A DUAL 3-INPUT NOR GATE PLUS INVERTER


CD4002A DUAL-4-INPUT NOR GATE


CD4009A, 4049A HEX BUFFER CONVERTER - INVERTING


CD4007A DUAL COMPLEMENTARY PAIR WITH INVERTER


CD4016A, 4066A QUAD SWITCH


CD4001A QUAD 2-INPUT NOR GATE


CD4008A 4-BIT ADDER WITH PARALLEL CARRY


CD4013A. DUAL D-TYPE FLIP-FLUP WITH RESET




\section*{CE}

Send today cheque/postal orde? to -
COOK ELECTRONICS
304 A HIGH STREET, WATFORO, HERTS. WD1 2JE

OHIO SCIENTIFIC Superboard II assembted B basic 4 K ram \(\mathrm{E} 217+\) VAT
£149, pim 200 € 52.69 New 10 MHz scope E3.40, connectorkit 111 .27. Microvis, adapto adaptor \(£ 6.88\), pdm 35 £29.76, case \(\mathbf{C 3 . 4 0}\). dm 350 E71.B2, dm 450 £102.17 dim235 252.66 , rechargeable balts \(\mathbf{e 7 . 9 9}\) 1or + and COMPUTER GAMES Chess Challenger 7 £a 4 Chess Challenger 10 £139.10. Voice Challenge £239. Chess Champion 6 £61. Atari vide compunter E147. Cartridges \(£ 14.32\).
COMPONENTS \(1 N 4148\)
0.9p.
NAOO
 ip, 0.8 p for \(50+\) of one value. 16 V electrolytics
\(.5,1,2,5,10,22 \mathrm{mi}, 5 \mathrm{p}, 100 \mathrm{mf} 6 \mathrm{p}, 1000 \mathrm{mt}\) 10p. 110 Foci \(\mathrm{E1.30}\). Dalo pen 84 p . 40 sq ins
pct 66 p . Polystyrene capacitors E 1263 V 10 to 1000 pt \(3 \mathrm{p} . \operatorname{In2}\) to 10 n 4 p . Ceramic capacitors
 10 33v 7 p. Presel pors submin 0.1 W 100 to 4 M 7 65.27. AY \(3-8600+\) hit E 12.98 . Stunt Cycle Chip + kut E16.72. AY-3-8603 chip \(£ 13.63\). TRANSFORMERS \(6-0.6 \mathrm{~V}\) 100ma \(76 \mathrm{p} .11 / \mathrm{am}\)
\(£ 2.60 .9-0.9 \mathrm{~V} 75 \mathrm{ma} 76 \mathrm{p} .1 \mathrm{a} £ 2.22,2 \mathrm{a} £ 2.89\).
 IE AUDIO AMPS
JC20 10W E3.14.

BATTERY ELIMINATORS 3-way type \(6 / 71 / 2\) 94 \(300 \mathrm{maz} £ 3.14\). 100 ma radio type with press MDUt. OUTPUT \(41 / 2 / 6 / 71 / / 19 v 800 \mathrm{ma}\) E2.66. BATTERY ELIMINATOR KITS 100 ma radio types with press-stucs \(41 / 2 v \in 1.49 .6 \mathrm{v} £ 1,49,9 \mathrm{v}\)
\(£ 1.49,41 / 2+41 / 2 v £ 1.92,6+6 \mathrm{v} £ 1.92,9+9 \mathrm{v}\) E1.92. Stabilized 8 -way types \(3 / 41 / 2 / 6 / 7 y_{1 / 9} / 9 /\) \(12 / 15 / 18 \mathrm{v} 100 \mathrm{ma} \in 2.50\). \(1 \mathrm{Amp} \mathrm{E5} .10\). Stablized power kits \(2-18 \mathrm{v} 100 \mathrm{ma}\) £2.98, 1.30 v
\(1 \mathrm{~A} £ 5.95,1.30 \mathrm{v} 2 \mathrm{~A} £ 11.24 .12 \mathrm{v}\) car converion \(6 / 71 / 19 \mathrm{~V} 14 \mathrm{E1.35}\).
T-DEC AND CSC BREADBOAROS S-dec E3.79, t-dec \(£ 4.59\), u.deca \(\mathbb{E} 4.69\), u-decb
 BI-PAK AUDIO MODULES SU5O E24.03. A160 E4.97. paloo \(£ 17.33\). spm80 E4.57. bmi 80 £6.08, stereo 30 £20.57. AL30 \&4.04, pal2 £7.77. ps 12 £1.42, ma60 £36.23.

\section*{SWANLEY ELECTRONICS}

\author{
Oepl. HE, 32 Goldsel Road, Swanley, Kont
} Post 30 p exura. Prices include VAT unless stated, Othicial and overseas orders welcome. Lists 24



\section*{MiniM}


\section*{LET US TURN YOUR HI-FI ON with our DIGITAL TIMER}

The Minim Digital Timer is an accurate 24 hour clock, with the facility to switch mains operated equipment ON and OFF at independently pre-se times; it can switch appliances up to 1.5 kW - the biggest hi-fi, TV, heaters lights, etc. It is very easy to set the time and lights illum inate to clearly show the settings. Housed in an attractive teak veneered cabinet size \(7 \mathrm{in} . \times 5 \mathrm{in} . \times\) 2 in . approximately

Price \(£ 39.95\)
Please send me further details of your Digital Timer and other products in your range

Name
Address

\section*{*MINIM AUDIO LIMITED}

Rise Road, Burnhem, Slough SL 17 NY
Telephone: Bumham 63724

LCD CHRONO


We feel we ve got to tell you carefully about this offer. Why? Because our price is so enormously lower than anywhere else you may suspect the quality.
The display is LCD and shows the seconds as well as the hours - and minutes - press a button and you'll get the date and the day of the week.

Press another button for a couple of seconds and you have a highly accurate stopwatch and hundredths of a second displayed and giving the time up to an hour. There is a lap time facility as well - and of course a back light

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed.

ALARM-CHRONO LCD


This new addition to our unbeatable selection of bargains is no ordinary LCD watch. It's a slim, multi-function, dual time chronograph alarm watch, no less.

This model will show hours, minutes, seconds, date, day of the week, stop watch, split time, alarm and alternate dual time zone - not all at once, of course. There is also a night light.

Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The day of the week is indicated by a flag. When used as a stopwatch, the maximum count is 0.1 secs. short of thirteen hours.

\section*{£11.95}

\section*{£19.95}

To:
LCD Watch Offer
HE Magazine
145 Charing Cross Road
London WC2H OEE
Please find enclosed my cheque / PO for £11.95 (payable
to HE Magazine) for my LCD Chronograph
Name . . . . . . . . . . . . . . . . . ......... . . . . . . . .
Address

To:
ALARM / CHRONO LCD WATCH Offer
HE Magazine
145 Charing Cross Road
London WC2H OEE
Please find enclosed my cheque / PO for \(£ 19.95\) (payable to HE Magazine) for my Alarm/Chrono LCD watch

\section*{Name}

Address


THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price
The Hanimex HC-1 100 is designed for mains operation only \((240 \mathrm{~V} / 50 \mathrm{~Hz})\) with a 12 hour display, AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim-Bright display function.
Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock A 9-minute 'snooze' switch is located at the top.
An example of this clock can be seen and examined at our Charing Cross Road offices.

To:
CLOCK RADIO Offer
HE Magazine
145 Charing Cross Road
London WC2H OEE
Please find enclosed my cheque/PO for £17.95 (payable to HE Magazine) for my Clock Radio.

Name
Address

To: Hanimex Alarm Offer
HE Magazine
145 Charing Cross Road
London WC2H OEE
Please find enclosed my cheque / PO for £10.60 (payable to HE Magazine) for a Hanimex Digital Alarm Clock.

Name
Address


\section*{Gar Audio}

\section*{Manual}

MW/LW
Full medium and long wave tuning. Complete with speaker and mountings. Suitable for positive or negative chassis. Latest


Push-Button MW/LW
One LW, four MW buttons plus manual tuning. Complete with speaker and moun-
tings. Latest model, negative chassis only.

\section*{\(£ 15.95+81.00\) Post}

\section*{Stereo FM/ \\ Casselte}
+ MW
Standard cassettes and FM in stereo plus medium wave. Tone and balance conirols. Fast forward facility on tape. Adjustable shafts. Suitable for 4 or 8 ohm speakers (not supplied). This model is discounted else-
where at \(£ 50\) up.
\(£ 40.95\)
\(£ 1.00\)
+ Post

\section*{Stereo \\ Speaker Sel}

Suitable for abovz stereo unit. Good quality in surface mounted casing, 5 W nominal. 8W peak the goods but we're going to tell you anyway! We have rejected eight clock radios for Marketplace, they were all cheap enough but the quality was so poor that we couldn't have lent our name to them. However, we are now able to offer another portable LCD Clock Radio to you which meets our standards

The clock is a 12 -hour one with AM/PM indicated and a back light. The radio is Medium Wave with very nice quality for a small speaker. The alarm can be either a beep-beep type or the radio, there's also a snooze facility.

The cylindrical construction is in keeping with the very modern styling. The tuning dial is actually incorporated into one of the end caps!

We won't even mention the RRP - but just check on comparable prices - you'll find ours a bargain.
An example of this Clock Radio can be seen and examined at our Charing Cross Road offices.

\section*{Lelescopic Car Antenna}

Multi-section standard iype, suitable for angled mounting with locking key.

\section*{\(£ 1.60\) + 30p Post}

\section*{Metal Detectors}

Treasure Tracer Mk III
The original Treasure Tracer. Sales exceed 7,000. 5-transistor circuit with Varicap tuning. Sensitive stable BFO design. Built-in speaker and earphone. Fitted with Faraday shield. Kit supplied with pre-built search head.
Kit. \(£ 18.60+£ 1.00\) Post
Built \(£ 23.95+£ 1.00\) Post
* Induction Balance Model

Built with sensitivity up to 10 in on single coin; fitted with speaker and meter; PP3 battery; 7 in dia. search head. Telescopic stem. Excellent pin-pointing, positive reaction to non-ferrous, negative reaction to iron. This model's normal price is £39.95!
£24.50 + £1.00 Posi
All goods guaranteed one year 10 -day money-back offer. Goods ex-stock at time of going to press. Callers by appointment only please Send s.a.e. for illustrated leaflet.

\section*{Minikits Electronics Ltd.}

6H Cleveland Road

\section*{S. Woodford}

London E18 2AN

\title{
TV \\ \\ Broadcasting
} \\ \\ Broadcasting
}

The Inquisitive Rick Maybury was let loose at the BBC earlier this month, apart from sitting in Angela Rippon's chair he managed to find out about one or two things on how TV programmes are made.


WHEN WE BEGAN our research into TV Broadcasting we had no idea just how much unseen technology went into the making of even the most basic TV programme. Our 'education' began with a visit to the BBC Television Centre in Shepherd's Bush, London. On its own this Fifties designed and built building is enough to set the imagination going. After only half an hour one is left with the nagging question, do even they know where all the wires go? If there is a circuit diagram somewhere for Television Centre it must bear more than a passing
resemblance to the proverbial explosion in a spaghetti factory. Perhaps that's a little unfair though, everybody and everything 'moves' with a quiet efficiency that belies the incredible amount of thought, technology and organisation behind the scenes.

We could never hope to deal with the electronics of even the most humble monochrome monitor in such a short space so we'll try to outline some of the philosophy behind what must rank as the world's foremost TV service.

\section*{TELETEXT TO TELECINE}

Basically there are three ways an image can end up on the screen of a domestic telly. The first and most obvious method is the directly processed 'live' or electronically recorded (Videotape) TV picture. The second method is essentially the same except that the pre-recorded image is held on photographic film and converted into a TV picture with a device called a Telecine. The third, and most recent arrival on the scene is the 'Electronic' image, the most familiar example being the British developed Teletext system or to give it its more familiar BBC name CEEFAX. (The IBA operate an almost identical service called ORACLE). This system is purely electronic in that at no point are photographic techniques used to generate the final picture, instead it is done digitally by computer. (Actually CEEFAX does have the facility to 'Digitise' a picture but as it doesn't move it still doesn't count).

Looking around the CEEFAX department confirmed an already growing suspicion that the subject of Teletext was worthy of a feature all of its own, look out for that, hopefully in the coming months.

\section*{PICTURE GALLERY}

Taking the simplest case of a live TV programme, the Weather-say, there may be up to 30 or 40 people directly concerned with getting that picture of Bert Foord to your screen and that doesn't include the small army of back-up personnel involved in scenery, make-up and maintenance etc

Three main departments are responsible for getting that programme on the air. During the transmission (in the case of a live programme) or recording of a programme the three departments all come together in a large glass fronted sound-proofed room overlooking the studio called the 'Gallery.' The Gallery is partioned off into three rooms for each of the departments.

The first and doubtless the most busy is the production control room. This is where everything gets coordinated, all of the camera direction, picture direction, special effects (wiping, fading etc) are controlled, as well as the million and one other things that the producer and director are responsible for artistically, rather than electronically. The second, and probably most impressive from the button pusher and knob twiddler's point of view is the Lighting Control Room. Apart from controlling anything up to 200 separate lights or 'Lumieres' the lighting controller also has the final say in the colour setting of the transmitted picture, able to make quite drastic adjustments to the colour balance. Modern lighting desks now feature computer control whereby, rather than setting the lights for each scene over and over it can be optimised during rehearsal and then stored in the computer's memory and recalled again later during recording or transmission.

The third department is the Sound Control. Banks of faders and knobs, rows of tape recorders, speakers and some rather venerable (but we're assured yet to be equalled) 'gramophones' are crammed into the smallest room of the Gallery. Here all of the incoming sound signals are duly dealt with, balanced, compressed, expanded and generally fiddled about with until it matches the Beebs stringent requirements. As well as dealing with the studio sound the Sound Control is also responsible for adding any sound effects or incidental music that may be required


The shape of things to come. As the news services become more mobile the need for smaller and ligher colour cameras offering 'studio' quality increases. This is a 'Minicam' fto use the American terminology) from Phillips. The Vidicons can be seen at the top and inside the camera body.


Shown here is the BBC's Research Department's new digital audio tape recorder and mixer desk soon to become a standard feature of sound processing studios.


The Sound Desk, this one is a condensed version used in Outside Broadcast Vans for mobile work.


A Philips 'Minicam' attached to a cameraman. The collection of straps and links ensures the maximum manoeuvrability with the minimum of strain on the operator.


Close up of a Telecine camera and projector, the projection equipment can be seen inside the open cabinet, the camera is contained inside the locker on the left.


The colour film processing equipment at the BBC, essential for fast turn around of material.

Each studio has a camera control department ensuring that all the studio cameras are correctly aligned prior to transmission or recording. Whatever you may say about the content of the programmes on the telly, the \(B B C\) go to incredible lengths to ensure the quality of the transmitted picture is second-to-none

\section*{ADDITIONAL MATERIAL}

Of course this is the simplest case, in reality most programmes are recorded and programmes like the news may use material from a variety of sources including 'live' action, film and Videotape. The coordination of all these elements must be a major headache to all concerned, it is to their credit that 'mistakes are so few and far between. perhaps we take it all too much for granted.

In general though, most 'home grown' material is pre-recorded on video tape or film. Material shot in the studio is usually commited to video tape and it is the BBCs proud boast that they are able to 'set up' a complete studio, take all of their shots (even allowing for foul-ups) and clear it all away all in a working day. Take it from us that after seeing a set for a production of the. space serial 'Blakes Seven' that takes some organisation!

Obviously regular programmes like the News have their own-'dedicated' studios. The BBC News studio is almost completely remotely controlled, apart from the Floor Manager and a couple of others operating 'Auto


This rather unwieldly looking piece of apparatus is called a 'Steadicam' camera steadying device with a lightweight electronic camera attached.

\section*{TV Broadcasting}

Cue' cameras and caption boards the studio is deserted. Likewise in the Gallery an abbreviated version of a full size studio controls the programme, everything is in miniature, running like clockwork under the watchful eyes of the producer and director.

\section*{GETTING IT ALL TOGETHER}

All of the signal sources come together in the Central Control Room, because several different methods of signal generation are used as well as up to ten different cameras for studio work incredible problems arise in keeping everything synchronised. Inside the control room lurks the central Sync generator based on a Rubidium oscillator. Using equipment with this kind of accuracy leads to all kinds of other problems. Because the various studios are spread about the site they are all different distances away from the Central Control Room, sometimes only a matter of feet but this is enough to cause a slight jitter when switching from studio to studio. To counteract this problem the BBC engineers have adopted the crude but effective method of connecting each studio to the central control room with cables of the same length. This means that studios close to the control room have an excess of cable which is neatly coiled up in racks in the control room itself.

Apart from acting as a switching centre for all of the local signal sources the Central Control Room coordinates all of the regional inputs to the network and outside broadcasts from remote locations via land line


Telecine equipment used to convert movie film into an electronic image, it is nothing more than a conventional movie projector coupled up to a colour camera.


The BBC Regional News Room, in front of the presenter are banked monitors and Auto Cue displays.


Close up of part of the Production Control Desk in the Gallery.


An outside broadcast camera on a riser. By using a clever system of levers and counterbalances the camera and operator can be effortlessly raised and lowered.


ENG or Electronic News Gathering \(O B\) vehicle being set up for a microwave link with the studio. The BBC are currently experimenting with this method of news presentation.

\title{
TV Broadcasting
}


Cameraman's eye view on a riser, his hand rests on the main focus/pan/tilt/and zoom control.


The riser fully extended, the hydraulic rams can be seen under the upper arm, a scene from this vear's Chelsea Flower Show.
and microwave link. Large display boards monitor the network indicating any faults that may have occurred in the system. Behind the control room lurks the new CEEFAX computer an impressive looking machine which we hope to look at in more detail in a future issue. Also to be found in this are two interesting devices used by the \(B B C\) to carry information and control remote equipment. Like the teletext system it uses unused portions of the TV signal to carry coded signals. The first is called PRESSFAX and works in a very similar way to CEEFAX. It contains all of the up-to-date information on programme
running times, alterations, cancellations etc, purely on an internal basis. The second system is called ICE and this is a control signal that can be used to activate VTRs or transmitters on cue.

Well, that's about as far as the TV signal goes within the studio complex from here it is transmitted as a standard one volt video signal via land line to the transmitter site.

\section*{TRANSMITTER TO TELLY}

This is the easy bit, once the processed video signal leaves the control room it has had all of the synchronisation pulses inserted along with the colour information and Teletext signal so very little signal manipulation is carried out from now on.

Upon arrival at the transmitter site the composite video signal is modulated onto the UHF carrier (most of which is suppresed at the output) and fed to a suitably sited aerial, many are not un-manned (or un-womanned ????) and operate under instruction from the ICE equipment.

From then on its through the air, down the aerial and on to your screen but that's a different story and if the last three paragraphs seem a bit brief you'll have to wait until next month to find out exactly what happens between the transmitter and receiver.

HE
The author would like to thank Gwyn Morgan and the staff of the \(B B C\) for their kind help in preparing this article.

\title{
Kit Review CAR ANTI-THEFT ALARM
}

\section*{No need to become a statistic, this month's car alarm kit should protect your car against even the most determined car thief or casual 'joy rider'.}

HOPEFULLY, THIS IS ONE KIT that will never have to work. Official sources now reckon that a car is stolen in Britain at the rate of about one a minute. So it would seem sensible to take at least some precautions to protect your vehicle. It's probably quite true to say that there's not much you can do about a really determined, professional car thief but a well designed (and installed) burglar alarm should at least offer some protection, and will certainly prevent the casual "joy rider" from stealing your car.

At first glance it would seem relatively easy task to design a car alarm, a few micro-switches here and there and 'Bob's your uncle'. Such a system is fine but it still won't guard against anyone pinching your expensive car, radios and stereos etc. (Shame on the man who said \(C B\) rig, you shouldn't have one of those anyway).

\section*{SENSORS}

Our kit this month is a particularly well-designed and thought out car alarm. It can operate in three modes, open-circuit loop, closed-circuit loop and voltage sensing. Just in case an enterprising thief should try to disconnect the car battery, it also has a provision for an internal 'back-up' battery. The open circuit loop is ideal for connection to courtesy light switches on doors, bonnet and boot, extra switches are supplied with the kit. The closed circuit loop is intended for use with inertia type switches or any loop or wire that may be cut or broken. The voltage sensing circuit will activate the alarm, if for instance, it is connected to the ignition coil 'and the ignition is switched on.

With all these options it would be very difficult for any


\footnotetext{
Unpacking the kit reveals a very generous bundle of hook-up wire, show here are all of the components, PCB and case. The very sturdy looking Yale Keyswitch in the foreground should be enough to deter most thieves on its own.
}
kind of thief to penetrate all those defences, so enough of theory and on to the kit in question.

\section*{AN ALARMING EXPERIENCE}

It comes from a company called CEH Audio Visual, new to us we must admit. Our review kit was a pre-production prototype so if we're a little unkind about the paperwork, please bear in mind that ours was a preview model and we're assured that the actual finished product will be complete.

Unpacking the kit, we were confronted by a large assortment of connectors, wires and switches, after a fair amount of searching we finally discovered the electronic components and glass-fibre roller tinned PCB. Without waiting to be asked all this was rapidly assembled (patience is not a virtue in great abundance amongst members of the HE staff)


The completed Car Alarm prior to being cased. The use of spade type connectors enables the aiarm to be swiftly and reliably installed. The production version will use sockets for the ICs and the PCB will have the components position clearly marked.

The electronics are quite 'extensive', especially considering the basic simplicity of the circuitry, no less than three ICs, thirteen diodes, a handful of resistors and capacitors, a relay and three transistors. Building time for the electronics should be no more than one hour. Once completed the PCB fits into a tough looking, water tight, plastic box. Only the 12 spade connectors protrude through slots cut in the front panel of the case.

Once you have got this far the rest is up to you, the basic kit is more than adequate to protect most cars. Traditionally the weakest link in any alarm is the on-off switch, this is taken care of by a very strong looking Yale keyswitch. The extra switches supplied would probably be best sited on the boot and bonnet. Another welcome touch was the addition of those 'in circuit' connectors that can make connections to leads without breaking the circuit. The wire to be connected is simply pushed into one side of the connector and the wire to be joined into the other side, then the two halves are simply squeezed together, neat and simple.

\section*{IF IT WORKS}

Of course it works but without any technical information it's a bit difficult to explain exactly how. From looking at the circuit board it would seem the logic is fairly straightforward, based as it is, on three 4001 quad. NOR' ICs. Part of the circuit forms a timer with a two
minute period, this determines how long the horn (or warning device of your choice) will sound after the alarm, has been triggered, provided of course that the cause of this alarm has been rest. Again we're assured by the distributors that the production version of the alarm will be complete with circuit diagram and a very comprehensive technical back-up.

Installation in any burglar system represents the majority of work, the more care that is taken with installation the more reliable the system as a whole should be. Pay particular attention to concealing the cables, CEH thoughtfully provide plenty of hook-up wire so unless you're fitting a London bus you shouldn't need to buy anything else, apart from any additional sensors that may take your fancy (or suit your pocket.)

One of the most irritating aspects of any alarm set-up is the possibility of false alarms, they usually occur at the most embarrassing moment (four o'clock in the morning is a favourite time), as it stands we cannot see this system being any trouble whatsoever, provided reasonable care is taken during building and installation. So before you tackle a project like this sit down and plan exactly what type of protection you will need.

\section*{GRIPES}

Our only real moan arose from the omission of technical information, this we realise is only because of our particular model being a prototype. The installation notes are very comprehensive and leave nothing to chance. All in all a very good kit.

Just in case you're a little more ambitious CEH will 'customise' alarms to your requirements, or if you want to go it alone they can supply a variety of additional extras, switches, inertia, reed etc, electronic sirens and advice on individual installations.


The mass of connectors supplied with the kit. The connectors at the top of the photograph are the type that can 'patch' into a wire without actually breaking the inner conductor, very useful in this kind of installation.

As a postscript we have heard from the manufacturers that the alarm could easily be adapted for use in boats, caravans or even houses, they will be glad to offer any advice concerning a particular requirement.

The CEH Alarm is available exclusively from NIC Electronics. 27 Sidney Road, London N22 4LT for a very reasonable \(£ 18.90\), all inclusive of VAT, post and packing.

HE

\section*{Hobby Electronics Book Service}

\section*{POPULAR ELECTRONICS BOOKS}
Sinclair, I. R., Introducing Electronic Systems ..... £1.80
Sinclair, I. R., Introducing Amateur Electronics ..... £1.55
Sinclair. I. R.. Electronic Fault Diagnosis ..... £3.45
Sinclair, I. R.. Repairing Pockel Transistor Radios ..... £2.50
Sinclair. I. R., Oscilloscope In Use ..... £3.00
Sinclair, I. A... Understanding Electronic Components ..... \(£ 4.00\)
Sinclair, I. A., Understanding Electronic Circuils ..... E4.00
Kitchen, H. T.. Handtools For Electronic Workshop ..... £2.75
Kitchen, H. T.. Electronic Test Equipment ..... \(£ 5.00\)
Capel. V., How To Build Electronic Kits ..... £2.20
Darr. J.. How to test almost everything electronic ..... E3.50
Brown. R. M., How to read electronic circuit diagrams ..... £4.10
AUDIO
Earl. J., Audio Technicians Bench Manual ..... £3.50
Earl. J., Pickups and Loud Speakers ..... £3.50
Earl. J., Tuners and Amplifiers ..... £3.00
Earl. J., Cassette Tape Recorders ..... £5.25
Earl. J., ABC of Hi-Fi ..... £4.25
Capel, V., Microphones In Action ..... £3.00
Capel, V., Improving Your Hi-Fi ..... \(\{3.50\)
Capel, V., Creative Tape Recording ..... £4.00
Hellyer. H. W.. Tape Recorders ..... £4.25
Sinclair, I. R., Audio Amplifiers For Home Construction ..... £2.75
RADIO CONTROL
Aldridge, D.. Transistorised Radio Control For Models ..... £3.50
Drake. J.. Radio Controlled Helicopter Models ..... £3.95
Jeffries, C. R., Radio Control For Model Yachts£2.45
COOKBOOKS
\begin{tabular}{|c|c|}
\hline Tracton. K., BASIC Cookbook & £4.10 \\
\hline Lancaster, D., TTL Cookbook & £7.00 \\
\hline Lancaster, D... RTL Cookbook & £4.65 \\
\hline Lancaster. D.. CMOS Cookbook & £8.20 \\
\hline Jong. W., IC Op Amp Cookbook & £10.00 \\
\hline Lancaster. D.. T.V. Typewriter Cookbook & £7.7 \\
\hline Lancaster. D... Cheap Video Cookbook & £7.00 \\
\hline Jong, W., IC Timer Cookbook & £7.50 \\
\hline Lancaster. D.. Incredible Secret Money M & \\
\hline ook for setting up your computer or tect & £4.95 \\
\hline
\end{tabular}


\section*{QUESTIONS AND ANSWERS}
SImple and concise answers to many puestions which puzzle the BEGINNER.
Coker, A. J., Q \& A On Electric Motors ..... £1.90
Hellyer. H., Q \& A On Radios and T.V. ..... \(£ 1.90\)
Jackson. K., O \& A On Electricity ..... £1.90
Brown. C., 0 \& A 0 OHi Hi -Fi ..... \(\begin{array}{r}\text { £ } 1.90 \\ \hline\end{array}\)
Brown, C., O \& A On Electronics ..... \(£ 1.90\)
Reddihough. J., o \& A On Colour T.V. ..... ह1.90
Miller. H., © \& A On Electric Wiring ..... £1.90
CONSTRUCTOR GUIDES
Graham, P.. Simple Circuit Building ..... £2.60
Colwell, M., Electronic Diagrams ..... £2.60
Colwell. M., Electronic Components ..... £2.60
Colwell, M.. Printed Circuit Assembly ..... £2.60
Ainslie, A., Practical Electronic Project Bullding ..... £2.60
Colwell. M.. Project Planning and Building ..... £2.60
BEGINNER'S GUIDE
Sinclair. I. R., Beginner's Guide To Tape Recording ..... £3.35
Sinclair, I. R., Beginner's Guide To Integrated Circuits ..... £3.35
Sinclair. I. R... Beginner's Guide To Audio ..... £3.35
King. G. J., Beginner's Guide To Radio ..... £3.35
King. G. J.. Beginner's Guide To Television ..... £3.35
King. G. J.. Beginner's Guide To Colour T.V. ..... £3.35
Guilou. F.. Beginner's Guide To Electric Wiring ..... £3.35
PROJECT BOOKS
Marston, R. M., 110 Cosmos Digital IC Projects For The Home Constructor ..... £3.95
Marston, R. M., 110 Wave Form Projects For The Home Constructor ..... £3.95
Marston, R. M.. 110 Semiconductor Projects For The Home Constructor ..... £3.95
Marston, R. M.. 110 Thyristor/SCR Projects For The Home Constructor ..... £3.95
Marston. R. M.. 110 Electronic Alarm Projects for The Home Constructor ..... £3.95
Marston. R. M.. 110 Integrated Circuits Projects For The Home Constructor ..... §3.95
Marston, R. M., 20 Solid State Projects For The Car and Garage ..... £3.20
Marston, A. M., 20 Solid State.Projects For The Home ..... £3.20

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:
Hobby Electronics Book Service,
P.O. Box 79,

Maidenhead, Berks.

\section*{POWER AMPLIFIER CP2-15/20}

Each CP2-15/20 contains two identical amplifiers, each of which can give 20 Watts rms into 40 hms ( 15 W into 8 Ohms ). Alternatively the module may be connected to give 40 Watts into 8 Ohms. Protection is provided against short and open circuit loads, reverse supply connection (as all Magnum Modules) and thermal overload. Transient performance is virtually unaffected by loading and free from overshoot and TIM distortion. THD is typically \(0.03 \%\) at 1 kHz . All this adds up to a versatile and robust amplifier of extremely 'clean' and "musical' performance.

CP2-15/20 £14.80 incl. (U.K.) £16.80 incl. (Export).
Also available: Pre-Amplifiers, Peak Programme Monitors, Filters, Stereo Image Width Control, Compressor/Expander, Active Crossovers, Power Supplies, Interconnection PCBs, plus all pots. switches, etc.



 customary fo ite ith fro w.r croulis to gat the maxit



 signal went donnithe waber thires imish billare it tound its way out, though wes tenn at imagine low they ord it

Modern techns us super-cheap superints. andi hight gain and fispur motr transistors. It is nose pusestion to build quite funtave receivers without feshrimeg tortho devisus circuit mothly ques described above A Ton main ago: Fernmity nt on
 very good chip and was considered figt thisiptopect, However, its major बimwback is the rroveminit for a low voltage supply atit thre me cttyutit this reatitr in theo use of more componients in the iegulator than whe thes: of the receiver.

We finally decided to dosigh our own circtit and the outcome is a sensitive and very stable tuner whth tiow current consumption and using only a handiul of of: dinary, easy to obtain components. It was felt thet a loudspeaker output was essential. After all, if you walk round with an earphone in your ear all day, your ear might atrophy and drop off. The audio amplifier is very simple and straightforward and will drive any size of loudspeaker with impedance ranging from eight to eighty ohms. Higher impedance loudspeakers give lower available output power though you do get the bonus of lower distortion. The prototype gave more than adequate volume and even provided reception of a few stronger stations inside a steel-frame building.

號


\section*{CONSTRUCTION}

Construction should not present any difficulties. Of course, if you want to build your radio in a robot you will have to solve the problems of exactly where to put the components yourself, though you can pick up some pointers from our design.

The circuit is very tolerant of constructional technique and special care was taken in its design and PCB layout to make it as stable as possible. Any high gain circuit is prone to instability and RF circuits can suffer from all kinds of gremlins. A useful tip if you have any trouble is to try reversing the connections to \(L 2\) or to the loudspeaker. This will reverse the feedback of the unwanted signal and should result in its suppression. In view of the pitfalls mentioned, use of our PCB is strongly recommended.

Any size of ferrite rod may be used; the larger the rod. the greater the signal pick-up. In fact spare the rod and spoil the signa!! You may want to buy a ready-wound ferrite rod, 'borrow' one from an old transistor radio or wind your own.

If you wind you own, L1 should be about eighty turns of thin wire. By winding more turns you can cover the Inng waveband and receive the elusive radio four. L2 should consist of about five turns in either case experiment to get the coverage you require. It is a wise move to protect the wire by first wrapping a thin layer of paper around the rod. You can secure the turns with sellotape. The best wire to use is enamelled copper wire of about 30 swg .

Loudspeaker size is a matter of personal choice. Choose one to fit the case you want tc use. Provision is made on the board for a preset volume control though
wires can be brought out to a case mounted component. The ferrite rod aerial should be mounted horizontally (it won't work the other way!) and the tuning capacitor should be mounted as close as possible, keeping the connecting leads short. A wire should be taken from the \(\mathrm{O} V\) line to the rotating vanes of the tuning capacitor, usually the centre contact.

However it is constructed, the robot radio is fun to build and will give endless hours of entertainment when completed.


Open for inspection. Note the tuning capacitor mounted above the loudspeaker and the power switch mounted on the base.

\section*{R2D2 Radio}


Fig 1. Circuit diagram of R2D2 radio

\section*{How it Works}

The robot radio is a MW AM receiver. This means it is designed to receive amplitude modulated transmissions between about 500 kHz and 1.6 MHz . the medium waveband. Amplitude modulation describes a mode of transmission where a carrier wave at a certain frequency is varied in strength by the audio signal to be transmitted. No change in the carrier frequency should take place and great care is taken to ensure that a 'clean' signal is transmitted to avoid interference with other transmissions on nearby frequencies.

The signal is picked up by the ferrite rod aerial and L1, Cl comprise a parallel-resonance tuned circuit to select the desired station. At most frequencies, L1, Cl looks like a piece of wire to earth. However, at one particular frequency, (variable by adjustment of C1,) the tuned circuit exhibits a very high impedance and a voltage is developed across it. A portion of this signal is inductively coupled to L2 where it is available for amplification and detection. Direct coupling to L1 is avoided as this would 'damp' the tuned circuit causing loss of selectivity.
Transistors Q1, 2, 3, are configured as a direct coupled amplifier with overall DC bias set by resistors R5, R1. AC decoupling is provided by C3, R2 and capacitors C2,5,6 provide RF decoupling. The radio frequency signal from L2 is amplified by Q1 and Q2. The third transistor Q3 acts as a detector and audio mplifier and the audio signal is developed across RV1 and R6.

A portion of this signal is tapped off from RV1 by
potential divider action and coupled to the audio amplifier ICl by C7. Bias and gain are set automatically inside ICl and the amplified output signal is coupled to the loudspeaker by C10. At first glance R8, C9 appear to have no function. In fact they are essential. If omitted, IC1 would be prone to spurious RF oscillation causing distortion. These components should be mounted as close to the chip as possible. C4, 8, 11 are all supply decoupling components at various points in the circuit.

A point worth note is the availability of an amplified 'in-phase' RF signal at the collector of Q2. By coupling a small portion of this signal to the base of Q1, positive feedback can be produced giving increased sensitivity. This can be achieved by connecting short (about one inch) pieces of insulated wire to the collector of Q2 and the base of Q1 and gently twisting them together ensuring they remain insulated from each other and the rest of the circuit. This is the same as connecting a small capacitor of a few pF between these two points and the technique is called regeneration. Too much feedback will result in the circuit oscillating and producing squeaks and whistles. This condition should be avoided as it causes interference to other radio listeners. The right amount of feedback is when the circuit is just on the point of oscillating. You will find this gives an increase in both sensitivity and selectivity. However, this technique will probably not be required as the prototype was found to be quite sensitive when built as described.

\section*{R2D2 Radio}


The main PCB mounted inside R2D2's body

\section*{Buylines}

All the components should be readily available apart from the LM386 which can be obtained from Marshalls.


\section*{Parts List}

RESISTORS (All \(1 / 4 \mathrm{~W}, 5 \%\) )
\begin{tabular}{ll} 
R1 & 56 k \\
R2 & 100 R \\
R3, 4,6 & 1 k 5 \\
R5 & 330 k \\
R7 & 330 R \\
R8 & 10 R
\end{tabular}

POTENTIOMETER
RV1
4 k 7 (see text)
CAPACITORS
C1 500 pF variable
C2 10 n polyester
C3, \(8 \quad 10 \mu\) tantalum
C4 \(\quad 33 \mu\) tantalum
C5,6 100n polyester
C7
C9
C10
C11 \(0 \mu 47\) tantalum
68 n polyester
\(100 \mu\) tantalum
\(220 \mu\) electrolytic
SEMICONDUCTORS
\begin{tabular}{ll} 
Q1.3 & BC184L \\
Q2 & BC214L \\
IC1 & LM386
\end{tabular}

MISCELLANEOUS
L1, L2, ferrite rod aerial (see text) loudspeaker 8 to 80 ohms any size
\begin{tabular}{ll} 
S1 & SPST switch \\
\(9 v\) battery & (PP3 etc.)
\end{tabular}

Approximate cost \(£ 4.50\)


Fig 2. Overlay for R2D2 radio


Fig 3. PCB for R2D2 radio


Please add \(30 p p \& p\) \& VAT at appropriate ráte (15\%)
Government, Colleges, etc. Orders accepted
TECHNOMATIC LTD.
(2 minutes Dollis Hill tube station)
CALLERS WELCOME
(ample. street parking)
Tel: 01-952 1500 Telex: 922800 Sat 10.30-4 30


\section*{Random Electronic \\ ASY DICE}

Build your own 'EASY DICE' from the 5 intergrated circuits and full components supplied, including box and descriptive instructions.


All you need is a soldering iron
TWO DICE FACES TOUCH CONTROL

\section*{a *Self Assemble Dice}
£3.95
b *Ready built Dice
\(£ 4.75\) (INCL. P+P)
Otder now hull Fringewood Electronics Lid 1 Hatton Court Ipswich Suffolk (1973-2) - A1) Amount enciosed f
Name
Address
please state amount required in appropriate box \begin{tabular}{l|l|}
\hline\(a\) & \(b\) \\
\hline
\end{tabular}

\section*{Master Electronics The practical way No maths neededNodull theory-}
```

Step by step we take you through all the fundamentals of
electronics and show you how easily the subject can be
mastered.

1) BUILD AN OSCILLOSCOPE
2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS
3) CARRY OUT OVER £) EXPERIMENTS ON BASIC
ELECTRONIC CIRCUITS AND SEE HOW THEY WORK
Also
We provide practical tuition for:- 3) Digital Electronics
4) Radio amateurs licence
4) Computer Technolog
5) City and Guilds certificates.\square 5) Test instrument kits
Mark your interest(s) with an x in box provided.
British National Radio \& Electronics School,
NAME
```
\(\qquad\)
``` P.O. Box 156, Jersey, Channel Islands
ADDRESS
HE01/11
(block caps please)
```

Books from the HE Book Service

28 Tested Transistor Project ............... 1.15 Richard Torrens. The projects can be split down into simple building blocks which can be recombined for ideas of your own.

Electronic Projects for Beginners ........ £1.55 F. G. Rayer. Divided into 'No Soldering Projects, Radio and Audio Frequency, Power Supplies and Miscellaneous

## Practical Electronic Calcula-

 tions and Formulae . £2.25 F. A. Wilson. A valuable reference for the home and laboratory, containing all the most frequently used, and some of the less well known electronic formulae and calculations.Popular Electronic Projecis
E1.65
R. A. Pentold. A collection of the mosi popular types of circults and projects using modern, inexpensive and freely available components.


Digital IC Equivalents and Pin Connections . . . £2.70 Adrian Michaels. Covers most popular types and gives details of packaging, families, functions, country of origin and manufacturer

Radio Stations Guide $£ 1.45$ B. Babani and M. Jay. An invaluable aid to everyone with a radio reciever helping them to obtain maximum entertainment, value and enjoyment from their set.

Linear. IC Equivalents and Pin Connections ... £2.95 Adrian Michaels. Gives most essential data for popular devices.

## Electronic Secrity Devices

. £1.45
R. A. Penfold. Full of construc tional circuits covering the most basic security systems to the Ultrasonic and Doppler Shift systems.
How To Build Your Own Solid State Oscilloscope

- …............... £1.50
F. G. Rayer. The book contains concise practical instructions so that even an inexperienced hobbyist can construct a fairly sophisticated instrument with the minimum of difficulty and expense.
50 FET (Field Effect Transistor) Project .... £1.45 F. G. Rayer. Contains something of interest for every class of enthusiast. Short Wave Listener, Radio Amateur, Experimenter or audio devotee
50 Circuits Using $\mathbf{7 4 0 0}$ Series ICs ......... £1.35 R. N. Soar. The author has managed to compile no less than 50 interesting and useful circuits using this range of devices, covering many different aspects of electronics.

Essential Theory for the Electronics Hobbyist $£ 1.45$ G. T. Rubaroe gives the hobbyist a background knowledge tailored to meet his specific needs.

Beginners Guide to Building Electronic Projects . £1.45 R. A. Penfold Covers component identification, tools. soldering, constructional methods and examples of simple projects are given.

50 Projects using IC CA3130
£1.15
R. A. Penfold. Describes audio projects. RF project. Test Equipment, Household and miscellaneous circuits.

## IC 555 Project

£1. 65
E. A. Parr. Circuits are given for the car, model railways, alarms and noise makers. Also covers the related devices 556, 558 and 559
Second Book of CMOS IC Projects .......... $£ 1.50$ R. A. Penfold. Following in the success of the original CMOS projects book we present the second volume covering all aspects of CMOS technology from multivibrators to triggering devices.

Note that all prices include postage and packing. Please make cheques etc. payable to Hobby Electronics Book Service (in Sterling only please) and send to

Hobby Electronics Book Service, P.O. Box 79 Maidenhead, Berks.

# Breaker <br> Send any news, comments; or information you may have to. Breaker One Four, Hobby Electronics, 145 Charing Cross Road, London WC2 H: OEE. <br> <br> Following the disclosure last month in Breaker-One-Four we've had many <br> <br> Following the disclosure last month in Breaker-One-Four we've had many phone calls telling similar stories - meanwhile do not sit back - write that phone calls telling similar stories - meanwhile do not sit back - write that letter to your MP - it's still not too late. 

 letter to your MP - it's still not too late.}

## CHANNEL 35

It's very easy to bury your head in the sand when it comes to talking about the illegal side of CB. No matter how much you may condemn this aspect of CB it still exists, and current estimates reckon there are about 150000 to 200000 CB rigs in the country at the moment. Now don't get us wrong, we still will not condone any CB system that interferes with other people, but if it were legalised tomorrow there would still be many thousands of people out there who are unwilling to dump their rigs, often costing over $£ 100$, and you may be sure that if and when CB is legalised it will not be on 27 MHz

So what can we do about all those people? The answer came a few days ago during a conversation with Keith Townsend of the Midlands CB Club. Most if not all of the criticism of 27 MHz CB comes from the radio modellers (and rightly so) for they legitimately occupy the first 27 channels of the 40 -channel set-up. The Breaker Channel 14 is slap bang in the middle of their allotted band but above channel 30 (say) there is nothing as far as we know (please let us know if there is anyone already there). If we were to suggest moving the Breaker Channel away from 14 to 35 during daylight hours and stick as far as possible to the channels $30-40$ how would that sound?

Again we must stress we're not encouraging the illegal use of CB but rather trying to alleviate a growing problem, it's still breaking the law but maybe someone's life may be saved from an out-of-control model aircraft. Of course for it to be of any use whatsoever it must be adopted nationally and simultaneously. So we would like to suggest a national changeover to this system on the 1 st of November.

We would be glad to hear of any reaction to this suggestion.

## TEE-SHIRTS

You may remember last month we said that the 10-4 Club were producing some Tee-Shirts, well, details of their offerings have arrived. It consists of a rather eye-catching combination of silver logo and lettering on a black cotton Tee Shirt, and very good it looks too. Price for these garments is a very reasonable $£ 2.10$ plus 50 p postage and packaging (please state whether S. M. L or XL ) from the clubs address given last month. (See Club Call).

This is also a good opportunity to tell you about some Tee-Shirts we're thinking of having made up, we'll let you know more about that next month.

## BREAKER BRIDE

It was inevitable. A Mr 'White Prince' has informed us of the first CB wedding in this country. Mr Delta 24 met Miss Pussy Galore at an Eyeball in February earlier this year (sounds like a game of consequences), as a result of this fateful meeting they have since married (early September). Hobby Electronics would like to congratulate the happy couple and hope that their antennas may forever remain perfectly SWR' ed.
'Has anybody else got any new of 'strange' happenings directly as a result of CB? Write to us at Breaker-One-Four and tell us about it.

## CB SLANG

Entries for our slang competition have at last started arriving. Unfortunately one or two are still unprintable (but very funny) so keep the clean ones coming. (And the dirty ones, we like reading them too.)

Here is our first selection, Tee Shirts are on the way to all concerned

Lollipop
Traffic Lights
Jam Sandwich
Police Rover
Starduster (again?) London.
Dry Glasses
Head And Shoulders
Beer Bottle
Grizzley Bear
Grizzley Bear
From M. A. Read, Berks.
Four-Legged Milk Float
Cow
From 'Songbird,' London.
Trail Blazer
Member of the clergy??
From A. S. Foster, Bedfordshire - see also club section.

Traffic Warden
Traffic Warden (female)
Morris Minor
Taxi Driver
Low Bridge
Custard

Football Fans
Custard Tart Jelly Mould

From K. R. Blagg, Blackpool

## R/C MODELLERS

We've just heard within the last couple of days that the proposed 'switch-over' by the Radio Control Modellers to 35 MHz is now very unlikely in the time we suggested
last month. In fact one source now reckons that they may even be losing part of their allocation on the 495 MHz band so it is even more crucial that something be done to alleviate the interference problem on 27 MHz .

## CLUB CALL

Details of clubs are still coming in, before we get down to the new ones we would like to apologise to the 10-4 Club for getting their address wrong last month, it's 85 Essex Close, not 83 as we said last month.
CB (Christian Buddies) CB Club
Chairman Artur Scott-Foster
103 Southwood Road.
Downside, Dunstable, Beds.

## ANTENNAS AGAIN

Suddenly everyone's selling CB aerials, three companies have been in touch with us to tell us about their wares. The first is good old N.I.C. Models, see Ad. in this issue for details. The next is John Woolfe Racing Ltd, purveyors of fine Wheels and other mobile goodies. (How about a set of slot mags for review lads?) They are currently offering quite a comprehensive range of 'sticks, Co-Phased truck devices for £39, Mag mounts for $£ 18$ and 'Disguised' for $£ 22.95$. They also tell us they've got a few Yankee books on offer, including the excellent Big American CB Book for $£ 3.95$ and Chilterns CB Book for $£ 4.00$.

Tandy (surprise, surprise) are also getting in on the act, they tell us that they will have a range of three antennas on sale at the beginning of the month (October), with more goodies, mikes etc later on in the
year. The first is a Truckers antenna, retailing at $£ 21.95$ a Boot mount will cost $£ 24.95$ and finally a Mag Mount going for $£ 26.95$. Tut Tut to all concerned.

## TO ALL CB CAMPAIGN ORGANISERS

Gentlemen,
Though we are all working to achieve the same end I am forced to conclude that we are going about it in the wrong way, insofar as we each represent a separate campaign.

We are all aware of the current rumours suggesting imminent legalisation but we must remember they are as yet unconfirmed and that we may yet have some way to $g 0$.

Various points of view, each having some merit have been put forward regarding the frequencies favoured by each individual group but I suggest that this problem be considered of secondary importance and that we should now be prepared to present the authorities with a united front in order to achieve our primary aim-the introduction of a legal CB facility.

I suggest that a meeting be held between officials of all interested bodies as soon as possible.

Individual groups would benefit from the pooling of information and resources and our own common cause would be greatly strengthened.

I look forward to receiving any comments and suggestions which you may have.

Keith Townsend Secretary MCBRC
Well, how about it?


GB

## great

## LAST FEN COPIES

Yes, it's true, the CB Special has been so successful it's virtually unobrainable at the newsagents. Our distributors have said it has been the fastest selling Special ever. We have managed to get together the last remaining copies from around the country in our offices and it's now a case of first come first served. The price for these 'collectors items' is still only $\mathbf{7 5}$ pence plus $\mathbf{2 5}$ pence post and packing.

So why miss out? Send your order in today before it's too late. Write to: CB Special, Hobby Electronics, 145 Charing Cross Road, London WC2H OEE.

# The NEW Marshall's 79/80 calalogue is just full of components 

## and that's not all. . .

.... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
These include Audio Amps. Connectors, Boxes. Cases, Bridge Rectifiers, Cables, Capacitors, Crysials, Diacs, Diodes, Displays, Heatsinks, I Cs, Knobs, LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering.
Plus - Many new products and data.
Plus 100's of prices cut on our popular lines including I.Cs. Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue.
Available by post $65 p$ post paid from Marshall's, Kingsgate House, Kingsgete Place, London NW6 4TA. Also available from any branch to callers 50 p .

 Hegent Stropt, G2 20D, Tel: 041-3324133. And Bristol: 10BA Stokos Crofz, Bristot, Tel: 8272 426801/2.


## 24 TUNE,DOOR CHIMES

## OOOR TUNES E17.13 + VAT

Waddingron's Videamaster announce a doorbell that doesn diferent classical and papular tures. It will play the tune you select lor your mead, the season or the vistion vou are expecting to call. Doot tunes is not only greal fun and a wonderfut ice becaker, but is also very functionally ane beautitully designed to enhance your home there is something for Christmas, something for your continental visioas or your relations from the states, and even something for the Dueen. Door funes is easy io

## T.V. GAMES

## PROGRAMMABLE E 2.50 + VAT

COLOUR CARTRIDGE T.V. GAME.
The TV game can be compared to an audin casserte dect and is programmed to play a muthtude of difterent gomes in CDLOUR. using various plug in cattridges. A1 long last a IV game is avalable which will keep pace with improving technology by allowing you to extend your ibtayy of games with the purnhase of additional carringes as new games are developed. Each canridge contains up to ten different action games and the firs1 carridge containing ten sponts games is included free with the console Other cannidges
are currenty available to enable you to play stich games as are currently available to enable you to play such games as
Grand Pix Moior Racang, Super Wipeout Bnd Sunt Ruder. Grand Pnx Moior Racing, Super wipecut and Simis hide
Further cannidges are to be released larer this year, inducing Tank Barte, Hunt the Sub and Target. The console comes complete with two remavabie joystick player controls to enable you to move in all fout directions Inpidownlightiliftu and buit into these jaystick controls are ball serve and targel lire butons. Othe features include several difticulty option switches, automatic on scree divinal scoting and colour coding on scores and balls Lifelike sounds are transmited throught the TV's speake simularng the actual game being played Manufactured by Waddingron's quaranted for one ves.

## CHESS COMPUTERS

STAR CHESS - โ55.09 + VAT PLAY CHESS AgAINSI YOUR PARTNER
using your own TV to display the board and pieces. Star Chess is a new absorbing game tor two players, which will interest and excite all ages. The unit plugs into the aeriat socket of your IV set and displays the board and pieces in
full colour lor black and whinel on your TV screen. Based on fun colour for black and whiel on your iv screen, Basev on inierest to the gams. For those who have never played Star Chess is a novel introduction to the classic game of Star Chess is a novel introduction to whe chasic gane ol
dhess. For the experienced chess piaver, there are whole chess for the experienced chess piayer, here are whole
new dimensions of unpredictability and chance adced to the srategy of the game. Nol only can pieces be taken in conventional chess troe moves, bur each piece can also exchange rocket fire with its papponents. The unit comes complete with a free liv mains adaplor, full insiructions and twelve months guarantee.
CHESS CHALLENGER $7-$ £BG. $65+$ VAT.
PLAY CHESS AGAINST THE COMPUTER. PLAY CHESS AGAINST THE COMPUTER.

OTTRA CARTRIDGES
ROAB RACE - 88.87 + VAT
Grand Prix motor racing with gear changes, crish noises SUPER WIPEOUT - f9.17 + VAT.
10 different games of blasing obslacles off the screen. STUNT RIDER - $£ 1216$ + VAT.
Motorcycle speed mials, jumping obslacles, leaping various rows of up to 24 buses etc. NON.PROGRAMMABLE TV GAMES

6 Game - COLOURSCORE II - $£ 1350$ + VAT. 10 Game COLOUR SPORTSWORLD 2250 + VAI. guaranteed for one ye
 The styish, compact, pormable console can be set to play at seven dififerent levels of abiliny from beginner to expent including"Mare in two" and "Chess by mal". The computer will only make responses which obey international chess
rules. Casting, on passant, and promoting a pawn are all rules. Casting, on passant, and jromoting a pawn ate a
included as pan of the compurer's procramme it included as part of the compuler's programme it is
possible to enier any given problenn from magarines or newspapers or alternaively estabish your own board position and wath the computer react. The positions of all pieces con be verited by using the computor memony recall bution.
Price incluctes unit with wood grained housing, ara Staunton design chess pieces Compurer plays black or white and aganst isell and comes complete with a mains adapior and 12 monits guaramee.
DTHER CHESS COMPUTERS IN DUR RANGE INCLUDE: CHESS CHAMPION - 6 LEVELS $£ 47.39$ + VAT CHESS CHALLENGER - 10 LEVELS - 138.70 + VATS - multi-level talxing oisplay E 163.04 + VAT.

## DRAUGHTS COMPUTERS

CHECKER CHALLENGER 2 LEVELS E43.00 + YAT
PLAY ORAUGGTSICHECKERS AGAINST THE COMPUTER 4 LEVELS E78.00 + VAT
The draughls coniputer enables you to sharpen your skills improve your ganie, and play whenever you wans. The compurer incorpbrates a sophisticated, relathe, decision making mucraprocessur as its brain ks high level of thinking ablify enabies it to respond with is best coumer moves like a skiled humian oppoonen? You can select offence of delence and change playng dificulty levels al aniy linie Pustions can be verfited by conpuler nieniony recall. Machne does nor permir iegar moves and can sotve ser probienis Lurf puter momes complete with
mains adapator and iwelve months quarantee

## FOR FREE BROCHURES - SEND S.A.E

For fREE llusirated broctures and reviews on TV and chess qanes please send a slaniped addressed envelope, and slate which Difthuar ganies you requre information on
 To order by teleuhone please cumse your name, auflass and Accessi Barclaycard number. Pustage and Packiny FRFE
AJD DIRECT SUPPLIES LIMITED, Dept. HE 11102 Bellegrove Road, Welling, Kent DA16 30D. Tel: 01-303 9145 (Day) 01-850 8652 IEvenings)

## SPECIALS FROM MODMAGS

Mark your envelopes Specials, and send them to Specials, Modmags Ltd, 145 Charing Cross Road London, WC2H OEE

## ETI CIRCUITS

Books 1 \& 2.
Each volume contains over 150 circuits, mainly drawn from the best of our Tech-Tips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs, and plenty of phenomenal - hardly surprising when the circuits cost under lp each!
$\mathbf{E 1 . 5 0}+25 p$ P\&P each.


## ELECTRONICS TOMORROW

Comprised entirely of new material, the edition covers such diverse topics as Ster Wars and HI-Fi! The magazine contains projects for everyone - none of which have appeared in ETI - and a look the tuture of MPUs, audio, calculators and video. How can you not read ft?
$75 p+25 p$ P\&P.
TOP PROJECTS
Book 1 + 2: $£ 2.50$ + 25 p P\&P.
Master mixer, 100 W guitar amp., low power laser, printmeter, transistor tester, mixer preamp., logic probe, Ni-Cad charger, loudhailer, 'scope callibrator, electronic ignition, car theft alarm, urn indicator canceilior, brake light warning, LM3800 circuits, temperature alarm, aerial matcher, UHF-TV preamp. metal locator, four input mixer, IC power supply, rumble filter, IC tester, ignition timing light, 50 W stereo amp. and many more.
Book 3: SOLD OUT! Book 4: £1.00 + 25p P\&P. Book 5: $£ 1.00+25 p$ P\&P. Book 6: £1.00 + 25p P\&P.


TOP PROJECTS
Book 7: $£ 1.25+25 p$ P \& P.
ER II loudspeaker, CCD phaser, 3-channel tone control, bass enhancer, continulty tester, bench supply, LCD digital multimeter, digital frequency meter, wide range osclllator, ETI wet, egg timer, house alarm, porch light, torch finder, light dimmer, is metal locater, electronic bongos, puzzle of the radio, rev counter, Transcendent 2000 , spirt level.

ELECTRONICS - IT'S EASY
Books 2 \& 3.
Our successful beginners' series came to an end some ome ago now, and the whote series is available from us in reprint form. The three books between them contain all the information presented in the series (sometime in more detall) and together form an excellent starting point for anyone interested in learning the art of electronics.
$\varepsilon 1.20+25$ p P\&P each.


INTO ELECTRONICS PLUS
The complete series of lan Sinclair's series Into Electronics Plus a selection of some of the most popular and informative artieles from HE. Everything from Home Computing to making your own PCBs. $\mathrm{fl}+25 \mathrm{p}$ P\&P.

# Guitar 

## Tuner

## Now, for the first time we present a readers design, a good straightforward circuit put to novel use.

UNLIKE OTHER MAGAZINES all of the projects in HE are designed and built by our very professional project team, this month by way of a change we are publishing a design sent in by a reader - Mr Steven Ibbs. We were so impressed by the originality and simplicity of the circuit and the professional way he had built his project we felt it was good enough to publish.

Apart from re-doing the circuit diagram a 'How it Works' section, and PCB layout this is all his own work, so now over to you Mr lbbs.

Berore September last, I did not know the dirrerence ibetween a resistor and a capacitor. However, since then and with the aid or HE, I have started to learn about electronics. I have been constantly asked by students at the college where I teach music it I could build them something to help them tune guitars. I didn't know enough to help them until I saw the recent ETI and HE articles on CMOS circuits, this set my imagination going.

The circuit uses an LM386, available irom most large components retailers, the smallest loudspeaker I could find, and a small vero-case. Using such a small box enables it to be stored within a guitar carrying case.

Back to us now for some constructional advice, we recommend using the same Vero-box as Mr lbbs as everything fits in quite snugly. Our only real criticism of the original design was the siting of the on-off switch. We felt that this was just a little too close to the buttons for comfort. From our limited knowledge of music it would seem that the arrangement of the buttons is about right, they should follow the sequence EADGBE as this is the order of the strings on the guitar.

Obviously tuning the unit may prove to be something of a problem, the obvious answer is to use a guitar that is already in tune, or a alternatively a piano. Failing that may we suggest our Analogue Frequency Meter project in last month's HE.

## AND FINALLY. ...

We must stress this is a one-off as we have a very prolific design team. However, if you think you have got a really good idea and you have successfully built a prototype why not send us a picture of it along with a brief description of what it does. Please include an SAE if you wish to have your material returned. Mark your envelope Readers' Projects.

HE


The Guitar Tuner in its Vero-Box. We took the liberty of dressing the case up a little for the photographs, otherwise it is as Mr lbbs intended.


Inside the Guitar Tuner, note the small loudspeaker fitted snugly into the corner of the case. We would suggest that anyone using this method of construction puts the On-Off switch well away from the pushbuttons.


## How it Works

The circuit is centred around a simple CMOS oscillator comprising two gates from IC 1, a quad, dual-input NAND gate. The various notes are selected by switching into circuit timing resistors RV1 to RV6 via push button switches SW2 to SW7. The setting of the presets determines the note produced. The oscillator timing is determined by the combined values of the particular resistor in circuit ie RV1 to RV6 and the capacitor C1.

Parts List
RESISTORS (all $1 / 4$ W $5 \%$ )

R1	10 M
R2	6 k 8
R3	10 R

## POTENTIOMETERS

$\begin{array}{ll}\text { RV1-RV3 } & \text { 470k lin present } \\ \text { RV4-RV6 } & \text { 100k lin preset }\end{array}$

## CAPACITORS

C1	$1 \mu$ polyester
C2	$10 \mu$ electrolytic 16 V
C3	$.47 \mu$ electrolytic 16 V

## SEMICONDUCTORS

IC1	CD4011
IC2	LM 386
ZD1	5 V 6 zener 400 mW

## MISCELLANEOUS

SW1 Miniature SPST toggle. SW2.7 Miniature push to make switches. LS 1 Miniature $11 / 2$ inch 8 ohm speaker. Vero-box, battery connector PCB.

Approximate cost $£ 4.50$.

## Buylines

All of the components used are readily available, the miniature loudspeaker is obtainable from Audio Electronics of Edgeware Road in cases of difficulty.

The output from the oscillator is fed into the audio oscillator built around IC2. The amplifier output is taken via output capacitor C3 to the miniature loudspeaker LSl.

To ensure a degree of stability under variable voltage conditions the supply is regulated by a simple potential divider network comprising R3 and zener diode ZDl.


Fig. 2. PCB foil pattern for the Guitar Tuner.


Fig. 3. Overlay diagram for the Guitar Tuner, ensure the ICs are inserted into their sockets the right way round. The connec tions for the pushbutton switches can be seen at the bottom of the previous page. Be sure to use vertical presets for RV1 to RV6 as horizontal types will not fit.

## Hartronitis todita <br> international

## What to look for in the December Issue: On sale November 2nd



# Back Numbers From HE 

Shown next to each issue is the relevent code letter to use when ordering Hobbyprints. (See Hobbyprints ad. elsewhere in this issue.)

We regret to say that copies of the November, December and January issues of Hobby Electronics have sold out (we did warn you!) However Hotibyprints A B and $C$ are still available.


## FEBRUARY 79 (Hobbyprint D)

Projects: Short Wave Radio, Sine/Square Generator, Scratch/Rumble Filter, Car Alarm Project
Features: Video Tape Recorders, Radioactivity, CA 3130 Circuits, Computer Glossary etc.


APRIL 79 (Hobbyprint F)
Projects: Model Train Controller, Cistern Alarm, Transistor Tester.
Features: The Telephone System, TV Aerials, Elec tronics in Warfare, Catalogue Survey etc.


## MAY 79 (Hobbyprint G)

Projects: Power Supply, Parking Meter Timer, Digibell White Noise Effects.
Features: Feedback, Electronic Music, AB Circuits, 555 Circuits, Aerial Tuners, Varicap Diodes etc.

## MARCH $\mathbf{7 9}$ (Hobbyprint E)

Projects: Light Chaser, Tone Controller, Photographic Timer, Cassanova's Candle.
Features: TV Signals, Test Gear, SW Aerials, Interferring Waves, Communications Satellites, etc.

Shown here are all the past issues with their major features and projects. All are available (at the moment) for just 60 pence each, including post and packing. Send your order to:

## Hobby Electronics Backnumbers Dept. 145 Charing Cross Road London, WC2H OEE



Mobby


OCTOBER 79 (Hobbyprint L)
Projects: Tantrum, Hobbytune, Analogue Frequency Meter, Multi Siren.
Features: Home Computing, Electronic Games, Microwave Cooking, Breaker One-Four

## SUBSC:IPHOLS

Name
$\odot 418$

## Address

I would like a postal subscription to HE starting with the
issue. I enclose payment ( $£ 6.50$ for UK and Eire, $£ 7.50$ elsewhere, $£ 11.50$ air mail).

# Into Linear By lan Sinclair ICs Part 5 

## Having dealt. with all of the 'ins and outs' of the 741 lan Sinclair turns his attention to the very popular 555 timer IC.

HARKING BACK TO PART 1, do you remember all that spiel about having to make ICs in immense quantities if they're to be worth making? Our next chip is an example of just that - a very versatile IC which practically every IC manufacturer turns out in great quantities. We certainly can't ignore it, it's the 555 timer. Like the 741 , this chip comes with different letter codes before the number, and in various different packages. We'll stick to the 8 -pin DIL package, and, so that you can use 741 circuits at the same time, we'll place pin 1 of the 555 on line C1 of the Eurobreadboard

The 555 timer contains a number of circuit components; two operational amplifiers which are used as comparators, one bistable (or flip-flop), one output stage and one switching transistor. You don't need to know what happens inside the 555 to be able to use the chip in the circuits which follows, but you can make much more effective use of it if you do know something about it, so here goes.


Fig. 5.1 The works - a block diagram of the circuits inside the 555 timer.

The arrangement inside the 555 is as sketched in Fig. 5.1. The resistors R1, R2 and R3 are all equal in value, so that the voltage at point $B$ is one third of the supply voltage $(V+)$, and the voltage at point $A$ is two thirds of the supply voltage. At the time when the whole lot is switched on, Q 1 is conducting so that any circuit which is connected to pin 7 is earthed - in many applications, this pin is connected to pin 6 and to a CR circuit which is shown dotted in the diagram. The output voltage is held low, and will stay low even is a current of up to 200 mA flows into the output pin, pin 3 .

Timing is started by a negative-going trigger pulse at pin 2, and the action really begins when the voltage at pin 2 drops below the voltage at point $B$, which is one third of $\mathrm{V}+$. When this happens, the comparator A2 switches over, its output voltage rises and so causes the flip-flop to switch over. The flip-flop is an electronic switch, turned on by a positive pulse from A2, and which can be turned off only by a positive pulse fro A1, or a reset voltage from pin 4 . Ignoring the reset action, then, the flip-flop switches on with a positive pulse from A2, off with a positive pulse from A1.

The flip-flop controls both Q1 and the output stage it switches Q1 off, and switches the output stage over so that the voltage on pin 3 goes high, almost to the level of $V+$. With the output high, up to 200 mA can be taken from pin 3 to feed any sort of load. The action now passes to the external components. In our example, with the external components shown dotted, Cx can now start to charge through Rx. As the capacitor charges, the voltage on pin 6 rises, and is compared with the voltage at point $A$, two thirds of $V+$. When the two are equal, the output voltage of comparator A1 switches high and turns off the flip-flop. This in turn causes the output at pin 3 to switch low, and Q1 to conduct again. With Q1 conducting, Cx is rapidly discharged to almost earth voltage, and the timer waits in this state for the next trigger pulse.

## SKIN DEEP

Let's go back to the outside of the IC. The supply pins are No. $8(\mathrm{~V}+$ ) and No. 1 (negative), and a single supply of any voltage between 4.5 V and 16 V can be used. We'll run most of our circuits from a single 9 V battery. Pin 2 is the trigger input, which is normally connected through a
resistor to supply positive. Connecting or pulsing this input momentarily to earth or to any voltage less than one third of $V+$ will cause one comparator $(B)$ inside the 555 to switch over, causing in turn the output to go from LOW to HIGH, and pin 7 to become open circuit instead of connected to earth. This is the start of the timing action of the 555, as we have described.

The output of the 555 timer will deliver (source) or accept (sink) up to 200 mA , so that load resistances can be connected either between pin 3 and earth or between pin 2 and supply + . The timing periods which are produced by the action of the timer are not noticably affected by changes in the supply voltage, so that the timer will continue to work well even with a battery which is near the end of its useful life.

Because pins 6 and 7 can be separated, however, rather than connected together, we can stop the action by a separate circuit, and we can also control the timer by using pins 4 and 5 . Pin 4 is a reset pin whose voltage is normally set high. Connecting pin 4 to a low voltage will cause the flip-flop to reset, making the output go LOW and earthing pin 7, no matter what was going on previously. Pin 5 enables us to vary the control voltages, so that both triggering (on pin 2) and automatic resetting (on pin 6) can take place at higher or lower voltages. Lowering the voltage on pin 5, for example, makes the triggering and reset voltages lower; raising the voltage on pin 5 makes the triggering and reset voltages higher. In most applications pin 5 is not used and is simply connected through a capacitor to earth. The capacitor prevents voltage pulses which are radiated from other wiring from being picked up on pin 5 .

## TIMELY CIRCUITS

Now for some circuits: Fig. 5.2 is a circuit of a 1 minute timer, which starts timing when the START button is pressed, and stops timing one minute later. The time can be set to exactly one minute by adjusting the value of RV1. When the circuit is first switched on, the output from pin 3 is LOW, so that th LED does not glow. When


Fig. 5.2. A one-minute timer. Notice that the IC has been placed with its pin 1 on the Eurobreadboard line 1C. The Eurobreadboard references are shown nunver-first to avoid confusion with the capacitor numberings. Lines X1 and Y2 are used for supplies, and lines 4C, 1C, 1D are linked through wires.
the push-button switch is pressed momentarily, the circuit triggers, because the trigger pin, pin 2, has been earthed. The output at pin 3 goes high, so that current can now flow through R3 and the LED, causing the LED to glow. At the same time, becasue pin 7 is no longer earthed internally, C1 can start to charge through R2 and RV1. Since C1 is also connected to pin 6, the circuit will switch back when the voltage across C1 is equal to two thirds of the supply voltage. This switches the output LOW, extinguishing the LED. It's a useful little timer circuit, particularly for a photographic darkroom, because the red LED doesn't affect black/white papers (be careful with colour papers, though, you may need some shielding around the LED). To obtain different time ranges, just change the values of C1 and R2. Larger values give longer times, but don't exceed $100 \mu \mathrm{~F}$ for C1, nor 10 M for R2

Let's get a bit more ambitious now, and look at a control timer circuit. If we want to use the 555 timer IC for controlling equipment which works at higher voltages than the timer itself, the easiest and safest method is the use of a relay. Any relay which has a coil requiring low voltage ( 9 to 12 V ) and an operating current of less than 200 mA is suitable, so that the resistance of the relay should be 60 ohms or more. The contacts of the relay should be adequate for the current which is to bo controlled; that means that a circuit which needs 3 A should be controlled by a relay whose contacts are rated at 3 A or more. The insulation of the relay should be also adequate if the contacts are to be used for switching mains voltages; it's usual to have a relay tested to 1000 $\checkmark$ between contacts and coil when it is to be used for 240 V mains. The relay contacts may be of three types normally closed, normally open, or changeover according to the use which is to be made of it. The word 'normally', incidentally, means 'when no current is being passed through the relay coil'. The advantages of using a relay rather than an electronic device like a thyristor are that the relay contacts are completely isolated from the coil, and that a relay can deal with a much greater range of currents and voltages. In addition, relays can be obtained which will switch several circuits at the same time.

## LATCHING ON

When a relay or any other highly inductive load like a solenoid, is activated by the output of a 555 timer, protective diodes D1 and D2 must be connected as shown. D1 should be a high-voltage, high-current diode like the 1 N4001, and D2 should be a 'gold-bonded' germanium diode like the 0A47. These two suppress the high voltage which is otherwise generated when a relay coil, or any other large inductor, is switched off. In addition, D2 protiect the 555 from 'latch-up', a condition which makes the output voltage stay high until the circuit is switched off. Latch-up occurs because the voltage pulse which occurs when a relay is switched off can be coupled through the wiring or by stray capacitance to the trigger input, so causing re-triggering. The trigger input is very sensitive, but a reasonably low resistance connected to pin 2, and the use of these diodes will completely prevent latch-up, which incidentally doesn't happen when the relay is connected as shown in Fig. 5(3)b.

In our circuit, Fig. 5.4, the usual timing action is used, with timing capacitors C 1 and C 2 selected by


Fig. 5.3. Methods of connecting a relay to the 555. In method (a), the relay is activated when the output of the 555 goes high, hatchup must be avoided by suitable choice of diode types for D1 and D2. In Method (b) there is no risk of latchup since the relay is activated when the output of the 555 goes low, but a protective diode is still needed.


Fig. 5.4 The control timer-circuit. The relay coil and the contacts of SW1 are best connected to the Eurobreadboard by single-core wire links. Don't forget also the wire links from 4C and 10 to X1, and from 1C to Y2.

SW1 and charging through R1 and RV1. Switch SW1 acts as a coarse time selector, with RV1 providing fine adjustment. Before the START button is pressed, the output at pin 3 is LOW, so that the relay is not activated. Pressing SW2 momentarily will start the timing cycle, so that the replay is activated, and C1 and C2 starts to charge through R1 and RV1. At the end of the timing cycle, the relay is switched off and the capacitor C1 or C2 discharges through the timer. This action is ideally suited to such applications as a photographic enlarger lamp; Fig. 5.5 shows two refinements, a 'continuouslight' switch, to allow setting-up, and a 'push-to-stop' button so that the timing can be interrupted if need be.

Fig. 5.6 shows a turn-off delay. The application for this circuit is to turn on the interior light of a car when the ignition is switched off, and then to turn the light off again after about $11 / 2$ minutes, so giving the driver time


Fig. 5.5 Two modifications which are useful when the control timer is used for controlling a photographic enlarger.
to gather up his / her keys and go. A 12 V relay is used to carry out the switching, since the circuit must operate from the 12 V car battery, and several interior or exterior lamps can be controlled if necessary. It may be useful, for example, to switch on the reversing lights for this short time (if this is legal - in the UK a reversing lamp must be operated either by the reverse gear being selected, or by a switch which has a warning light; our circuit might qualify if another lamp is operated at the same time).

The main 12 V supply to the 555 circuit must be taken from a point in the wiring loom which is not switched off when the ignition switch is turned off - one obvious point is the wire which supplies the ignition switch, or the live lead to the interior light. There must also be a connection to the switched side of the ignition switch and from the relay contacts (open when the relay is not energised) across one of the door siwtches (Fig. 5.6)


Fig. 5.6 A delay lamp circuit with a fixed delay of about $11 / 2$ minutes.

The action of the circuit is like this. When the ignition is switched off, the voltage across R1 drops to zero, and momentarily causes the voltage at pin 2 to drop to zero until C1 charges. This is enough to cause the 555 timer to trigger, so that the output on pin 3 goes high. activiating the relay and so turning on the interior light. After the timed interval, determined by the values of R3


Fig. 5.7 The long-ring door-bell circuit Components D3, D4 and the 5000 uF capacitor is needed if the bell supply is low voltage AC. If a DC supply is used for the bell, these components can be omitted.
and C3, the circuit switches back, the voltage at pin 3 goes low again, and the relay returns to open circuit, switching off the interior light.

## RINGING THE CHANGES

Now for a different door-bell. This is a circuit (Fig. 5.7) which turns an ordinary door-bell into something that can't easily be ignored. When the bell-push is operated, the 555 timer is triggered, operating the relay and so ringing the bell. The bell will then ring for the time set by the timer, or until the reset switch is operated from inside the house. The circuit can be powered from the same supply as the bell if the bell is DC operated, otherwise a separate supply can be used for the timer. Once again,
diodes D1 and D2 are used to protect the 555 from the effects of turning off the relay. If you're not too keen on your present doorbell, you might want to combine this circuit with one of the tone-generator circuits (later), so that the door-alarm becomes a purely electronic device.

These circuits should give you a pretty good idea of how the 555 timer can be used in timing circuits, but that is by no means all that we can do with this very versatile IC. Fig. 5.8 shows a pulse generator, a useful circuit for testing digital circuits or even for testing 555 s themselves. The circuit generates pulses from any input wave whose amplitude is large enough to trigger the input. Souces such as a sinewave generator, a microphone and amplifier, or the secondary winding of a low-voltage transformer can be used.


Fig. 5.8 The pulse generator. The imput is a signal which can be a sinewave or any other waveform. The output is a series of pulses at the same frequency as the input wave. RV1 controls the duration (width) of the pulse, and RV2 controls the amplitude of the output

IC1 is a 741 used as an amplifier with a very large gain. Because of the large amount of gain, the output is a squarewave with fairly steep sides even if the orignal input was a sinewave. When this squarewave is applied to capacitor C3, the combination of C3 and R5 differentiates the wave converting it into two pulses, one positive and the other negative. Diode D1 selects the negative pulse and uses it to operate the trigger circuit of the 555 . The 555 is connected as a timer, generating a short pulse whose duration (pulse width) is controlled by th value of C5 and the setting of RV1. The output pulses have a good rectangular shape, ideal for test purposes. The frequency of the output pulses will be the same as the frequency of the input wave, which should be within the audio range. Try this one driven by a microphone and preamplifier, with the output connected to an amplifier - it's a good 'space-age' sound effect!

## A TESTING TIME

Let's go a bit further along this 'test-instrument' line of thought. Fig. 5.9 shows a 555 circuit which generates a squarewave signal with no input needed. This is achieved by making the timer self-triggering, so that the trigger input on pin 2 has to be connected to the threshold pin, pin 6. The action goes something like this. Imagine that the unit has just been switched on, so that the voltage at pins 6 and 7 is low. Since the voltage on pin 2 must also be low, the unit will trigger, and pin 7 will be open-circuited. This now allows the voltage at pin 7 to rise, so that C2 will start to charge through R3 and RV1 - meantime the output voltage on pin 3 has gone high. When the voltage on pin 6 reaches two thirds of the supply voltage, the timer circuits switch over, so that pin 7 (and also pin 2) is earthed; but the voltage at pin 6 is still at about two thirds of the supply voltage. The output voltage at pin 3 is now low again. C2 now discharges through RV1 and R3, because pin 7 is internally earthed, until the trigger voltage of one third of $V+$ is reached. When this voltage is reached, the effect on pin 2 is to start another cycle, with the output going high again an dC 2 charging once more. providing that the value of RV1 + R3 is much greater than that of R2, the output wave has a good square shape. If R2 is too large in comparison, the high part of the output wave, known as the mark, lasts longer than the low part, the space.


Fig. 5.9 The square-wave generator. Don't forget the wire links - there are four of them, including the 2C-3D one.

That's a basic form of circuit - let's see what we can use it for. Since the squarewave at the output can be at an audio frequency, and since the 200 mA current capability of the 555 is quite enough to drive a small loudspeaker, the 555 can be used in a number of alarm circuits. A burglar alarm basic circuit is shown in Fig. 5.10, using a loudspeaker of 4 ohms to 16 ohms resistance; Fig. 5.10(b) shows how a 60 to 80 ohm loudspeaker ca be used in a simpler circuit.


Fig. 5.10 Using the square-wave generator (a) to drive a loudspeaker when an alarm switch is pressed. The connection (b) for a high resistance speaker are also shown.

## SINE WAVE

The circuit itself is simple, using the 555 connected as a square-wave oscillator with an output to the loudspeaker. R4 is used to limit theamount of current which can flow, in case the current capability of the 555 is exceeded. The alarm is sounded by SW 1 being closed this switch can be a window contact, a door-mat switch or any of the many types of swich sold for this purpose by security specialists. This circuit can be combined with the sensing circuit of Fig. 3.2 (Part 3) providing that biasing is arranged so that the 741 output goes low when the sensing wire is touched

We're not limited to outputs from mechanical switches. Fig. 5.11 shows a freezer-alarm circuit which is a development of the circuit of Fig. 5.9 and which also uses the 555 as an oscillator driving a loudspeaker. The temperature sensing device is a thermistor which is located inside the freezer, using the special sticky tape which is sold for sealing freezer bags - ordinary tape cracks at low temperatures. The thermistor need not be near the alarm circuit, and can be connected by finegauge wires which can be laid over the freezer sealing rubbers without causing any damage. RV1 is used to adjust the amount of resistance which is connected in series with the thermistor, so that $\mathbf{Q} 1$ is just biased off. A rise in the temperature will cause Q 2 to switch on. With Q2 on, the voltage at pin 4 of the 555 is raised enough to allow the 555 to start oscillating - any voltage above 0.7 V which can pass a current of 0.1 mA is enough to release the reset action. The 555 oscilates, and the alarm sounds. RV1 should be set so that the alarm will NOT sound every time the lid is raised, but will sound if the lid is kept open for more than a few minutes.

Now it's your turn! Could you use a 741 in place of the two transistors in that circuit? Try it out - you'll find


Fig. 5.11 Using a 555 as the oscillator in a freezer-alarm.
that using the Eurobreadboard allows you to hook up circuits in a fraction of the time it would take to make a soldered circuit, and also enables you to try different component values by unplugging one component and plugging in another. In addition, you can keep a record of your layout by noting the number/letter codes.

## OVER TO YOU

All change again, this time to a circuit which can be used for controlling the speed of small motors (are you listening, model train and slot-car fans?). The type of control which is used is called mark-space control, and it's a great improvement over the simple variable resistor which is so often used as a speed control for small motors. In a rectangular wave (Fig. 5.12) the mark time is the time for which the voltage is high, and the space time is the time for which the voltage is low. A large mark-space ratio means that the output voltage is high for most of the time of one cycle; a small mark-space ratio means that the voltage is low for most of the time of a cycle. A 1:1 mark-space ratio means a square wave, whose average voltage is equal to half of the peak voltage. If we apply a voltage which has fixed amplitude but variable mark-space ratio to a small electric motor, the speed of the motor will depend on the mark-space ratio and very smooth control of speed can be achieved, without the loss of torque which is the problem when a variable resistance is used as a controller.

The circuit of Fig. 5.12 shows th mark-space generator. Motors which take less than 200 mA stalled (not moving) current at 12 V can be operated directed from the output of the 555 timer, but most model locomotive motors nowadays need rather more current, so that a simple add-on power booster, using a 2N3055 (as in Fig 5.13 ) is useful. The variation of the mark-to-space ratio is carried out by using the oscillator circuit of Fig. 5.9 with the addition of two diodes. While C2 is charging, D1 conducts so that the charging current comes through R1 and the portion of RV1 which is between point A and the top end of the potentiometer. When the circuit switches over, with pin 7 internally earthed, D1 is cut off, and C2 discharges through D2, R2 and the oter part of the potentiometer RV1 between point B and the tap. Since the total resistance of R1, R2 and RV1 is constant, the frequency of the output is steady, but the ratio of charge-to-discharge times can be varied greatly by


Fig. 5.12 The motor-speed controller circuit. Full speed corresponds to a large mark-to-space ratio, and currents greater than 0.2A can be provided by using a power-booster.
adjusting RV1. With the values shown, the ratio can be varied between about 1:100 and 100:1, so that an excellent control range can be obtained.

Note that this circuit is useful only if the supply to the circuit is DC, and reasonably smoothed. Most modelmotor supplies are simply full-wave rectified, with no smoothing, so that a $5000 \mu \mathrm{~F}$ capacitor, rated at 36 V should be added to make the circuit more effective - but check that this does not cause the output voltage to rise above the rated 16 V for the 555 . If it does, use the modifications shown in Fig. 5. 14

## ODDS AND ENDS

Now for the odds-and-ends section. Fig. 5.15 shows a circuit for a car or motor-bike rev counter. Old fashioned mechanicalrev counters needed a mechanical drive, but the modern electronic type need only electrical connections, and can be used with any conventional ignition


Fig. 5.13 A power-booster stage for the motor-speed controller.


Fig. 5.14 A voltage regulator to prevent the supply to the 555 rising above 16 V .
system which uses contact. points. The circuit operates on the sudden rise of voltage across the points each time they open to create the spark. For a single cylinder engine, there is either one spark per revolution (twostroke) or one spark every second revolution (fourstroke), and for multi-cylinder engines, this number is multiplied by the number of cylinders which are fired from the same contact-breaker. For a four-cylinder engine running at 3000 rpm , for example, there will be two sparks per revolution, 6,000 sparks per minute, 100 per second. Each time the points separate. Q1 and Q2 will turn on, causing th collector of Q2 to go momentarily to a low voltage. This, in turn, triggers the 555 , sincle pin 2 of the 555 is connected to the collector of Q2 through C2. Once the 555 is triggered, C4 starts to charge, and the output voltage goes high. The values of R4 and C4 are chosen so that the output will remain high for one two-hundredth of a second, so that if the rate of the input pulses is 200 per second, the output from the 555 will stay high - the 555 is being triggered again just at the end of each delay. This rate of 200


Fig. 5.16 The 555 tester circuit.
pulses per second corresponds to 6000 RPM for a four-cylinder four-stroke, and RV1 can be adjusted so that the meter $M$ reads full scale at this pulse rate. This calibration need not be done from an engine - incidentally, it can just as easily be carried out using a 200 Hz signal generator. Another method is to calibrate using 50 Hz from a small transformer, and adjust the meter to read 1500 RPM with this input.

If the engine speed is less than 6000 RPM, the 555 has time to finish its output wave before it is triggered again, so that the meter reading is rather less than at full speed. The meter reading is proportional to the average voltage at the output of the 555, and that is, in turn. proportional to the speed of the engine to which the circuit is attached.

We'll finish with a little one - you can word out for yourselves how it works. It's for testing 555 s , and it makes use of the oscillator circuit. When a working 555 is inserted, the LEDs will flash alternatively. If both LEDs light or if only one lights, the 555 is faulty. If neither of the LEDs lights the battery is flat!

HE



This 195 mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti-recoil system and built-in safety guard. Only $£ 7.25$ inc. VAT \& P.A.


Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LEDs, Transistors and components with leads up to 85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.
All connection rows and columns are not numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance ( $<10 \mathrm{~m}$, ohms).
Easily removable, non-slip rubber backing allows da maged contacts to be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 6.20$ each or $£ 11.70$ for 2 inclusive of VAT and P.P.

Snip our and Post
David George Sales, r/o 74 Crayford High St., Crayford Kent DA1 4EF


## Hobbyprints



We're just etching to tell you about HOBBYPRINTS, we know you won't be able to resist them. They're so good we've even patented the idea (1445171 and 1445172). If you're board with all those untidy strip boards or semi-permanent bread boards then read on.

After many months of extensive research we think we've come up with the ideal solution (Ferric Chloride?) to all of those problems people have with making really professional PCBs. (Puns come at no extra charge).

Seriously though, the HOBBYPRINT rub-down transfer, (very similar to the rub-down lettering) is the answer to the project builders prayer. PCBs take up a disproportionate amount of time, using HOBBYPRINTS a typical PCB can be finished in under half an hour. Because HOBBYPRINTS are produced from our original artwork there's no likelihood of making a mistake. They can even be used as photographic masks for ultra-violet PCB production.

Each sheet of HOBBYPRINTS contains all the PCBs for any particular month (an average of four PCBs), so for only 75 pence including VAT and Post and Packing that's not bad value. For a list of projects refer to back numbers ad.

## ORDER TODAY

Send cheque or postal order (payable to Hobby Electronics) to

## HOBBYPRINTS.

HOBBY ELECTRONICS,
145 CHARING CROSS ROAD LONDON WC2H OEE.

75p INCLUSIVE OF VAT AND POSTAGE.
Please mark the letter(s) of the HOBBYPRINTS on the outside of the envelope
BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

(1)

(3)
Returned to Service Department within guarantee period
(1) With alarm repeat - S.R.S.P. of £. 7.00 offered at E 3.95 inc. VAT.
most major U.K. Mail Order catalogues, S.R.S.P. $£ 31.00$-offered at $£ 7.95$ inc. V.A. 1
(3) With integral luxury light and repeat alarm also as S. P-S.P in most major U.K. Mail Order catalogues. These will be sold as received from our customers with the existing fault(S) and without guarantee.
Discounts avallable on large bulk purchases PRESCOTT CLOCK AND
WATCH COMPANY LIMITED
Prescot: House Humber Road, London NWZ GER


## SINCLAIR "SCIENTIFIC" CALCULA.

 TORS $£ 2.50$. Brand new and boxed. MK 14 keyboard £11. Replaces Original with High Quality Keys. S.A.E. details. Mail Order Önly. Full Refund if not Satisfied. LINTRONICS. 37A Chiltern Avenue, Bushey, Herts.INTRODUCTION TO MICROPROCES. SORS AND COMPUTING. 50 pages of diagrams and explanation to get you started. Price $£ 2.30+45$ p postage.
EDUCATIONAL DATA AND TECHNICAL SERVICES
59 Station Road, Cogenhoe, Northampton NN7 1LU

## CLASSIFIED INFORMATION

## Semi-Display:

1-3 insertions - $£ 4.00$ per single column centimetre
4- 1.1 insertions - $£ 3.50$ per s.c.c.
12 insertions - $£ 3.00$ per s.c.c.
Classified:
15 pence per word (minimum 25 words)
Box number $£ 1.00$ extra
ALL ADVERTISEMENTS IN THIS SECTION MUST BE PRE-PAID
Closing date: 2nd Friday in month preceding publication
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).
Cheques and postal orders should be crossed and made payable to "Hobby Electronics

## CLASSIFIED ADS, HOBBY ELECTRONICS 145 Charing Cross Road, London WC2H OEE

(Telephone: 01-437 1002)



PLAIN COPPER. P.C.B. off-cuts. Various sizes. 70 p per pound plus postage. - 144A Crystal Palace Road, London, S.E. 22 or telephone 01-693 4229

Until March 1 st this month's p.c.b.s to which Hobby Electronics have the copyright may be purchased for only 10 p per square inch (incl. VAT, P\&P)
E.G. A board the size of this ad $=110 p$ (take to nearest sq. inch)

## MAIL ORDER ONLY - CASH WITH ORDER TO:

## S\&G SERVICES (HULL)

43 Wheeler Street, Hull, North Humberside

QUANTITY of new and used input-output electric typewriters at quarter of cost, $£ 200$ Also approx. 100 new electric motors, offers required. 50 Grundig Stenorette dictating machines, 5 for $£ 20,6$ Remington office typewriters $£ 20$ each. - Call Tom on 01-200 7022

## PRINTED CIRCUITS and HARDWARE

Comprehensive range Constructors' Hardware and accessories
Selected range of popular components Full range of HE printed circuit boards. normally ex-stock, same day despatch at competitive prices
PC. Boards to individual designs
Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required)

Alfac range of etch restst transfers, and other drawing materials for p c boards

Send 15p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS: Tel. 4879

## QUARTZ LCD

5 Function
Hours, mins., secs. month, date, au:o calendar, back-light quality metal bracelet
$£ 6.65$
Guaranteed same day despatch.
Very slim, only 6 mm thick.


M1

SOLAR QUARTZ LCD
5 Function



M5

## QUARTZ LCD

Lady's Day Watch only $25 \times 20 \mathrm{~m}$
and 6 mm thick. Hours, minutes seconds, day, date, backlight and auto calendar. Elegant meta gold fully adjust able to suit very slim wrists. State colour preference.
$£ 9.95 \begin{aligned} & \text { Guaranteed same } \\ & \text { day despatch }\end{aligned} \mathbf{M} 15$

## PEXECUTIVE

 ALARM WATCH

QUARTZ LCD
11 Function 6 digit. 11 tunctions.
Hours, mins., secs., dz date, day of week. 10x secs. mins. Split and lap modes. Back light, auto calend
thick. Stainless Adjustable bracelet. Metac Price
£10.65


Guaranteed same day dispatch M3


## HOW TO ORDER

Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and order details clearly, enclose 40 pence per single item for post and packing or the amoumt stated in the advert. All products carry 1 year written guarantee and full money-back 10 day reassurance. Battery fitting and electronic catibration service is available to customers at any Metac shop. All prices include VAT currently at $15 \%$ Metac Wrolesale:
Trade enquiries - send for a complete list of prices for all the goods adverised plus many more not shown. also minimum order details.
Telephone orders Credit card customers can telephone orders direct to Daventry (03272) 76545 or Edgware Road 01.723475324 hours a day.
 CALLERS WELCOME. Shops open 9.30am-6.00pm


QUARTZ LCD
ALARM 7 Function


Metac price break-
through for an
Alarm Chrono-
graph with
Dual Time
Only £18.95

## OUTSTANDING FEATURE

- DUAL TIME. Local time always visible and you can set and recall ony other (ime zone (such as GMT).
Also has a light for night viewing
CALENDAR FUNCTIONS include the date and day in each time zone.
CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes and 59,9 seconds.
On command. stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
24 -hour period at he within a time a pleasant but effective buzzer sounds to remind or awaken yout
Guaranteed same day despatch M16

South of England 327 Edgware Road LONDON W. 2
Telephone: (01) 7234753


## SEIKO MELODY ALARM CHRONOGRAPH

Chiming Alarm plus chrono Hours, mins secs, date, day 24-hour alarm, 12 $1 / 10$ th secs. lapime back light, stainless steet. mineral glass.

SEIKO CALCULATOR WATCH

Full specificatio calculator with
memory, plus mulu memory. plus mu function watch
Hours mins. se hours. mins, Secs.
day date backligh day. date. backic calendar Long-life battery


## CASIO ALARM CHRONO 81CS-36B

Hours, mins, secs
day and also day month and year perpetual automatic calendar 100 th sec chronograph to 7 hours. Net time / lap tume/ ist and 2nd piace tumes. User
optionak $12 / 24 \mathrm{hr}$ optional $12 / 24 \mathrm{~h}$ display 24 Alarm. User optional, hou
chime. Backlight chime. Backlight. Price
mineral glass. stanless steel. Water resistant
to 1004 .
ant Battery approx 4 years


Price $£ 9.95 \quad$ M36

Hours, mins, secs, day, date, countdown alarm, dual time zone, $1 / 100$ th sec stopwatch. Lap/split time, 1 st and 2 n
place times. Melody test function Price $£ 26.95$ M30


## SEIKO <br> CHRONOGRAPH




Hours, mins secs and day of the week Month, date and day of the week. Stopwatch display. Hours, mins, secs up to 12 hours (minutes, secs, 1/100 secs up to 20 minules). Lap imog, contioous stain less steel, mineral glass.
Price $£ 56.00$
M33

South of England 327 Edgware Road LONDON W. 2 Telephone: (01) 7234753


This superb organ - build the first working section for just over $£ 100$. Full specification in our catalogue.


Touch operated rhythm generator, the 'Drumsette'. Construction details 25p. (Leaflet MES49). Specification in our catalogue


Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details


61-note touch-sensitive piano to build yourself. Full specification in our catalogue.


A mássive new catalogue from Maplin that s even
bigger and better than before. If you ever buy electronic components, this is the one catalogue you must nor be
without. Over 280 pages - some in full colour - it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page atter page o
invaluable data. guaranteed orice special otters and all the latest-news from Maplin


A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!


The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification Full details in our catalogue.


A pulse width train controller for smooth slow runring plus inertia braking and acceleration.
Full construction details in our catalogue.


Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, crossovers etc They're all in our catalogue. Send the coupon now!

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.


[^0]:    
    

    Fig 2. The signal multiplexers and servo amps.
    
    each sensor, and three outputs; two motor control signals and 'avoid' (pin 12, IC11) which goes active (high) for a certain period determined by adjustment of RV1 following any collision. It is this signal which applied to IC3 causes HEBOT to select control by the manoeuvre circuitry.

    Following any collision, pin 11, IC9 goes high causing capacitors $\mathrm{C} 5,6$ to be discharged via transistors Q3, 2 and monostable timing periods to be initiated.

    The overall manoeuvre time is adjusted by RV1 while RV2 sets the duration of straight motion before a turn is executed. If RV1 is first set then adjustment of RV2 will alter the degree of turn. HEBOT chooses forward or reverse and the direction of turn by examining internal registers which 'remember' which sensor signalled a collision. The registers comprise bistable latches formed by parts of IC6 and 9 which are set or reset by associated gates. If there are 'too many' collisions within a certain period then pin 10, IC11 will go low. This output may be optionally connected to pin 1, IC6 where it will cause HEBOT to execute a turn immediately following a collision without any straight motion. The usefulness of this strategy will depend on the settings of RV1, 2 which may be optimised for different obstacles. The circuitry has been designed to enable a flexible and versatile system to be developed and there may be many changes which can be made to adapt HEBOT's behaviour to his environment.
    

    Fig. 3. PCB foil pattern for HEBOT

    Fig. 4. PCB overlay for HEBOT

    Our prototype used wire collision sensors.
    

    ## Hebot

    ## Parts List

    \section*{RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$ ) <br> | R1, 2, 3, 4, 18 | 1 MO |
    | :--- | :--- |
    | R5, 7, 8, 9, 10 |  |
    | $15,16,17,19$ | 10 k |
    | R6, 11, 12 | 100 k |
    | R13, 14 | 47 k |}

    ## POTENTIOMETERS

    RV1,2 1 MO preset

    ## CAPACITORS

    | C1, | 10n polyester |
    | :--- | :--- |
    | C3, 4 | $1,000 \mu$ electrolytic |
    | C5,6 | $4 \mu 7$ tantalum |
    | C7 | $10 \mu$ tantalum |

    ## SEMICONDUCTORS

    | Q1,2,3 | BC107 |
    | :--- | :--- |
    | Q4, 6 | BFX88 |
    | Q5, 7 | BFX85 |
    | D1 | 1N4148 |
    | IC1,2 | CA3130 |
    | IC3 | 4532 |
    | IC4,5 | 4052 |
    | IC6,9 | 4011 |
    | IC7 | 4001 |
    | IC8 | 4016 |
    | IC10, 11 | $14584(40106,74$ C14) |

    All CMOS 'B' series.

    ## Buylines

    The electronic components should be readily available from any of the larger mail order companies. The chassis and associated mechanical components are available from Remcon
    

    The castors used on the production version of HEBOT differ slightly from the ones shown on our prototype
    

    Remcon's three-part aluminium cover which will be supplied with their production kits.
    

    HEBOT demonstrates its amazing(!) ability to negotiate a labyrinth.

    ## APPROXIMATE SPECIFICATION

    Main chassis pan. Anodised Aluminium 18 g . thick. $10^{\prime \prime}$ across flats with $1 / 2^{\prime \prime}$ flanges all round. Ready punched for all electro mechanical hardware. Will carry loads of at least 5Ibs evenly distributed.
    Ready formed in aluminium, to fit over chassis flange, and give internal height of $6^{\prime \prime}$ approx.
    Copolymer moulded gears and gearbox for long life, driven by micromotor $4-6 \mathrm{v} \mathrm{dc}$, current consumption 120/150ma each. Anticipated duration from two 500 mah batteries $3 / 4$ hrs. Sponge tyre wheels $3^{\prime \prime}$ dia keyed to output shaft by square fit. Will operate on any smooth surface including low pile carpet. Level ground speed $9^{\prime \prime} / \mathrm{sec}$. Will climb slopes approaching 1 in 1
    Prices (excluding VAT at $15 \%$ )
    Complete mechanics kit as detailed below or separately
    £35.00 P\&P £2.00 £6.50 P\&P 75p
    Main Chassis and instructions £19.50 P\&P 50p Balibearing stabilizers and fixings per pair
    £3.00 P\&P 50p
    PCB standoffs - 12 supplied £1.00 P\&P 25p Ready formed cover for easy assembly
    £7.00 P\&P £1.50
    To use Robot. One for the 'Hebot' design you will also require kit HE101 comprising four fibre-glass switch arms, springs and pivots - price to be announced. PCB (kit HE102) is also available for $£ 4.25$ plus P\&P $25 p$. Available from: Remcon Electronics, 1 Church Road, Bexleyheath, Kent. DA7 4DD.

    # Hobby <br> Chit~Chat 

    In this month's 'Chit-Chat,' project editor Ray Marston writes about Robots and simple test gear circuits.

    YOU MAY REMEMBER that in the September edition of 'Chit-Chat' I slammed a book called 'Build Your Own Working Robot,' by D. L. Heiserman, as THE most awful electronics book of all time. You many conclude two things from those comments. First, that I didn't like the book, and second, that we at HE are very interested in. Robots and robotics. Now, two months later, you can see proof of our interest in Robots in the form of HEBOT.

    HEBOT is, without doubt, the best 'build your own Robot' project ever published in either Europe or the USA. In contrast to all previously published Robot projects, HEBOT has been well conceived and planned as a total entity, has excellent electronic circuitry, and most important of all, is based on a superb speciallydeveloped Robot chassis that is being made available commercially in ready-built form at a reasonable price. We at. HE are all very proud of HEBOT.

    ## A GOOD ROBOT BOOK

    Another 'Robot' book landed on my desk recently. This is a good one. It is called 'How to Build a ComputerControlled Robot,' by Tod Loofbourrow, and describes a monstrosity (it weighs 200 pounds!) called MIKE

    Unlike HEBOT, MIKE is rather badly conceived, has lousy mechanics, and costs several hundred pounds to build. Never-the-less, MIKE is well worth reading about. He uses an on-board microprocessor unit (a KIM-1) to process sensor and other data and control motor movements. He uses ultra-sonics to detect obstacles, and can (it is claimed) recognise certain spoken words. Unfortunately, the ultra-sonics don't work too well, and the speech-recognition circuitry is decidedly temperamental. In spite of these setbacks, the book presents lots of thought-provoking ideas.

    The MIKE book is published by the Hayden Book Company of America, and is being imported into this country by N.I.C., 27 Sidney Road, London N22 4LT. It costs about £6. If you want more details, give N.I.C. a ring on 01-889 9736.

    ## TEST GEAR CIRCUITS

    If you want to design or experiment with your own Robot, or home computer, or (for the less adventurous) a one-transistor amplifier, you'll need to acquire various bits of test gear. Trouble is, test gear is expensive. To help you overcome the 'expense' problem. Figures 1 to 6 show a few practical test gear 'measurement' circuits that you can build for very little cost.
    

    All of these circuits are based on a moving coil meter with a full-scale sensitivity of one milliamp. If you like, you can use any or all of these circuits in conjunction with the 1 mA DC range of an existing multi-meter, in 'which case you can regard Figs 1 to 6 as multi-meter 'add-on' circuits. All six circuits are designed around the LF356 FET op-amp (operational amplifier), which has a very high input impedance. If you try using a 741 instead of the LF 356 you may find that the circuits won't work. Note that all circuits use split-rail supplies, necessitating the use of two 9 volt batteries.

    If you want to convert an existing 1 mA meter into a fixed-range DC millivoltmeter, with a full-scale sensitivity of $1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}$, or 1 volt, you can use the circuit of Figure 1. The table shows the appropriate R1 value for different FSD (full-scale deflection) sensitivities. To set the circuit up initially, short it's input terminals together and adjust RV1 to obtain zero deflection on the meter. The circuit is then ready for use.

    The Figure 2 circuit can be used to make a fixed-range DC voltmeter with any full-scale sensitivity in the range 100 mV to 1000 volts, or a fixed-range DC current meter with any full-scale sensitivity in the range 1 uA to 1 amp. The table shows alternative R1 and R2 values for
    

    VOLTMETER

    | Fsd | $R 1$ | $R 2$ |
    | :--- | :---: | :---: |
    |  |  |  |
    | 1000 V | 10 M | $1 \mathrm{k0}$ |
    | 100 V | 10 M | 10 k |
    | 10 V | 10 M | 100 k |
    | 1 V | 900 k | 100 k |
    | 100 mV | - | 100 k |

    CURRENT METER

    | 1 A | $-0 R 1$ |  |
    | :--- | :--- | :--- |
    | 100 mA | - | $1 R 0$ |
    | 10 mA | - | $10 R$ |
    | 1 mA | -100 R |  |
    | 100 uA | -1 kO |  |
    | 10 uA | -10 k |  |
    | 1 uA | -100 k |  |

    Fig. 2. A simple DC Voltage or Current meter.

    Fig. 3. A precision DC Millivoltmeter.
    

    Fig. 4. A precision DC Microammeter.
    different ranges. If you want to use the circuit on the 1000 volt range, make the 10 M R 1 value up from ten 1 MO resistors in series, so that the reșistor break-down voltage ratings won't be exceeded

    Figure 3 shows how to make a 4 -range DC millivolt-
    meter, and Fig 4 shows how to make a 4 -range DC microammeter. The accuracies of these and all other circuits shown here are determined by the accuracies of the resistors that are used in the circuits. $5 \%$ components are adequate for most purposes.

    ## Chit~Chat

    

    Fig. 5. Precision AC Millivoltmeter.

    Figure 5 shows the circuit of a simple but very useful fixed-range AC millivoltmeter. The input impedance of the circuit is equal to R1, and varies from 1 kO in the 1 mV FSD mode to 1 MO in the 1 volt FSD mode. The circuit gives a useful performance at frequencies up to about 100 kHz when it is used in the 1 mV to 100 mV FSD modes. In the 1 volt FSD mode the frequency response extends up to a few tens of kHz . This good frequency response is ensured by the LF356 op-amp, which has a far better bandwidth than most lessexpensive op-amps.

    Finally, Figure 6 shows the circuit of a 5 -range linear-scale ohmmeter, which has full-scale sensitivities
    ranging from 1 kO to 10 M . The accuracy of the circuit is determined by resistors R5 to R9. To initially set up and calibrate this circuit, set SW1 to the '10k' position, and short the 'Rx' terminals together. Then adjust the RV 1 'set zero' control to obtain zero deflection on the meter. Next, remove the short, connect an accurate 10 k resistor in the 'Rx' position, and adjust RV2 to obtain precisely full-scale deflection on the meter. The circuit is then ready for use. Once the circuit has been initially calibrated, RV1 and RV2 should require no further adjustment for several months

    The LF356 is available from Watford or Stevenson see ads in this issue.
    

    # Britains Best Breadboard Buy at Breadboard 79 

    ## FREE ENTRY TICKET WORTH £1.00 WITHEVERYPURCHASE

    

    All over Britain, hobbyists are discovering Britain's Best Breadboard Buys. At the London Breadboard exhibition '79 on Stand Nos. F1, F2 and G1, G2, CSC will be exhibiting their full range of breadboards.
    Here is your chance to obtain a special ticket for Breadboard '79 worth $£ 1.00$ absollutely FREE.

    Cut out the coupon below and take it along to one of our listed dealers, and make a purchase of any of our breadboards and receive your special FREE ticket - see you at Breadboard '79.
    Take the coupon to any of these main dealers: LONDON
    Rastra Electronics Lid. , 279-281 King Street, Hammersmith, London W6
    Cubegate Lid. Audio Electronics, 301 Edgware Road. London W2 1BN
    Technomatic Ltd., 17 Burnley Road, London NW10 1ED Precision instrument Labs., Instrument House.
    727 Old Kent Road. London SE 15
    MANCHESTER
    Shudehill Supply Co.. 53 Shudehill, Manchester M4 4AW BUCKINGMAMSMIRE
    West Hyde Development. Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET
    8est Electronics (Slough) Lid. . Unit 4 Farnburn Ave., Slough, Bucks SLI 4XU
    KENT
    Lawtronics, 13 a High Street, Edenbridge, Kent TN85AX NEWCASTLE
    Aitken Bros., 35 High Bridge. Newcastle upon Tyne
    SCOTLAND
    Marshalls, 85 West Regent Sireet, Glasgow G2
    F. Brown \& Co., 45 George IV Bridge, Edinburgh EH1 1E3 LEEDS
    Leeds Amateur Radio Club, Cookridge Street, Leeds I
    MERTFORDSHIRE
    BI-PAK, 3 Baldock Street, Ware, Herts.

    ## CONTINENTAL SPECIALTIES CORPORATION

    

    CSC UK LTD. EUROPE, AFRICA, MIDEAST
    Shire Hill Industrial Estate Units 1 and 2
    Saffron Walden, Essex CB11 3AO
    Tel: Saffron Walden (0799) 21682. Telex: 817477

    EXP 650
    EXP 325 Built in bus-bars accepts 8, 14, 16 and up to 22 pin ICS. $£ 1.60$
    EXP 350270 contact points, ideal for working with up to $3 \times 14$ pin DIPS, $£ 3.15$ EXP 650 For microprocessor chips. $£ 3.60$ EXP 48 An extra 4 bus-bars in one unit. f2. 30
    EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 5.75$ EXP $6006^{\prime \prime}$ centre channel makes this the Microprocessor Breadboard. $\mathbf{£ 6 . 3 0}$
    PB6 Professional breadboard in easily assembled kit form. $£ 9.20$
    PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$

    EXP 325
    EXP 600
    EXP 48

    The above prices do not include P\&P and $15 \%$ VAT
    

    SOME TIME AGO, you may remember we said that we were considering using Vero Board in some of our projects. We tried several different methods of presentation but none seemed to work, so this month by way of an experiment we are publishing six highly original and easy-to-build projects based on a standard sized piece of Vero Board. (We did mention last month there were to be ten but space was at a premium this month.

    The actual method of designating the hole coordinates prooved to be something of a headache for our drawing office, so in the coming months we will be attempting further Miniboard projects but using photographic techniques to indicate the track cuts and solder joints on the copper strips. This month only we will use a
     BOTTOM
    The system we'te adopted for numbering the holes on the board. In the coming months we will be using this photographic system for location rather than by simple diagram.
    combination of both drawing and photograph to illustrate these projects.

    So, what are you waiting for? Arm yourself with a Vero cutter, some Vero Board and get building.
    

    Tools of the trade. The Vero Cutter is not essential, a good sharp drill of about $1 / 4$ " (or more) in diameter will suffice. We strongly recommend the use of Vero Pins when making connections to the stripboard as the adhesive used to bond the copper strip to the board does not take too kindly to repeated soldering, it also results in less physical strain on the board itself.

    ## OPTO-THERMO SWITCH

    A versatile relay-output switch that can be activated by light, dark, heat or cold.

    THIS SIMPLE BUT HIGHLY VERSATILE LITTLE UNIT has a relay output that can be activated by either optical (light) or thermal (temperature) levels. The unit can be made to activate either when these levels go above or fall below pre-set values, depending on the manner in which the input sensors (an LDR or.light-dependent resistor for photo operation, or a thermistor for theirmal operation) are connected to the unit. The unit can thus function as either a 'brightness' switch, a 'darkness' switch, an over-temperature switch, or an under-temperature switch.

    The unit has a multitude of practical uses. In the opto
    mode it can be used to automatically turn on lights when darkness falls, or to activate an alarm if a light is shone into a normally-dark area such as a cupboard or safe. In the thermo mode it can be used to turn on heating when the temperature falls below a pre-set value, or to activate a cooling system or sound an alarm when the temperature rises above a pre-set value

    ## CONSTRUCTION AND USE

    The unit uses very few components, and can be built in about half an hour. Full constructional details are
    shown in Figure 3. Take care to connect D1, Q1, and IC1 in the polarity shown.

    Figure 2 shows how to connect the input sensor (either-an LDR or a thermistor (and RV1 to the ' $x$-x' and ' $y-y$ ' inputs of the unit to obtain the desired type of operation. For opto operation, the LDR must present a resistance in the range 900 R to 9 kO at the desired trigger level: an ORP 12 is suitable for use in most cases. For thermo operation, the thermistor must be a negative-temperature coefficient (NTC) type that presents a reistance on the range 900 R to 9 kO at the desired trigger level: a VA1066S is suitable for use in most cases. The relay can be any 12 volt type with a coil resistance greater than 120 R .

    The unit must be powered from a 12 volt supply. In use RV1 is simply adjusted so that the relay just activates at the desired light or temperature level. External circuits can be controlled via the relay contacts

    HE

    ## How it Works

    IC1 is a type 741 operational amplifier that is wired as a voltage comparator. A fixed 'half supply' reference voltage is fed to input pin 3 of the op-amp via R1 and R2, and a variable voltage is fed to input pin 2 via RV1 and the LDR or thermistor. The circuit action is such that the op-amp output is normally low and Q1 and the relay are off, but the output abruptly switches high and drives Q1 and the relay on when the pin 2 voltage falls below the pin 3 voltage. R3 introduces a small amount of hysteresis so that the circuit switches sharply and switches at slightly different ON and OFF levels, thus eliminating relay 'chatter' problems. D1 suppresses back-emf's from the relay coil, and this protects Q1 against damage from this source.
    

    Fig. 1. Basic circuit of the opto-thermo alarm.
    

    Fig.2. Connections for making the following types of alarm: a) light-operated, (b) dark-operated, (c) over-temperature, (d) under-temperature.
    

    | RESISTORS (All $1 / 4 \mathrm{~W}$ | $5 \%)$ | SEMICONDUCTORS |  |
    | :--- | :--- | :--- | :--- |
    |  |  | IC1 | 741 |
    | R1,2 | 12 k | Q1 | BC184L |
    | R3 | 270 k | D1 | IN4001 |
    | R4 | 4 k 7 | MISCELLANEOUS |  |
    | R5 | 1 kO | RLA, 12V 120R |  |

    

    Fig. 3. Constrictional details of the opto-thermo alarm.

    ## OPTO-THERMO ALARM <br> A direct-output electronic alarm that can be activated by light, dark, heat, or cold.

    THIS NOVEL AND USEFUL PROJECT can be powered from a 9 V to 12 V supply, and produces a pulsed-tone alarm signal in a small speaker when light or temperature levels go beyond pre-set limits. The unit can be made to activate either when these levels go above or fall below pre-set values, depending on the manner in which the input sensors (an LDR or light-dependent resistor for 'light' operation, or a thermistor for 'temperature' operation) are connected to the unit. The circuit can thus function as either a 'brightness' alarm, a 'darkness' alarm, an over-temperature alarm, or an undertemperature alarm.

    The unit has a variety of uses in the house and in the car. In the car, it can be used to give a warning of road ice or of engine or gearbox overheating. In the home, it can be used to give a warning of a burnt-out night-light or a failed heating system in a child's room, or it can be used as a 'dawn' alarm.

    ## CONSTRUCTION AND USE.

    The unit is quite compact, and care must be taken in the construction. The two IC's should be mounted in suit-
    able holders. Start construction by breaking the copper tracks in the positions shown on the underside of the board, and then fit all shorting links into the positions shown on the top of the board. The two IC holders, followed by the remaining components, can then be soldered into place.

    Figure 2 shows how to connect the input sensor (either an LDR or a thermistor) and RV1 to the ' $x-x$ ' and ' $y$ - $y$ ' inputs of the unit to obtain the desired types of operation. For light operation, the LDR must present a resistance in the range 900 R to 9 kO at the desired trigger level: an ORP 12 is suitable for use in most cases. For temperature operation, the thermistor must be a negative-temperature-coefficient (NTC) type that presents a resistance in the range 900 R to 9 kO at the desired trigger level: a VA1066S is suitable for use in most cases. The speaker can have any impedance in the range $3 R 0$ to $25 R$, the latter value being preferred.

    The unit can be powered from any DC supply in the 9 $V$ to 12 V range. In use RV1 is simply adjusted so that the alarm just activates at the desired light or temperature level. The unit produces an attractive pulsed-tone signal when it is activated.

    HE
    

    Fig. 1. Basic circuit of the Opto-thermo switch.

    ## How it Works

    IC1 is a type 741 operational amplifier that is wired as a voltage comparator with a small amount of regenerative feedback. A fixed 'half supply' reference voltage is fed to input pin 3 of the op-amp via R1 and R2, and a variable voltage is fed to pin 2 via RV1 and the LDR or thermistor. The output of ICl is used to activate (turn on or off) a 'slow' gated astable multivibrator formed by IC2a and IC2b, and the output of IC 2 b is used to activate a 'fast' gated astable formed by IC2c and IC2d which has it's output fed to the speaker via Q1.

    When the pin 2 voltage of ICl is below that of pin

    3 , the output of ICl is high, and the two astables are gated off and no output is produced from the unit. When the pin 2 voltage of IC 1 is above that of pin 3 , the output of ICl is low, so slow astable IC2a-IC2b is gated on and it's output alternately switches the fast IC2c-IC2d astable on and off to produce a pulsed-tone in the speaker.

    Since the pin 2 voltage of ICl is determined by a potential divider RV1 and light-sensitive element LDR or temperature-sensitive element TH1, the alarm can be activated by either light or temperature levels.
    

    Fig. 2. Connections for making the following types of switch (a) dark-operated, (b) light-operated, (c) under-temperature, (d) over-temperature.
    

    ## Miniboard Projects

    
     BOTTOM
    

    ## Parts List

    | RESISTORS (All 2W, 5\%) |  | CAPACITORS |  |  | |
|---|---|---|---|---|---|
    |  |  | C1 100 n polyester |  |  |
    | R1, 2 | 12 k | C2 | 1 nO Ceramic |  |
    |  |  |  | SEMICONDUCTORS |  |  |
    | R3 | 270k |  |  |  |  |
    | R4 | 1 MO | IC1 |  | 741 |
    | R5 | 820k | 1 C 2 |  | CD4001 |
    | R6 | 6 k 8 | Oi |  | BC214L |
    | R7 | 82R |  |  |  |
    |  |  | MIS | US |  |
    |  |  | LS1 |  | 3RO-25R |

    ## LED FLASHER

    > A variable-rate LED flasher that can drive either a single LED or a pair of LEDs operating in anti-phase.

    THIS CIRCUIT CAN BE USED to either pulse a single LED (light-emitting diode) on and off repetitively or to similarly drive a pair of LEDs in anti-phase, so that one LED turns off when the other turns on, and vice versa. In either case, the flashing rate of each LED is variable from about 15 flashes per minute to 2,000 flashes per minute via a small pre-set pot.

    The circuit can be used to add visual interest to a variety of toys, gadgets, and instruments. Model railway enthusiasts can use the unit to simulate flashing lights on miniature police cars and ambulances, etc, or to simulate warning beacons on Zebra crossings
    

    Fig 1. LED Flasher. The flash rate can be varied from 15 per minute to 2,000 per minute via RV1.

    ## How it Works

    ICl is a type 555 'timer' IC, and is connected as a free-running or astable multivibrator that produces a square-wave output signal at pin 3. When this output signal is high it cuts LED 1 off and drives LED 2 on, and when it is low it pulls LED 1 on and cuts LED 2 off: the two LEDs thus turn on and off in anti-phase.

    The operating frequency of ICl , and thus the flashing rate of the LEDs, is determined by the values of Cl and $\mathrm{R} 4-\mathrm{RV1}$ : the flashing rate is variable between roughly 15 and 2,000 flashes or cycles per minute via RV1. The ON currents of the LEDs are limited to safe values by the R1 and R2 470R limiting resistors.
    
    fig 2. Constructional details of the LED flasher.

    ## Parts List

    | RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$ ) |  |
    | :--- | :--- |
    | R1, | 470 R |
    | R3, 4 | 1 k 5 |
    | POTENTIOMETERS |  |
    | RV1 | $220 \mathrm{k}, 1$ in preset |
    | CAPACITORS |  |
    | C1 | 10 u 16 V Tantalum |
    | C2 | 100 u 16 V Tantalum |
    | SEMICONDUCTORS |  |
    | IC1 | NE555 |
    | LED 1,2 | TIL209 |

    ## CONSTRUCTION AND USE

    The unit uses only ten components, and can be built in about half an hour. Full constructional details are shown in Figure 2. Take care to fit IC1 and the two electrolytic capacitors in the polarity shown.

    When construction is complete, connect the unit to a 9 volt or 12 volt supply, and check that the LEDs flash on and off repetitively. The flashing rate can be caried via RV1. If you want the circuit to operate with only one flashing LED, you can either short out the unwanted LED or can remove it and it's associated 470R resistor from the circuit.

    # DIFFERENTIAL TEMPERATURE SWITCH 

    ## A relay switch that turns on only when temperature ' $A$ ' is higher than temperature 'B,' irrespective of the absolute value of either temperature.

    THIS INEXPENSIVE AND UNUSUAL únit can form the basis of a number of sophisticated household-control systems. The circuit uses a couple of ordinary silicon diodes as temperature-sensing elements, and uses a relay as an output 'switch.' The circuit action is such that the relay turns on only when temperature ' $A$ ' (sensed by $D 1$ ) is higher than temperature ' $B$ ' (sensed by D2), and this action occurs irrespective of the absolute value of either temperature. The circuit action can be effectively reversed, so that the relay turns on only when temperature ' $A$ ' is below that of temperature ' $B$,' by simple
    transposting the measurement designations of D1 and D2.

    The enterprising experimenter should be able to find a number of practical uses for this switch. It can, for example, be used to activate a blower motor to ensure that a cellar or basement is automatically warmed by the outside air if the external air temperature is above that of the cellar or basement. Alternatively, it can be used to activate a solenoid valve to ensure that a storage tank is automatically filled only from the hotter of two alternative water sources, etc.

    ## Miniboard Projects

    

    Fig. 1. Differential Temperature Switch: The relay switches on when the D1 temperature is greater than that of D2.
    

    ## CONSTRUCTION AND USE

    The unit uses very few components, and can be built in about half an hour. Full constructional details are shown in Figure 2. Take care to connect the three diodes, the transistor, and IC1 in the polarity shown. The relay can be ąny 12 volt type with a coil resistance greater than . 120 R

    The unit must be powered from a 12 volt supply. In use, RV1 is simply adjusted so that the relay is just off when both sensing diodes (D1 and D2) are at the same temperature. The relay should then turn on if the temperature of D1 is raised a small amount above that of D2: note that at normal room temperature this action can be checked by simply touching D1, so that body heat produces the required differential. External circuits can be controlled via the relay contacts

    ## How it Works

    Ordinary silicon diodes can develop forward voltages of several hundred millivolts at current levels of the order of 1 mA , the precise voltage value depending on the value of current and the characteristics of the individual diode that is used. All silicon diodes, however, have a virtually identical temperature coefficient of about $--\mathrm{V} /{ }^{*} \mathrm{C}$, and can thus be used as accurate temperatureindicating devices.
    In the Figure 1 circuit the two temperaturesensing diodes (D1 and D2) have currents passed through them via the RV1-R1-R2-R3 network; RV1 allows the relative values of the two currents to be adjusted over a limited range so that the diodes produce almost identical forward voltages when they are both at the same temperature. Consequently, the differential or 'difference' voltage between the two diodes is directly proportional to the difference in their temperatures, and equals $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This difference voltage is fed to the input terminals of the IC1 operational amplifier, which is connected as a voltage comparator or differential voltage switch, and the output of the op-amp is fed to the relay via Q1. This action is such that the relay turns on when the temperature of D1 rises above that of D2.
    
    $\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1011 & 12131415 & 1617181920 & 2122 \\ 23 & 24\end{array}$ BOTTOM
    

    ## Parts List

    | RESISTORS(All $1 / 6 \mathrm{~W}, 5 \%$ ) |  | SEMICONDUCTORS |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |
    |  |  | O1, BC214L |  |  |
    | R3 2 k 7 |  |  |  |  |
    | R4 | 1 kO | D3 ${ }^{\text {a }}$ IN4001 |  |  |
    | POTENTIOMETERS |  | MISCE | daneous |  |
    |  |  |  | 12 | 120R |

    ## Miniboard Projects

    ## OPTO-TONE

    ## An unusual 'musical instrument' that can be played with a torch or with shadows.

    THIS CIRCUIT IS, IN ESSENCE, a variable-frequency high-power oscillator that alters it's tone in response to the light intensity falling on the face of an LDR. The output tone is fed directly to a loud speaker, and is light-variable over a three decade range. The tone is high at high levels of illumination; and low at low levels of
    

    ## How it Works

    ICl is a type 555 'timer' IC, and is connected as a free-running or astable multivibrator that produces a square-wave output signal in the speaker. The oscillation frequency is determined by C2 and by the total value of resistance appearing between pins 6 and 7 of the IC. The minimum value of this resistance is determined by R3 when the LDR is short-circuited, and the maximum value is determined by R 4 when the LDR is open-circuited: the intermediate values are determined by the resistance of the LDR itself, and this is determined by the level of illumination falling on the face of the LDR.
    

    Fig. 2. Construction details of the opto-tone.

    ## MICROPROCESSOR Hand held games

    From Casio's New Collection comes one of the most sophisticated executive watches available today.

    ## BUYING TIME?

    Better make sure it's CASIO

    We have selected the best available
    It's you against the computer!
    UFD MASTER BLASTER STATION

    More sophisticated than DESTROYER. Guide missiles to destroy UFOs which may change course or disappear!

    ## £22.50

    

    GRANDSTAND 4-in-1
    Calculator / Auto Race / Code Breaker (as Digits) / Blackjack Convenience - skill Brainpower - Luck?

    ## £22.50

    ## AMAZE-A-TRON

    Over 1 million mazes to defeat! or 2 players Electronic sound effects £17.25
    

    MICROPROCESSORS FAIRCHILD GRANDSTAND
    Video Entertainment Computer
    

    19 plug-in pre-programmed memory cartridges now available.

    Each E12.50

    ## NEW SCIENTIFICS

    

    CASIO FX-2600
    Ultra slim - 5/32in
    $8+2$ digit LC Display. 43 scientific functions. Non volatile scientific functions. Non volatile
    memory. Auto power off 6 levels parenthesis. Standard deviations. $R$ to $P, P$ to $R, E N G, F I X, S G I$. RND and Random number keys $5 / 32$ in $\times 2^{3 / 4} \times 41 / 8 \mathrm{in}$.

    ## £19.95

    CASIO FX-3200
    As above but 10 digits
    £21.95
    CASIO FX-310
    As FX- 2600 but 50 scientific functions, $1 / 4 \times 21 / 8 \times 5^{1 / 4}$ in.
    £17.95
    CASID FX-510
    10 digit version of above
    £19.95

    * WE WILL TRY AND BEAT ANY LOWER PRICE $\star$
    Price includes VAT, P\&P. Send your cheque, P.O. or phone your ACCESS or B'CARD number to: -


    ## THE 81CS-36B ALARM CHRONOGRAPH

    LC Display of hours, minutes, seconds, day; And with day, date, month and year perpetual automatic calendar

    ## $4-5$ YEAR BATTERY

    1/100 second chronograph to 7 hours. Net, lap and first \& 2 nd place times. User aptional 12 or 24 hour display. 24 hour alarm. User optional hourly chime Back light. Mineral glass Stainless steel case. Water resistant to 100 ft (3 at.)

    RRP $£ 39.95$

    ## £35.95

    ## HONGKONG WATCHES

    Most low cost watches come from Hongkong. In our experience these are proving to be extremely unreliable, particularly those with multi-function modules, with failure rates of up to $60 \%$ or more. Repairs can take as long as three months, and replacement parts are not always available. Compare this with Casio, Citizen and Seiko, whose failure rate is typically under $1 \%$ and Casio's service time of 2-3 weeks and we ask you:
    ISN'T IT WORTH PAYING A LITTLE MORE FOR QUALITY AND RELIABILITY?
    Fully guaranteed for 12 months

    ## GASIO LADIES' WATCHES

    Superbly styled stainless steel cases, with mineral glass face, water resistant to 100 feet. LC Display of hours, minutes, 10 seconds, seconds by flash, $\mathrm{am} / \mathrm{pm}$; And with day, date and month
    

    86CL-22B
    $£ 37.25$
    

    86OL-12B
    £31.95
    

    860L-10B £26.50

    NEW FROM GASIO HQ-21 CALCULATOR AND CLOCK

    LC Display of hours minutes and seconds. 8 digit calculator with full memory. \% Two AA batteries give very long batteries give very long (RRP $12,4 \times 5 \times 53 / 8$
    (Re.
    £10.95
    

    New Lithium batteries outiast most solar watches.

    ## GASIO CHRONOGRAPHS

    CASIO 95QQS-31B
    4 YEAR BATTERY $1 / 100$ sec. chrono to 7 hours. Dual time. 12 or 24 hou Stainless steel encased Water resistant to 66 feet (2at.). RRP $£ 29.95$ £23.95
    

    CASIO 95CS-31B
    5-YEAR BATTERY. $1 / 100$ sec chrono to 7 hours. Dual time. 12 or 24 hour. Solid stainless steel case. Water esistant to 100 ft (3 at.) RRP $£ 34.95$

    ## £29.95

    Both have new Lithium batteries which outlast most SOLAR watches. Constant LCD display of hours, minutes, seconds, am/pm and day, (12 or 24 hour). Dual time ( 12 or 24 hr ). Automatic day, date, month and year calendar. Mineral glass face. Backlight. High quality $\mathrm{s} / \mathrm{s}$ bracelets with easily removable links.

    ## CASIO F-200 <br> Sports chrono

    Hours. minutes, seconds, am pm ; and with day, date and month auto calendar. $1 / 100$ sec chrono to 1 hour. Net, lap and 1 st \& 2 nd place times Resin case and matching strap. Mineral glass.
    Water resistant to 66 H (2 at.) Silver oxide battery.
    RRP $£ 17.95$
    £15.95
    

    8 DIMTS - TIME/DATE
    

    ## CASIO F-8C

    ## 3-YEAR BATTERY

    8 digit display of hours, minutes, seconds and date, with day \& am/pm.
    Auto calendar
    Backlight.
    Resin case and
    matching strap.
    Mineral glass.
    Water resistant to
    66 ft (2 at.).
    RRP £12.95
    Real quality and value for money
    Most CASIO products available from stock. Send 25 p for illustrated brochures and membership of our CHRISTMAS CLUB. EXTRA DISCOUNTS on many items.

    # GMM 

    (A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD) PO Box 290 8 Hampton StreetALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED
    

    ## - access ■ FREEPOST ON ORDERS GMT ELECTRONICS B - BARCLAYCARD VAT INCLUSIVE PRICES * Freepost <br> ADD 30p P\&P Birmingham B19 1BR <br> - 24 HR TELEPHONE ANSWERING SERVICE TEL ORDERS WELCOME

    * DUE TO VAT INCREASE PLEASE ADD $5 \%$ TO ORDERS
    


    ## CONSTRUCTION AND USE.

    The circuit uses only ten components, including the speaker, and can be built in about half an hour. Full constructional details are shown in Figure 2. Take care to connect IC1 and the two electrolytic capacitors in the correct polarity. The speaker used in the circuit can have any impedance in the range $3 R 0$ to $25 R$, the latter value giving the highest output sound level.

    When construction is complete, connect the speaker and the LDR in place, and connect the unit to a 9 volt or 12 volt supply. A reasonably loud tone should be heard in the speaker under normal illumination levels. The tone should fall when a hand is used to cast a shadow on the face of the LDR. Crude 'tunes' can be played by moving the hand to alter the shadowing of the LDR face.

    ## Parts List

    RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$ )

    | R1 | 100 R |
    | :--- | :--- |
    | R2 | 10 k |
    | R3 | 1 k 2 |
    | R4 | 1 M 2 |
    | LDR | ORP12 |

    CAPACITORS
    C1
    C2
    100u 16V Electrolytic
    $33 n$ polyester
    100u 16 V Electrolytic
    C3
    IC1 NE555
    SEMICONDUCTORS

    MISCELLANEOUS
    SP1
    3RO to 25R

    ## LED CHASER OR SEQUENCER

    ## A visual display unit that produces a continuously moving 'dot' on a column of ten LEDS.

    THIS UNIT HAS LITTLE practical use, but produces a very attractive visual display in the form of a moving 'dot' on a column of ten LEDs. It the unit is wired up exactly as described in following paragraphs, the display
    will be such that an illuminated dot will appear to move sequentially and smoothly along the line of LEDs, from the bottom of the column to the top, until the top-most LED is reached, at which point the display will seem to
    

    ## How it Works

    ICI is a CD4017B decade counter with ten decoded outputs, and is 'clocked' by an astable multivibrator formed by IC2 and it's associated components. The action of the circuit is such that nine cut of the ten decoded outputs of ICl are low at any given moment of time, the remaining output being high. Each time that a clock pulse arrives a different
    output switches high, but all outputs go high in a fixed sequence. Each output is fed directly to it's own LED, so that the LEDs also switch in a fixed sequence. Since there are only ten outputs, the sequence repeats once in every ten clock cycles. The clock rate is variable over a wide range via RV1.

    ## Miniboard Projects

    reset and the display sequence will start to repeat again. Only one LED out of the ten will be illuminated at any given moment of time.

    The display can, if preferred, be wired up in a random fashion, so that the dot appears to jump about on a column of ten LEDs, but does so in a continuously repeating pattern. In either case, an attractive display will be produced. The unit can be used to simulate miniature shop display signs on model railway layouts, etc.

    ## CONSTRUCTION AND USE

    Although this circuit uses only seventeen components it calls for some care and skill in actual construction, since a total of 39 breaks must be made in the copper strips on the rear of the Veroboard panel and some 115 solder joints must be made. Constructional details are shown in Figure 2.

    Start the construction by making the 39 breaks on the rear of the board, and then fit all shorting links into place: do not forget the link between holes j 2 and j 9 , which connect the 0 volt supply line to the cathodes (K) of the ten LEDs. Next, solder the two IC holders and all resistors and capacitors into place.

    Check the polarity and functioning of each individual LED before you solder it into place. You can do this by connecting a 470R resistor in series with the LED and then connecting the combination across the supply so that the LED illuminates, under which condition the anode will be the most positive terminal. Note that the LEDs should be 0.1 or 0.125 inch types: in the latter case, the ten LEDs will have to be splayed slightly so that they all fit into the board

    The most difficult part of the construction concerns the wiring of the LED anodes to the appropriate output
    
    terminals of ICI . When doing this part of the wiring, carefully check the connections against both the constructional diagram and the circuit diagram. If you want a 'random' display, however, you can make these connections in any way that you like.

    When the wiring-up is complete, fit the two IC's into their holders and connect the unit to a 6 volt or 9 volt battery. If you have wired the unit up correctly, the unit will operate as already described, with the illuminated 'dot' appearing to move along the column of LEDs: the rate is variable over a wide range via RV1. If the unit does not operate exactly as described, look for a wiring fault.

    ## Parts List

    RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$ )

    | R1 | $1 \mathrm{k5}$ |
    | :--- | :--- |
    | R2 | 1 k 5 |

    POTENTIOMETERS RV1

    CAPACITORS C1

    1 uO 16 V Tantalum
    C2
    10 u 16 V Tantalum
    SEMICONDUCTORS

    | IC1 | CD4017B |
    | :--- | :--- |
    | IC2 | NE555 |
    | LED 1-10 | TIL209 |

    
    

    Fig. 2. Constructional details of the LED Chaser or Sequencer.
    

    # Electronics 

    Have we got an issue for you next month? Yes of course we have, just cast your tired eyes over this little lot. (Tired eyes can be avoided by refraining from reading lesser electronic magazines)

    ## SCALEXTRIC SPECIAL

    Yes folks, HE's done it again. Just in time for Christmas. The HE workshop staff have been really getting their noses to the grindstones and have tirelessly, without any regard for personal health, been playing with their Scalextric set. Whilst they were doing so one of them had a bright idea, 'how about doing some projects on this lads?' He was quickly silenced and play recommenced. A little while later, after this momentous statement sunk in, they thought about it and actually all agreed, it was a good idea. So now we proudly present the last word in electronic Lap Counters, Precision Hand Controllers and other amazing things to grace your layout. Miss it at your peril.
    

    RING MODULATOR
    

    Where do we get them from? Now you can really sound like a Dalek. This neat little unit, designed for use on stage, at home, or just for good old fashioned fun will faithfully reproduce the dulcet tones of those amiable creatures from the planet Skaro. If you don't want to be a Datek then it will create an interesting range of other effects too. Maybe we'll hang one on HEBOT. You never Know

    ## UNIJUNCTION TRANSISTOR

    Our brainy chief designer Ray Marston takes time off from his train controller to look at those oft maligned, collectorless transistors that are known to all and sundry as Unijunctions. So pay attention because we might be coming round your house to ask you questions about them.

    ## TV-THE CONTINUING STORY

    This month Rick Maybury looks at the other end of the TV system, the box that sits in the corner of your living room. Find out just what happens when the on off switch is twiddled, the educated electron strikes again.

    ## PROJECT FAULT FINDING

    Gasp . . . your project didn't work, if it wasn't our fault (is it ever?) then it must be your fault. Keith Brindley, who has had to deal with one or two faulty projects in his time discusses the heart wrenching subject of dead projects.

    ## HEBOT GROWS UP

    

    We are expecting HEBOT to start a craze (seriously) the combination of a really well designed, sturdy chassis at a very reasonable price, coupled with our unique electronic circuitry, brings the world of advanced robotics to within everyones grasp. This month after completing the basic drive circuitry we go on to explore tactile senses, optical stimuli and self survival instincts. HEBOT is the first serious attempt in this country to bring the world of Robotics into the seventies, others have tried and failed, we know we are going to succeed. Frighten the cat, amaze the neighbours but above all DO NOT MISS IT

    ## The December issue will be on sale November 9th


    

    HE READERTREASURE TRACER Mk III Metal Locator Kit

    ## HE OFFER PRICE:

    

    ## (Inclusive of VAT and Postage)

    The Treasure Tracer MkIII is probably the most successful metal locator kit ever in Britain - over 8,000 have already been sold. The kit available through the HE Reader Offer is identical to those already sold except that the search head is supplied as a kit

    The Treasure Tracer is a 5 -transistor BFO design using, varicap tuning for extra stability - it operates into a speaker or an earphone (both are supplied) The PCB is fibreglass with component siting printed on the reverse. For anyone who can solder, the Treasure Tracer is an easily built kit taking about 3 hours to complete into a really attractive unit; comprehensize building instructions are of course supplied

    The search head is supplied as a set of component parts and incorporates a Faraday screen to reduce ground capacity effects

    This is a once-only offer and the numbers are limited so send off today.

    ## FEATURES

    - Solid state tuning: uses varicap diode for extra stability
    - Lightweight construction - weighs less than $220 z$.
    - Uses PP3 batiary (available anywhere).
    - Knocks down to 17in - reassembled in seconds
    - Highly sensltive and ultra-siable circuit
    - Approved by Minisiry ol Posis and Telecom. munications
    - Built-in loudspaaker fitted as a standard with alternative of earphone operation |earphone supplied
    - Audio output in pulse form - enables even
    small Irequency changes to be noliced - Handle and control box made from toug p.e.c. for lightness and corrosion resistance
    - Fitted with Faraday shiald to reduce ground capacity elfects to a minimum
    Three controls: Coarse Tuning. Varicap Tuning and On/OH volume
    - Predrilled, roller-tinned, tibreglass p.c. board with component siting printed on reverse
    Kil complete in every way down to last nut and bott
    - Clear inslruction which assume no technical knowledge

    To:
    Treasure Tracer Offer
    Hobby Electronics,
    145 Charing Cross Road,
    London WC2H OEE
    Please find enclosed my cheque $/$ PO for $£ 9.95$ (payable to Hobby Electronics) for my Treasure Tracer Mk III kit

    Name
    Address this month. Everything from fish to electromagnets. Why doesn't anyone ask simple questions anymore?

    Mr Leonard Taylor sets the ball rolling this month with a peculiar request concerning electromagnets and grants. Confused? So were we.

    ## Dear Dick

    Please can you help me? I need some information on Electromagnets. For instance, what is the maximum weight a modern design can lift and where can I obtain one?

    Secondly. How does one go about obtaining a grant from the government in order to develop and perfect a design or theory.

    Yours Sincerely<br>L. F. Taylor<br>Basildon

    Judging from the devices we have seen adorning our local breakers yard - several tons. Perhaps if you had been a little more specific we may have been able to help you. May we suggest a trip to your local library. Someone's bound to have written a book on the subject although a quick look through our 'local' was rather fruitless - sorry.

    Concerning your question on Government grants. Again we must admit defeat. As far as we know the Government do not have any specific department for financing individuals. Why not try the National Enterprise Board or a local business connected with your line of research? If your idea is particularly outstanding you may consider taking out a patent first to protect your interests. Your solicitor should be able to help

    Our next enquiry comes from H. M. Scott. He writes:

    ## Dear Dick,

    Greetings. I am at present building a three-octave organ and I am in need of a circuit. Can you help me? A simple circuit if you can please.

    > H. M. Scott
    > Leeds

    If you can remember back to last month's HE you will have seen the wonderful Hobbytune. Of course we wouldn't claim that the Hobbytune is giving the Wurlitzer company any sleepless nights but then again have you ever tried to get a Wurlitzer in your pocket. To be serious, our design for the Hobbytune is easily modified to cover more octaves - simply by adding extra tuning resistors. Unfortunately the Hobbytune is of necessity a monophonic device, in that it can only play one note at a time. For a fully polyphonic design, why not take a look
    at the 'String Thing' published in our sister magazine ETI. Be warned though, it is basically simple, but it will cost a few bob.

    Now to a quite different subject - fish. Mr Kingston of Seaford (how apt) writes:

    ## Dear Dick,

    I am writing to you out of sheer desperation. I am a student and I am doing research into the way fish respond to frequencies in the $10-20000 \mathrm{~Hz}$ range.
    I have searched your magazine for the past year for the equipment / require but to no avail. Perhaps you or one of your readers may be able to help.

    I need:
    (1) A speaker or transducer covering this range.
    (2) A 20-watt amplifier operating from a 12 -volt supply.
    (3) A signal generator, same frequencies, same power supply.

    As you will appreciate, being a student my cash is limited; tailor-made equipment would probably be out of the question.
    Hoping you can be of some assistance.
    Yours sincerely
    David W. Kingston
    Seaford, Sussex

    We have no wish to carp but we wonder; is it really our plaice to know about such matters. (From the HE book of terrible puns, price 2 s 6 d from the book service)

    Seriously though, we can't really help you on the transducer (assuming it's waterproof) - any suggestions?

    The amplifier shouldn't be too much trouble. There are a couple of suitable devices on the market used as 'boosters' for car stereo systems. Try looking in the Exchange \& Mart (they're probably COD). The signal generator is easy. How about Sine/Square Generator featured in the February HE. Any suggestions from our readers?

    Times-up for another month, we're getting so many letters for Clever Dick that we're thinking about doing a special. In the meantime try to keep your letters short as we're having terrible trouble getting as many as possible into only one page

    Finally, we must stress to everyone writing into Clever Dick that they must include an SAE if they want a reply, otherwise for normal technical enquiries please only ring us on Tuesday between 3.15 pm and 5.00 pm

    | cnos |  | 4020 | 50,3 | 40 | 251 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\begin{aligned} & 4022 \\ & 4023 \end{aligned}$ | 5013 131 13 | 4060 4066 | $80 \%$ 300 |
    |  |  | 4024 | 40, | 4068 | 130 |
    | 4001 | 13 p | 4025 | 1311 | 4069 | 130 |
    | 4002 | 130 | 4026 | 90 | 4070 | 130 |
    | 4007 | 131) | 4027 | 280 | 4071 | 130 |
    | 4009 | 30p | 4028 | 450 | 4072 | 130 |
    | 4011 | 130 | 4029 | 500 | 4081 | 1311 |
    | 4012 | 130 | 4040 | 551) | 4093 | 36 ${ }^{1}$ |
    | 4013 | 280 | 4041 | 55, | 4510 | 600 |
    | 4015 | 500 | 4042 | 55, | 4511 | 603 |
    | 4016 | 280 | 4043 | 50\% | 4518 | 65, |
    | 4017 | 470 | 4046 | 90, | 4520 | 60w |
    | 4018 | 550, | 4049 | $25 ;$ | 4528 | 60ı |
    | FULL DETAILS IN CATALOGUE! |  |  |  |  |  |


    | TT |  | 7473 | 201 | 41 | 55 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 7474 | 220 | 74145 | 55u |
    | 7400 | 1010 | 7475 | 25u | 74148 | 90, |
    | 7401 | 100 | 7476 | 200 | 74150 | 55, |
    | 7402 | 100 | 7485 | 55w | 74151 | 40 p |
    | 7404 | 120 | 7486 | 20. | 74154 | 65! |
    | 7406 | 220 | 7489 | 1350) | 74157 | 40 w |
    | 7408 | 120 | 7490 | 25p | 74164 | 550 |
    | 7410 | 10.0 | 7492 | 30. | 74165 | 55p |
    | 7413 | 220) | 7493 | 251 | 74170 | 100w |
    | 7414 | 39p | 7494 | 450 | 74174 | 55u |
    | 1420 | 120 | 7495 | 350 | 74177 | 501) |
    | 7427 | 20p | 7496 | $45 p$ | 74190 | 500 |
    | 7430 | 12p | 74121 | 250 | 74191 | 50p |
    | 7432 | 18p | 74122 | 350 | 74192 | 50w |
    | 7442 | 380 | 74123 | 38p | 74193 | $50 n$ |
    | 7447 | 450 | 74125 | 350 | 74196 | 50p |
    | 7448 | 501 | 74126 | 350 | 74197 | 500 |
    | 7454 | 120 | 74132 | 450 | 74199 |  |

    ## OPTO

    LED's $\quad 0.125$ in $\quad 0.2$ in each 100 $\begin{array}{lllrl}\text { Red TIL209 } & \text { TIL220 } & 90 & 7.51 \\ \text { Green }\end{array}$ $\begin{array}{llll}\text { Green } \\ \text { Yellow TLL213 TiL223 } & \text { 130 } & \text { i2p }\end{array}$ Clop; 3p 3p DISPLAYS
    $\begin{array}{llll}\text { CL704 } & 0.3 \text { nCC } & 130 \mathrm{p} \quad 120 p\end{array}$
    $\begin{array}{ll}\text { DL707 } & 0.3 \mathrm{in} \text { CA }\end{array}$
    1300 1200

    ## SKTS

    Low profile
    $\begin{array}{llllll}80 n & 80 & 180 \mathrm{n} & 14 \mathrm{p} & 24 \mathrm{pin} & 180 \\ 14 \mathrm{pin} & 10 \mathrm{p} & 20 \mathrm{on} & 16 \mathrm{p} & 28 \mathrm{on} & 20 \mathrm{ol}\end{array}$ 14 pin
    16 uin
    110
    10 160in $110 \quad 220 \mathrm{pan} 17 \mathrm{p} \quad 40 \mathrm{pm} 320$ 3 lead T018 or T05 socker. 10p each Soldercon pins: 100:50p 1000:370p

    ## PCBS

    ## VEROBOARD

    |  | VERO | boaro |  |
    | :---: | :---: | :---: | :---: |
    | Sure in | 01 in | 015 n | Vero |
    | $25 \times 1$ | 14p | 140 | Cutier 80\% |
    | $25 \times 3.75$ | 45p | 450 |  |
    | $2.5 \times 5$ | 54 l | 540 | Pin insertion |
    | $375 \times 5$ | 640 | 643 | tool 108: |
    | $375 \times 17$ | 2050 | 1850 |  |
    | Sinule sicted |  |  |  |
    | dins der 100 | -403) | 40:2 |  |
    | Too quality sidect Sire | $\begin{aligned} & \text { Sture ght } \\ & 03 \times 95 \end{aligned}$ |  | \|zoaril. Single hach |
    | 'Da'0 | 750 |  |  |
    | Five mixed |  | Alfac |  |

    ## RESISTORS

    Carbon film resist
    ors. High stablity. E12 series. 4.7 ohms to $10 \mathrm{nolse} 5 \%$.
    

    2 D
    Sopcial develooment packs consissing of 10 of each value trom 47 ohms to 1 Meg ohm 1650 res 10.5 W £7.50. $0.25 \mathrm{~W} £ 5.70$. METAL FILM RESISTORS
    Very high stability. low noise rated at iow E24 series Any mix
    

    | LINEAR |  |  | 80,1 |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | LM301AN |  |  |  |
    | THIS IS ONL |  | LM308 | 60 , | NE 556 |  |
    |  |  | LM318 | 75! | NE567 | 1001 |
    |  |  | LM324 | 45 | RC413 | 100 |
    | 709 | 350 | LヤM339 | 45 | SN76477 | 230 |
    |  | 16 | LM378 | 230 | BA | 70 |
    | 747 | 450 | LM379S | 410 |  | 00 |
    |  | 301) | LM380 | 751) | TDA10 | 620 |
    | 06 | 850 r | LM3900 | 50 \% | TLO8 |  |
    | 07 | 900p | LM3909 | 65.) | TLO84 | 125 |
    | 3046 | 5, | Lм3911 | 1001) | 2N41 | 80 |
    | A3080 | 700 | MC1458 | 321) | 2N425E | (1) |
    | CA3130 | 90 p | MM5716 |  | 2N103 |  |

    ## TRANSISTORS

    $\begin{array}{lllll} & 8 \mathrm{CY} 72 & 140 & 2 \mathrm{~N} 697 & 1 \\ 2 \mathrm{C} 3053 & 1\end{array}$
    2 N 3054
    2N3055 50,
    $2 N 3442$ 135:
    2N3702
    2N3703
    $2 \mathrm{~N} 37 \mathrm{C4}$ 2N3705
    2N3705
    2N3706
    2N3707 9p
    2N3 708
    2N3819 1
    2N3820 440
    2N3904 8
    2N3905 80
    2 N3906 8n
    $2 \mathrm{~N}^{2} 058 \quad 121$
    $2 N 5457 \quad 321$
    2N5459 320 2057775011

    DIODES
    1N914 3o iN4006 1N4001 40 iN5401 130 in4002 4p BZY88ser 84
    IN4148 £ 1.40100 E11 1000

    ## CAPACITORS

    TANTALUM BEAD
    $0.1,0.15,0.22,0.33,0.47,0.68$
    182.2 F @ 0.5 V
    4.7.6.8,10uF@25V
    $22 @ 16 \mathrm{~V} .47 @ 6 \mathrm{~V}, 100 @ 3 \mathrm{~V}$
    MYLAR FILM
    $0.001,0.01,0.022,0.033,0.047$
    . 0 . 0.
    POLYESTER
    $0.01,0.015,0.022,0.033,0.047,0.068,0.1 .50$ $0.15,0.22$
    $0.33,0.47$
    0.68

    70
    100
    140
    1.0 uF

    CERAMIC
    Plate type 50 V . Available in E12 series from 22 pF to 1000 pF and E6 series trom 1500 pF to RADIAL LEAD ELECTROLYTIC
    $\begin{array}{lllllll}63 V & 0.47 & 1.0 & \frac{2.2}{2} & 4.7 & 10\end{array}$ $\qquad$
    

    ## CONNECTORS

    JACK PLUGS AND SOCKETS

    |  | screened | unscreened | socket |
    | :--- | :---: | :---: | :---: |
    | 2.5 mm | $9 p$ | $13 p$ | $7 p$ |
    | 3.5 mm | 90 | $14 p$ | 80 |
    | Standard | $16 p$ | $30 p$ | $15 p$ |
    | Stereo | $23 p$ | 360 | $18 p$ |

    DIN PLUGS AND SOCKETS

    ## 2 pin <br> $3 \operatorname{Lin}$ 50 in $180^{\circ}$ <br> $5010180^{\circ}$ 50 in $240^{\circ}$

    olug ehas

    Imm PLUGS AND SOCKETS
    Suitable for low voltage cricurts. Aed \& black Plugs $6 f$ each Sockets $7 p$ tach 4 mm PLUGS AND SOCKETS
    Avalable in blue. black. green. brown, red, whire and vellow Plugs 11 peach Sockets 12 p each PHONO PLUGS AND SOCKETS
    Insulated plug in red or thack
    Screened playg

    STEVENSON Electronic Components

    ## SOLDERING IRONS

    ANTEX $\times 25$ ( 25 W ) or ANTEX CX (17W)
    390p each Reel of solder (39.6M)

    240p each

    ## LOUDSPEAKERS

    56 mm dia. 8 ohms. $70 \mathrm{p} \quad 64 \mathrm{~mm}$ dia 64 ohms. 75p 64 mm dia. 8 ohms. $75 \mathrm{p} \quad 70 \mathrm{~mm}$ dia. $80 h \mathrm{~ms} .100 \mathrm{p}$ Magnetic earpiece including 2.5 or 3.5 mm w'ug. 15 p ) each Crvstal earpiece including 3.5 mm plug. 30ts each

    ## SWITCHES

    Subminiature toggle. SPDT 70p. DPDT 80p Standard toggle. SPST 34p. DPDT $48 p$.

    Slide switches (DPDT) miniatu:e or standard 150
    Push to make switch. 15p. Push to break switch. 20p Wavechange switches: 1P12W, 2P6W. 3P4W. 4P3W. 43p

    ## CONTROL KNOBS

    Ideal for use on mixers etc. Push on type with black base and marked position line. Cap avail able in red, blue, green, grev, vellow \& black

    ## MISCELLANEOUS

    Connection cable available in single or stranded nacks o eight colours.
    $\begin{array}{ll}8 \text { metre pack } & 180 \\ 40 \text { metre pack } & 850\end{array}$ BATTERY CLIPS
    Battery clips for PP3 with lead. $6 p$ each
    Battery clips for PP9 with lead. 10p each
    Miniature crocodile clips in red or black. $8 p$ each
    Red or black probe clips. 20p each
    Murata Ultrasonic Transducers.
    180p each. 350 p pair.

    ## PANEL METERS

    

    High quality $2^{\prime \prime}$ wide view meters. Zero adjustment. Back llumination wiring.
    Available in $50 \mathrm{uA}, 100 \mathrm{uA}, 500 \mathrm{uA}$.
    $1 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A} . £ 4.75$ ea. VU meter similar style. $£ 1.40$ ea

    ## SLIDE POTENTIOMETERS

    Good quality 60 mm
    travel slider with
    80 mm fixing centres.
    Available from $5 k-500 \mathrm{~K}$
    in $\log$ and linear. 55p each
    Suitable black knobs 6p ea, Coloured knobs 10v pa
    We now offer one of the widest ranges of components at the most competitive prices in the U.K. See catalogue for full details. We welcome callers at our shop in College Rd, Bromley, from Mon-Sat, 9am-6pm 18pm on Weds and Fridays). Special offers always available
    We also provide an express telephone order service
    Orders received before 5 pm are shipped same day
    Contact our sales office now with your requirements
    TELEPHONE: 01-464 2951/5770.
    Quantity discounts on any mix TTL, CMOS 74 LS and Linear circuits: $100+10 \%, 1000+$ $15 \%$. Prices VAT inclusive. Please add 30 p for carriage. All prices valid to April' 1980. Official orders welcome.
    

    # DATA SUPPLDMIENT PART 1 

    ## PRESENTED FREE WITH NOVEMBER HOBBY ELECTRONICS

    Last month you may remember we promised to include an eight page pull-out data supplement, well, here it is. What we omitted to tell you, was, that whilst we were compiling the supplement we discovered that there was so much material we couldn't get it all in only eight pages. So this month we present part one, and next
    month we will include another eight pages called (you guessed it) part two. This months offering contains all of the commorily used colour codes, pin out diagrams for transistors and CMOS ICs (TTL next month) and a comprehensive list of commonly used abbreviations. Pull it out and keep it handy.

    |  |  |  |  |  |
    | :--- | :--- | :--- | :--- | :--- | :--- |
    |  |  |  |  |  |

    RESISTOR AND CAPACITOR LETTER AND DIGIT CODE
    Resistor values are indicated as follows:
    $0.47 \Omega$ marked
    $18 \Omega$
    $4.7 \Omega$ $R 47$
    $1 R 0$
    487
    47R
    $100 \Omega$ marked $1 \mathrm{k} \Omega$
    $10 \mathrm{k} \Omega$ $10 \mathrm{k} \Omega$
    $10 \mathrm{M} \Omega$

    ## 100 R 1 KO 10 K 10 M

    A letter following the value shows the tolerance $\mathrm{F}= \pm 1 \% ; \mathrm{G}= \pm 2 \% ; J= \pm 5 \% ; \mathrm{K}= \pm 10 \%$; $\mathrm{M}= \pm 20 \%$;

    $$
    \text { R33M }=0.33 \Omega \pm 20 \%
    $$

    $$
    6 K 8 F=6.8 \mathrm{kD} \pm 1 \% .
    $$

    Capacitor values are indicated as.

    | 0.68 pF marked | p 68 | 6.8 nf marked | 6 n 8 |
    | :---: | :---: | :---: | :---: |
    | 6.8 pf | 6 p 8 | 1000 nF | 1 u |
    | 1000 pF | 1 nO | 6.8 uF | 6 u 8 |

    Tolerance is indicated by letters as for resistors. Values up to 999 pF are marked in pF, from 1000 pi to 999 000 pF ( $=999 \mathrm{nF}$ as $\mathrm{nF}(1000 \mathrm{pF}=1 \mathrm{nF}$ ) and from 1000 nF ( m 1 uF) upwards as uF
    Some capacitors are marked with a code denoting the value in pF (first two figures) followed by a multiplier as a power of ten $\left(3=10^{3}\right)$. Letters denote tolerance as for resistors but $\mathrm{C}= \pm 0.25 \mathrm{pf}$. E.g. $123 \mathrm{~J}=12 \mathrm{pF} \times 10^{3}$ $\pm 5 \%=12000 \mathrm{pF}$ (or 12 nF ).

    Tantalum Capacitors

    |  | 1 | 2 | 3 | 4 |
    | :---: | :---: | :---: | :---: | :---: |
    | Black | - | 0 | $\times 1$ | 10 V |
    | Brown | 1 | 1 | $\times 10$ |  |
    | Red | 2 | 2 | +100 |  |
    | Orange | 3 | 3 | - |  |
    | Yellow | 4 | 4 | - | 6.3 V |
    | Green | 5 | 5 | - | 16 V |
    | Blue | 6 | 6 | - | 20 V |
    | Violet | 7 | 7 | - |  |
    | Grey | 8 | 8 | $\times 0.01$ | 25 V |
    | White | a | 9 | $\times 0.1$ | 3 V |
    |  |  |  | (Pink 35 | , |


    | Colour | Band A | Band B | Band C (Multi Resistors | pher) Capacitors | $B$ and $D$ ( <br> Resistors | erance) Сарас Up to 10 pf | Over 10 pF | Band e Resistors | Polyester Capacitors |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Black | - | 0 | 1 | 1 | - | 2 po | $\pm 20 \%$ |  | - |
    | Brown | 1 | 1 | 10 | 10 | $\pm 1 \%$ | 0 p 1 | $\pm 1 \%$ | - |  |
    | Red | 2 | 2 | 100 | 100 | $\pm 2 \%$ | - | $\pm 2 \%$ |  | 250 v.w. |
    | Orange | $3-$ | 3 | 1000 | 1000 | - | - | $\pm 2.5 \%$ |  |  |
    | Yellow | 4 | 4 | 10000 | 10000 | - | - |  | - | - |
    | Green | 5 | 5 | 100000 | - | - | 0 0. 5 | $\pm 5 \%$ | - | - |
    | Blue | 6 | 6 | 1000000 | - | - | - | - | - | - |
    | Viotet | 8 |  | 10000000 | - | - | - | - | - | - |
    | Grey | 8 | 8 | $10^{8}$ | $10 n$ | - | p25 |  | - | - |
    | White | 9 | 9 | $10^{9}$ | 100 n |  | 100 | $\pm 10 \%$ |  | $\square$ |
    | Silver | - | - | 0.01 0.1 | - | $\pm 10 \%$ $\pm 5 \%$ | - | - |  | - |
    | Pink | - | - | 0.1 | - | - | - | - | Hi-Stab | - |

    Note that adiacent bands may be of the same colour unseparated.
    
    
    

    | 8 |  | 7 |  | 6 |  | 5 |  | 4 |  | 3 |  | 2 |  | 1 |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Mex | Decimal | Hex | Decimal |
    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
    | 1 | 268,435.456 | 1 | 16.777.216 | 1 | 1.048 .576 | 1 | 65.536 | 1 | 4.096 | 1 | 256 | 1 | 16 | 1 | 1 |
    | 2 | 536.870,912 | 2 | 33,554,432 | 2 | 2.097.152 | 2 | 131.072 | 2 | 8.192 | 2 | 512 | 2 | 32 | 2 | 2 |
    | 3 | 805.306,368 | 3 | 50.331 .648 | 3 | 3,145,728 | 3 | 196.608 | 3 | 12.288 | 3 | 768 | 3 | 48 | 3 | 3 |
    | 4 | 1,073,741,824 | 4 | 67.108.864 | 4 | 4.194 .304 | 4 | 262,144 | 4 | 16.384 | 4 | 1.024 | 4 | 64 | 4 | 4 |
    | 5 | 1,342.177,280 | 5 | 83,886.080 | 5 | 5.242,880 | 5 | 327.680] | 5 | 20.480 | 5 | 1.280 | 5 | 80 | 5 | 5 |
    | 6 | 1,610.612.736 | 6 | 100.663.296 | 6 | 6,291.456 | 6 | 393.216 | 6 | 24.576 | 6 | 1.536 | 6 | 96 | 6 | 6 |
    | 7 | 1,879.048.192 | 7 | 117.440 .512 | 7 | 7,340,032 | 7 | 458.752 | 7 | 28.672 | 7 | 1.792 | 7 | 112 | 7 | 7 |
    | 8 | 2.147.483,648 | 8 | 134.217 .728 | 8 | 8,388,608 | 8 | 524.288 | 8 | 32.76 B | 8 | 2.048 | 8 | 128 | 8 | 8 |
    | 9 | 2,415.919,104 | 9 | 150,994.944 | 9 | 9,437,184 | 9 | 589.824 | 9 | 36.864 | 9 | 2.304 | 9 | 144 | 9 | 9 |
    | A | 2,684,354,560 | A | 167.772.160 | A | 10.485 .760 | A | 655,360 | A | 40,960 | A | 2.560 | A | 160 | A | 10 |
    | B | 2.952.790.016 | 8 | 184,549.376 | B | 11.534.336 | B. | 720.896 | 8 | 45,056 | 8 | 2.816 | B | 176 | 8 | 11 |
    | C | 3,221,225,472 | C | 201, 326,592 | C | 12.582,912 | C | 786.432 | C | 49.152 | C | 3.072 | C | 192 | C | 12 |
    | D | 3,489,660,928 | D | 218,103,808 | D | 13,631,488 | 0 | 851.968 | D | 53.248 | D | 3,328 | D | 208 | 0 | 131 |
    | E | 3,758,096,384 | E | 234,881,024 | E | 14,680,064 | E | 917.504 | E | 57.344 | E | 3,584 | E | 224 | E | 14 |
    | F | 4,026,531,840 | F | 251,658,240 | F | 15,728,640 | $F$ | 983.040 | F | 61.440 | $F$ | 3.840 | F | 240 | F | 15 |
    |  | 8 |  | 7 |  | 6 |  | 5 |  | 4 |  | 3 |  | 2 |  | 1 |

    ## TO CONVERT HEXADECIMAL TO DECIMAL

    1 Locate column of decimal numbers corresponding to left-most digit or letter of hexadecimal select from this column and record number that corresponds to position of hexadecimal digit or letter.
    2 Repeat step 1 for next (second from left) position.
    3 Repeat step 1 for units (third from left) position.
    4 Add numbers selected from table to form decimal number.

    ## TO CONVERT DECIMAL TO HEXADECIMAL

    1 (A) select from table highest decimal number that is equal to or less than number to be converted.
    (B) Record hexadecimal of column contaning selected number (C) Subtract selected decimal from number to be converted

    2 Using remainder from step 1 (C) repeat all of step 1 to develop second position of hexadecimal (and remainder)
    3 Using remainder from step 2 repeat all of step 1 to develop units. position of hexadecimal.
    4 Combine terms to form hexadecimal number

    ## CMOS FUNCTIONS

    Device CD4000 CD4001 CD4002 CD4006 CD4007 CD4008 CD4009 CD4010 CD4011 CD4012 CD4013 CD4014 C04015
    CD4016
    C04017
    CD4018
    CD4019
    CD4020
    CD4021
    CD4022
    CD4023
    CD4024
    CD4025
    CD4026
    CD4027
    CD4028
    CD4029
    CD4030
    CD4035
    CD4040
    CD4042
    CD4046
    CD4049
    CD4050
    CD4051

    Description
    Dual 3-Input NOR gate plus Inverter Quad 2-Input NOR Gate
    Dual 4 -Input NOR Gate
    18-Stage Static Shift Register
    Dual Complementary Pair Plus Inverter
    4-Bit full Adder with Parallel Carry Hex Buffer / Converter (Inverting) Hex Buffer/Converter (Non-Inverting) Quad 2 -Input NAND Gate Dual 4-Input NAND Gate Dual "D" Flip-Flop with Set/Reset 8 -Stage Static Shift Register Dual 4-Stage Static Shift Register Quad Bilateral Switch Decade Counter / Divider Presettable Divide-By. " $N$ " Counter Quad AND-OR Select Gate 14-Stage Binary Ripple Counter 8-Stage Static Shift Register Divide-by- 8 Counter/Divider Triple 3-Input NANO Gate 7-Stage Binary Counter Triple 3 -input NOR Gate Decade Counter/Divider Dual J K Master Slave Flip-Flop BCD TO-Decimal Decode Presettable Up/Down Counter Quad Exclusive-OR Gate 4-Stage Parallel IN/OUT Shift Register 12-Stage Binary Ripple Countor Quad Clocked "D" Latch Micropower Phase-Locked Loop Hex Buffer/ Converter (Inverting) Hex Buffer/ Converter (Non-Inverting) Single 8-Channel Multiplexer

    CO4052
    CD4054
    CD4056
    CD4059
    CD4060
    CD4061
    CD4066
    CD4068
    CD4069
    CD4070
    CD4071
    CDA077
    C04081
    CD4082
    CD4085
    CD4086
    CD4093
    CD4099
    CD4510
    CD4511
    CD4514
    CD4515
    CD4516
    CD4518
    CD4528
    MC14502
    MC14517
    MC14521
    MC14522
    MC14526
    MC14534
    MC14536
    MC14553 Three-Digit BCD Counter

    BCD-to-Seven Segment Latch / Decoder/Driver
    MC14566 Industrial tirre base Generator
    Differential 4-Channel Multiplexer 4-Line Liquid Crystal Display Driver BCD-7-Segment Decoder/Driver Programmable Divide-by-N Counter 14-Stage Counter and Oscillator 256-Word X 1-8it Static Ram
    Quad Bilateral Switch
    8-input NAND Gate
    Hex Inverter
    Quad Exclusive OR Gate
    Quad 2 -Input OR Gate
    Quad Exclusive NOR Gate
    Quad 2-Input AND Gate
    Dual 4-Input AND Gate
    Dual 2 -Wide 2 -Input AOI Gate
    Expendable 4-Wide 2-Input AOI Gate Quad 2-Input NAND Schmitt Trigger 8-Bit Addressable Latch
    CD UP/DOWN Counter
    BCD TOT-Segment Decoder/Driver
    1 to 16 Decoder (Output High)
    1 to 16 Decoder (Output Low)
    Binary UP / DOWN Counter
    Dual BCD UP Counter
    Dual Retriggerable Monostable
    Strobed Hex Inverter/Buffer
    Dual 64-bit Static Shift Register
    24 State Frequency Divider
    Programmable divide by $\mathrm{N}-4$ bit Counter ( BCD ) Programmable divide by $\mathrm{N}-4$ bir Counter (binary) Real Time 5-Decade Counter Programmable Timer

    ## CMOS/TTL COMPARISON

    | Logic family | Noise Immunity Volts | Prop. delay nS | Fan Out | Max. Toggle Speed MHZ | Supply Voltage Nominal Min. Max. V V V |  |  | Power Diss. per package mW (typ) | Decoupling and other requirements |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 74 Series | 0.4 | 9 | 10 | 15 | 5.0 | 4.75 | 5.25 | 40 | 0.1 uF Ceramic |
    | 74H Series | 0.4 | 6 | 10 | 40 | 5.0 | 4.75 | 5.25 | 60 | capacitor for every 8 |
    | 745 Series | 0.3 | 3 | 10 | 125 | 5.0 | 4.75 | 5.25 | 40 | packages to eliminate |
    | 74LS Series | 0.3 | 9 | 10 | 25 | 5.0 | 4.75 | 5.25 | 8 | switchingcurrentspike |
    | CMOS | 4.5 | 30 | $>50$ | 10 | - | 3.0 | 18.0 | 0.01 | No special precautions |

    ## TTL BIPOLAR LOGIC

    The 74 Series of transistor-transistor logic is a medium speed family of saturating integrated circuit logic designed for general digital logic application requiring clock frequencies to 30 MHz and switching speeds in the $7-11 \mathrm{nS}$ range under moderate capacitive loading.

    The circuits are identified by a multiple emitter input transistor and an active "pull up" in the upper output network. Clamp diodes are provided at each input to limit the undershoot that occurs in typical system applications such as driving long interconnect wiring. The active pull-up output configuration provides low output impedance in the high output state. The resulting low impedances in both output states ensures excellont a.c. noise immunity and allows a high-spoed operation with capacitive loads.

    ## COMPLEMENTARY MOS (CMOS)

    Complementary MOS is the newest of the general-purpose logic families.

    The following are primary design features of the whole of the COS/MOS and McMOS ranges.

    - Double diode protection on all inputs.
    - Noise immunity typically $45 \%$ of VDD, $30 \%$ of VDD minimum.
    - Buffered output compatible with MHTL and Low Power TTL.
    - Low quiescent power dissipation: 25 nW typ. per package.
    - Wide power supply voltage: 3-18 Volt dependent on type
    - Single supply operation.
    - High fanout: greater than 50
    - High input impedance: $10^{\prime}$ ohms typ.
    - Low input capacitance: 5 pf typ.


    ## BIPOLAR TRANSISTORS

    

    DATA SUPPLEMENT
    
    

    ## PROBLEMS?

    SUFFIXES ' $k$ ', ' $m$ ', ' $M$ ' etc after component values indicate a numerical multuplier or divider thus

    ## Multipliers

    ```
 k = x ```

