Hobby Eectronics

The HE"'antrum"
 A trent for jaded ears

Ultrasonic Remote Control

 Doit at a olistinceRedio Control World
Hind Ilyere

Lamp Dimmer Save it

Starburst

A treat for jaded eyes
Thyristors

Tecknowledgey for sule.
 The Mark III FM Tuner

 same again. Ambit's Mark 111tuner system is electrically $\&$ tuner system is electrically \&
visually superior to all others. Some options available, but the illustrated version with reference series modules
$£ 149.00+£ 18.62$ VAT

Digital Dorchester All Band Broadcast Tuner: LW/MW/SW/SW/SW/FM stereo all features you would expect of designs of far greater complexity. The FM, section uses a three section (air gang) tuned FET tunerhead, with ceramic IF filters and interstation mute
AM employs a double balanced mixer input stage, with mechanical IF filters plus a BFO and MOSFET product detector for CW/SSB reception. Styled in a matching unit to the Mark III FM only tuner, employing the same degree of care in Electronics only (PCB and all components thereon)
$£ 33.00+£ 4.12$ VAT Complete with digital frequency readout/clock-timer hardware $£ 99.00+£ 12.37$ VA Complete with. MA 1023 clock/timer module with dial scale $£ 66.00+£ 8.25$ VAT
Hardware packages are available separately if vou wish to house your own designs in a
LW/MW/FM LCD Digital Freguency Disylay - July PW feature
Uplate vour old radio, or build this into a new design.
Or use it as a servicing aid. this low power unit with
LCD display reads direct frequency in $\mathrm{kHz} / \mathrm{MHz}$, or
with usual AM/FM IF offsets for received frequency.
Low power LCD means no RFI. $15-20 \mathrm{~mA}$ at 9 v even
with the divide by 100 prescalar. FM resolution is
100 kHz , AM 1 kHz . Sensitivities better than 10 mV $100 \mathrm{kHz}, A M 1 \mathrm{kHz}$. Sensitivities better than 10 mV
zencenmosecerencoce
 solution to providing digital display of $F R G 7 \mathrm{kHz}$ dial, combined with clock/timers e

COMPONENTS for Radio and Audio ICs, HMOS etc. The list is too long to attempt here, but AMBIT specializes in all types of semiconductor for radio reception, including devices operating from DC 5 GHz . New low cost SBL 9 diode ring mixers (equiv case MD108 etc) -fis with. HMOS fets, now with a PCB for DC amplifier, and offset sense and protection relay for speakers. See catalogue and updates for most info, ps send an SAE for information on anything you cannot find in catalogues. Radio ICs cost + vat Stereo ICs cost t vat AF power ${ }^{1} \mathrm{C}$ © cost + vat $\begin{array}{lllllllll}\text { CA3089E } & 1.94 & 24 & \text { MC1310P } & 1.50 & 19 & \text { LM380N } & 1.00 & 12\end{array}$ $\begin{array}{lllllllll}\text { CA3189E } & 2.45 & 30 & \text { UA758 } & 2.20 & 27 & \text { TBA810AS } & 1.09 & 14 \\ \text { HA1137W } & 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24\end{array}$ $\begin{array}{lrrllllll}\text { HA1137W } & 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24 \\ \text { SN76660 } & 0.75 & 9 & \text { HA1196 } & 3.95 & 49 & \text { TBA820M } & 0.75 & 9\end{array}$ $\begin{array}{lllllll}\text { TDA } 1090 & 3.35 & 42 & \text { HA11223 } & 4.35 & 54\end{array}$ from the general list: $\begin{array}{lllllll}\text { TDA1083 } & 1.95 & 24 & \text { KB4437 } & 4.35 & 54 & \text { LEDs:all colours and }\end{array}$ $\begin{array}{llll}\text { SL6640 } & 2.75 & 34 & \text { Preamp ICs/switches } \\ \text { 2SJ48/2SK } 134 \text { HMOS }\end{array}$ $\begin{array}{lllllll}\text { MC3357 } & 3.12 & 39 & \text { TDA1028 } & 3.50 & 44 & 9.90+\text { E0.80 vat (Pair) }\end{array}$ $\begin{array}{lllllll}\text { MC1496 } & 1.25 & 16 & \text { TDA1029 } & 3.50 & 44 & \text { Signal fets/transistors and }\end{array}$ $\begin{array}{lll}\text { MC1496 } & 1.25 & 16 \\ \text { LM373/4 } & 3.75 & 49\end{array}$ \qquad

Mirramarket

OSTS: Remember all OSTS stocks are obtained from BS9000 approved sources - your assurance that all devices are very best first quality commercial types. Some LPSN

TTL is presently in great demand, so please check by phone before ordering.

TL:Standard AID LP Sthattk

	'N'	SN*		'N'	LSN		'N'	'LSN'		'N'	LSN		'LSN
7400	13	20	7455	35	24	${ }^{74126}$	57	44	174185	134		14377	124
7401	13	20	7460	17		74128	74		74188	275		74378	
7402	14	20	7463		124	74132	73	78	74190	115	92	74379	130
7403	14	20	7470	28		74133		29	74191			74368	3
7404	14	24	7472	28		74136		40	74192	105	180	74390	140
7405	18	26	7473	32	38	74138		60	74193	105	180	74393	140
3406	38		7474	27	38	74139		© 0	74194	105	187	74395	139
7407	38		7475	38	40	74141	56		74195	95	131	74396	13
7408	17	24	7476	37	38	74142	265		74196	99	110	14398	18
7409	17	24	7478		38	74143	312		74191	85	110	74399	150
7410	15	24	7480	48		74144	312		74198	150		14445	
7411	20	24	7481	86		74145	65	97	74199	160		74441	90
7412	17		7482	69		74147	175		14247		90	74490	140
7413	30		7483 A		110	74148	169	191	74248		90	74668	110
7414	51		7484	97		74150	99		74249		93	74670	249
7415		24	7485	104	99	74151	64	84	74251		90	VOLTAGE /PSU	
7416	30		7486		40	74153	64	54	74253		105		
7417	30		7489	205		74154	96		74257		108	REGULA	TORS
7420	16	24	7490	33	90	74155	54	110	74258		153		
7421	29	24	7491	76	110	74156	80	$1: 0$	74259		420	7900 series	E1
7422	24	24	7492	-38	78	74157	67	55	74260		153		90 p
7423	27		7493	32	99	74158		60	74261		353	$\begin{aligned} & \text { (TO220 pace } \\ & \text { ither } \end{aligned}$	
7425	27		7794	78		74159	210		74266		40	78LCP serie	
7426	36	27	7495A	65	99	74160	82	130	74273		124	78MGT2C	175p
7427 7428	27 35	29	7496 7497	58 185	120	74161 74152	92 92	78 130	74275 74279		312	79mGT2C	175p
7430	17	24	74100	119		74163	92	78	74279 74283		+ 52	$723 C$	65p
7432	25	24	74104	63		74164	104	130			190	NE550A	73p
7433	40	32	74105	62		7.4165	105		74293		95	L200	195p
7437	40	24	74107	32	38	74166			14295		120	MAINS FIL	LTERS
7438	33	24	74109	6.3	38	74161	20		14298		100	1Amplec	4.83
7440	17	24	74110	54	54	74168			74324		157	SAmp IEC	5.83
7441	74		74111	68		14169		200	74325		242	5 a wiren	3.87
7442	70	99	74112		38	74170	230	200	:4326		247	All BS suproved	
7443	115		74113		38	74172	825		14327		$23 /$		
7444	112		74114		38	74163	170		74352		100	Rexuests far the	
7445	94		74116	198		74174	87	120	74353		100	next issue of the	
7446	94		74118	83		$741 / 5$	87	110	14362		715	catalogue now bet "booked" for das	
7447	82	89	74119	119		-74176	75		74365		49		
7448	56	99	74120	115		74177	78		74366		49	pasch immedistely	
7449 7450		99	74121	25		74180	85		74367		43	it is ready labout	
7451	17	24	74123	48.	73	74182	165 160	350	74368		49	Novemberl. Please	
2453	11		74124		131	14183		210	14374		77	a copy. (Part 3)	
745,4	$1 /$	24	741:5	38	44	14184			14:375		G0)	a copy. Mat	

[04000 tm05
4000
4001
4002
4006
4007
4008
4009
4010
4011
4012
4013
4014
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055

 MISC. LSI/Scalars/DVMs M3909 72, 9611901世 1320 ML 558 CM721681P1 8 decade 10 MH ? DF M/timer w direct LED drive and all counter leatures
CM7217A1B1 4 decade mograme
ii M7207 cl \qquad CM7106CPK LCD DVM IC 13
LCD DVM K1T CM2107CP LED DVM IC SP8629 \qquad 100 PLEASE REMEMBER TO AOD 8%
TO ITEMS LISTED UNDER OSTS

LIIERR5

\qquad

LM324N LM339N LM348N

 LM348NLM3300N
TODHC wh LM3 M300N
7001C w
Jo9PC , h11

OPTO
0.43^{\prime} High Efficiency HP $\begin{array}{ll}5082 & 7650 \\ 5082 & 7653 \\ 5082 & 7650\end{array}$

\qquad

\qquad | 3082 | |
| :--- | :--- |
| 5082 | 7130 wal CA |
| | |
| 1740 | | $5082 \quad 1740$ mil

$0.5^{\prime \prime}$ Fairchild
FND500 rell CC

Current news: Work continues apace on our HMOS PA kit, and by the time this is published. we expect to be about to launch the product in a style that matches the Mark 111 system The unit uses separate transformers and power supplies, and includes a DC offset sensing circuit combined with slow switch-on using a relay. We introduce the Hyperfi FM if with this han HiFi specification are in stock at last. together with reams of data (over 50 pages now). Also. RC enthusiasts will be interested to learn that we are supplying parts for various kits now Terms: CWO please. Account facilities for commercial customers OA. Postage 25 p per order. Minimum credit invoice for account customers $£ 10.00$. Please follow insiructions
VAT, which is usually shown as a separate amount. Overseas customers welcome. please allow for postage etc according to desired shipping method. Access facilities for credit purchases Catalogues: Ambit. Part 145 p. Part 250 p 90 p pair. TOKO Euro shortorm 20 p. Micrometals toroid cores 40 p . All inc PP etc. Full data service described in pricelist supplements ambit
international
2 GreshamRaad, Brentwaad,Es5RM.

Hobby Electronics

Monitor 6

Combination lock 8
Protect your combinations

Hobbyprints12

Perfect every time

Clever Dick
What energy crisis?

The state of the gate

HE Book Service 22,58
Read all about it

Starburst

Don't be mis-LED
Chit-Chat27

The robot story
6

TANTRUM

We apologise to readers for the delay in publishing the Tantrum Stereo Amplifier, this was due to production difficulties and will be appearing next month.

Market Place
30 Ultrasonic Switch
45
Watch this space33

Get turned on

Back Númbers
 36

Are you missing something?
Subscriptions
36
Why keep missing out?

Next Month in HE
37
Would you believe it?
Dog Whistle?
Short Circuits 48, 58, 63
Specials 49
Some new additions
Electronic Time Keeping . . 50
How accurate is your watch?
CB Special 56
At long last
Breaker One-Four 57
Get your ears on
FET Special59

Radio Control
38

Plane and simple
Radio Control 38

The source of the drain
Next Month in ETI 65
Big Brother
Into Linear ICs 66
Breadboard time

Hobby Electronics

145 Charing Cross Road,
London WC2H OEE
01-437 1002 (4 lines)
Published by Modmags Ltd,
Distributed by Argus Distribution Ltd,
Printed by OB Ltd, Colchester
Hobby Electronics is normally published on the second Friday of the month prior to the cover date

Editor: Halvor Moorshead

Editorial Asst: Richard Maybury
Project Team: Ray Marston, Steve Ramsahadeo, John FitzGerald, Keith Brindley
Production: Diego Rincon, Pete Howells.
Technical Artists: Paul Edwards, Tony
Strakas
Advertising: Chris Surgenor, Steve Rowe,
Joy Cheshire, Sandie Neville
Admin Staff: Margaret Hewitt, Bren Goodwin, Tim Salmon, Neville MacDonald, Tracey Campbell, Loraine Radmore, Loraine Stout, Marlin Felix, Halina Di-Lallo.

Copyright. All material in this publication is subject to world-wide copyright protection. Permission to reproduce printed circuit board patterns commercially or marketing kits of the projects must be sought from the Editor. All reasonable care is taken in the preparation of the magazine to ensure accuracy but Modmags cannot be held responsible for it legally.

(A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD) PO Box 290 8 Hampton Street ELECTRONICS Birmingham B193JR 021-233-2400 ONLY

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

\star DUE TO VAT INCREASE PLEASE ADD 5% TO ORDERS

Monitor

IT TELLS THE TIME TOO

Without devoting the whole of Monitor to this new device it would be impossible to describe it. fully. Anyway we'll have a go at outlining some of its more unusual functions. It's called the "Compucrise-On Board Electronic Computer!" It has 26 different functions, so many in fact that we wonder if things haven't got a little bit out of hand. The main feature is the Cruise control, this will establish and maintain a pre-selected speed, it has a memory that will recall the last setting should the accelerator or brake pedals be used. The next bit comes under the heading Fuel Management, it will inform the driver his or her most efficient driving speed, the best brand of petrol to use and the effects of different types of tyres, pressures etc would you believe? If that little lot isn't enough it also incorporates a highly accurate Quartz digital clock/stopwatch / alarm / calendar

Now for the mundane features, temperature
gauge, inside, outside or engine temperature. Battery voltage indicator, generator voltage etc. Time to tank empty, current speed, average speed, it goes on, you'll just have to take our word it does about a million other things too.

All this information is updated once a second from a variety of remote sensors. The "Command Module," measuring 3 inches by 6 inches will sit quite happily on the dashboard of most cars. It can be fitted to nearly any car in about 3 hours (not diesel or fuel injection engines though) requiring the minimum of calibration. Cost, well you wouldn't expect to get much change from a fiver would you? It's actually not as bad as you would think, £173 plus VAT and fitting. Compucruise is currently available from Macpro Ltd, The Coach House, Birdingbury Road, Frankton, Warwickshire CV23 9QR. Who said motoring was getting boring?

TOOL TIME

Plastic tweezers have never been given the publicity they deserve so we at HE are beginning a campaign to highlight the usefulness of plastic tweezers to the electronic hobbyist. We're starting our campaign by introducing you to the new range of plastic tweezers from Tele-Production Tools Ltd, their range includes three different jaw sizes, coarse, medium and fine serrations. The in-built guides ensure that the faces mate correctly. The tweezers are available in small quantities for about 60 pence, they are particularly useful for handling components that are liable to damage from static discharge.

To obtain your tweezers write to TeleProduction Tools Ltd, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SSO 9NW.

COVER STORY

Our thanks to Relcy Antiques of Nelson Road Greenwich, for being so patient when we took the cover shot. We would also like to point out that they do not sell Grandfather clocks with LED displays. Mind you their shop is well worth a visit if you are interested in "scientific" antiques.

COMMODORE CALCS

New book from Commodore on how to choose your Calculator, one of theirs of course. Nevertheless it makes very interesting reading. Your nearest Commodore stockist should be able to furnish you with a copy. The book covers all of the new range of Commodores machines and there should be something for everyone.

CASIO'S COMEBACK

We must admit, we were slightly worried abou the lack of calculators in the past few months particularly from our friends Casio, who could be relied to bring out at least two new specimens per month.

We need not have worried, the reason for Casio's disappearance was because they were busily beavering away developing the FX-501P and FX-502P programmables. Wonder wha the bloke who thinks up these names does with the other $233 / 4$ hours of his day?)

Starting with the 501, we have 5 levels of parenthesis, 11 memories and 128 programme steps. The 502 is twice the calc. with 10 parenthesis levels, 22 memories and 256 programme steps. Both live in cases $140 \times 76 \times 16 \mathrm{~mm}, 1300$ hours continuous use, auto switch-off, full scientific functions yawn . . . etc., etc

You guessed it, the cassette recorder con nects up to both models via a low cost adaptor Within the calculators lurks a musical IC that enables a programme to be written and read on to and off of standard cassette tape. Now for the price list. As usual there are recommended retail prices, totally unrealistic as they're always sold cheaper somewhere or other. From the top we have the 501 at E64.95 and the 502 $£ 84.95$. The adaptor (FA-1) can be yours for a miserable £24.95. Casio can now be found at 28 Scrutton Street, London, EC2A 4TL and will be only too happy to relieve you of any surplus
money you may have.

News from the Electronics World

SIX DIGIT HAND HELD

Just about everything these days is available in hand-held version, frequency counters are the latest to succumb. This model, called the Max-550, will handle up to 550 MHz on a 6 digit display. The counter is crystal controlled fof course) giving an accuracy of 3 parts in 10^{6} on signals down to 250 mV . (That means it's very accurate to the likes of you and me.)

Typical applications include audio, video and RF in-circuit testing, checking clock
frequencies in digital systems, ultrasonic equipment in fact anywhere something electrical is happening many times a second. A full range of accessories includes a miniature aerial for direct radio reception, input cable carrying case, AC charger and an adaptor for use with a car battery. The Max- 550 can be yours for $£ 93.00$ plus VAT. Available from Continental Specialities Corp, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

WIRELESS?

For any of you following lan Sinclair's new series "Into Linear ICs" you'll have noticed he's using a "Eurobreadboard" to explain much of the theory. This kit of jumper wires might just come in handy. It's intended for use with the Letrokit breadboard. The kit contains 350 wires and comes in a neat plastic box with individual compartments. 14 different lengths are supplied in the kit, the smaller ones conform to the almost standard 0.1 inch matrix. The longer lengths extend up to 5 inches. All the different lengths are colour coded, and each length has stripped ends, bent to 90° for instant insertion. For further details contact Letrokit Ltd, Sutton Industrial Park, London Road, Earley, Reading, Berks

MEETINGS IN MARGATE

Ebcrohers is usually t 准

 Hen dibe cafled the Thamet Electrolion club that hity invelred motip they meth mer

 Kid sowner mexthbe we with th o sen ment woult whtir to wh at HE Mha soullds the ath
 oves to meet wo mili, efly achlmelise is) whiy hat ge along ont treaing? We would intith hear hamp any oxthe cil cos ton now aboul it

FREE RADIO

Supporeers of Eree hadio 'Jecke. firmea Cacohes et al might bs intarented in a sertmth tron on either the 13 th 6 ? Poth fatie to
 fleve the vamue will be in Werlladerem. Intuint the uelk ets viti con CO 00 ms 2 mil inch on loos
 shanty from the tonethe th inte kmontl haty then
 meeting plase vill bo the Wollington YMEA nes sot told its withtn respecterie distance of roual watering holes so there should be sptrething for everybody. The edturass to write ko Carolinte News Sheet (CNS) POB, 35 Wellme ton. Telford. Salop, And please enclase a SAe

HOME COMPUTING

We must apoloniea for the lact of Horni Conn. punig this month believe if or mat there Not wasn troom. The stuation has become ath serious lataly, we might just stant thinkimy about a few extra pages soon in ordet to fot everything in. It's interesting to comple TE with the competition, do you reallse in it noud value we are? Just count up how many edibre pages some of the other magazmes have, mant of them cost an extra 5 pencini We would he very surprised if any of then heve as many at us.

CATALOGUE CORNER

Chromasonics have semt ut a supplement to their' 79 catalogue, it contans all their upteted prices, no they are not all increases you'll be surprised to learn. A quick glance revealed the ZN4 14 radio chip from Ferranti going at 2 for E1 can't be bad. For your cupy contact ChroMasonic at: 56 Fortis Green Road, Muswell Hill. London N 103 HN

COMPETITION

The entries ह't looding in now for ouf picture competition, the clasing date for entries is the 20th August so get them, to us as soon as cossible as we re still havina difficullaes whith the post

ERRATA

A gremitn crept imo the imiector/Tracer project last month, the overlay diagram Fig 2 was show 180° out of registration. The shaded PCB foll pattern is in fact the wrong way up Hope this has not caused too many problems

Combination Lock

Mechanical combination locks abound - as do ideas for electronic ones. Unfortunately, electronic designs we've seen are either too simple land of limited use) or too complex - and beyond the average hobbyist. Here's something that's in between these two extremes.

DIGGING THROUGH THE files produced a wealth of ideas for locks - most of them impractical for the constraints imposed on the project application. Tossing ideas around the office threw up some fascinating techniques ... But we had to get a simple project together.

The simplest method is to connect several rotary switches in series to apply power to a solenoid-operated door lock when you dial up the right switch position on each. This has the advantage of extreme simplicity and a reasonable number of possible combinations. Problem is, if you leave that combination set on the switches then security is compromised because somebody, less trustworthy than your good self, may just take notice, Tch, tch.

What was needed was some technique that was self-cancelling or did not reveal the combination once it was 'dialled up.

It occurred to us that the rotary numerical combination lock, such as on safes (you know - spin the dial, 13 left, 37 right, 21 left), did not reveal the complete combination once the lock was opened

Having digested that little principle the next thing was to work out how to do it electronically - and in a simple way.

The rotary numerical combination locks operate by successively unlatching a mechanical 'circuit'. When the last combination is dialled the bolt is released. How to do this electronically?

LATCHING CIRCUITS

A number of 'latches' connected in series and operated in sequence such that power is applied to a solenoid lock when the last latch is selected will be an electronic equivalent to the mechanical combination lock. Next problem - the electronic latch. This can be made up in a number of ways. Relays can be connected to latch on when energised. But they're relatively expensive.Digital logic gates can also be connected to make a latch.

When a silicon controlled rectifier (SCR) has a voltage applied to the gate it will conduct and remain 'on' until the anode-cathode voltage falls to zero. That's a latching operation. SCR's are cheap and readily available and will
handle the current required to operate a solenoid lock and for these reasons were chosen for the latches in this project.

To dial a sequence of numbers, providing the required combination, we first considered a multi-bank, multi-position switch. That turned out to be mechanically awkward and expensive. Suitable switches are also difficult for the average hobbyist to obtain. Two, 12 -position, single-pole rotary switches were eventually chosen. They are an "off-the-shelf' item obtainable from many component outlets.

Dialling three pairs of numbers in sequence on the switches simulates the operation of a rotary numerical combination lock - almost. This provides over 1.7 million combinations!

RESETTING

That solves the combination problem and the latch problem, but how do you reset the SCRs once you've operated the lock? Simple - turn off the power source. A switch could be used to momentarily disconnect the supply, 'unlatching' the SCRs, resetting the solenoid lock to await its next use.

What if you forget to push the button? Tch, tch, tsc
It seems a peculiarity of human nature that it is easy to memorise a sequence of numbers but very difficult to remember to reset a button or lock.

A simple timer operating a relay can do the job for you. Accordingly, the project has a timer incorporated.

The project is designed to operate from a battery. No current is drawn until the START button is operated. Current will only be drawn from the supply for the 25 seconds duration of the timer.

Mains operation, from a small transformer and rectifier is possible but a battery standby circuit should be included in case of mains power failure.

SOLENOID LOCKS

There are two basic types: solenoid operated striker plates (i.e.: that are fixed in the door jamb) and solenoid operated bolts (attach to the door itself). We recommend you use a solenoid operated striker plate. Firstly, as they are fixed in the door jamb it is an easy matter to conceal all wiring. Secondly they may be used with existing dead-latching mortice locks. Solenoid operated bolt locks are made to fix on the door itself and require a flexible lead run across the door at the hinged side.

Solenoid operated striker plates or bolt locks are available from specialist locksmiths

As the project operates from a 12 volt supply, a 12 volt version was used.

For new installations the key barrel of a lock may be dispensed with. In existing locks, the key mechanism may be disabled if you wish.

CONSTRUCTION

The relay and all minor components are mounted on a printed circuit board. For convenience, and to avoid wiring errors, this method of construction is recommended.

Commence by putting all the resistors and capacitors on the board. Take note of the orientation of the tantalum capacitors. Next mount the transistors, diodes

Interior of the lock. A diecast box provides a rugged and safe housing.
and SCRs - take note of lead orientation, carefully follow the component overlay diagram. Mount the relay last.

All external connections are made via pc pins inserted in the appropriate holes on the board. To avoid wiring errors, follow a sequence of wiring the connection from each pin, step by step.

Wiring a 'code' on the switches is a fairly simple process. Using the table below, allocate switch position

This shows how the connection of wires A to C and A^{\prime} to C^{\prime} determine the combination of the lock. The above table shows the connection pattern for the combination 4-1, 1-11, 8-4 which can be seen by looking at the switch contact numbers corresponding to $A, A^{\prime}, B, B^{\prime}, C$ and C^{\prime}.

TABLE 1			
SW1	pc	SW2	pc
pos no	pin	pos no	pin
1	B	1	$\mathrm{~A}^{\prime}$
2		2	
3		3	
4	A	4	C^{\prime}
5		5	
6		6	
7		7	
8	C	8	
9		9	
10		10	
11		11	$\mathrm{~B}^{\prime}$
12		12	

Fig. 1 The circuit diagram, SW1, SW2 and PB1 have to be operated in the correct sequence before the lock will open. Any deviation in sequence will result in the lock remaining secure

How It Works

An 'initial' code is dialled on SW-1 and SW-2, 4 and 1 in this case. The gate of SCR1 will be forward biased via R5, SW-1, SW-2 and D2, SCR1 turns on, charging C2 to 12 volts.

The push-button PB1 is then pressed. This applies 12 volts from the cathode of SCR1 to the junction of $\mathrm{R} 1 / \mathrm{R} 2$. Capacitor Cl will quickly charge to 12 V Q1 and Q2 will turn on, operating the relay RLA. The circuit involving Q1, Q2, R1, $\mathrm{R} 2, \mathrm{C} 1$ and the relay is a 25 -second timer. The relay will drop out after about 25 seconds as C 1 will slowly discharge via R1, R2 and the input impedance of Q1, Q2, which is very high. The rest of the sequence must be completed within 25 seconds to operate the lock for when RLA drops out, the circuit is 'reset'.

When PB1 is pressed and RLA operates, the relay contacts, RLA1, will then transfer the 12 V supply from the anode of SCR1 to the anode of SCR2. SCR1 will turn off. C2 will then commence to discharge via R7, falling to a volt or so within 10 seconds. The next code sequence must be dialled within this period, otherwise you will have to return to the 'initial' code.

The second code is then dialled on SW-1 and

SW-2, in this case 1 and 11 . The gate of SCR-2 will then be forward biased via SW-1 and SW-2, the current it draws will discharge C2. SCR2 will then turn on, applying 12 V to the anode of SCR3.

The third code is then dialled on SW-1 and SW-2, in this case 8 and 4. The gate of SCR3 will then be forward biased via R10, turning SCR3 on, energising the solenoid lock. At the end of the 25 -second delay, the relay will drop out, resetting the circuit.

An external connection socket, SK1 is provided to enable power to be supplied to the lock should the circuit fail or the batteries run flat.

No current is drawn by the circuit until the operating sequence is commenced.

Diode Dl suppresses operating transients from the coil of the relay and D2 prevents possible spurious triggering of SCR2 and SCR3 via the gate of SCR1 when the latter is turned on.

The circuit is protected from spurious triggering by bypass capacitors C3 and C8 and the SCR gate resistors, R6, R8 and R11.

Combination Lock

The printed circuit board and solenoid striker plate we used. Naturally any type of solenoid lock can be protected using this system.

A simple lock using three rotary switches. If you forget to move them off the combination after opening the lock, you'll reveal it.

Fig. 2 The component overlay. See Table 1 and the circuit diagram for an explanation of the lettered AC pins.

Parts List

RESISTORS (ALL $1 / 4 \mathrm{~W}, 5 \%$)

R1	2 M 7
R2	470 k
R3	1 k
R4	100 R
R5	1 M
R6	100 R
R7	560 R
R8	1 k
R9	100 R

CAPACITORS
C1, $2 \quad 10 \mathrm{u} 25 \mathrm{~V}$ tantalum
C3-8 1On greencap
SEMICONDUCTORS

SCR1-3	C106Y1 or C106D1
Q1,2	BC107, BC108, BC109 or BC549 or equi-
	valent
D1	1N914
D2	1N4007

1N4007

MISCELLANEOUS
SW1, 21 pole 12 way rotary
PB1 miniature push to make
RLA1 single-pole change-over 12V 180 ohm coil, 240V/5A contacts
SK1 DIN 5-pin or similar
Solenoid-operated lock (see text), 12 V battery, pcb diecast case

_Combination Lock

pairs for SW1 and SW2 for each code in the three-step sequence necessary to open the lock.

For example, the code sequence of switch position pairs as shown in the diagram is $4-1,1-11,8-4$. These are respectively shown connected to pc pins $A-A^{\prime}, B-B^{\prime}$, $\mathrm{C}-\mathrm{C}^{\prime}$.

INSTALLATION

As this will very much depend on individual circumstances, we can only give you general guidelines.

Firstly, there must be no externally exposed, or visible, wiring. The switches' should be mounted such that their shafts protrude from the surface behind which the circuitry is mounted, without the shaft securing nuts being accessible. File a flat on the shafts so that you have a permanent 'location' point for knob grub screws. Better still, use collet knobs.

The external power/connection socket should be placed in a concealed location, known and accessible only to yourself, or those entrusted with the combination.

OPERATION

1. Dial the 'initial' code. As illustrated in the circuit, turn SW1 to 4 and SW2 to 1
2. Press the push button, PB1.
3. Dial the second code. As illustrated, turn SW 1 to 1 and SW2 to 11. You have less than 10 seconds to do this.
4. Dial the third code. Turn SW1 to 8 and SW2 to 4, as illustrated.
5. The solenoid lock will release.
6. Twenty-five seconds after operating PB1, the circuit will reset and the lock will return to its latched condition.

Buylines

There should be no problems in obtaining any of the components used in the Combination Lock.

It's all down to the energy crisis this month, don't worry though, Hobby Electronics is guaranteed energy saving, no batteries, no wires and no connections to be made.

WHAT WITH ALL THIS energy crisis business it's to be expected that someone would write in with a request for some kind of solar heating circuitry, Congratulations to $\mathrm{Mr} N$. Shapped for being the first.

Dear HE,
Could I make a suggestion? With the current interest being shown in energy saving, a useful constructional project would be a circuit for the control of a solar energy system.
N. Shapped Anglesea

Well Mr Shapped, we would be only too happy to publish such a circuit but for one thing. We have heard from reliable sources that the gases used as aerosol propellants are breaking down the upper layers of the atmosphere. This will cause what the experts call the 'Greenhouse effect'. In short the temperature of the earth will steadily rise, making solar heating somewhat redundant. With this in mind we were thinking of developing some kind of Greenhouse effect detector, trouble was we had nothing to calibrate it with.

Two letters this month concerning 'Kit Review' (most unusual). They both happen to be about the June review of the Sparkrite Electronic Ignition, though each makes a different point. The first is from Mr N. Allister of Lichfield, Staffs.

Dear HE,
Having read the Kit review on the Sparkrite Ignition kit an idea sprang to mind. I am keen on motorcycles, unfortunately I can only afford small capacity bikes.

Motorcycles are usually fitted as standard with contact breakers. These are not very reliable and can cost quite a bit to replace. Several companies are now coming out with contactless systems for multi-cylinder bikes, rather pointless for a humble one cylinder machine. (Pun intended.) Anyway these systems use an ordinary LED, the light source being interrupted at the appropriate moment during the ignition cycle and triggering the ignition. I would like to see an article on how to make such a circuit. I hope you give this letter some thought and publish such a circuit in the near future.
N. Allister Staffs

The second is from Mr George Tworkowsky (we think) of Gwent, he poses a somewhat different question.

Dear Sir,
I read your article 'Kit Review' with great interest. It really is a pity that you did not carry out some detailed tests. I have had some experience with electronic ignition. In two years my own specimen failed three times, this I considered dangerous so I disposed of it. I noticed that my fuel consumption had actually increased with the electronic ignition. A friend brought a Sparkrite with similar results, his cold starting did not improve, still needing four or five attempts before his car would start. I think that electronic ignition has still got a long way to go before it can beat a conventional system. To have any advantage a completely new system is required, not an adaptation to a conventional ignition.
G. Tworkowsky

Gwent
To Mr Allister we must say we would love to publish such a circuit, the trouble is there are so many different bikes around at the moment it would be literally impossible to come up with a 'universal' fitting to suit everyone. Sorry.

Now to Mr Tworkowsky. Unless, as you suggest extensive and exhaustive laboratory type tests are carried out, results will be purely subjective. Two things, however, must be borne in mind. An electronic ignition system cannot improve a badly tuned car, wrongly adjusted tappets for instance. The second thing to remember is that the contact breakers should not wear at anything like the rate of conventional points. That means the points will retain their optimum (hopefully) setting longer, hence improving fuel consumption, and at nearly $£ 1.30$ per gallon every little helps. Don't forget that cold starting should also improve, simply because an electronic ignition system will continue to operate satisfactorily at a much lower voltage.

That's about it for this month. We would just like to say thank you to everyone who took the trouble to write in with suggestions for a new name for the column. We've decided to keep it as 'Clever Dick' simply to avoid confusion. Keep your letters coming in to Clever Dick, we'll try to answer as many as possible, it's good to know that such a column was needed judging by the amount of mail we're receiving.

Thyristors

The Great Gate Story

Thyristors often seem to be the poor relation as far as electronic components go, especially these days with new digital ICs appearing almost daily. We would like to dispell any rumours here and now, the thyristor is alive and well, doing things that only they can do. Ian Sinclair looks at this versatile semi-conductor and a few of its unique features.

IF YOUR ELECTRONICS interests are in Hi-Fi, or shortwave reception, chances are you'll never have any need to use a thryristor. There's an awful lot of other branches of electronics, though, in which these devices are extremely useful, so let's take a look at how the thyristor works, what it does, and the sort of circuits that are used

Unlike the ordinary transistor, a thyristor has four layers of semi-conductor material.(Fig. 1). Con'nections are made to the outer layers of this sandwich, and these are called the anode and the cathode connection. One of the middle layers is also connected to a terminal, called the gate

Fig. 1. Four-layer arrangement (a) and the thyristor symbol (b).
How does it work? Imagine the four layers split up as shown in Fig. 2a. This now looks like two transistors (Fig. 2b) connected in series one a PNP type, and the other NPN. More important, there are connections from

Fig. 2. Two-transistor equivalent (a) as layers, (b) as separate transistors.
the collector of the PNP to the base of the NPN, and from the collector of the NPN to the base of the PNP - that means 100% positive feedback. Using this transistor arrangement as a guide, let's see what we would expect to happen as voltages are applied. One thing has to be added though - the connection to the electrode which behaves like the gate has a bit of resistance in series (Fig. 3), and that makes quite a difference.

With the emitter of the PNP transistor positive and the emitter of the NPN negative, no current will flow when the "gate" voltage is low. Since the "gate" connection is to the base of an NPN transistor, no current will start to flow until the voltage on the box is something like 0.5 V positive to the emitter of the NPN transistor. With the base of this transistor at the same voltage as the emitter, then, there's no conduction in either transistor. Either transistor? Well, you see, the collector of the NPN transistor will be at supply voltage when no current flows; and that keeps the PNP type shut off - a PNP transistor doesn't conduct until its base voltage is less than its emitter voltage. Fig. 3 shows a "load" resistor dotted; there's no resistor deliberately placed there but leakage through the semiconductor serves the same purpose.

Fig. 3. The equivalent circuit, with gate resistance added.

GATE RESISTANCE

When the base input voltage rises to around 0.5 V , then, the NPN transistor conducts, its collector voltage drops, making the PNP transistor conduct, and current flows from the emitter of the PNP transistor all the way to the emitter of the NPN one.

This is where the resistance at the "gate" input comes in. When the transistors conduct, the collector voltage of the PNP transistor goes high, keeping the base voltage of the NPN one high. If the input voltage goes low now, some of the current from the P.NP transistor will flow through the input resistor, but the base of the NPN transistor will still be kept high enough to ensure that current keeps flowing. This is why the thyristor doesn't shut off. In fact, small thyristors can be shut off if the supply voltage is low by taking the gate voltage negative, so that the voltage at the base of the NPN transistor drops below 0.5 V .

PEAK CURRENT

There aren't two separate transistors, of course, so what do we look for when we select a thyristor? One obvious factor is the maximum voltage which we can use across. the thyristor when it is switched off. This ranges from around 15 V to over 800 V according to the type that is chosen. Note, though, that these voltages are peak, so that if you want to use a thyristor with 240 VAC you need a 400 V type to hold off the peak $A C$ voltage.

The next thing to look for is the peak current rating Many manufacturers quote $\mathrm{I}_{\text {TSM }}$ - meaning the 'peak current flowing for a once-only pulse when the thyristor is triggered on. The repetitive peak current (on every cycle) is symbolised as $I_{\text {TRM, }}$, and is quite a bit less.

The gate trigger current, in milliamps, is labelled $I_{G T}$ and is usually measured at $25^{\circ} \mathrm{C}$ - it gets less at higher temperatures. The maximum value for reliable triggering is usually quoted, ranging from about 200 uA for a small thyristor to 30 mA or more for a large one. The actual trigger current is often a lot less $-I$ have triggered a small thyristor at 8 uA .
$\mathrm{V}_{\mathrm{O} \text {, }}$, as the letters suggest, means the gate voltage (maximum) which will ensure triggering. This ranges from 0.8 V for a small thyristor to 1.5 V for a large one - once again most samples will trigger at lower values.

Finally, the quantity I_{N} is the holding current - at any greater value of current between anode and cathode, the thyristor is guaranteed to keep conducting once triggered. Values range from 5 mA to 40 mA , and, as usual, most samples will stay conducting with quite a bit less.

Fig. 4. A crowbar protection circuit.

The thristor therefore behaves like a diode - but only when the voltage at the gate has set the layers of semiconductor conducting. With the gate connected to the cathode, a thyristor is simply an open circuit, no current can flow in either direction unless, of course, the voltage ratings of the thyristor are exceeded. When the gate voltage is increased sufficiently above the cathode
voltage - about 0.5 V or so - the thyristor will suddenly become conducting, provided the anode is positive relative to the cathode. In this state, the thyristor is said to be triggered. If the anode voltage is zero or negative, or if the gate voltage is too low, no triggering takes place, and the thyristor remains non-conducting. Let's look now at a circuit which makes use of what we know already about the thyristor. Fig. 4 shows what is called a crowbar circuit - it's designed to shut off the power to a circuit very quickly.

This is a thyristor which is normally non-conducting, with its gate connected to zero volts through RI and to the positive supply through ZD1, a zener diode. You're not too certain about a zener diode? Well, it's a diode which is used reverse biased, but because of its construction it will suddenly conduct at some voltage, usually in the range 2.7 V to 33 V , which is decided when the diode is made. In this circuit, the diode has been selected so that it breaks down at 5.6 V .

Fig. 5. Burglar alarm basic circuit - the bell cannot be connected directly to the thyristor because each stroke of a bell interrupts the current; this would shut off the thyristor.

FAST FUSE

Now the normal voltage output of this circuit is 5.0 V , and it's intended to supply a lot of IC's whose supply voltage must not rise much above 5.6 V . What happens if the voltage does get too high? Simple - ZD 1 conducts and triggers the thyristor. The thyristor can then conduct, shorting out the power supply and causing the fuse to blow. Once the fuse has blown, there's no voltage in the circuit, and the thyristor instantly resets, ready to resume protection duty when the fault that caused the trouble is sorted out.

Now it may look a bit daft using a thyristor to blow a fuse, but it has two important advantages. The most obvious one is the fuses don't blow just because the voltage rises, so that the fuse doesn't protect the circuit against excessive, voltage, it only protects the power supply against excessive current. The other point is that a fuse takes some time to blow, several milliseconds. That may not sound like a long time, but several hundred pounds worth of IC's can be destroyed in only a thousandth of that time. The thyristor operates faster, getting the voltage down as soon as it reaches danger level, and blowing the fuse so that some attention is called for. The name "crowbar" circuit is a good one - the action is pretty much the same as that of putting a crowbar across the supply voltage!

To. change output voltage, just switch in another zener diode! The output is not easy to smooth to an acceptable standard for most electronics equipment, but is ideal for battery charging or running lights or motors.

The main application for thyristors, however, is the control of lamps or motors, using the gate to control at what part of the wave the thyristor switches on. Fig. 10 shows how this operates when the supply to the thyristor is a full-wave rectified voltage. If the thyristor is turned on at the start of each wave, the output is at full power the average value of voltage of such a wave is equal to 63% of peak voltage. If the thyristor is turned on at a later part of the wave, the average value of voltage of the output wave is less, down to nearly zero if the thyristor is switched on very late. This is, incidentally, one of two methods of control, the other will be discussed later.

TRIGGERING

The problem now is to trigger the thyristor at the correct part of each cycle. One simple method is to use a capacitor and resistor to delay the rise of voltage at the gate. Fig. 11 shows the simplest type of circuit possible, a capacitor connected across the gate, and a resistor feeding the capacitor from the rectifier supply. As the supply voltage rises from zero, following the shape of a half-wave of AC, the voltage across the capacitor will rise much more slowly, so that the gate voltage does not rise high enough to trigger the thyristor until the supply voltage is quite a bit above zero. We can alter the time (after the wave starts from zero) at which the thyristor fires by altering the time constant of the firing circuit. Unless we discharge the capacitor again, however, the thyristor may fire too soon on the next wave, so that DI is used to ensure that the capacitor discharges when the supply voltage drops at the end of the wave.

NM

Fig. 11. Simple CR low voltage phase control. Because of the time that C1 takes to charge, the voltage at the gate reaches trigger level some time after the imput voltage starts to rise. The delay can be adjusted by altering the setting of RVI. D1 discharge C1 when the input voltage drops to zero again.

One snag of this simple circuit is that the current passing through the charging resistor may not be enough to fire the thyristor, if the resistor is a large value and the thyristor gate needs a large (1 mA or so) current. Most small thyristors will fire with a gate current of a few UA, but the larger types may need quite a bit more.

A method of overcoming this is the trigger diode - a device which is non-conducting until a few volts are applied between anode and cathode (Fig. 12), and which then becomes fully conducting, with only a small voltage drop. Using such a trigger diode, the voltage across the capacitor (Fig. 11) builds up until the voltage across D2 is enough to breakdown. the trigger diode

Fig. 12. Trigger diode. (A) symboll (b) characteristic

LOW VOLTAGE

With the diode fully conducting, the voltage at the gate is more than enough to trigger the thyristor, and gate current is provided by discharging Cl rather than by the small current through RI.

A version of this basic circuit suitable for low voltage supplies is illustrated in Fig. 13. A transistor takes the place of the trigger diode making use of the principle that a transistor will pass a large current from collector to emitter when a small current passes from base to emitter. The capacitor Cl is connected to the base of QI , so that base current will start to flow when the capacitor has charged to about 0.5 V . The base current causes collector current, so that the emitter voltage rises along with the base voltage. When the emitter voltage rises to about 0.5 V the base will by this time be at about 1.0 V), the thyristor fires.

Fig. 13. Using a transistor for triggering a low-voltage circuit.

Thyristors

If the load is AC operated (such as a shaded-pole motor, for example) the circuits used so far do not appear useful because they are based on rectified AC. However, the circuit is still a circuit, whether a rectifier is used or not, and the load can just as easily be connected in the AC part of the circuit (Fig. 14). In this example, the firing of the thyristor completes the circuit, so switching the current on. The change of position of the load from the DC to the AC side of the circuit does not alter the action of the thyristor.

So far, all the circuits we have looked at have been low voltage circuits, for which ordinary low voltage

Fig. 14. Using an AC load and a bridge rectifier circuit. The thyristor circuits of Figs. 11 or 13 can be used if the voltage is low.
components and construction methods are suitable. Many thyristor and triac control circuits, however, make use of AC mains voltages, for which a number of special precautions need to be observed. One essential point is electrical safety. In a mains circuit, the thyristor is. connected between the load and one of the mains leads, usually neutral. Since the gate must have a fairly low resistance to the cathode, this means that all the electrodes of the thyristor are connected to mains, and

Fig. 15. Mains-voltage power control. All parts of the circuit can be at a dangerous voltage.
any firing circuit of the simple type will also be connected to the mains.

Great care must therefore be taken when these mains voltage circuits are isolated from any low voltage circuits and that no mains voltage points can be touched. In the simple power control circuit of Fig. 15, for example, widely used for electric drill or light bulb control, the potentiometer control knob must be well insulated one useful method is to use a potentiometer with a .plastic shaft, with the circuit fitted into a plastic box.

Particular care has to be taken when a heat-sink is needed for the thyristor because the insulators which serve well for mounting power transistors to heat sinks are not good enough for mains voltages. A mainsoperated thyristor should never use a metal box as a heat sink - if cooling is needed, the thyristor should be mounted on a finned heatsink mounted on substantial insulators inside a ventilated box.

Fig. 16. Isolating the firing circuit from the thyristor. (a) Using a pulse transformer. (b) Using an optoisolator. With either device, the insulation between the cincuits can be good enough to withstand several thousand volts.

ISOLATION

Several applications of mains-voltage thyristors and triacs involve driving the gate with signals from low voltage equipment - typical applications include disco lights. There are two safe ways of isolating the thyristors from the low voltage equipment - pulse transformers

Now applications for thyristors such as the crowbar circuit are very useful, but they represent only a fraction of the possible uses. Fig. 5 shows in outline, for example, how a thyristor could be used in a burglar alarm circuit - the point is that the bell will keep on ringing once the thyristor has been triggered, until the power is cut off. Some care is needed, incidentally, in the uses of this circuit. Small thyristors need very little gate current to trigger them, around 1 uA , so that a long lead attached to the gate of a thyristor will pick-up any electrical disturbance (next door washing machine, for example) unless a resistor is coninected between gate and cathode. Once again, we are making use of the thyristor as a device which can be switched on by a small and brief change of voltage, but which cannot be switched off the same way. Anything that behaves in this way is called a latching device. Now we can connect up relays so that they will latch, but a thyristor is selflatching - this type of behaviour is built in to the thyristor.

NEGATIVE PULSE

Suppose we want the thyristor to stop conducting? it happens, some small thyristors will switch off when the gate voltage is pulsed negative, but this is not a reliable way of switching off. Switching off, as far as most thyristors are concerned must be done by reducing the voltage between anode and cathode to a very low value. Once this minimum value, the minimum holding voltage, has been reched, current stops. Unless the gate voltage is kept high, the current will not start to flow again when the anode returns to a positive voltage.

Fig. 6. Simple low-voltage light-switch circuit.

One obvious way to do this, of course, is to interrupt the supply momentarily, as shown in the low voltage lamp circuit of Fig. 6. A less simple method consists of discharging a capacitor at the anode of the thyristor, as shown in Fig. 7. In this circuit, the thyristor is triggered by the action of the push button switch - note the Ik resistor (R2) which prevents the gate from being triggered by stray radiated pulses. Once the thyristor has
been triggered on, there is a low-resistance conducting path between anode and cathode, so that the voltage across the thyristor is low, not much above the minimum holding voltage at which the thyristor switches off.

The switch-off method uses a large-value capacitor Cl which charges up when the thyristor conducts. During the time that the thyristor conducts, the capacitor has one plate at supply voltage and the other at the low voltage of the thyristor anode. When the OFF switch is momentarily depressed, the plate of the capacitor which was at supply voltage is suddenly connected to Zero volts. The other plate will follow it, dropping from about 0.2 V to a negative voltage for a few milliseconds. This is time enough to allow the electrons and holes in the N and P layers of the thyristor to clear and the thyristor becomes non-conducting. By the time the capacitor has re-charged through the load, the thyristor is off.

Fig. 7. Using a capacitor to switch off a thyroistor.

Fig. 8. A two-thyristor switching circuit. The capacitor C1 is connected so that when one thyristor switches on, the other is forced off.

BACK TO BACK

This method works well when the load has a fairly high resistance (such as a low voltage lamp) and when a large

Thyristors

value capacitance can be used. The capacitor should be a paper or plastic type, because electrolytics do not take too well to having their plates at reverse polarity, which will happen if the OFF switch is kept closed while the capacitor re-charges through the load. A variation of this method uses two thyristors switching each other (Fig. 8).

Thyristors really come into their own, however, when they can be used with a supply which passes through zero volts at regular intervals. An alternating voltage fits this specification nicely, but a rectified unsmoothed supply is even better. The reason is that a thyristor will pass current in one direction only, so that to cope with AC we need two thyristors, or the ready-made twothyristor device known as the Triac.

Using an unsmoothed rectified supply ensures that the thyristor will turn off each time the voltage reaches zero (or a fraction of a volt above zero). We don't need any special switch-off circuit, but on the other hand we have lost that rather useful latching action. To keep the thyristor conducting we must either keep a current flowing into the gate, or apply a pulse each time the anode voltage starts to rise

Fig. 9. A simple voltage regulating circuit. If this is used as a better charger (for lead-acid batteries only), C2 can be omitted.

A very simple circuit making use of this principle is shown in Fig. 9. This is a voltage adjuster; which enables you to obtain several switched values of DC voltage from a transformer without using toppings. It's particularly useful for lead-acid (car or motorbike) battery charging, as the voltage is so easy to charge. The
principle is that the zener diode, which may be one of several selected by a switch, applies a steady voltage, equal to the zener diode voltage, to the gate of the thyristor. At the anode of the thyristor, the waveform is a full-wave-wave rectified wave from the bridge rectifier. The cathode of the thyristor is connected to the reservoir capacitor C2, a large value electrolytic rated at the full peak voltage of the transformer secondary.

To see what happens, imagine that the peak voltage of the rectified wave is 25 V and that we have a 15 V zener diode. When the circuit is first switched on, capacitor C2 is uncharged, so that the cathode voltage of THI is zero. When the voltage at the anode starts to rise, the thristor will not conduct right away, because ci has to be charged up first. As Cl charges, however, THI will switch on, so that current flows, charging C2 to the full peak voltage.

LOADING

Now if there is no load resistor connected across C2, the thyristor will not conduct again even if it is triggered because the anode voltage will not be any higher than the cathode voltage. Any normal power supply is used with a load, however, so that we can assume that the voltage across C2 will drop quite a bit between the time of the first voltage peak and the next one. If the voltage across C2 is higher than the zener diode voltage, though, the thyristor will not trigger, and the next voltage pulse does not cause the thyristor to conduct.

Fig. 10. Phase control of a wave. The average voltage at the output depends on how late in the cycle the thyristor is triggered.

This continues until the output voltage drops to less than the voltage of the zener diode. When this happens, the thyristor will start to conduct whenever the anode voltage is higher, than the cathode voltage, and the reservoir capacitor C2 will once again be charged to the full peak voltage. The thyristor will conduct every now and again; enough to keep the average voltage at the output fairly steady at around the zener diode voltage.
and opto-isolators, illustrated in Fig. 16. Pulse transformers can be obtained which have insulation guaranteed to 4 kV , but which will fire even a large thyristor when a pulse is applied to the primary. Opto-isolation provide smaller output powers, but can be used to trigger a small thyristor which then fires the main thyristor. Great care must always be taken with disco light equipment, because faulty insulation in such equipment is responsible for an increasing yearly total of deaths caused by electrocution.

The other type of problem which is encountered when thyristors are used with mains voltages is that of radio frequency interference (RFI). When a thyristor' switches on suddenly at or near the peak of a wave, a large pulse of current flows, and the steep-sided wave is very rich in harmonics. Such a wave is radiated easily from all the wiring around the thyristor, and interferes badly with radio, particularly on the lower frequencies. The long wave radio- 4 transmissions, in particular are badly affected by thyristors in TV receivers, in light dimmers, drill speed controllers and other thyristor power circuits.

Fig. 17. Reducing radio-frequency interference (RFI).
Complete elimination of RFI is difficult, but a considerable reduction in interference is possible if RF chokes and filter capacitors are fitted into the circuit (Fig. 17). These generally consist of inductors constructed with several turns of insulated wire (typically about 40 turns) on a ferrite rod, with 0.01 uF capacitors to earth on each side of the inductor.

ZERO VOLTAGE CROSSING

A different approach to the problem of interference, and to thyristor control, is the zero voltage crossing control system. This can be used only when the load has a lot of energy storage, such as a large heater, because the idea is to switch the thyristor on when the wave is at zero volts, to keep the thyristor on for several cycles, and then to keep the thyristor off for another few cycles. In this way (Fig. 18) the power can be controlled by varying the ratio of the number of "on" cycles to the number of "off" cycles. Obviously, this is useless for loads such as lights or drill motors, but for loads such as heaters which do not charge noticably when power is removed for several cycles this method has a number of advantages. For one thing, since there are no sudden switch-on pulses, greater amounts of power can be switched. Because the switching occurs at the zero crossing points of the wave, there is no RFI. The only penalty is a more complex circuit due to the need to generate a pulse when the wave passes through zero, and to time a number of cycles on and another number off. Fortunately, integrated circuit zero-voltage crossing controllers can be obtained from Feranti and from Plessey among other

Fig. 18. Zero-crossing control - the thyristor is always switched on just at the zero-voltage level. For full-wave control as shown, two thyristors or a triac would have to be used.

Fig. 19. A zero-crossing switch circuit used for temperature control. Note that all points can be live. (Courtesy of RS Components (td).
manufacturers. Fig. 19 shows the circuitry used with a zero-crossing type of circuit controlling a triac. In general, triacs are used on purely $A C$ circuits, with thyristors being used on DC or rectified AC supplies. When very large amounts of power are to be controlled, thyristor bridges can be used when no triac of suitable power rating is available.

Hobby Electronics Book Service

POPULAR ELECTRONICS BOOKS
Sinclair. I. A.. Introducing Electronic Systems $£ 1.80$
Sinclair, I. R., Introducing Amateur Electronics £1.55
Sinclair, I. R., Electronic Fault Diagnosis £3.45
Sinclair, I. R.. Repairing Pocket Transistor Radios £2.50
Sinclair. I. R.. Oscilloscope In Use £3.00
Sinclair, I. R., Understanding Electronic Components £4.00
Sinclair, I. A., Understanding Electronic Circuils £4.00
Kitchen, H. T.. Handtools For Electronic Workshop £2.75
Kitchen. H. T.. Electronic Test Equipment $£ 5.00$
Capel. V., How To Build Electronic Kits £2.20
Darr. J., How to test almost everything electronic E3.50
Brown, R. M.. How to read electronic circuit diagrams £4.10
AUDIO
Earl, J., Audio Technicians Bench Manual £3.50
Earl. J., Pickups and Loud 'Speakers £3.50
Earl. J., Tuners and Amplifiers £3.00
Earl. J.. Cassette Tape Recorders £5.25
Earl. J., ABC of Hi-Fi £4.25
Capel, V., Microphones In Action £3.00
Capel. V., Improving Your Hi-FI £3.50
Capel, V., Creative Tape Recording £4.00
Hellyer. H. W., Tape Recorders £4.25
Sinclair, I. R.. Audio Amplifiers For Home Construction £2.75
RADIO CONTROL
Aldridge. D.. Transistorised Radio Control For Models £3.50
Drake, J., Radio Controlled Helicopter Models £3.95
Jeffries, C. R., Radio Control For Model Yachts E1.85
Saflord, E. L., Radio Control Manual £2.45
Safford, E. L., Advanced Radio Control £3.95
cookbooks
Tracton. K.. BASIC Cookbook E4.10
Lancaster, D., TTL Cookbook E7.00
Lancaster, D., RTL Cookbook E4.65
Lancaster. D., CMOS Cookbook £8.20
Jong. W., IC Op Amp Cookbook £10.00
Lancaster, D., T.V. Typewriter Cookbook $\varepsilon 7.75$
Lancaster, D., Cheap Video Cookbook £7.00
Jong. W., IC Timer Cookbook £7.50
Lancaster. D., Incredible Secret Money Machine (a how to cook booksetting up your computer or technical business)£4.95
QUESTIONS AND ANSWERS
SIMPLE AND CONCISE ANSWERS TO MANY QUESTIONS WHICH PUZZLE THEbeginner.
Coker. A. J.. Q \& A On Electric Motors $\varepsilon 1.50$
Hellyer, $\mathrm{H} . \mathrm{Q}$ Q \& A On Radlos and T.V. £1.50
Hibberd, R., 0 \& A On Integrated Circuits £1.50
Jackson, K., Q \& A On Electricity £1.50
Brown, C., Q \& A On Hi-F E1.50
Brown, C., Q \& A On Transistors E1.50
Brown, C., 0 \& A On Electronics £1.50
Reddihough, J., Q \& A On Colour T.V. E1.50
Miller. H., O \& A On Electric Wiring E1.50
CONSTRUCTOR GUIDES
Graham. P., Simple Circuit Building £2.45
Colwell, M.. Electronic Diagrams £2.45
Colwell. M., Electronic Components £2.45
Colwell, M.. Printed Circuit Assembly £2.45
Ainslie, A. Practical Electronic Project Bu
Colwell. M.. Project Planning and Building £2.45
BEGINNER'S GUIDE
Sinclair, I. R.. Beginner's Guide To Tape Recording £3.30
Sinclair, I. R., Beginner's Guide To Integrated Circuits £3.10
Sinclair. I. A., Beginner's Guide To Audio £3.10
King. G. J., Beginner's Guide To Radio £3.10
King. G. J., Beginner's Guide To Television
King, G. J., Beginner's Guide To Colour T.V. £3.10
Guilou, F., Beginner's Guide To Electric Wiring £3.10
PROJECT BOOKS
Marston. R. M., 110 Cosmos Digital IC Projects For The Home Constructor£3.25
Marston. R. M., 110 Wave Form Projects For The Home Constructor £3.45
Marston, R. M., 110 Op Amp Projects For The Home Constructor £2.95
Marston, R. M.. 110 Semiconductor Projects For The Home Constructor£3.45
Marston, R. M., 110 Thyristor/SCR Projects For The Home Constructor£2.95
Marston, f. M.. 110 Electronic Alarm Projects For The Home Constructor£3.45
Marston, A. M.. 110 Integrated Circuits Projects For The Home Constructor£3.45
Marston. A. M., 20 Solid State Projects For The Car and Garage £2.50
Marston, A. M., 20 Solid State Projects For The Home £2.50

Note that all prices include postage and packing. Please make cheques, etc. payable to Hobby Electronics Book Service (in sterling only please) and send to:
-Hobby Electronics Book Service,
P.0. Box 79,

Maidenhead, Berks.

Starburst

Expand your universe with HE's pulsating phonoptic display. Ordinary LED chasers beware

LOOKING FOR a novel, economical, yet versatile LED display? Here is the answer to your dreams. Featuring an attractive matrix design, audio control input and a choice of three operating modes, the HE Starbursts adds a new dimension to conventional light-chasers.

Assembled on two printed circuit boards, the unit is designed around readily available CMOS chips and uses only a few other discrete components. The display is arranged as five semicircles of ten LEDs each which are illuminated in bands sequentially producing the illusion of either an expanding line of light or a band of light that grows outward and collapses. A novel bonus of the circuit design is the automatic mode where dots and bars are displayed alternately.

The audio signal pre-conditioner, clock oscillator and counter-decoder-driver circuitry is mounted on one board, whilst the other board holds the display and main decoupling capacitor. The circuit is powered by a single PP9 nine volt battery. Choice of a larger battery ensures longer life as currents of up to one hundred milliamps may be drawn when all the LEDs are lit. No provision is made for the battery or power switch on-board enabling the unit to be neatly boxed and mounted in any suitable remote position.

SEEING THE LIGHT

After applying power to the circuit, the LEDs will illuminate from the centre of the display outwards appearing as a bar or dots of light; or alternately depending on the position of mode switch SW1.

Application of an audio signal will cause the frequency of movement to increase. By adjustment of the input level and control RV1, the display can be made to follow the dynamic range of the audio input; increasing in frequency as the audio input level increases in amplitude. Component values shown make the unit more sensitive to input frequencies above 1 kHz or so. and more responsive to melody lines in music and to vocal input.

LUCKY NUMBER

At first glance, it would appear that the way to produce a display such as the one described above might be to use a 'bargraph' chip driven from a ramp whose frequency would be controlled by the audio signal. However, the CMOS family contains some not so popular but nonetheless versatile chips which enable an economical

The two boards of the HE "Starburst," the switch in the foreground controls the three modes of display.

Fig. 3. MOSFET used as a variable resistor.

\square

\square

Fig. 2. Simplified view inside the 4007.

yet sophisticated circuit to be produced. By coincidence, all the chips in this project contain the number seven in their device code. They are the 4007, 4017 and 4027.

SEVEN-UP

The mainstay of the circuit is the ubiquitous 4017 decade counter-decoder whose outputs are processed by the 4027 chips to produce the logic control signals
The 4007 is probably the least familiar device. It is not strictly speaking a logic chip as it contains only three pairs of complementary metal oxide silicon transistors which may be interconnected in a number of different ways. They are configured here as a noval voltagecontrolled oscillator which provides the clock drive signals for the 4017 counter and 4027 JK flip-flops. Operation of this part of the circuit is described in more detail in 'how it works'
of PCBs will greatly simplify construction as well as enabling an attractive free-standing display to be produced.

Wire links should be inserted first and soldered into place followed by the IC sockets. Use of sockets is strongly recommended. Next, insert the resistors, capacitors and transistors and diodes. Do not insert the
The unit is assembled on wo greatly simplify construct
CONSTRUCTION

Starburst

CMOS chips at this stage. Note that some of the links pass under the IC sockets. If you do forget to put one in and discover later that it is inaccessible simply use a piece of insulated wire on the underside of the board to complete the connection.

The LEDs are wired in series-parallel and failure of one will cause the other four in an arm to extinguish. The display board can be tested as it is assembled by use of a separate nine volt supply. Insert and solder into place C6 ensuring correct orientation then connect the positive lead of the battery as shown on the overlay and make up a length of wire in series with a 330 ohm resistor. Connect the free end of the resistor to the negative terminal of the battery. Then as assembly of each arm of LEDs is completed, touch the free end of the wire from the resistor to the connector pads on the PCB (shown going to resistors R12 to R16 on the overlay). The LEDs should light. Failure to do so indicates an open circuit or reversed LED. Check for this condition by shorting each LED in turn until the display lights and replace any faulty ones ensuring correct orientation. A short lead, indent or flat on the plastic encapsulation usually indicates the cathode. We used red LEDs. In fact green or yellow LEDs will not work with a nine volt supply as they have a higher forward voltage drop

Once satisfied that the display board is working correctly, make the remaining interconnections between the boards. We mounted SW1 on the main circuit board, there's plenty of room. Insert the ICs observing the usual CMOS handling precautions and connect a nine volt battery. The display should illuminate. If all is well, connect an audio signal to the input and adjust RV1 for satisfactory operation. Check that operation of SW 1 causes the display mode to change.

We used the earphone socket of a transistor radio as an audio source though any signal of around 1 volt peak to peak will do. Finally, disconnect the battery and assemble the boards together using spacing pillars to separate them. That completes construction so switch on, plug in and flash out!

Buylines

All the components for this project should be readily available from the usual suppliers. It is worth shopping around' for the LEDs as these are sometimes offered in quantity at a discount.

PCB foil pattern for the main control board, take particular care when soldering in the ICs to avoid any solder bridges.

Chit~Chat

HE project editor and chief designer Ray Marston takes another look at the hobby scene.

THERE ARE GOOD BOOKS . . .

EVERY ELECTRONICS HOBBYIST should make a point of building up a decent collection of electronics reference books. Ideally, you should have at least one really good book that explains the basic principles of electronics, another that outlines the principles of 'advanced' electronics, and one more that gives electronics tables, colour codes, IC outlines, and other pure 'reference' data, etc. The following is our recommended short list.
'Foundations of Wireless and Electronics" by M. G. Scroggie, is probably the best introductory text to electronics ever published. It explains the basic principles of electronics in such a clear manner that even a complete layman can understand it. The subject material of the book spans elementary principles of electricity to fairly advanced electronics.
'Foundations -' was first published in 1936, and is now in its ninth edition. The book has sold some 265000 copies, which shows how good it is. The latest edition runs to 521 pages, and costs $£ 4.45$. It is published by Newnes-Butterworth.

Our next recommendation is for 'Electronics - It's Easy'. This is an ETI publication (ETI is the big brother of HE, if you didn't know), and spans the information range of basic principles of electricity to advanced electronics. It makes an excellent companion to 'Foundations -'. 'Electronics - It's Easy was originally published as a 3 -volume ETI 'special'. Volume 1 is now out of print, but the whole three volumes are presently being reissued as one single book. Release date should be late August, and price about $£ 3$

Our final recommendation is for 'Newnes Radio and Electronics Engineer's Pocket Book', 15th Edition. This is an excellent pocket-sized (you'll need a magnifying glass to read it) reference book of tables, formulae, IC outlines, data, and basic electronic circuits. The book has been compiled by the staff of ETI, is published by Newnes-Butterworth, and is well worth having.

AND THERE ARE AWFUL BOOKS

As a professional book-worm, I'm obliged to read a great many electronics books. Most are pretty mundane, a tiny minority (like those mentioned above) are very good, and a fair number are, frankly, awful. A couple of weeks back. I read what must rate as the most awful electronics book of all. It's called 'Build Your Own Working Robot', is written by an American named D. L. Heiserman, and is
published by Foulsham-Tab. It's well worth looking' at, simply because it IS so awful, it must be regarded as a classic of its kind.

The first fourteen chapters of the Robot book describe how to build, for a mere few hundred pounds, a device called BUSTER, which is more or less capable of emulating the actions of one of those cheap (about $£ 5$) Hong Kong toy cars that change direction whenever they crash into a wall, which is all very amusing if you like that kind of thing. The book really takes off, however, in chapter 15, which has the title HUNGER INTERFACE

The HUNGER INTERFACE is, to put it as kindly as possible, interesting. Briefly, what happens is that when 'Buster's' 12 volt battery supply falls below 10 volts a pulsed 3 kHz signal is transmitted from its loud speaker, and this signal activates a kind of giant lighthouse (stop laughing at the back there) that is built into one corner of 'Buster's' private room (apparently. 'Buster' is prone to permanent starvation if he moves out of this room). Buster automatically charges at this lighthouse, like a bull at a red rag, whenever it switches on, and ends up impaling himself on a battery recharging circuit. All very clever.

The lighthouse actually consists of a flashing strobe lamp stuck on top of a five foot pole. At the base of the pole is what is described as a 'nest', which includes (amongst miscellaneous bits of wood and a mirror) a battery charger and a couple of massive metal probes, which get rammed up poor old Buster's charging socket whenever he suffers a slight electron deficiency. In front of the 'nest' are two 8 -foot lengths of wooden guide rail, which encompass an area of 32 square feet and, working on the 'pea in a funnel' principle, ensure that Buster gets steered into his nest for a re-charge whenever the need arises. So how's that for American technological know-how?

The final chapter of the book describes how to convert Buster into a white-line follower. Which just about sums up the true value of the project that has cost hundreds of pounds to build and sixteen chapters to describe.

To be fair, whatever this Robot book lacks in sophistication of design of its main project is more than compensated for by its author's originality in the use of strange circuit symbols and notations, his sheer guts in presenting photo's of his constructional efforts, and his (thankfully) utter uniqueness of writing style.

As was said earlier, we thoroughly recommend 'Build

Your Own Working Robot' as THE most awful book. You simply must read it. Our congratulations to its author, and to the staff of the Ohio Institute of Technology in Columbus, who helped engineer, build, and debug the super white-line follower known as Buster.

RELAY TIMER CIRCUITS

The real 'guts' of Hobby Electronics is the actual building of, rather than reading about, electronic circuits. One of the most useful circuits that the hobbyist can build is the relay timer. It consists of a relay and a few electronic components, configured in such a way that the relay switches on when you press a START button, and then switches off again automatically after a pre-set time delay. The time delay may vary from seconds to days, and the relay contacts can be used to activate such diverse objects as photographic enlarger lamps, porch lights, battery chargers, and tape recorders, etc.

Fig. 1. A simple 6 -second to $\mathbf{6 0}$-second timer circuit.

Figure 1 shows the practical circuit of a simple 6 -second to 60 -second timer. The design is based on a type-555 timer IC, wired in the monostable or one-shot mode. The circuit starts a timing cycle when push-button START switch PBI is momentarily operated. Relay RLA immediately turns on, and C1 starts to charge towards the positive rail via R2 and RV1. Eventually, after a delay determined by the RV1 setting, C1 rises to 2 / 3rds of the supply rail voltage, at which point the IC changes state, the relay turns off, and the timing cycle is complete. External devices can be turned on or off via the relay contacts.

WEAKNESSES

A weakness of the basic Figure 1 circuit is that it permanently draws current from the supply rails, even when the relay is off. Figure 2 shows a 2 -range timer circuit that does not suffer from this defect, and which covers the timing range of 6 -seconds to 10 -minutes. The circuit operates as follows:

When START switch PBI is momentarily closed a START pulse is fed to pin 2 of the IC via R1 and C1, and the relay turns on. Contacts RLA/1 then change over and maintain the power connections to the circuit even when PB1 is released. The circuit then runs through a timing cycle similar to that already described, but with the period determined by either C2 or C3, until eventually the relay turns off, at which point contacts RLA/1 revert to their original state and break the supply connections to the circuit. The timing cycle is then complete. Note that this circuit can be turned off part way through its timing cycle by operating RESET switch PB2.

> NOTES:
> IC1 IS 555 TIMER D1,D2 ARE IN4001

Conventional electrolytic capacitors have very wide tolerances (typically -50% to $+100 \%$), and suffer from relatively large and unpredictable leakage currents. Consequently, simple circuits of the types shown in Figs 1 and 2 can not be relied upon to give accurate timing periods, or to give periods that significantly exceed fifteen minutes or so. Figs 3 and 4 show two highaccuracy long-period timer circuits that do not rely on the use of electrolytics for their timing operations.

FREE RUNNING

In both of these circuits, IC1 is wired as a free-running
astable multivibrator. In the Fig 3 circuit the astable frequency is divided down by IC2, a 14-stage binary counter, so that the relay turns on as soon as PB1 is: momentarily closed, and turns off on the arrival of the 8192 nd astable pulse, thereby giving total timing periods in the range of 1 to 100 minutes.

The Fig 4 circuit is basically similar to that of Fig 3 , except that an additional decade-divider stage is used in position 3 of SW1, thus giving a maximum division ratio
of 81920 , and making maximum timing periods up to 20 hours available from the unit.. This circuit is of particular value in giving time-controlled turn-off of battery chargers, etc.

Note in the four timer circuits given that the relay used can be any 12 -volt type with a coil resistance greater than about 120 ohms. The relay used in the Fig 2 to Fig 4 circuits should have two or more sets of change-over contacts.

NOTES:
D1,D2 ARE 1N4001
01 IS BC214L
IC1 IS 555 TIMER
IC2 IS CD4020B
IC2 IS CD4020B

Fig. 3. A 2-range 1-10 minute and 10-100 minute timer circuit.

Fig. 4. A wide-range timer covering 1 minute to 20 hours in three ranges.

One LW, four MW buttons plus manual tuning. Complete with speaker and mountings. Latest model, negative chassis only.

Stereo FM/

Cassette

+ MW

Standard cassettes and FM in stereo plus medium wave. Tone and balance controls. Fast forward facility on tape. Adjustable shafts. Suitable for 4 or 8 ohm speakers (not supplied). This model is discounted else. where at $£ 50$ up.

Stereo

Speaker Set

Suitable for above stereo unit. Good quality in surface mounted casing, 5 W nominal. 8 W peak $£ 4.00$

Telescopic Car Antenna
Multi-section standard type, suitable for angled mounting with locking key.
$\mathrm{E1.60}+30 \mathrm{p}$ Post
Metal Detectors
Treasure Tracer Mk III
F: The original Treasure Tracer. Sales exceed 7.000. 5-iransistor circuit with Varicap tuning. Sensitive. stable BFO design. Builtin speaker and earphone. Fitted with Faraday shield. Kit supplied with pre-built search head.
Kit. $£ 18.60+£ 1.00$ Post
Built $£ 23.95+£ 1.00$ Post

* Induction Balance Model

Built with sensitivity up to 10 in on single coin; fitted with speaker and meter: PP3 battery; 7 in dia. search head. Telescopic stem. Excellent pin-pointing, positive reaction to non-ferrous, negative reaction to iron. This model's normal price is £39.95!
$£ 24.50+£ 1.00$ Post

All goods guaranteed one year 10 -day money-back offer. Goods ex-stock at time of going to press. Callers by appointment only please. Send s.a.e. for illustrated leaflet.

Minikits Electronics Ltd.
 6H Cleveland Road

S. Woodiord

London E18 2AN

You probably wont believe us as we're selling the goods but we're going to tell you anyway! We have rejected eight clock radios for Marketplace, they were all cheap enough but the quality was so poor that we couldn't have lent our name to them. However, we are now able to offer a portable LCD Clock Radio to you which meets our standards.

The clock is a 12 -hour one with AM/PM indicated and a back light. The radio is Medium Wave with very nice quality for a small speaker. The alarm can be either a beep-beep type or the radio, there's also a snooze facility.

The cylindrical construction is in keeping with the very modern styling. The tuning dial is actually incorporated into one of the end caps!

We won't even mention the RRP - but just check on comparable prices - you'll find ours a bargain.

An example of this Clock Radio can be seen and examined at our Charing Cross Road offices.

£17.95

(Inclusive of 15% VAT and Posrage).

To:

CLOCK RADIO Offer,
HE Magazine.
145 Charing Cross Road,
London WC2H OEE.
Please find enclosed my cheque/ PO for £17.95 (payable to HE Magazine) for my Clock Radio.

Name
Address

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1 100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display. AM/PM and Alarm Set indictors incorporated in the large display. A switch on the top controls a Dim/Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both last and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9 -minute snooze switch is located at the top.

A example of this clock can be seen and examined at our Charing Cross Road offices.

£10.60

(Inclusive of 15% VAT and Posstage).

To:
Hanimex Alarm Offer
HE Magazine
145 Charing Cross Road,
London WC2H OEE
Please find enclosed my cheque / PO for £ 10.60 (payable to HE Magazine) for a Hanimex Digital Alarm Clock.

Name

Address

DISTAL ALARM

 rage).
er

A dress

Please allow 28 days for delivery.

Please allow 28 days for delivery

RKETPLACE

 ALARM=

 ALARM= CHRONO LG

 CHRONO LG}

This new addition to our unbeatable selection of hargains is no ordinary LCD watch: It's a slim, multi-function, dual time chronograph alarm watch, no less.

This model will show hours, minutes seconds, date, day of the 'week, stop watch, split time, alarm and alternate dual time zone - not all at once, of course. There is also a night light

Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The day of the week is indicated by a flag. When used as a stopwatch, the maximum count is 0.1 secs. short of thirteen hours

$£ 19.95$

(Inclusive of 15% VAT and Postage). To:
ALARM/CHRONO LCD WATCH Offer. HE Magazine,
145 Charing Cross Road,
London WC2H OEE
Please find enclosed my cheque/PO for £19.95 (payable to HE Magazine) for my Alarm / Chrono LCD watch

Name
Address

T		7473	20p	74141	55p
		7474	22p	74145	55p
7400	10p	7475	25p	74148	90p
7401	10p	7476	20p	74150	55p
7402	10 p	7485	55p	7415	40p
7404	12p	7486	20p	74154	65p
7406	22p	7489	1350	74157	40 p
7408	120	7490	25p	74164	55p
7410	10p	7492	30p	74165	55p
7413	22p	7493	250	74170	100p
7414	39p	7494	45 p	74174	55p
7420	12p	7495	$35 p$	74177	50p
7427	20p	7496	450	74190	50p
7430	12p	74121	25p	74191	50p
7432	18p	74122	35p	74192	50p
7442	38p	74123	38p	74193	50p
7447	45p	74125	35p	7419	50p
7448	50p	74126	35p	74197	50p
7454	12p	74132	$45 p$	74199	90p
CMOS		4020	50p	4050	25p
		4022	50p	4060	80p
		4023	13p	4066	30p
		4024	40p	4068	13p
4001	13p	4025	13p	4069	13p
4002	13p	4026	90p	4070	13p
4007	13p	4027	28p	4071	13p
4009	30p	4028	45p	4072	13p
4011	13p	4029	50p	4081	13p
4012	13p	4040	55p	4093	360
4 C 13	28p	4041	55p	4510	60 p
4015	50p	4042	55p	4511	60 p
4016	28p	4043	50p	4518	65p
4017	47p	4046	90p	4520	60p
4018	55p	4049	25p	4528	60p
FULL DETAILS IN CATALOGUE!					

 $\begin{array}{lrllll}\text { 8pin } & 8 p & 18 p \text { pin } & 14 p & 24 \text { pin } & 18 p \\ 14 \text { pin } & 10 p & 20 \text { pin } & 160 & 28 \text { pin } & 22 p\end{array}$ 16 pin 11p 22pin 17p 40pin 32

PCBS

VEROBOARD

Size in. 25×1 2.5×3.75	0.1 in .	0.15in.	Vero	
	14p	$14 \mathrm{p}^{\prime}$	Cutter 80p.	
	45p	45p		
2.5×5	54 p	54p	Pin insertion tool 108p	
3.75×5	64p	64p		
3.75×17	205p	185p		
Single sided				
pins per 100	40p	40p		
Top quality fibre glass copper board. Single sided. Size $203 \times 95 \mathrm{~mm}$. 60p each.				
Five mixed	heets o	Alfac.	5p per pack.	

OPTO

LED's 0.125 in . 0.2 in each $100+$ $\begin{array}{lllrl}\text { Red } & \text { TIL209 } & \text { TIL220 } & \text { 9p } & 7.5 p \\ \text { Green } & \text { TIL211 }\end{array}$ $\begin{array}{lllll}\text { Green } & \text { TIL211 } & \text { TIL221 } & 13 p & 12 p \\ \text { Yellow } & \text { TIL213 } & \text { TIL223 } & 13 p & 12 p\end{array}$ Clips 3p
DISPLAYS

DL704	0.3 in CC	130 p	120 p
OL707	0.3 in CA	130 p	120 p
FND500	0.5 in CC	100 p	80 p

TRANSSTORS
 $\begin{array}{llll}1727 & 170 & 8 C Y 72 & \text { BD131 }\end{array}$ $\begin{array}{llllll}\text { AC127 } & 17 p & 8 D 131 & 35 p & 2 N 3053 & 18 p \\ \text { AC128 } & 16 \mathrm{p} & 80132 & 35 \mathrm{p} & 2 N 3054 & 50 \mathrm{p} \\ \mathrm{AC}\end{array}$ $\begin{array}{llllll}\mathrm{AC} 188 & 16 \mathrm{p} & 80132 & 35 \mathrm{p} & 2 \mathrm{~N} 3055 & 50 \mathrm{p} \\ \mathrm{AC} 176 & 18 \mathrm{p} & 80139 & 35 \mathrm{p} & 2 \mathrm{~N} 3442 & 135 \mathrm{p}\end{array}$ $\begin{array}{llllll}\text { AD161 } & 38 p & \text { BD140 } & 35 \mathrm{p} & 2 N 3702 & 8 p\end{array}$ $\begin{array}{rrrlll}\text { AD162 } & 38 \mathrm{p} & \text { BFY50 } & 15 \mathrm{p} & \text { 2N3703 } & 8 \\ \text { BC107 } & 8 \mathrm{p} & \text { BFY5i } & 15 \mathrm{p} & \text { 2N3704 } & 8\end{array}$

 Steverson

 Steverson Electronic Components

 Electronic Components} $\begin{array}{lrlll}\text { BC109 } & 8 \mathrm{p} & \text { MPSAO6 } & 20 \mathrm{p} & 2 \\ \text { BC109C } & 10 \mathrm{p} & \text { MPSA56 } & 20 \mathrm{p} & 2\end{array}$ $\begin{array}{lllllr}\text { 8C147 } & 7 p & \text { MPSA566 } & \text { 20p } & \text { 2N3708 } & \text { 8p } \\ \text { 8C1P29C } & 60 \mathrm{p} & \text { 2N3819 } & 15 \mathrm{p} \\ \text { BC148 } & 7 \mathrm{p} & \text { TIP30C } & 70 \mathrm{p} & 2 \text { 23320 } & \end{array}$
 $\begin{array}{llllll}8 C 177 & 14 p & \text { TIP31C } & 65 p & 2 N 3304 & 8 p \\ 8 C 178 & 14 p & \text { TIP32C } & 80 p & 2 N 3905 & 8 p\end{array}$ $\begin{array}{lllllr}\text { BC179 } & \text { 14p } & \text { TIP2955 } & 65 p & \text { 2N3906 } & 8 p \\ \text { BC182 } & \text { 10p } & \text { TIP3055 } & 55 p & \text { 2N4058 } & 12 p \\ \text { BC182L } & 10 p & \text { ZTX107 } & 14 p & \text { 2N5457 } & 32 p\end{array}$ $\begin{array}{llllll}\text { BC184 } & \text { 10p } & \text { ZTX108 } & 14 \mathrm{p} & \text { 2N5459 } & 32 \mathrm{p} \\ \text { BC184L } & 10 \mathrm{p} & \text { ZTX300 } & 16 \mathrm{p} & \text { 2N5777 } & 50 \mathrm{p}\end{array}$ BC212 10p $\begin{array}{ll}B C 212 L & 10 p \\ B C 214 & 10 p\end{array}$

DIODES

$\begin{array}{lll}\text { BC214L } & 10 \mathrm{p} & \\ \text { BC477 } & 13 \mathrm{p} & 1 \\ \text { BC478 } & 190 & 1\end{array}$
$\begin{array}{ll}\mathrm{BC} 478 \\ \mathrm{BC} 548 & 190\end{array}$
BCY70 14p
1N914 3p 1 N4006 $6 p$ 1N4001 4p 1N5401 13p 1 N4002 4p BZY88ser. 8p ITT Full sper product. 1N4148-£1.40/100. £11/1000

LTEAR		$\begin{aligned} & \text { LF356 } \\ & \text { LM301AN } \end{aligned}$		$\begin{aligned} & \text { NE531 } \\ & \text { NE555 } \end{aligned}$	98p
THIS IS ONLY		LM308	60p	NE556	60p
		LM318N	75p	NE567	100p
709	350	LM324	45p	RC4136	1000
741	16p	LM339	45	SN4800	
747	$45 p$	M379s	210p	TB	1000
748	30p	LM380	$75 p$	TDA102	620p
7106	850p	LM3900	50p	TL081	45p
7107	900p	LM3909	65p	TL084	125p
CA3046	55p	LM3911	100p	ZN414	80p
CA3080	70p	MC1458	32p	ZN425E	390p
CA3130	90p	MM57160	590p	ZN1034E	200p

CAPACITORS

TANTALUM BEAD
each
$0.1,0.15,0.22,0.33,0.47,0.68$,
8 p
4.7.6.8, 10uF@ 25 V $13 p$
$16 p$
MYLAR FILM
$0.001,0.01,0.022,0.033,0.047 \ldots 3 p$
POLYESTER
Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 \rho$
0.33, 0.47
0.68

CERAMIC
Plate type 50 V . Available in E 12 series from 0.047 HF . RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 V & 0.47 & 1.0 & 2.2 & 4.7 & 10\end{array}$ $5 p$
$7 p$

	100		22	33	47	$7 p$
			220		$13 p$	
25 V	10	22	33	47		20 p
	100				$5 p$	
	220		470	$8 p$		
			400			
				4000		

CONNECTORS

JACK PLUGS AND SOCKETS

	screened	unscreened	socket
2.5 mm	$9 p$	13 p	7 p
3.5 mm	$9 p$	14 p	$8 p$
Standard	96	$6 p$	30 p
Stereo	23 p	36 p	$15 p$
	$18 p$		

DIN PLUGS ANO SOCKETS

LOUDSPEAKERS

56 mm dia. 8 ohms. $70 \mathrm{p} \quad 64 \mathrm{~mm}$ dia. 64 ohms. 75 p 64 mm dia. 8 ohms. $75 \mathrm{p} \quad 70 \mathrm{~mm}$ dia. 8 ohms. 100 p Magnetic earpiece including 2.5 or 3.5 mm plug. 15 p each Crystal earpiece including 3.5 mm plug. 30 p each

TRANSFORMERS

All 240V Primary
$0-6,0-6 @ 0.5 A$ or $0-9.0-9 @ 0.4 A$. 175p
$0-12,0-12 @ 0.5 A$ or $0-15,0-15 @ 0.4 A \quad 235 p$
$0-9,0-9 @ 1.2 A$ or $0-12,0-12 @ 1 A$. 345p
$\begin{array}{ll}0-12-15-20-24-30 \mathrm{~V} @ 1.5 \mathrm{~A} . & 455 p \\ 0-20-25-33-40-50 \mathrm{~V} @ 1 \mathrm{~A} . & 455 \mathrm{p}\end{array}$
$0-20-25-33-40-50 \mathrm{~V} @ 2 \mathrm{~A}$. 585p
$0-20-25-33-40-50 V$ @ 3A. $715 p$
Miniature type
$6-0-6,9-0-9,12-0-12 @ 100 \mathrm{~mA}$.
95p

SOLDERING IRONS

ANTEX $\times 25$ (25 W) or ANTEX CX (17W) 390 p each Reel of solder (39.6M)

240p each

POTENTIOMETERS

Single gang Log or Lin $5 K-2 M 2$
28p each
Dual gang Log or Lin $5 K-2 M 2 \quad 80 p$ each

CONTROL KNOBS

Ideal for use on mixers etc. Push on type
with black base and marked position line. Cap
available in red, blue, green, grey, yellow and black. 14p

SWITCHES

Subminiature toggle. SPDT 70p. DPDT 80p.
Standard toggle. SPST 34p. DPDT 48p.

Slide switches (DPDT) miniature or standard $15 p$. Push to make switch. 15p. Push to break switch. 20p. Wavechange switches: $1 \mathrm{P} 12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W} .4 \mathrm{P} 3 \mathrm{~W}$. 43p

BOXES

Folded construction complete with screws
$3 \times 2 \times 1 \quad 52 p \quad 4 \times 3 \times 2 \quad 70 p \quad 6 \times 4 \times 3 \quad 95 p$
$4 \times 3 \times 2 \quad 64 p \quad 6 \times 4 \times 2 \quad 77 p \quad 8 \times 6 \times 2 \quad 125 p$
We now offer one of the widest ranges of components at the most competitive prices in the UK. See catalogue for full details. We welcome callers at our shop in College Road, Bromley, from Mon - Sat, 9am - 6pm (8pm on Weds. and Fridays). Special offers always available.

We also provide an express telephone order service. Orders received before 5 pm are shipped same day. Contact our sales office now with your requirements. Goods subject to availability.
TEL: 01-464 2951/5770
Quantity discounts on any mix TTL, CMOS 74LS and Linear circuits: $100+10 \%, 1000+$ 15%. Prices VAT inclusive. Please add 30 p for carriage. All prices valid to A pril 1980.
Official orders welcome.
ORDERS DESPATCHED
BY RETURN

POST

Lamp Dimmer

How to Triddlle Your Electricity Bills

If you're a BRIGHT spark, you will be able to astound your friends with your DIMness simply by building the HE DIMMER.

THE HE DIMMER IS a self-contained unit, fitting into a standard flush, wall-mounting light switch, which can easily replace your ordinary switch

The printed circuit board was designed so that it fits into an MK rocker type switch although with modifications it should fit any similar sized switch plate.

Design features of the circuit include preset RV1 to allow for component tolerances and individual preferences of light levels, radio frequency interference suppression and an on board fuse to protect the circuit should anything go wrong (and according to Murphy's Law it normally does). Otherwise the circuit is a fairly standard triac/diac power controller which can be used to dim up to 2 kilowatts of bulb power - a fair amount by any standards.

CONSTRUCTION

Fit the PCB to the switch plate (with the switch bits removed) first, before any parts are soldered on, as various holes have to be drilled for screws etc. and this is best done without obstruction

Once this has been done the parts can be inserted Make extra sure there are no solder bridges across the tracks.

The triac is the only polarised component which, of course, must be inserted correctly. If you obtain the same device as ours, the TRI 400-8, then it can simply be lined up the same way as in the overlay ie with the heat sink tab closest to the coil L1. If you can't obtain the same triac type, then virtually any type can be used as long as you fit the 3 connections G, MT1 and MT2 in the correct places.

Incidentally, the triac is rated at 8 amps , which is about 2 kW of power. At this rating a fair sized heat sink will be necessary, bolted to the triac. However, at bulb ratings up to 200 watts (adequate for house lighting) no heatsink is necessary

The coil L1 is not critical and therefore easily made by hand. To construct, Scramble, wind 100 turns of 32s.w.g. insulated copper wire around a $1 / 2$ inch diameter former as in figure 1 (we used the barrel of a pen which was about the right size). Put a spot of glue on the coil of wire and leave it to dry. When dry, slide the coil off the formér and fot it to thePCB. Remember to scrape off about half an inch of insulation with wire wool or emery cloth, so that a good soldered connection can be made.

The HE Dimmer in its wall mounting box. For safety we recommend using a plastic, flush mounting box.

When the unit is complete it only remains to fit it in the wall and adjust it as described in the section on setting up. Only two connections are necessary - the same two that connect to the back of the existing switch plate and its doesn't matter which way round they are. However, certain safety precautions must be adhered to. If your wall has a metal backing box behind the switch then make sure that nothing on the circuit board touches the box - it may even be necessary to remove it and insert a plastic box in its place.

The PCB has mains voltages on it and for this reason we advise that the board is to be either sprayed or painted with lacquer (nail varnish will do if you have any!???). This will give a degree of protection against shock - which can be fatal

SETTING UP

The setting up procedure is simply a matter of adjusting the preset RV1, with RV2 in the low position until the required level of light, in this position, is found. Some people might prefer the main control RV2, to vary from zero to full brightness, but it is probably better to adjust RV1 so that the bulb is just visibly on when the main control is at minimum. This means that it can be visually checked simply by the appearance of the bulb, whether or not the device is off.

Be very careful when adjusting RV1 - do NOT use a metal trimmer. Use a plastic one and keep your fingers clear of anything on the PCB whilst connected in circuit.

Fig. 1. Circuit diagram of the HE Dimmer, for details of the coil $L 1$ refer to the text and drawing.

How it Works

The heart of the project is the triac, which is simply an electronic switch which can be turned on by a small pulse of about 5 volts applied to its gate, G. The switch will stay on permanently, until the applied voltage becomes zero, which with mains A.C. occurs at the end of every half cycle, ie 100 times a second.

The triac is switched on every half cycle at a predetermined timeduring the wave. The triggeror gate pulse can be altered to occur between the beginning and end of each half cycle, the average length of time which the triac is on can be lengthened and shortened, thus altering the average amount of power applied to the bulb, therefore the brightness of the bulb.

The component which produces the trigger is diac D1. A diac only allows current through it when the voltage across it exceeds its triggering voltage (about 32 volts).

All that remains is to vary the position in the cycle when this triggering of the diac at 32 volts occurs. This is done with the RV1, RV2, C2 time delay circuit. Altering RV1 and RV2 alters the time constant of the circuit (ie the time it takes for the capacitor to charge up to the applied voltage) which alters the phase and therefore the point at which the diac triggers, with respect to the voltage applied to the bulb. Varying the potentiometers therefore, alters the average power applied to the bulb.

Because the voltage applied to the bulb is a bit spiky, radio frequency interference tends to occur and to suppress this, coil Ll and capacitor Cl are included.

NOTE
RV2 IS MOUNTED ON THE P.C.B. WITH ITS SPINDLE PROTRUDING. SOLDER LEADS ONTO THE TAGS OF
RV2 AND INTO THE BOARD.

Fig. 2. Overlay diagram for the HE Dimmer, note the position and orientation of the Diac and Triac, especially if using unspecified devices.

Buylines

The MK rocker type switch plate should be obtainable at any good electrical hardware stockist.

Make sure capacitor C1 is a 300 V AC type for greater), mixed-dielectric capacitors or polypropylene capacitors being normally the only varieties to be so All components should be readily available.

Fig. 3. PCB foil pattern for the Dimmer, take extra care if you make your own PCB to avoid any stray whiskers of copper creating short circuits, mains is dangerous stuff to play around with.

Front panel of the dimmer, experience has shown that a large knob is easier to adfust.

Inside the HE Dimmer, refer to the table for fuse ratings when using high wattage lamps, when adjusting the pot RV1 make sure you use an insulated screwdriver.

RESISTORS (All $1 / 4 \mathrm{~W}, 5 \%$)	
R1	3 Kg
R2	$47 R$

FUSE RATING	POWER OF BULBS
60 watts	$1 / 4 \mathrm{amp}$
100 watts	$1 / 2 \mathrm{amp}$
180 watts	1 amp
500 watts	2.5 amp
1 kW	5 amp
2 kW	10 amp

Fig. 4. Details of coil L1, try to keep the coil as neat as possible to avoid any short circuits.

Fin. x Fo. $\quad 4$ Elowtintis $=6$ Bym guriten:

NOVEMBER 78 (Hobbyprint A)

Projects: Stereo Amplifier, Digital Clock, Wah-Wah Pedal, Bedside Radio.
Features: The Edison Effect, Robots, Hi-Fi Specs, Kit Review, Transducers, Metal Locators etc.

DECEMBER 78 (Hobbyprint B)

Projects: Metronome, Photon Phone, Audio Mixer, Electronic Dice:
Features: Deep Space Communications, Understanding Bias, Lasers, Photocells, Calculators, The Tesla Controversy etc.

JANUARY 78 (Hobbyprint C)

Projects: Graphic Equaliser, Touch Switch, Vari-Wiper, Flash Trigger.
Features: BASIC programming, Viewdata, Starship Daedalus, Pinball Machines, erc.

FEBRUARY 79 (Hobbyprint D)

Projects: Short Wave Radio, Sine / Square Generator, Scratch / Rumble Filter, Car Alarm Project.
Features: Video Tape Recorders, Radioactivity, CA 3130 Circuits, Computer Glossary etc.

MARCH 79 (Hobbyprint E)

Projects: Light Chaser, Tone Controller, Photographic Timer, Cassanova's Candle
Features: TV Signals, Test Gear, SW Aerials, Interferring Waves, Communications Satellites, etc.

Shown here are all the past issues with their major features and projects. All are available (at the moment) for just 60 pence each, including post and packing. Send your order to:

Hobby Electronics Backnumbers Dept. 145 Charing Cross Road London, WVC2H OEE

Shown next to each issue is the relevent code letter to use when ordering Hobbyprints. (See Hobbyprints ad. elsewhere in this issue).

MAY 79 (Hobbyprint G)
Projects: Power Supply, Parking Meter Timer, Digibell, White Noise Effects
Features: Feedback, Electronic Music, AB Circuits, 555 Circuits, Aerial Tuners, Varicap Diodes etc.

JUNE 79 (Hobbyprint H)

Projects: GSR Monitor, Envelope Generator, Drill Speed Controller.
Features: Citizen Banned, Display Techniques, Moving Coil Meter, Electronics in Music Pt 2, etc.

JULY 79 (Hobbyprint I)
Projects: Shark, Baby Alarm, Point Controller, Linear Scale Ohmeter.
Features: Cassette Decks and Tapes, Binary Numbers, Fixed Resistors, Short Circuits Special, etc.

AUGUST 79 (Hobbyprint J)
Projects: Home Security System, LED Tachometer, Injector/Tracer, Constant Volume Amplifier.
Features: Security Installation, Variable Resistors, Tools, Satellite Power etc.

uty ulss
 ©ur

Electronics

ELECTRONIC GAMES

With one eye on Christmas we proudly present the HE review of electronic games. (We enjoy playing with them too). From the humblest hand-held to the most sophisticated video computer, the latest chess playing micros, they're all here next month.

HOME COMPUTING

Sorry about the distinct lack of Computing this month, not to worry though, our resident computer expert Pete Howells takes a personal look at the current computer scene, what it's all about, what's happening now and what we can expect in the very near future.

 COMPETITION

We hope we will be able to bring you the results of our August picture competition in next month's HE

MICROWAVE COOKING

What's all the fuss about? Chances are it's because most people don't understand Microwave cookers, they've never gained the wide acceptance they deserve in this country. Next month one of the countries leading authorities on microwaves looks at what makes them.tick, just how can a Chicken cook in 30 minutes, or a Hamburger in 5 ? Find out next month

AUDIO ANALOGUE
FREQUENCY METER

Some people seem to think that unless its got a digital its old-fashioned. We will proove them wrong with this beautifully designed piece of test equipment. The circuit is extremely simple to build yet will give a highly accurate readout of frequencies within the audio range.

If built and calibrated correctly this very useful piece of test equipment should prove to be invaluable for servicing, troubleshooting and experimental purposes. No need to guess anymore

HOBBYTUNE

We sat around for ages trying to think of a name for this musical project, nothing seemed to do it justice. See what you think about this stylus operated, miniature organ. We won't promise it'll turn you into a virtuoso overnight but we would be surprised if you're not playing tunes in just a couple of minutes. The HOBBYTUNE has many of the features found oninstruments costing three or four times as much to buy, a great project for the kids, it must be better than buying them a drum for Christmas.

MULTI OPTION SIREN

Yes folks, it's annoy the neighbours time again. Now you can plague them with a variety of different siren noises, yes before you ask, it will sound like an American police siren, but not only that, like a lot of other sirens too. Not recommended for people of a nervous disposition.

HE TANTRUM

We think the wait will be worthwhile, the Tantrum is a really superb piece of design work. We ve incorporated a facility for remote control. (coming up soon) so not only will you be able to enjoy your favourite music from the comfort of your amrchair you'll be able to control it as well. Again apologies for its absence this month, they do say it makes the heart grow fonder

The October issue will be on sale September 14th

[^0] we've got Bill Berkinshaw, one of the country's leading experts, to review the current radio control scene and some of the technology behind the latest equipment.

CONTROL OVER DISTANT EVENTS and activities has always been a source of fascination to mankind, many early weapons such as sling shots, bows and arrows and even the gun were manifestations of this phenomena. Couple this tendency with another natural trait of model making, or image creating and in psychologists terms radio control modelling is an absolute natural.

For many years the Leonardo da Vincis, Stephensons and Cayleys of this world have produced models to prove inventions, only to have to face the problems of operating them without damage and under a degree of control. Many early experiments in the field of aviation attempted to tether and thus control their creations with varying degrees of success. But thanks to modern electronic techniques a degree of precise controllability from a remote situation undreamt of even 20 years ago. is a reality for anyone with the interest, and to be fair, the finance to embrace it. Not that radio control of models or full size cars, aircraft or boats is anything like that new My father for instance held a licence to operate a spark transmitter for remote control of models in the early 1930's, and full size aircraft such as the D.H. Tiger Moth were flown düring WWII under radio control.

HOW DOES IT WORK?

A typical radio control system consists of a transmitter, receiver and a number of servos depending on the number of individual items to be operated. Generally the actuation of the controls is by a joystick, either single or dual axis, in the transmitter. Most modern equipment is

Many modellers now use support trays to operate their transmitters in. This transmitter is a four function type - two dual axis control sticks are fitted.

fREOUENCY MODULATION
fREOUNCY SHIT TED CARIIE A WAVE
iframe of information

[^1]described as '"proportional' that is to say a small control stick movement results in a small servo movement - a large control stick movement a large servo movement etc., the servo moving directly in sympathy with the control stick.

The electronics that make it all happen are not very highly sophisticated as modern electronics go, but nonetheless a great deal of careful design work has to go into the system in order that it should work reliably, be light in weight, and of course not cost too much. No electronic knowledge is necessary to operate radio control, only the ability to read instructions and plug in plugs. Most systems are described as Digital Proportional with encoding and de-coding of the signal largely carried out with computer type ICs. A typical transmitter would comprise of an encoding section where a clock generator eg 555 type IC clocks round the various potentiometers coupled to the control sticks. The output from this encoder is then fed, in the form of a chain of pulses of length varying between 1 and 2 ms (milliseconds) plus a larger synchronisation pulse, through a mixer stage and the resulting modulated RF signal fed through various filters to the transmitter aerial.

The RF modulation can be of two basic types, Amplitude or Frequency. Many manufacturers are currently changing over from AM to FM systems for as far as Radio Control is concerned the Frequency Modulation systems tend to exhibit better interference rejection characteristics. This is particularly important at present for the high sunspot activity level, and high illegal CB activity level, are combining to make interference a very real problem for 27 MHz radio control operation. Transmitters are all crystal controlled, most have a plug-in crystal facility, the modellers have an agreed list of 'spot' frequencies within the allocated 27 MHz band. Most modern systems will operate quite happily on 25 KHz channel spacing, many of the latest systems will operate on 10 KHz channel spacing. Normally though 12 spot frequencies only are used ranging from $26.960-27.280 \mathrm{MHz}$.

AM OR FM?

The amplitude modulation systems are very simply 'switched carrier wave' transmitters - the carrier-wave being switched on and off in pulses of varying length as dictated by the control stick positions (see Fig. 1) of course for a fair proportion of the time there is no transmission at all and during this time the Automatic Gain Control of the receiver (AGC) tends to open right up and even with correctly damped AGC the receiver is still wide open to any spurious signals around.

An identical means of encoding is used for the Frequency Modulated system but as there is no 'off' time in the data transmission the receiver is at no time 'open' for interference. Modulation is achieved quite simply by employing a capacitatively coupled crystal with a Varicap diode in series, and as the voltage across the varicap is altered the crystal frequency is swung. A deviation of around 1.5 KHz is sufficient and more would not really be desirable as the available bandwidth as specified earlier is only in the order of 10 KHz and allowance has to be made for unwanted sideband transmissions when settling on any deviation level as of course sideband deviates just as much as the centre frequency.

Comparatively simple filtering of the RF output is

A typical G.R.P. hulled R/C speedboat - this example powered by a 10cc engine. Radio control is limited to throttle and steering. Note the water cooling pipes in the engine compartment.

Helicopters are the most complicated of all R/C mode/s. Controls are throttle, collective pitch, main rotor, cyclic pitch (for steering) fore and aft and sideways, and tail rotor pitch. A centrifugal clutch is used between engine and rotors.

This superb scale model of the WWII 'Wirraway' was built and flown by twice National Champion David Vaughan. Note the fire extinguisher and detailed instrument panel - and it flies well tool

Another of David Vaughan's superb models - this one the P51B.

Futaba 6 channel FM receiver/decoder. Employs 'transistor radio type ICs and filter. Decoder chip is the one nearest the output block connector on the right of the photograph. Note the plug-in crystal bottom left of the PC board.

Futaba 6 function FM transmitter. Encoding section is a train of 'half shots' in this case on the section of board nearest the case body. The keen eyed will perhaps spot the varicap diode adjacent to the crystal and the trimmer for adjusting centre frequency. The length of screened cable would normally connect to the aerial and has been removed for photographic purposes.
used, mainly concentrating on removing 13.5 MHz (fundamental frequency of crystal) and 54 MHz (second harmonic) components, but care has to be taken in design for the systems are frequently used with mismatched ie retracted aerials etc. for not all modellers. indeed very few are electronics experts

RECEIVERS

Radio control receivers are comparatively simple, not because sophistication is undesirable, but because use of the equipment in models demands that it be light in weight and small in size. Typical radio control receivers weigh in the region of 1.5 ozs and around 2 in square and $5 / 8$ in deep. In common with the transmitter, plug-in crystals for easy channel changing are featured. Design follows conventional superhet procedure with double tuned front end, oscillator mixer stage, IF strip, 'amplification stage then the decoder. Usually this is of CMOS type as any saving in current consumption is worthwhile, and the very low current levels in CMOS ICs represent a very big saving. Discrete component or even TTL logic decoders are now virtually unheard of; 4000 series CMOS types are the norm.

The decoder outputs are fed to a series of servos, these are electro-mechanical devices which receive pulses in turn from the decoder which are images of the pulses encoded by the transmitter. A reference pulse is produced by the servo amplifier which is com pared with the pulse received from the decoder. If a difference, either positive or negative is detected then the servo motor is turned on driving the control surface and a feed back potentiometer until the reference pulse, altered by the feedback potentiometer, and the decoded output pulse are equal, whereupon the servo stops. Information updates afe fed to the servos from the decoder at the rate of approximately 30 times per second.

Overall accuracy of the system is highly dependent on servo design, not least on the accuracy of the servo feedback potentiometer where much detailed design work has been done to improve upon the resolution and linearity of the servo. Latest of these developments is the use of 'geared-up' feed back potentiometers as use of a larger portion of pot track tends to minimise the effect of minor deviations in resistance from point to point along the track. Of course, similar problems are present right at the very beginning of the chain, at the control stick itself, where potentiometers are also used. It is fair to say that the majority of failures and problems in radio control equipment occur in the electro-mechanical area rather than the electronic.

POWER

Power for both transmitter and receiver can be either from dry cells (alkaline type preferred) or from rechargeable Nickel Cadium cells. The latter are by far the most suitable as they are able to cope with occassional high current requirements, have greater capacity and can of course be re-charged indefinitely. From the economic viewpoint alone Ni -Cads are much to be preferred for if any regular use of the equipment is anticipated, continual replacement costs of dry-cells will soon outweight the cost of Ni-Cads. Transmitter operating voltage varies from make to make but is usually 9.6 volts sometimes 12 V . (either 8 or $10,12 \mathrm{~V}$ Ni Cads). Receiver/servo voltage is almost universally

Radio Control World

4.8 volts (4×1.2 volt Ni-Cads). Cell capacity is usually 500 mAh (milliamp per hour) providing a system operating time of 3-4 hours.

HOW FAR, HOW HIGH?

IT is fair to say that all modern R / C equipment has more operating range than the normal operator will ever need. The Home Office regulations governing the licensing of R/C transmitters restrict output to a maximum of 1 watt, a level which few transmitters genuinely achieve. This output level is sufficient for the modeller to be able to control his model as far away or as high up as he can see it. It is obvious that if you can't see it, you can't control it, therefore providing the range is sufficient for control of the largest model at the limits of visual range, then all is well; usually about $3 / 4$ mile is the maximum needed.

Range is of course not just dependent on transmitter output but also on receiver sensitivity, which despite the incorporation of good AGC is itself a compromise between overloading at close ranges and lack of sensitivity at extreme ranges. A low output transmitter coupled to a very sensitive and selective receiver is perhaps the optimum but receiver electronics come expensive so the reverse situation is more commonplace. FM systems do score in this respect as they do not employ AGC instead a limiting device is employed and the receiver is able to be much more sensitive without fear of swamping when operated close to the transmitter.

WHAT CAN BE DONE WITH IT?

Fly, drive, sail or just open your garage door from a distance - there is really no limit to the range of models or devices that can be operated by radio control. Take advantage of the precision and reliability to control superb working replicas of full size aircraft or boats or concentrate on the more sporting side of R/C activities. All over the country every weekend competitions are held for aircraft boats and cars ranging from the concours D'Elegance type to thrilling racing with high speed models. Most users are however purely interested in the dual relaxations of building and operating models. Few are interested in the technical details of the circuitry of their equipment but simply take advantage of the 'plug it together, switch on and use' aspect. Very few ever attempt any sort of servicing and tuning, particularly those who use the equipment in model aircraft, preferring to use the qualified expertise of service agents.

Faults are rare in modern equipment, and if they do occur, are usually as a result of the environment in which the equipment is used. High frequency vibration from high revving two stroke engines, shocks from heavy landings and collisions, moisture from boat use, dirt, are all hazards which the equipment withstands with remarkable reliability. Few uninitiated electronics enthusiasts appreciate the high level of performance that R/C aircraft modellers in particular demand. Most of the models in which the equipment is installed are worth several hundreds of pounds and a momentary malfunction, a click or hiss as heard over a hi-fi loud-speaker can spell total disaster to the R/C aircraft modeller whose model may be flying at less than 10 ft above the ground at speeds of up to 150 mph , yet the owner of the equipment will expect 100% reliability for several years of life under the arduous conditions already described.

Servo internals; motor and amplifier are fairly obvious - the feedback potentiometer is coupled to the amplifier via short flyfeads and is integral with the lower gear frame. Typical output levers are arraved in foreground. Case top is removed in right-hand servo.

Radio controlled yachts are a relaxing aspect of R I C modelling, that in the foreground is sailed by Jack Barnard and the other by author Bill Berkinshaw.

Typical good quality 6 function system with a comprehensive array of accessories including mains voltage charger for receiver and transmitter batteries, alternative capacity receiver batteries and alternative frequency crystal pairs.

Installation of servos in a typical R/C aircraft. These operate rudderlsteerable nose wheel, retractable nose wheel, elevator, and throttle. The main wheel retract servo and aileron servo are mounted in the detachable wing. Switch and foam packed receiver and battery pack are to the right of the servos.

John Ralph, of the North Berks Model Club, launches a thermal soaring glider. The model is towed aloft, as are full size gliders by a line, and then after release float around seeking thermal upcurrents to extend their duration.
V. Nordigen about to lift the hat from a stake with a Jet Ranger helicopter. Expert pilots can guide models such as this with almost uncanny precision.

FUNCTIONS

For model control at its simplest 2 function equipment is the usual. Aircraft can be flown, cars driven or boats floated with only a steering control but few modellers use less than 2 controls. A simple aircraft can be operated by a steering control (either a rudder or ailerons on the wing) and elevators. Some modellers use an engine throttle to control height gain or loss. Cars normally do not need more than two controls, steering and combined throttle and brake (a centrifugal clutch is generally employed). Boats use steering and throttle controls. More complicated aircraft can use a basic four function system, elevators, ailerons, rudder and throttle, plus such items as retractable undercarriage, flaps brakes, bomb dropping etc. Servos are either of a rotary type output or linear and are coupled up to the various controls by simple wire pushrods and a variety of commercially available plastic horns, cranks etc.

Operating a model by R/C is not anything like as easy as it appears. It is generally fair to say that if the job is difficult to do directly, that is to say 'sitting in it', then to do it remotely by R/C is doubly difficult. The 'Seat of the pants' feel is removed and that otherwise remarkable instrument the human eye is really not very precise at all when it comes to accurately judging distance or altitudes, particularly when the model can be up to half a mile away. It is fairly safe to attempt to drive a car or boat unaided, provided neither are too fast and space is large enough, but to attempt to fly an R/C aircraft without expert help at hand is almost certain to end in disaster. The newcomer to R/C flying will almost certainly not only have his own inexperience to hamper him, but also an untried model and a new engine as well. Most hobby

Radio Control World

dealers are able to introduce prospective R / C modellers to like minded enthusiasts in their area.

BUILD YOUR OWN

Home built R/C equipment only accounts for a very small percentage of that in use, largely because the R/C modeller is interested in the flying, driving or boating more than in the building, and also not many have the confidence in their own ability to risk a valuable model to what in their minds might be equipment of dubious reliability. Their fears are to a certain extent unfounded, for there are excellent kits available and just recently excellent designs published. Electronics Today International have recently published details of an AM system whilst Radio Control Models and Electronics have published an FM system. Both publications are experienced in publishing articles of this type and both are almost guaranteed fool-proof provided the instructions are strictly adhered to. Of course the big attraction is the amount of money to be saved which can be quite, considerable - possibly up to 50%.

Beware of designing your own equipment, I will accept that most people confident enough to embark on a self design project will probably end up with a system that works but at what cost to fellow modellers'. Badly aligned and poorly designed filter networks on transmitters may not affect your model but what of the other users of the R/C frequency allocations? I would suggest that a minimum of test equipment for the home R/C designer would be a spectrum analyser, digital counter. and oscilloscope in order that the transmitter can be adequately checked for sideband emissions.

TRY IT YOURSELF

There are now some 70.000 plus licensed users of Radio Control equipment in the UK all participating in a immensely satisfying and creative hobby. There are a host of model clubs in all areas of the country where any would-be members will receive a warm welcome. If you are interested in seeing R/C models in action either visit your local model shops and enquire. /look in the yellow pages) or write to one of the national governing bodies for details of nearest local clubs. Do enclose a SAE to those societies though, and don't forget that a licence is needed. This can be obtained by anyone - no age limits or test, from the Home Office Radio Regulations Department, Waterloo Bridge House, Waterloo Road, London SE1. The cost is $£ 2.80$ for 5 years so it cannot be described as expensive

SMAE (Society of Model Aeronautical Engineers), General Secretary, Kimberley House,
 Vaughan Way.
 Leicester.

MPBA (Model Power Boat Association),
The Secretary.
19 Lea Walk.
Harpenden, Hert s.
BRCA (British Radio Car Association),
The Secretary,
7 The Green,
Werriston,
Peterborough.

Bill Drury adjusts the engine prior to the start of a 10 lap pylon race. Four models similar to the one shown race for 10 laps around a triangular course at speeds approaching $150 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

A semi-scale VC10 being demonstrated during a model airshow at Woodvale, Lancs. This model is powered by two internal combustion engines in place of the four gas turbines of the original.

Past British R/C aerobatic champion and World Champs Team Member Mick Birch starts up the engine in his own design Capricorn model prior to a flight at the British National Champs.

TEE SHIRTS

We won't guarantee HE Tee-Shirts will make your soldering any better, we won't even claim it will make your projects work first time. What we will say is that it will protect your body from harmful Ultra-Violet radiation from the sun, embarrassing Tomato Ketchup stains on your hairy chest and overweight wallets (if bought as directed in sufficient quantity).

Yes folks, for iust $\mathbf{£ 2}$ all inclusive you can be the first kid on your block to own a brand new HE Tee-Shirt. If you buy more than one your torso need never be left unprotected whilst your other one is in the wash.

Send your cheque, PO or anything negotiable to:
HETEE
SHIRTS, 145
Charing Cross
Rd, London
WC2H OEE.

 IC AUDIO AMPS witr pris JC126WE2.08. JC2 © 5.14.

THE TROUBLE WTH SHESE MINI COMPKEES IS THAT THEY DON'T GIVE YOU MUCH ROM रO MANOEUVRE!!

Ultrasonic Switch

Repel insects, upset small furry animals and confuse your cat with HE's Ultraswitch.

INVISIBLE RAYS have always exerted a considerable fascination on man down the ages. Isaac Newton watched apples falling under their influence and Uri Geller bent spoons with them (or did he?)

This project falls somewhere between these two extremes of the sublime and the ridiculous. It uses ultrasound; a high frequency sound, well above the range of human hearing to control a relay. By selecting a suitable type you can control your TV. Hi-Fi or bedside light at the touch of a button or as you will see later, with a snap of the fingers.

NOISE ANNOYS

The unit is silent in operation. As the ultrasonic carrier beam consists of very high frequency (40 kHz) waves, special transducers have to be used as ordinary microphones and loudspeakers are very inefficient at this frequency. These transducers are just like crystal microphones and earphones except that they are designed to be resonant, ie very sensitive at a particular frequency. The receiver and transmitter units have different characteristics and best results will be obtained

Completed units make an attractive and efficient pair.

nate a reference provided by R7，R8 and controls the
 CMOS oscillator driving the transducè via two tō produce a degree of hysterisis and speed up the complementary buffer stages．R2 and RV1 transition time．
together comprise the timing resistance and C1 is The output of ICl clocks IC2．This is a JK flip－flop whose output toggles，ie changes state with each clock pulse．The bistable is disabled for a period determined by R10， 6 the output of the bistable appears at pin operation．The output of the bistable appears at pin
14 of IC2 and controls super－alpha－pair Q3，Q4
which drive the relay．R12，ZD1 and Cl provide a smooth，stabilised power supply for the amplifier and CMOS circuitry whilst $C 7$ is the main power

 R1
470 k
Fig．2．circuit diagram of the ultra transmitter．

\rightarrow ：
Transmitter
the timing capacitor．

Receiver

 coupled amplifier and appears at Q2 collector．C3 is a decoupling capacitor to suppress spurious RF
oscillation．The amplified signal charges $\mathbf{C} 5$ via $\mathbf{C} 4$ ，
the correct device is used in each application．
They are usually identified with a suffix＇R＇for receiver or＇T＇for transmitter marked on the case． ayt uo łualxa ue of puədap II！M pautelqo abuey
 considerably affected by the conditions under which the unit is operated．Ultrasonic waves are quite directional pue sןem ax！！səoefns piey moıf peounoq aq ueo pue

24 TUNE DOOR CHIMES

OODR TUNES E16.4 + VAT

Waddinglon's Videompaster announce a doorbell that daesn go Brringgg. Ding Oong or Bumm. - Instead it plays 24 different classical and popular tunes. It will play the tune you select for your mood, the sesson or the vistros you are expecting to call. Door tunes is not only great fun and a wonderful ice breaker, bur is alsce very functuenally and beautitully designed to enhance your home. There is something for Chnstrias, something for your contineminal
visiors or your relations from the states, and even vistors or your relations from the states, and even
ssmething for the Queen. Door tunes is easy to install and has separate controis for volume, tone and rempo.

T.V. GAMES

PROCRAMMABLE E29.50 + VAT
 COLOUR CARTRIOGE T.V. GAME.

The TV game can be compared to on audin cassette deck and is programmed to play a multizude of ditferent games in COLOUR, using various plug-1n carridges. At long last a TV game is avadable which will keep pace with improving rechnolegy by allowing you to extend your library of games with the purchase of additional cantidges as new games are developed. Each cantridge contains up to ten different action games and the first canridge comaining ten sports games is inchuded free with the console. Other cartridges are curtently available to enable you to play such games as Further canrioges are to be released and Stint Rider. Further carridges are to be released later this year,
induding Tank Batrle. Hurn the Sub and Target. The console comes comptere with iwn removable ioyssick console comes comptele with iwn removable pyssick
player controls to enabie you io move in a\#t lour drections player conntrols to enabie you to move in att lour drections
lup downtrightleft and built ino these poystick controls are ball serve and target fire butions. Othel teatures include severat difficulty option swiches, automatic on screen dignal scoring and cotour coding an scares and balls. Lifelike sounds are transmited through the IV's speaker, simulaung the actuai gane being played. Manulactured by Waddington's Videomaster and guaranseed for one vear.

CHESS COMPUTERS

STAR CHESS - £55.09 + VAT
PLAY CHESS AGAiNST YOUR PARTNER.
using your own TV to display the board and pieces. Slat Chess is a new absorting game for two players, whuch will mierest and excie all ages. The unit plugs into the aenal socket of your TV set and displays the board and pieces in full colour lor black and whitel on your TV screen. Based on the moves of chess It adds even more excitement and interest to the game. for those who have never played, Star Chess is a novel introduction to the classic game of chess, For the experienced chess player, there are whote new dimensions of unpredictabitry and chance added to the strategy of the game. Not only can preces be taken in conventional chess tyoe moves, but each piece can also exhange rocker hre with is opponents. The unit comies conpleve with a iree iav mais

CHESS CHALLENGER $7-$ £85 $_{5} .65$ + VAT. PLAY CHESS AGAINST THE COMPUTEA.
The styish, compact, poriable console can be set to play at seven different levels of ability from beginner to expent incluging "Mate in two" and "Chess by mad". The computes
will puly nake 'esponses which obey ifternational chess rules. Casting, on passant, and promoting a pawn are al inctuded as parn of the computer's pragramme. It is possibile to enter any given problem trom magazines or newspapers or aternatively establish your awn board position and watch the compuier react. The postions of all pleces can be verified by using the computor memory recall tulton.
Price includes unit with word gramed housing, and
Sint Staunton design chess pieces. Computer plays black or white and aganst iself and comes complete with a mans ataptur and 12 nionths guarantee
OTHER CHESS COMPUTEAS IN OUR RANGE INCLUOE CHESS CHAMPION - 6 LEVELS f 82.87 + VAT CHESS CHALIENGER - 10 LEVELS - £143.06
BORIS - MULTTLEVEL TALKING OISPLAY $£ 165.28$

getra carthioge

ROAD RACE -58.87 + VAT Grand Pix motor racing with gear changes, crish noises SUPER WIPEOUT - £9.17 + VAT. 10 different games of biasting obstacles off the screen. STUNT RIDER - $£ 12.16+$ VAT Motorcyde speed trials, jumping obslacles, leaping various rows of up to 24 buses
NON. PHOGRAMMABLE TV GAMES
Game - COLOURSCORE II - $\mathbf{f 1 3 5 0}+$ VAT. 10 Game COLOUR SPORTSWORLD $£ 22.50+$ VAT.

RA CARTRIDGE

different games

ELECTRONIC CHESS BOARO TUTOR $£ 19.75$ inc. VAT A special bulk purchase of these amazing chess teaching mactines enables us to offer them at only 199.75 less than half recommended retail price. The electronic chess turor is a simple battery operated machine that can actually teach anyone to play chess and improve their game nght up to chanipronship leve. This machme is nor only for loral beginners bur also lor estadished players wanning to play 32 chess nieces a 54 page emptoroto hootlot ant a set or 32 progressive prociamme cards inctuding 6 beginers cards. 16 check mate postrions. 9 miniarura games, 5 openings. 3 ent games, 28 chess problems and ? master openings
games.

DRAUGHTS COMPUTERS

CHECKER CHALLENGER 2 LEVELS E43 38 + VAT The draughtis compurer enables you to sharpen your skillis. improve your game, and play whenever you wan The compurer incorporates a sophisticated, rehabie, decistonthinking ablity enables it to rescond with its best counte! moves like a skilled human opponent You can select offence of detence and change nazuing difficuly levels at any umie. Postrions can be venfied by compurer nientory recall. Machine does not permat llegal moves and can solve ser problems. Compurer romes complete with instructions. mains adapalor and I welve months, ouarantee

FOR FREE BROCHURES - SEND S.A.E

For FREE illusirated brochures and reviews on TV and chess games please send a staniped autressed envetope, and stare
Callers welcome at our shop in Welling - demunstratuns daily - open from 9 am. 5.3 upm Mon Sal 19 am Ipmi Wedl.
o order by te ephone please quute your nanie, address and Access Barclaycard numiter Poslage and Packing FREI
AJD DIRECT SUPPLIES LIMITED, Dept. HE9, 102 Bellegrave Road, Welling, Kent DA16 30D. Tel: 01.3039145 (Dayl 01-850 8652 IEvenings)

SPECIALS FROM MODMAGS

Mark your envelopes Specials, and send them to Specials, Modmags Ltd, 145 Charing Cross Road London, WC2H OEE

ETI CIRCUITS

Books 1 \& 2
Each volume contains over 150 circults, mainly drawn from the best of our Tech-Tips. The circuits are is included rapid selection and an additional section is included which gives transistor specs, and plenty of phenomenul data. Sales of this pubication have been cost under It each!
$£ 1.50+25 p$ P\&P each.

ELECTRONICS TOMORROW

Comprised entirely of new material, the edition Comprised entirely of new material, the edition covers such diverse topics as Star Wars and Hi-Fi!
The magazine contains profects for everyone - none of which have appeared in ETI - and a look at the future of MPUs, audio, calculators and video. How can you not read it?

TOP PROJECTS
Book $1+2: £ 2.50+25 p$ P \& P.
Master mixer, 100 W guitar amp., low power laser, printmeter, transistor tester, mixer preamp, logic electronic ignition, car theft alarm turn indicator cancellor, brake light warning. LM3800 circuits, temperature alarm, zerial matcher, UHF-TV preamp metal locator, four input mixer, IC power supply, rumble filter, IC tester, ignition timing light, 50 W stereo amp. and many more.
Book 3: SOLD OUT! Book 4: $£ 1.00+25 p$ P\&P. Book 5: $£ 1.00+25$ p P\&P. Book 6: £1.00 + 25p P\&P.
$75 p+25 p P \& P$

TOP PROJECTS
Book 7: $£ 1.25+25 p$ P\&P.
ER II loudspeaker, CCD phaser, 3-channel tone control, bass enhancer, continuity tester, bench meter, wide range oscillator ETI wet egg timer house alarm, porch light, torch finder, light dimmer, 18 metal locater, electronic bongos, puzzle of the drunken sailor, race track, ultrasonic switch, tic-tac radio, rev counter, Transcendent 2000, spirit level.

INTO ELECTRONICS PLUS
The complete series of Ian SInclair's series Into Electronics Plus a selection of some of the most popular and informative articles from HE. Everything
from Home Computing to making your own PCBs. from Home Computing to making your own PCBs. $E 1+25 p \mathrm{P} \& \mathrm{P}$.

Electronic Somonds
 Timekeeping

If you want to know the time ask a policeman. That may not be such a bad idea these days, especially if his little radio is capable of picking up the time code from Rugby. The ever punctual Rick Maybury looks at atoms that tick phones that tock and watches that don't make any noise at all.

IT HAS ALWAYS BEEN EASY to tell the time, even if you haven't got a clock or watch you could probably guess to within half an hour. Even before the development of reliable mechanical timepieces, the sundial, sand clock, water clock or even a slow burning candle could indicate the time to the nearest minute. Probably the single most important invention in timekeeping was the pendulum in 1582, it enabled time to be measured to the second.

After that things remained fairly static for the next couple of hundred years. Mechanical escapements improved over the years to such a degree that fractions of a second, as little as 100 th of a second, could be accurately measured. Very little new technology came into the field of timekeeping until along came our old friend electricity, then it all began to happen.

Electronic Timekeeping, Hobby Electronics style, these are just some of the examples of electronic timekeeping availahle from our Marketplace special offers. The HE Digital Clock was featured as a project in our very first issue in November '78.

TIME ON TAP

At first electricity just replaced mechanical energy in electric clocks, until some bsight spark in 1918 discovered that an AC electric motor could be synchronised (synchronous motor) to the frequency of the mains. It didn't take long for the electricity board to latch on to this and ensure that over a 24 -hour period their generators maintained an average frequency. A clock locked to mains frequency could be compared with a known standard and any losses or gains by the mains-linked clock could be compensated for by slowing down or speeding up the generators. This system of using a central oscillator was the forerunner of today's central standard clock operated by the National Physical Laboratory.

Divider chain for decoding the mains 50 Mz into a 1 Hz output, the 1 Hz is then used to drive a further chain (see page 54) which will generate the various hours, minutes, seconds and calendar outputs.

ATOMIC TICK TOCK

The NPL clock and all standard clocks around the world are based on Atomic Time (AT). There are two main methods of deriving atomic time, they are both based on the natural vibrations of certain materials. These vibrations or Atomic Resonance happens to be one of natures invariables, rather like the speed of light, it is a fixed constant.

Atomic clocks. The upper one is a laboratory standard Cesium Beam Frequency Reference, a time output is displayed on the right. The lower one is a portable version of the Cesium Beam clock intended for experimental use, the freedom from mains electricity enables the clock to operate safely even during power cuts.

The oldest and most accurate type of atomic clock is the Cesium Atomic Beam Controlled Oscillator, quite a mouthful for a really quite simple device. (No we won't be featuring one as a project in HE, it's not that simple). The 'clock' is based upon a quartz oscillator, usually running at 5 MHz . This is multiplied up, to the resonant frequency of Cesium. This is a good point to do a bit of defining:
A second is defined as: The duration of 9,192,631,771 periods of transition within the Cesium atom.

So to put it crudely the 5 MHz is bumped up to around 9192 MHz and fed to a microwave cavity full of Cesium vapour. The Cesium will of coùrse resonate at only that frequency. Any disparity between the quartz oscillator and the resonating Cesium will generate a difference signal that can be 'fedback' to the crystal oscillator. A frequency lock circuit keeps the crystal oscillator running at the same frequency as the vibrating cesium atoms. In practice the output from this now very stable oscillator is divided down to a usable frequency. usually 1 MHz and 100 kHz so further manipulation will provide an output suitable for timekeeping.

Inside an Atomic Clock, the cylinder in the middle, on the left-hand side is the actual gas cell, the control circuitry and quartz oscillators can be seen at the top, again on the left.

The second main type of Atomic clock is the Rubidium Gas Cell Controlled Oscillator. To cut a very long story short, the Rubidium clock operates in a very similar manner to the Cesium clock. Suffice it to say that it is not quite as accurate in the long term as the Cesium clock, variables like the pressure of the Rubidium vapour and the 'buffer gas' that has to be mixed with the Rubidium vapour can affect its overall stability. (We are still talking about a second in a thousand years, but who's quibbling, its doubtful if anyone is going to be around that long to complain).

Of the two main types of Atomic Clock the Cesium clock is referred to as a 'Primary Standard,' that simply means they cannot be calibrated because other than other Cesium clocks there's nothing accurate enough! The Rubidium clock because of its slight deficiencies is relegated to the Secondary Standard league.

It's interesting to note that the United States national standard clock consists of no less than a dozen Cesium clocks all checking one another. Our own British Standard clock is operated by the National Physical Laboratory and a comprehensive time signal is transmitted via radio from their Rugby laboratories.

IT'S NOT CRICKET

The Rugby clock is designated the call sign MSF and is transmitted on 60 KHz at around 50 kW RF power. It can be heard on a specialised receiver throughout most of western Europe. The actual signal transmitted consists of three 'codes', the first two are designated; Fast Code and DUTI. The third code is a Slow Code using UTC or Co-ordinated Universal Time, (probably French if its back to front). The difference between the two can be about one second. UTC is based on the solar cycle, (the same as GMT and BST), as the earth does not rotate on its axis or around the Sun at constant speed its necessary to introduce a 'leap second' every now and again. Strangely enougn this was only noticed when the Atomic Clock was developed. The first two codes are based on Atomic Time, the code DUTI stands for Difference between Universal Time and is a slow version of the Fast Code. (Confusing isn't it?)

The Fast Code is transmitted during the first second of each minute and consists of about 30 bits of BCD. (Binary Coded Decimal) information giving the Hour, Minute, and Day and Date. The DUTI signal is transmitted between the first and 16 th second (Hence Slow Code) and contains all the information of the Fast Code, except at a slower rate. The 17 th second is set aside for a control bit to indicate whether or not a 'Leap Second' need be inserted. The final segment from the 17 th to the 59 th second is full of BCD information for the UTC time.

[^2]Special receivers can decode this information directly into a time readout. In practice though a receiver will only decode one of the three codes. Being a radio signal
it is freely available to anyone wanting to know the right time, and we mean the right time. Recent Cesium clocks are quoted as having an accuracy of not less than one second in 5,000 years.

A typical MSF receiver, this one operates on one of the 'slow codes', as you can see the controls are kept to a minimum. We wonder how long it will be before a domestic version is on sale.

TIM AND TELETEXT

Both TIM (the Post Office speaking clock) and the BBC (Ceefax) and IBA (Oracle) Teletext services are linked to the Rugby MSF time signal.

TIM is a pre-recorded (in 1963 would you believe) on to a rubber tape (mixed with Iron Oxide particles you fool). The rubber tape or 'tyre' is fitted over a spinning brass drum. The 'tape' is split into 79 tracks containing all the well known phrases. Track number one has the 'At the third stroke it will be . . .' phrase. Tracks 2 to 12 have the hour phrases, '. . o'clock'. The next 60 tracks have the minutes, 'one to fifty nine', and the final six tracks have the ten second intervals and the famous 'precisely'. In all there are 12 replay heads scanning the 'tape, they are not actually in physical contact with the tape to avoid wear.

Mr and Miss T/M, the lady is Miss Pat Simmons who gets something like 430 million phone calls a year; we're told she even phones herself every morning to check the time. Pat retired in 1976 but her original recording made in 1963 will continue for many vears to come. The recording actually took over two weeks to record, we're not surprised.

Electronic Timekeeping

There are four main speaking clocks in the British Isles, one in constant use (plus one for backup and checking) in London and a further two in Liverpool.

The accuracy of TIM is checked against MSF Rugby and any variation is compensated for by 'advance and Retard' circuits that regulate the speed of the spinning drum. TIM is accurate to within 2 mS (milliseconds) in any one second and an average of 6 mS in any 24-hour period, not bad for 2 pence.

TELLY TIME

Both the major Teletext services, Ceefax and Oracle are now linked to MSF via their computers. The Ceefax clock (transmitted on the top of every teletext page) is accurate to within $1 / 50$ th of a second. The Oracle (also on the top of every page), clock has at the time of writing only just been connected to MSF so figures are not available but we would suspect its accuracy to be similar to Ceefax.

CEEFAX, the clock can be seen on the 'header' on the left-hand side. CEEFAX and ORACLE are both linked to the MSF clock at Rugby so should be accurate to within one-fiftieth of a second.

PERSONAL TIME

All the timepieces discussed so far rely upon a central source of reference, either the Atomic Standard, the mains frequency or even the Sun in the case of a sundial. When time keeping gets to a portable level, ie a wristwatch it becomes necessary to carry around your own reference. At the moment its a little impractal to carry a Cesium beam oscillator on your wrist so our old friend the Quartz crystal oscillator has to suffice. A few years ago, 1960 to be precise (pun intended), the first electronic wristwatch from Bulova actually contained an electronically driven tuning fork. This was mechanically connected via a ratchet wheel to the hands. In its day it was as good if not better than most mechanical chronometers, the manufacturers even gave a written guarantee confirming it to be accurate to within a second per month. Many so-called electronic 'chronographs' of today are hard pressed to better that. Unfortunately, the watch for all its ingenuity still relied on moving parts to operate, and eventually they would wear out.

Back to the present. Today's LCD, LED and now Lithium digital watches all have one thing in common, a quartz oscillator. Up until quite recently they all worked at 32.768 kHZ , this strange figure is actually deliberate because it is easily divided with modern digital ICs to a usable 1 Hz . Lately though, higher frequencies of 2.09 and 4 MHz have begun to gain wider acceptance because a higher frequency leads ultimately to greater

Divider chain found most modern digital watches, the three frequencies are the most common ones in use today. The actual frequency is governed by a quartz crystal oscillator, this is fed to the chain inside the IC. (See page 54.)

Inside one of our own digital alarm watches, we were surprised to discover the actual bleeper consists of a thin slice of piezo electric crystal on a metal diaphragm inside the back cover. The little grill on the front is in fact a dummy, nonetheless it's loud enough to wake most people. The electronics are sited on the small PCB top left. The display, beneath the PCB is a liquid crystal device, it displays a stopwatch, calendar and of course the time at the expense of only one or two microwatts.

Electronic Timekeeping

Divider chain for turning a 1 Hz pulse into hours, minutes, seconds, days, months, etc, otc.

By using modern CMOS and 12 L - technology, coupled to an LCD or Lithium display (LEDs tend to be a bit juicy) current consumptions of around $2-5 \mathrm{uA}$ are the order of the day. Indeed a typical LCD watch battery should last in excess of one year. One final point with LCD displays, they are a chemical display and as such have a limited life. Even with modern processes a life expectancy of around five years is to be expected. Remember that next time you see one for $£ 100$, check how long its guarantee lasts for. With so many LCD watches around the $£ 20$ mark its just not necessary to spend that much. Wonder how long it'll be before someone comes up with a disposable watch. If the battery life expectancy of these watches is extended much more they'll start to outlive the displays.

THE FUTURE

An obvious development has got to be a domestic MSF. receiver, (who knows they may even make a wrist-watch version) already there are commercially available receivers but they tend to be a little too expensive for us mere mortals.

The current flood of cheap mains-locked LED, and Flourescent bedside, alarm, and mantplepiece clocks will continue to grow, after all who wants to keep winding an old clockwork clock that doesn't tell the time .
to the second. (Funny thing though, they always did seem to keep going during power cuts.)

The way modern society seems to be going, time, (and we mean accurate time) will continue to play a more important role. Clocks and watches will get more and more accurate, cheaper and cheaper and doubtless sprout more and more semi-useless functions. Look out for the Lithium displays, they rely upon a minute piece of radio-active material to illuminate a small screen. This type of display does have a long life and is readable in the dark, something the LCD watch has never been very good at, even with a backlight.

Well, that's about it, we've literally only just scratched at the surface of electronic timekeeping, one thing you can expect though, is its a subject that is going to get even more involved in the next few years, so keep your eyes peeled for an update in the near future:

This is where it all began, man's quest for accurate timekeeping relied upon logging regular events. The sundial kept track of the apparent motion of the sun. The more sophisticated sundials were accurate to within 10 minutes at any time of year, guite an achievement. Today we measure much shorter events, the 50 Hz of the mains, the oscillations of the quartz crystal, and if you're really fussy you can count the vibrations of the Cesium atom and you can't get much more accurate than that!

We would like to thank Hewlett Packard Ltd, the BBC the Post Office and the National Physical Laboratory for their help in preparing this article.

Master Electronics The practical way No maths neededNo dull theory-

```
Step by step we take you through all the fundamentals of
    electronics and show you how easily the subject can be
    mastered
1) BUILD AN OSCILLOSCOPE
2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS
3) CARRY OUT OVER &) EXPERIMENTS ON BASIC
ELECTRONIC CIRCUITS AND SEE HOW THEY WORK
Also
We provide practical tuition for:- 3l Digital Electronics }
1) Radio amateurs licence. . }\square\mathrm{ 4) Computer Technology }
2) City and Guilds certificates.\square 5) Test instrument kits }
Mark your interest(s) with an x in box provided
British National Radio & Electronics School,
NAME
\square
ADDRESS
HEOI/9
(block caps please).
```


Breaker
 One-Four

Send any news, comments, or information you may have to: Breaker One Four, Hobby Electronics, 145 Cháring Cross Road, London WC2H OEE.

Abstract

This is more like it, we've had a very large postbag for Breaker One-Four over the past four weeks, several clubs contacted us, alas one or two were a touch too late to get in this month but we'll be devoting quite a bit of space to them next month. As you can see the CB scene is really hotting up so keep those letters coming.

CB SPECIAL

Sorry about the delays and confusion over the special but we had some legal problems. Happlly they're all sorted out and it should be on your newsagents shelves now. We have included everything from the legal side to a massive technical section, easily the largest outside the States. Look out for scenes from the film "Convoy," cartoons, a comprehensive CB dictionary of slang and codes, CB around the world and a whole lot more. See the Ad elsewhere in this issue for further details.

CB STICKER

As promised we've produced a "Legalise CB" sticker for your car, the good news is that it is FREE. All you have to do is write to us, mark your envelope CB Sticker and enclose a SAE. Sorry; only one sticker per envelope.

SLANG COMPETITION

Whilst we were compiling the CB dictionary in our "special" it occured to us just how American it all was. There's nothing wrong with that, except we're British (and proud of it). So each month we'll be holding a CB slang competition, we'll print the best each month, and the winners will each receive a HE Tee-Shirt as well as a place in our all new British CB dictionary that we will be compiling over the next few months.

The only conditions are: it must be new, it must be as British as possible and of course as clean as possible. Remember the purpose of slang is to convey an often repeated message as simply and as quickly as possible over what is potentially a very noisy medium. Send your entries to: CB Slang, Hobby Electronics, 145 Charing Cross Road, London WC2H OEE.

CB ON TAPE

Even if you can't operate CB in this country (yet, we're working on it) you can listen to, and learn all about 'stateside" CB. A cassette tape now on sale over here contains plenty of examples of yankee CB and has a very comprehensive commentry from some (unnamed) American gentleman. The tape is a full length C60 and costs $£ 2.50$ from Dave Mills. Every aspect of CB is covered, from how to choose a "handle" to how to check our your rig. With the tape comes an explanatory
leaflet containing all the 10 codes, glossaries etc, and even a mention for HE (thanks Dave). For your copy send your $£ 2.50$ (Inc P\&P) to: Dave Mills, 267 Charminster Road, Bournemouth, Dorset.

CB BAR-BE-Q

The men from the UKCBC have been telling us about a open day they're planning, Bar-B-Q drinks etc, no firm date as yet but you can be sure we'll let you know, we might even get along ourselves. Venue as far as we can make out is somewhere in Wales.

PETITION

We've settled on the closing date for the Petition, it's the 30th August, unfortunately Parliament are on holiday then so we'll let you know next month of the actual date we will be handing it over

RUMOUR TIME

If we were to believe all the rumours we hear during the month it would seem that CB will be legalised on just about every day until the middle of 1980. Those sorts of rumours we expect, what we would like help in dispelling are one or two of the more serious rumours that seem to be flying about lately.

Both are of a medical nature, so if there are any doctors out thete perhaps they could get in touch with us. The first concerns interference to heart pacemakers, obviously we are most interested in finding out whether the illegal 27 MHz system does any harm in that respect but does RF generally interfere and at what power, any comments?

The second is the problem of paging systems, can someone tell us what kind of power they work at and more specifically, what frequency and what type of coding system they use, particularly hospital pagers. Do they suffer from interference or is it the other way round? Perhaps someone from the R/C modellers would like to comment on that, are you affected by paging systems?

CLUB CB

In by the skin of their teeth are a new club in the Weymouth area. The news comes from Ray Howes who tells us that they have twice monthly meetings on Sundays at around 8 pm at 39 St Thomas Street, Flat 1, Weymouth, Dorset. Sorry it's a bit brief but we only heard the day before we went to press. More details next month

BREAKER BREAK.

ZENER DIODE TESTER

This circuit is an add-on unit for a multimeter having a sensitivity of $20 \mathrm{k} / \mathrm{V}$ or better, and it enables a rough check to be made on zener diodes having operating voltages of up to about 33 volts. The unit operates from a standard 9 volt battery (PP6, PP7, or PP9 size), no mains supply or special , high voltage battery being required.

In order to obtain a suitably high voltage for this application from an ordinary 9 volt DC supply it is necessary to have a volatage stepup circuit of some kind. In this case an audio oscillator using IC1 is used to drive the prmiary winding of step-up transformer T1, giving about 50 V AC from the secondary winding. T1 is actually intended for use as a step-down transformer in transistor amplifier output stages, but it provides satisfactory results when employed in reverse
to give à voltage step-up. The output from T1 is halfwave rectified and smoothed by D1 and C3 to give to give an unloaded DC supply of about 75 to 80 volts (about 40 to 50 V when loaded).

With SW1 at the 'low' position, a current of about 1 to 2 mA . idepending upon the voltage of the zener under test) is fed to the test device through current limiting resistor R4, when W2 is operated and power is applied to the circuit. The multimeter, which is switched
to an appropriate DC voliage range, is connected in parallel with the test device and registers its zener voltage. Switching SW1 to the 'high' position causes about double the previous current to flow through the zener under test, as a lower value current limiting resistor (R3) is then switched into circuit. If the test device is fully functional this should cause only a very small increase in the meter reading, and there may well be no noticeable change in the meter reading at all.

Pin Connections ... £2.95 Adrian Michaels. Gives most essential data for popular devices.

Electronic Secrity Devices

. 1.45 R. A. Penfold. Full of constructional circuits covering the most basic security systems to the Ultrasonic and Doppler Shift systems.
How To Build Your Own
Solid State Oscilloscope
£1.50
F. G. Rayer. The book contains concise practical instructions so that even an inexperienced hobbyist can construct a fairly sophisticated instrument with the minimum of difficulty and expense.
50 FET (Field Effect Transistor) Project £1.45 F. G. Rayer. Contains something of interest for every class of enthusiast. Short Wave Listener, Radio Amateur, Experimenter or audio devotee.
50 Circuits Using 7400 Series ICs $£ 1.35$ R. N. Soar. The author has managed to compile no less than 50 interesting and useful circuits using this range of devices, covering many different aspects of electronics.

Essential Theory for the Electronics Hobbyist $£ 1.45$ G. T. Rubaroe gives the hobbyist a background knowledge tailored to meet his specific needs.

Beginners Guide to Building Electronic Projects . $£ 1.45$ R. A. Penfold. Covers component identification, tools, soldering, constructional methods and examples of simple projects are given.

50 Projects using IC CA3130 . 1 15 R. A. Penfold. Describes audio projects, RF project, Test Equipment, Household and miscellaneous circuits.

IC 555 Project
£1.65
E. A. Parr. Circuits are given for the car, model railways, alarms and noise makers. Also covers the related devices 556,558 and 559 .

Second Book of CMOS IC Projects £1.50 R. A. Penfold. Following in the success of the original CMOS projects book we present the second volume covering all aspects of CMOS technology from multivibrators to trig. gering devices.

Note that all prices include postage and packing. Please make cheques etc. payable to Hobby Electronics Book Service (in Sterling only please) and send to:

Hobby Electronics Book Service, P.O. Box 79
Maidenhead, Berks.

Down the Gain Drain

This feature was prepared from '50 FET Projects' by F: G. Rayer, published by Bernard Babani at £1.25. It contains many practical constructional projects using readily available FET devices.

Abstract

As our project editor is always saying, the best way to get to know something is to get it on the work bench in front of you. This month we get hold of the FET and show you just what you can do with it (no that's not meant to be rude).

INTRODUCTION

FIELD EFFECT TRANSISTORS find application in a wide variety of circuits. The projects described here include radio frequency amplifiers and converters, test equipment and receivers, as well as various miscellaneous devices which are useful in the home.

It will be found that in general the actual FET used is not critical, and many suitable types will perform satisfactorily. The FET is a low noise, high gain device with many uses, and the dual gate FET is of particular utility for mixer and other applications.

This article should be found to contain something'of particular interest for every class of enthusiast - short wave listener, radio amateur, experimenter, or audio devotee.

FET OPERATION

Figure 1 will help clarify the working of the field effect transistor. (a) represents the essential elements of the device, which has Source lead S, Gate lead G, and Drain connection D. The path for current is from Source to Drain through the semi-conductor material, this path being termed the channel. With the N -channel FET, the carriers are electrons. The Source is connected to negative of the supply, and Drain to positive.

Fig. 1. Construction and symbols used for field effect transistors.

P-type gates are formed on the N-type channel, providing PN junctions. When these junctions receive reverse bias, areas surrounding them are emptied of electron carriers. These "depletion areas" reduce the width of the carrier channel, as at (b). As a result there is a drop in the passage of current carriers from Source to Drain. Increasing the bias causes the depleted regions to extend, and the channel grows smaller, reducing current even further. Eventually the gate can be made so negative that the channel is virtually closed. This is the pinch off region, and current is practically zero. The current from source to drain, and through external circuit items, can therefore be controlled by adjusting the gate voltage. Since the gate to channel junction area is reverse biassed gate current is extremely small, and thus the gate input impedance is very high. Generally, the gate current is negligible.
(c) is the symbol for this FET, with S indicating Source (negative), G for Gate, and D for Drain (positive). Such N-channel FETs are conveniently operated with a negative ground or source line. "D" is the symbol for a P-channel FET. Typical types and lead outs are shown later.
(e) represents an insulated gate FET. The gate is insulated from the channel by an extremely thin dielectric so tht there is no junction in the way described for (a). The substrate is P-type material with positive hole carriers. When the gate is made negative, positive charges move from the substrate towards the gate, so that the width of the conducting channel is reduced, and thus also the current from drain to source.

MEDIUM FREQUENCY AMPLIFIER

This circuit, Figure 2, is primarily intended for use over the 1.7 MHz to 30 MHz range, and will be found to provide considerable gain. RF amplifiers of this kind are generally used to improve long distance short wave reception, to increase volume, and to reduce second channel interference on the higher frequencies.

To avoid winding coils and permit easy band changing, Denco (Clacton) miniature plug in coils may be used. These are the "Blue" (Aerial) ranges, valve type. The most useful coils will be Range 3, 1.675.3 MHz , or 580 to 194 metres; Range $4,5-15 \mathrm{MHz}$, or 60 to 20 metres; and Range $5,10.5-31.5 \mathrm{MHz}$, or 28 to 9.5 metres. Exact coverage depends on the setting of
the adjustable cores, and will also be modified if VC1 is of different value. The coils are inserted in a B9A type holder. If only a single range is wanted, the coil can be mounted by its threaded end, and leads are then soldered directly to the pins

Fig. 2. Circuit diagram for a Medium Frequency RF amplifier:
RV1 is an adjustable aerial input control, as overloading may easily arise with strong signals. R1 and R2 provide the voltage for gate 2 , and $R 3$ is for source bias.

The drain circuit is arranged for capacitor coupling by C4 to the aerial socket of the receiver. This lead should not be unnecessarily long, as this may cause losses, as well as picking ujp signals which cause second channel interference. If the lead is screened, it must be no longer than necessary. A 2.6 mH short wave sectionalised radio frequency choke will be satisfactory for the frequencies mentioned.

Construction is best in a metal case, which can have a hinged lid if plug-in coils are to be fitted. No ganging difficulties can arise with VC1, which is adjusted for best volume

Second channel interference is caused by signals which are $2 \times 1 F$ frequency from the wanted signals. With a 470 kHz intermediate frequency, these offending signals will be 940 kHz from the wanted transmission. As a result, interference from this cause is unlikely at low frequencies, but very probable at high frequencies. Such second channel interference is considerably reduced, or completely avoided, by using a tuned RF stage of this kind, actual results in this direction depending on the receiver IF, and frequencieds tuned.

A 9 V supply is adequate, and current may be drawn from the receiver if convenient. Only about 2 mA to 3 mA or will be wanted. The MEM618, 40602, and 40673 will be found satisfactory here.

144MHz CONVERTER

The reception of 2 metre signals is generally with a converter and short wave receiver, preferably of communications type. The latter will have sensitivity and selectivity better than average. With such an arrangement of equipment, the 144 MHz or other VHF signal is changed in frequency so that the converter output falls within the tuning range of the receiver.

A converter of this type often has its own RF amplifier, and a relatively low frequency crystal controlled oscilla-
tor, followed by frequency multipliers. This allows high sensitivity and excellent frequency stability, but is a relatively complicated and expensive item. Bearing in mind that at this frequency the RF amplifier will not contribute very much gain, and that tunable VHF oscillators are used in many domestic VHF receivers, it is possible to use the much simpler circuit in Figure 3.

L1 is broadly tuned to the wanted frequency band by T 1 , and signal input is to gate $1 \cdots$ of $\mathrm{Q} 1 . \mathrm{Q} 2$ is the local oscillator, and the operating frequency here is determined by L2 and T2. Oscillator injection is via C3 to gate 2 of Q1. The frequency of the output from the drain of the mixer Q1 is the difference between G1 and G2 frequencies. Thus if the signal at G 1 is 144 MHz , and Q 2 is tuned to oscillate at 116 MHz , output will be at 144 minus 116 MHz , or 28 MHz . Similarly, with the oscillator set at 116 MHz , an input at 146 MHz to G 1 will give an output of 30 MHz . Therefore $144-146 \mathrm{MHz}$ can be covered by tuning the receiver from 28 MHz to 30 MHz . L3 is broadly tuned to this band, and L4 couples the signal to the short wave receiver.

The oscillator can actually be tuned above or below the aerial circuit frequency of the converter, as it is the difference between converter signal input and oscillator frequencies which determines the converter output frequency. It is also possible to choose other reception and output frequencies, provided L1, L2 and L3 are chosen to suit.

Fig. 3. Circuit for a 144 MHz converter for short wave receivers.

L1 and L2 are wound in the same way, except that L1 is tapped one turn from its grounded end. Each coil has five turns of 18 swg wire, self supporting, formed by winding the turns on an object 7 mm in diameter. Space turns so that each coil is $1 / 2 \mathrm{in}$ or about 12 mm long.

L3 is fifteen turns of 26 swg enamelled wire, side by side on a 7 mm former with adjustable core. L4 is four turns, overwound on the earthed (positive line) end of L3. Layout should allow very short connections in the VHF circuits. A co-axial aerial socket is fitted near L1. A screened co-axial lead is preferred from L4 to the receiver, to avoid unnecessary pick-up of signals in the

FET Special

$28-30 \mathrm{MHz}$ range. The converter will operate from a 9 V to 12 V supply

L3 should first be peaked at about 29 MHz . If a signal generator is available couple this to Q1 drain by placing the output lead near the drain circuit. Tune generator and receiver to 29 MHz , and adjust the core of L 3 for best results. Otherwise, couple an aerial by means of a small capacitor to the drain circuit, and tune in some signal in the $28-30 \mathrm{MHz}$ range, to allow adjustment of the core of L3.

It is now necessary to tune L 1 to about 145 MHz , and L 2 to 116 MHz , or 174 MHz . If an absorption frequency indicator is available, this will permit an approximate setting of T2. A dip oscillator will also allow T1 to be adjusted. Subsequently adjust T2 to bring the wanted signals in at the required frequencies on the receiver, and peak these for best volume with T1, and check the setting of L3 core.

The converter is best assembled in a small aluminium box, completely closed, which can be placed behind the receiver. Note that if 02 is not oscillating, no reception is possible through the converter. 02 should be a VHF FET, such as the BF244, MPF102, and similar types, and if hecessary T3 may be adjusted to secure oscillation here. The 40602, 40673, and similar VHF types will be satisfactory for Q1. If needed, frequencies can be brought within the swing of T1 and T2 by stretching or compressing L1 or L2

The aerial may be about $381 / 2$ in long, constructed as a simple self-supporting or wire dipole, with a feeder descending to the converter. Amateur activity is most likely to be greatest at weekends, and in many areas a whip or very short wire aerial will provide local reception.

FIELD STRENGTH METER

The device in Figure 8 will operate at any frequency up to 250 MHz or even higher if necessary. A short whip, rod, telescopic or other aerial picks up radio frequency energy, and rectification by diode D1 provides a positive voltage for the FET gate, across R1. This FET is only operating as a DC amplifier, and the 2 N3819 and other general purpose transistors will be satisfactory

The "Set Zero" potentiometer may be 1 k to 10k. With no RF signal present, it allows gate / source potential to be adjusted, so that the meter shows'only a small current, which rises in accordance with the strength of the RF present. For high sensitivity, a 100 uA meter can

Fig. 4. Field strength meter, useful for determining the efficiency of RF equipment.
be fitted. Alternatively, a meter of lower sensitivity, such as $25 \mathrm{uA}, 500 \mathrm{uA}$ or 1 mA can be used, and will provide enough indication in most circumstances.

Should the field strength meter be wanted for VHF only, a VHF choke can be used, but for general usage over lower frequencies, a short wave choke is necessary. An inductance of about 2.5 mH is satisfactory for 1.8 MHz and higher frequencies.

The device can be constructed in a small insulated or metal box, with the aerial projecting vertically. In use, it allows tuning up a transmitter final amplifier and aerial circuits, or the adjustment of bias, drive and other factors, to secure maximum radiated output. The effect of adjustments will be shown by the rise or fall of the reading of the field strength meter.

FET TRF RECEIVER

Figure 9 is a circuit giving good headphone reception for persons listening, and it can if wished be contructed as a miniature receiver with a short throw-out aerial. Alternatively, it can be used with reduced range by relying on the ferrite rod alone for signal pick-up

Q1 is the detector, and regeneration is obtained by tapping, the source up the tuning coil. The use of regeneration greatly improves selectrivity, and also sensitivity to weak signals. The potentiometer RV1 allows manual adjustment of the drain potential of $\mathbf{Q 1}$, and so acts as a regeneration control.

Fig. 5. FET TRF receiver.

Audio output from Q1 is coupled to Q 2 by C5. This FET is an audio amplifier, operating the headphones. A complete headset is preferable for general listening, and phones of about 500 ohms DC resistance, or about $2 k$ impedance, will give very good results here. If•a miniature earpiece is wanted, this should be a medium or high impedance magnetic unit. A crystal earpiece will require resistance capacity coupling

The tuning inductor is fifty turns of 26 swg wire, on a ferrite rod about $5 \mathrm{in} \times 3 / 8 \mathrm{in}$. If the turns are wound on a thin card sleeve which can be moved on the rod, this will allow adjustment of band coverage. The winding begins at A, and aerial tapping B is at about twenty-five turns. D is the grounded end of the coil. The best position of the tapping C depends somewhat on the actual FET, on the battery voltage, and on whether the receiver is to be used with an external aerial wire or not. Should the tapping C be too near to end D, no regeneration will be obtained, or regeneration will be weak, even with RV1 rotated for maximum voltage. On the other hand, with too many turns between C and D,
oscillation will begin with RV1 only slightly advanced, and signals will be weak. Best results are expected when regeneration begins smoothly, with RV1 apout halfway through its rotation. It was found that only one to two turns were required between C and D. As changing the whole coil by a turn or so has little practical effect on frequency coverage, the best method is to make C two turns from D. Then if necessary unwind half a turn or more at D.

When regeneration is obtained, a heterodyne will be heard if the receiver is tuned through a transmission. RV1 should then be turned back very slightly. Maximum possible sensitivity is achieved when Q1 is almost in the oscillating condition. RV1 has to be set to suit the frequency tuned by VC 1 , so that final critical adjustment can be made. It is useless to regard RV1 as a gain control, and set it at maximum:

A metal case is suitable where an external aerial wire will be used. Where the ferrite rod only will be employed, for local signals, the box or case must be of plastic or other insulating material

TIMER

An adjustable timer, giving a delay of about 10 seconds to 1 minute, can be used for photographic and other purposes; or with various games where each competitor must make his move within the agreed period.

The circuit in Figure 11 can be employed in various ways, as will be explained. When the switch is moved to the "On" position timing begins, and C1 commences to charge through R1 and RV1. The two resistors R4 and R5 hold the source of Q1 at approximately a fixed potential. When the voltage across C1 has reached a high enough level Q1 gate is positive, so that drain current flows through R3. This causes a voltage drop in R3, so that the base of Q2 moves negative. Q2 is a PNP transistor, so conducts, and collector current flows in the relay coil, closing the relay contacts. When the switch is returned to the "Off" position, C1 is discharged through $R 2$, so that the interval can be repeated.

Fig. 6, A timer using a FET, the delay can be varied from about 10 seconds to 1 minute.

A 2 N3819 is suggested for Q1, and AC128 for Q 2 . With C1 as shown (470 uF) the interval was found to lie between 10 seconds with a total of 250 k in the R1/RV 1 position, up to 1 minute with 2 megohm. So the values in Figure 42 can be expected to allow any interval to be
set from approximately 10 seconds to 60 seconds. Increasing C1, R1 or RV1 will lengthen the interval. Smaller values here will reduce it. This was with current rising to 40 mA , with a 100 ohm relay.

It is not of course essential that these values or transistor types be followed exactly, and other relays would also be practicable, provided the circuit and Q2 allows a satisfactory current and voltage to suit the: winding. Generally, a relay with a coil resistance of about 100 to 250 ohms will be most satisfactory.

The relay contacts can be so wired, that when the relay coil is energised, the circuit is completed, or interrupted. The former will most usually be wanted. Closure of the contacts can then light an indicator lamp, or sound a buzzer or bell. The use of opening contacts will be convenient for repeating a set interval when enlarging. A 2 -pole 2 -way switch is then required, so that switching the timer on lights the lamp to begin the exposure, which continues until the relay contacts open.

For games and similar purposes, a 12 volt 3 watt indicator lamp can be operated from the same 12 V supply. Should any kind of mains-voltage circuit be controlled, the relay must be a type intended for this purpose, and care must be taken to arrange mains circuit so that no danger can arise for the user.

HE

Type No.	Base	Maximum Ratings	Other Information
			General purpose
2N3819	1	200mW 25v	AF and RF.
			N -channel.
2N5457/			
MPF103	2		General purpose
2N5458/		310 mW 25 v	AF. N-channel.
MPF104	2		
2N5459/			General purpose
MPF105	2	200mW 25v	AF and RF.
			N -channel.
BF244	1	$200 \mathrm{~mW} 25 v$	VHF. N-channel.
$7644 /$			VHF. N-channel.
BF244	5	200 mW 25 v	(Sub. lead omitted)
MPF102	2	200 mW 25 v	VHF. N-channel.
2N5450/5	3	310 mW 25 v	General purpose
			AF. P-channel.
406021 MEM618	4	330 mW 20v	Dual-gate VHF amp
40673	4	330 mW 20 v	Dual-gate VHF am
			and mixer.
2N3823	5	300 mW 30 v	VHF amp/mixer.
			N-channel.
2N2497/	6	500 mW -	Low noise.
500			P-channel.
80111	7	100 mW 20 v	RF amp. N-channel
Table sho FETs used and with	owing ed in th only	all the importan circuits, the typ or two excepti	parameters for the various pes used are all freely available ions are not very specialised.
This	cle	reproduced	by kind permission of
Bernard	Bab	ni (Publishing)	g) Led, The Grampians,
Shephe	ards B	ush Road, Lon	don W6 7NF, and taken
from th	he bo	ok 50 (FET)	Field Effect Transistor
Projects		G. Rayer. Th	he book (Bernard Babani
No. BP	39) is	available from	n most component shops
price		It is also avai	ilable from the HE Book
Service	, see	ad in this issue	

Table showing all the important parameters for the various FETs used in the circuits, the types used are all freely available This article is reproduced by kind permission of Bernard Babani (Publishing) Lid, The Grampians,信 Projects by F. G. Rayer. The book (Bernard Babani No. BP 39) is available from most component shops Service, see in ihi Service, see ad in this issue

리를 SUSTAIN UNIT

Normally each note from a guitar has a high initial volume that rapidly decays to a much lower level, and the gradually fades out. A sustain unit provides a relatively constant output level when used with an electric guitar, despite the wide range of input levels. The most simple form of sustain unit is a clipping amplifier, but these inevitably introduce quite large amounts of distortion. A better method, and the one used in this unit, is to use a compression circuit having fast attack and decay times. This type of circuit is basically a

voltage controlled amplifier, the gain of the circuit being controlled by an output level sensing circuit which varies the gain to produce a fairly consistent output level. Little distortion is produced using this method.

Q1 is used as a low noise preamplifier having a voltage gain of about 20 dB . Its output is fed by C3 to the input of IC1, the voltage controlled amplifier device. This has a quiescent voltage gain of about 13 dB , but this can be reduced to an attenuation of over 70 dB by taking pin 2 of the device several volts positive. C6 couples

some of the output from IC1 to the output socket, and C5 couples the remaining output to a common emitter amplifier based on Q2. The amplified signal at 02 collector couples via C9 and R7 to a conventional smoothing and rectifier network. The positive bias pro duced by this network is fed to the control input of IC 1 via a low gain amplifier and buffer stage based on IC2.

With low input levels (below about 1 mV) the control signal is too small to affect the gain of IC1 Higher level signals produce a proportionately larger control voltage
and lower gain through IC 1, preventing the output level from rising much above about 30 mV RMS, and giving the required virtually constant output level. The attack and decay times of the circuit are both quite short so that the unit responds suitably rapidly to changes in input level, but neither of these time constants are so short as to cause serious distortion

The unit will be most effective with the volume control on the guitar set at maximum, unless the output should then be so high as to overload the unit and cause distor tion.

Measuring small audio frequency signals is often impossible using an ordinary multimeter because most of these have a lowest AC range of about 1 to 5 V FSD. A simple and inexpensive solution to the problem is to add an amplifier, such as the one shown here, ahead of the multimeter. The amplifier has a switched voltage gain of 10 or 100, and would therefore boost the sensitivity of (say) a multimeter switched to the 2.5 V AC range to 250 mV and 25 mV FSD respectively. Measurements down to just
with reasonable accuracy

The circuit uses a CA3130T operational amplifier in the noninverting mode. The non-inverting input is biased to about half the supply voltage by R1 and R2, and the input signal is coupled to this point by C1. The input impedance of the circuit is set at over 1 M by R1 and R2, so that the unit places little loading on the circuit under test. R7 biases the inverting input and gives a quiescent output voltage of about half the supply potential. Although IC1 has an extremely high (open loop) voltage gain, the voltage gain of the
amplifier as a whole (closed loop) is
of two resistances. With SW1 in the ' X 10 ' position the two resistances are R7, and R3 plus R4. The voltage gain is equal to the sum of the two resistances divided by the shunt resistance $(R 3+R 4)$ in this negative feedback network. This gives almost exactly the required figure of 10 with the specified values. With SW1 in the ' $\times 100$ ' position the lower shunt resistance of R5 and R6 is switched into circuit, boosting the voltage gain to almost exactly 100.

DC blocking at the output is provided by C4. C5 is a supply decoupling capacitor and should be mounted physically close to
capacitor for IC1, and prevents the
device from becoming unstable Note that a carefully designed layout having the input and output well isolated from one another is required, or the circuit as a whole may become unstable. Screened input and output cables should be used to drive the primary winding maximum output of about 3 V RMS. It should therefore be used with the multimeter set to a range of 3 V or less, or if a higher range must be used, the part of the scale above 3 V is ignored. The amplifier has a flat response up to about 30 kHz in the ' X 100 ' mode, and up to about 300 kHz in the ' $X 10$ mode

R3. R4, R5 AND R7 ARE 2% OR BETTER

Gertronilastotey

What to look for in the Oct issus: On sale sept 7th

SPEECH COMPRESSOR

For anyone out there using the airwaves, this ingenious circuit will enable you to increase your average power to peak power ratio considerably - thereby "upping' your talk powerl And it doesn't use RF compression either.

REACTON TESTER

Single PCB construction with auto-start and random interval times built in. Readout is in $1 / 100$ secs on two "jumbo" LED displays. All adds up to a pretty nifty little game does it not? Don't be slow picking up ETI next month!

LM 10 APPLIED

Next month Ray Marston attempts to fill the issue with applications - some of which you couldn't ever have dreamed of for his new champion chip, the amazing LM 10. See how close he gets to making it in the October issue of ETI.

CABLE TESTER

No it is not as simple as it sounds. You should know us better than that by now. This little unit will test any type of audio hook-up wiring - or indeed any conceivable
cable.
Each wire is tested, in sequence, for open-circuit or short to earth (or other wires), and then visual indication of the state of each is provided. OK?

Audiophile amp

Now you've all seen magazine projects for hi-fi amplifiers before. We've doneseveral ourselves! However, we believe that NO-ONE - not even ETI - has produced a design anywhere near this quality before. Specifications include a noise figure of 83 dB for the phono input, and a pre-amp distortion of 0.015%.

The power amp produces over 60W at 0.04% THD with particular attention having been paid to "open-loop" performance such that TID is negligible. Hum and noise - 110 dB for the power amp. Listening tests played a huge part in settling the final design too.

The system is modular such that either the pre-amp or power amps can be utilised separately. Put them together and you have the best sounding magazine amplifier everl Full details next month.

Analog delay

Since the advent of CCD (charge coupled devices) you could be forgiven for believing that all other methods of obtaining a time delay on a signal have curled up and died.

This is simply not so, and next month Tim Orr takes time off from String Thing to explain this largely unknown flourishing field.

RADIO CONTROLLED

Of course you've all built our radio control project out there haven't you? No? . . . Oh.

Well the reason why not could simply be that you haven't seen this article yet. Written by Geoff Chapman - one of the few real experts in the field, it illustrates the different types of model that can be operated by R/C and how to get them operational!

Full of the kind of detail you'd spend years of lost patience gathering.

Into Linear By lan Sinclair $\mathrm{CS}_{\text {Part } 3}$

Deep breath, this month lan Sinclair (with the help of twenty practical circuits) describes how the 741 cin amp can be used to make anything from a 'boing' generator to 'pepping' up the output of your cassette recorder.

THE 741 IS GOING TO BE our introduction to linear ICs. It would be difficult to choose any other chip, because the 741 is probably the most frequently used of all linear ICs. It can come with a variety of letter codings (LM, MC, CA. NE and others), but as long as these letters are followed by the number 741, it's the same chip. It's also found in a variety of packages, but the one we shall use is the DIL 8-pin one, which is the most convenient one for our purposes.

The 741 is classed as an operational amplifier. meaning that it's a direct-coupled amplifier with a very large voltage gain - 100000 times or more - and the usual two inputs to which signals or feedback can be connected.

The pinout for the 8-pin package is shown in Fig. 3.1. Note that not all of the pins are connected internally, and two of the pins that are connected are seldom used we'll show later how and when they are used. Like most operational amplifiers, the 741 is intended for dual + ve and -ve power supplies, but the circuit designs can nearly always be adapted for a normal + ve and OV type of supply as we shall see.

Fig. 3.1 The pin-out diagram of the 741 showing the chip appearance and the circuit symbol.

CIRCUITS AND MORE CIRCUITS

Now for some circuits. Fig. 3.2 shows what is called a voltage follower. The - (minus) input of the 741 is connected directly to the output through a resistor R1, with no other components in the way, so that there is 100% feedback of bias and signal voltages. The + (plus) input is earthed through another resistor R2, and is used as the signal input

What does this do? There's no voltage gain, to start with. The signal voltage out is exactly equal, as far as we can measure, to the signal voltage in, which at first sight

Fig. 3.2 The voltage follower circuit using dual power supplies. The dotted lines indicate where capacitors can be used connected to isolate the 741 from bias voltages in any circuits it's connected to. The letter/number references are to the line -positions of the Eurobreadboard.
doesn't seem too encouraging. There is, however, a huge difference between the input and the output resistances. Remember what that's about? Any electronic device behaves as if it had a resistance at its input and another resistance at its output. When we connect these devices (transistors, ICs or whatever) together, these resistances form potential dividers, reducing the amount of signal which can be passed from one device to the next, as illustrated in Fig. 3.3. An ideal amplifier would have a very high input resistance and a very low output resistance. This way we could corinect any source

Fig. 3.3 Internal resistances (a) and how they act as potential dividers (b) for the signal.
of signal (tape, disc, microphone, radio . . .) to the input with no loss of signal, and in the same way have no loss of signal at the output even if we connected a very low resistance (such as a loudspeaker) to the output. Sometimes we prefer a lower input resistance for other reasons, but these are the rules for ensuring the greatest possible transfer of signal from one stage to the next.

The circuit of Fig. 3.2 certainly has the correct resistance values, very high at the input and very low at the output, so that the lack of gain isn't always a disadvantage. We can, for example, connect a very high resistance crystal pickup to the input and a lowresistance magnetic earpiece to the output and get a detectable signal at the output. If we connected the pickup directly to the earpiece, we don't hear a thing. This isn't because of a low signal from the pickup crystal pickups can produce a volt or more of signal but because of mis-match. The very high resistance of the crystal pickup is connected to the very low resistance of the magnetic earpiece, and the signal is simply divided out of existence! The 741 circuit of Fig. 3.2 is called a voltage follower, and it's a useful headphone amplifier. You can connect its input almost anywhere in an amplifier circuit without affecting the signal voltage (why? Because of the high resistance) and that's not something you can risk with headphones. If you're going to use the voltage follower in this way, though, it's advisable to use a $0_{\mu} 1$ coupling capacitor at the input so that the 741 is not affected by any bias voltage at the place where it's connected. In addition, stick to batteryoperated equipment until you have a lot of experience in servicing - you don't get a second chance where there are mains voltages around.

BIASSED TOWARDS COMPONENTS

Fig. 3.4 shows another version of this circuit, re-drawn this time so that a single supply of 18 V can be used. You can see that this needs more components because the bias on the + input has to be set at a voltage midway between the positive and the zero supply lines. In this circuit, equal value resistors R3 and R4 set the midway voltage to which the + input is returned. The - input is biased by feedback as before, but the input and output have to be capacitor coupled because of the bias voltages.

Fig. 3.4 The single-supply version of the circuit of Fig. 3.2. Eurobreadboard line $A 7$ is used for the additional resistors R3, R4 junction with R2.

Both circuits are shown with the letter-and-number locations for a suggested Eurobreadboard layout, with pin 1 of the IC on line A1 of the breadboard. A simple way to demonstrate the high input resistance goes like this. Connect an LED and a 2 K 2 resistor in series to the board as shown in Fig. 3.5: note the two possible

Fig. 3.5 Using an LED voltage detector (a) for the circuit of Fig. 3.2, (b) for the circuit of Fig. 3.4 R2 should be 1 M in this circuit when the LED is being used as a detector.
connections according to whether you've built the dual or the single power supply version. Now, with no signal of any sort into the 741, the LED should not light, because the output voltage of the 741 is the same as the voltage at the cathode of the LED. Now touch the input of the 741 circuit with one finger and the +9 V supply with another finger - what happens? Could the resistance between your fingers possibly supply the LED directly (Fig. 3.6)? This 741 circuit is the basis for countless circuits which detect small voltages; circuits such as moisture detectors, "lie" detectors, continuity testers and so on.

Fig. 3.6 Can enough current pass through your fingers to light an LED?

We needn't, of course, use 100% feedback for our voltage amplifier. Fig. 3.7 shows a circuit which feeds back only a fraction of the output signal. Using a dual voltage supply, this is easily arranged by connecting a potential divider from the output to earth, and taking the - input to the output of the potential divider. This kind of circuit is called a follower-with-gain. It has the same high input resistance as the simple voltage follower, but a voltage gain which is greater than one. The value of voltage gain is given by the ratio:
$R 1+R 2$
so that if, for example, R1 $=47 \mathrm{~K}$ and $\mathrm{R} 2=15 \mathrm{~K}$, then the gain is

$$
\frac{47+15}{15}
$$

which is 4.13, as near 4 as makes no difference. The single voltage version of this circuit isn't nearly so simple. The resistor R2 can't be connected directly to earth without disturbing the bias on the + input, so that an isolating capacitor is needed. The usual pair of resistors to set half-supply-voltage, and the coupling capacitors to avoid shorting out the bias will also be needed.

Fig. 3.7 The follower-with-gain. The (dotted) capacitors will be needed if the circuit is to be connected to any points which are not at earth voltage.

Fig. 3.8 Single-supply version of the follower-with-gain. C2 is needed to prevent the voltage at 42 from being reduced by the potential divider circuit, R1, R2.

GAIN

The gain which this circuit can have makes it much more useful. It can, for example, be used to amplify the signal at a detector diode to form a modern version of the old-fashioned crystal set, as shown in Fig. 3.9. It's also an excellent pre-amplifier circuit, giving a moderate gain along with high input resistance and low output resistance. The output will drive magnetic earpieces quite happily, though the low-resistance earphones which are

Fig. 3.9 A simple radio circuit, using the high gain of the 741 to amplify the feeble signals from the diode detector. 01 must be a germanium diode such as OA91. Note the link (wire) between $A 7$ and $B 7$ to ensure enough plug-in points on the earth line.
used along with stereo receivers usually need a bit of resistance connected in series if they are not to overload the 741. For the same reason, low resistance loudspeakers (4R to $15 R$) should not be used, though the old "transistor radio." 80R loudspeakers will work quite nicely.

Now for the next trick. This time, instead of using the + input for signals, we'll use the - input. Yes, I know that we take the feedback to this input as well, but we can get around that, as we'll see. The circuit of an inverting amplifier, as this type is called, which uses dual power supplies is shown in Fig. 3.10. As usual, the use of two separate supplies makes the circuitry simple, with the + input connected through a resistor to earth.

Fig. 3.10 The basic inverter-amplifier circuit. The value of R3 should be chosen so as to equal R1. Capacitors, shown dotted, should be used if the input or output is connected to points which are not at earth voltage.

This circuit is different in a number of ways. For one thing, we find that if we connect our signal directly to the - input, the input resistance is as near as we can measure, zero! It's so near zero in fact that the - input is often called a virtual earth - there's zero resistance to earth for signals at this point. We can add some resistance, however, in the shape of R1, and when we do the voltage gain of the circuit is easy to calculate - it's just R2/R1. The output resistance is low, the input resistance is R1, and the output signals are inverted

Into Linear ICs

compared to the input signals
How can we try this one out? One way is to use it with a signal source which has a low resistance. We can, for example, use a small loudspeaker as a microphone. Fig. 3.11 shows a suitable circuit, with a magnetic earpiece used at the output, which can be used as a remote listening device - not everyone knows that a loudspeaker can double as a microphone.

Fig. 3.11 An eavesdropper circuit. (a) The loudspeaker at the input can be of high or low resistance, but the loudspeaker at the output can be a high resistance type. (b) shows how a lower resistance loudspeaker can be used at the output.

As usual, the circuit is a bit more complicated when a single power supply is used, and coupling capacitors have to be connected to prevent the bias from being shorted out. Fig. 3.12 shows the single-supply version of the circuit of Fig. 3.11

Fig. 3.12 A single-voltage supply version of the circuit of Fig. 3.11.

FOR OUR NEXT TRICK

These circuits are basic circuits - they illustrate with only a few components what a 741 can do. By adding more components we can end up with a lot of useful project ideas, and that's the next step. As always, we've shown the suggested Eurobreadboard layouts along with each circuit diagram. One such circuit is illustrated in Fig. 3.13. This one is an overload compressing amplifier; a boon if you use a microphone live or for tape recording. All microphones give a much greater output when you're close to them than when you're a few feet away, so if you set the gain of an amplifier to be just right when you're three feet from the mike, it's horribly overloaded and distorted when you come closer. The
compressor circuit has a variable gain which corrects this situation - when the signals are small, the circuit has a large gain; when the signals are large the gain drops. It's like having a very smart operator at the volume control, .but with the additional advantage of being automatic.

How does it work? The circuit (Fig. 3.13) is basically an inverting amplifier but the feedback is through a pair of diodes, D1 and D2. Now, as you'll recall, diodes conduct one way only, so that to ensure that both halves of a signal voltage will be fed back, we have to use two diodes connected back-to-back. Even when the anode of a diode is positive to the cathode, however, a diode does not conduct until there's enough voltage across it, about $0,15 \mathrm{~V}$ for a germanium diode, and 0.5 V for a silicon diode. Once the diode starts to conduct, what's more, it doesn't obey Ohm's law, or anything like it. There's no fixed single value of resistance for a diode, the value of resistance changes as the current through the diodes changes, becoming smaller when there's a lot of current through the diodes, and large when the diodes are almost cut off.

Fig. 3.13 The diode compressor circuit (a) dual voltage supply version, (b) single voltage supply version.

COMPRESSION

How does this achieve compression? Well, if the input signal is very small, the amplified signal at the output may be too small to make the diodes conduct, in which case there's no feedback and the circuit operates at full gain. When a larger input signal happens along, the diodes start to conduct, and their resistances act as a
negative feedback resistor, reducing the gain of the amplifier. Still larger input signals make the diode resistance lower, causing more feedback and less gain. In the circuit which is shown, the gain for a 1 mV signal is about 20 times (output 20 mV), but the gain for a 1 V signal is about 0.5 (output 500 mV). One thousand time the original input signal has caused only 25 times the output signal - that's compression!

If you want to use this in a microphone circuit, you'll have to experiment with the best place to connect the compressor - either between the mike and the pre-amp, or between the first stage of the pre-amp and the second. Remember to use coupling capacitors if you're connecting to anywhere which has a bias voltage, and don't take risks with mains-operated equipment.

Something different now, in the circuit of Fig. 3.14. This one is called the 'Buzby-cheeper' because it can be inserted between two stages in an amplifier to make the output sound as if it had come from a telephone. It's a circuit which is very useful in radio and taped plays, and

Fig. 3.14 The 'Buzby-cheeper', dual voltage supply version. Input, and output capacitors are shown dotted; they will not be needed if the imput is a microphone and the output is to an amplifier or tape recorder. RV1 controls the amount of 'cheop' in the sound.

I sometimes wonder if it's not used in 'phone-in' programs. The circuit needs a lot more components than any of the circuits we've used up to now, but it's not going to clutter up the wide open spaces of your Eurobreadboard. As usual, the dual-supply version is simpler, but Fig. 3.15 shows an alternative singlesupply circuit. The signal input in each case is to the + input of the 741 , with feedback of DC bias and of signal through the resistors and capacitors which are connected between input and output - an arrangement which is called a 'network'

These resistors and capacitors aren't just any old values, they've been chosen so that they control the feedback of signals. At one particular frequency, around 400 Hz , there's less feedback of signal than there is at other frequencies. The result is that we get more gain at that particular frequency range, around 400 Hz , than at other frequencies. It's this feature which makes the Buzby sound, because a telephone acts also to emphasise these same frequencies. The telephone does it unintentionally - it's the construction of the telephone microphone and earpiece which filters out all the other frequencies, but our circuit does this deliberately and with some control because of the use of the 100 K
potentiometer. With this control at its maximum resistance setting, the sound isn't terribly 'Buzbied', but decreasing the resistance of RV 1 will increase the effect, even to the extent of letting the whole circuit oscillate. generating a tone.

Fig. 3.15 Single-voltage supply version of the Buzby-cheeper.
Try this one out between a microphone and a tape recorder or between a tape recorder and an amplifier but if you use a small cassette recorder, the sound may be pretty well Buzbied even without this circuit!

Fig. 3.16 Microphone booster circuits (a) dual supply, (b) single supply.

TALK ABOUT TAPE

Talking about recorders, is your cassette recorder sensitive enough when you use it with a microphone? If it isn't, then the circuit of Fig. 3.16 could prove useful. This is a booster preamp which uses the microphone as its input and delivers a boosted signal to the recorder. It can't be used with the built-in microphones which some cassette recorders have, of course, but most recorders have a separate microphone which is seldom very sensitive.

The circuit is straightforward, particularly when dual supplies can be used. The gain is fixed at about 25 times, because there's not much point in having a variable-gain pre-amplifier when the recorder itself has a gain control or has automatic gain-control circuits.

Connections can be a bit awkward when you're trying out the circuit. For testing the breadboarded circuit, I used crocodile clips to connect to the jack plug which was on the end of the microphone cable, with short lengths of wire plugging into the board. The recorder which I used also had a 5-pin socket input, and wires from the board could be inserted (once I found the correct holes) to make contact. A better method would be to solder wires to a jack socket for the input and connect a jack-plug to the board (Fig. 3.17) for the output. Remember that stranded wire must NEVER be plugged into the Eurobreadbóard - not all the strands will come out again, and the lost strands will create short circuits inside the board until you peel the backing off and remove them.

Fig. 3.17 Making connections to and from the booster.
Has that lot whetted your appetite for 741 circuits? If it has, the next one will also be of interest, because it allows you to get a fair amount of audio power to a loudspeaker by adding a couple of cheap transistors to the IC circuit. At the same time, it's not too hard on batteries because the current which the circuit takes is fairly low unless you turn the volume right up.

SOUNDING OFF

The 741 is a voltage amplifier, and its output resistance is not low enough to drive much current into a lowresistance speaker. In addition, to prevent overheating, the 741 is fitted with circuits which limit the amount of current which can be passed. The transistors which we've added in Fig. 3.18 can pass rather more current to the loudspeaker than a 741, and are completely controlled by the 741 . One of these transistors, Q1 is a PNP type, and the other is NPN, but you can't tell them apart by looking at the cans, so be careful not to rub the labels off. An alternative is to use a waterproof marker pen, the kind that's used for marking PCB tracks is ideal, to mark P on top of the PNP can, and N on top of the NPN can. With a dual $9 \vee$ supply, this circuit can pass rather a lot

Fig. 3.18 A medium-power output stage using a 741 with two transistors.
of signal current into an $8 R$ loudspeaker, so that emitter resistors R6 and R7 have been added for safety. These resistors also control the bias in the output pair of transistors, so don't be tempted to omit them!

The circuit is a bit unusual, because it doesn't use the output of the 741 directly. The output is simply connected to earth through a resistor, and the output transistors are driven from the power supply terminals! It certainly looks unusual, but it's quite a reasonable way if using the 741 , because most of the current flowing in the power supply terminals goes to the output terminal.

Fig. 3.19 A simple radio circuit using a single voltage supply.
On one half of the signal sinewave current flows mair.y through R3 into the 741, and to earth through the output and R2. On the other half of the sinewave, current flows through R2, the output, and so through the 741 to the - supply terminal then thought R4. On the positive half of the wave, the voltage across R3 biases Q1 on lit's PNP, remember, so that it turns on
when its base voltage is more negative than its emitter voltage. Q 1 then passes current to the loudspeaker. On the other half of the cycle, Q1 is biased off, and the voltage across R4 turns 02 on, so that current flows through the loudspeaker in the opposite direction and through Q2

Because of the difference between this and the other circuits we've looked at so far, the constructional methods for this one should be rather different.

DC COUPLING

Because the circuit is completely DC coupled, the bias / feedback connection is very important. Any fault in this line can cause one of the output transistors to pass a lot of DC through the loudspeaker, and this can happen also if the input line is biased above or below earth voltage. For safety, then, it's a good idea to use an old loudspeaker when the circuit is first tried out, and to couple to the input through a capacitor. Since this is a power amplifier, there isn't much voltage gain, and a preamplifier will be needed if very small signals are to produce an output which can be clearly heard.

The high gain which can be obtained from a 741 can be used for simple radio circuits. The circuit of Fig. 3.19 is just another up-to-date version of the old crystal set, but it's a useful way of using the gain of the 741 to display the principles of radio reception, and quite acceptable results can be obtained if a long-wire aerial is used.

In the circuit of Fig. 3.19 L1 is a tuning coil which consists of 50 turns of enamelled copper wire wound on to a ferrite core. This is connected in parallel to a 500 pF tuning capacitor, so forming a resonant circuit which can be tuned to various frequencies by altering the setting of the variable capacitor. The radio frequency which is selected by the tuned circuit is detected by diode D 1 . and the resulting audio frequencies are amplified by the 741.

The audio output can be heard if a pair of highresistance (2 K or more) headphones are connected to the output, alternatively a high resistance (80R) loudspeaker can be used.

Fig. 3.20 The 'Boing' circuit.

'BOING' 'BOING'

How about something different? Fig. 3.20 is a 'boing' circuit - if the signal at its output is taken to an amplifier and loudspeaker, then a drum-like 'boing' sound will be produced each time the push-button is pressed. The pitch of the note can be varied by adjusting RV2, and the amount of 'boing' by adjusting RV1

It works like this. The 741 has two feedback circuits. One of them uses capacitors and resistors, like the circuit of Fig. 3.14, to ensure that the gain of the 741 is greatest at one selected frequency. There's a variable resistor included in this bit of the circuit to control the pitch (frequency) of the note that we get when the 'boing' occurs. The other bit of the feedback circuit is just a variable resistor, RV1. This, along with resistor R3 decides what the gain of the 741 is for a signal which comes in through D 1. When the push-button is pressed, C 1 is quickly charged to +9 V , and the rise of voltage is passed through C2 and D1 to the 741 input. This disturbance causes the 741 to give an output, 'and the feedback network of C4 to C6 and R6 to R7 turns this into a continuous signal. As the charge on C2 leaks away through R3, the - input is slowly biased off, so that the signal produced by the feedback network dies away end of boing.

MILLIVOLTMETER

Finally, Fig. 3.21 shows a circuit for an $A C$ millivoltmeter, which allows you to measure the size of small AC signals which are at audio frequencies. The 741 is connected as an inverting amplifier so as to amplify the audio signals at the input. At the output of the 741 , the signals are forced by diodes (it's the familiar bridge rectifier circuit) to pass through the meter M , a 1 mA meter, before being fed back through resistor R5 to the

Fig. 3.21 The AC milliammeter circuit.

- input of the 741. Because of the way the diodes are connected, signal current always passes through the meter in one direction, so that the meter reads average current. The resistors in the circuit are there to ensure that the meter readings correspond to RMS values of a sine-wave input; their values muct not be altered.

The sensitivity of the circuit is selected by the value that is chosen for R1. With the value shown, 10K, the meter reads full-scale for an input of an input of 10 mV RMS; other ranges can be selected by using switched valves for R1. A value of 100 K gives a sensitivity of 100 mV , and a value of 1 M gives a sensitivity of 1 V for full-scale meter deflection. For a lot of applications a cheap edge-type meter is adequate, so that the AC millivoltmeter needn't be an expensive project. HE

THE NEW CASIO GHRONOGRAPHS

Put most solar watches in the shade!
CASIO 950S-31B
4 year battery
1/100 sec. chrono to six hours.
Dual time.
12 or 24 hour
Stainless steel
encased.
Lightweight
Water resistant
to 66 feet (2 at .)
RRP $£ 29.95$
$£ 25.95$

CASIO 95 CS-31 B (De-luxe model) 5 year battery 1/100 sec. chrono o six hours. Dual time. 12 or 24 hour Solid stainless steel case. Water resistant to 100 ft . (3 at.) RRP £44.95

£34.95

Both have new Lithium batteries which outlast most SOLAR watches. Constant LCD display of hours, minutes, seconds, a.m./p.m. and day (12 or 24 hour). Dual time (12 or 24 hr). Automatic day, date, month and year calendar. Mineral glass face. Backlight. High quality s / s bracelets with easily removable links.

SEIKO-new digitals-lower prices
20% offl

LATEST SCIENTIFICS

CASIO FX-68

LC Display. 37 scientific functions Trigs, logs, exponentiations, etc
Standard deviations Polar to Rectangular, R-P and sexagesimal to decimal conversions. Pi, cube root, six levels of brackets Full memory. 500 hrs . battery. RRP £22.95
£19.95
 (2 $3455-99$

A very convenient $3 / 16 \times 21 / 8 \times 35 /{ }^{\prime \prime}$ " Wallet
COLLEGE FX-80 POWERSAVER!
Specification as above plus ENG key. 4,000 hour battery life from two AA size batteries. $3 / 4 \times 3 \times 57 / 8^{1 \prime}$. RRP $£ 17.95$. £ 15.95
PROGRAMMABLES, FX-501P (£64.95) £54.95. FX-502P ($£ 84.95$) £74.95. FA- 1 (£24.95) £19.95
MELODY 80. Now only C 23.95 ($£ 25.95$).
ISN'T IT WORTH PAYING A LITTLE MORE FOR QUALITY AND RELIABILITY?
Fully guaranteed for 12 months.

> Most CASIO products available from stock. Send 25 p for illustrated brochures of this superb range of watches or calculators (both on request).

Prices include VAT, P\&P. Send cheque/P.O. o phone your ACCESS or BARCLAYCARD mor

TMNMPUS

Depi. ME, Beaumont Suire, 164-167 East Road Cambridge C81 10DB. Tel: 0223312866

AD INDEX

AJD DIRECT SUPPLIES 49 AMBIT INTERNATIONAL 5
B.N.R.S. 55
COOK ELECTRONICS 55
GMT ELECTROONICS 8.5

GREENWAY ELECTRONICS
MAGNUM AUDIO 64

MAPLIN
MARSHALLS
METAC
PRESCOTT CLOCK \& WATCH CO
RAMAR
RAMAR
STEVENSO
SWANLEY
TECHNOMATIC
TEMPUS

BARGAINS FOR THE ELECTRONIC HANOYMAN BRANDED LED DIGITAL ALARM CLOCKS

(1)
(2)

(3)

Returned

(1) With alarm repeat - S.R.S.P. of $\mathcal{E} 17.00$ offered 'a E3.95 inc. VAT
(2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S.R.S.P. £31.00-otfered at $£ 7.95$ inc. V.A.T.
(3) With integral luxury light and repeat alarm also as featured in most major U.K. Mail Order catalogues, S.R.S.P. of $£ 32.00$-offered at $\$ 7,45$ inc. V, \ddot{A}, \bar{T}. These will be sold as received from our customers with the existing fault(s) and without guarantee PRESCOTT CLOCK ÁND WATCH COMPANY LIMITED
Prescott House. Humber Road London NWZ GER

First there was ETI, catering for the middle-range to advanced electronics enthusiast. Then there was HE which was aimed at the newcomer to the field
Now there is Computing Today from the same stable. CT covers the area of

INTRODUCTION TO MICROPROCES SORS AND COMPUTING. 50 pages of diagrams and explanation to get you started. Price $£ 2.30+45$ p postage.
EDUCATIONAL DATA AND TECHNICAL SERVICES
59 Station Road, Cogenhoe, Northampton NN7 1 LU

PLEASE MENTION hobby Electronics WHEN REPLYING TO ADVERTISEMENTS

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors Hardware and accessories
Selected range of popular components Full range of HE printed circuit boards normally ex-stock. same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the di. y man with full processing instructions \{no unusual chemicals required)

Affac range of etch resist.transfers. and othe drawing materials for p c boards.
Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD
STRATFORD-ON-AVON
WARWICKS. Tal 4879

small-business and amateur computing and deals with both software and hardware.
CT's sixth issue (cover date of August) is out now - 50p at your newsagent.

TELEPHONE CHARGE CLOCK

Have you any idea how much phone calls actually cost you?
You can work it out, of course, but do you ever bother? Bet you don't. The final cheque-book-splitting figure depends on the time of day, distance and how long you spend discussing the philosophical ramifications of decreased bacon sandwich availability in Colchester (or the weather).
You can save yourself a lot of calculation or guesswork by sending only $£ 15.95$ for the Monitel Telephone Charge Clock.
The unit sits underneath your telephone, plugs into any electrical socket and, when you're not using it, serves as a smart digital clock. It even comes in all the seven standard telephone colours.

It comes already programmed with Post Office charge bands. Moreover, it adjusts automatically to peak, standard and cheap rate periods and the charge includes VAT,

The clock takes its instructions from a punched card. When the rates change, Monitel will automatically supply a new card.

Win $£ 50$

When you get your Charge Clock. have a look at the punched card. Monitel are offering a prize of $£ 50$ for the first person to send us a punched card correctly programmed to operate a UK Monitel according to the following imaginary tariff structure: Unit - 4.5p; Peak rate MondayFriday $10 \mathrm{am}-2 \mathrm{pm}$; Standard rate Monday-Friday $8 \mathrm{am}-10 \mathrm{am}$ and 2 $\mathrm{pm}-7 \mathrm{pm}$ and Saturday $10 \mathrm{am}-2 \mathrm{pm}$; Cheap rate other times.

Times	Peak	Standard	Cheap
L	30	60	90
a	20	40	60
b	10	20	30

ONLY $£ 15.95$

(Rec. retail price £1.9.95)
> inc. vat \& postage

To: Telephone Charge Clock Offer ETI Magazine 145, Charing Cross Road London WC2H OEE

Please find enclosed $£ 15.95$ for my Telephone Charge Clock.

Name

Address

Offer closes Sept. 31st. Please allow 14 days for delivery.

QUARTZ LCD

QUARTZ LCD
ALARM 7 Function

SEIKO Alarm Chrono

SEIKO-STYLE
Dual Time-Alarm
Chronograph
Mineral glass face Battery hatch for
DIY battery DIY battery
replacement. Top quality finish with qually adjustable bracelet £35.00 Spec sam
as M6
$£ 35.00$

Features and Specification
Hour/minute display Large LED display with p.m. and alarm on indicator. 24 Hours alarm with ondication. Repeatable 9 minute snooze. Display bright/dim modes control. Size' $5.15^{\prime \prime} \times 3.93^{\prime \prime} \times$ $2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm}$) Weight $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$
£9.65 Thousands sold! Mains operated.

Guaranteed same day despatch.

HANIMEX
 Portable LCD
 Clock Radio
 * Back-light.
 Batteries supplied free.
 £ $\uparrow 7.95$

QUARTZ LCD
 Ladies 5 Function.

HOW TO ORDER

Payment can be made by sending cheque, postal order. Barclay. Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30 p for post and packing or the amount stated. All products carry 1 year guarantee and full money back 10 day reassurance. Battery fitting service is available at our shops. Also Electronic Calibration Service. All prices include VAT.
Metac Wholesale:
Trade enquiries: Send for a complete list of trade prices and minimum order details.
Telephone Orders: Credit card customers can telephone orders direct to Daventry or Edgware Rd 24 hour phone service at both shops: 01-723 4753 03272-76545.

CALLERS WELCOME
Shops open 9.30-6.00

PRICE BREAKTHROUGH OMLY

$£ 18.95$

DUAL TIME: Local time always vis ible and you can set and recall any
other time zone (such as GMT) Also other time zone (such as GMT). Also
CALENDAR FUNCTION CALENDAR FUNCTIONS includ CH月ONOCRAPH / STOPWATC Chrow onaphrs 12 harch 59.9 seconds

On command stopwatch display freezes to show intermediate (split) tap) time while stopwatch continues timekeeping and switch to and modes without affecting either's operation.

- ALARM can be set to any time within a 24 -hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you! Guaranteed same day dispatch. M16

South of England 327 Edgware Road LONDON W. 2
Telephone: (01) 7234753

[^0]: The items mentioned here are those planned but circurnstances may affect the actual contents

[^1]: fREQUENCY SHIFTED
 CARAIER

[^2]: The Rugby MSF clock, this diagram represents one minute in the clock's cycle. The fast code lasts from the zero mark to the first second. The two fast codes are from the second second (oh dear, oh dear) to the $\mathbf{1 6}$ th second and the $\mathbf{1 7}$ th to the 59 th.

