1-to-3-phase converter
RF immune power supply
PSD3xx chips
1000 Hz sine wave generator
The Digital Solution
Proximity detector

With over 50 construction projects

December 1994
£3.50
FROM CONCEPT TO ARTWORK IN 1 DAY

Your design ideas are quickly captured using the ULTicap schematic design tool. ULTicap uses REAL-TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTicap automatically wires them for you. ULTicap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTishell, the integrated user interface, makes sure all your design information is transferred correctly from ULTicap to ULTiboard. Good manual placement tools are vital to the progress of your design, therefore ULTiboard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

ULTIshell. the integrated user interface. makes sure all your design information is transferred correctly from ULTicap to ULTiboard. Good manual placement tools are vital to the progress of your design, therefore ULTiboard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULTiboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTiboard's powerful TRACE SHOVE, and ROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the DOS extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTiboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTiboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ULTiboard's backannotation automatically updates your ULTicap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen/photo plots, dot matrix/laser or postscript prints and custom drill files.

ULTIboard/ULTicap evaluation system:
- all features of the bigger versions
- full set of manuals
- design capacity 500 pins

Price incl. S & H, excl. VAT: £95
Purchase price is 100% credited when upgrading to a bigger version. Also suitable for study & hobby.

ULTIboard PCB Design/ULTicap Schematic Design Systems are available in low-cost DOS versions, fully compatible with and upgradeable to the 16 and 32 bit DOS-extended and UNIX versions, featuring unlimited design capacity.

The European quality alternative

ULTImate Technology UK Ltd. • 2 Bacchus House, Calleva Park, Aldermaston Berkshire RG7 4QW • Fax: 0734 - 815323 • Phone: 0734 - 812030
To all our readers: thank you for your continued support during the past year and may peace be with you in the coming year.

58 CUMULATIVE INDEX 1994

108 PRODUCT OVERVIEW

APPLICATION NOTE

54 TLC247xx amplifier

AUDIO & HI-FI

44 Switched tone control
48 In-car audio amplifier - Part 3 (final)
91 Low-frequency tone control
103 Stand-alone S/PDIF copybit eliminator
104 Loudness control
105 Fast switch-off for power amplifier

COMPONENTS

9 ispStarter kit from Lattice
16 PSD3xx chips
32 Gyration
33 4th order Butterworth filters
45 Relay controlled potentiometer
46 8th order Bessel filter
91 General-purpose filters
101 50 Hz hand-stop filter
102 Programmable divider
102 Improved optoisolator
104 Comparator with unilateral hysteresis
106 Composite operational amplifiers

COMPUTERS & MICROPROCESSORS

83 PC interface for Casio organizer
93 S/P-to-SIM adaptor board
96 Discrete A-D converter for 8051
99 Centronics input

GENERAL INTEREST

26 1-to-3-phase converter
28 Op Amps
34 Auto start for older fax machines
34 NPN/PNP selector
38 Proximity detector
44 Fuse protector
45 Motor speed controller
46 Movement alarm
47 Battery adaptor for portable CD players
47 Magnetic-field detector

63 Pump for operational amplifiers
63 Electric-field detector
74 The Digital Solution
80 Temperature protection for resistive high-power loads
82 A/D real-time clock
88 Speed control for d.c. motors
89 Ionisation meter
90 Reversing indicator
92 Soft start for motors
94 Electret microphone for telephone mouthpiece
95 Presentation running lights
96 H-field sensor
98 Fax-PC interconnection
101 Power-on delay

POWER SUPPLIES & BATTERY CHARGERS

20 RF immune power supply
33 Step-up NiCd battery charger
62 Reflex-charging adaptor
66 Electronic know-how: Batteries
81 5 V regulator on 45 V
88 Soft start regulator

RADIO, TELEVISION & COMMUNICATIONS

35 30 m QRP CW transmitter
63 Switching voltage for polarizer
90 Dual-purpose LED display

TEST & MEASUREMENT

5 1000 Hz sine wave generator
62 Single-diode full-wave rectification
92 Spike detector
98 Differential probe
100 Current probe

MISCELLANEOUS INFORMATION

84 Components Select
110 Readers’ Services
111 Order forms
112 Terms of business
113 Switchboard
113 Books from Elektor Electronics
114 Buyers’ guide
114 Index of advertisers

Elektor Electronics is published monthly, except in August, by Elektor Electronics (Publishing), PO. Box 1414, Dorchester, Dorset DT2 8YH, England, The magazine is available from newsagents, bookshops and electronics retail outlets, or on subscription at an annual (1994/95) post paid price of £28.00 in the United Kingdom; air speeded: £35.00 in Europe; £44.00 in Africa, the Middle East and South America; £46.00 in Australia, New Zealand and the Far East; and $59.00 in the USA and Canada. Second Class Postage paid at Rahway N.J. Postmaster: Please send address corrections to Elektor Electronics, c/o Mercury Airfreight International Ltd Inc., 2323 Randolph Avenue, Avenel, New Jersey, N.J. 07001.
EASY-PC, Schematic and PCB CAD

Over 18,000 Installations in 80 Countries World-wide!

- Runs on: - PC/XT/AT/ 286/ 386/ 486 with Hercules, CGA, EGA or VGA display and many DOS emulations.
- Design:- Single sided, Double sided and Multi-layer (8) boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photo-plotter and N.C. Drill.
- Tech Support - free.
- Superbly easy to use.

Still Only £98.00!

Options: - 500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library £38, Gerber Import facility £98.

Electronic Designs Right First Time?

Integrated Electronics CAD

Affordable Electronics CAD

- EASY-PC: Entry level PCB and Schematic CAD. $195.00 £98.00
- EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR. $375.00 £195.00
- EASY-PC Pro’ XM: Extended Memory Version - Greatly increased capacity. $475.00 £245.00
- PULSAR: Digital Circuit Simulator ~ 1500 gate capacity. $195.00 £98.00
- PULSAR Professional: Digital Circuit Simulator ~ 50,000 gate capacity. $375.00 £195.00
- ANALYSER III: Linear Analogue Circuit Simulator ~ 130 node capability. $195.00 £98.00
- ANALYSER III Professional: Linear Analogue Circuit Simulator ~ 750 node capability. $375.00 £195.00
- Z-MATCH for Windows: NEW Windows based Smith-Chart program for RF Engineers . $475.00 £245.00
- FILTECH: Active and Passive Filter Design program. $275.00 £145.00

Prices from UK£195 / US$375

For full information, please write, phone or fax:-

Number One Systems

UK/EEC: Ref. EK, HARDING WAY, ST.IVES, CAMBS., ENGLAND, PE17 4WR.
Telephone UK: 0480 461778 (7 lines) Fax: 0480 494042
International +44 480 461778

USA: Ref. EK, 175 Granger Avenue, Los Altos, CA 94024
Telephone/Fax: (415) 968 9306

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.
Oscillators exist in a bewildering number of types and variants, each with its own, specific, features. A type known for its near-perfect sine wave output is the Wien bridge oscillator. This well-tried design is revamped here with a special trick to stabilize the output signal level.

Design by T. Giesberts

One of the areas of electronics which is known for its tremendous variety is oscillator design. You name an application and there is an oscillator design to fill the bill. There exist RC, LC and crystal oscillators, high and low frequency oscillators and high and low power types. The output signal is either a sine wave, a rectangular wave, or a sawtooth. Furthermore, many oscillators have output level and frequency controls. Either it exists, or it can be made.

If you want to do elementary tests on audio equipment (like fault finding and repair), you probably require a simple signal source capable of supplying a 'clean' sine wave. The ultimate, of course, is to have an oscillator with adjustable frequency, although one with a fixed frequency, say, 1 kHz, is also very useful. The classic Wien bridge type oscillator is just the thing for this application. The design, although simple, is well-tried, and enables a good quality sine wave generator to be built.

The Wien bridge consists of an RC series network and an RC parallel network. The two capacitors have the same value, and the same goes for the two resistors. At the central frequency, the phase shift is nought because then the two networks introduce an equal phase shift with opposing signs. The attenuation is then three times. Consequently, the circuit can be made to oscillate by adding a simple amplifier with a gain of x3, as illustrated in Fig. 1.

Filament control

Recapping the above, a sine wave oscillator based on the Wien bridge principle has few ingredients: two RC networks and an amplifier. Attractive as that may sound from a point of view of cost and component count, there are a few extra points to take into consideration if there are more than average demands on the shape of the sine wave produced by the circuit. To begin with, the amplifier used must be a near perfect type. Also, a smart control system is called for to make sure that sufficient gain is available to initiate and maintain the oscillation. However, the amplifier must not be overdriven.

Specifications

- **Frequency**: 1 kHz
- **Max. output voltage**: 8 V_rms
- **Distortion (THD+noise)**: <0.0003%
- **Supply voltage**: ±15 V
- **Current consumption**: approx. 10 mA

![Fig. 1. A Wien bridge oscillator consists of an RC series network, an RC parallel network, and an amplifier to overcome the attenuation at the 'null' frequency.](image)
because that, as is easy to understand, would cause 'damage beyond repair' to the beautiful waveshape you are after.

The first of the above points can be solved by using a good quality opamp in the amplifier. Since a wide range of excellent opamps is available these days, that need not be a problem. The second point, the control system, turns out to be unexpectedly simple as it can be realised by an ordinary lamp.

The circuit diagram of the oscillator is shown in Fig. 2. Arguably, the resemblance to Fig. 1 is striking. The Wien bridge proper consists of \(R_1, R_2, C_1\) and \(C_2\), and is arranged for a frequency of 1 kHz. Capacitors \(C_1\) and \(C_2\) are Siemens ‘MKT’ (metal theraphte-late) types which you will have to match for a tolerance of 1% or better to make sure that the circuit oscillates. If you want an exact output frequency of 1 kHz, these capacitors should have a (theoretical) value of 119.67 nF.

The amplifier is based on an opamp type OPA627. The required gain of about three times is defined by feedback network \(P_1 - R_3 - R_4 - L_{ai}\). In this network, the lamp acts as a positive temperature coefficient (PTC) resistance. The PTC is provided by the lamp’s filament, whose resistance is temperature dependent. When cold, the filament has a resistance of about 25 \(\Omega\), which doubles (roughly) when the normal operating temperature is reached. This characteristic is exploited here by incorporating the lamp in the feedback network. When the lamp is 'cold', the gain of IC1 is determined mainly by the ratio \(R_3/R_4\). As the output voltage rises, however, the current through the feedback network rises also, as does the resistance of the lamp. Consequently, the ratio of the network changes, causing the feedback to increase and the gain of IC1 to decrease. As a result, the output voltage drops, and the current through the lamp drops also, causing the gain of IC1 to rise again. After a short warming up period, the oscillator output level will settle at a stable value.

The electronic counterpart of the lamp in the lower branch of the feedback network is a preset, \(P_1\), in the upper branch. This preset allows the bridge to be 'balanced' accurately. The operation of the output level control system is further stabilized by an additional current source, \(R_5\), for the lamp. This resistor may have to be changed a little to match the type of lamp used. In the prototype of the oscillator, good results were achieved with a value of 3.3 k\(\Omega\). Should you find that the output voltage still rises a little after a few minutes, the value of \(R_5\) must be decreased. Likewise, a slowly decreasing output voltage calls for a somewhat

![Fig. 2. Modern electronics with a touch of nostalgia: a small lamp is incorporated in the oscillator's feedback network. The PTC characteristic of the lamp filament is exploited to obtain an effective automatic gain control.](image)

![Fig. 3. Spectrum analyser screendump. The THD+noise figure of the oscillator is extremely low, approaching the noise floor of the instrument.](image)
higher value of R_S. The optimum value can be found by trial and error only.

Good specifications

The use of a lamp as a PTC device demands that the resistors around IC_1 have relatively low values. Obviously, a reasonable current has to flow through the lamp to make it act as a PTC device, and that can only be achieved with low value resistors.

An advantage of low-value resistors is that their noise contribution is low. On the down side, an opamp has to be used which is capable of driving a load of 600 Ω (minimum) at a symmetrical supply voltage of ±15 V. That is not a problem for the OPA627 opamp here, which has FET inputs, a low noise factor (5.6 nV/√Hz at 1 kHz), a low input offset (max. 100 μV) and a very low distortion. The latter specification is verified by the THD+noise characteristic shown in Fig. 3, produced by our laboratory spectrum analyser. The measurement was made at an oscillator output voltage of $8 \, V_{PEAK}$ and a bandwidth of 22 Hz to 22 kHz. The actual THD consists almost entirely of the second and third harmonics, which together tot up to a remarkably low 0.00014%. The total THD+noise specification remains below 0.0003%, which is not bad for such a simple circuit.

Unfortunately, the OPA627 is a fairly costly device. If you can live with a slightly higher distortion, the OPA627 may be replaced by the (pin compatible) NE5534.

Construction and adjustment

The circuit is so simple that a printed-circuit board is probably not necessary. The introductory photograph illustrates that the sine wave oscillator is fairly simple to build on a piece of veroboard. Since the current consumption of the circuit is a modest 10 mA or so, a small and simple symmetrical supply may be used. The smallest available mains transformer with a 2x15-V output, a bridge rectifier and two three-pin voltage regulators type 78L15 and 79L15 are perfect for the present application.

Take your time to adjust P_1. In practice, good results were obtained by adjusting the preset for the highest possible output level. That setting should also produce the lowest distortion, while it prevents the output voltage from rising to unexpected, and undesirably high, levels after the control system has settled.
Low cost data acquisition for IBM PCs & compatibles

Easy to use data acquisition products that allow your PC to be used as a range of useful test and measurement instruments, or as an advanced data logger. Installed in seconds they simply plug into the parallel port (except the ADC-16 which connects to the serial port). They require no power supply and take up no expansion slots. Each comes with a comprehensive manual. Software drivers are included for users who wish to write their own software. Software supplied on 3.5" disk.

PicoScope

Virtual instrument software. Storage scope with trigger, timebase, rulers and offset. Real time spectrum analysis with min/max frequency and signal averaging. Multiple meters on screen (digital and bargraph). Printer and file handling support.

PicoLog

Advanced data logging software package. Collect, store, display and print data from 1 sample per ms to 1 per day. Record average, min/max or scaled values (linear, equation, table look-up). Report types: monitor (with min/max alarms), y-t graphs, x-y graphs, tabulation

Prices

<table>
<thead>
<tr>
<th>ADC-10 with PicoScope</th>
<th>£49</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC-11 with PicoScope</td>
<td>£85</td>
</tr>
<tr>
<td>ADC-12 with PicoScope</td>
<td>£85</td>
</tr>
<tr>
<td>ADC-16 with PicoLog</td>
<td>£115</td>
</tr>
</tbody>
</table>

ADC-10/12

Single channel of analog input
8 bit resolution 22kHz sampling (ADC-10)
12 bit resolution 18kHz sampling (ADC-12) (sampling speed based on 33MHz/386PC)
0-5V input range
BNC input allows use of scope probes

NEW ADC100 Virtual Instrument

Dual Channel 12-bit resolution

The ADC 100 offers both a high sampling rate (100kHz) and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. A flexible input range (-200mV to +20V) allows the unit to connect directly to a wide variety of signals.

- Digital Storage Scope
- Chart Recorder
- Spectrum Analyser
- Data Logger
- Frequency Meter
- Voltmeter

ADC-100 with PicoScope £199
ADC-100 with PicoScope & PicoLog £209

Pico Technology Ltd. Broadway House, 149-151 St Neots Road, Hardwick, Cambridge CB3 7QJ, UK
TEL: 0954-211716 FAX: 0954-211880

Produced and published by ELEKTOR ELECTRONICS (Publishing)

Editor: Len Seymour
Technical Editor: J. Butting

Editorial & Administrative Offices:
P.O. Box 1414
DORCHESTER DT2 8YH
England
Telephone: (01305) 250 995 (National) or +44 1305 250 995 (International)
Fax: (01305) 250 996 (National) or +44 1305 250 996 (International)

U.K. Advertising Office:
3 Crescent Terrace
CHELTENHAM GL50 3PE

Telephone: (01242) 510 760
Fax: (01242) 226 626

International Advertising Office:
Elektuur BV
P.O. Box 75
6190 AB BEEK
The Netherlands
Telephone: +31 46 38 94 44
Telex: 56617 (elekt n1)
Fax: +31 46 37 01 61

Director: M.J. Landman
Editor-in-Chief/Publisher: P.E.L. Kersemakers
Commercial Manager: K. van Noordenne

Subscriptions:
World Wide Subscription Service Ltd. Unit 4, Gibbs Reed Farm
Pashley Road
TICEBURY TNS 7NE
Telephone: (01589) 209 0657 (National) or +44 1589 209 0657 (International)
Fax: (01589) 209 0616 (National) or +44 1589 209 0616 (International)

Head Office:
P.O. Box 75
6190 AB BEEK
The Netherlands
Telephone: +31 46 38 94 44
Telex: 56617 (elekt n1)
Fax: +31 46 37 01 61

Director: M.J. Landman
Editor-in-Chief/Publisher: P.E.L. Kersemakers
Commercial Manager: K. van Noordenne

Distribution:
SEYMOUR
1270 London Road
LONDON SW16 4DH

Printed in the Netherlands by NDB, Zoeterwoude

Overseas editions:
FRANCE
Elecotr satl
Les Trois Tilleuls
B.P. 59, 59850 NIEPPE
Editor: G.C.P. Raedersdorf

GERMANY
Elektro Verlag GmbH
Siiterfeldstrasse 25
5100 AACHEN
Editor: E.A. Krempelsauer

GREECE
Elektro EPE
Kariiskaki 14
16673 Voula-ATHENA
Editor: E. Xanthoules

INDIA
Elektro Electronics Pvt Ltd
Chhotanpur Building
52C, Proctor Road, Grant Road (E)
BOMBAY 400006
Editor: C.R. Chandran

ISRAEL
Elektrocal
PO Box 41096
TEL AVIV 61410
Publisher: M. Avraham

NETHERLANDS
Elektuur BV
Peter Treepoelstraat 2-4
6191 VK BEEK
Editor: F.H.M. Baggen

POLAND
Elektro Elektronic
02-777 Warszawa 130
Skoryka Pocztowa 271
Editor: W. Marciniak

PORTUGAL
Ferreira & Bento Ltda.
R.D. Estefani, 32-1º
1000 LISBOA
Editor: F. Ferreira de Almeida

SPAIN
Resistor Electronica Aplicable
Calle Maudes 15 Entlo C
28003 MADRID
Editor: Agustin Gonzales Buelta

SWEDEN
Electronic Press AB
Box 5305
14105 HUDDINGE
Editor: Bill Cedrum
DATA ACQUISITION WITH THE PC

TiePie engineering manufactures a complete range of computer-controlled measuring instruments. Connecting these units to a PC (MS DOS 3.0 or higher) results in a number of comprehensive test instruments:

- oscilloscope;
- voltmeter;
- spectrum analyzer;
- frequency meter;
- transient recorder.

All measured data can be stored on disk or run off for documentation. Because of the many trigger possibilities, a variety of signals can be measured, while the powerful software enables a multitude of measurements to be carried out in a straightforward manner. Application areas include: service; medical research; automatic test systems; research and development; and education.

LOW COST: HANDYPROBE

Connect the HANDYPROBE to the parallel printer port of the PC and start the software. Measuring can be carried out at once. The HANDYPROBE does not need an external power supply. Some technical parameters:

- 0.5-400 V software select input range;
- one input channel;
- 8 bits resolution (overall accuracy 2%);
- A complete software program consisting of a digital storage oscilloscope, spectrum analyzer, voltmeter and a transient recorder is provided. The HANDYPROBE is eminently suitable for servicing and educational purposes.

MUST FUNCTIONAL: TP5008

The TP5008 is an interface card with two input channels. This output in combination with the two inputs may be used for the setting up of a complete control loop. The output may also be used as a function generator. The TP5008 has a resolution of 8 bits and a sampling rate of 200,000 samples/sec (200 kHz). The input range may be set to 0.5-20 V full-scale deflection. The output range covers 1.25-2.5 V. The TP5008 is fitted with BNC connectors and is delivered complete with a user manual and software. Separately available are 1:1-1:10 probes and 1:100 oscilloscope probes.

BEST PERFORMANCE: HANDYSCOPE

The HANDYSCOPE is connected to the parallel printer port. This makes it possible to carry out measurements with a laptop or notebook PC. Because of its high resolution (12 bits), the HANDYSCOPE is a very accurate instrument. The measuring rate is 100,000 samples/sec. Either of the two channels can be set independently over a range of 0.5-20 V (with a 1:10 probe up to 200 V). The advanced software enables many measurements to be carried out. Two probes (switchable 1:1-1:10) are provided. The HANDYSCOPE is constructed as a small table model with two BNC connectors. The length of the cable linking the PC and the HANDYSCOPE is 1.8 m, which can be extended to 3.8 m.

VERY HIGH SPEED: TP208

The TP208 is an interface card with a measuring speed of 2x20 Megasamples/sec (8 bits). Phenomena shorter than one millionth of a second can still be measured well. The completely digitized triggering ensures very stable triggering with many trigger possibilities. The TP208 has an input range of 5 mV/div to 20 V/div in 12 steps and an auto calibration function. Since both channels may be sampled simultaneously, phase differences can be measured very accurately. Even single phenomena can be measured since each channel has a 32 KByte memory. Comprehensive software is provided.

Interested? Then write or fax for a FREE demo diskette to

INSTRUTEK (UK)

28 Stephenson Road
Industrial Estate
St Ives, Cambs PE17 4WJ
England

Telephone (0480) 460 028
Fax (0480) 460 340

(All prices are exclusive of VAT and P&P)
Recent developments in electronics allow logic components to be programmed ‘in-circuit’. A most interesting spin-off of this trend is that it is now possible, for the first time, to design your own logic parts as one-offs for small-scale applications.

ispSTARTER KIT FROM LATTICE

Like so many electronic components, those that fall into the 'programmable logic' category have advantages as well as disadvantages. The advantage is that users of special and 'made-to-measure' components can profit from the law of production volume. Because of the high production numbers these parts remain affordable even in small quantities. On the down side, any type of programmable logic invariably seems to be tied up with special programming systems that essentially turn a 'blank' device into one tailored to the application. Apart from special hardware, programming also requires dedicated software.

The ispLSI series from Lattice Inc. heralds a new generation of logic components which do not have the traditional drawbacks of programmable logic. The great thing about ispLSI is that it offers you all the advantages of programmable logic without having to purchase costly programming equipment. In the case of ispLSI components, a simple cable and some hardware fitted into a 25-pin sub-D plug are used to link an MS-DOS PC to a special connector on the application board. All signals needed to program the ispLSI device are conveyed via this link. No programmer, no special voltages.

This article describes the hardware and software which are needed to get going with ispLSI (In-System Programmable Large Scale Integration) logic, and in particular the ispStarter Kit marketed by Lattice. A simple ispLSI programmer is described in another article in this issue. That article also provides a general background to the exciting ispLSI technology.

Get started with ispLSI

Figure 1 shows the circuit diagram of a small development system based on an ispLSI1016, IC1. The special connector which is needed to program the IC is hooked to header K1. All signals on this connection are fed directly to the ispLSI device. The function of the signals on this 8-way connector is described in the 'Low-cost ispLSI programmer' article in last month's issue. For the time being, it is sufficient to know that the signals originate from a compact programmer interface which is connected to the Centronics port of a PC. With a few exceptions, all other processor pins are available for I/O functions. Pins 37-44 (I/O16 through I/O23) are connected directly to the segment terminals of six LED displays. The I/O lines on pins 3 through 8 (I/O24 through I/O29) are used to enable and disable each LED display via a switching transistor. The absence of current limiting resistors may strike you as odd, but bear in mind the duty factor of 1/6 (0.16) of the display drive signals. This can be done with impunity as long as four or more displays are used. If fewer displays are used, the multiplex ratio must still be 1/6. Alternatively, connect resistors in series with the display segments.

The non-used I/O lines of the

ispStarter Kit Contents

- **Software**
 - pD1016: PDS software (pLSI/ispLSI development system) for ispLSI1016
 - ispGAL: Download software
 - ispGD5: Compiler and download software
 - ispCODE: ANSI-C compiler source programming software

- **Datasheets**
 - ispLSI1016
 - ispGAL22V10
 - ispGD22/18/14

- **Samples**
 - ispLSI1016-60LJ
 - ispGAL22V10-5LJ
 - ispGD14-7

- **Hardware**
 - ispDownload cable

By our editorial staff.

Source: Lattice Semiconductor Corporation.
Experimental extensions. The printed circuit board of which the artwork is shown in Fig. 2. This board has a large prototyping area which has plenty of space to build your own experimental extensions. The printed circuit board is available ready-made through the Elektor Electronics Readers Services.

The construction of the board is entirely straightforward. Fit a socket for the ispLSI device (IC1), taking good care not to fit it the wrong way around. The same goes for the other components. Connectors K1 through K4 are single-row pin headers. The circuit is best powered by a mains adapter with d.c. output. The adapter is connected to PCB terminal block K5. Do take care not to reverse the + and - wires on this connector. If you do, components will be damaged in the circuit.

The board is aimed at making you acquainted with ispLSI programming. Unfortunately this clock is a little fast. In spite of the many registers in the ispLSI1016 it is not possible to derive a 1-second ‘tick’ from the 16-MHz device clock. This is, however, possible if an ispLSI1032 is used. Unfortunately, that device is not supported by the ispStarter Kit. However, the fact the 1016-based clock is a little fast should not distract from the usefulness of the example, which is first and foremost aimed at making you acquainted with ispLSI programming.

The time is displayed on LD3-LD6. A jumper at pin 15 allows you to select between 12-hour and 24-hour indication.

The clock is adjusted with two press-keys. It is advanced slowly by pulling pin 17 of the ispLSI1016 to ground. That is done with a press-key. Similarly, the ‘fast’ setting is accomplished with the aid of the press-key connected to pin 16. The pulses to be counted originate from pin 3 of IC2, and are applied to pin 20 of IC1.

The example programs on disk

Fig. 1. Circuit diagram of the experimenting board on which ispLSI components can be programmed without additional hardware. Together with the ispStarter Kit supplied by Lattice, this board forms a powerful ispLSI development system.
COMPONENTS

clearly illustrate how to go about pro-
gramming ispLSI devices. However, to
actually be able to use the program,
you also need software that forms part
of the ispLSI Starter Kit supplied by
Lattice.

The software

The ispStarter Kit supplied by Lattice
contains development software for the
ispLSI1016 (pDS software; pLSI
Development System), software for the
ispGAL22V10 (yes, a GAL in isp tech-
nology), an ispGDS (isp generic switch)
Compiler with downloader, and an
ANSI-C compiler with source codes for
the download routines. The kit also
contains the cable needed to connect
the experimenting board to your PC.
Plus there’s datasheets and one sam-
ples each of the ispLSI1016,
ispGAL22V10 and ispGDS22/18/14
devices. A really wonderful, and afford-
able, kit which allows you to get
started straight away.

The development software can be
used on any PC running Windows 3.0
or 3.1. The flow diagram in Fig. 3
shows the different steps that make up
the design process. To begin with, the
desired circuit is divided into logic
blocks (GLBs, Generic Logic Blocks) and
I/O (input/output) cells. This step
is necessary to check beforehand if the
design can actually be fitted into, say,
an ispLSI1016. The logic functions of-
tered by this device are listed in
Table 1 in last month’s introductory
article on ispLSI. The standard blocks
available are:
- Generic Logic Blocks (GLBs);
- Output Routeing Pools (ORPs);
- I/O cells:
- a clock signal distribution network;
- a connection matrix.

The basic functions of these blocks are
discussed in the ‘Low-cost ispLSI
Programmer’ article presented in last
month’s issue of Elektor Electronics.
Use the software to formulate the
logic relations associated with the
GLBs and the I/O cells. The graphics
editor enables these functions to be

COMPONENTS LIST

 Resistors:
R1-R6 = 560Ω
R7 = 10kΩ
R8 = 10MΩ
R9 = 1kΩ

 Capacitors:
C1,C2 = 33pF
C3 = 22μF 16 V radial
C4,C5 = 100nF
C6 = 10nF

 Semiconductors:
T1-T6 = BC557B
IC1 = ispLSI1016 (Lattice Inc.)
IC2 = 74HCT4060
IC3 = 7805

 Miscellaneous:
K1-K4 = 10-way header, single-row
K5 = 2-way PCB terminal block
X1 = 16MHz crystal
LD1-LD6 = HD1105-0 (Siemens)
PCB and software on disk, set order
code 940093.
PCB (separately): order code 940093-1.
Software (separately): order code
946204-1.
Prices and ordering information on
page 110.

Fig. 2. Track layout and component mounting plan of the printed circuit board designed for
the ispLSI experimenting board. Board available ready-made, see page 110.
The ispStarter Kit mentioned in this article is available from Lattice distributor MicroCall Ltd., 17 Thame Park Road, Thame, Oxon OX9 3XD, England. Tel. (0844) 261678, fax (0844) 261939.

Fortunately is much more expensive than the ispLSI Starter Kit.

(940093)

The ispStarter Kit is from Lattice Inc. and its distributors.

The ispStarter Kit contained in this article is available from Lattice distributor MicroCall Ltd., 17 Thame Park Road, Thame, Oxon OX9 3XD, England. Tel. (0844) 261678, fax (0844) 261939.
<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Description</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC00</td>
<td>NAND Gate</td>
<td>4-Input CMOS</td>
<td>$2.50</td>
<td></td>
</tr>
<tr>
<td>74HC02</td>
<td>NOR Gate</td>
<td>2-Input CMOS</td>
<td>$2.75</td>
<td></td>
</tr>
<tr>
<td>74HC04</td>
<td>2-Input OR</td>
<td>CMOS</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>74HC08</td>
<td>2-Input AND</td>
<td>CMOS</td>
<td>$1.25</td>
<td></td>
</tr>
<tr>
<td>74HC09</td>
<td>2-Input NAND</td>
<td>CMOS</td>
<td>$1.75</td>
<td></td>
</tr>
<tr>
<td>74HC10</td>
<td>XOR Gate</td>
<td>3-Input CMOS</td>
<td>$2.25</td>
<td></td>
</tr>
<tr>
<td>74HC12</td>
<td>4-Input OR-AND-OR-OR Gate</td>
<td>CMOS</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>74HC13</td>
<td>4-Input OR-AND-OR-OR Gate</td>
<td>CMOS</td>
<td>$3.50</td>
<td></td>
</tr>
</tbody>
</table>

DIGITAL INTEGRATED CIRCUIT SPECIALIST

- **Both CMOS and TTL versions are available.**
- **Utilize ELEKTOR ELECTRONICS for your project needs.**
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC</td>
<td>Custom Parts</td>
<td>Ceramic</td>
<td>0.34</td>
</tr>
<tr>
<td>8048600-50MHz</td>
<td>8048600-50MHz</td>
<td>Ceramic</td>
<td>0.35</td>
</tr>
<tr>
<td>1140983</td>
<td>1140983</td>
<td>Ceramic</td>
<td>0.36</td>
</tr>
<tr>
<td>I/O CARDS with ISA TRIDENT TV04</td>
<td>890013</td>
<td>Ceramic</td>
<td>0.38</td>
</tr>
<tr>
<td>SVGA C 48</td>
<td>60140-16</td>
<td>Ceramic</td>
<td>0.40</td>
</tr>
<tr>
<td>BF421</td>
<td>Ceramic</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>60243</td>
<td>Ceramic</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>005600</td>
<td>Ceramic</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>6054613</td>
<td>Ceramic</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>602135</td>
<td>Ceramic</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>802124</td>
<td>Ceramic</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>602135</td>
<td>Ceramic</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>6054613</td>
<td>Ceramic</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>88170</td>
<td>Ceramic</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ceramic</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

Please mention ELEKTOR ELECTRONICS when contacting advertisers.
Microprocessors are powerful devices and it is, therefore, not to be wondered at that their popularity has grown so fast in such a short time. A disadvantage remaining until recently was the need of several more ICs to design a complete microprocessor system. Since more components require more space and result in higher costs, a demand arose for more powerful system components to simplify the design of a microprocessor circuit. US chip manufacturer Wafer Scale has responded to this need with the introduction of its PSD3xxx family.

The chips in the PSD3xxx family contain flexible I/O ports, a PLD, Page Registers, EPROM (choice of 32 kbyte, 64 kbyte, or 128 kbyte), 2 kbyte static RAM and some logic circuitry to make connection with the microprocessor—see Fig. 1. Because of the power of the new chips, the design of a microprocessor system is brought down to two components (since the latch for demultiplexing of the address and data buses is no longer needed). A similar function would until recently have required 8 to 12 discrete ICs. The chips have been designed to work with a variety of microprocessor ICs, including, for example, the 68HC11 as well as the Z80. The PSD3xxx family may be split into two branches: the PSD31x, intended for 8-bit processors, and the PSD3x for 16-bit processors.

A block diagram of one of the new chips, the 16-bit PSD30x, is given in Fig. 2. At the left are all the functions needed to make connection with a microprocessor; and at the right, the I/O functions. The memory banks are in the centre.

Inputs AD0-AD7 reach the nucleus of the IC via latches, which can be arranged to store data. This obviates the need of a separate register such as a 74HCT373 or 74HCT573. In the transparent mode, the latches function as buffers. However, the latched mode is more usual, for example, with the 8031. Data storage in the latches at the input of the circuit is then accomplished by an ALE instruction (in Motorola processors better known as Address Strobe or AS). The polarity of the inputs is determined by the operator as required. As long as the ALE or AS signals is valid, the input stage is transparent. When this signal becomes inactive, the data are stored in the latches.

The Programmable Address Decoder (PAD) plays an important role. It will be seen in Fig. 2 that address lines A17–A19 and, if desired, A19–A13, are connected directly to the PAD. Other input signals applied to the decoder are RD(E), WR(R/W) and ALE (AS). Programming of the PAD gives the user the opportunity of selecting EPROM banks internally via the ES_2–ESS_1 lines. Also, there is a selection signal for the static memory, RS_0.

Port C is a 3-bit I/O port with two functions: it can take internal signal CSS_0–CSS_{10} outside, or it can receive address lines A13–A15 and pass these to the PAD. Moreover, address line A19 can be passed directly to the PAD. This shows that the PAD is capable of arranging an entire address decoding up to 1 MHz without any external components.

Ports A and B are 8-bit ports that can be used by the operator as conventional I/O ports. Figure 3 shows the special mode in which I/O ports A, B and C may be used. This is especially useful if an 8-bit processor system uses a multiplexed address and data bus (ADB_0–ADB_{15}). Address lines AS_5–AS_{15} are then available as normal and may be applied to the address inputs. Ports B and C are then available as I/O functions or for passing AS_{0}–AS_{1} or ADB_0–ADB_1 lines (track mode) respectively.

Apart from functioning as an I/O port, port B can also take the chip-select signals of the PAD outside. Port C can then be used to obtain more inputs, or for writing additional address lines AS_{16}–AS_{18}, or for taking chip-select lines CSS_0–CSS_{10} outside.

Address lines

The 16 address lines of a multiplexed bus are stored in one or two 8-bit wide latches, depending on the type of processor. With non-multiplexed
The ports in the PSD3xx may have several functions. Buses, the inputs remain transparent. Address lines A1–A10 go directly to the static memory, while address lines A11–A11 are applied to the EPROM. The EPROM banks are selected via selection lines ES0–ES7, which originate in the PAD. The static memory is selected by the RS0 signal that is also generated by the PAD. Address lines A11–A15 and optional address lines A16–A19 are used in the PAD array.

Internally, the memory banks are word wide (16 bits); provision is made by an isolation buffer for splitting this into two bytes. The operation of the buffer is enabled by the configuration of the PSD. If this is configured to work in the 16-bit mode, the data in the two blocks (D0–D7 and D8–D15) are buffered. If it is set to the byte-wide mode, the 8-bit wide data stream is controlled with BHE and A0. Which of the two bytes is addressed depends on the level of A0.

The EPROM section is divided into eight banks, which are selected by ES0–ES7. These signals originate in the PAD. Figure 4 shows a detailed sketch of the construction of the PAD. Depending on the choice of the user, this section of the PSD generates the selection signals from the address signals and some control signals. The PAD is a reprogrammable fuse array with an EPROM-like structure. Used with Intel microprocessors, the PAD employs, apart from inputs A11–A19, signals ALE, RD and WR. With Motorola processors, signals R/W, AS and E are used. Inputs CS1 and Reset are used to deselect the PAD, a state that is desired during power-down and initialization. In the PSD301, signals ES0–ES7 are used to address

Fig. 3. The ports in the PSD3xx may have several functions.

Fig. 4. The array with which the PAD is programmed.

Fig. 5. Structure behind a single I/O line of port A.

Fig. 6. Structure behind a single I/O line of port B.
Two new books from Elektor Electronics

Build your own Electronic Test Instruments
In the testing and inspection of electrical and electronic equipment a variety of electronic test instruments is required. Most of these instruments are, of course, commercially available. However, for all kinds of reason (cost, challenge) many researchers, enthusiasts and experimenters like to build such instruments themselves.

This book may help them: it contains designs for 17 measuring instruments, seven generators and analysers, ten miscellaneous instruments and a number of ancillaries and auxiliaries. The designs range from a simple multicore cable tester to a sophisticated logic analyser. Most of the designs contain a special printed circuit, full-scale drawings (with a few exceptions) of which are given in an appendix to aid the construction.

Beginners in electronics may find the first chapter, dealing with measurement techniques, a good introduction to the fascinating worlds of electronic test and measurement. Others may find in this chapter many worthwhile refreshers on measurement techniques.

ISBN 0 905705 37 8
Price £ 15-95
Published December 1994

Orders other than from private customers, for instance, bookshops, schools, colleges, etc. should be sent to Gazelle Book Services Ltd, Falcon House, Queen Square, Lancaster, England LA1 1RN.

Elektor Electronics (Publishing). PO Box 1414, Dorchester, Dorset, England DT2 8YH.

the EPROM banks. There is always one product term available per EPROM bank. A product term, RS0, is also used for selecting the static memory.

The address and control lines of the EPROM are split into a block capacity of 4 to 16 kbyte. The exact location of the block in the address range of the processor can be decided freely by the user. The 2 kbyte available for the static RAM can be selected in a similar manner.

Other product terms provided by the PAD are CSIO-PORT, CSADIN, CSADOUT1 and CSADOUT2. The single product term CSIOPORT determines the base address of ports A and B. An offset must be added to this base address to reach the various registers. Table 1 shows the structure of this division.

Port structure
The complete port section of the PSD3xx chips contains three registers: A (8 bits), B (8 bits), and C (3 bits). These registers support various I/O functions. For example, ports A and B may be arranged as 8-bit I/O ports that send data to, and receive data from, external components. Figure 5 shows the structure of a single cell in port A, while Figure 6 shows that of a single cell in port B. Writing data to a port is the same as writing data to a RAM location.

Although a port can not be addressed at bit level, it is possible to determine of each I/O line whether it is arranged as input or as output. Any combination of inputs and outputs (for example, PA3–PA5 input and PA6 and PA7 output) is thus possible.

Whether an I/O pin is arranged as an input or an output can be determined with the data direction register. Since this register operates dynamically, it is possible during the execution of a program to adapt the function of the I/O pins of port A and/or port B.

After a reset, all bits in the data direction register are low level, that is, the ports are set as inputs. If in the application only inputs are used, nothing more needs to be done. If outputs are wanted, the associated bits must be made high.

<table>
<thead>
<tr>
<th>Name of register</th>
<th>Offset w.r.t. base address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin register port A</td>
<td>+2 (byte)</td>
</tr>
<tr>
<td>Pin register port B</td>
<td>+3 (byte)</td>
</tr>
<tr>
<td>Direction register port A</td>
<td>+4 (byte)</td>
</tr>
<tr>
<td>Direction register port B</td>
<td>+5 (byte)</td>
</tr>
<tr>
<td>Data register port A</td>
<td>+6 (byte)</td>
</tr>
<tr>
<td>Data register port B</td>
<td>+7 (byte)</td>
</tr>
<tr>
<td>Pin register ports A and B</td>
<td>+2 (word)</td>
</tr>
<tr>
<td>Direction register ports A and B</td>
<td>+4 (word)</td>
</tr>
<tr>
<td>Data register ports A and B</td>
<td>+6 (word)</td>
</tr>
</tbody>
</table>

Table 1. Addressing of the ports.
THE RENOWNED MXF SERIES OF POWER AMPLIFIERS • FOUR MODELS: MXP200 (100W + 100W) • MXP400 (200W + 200W) • MXP600 (300W + 300W) • MXP900 (450W + 450W)

FEATURES: • Independent power supplies with two toroidal transformers • Twin L.E.D. Vu meters • Level controls - Plus or minus 20dB • Cross fade • 3 switch, 6 Channels with individual faders • Speed control, DJ Mic with talk-over effects • 6 Channels with 3 switch, 6 levels per channel • Plus or minus fader, Cue Headphone Monitor • Sound Effects, useful combinations of the following inputs: - 3 turntables (mag), 3 sets of cassette decks, 4 sets of tape decks, 8 keyboards, 12 DJ Mic's, plus cross fade, Cue Headphone Monitor. 8 switch, 6 Channels with individual faders • LED Vu Meters • L & R graphic equalisers with bar graph

STEREO DISCO MIXER SDJ4000E

- ECHO & SOUND EFFECTS
- Stereo disco mixer with 2 x 7 band 1 Dynamic equaliser, 3 x 3 channel with 1 graphic LED Vu meters. Many outstanding features: individual faders per channel, high brightness LED indicator, XLR connectors and volume, channel switch, remote cue monitor system. The discos of house music, R&B, Lounge or Discothèques. Price £117.44 + £5.00 P&P

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved reaction and a higher efficiency, a very low distortion (0.005%) and a lower distortion level than ordinary dynamic tweeters. As a crossover is not required the Piezo tweeter can be added to existing speaker systems of up to 100 watts (more if two are put in series). FREE EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

PIEZO ELECTRIC TWEETERS - MOTOROLA

THE NEW GUIDE TO LOUDSPEAKERS

A new range of quality loudspeakers, designed to take advantage of the latest speaker technology and enclosure designs. Both models utilise studio quality cabinets with factory fitted grilles, wide dispersion constant directivity horns, extruded aluminium corner protection and steel ball corners, complimented with heavy duty black covering. The enclosures are fitted with standard 775mV inputs, open and short circuit protection and hi-level inputs. Price £34.99 + 50p P&P.

THREE SUPERSE HIGH POWER CAR STEREO BOOSTERS AMPS

- T SERIES 110W (75 + 75) (75W + 75W) Street, 120W (100W + 100W) Street
- T SERIES 110W (75 + 75) (75W + 75W) Street, 120W (100W + 100W) Street
- T SERIES 110W (75 + 75) (75W + 75W) Street, 120W (100W + 100W) Street

Features: • Stereo bridged mono + Cross • High & low level inputs • L & R level controls • Remote on/off Switch • Speaker & terminal protection

IN-CAR STEREO BOOSTER AMPS

THOUSANDS PURCHASED BY PROFESSIONAL USERS

OMF 003 STEREO 3-WAY CROSS-OVER

Advanced 3-Way Stereo Active Cross-Over, housed in a 19" x 1U case. Each channel has two level controls, high & low level inputs with rear 5 Line for CD, Tape, Video etc.

PRICE £117.44 + £5.00 P&P
RF IMMUNE POWER SUPPLY

Transistorized RF power amplifiers and mobile transceivers require mains power supplies capable of supplying very high currents while remaining immune to strong RF fields. The PSU proposed in this article supplies an output voltage of 13.8 V with a capacity of up to 10 A.

MAIN SPECIFICATIONS
- Output voltage: 13.8 V (nom.)
- Output current: 10 A (max.)
- Immune to RF fields
- Short-circuit proof
- Thermal protection
- Mains filter
- Passive cooling

Design by K. Walraven

DESIGNING a power supply for a transmitter or RF power amplifier is by no means straightforward. The high frequencies produced in these circuits easily upset the operation of an ordinary power supply, with disastrous results. Stray RF signals which end up in the power supply can cause voltage fluctuations which in turn give rise to spurious transmitter output products like 'splatter' (SSB transmitters) and frequency drift (CW transmitters). Such spurious products are, obviously, undesirable, and may cause severe interference in other equipment. The matter of RFi (radio frequency interference) is now a problem area where radio amateurs, regulating authorities and manufacturers of audio/video equipment meet. In not a few cases, a badly designed power supply, rather than the transmitter proper, proved to be the cause of serious RFi problems.

A good transmitter power supply must meet a number of strict requirements: the output voltage must be adjustable to 13.8 V; an output current of more than 10 A is desirable; a short-circuit protection must be available; and the PSU must remain immune to very high RF signal levels as they may be present in a radio amateur's shack, or near an antenna.

Design considerations

From a point of view of economy and simplicity it is useful to build the power supply on the basis of one or more integrated voltage regulators. Unfortunately, regulators which meet all of the above requirements are virtually non-existent, mainly on account of the problem of cooling. High-power regulators are usually supplied in TO-220 packages. Assuming that a reasonably sized heat-sink is used with a thermal resistance of 1 K/W (max.), such an IC may dissipate about 30 W. Consequently, the voltage drop across the device must remain below 3 V at a load current of 10 A. That more or less forces one to use a pre-regulation device to ensure a regulator input voltage which is only a couple of volts above the desired output voltage. Obviously, the voltage regulator(s) used must then be low-drop types, because a difference smaller than 3 V is far too low for most normal voltage regulators to operate properly. Unfortunately, adding a preregulator adds considerably to the cost and complexity of the circuit.

An alternative solution

The fact that the dissipation of a typical TO-220 style regulator is limited to about 30 W forces one to think of alternative ways to design the supply. A solution has been found in parallel connection of a number of regulators. In the present supply, whose circuit diagram is shown in Fig. 1, four type LM350T regulators are used. Provided the output current is distributed equally across the four ICs, each of these supplies a current of 2.5 A for a total output current of 10 A. Consequently, the maximum dissipation is no longer a limiting factor because the maximum drop across each regulator is 12 V at 2.5 A output current, which gives plenty of headroom for the desired regulation span.

Connecting four voltage regulators in parallel is unfortunately not without problems. The biggest problem to cope with is device tolerance caused by inaccuracies in the manufacturing process (note, however, that the tolerance is accurately defined). Because of this tolerance, the IC output voltages will never be identical, so that equal current distribution among the four ICs will never
come about just like that.

The present circuit has two provisions to combat the effects of output voltage differences between the regulator ICs. Presets P1, P2 and P3 allow the output voltage of IC2, IC3 and IC4 to be matched to that of IC1. The output voltage of IC1 is fixed at 13.8 V (theoretically) by a resistor network consisting of R1 through R5. The exact adjustment of the output voltage has to be done once only. The output voltage is not determined exactly by design and component values because of the tolerances of the components are fairly large. For instance, the LM350 stabilizes the voltage between its output and its adjustment input to a nominal value of 1.25 V. According to the datasheets, however, this voltage can vary between 1.20 V and 1.30 V. This sort of tolerance simply means that manual calibration can not be avoided. The present supply is calibrated by careful adjustment of the value of R4 (default: 2.7 kΩ). Assuming IC1 has its reference voltage at the centre of its tolerance window, the default value results in an output voltage of 13.6 V. If the value of R4 is lowered, the output voltage is lowered also. If it is increased, the output voltage increases. At a reference voltage of 1.25 V, a value of 2.94 kΩ (E96 1% series) yields the correct output voltage.

Once IC1 has been adjusted to give the desired nominal output voltage of 13.8 V, presets P1, P2 and P3 are used to match the output voltages of the other three regulators to that of IC1. The span of the presets is normally sufficient to compensate the tolerance on the voltage regulators. Should the span be too small, the value of R2 and R3 may be increased to 2.2 Ω.

The equal current distribution across the regulators is further aided by inserting small resistances, Rs, in the regulator output rails. Do not bother to scour for these resistors on the printed circuit board, because they are not there. Since the value of Rs must be very small, it was decided to exploit the resistance of the output cable for that purpose. Each regulator output is connected to the load via its own pair of wires. The four ground
wires must be as thick as possible. Remember, the series resistance is only required in the 'positive' wire. This should have a length of about 30 cm, and consist of ordinary flexible, insulated wire with a diameter of 0.7 mm. That produces a resistance of about 30 mΩ, which is ample for the desired equalizing effect. If a shorter connecting wire is desired, it must be thinner. Accordingly, at larger distances between the supply and the transmitter or booster, thicker wire must be used. At a current of 3 A, the wire should drop about 100 mV. Unfortunately this voltage loss can not be compensated because it is introduced 'behind' the regulation system. In practice, most transmitters have no problems with a maximum variation of 0.75% on the supply voltage, under 'full load' conditions.

For the best possible RF immunity, the output wires must be bundled into a cable. The 'positive' and 'ground' wires are best twisted.

Capacitors C9 through C12 shunt the diodes in the bridge rectifier, and serve to afford extra suppression of RF signals. Finally, the usual 100-nF decoupling capacitors are not present in the supply because it is assumed that they are fitted as close as possible to the load.

Construction

The power supply is best built on the printed circuit board shown in Fig. 2. This board is available ready-made through our Readers Services. The passive parts, such as the electrolytic capacitors and the resistors, are fitted at the component side of the board, while the four regulators and the associated heat-sink are mounted at the solder side.

The mains transformer and the bridge rectifier are mounted as external parts. The board is secured on to the heat-sink with the aid of four 20-mm PCB mounting pillars.
RF IMMUNE POWER SUPPLY

COMPONENTS LIST

Resistors:
R₁ = 47Ω
R₂, R₃ = 1Ω
R₄ = 10kΩ
R₅ = 560Ω
P₁, P₂, P₃ = 5052 preset H

Capacitors:
C₁, C₃, C₅, C₇ = 4700pF 35V
C₂, C₄, C₆, C₉ = 100pF 25 V radial
C₉ - C₁₂ = 100nF

Semiconductors:
8₁ = bridge rectifier B80C10000 or SB352
= LM350T

Miscellaneous:
K₁ = mains filter, 3 A, with socket and integral fuse holder (fuse 3.15 AT).
Fuse, 1.25 AT (slow).
K₁ - K₆ = 2-way PCB terminal block, raster 5 mm.
Tr₁ = toroid mains transformer 2x18V @ 6.25A.
Metal enclosure (eg. Telet LC1050).*
Heatsink Fischer type SK49/100 (1K/W) or SK47/100 (0.5 K/W).**
Isolation material for IC₁-IC₄.
Printed circuit board 940054 (see page 110).

* C-I Electronics, fax (+31) 45 241788.
** Supplier info via Dau Components Ltd., Tel. (01243) 553031.

Fig. 3. Illustrating the mounting of the PCB on to the heat-sink.

The choice of a suitable heat-sink should be given ample consideration. If the supply is expected to deliver 10 A quite often, a heat-sink with a thermal resistance of 0.5 K/W must be used. A good choice is a length of Fischer SK47 heat-sink with a height of 10 cm. If about half the maximum current is supplied, a heat-sink with a thermal resistance of about 1 K/W will be adequate. In such cases, turn to a length of type SK49 heat-sink with a height of 10 cm. This will ensure a thermal resistance of about 0.75 K/W.

The holes to secure the regulators on to the heat-sink are drilled with a 2.5-mm drill. Next, the holes are threaded with a 3-mm (6BA) tap.

The ICs should be mounted on to the heat-sink with the aid of mica or ceramic washers, and associated insulating bushes. Also be sure to use a

LM350

The LM350 is a standard voltage regulator manufactured by Texas Instruments. The IC is designed for use in power supplies with an output current of up to 3 A. The LM350 has internal over-current and over-temperature shut-down circuits.

The reference voltage between the output and the adjust input of the regulator is 1.25 V at a minimum load current of 3.5 mA. The minimum voltage difference between the input and the output is 3 V. The maximum voltage drop is 35 V.

The output voltage of the device is defined by incorporating the adjust input into a network consisting of two resistors between the output and ground. The basic circuit is given below.

Fitting the passive parts on to the board is all plain sailing. Fitting the four regulators, however, requires a bit of dexterity, because they are mounted on the heat-sink, while their terminals are connected to the tracks at the copper (solder) side of the printed circuit board. The simplest solution is to insert solder pins into the respective PCB holes. These pins are fitted at the copper side of the PCB, and protrude about 10 mm towards the heat-sink. If you mount the regulators on to the heat-sink in the positions indicated by the PCB overlay, their terminals need to be bent only to enable them to be soldered to the solder pins.

The output voltage, \(U₀ \), is calculated from

\[
U₀ = 1.25 \left(1 + \frac{R₁}{R₂} \right) \text{[volts]}
\]

The formula disregards the adjust current, \(I_{adj} \), because that is negligible at 50 μA.

According to the datasheets, the LM350 must supply a minimum output current of 3.5 to 5 mA. At higher currents, the IC is always in its normal operating range. This condition is simple to fulfill by giving \(R₁ \) a minimum value of, for instance, 240 Ω. That results in an output current of 5 mA even if the supply is not connected to the actual load. Although not strictly necessary, an additional protection against discharge currents can be provided by fitting two diodes as shown below.
liberal amount of heat-conducting paste. It is important to first secure the regulators flat on to the heat-sink, and then solder them to the pins inserted into the board, not the other way around.

The bridge rectifier has a tough job at the maximum load, and needs to be mounted on to the heat-sink as well. Here, too, a good thermal contact must be ensured to prevent the device from overheating and breaking down. Do not skimp on heat-conducting paste, it is cheaper than almost any replacement semiconductor!

The transformer's secondary is connected to the a.c. terminals of the bridge rectifier via short pieces of heavy-duty wire. Next, run wires from the a.c. terminals on the bridge to the corresponding connections on terminal blocks K_5 and K_6 on the board. Next, connect the + and - terminals of the bridge to the respective screw terminals in K_5 and K_6.

At the mains side of the transformer, it is best to use a mains switch with a built-in filter. This affords good protection against interference on the mains. Likewise, the filter also prevents mains pollution by noise generated in and around the power supply. Finally, for the best possible screening the entire supply must be built into an earthed, metal enclosure.

Practical notes

A prototype of the power supply was tested for RF immunity by monitoring its output voltage in the very close presence of a transmitting 2-metre band handheld with an RF power output of 1.5 W. Nothing happened. Next, the power level was stepped up to about 10 W from a 2-metre FM mobile transceiver. During this test the antenna, a magnetic 5/8-λ car-roof type, was at a distance of less than 1 metre from the power supply. Although the digital voltmeter and ammeter connected to the supply went 'haywire', the power supply proper remained totally immune to the strong RF field.

If you happen to use a power amplifier which is known to radiate, that problem must be solved first, because the radiation is then bound to be on the supply wires also. Start by fitting feed-through capacitors to carry the supply voltage into the power amplifier — this is much more effective than fitting decoupling capacitors in the power supply. In addition to this measure, the supply cable may be wound two or three times on a ferrite ring core, close to the PA case.

Unless you are using a handheld, it is bad operating practice to have an antenna in the immediate vicinity of a transmitter, a power supply and, most importantly, yourself. At present there is a hot debate between several parties regarding the alleged dangers of high RF power levels near the human body. Since at present it is not at all clear what the effects of this type of radiation are, it is best to play it safe, and locate the antenna at a safe distance. More information on this matters may be found in recent issues of several ham radio magazines.

Adjustment

Change R_4 by trial and error until the output voltage of IC_1 at terminal K_1 is 13.8 V (or any other value you may require). Next, adjust the output voltages of IC_2, IC_3 and IC_4 to give the same value. This is done by carefully turning the respective presets. P_1, P_2 and P_3. Connect a wire pair to each output, and join all pairs at the load. A 'dummy' load which draws about 5 A should be used, although this is not critical. Now check if all regulators supply roughly the same amount of current by measuring the voltage drop across their positive output wires. The drop should be of the order of 100 mV at an output current of 10 A, and 50 mV at a current of 5 A. On the prototype, the voltage was between 70 mV and 80 mV. The voltages may be made equal by careful adjustment of the presets.

For further reading:
EMC testing of PMR equipment, Elektor Electronics July/August 1993.
Electromagnetic compatibility, Elektor Electronics May and June 1993.
The Winter 94/95 edition has 280 pages packed with over 4000 products and now with news and features including two full construction projects:

- New additions to Cirkits’ unique range of kits, including:
 - Infra-red Remote Control System
 - Combustible Gas Detector
 - Mains Carrier Audio Link
 - Mains Carrier Remote Control
 - Electrical Appliance Watt Meter
 - Breath Tester
 - TV Audio/Video Tuner

- Two feature projects, fully detailed articles for Hi-Fi quality Infra-red Cordless Headphones and ‘Chiptester’ a logic IC tester with full PC software, with full construction kits available for both

- Many more additions throughout the catalogue including mobile phone batteries and chargers, low cost thermometers, timers, ICs, LEDs, test equipment, books, opto couplers and much more

- 280 pages, 26 sections, over 4000 products from some of the worlds finest manufacts and suppliers

- Available from 20th October at most large newsagents or direct from Cirkit

- Send for your copy today!

THE BASIC STAMP ALBUM

A collection of the most innovative Stamp applications

3 BASIC instructions are all it takes to read the pot and output a proportional tone. Our application sheets cover this and many other uses for the Stamp.

Send YOUR application for inclusion in the BASIC Stamp Album, every application published will be acknowledged, PLUS the best application each month will receive 2 FREE BASIC Stamps.
The circuit of the converter in voltages is 120°. phase shift between the three generated signal. The converter ensures that the pulses of varying widths into a sinusoidal wave acts as an integrator that converts the frequency. The inductance of the motor windings acts as a regulator (w.r.t. 50 Hz) high frequency. The inductance of the motor windings acts as an integrator that converts the pulses of varying widths into a sinusoidal signal. The converter ensures that the phase shift between the three generated voltages is 120°.

Circuit description

The circuit of the converter in Fig. 3 is based on a Type 80C555 microprocessor (IC). This device provides the timing and control of the three power transistors. Because of the digital design, the system is stable and its properties are constant over a wide range of control.

Since IC has pulse-width modulation (PWM) outputs, ensuring a 120° phase shift is merely a matter of software loops. The main program ensures that the correct registers in the processor are regularly loaded, taking into account the required voltage level and frequency of the output signals.

Reversing the rotational direction is also affected by software, so that there is no need of switches and relays. This way of operation ensures a longer useful life of circuit and motor, particularly if its rotational direction is changed regularly.

The analogue inputs of the processor are used to enable the user setting certain parameter, such as the rotational speed. The power transistors are contained in a Type MP6750 module (Toshiba). The CPV363MF from International Rectifier may also be used, but this requires some modifications. The transistors used in the module are Isolated Gate Bipolar Transistors (IGBT), which have a collector and an emitter, but are controlled by a positive voltage between gate and emitter. In other words, it can be driven by a voltage, not a current. This ensures fast, low-loss control. The module also contains the associated freewheeling diodes that are necessary in a three-phase system.

Although the module is not cheap, it does not cost much more than the sum of the discrete components required if it were not used. Also, it obviates the complexity of a discrete design.

The generation of a sinusoidal voltage necessitates the division of the waveform into a large number of steps. Each step is the result of a clock pulse and has a value that corresponds with the level of the sinusoidal voltage at the location of that step. The relevant voltage level can be generated with a certain pulse/pause ratio. For a good sinusoidal waveform to ensure, the PWM signal frequency needs to be many times higher than that of the sine wave.

Assuming a fixed clock frequency for the PWM signal, the frequency of the generated voltage rises in direct proportion to the number of steps a period of the sinusoidal signal is divided into. Stringing a number of identical steps, Z, together can effect an apparent lowering of the clock frequency (which does not change, however). This can be formulated as follows:

\[f_o = f_c / 6 \times Z \]

where \(f_o \) = output frequency
\(f_c \) = clock frequency
\(S \) = number of steps in a period
\(Z \) = number of successive, identical steps
6 = divisor necessary for the

Some properties of the converter.
generation of a three-phase signal.

The formula shows that generating a continuous variation of the signal frequency is possible only if S and Z are variable, and this is ensured by the microcontroller. Unfortunately, the arithmetical power of the controller is not adequate for the task, which makes a table containing the parameters necessary for generating a given output current essential.

The output current is strongly dependent on the output voltage and the frequency thereof. The many kilobytes of data contained in the table were generated on the hand of a given characteristic; they can not be changed by the user. On every command of a timer-2-interrupt, the CPU takes the next PWM value from the table and places this in the CCx register of the processor.

Measures have been taken to ensure that the couple of the motor remains constant. This is effected by a lowering of the average output voltage when the frequency is lowered. This ensures that the current through the motor is (nearly) constant. If the voltage were not lowered, the motor current would become so large at low frequencies that the motor would burn out.

The microprocessor uses a 12 MHz crystal to generate the 1 MHz clock frequency. When its supply voltage drops below a predetermined value, IC3 generates a signal to reset the processor. This prevents the processor running amok when there are spurious signals on the supply lines. If it were allowed to do so, the damage to the output transistors would be severe. The reset pulse is also used to disable the outputs of IC5, which generates the six control signals for the power transistors. This in turn causes all the output transistors to be switched off. The input to IC5 consists of the three PWM signals generated by the processor.

In the switching of the output transistors, a dead time of 1 µs is used. This is adequate to allow two series-connected transistors to be switched off briefly and so avoid a short circuit resulting from the two transistor conducting simultaneously.

Control of the gates of the power transistors is effected by optoisolators IC6-IC11, which are specially designed for this purpose. The output stage in the optoisolators consists of two series-connected transistors that operate as a change-over switch. They are capable of rapidly removing the charge from the gate capacitance of the IGBTs, which ensures very fast switching of the transistors.

Since IGBTs are switched on by a positive voltage at its gate-emitter junction, the upper IGBT of each series circuit needs a bootstrap circuit. The operation of this circuit is shown in simplified form in Fig. 4. Output transistor T1 in 4a is off, while T2 conducts because of the positive voltage (about 10 V) at its gate.

Since T2 conducts, junction Ti-T2-C1 is at earth potential. Capacitor C1 is then charged to 12 V via D1. The electronic switch between the +ve terminal of C1 and the gate of T1 is formed by the output stage of the optoisolator. As soon as T2 is switched off (Fig. 4b), the switch between the gate of T1 and the +ve terminal of C1 is closed, which causes a positive voltage on the gate, so that T1 begins to conduct. Because of the switching off of T2, the potential at junction T1-T2-C1 rises to about 325 V. Since the -ve terminal of C1 is connected to this junction, the potential at the gate of T1 is always 12 V higher than the voltage at its emitter. This potential is used as power supply for the output transistor. As soon as the optoisolator is on, the gate voltage of T1 rises to about 337 V. In this situation, D1 is reverse biased. This diode must be able to withstand the high reverse bias voltage and to cut off rapidly.

The 33 Ω resistors in series with the gates of the IGBTs ensure that the gate capacitance of the IGBTs is charged and discharged rather more slowly. This causes the IGBT
to switch more slowly so that the over-current protection circuit can come into operation if necessary.

Resistors R_{33} and R_{35} in series with the module are used to monitor the current through it. If the current exceeds a given value, say, 20 A, caused, for example by the interconnection of two phases or one of the phases being connected to ground, IC$_{13}$ gets an error message via optoisolators IC$_{14}$ and/or IC$_{15}$. The output transistors of the phases being connected to ground, the interconnection of two phases or one value, say, 20 A, caused, for example by through it. If the current exceeds a given module are used to monitor the current operation if necessary.

The correct operation of the protection circuit depends on the rise time of the IGBTs are limited by 33 Ω resistors.

The temperature of the module is monitored by R_{38}, which has a negative temperature coefficient (NTC). When the module gets too hot, a signal is passed to the microprocessor by IC$_{13}$.

Because of the important function optoisolators IC$_{13}$, IC$_{14}$ and IC$_{15}$ fulfill in protecting the circuit, it is imperative that the specified types are used. Alternative types may not be sensitive enough to guarantee effective protection.

Circuit IC$_{1}$ demultiplexes the combined address/data bus, while IC$_{2}$ stores the program of the converter.

Since the user has a number of controls at his disposal for setting the voltage and speed of the motor, the processor has several terminals for connecting preset potentiometers. Since small spurious signals may have serious consequences, these inputs are provided with the necessary protection.

All inputs that are accessible from outside via connectors K$_{1}$-K$_{3}$ make use of the unregulated +15 V supply lines. This minimizes the risk of the processor supply.

Fig. 3. Circuit diagram
being contaminated by operations at these inputs. The inputs are connected to the supply lines via a resistor, which makes them short-circuit proof. Zener diodes D₁-D₆ limit the voltage to the required level: 5.1 V for the analogue input on K₁, and 4.7 V for the digital inputs.

Presets P₁-P₄ and potentiometer P₅ are connected to one of the many analogue inputs of the processor. The motor speed is set with P₅; any changes are made with the presets. More will be said about this later.

Fig. 4. This bootstrap circuit may be used to generate the correct control voltage for the IGBT.

of the 1-to-3-phase converter.
The inputs on K3 and K4 are switching inputs: when input 5 on K3 is linked to ground, the motor turns clockwise and the speed can be changed with P1. When input 6 on K3 is linked to ground, the motor runs anticlockwise, and its speed can be changed with P2. When input 7 on K4 is at ground potential, the motor runs clockwise and the speed may be varied with P3. When input 8 on K4 is linked to ground, the motor runs anticlockwise and its speed may be varied with P5.

Preset P3 determines the rate at which the motor accelerates to full speed and P4 the rate at which the motor comes to a standstill. If, however, JP1 is closed, P4 has no effect and the motor is deenergized instantly.

An error is indicated by the lighting of D7. Resetting is then possible only by switching off the converter and eliminating the cause of the error. Resetting occurs by not using, that is, by not connecting to ground, inputs 5–8. About 6 seconds after the inputs have become inactive, the converter is reset and the LED goes out.

Power supply
The mains voltage is rectified by bridge D16–D19 to a potential of some 325 V. As long as the voltage across C25 and C26 remains below a given level, relay R1 is not energized. Resistor R51 is then in series with C25 and C26, which keeps the starting current within limits. As soon as C28 has been charged (or very nearly so) via R48 and R49, the relay is energized via T2 and R51 is short-circuited.

The level of the rectified mains voltage is monitored by discrete Schmitt triggers IC16a–IC16d. As soon as it rises above, or drops below, the predetermined levels set by P6 and P7 respectively, the output stages of the converter are switched off via IC5.

When the converter is switched off, relay R51 is deenergized instantly since the 12 V disappears suddenly. Resistor R50 is then in parallel with C25 and C26, so that the residual charge on these capacitors is removed quickly. In a similar manner, C23 and C27 are discharged quickly via R60 and R61, when the mains is switched off.
Keep in touch with ANTEX
Precision Soldering

Antex thermally balanced irons are available with a wide selection of soldering bits. There are also adjustable temperature controlled irons for low temperature work.

Solder Stations with optional digital temperature read-out are also available.

Ask for Antex at leading Electronic Distributors.

Antex (Electronics) Ltd.
2 Westbridge Industrial Estate, Tavistock, Devon PL19 8DE
Telephone: (0822) 613565 Fax: (0822) 617598

A SAMPLING
OSCILLOSCOPE AND LOGIC ANALYSER
IN AN AFFORDABLE PORTABLE PACKAGE

The Miniscpe

- 10 Mega samples per second single channel DSO
- 1MHz analogue bandwidth
- 0.2V-50V input range
- Various Triggering options
- 10 Mega samples per second 8 channel logic analysers
- 5V TTL/4.5-15v CMOS logic level inputs
- Crisp, clear LCD screen
- Zoom and Scroll facilities (selected ranges only)
- Battery or mains adapter powered
- 12 Months Warranty (Built version only)
- "Get you working" service (kits only)

MINISCPE KIT £139
MINISCPE BUILT £179
MAIN PSU £3 P&P £3
PLEASE ADD VAT AT 17.5%

Write or phone for a free Information Pack to

MICRO AMPS Limited
66 SMITHBROOK KILNS,
CRANLEIGH,
SURREY GU6 8JJ, UK
Tel: +44(0)1483 268999
Fax: +44(0)1483 268397

8051 TOOLS

MCC 8051 'C' Compiler £95
MCC 8051' C' Compiler is an integer 'C' like compiler for the MCS51 family. Easily customised for any MCS51 family variant. Comprehensive printed documentation. High level language debugger available (£75)

DDC 'C' Compilers £82.50
DDC'C' compilers are integer 'C' compilers with more functionality than the MCC compiler but more difficult to use. The compilers are available for 68HC08/11/16, 8085/86/96, 8051 family. Documentation supplied on disk.

87C751 Software Development Kit £82.50
SDK751 Software development package for the Philips 87C751 micro controller. Package includes EDITOR, MACRO ASSEMBLER and source level SIMULATOR/DEBBUGER.

87C750/751 Programmer £125
The MICRO/EP750 plugs into the IBM/PC parallel port and can be used to program 87C750 and 87C751 devices.

1'C Hand Held Bus Monitor £675
MIC101 is a troubleshooting tool for the PC serial bus developed by Philips and the ACCESS bus developed by Digital Equipment Corp. in partnership with Philips.

8051 BOOK £45
A very good text on the 8051 architecture, programming and application. The book is supplied with free (un-supported) IBM/PC based assembler and simulator.

Other tools available prices exclude VAT and delivery

PIC - PIC - PIC
PIC - The Book - A Beginners Guide to the Microchip PIC
PIC - Hardware Starter Kits
PIC - Project Packs
PIC - Microchip Approved Training Courses
PIC - Consultancy
For further information contact:-
Bluebird Electronics
Clayshore House, 150 High St., Worton, Devizes, Wilts. Phone/Fax 0380 725110

BADGER BOARDS
Printed Circuit Boards for Amateur Radio Schools Colleges Short Wave Listeners Clubs Hobbyists & Industry
A range of Printed Circuit Boards in stock from many of the Projects in Magazines PRACTICAL WIRELESS SHORT WAVE MAGAZINE ELECTOR HRT RADIO COMMUNICATION
Kits Projects and Materials for manufacturing, your own boards. Artwork and Plotting from your own Schematic drawings and also C.A.D. facilities. We supply DIP 04A Prototypes Phone between 9.00am and 5.30pm Monday to Friday for helpful advice and assistance Club talks and demonstrations of Printed Circuit Board manufacture, QRP involvement etc
021-353 9326
80 Clarence Road, Erdington, Birmingham B23 6AR
(Please mention where you spotted this advertisement)

ELEKTOR ELECTRONICS DECEMBER 1994
GYRATOR

The gyrator, or electronic inductor, is based on a Type NE5532 operational amplifier and can be used in filters and other applications at frequencies of up to 1 kHz. The circuit is particularly useful for applications where large values of self inductance are required. It is not good design practice to use a gyrator of only a few mH, but winding an inductor of, say, 100 mH is a sufficiently cumbersome task to use a gyrator instead. The present circuit can simulate inductances of 1 mH to well over 100 H.

In the diagram, the actual gyrator is IC1a, while IC1b is a buffer that may prove useful for test purposes or for some other applications. The series resistance of the gyrator is formed by R2 and the parallel resistance by R1. The self inductance, \(L \) is:

\[
L = R_1 \cdot R_2 \cdot C_1.
\]

The best inductance is obtained when \(R_1 \) is as large as feasible and \(R_2 \) as small as possible. There are, of course, practical limits to this. For instance, with most opamps, \(R_2 \) must not be smaller than 100 \(\Omega \) (but, when it is greater than 10 \(\Omega \), the noise level is exorbitant). Large values of \(R_1 \) cause the offset at the output to increase appreciably, although this effect can be partly negated by giving \(R_3 \) the same value as \(R_1 \).

Experiments showed that the opamp used in the prototype yielded better results than a number of other types. For the tests, resistors between 10 k\Omega and 100 k\Omega were connected in series with the input whereupon the frequency characteristics were measured at the output of IC1b. Capacitors between 1 nF and 100 nF were used in the C1 position. These tests showed that the gyrator gives excellent performance from very low frequencies up to about 1 kHz.

The current drain from a ±15 V supply was ±8 mA.

Design: T. Giesberts [944059]

CHAOS

The present circuit offers, via an oscilloscope, a visualisation of the chaos theory. Roughly, this theory states that all elements around us are by nature disordered, stubbornly refuse to accept externally dictated order, and behave unpredictably. An example of this is the weather. Although its mechanics are well known and meteorologists have large quantities of data at their disposal, it has so far proved impossible to produce accurate, long-term weather forecasts.

The present circuit may be seen as 'chaos electronics', in that it has various states, each of which in itself is stable and predictable, but it can not be said with certainty which of these states it will assume. This produces the most interesting images on the screen of an oscilloscope in the X-Y mode.

In the diagram, IC1 forms a negative impedance which interacts via \(P_2 \) with a positive impedance formed by network \(L_1 \cdot C_4 \). The consequent oscillation, although inherently stable, is rendered 'chaotic' by the non-linear characteristic of diodes \(D_1 \) and \(D_2 \).

Start experimenting with the circuit by setting both potentiometers to the centre of their travel. Even a slight adjustment of \(P_1 \) will in all probability result in oscillation, whose amplitude can be set fairly accurately. Various waveforms can then be chosen by turning \(P_2 \). The potentiometers affect one another and it may well be that at certain settings oscillations cease. Merely turning either or both back a little will make the oscillations start again.

Values of the various components are not critical: changing that of \(L_1 \) merely alters the frequency.

The current drain from a ±15 V supply is only a few mA.

Design: Leon O. Chua (University of California) [944060]
A solar panel rated at 6 V, 50 mA, provides enough energy to charge four small NiCd batteries. The problem is, however, that the voltage rating of most affordable solar panels is appreciably lower than 6 V. Semiconductor producer Maxim has available a series of integrated circuits that are suitable for converting direct voltages. One of these, the Type MAX631 (Fig. 2), is used in the present circuit (Fig. 1) to charge four NiCd cells rated at 500 mAh from one 3 V solar panel. The only drawback is that the panel’s efficiency drops by about 20%.

In the diagram, the IC is arranged as a switching step-up converter which, basically, transforms a 1.5–5.6 V input into a steady 5 V output. Since that is not enough for charging four NiCd cells, the internal voltage divider is modified by R1, which results in an output voltage of 7.5 V. This voltage is buffered by C1. With this modification, and an input voltage of 3 V, the IC can sink about 30 mA. With higher input voltages, the current may be greater than 50 mA.

NiCd cells should not be charged with currents over 50 mA for other than short periods of time. If, therefore, the input voltage from the solar panel is expected to be higher than 4 V for long periods of time, the network shown between the two dashed lines (T1 and R2–R3) must be added. This protects the batteries and also keeps the dissipation of the IC within specified limits. When the output current exceeds 50 mA, the potential drop across R3 and R4 will cause T1 to conduct. Since the transistor is in parallel with the potential divider, the output voltage is reduced to a level at which the output current does not exceed 50 mA.

The integral current limiting stage lowers the efficiency of the circuit to some degree. It should also be borne in mind that the voltage drop across R3 and R4 is about 0.5 V. Inductor L1 can be any standard type of coil that can handle the current flowing into the IC.

Finally, it should be noted that pin-compatible ICs, such as the MAX632 (12 V) and the MAX633 (15 V) may also be used.

4TH ORDER BUTTERWORTH FILTER

The present filter has an amplification of ×2, so that R5 and R6 in the feedback loop can be equivalent. In other words, their ratio is not an awkward one as is so often the case.

The values specified for C1–C4 give a cut-off frequency of 1 kHz. Other frequencies are possible by appropriate changes in the values of the resistors or capacitors. It should be borne in mind that the filter forms a load for the operational amplifier, particularly at high frequencies. With values as shown, this load is 10 kΩ/4 in parallel with R3+R4.

Replacing the calculated values of C1–C4 by the nearest E12 values (18 nF, 33 nF, 12 nF and 6.8 nF) does not affect the frequency characteristic all that much. The prototype showed a 0.4 dB peak around 435 Hz, while the cut-off frequency dropped to around 900 Hz. The whole characteristic shifts into the direction of a Chebyshev filter, which gives a slightly steeper slope at the cut-off point.

The choice of opamp is not critical, since most of the noise in the filter is caused by resistors R1–R4. At low frequencies, it amounts to about 26 nV Hz⁻¹.

Resistor R7 ensures continuity of bias current to the opamp when the input of the filter is open circuit.

The TLO71 draws a current of about 2 mA.

Design: T. Giesberts
[944027]
AUTO START FOR OLDER FAX MACHINES

When an older fax machine and a telephone, which share a line, are located in different rooms, an annoying situation may arise. When the telephone rings and the receiver is taken from the hook, it is found that it is a fax message. By the time the fax machine has been reached and the start knob on it is pressed, the caller has given up.

The present circuit, whose action is similar to that in modern fax machines, obviates this irritating deficiency. It amplifies any signal on the line, which is then fed to two different, parallel-connected phase locked loops (PLLs), IC1 and IC2. One of the PLLs locks on one of the two possible fax recognition frequencies (1 100 Hz or 2 100 Hz), and the second PLL to the other frequency. Thus, when the calling fax station puts its calling signal on to the line, one of the PLL outputs becomes low. Since the outputs are open-collector ones, they can simply be interconnected. If neither of the outputs is enabled, counter IC3 is reset.

Counter IC3 obtains its clock from the 2 100 Hz PLL. After a delay of about half a second, a pulse appears at the output (pin 1) of the counter. This delay is necessary to prevent the fax machine being actuated by a spurious signal.

The present circuit is electrically isolated from the telephone line by a 600 S./ line transformer (1:1). The alternating input voltage is limited to a safe value by C1, C2 and diodes D1-D4.

The circuit may be powered by any mains adaptor that provides a voltage of 5-15 V and a current of 20-30 mA. If it is built into the fax machine, there is almost certainly a suitable supply available there. A non-smoothed direct voltage may be regulated with a resistor, R9, and a zener diode, D5.

The PLLs must be calibrated carefully with the aid of a precision generator and a frequency meter. The 1 100 Hz and 2 100 Hz signals are available at pin 5 of IC1 and IC2 respectively. The capture range is 180 Hz for IC1 and 270 Hz for IC2.

The connections from T2 to the fax machine will depend on the type of machine.

Design: R. Ratke
[94-061]

N-P-N / P-N-P SELECTOR

The push-pull driver transistors in output amplifiers must be as closely complementary as possible. The selector matches pairs of complementary transistors by their base/emitter current. The design allows the polarity of the supply voltage to be reversed from n-p-n to p-n-p.

Assuming that an n-p-n transistor, T3, is connected to the test socket, a current flows through current source T1-R1 and R2. Since T1 has been set to 5 mA, the voltage drop across R2 is about 1.1 V. This potential is applied to the base of T2, which then conducts, resulting in a voltage drop across R1 of about 0.4 V. This means that the collector current of T3 is about 20 mA. The exact level of the base-emitter voltage of T3 can be read on M2. When T3 is a p-n-p type, the current flows through current source T3-R1 and R2. Since T3 has been set to 5 mA, the voltage drop across R2 is about 1.1 V. This potential is applied to the base of T4, which then conducts, resulting in a voltage drop across R1 of about 0.4 V. This means that the collector current of T4 is about 20 mA. The exact level of the base-emitter voltage of T4 can be read on M2.
flows through R₁ and diodes D₁, D₂ via the same current source. This arrangement ensures that the level of the voltage across R₂ is the same, irrespective of whether Tₓ is an n-p-n or a p-n-p type, as long as these are truly complementary.

Resistor R₃ and M₁ enable the exact base current of Tₓ to be measured. This facility makes it possible for the hₑg of the transistor pair to be matched. These components can thus be omitted if this facility is not needed.

For best results, M₂ should be read immediately on switching on the supply voltage. That is, Tₓ must not be allowed to warm up, because every °C change in junction temperature causes a measurement error of 2 mA.

When a number of n-p-n transistors are tested and then a number of p-n-p types, and their Uₑg noted in all cases, several good complementary pairs will soon be found. This is provided the transistors are all from the same maker. In practice, similar types of transistor from different manufacturers normally show quite different levels of Uₑg.

The supply voltage should not exceed 30 V. With values of components as specified, the current drain is about 25 mA.

It is advisable to check the voltage across R₁ before taking the selector into use: this should be about 2.35 V. Owing to the relatively large spread inherent in JFETs, it may be necessary to change the value of R₁ to some degree to ensure that the current through T₁ is about 5 mA.

For the test socket, half a six-pin IC socket or a single-row socket, or simply suitable terminated test leads may be used.

Design: T. Giesberts

30-M QRP CW TRANSMITTER

The joy of every QRP enthusiast is to be able to cover very long distances 'on a shoestring', that is, with a low-power (<10 W) transmitter running from a battery, and operating in one of the HF amateur radio bands. A QRP transmitter, which greatly adds to the excitement inherent in the radio hobby, is easy to build. The one described here is designed for CW (morse) use in the 30-m (10-MHz) band, and forms a perfect complement to a portable general-coverage receiver already stowed away in the holidays luggage (which should also contain a length of antenna wire, say, 30 m or so).

The transmitter is a Colpitts power oscillator based on the inexpensive and familiar Type 2N2219 or 2N2219A transistor. The r.f. output power will be 100-500 mW, depending on the supply voltage. The transmit frequency is held stable by a quartz crystal, which can be tuned slightly, if needed, by adding a 150 pF trimmer capacitor in series with C₂.

The r.f. signal is coupled inductively from the collector of T₂ into a 7-pole Chebychev low-pass 'pi' filter made from standard E₁₂ series inductors and capacitors. The oscillator is keyed by T₁ which pulls the base of T₂ to ground when the morse key is opened. The stand-by current of the transmitter is only about 2 mA, while the keyed-up current is about 55 mA (at a supply voltage of 10 V).

The transmitter is best constructed on the printed circuit board shown. Inductor L₄ consists of six turns of 0.5 mm dia (24 SWG) enamelled copper wire at the primary side (collector of T₃), and three-turns of the same wire at the secondary. The core is a T-94-2 type from Amidon, which has an outside diameter of 24 mm (0.94 in.) and an inside diameter of 14 mm (0.56 in.). The Aₜ value of this core is about 84 µH per 100 turns; its relative permeability is stated as 10. T₂ must be fitted on to a heat-sink. The completed PCB should be built into a metal enclosure.

Harmonics suppression, measured in the prototype, was 40 dB at 20 MHz, and 50 dB at 30 MHz.

Note: this transmitter may only be built and used by radio amateurs having the appropriate licence, in countries where CW in the 30m band is permitted.

Parts list

Resistors:

R₁ = 100 kΩ
R₂ = 4.7 kΩ
R₃ = 12 kΩ
R₄ = 18 Ω

Capacitors:

C₁ = 22 nF
C₂; C₅ = 1 nF
C₃ = 100 nF
C₄ = 100 pF
C₆; C₇ = 330 pF

Inductors:

L₁; L₃ = 820 nH
L₂ = 1.8 µH
L₄ = T-94-2 ring core (Amidon Associates Inc.); see text for winding details

Semiconductors:

T₁ = BC547
T₂ = 2N2219

Miscellaneous:

K₁ = BNC socket.
X₁ = 10 MHz quartz crystal.
Heatsink for TO5 transistor.

Design: P. Wyns, ON7WP
EXPRESS COMPONENTS

BULK PACKS

PREAMP MIXER. 3 channel input, independent level and tone controls. Ideal for use with the hi power FM transmitters. £15 kit, £19 built.

TREMBLER ALARM. Designed for bikes etc, adjustable sensitivity, preset alarm time, auto reset. Could be adapted for all sorts of "borrowable" things £12 kit, £16 built.

ULTRASONIC RADAR A project that can be used as a movement detector in an enclosed space. Range about 10 metres, 12v DC. Good basis for car, shed, garden alarm etc. £14 kit, £19 built.

PHONE CALL RELAY. Very useful kit that incorporates a relay that operates when the phone rings. Can be used to operate more bells, signalling lights etc. Good for noisy environments or if you have your headphones on. £10 kit, £14 built.

PORTABLE ALARM SYSTEM. Small 9v alarm system based on a mercury switch. The alarm continues to sound until disabled by the owner. D buzzer included. £8 kit, £15 built.

800W MUSIC TO LIGHT EFFECT. Add rhythm to your music with this simple sound to light kit. £8 kit, £12 built.

STROBE LIGHT. Bright strobe light with an adjustable frequency of 1-60Hz. (a lot faster than conventional strobes) £16 kit, £20 built.

4W FM TRANSMITTER 3 RF stages, audio preamp, 12-18V DC. Medium powered bug £20 kit, £28 built.

3 CHANNEL LIGHT CHASER. 3x 800w output, audio preamp and direction controls, can be used with 12 leds (supplied) or TRICAS for mains lights (also supplied). £17 kit, £23 built.

25W FM TRANSMITTER 4 stage, a preamp will be required. (Our preamp below is suitable) £14 kit, £16 built.

FM IONIZER KIT. Very useful for respiratory problems. £15. kit, £20 built.

1.5v battery. Frequency is set to drive away mosquitoes etc. £7 kit, £11 built.

3 CHANNEL SOUND TO LIGHT. Can be used anywhere as a noise alarm. Separate sensitivity controls for each channel, 120V power supply. #15 kit, £20 built.

MINI METAL DETECTOR. Detects coins, pipes, wires etc up to 20cm deep. Useful before you drill those holes! £8 kit, £12 built.

0.5 MINUTE TIMER. Simple time switch adjustable from 0-30min, will switch 2A mains load. 12v. £14 kit, £19 built.

10 different connectors, again for £1 each.

100 assorted diodes for just £1.00

20 light emitting diodes for £1.00

ORDER 10 PACKS OR MORE AND CHOOSE ONE FREE PACK!!

FREE COMPONENT CATALOGUE WITH EVERY ORDER!!

99p Post

KITS 'N MODULES

LIQUID LEVEL DETECTOR. Useful item, can be used to detect fluid levels in water tanks, bathe, ponds, fish tanks etc. Could also be used as an alarm with an easily constructed sensor. £5 kit, £9 built.

FM TRANSMITTER Mini FM transmitter 2 transistor, comes with 12V power supply and microphone. £17 kit, £20 built.

FM TERMINATOR. A kit with an easily constructed sensor. £5 kit, £9 built.

SWITCH PACK 10 switches for just £1.00

12v FLOURESCENT. A useful kit that will enable you to light large fluorescent tubes from your car battery etc. 9v mains transformer required. £8 kit, £12 built.

TELEPHONE AMPLIFIER. A very sensitive amplifier which when used with a "phone pickup call" (supplied) will let you follow a telephone conversation without holding the handset to your ear! £11 kit, £15 built.

How to place your order........
By phone........0273 771156
By FAX........0273 206875
By Post...PO box 517 Hove Sussex BN3 5QZ

Payment by ACCESS VISA, CHEQUE OR POSTAL ORDER.
Cheques and postal orders should be payable to Express Components.

Remember! Your free copy of our cut price components catalogue sent with every order!!
ELEKTOR ELECTRONICS DECEMBER 1994

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter
Smallest room transmitter kit in the world! Incredible size of 10mm x 20mm! Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. £16.45

MX1 Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter. Size 17mm x 17mm. High performance with a buffered output stage. £13.45

RSX Micro Power Room Transmitter
Connects to 240V AC supply for long-term monitoring. Size 30mm x 35mm. £19.45

VXT Voice Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Size 45mm x 54mm. £13.45

SCRX Miniature Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder. £19.45

SCLX Subcarrier Decoder Unit for SCRX
Connects directly to 240V AC supply for long-term monitoring. Size 30mm x 35mm. £19.45

CDH0 Pocket Bug Detector/Locator
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tone increase as you approach signal. Gain control allows pinpointing of source. £30.95

CDH00 Professional Bug Detector/Locator
Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFIRM mode to distinguish between localised bug transmission and normal legitimate signals such as radios, cellphones, taxis etc. £50.95

OTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catalogue). £40.95

UXR180 Crystal Controlled Telephone Transmitter
As per OTX180 but connects to telephone line to monitor both sides of conversations. £40.95

UXR180 Crystal Controlled Telephone Transmitter
As per OTX180 but draws power from line. £50.95

QRX180 Crystal Controlled Telephone Transmitter
For monitoring any of the ‘C’ range transmitters. £35.95

QTX180 Crystal Controlled FM Receiver
For monitoring any of the ‘C’ range transmitters. £40.95

A build-up service is available on all our kits if required. UK customers please send cheques. £40.95

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCs.

Please mention ELEKTOR ELECTRONICS when contacting advertisers
PROXIMITY DETECTOR

One tiny integrated circuit and a handful of standard components allow you to build a multi-purpose proximity switch. The circuit can be used as a hidden latch as part of a burglar alarm, or, in a more playful way, as an electronic cat door.

Design by J. Bosman

The heart of the circuit is formed by a TCA105 integrated which contains, among others, a threshold switch. The IC is housed in a 6-pin DIP enclosure. It is specifically designed for use in proximity switches, light barriers and other contactless switching devices. Advantages of the TCA105 include a wide voltage range (4.5 V to 30 V), a fairly large output current capacity (50 mA), and TTL compatibility.

The internal structure of the TCA105 is given in Fig. 1. At the left we find the input stage, which is interesting because inputs 1 and 2 are formed by the base and emitter of the first transistor. Next comes a kind of double differential amplifier which, together with its surrounding components, forms the actual threshold comparator. Then follow a double-emitter transistor and an output circuit which consists of two complementary transistors.

The fact that the IC can be triggered by direct voltages creates many applications. A voltage monitor, for instance, is easily produced by connecting the voltage to be measured to pins 2 and 3, via a voltage divider, and connecting two LEDs directly to the outputs, pins 4 and 5. The LEDs then indicate whether the voltage is over or under the set threshold. Another example is a light-controlled switch: simply connect the input pins to a phototransistor. Undoubtedly the TCA105 can be used for many more switch-like functions based on direct voltages. However, a special feature of the IC is its ability to process alternating input voltages also. The input stage of the IC may be turned into an oscillator, and that is the design principle used for the present application, an inductive switch.

Inductive coupling

As shown by the circuit diagram in Fig. 2, an LC tuned circuit is connected to the input pins, rather than a direct voltage source. The circuit consists of L_1, and C_2, and is tuned to about 1 MHz. An oscillator is created by extending L_1 with a coupling inductor, L_{1b}. Referring back to Fig. 1, the oscillation condition is satisfied by coupling the emitter of the input transistor back to the base via a tap on the inductor.

As long as the input stage oscillates, IC1 is in a kind of 'fixed' state. Output 1 (pin 4) is then low, and output 2 (pin 5) is high. That changes if the oscillator voltage disappears, or is significantly reduced. That can be brought about, of course, by inserting a switch in series with C_1, but that defeats the purpose of the circuit (after all, we want the switch to operate quasi-automatically). The aim is, evidently, to control the oscillation voltage without breaking any links in the circuit.

The solution is given by mutual inductance. By holding a piece of metal near the oscillator inductor, the changing magnetic field causes eddy currents in the metal. The energy needed for this to happen is drawn from the tuned circuit, causing the oscillator voltage to be damped considerably. When the damping exceeds a certain level, the outputs of IC1 toggle. Consequently, pin 4 goes high, and pin 5, low. The threshold at which this happens lies at about 0.35 V. The outputs do not toggle again until a level of 0.5 V is reached, i.e., the hysteresis is
about 0.15 V. Returning to Fig. 1, that hysteresis is created by a feedback line between the threshold switch and the input, where input 1 (pin 2) is pulled down virtually to the ground level by a transistor. Consequently, the level at this input is lower still than as a result of the damping. The upshot is that an extra high voltage is needed to get the system going again.

At this point we seem to have reached our goal already. Evidently, something has to be done about the switching output of IC1, but the switch can be ‘operated’, in principle, simply by holding a piece of metal close to the pick-up coil. Although the coil will induce eddy currents into nearly every type of metal, there will be marked differences in the amount of energy drawn from the oscillator coil. Iron gives the largest damping because it has large hysteresis losses in addition to eddy losses. That is easily noted from the detection distance. While a copper bar must actually be pressed against the inductor for the switch to work, an iron bar of similar size is detected at a distance of a few millimetres.

Switching detector

Two functions are yet to be realized at this stage. Firstly, some means has to be provided to prevent the switch being actuated erroneously. Secondly, the actuated state of the switch has to be retained long enough for, say, a door to be opened to let somebody in. All this boils down to delaying and lengthening the switch pulse supplied by IC1.

Since one output is sufficient for the present purpose, only pin 5 is used; pin 4 of IC1 is simply not connected. A pull-up resistor, R1, is used to ensure that the output is high as long as no metal object is detected. Next, the switching signal is fed through a low-pass filter, R2-C3, which introduces a delay of about 0.1 second. This delay is effective against accidental switching actions, and also reduced the risk of noise and spurious pulses triggering IC2.

IC2 has a far less original character than IC1. The TLC555 used here is an old faithful. It is wired as a monostable multivibrator and serves to lengthen the switching pulses. Each switching pulse applied to the trigger input causes a fixed ‘high’ period at the Q output of IC2. The length of this period is determined by the RC time introduced by network R3-R5-C5. The component values shown result in an adjustable period between one and ten seconds. Longer times are possible by increasing the value of C5.

The Q output of IC2 drives MOSFET

Fig. 1. Internal diagram of the TCA105 integrated threshold switch.

Fig. 2. The complete circuit has only two integrated circuits. It is best powered by a cheap mains adapter hooked up to K2.
Fig. 3. The miniature PCB gives the proximity detector a 'matchbox' size (PCB not available ready-made through the Readers Services).

T1, which, depending on the application, actuates a relay or a magnetic bolt via PCB connector K1. Diode D1 serves to suppress the back-e.m.f. generated by the relay coil.

The circuit is best powered by a ready-made 12-V d.c. mains adaptor, which is connected to K2. The choice of the adaptor is uncritical, although you must keep in mind that it also powers the relay or the magnetic bolt. Some of these may draw a few hundred milliamps! Since most mains adaptors have a fairly wide spread on their output voltage, the IC supply voltage is limited to 10 V by means of a current limiting resistor, R4, and a zener diode, D1. Capacitor C6 functions as a reservoir device, while C7 eliminates noise and high-frequency interference.

Etching and winding

The artwork designed for the printed circuit board is given in Fig. 3. Unfortunately, this board is not available ready-made through the Readers Services, so you have to produce it yourself, or have it produced. If you think that is too much work, consider building the circuit on a piece of vero-board. Since there are a handful of components, that should not be too difficult.

Inductor L1 is a home-made type. Fortunately, it is fairly easy to make. A small pot core is used with a diameter of 14 mm (see parts list). Only half the device is used, because L1 may not be completely screened, and because the metal object to be detected must come as close as possible to the inductor. For this reason, the two-section bobbin has to be cut in two (see Fig. 4).

The inductor is wound on the half that remains. It consists of 42 turns of 0.3-mm (SWG30) enamelled copper wire, with a tap at 40 turns. The inductor must be wound neatly, or the total amount of wire will not fit into the available room, and the Q (quality) factor will be reduced. Next, the core is fixed on to the base plate with a drop of glue, and the inductor wires are connected to the base pins as shown in Fig. 5. The drawing may also be used as a guide to mounting the pot core assembly on to the board.

The photograph in Fig. 7 shows the finished prototype of the proximity detector, complete with the pick-up coil. The board has two additional connecting points for L1, so that the inductor may be mounted at the copper side also (note that it must be turned 180°.

COMPONENTS LIST

<table>
<thead>
<tr>
<th>Resistors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 = 100kΩ</td>
</tr>
<tr>
<td>R2 = 100kΩ</td>
</tr>
<tr>
<td>R3 = 390kΩ</td>
</tr>
<tr>
<td>P1 = 1MΩ preset H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 = 2nF2 MKT*</td>
</tr>
<tr>
<td>C2 = 820pF ceramic</td>
</tr>
<tr>
<td>C3 = 1μF MKT*</td>
</tr>
<tr>
<td>C4 = 10nF</td>
</tr>
<tr>
<td>C5 = 10μF 16V radial</td>
</tr>
<tr>
<td>C6 = 100nF 16V radial</td>
</tr>
<tr>
<td>C7 = 100nF Sibatit*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 = 1N4001</td>
</tr>
<tr>
<td>D2 = 10W 400mW zener diode</td>
</tr>
<tr>
<td>T1 = BUZ10*</td>
</tr>
<tr>
<td>IC1 = TCA105*</td>
</tr>
<tr>
<td>IC2 = TLC555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1,K2 = 2-way PCB terminal block.</td>
</tr>
<tr>
<td>L1 = pot core: B66541T400A48*; bobbin: B66542BT2*; mounting set: B66545B10*; core material: B48, Amin=400nH. outside diameter: 14.3mm; bobbin diameter: 6mm; height of half bobbin: 4.25mm. Enamelled copper wire 0.3mm dia (SWG30).</td>
</tr>
</tbody>
</table>

* Siemens Components. UK distributor: ElectroValue Ltd. Tel. (01748) 442253, fax: (01784) 460320.
Fig. 5. Showing how the inductor, consisting of 40 and 2 turns, is connected and mounted on to the printed circuit board.

since the connections remain the same).

Practical use

Creative constructors will have plenty of applications in mind for the proximity switch. One of these could be a cat door which opens automatically when the cat rubs its (metallized) collar against the pick-up coil. We have reasons to doubt whether that would work, however, since it requires quite a bit of training of the cat. The most obvious application of the circuit is some kind of door opener, with the circuit fitted in an ingeniously hidden location. In all cases, the oscillator coil has to be easily accessible from the outside, since the detection distance is rather small. In most cases, L_1 is best mounted at the copper side of the board, so that it rests flat against the inside of the enclosure. The enclosure, finally, must be made of plastic. The material must not be too thick, else the maximum detection distance will go down.

Fig. 6. Suggested construction of an automatically controlled lid.

Fig. 7. Completed prototype of the proximity switch.
LOW COST PCs - ALL EXTENDABLE - ALL PC COMPATIBLE

THE OFFER OF 1994!

One of the most amazing surplus deals we have ever seen has now been launched! The Phillips VHD10 LaserVision disk player, in its new condition, features a built-in Super VHS laser writer unit withstanding visual and audio quality in ten-chance stereo and 69 Channel. This 10-bit system can be controlled and used for various applications such as audio recording, video capture, and data storage. It also includes a built-in LaserVision writer and comes with a 10-year warranty on the optical head and a 3-year warranty on the electronics. Only £99.00 (E)

FLOPPY DISK DRIVES 3.5" - 8"

5.25" from £22.95 - 3.5" from £24.95

Massive purchases of standard 5.25" and 3.5" drives enables us to bring you this tremendous offer! All units are IBM-PC compatible and come with a 90-day guarantee. The drives include various models such as Seagate, IBM, and Toshiba. Only £149.00 (E)

VIDEO MONITOR SPECIALS

Superb quality 14" FRONT/MNT-3660 SVGA Multi-sync monitor with resolution of 1024 x 768. The multi-mode input allows direct connection to PC, STB, and WCGK systems. This monitor is ideal for displaying text, graphics, and video signals. Only £159.00 (E)

DC POWER SUPPLIES

10,000 Power Supplies Ex Stock Call for stock list.

LOW COST RAM UPGRADES

No Break Uninterruptible PSU's

FANS & BLOWERS

Mitsubishi MAB-360, £15, 90mm x 25mm, 12V DC, 4000rpm

IC'S TRANSDISPERS

Obsolete - Short supply - bulk

5,000,000 items Ex Stock

For MAJOR SALES - SAVINGS or CALL FOR LATEST PRICES

Issue 12 of Display News now available - send large SAE - PACKED with bargains!
FUSE PROTECTOR

Although a fuse is primarily intended to melt when the current through it becomes too large, there are times when this should not happen as, for instance, when a circuit containing a large transformer is switched on. The present circuit protects the fuse against a premature demise.

The circuit offers protection in the first instance by connecting the load to the mains via series resistor R₈ (in UK in the Neutral line). About half a second later, the resistor is short-circuited by triac Tr₁, so that the full mains voltage is then present across the load. This half second delay allows the transformer core to become sufficiently magnetized.

Immediately upon switch-on, the secondary voltage of Tr₁ is rectified by D₄-D₇ and smoothed by C₃. Capacitor C₄ is then charged via R₄ to a potential of about 4 V. When this voltage is reached, zener diode D₈ conducts, whereupon the voltage across R₅ is sufficient to switch on T₂. This results in the triac being started, which short-circuits the LED. Zener diode D₂ ensures that the potential across the LED can not become too high: at the same time, the reverse voltage is limited to 0.7 V.

With values of components as specified, the circuit can be used for currents up to 5 A.

Design: A. Rietjens [944038]

SWITCHED TONE CONTROL

Most readers will be acquainted with a tone control as found on many audio amplifiers. Such a control normally consists of a potentiometer. The one described here uses a rotary switch and a change-over switch to select attenuation or amplification. For stereo applications, this requires a two-wafer, six position rotary switch and two small change-over switches (or small relays). For clarity's sake, only one of the channels is shown in the diagram.

With S₂ₐ and S₂₉ in position + (amplification), the circuit functions as an active tone control. Frequency-dependent potential divider R₁-R₆-C₁ determines the magnification of the higher frequencies, depending on the position of S₁.

With S₂ₐ and S₂₉ in position - (attenuation), the potential divider functions as a passive attenuator. The operational amplifier then operates as a voltage follower and buffers the input signal. This arrangement has a drawback in that the output impedance is no longer constant. It may, therefore, be necessary to follow the present circuit by a buffer stage if a low-impedance load is used.

The switches are arranged to give an amplification or attenuation of exactly 2.5 dB per step. Thus, eleven positions are available: -12.5 dB, -10 dB, -7.5 dB, -5 dB, -2.5 dB, 0 dB, +2.5 dB, +5 dB, +7.5 dB, +10 dB and +12.5 dB. Linear steps with this accuracy are hardly possible with the use of potentiometers.

The change-over point of the circuit is at about 2.5 kHz, which may be altered slightly by changing the value of C₁. Resistor R₈ ensures that the opamp is provided with bias current when S₂ is operated.

If an opamp with a JFET or MOSFET input is used, the click of the switch will not (or hardly) be audible. The Type TL071 used in the prototype may be be replaced by a better type, such as the OPA627, without any problem.

With values as specified, the circuit draws a current of about 2 mA per channel.

Design: T. Giesberts [944043]

ELEKTOR ELECTRONICS DECEMBER 1994
RELAY-CONTROLLED POTENTIOMETER

Standard potentiometers have some unfortunate properties, such as crackling when they get older and unequal tracking in stereo types. A worthwhile alternative is a relay controlled resistive divider.

The present configuration is capable of providing 64 levels of attenuation. With values as specified, each step is 1 dB so that the whole range covers 0–63 dB.

Each of the six attenuator sections has an input and output impedance of 10 kΩ. This means that any one section may be omitted without affecting the input or output impedance of the whole unit.

In the quiescent state (all relays unenergized), the unit provides maximum attenuation. The design is such that the section nearest to the output has the largest attenuation of the six. This arrangement has proved to give the best possible signal-to-noise performance. Consequently, point A forms the lowest significant bit (LSB) and point F the most significant bit (MSB).

The unit is driven by a 6-bit up/down counter, which may need to be followed by a buffer IC, depending on the relays used. The drive may also be obtained from a microprocessor.

Since errors have a cumulative effect, the calculated values of the resistors have been approached as closely as possible by the use of two parallel-connected 1% resistors. Greater accuracy is obtained by the use of 0.1% types.

When the the unit is built into a preamplifier, it should be borne in mind that the output impedance across which the unit is to be connected is low (otherwise, the values of R1 and R6 must be altered as relevant). The load across the output, shunted by R25, must be 10 kΩ (the specified value of R25 is, therefore, correct only if the load has a very high impedance).

The choice of relays depends on individual requirements.

The unit draws a current which depends entirely on the relays.

Design: T. Giesberts

MOTOR SPEED CONTROLLER

The controller was designed to stabilize the speed of small d.c. motors within certain limits. It holds constant the counter-e.m.f. produced by the motor, so that the rotational speed is also constant.

The controller uses a motor speed regulator IC from SGS Thomson, in which the control function is integrated. The IC has three terminals: pin 1 for a reference voltage; pin 2 for the regulator motor current; and pin 3 for ground connection.

The motor is connected between the +ve supply voltage and pin 2 of IC. The value of R1 is about 20x the d.c. resistance of the motor. The current through R1 is thus 1/20 of that through the motor. This compensates for the loss caused by the resistive element of the motor.

The voltage at pin 2 is adjusted by the IC to a value at which the current into pin 1 is 1/20 of that into pin 2.

The voltage across the motor, and thus the rotational speed, depends on the setting of P1. Capacitors C1 and C2 ensure that brief voltage variations do not affect the control.

When during operation the rotational speed, and thus the counter-e.m.f., alters, the ratio of the currents at pins 1 and 2 is no longer 1:20. The IC then adjusts the output voltage until that ratio is obtained again.

The maximum current drawn by the motor must not exceed 300 mA.

It is advisable to mount the IC on a small heatsink of about 10 K W⁻¹.

Design: H. Bonenkamp
8TH ORDER BESSEL FILTER

The filter consists of two fourth-order sections in series. Various components in the second section have been given two different values. The non-bracketed values are used if IC1b functions as a voltage follower; R11 is then replaced by a link and R12 is omitted. The values in brackets are for use if IC2b is used as a x2 amplifier; R11 and R12 are then equivalent.

When IC1b functions as a voltage follower, the ratio of C7 to C8 is about 30, which is rather high. This means that, particularly at high cut-off frequencies, the value of C8 becomes so small that it is no longer available as a polyester type. It will then have to be a ceramic or a polystyrene type, which is awkward, because ceramic types should not really be used in audio applications, while polystyrene types tend to be costly. When IC1b functions as a x2 amplifier, these drawbacks do not exist. The ratio C6:C8 is then about 4.6.

The chip may be an NE5532 or a TL071, which draws only half the current of the 5532. Bear in mind that this eighth-order filter produces rather more noise than a fourth-order one, if only simply because there are two fourth-order sections in series. An eighth-order filter using only one opamp might produce rather less noise. But then, perhaps, the different value resistors may generate more noise.

In general, the present design will prove satisfactory in most applications.

Design: T. Giesberts [944028]

MOVEMENT ALARM

This tiny circuit can be used as a movement alarm in many situations: in a suitcase or on a bicycle to name but a few.

The movement sensor is a mercury switch, S1. This should be fitted in a suitcase or on a bicycle in such a way that it is open when the suitcase or bicycle is at rest. At the slightest movement, however, it will close. Provided the alarm has been set with S2, capacitor C2 will be charged rapidly via R1 and S1. Almost immediately, oscillator IC1a is enabled, whereupon buzzer Bz1 will sound.

Even if the mercury switch has opened again, the alarm signal will continue until C2 has been discharged via R3, which will take about 30 seconds.

Gates IC1a and IC1b function as buffers between the switch-on circuit and the oscillator. Diode D1 prevents C1 being discharged via R3, which would disable the oscillator prematurely.

Since the current drawn by the buzzer does not exceed about 10 mA, a 9 V battery (dry or rechargeable) will last quite a while.

Design: Amrit Bir Tiwana [944042]
PORTABLE CD PLAYERS

BATTERY ADAPTOR FOR PORTABLE CD PLAYERS

Portable CD players have an annoying drawback: their current drain is so high that even rechargeable NiCd batteries, let alone dry types, last not much longer than two hours. This is not just expensive (if dry batteries are used), but it also means that the user must always have a spare set of new or fully charged batteries.

Measurements show that most portable CD players draw a starting current of about 600 mA and an operating current of 400-500 mA. After the player has been used continuously for about two hours, the internal battery is flat or nearly so. If no spare battery is available, the only way to use the player for a little longer (independently of the mains) is to draw the power from a 6-12 V lead-acid battery (perhaps a car battery). This, however, requires an adaptor like the one described here.

The converter has two main tasks: to reduce the external battery voltage to that required by the player (3.4 V or 6.0 V) and to provide auto switch off after the player has been used for a predetermined period of time. Moreover, it is proof against polarity reversal, both at its input and its output.

If the external voltage (8-16 V) is to be lowered to 6 V, a Type 7806 regulator is needed; if to 3.4 V, a Type 7805. If a 6 V external battery is used, a low-drop regulator, such as the Type LM2940T-5.0, must be used. To avoid any potential drop before the regulator, diode D₁ is then best omitted.

If a supply of 3.4 V is required, two Type 1N4001 diodes must be connected in series with the output of the regulator. Since the forward drop across each of these diodes is 0.8 V (or nearly so), the 6 V regulator output is reduced to 3.4 V across the load.

Whatever configuration is used, the regulator should be mounted on a small heatsink. Diode D₁ protects the converter against incorrect polarity of the input voltage.

Automatic switch-off is provided by T₁ in conjunction with relay R₁ and double-pole switch S₁. When S₁ is pressed (to position 1), a current flows from the external battery via the regulator to the CD player. At the same time, S₁b connects the base of T₁ to the regulator output via R₁ and R₂. The transistor then conducts, so that the relay is energized. Relay contact R₁b, in parallel with S₁b, removes the earth connection from R₂. Capacitor C₅ is then charged to full capacity within about a second.

When in this condition S₁ is released (whereupon it returns to its centre position), C₅ is discharged via R₂ and R₃ and the base-emitter junction of T₁. When the potential across the capacitor has dropped to about 1.1 V which, with values as specified, takes about an hour, T₁ switches off, the relay no longer energized and the adaptor is disabled.

Design: W. Zeiller [944008]

MAGNETIC-FIELD DETECTOR

The Type UGN3140 Hall sensor from Sprague enables a magnetic-field detector to be constructed that is conspicuous by its simplicity.

The IC contains the sensor proper and also a differential amplifier and a comparator with hysteresis. Moreover, its open-collector output is buffered, so that an LED can be driven directly.

The UGN3140 switches at magnetic field strengths of 4.5-27 mT. The hysteresis is about 2 mT. The maximum supply voltage is 24 V. If higher supply voltages than 5 V are used, the value of the series resistor for the LED must, of course, be changed as required.

Design: H. Bonekamp [944100]
Protection circuits
As described in Part 1, the temperature sensor (T23 in Fig. 2) is linked to the protection circuits in the inverter via K1 (pins 2, 4, 6 and 8). Its output is compared with a reference value, set by P2, in IC3b. Any noise on the connections is filtered out by R32-C16 to prevent spurious actuation of the circuit. Hysteresis is provided by R31, which means that the heat sink must cool down by about half a degree before the amplifier is switched on again. In practice, the temperature protection circuit should be set to switch off the supply when the temperature of the heat sink reaches 65–70 °C.

When setting P2, note that the potential at pin 5 of IC3 is about 47 mV higher than that across the sensor (because of the drop across R32). If, therefore, the ambient temperature is 25 °C, and it is desired to set the onset of the protection at 70 °C, the potential difference between pins 5 and 6 of IC3 must be 90 mV (pin 6 negative with respect to pin 5 when the heat sink is at ambient temperature).

The detector for too high a battery voltage is formed by IC3a. This compares the battery voltage via potential divider R27-R28 with a reference voltage of 5.1 V. The design is such that the inverter is switched off when the battery voltage reaches 15 V.

Since the outputs of IC3 are open-collector types, they can be interlinked without any difficulty. The combined output signal is applied to the circuit based on T2 and T3. The latter stage applies the comparators’ output to the shutdown input of IC1.

The combination T2-T3 acts as a Schmitt trigger which converts the signals from the optoisolators in the amplifier into a switching signal for the shutdown input of IC1. When the current in the amplifier output stages is large enough, the optoisolators cause the Schmitt trigger to change state via R13. Because of the hysteresis provided by R31, any error states will result in either the switching off of the supply voltage or the lowering of the duty factor. If the supply is switched off, error indicator D23 is actuated by T2.

The circuit based on T5, T6 and T7 controls the output relay in the amplifier. This relay has two functions: it provides a soft start and it disconnects the loudspeakers immediately it is actuated during an error state.

The soft start is provided by the time taken (C1-R25 = 4–5 s) by C12 to become charged after the supply has been switched on. When C12 is charged (or very nearly so), T6 and T5 begin to conduct, whereupon the relay is actuated via pins 9–13 of K1.

When the shutdown input of IC1 is enabled, T7 begins to conduct via R23, which causes C12 to be discharged instantly. This results in T5 and T3 being switched off at once, whereupon the relay is deenergized. Diode D25 ensures that there can be no charge on C12 when C1 is not charged.

Construction
Building the inverter on the printed circuit board shown in Fig. 17 is comparable to constructing an audio amplifier using heavy-duty materials. The two transformers are not available as commercial products and will thus have to be wound by the constructor.

Winding the transformers
Transformer Tr2 is wound on a Type EDT29 former with N67 core material. This material can be used up to 300 kHz (owing to the double phase rectification, the frequency is 220 kHz).

Each of the two windings consists of 12 turns of 1.5 mm dia. enameled copper wire. Their winding sense is the same. The former has 13 numbered

Fig. 9. Winding Tr2 on an EDT-29 former is straightforward.
Fig. 10. This is how Tr1 looks after the first secondary winding has been laid.
Fig. 11. ...and like this after the fourth has been laid.
Fig. 12. How to prepare the strips for the primary windings.
Fig. 13. These are the primary windings for Tr1.

terminals of which number 10 is not used. One winding runs from terminals 1, 2, 3 to terminals 7, 8, 9; the second from 4, 5, 6 to 11, 12, 13.

The present application requires an air gap of 1.2 mm, which is obtained by placing two pieces of 0.6 mm thick cardboard between the arms of the two core halves.

A transformer constructed to the specifications stated (see Fig. 9) can handle currents up to 20 A before becoming saturated.

Transformer Tr1 is wound on a Type EDT49 former, also with N67 core material. The primaries are wound from copper foil, 12.5 mm wide and 0.3 mm thick. The secondary windings are made from litz wire (four cores each of 30 strands 0.1 mm thick). This kind of wire reduces the skin effect, that is, the concentration of the current at the surface of the wire. It also ensures a much better distribution of the four windings on the former. Each winding is made from two parallel connected wires (eight cores).

Because of the very heavy currents, all connections at the primary side must be made with screw terminals, except in the case of those to the switching transistors, which are soldered (but note that here the current is divided over six solder joints).

In contrast to usual practice, the secondary windings are laid on the former first. Each winding is made by laying the two parallel-connected wires tightly on to the former as shown in Fig. 10. Then, place a layer of insulating foil across the winding and lay the second, third and fourth windings on top in an identical manner. The first winding is connected to pins 7 and 14, the second to pins 8 and 13, the third to 9 and 12, and the fourth to 10 and 11. It is imperative that all 240 strands are burnt clean before they are soldered in place. This stage of the construction is illustrated in Fig. 11.

Each of the primaries consists of one turn of 0.3 mm thick copper foil (cut to size as shown in Fig. 12). Actually, each turn is made of two strips of foil laid on top of each other and connected in parallel. The two primaries must be wound in opposite sense. The windings should be insulated from one another (for which Teflon tape as used by plumbers is excellent: use a few layers since this tape is fairly thin). Figure 13 shows how the two windings should be folded.

The terminals of the two windings should aligned ready to be pushed through the Z-shaped slot in the PCB. Figure 14 shows the transformer at this stage of the construction. The slot starts adjacent to pins 3 and 4 and ends next to pins 17 and 18 (see Fig. 15). Note that terminals 1-6 and 15-20 of the former are not used. In fact, pins 1, 2, 3, 15, 16 and 17 must cut off down to the copper to make place for the connections to the 12 V supply.

It is advisable to place the transformer temporarily on the board and bend the terminals to locate the exact position for the 3 mm screw holes. Drill these holes and place the core material on to the transformer, which is then ready for soldering on to the board with pins 4-14 and 18-20.

The ancillary windings for the ±46.6 V supply consist of two turns of 0.5 mm dia. insulated wire on the arm of the former at the side of pins 10 and 11. Twist the wires and connect them to the adjacent soldering eyelet—see Fig. 16.

Completing the board

To begin with, the printed circuit board in Fig. 17 must be cut into two. The smaller part is for housing the control and protection circuits. Populating it is straightforward, but note that although C11 is a radial capacitor (because of its superior HF performance) it must be mounted lying down. Also, C5, C7 and Cg are surface-mount components that
are soldered directly underneath or next to IC1.

The copper on the larger part of the board is only 35 μm thick, which is not sufficient for the large primary currents. Additional copper conductors must therefore be soldered between the drains of power transistors T12-T23 and the screw connections on Tr1. These conductors are cut from 0.3 mm thick copper foil: it is advisable to use a photocopy of the board layout for cutting to their correct shape.

High-grade electrolytic capacitors C18 and C19 have screw fittings for which suitable holes are provided. The buffer capacitors are radial types with soldering terminals. Do not fit these until the circuit has been aligned.

Fit the diodes on a DIY heat sink (95x62 mm) made from 2 mm thick aluminium sheet. Isolate them from the heat sink by ceramic or mica washers. To prevent the board being damaged by the aluminium, place insulating (Teflon) tape between the it and the heat sink. Create a slight double bend in the terminals of the diodes to lessen mechanical stress.

Use the drain connections of the FETs on the board as a template for drilling the required fixing holes in the heat sink. Create an S-bend in the terminals of the FETs to lessen the effect of thermal and mechanical stress. The FETs must be isolated from the heat sink by ceramic washers.

Note that MOSFETs have a positive temperature coefficient, whereas diodes have a negative one. For efficient operation it is thus desirable that the heat sink of the FETs remains cool, while that of the diodes may become relatively hot.

The completed board is shown in Fig. 18.

Mount the board with the control and protection circuits on insulated spacers to the underside of the larger board directly underneath the FETs: this ensures the shortest possible connections between the driver outputs and the gates of the FETs. Interconnect points G1, G2, FB+, FB-, +12 V and -12 V on the two boards with normal insulated circuit wire. The completed assembly is shown in Fig. 19.

Wiring

Each part of the inverter has its own terminals for connection to the ±12 V supply. These connections must be made in ≥10 mm² cable terminated in M8 size eyelets. Combine the four cables in a gold-plated junction block capable of linking the four to a ≥25 mm² cable connecting the inverter to the car battery.

The 60 A primary fuse must be fitted in an in-line fuse holder in the +12 V supply close to the battery.

Link the ±43 V power lines to the amplifier via 2.5 mm² cable. Normal insulated circuit wire may be used for the ±46.6 V power lines to the amplifier.

Interconnect the K1 connectors on the inverter and amplifier with flatcable.

Connect point 's' to the switched battery voltage in the car.

A wiring diagram of the amplifier and inverter is given in Fig. 20.

Alignment

The amplitude of the ±43 V supply is set with pulse width control P1. As stated earlier, it is best to do this before C22-C25 and C27-C30 are fitted. Load the ±43 V lines with a 390 Ω, 10 W resistor to earth and shunt this with a voltmeter. Adjust P1 until the voltmeter shows 43 V ±0.5 V. If that
value can not be obtained, it may be necessary to alter the values of \(R_9 \) and \(P_1 \) to some degree. Too high a voltage is not recommended for the output amplifier.

Suspend the temperature sensor in a bowl of water at 65-70 °C (keep the terminals dry!) and adjust \(P_2 \) until the protection circuit comes into operation as indicated by the lighting of \(D_{23} \). Fix \(P_1 \) and \(P_2 \) in position with some nail varnish.

Fit electrolytic capacitors \(C_{22} - C_{25} \) and \(C_{27} - C_{30} \).

Next, in the amplifier verify with an ohmmeter that \(P_2 \) is set to maximum resistance: this is important. Then, connect the ±43 V and ±46.6 V lines to the amplifier. Connect a millivoltmeter across the amplifier output and adjust \(P_1 \) until the meter reading is zero.

Connect the millivoltmeter across one of the emitter resistors of the output transistors and adjust \(P_2 \) slowly until the meter reads 22 mV.

Enclosures

Because of the forced cooling necessary in the amplifier (and, perhaps, individual factors), it is best to use separate enclosures for the amplifier and inverter made from aluminium sheet. If, nevertheless, one enclosure is used for both, it is important to separate the two units by an aluminium partition. Whichever is used, the important factor is the adequate cooling of the amplifier.

Parts list

Resistors:
- \(R_1 = 1.2 \, \text{k}\Omega \)
- \(R_2 = \text{not used} \)
- \(R_3 = 470 \, \text{k}\Omega \)
- \(R_4, R_{14} = 1 \, \text{k}\Omega \)
- \(R_5 = 5.6 \, \text{k}\Omega \)
- \(R_6-R_9 = 2.2 \, \text{k}\Omega \)
- \(R_{10}, R_{16} = 10 \, \text{k}\Omega \)
- \(R_{11}, R_{12} = 6.81 \, \text{k}\Omega, 1\% \)
- \(R_{15}, R_{21}, R_{30} = 56 \, \text{k}\Omega \)
- \(R_{17} = 15 \, \text{k}\Omega \)
- \(R_{19} = 2.2 \, \text{k}\Omega \)
- \(R_{20} = 39 \, \text{k}\Omega \)
- \(R_{22} = 820 \, \text{k}\Omega \)
- \(R_{23} = 47 \, \text{k}\Omega \)
- \(R_{25} = 10 \, \text{M}\Omega \)
- \(R_{26} = 8.2 \, \text{k}\Omega \)
- \(R_{27} = 20.0 \, \text{k}\Omega, 1\% \)
- \(R_{28} = 10.0 \, \text{k}\Omega, 1\% \)
- \(R_{31} = 220 \, \text{k}\Omega \)
- \(R_{32} = 47 \, \Omega \)
- \(R_{33}-R_{36} = 6.8 \, \Omega \)
- \(R_{37}-R_{38} = 4.7 \, \Omega \)
- \(R_{39}-R_{41} = 150 \, \Omega \)
- \(R_{52}, R_{53} = 1.8 \, \Omega \)
- \(P_1 = 4.7 \, \text{k}\Omega \) (5.0 \(\text{k}\Omega \) preset)
- \(P_2 = 10 \, \text{k}\Omega \) preset

Capacitors:
- \(C_1 = 4.7 \, \mu\text{F}, 63 \, \text{V}, \text{radial} \)
- \(C_2 = 68 \, \text{nF} \)
- \(C_3 = 1 \, \text{nF}, 160 \, \text{V}, \text{polystyrene} \)
- \(C_4, C_{10}, C_{31}, C_{32} = 100 \, \text{nF}, \text{ceramic} \)
- \(C_5, C_7 = 100 \, \text{nF}, \text{SMD, ceramic} \)
- \(C_6 = 100 \, \mu\text{F}, 25 \, \text{V}, \text{radial} \)
- \(C_8 = 220 \, \mu\text{F}, 25 \, \text{V}, \text{radial} \)
- \(C_{9} = \text{10 nF, SMD, ceramic} \)
- \(C_{11} = 1000 \, \mu\text{F}, 25 \, \text{V}, \text{radial} \)
- \(C_{12}, C_{13} = 1 \, \mu\text{F}, \text{polypropylene, pitch 5 mm} \)
- \(C_{14}, C_{17} = 100 \, \text{nF} \)
- \(C_{15} = 220 \, \text{nF} \)
- \(C_{18} = 220 \, \mu\text{F}, 10 \, \text{V}, \text{radial} \)
- \(C_{19} = 10,000 \, \mu\text{F}, \text{high-grade, 20 V} \)
- \(C_{20} = 4.7 \, \text{nF} \)
- \(C_{21}, C_{26} = 10 \, \mu\text{F}, 100 \, \text{V}, \text{polypropylene} \)
- \(C_{22}-C_{25}, C_{27}-C_{30} = 10,000 \, \mu\text{F}, 50 \, \text{V, radial, for PCB mounting} \)
- \(C_{33} = 10 \, \text{nF}, \text{ceramic} \)

Semiconductors:
- \(D_1-D_{10} = \text{BYW29-200} \)
- \(D_{11}-D_{18}, D_{22}, D_{25}, D_{26} = \text{IN4148} \)
- \(D_{19}, D_{20} = \text{zener 3.6 V, 1.3 W} \)
- \(D_{21} = \text{zener, 3.9 V, 0.5 W} \)
- \(D_{22} = \text{LED, red, low current} \)
- \(D_{23} = \text{zener, 5.6 V, 0.5 W} \)
- \(T_1, T_2, T_3 = \text{BC547B} \)
- \(T_4, T_5 = \text{BC557B} \)
- \(T_{5}, T_6, T_7, T_8 = \text{BD139} \)
- \(T_9, T_{11} = \text{BD140} \)
- \(T_{12}-T_{23} = \text{BUZ11} \)

Integrated circuits:
- \(\text{IC}_1 = \text{SG3525A} \)
- \(\text{IC}_2 = \text{LD355} \)
- \(\text{IC}_3 = \text{LM393} \)

Miscellaneous:
- \(R_1 = 14 - \text{way box header, male, vertical} \)
- \(T_{11} = \text{see text} \)
- \(T_{12} = \text{see text} \)
- \(F_1-F_2 = 3.15 \, \text{A fuse, slow, with holder} \)
- \(6 \, \text{off PCB connector with screw fitting} \)
- \(10 \, \text{off mica washer for D}_{1}-D_{10} \) (TO-220)
12 off ceramic washer for T12-T23
2 off gold-plated junction block — see text
4 off gold-plated cable eyelet, M8 size for 10 mm² cable
4 off short M8 bolts and nuts

10 mm² cable as required
25 mm² cable as required
1 off in-line fuse holder with 60 A fuse
1 off heat sink Type SK85 SA
1 off aluminium heat sink — see text
14-way flatcable

14-way flatcable with 3 14-way flatcable sockets
1 off PCB Order No. 940078-2

Fig. 20. Wiring diagram of the complete in-car audio amplifier.
“Electronics Workbench is the best simulator to design and verify circuits.”
Gordon MacDonald
Production Engineer Technician

Electronics Workbench is a highly productive bench where you design and verify circuits in a fraction of the time. Connections are always perfect. Wires route themselves. And the simulated components and test instruments work just like the real thing.

It’s faster than building with actual components because you change connections and component values instantly. And since the simulated components are free, you don’t need to replace burnt-out parts or keep an extensive inventory. The result: You save precious time and money. Guaranteed!

The standard for simplicity and power for over six years, Electronics Workbench is the most popular tool of its kind. It has gained worldwide acclaim as the ideal complement to any test bench. Fact: Over 90% of our customers recommend it to their friends and colleagues.

Electronics Workbench
The electronics lab in a computer™
Call: 44 0203 233216

Robinson Marshall (Europe) PLC
Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF
FAX: (44) 0203 233210

*30-day money-back guarantee.
Shipping charges - UK £4.99. All prices are plus VAT.
All trademarks are the property of their respective owners.
**With the purchase of Electronics Workbench. Offer valid until October 15, 1994.
The content of this note is based on information received from manufacturers in the electrical and electronics industries, or their representatives, and does not imply practical experience by Elektor Electronics or its consultants.

TLC247x DIFFERENTIAL AUDIO FILTERED AMPLIFIERS

The TLC247x family from Texas Instruments is a series of integrated circuits specifically designed to make driving a loudspeaker with an analogue or a pulse-width modulated signal as simple as possible. Practically everything is contained in these ICs to supply a power of about 500 milliwatts (peak) to a miniature 8-ohm loudspeaker. Apart from the IC, only a handful of passive parts is required.

The TLC247x family from Texas Instruments comprises four members: the TLC2470I, TLC2471I, TLC2472I and TLC2473I. These are audio amplifiers with built-in low-pass filters, designed to drive miniature loudspeakers. The chip integrates input buffers, filters, power stages and control electronics. The only external parts which are normally needed are one capacitor and one potentiometer. The possibility to apply audio as well as PWM signals to the inputs makes these ICs eminently suited to applications in speech synthesis systems. In many cases, a TLC247x allows a separate D-A converter to be omitted, which saves board space and money. Furthermore, the TLC247x has on-board logic which switches the IC into stand-by mode when there is no input signal. This is done to save power, which is a must for battery-powered equipment.

Block diagram

The internal architecture of the TLC247x is shown in Fig. 1. The input section consists of a modified instrumentation amplifier with balanced (symmetrical) inputs. These inputs are compatible with four different types of input signal. The inputs have internal resistor networks which ensure that an unused input is automatically held at about half the supply voltage. To keep the distortion as low as possible, Texas Instruments recommends decoupling the unused input with a 0.22-µF capacitor to ground. If you use an analogue, unbalanced, input signal, input IN- remains open (0.22-µF capacitor) and the signal is applied to input IN+ (via a coupling capacitor, or else related to Vdd/2). The maximum input voltage for full drive is 1 Vp with the TLC2470 and the TLC2471, or 2 Vp with the TLC2472 and the TLC2473. If balanced (symmetrical) signals are used, the stated levels

![Fig. 1. The block diagram shows the internal structure of TI's TLC247x series of low-power differential input IC amplifiers.](image-url)

Source: Texas Instruments

THIS series of integrated circuits from Texas Instruments comprises four members: the TLC2470I, TLC2471I, TLC2472I and TLC2473I. These are audio amplifiers with built-in low-pass filters, designed to drive miniature loudspeakers. The chip integrates input buffers, filters, power stages and control electronics. The only external parts which are normally needed are one capacitor and one potentiometer. The possibility to apply audio as well as PWM signals to the inputs makes these ICs eminently suited to applications in speech synthesis systems. In many cases, a TLC247x allows a separate D-A converter to be omitted, which saves board space and money. Furthermore, the TLC247x has on-board logic which switches the IC into stand-by mode when there is no input signal. This is done to save power, which is a must for battery-powered equipment.

Block diagram

The internal 'architecture' of the TLC247x is shown in Fig. 1. The input section consists of a modified instrumentation amplifier with balanced (symmetrical) inputs. These inputs are compatible with four different types of input signal. The inputs have internal resistor networks which ensure that an unused input is automatically held at about half the supply voltage. To keep the distortion as low as possible, Texas Instruments recommends decoupling the unused input with a 0.22-µF capacitor to ground. If you use an analogue, unbalanced, input signal, input IN- remains open (0.22-µF capacitor) and the signal is applied to input IN+ (via a coupling capacitor, or else related to Vdd/2). The maximum input voltage for full drive is 1 Vp with the TLC2470 and the TLC2471, or 2 Vp with the TLC2472 and the TLC2473. If balanced (symmetrical) signals are used, the stated levels...**
apply to the difference voltages between the inputs.

If PWM signals are used, there are three possibilities:

1. Push-pull mode using two inputs. The 'off' state is selected by making both inputs logic high. By dropping one of the inputs low, the voltage across the loudspeaker is driven to the positive or negative supply level.

2. One input is not connected (IN-), while the other accepts the PWM signal (a duty factor of 0.5 yields a loudspeaker output voltage of 0 V).

3. One input (IN-) not connected, and IN+ held at Vdd/2. Positive pulses then produce a positive output voltage, and negative pulses, a negative output voltage.

The complete input stage has an attenuation of x2. The buffer that follows it limits the signal to a value of Vdd/4 ± 1 V. That causes the voltage swing of the output amplifier to be limited with PWM signals, while analogue signals smaller than 1 V are passed.

Next comes an anti-aliasing filter which serves to prevent interference between the PWM input signal and the clock signal of the switched-capacitor filter. The signal is subsequently fed through a third-order low-pass filter built from a switched capacitor network. This unit removes all unwanted frequency components from the PWM signal. The roll-off frequency of the network depends on the IC type, and is set to 3.5 kHz or 5 kHz (see Fig. 2). The oscillators and dividers needed for this filter are, of course, on board the IC; no external parts are needed. The filtered signal is then applied to two power buffers, one of which is driven via an inverter. That creates a push-pull output for the loudspeaker, which obviates an electrolytic coupling capacitor, and guarantees a relatively high power at a low supply voltage.

With PWM signals, the output volume is varied between 'off' and maximum by applying a voltage between 0 V and 2/3 Vdd to pin 2 (VOL CNTL). A higher control voltage, or no voltage at all, results in maximum amplification.

An automatic power-down switch is integrated in the chip for battery-powered applications. This function requires a 3.3-µF capacitor to be connected between the PWR-DN pin and ground. If half the supply voltage is applied to both inputs, the IC switches off after 0.5 s, and the current consumption is reduced to about 50 µA. The power-down mode is also activated if both inputs are open-circuited, or capacitively coupled to the signal source (which supplies no signal). If an input signal appears, the TLC247x wakes up within 2 ms.

With the PWM amplifier, the volume is controlled by the 1-MΩ potentiometer. Here, a push-pull PWM signal is applied to the inputs. If you have an ordinary PWM signal (for instance, one produced by a musical greeting card), pin 7 is simply not used, and de-
APPLICATION NOTE

coupled to ground via a 0.22-μF capacitor. The analogue AF amplifier circuit has a 10-kΩ potentiometer in series with the + input to enable the volume to be controlled. In both circuits, the power supply is decoupled with an electrolytic capacitor (10 μF) and a film capacitor (100 nF).

The loudspeaker is connected between pins 3 and 5. Obviously the loudspeaker terminals may not be connected to ground, for instance, via the cone frame and the amplifier case, since that would short-circuit one of the IC outputs.

Source:

Fig. 3. Two applications: (a) shows an amplifier for pulse-width modulated signals, and (b) one for ordinary (analogue) audio signals.

ELECTRONICS FAIR MUNICH 1994

The 'Electronica' (electronics) fair to be held in Munich, Germany, from 8 to 12 November 1994 attracted an estimated 80,000 to 90,000 professional electronics users from over 70 countries.

The main trends this year were ASIC (application specific integrated circuits) and DSP (digital signal processor) devices, both of which are currently experiencing an enormous market growth. Once an ASIC is bought and used by several customers, it is often called an ASSP (application specific standard product). ASICs, however, look poised to become the absolute technology leaders in the entire digital electronics market. That goes for the tools necessary to design them (CAD programs), as well as for the enclosures and the possibilities to test them. ASICs, like the latest microprocessors, are fabricated using 0.5-micron structures. In the top-15 of ASIC manufacturers, the only European competitor, GEC Plessey, is in 13th position. Market leader Fujitsu is followed by manufacturers like LSI Logic, NEC, AT&T, Toshiba and Texas Instruments. ASICs are found in a wide variety of applications, including notebook and laptop computers, mobile telephones and pagers. Until 1998, the market for ASICs is expected to grow by 9% on average. This year, the market represents a total value of about 9.55 billion dollar.

DSPs were marked this year by an explosion of computing power. They are now among the fastest growing segments of the semiconductor industry, and insiders are convinced that that is likely to remain so for a considerable period, since DSPs are said to be the processor technology of the nineties. In fact, by 1996, at least 90% of all new PCs are expected to have at least one DSP. Not surprisingly, leading manufacturers of DSPs like Texas Instruments, AT&T, Motorola and others, are seeing more and more microprocessor manufacturers entering the DSP market as rivals. The 'new' faces are Intel, National Semiconductor, IBM and Siemens, all of whom have started to develop DSP functions which are integrated in ... ASICs!

Also new is the trend to make ASICs work at 3 V, obviously with the huge market for portable computers in mind.
Programming Solutions

SMART Communications offer the best range of low cost programmers for your every need. Unrivalled device support includes the latest MACH, pLSI, MAPL, PIC, WSI, Atmel, Xilinx and Intel parts.

ALL-07 Universal Programmer
- Pin driver expansion can drive up to 256 pins.
- Supports over 2000 IC's – 3 and 5 volt devices.
- EPROMs, EPROMs, Bipolars, Flash, Serial EPROMs up to 16 Mbits parts, over 150 Microcontrollers and PLDs, EPLDs, PEELs, PALs, GALs, FPGAs etc...
- Universal DIL (up to 48 pins), PLCC and gang PACs – significantly reduces the number of adapters required.
- Powerful full colour menu system.
- Connects to the pc printer port with its own power supply.
- Latest programming algorithms.
- Tests TTL, CMOS and SRAM devices – even identifies unknown parts.
- Approved by AMD for their range of programmable logic.

£325

EMP-20 Multi-Device Programmer
- EPROMs, EPROMs, Flash, Serial EPROMs to 16 Mbits.
- PLDs, GALs, PEELs, WSI PSDs.
- Intel, Microchip, Motorola and Zilog Microcontrollers.
- Fast programming algorithms.

£325

Erasers & pin convertors
- AT-701 – Chiprase
 - Ultra-violet eraser.
 - Very compact
 - 16 chip capacity
 - Built in timer

£95

- Pin convertors from DIL to PLCC, SOP, SOIC etc...
- from £50

PB-10 Programmer
- Low cost programmer.
- EPROMs, EPROMs, Flash and 8748/8751.
- Fast programming algorithms.
- Simple but powerful menu driven software.

£139

SMART Communications have a full range of dedicated programmers for the Microchip PIC range of microcontrollers – both single and gang for DIL and SOIC variants.

We also supply a wide range of development tools – Assemblers, Compilers, Simulators and Emulators – for a wide range of microprocessors, especially the Microchip range. Our ROM emulators start at just £99.

SMART COMMUNICATIONS
2 Field End • Arkley • Barnet • Herts • EN5 3EZ • England
Telephone +44 (0)181 441 3890
Fax +44 (0)181 441 1843
CUMULATIVE INDEX 1994

APPLICATION NOTES
- Home bus modem IC ST7537
- IL300 optoisolator
- Optical window comparator TSL220
- Solid-state temperature sensor
- TLC247x differential audio filtered amplifiers
- Voice scramblers FX118 and PCD4440
- Integrator audio amplifier (2)
- In-car audio amplifier (1)
- Headphone amplifier
- General purpose IR volume control
- Fast switch-off for power amplifier
- Discrete preamplifier
- Copybit eliminator
- Auto-play for CD player
- 8th-order Butterworth filter
- Voice scramblers FX118 and PCD4440
- TLC247x differential audio filtered amplifiers
- Solid-state temperature sensor
- Optical window comparator TSL220
- 1L300 optoisolator
- Home bus modem IC ST7537
- 8th-order Butterworth filter
- PC over-temperature alarm
- PC interface for Casio FX850/880P
- Non-volatile controller chip
- PC interface for Casio organiser
- PC over-temperature alarm
- PIC programmer

AUDIO AND HI-FI
- 8th-order Butterworth filter
- 100-W high-end AF power amplifier
- Auto-play for CD player
- Copybit eliminator
- Discrete preamplifier
- Fast switch-off for power amplifier
- General purpose IR volume control
- In-car audio amplifier (1)
- In-car audio amplifier (2)
- In-car audio amplifier (3)
- Integrated audio amplifier (1)
- Integrated audio amplifier (2)
- Loudness control
- Low-frequency tone control
- Mini preamplifier
- Near-perfect input stage
- Programmable amplifier
- Robust AF power amplifier
- Stand-alone S/PDIF copybit eliminator
- Surround sound
- Switched tone control
- Two-speaker amplifier

COMPUTERS AND MICROPROCESSORS
- 1-to-4 Mbyte SIMM adaptor
- 68HC11 processor board
- 80C535 hardware/assamblor course
- 80C535 hardware/assamblor course (1)
- 80C535 hardware/assamblor course (2)
- 80C535 hardware/assamblor course (3)
- 80C535 hardware/assamblor course (4)
- 80C535 single-board computer
- 80C535 SBC extension board
- 80C451 controller board
- Bidirectional RS232 to Centronics converter
- Centronics input
- Centronics input/output interface
- Computer PSU monitor
- Debugging the 8031 series
- Discrete A-D converter for 8051
- Intelligent EPROM eraser
- Joystick-to-mouse adaptor
- Low-cost ispLSI programmer
- Mini I/O card for Casio FX850/880P
- Monochrome VGA adaptor
- Non-volatile controller chip
- PC interface for Casio organiser
- PC over-temperature alarm
- PIC programmer

COMPONENTS
- 4th order Butterworth filters
- 8th order Bessel filter
- 50Hz band-stop filter
- Comparator with unilateral hysteresis
- Composite operational amplifiers
- General-purpose filters
- Gyro
- Heat-sinks: how and when to use them
- Improved optoisolator
- ispStarter kit from Lattice
- Low-voltage CMOS devices
- Programmable divider
- PSD3xx chips
- RC active filters
- Relay controlled potentiometer
- Transformers: an overview

ELECTRONICS AND MUSIC
- Compressor for guitars
- MIDI swell pedal
- Phantom power supply for guitars

GENERAL INTEREST
- 1-to-3-phase converter
- All gas and vapour
- Analogue revolution counter
- Anemometer and flow meter
- Auto start for older fax machines
- Battery adaptor for portable CD players
- Building electronic circuits
- Chaos
- Crystal oscillator
- Digital dial
- Digital signal (1)
- Drive for bistable relay
- EIB: European Installation Bus
- Electret microphone for telephone mouthpiece
- Electric-field detector
- Electronic fuse
- Experimentation board for PICs
- Fax-PC interconnection
- Figuring it out (12)
- Figuring it out (13)
- Figuring it out (14)
- Figuring it out (15)
- Figuring it out (16)
- Figuring it out (17)
- Figuring it out (18)
- Figuring it out (19)
- Figuring it out (20)
- Figuring it out (21)
- Figuring it out (22)
- Figuring it out (23)
- Figuring it out (24)
- Figuring it out (25)
- Figuring it out (26)
- Figuring it out (27)
- Figuring it out (28)
- Figuring it out (29)
- Figuring it out (30)

Notation:

article title...[month — page number]

Figuring it out (20) ... 11 - 40
Fuel consumption meter .. 6 - 14
Fuse protector .. 12 - 44
General-purpose sensor monitor 5 - 28
H-field sensor .. 12 - 96
Halogen light dimmer .. 4 - 5
Heat-sink monitor ... 7/8 - 42
Infra-red controlled switch 7/8 - 98
I/C real-time clock .. 12 - 82
Ionisation meter ... 12 - 89
Light-sensitive switch .. 7/8 - 46
Liquid crystal displays ... 5 - 26
Magnetic-field detector ... 12 - 47
Mains signalling system (1) 4 - 42
Mains signalling system (2) 5 - 10
Mains synchronized oscillator 7/8 - 50
Motor speed controller .. 12 - 45
Movement alarm .. 7/8 - 46
NP/NPN selector ... 12 - 34
Optical doorbell .. 7/8 - 5
Overtone oscillator .. 7/8 - 6
Points control for model railway 7/8 - 102
Polarity reversal protection 7/8 - 76
Power-on delay .. 12 - 101
Presentation running lights 12 - 95
Printed circuit board production 11 - 64
Proximity detector .. 12 - 38
Pump for operational amplifiers 12 - 63
Rear wiper interval switch 7/8 - 103
Reversing indicator .. 12 - 90
Resettable fuse for caravans 7/8 - 92
Self-starting multivibrator 7/8 - 26
Sensor interface .. 7/8 - 70
Slave switch ... 7/8 - 76
Soft start for motors .. 12 - 92
Solder vapour extractor .. 7/8 - 71
Speed control for d.c. motors 12 - 88
Strobeoscope light .. 4 - 62
Telephone-controlled switch 1 - 58
Temperature protection for resistive high-power loads ..12 - 80
Thermo-controlled hot-plate 7/8 - 53
Transformers: an overview 10 - 42
TV sound-to-light unit .. 5 - 62
Water softener ... 7/8 - 78

POWER SUPPLIES AND BATTERY CHARGERS

5V regulator on 45V ... 12 - 81
Battery condition monitor 9 - 72
Car battery voltage monitor 3 - 60
Discrete power supply .. 7/8 - 72
Electronic know-how: batteries 12 - 66
Indicator for lead-acid battery charger 7/8 - 42
Lead-acid battery charger 7/8 - 70
Motive-battery charger 10 - 5
Near-rectifier .. 7/8 - 28
Near-ideal supply .. 7/8 - 64
Phantom power supply for guitars 11 - 5
Power supply decoupling 7/8 - 60
Power supply for LCD module 7/8 - 55
Reflex-charging adaptor 12 - 62
RF immune power supply 12 - 20
Step-up NiCd battery charger 12 - 33
Soft-start regulator ... 11 - 88
Solar cell powered NiCd charger 7/8 - 60
Stable DC-DC converter 10 - 26
Switchable AC power supply 9 - 70

30m QRP CW transmitter 12 - 35
Building your own toroid core and RF transformers ...2 - 52
Direct conversion receivers (1) 3 - 42
Direct conversion receivers (2) 4 - 54
Dual-purpose LED display 12 - 90
DX Television .. 1 - 68
DX Television ... 3 - 52
General-purpose infra-red buffer 7/8 - 36
A lower frequency receiving system 4 - 16
Morse decoder .. 5 - 16
Panda-Wegener stereo decoder 9 - 10
Radio data system (RDS) decoder 1 - 24
RC-5 transmitter with 80C535 7/8 - 6
Single-wire communication 11 - 24
Small-loop antennas for MW AM BCB, LF and VLF reception (1) .. 6 - 58
Small-loop antennas for MW AM BCB, LF and VLF reception (2) .. 7/8 - 104
S-VHS to VHS converter 7/8 - 46
Software emulation of RC-5 code 7/8 - 22
Stereo decoder ... 7/8 - 71
Switching voltage for polarizer 12 - 83
Using the double-balanced mixer 5 - 52

SCIENCE AND TECHNOLOGY
Coding for GSM .. 1 - 24

TEST AND MEASUREMENT

1000 Hz sine wave generator 12 - 5
AF signal tracer .. 3 - 5
Car battery monitor ... 7/8 - 80
Charge meter ... 7/8 - 30
Compact frequency meter 9 - 54
Current probe ... 12 - 100
Differential probe .. 12 - 98
Differential probe for oscilloscopes 5 - 22
Frequency indicator .. 7/8 - 63
IC bus booster .. 6 - 18
IC tester .. 1 - 14
LED oscilloscope .. 9 - 44
Low-voltage monitor .. 5 - 46
Peak AF voltage meter .. 7/8 - 68
PLL controlled ramp generator 7/8 - 102
Precision one-shot pulse generator 7/8 - 56
Programmable pulse spacing meter 7/8 - 36
Simple capacitance meter 11 - 14
Single-diode full-wave rectification 12 - 62
Spike detector ... 12 - 92
Sweep generator ... 7/8 - 75
Tester for infra-red remote control 10 - 18
Three-phase indicator 7/8 - 72
TV line monitor .. 10 - 56
Views of the bridge (2) 1 - 20

CORRECTIONS AND UPDATES

Digital dial (1-94) .. 3 - 66
Liquid crystal displays (2-94) 4 - 67
Precision clock for PCs (11-93) 3 - 66
Telephone-controlled switch (1-94) 4 - 67
VHF/UHF TV tuner (10/11-93) 5 - 66

RADIO, TELEVISION AND COMMUNICATIONS

24cm FM amateur TV transmitter 2 - 16

ELEKTOR ELECTRONICS DECEMBER 1994
stag is the power in the palm of your hand

Own an Orbit 32 – the latest in hand held programmers today...

- The most cost-effective solution available
- User friendly with operational simplicity
- 4Mbit RAM as standard
- 8 pin serial EEPROM support as standard
- Unique 'Edit while you Emulate' using Buffered Cable
- Smallest hand held Programmer
- Stag Com Windows and MS-DOS™ application software
- 32 pin wide blade ZIF for 0.3" and 0.6" pitch devices
- 8, 16 & 32 bit programming modes
- Battery will save user data in RAM for up to 7 months
- Serial port up to 115K bauds

*optional extras

The Orbit 32 programs 0.3" and 0.6" pitch, EPROMs, EEPROMs, FLASH and CMOS PROM devices up to 8Mbits with no additional modules. It is easily hand held and very user friendly with remote operation under MS-DOS™ or Windows™.

Emulation time saving
The most advanced emulation system available using the Stag pioneered 'Edit While you Run' technique. This means that you can not only run your target system in RAM but you can Edit the RAM while you Emulate without having to switch from Emulate to Edit or even turn off the target system. For example the Orbit 32 in one particular instance saved 80% of an engineer's time in de-bugging an engine management unit for a car manufacturer. They love it.

£475 + VAT including 4Mbit RAM (8Mbit RAM capability) - call Stag today on 01707 332148

Stag... not only a manufacturer of the best range of portable programmers but also the leading brand of Universal Programmers to 256 pin devices, Gang Programmers, In-circuit Programmers, Logic Compilers, PLD Programmers and UV Erasers

Stag Programmers Limited • Silver Court • Watchmead • Welwyn Garden City • Hertfordshire AL7 1LT • United Kingdom
Tel: 01707 332148 • Fax: 01707 371503

All trade marks are acknowledged and respected
Do you love electronics? Is that love satisfied by regular reading of *Elektor Electronics*?
If so, why not take out an annual subscription to secure that love.
Write or phone to
Worldwide Subscription Service Ltd.
Unit 4, Gibbs Reed Farm
Pashley Road,
Ticehurst TN5 7HE, England
Phone (01580) 200 657
Fax (01580) 200 616

Elektor Electronics
The International Electronics Magazine
REFLEX-CHARGING ADAPTOR

The adaptor enables almost any NiCd charger to work on the reflex principle. It is simply connected in parallel with a battery when this is being charged.

Transistor T1 is a unijunction type, which has the property that the emitter-base 2 junction is blocked when the emitter voltage is low. When this voltage rises to a certain value, the emitter-base 2 and base 1-base 2 junctions become low-impedance. When, in the diagram, T1 is off, the base of T2 is at ground level. Capacitor C1 is then charged via R1 and P1 to the value at which T1 begins to conduct. The capacitor is then discharged, whereupon the base voltage of T2 rises, so that this transistor also conducts. Because of the reducing voltage across C1, the emitter voltage of T1 drops below the value at which T1 conducts, so that this transistor is cut off. Thereupon C1 will be charged again, and the cycle repeats itself.

In this way, T1 produces 40 ms pulses with a pulse spacing of 1 s. The pulse rate is determined by R1-P1-C1, and the pulse width by R2-C1-base-emitter resistance of T2.

Transistor T2 amplifies the pulses, which are then fed to power transistor T3. Since T3 conducts briefly during each pulse, relatively high current pulses are drawn from the battery being charged, which is typical of the reflex principle. The flashing of D1 shows whether the circuit is working correctly.

The operation described assumes the battery being charged to consist of 4-6 cells (6-9 V). If the battery consists of only 1-3 cells, its voltage (1.5-4.5 V) is not high enough to function as the power supply for the present circuit. In that case, the circuit must be powered by a 6 V ancillary battery, Bt1. Link JP2 must then be placed the other way from that shown.

Load resistor R1 must have a value which results in a current through T3 that is about 3.5x the charging current. This value can be determined by placing JP1 in position 'test', so that T1 and T2 conduct continuously. Then, insert an ammeter between the present circuit and the battery being charged to ascertain the current through T3. Discharging in position 'test' must be kept short to prevent T3 overheating.

Design: H. Junge

SINGLE-DIODE FULL-WAVE RECTIFICATION

For measurements on alternating voltage, an active rectifier is normally needed to convert that voltage into a direct voltage which is applied to a meter or an A-D (analogue to digital) converter. Although the present circuit uses only a single diode, full-wave rectification is effected. The output voltage, Uo, for positive inputs is

\[U_o = U_i R_p / (R_2 + R_p) \]

where \(U_i \) is the input signal and \(R_p \) is the parallel combination of \(R_3 \) and \(R_4 \).

For negative inputs,

\[U_o = [U_i R_p / (R_2 + R_p)] \times (1 - R_2 R_5 / R_1 R_p). \]

To enable use of the circuit as a full-wave rectifier, these two formulas must be equal.

Computing this gives:

\[R_2 R_5 / R_1 R_p = 2. \]

If \(R_1 = R_2 \) (here 22 kΩ), \(R_5 \) must be 2\(R_p \). In the prototype,

\[R_3 = R_4 = R_5 = 390 \text{ kΩ}. \]

To keep any error in the positive output voltage to a minimum, D1 is a Schottky type. For alternating voltages, this does not matter, because the output voltage is determined by \(R_p \).

With values as specified, the amplification of the rectifier is \(\times 0.9 \). The bandwidth is about 10 kHz, but this depends to a large extent on the diode and opamp used. The input impedance is around 20 kΩ. The output impedance is \(\leq 100 \Omega \).

Design: H. Bonekamp
It is often necessary to provide power for an operational amplifier from a single supply. Instead of the usual potential divider with coupling capacitors or the rather more sophisticated transducer, the present circuit uses a pump as shown in Fig. 1. Operational amplifier IC1a is arranged as the pump oscillator.

When the supply is switched on, the potential at the negative supply pin of the opamp is two diode forward voltages (D1 and D2) above earth potential. Capacitors C4 and C6 are then not charged.

When the output of IC1a, and thus the negative pin of C6, drops below 0 V, D2 conducts and C4 charges to a negative potential. When the opamp changes state, D2 is cut off and C6 is discharged via D1. Thus, the negative potential across C4 stabilizes at a value that depends on the type of opamp. In the prototype, an LM324 was used, which resulted in a potential across C4 of -6 V. A TLC274 did not give such good results.

It should be borne in mind that the maximum current from this negative supply must not exceed about 5 mA. If a higher current is required, a buffer stage as shown in Fig. 2 should be inserted between A and B in Fig. 1.

The pump frequency must have a value that does not lie in the operating range of the powered circuit.

Design: E. Berberich

ELECTRIC-FIELD DETECTOR

A small detector to indicate the present of a pulsating or alternating electric field is easily made from an inexpensive IC, an LED, a resistor and a 9 V battery as shown in the diagram.

The IC is a Type 4017 decadic counter with ten decoded outputs. A 'probe', consisting of about an inch (couple of centimetres) of stout circuit wire, is connected to the clock input of the IC. If the probe is in an electric field, a tiny voltage is induced in it. Because of the high input impedance of the IC, this very small voltage is sufficient to act as a clock for the counter. This causes the LED, which may be connected to any one of the outputs, to flash at a frequency which is a tenth of that of the inducing field. That is, in the case of a mains voltage field (f = 50 Hz), the LED will flash five times a second.

The indicator draws a current of about 10 mA.

Design: M. Baireuther

ELEKTOR ELECTRONICS DECEMBER 1994
We specialise in devices with the following prefix (to name but a few):

2N 2SA 2SB 2SC 2SD 2SJ 2SK AN BA BC BD BDT BF
B FBY BFX BU BUK BUT BUW BUW BUZ CA DTA
HA IRF LA LB LC LF LM M MC MJ MJE MM MPS
MPSA MPSU NE RC SAA SAB SDA SI SL SN STA
STK STR TA TBA TC TDA TIP TIE TEA TL UAA ULP
XR ZN ZTX + daily arrival of new numbers.

ALSO RESISTORS * CAPACITORS * CHOKES * LEADS * CONNECTORS * VIDEOS * DRIVE BELTS
SWITCHES * TTL * CMOS * OP AMPS * VOLTAGE REGS

Special introductory price: £99.00.

And our extended range of DOS packs now includes:

* XPC series: absolute cross assemblers @ £999.00 each
* XPS series: relocatable cross assemblers @ £169.00 each

Further information from CROSSWARE PRODUCTS
Melbourne, Repton, Herts, SG6 1HA, UK
Tel: +44 (0) 1763 263393, Fax: +44 (0) 1763 262983
HBS: +44 (0) 1763 267167 (8-11), Internet: sales@crossware.com
Bursting with new ideas
The 94/95 Electromail Catalogue
Now available

Over
53,000
Products

Part 1
More ...
Semiconductors, Surface Mount Technology, fuses, batteries, potentiometers, capacitors

Part 2
More ...
Fire & security, wiring accessories, lights, plugs, fittings, Datacom products

Part 3
More ...
Hand tools, power tools, screwdrivers, wire cutters, drills, taps, workshop and machine tools

To Order: Phone: 01536 204555 OR Fax: 01536 405555 quoting your Access/Visa card number and expiry date. OR Write: Send written orders, accompanied by cheque, postal order or include your Access/Visa card number and expiry date, ensuring that your order is signed. Cheques and postal orders must be crossed and made payable to ELECTROMAIL.

Order by phone - pay by Access or Visa - it couldn't be easier
PHONE: 01536 204555 FAX: 01536 405555

3 volumes that add up to the UK's biggest technical superstore, at the end of your 'phone.
ELECTRONIC KNOW-HOW

Batteries

Just in case you had not noticed: the world is going portable. Camcorders, mobile telephones, drills, model planes, nothing works without batteries. In particular the spectacular developments in the portable PC and mobile telephone sectors have boosted innovations in the battery industry. In addition to a flood of battery charger ICs and battery management concepts, new battery technologies like nickel-hydride and lithium-ion have come to the fore.

By our editorial staff

In spite of the remarkable variety found in the application of batteries, dry cells (the ‘one-time use’ type) still have a larger share than rechargeable batteries in the ‘mains independent power supply’ market. Unfortunately, some basic terms have got mixed up in the mean time. A battery is generally an energy source consisting of one or more cells, which are either of the primary or the secondary type. By convention, however, the terms primary battery and secondary battery are used. Despite some claims to the contrary, primary batteries are not rechargeable, and can only be used once. Secondary batteries are rechargeable. The latter have the additional advantage that there are now environmentally aware recycling systems with a good efficiency. This is in stark contrast with primary batteries, which require more energy and raw materials for their production, and are separately disposed of as chemical waste because a standardized (but still expensive) recycling method has not been accepted as yet.

Non-rechargeable vs. rechargeable

Despite the undeniable advantages of secondary batteries as regards raw material consumption and safe disposal/recycling methods, there are good reasons for using non-rechargeable batteries (also called ‘dry cells’) in some applications. Table 1 and Fig. 1 show the advantages at least with alkaline-manganese batteries: they have a much higher capacity than their rechargeable NiCd counterparts. To achieve roughly the same usable period as an alkaline-manganese type, a rechargeable battery has to be charged two or three times. So, when it comes to long periods of use without recharging, the alkaline primary cell has the edge. This is particularly important with equipment which has a low current consumption, or is used only briefly at long intervals. In these cases, rechargeable batteries are less economical, and have to be recharged in any case after a few months, to compensate the energy loss caused by their self-discharging. Alkaline batteries, on the other hand, are sure to last a couple of years under the same circumstances. Typical examples of such long-time use are infrared remote controls, electronic clocks, digital scales, LCD pocket and desktop calculators, and so on.

In apparatus with a relatively high current consumption, on the other hand, rechargeable batteries are the best choice, not only from a point of view of the environment and cost, but also because they have a longer life than non-rechargeable batteries. Because of its higher internal resistance, the voltage supplied by the alkaline cell drops even faster than shown in Fig. 1. The output voltage of a NiCd (nickel-cadmium) battery, however, remains virtually stable during the entire discharging period, even at relatively high currents. The electrical behaviour of ordinary carbon-zinc batteries at high load currents is even worse, particularly at continuous discharging. Here, it really pays to replace them by NiCd batteries because the apparatus can be used longer. A cost comparison between alkaline-manganese batteries and NiCd cells may be based on the assumption that a single NiCd cell with a ‘lifetime’ of about 1,000 charge cycles replaces about 330 alkaline batteries of the same physical size. Assuming that a radio is powered by, say, four batteries, you will save a small fortune by not using ordinary batteries, even if you use the most expensive rechargeable batteries plus a ‘deluxe’ charger.

NiCd and NiMH

As illustrated in Fig. 2, the construction of NiMH (nickel-metal-hydride) cells is very similar to that of NiCd cells (more precisely: cells with an alkaline-nickel-cadmium system). The essential differ-
disadvantage is caused mainly by the hy-
That is, apart from the cost factor. That
the edge over other battery systems.
Table 2 shows that NiMH cells have cer-
no 'memory' effect.
- free from heavy metals (no cadmium,
- high energy density (up to 1.2 Ah for
- no 'memory' effect.
Table 2 shows that NiMH cells have cer-
certain distinctive features which give them
edge over other battery systems. That is, apart from the cost factor. That
disadvantage is caused mainly by the hy-
drogen capturing metal alloys being
more expensive than cadmium. Be that as
it may, the price of NiMH cells is ex-
pected to go down once mass production
is under way.
It is advantageous for the prolifera-
tion of NiMH cells that their characteris-
tics are very much like those of NiCd
cells: a life expectancy of 500 to 1,000
charging cycles; a discharging voltage of
1.2 V with a virtually flat curve; cell volt-
age rising to about 1.55 V when charged
(see Fig. 5); normal charging current
equal to 0.1 times the nominal capacity
at a charging period of 12 to 14 hours;
and overcharging allowed for up to
100 hours at the nominal charging cur-
rent. As far as voltage is concerned, that
means that it is perfectly all right to re-
place a NiCd battery by a NiMH type.
The discharge curve of the latter is al-
most identical to that of a NiCd type.
its capacity, however, is almost twice as
high as that of a standard NiCd cell, as
illustrated in Fig. 3 for 'Mignon' size bat-
teries. Interestingly, the comparison for
'Mignon' cells is not even the most con-
vincing, looking at the performance of
the latest high-capacity NiCd cells of this
size. Panasonic, for example, recently in-

troduced a 'Mignon' size NiCd battery
with a nominal capacity of 1,000 mAh,
which is claimed to have an even higher
typical capacity of 1,100 mAh (see Fig. 4).
The discharge curve shown in Fig. 3
applies to a current of 1 A. At higher cur-
rents, however, NiCd batteries surpass
NiMH batteries, whose capacity drops
faster. High-current discharging with
more than 3C A (i.e., 3 A with the NiCd
battery in Fig. 3) is not allowed on a
NiMH battery, while NiCd types have no
problems with even higher currents.
While the discharge characteristics of
NiCd and NiMH batteries are practically
the same at small and average load cur-
rents, there are marked differences in
the voltage characteristics during charg-
ing. In general, the charging voltage of a
NiMH cell is a little lower than that of a
NiCd cell. The voltage peak at the end of

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity in [mAh]</td>
</tr>
<tr>
<td>Cell type</td>
</tr>
<tr>
<td>HP7/AA/UM3/Mignon</td>
</tr>
<tr>
<td>HP11/C/UM2/Baby</td>
</tr>
<tr>
<td>HP2/D/UM1/Mono</td>
</tr>
<tr>
<td>PP3/6F22/1604</td>
</tr>
</tbody>
</table>
a high-current charging period on a NiCd cell is less marked on a NiMH cell, as illustrated in Fig. 5. Because the peak almost disappears at low charging currents as well as at higher temperatures, automatic switch-off according to the delta-U method is not feasible just like that.

Charging techniques

The standard charging operation for NiCd as well as for NiMH consists of a charge with a constant current of 0.1C, where a ‘long’ overcharging period of up to 100 hours is allowed (but only at 0.1C). It is recommended, however, to stay on the safe side, and stop the charging period on reaching between 150% and 160% of the nominal capacity (140% for NiCd cells), with the aid of a timer. The corresponding charging periods are then 15 to 16 hours (NiCd: 14 hours). The standard charging operation is only allowed at temperatures between 0 °C and +45 °C. At lower temperatures, the charging current must be decreased to 0.05C A (t<0 °C) for NiCd, and 0.03C A for NiMH batteries.

Charging at currents higher than 0.1C A (‘fast’ charging) is only allowed at room temperatures if the battery is not overcharged at this current. The less frequently a battery is overcharged, the longer its lifetime — that goes for both systems. To prevent overcharging, pre-discharging should be used to make sure that no partially discharged batteries are given a fast charge. It is then sufficient to use a timer to limit the charging time, which should take no more than five hours (0.3C A), or four hours for NiCd cells at the same charging current. In addition, a temperature monitor should be used which switches off the charger at +45 °C (max. 50 °C) for NiCd batteries, and +55 °C (max. +60 °C) for NiMH types. Charging at 0.3C A should not be done at temperatures below +10 °C and above +45 °C.

Even faster charging is allowed on NiMH batteries using currents of between 0.5C A and a maximum of 1C A. Here, too, do not rely on a timer only, even if the batteries are known to be fully discharged. It is recommended to use a battery charger IC, which uses two switch-off conditions: (1) a decreasing charging voltage after reaching the maximum (minus delta U), and (2) the rate of rise of the battery temperature, related to minimum and maximum temperature levels. In addition, a timer may be provided to limit the charge time. To be able to recognize the delta-U factor, it is essential for the battery voltage to be measured at regular intervals (during a short interruption of the charging current). On finishing the fast charging period, the charger should switch to voltage retention charging at 0.03 to 0.05C A. The following switch-off conditions are recommended for NiMH batteries:

- thermal shutdown at temperatures <10 °C and >60 °C;
- minus delta-U switch-off at voltage decrease rate of <10 mV per cell (NiCd: 10 to 20 mV per cell);
- temperature rate of rise shutdown at >1 °C per minute (NiCd: 0.5 °C per minute).

A battery charger designed on the basis of the above principles may be used for NiMH and NiCd batteries. That is the case with the chargers shown in Fig. 6 and Fig. 7. Ultra-fast charging is not allowed with present-day NiMH batteries. By contrast, all round NiCd cells are suitable for pulsed charging at currents between 4C A and 6C A, so, for instance, with 4 to 6 A at a cell capacity of 1 Ah. In this process, the charger is switched off under voltage control, just before the full charge is reached. At a cell temperature of 20 °C, the switch-off level is 1.55 V. This value is subject to a rate of ~4 mV per degree of temperature rise, to be regulated by a reliable temperature compensation system. The cell voltage may only be measured while no current flows. That is achieved by inserting 30 to 50 ms long measurement periods which occur every 1.2 s. As soon as the peak value is detected a number of times during these periods, the system should change to charge retention mode, which is usually achieved by trickle charging. Additionally, a thermal shutdown circuit set for a cell temperature of 45 °C (max.

Fig. 3. Discharging voltage plotted as a function of available capacity with NiMH and NiCd 'UM3' size cells. The discharging current is 1 A.

Table 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NiCd</th>
<th>Lead</th>
<th>NiMH</th>
<th>Li-ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy density (vol. related)</td>
<td>−</td>
<td>−</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Cycle behaviour</td>
<td>++</td>
<td>−</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Self discharging</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Fast charging</td>
<td>++</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>High-current loading</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Reliability</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Cost</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Voltage compatibility</td>
<td>++</td>
<td>−</td>
<td>++</td>
<td>−</td>
</tr>
<tr>
<td>Environment aspect</td>
<td>−</td>
<td>−</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Discharging voltage stability</td>
<td>++</td>
<td>−</td>
<td>++</td>
<td>−</td>
</tr>
</tbody>
</table>

Legend:

++ excellent
+ good
− adequate for many applications
−− essential disadvantages
* projected data
50 °C), and/or a temperature rate of rise greater than 0.5 K/min, should be provided. Since ultra-fast charging is not allowed at low temperatures, the temperature guard should also have a lower limit set to a value between 10 and 15 °C.

In addition to the above charging methods, there is also a process known as pulse charging, which means that a voltage gradient (for instance, the first-order integral of the charging voltage characteristic) is defined as a switch-off condition, and monitored by a microcontroller sporting an A-to-D converter. As an additional safety measure, time and temperature guards are also integrated. This process is generally referred to as ‘reflex’ charging; each charge pulse is followed by a brief high-current discharging pulse.

Whatever charging method is used, faulty batteries must never be charged. Pulse charging allows you to determine whether all cells in the battery are actually storing energy, simply by measuring the cell voltage after the test. When several cells are being charged at a very high current (charging time less than 15 minutes), each cell must be fitted with its own temperature sensor.

Lithium-Ion batteries

Sony have been producing lightweight rechargeable lithium-ion batteries for about two years already. Other manufacturers have followed suit, including Sanyo, AT&T Battery, Matsushita (Panasonic) and, quite recently, NEC. The electrodes in these batteries are made from a special lithium compound. The Li-ion battery is activated by moving ions between the electrodes, as result of charging and discharging. By virtue of the special lithium compound, the battery is simple to maintain. The Li-ion battery is marked by high efficiency, which gives it a wide range of applications as back-up batteries in video recorders, telephones and computers. Sony's camcorders TR1/TR3/TR8, and the SC series, have been supplied with Li-ion battery packs for more than two years.

Li-ion batteries can be charged more than 1,000 times, and are free from the so-called ‘memory’ effect. Also noteworthy is their high energy density, which is nearly three times that of a similarly sized NiCd battery. The difference is actually almost a factor four if the weights of the two battery types are compared. Li-ion batteries take overcharging remarkably well. The almost continuous charging of the batteries in a cordless telephone, for instance, presents no problems for a Li-ion pack, while many a NiCd set gives up the ghost after a few months. The self-discharging loss of these new batteries is about 50% less than with NiCd and NiMH types, and automatically results in much longer storage times. On the down side, Li-ion batteries have a high cell voltage of 3.6 V, which means that they are not voltage-compatible with dry cells or NiCd batteries. Their main application will, therefore, be in battery packs, where each Li-ion cell replaces three NiCd cells. Table 3 shows a comparison between the data of a Li-ion video recorder battery and a NiCd pack with the same capacity. Because of the materials used in the Li-ion battery, it can be disposed of as chemical waste without serious problems. Although the battery is environmentally ‘safe’, recycling is possible.

Apart from the cell voltage, the discharge curve is also quite different from that of a NiCd or a NiMH battery. As the battery is drained, its voltage drops gradually, almost like a dry cell. The fact that the cell voltage is not stable will hardly present problems, though, because the higher cell voltage allows (switched) regulators to be used. Also, the voltage drop, which is proportional to the amount of current drawn from the battery, allows the capacity of the battery to be checked rapidly and easily. The Li-ion cell is, therefore, an excellent choice for all mobile applications, because it allows battery use to be accurately scheduled, avoiding unnecessary charging cycles. It also enables the capacity of batteries which have been stored for some time to be measured accurately and reliably, and that is nearly impossible with NiCd batteries.

Capacitor instead of battery

The so-called GoldCap double-layer capacitor developed by Matsushita in the 1970s has very high capacitance values (in the farad range). The device is classified, as far as its electrical characteristics are concerned, between an aluminium electrolytic capacitor and a secondary battery. The main disadvantage of the GoldCap, its lower current capacity as compared to NiCd and NiMH button cells, is made good by the fact that it is a long-life, short-circuit resistant, and rapidly charged device. A charging circuit is not required — actually, not even a series resistor — because the internal resistance of the Goldcap limits the charging current to acceptable (high) levels. Evidently, there is no memory effect, either, and the device is free from materials like heavy metals which are difficult to recycle and a threat to the environment.

Thanks to their remarkable characteristics, Goldcaps have found many applications as back-up batteries in video recorders, telephones and computers.

![Fig. 4. The capacity of a NiMH battery is almost twice as high as that of a standard NiCd cell. The heat is on again, however, with the introduction of Panasonic's new 1,000-mAh NiCd 'UM3' size cells.](image)

![Fig. 5. Charging voltage characteristics of NiCd and NiMH batteries at a temperature of 20 °C and a charging current of 1C.](image)
Terms and definitions

Capacity \(C \)
The capacity, \(C \), of a battery is the product of the discharging current, \(I \), and the discharging time, \(t \):

\[
C = I \times t \text{ [Ah]}
\]

\(t \) = time from start of discharging to reaching lowest discharging voltage; unit: hours.

\(I \) = constant nominal discharging current; unit: ampere [A].

Currents
Charging and discharging currents are written in relation to the nominal battery capacity, \(C \). For instance, for a battery with a nominal capacity, \(C \), of 1 Ah:

\[
0.1C = 100 \text{ mA}
\]

\[
3C = 3 \text{ A}
\]

Nominal charging current
With NiCd cells, the nominal charging current for full charging within 14 to 16 hours is 0.1 \(C \).

Nominal discharging current
With NiCd cells, this is defined as the current which drains the nominal capacity from the battery in a period of 5 hours. For instance, for a battery with a nominal capacity, \(C \), of 1 Ah:

\[
I = C/t = 1 \text{ Ah/5 h} = 0.2 \text{ A}
\]

Nominal capacity measurement
The nominal capacity, \(C \) (in Ah), refers to the total amount of energy which is supplied by the battery at a nominal discharging current of 0.2 \(C \), over a period of 5 hours. A NiCd cell is discharged to the minimum discharging level of 1.0 V at a temperature of 20 °C ±5 °C.

Table 3

<table>
<thead>
<tr>
<th>Product</th>
<th>NP-500H</th>
<th>NP-55H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery type</td>
<td>Lithium-Ion</td>
<td>NiCd secondary</td>
</tr>
<tr>
<td>No. of cells</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>7.2 V</td>
<td>6.0 V</td>
</tr>
<tr>
<td>Capacity</td>
<td>1,200 mAh</td>
<td>1,200 mAh</td>
</tr>
<tr>
<td>Self-discharging after 6 months</td>
<td>30%</td>
<td>60%</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0°C - 50°C</td>
<td>0°C - 50°C</td>
</tr>
<tr>
<td>Weight</td>
<td>95 g</td>
<td>143 g</td>
</tr>
<tr>
<td>Size (wxhxd)</td>
<td>38.4x20.6x70.8mm</td>
<td>45.5x18x89mm</td>
</tr>
</tbody>
</table>

Batteries of the future
For quite some time now, a number of manufacturers, including Varta and BASF, have been working on the so-called polymer battery, in which the positive electrode is formed by a polymer foil. Cells have been developed in which a conductive polymer called Polypyrrol is used. This particular polymer holds great promises for the future because it has been found to give results comparable to those of a Li-ion battery when used in conjunction with a lithium electrode and an organic electrolyte, both in round and flat constructions (yes, a 'stamp' size battery).

Meanwhile, researchers in the U.S.A. have reported on rechargeable zinc-air systems. Computer manufacturer Zenith Data Systems, for instance, has revealed that it co-operates with AER Energy Resources in the development of a battery which, they hope, is capable of pow-

They are also used as battery replacements in bicycle lights, solar powered watches and calculators, tooth brushes and electric shavers.

The latest development in this area is the PowerCap. Based on 'ultra-capacitor' technology, this device offers even higher capacitance than a Goldcap (typically between 470 and 1,500 farad at 3 V). An application example: to improve the composition of car exhaust gases, a 12-V module containing PowerCaps is used to heat the catalytic converter to 800 °C in about 10 seconds. The PowerCap is then recharged within 40 seconds at a current of 150 A. The ad-

![Fig. 6. TEA1101 based 'fast' charging circuit for NiCd and NiMH batteries (Philips Components).](image-url)
Fig. 7. Example of a multi-purpose, 1-hour charge, intelligent battery charger from Friwo. This NiCd and NiMH compatible charger features fast charging, automatic discharging, minus delta-U shutdown and an automatic charging time limiter.

...ering a portable computer for 10 to 20 hours on a single charge. The energy density of this new battery type is claimed to be two to four times that of a NiMH type.

Another development which aims to improve battery management rather than battery technology is the in-battery microchip. The NiMH based 'smart battery' will be capable of communicating with a processor, via a bus, in order to achieve more operating hours and get the most out of the available capacity. Furthermore, the smart battery can convey information as regards its state to an (intelligent) charger, which then acts appropriately.

The main thought behind the development of the smart battery is to combat the staggering variety of battery types that has come into existence since the introduction of mobile phones and computers. A standard for batteries in mobile computers and communication equipment developed by Intel and Duracell is slowly but gradually being endorsed by a growing number of manufacturers in the respective fields. To mention a few: Phoenix Technologies (yes, the PC BIOS specialists), Maxim, VLSI Technologies and, of course, Intel. The specifications for battery control comprise a communication protocol called SDB (smart battery standard) and an SMBus which gives access to the power management system. As you can see, the future of batteries has only just begun!

For further reading:

Fig. 8. GoldCaps and their successors, PowerCaps, look poised to replace batteries in a number of important applications. Their advantages are an utterly simple charge/discharge behaviour, long life (>100,000 charge cycles) and their ability to supply very high peak currents.
PC PALL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with built in PSU, lead and Waveform. £49.95 inc P&P.

EMERGENCY LIGHT UNIT Complete with 2 double bulb floodlights, built-in charger and auto-switch. Fully tested. £8.64 inc P&P.

GUIDED MISSILE WIRE Complete with 300 feet of this ultra fine 4 core insulated wire, less than 1mm thick. Ideal for extension leads, alarms, intercoms, fishing, doll's hooses etc. £14.89 inc MAG15P5.

SINCLAIR CL 13" WHEELS Complete with centre bonding (covers complete with MAG10P2, £39.99 inc P&P).

300mm PANEL BRACKET 300x300x300, 10 degree angle. Good quality £5.22 inc MAG14P1. Ideal for mounting mains etc.

AZIMUTH RTX 300-400 A Good format for most AM transmitters etc. £11.39 inc P&P.

AUTO SUNCHARGER 155x300mm solar panel with diode and quality meter. £5.99 inc MAG16.

MOD WIRE Perfect for repairing PCB's, wire wrap etc. Thin insulated wire £0.62 inc MAG20.

AUTO UNION CABLE 155x300mm solar panel with diode and quality meter. £5.99 inc MAG16.

ALARM VERSION Of above unit comes with built in alarm and Pir sensor. £6.99 inc MAG17.

OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically switches on a built in lamp at dusk. Includes mains power supply and is built in to deter intruders. Good value at just £24.99 inc MAG34.

STETHOSCOPE Fully functioning stethoscope, ideal for listening to hearts, pipes, motors etc. £6.65 inc MAG89P5.

STETHOSCOPE These Captures sunlight during the day and automatically switches on a built in lamp at dusk. Complete withasaki lead and battery etc £19.99 inc MAG21P2.

BELL BOX Complete with built-in alarm and Pir sensor. £4.99 inc MAG15.

MILITARY SPEC GEIGER COUNTERS Unsealed and straight from the C5 motor but ok for any 12v motor up to 30A. Complete with PCB and components. Now only £19.99 inc MAG19P2.

GEIGER COUNTER KIT Low cost professional twin tube, complete with handbook. Ref MAG70P9.

VALUE KIT 100 pairs of 12v, 200mA, 5p Insulated terminals. £14.99 inc P&P.

TOP QUALITY SPEAKERS Made for HI-FI television these are hi spec, long range Internal units. 12v operation. Slight marks on boxes. Price is £26 inc MAG26 Transmits to any FM radio.

PORTABLE 12V SUPPLY IS REQUIRED. REF: MAG34

LOW COST WALKIE TALKIES Pair of battery operated units for TV, satellite use. Price is £15 inc MAG15P2.

PENTAX 42mm camera mount and normal eye piece. 1.6kg, uses 1XP3,3XAA's(all supplied)£24.95 inc MAG30.

PORTABLE 12V SUPPLY IS REQUIRED. REF: MAG34

TITLES HIGHER THAN THOSE STATED

NOTICE ORDERS SUBJECT TO STOCK QUOTATIONS NOT GIVEN FOR QUANTITIES HIGHER THAN THOSE STATED

MINIMUM GOODS ORDER £10 TRADE ORDERS FROM GOVERNMENT SCHOOLS, UNIVERSITIES A LOCAL AUTHORI TIES WELCOME ALL GOODS SUPPLIED SUBJECT TO CASH ON DELIVERY. ALL GOODS SUBJECT TO STOCK. FOR CASH ORDERS SUBJECT TO STOCK QUOTATIONS MAGAZINES CANNOT BE ORDERED. FREE CONTENTS TX 11/06 KEEPER

NEW BULL ELECTRICAL STORE IN WOLVERHAMPTON

55A WORCESTER STREET TEL 0902 22039

-60-90 new 9.30-5.30 6 DAYS A WEEK

-60-90 new 9.30-5.30 6 DAYS A WEEK

NEW HUMAN REFERENCE GUIDANCE. £349.95 inc MAG30. Please mention ELEKTOR ELECTRONICS when contacting advertisers.

SNOOPERS EAR? Original made to clip over the earpiece of a payphone. The units have the locks missing and sometimes broken. Good value at just £24.99 inc MAG14P1

DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price £6.95 inc MAG35. Worth it just for the very comprehensive manual £29.95 inc P&P.

DISK PACKS Microsoft version 5.0 original software but no manuals. Nice only £5 inc MAG35 F. £25.95 inc P&P.

BULL ELECTRICAL 250 PORTLAND ROAD Hove SUSSEX

MAIL ORDER TERMS: CASH ON CHEQUE WITH ORDER PLUS £3.00 POST PLUS VAT.

PORTABLE RADIATION DETECTOR £49.99

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit detects high levels of radiation from 30K eV to over 1.2M eV and a measuring range from 10-9999mR/lhr or 0-99990mR. Portable complete with handbook.Ref MAG53.

 Please mention ELEKTOR ELECTRONICS when contacting advertisers.
QUANTEK FC2000

ULTRA HIGH SENSITIVITY
FREQUENCY COUNTER/FINDER

★ 1MHz – 2.4GHz
★ Sensitivity less than 1mV from 10MHz to 800MHz
★ 2 Gate/measurement periods
★ Display hold switch
★ Bright 8 digit LED display
★ Charge & Gate LEDs
★ Aluminium case – 100 x 87 x 28mm
★ 700mAh Ni-cad batteries
★ Maximised sensitivity for measuring transmitted radio signals at a distance
★ Supplied with mains adaptor/charger & telescopic antenna

TO ORDER CALL
021 457 7994
FAX ORDERS 021 457 9745

QUANTEK ELECTRONICS,
1678 BRISTOL ROAD SOUTH, BIRMINGHAM B45 9TZ

QUANTEK FC2000

PCB Designer

For Windows 3.1
Runs on any PC running Windows in standard or enhanced mode
with 2MB RAM

✓ Produce Single or Double sided PCBs.
✓ Print out to any Windows supported printer.
✓ Toolbar for rapid access to commonly used components.
✓ Helpful prompts on screen as you work.
✓ IC, Track and Pad sizes fully customisable.
✓ No charges for technical support.
✓ Snap-to grid sizes 0.1", 0.05" 0.025" and unrestricted.
✓ SMT pads and other pad shapes.
✓ Positive reviews by Robert Penfold and Paul Stenning, copies available on request.

Only £49 All Inclusive

Phone (0432) 355 414 (Access and Visa welcome)

Niche Software

22 Tavistock Drive, Belmont, Hereford, HR2 7XN.

Please Note: Since PCB designer is so easy to use, and to keep costs down, PCB Designer has an On-Line manual, in Windows Help format. A FREE tutorial is also supplied.

Look what’s new in version 4 of SpiceAge for Windows™

• DDE link with Modelmaker, the utility that synthesizes opamps, transformers, attenuators and transistor library models
• Reflection coefficient analysis
• Noise analysis
• Improvements to digital displays
• Auto-time interval setting option
• Time optimisation in relaxed circuits
• Faster quiescent calculations
• SPICE repertoire enhancements for ASICs
• Better screen & paper presentation
• Windows™ wave (.wav) file compatibility. Multi-media users can listen to their waveforms or capture sound samples for Fourier analysis or filtering. Binary output option makes ROM programming easy.
• PWL non-linear enhancements saves calculating polynomial coefficients for those awkward functions.

Make sure you know what you are missing by asking us for a copy of the demonstration program and booklet. Subscribers to the SpiceAge maintenance service will be receiving their new version along with a copy of the new manual.

Please contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP.
Tel 0181-906 0155, FAX 0181-906 0969.

Those Engineers Ltd
THE DIGITAL SOLUTION

Part 1 – Digits and Data

By Owen Bishop

In this series we look closely at digital electronics, what it is, what it does, how it works, and its promise for the future.

The word ‘digit’ comes from the Latin digitus, meaning finger. The connection between fingers and electronics derives from the ancient (and still current) practice of counting on one’s fingers. Counting fingers is still the easiest way to add 2 and 2. Digital electronics provides a faster and more reliable way of counting without using fingers. Because of the use of fingers for counting, the word ‘digit’ has been adopted as the name for the symbols used in counting. Most often we use ten such symbols, the digits 0 to 9. This makes possible a system of counting known as the decimal system, which presumably originated from our having ten digits on two hands. Any number in the decimal system may be written by using just the ten decimal digits. There is no logical reason why we can not use other systems, based on other numbers. It is just a matter of convenience. In some ways, 10 is not a convenient base, for it factorizes only into 2 and 5. People often find that a system based on 12 is more useful since it can be divided equally by 2, 3, 4 and 6. A system based on 16 is advantageous for similar reasons. For electronic circuits, the most convenient system is the binary system, based on the number 2. In this system we need only digit symbols, 0 and 1, to express any number.

Magnitude or state?

A decimal digit may take any one of ten distinct values. If a decimal digit is to be represented in an electronic circuit, we need to be able to distinguish ten different levels of some quantity. There might be ten different voltages, for example, the ten levels 0 V to 10 V in steps of 1 V. The magnitude of the voltage represents the value of the voltage. Alternatively, we could represent values by the magnitude of a current, perhaps from 0 mA to 10 mA in steps of 1 mA. Precision amplifiers are called for that can generate accurate output voltages, why not go one step further? Let the voltage represent any value on the scale 0 to 10? Let 4.5 be represented by 4.5 V; let 6.731 be represented by 6.731 V. Perhaps this reaches the limits of reproducibility, but it is sufficiently precise for many applications. For voltages greater than 10, introduce a scaling factor. Thinking along these lines, we abandon digital electronics (temporarily) for the complementary field of analogue electronics. Voltages can take any intermediate value within a given range; they are not stepped. The magnitude of the voltage represents, or is an analogue of, the magnitude of some physical quantity, such as temperature, light intensity, or position. We can input a value to an analogue circuit by using a rotary potentiometer wired as a potential divider (Fig. 1). The voltage output of the divider is the analogue of the position of the shaft of the potentiometer or of anything mechanically attached to that shaft. The output of a temperature-sensing or light-sensing circuit is the analogue of the quantity sensed. In an audio system, the voltage waveforms are the analogue of the original local fluctuations in air pressure which we generally refer to as sound. On the output side of an analogue circuit we may read a moving-coil voltmeter, hear sound from a loudspeaker, or observe the variations in the speed of a motor or the brilliance of a lamp. Such are the characteristics of analogue circuitry.

The input and output sides of an analogue circuit are linked by stages which process the input and produce the output. In simple systems, such as an intercom or a motor speed control, only a few stages are involved, perhaps only one stage. More complex systems, such as analogue computers, have many processing stages. Their circuitry is based in a range of different subcircuits designed specially for handling analogue data. These include the operational amplifier, which wholly owes its existence to analogue computing. Other circuit building blocks include adders, multipliers and integrators. Most of these subcircuits are available as integrated circuits. Analogue computers are often used in industrial control systems, or in modelling complex natural systems, such as the water flow in a river basin. In general, analogue systems are set up once and for all for a particular purpose. They can perform highly complex calculations, and they give almost instant results, but they tend to lack flexibility. In contrast, an average digital microcomputer is able to control an industrial process, model a wide range of systems (including modelling digital systems, as we shall see in a later part in this series), as well as compute and print out the firm’s accounts, receive and send communications, provide online information in the form of an encyclopaedia on CD-ROM, and beat the operator at chess, virtually all at the same time. It is easy to see why the digital solution has gained ascendancy over the analogue approach. Analogue computers depend mainly on hardware; digital computers gain flexibility because they depend on software.

The key to digital systems is that data is not represented by an analogue of its magnitude but by the state of one or more circuits. For simplicity and reliability, digital systems recognize only two states. For comparison with Fig. 1, we have drawn Fig. 2 to represent the digital system. Here, the input is represented by a switch, which is in one of two states, either open or closed. There is no in-between state. The output is represented by a lamp, which is in one of two states, either on or off. There is no in-between state.

High and low

When describing the action of a digital
processing problems

Processing analogue signals is beset with several problems. There is almost certain to be a stage at which the signal has to be amplified. If this is done by a single transistor, there arise the problems of biasing and linearity. These may lead to distortion of the original signal, and there may also be cross-over distortion and clipping. The precise shape and amplitude of the waveform are usually of critical importance in analogue circuits, and these are too easily lost. Even if the circuit is made more precise by using operational amplifiers, no opamp is ideal and there are errors caused by slew rate, input offset voltage and limited bandwidth. In a digital circuit, transistors are switched fully off or fully on (saturated) so these errors cannot arise. The waveform is a square wave and its exact amplitude does not matter, provided that the levels corresponding to 0 and 1 are easily distinguishable. In Fig. 2, the circuit works for as long as the battery provides enough power to illuminate the lamp, even though it may only be dimly.

Noise is another unavoidable difficulty with analogue circuits. The original analogue signal will have noise superimposed on it, not only from interference by outside sources, but noise inherent in the conduction of discrete electric charges and their behaviour as they pass through semiconductor devices. As a result, a signal that originally varied smoothly (Fig. 3a) becomes clothed in irregular spikes (Fig. 3b) The same amount of noise on a digital signal is of no consequence, for it is still possible to distinguish high (1) and low (0) levels. In logic circuits, the specified high and low levels for input and output voltages (see High and low above) give immunity to relatively large amounts of noise.

Representing facts

Data may be numerical or it may consist of statement of fact. Leaving aside numerical data for the moment, let us look at how a fact may be represented digitally. Consider a simple statement, such as

\[A = \text{the door is open.} \]

This statement may be true or it may be not-true (false). We do not allow the door to be half-open. Statement A is given a value to indicate whether or not it is true. Since there are only two possible states of the door, there are only two possible values of A. If it is true, \(A = 1 \); if it is false, \(A = 0 \).

The state of the door is easily communicated to an electronic circuit, simply by placing a microswitch so that this is open when the door is open and closed when the door is closed. The circuit of Fig. 2 uses a lamp to indicate remotely the state of the door. When the lamp is on, we know that \(A = 1 \), and the door is open; when it is off, \(A = 0 \), and the door is closed. This is, perhaps, one of the simplest possible of digital circuits, but it illustrates the way in which a fact is processed electronically.
Representing numbers

Any number, no matter how large or how small, is represented in the decimal system by writing out a string of one or more decimal digits. A single digit covers all integral values from zero to 9. Beyond 9 we make use of the position of the digit within the string to give further information about the value it represents. In the number 475, for example:

- 5 represents \(5 \times 10^0 = 5 \times 1 = 5\)
- 7 represents \(7 \times 10^1 = 7 \times 10 = 70\)
- 4 represents \(4 \times 10^2 = 4 \times 100 = 400\)

The total is \(475\).

As we move to the left, each digit represents the value of that digit multiplied by an increasing power of 10.

The same applies in the binary system, except that we are restricted to only two digits, 0 and 1. For example, in the number 10110, and reading from right to the left:

- 0 represents \(0 \times 2^0 = 0 \times 1 = 0\)
- 1 represents \(1 \times 2^1 = 1 \times 2 = 2\)
- 1 represents \(1 \times 2^2 = 1 \times 4 = 4\)
- 1 represents \(1 \times 2^3 = 1 \times 8 = 8\)
- 0 represents \(0 \times 2^4 = 0 \times 16 = 0\)

The total is \(22\).

Here we are multiplying by increasing powers of 2. The table shows that 10110 in the binary system is equal to 22 in the decimal system. Unless the context makes it clear that we are dealing exclusively with one system, we specify which system a number is written in by writing a suffix after the number:

- 10110₂ = 22₁₀

This example illustrates the technique for converting binary numbers to decimal.

The advantage of the binary system is that it lends itself to representing numbers in electronic form. Given a row of five switches, we can represent the number 10010₂ by turning three off and two on as in Fig. 4. These five switches can be used to represent any 5-digit binary number from 00000 (0) to 11111 (31₁₀). We may use not only switches but any other device or circuit that can exist in one of two complementary states. For example, a transistor may be on or off, a voltage may be present or absent, a bistable (flip-flop) may be in one state or the opposite state, a capacitor may be charged or not charged, a light-emitting diode may be on or off. Each of the five lamps in Fig. 4 may be on or off, so here is a circuit with digital input and digital output.

Other number systems

The main disadvantage of the otherwise simple binary system is that it needs more digits than other systems to represent a given number. As shown earlier, the number 22 needs only two decimal digits, but its binary equivalent needs five digits. We need more circuits (more switches, more lamps) to count in binary than in decimal. The circuits are simpler because, as we shall see, it is easier to build reliable circuits for binary than for decimal representation. But we need more of them. Or, if we deal with the digits one after another (serially), it takes longer to process them. Another practical problem is that a string of binary digits is much more difficult for the (normal) human mind to comprehend (which is presumably another reason why we adopted decimal and not binary as a counting systems in the days before electronics). For example, the number 0100111010011010₂ is virtually incomprehensible. Not only that but, when working on paper with long strings of 0s and 1s, errors are more likely to occur. We need a number system with a larger number base (but not 10) that is compatible with the binary system. The system most often used is the hexadecimal system, based on the number 16. It takes 16 different number symbols to count in sixteens. Rather than invent six new symbols to represent the decimal numbers 10 to 15, we use existing letters of the alphabet: A to F (see Box 1). The hexadecimal system permits large numbers to be written with relatively few digits. It is easily convertible to binary and back again.

Box 1

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
<tr>
<td>16</td>
<td>10000</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>10010</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>10011</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>10100</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>10101</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>10110</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>10111</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>11000</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>11001</td>
<td>19</td>
</tr>
<tr>
<td>26</td>
<td>11010</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>11011</td>
<td>21</td>
</tr>
<tr>
<td>28</td>
<td>11100</td>
<td>22</td>
</tr>
<tr>
<td>29</td>
<td>11101</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>11110</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>11111</td>
<td>25</td>
</tr>
</tbody>
</table>

Box 2. Converting binary and hexadecimal to decimal.

Example: 0100 1110 1001 1010₂ = 4E9A₁₆

<table>
<thead>
<tr>
<th>Binary to decimal</th>
<th>Hexadecimal to decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1₀₁₀ = 1 x 1₀₀ =</td>
<td>4 x 1₀₀ = 4 x 16² =</td>
</tr>
<tr>
<td>1₀₁₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
<tr>
<td>1₁₀₀ = 1 x 1₀₀ =</td>
<td>1 x 1₀₀ = 1 x 16² =</td>
</tr>
</tbody>
</table>

Box 2. Converting binary and hexadecimal to decimal.
circuit. Perhaps there would be four switches or four LEDs or four transistors in the states on-off-on, in that order. Or there could be four bistables on the states set-reset-set-reset.

Another way of representing numbers is by a code in which the number is not directly expressed in binary form.

Instead, we convert the number into its equivalent. For example, the number 572 is converted as follows:

1. Express as a binary number:
 - decimal digits 5 7 2
 - binary equivalents 0101 0111 0010

 BCD

 0101 0111 0010
 Taken as an ordinary binary number, 010101110010 equals 139410. Obviously, it is essential to recognize when a number is BCD and when it is not.

 There are several other codes commonly used in digital circuits, including the Gray code, the Excess-3 code, machine codes and the ASCII code. Numbers, instructions, and facts (expressed in logical form) are all processed by digital circuits in binary form. The electrical signals representing these different kinds of informations are identical in structure. They are all digital. The ways in which they are created, processed and interpreted form the subject of the remainder of this series.

Test yourself:

2. Express as a decimal number
 - a) 11002
 - b) 1001112
 - c) B516

3. Express as a hexadecimal number
 - a) 2210
 - b) 10111112
 - c) 110011010111

4. Express 65216 in BCD

5. Express BCD 1001010001 in decimal.
TEMPERATURE PROBE
High quality probe consists of a resistor sensor mounted in a plastic covered probe with a 1 meter cured lead. Temp. range -60° to 150°C. Resistance at 20°C 150Ω. 40°C 136Ω. 70°C 115Ω. 150°C 65Ω. The original price of these probes was over £24.00. Full details at our stand.

POWER SUPPLIES
ASTEC A9221-01 Switch mode PSU 50 watts input 230V 2.5A 50/60Hz outputs +5V 2A; +12V 2A; +5V 1A. 60Hz;
SOLAR CELL 2 x 10W max size 60 x 100mm £1.15 each for £4.00.
BNC SOCKETS 50 ohm single hole fitting 50p each for £4.00.
MINIATURE SWITCHGEAR
SPST 2 each for £4.00.
BNC 50S 2 each for £4.00.
DINPLUG 120mA 2 each for £4.00.
PIEZO SIP 6 each for £4.00.
DOOR/WINDOW CONTACT do a £1 each.
MINIATURE GULL WING RELAY 2 each for £4.00.
PIEZO BUZZER approx. 3 to 15 volt d.c.
MINIATURE THERMISTORS
250 Ω to 1 Meg approximately ºC and pulse count option.
SOLAR PANELS 2 x 10W max. size 60 x 100mm £1.15 each for £4.00.
FLUORESCENT LIGHT FITTING Drives an 8 watt tube directly from 240v d.c. Data supplied.

£1.00 BARGAIN PACKS

BULK LEDs
OFFER 100 each 50p.
5mm round £.85.
RED/BLUE LEDS £.85.

RECHARGEABLE BATTERIES
2 x 1.2V NICD BATTERIES £1.35 each.
AA (HPT) 2 x £1.42.
AA (HPT) 2 x £1.75.
AA (HPT) 2 x £2.10.

ELEKTOR ELECTRONICS DECEMBER 1994
PEOPLE'S LIBRARY OF ELECTRONIC COMPONENTS
PROTEUS

The Complete Electronics Design System

Schematic Capture
- Easy to Use Graphical Interface.
- Netlist, Parts List & ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simulation
- SPICE compatible Analogue Simulation.
- Event driven Digital Simulation with modelling language & PLD support.
- Partitioned simulation of large designs with multiple analogue & digital sections.
- Graphs displayed directly on the schematic.

PCB Design
- Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checking.
- Advanced Multi-Strategy Autorouting.
- Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit.
Tel: 0756 753440. Fax: 0756 752857.
53-55 Main St, Grassington. BD23 5AA.

Proteus software is for PC 386 compatibles and runs under MS-DOS. Prices start from £475 ex VAT; full system costs £1,495. Call for information about our budget, educational & Windows products. All manufacturers' trademarks acknowledged.
TEMPERATURE PROTECTION FOR RESISTIVE HIGH-POWER LOADS

The circuit shown in Fig. 1 has been designed to protect (expensive) high-power resistors against overheating. Very high power resistors (of the order of 50 watts or more) are used in electronics laboratories and workshops to test audio amplifiers, power supplies and the like. To assist in their cooling, high-power resistors often come fitted on a heatsink. Since they are not cheap, it stands to reason that damage as a result of overheating must be prevented. This can be achieved at small outlay by the present circuit, which sounds a buzzer if the heatsink temperature reaches a critical level. Provided the guard is supplied by the mains, a pair of fans is then switched on to assist in the cooling of the power resistors.

The circuit features automatic switchover between a 9-V battery and a mains supply. An LM35 semiconductor temperature sensor is used to keep the stand-by current at about 60 µA. Consequently, a 450-mAh PP3 battery can be expected to last about one year. The alarm is switched on at a sensor output voltage of about 0.5 V, which corresponds to a heatsink temperature of 50 °C. A small amount of positive feedback via R4 ensures that the buzzer receives the full operating voltage (approx. 5 V) when the critical temperature is reached. At the same time, the feedback creates a hysteresis of about 2 °C.

Once the mains supply is switched on, the alarm driver is disabled. The sensor voltage is amplified 15 times by opamp IC2d. The resultant output voltage reaches the fan driver, IC2b, only if it is greater than 6 V (minimum fan voltage). Voltages exceeding 12 V (maximum fan voltage) are limited to that value. The sensor voltage amplification is kept relatively low to ensure a smooth behaviour of the circuit. Although the resulting absolute error is fairly large, that is not a problem because the aim of the circuit is to keep the heatsink temperature below the safe limit, not to keep it constant in any way. The two graphs show the sensor voltage, U_s, and the fan voltage, U_f, as a function of the heatsink temperature.
Diode D₆ lights if the mains supply is switched on, and the battery voltage has dropped below 6 V.

The maximum current that can be supplied to the fans is about 500 mA.

As a matter of course, the board must be fitted in a manner which ensures good thermal contact between the flat side of the LM35 (IC) and the heatsink.

Parts list

Resistors:
- R₁, R₁₁ = 10 kΩ
- R₂ = 220 Ω
- R₃ = 4.7 kΩ
- R₄ = 390 kΩ
- R₅ = 220 kΩ
- R₆, R₇ = 1.5 kΩ
- R₈ = 3.3 kΩ
- R₉ = 47 kΩ
- R₁₀, R₁₃ = 2.2 kΩ
- R₁₂ = 470 kΩ
- R₁₅ = 1 kΩ
- R₁₆ = 1 MΩ
- R₁₇ = 39 Ω

Capacitors:
- C₁, C₆ = 10 µF, 16 V, radial
- C₃ = 1000 µF, 25 V, radial
- C₄, C₇ = 100 nF
- C₂, C₅ = 100 µF, 25 V, radial

Semiconductors:
- B₁ = B40C 1500
- D₁, D₇ = 6.2 V, 500 mW
- D₂ = 1N4148
- D₃ = BAT85
- D₄ = 12 V, 500 mW
- D₅ = 1N4001
- D₆ = 15V 1.3W
- D₇ = BAT85
- B₂, T₁ = BC547B
- T₂, T₃ = BC557B

Integrated circuits:
- IC₁ = LM35C
- IC₂ = TLC274CN

Miscellaneous:
- K₁, K₂ = 2-way PCB terminal
- BT₁ = 9 V (PP3) battery
- M₁, M₂ = miniature fan
- BZ₁ = 5 V d.c. buzzer

5 V REGULATOR ON 45 V

The Type 7805 voltage regulator cannot handle input voltages higher than 35 V. If only voltages higher than 35 V are available, it is, of course, possible to shunt the input with a zener diode. However, since prices of standard voltage regulators are low, there are advantages in using a second regulator: the stability of the output voltage as well as the hum rejection will be improved appreciably.

In the present circuit, the 7805 is preceded by a 7824. To obtain as high an input voltage rating as possible, the centre pin of the 7824 is not connected to ground, as is usual, but to the output of the 7805. The maximum input voltage of the combination is then 5 V higher than the permissible 40 V for the 7824.

The minimum input voltage must satisfy the rule that each of the ICs must have a difference between its input and output of not less than 3 V. The output of IC₁ is 24 + 5 = 29 V, which is more than enough for IC₂. Since IC₁ must also obey the rule, its input must be 3 V higher than its output, that is, 29 + 3 = 32 V.

Owing to the large difference in input voltage and output voltage, the maximum output current is somewhat restricted.
The 7805 has a voltage of 24 V across it, so that it dissipates 2 W when the output current is 80 mA. Without a heatsink, the trigger point of the thermal protection of this IC would then have been reached. This means that the IC must be fitted on an ample heatsink.

The PCF8583* is a real-time clock calendar with I2C interface. The addition of the components shown in Fig. 2 gives a standard application of the IC. If the components are surface-mount types, a very compact design results that can be built into, say, a mini DIN plug. A drawback is that, without battery back-up, all data and settings of the clock are lost when the supply of the PCF8583 fails.

The IC, whose internal circuit is shown in Fig. 3, can be read or written to at address 101000AX, where X is the read-write bit.

The IC contains a 256x8 bit static RAM with an automatically increasing word address register, a 32.768 kHz oscillator, a :256 divider, a power on reset, and an I2C bus interface.

The first eight bytes of the RAM (00-07) are used for the clock/calendar and divider functions as shown in Fig. 3. A full description of the content of all registers cannot be given here; the reader is referred to the data sheet*.

Figure 1 shows how the construction may be carried out. First, cut the pins of the IC to a length of about 1.5 mm. Then, fix resistors R1 and R2 at right angles to pins 5 and 6 at the underside of the IC with fast-drying glue, and solder them to these pins. Solder short lengths of thin (0.1 mm!) wire to the other terminals of the resistors (later, these are soldered to pins 2 and 3 of the mini DIN plug). Next, glue C1, R3, and C2, in that order, exactly in the middle between pins 1-2 and 7-8. Using lengths of thin (0.1 mm!) wire, solder C1 to pin 1, R3 to pin 3, and C2 to pin 4. Solder the other terminals of these components to pin 8 and also (later) to pins 3 and 4 of the DIN plug. Finally, solder the crystal lengthways between pins 1 and 2.

Space is made in the plug by shortening the metal housing to about 15 mm (5/8 in) and removing the rear part of the plastic casing. Glue a two-way header in the cable entry in a manner that allows a jumper to be inserted into it from outside the plug. This jumper determines the free bit of the address. Finally, solder the wires outlined before to the pins of the plug and reassemble the plug.

Design: W. Hackländer

* Philips Components.

I2C REAL-TIME CLOCK

Design: H. Bonekamp

[944073]

ELEKTOR ELECTRONICS DECEMBER 1994
SWITCHING VOLTAGE FOR POLARIZER

Most satellite receivers provide a direct voltage at their coaxial output which, depending on the plane of polarization of the set program, is either 13/17 V or 14/18 V. This voltage is applied to the external unit via the coaxial cable to enable the polarizer to be switched over. This function very well as long as the polarizer is integrated in the LNB. An external polarizer (between LNB and feedhorn) is switched via a separate line by a voltage that is either 0 V or 5 V. If such a unit is connected to the receiver, the LNB is powered, but the polarizer cannot be moved. To do this, a 5 V mains adaptor, a change-over switch and a separate control line to the polarizer are needed. Apart from the expense, such a setup has the disadvantage that the polarizer is manually controlled.

A more sophisticated way of solving the problem must meet the following requirements:
• A direct voltage must be available at the coaxial output of the receiver that does not affect the r.f. signal in the 950–2050 MHz band.
• The 13/17 V or 14/18 V direct voltage must be converted to 0–5 V.
• A simple adaptor circuit for insertion between the coaxial cable and LNB input must be provided.

The r.f. signal from the LNB is applied to the adapter via F-connector K2. This connector is directly linked to the F-socket K1, to which the satellite receiver is connected. The centre connector of K1 also carries the switching voltage for the polarizer. Inductor L1, in conjunction with decoupling capacitor C1, ensures that the r.f. signal cannot pass to the adaptor circuit and also prevents this signal being loaded by the adaptor circuit. The switching voltage is not affected by this arrangement.

The switching voltage is applied via L1 to a voltage detector circuit based on zener diode D1 and T2. The diode must be a 13 V type when the switching voltage is 13–17 V and a 15 V type when the voltage is 14/18 V.

Transistor T2 cannot conduct until the switching voltage exceeds the zener voltage plus its base-emitter potential (0.7 V).

As long as T2 does not conduct, T1 is also cut off, so that voltage regulator IC1, does not receive an input potential. The output voltage to the polarizer (K3) is then 0 V. As soon as T2 conducts, the switching voltage is applied to IC1 via T1. Consequently, the voltage at K3 is then a steady 5 V.

The adaptor thus fulfills the requirements stated earlier: the external polarizer is switched between horizontal and vertical polarization by the (converted) switching voltage.

This assumes, of course, that the voltage provided by the receiver can sink enough current for the LNB and the external polarizer. In the prototype, the polarizer drew 80 mA and the LNB, 160 mA (at 5 V). The receiver was an Amstrad SRX200, which provides 300 mA at 13/17 V, which is ample. With a PACE receiver, which provides 250 mA, operation becomes marginal, whereas with a Hirschmann receiver, which provides 500 mA, there is nothing to worry about whatsoever.

If the adaptor is to be mounted in the open, it must, of course, be fitted in a watertight enclosure.

Design: A. van den Driesche

[944009]

PC INTERFACE FOR CASIO ORGANISER

The interface provides a link between a Casio organiser (Type SF5100, SF5300, or SF9300) and a personal computer.

In the diagram, inverters IC1a and IC1b buffer the TxD and RxD line respectively. Note that the interface works with TTL levels only: virtually all PCs can handle these.

Diodes D1 and R2 protect the interface against reversal of the TxD and RxD connections. This may happen, for instance, if a wrong cable is used. The interconnecting cable is virtually proof against short-circuits by virtue of R2.

As soon as a negative level appears on the TxD output of the PC, D2 is cut off, while R1 pulls the input of the inverter to ground.

The inverters are internally protected against supply voltages higher than 5 V.

The power supply may be taken from the RS232 output of the PC, since the DTR connection of the PC can sink sufficient current. Low-drop voltage regulator IC2 converts the potential at the DTR output to a stable 5 V supply.

Design: A. Schiefen

[944062]
COMPONENTS
SELECT

NPN power transistors

Available from Philips Components are two new n-p-n power transistors, the BU2522AF and BU2527AF, which, because of their short switching times, can appreciably reduce power dissipation in the horizontal deflection of a colour monitor. Also, the tolerance of their current amplification factor is small, thanks to a carefully monitored diffusion process and 100% testing of the RBSOA (Reverse Bias Safe Operating Area).

A list of Philips Components distributors in the UK was given on p. 19 of our September 1994 issue.

Components for Elektor Electronics projects

Many components for projects published in this magazine may be obtained from Viewcom Electronics, a small but flexible organization. They also stock a very wide range of components for all sorts of application. See their advert on pages 14 and 15 of this issue.

New program simplifies filter design

For many electronics engineers, designing active and passive filters is a tedious and error-prone process. They must either perform many repetitive and complex calculations or look up dozens of normalized coefficients in tables. Number One's filter design program, FILTECH, gives the practising engineer quick and painless answers to filter design problems while encouraging experimentation and learning in an interactive manner. FILTECH can analyse the synthesized filter circuits independently and display a graphic plot of the calculated frequency response. The program can synthesize both active and passive filters up to sixth order with a frequency range from fractions of a hertz to over a gigahertz. Number One's advert appears on page 4 of this issue.

World's largest TFT LCD

Sharp has recently introduced the world's largest liquid crystal display. The screen has a diagonal of 53 cm (21 in) and is only 2.7 cm (just over one inch) thick. This type of display will undoubtedly find application in television sets and computer monitors. Because of its distortion-less colour image, the screen will also be eminently suitable for use in multimedia applications. Each pixel of a TFT screen is formed by an active transistor cell. The main difficulties in producing large TFT screens are achieving a homogeneous distribution of the liquid crystal and obviating timing errors.

Dual video multiplexer

Burr-Brown has introduced a dual video multiplexer Type MPC102. This device has been designed especially for wideband systems (250 MHz, 1.4 V_{pp}) such as television and transmitting equipment. Bipolar complementary buffers provide one-way transmission with very high output-to-input isolation. The MPC102 has four identical monolithic open-loop buffer amplifier with switching elements. The differential gain and phase deviations are typically 0.02% and 0.02° respectively. Cross-talk at a frequency of 30 MHz is -68 dB, switching transients amount to +6 mV to -8 mV and the slew rate is 500 V μs⁻¹.

Printed-circuit boards

Badger Boards in Sutton Coldfield can provide PCBs for many of the projects published in this magazine, which are not available elsewhere. They can also provide one-off prototype boards to individual requirements. See their advert on page 31 of this issue.

P.C. Bee of Bolton also provide a PCB service, but since their minimum charge is £120.00, this is probably of more interest to small firms than to private individuals.

Phone or fax Ian Beeby on 1204 24218.

New virtual instruments

Pico Technology have added three products to their PC-based instrument series. Like the rest of the range, the units offer the performance of desktop instruments with all the benefits that PC connection offers (clear displays, on-screen instructions, disk and printer support). The SLA16, probably the smallest and most economical PC-based logic analyser, offers 16-channel operation with an 8 k trace buffer. The supplied software provides state listings and waveform display.

The ADC 100 with the supplied PicoScope software allows a computer to be used as a dual channel digital storage scope, spectrum analyser, frequency meter and voltmeter. Since it is powered from the PC's parallel port, it is ideal for portable use with a notebook PC.

The ADC22 is a data logging unit designed for users who require a large number of input channels (22). Its other specifications are similar to the existing ADC11.

Pico Technology's ads appear on pages 8 and 30 of this issue.

Hewlett-Packard has recently introduced the world's smallest two-channel, high-power optoisolator. The surface mount device has the same specifications as the 8-pin DIL packaged version, but takes up only one third of its space on a board. The new family, comprising the HPCL-0530, -0630 and -0730, has been designed specially for applications where space is at a premium.

Hewlett-Packard. 308-314 Kins Road, Reading RG1 4EJ.

5 V boomer from National Semiconductor

National Semiconductor has introduced its Boomer™ audio power amplifier which offers an audio solution that doubles the output power at low supply voltage compared with conventional audio amplifiers. The LM4860/1 brings high fidelity to portable and desktop computers, cellular phones and electronic games. The new amplifiers deliver 500 mW (LM4861) or 1 W (LM4860) of continuous average power (sine wave) into an 8 Ω speaker with less than 1% total harmonic distortion plus noise (THD+N) from a 5 V supply.

SPI bus compatible fast EEPROMs

After their introduction of I2C bus compatible EEPROM, SGS Thomson has now brought out a series of fast EEPROMss that are compatible with Motorola's SPI bus. Type-coded ST95PO3C, ST95PO4C and ST95P08C, the new devices are organized in matrices of 256×8, 512×8 and 1024×8 respectively. Protection against undesired writing of data to the memory is available in hardware or software form. The memories contains, 16, 32 or 64 pages, each with a capacity of 16 bytes. One write command enables all 16 bytes of a page to be written.
Superpro programs a wide variety of eproms, eplds, and bipolar proms and it can test TTL/CMOS logic devices.

Superpro comes complete with all software and it works with virtually any PC compatible from an XT to a 486.

We offer a next day delivery service and payment can be made by cheque or credit card. If you are not completely satisfied we will refund your payment, less delivery costs, if the programmer is returned to us within 10 days.

SPECIAL OFFER to readers of ELEKTOR Electronics!

To help design your logic systems, we are offering a copy of ICT's PLACE software free of charge with every Superpro. Simply mention this offer when ordering.

LLOYD RESEARCH LTD
7 Brook Lane, Warsash, Southampton, S031 9FH
Tel: 0489 574040 Fax: 0489 885853

Use your electronics know-how to create great sound!

Speaker Builder is the world's only loudspeaker magazine in English, can show you how to achieve excellence in sound from your stereo system. Whether you're modifying and improving your present speakers or building a new design from scratch, *Speaker Builder* contains the latest in loudspeaker technology. Within its pages, learn about Thiele-Small design software, build an inexpensive measurement mike good enough for the professionals, or simply indulge in reading about the experiences of others using their technical skills to improve the sound around them.

Since 1980, *Speaker Builder* has been exploring both the traditional and more unusual formats for loudspeakers. From pipes to corrugated boxes to transmission lines and electrostatics, every conceivable medium is discussed. An international forum for speaker enthusiasts the world over, sharing ideas and designs, *Speaker Builder* has made it possible for thousands to enjoy the highest quality sound without straining their budgets.

The publishers of *Speaker Builder* invite you to use your electronics know-how to discover the world of better sound. To subscribe, simply return the form below with your payment or FAX your credit card order and receive 8 issues of *Speaker Builder* for a low introductory rate of $45 for a one-year subscription. That's a $5 savings off the regular overseas airmailed rate. Or you may subscribe for two years at $80 ($10 off).

- One Year $45
- 2 Years $80

Remittances in US funds drawn on a US bank only.

ASA NUMBER
NAME
ADDRESS
CITY
STATE
ZIP

Speaker Builder
PO Box 494, Peterborough, NH 03458-0494 USA
(603)924-9464 or FAX (603)924-9467 24 hours

IF AN ADVERT IS IN PRINT, IS IT PROPER?

Most advertisements are perfectly proper. A few are not.

The Advertising Standards Authority not only monitors over 850 advertisements every month, it ensures compliance with the rules in the strict Code of Advertising Practice.

So when you question an advertiser, they have to answer to us.

To find out more about the role of the ASA, please write to the address below.

Advertising Standards Authority,
Department X, Brook House, Torrington Place, London WC1E 7HN.

This space is donated in the interests of high standards in advertisements.
HART KITS give you the opportunity to build your own equipment. The FULL cost can be credited against your subsequent kit purchase. Our price only £10.99.

Audio Design 80 Watt Power Amplifier.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hi-fi system. It is a way to kit out your system with the very best engineered equipment. K1100 uses modern integrated circuits to achieve outstanding sound quality at minimal cost. The very low power requirements of this unit will be operated from dry batteries and the kit comes with very detailed instructions making it ideal for the beginner.

K1500 Complete Kit with all components, printed circuit board, full instructions and fully finished case.

K1450 Complete Discrete Component RCA A Power Amplifier.

Factory Assembled and Tested.

£99.58

K1560 Matching Audio Grade Power Supply with pottered toroidal transformer and limited earth system.

£98.42

U1115 Power Interconnect Cable.

£7.29

Special Offer Precision Triple Purpose Test.

Are you sure your tape recorder is set up to give its best? Our latest triple purpose test cassette checks the three most important tape parameters without test equipment ideal when fitting new heads. A professional quality, digitally mastered test tape at a price anyone can afford.

Test Cassette TC1.

£10.99

DISK-COUNT Classical CD's.

Many New Titles This Year.

Top Quality, Full Digital (DODD) Compost Discs of the great classical favourites. Like everyone else we didn't like the proprietary slidy prices for CD's. After a long search we have now located a source of top quality classical recordings at prices that make you suspect the quality - until you try them! Send for our list of titles.

Hart PCB Soldering Practice Kit.

Your chance to try your soldering skills on a real Hart printed circuit board. This kit comes with a range of modern components, a typical Hart quality PCB, a roll of the best quality solder and your full learning guide. It enables the enthusiast who is uncertain of his, or indeed her, ability to put together and solder a printed circuit to try their hand at the first minimum cost. The instructions explain the right technique and guide even an absolute beginner through the seemingly daunting, but in fact very simple, art of making a good soldered connection. The Hart Printed Circuit Board Soldering Practice Kit represents excellent value for money at only £4.99.

Send or phone your order for our FREE List of these and many other Kits & Components. Enquiries from Overseas customers are equally welcome. Please call us to register your interest for our kits, or to order our definitive full colour catalogue. It lists all our kits, full details, prices and delivery information. Payment by cheque, cash or credit card. A telephoned order with your credit card number will be accepted.

Hartelectronics 1400 Series Ultra High Quality Preamps.

Joining our magnificent 80 Watt power amplifier now is the most advanced preamplifier ever offered on the market. Each unit is a complete preamplifier, with separate tape input and output stages and separate line outputs. The line outputs are preamplified to tape line level. The preamplifier is designed to be used as a preamplifier with any Hart power amplifier or as a powerful A/B switch to feed tape or CD directly into Hart power amplifiers. Preceding the line outputs, the Hart preamplifier features discrete line output stages, fully suspended, high grade, high frequency reference quality speaker outputs.

Linsley Hood 'Shunt Feedback' R.I.A.A.

Moving coil & Moving magnet pickup preamplifiers.

Modern, ultimate sound systems are evolving towards built-in preamplifiers within or near the turntable unit. This keeps noise pickup and trolley loss to a minimum. We now offer two units, both having the sonically preferred shunt feedback configuration to give an accurate and musical sound, and both having the ability to use both moving magnet and moving coil cartridges.

Kit K1500 uses modern integrated circuits to achieve outstanding sound quality at minimal cost. The very low power requirements of this unit will be operated from dry batteries and the kit comes with very detailed instructions making it ideal for the beginner.

K1500 Complete Kit with all components, printed circuit board, full instructions and fully finished case.

Technical Bookshelf.

The following are a Small Selection of the Books available.

"The Art of Linear Electronics" by John Linsley Hood.

Just out Hot Off the Press, the definitive electronic and audio book by the renowned John Linsley Hood. This 300 page book will give you an unparalleled insight into the workings of all types of audio circuits, learn how to read circuit diagrams and understand how the circuits and components work. This book is a must for anyone interested in the history and development of audio amplifier circuitry. It is an entire chapter, as does test and measurement equipment.

Copiously illustrated this book is invaluable for the amount of information and history on the much neglected field of linear, as opposed to digital, electronics. Indeed it must be destined to become the standard reference for all who work, or are interested in, this field.

Special Offer. With each book purchased you may request a FREE extended index, written by the Author.

P.O. Box 968 Gayton, Northants NN3 2BY

Tel: (0691) 652894

ELEKTOR ELECTRONICS DECEMBER 1994
Take the **Quickroute** to successful PCB & Schematic Design

Design PCB's and Schematics quickly

After schematic capture, components can be re-arranged prior to manual or automatic routing.

All versions include an auto-router.

Telephone or FAX POWERware on 061 449 7101

POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

Quickroute 3.0 for Windows 3.1

DESIGNER £99.00 DESIGNER+ £149.00

PRO £199.00 PRO+ £299.00

DEMO DISK Available

All prices exclude post & packing, and V.A.T.
SOFT START REGULATOR

The regulator ensures slow turn-on of the supply voltage. Starting at 1.25 V it takes 3 s before the full 15 V is available. The maximum input voltage may be 41.25 V.

Resistors R_1 and R_2 form part of the standard application of an LM317; they enable the output voltage, U_0, of the regulator to be set. The computation of that voltage is fairly simple (ignoring R_3, C_2, D_1, and T_1):

$$U_0 = 1.25(1 + \frac{R_1}{R_2}) - 15V.$$

However, R_1 is now shunted by the collector-emitter junction of T_1. Since at switch-on C_2 is uncharged, the base of T_1 is at ground potential. This means that the transistor conducts, so that R_1 is short-circuited. The output voltage is then equal to the drop across R_2, that is, 1.25 V. Capacitor C_2 is then being charged via R_2 and R_3, which causes the base voltage of T_1 to rise gradually. That is, the transistor is moving slowly to the non-conducting state and the short-circuit of R_1 is removed gradually.

If the switch-on time of 3 s is considered too slow, the value of C_2 may be reduced. If, however, a longer time is required, the value of R_3 may be increased (but not by much; how much can be found only by trial and error).

Diode D_1 ensures that C_2 is discharged rapidly via the load when the supply is switched off.

The minimum and maximum input voltages are 18 V and 41.25 V respectively. The LM317 is short-circuit proof and can sink up to 1.5 A.

Design: W. Hackländner [944072]

SPEED CONTROL FOR D.C. MOTORS

The circuit presented is suitable for use with d.c. motors operating from 5–24 V. It can deliver an output current of up to 10 A, depending on the type of output transistor used.

Operational amplifier IC_{1a} operates as an oscillator with a frequency that may be set between 6 kHz and 100 kHz. It provides a sawtooth voltage at a level of about 1.5 V at the inverting (-) input of comparator IC_{1b}. The non-inverting input of the comparator is connected to a reference voltage.

The comparator provides a rectangular voltage whose duty factor, and thus the speed of the motor, depends on the position of P_3.

The range over which the speed of the motor can be controlled is set with P_2, which is preset as follows. Set P_3 to minimum resistance (wiper towards P_2) and adjust P_2 so that the voltage at the wiper of P_3 is the same as the minimum value of the sawtooth voltage.

The maximum power that can be provided depends on the type of output transistor, which may be a darlington transistor or a field-effect transistor (FET). In the prototype a BUZ24 was used. This is a FET with a drain-source on-resistance (R_{DS-on}) of 60 mΩ and a maximum drain-source voltage (U_{DS}) of 100 V. Other suitable types are given in the table.

The drain-source voltage needs to be high, since owing to the inductive load high counter-e.m.f.s occur on switch-on. Even the use of a varistor or a standard reverse-biased diode between drain and source does not always protect the transistor. High counter voltages are also
generated during lulls in the control signal, since the motor then behaves as a generator. In normal circumstances, the Type BYW29-100 fast recovery diode suppresses any of the generated counter voltages. The circuit draws a quiescent current of about 25 mA. Design: W. Zeiller

Modern central heating boilers have no pilot light but electronic ignition. Checking whether ignition has taken place can be carried out by measuring the ionisation current caused by the flame. When the ionisation current is too low, protection circuits come into action. The ignition circuit then tries to ignite the burner again. If after a few attempts the burner still does not come on, an error signal is given.

The present meter enables the ionisation current to be measured. It is capable of withstanding high ignition voltages and is suitable for measuring currents between 1 µA and 100 µA. Its control switch has an offset adjustment range and four metering ranges (0.3–3 µA; 1–10 µA; 3–30 µA; 10–100 µA) enabling it to be used with most kinds of boiler. The current is ascertained by measuring the voltage drop across R1. This resistor is shunted by two anti-parallel connected diodes that protect the opamp against too high input voltages. The diodes should not have too high a leakage current because of the sensitivity of the circuit. The amplification of IC1, depending on the setting of control switch S1, is x1000 (offset adjustment); x1000, x300, x100 or x10. The output of IC1 is applied to IC2, which indicates the measured current on an LED scale. The reference voltage for this IC is set to 3 V. Calibration of the circuit must be carried out with its input open. With S1 in position 1 (as shown in the diagram), the reference voltage of IC3 is linked to the input of IC1 via R3. Thus, a current of 3 µA flows through R1. Then, adjust P1 till the upper two LEDs just light. A 9 V battery suffices for the power supply, since the circuit draws a current of only 10 mA. Design: H. Bonekamp

IONISATION METER

<table>
<thead>
<tr>
<th>Type</th>
<th>U_Ds (V)</th>
<th>I_D (A)</th>
<th>R_Ds-on (Ω)</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUZ10</td>
<td>50</td>
<td>20</td>
<td>0.08</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ11</td>
<td>50</td>
<td>30</td>
<td>0.04</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ11A</td>
<td>50</td>
<td>25</td>
<td>0.06</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ14</td>
<td>50</td>
<td>39</td>
<td>0.04</td>
<td>TO3</td>
</tr>
<tr>
<td>BUZ15</td>
<td>50</td>
<td>45</td>
<td>0.03</td>
<td>TO3</td>
</tr>
<tr>
<td>BUZ18</td>
<td>50</td>
<td>37</td>
<td>0.03</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ21</td>
<td>100</td>
<td>19</td>
<td>0.1</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ23</td>
<td>100</td>
<td>10</td>
<td>0.2</td>
<td>TO3</td>
</tr>
<tr>
<td>BUZ24</td>
<td>100</td>
<td>32</td>
<td>0.06</td>
<td>TO3</td>
</tr>
<tr>
<td>BUZ25</td>
<td>100</td>
<td>19</td>
<td>0.21</td>
<td>TO3</td>
</tr>
<tr>
<td>BUZ27</td>
<td>100</td>
<td>26</td>
<td>0.06</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ71A</td>
<td>50</td>
<td>13</td>
<td>0.12</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ72</td>
<td>100</td>
<td>10</td>
<td>0.2</td>
<td>TO220</td>
</tr>
<tr>
<td>BUZ72A</td>
<td>100</td>
<td>9</td>
<td>0.25</td>
<td>TO220</td>
</tr>
<tr>
<td>BUK416</td>
<td>100</td>
<td>55</td>
<td>0.13</td>
<td>SOT227B</td>
</tr>
</tbody>
</table>

(100AE)

ELEKTOR ELECTRONICS DECEMBER 1994
The display is intended as a tuning indicator or a VU meter on a stereo FM radio. The first function is selected by pressing S1 (which may, of course, be replaced by a normal on/off switch). Depending on the mode selected, the circuit acts as a single linear scale (for the tuning voltage), or a stereo VU meter with a quasi-logarithmic scale.

Opamps IC2a and IC2b, act as peak detectors which charge capacitors C3 and C5 to a potential that depends on the level of the R(right-hand) and L(left-hand) audio input signals taken from the radio’s line outputs. Assuming that S1 is not pressed, the peak rectified voltages are fed to the -ye inputs of the comparators contained in two LM324s, IC3 and IC4. Transistors T2 and T3 conduct, and the -input of each comparator is held at a certain reference level to create a quasi-logarithmic scale with the aid of R21, R22 and D13-D17. When there is no input signal, no LED lights. At the lowest sound level, only the centre LED lights. When the volume increases, the LEDs at both sides of the centre light. Resistors R34 and R35 ensure that the centre LED responds to the average volume on the L and R channel. The circuit is switched to tuning indicator mode by pressing S1. Because T1 is then switched on, T2 and T3 are switched off, removing the forward bias from diodes D13-D17. At the same time, switches IC1a, IC1b and IC1d are opened, so that the peak rectified signal voltages are no longer fed to the LM324s. The receiver’s tuning voltage (usually 0–30 V) is first attenuated about x9 by R11-R12, and then amplified x2 by IC2c. The output signal of this opamp is fed to the inputs of IC4a-IC4d via IC1c. This causes the LEDs to light from the left to the right as the tuning voltage increases. The value of R13 gives IC2a, a small off-set voltage which causes the tuning scale to start at about 1 V. Similarly, the value of R11 causes all LEDs in the bar to light at a tuning voltage of about 29 V. Resistors R11, R12 and R13 will need to be given different values from those shown if the tuning voltage in your FM tuner differs from the usual 0–30 V range.

The current drain of the circuit is smaller than 150 mA.

Design: V. Mitrovic

[944010]
The active filters in the two diagrams are intended for low-frequency application. Both are based on the relatively inexpensive, low-noise Type TL072.

The circuit in Fig. 1 is a band-pass section, whose pass-band is shown in Fig. 2. The frequency is determined by R_1, R_2 and C_1. Components with the same number have the same value. Interchanging R_1 and C_1 at the input yields a high-pass filter.

The circuit in Fig. 3 is a band-stop filter, whose characteristic is given in Fig. 4. Omitting R_2 parallel with C_1 at the input yields an all-pass section.

The current drawn by the circuits is about 4 mA.

If a different type of operational amplifier is used, make sure that it is frequency compensated for unity gain. In, for instance, the NE5534 that is not the case.

Design: K. Kraus
When medium to large electric motors are started, no counter-e.m.f. is as yet induced, so that very high currents are drawn that often result in a blown fuse (or two). The circuit described here can switch on resistive and inductive loads up to 4.5 kW in a manner which obviates this occurring.

The circuit, which is connected directly to the mains, uses phase proportional control to eliminate current peaks at switch-on. These peaks are also suppressed to some extent by varistor R_g.

The IC, a Telefunken Type U208B, internally regulates ('supply voltage limiter') the supply voltage applied via rectifier D_1, R_5 and smoothing capacitor C_3.

Current and voltage synchronization is effected by the phase control driver. This stage delivers a start pulse for triac Tr_1 via the pulse output and pin 3. The phase angle of the pulse is determined by the ramp voltage at pin 5 and the potential at pin 6. The slope of the ramp voltage is fixed at 180° by the charging current of C_4, which flows through R_4.

When the mains is switched on, capacitor C_2 is discharged, so that the control voltage at pin 6 has a maximum value of 7 V (via R_5 and R_6). The capacitor then begins to charge and reaches the level at pin 1 within 4 s. Consequently, the phase angle reduces from 180° to 0°, and the current flowing through the load (resistive or inductive) rises to its maximum level, in 4 s.

The current detector at pin 8 prevents a start pulse being generated while there is still a current flowing resulting from the previous half period.

The post-trigger stage prevents the triac blocking if for any reason the pulse has no effect.

The triac is protected against voltage peaks by network R_1-C_1.

When the mains is switched off, C_2 is discharged via D_2, so that at the next switch-on the phase angle is back at 180°.

A few hints for constructors. When a printed-circuit board is designed, the distances between C_2, pin 5 and pin 1 must be kept as short as feasible. The load current must in no circumstances be allowed to flow via the connection to pin 1.

Capacitor C_4 should have a temperature coefficient that is as small as possible.

The triac must be fitted on a heatsink whose capacity depends on the load: 5 kW⁻¹ for a 4.5 kW motor and 12 kW⁻¹ for a 2 kW motor.

Design: J. Kircher [944015]

SPIKE DETECTOR

The domestic mains voltage, even at the best of times, does not have a clean waveform. For all sorts of reason, there are almost always spikes superimposed on the voltage and these adversely affect consumers' equipment. These spikes normally last for between 0.1 µs and 10 µs. Their amplitude varies considerably, but can be as high as 1000 V.

It is, of course, often very useful to know the duration and amplitude of the spikes, so that equipment may be protected against them. The present circuit measures spikes on the mains supply and indicates their relative level by an LED.

With a rotary switch S_1, the user can choose one of three
different voltage levels by which the level of the mains voltage differs from the nominal level: 10 V, 30 V, or 100 V.

A bridge rectifier, D_1-D_4, is connected across the mains via C_2 and C_3. The bridge is loaded by a 100Ω resistor, R_4. The capacitors and R_4 form a sort of high-pass filter, which attenuates the mains voltage appreciably: the drop across R_4 is a mere 230 mVpp. Because of its steep edges, any spike will pass through C_2 and C_3 without any loss. This voltage is applied to a potential divider formed by R_5 and R_6, R_7 or R_8, depending on the position of S_1. If the voltage at the junction of the divider exceeds about 0.6 V, T_1 will conduct. This triggers monostable multivibrator I_{CI}, which causes D_6 to light. This diode is a high-efficiency type because IC_1 can not provide more than a small current.

Diode D_5 ensures that the peak at the junction of the divider does not exceed the potential across R_4 plus 0.6 V, so that the transistor can not be damaged.

Capacitors C_2 and C_3 are followed by a varistor, R_3, which protects the diodes in the bridge rectifier against too high voltage levels (the full level of any voltage peaks is across the non-conducting diodes). Resistors R_1 and R_2 ensure that the capacitors are discharged rapidly when the circuit is disconnected from the mains.

Since 1500 V capacitors are used at the input of the circuit, it may be considered electrically isolated from the mains supply. In spite of this, it is advisable to fit the capacitors in a plastic case.

The circuit can be powered by a 9 V battery: it draws a current of only 160 μA (LED out) or 2 mA (LED on).

Design: H. Bonekamp

SIP-TO-SIM ADAPTOR BOARD

For some reason or other, SIM type memory modules have become more popular than SIP types. The difference between these is the way they are inserted into the memory expansion sockets on the PC motherboard: a SIP module has wire pins, while a SIM module has contact fingers etched on a printed circuit board which carries the memory ICs. Although in first-generation PC-ATs both types of memory module can be used, and, indeed, mixed freely, an increasing number of PCs, particularly the newer 386/486 machines, allow SIM modules to be used only.

The printed circuit board shown here is for those of you who have SIP modules lying about which can not be used because the computer accepts SIMs only. The board is cut into eight for an equal number of adaptor boards. The SIP pins are carefully soldered to the copper tracks on the adaptor board. In some cases, it will be necessary to reduce the height of the PCB a little so that it does not get in the way of any hardware above it.

For proper contact with the PC's memory expansion slot contacts it is recommended to use a tin or gold layer on the copper tracks.

The printed circuit board shown here is not available ready made. If you wish to make your own board, use 1.2 mm thick material, not the more usual 1.6 mm, since that is too thick for the present application.

Design: P. Verhoosel
ELECTRET MICROPHONE FOR TELEPHONE MOUTHPIECE

Although many older telephone sets are electrically and mechanically perfectly sound units, their speech quality is poor compared with that of modern, all-electronic, sets (except the cheap types used in domestic intercoms). The reason for this deficiency is the carbon microphone in the mouthpiece. Here, an up-to-date replacement is discussed for the carbon microphone. It takes the form of an electret microphone and an amplifier with a special band-pass characteristic.

The circuit diagram shows a conventional three-stage direct-coupled transistor amplifier whose output signal is superimposed on the supply voltage. In this way, the amplifier is fully compatible (electrically, that is) with a carbon microphone. Only the sound is much better.

Since an electret microphone has a virtually straight frequency response, the function of pass-band shaping is transferred to the amplifier. Here, the circuit is laid out to give a frequency response suitable for telephony, i.e., about 500 Hz to 4.2 kHz. The microphone signal is first sent through a high-pass filter, \(C_1 - R_2 \). The high-frequency roll-off is achieved with the aid of capacitor \(C_3 \) and resistor \(R_4 \) in the feedback circuit between \(T_2 \) and \(T_1 \). Capacitors \(C_2 \) and \(C_5 \) serve to suppress r.f. signals which may be picked up by the telephone line, the receiver cord, or the electret microphone. \(R_6 \) and \(C_4 \) improve the amplifier's stability.

The d.c. behaviour of the amplifier is such that it behaves like a carbon microphone, i.e., as a non-linear resistance. Diodes \(D_1 - D_4 \) at the amplifier output form a full-wave rectifier which provides an amplifier supply voltage which is sufficiently independent from the telephone line current (which can vary between 15 mA and 150 mA depending on the telephone system, line length, and other factors). Also, the rectifier ensures the correct supply polarity in all cases. For the audio signal, the rectifier is simply not there since the diodes conduct as a result of the line current which flows when the receiver is lifted. The two zener diodes, \(D_1 \) and \(D_2 \), are included as protective devices — they behave like ordinary diodes as long as the voltage on the line terminals remains below the zener voltage. If a higher voltage occurs on the line, the zeners still conduct, keeping the amplifier supply voltage within safe limits with the aid of resistor \(R_{12} \).

The amplifier is built on the board shown, so that it can actually replace the carbon microphone, which is carefully removed from the mouthpiece. Since many different types of telephone exist, the best way of doing this will have to be figured out carefully. In most cases, it will be necessary to solder wires to the spring terminals provided for the original carbon transmitter. The electret microphone is secured at the solder side of the board, and connected with short wires to the copper tracks that form the amplifier circuit. If they are not, lifting the receiver and moving it about will cause noise, which defeats the use of the circuit because mechanical noise is an inherent disadvantage of the old carbon microphone!

Parts list

Resistors:
- \(R_1 = 1.8 \, \text{k}\Omega \)
- \(R_2 = 68 \, \text{k}\Omega \)
- \(R_3 = 4.7 \, \text{k}\Omega \)
- \(R_4 = 470 \, \text{k}\Omega \)
- \(R_5 = 15 \, \text{k}\Omega \)
- \(R_6 = 1 \, \text{k}\Omega \)
- \(R_7 = 1.5 \, \text{k}\Omega \)
- \(R_{10} = 82 \, \text{k}\Omega \)
- \(R_{11} = 470 \, \Omega \)
- \(R_{12} = 22 \, \Omega \), 5 W

Capacitors:
- \(C_1 = 33 \, \text{nF} \)
- \(C_2 = 39 \, \text{pF} \)
- \(C_3 = 47 \, \text{pF} \)
- \(C_4 = 330 \, \text{pF} \)
- \(C_5 = 68 \, \text{nF}, 63 \, \text{V}, \text{radial} \)
- \(C_6 = 68 \, \text{nF}, \text{pitch} 5 \, \text{mm} \)

Semiconductors:
- \(D_1 - D_2 = 10 \, \text{V}, 1 \, \text{W} \, \text{zener-diode} \)
- \(D_3 - D_4 = 1N4001 \)
- \(T_1 = BC547B \)
- \(T_2 = BC557B \)
- \(T_3 = BC639 \)

Miscellaneous:
- \(\text{Mic} = \text{CM}105-8 \, \text{electret microphone (dia. 10 mm; } Z_0 = 2 \, \text{k}\Omega \)
The running lights are particularly suitable to demonstrate in an original manner how two data streams arrive alternately at the same point. The display consists of a total of 24 LEDs, divided over three legs as shown in Fig. 1. Other patterns are, of course, also possible.

The design is aimed at giving an alternating indication of routes A-B-D and C-B-D. This means that leg B-D is on all the time and that legs A-B and C-B must be separated by an OR function.

In Fig. 2, scaler IC2 is arranged as an eight-counter by linking its Q8 output to the reset input. The time base for the counter is formed by IC1, which has been connected as an astable multivibrator.

The LEDs are driven by the Q outputs of IC2 via transistors T1-T4. The anodes of diodes D20-D28 are linked to the +ve supply line via series resistors R22-R25. These diodes thus light every time IC2 generates the right condition (relevant Q output high).

The series resistors of the other diodes are not linked to the +ve supply line directly but via T5-T7 or T8-T9 respectively. These transistor pairs thus form the OR function mentioned earlier. When one of outputs Q4-Q7 is high, T5 and T7 conduct so that one of LED pairs D13-D20 lights. The collector of T5 is low, so that T6 and T8 remain off. When Q4-Q7 are all low, T3 does not conduct. Its collector is then high, whereupon T8 and T9 conduct and one of the LED pairs D21-D28 lights.

The number of LEDs may, of course, be increased by adding one or two to the twelve series connections. This means, however, that the supply voltage and the value of the series resistors must be changed accordingly.

The current drawn by the running lights is determined primarily by the LEDs, but does not exceed 50 mA.

Design: H. Bonekamp [944081]
H-FIELD SENSOR

As earlier reported in this magazine, from 1 January 1996 all (new) electronic and electrical apparatus must meet the European standard for electromagnetically compatible (EMC). For home-constructed equipment, the sensor described here will be found useful, yet simple to make. It is in fact a small loop antenna, made from 50Ω coaxial cable, that functions as an H-field (magnetic field) sensor. Although it is simple, it is capable of detecting a magnetic field caused by, for instance, a printed circuit board.

The H-field induces a small voltage in the screen of the cable, which is applied via a BNC connector to an oscilloscope (a spectrum analyser is better, but not many home constructors have one). Because of its symmetry, the sensor is not sensitive to the Eelectric-field, which makes it possible to view at once what the consequences are on the spurious radiation of, in this case, a modification of the PCB.

However, to comply with legal requirements, an absolute measurement of the electric field at a distance of 3 m from the PCB (in this case) is also required. This is difficult without special equipment, but it can be computed from

\[E = 2.7 \times 10^{-17} x f^2 x H, \]

where \(E \) is the electric-field strength in \(\text{V m}^{-1} \) at a distance of 3 m; \(f \) is the frequency in Hz; and \(H \) is the magnetic-field strength in \(\text{A m}^{-1} \) at a distance of 0.1 m. The formula can be used for frequencies of 16–477 MHz. In the case discussed, it should also be noted that the measurement is relevant only if the current loops on the board are much smaller than the wavelength. This will normally be so, unless ultrahigh frequencies are used.

The sensor consists of a length of 50Ω coaxial cable formed into a loop with a diameter of 300 mm. At the ends, solder the screens together and solder a 50Ω surface-mount resistor to the junction. At the centre of the circumference, break the screen as shown. Take care not to damage the inner conductor.

Design: R.M. Walraven
[944112]

1 May, June, 1993.

DISCRETE A-D CONVERTER FOR 8051

If an analogue-to-digital (A-D) converter is required for a particular application of an 8051 microcontroller design, this may be built from discrete components. The one described here has a maximum measuring error of 1% and an input voltage range of 0–2 V.

The important component in the diagram is capacitor \(C_1 \). This is discharged very rapidly by \(T_1 \) when the port connected to the gate of the MOSFET goes low. The collector of \(T_1 \) then carries the full supply voltage. When the level at port \(P^* \) rises to 1 again, \(T_1 \) is inhibited.

Stages \(IC_{1a} \) and \(T_2 \) form a constant-current source, driven by the input voltage, which charges \(C_1 \) when \(T_1 \) is inhibited. The level of the potential across \(C_1 \) is compared with a reference voltage of 2.5 V, held steady by \(D_1 \), by \(IC_{1b} \).

When the potential across \(C_1 \) drops below 2.5 V (with respect to earth), the comparator output changes state (from high to low), and the controller receives an interrupt. The interval between the leading edge at the \(P^* \) port and the interrupt is inversely proportional with the applied input voltage. The interval is measured by the internal timer of the controller. This method is not very precise, because the processor does not react instantly to the interrupt. This is, however, not a problem when the interval is (relatively) long.

The input voltage, \(U_i \), is:

\[U_i = 2K / N \ (V), \]

where \(N \) is the counter status and \(K \) is a constant determined by a calibration measurement.

A rather more precise method is programming the software counter, but the drawback of this is that the processor cannot fulfil other functions during the measurement.

Another method is using the gate signal that controls the internal timers. This enables a fairly accurate assessment of the width of the input pulse without the CPU losing time.

The values of \(R_1 \) and \(C_1 \) are chosen to give a conversion time of 125 ms with an input voltage of 2 V. For shorter conversion times, the value of \(R_1 \) or \(R_2 \) must be lowered, but not by more than a factor 10, otherwise the opamp does not react sufficiently fast any more.

The converter draws a current of only a few milliampere. Design: G. Kleine
[944108]
At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages ...

... call now for details.

BoardCapture

£395

- Create, edit and modify schematic drawings
- Print and check your schematics
- Import and export ASCII and Excel format drawings
- DirectX and TrueType fonts support
- Back annotation from BoardMaker

BoardMaker

£95

- Entry level
- PCB and schematic editing
- Board and layout editor
- Surface mount and THT support
- 3D to two-dimensional deck layouts
- Full list price: £295

BoardMaker2

£795

- Advanced level
- All the features of BoardMaker
- Design and layout support BoardCapture
- OrCad 2013.2 support
- Thermal power plane support with full DRC

BoardRouter

£200

- Gridless re-entrant autorouter
- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 & 24-pin Dot matrix, HP Laserjet and PostScript
- Plotters - HP, Graphtec & Houstoun
- Photoplotter - All Gerber 3X00 and 4X00
- Excel NC Drill and Annotated drill drawings (BM2)

Call, write or fax for more information or a full evaluation kit

Tsiens (UK) Ltd, Aylesby House, Wenny Road, Chatteris, Cambridge, PE16 6UT
Tel (0354) 695959, Fax (0354) 695957

Please mention ELEKTOR ELECTRONICS when contacting advertisers
DIFFERENTIAL PROBE

Normally, the standard probe supplied with an oscilloscope can be used only for measurements with respect to earth. This, occasionally frustrating, limitation can be nullified by a differential probe of which both prods 'float' with respect to earth. An accurate differential amplifier ensures that only the potential difference between the prods is registered.

The design also makes it possible to measure high voltages in a safe manner. The present probe can handle voltages up to 700 Vpp, provided, of course, that R1, R2, C1, and C2 are rated appropriately. It has a bandwidth of 1 MHz and a common-mode rejection that varies from 80 dB (direct voltage) to 20 dB at 1 MHz.

Since, owing to the type of operational amplifier used, the amplification must be $\frac{1}{1}$, the signal at input 1 is attenuated a hundredfold by $R_1 - R_4$ and then amplified $\times 1$ in IC1 (R_5 / R_4). Frequency compensation is provided by C_8 in the feedback loop of the amplifier. Note that C_4 does not influence the compensation, because the inverting input of IC1 forms a virtual earth for the signal.

The signal at input 2 is attenuated two-hundredfold by $R_2 - R_3 - P_1$ and then amplified $\times 2$ in IC1($1 + R_5 / R_4$). Frequency compensation for the attenuator is provided by C_3 and for the amplifier by C_4 and C_5; this effectively counters the effect of $R_3 - C_7 - C_8$.

To calibrate the probe, connect an oscilloscope or digital millivoltmeter to its output and note the offset. Next, short-circuit the two inputs and apply a direct or low-frequency voltage between the inputs and earth and adjust P_1 to obtain an offset that is equal to the one noted earlier. Then, remove the short from the inputs and apply a 1 kHz rectangular signal between input 1 and earth, and adjust C_8 to obtain as faithful a rectangular waveform as possible on the oscilloscope. Finally, apply the rectangular signal between input 2 and earth and adjust C_4 in an identical manner.

The probe draws a current of about 5 mA.

Design: H. Bonekamp

[944102]

FAX-PC INTERCONNECTION

The interconnection is of use to readers who have a fax machine and a PC with fax card and relevant software. The fax machine can then be used as printer and scanner for the PC. With older fax machines the resolution will then be 200 x 100 d.p.i.; with modern ones 200 x 200 d.p.i.

When a sheet of paper with text or graphics is inserted into the fax, the digitized image appears on the computer screen, which can then be stored on the computer disk. Conversely, text or graphics on the computer screen can be printed by the fax machine. An advantage is that compatibility questions do not arise.

There is, however, a drawback to this setup: unless a house telephone or two public telephone lines are available, there is no other communication between the PC and the fax machine.

Fortunately, the two units may be coupled via a two-wire connection, to which a 12 V supply (mains adaptor) and a current source (T_1) are added—see diagram. Each of the units draws a current of about 40 mA, although in some equipment this may be quite different. Polarity reversal of the 12 V supply is prevented by D_1.

It should be noted that the two-wire connection does not provide calling facilities. It is thus necessary that both the fax machine and the fax card in the PC can be started manually.

Design: K.M. Walraven

[944086]
Most computer users know that their computer has a parallel printer port, often colloquially called 'Centronics port'. Not many of them know, however, that this port offers more facilities than just driving a printer.

This article describes how, with the aid of a small auxiliary circuit and auxiliary program in Pascal, 8-bit wide data can be written via this port. The circuit makes use of the fact that, apart from the eight data outputs, every printer port also has several control lines that are used to coordinate the exchange of data with the printer.

In the present circuit, use is made of outputs STROBE, AUTO and INIT, and inputs ACK, PE, SELECT and ERROR. These seven lines make it possible to make an 8-bit input. The 8-bit wide data are written in two steps, each of four bits. Switching from step to step is effected by IC2, a Type 74HCT257 multiplexer.

IC1 functions as a bus buffer. IC3 ensures the enabling of the buffer, which in its quiescent state is in high-impedance mode via the G input.

The program, whose listing is shown in the table, ensures the correct drive for these three components. It is written in standard Pascal and may thus be used without any difficulty with all Pascal compilers.

Design: R. van Steenis

program readlpt;

uses crt;
var LSB, MSB, Total_New, Total_Old : integer;
 Ctrl, Readbyte : integer;
const Base_Address = $378;

 {initialisation}
crsr;
 Ctrl := Base_Address+2; {Base address can be $3BC, $278 or $378}
 Readbyte := Base_Address+1; {depending on printer port number used}
 Total_Old := Total_new +1;
 gotoxy(30,10); writeln('Value LSB =');
 gotoxy(30,11); writeln('Value MSB =');
 gotoxy(30,13); writeln('Total value =');
 gotoxy(30,14); writeln('Inputs =');

 {repeat until key pressed}
repeat
 port[Ctrl]:=0;
 port[Ctrl]:=4; {latch Total_New value in buffer}
 port[Ctrl]:=0;
 LSB := port[readbyte]; {read 4 LSBs into memory}
 LSB := (LSB and $78) div 8; {shift right three positions}
 port[Ctrl]:=5; {select 4 MSBs}
 delay(1); {wait 1 ms}
 MSB := port[readbyte]; {read 4 MSBs into memory}
 MSB := (MSB and $78) div 8; {shift right three positions}
 Total_New := LSB+MSB*16;
 if Total_New <> Total_Old then {input changed?}
 begin
 gotoxy(45,10);
 write(LSB,' '); {write 4 LSBs to screen}
 gotoxy(45,11); write(MSB,' ');
 gotoxy(45,13); write(Total_New,' ');{write decimal value to screen}
 gotoxy(45,14); {and binary value}
 write((Total_New and 128)div 128); {write bit7 to screen}
 write((Total_New and 64)div 64);{write bit6 to screen}
 write((Total_New and 32)div 32);{write bit5 to screen}
 write((Total_New and 16)div 16);
 write((Total_New and 8)div 8); {write bit4 to screen}
 write((Total_New and 4)div 4); {write bit3 to screen}
 write((Total_New and 2)div 2); {write bit1 to screen}
 write(Total_New and 1); {write bit0 to screen}
 end;
 Total_Old := Total_New; {save new value as old}
 until keypressed;
end.

ELEKTOR ELECTRONICS DECEMBER 1994
CURRENT PROBE

When it comes to measuring alternating currents in a safe manner, current probes have a number of significant advantages over series resistors. To begin with, the measuring circuit is electrically isolated from the a.c. supply line which carries the current to be measured. Secondly, the a.c. supply line need not be broken to insert a series resistor, or a cluster of series resistors with an associated range switch. Thirdly, voltage loss caused by the current probe is negligible.

Current probes are based on inductive coupling only, and usually have a transformer at the input to couple on to the a.c. supply line. To ensure that the current which flows through the a.c. supply line is transformed down to a safe level, which can be handled by an opamp, the input transformer usually has a turns ratio of 1:1,000 or so. In practice, that means that the primary of the transformer has one turn, and the secondary, 1,000.

Here, two transformers with a turns ratio of 1:32 are cascaded to obtain a total current step-down ratio of 1:1,000 (1:32²). This was done mainly to avoid the tedium of having to wind 1,000 turns of wire on to a ferrite ring core. Despite the fact that two transformers are used instead of one, the current probe still has an impressive frequency and current range.

\(T_{R1} \) and \(T_{R2} \) lower the current carried on the a.c. line by a factor of 32². The output current is applied to a current-to-voltage converter based on an AD847 opamp. Resistor \(R_1 \) gives the opamp a conversion factor of about 0.1. An off-set adjustment, \(P_1 \), is provided to keep the oscilloscope ‘in the picture’ without having to switch it to a.c. input mode.

The transformers are wound using ferrite ring cores type RCC26/10-3C11 (order code 4330 030 3752) from Philips Components. The inductance conversion factor, \(A_L \), of this core is quite high at 5 \(\mu F \) per turn. The cross-sectional area is 53.5 mm², and the effective length is 60.1 mm. The core material is 3C11. The secondary windings consist of 32 turns of 1 mm dia. (20 SWG) enameled copper wire; the primary windings of one turn of the same wire. For proper insulation, the primary of \(T_{R1} \) is best made from solid, insulated, wire. The PCB connection via terminal block \(K_1 \) must not be used at a.c. line voltages greater than 42 V, or currents greater than 5 A. In those cases, the measurement wire must be run through the core of \(T_{R1} \).

Finally, some test data obtained with a prototype of the current probe:

- **Frequency range:**
 - 50 Hz to 100 kHz (relative error < 1.5%)
 - 30 Hz to 1 MHz (relative error < 5%)

- **Current range at 50 Hz:**
 - \(I_{\text{max}} = 15 A \) (relative error < 1.5%)
 - \(I_{\text{max}} = 20 A \) (relative error < 5%)

Parts list

Resistors:
- \(R_1 = 102 \Omega, 1\% \)
- \(P_1 = 10 \, k\Omega \) multiturn preset

Capacitors:
- \(C_1, C_2 = 100 \, nF \)
- \(C_3, C_4 = 100 \, \mu F, 10 \, V, \text{radial} \)

Semiconductors:
- \(D_1, D_2 = 1N4151 \)

Integrated circuits:
- \(IC_1 = \text{AD847JN} \)

Miscellaneous:
- \(K_1 = \text{PCB terminal block, pitch 7.5mm} \)
- \(T_{R1}, T_{R2} = \text{ferrite ring core RCC26/10-3C11 (Philips Components order code 4330 030)} \)

Design: H. Bonekamp [944093]
50 HZ BAND-STOP FILTER

The suppression of the centre frequency in this band-stop filter is not dependent on the capacitors used, but on the resistors and the properties of the operational amplifier. The resistors are 0.1% precision types and the opamp provides high common-mode rejection.

The suppression of the centre frequency provided by the prototype amounted to about 57 dB. This value hardly changes as long as the total resistance of $R_4+R_5 = 20 \, \Omega$. Changing the ratio of $R_4:R_5$ from that in the diagram does, however, alter the centre frequency, f_c, which is determined by:

$$f_c = \frac{1}{2\pi\sqrt{(R_4+R_5)C_1C_2}}.$$

Normally, the resistances should be related as follows:

$$R_1 = R_2 = R_3$$

and

$$R_4 = R_5 = \frac{1}{2}R_1.$$

The Q of the filter depends on the ratio $C_1:C_2$—the larger the ratio, the better the Q. With values as specified, the Q of the circuit should theoretically be greater than 8. However, owing to losses in the dielectrics, the practical value measured was only 7.6. It is thus advisable to use high-quality capacitors; polystyrene types for the smaller values. Unfortunately, these are not available in values $>56 \, \text{nF}$; above that value, MKT types should be used.

Since the internal magnification of the filter is fairly large, the level of the input signal should be kept below $1 \, \text{V}_{\text{r.m.s.}}$. Resistor R_2 ensures that in no-signal conditions the input of IC$_{1a}$ is at ground potential.

With capacitive loads, it is advisable to connect a 100 Ω resistor in series with the output.

The current drain from a $\pm 15 \, \text{V}$ supply is about 4 mA. Design: T. Giesberts [944058]

POWER-ON DELAY

Switching on inductive loads, such as transformers, causes a very high initial current, because at that instant, the load does not produce a counter-e.m.f. Consequently, measures must be taken to prevent the (perfectly correct) mains fuse from giving up the ghost.

One such measure is afforded by the present circuit. Headers K$_1$ and K$_2$ are connected in series with the mains switch of the relevant equipment. At power-on, there will be a fairly high drop across R_w which limits the initial current appreciably.

A voltage is tapped from the supply of the equipment and taken to point ++. As soon as C_1 has been charged via R_1, and the threshold voltage of the LED in IC$_1$ has been exceeded, the triac in the solid-state relay will come on and short-circuit R_w. The triac remains on, irrespective of whether the load is resistive or inductive.

The value of R_w depends on the load; it will normally be 50–100 Ω. The rating of the resistor must be ≥ 225 W. It is, of course, possible to use a number of 5 W or 10 W resistors in parallel.

The value of R_1 must be

$$\left(\frac{U_{\text{in}}-1.5}{200}\right).$$

The value of C_1 must make the product $R_wC_1 = 1 \, \text{s}$. The values specified in the diagram assume a supply voltage of about 40 V.

It should be borne in mind that the delay does not function if the load is switched on and off at short intervals, because C_1 cannot be discharged (via R_2) rapidly enough.

Also, remember that full power is not available until the triac has short-circuited R_w.

The solid-state relay used in the prototype can switch at any angle of the alternating voltage. Other types, such as the S101S02 and S101S04 (also from Sharp), have a zero-crossing detector on board—the S101S03 and S101S05 have not. The Types S101S03 and S101S04 have an internal series resistor for the LED—the S101S01 and S101S02 have not. The maximum permissible voltage for the S101... series is 400 V; that for the S102... series is 600 V.

The isolating voltage between LED and triac is ≥ 4000 V. The leakage distance between the connections must be >6 mm.

Design: K.M. Walraven [944077]
PROGRAMMABLE DIVIDER

Many counter ICs on the market, such as the 4059, 40102 and 40103, are specifically designed for use as programmable timers or dividers. Certain other ICs can, however, also be used for this purpose.

In the prototype, use is made of two presettable 4-bit up/down counters Type 74HCT191—see diagram. By using the 'ripple clock' for presetting the counters, the number of clock pulses needed during down counting is the same as the binary value applied to the data inputs. In this way, the division is equal to the set divisor. The diagram shows how two counters can be combined to an 8-bit divider. Three or more counters may be joined together. The load and clock pins of each IC are then linked, while the ripple clock output (pin 13) of an IC is connected to the enable input (pin 4) of the next IC.

The ripple clock of the MSB counters provides the load pulse and also functions as the output of the divider. When it becomes active, the counters are preset, whereupon the ripple clock is disabled.

The pulse width of the output signal is thus determined by the sum of the propagation delays of the counters. According to the manufacturer's data sheet, this is about 17 ns. In the prototype, which used two counters, a value of 38 ns was measured.

The current drain at low frequencies is determined almost entirely by the pull-down resistors at the data inputs. When the data inputs are all high, the current drain is about 4 mA.

IMPROVED OPTOISOLATOR

A recurring problem in the design of optoisolator circuits is arriving at the right compromise between insensitivity to spurious signals, component tolerances and long-term stability. One aid in minimizing this problem is replacing the usual collector resistor of the optoisolator by a current source as shown in the diagram. The resulting circuit is simple, inexpensive, uses readily available components and, last but not least, has good reliability.

In the diagram, IC1 functions as a threshold switch and is also part of the current source. T1 -R2. Since the NE555 has a TTL-compatible as well as an open-collector output, it can be connected directly to a microprocessor.

The value of R_2 depends on the maximum permissible current through the optoisolator.

The value of R_2 is

$$R_2 = \frac{(U_b/3 - 0.6)}{|I_1 + I_d|/2}.$$

where U_b is the supply voltage, I_1 is the current when the optoisolator receives light, and I_d is the dark current.

The values specified in the diagram assume an optoisolator Type CNY17. If a different type is used, the value of R_2 may have to be altered.

Design: T. Giesberts [944053]

Design: A. Rietjens [944104]
The S/PDIF copybit eliminator described in Ref. 1 has to be incorporated into a DAT or DCC recorder, which means that the player has to be opened and, in some cases, modified. The small extension card described here enables the copybit eliminator to be used as an external device, that is, inserted into the coaxial or optical link between a CD player and a DAT recorder. This can be achieved by combining the following circuits:

1. the digital-audio enhancer (Ref. 2);
2. the copybit eliminator (Ref. 1);
3. the extension board described here.

The copybit eliminator so made is a stand-alone unit capable of recognizing all three sample frequencies, 32 kHz, 44 kHz and 48 kHz, and requires no modifications to existing equipment.

The copybit eliminator requires a clock frequency of 128 times the sample frequency. This clock is available at pin 11 of dual bistable IC3 in the digital-audio enhancer. However the phase has to be reversed for the copybit eliminator. This function is accomplished by inverter IC2a on the present extension board.

Since the header on the digital-audio enhancer cannot be used to connect the present extension, a different solution has been found. The extension board is plugged into the socket from which IC3 is removed. In this way, the copybit eliminator is inserted into the signal path ahead of IC3b (whose function is taken over by IC1b on the extension board). An extra advantage of this connection is that the digital-audio enhancer then also removes any spurious signals introduced by the copybit eliminator.

The socket for IC3 on the digital-audio enhancer board supplies all signals necessary for the extension board to operate: the supply voltage, the recovered clock, and, of course, the S/PDIF signal at TTL level. The copybit eliminator is connected to 10-way boxheader K1 on the extension board via a short length of flatcable.

Although the 74HC74 removed from the digital-audio enhancer board can be used again in position IC3 on the extension board, it is better to replace it with a 74HCT74.

Remove IC3 from the digital-audio enhancer board. Connector K2 on the extension board consists of 14 short, solid wires all cut to the same length (approx. 10 mm) and soldered at the track side. Once the extension board is complete, carefully align these wires and insert them into the socket for IC3. Alternatively, remove the socket and solder the wires on the digital-audio enhancer board also.

References:

Parts list
Capacitors:
C1, C2 = 47 nF ceramic

Integrated circuits:
IC1 = 74HC74 or 74HCT74
IC2 = 74HC04

Miscellaneous:
K1 = 10-way boxheader
K2 = 14 wires (see text)

Design: T. Giesberts

[944052]
LOUDNESS CONTROL

The sensitivity of the human ear vs frequency characteristic is not a straight line. Our hearing is much less sensitive to low frequencies, and slightly less sensitive to high frequencies, than to frequencies in the middle range. This is an evolutionary adaptation for the loudness at which these frequencies occur in nature.

At low levels of sound pressure, the sensitivity of our hearing decreases even more, particularly at low frequencies. This presents a problem in the reproduction of A.F. signals, since at low volume levels the relationship with respect to the original changes. This is the reason that in certain audio amplifiers a physiological volume control, also called loudness control, is incorporated. Usually, this consists of a frequency-dependent network in parallel with the volume control, which provides more attenuation at the middle frequencies than at the low and high ones.

An active type of such a frequency-dependent network is shown in the diagram. It consists of an input buffer, IC1a, and a summation amplifier, IC1b, which are linked by two different signal paths. One path is via volume control P1 and R6, shunted by a frequency-correcting network that consists of C1, C2 and R2-R5. The network amplifies low frequencies up to 20 Hz by a maximum of 24 dB and high frequencies up to 20 kHz by up to 8 dB. The ratio R3:R4 determines the maximum bass amplification, while the value of C2 determines the cut-off point. Resistor R2 ensures that no amplification occurs at frequencies above about 20 kHz.

The circuit has a small drawback because of the correcting network. It is not possible to turn down the volume completely. With the value specified for R5, the maximum attenuation is 60 dB. If this is not sufficient, the value of R5 may be increased, but then the frequency correction falls off too quickly when the volume is increased. A better solution is a second potentiometer, mechanically coupled with P1, at the output. However, in a stereo version, that would mean finding a virtually unobtainable quadruple potentiometer.

The NE5532 may be replaced by a comparable type without any difficulty.

The ±15 V supply must be well regulated. It needs to supply a current of only a few mA.

Design: T. Giesberts

COMPARATOR WITH UNILATERAL HYSTERESIS

Normally, a comparator has inherent hysteresis. That is, when the input voltage rises, the comparator will react only when the reference voltage is exceeded by a certain amount. When the input voltage drops, the comparator changes state only when that voltage is well below the reference potential. Hysteresis is essential to prevent a system clattering or vibrating around its reference level.

The hysteresis is normally symmetrical, but occasionally it is necessary to make one of the thresholds exactly equal to the reference voltage. This can be achieved by adding a diode as shown in the diagrams.

In (a), the lower edge of the hysteresis window is equal to the reference voltage and in (b), the upper edge.

Normally, feedback resistors R1 and R2 determine the size of the window. Diode D1 causes the resistors to act in only one direction, which results in the window shifting at one side to (virtually) the reference voltage. There will be a slight difference owing to the reverse leakage current of the diode which results in a drop across the resistors. However, the input bias current of the opamp also plays a role. Therefore, if exact operation is required, a good-quality diode (with low leakage current) and opamp must be used.

Design: H. Bonenkamp
The 'Medium power a.f. amplifier' uses a relay for the switch-on delay to suppress annoying switching plops. When the amplifier is switched off, however, the relay, owing to hysteresis, remains actuated for a short time, which results in switch-off clicks. Although these are harmless, they are annoying. The present circuit makes them things of the past.

In Fig. 1 the connection between R_{46}-D$_7$ (anode) and D$_8$-D$_9$ (anode) is broken and a transistor connected between the two open points. This transistor is controlled via an optoisolator by the rectified (D$_1$, D$_2$) and buffered (C$_1$) secondary voltage of the mains transformer.

When the power amplifier is on, the optoisolator is also on, and the relay is energized by T_1. When the mains is switched off, the optoisolator is disabled and the relay is deenergized instantly.

A second solution is replacing resistor R_{59} by two soldering pins, to which the circuit shown in Fig. 2 is connected. The action of this circuit is near enough the same as that described earlier. In some cases it may, however, be necessary to replace C$_{22}$ by a lower value capacitor.

Figure 2 may also be used for yet a third solution, in which C_{20} is short-circuited by a relay contact. A contact of an auxiliary relay, which is closed when the relay is not energized, gives the protection circuit the impression that a direct voltage exists at the output of the amplifier. The protection circuit acts instantly and deenergizes the output relay.

The auxiliary relay is protected against large discharge currents of C_2 by a small series resistor.

Design: R. Beck

1 Elektor Electronics, October/November 1990.
Classical (i.e., voltage-feedback) operational amplifiers, such as the OPA627, have excellent performance in applications where the required gain bandwidth is low compared with the gain-bandwidth product of the opamp. However, increasing closed-loop gain decreases the error-reducing loop gain. Furthermore, starting at relatively low frequencies, the loop gain rolls off at 20 dB/decade of signal frequency increase. In combination, these effects can produce significant errors, especially at higher frequencies where the loop gain can be very low.

Current-feedback opamps, such as the OPA603, have good dynamic performance at both low and high gains. This is because the feedback components set both closed-loop gain and open-loop gain, making loop gain and dynamic performance relatively independent of closed-loop gain. Unfortunately, the d.c. performance of current-feedback amplifiers is poor compared with classical opamps.

A composite amplifier using a classical amplifier and the OPA603 current-feedback amplifier can combine the best qualities of both amplifiers. Figures 1 and 2 show non-inverting and inverting composite amplifiers. The table shows suggested component values for selected gains and measured performance results.

D.c. performance of the composite amplifier is excellent. Since the OPA603 is in the feedback loop of the OPA627, the composite amplifier retains the excellent d.c. characteristics of the OPA627. In fact, since the OPA627 does not drive the load directly, its d.c. accuracy can be better than the OPA627 alone. Thermal feedback within an amplifier driving large loads will cause errors owing to internal thermal gradients and package self-heating. The composite amplifier with an OPA603 can drive 150 Ω loads to ±10 V with no thermal feedback to the OPA627.

The gain of the composite amplifier is set by R3 and R4 alone. Errors caused by R3 and R4 do not affect the gain of the composite amplifier. The gain of the second amplifier, set by R3 and R4, should be within ±5% to ensure expected dynamic performance.

Slew rate and full-power response of the classical amplifier are boosted in the composite amplifier. Since the OPA603 adds gain at the output of the OPA627, the slew rate of the OPA627 is increased by the gain of the OPA603. For example, in the gain-of-100 composite amplifier, the slew rate and full-power response of the OPA627 are increased from 40 V μs⁻¹ and 600 kHz to over 700 V μs⁻¹ and 11 MHz respectively.

Burr-Brown Application [944103]

<table>
<thead>
<tr>
<th>OVERALL GAIN [V/V]</th>
<th>OPA603 GAIN</th>
<th>R1(1)</th>
<th>R2</th>
<th>R3(4)</th>
<th>R4</th>
<th>SLEW RATE [V μs⁻¹]</th>
<th>SETTLING (0.1%) [ns]</th>
<th>SETTLING (0.01%) [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>OPA627</td>
<td>3</td>
<td>255</td>
<td>1020</td>
<td>499</td>
<td>1020</td>
<td>100</td>
<td>265</td>
</tr>
<tr>
<td>10</td>
<td>OPA627</td>
<td>6</td>
<td>110</td>
<td>1000</td>
<td>200</td>
<td>1020</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>20</td>
<td>OPA627</td>
<td>12</td>
<td>52.3</td>
<td>1000</td>
<td>93.1</td>
<td>1020</td>
<td>620</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>OPA627</td>
<td>26</td>
<td>49.9</td>
<td>2430</td>
<td>40.2</td>
<td>1020</td>
<td>730</td>
<td>320</td>
</tr>
<tr>
<td>100</td>
<td>OPA627</td>
<td>52</td>
<td>49.9</td>
<td>4900</td>
<td>20</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
</tr>
<tr>
<td>200</td>
<td>OPA627</td>
<td>18</td>
<td>49.9</td>
<td>10k</td>
<td>60.4</td>
<td>1020</td>
<td>1020</td>
<td>1020</td>
</tr>
<tr>
<td>500</td>
<td>OPA637</td>
<td>42</td>
<td>49.9</td>
<td>50k</td>
<td>24.3</td>
<td>1020</td>
<td>590</td>
<td>580</td>
</tr>
<tr>
<td>1000</td>
<td>OPA637</td>
<td>85</td>
<td>49.9</td>
<td>50k</td>
<td>12.1</td>
<td>1020</td>
<td>510</td>
<td>640</td>
</tr>
</tbody>
</table>

NOTES: (1) R1 shown is for noninverting composite amplifier. For inverting amplifier, R1 = gain/R2. (2) Settling time for 10 V output step. (3) Output noise exceeds 0.01% at this gain. (4) For intermediate gains, use the higher value R3.
board. A dash indicates that a jumper must be fitted.

Once the card address has been set up, the board is put aside for a moment. Do not yet insert into the PC.

Start the software configuration by informing the PC about an additional drive. Enter the structure of the drive into the CONFIG.SYS file. Use one of the following commands to do so:

driveparm=/D:00/F:07/H:2/S:xx/T:80

to assign the solid-state disk to drive A:, or

driveparm=/D:01/F:07/H:2/S:xx/T:80

to assign it to drive B:.

The parameter 'xx' indicates the number of sectors per track. It should be set to '18' to emulate a 1.44-MByte disk, or '36' for a 2.88-MByte disk.

If the computer already has two diskette drives, and you wish to add the solid-state disk, a DOS driver must be started. That can be achieved by adding the following line to the CONFIG.SYS file:

Device=\<DOS directory>\driver.sys

/D:n/F:07/H:2/S:xx/T:80

where n takes a value between 0 and 3.

Having added these lines, switch the computer off. Insert the solid-state disk card, secure the bracket, and close the case. The solid-state disk is not usable yet, because it has to be formatted first. That is done with the aid of the familiar 'FORMAT' command available under DOS. Despite the fact that the capacity of the drive has been fixed by the 'driveparm' instruction, it is still recommended to repeat the desired capacity. Do this by using the /F: parameter offered by the FORMAT command, as follows:

FORMAT B:/F:1440
FORMAT B:/F:2880

for a 1.44-Mbyte or 2.88-MByte emulation of disk drive B:, respectively. Evidently, the 'station' letter (B: in the examples) must be changed in accordance with the identification assigned to the solid-state disk.

If the solid-state disk is to be used in a PC which has no disk drives at all, it has to be formatted in another PC, and then loaded with the application software. Note that this requires the disk to be made 'bootable', which is achieved using FORMAT /S.

Finally, we repeat our warning that only 2 Mbyte of memory capacity is available even if the disk card is formatted for 2.88 Mbyte.
PRODUCT OVERVIEW

A number of projects carried in *Elektor Electronics* are supported by ready-made printed-circuit boards (PCBs), self-adhesive front panel foils, ROMS, EPROMS, PALS, GALs, microcontrollers and diskettes, which may be ordered through our Readers Services using the order form printed every month accompanying the Readers Services page.

The list printed here is compiled to the shorter one opposite the Readers Services page everywhere in this issue. This two-page overview of all currently available products is regularly updated and appears in the March, June, September and December issues of *Elektor Electronics*.

Items marked with a dot (●) following the product number are in limited supply only, and their availability cannot be guaranteed by the time your order is received.

The artwork for making PCBs which are not available made through the Readers Services may be found in the relevant article (from March 1990 onwards). Prices and item descriptions subject to change. Prices can be confirmed on request at the time of ordering.

<table>
<thead>
<tr>
<th>Project</th>
<th>No.</th>
<th>Price (E)</th>
<th>Price (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Model Train</td>
<td>87211-2/3-2</td>
<td>10.60</td>
<td>18.80</td>
</tr>
<tr>
<td>Function board</td>
<td>890013-1</td>
<td>7.80</td>
<td>14.00</td>
</tr>
<tr>
<td>Multi-pin IR control</td>
<td>890092-2</td>
<td>4.50</td>
<td>8.10</td>
</tr>
<tr>
<td>Electronic board simulator</td>
<td>890092-2</td>
<td>4.00</td>
<td>7.20</td>
</tr>
<tr>
<td>Mini EPROM viewer</td>
<td>900340-2</td>
<td>11.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Power supply</td>
<td>UP80-1</td>
<td>3.00</td>
<td>5.30</td>
</tr>
<tr>
<td>Compressed 10A power supply</td>
<td>900340-2</td>
<td>11.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Interface project</td>
<td>890360-1</td>
<td>7.50</td>
<td>13.80</td>
</tr>
<tr>
<td>Mini FMS transmitter</td>
<td>891169-1</td>
<td>10.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Sound modulator</td>
<td>900567-1</td>
<td>4.60</td>
<td>8.40</td>
</tr>
<tr>
<td>Audio power indicator</td>
<td>900400-4</td>
<td>4.40</td>
<td>8.00</td>
</tr>
<tr>
<td>Audio/Control decoder</td>
<td>900407-6</td>
<td>6.10</td>
<td>11.20</td>
</tr>
<tr>
<td>Compact 10A power supply</td>
<td>900340-2</td>
<td>11.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Linear receiver</td>
<td>900380-6</td>
<td>6.75</td>
<td>12.00</td>
</tr>
<tr>
<td>Signal suppressor</td>
<td>900400-8</td>
<td>5.60</td>
<td>10.20</td>
</tr>
<tr>
<td>Wide-band signal</td>
<td>900407-8</td>
<td>9.20</td>
<td>16.00</td>
</tr>
<tr>
<td>Full-screen slave</td>
<td>900400-8</td>
<td>5.60</td>
<td>10.20</td>
</tr>
<tr>
<td>All sold-out projects</td>
<td>UP80-17</td>
<td>18.50</td>
<td>33.00</td>
</tr>
<tr>
<td>1990</td>
<td>Video mix of 1</td>
<td>880541-3</td>
<td>32.00</td>
</tr>
<tr>
<td>Mini EPROM</td>
<td>890164</td>
<td>8.25</td>
<td>15.00</td>
</tr>
<tr>
<td>All sold-out projects</td>
<td>UP80-17</td>
<td>18.50</td>
<td>33.00</td>
</tr>
<tr>
<td>1990</td>
<td>Digital Model Train (11)</td>
<td>89101-1</td>
<td>7.20</td>
</tr>
<tr>
<td>Digital Model Train (12)</td>
<td>89102-2</td>
<td>5.40</td>
<td>10.00</td>
</tr>
<tr>
<td>Video mixer</td>
<td>83784-3</td>
<td>41.70</td>
<td>76.40</td>
</tr>
<tr>
<td>1990</td>
<td>Digital Model Train (13)</td>
<td>87210-1</td>
<td>4.70</td>
</tr>
<tr>
<td>Power supply board</td>
<td>890031-2</td>
<td>7.05</td>
<td>13.00</td>
</tr>
<tr>
<td>RIS-232 splitter</td>
<td>900217-2</td>
<td>8.50</td>
<td>15.00</td>
</tr>
<tr>
<td>Concentric motor board - 2</td>
<td>900225-3</td>
<td>5.10</td>
<td>9.20</td>
</tr>
<tr>
<td>Concentric motor board - 2</td>
<td>900226-3</td>
<td>5.10</td>
<td>9.20</td>
</tr>
<tr>
<td>Acoustic temperature</td>
<td>900340-2</td>
<td>11.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Sweep function generator</td>
<td>900400-3</td>
<td>8.25</td>
<td>15.00</td>
</tr>
</tbody>
</table>

1987

- **January**
 - Top-of-the-range pushbutton preamplifier
 - MX-EXPROMmer

- **May**
 - MIDI signal distribution

- **November**
 - BASIC computer

- **1988**
 - April
 - Fuzz effect guitar
 - July/August
 - Frequency read-in for SW receivers

- **October**
 - Pushbutton for pultes
 - PCD-6TL, adapter

- **December**
 - AFA-150 — a fast power amplifier

- **1989**
 - January
 - FX interface for Atari ST and Archimedes
 - MIDI control unit

 - September
 - Compact 10A power supply

 - November
 - D/A converter
 - PT100 thermometer converter

- **1990**
 - January
 - Compact 10A power supply
 - Linear receiver

 - September
 - Digital Model Train (8)
 - Digital Model Train (9)

 - December
 - Digital Model Train (10)

 - September
 - Digital Model Train (11)

1991

- **January**
 - Linear filter (1): A-05-12
 - Linear filter (2): A-05-12

- **February**
 - SW receiver

- **March**
 - Digital Model Train (12)

- **April**
 - Digital Model Train (13)

- **May**
 - Acoustic temperature

ELEKTOR ELECTRONICS DECEMBER 1994
<table>
<thead>
<tr>
<th>Project</th>
<th>No.</th>
<th>Price</th>
<th>(£)</th>
<th>($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNE 1992</td>
<td>Spectrum VU meter</td>
<td>920151</td>
<td>13.00</td>
<td>26.00</td>
</tr>
<tr>
<td></td>
<td>Digital program memory</td>
<td>920152</td>
<td>4.50</td>
<td>9.00</td>
</tr>
<tr>
<td></td>
<td>Digital frequency readout</td>
<td>920160</td>
<td>11.50</td>
<td>23.00</td>
</tr>
<tr>
<td></td>
<td>Inexpensive phase meter</td>
<td>920185</td>
<td>9.00</td>
<td>18.00</td>
</tr>
<tr>
<td></td>
<td>meter board</td>
<td>920188</td>
<td>4.75</td>
<td>9.50</td>
</tr>
<tr>
<td>JULY/AUGUST 1993</td>
<td>3-way loudspeaker</td>
<td>920186</td>
<td>21.50</td>
<td>43.00</td>
</tr>
<tr>
<td></td>
<td>Maxi micro clock</td>
<td>930300</td>
<td>15.50</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td>Digital voltmeter</td>
<td>930301</td>
<td>14.90</td>
<td>29.80</td>
</tr>
<tr>
<td></td>
<td>VHF-low converter</td>
<td>930812</td>
<td>5.50</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>TV test disc</td>
<td>930818</td>
<td>15.50</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td>Power amplifier</td>
<td>930930</td>
<td>17.50</td>
<td>35.00</td>
</tr>
<tr>
<td></td>
<td>Low-power relay</td>
<td>930931</td>
<td>16.00</td>
<td>32.00</td>
</tr>
<tr>
<td></td>
<td>Battery</td>
<td>930932</td>
<td>16.00</td>
<td>32.00</td>
</tr>
<tr>
<td></td>
<td>Frequency meter</td>
<td>930934</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>SEPTEMBER 1993</td>
<td>Fuzzy logic meter</td>
<td>920209</td>
<td>2.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>Linear temperature</td>
<td>920158</td>
<td>7.05</td>
<td>14.10</td>
</tr>
<tr>
<td></td>
<td>meter board</td>
<td>920165</td>
<td>9.75</td>
<td>19.50</td>
</tr>
<tr>
<td></td>
<td>Hammaric enhancer</td>
<td>930353</td>
<td>13.25</td>
<td>26.50</td>
</tr>
<tr>
<td></td>
<td>PC alphanumeric</td>
<td>930354</td>
<td>14.25</td>
<td>28.50</td>
</tr>
<tr>
<td></td>
<td>Mini micro clock</td>
<td>930555</td>
<td>7.50</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td>120/750 MHz converter</td>
<td>930556</td>
<td>1.95</td>
<td>3.90</td>
</tr>
<tr>
<td></td>
<td>Oscilloscope</td>
<td>930557</td>
<td>14.00</td>
<td>28.00</td>
</tr>
<tr>
<td></td>
<td>Multifunction measurement card (MMC)</td>
<td>930558</td>
<td>28.50</td>
<td>57.00</td>
</tr>
<tr>
<td></td>
<td>Power MOSTF meter</td>
<td>930559</td>
<td>32.00</td>
<td>64.00</td>
</tr>
<tr>
<td>NOVEMBER 1993</td>
<td>3-way loudspeaker</td>
<td>920186</td>
<td>21.50</td>
<td>43.00</td>
</tr>
<tr>
<td></td>
<td>Digital TV tuner</td>
<td>920187</td>
<td>14.90</td>
<td>29.80</td>
</tr>
<tr>
<td></td>
<td>Power amplifier</td>
<td>920189</td>
<td>14.90</td>
<td>29.80</td>
</tr>
<tr>
<td></td>
<td>Audio amplifier</td>
<td>920188</td>
<td>14.90</td>
<td>29.80</td>
</tr>
<tr>
<td></td>
<td>VHF/LFM tuner</td>
<td>930358</td>
<td>12.25</td>
<td>24.50</td>
</tr>
<tr>
<td></td>
<td>120/750 MHz converter</td>
<td>930359</td>
<td>2.25</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>Multifunction measurement card (MMC)</td>
<td>930360</td>
<td>12.25</td>
<td>24.50</td>
</tr>
<tr>
<td></td>
<td>Power MOSTF meter</td>
<td>930361</td>
<td>32.00</td>
<td>64.00</td>
</tr>
<tr>
<td></td>
<td>3-way loudspeaker</td>
<td>920186</td>
<td>21.50</td>
<td>43.00</td>
</tr>
</tbody>
</table>

DISKETTES

<table>
<thead>
<tr>
<th>Article/Project</th>
<th>Issue/Order Code</th>
<th>Disk size</th>
<th>Price (£)</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPROM emulator</td>
<td>921082</td>
<td>2.00</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Digital audio</td>
<td>921083</td>
<td>3.80</td>
<td>7.60</td>
<td></td>
</tr>
</tbody>
</table>
READERS SERVICES

Except in the USA and Canada, all orders, except for subscriptions and past issues (for which see below), must be addressed to POST Office Box 809, Winchendon, Massachusetts 01436. In the United Kingdom and Eire, orders for direct delivery in the USA, if order is less than $50, in- clude $3; $50+, $4. For Canada and elsewhere, less than $500, include US$5, US$5+, US$10. Order for or a program, place order in accordance with the software item(s) indicated price includes the software item(s). Printed circuit boards whose number is followed by a + sign are supplied inclusive of the associated soft- ware item(s), and can not be ordered separately. The indicated price includes the software item(s).

SUBSCRIPTIONS & PAST ISSUES

Subscriptions and past issues. If available, should be ordered from Worldwide Subscription Service Ltd., Unit 4, Gibbs Reef Farm, Palace Road, TICE- HURST TNS 7HE, England. For subscriptions, use the form on the opposite page. Price of past issues (except July/August and December), including postage for single copies, are £7.20 (UK and Eire); £3.00 (airmail outside UK); £4.25 (airmail Europe); and £5.00 (airmail outside Europe). In case an order for single copies, are £3.75 (UK); £4.00 (surface mail Europe); and £5.00 (airmail outside Europe). Photocopies of articles from January 1978 onwards are normally available for $10.00, but not exceeding $100.00, these charges for orders up to $25.00 as follows: UK and Eire: £3.00; US $50.; include $3; $50+, $4. For Canada and elsewhere, $25.00, include $3; $25+, $4. For air or other delivery, please inquire. The indicated price includes the software item(s).

PROJECTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Price (£)</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPROMS</td>
<td>PALs</td>
<td>Microcontrollers</td>
</tr>
<tr>
<td>8051/8032 Assmbley course (IBM version)</td>
<td>1661</td>
<td>16.50</td>
</tr>
<tr>
<td>8051/8032 Assmbley course (Altari version) (3.5")</td>
<td>1681</td>
<td>16.25</td>
</tr>
<tr>
<td>AT89C2051 program</td>
<td>900000-1</td>
<td>32.25</td>
</tr>
<tr>
<td>AT89C51 program</td>
<td>900001-1</td>
<td>42.50</td>
</tr>
<tr>
<td>GAL programmer (3 disks)</td>
<td>upgrade: June 1993</td>
<td>1701</td>
</tr>
<tr>
<td>Multi-purpose 280 card</td>
<td>1691</td>
<td>17.25</td>
</tr>
<tr>
<td>Multi-purpose 280 card</td>
<td>1681</td>
<td>17.25</td>
</tr>
<tr>
<td>PAL test generator</td>
<td>1671</td>
<td>17.00</td>
</tr>
<tr>
<td>VHF/UHF TV tuner</td>
<td>1671</td>
<td>17.00</td>
</tr>
<tr>
<td>PAL test generator</td>
<td>1671</td>
<td>17.00</td>
</tr>
<tr>
<td>VHF/UHF TV tuner</td>
<td>1671</td>
<td>17.00</td>
</tr>
</tbody>
</table>

PRINTED CIRCUIT BOARDS

Printed circuit boards whose number is followed by a + sign are supplied inclusive of the associated software item(s), and can not be ordered separately. The indicated price includes the software item(s).

JUNE 1994

80C535 SBC extension 940025-C+ 19.75 39.50
PC bus booster 940007 7.25 14.50
RS485 interface 940035 6.25 12.50
Fuel consumption monitor 940045 6.00 12.00
Intelligent thermometer 940058-1 9.00 18.00

JULY/AUGUST 1994

Gen. purpose IR volume 940049-1 18.00 36.00
IR controlled switch 940066 9.75 19.50
MIDI swell pedal, incl. EPROM 946635 26.75 53.50
Charger module 940035 7.50 15.00
Water softener 944011-1 6.00 12.00
Joystick-to-mouse adaptor 944040-1 7.00 14.00
Discrete preamplifier 944063-1 8.50 17.00
Centronics I/O interface 944064-1 8.75 17.50
80C451 controller board 944069-1 15.00 30.00
Robust AF power amp 944075-1 9.75 19.50
PC over-temperature alarm 944076-1 4.25 8.50
SC544S8822 944089-1 15.50 31.00
Optical doorbell 944080-1 6.25 12.50
PIC experimenter board 944105-1 17.75 35.50
RS232C transceiver w. 80C553 944166-C+ 13.00 26.00

SEPTEMBER 1994

Switchable a.c. supply 940064 5.50 11.00
Linermeter & flow meter 940065 8.00 16.00
Compatibility frequency meter 940051-1 9.00 18.00
Revolution counter 940045-1 6.00 12.00
80C08B microcontroller 940068-1 5.50 11.00

OCTOBER 1994

Motive-battery charger 940083 7.25 14.50
Integrated AF amplifier 940062-1 9.50 19.00
Low-cost 8-bit microcontroller 940062-2 28.25 56.50
Tester for IR remote control 940068-1 5.50 11.00
In-car audio amplifier (1) 940078-1 14.00 28.00
TV line monitor (incl. PIC) 940065-C+ 26.25 52.50

NOVEMBER 1994

Single-wire communication 940055-1 4.00 8.00
Phantom power supply 940064-1 Not available
Solid-state disk (incl. EPROM 946641-1) 940085-C+ 47.50 95.00
Simple capacitance meter 940091-1 10.00 20.00
Low-cost 8-bit microcontroller 940092-1 Not available

DECEMBER 1994

In-car audio amplifier (3) 940078-2 30.25 60.50
RF immune supply circuit 940064-1 Not available
ispStarter kit from Lattice Logic 940093-C+ 21.50 43.00
Proximity detector 940108 Not available
3m GRIP CW transmitter 940200 Not available
Temp. protection for high- power resistors 941014 Not available
Electret microphone for microphone mouthpiece 940035 Not available
Current probe 940035 Not available
Stand-alone copybit eliminator 940052 Not available
ORDER FORM

Please send this order form to:
Elektor Electronics (Publishing)
P.O. Box 1414
Dorchester DT2 8YH
ENGLAND
Tel. (01305) 250995
Fax (01305) 250996

*USA and Canada residents only: use $ prices, and send order form to:
Old Colony Sound Lab, P.O. Box 243, Peterborough,
NH 03458.
Tel. (603) 924-6371, 924-6526; Fax: (603) 924-9467

Please supply the following. For PCBs, front panel foils, EPROMs, PALs, GALs, microcontrollers and
diskettes, state the part number and description; for books, state the full title; for photocopies of articles,
state full name of article and month and year of publication. Please use block capitals.

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Order code</th>
<th>Description</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of payment (see overleaf before ticking as appropriate)

Note: cheques not made out in sterling must be increased by the equivalent of £15.00

- Bank draft
- Cheque (payable to Elektor Electronics Publishing)
- Giro transfer (our account no. 34 152 3801)
- Postal/money order

- VISA
- Access
- Expire date:

Sub-total
P&P
Total paid

International Subscription Service

Please enter my subscription to Elektor Electronics
for □ one year □ two years (tick as required)
by □ surface mail □ airmail (tick as required).

Method of payment (see overleaf before ticking as appropriate)

- Cheque enclosed (payable to Elektor Electronics Publishing)
- Giro transfer to a/c 34 152 3801
- Credit card

Expire date..............Signature

Name ..
Address ..
..Postal code
Telephone Date
HOW TO PAY
Unless you have an approved credit account with us, all orders must be accompanied by the full payment, including postage and packing charges as stated on page 70, section 1.
Payment may be made by cheque drawn on a London clearing bank (but see para. 4 below), postal order, VISA, ACCESS, MASTERCARD or EUROCARD (when paying by credit card, the order must go to the cardholder's address). Do not send cash through the mail. Cheques and postal orders should be crossed and made payable to 'Elektor Electronics (Publishing)'.
Payment may also be made by direct transfer from a private or business Giro account to our Giro Account No. 34 152 3801 by completing and sending to the National Giro Centre, in a National Giro postage paid envelope, a National Giro transfer/deposit form. Do not send Giro transfers direct to us, as this will delay your order.
If you live outside the UK, payment may also be made by Bankers' sterling draft drawn on a London clearing bank, Eurocheque made out in pounds sterling (with holder's guarantee card number written on the back), or US or Canadian dollar cheque, but such cheques, accepted at the exchange rate prevailing at the time your order is received, must be increased by the equivalent of £15.00 to cover our bankers' negotiating fee.
If you pay by Bankers' sterling draft, make clear to the issuing bank that your full name and address MUST be communicated to the London clearing bank.
Our bankers are National Westminster Bank PLC, 49 South Street, DORCHESTER, Dorset DT1 1DW, England. Our account number is 6966 3440.

DELIVERY
Although every effort will be made to dispatch your order within 2–3 weeks from receipt of your instructions, we cannot guarantee this time scale for all orders.

RETURNS
Faulty goods or goods sent in error may be returned for replacement or correction, but not before obtaining our consent. All goods returned should be packed securely in a padded bag or box, enclosing a covering letter stating the dispatch note number. If the goods are returned because of a mistake on our part, we will refund the return postage. Goods returned for refund must be in resalable condition and will be subject to a 10% handling charge with a minimum charge of £2.50.

DAMAGED GOODS
Claims for damaged goods must be received at our Dorchester office within 10 days (UK); 14 days (Europe) or 21 days (all other countries) from the date on our "Recorded Delivery" slip.

CANCELLED ORDERS
All cancelled orders will be subject to a 10% handling charge with a minimum charge of £2.50.

PATENTS
Patent protection may exist in respect of circuits, devices, components, and so on, described in our books or magazines. Elektor Electronics (Publishing) do not accept responsibility or liability for failing to identify such patent or other protection.

COPYRIGHT
All drawings, photographs, articles, printed-circuit boards, EPROMS, and cassettes published in our books or magazines (other than in third-party advertisements) are copyright and may not be reproduced or transmitted in any form or by any means, including photocopying and recording, in whole or in part, without the prior permission of Elektor Electronics (Publishing) in writing. Such written permission must also be obtained before any part of these publications is stored in a retrieval system of any nature.

Notwithstanding the above, printed-circuit boards may be produced for private and personal use without prior permission.

LIMITATION OF LIABILITY
Elektor Electronics (Publishing) shall not be liable in contract, tort, or otherwise, for any loss or damage suffered by the purchaser whatsoever or howsoever arising out of, or in connexion with, the supply of goods or services by Elektor Electronics (Publishing) other than to supply goods as described or, at the option of Elektor Electronics (Publishing), to refund the purchaser any money paid in respect of the goods.

LAW
Any question relating to the supply of goods and services by Elektor Electronics (Publishing) shall be determined in all respects by the laws of England.

October 1994

Annual subscription rates (1994/95)

<table>
<thead>
<tr>
<th>Region</th>
<th>UK Price (£)</th>
<th>US Price ($US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>28.00</td>
<td></td>
</tr>
<tr>
<td>Rest of the world (surface mail)</td>
<td>34.00</td>
<td></td>
</tr>
<tr>
<td>A I R M A I L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe & Eire</td>
<td>35.00</td>
<td></td>
</tr>
<tr>
<td>USA & Canada</td>
<td>59.00</td>
<td></td>
</tr>
<tr>
<td>Middle East & North Africa</td>
<td>44.00</td>
<td></td>
</tr>
<tr>
<td>Central & southern Africa</td>
<td>44.00</td>
<td></td>
</tr>
<tr>
<td>Central & South America</td>
<td>44.00</td>
<td></td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>46.00</td>
<td></td>
</tr>
<tr>
<td>Far East & South Pacific regions</td>
<td>46.00</td>
<td></td>
</tr>
</tbody>
</table>

Payment may be made by cheque in sterling drawn on a London clearing bank (but see below), postal order, VISA, ACCESS, MASTERCARD or EUROCARD (in which case the subscription must be sent to the cardholder's address) or by direct transfer to our Giro Account no. 34 152 3801. Do not send cash through the mail. Cheques and postal orders should be made payable to 'Elektor Electronics Publishing'. Giro transfers should be made by completing and sending the appropriate transfer/deposit form to the National Giro Centre (UK) or to your national Giro Centre.
If you live outside the United Kingdom, payment may also be made by Bankers' sterling draft drawn on a London clearing bank or Eurocheque. Eurocheques should be made out in pounds sterling and have the holder's guarantee card number written on the back.

US dollar cheques. Subscribers in the USA and Canada only may pay in US dollar cheques.

The standard subscription order period is twelve months. If a permanent change of address during your subscription period means that copies have to be dispatched by a more expensive service, no extra charge will be made. Similarly, no refund will be made, nor expiry date extended, if a change of address allows the use of a cheaper service.

Student applications, which qualify for a 10% (ten per cent) reduction in current rates, must be supported by evidence of studentship signed by the head of the college, school or university faculty.

Please note that new subscriptions take about four weeks from receipt of order to become effective.

Cancelled subscriptions will be subject to a charge of 25% (twenty-five per cent) of the full subscription price or £7.50, whichever is the higher, plus the cost of any issues already dispatched. Subscriptions cannot be cancelled after they have run for six months or more.

Our bankers are National Westminster Bank PLC, Sorting Code 60-07-01, 49 South Street, Dorchester, Dorset, England DT1 1DW. Our account number is 6966 3440.

October 1994

ELEKTOR ELECTRONICS DECEMBER 1994
SWITCHBOARD

Switchboard allows all PRIVATE READERS of Elektor Electronics one FREE advertisement of up to 108 characters, including spaces, commas, numerals, etc., per month.

Write the advertisement, which MUST relate to electronics, in the coupon on this page; it MUST INCLUDE a private telephone number or name and address; post office boxes are NOT acceptable.

Elektor Electronics (Publishing) cannot accept responsibility for any correspondence or transaction as a result of a free advertisement or of any inaccuracy in the text of such an advertisement.

Advertisements will be placed in the order in which they are received.

Elektor Electronics (Publishing) reserve the right to refuse advertisements without giving reasons or without returning them.

INNOVATIVE PC interfacing kits for you to build. All kits controlled by print or RS232 ports. Phone/fax 0161 272 8279.

WANTED. Dealer or Tech Lab of PC Notebook 386SX Model PO1RA, made in Japan, sold in Europe as Poko. Please fax +39 481 531 343.

WANTED. An American hobbyists to exchange electronic magazines with. Please write to S. Mercer, 16 Manor Farm Rise, Retford, England DN22 0BH.

WANTED. EPROM programmer for 2708 EPROMS.

must be working. Please phone Ian on 01525 718 192 with details and price.

FOR SALE. Cable for data communication between Casio SF series digital diaries and personal computers, with Windows software, £20 plus p&p. Write to Milan Urosevic, Am Kaltenborn 2, 61462 Koenigstein, Germany. Phone +49 6174 22764 or fax +49 6171 641 028.

WANTED. CNC Din control software for Elektor stepper motor board June 1991. Contact Kaj Larsen, phone +45 9857 3785 (Denmark).

WANTED. BBC Watford 1770 DFS ROM as ROM, EPROM or IBM disk. Will pay reasonable costs. Please call Nigel on 01904 430 558.

WANTED. Microwave gear: transmitters, receivers, dishes, LNBs, waveguides, anything at all. Phone Robin on 01268 524 968.

FOR SALE. Philips green screen video monitor, hardly used, £35. BBC Micro with dual disk drive and monitor £100. Phone Mark on 01386 48731 (Evesham).

Books from Elektor Electronics (Publishing)

The following books are currently available:

How to build your own Electronic Test Instruments* £15.95 $29.50
Short course 8051/8032 Microcontrollers and assembler £9.95 $18.50
SMT Projects £9.95 $18.50
301 Circuits £9.95 $18.50
302 Circuits £9.95 $18.50
303 Circuits £9.95 $18.50
304 Circuits £10.95 $20.25
305 Circuits £12.95 $23.95
Microprocessor Data Book £10.95 $20.25
Data Sheet Book 2 £9.95 $18.50
Data Book 3: Peripheral Chips £10.95 $20.25
Data Book 4: Peripheral Chips £10.95 $20.25
Data Book 5: Application Notes £10.95 $20.25

How to order:

UK and Overseas private customers (NOT in USA and Canada) from:
Elektor Electronics (Publishing)
PO Box 1414 Dorchester, England DT2 8YH
Telephone (0305) 250 995
Fax: (0305) 250 996

UK and Overseas bookshops, schools, colleges, universities and bulk orders (NOT in USA and Canada) from:
Gazelle Book Services Ltd
Falcon House, Queen Square, Lancaster, England LA1 1RN
Telephone (0524) 68765
Fax: (0524) 63232

USA and Canada ONLY from:
Old Colony Sound – please see order form on page 111 for details

Send this coupon to:
Elektor Electronics (Publishing)
P.O. Box 1414
Dorchester DT2 8YH
England

Name and address MUST be given

Book capitals please – one character to each box.
ELEKTOR ELECTRONICS is available from, among others:

<table>
<thead>
<tr>
<th>CRICKELOWD ELECTRONICS LIMITED</th>
<th>L.F. HANNEY</th>
<th>AAGE NIELSEN</th>
<th>TABACCARIA BRITANICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Cricklewood Broadway, London NW2 3ET</td>
<td>Your electronic component specialist for Avon, Wilts & Somerset. 77 Lower Bristol Road, Bath, Avon.</td>
<td>1 Sortedam Dossferingen DK-2200 Copenhagen, Denmark. Telephone 01 39 30 10 Fax 03 39 05 02</td>
<td>Praça do Duque da Terceira 19 1107 Lisboa, Portugal Telephone 932 4752</td>
</tr>
<tr>
<td>40 Cricklewood Broadway, London NW2 3ET</td>
<td>Telephone 0181 450 0995 Fax 0181 208 1441</td>
<td>Telephone 02125 424811</td>
<td>(0181) 450 0995</td>
</tr>
<tr>
<td>THE ELECTRONIC SHOP</td>
<td>D.P. HOBBS (NORWICH) LTD</td>
<td>HELMOLT ELEKTRONIK</td>
<td>MK KNJIGARNA</td>
</tr>
<tr>
<td>Electronic components, test equipment, telephone accessories, computer accessories, microphones, disco lighting, speakers, turn tables, mixers, meters, stylus. 29 Hanging Ditch, Manchester M4 3ES,</td>
<td>Electronic component specialists. Amateur radio equipment. 13 St. Benedict Street, Norwich NR2 4PE</td>
<td>Farvevej 2 DK-7600 Struer, Denmark Telephone 97 85 26 11</td>
<td>Slovenska 29 Ljubljana Slovenia Telephone 061 150 196</td>
</tr>
<tr>
<td>Telephone 0161 834 1185</td>
<td>Telephone 01603 615786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREENWELD</td>
<td>MANCOMP</td>
<td>RCE ELECTRONIC CENTRE</td>
<td>TECHNICAL BOOKS & MAGAZINES</td>
</tr>
<tr>
<td>27 Park Road, Southampton SO1 3TB England</td>
<td>240 Platt Lane Manchester M14 7BS England</td>
<td>Boulevardaven 34 DK-9000 Aalborg, Denmark</td>
<td>289-299 Swanston Street Melbourne, Australia 3000 Telephone 663 3951</td>
</tr>
<tr>
<td>Telephone (01703) 236 363 Fax (01703) 236 307</td>
<td>Telephone 0161 224 1888</td>
<td>Telephone 98 16 07 10</td>
<td></td>
</tr>
<tr>
<td>OMNI ELECTRONICS</td>
<td>VEJLE RC ELEKTRONIK</td>
<td>BEBEK ELECTRONICS</td>
<td>INEL Co.</td>
</tr>
<tr>
<td>Stock a wide range of electronic components. 174 Dalkeith Road, Edinburgh EH16 5DX,</td>
<td>Sdr Brogade 42 P O Box 332 DK-7100 Vejle, Denmark</td>
<td>Hirsimetsantie 26 SF-15200 Lahti 11 Finland</td>
<td>P. O. Box 1397 JL. Hariang Banga No. 3</td>
</tr>
<tr>
<td>Telephone 0131 667 2611</td>
<td>Telephone 75 83 25 33</td>
<td></td>
<td>Bandung 40116 Indonesia</td>
</tr>
</tbody>
</table>

INDEX OF ADVERTISERS

Antex (Electronics) Ltd	31	Robinson Marshall	53
Audon Electronics	31	Smart Communications	57
Badger Boards	31	Stag Programmers	60
B K Electronics	19	Speaker Builder	85
Bluebird Electronics	31	Stewart of Reading	77
Bull Electrical	72	Suma Designs	37
C-I Electronics	7	Telnet	64
Cirkit Distribution	25	Those Engineers	73
Cricklewood Electronics	64	Tsien (UK) Ltd	97
Crosswave Products	64	Ultimate Technology	
Display Electronics	42	Viewcom Electronics	Inside front cover
Electromail	65	Robinson Marshall	53
Elektor Electronics	61, 113, 114	Smart Communications	57
ESR Electronic Components	43	Stag Programmers	60
Express Components	36	Speaker Builder	85
Hart Electronic Kits	86	Stewart of Reading	77
Ice Technology	Inside back cover	Suma Designs	37
Instruiek	9	Telnet	64
Labcenter	79	Those Engineers	73
Lloyd Research	85	Tsien (UK) Ltd	97
Mailtech Electronic Components	78	Ultimate Technology	
Maplin Electronic Supplies	Back cover	Viewcom Electronics	
MicroAmps	31	Robinson Marshall	53
Milford Instruments	25	Smart Communications	57
Morrison Micors	77	Stag Programmers	60
Niche Software	73	Speaker Builder	85
Number One Systems Ltd	4	Stewart of Reading	77
Pico Technology Ltd	8, 30	Suma Designs	37
POWERware	87	Telnet	64
Quantek Electronics	73	Those Engineers	73

ADVERTISING SPACE

for the January 1995 issue may be reserved not later than 17 November 1994 by

Elektor Electronics (Publishing) Advertisement Office 3 Crescent Terrace Cheltenham GL50 3PE England Telephone (01242) 510 760; Fax (01242) 226 626
to whom all correspondence, copy instructions and artwork should be addressed.

Focus article in the January 1995 issue will be PC FAULT DIAGNOSIS
FREE SOFTWARE UPGRADES! - KEEP UP TO DATE WITH NEW DEVICES

Before you choose your programmer, check out the cost of ownership. While other manufacturers charge for every update or require expensive libraries and modules, ICE Technology programmers support the whole range of devices at no extra charge. And keeping up to date is FREE for life at no charge on our BBS service. Just dial on: +44(0) 1226761181, and download the latest version.

Disk based upgrades are available free in the first year, and a small administration charge made for each subsequent disk.

* for DIL up to 40 pins.

PROGRAM 8 CHIPS IN THE TIME IT TAKES FOR ONE!

At £645 costing around half the price of slower gang programmers, the Speedmaster 8000 gang programmer uses a simple 2 button operation in stand-alone mode. PC operation gives comprehensive file handling and editing functions. Capable of gang and set programming it supports 32 pin EPROMs to 8M with no adaptors required. Programming cycle times of only 23 seconds for 8 27C010's mean your throughput can now be faster than ever before.

ROM/RAM EMULATOR PLUG IN CARDS

Using these expansion cards your programmer can run as if there's no programmer, the Micromaster LV and Speedmaster LV, now support programming and verification of 3.3V devices, now you can test devices at their actual operating voltage.

They offer wider device support than ever before, the majority requiring no adaptor. They will operate from battery or mains power, making them flexible enough whatever your programming needs.

Not only that, as new devices come onto the market we give free software upgrades and the units' modular design, with easy upgrade path, protects your investment.

Available now and priced from £495 they are everything you'll need for programming, chiptesting and ROM emulation.

PACKAGE ADAPTORS

A full range of package adaptors is available for non DIL devices and parts with more than 40 pins.

Prices from £65.

FEATURES

- Widest ever device support including: EPROMs, EEPROMs, Flash, SPROMs, BPROMS, PALs, MACH, MAX, MAPL, PEELs, EPLDs Microcontrollers, etc.
- High speed, programmes a PIC16C54 in 0.5 secs (Micromaster LV).
- Up to 84 pin device support with adaptors.
- Connects directly to parallel port - no PC cards needed
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and operates from mains or battery.
- Optional 8 or 16 bit wide ROM/RAM emulator.
- Designed, built and supported in the UK.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

Speedmaster LV

Programmes 3 and 5V devices including memory, programmable logic and 8748/51 series micros. Complete with parallel port cable, software, recharger and documentation.

£495

Micromaster LV

As above plus support for over 90 different micro controllers without adaptors, including PICs, 89C51, 87C751, MC68HC704, ST8, 786 etc.

£625

8 bit Emulator card

Expansion card containing 8 bit wide ROM RAM emulator, includes cable and software. 128K x 8.

£125

16 bit Emulator card

Expansion card containing 16 bit wide ROM RAM emulator, includes cable and software. 128K x 16.

£195

CALL NOW TO PLACE YOUR ORDER, FOR MORE DETAILS OR A FREE DEMO DISK, OR CALL OUR BULLETIN BOARD TO DOWNLOAD THE LATEST DEMO.

Alternatively clip the coupon or circle the reply number.

Name:
Position:
Company:
Address:
Tel:
Fax:

All major credit cards accepted

ICE Technology Ltd. Penistone Court, Station Buildings, Penistone, South Yorkshire, S30 6HC, UK.
Tel +44(0) 1226761181, Fax +44(0) 1226761184, BBS +44(0) 1226 761181

DISTRIBUTORS

BENELUX: +3253313737; CYPRUS: 02485378; DENMARK: 048141885; FINLAND: 070039000; FRANCE: 0139899622; GERMANY: 060687241615; GREECE: 019200115; ITALY: 02457841; JAPAN: 053965301; MALAYSIA: 07536127; NORWAY: 063840007; SINGAPORE: (65) 04831691; SOUTH AFRICA: 0119742131/1521; SPAIN: 01270614; USA: Distributors required.
Order your copy of the New MAPLIN Catalogue on sale NOW

Out of THIS WORLD

ONLY
£3.45

Over 800 colour packed pages with hundreds of Brand New Products at Super Low Prices.

Available from all branches of WHSMITH, John Menzies in Scotland ONLY, Eason & Son in N. Ireland ONLY, and Maplin stores nationwide.

The Maplin Electronics 1995 Catalogue – OUT OF THIS WORLD