6206-133

TECHNICAL BRIEF

FOR A CHANGE IN DIRECTIONAL ANTENNA SYSTEMS

OF A

PRIVATE COMMERCIAL BROADCASTING STATION

(Sound - Standard Band)

APPLICANT:	CFRB LIMITED
LOCATION:	TORONTO, ONTARIO
STATION:	CFRB
FREQUENCY :	1010 kHz
POWER:	50 kW
MODE OF OPERATION:	DA-2
CLASS:	II

Project #1703

May 15, 1968

CONSULTANT:

D. E. M. ALLEN, P. Eng., Broadcast Consulting Engineer, 2631 Portage Avenue, Winnipeg 12, Manitoba.

Page 1

TECHNICAL BRIEF

FOR A CHANGE IN DIRECTIONAL ANTENNA SYSTEMS

OF A

PRIVATE COMMERCIAL BROADCASTING STATION

(Sound - Standard Band)

CFRB

TORONTO, ONTARIO

PURPOSE:

Ι

It is the purpose of this Technical Brief to support the application of CFRB Limited for permission to change the Directional Antenna Systems of Radio Station CFRB, Toronto, Ontario. This Technical Brief demonstrates that the operation of CFRB with new directional antenna systems would meet the requirements of all applicable Department of Transport procedures and NARBA protection agreements.

II DISCUSSION:

Radio Station CFRB presently operates with a power of 50 kW on 1010 kHz as a Class II Station utilizing a two tower directional antenna system during the day and a four tower directional antenna system at night.

It is proposed to add two tall towers to the antenna systems and utilize the two tall towers plus one existing tower in a new daytime directional antenna system. At night it is proposed to use the two new towers plus two of the existing towers in a new nighttime directional antenna system.

The present daytime antenna system of CFRB which has been utilized for over 19 years results in a number of coverage deficiencies. A complete null at Azimuth 174° results in a signal lack in the Niagara Peninsula, and a minima towards ...

DISCUSSION: (Cont'd.)

... the northwest results in a signal towards the northwest which is considerably lower than desired.

To overcome these deficiencies and at the same time not decrease the radiation in any other direction, it was necessary to design a daytime antenna system which would have an increased horizontal radiation efficiency. The solution to this problem has been achieved by utilizing two new tall towers (203°) which, with their increased horizontal efficiency, results in a considerable improvement in those coverage areas where daytime deficiencies now exist.

Because of the technical problem involved in making tall towers electrically invisible to the existing nighttime pattern, it was decided to incorporate the two new towers in a new This procedure allows the nighttime pattern. two northerly towers of the existing CFRB system to be disconnected and therefore unused. The revised nighttime pattern utilizing the two tall towers results in some improvement in coverage, primarily in the areas of the nulls, which are complete, in the existing nighttime pattern. In the areas of the lobes of the nighttime pattern, there is very little change in radiation, therefore little change in coverage.

(i) With reference to Broadcast Procedure 1, Rule 2, the population within the proposed 250 mV/m contours is as follows:

> Daytime - 176,874 persons Nighttime - 138,208 persons

Within the proposed 1000 mV/m contours the number of buildings and the population enclosed are as follows:

Daytime	-	Buildings Population	-	5,104 19,600	
Nighttime	-	Buildings Population	-	3,087 11,620	

Page 3

PROJECT #1703

II

DISCUSSION: (Cont'd.)

- (i) During the 19 years that CFRB has been in operation at 50 kW on 1010 kHz, the incidence of blanketing and external cross-modulation has been very low. This is particularly so during the last 10 years. Consequently it is not anticipated that there will be a problem due to blanketing and external cross-modulation as a result of the proposed new antenna systems. The applicant agrees, however, to take remedial action to correct any legitimate complaint resulting from blanketing or external cross-modulation within the proposed 1000 mV/m contours.
- (ii) Daytime rural service will not be limited by other broadcast signals. Calculations indicate that the estimated daytime 0.5 mV/m contour is provided adequate protection by existing cochannel and adjacent channel stations.
- (iii) The nighttime interference free contour at Toronto on 1010 kHz has been established by the 50% RSS rule to be 3.04 mV/m.

III

ASSUMPTIONS AND SOURCES OF INFORMATION:

Geographical locations and other pertinent data was obtained from Publications of the Department of Transport, Ottawa and the Federal Communications Commission, Washington. This information was based on data contained in correction lists and change lists up to and including the following:

- Official List of Assignments to Standard Broadcast Stations in Canada, as of December 31, 1967.
- List of Changes, proposed changes and corrections in Broadcast Station Assignments in Canada, List No. 241, dated March 26, 1968.

III

ASSUMPTIONS AND SOURCES OF INFORMATION: (Cont'd.)

- 3. Official List of Assignments of Standard Broadcast Stations of the United States as of June 7, 1967.
- List of Changes, proposed changes and corrections in Assignments of the United States Standard Broadcast Stations, U.S. List No. 1252, dated January 24, 1968.

Ground conductivity values for all interference and protection analysis were obtained from D.O.T. Ground Conductivity Map Sheet 2 and F.C.C. Figure M3.

Distances were either calculated using spherical trigonometry or measured on Albers Equal Area Projection maps.

Bearings were either calculated using spherical trigonometry or measured on Lambert Conformal Conic projection maps.

Geographic information has been taken from maps published by the Department of Mines and Technical Surveys of the Government of Canada.

The sheets used in the preparation of this .Technical Brief are:

Scale:	1:50,000	Brampton	Sheet	30M/12E	
Scale:	1:250,000	Toronto	Sheet	30M	
Scale:	1:1,000,000	Southern Ontario	Sheet	N.W.42/83	1/2

IV

GROUNDWAVE INTERFERENCE ANALYSIS:

The following stations were considered in the groundwave interference analysis calculations which are summarized in Table 1.

Station	Location	Frequency	Operation		
WITL	Lansing, Michigan		.5 kW DA-D		
WUNS	Lewisburg, Pa		25 kW ND-D		

IV

V

Page 5

GROUNDWAVE INTERFERENCE ANALYSIS: (Cont'd.) Station Location Frequency Operation 1020 kHz 50 kW ND Pittsburgh, Pa. KDKA Chicago, Ill. 1000 kHz 50 kW DA-2 WCFL Horseheads, N.Y. 1000 kHz 1 kW ND-D WIQT

The proposed Directional Antenna systems result in adequate protection to those co-channel and adjacent channel stations considered in the groundwave interference analysis. Where the existing co-channel and adjacent channel stations are accepting interference from the present CFRB daytime operation, the proposed daytime pattern will reduce that interference. On Figure 4, the existing daytime pattern is shown together with the proposed daytime horizontal pattern and the applicable groundwave limitations. On Figure 4 it is clearly shown that the proposed daytime pattern results in an improvement in co-channel and adjacent channel groundwave protection.

NIGHTTIME INTERFERENCE ANALYSIS:

The following co-channel stations were considered in the nighttime skywave interference analysis summarized in Table 2.

Station	Location	Operation
CBR WINS	Calgary, Alberta New York, N. Y.	50 kW DA-2 50 kW DA-1
KLRA	Little Rock, Ark.	10/5 kW DA-N
KVII	Amarillo, Texas	5/.5 kW DA-1
CMBQ	Havana, Cuba	25 kW DA-1

In all instances adequate co-channel skywave protection is provided by the proposed nighttime Directional Antenna System. In those cases where the existing CFRB nighttime signal is included in the 50% RSS interference calculations to an existing station, the proposed nighttime pattern will reduce the interference contribution from CFRB.

v

Page 6

NIGHTTIME INTERFERENCE ANALYSIS: (Cont'd.)

For the purpose of establishing the allowable radiation towards CBR, Calgary, the following procedure was adopted. Following discussions between the Canadian Broadcasting Corporation and the Applicant it was agreed that the CBC would consider that adequate skywave protection to CBR by CFRB would be met if a signal less than 25 µV/m was calculated to fall on the Manitoba-Saskatchewan border when the Path Mid-Point Latitude 10% Skywave Signal Range Curves (FCC 73.190 Figure 2) were used. Across the arc from 297.8° to 328.4° this limitation has been met.

VI

LOCATION OF CONTOURS:

In determining the location of the coverage contours shown in Figures 11, 12, 13 & 14, ground conductivity values obtained in the Proof of Performance of CFRB dated January 25, 1967 were used. It is felt that the ground conductivity as determined in this Complete Proof of Performance provides for a better estimate of the location of the coverage contours, which will result from the proposed directional antenna systems.

VII INTERMODULATION INTERFERENCE: Procedure 1, Rule 3

There are four AM Broadcasting Station transmitting sites within the existing 100 mV/m contours of CFRB. For reference these stations are listed below.

CHFI	680 kHz-	l kW Day,25 kW Night	DA-2
CHIN	1540 kHz	50 kw	DA-D
CHUM	1050 kHz	50 kW	DA-2
CHWO	1250 kHz	l kW Day,.5 kW Night	DA-1

These four stations will be within the proposed ...

VII

INTERMODULATION INTERFERENCE: Procedure 1, Rule 3 (Cont'd.)

Since intermodulation ..100 mV/m contours. problems have not arisen with these stations in the past, it is not anticipated that problems will arise with the proposed directional antenna systems. CHUM on 1050 kHz is approximately 1 1/2 miles from the CFRB site; however the proposed radiation towards CHUM is not great. In fact, the present daytime radiation from CFRB towards CHUM is approximately equal to the proposed daytime radiation. Since no intermodulation problem has occurred at CHUM due to CFRB, it is not anticipated that any problem will arise as a result of the proposed radiation patterns.

VIII

IX

HARMONIC INTERFERENCE: Procedure 1, Rule 4

1010 kHz is not harmonically related to any carrier frequency within the Standard AM Broadcast Band.

OSCILLATOR RADIATION INTERFERENCE: Procedure 1, Rule 11

The nearest AM Broadcasting Station on either 550 or 560 kHz (460 and 450 kHz from 1010 kHz) is WGR, Buffalo, New York. An overlap of the WGR 0.5 mV/m contours and the CFRB 0.5 mV/m contours has existed for more than 19 years without causing a serious problem. Therefore it is not anticipated that a problem due to receiver oscillator radiation will occur with the proposed operation.

. X

IMAGE INTERFERENCE:

Since 1010 kHz does not lie within the frequency ranges of 540 to 690 kHz or 1450 to 1600 kHz, image type interference has not been considered in this proposal.

XI

SUMMARY OF TOWER CURRENTS AND IMPEDANCES:

Values of self and mutual impedances used are based on measurements of the existing CFRB towers and curves published by G. H. Brown and Carl E. Smith. The base currents of towers #1 & #2 have been evaluated from curves relating base and loop currents of tall towers published by G. H. Brown. The subscripts_1, 2, 3 & 4 refer to Tower #1 (Southeast), Tower #2 (Southwest), Tower #3 (Centre East and Tower #4 (Centre West). The existing Northeast and Northwest Towers of the present CFRB directional antenna system are not used in the proposed new directional antenna systems.

Self-Impedances

Zll	=	² 22	=	55-	-j145	ohms
^z 33	=			69	+j97	ohms
z_{44}	=			69	+j90	ohms

Mutual Impedances

Z12	=	36 <u>/-132°</u>	ohms
Z ₁₃	=	$Z_{24} = 17/-83^{\circ}$	ohms
z_{14}	=	15 <u>/-215°</u>	ohms
Z23	=	16/-152°	ohms
Z34	=	15/-125°	ohms

Operating Impedances

nt			
zl	=	50-j190	ohms
z_2	8	88-j191	ohms
z ₃	II	5 1+ j102	ohms
z_4	=	57 + j81	ohms
zl	=	42-j135	ohms
z ₂	=	90-181	ohms
z ₃	н	62+j105	ohms
	$ \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_1 \\ z_2 $	$ \begin{array}{rcl} \mathbf{Z}_1 & = & \\ \mathbf{Z}_2 & = & \\ \mathbf{Z}_3 & = & \\ \mathbf{Z}_4 & = & \\ \mathbf{Z}_1 & = & \\ \mathbf{Z}_2 & = & \end{array} $	$ \begin{aligned} Z_1 &= 50 - j190 \\ Z_2 &= 88 - j191 \\ Z_3 &= 51 + j102 \\ Z_4 &= 57 + j81 \\ Z_1 &= 42 - j135 \\ Z_2 &= 90 - 181 \end{aligned} $

Page 9

XI

SUMMARY OF TOWER CURRENTS AND IMPEDANCES: (Cont'd.)

Tower Currents Night $I_1 = 8.1/-160^\circ$ amperes $I_2 = 8.2/-165^\circ$ amperes $I_3 = 20.3/-66^\circ$ amperes $I_4 = 18.6/-71^\circ$ amperes

Day

I ₁ =	15.5/-160°	amperes
I ₂ =	14.6/-225°	amperes
I ₃ =	18.25 <u>/-75°</u>	amperes

Power Analysis

Night

	-			
	Pl	=	3,280	watts
	P2	=	5,920	watts
	P3	÷	21,050	watts
	\mathbf{P}_{4}	-	19,750	watts
TOT	AL		50,000	watts
Day	7			
		÷	10,100	watts
	P2	=	19,200	watts
E I	^P 3	=	20,700	watts
TOT	٩L		50,000	watts

XII EXPIRY DATE:

In the event that this Technical Brief is not submitted to the Department of Transport for approval within two months of the date on the title page, it should be returned to the Consultant for possible revisions before being submitted.

Page 10

XIII

QUALIFICATIONS AND SEAL:

The qualifications of the undersigned who is responsible for the preparation of this Technical Brief, are on file with the Department of Transport, Ottawa.

D. E. M. ALLEN, P. Eng., Broadcast Consulting Engineer.

DESCRIPTION SHEET - DIRECTIONAL ANTENNA

Station: CFRB	Main Studio	o: To	oronto	o, (Ontario
Frequency: 1010 kHz	Power: 50 1	κŴ	Cla	ass	: II
Notification List No:	Date	:			
GEOGRAPHICAL LOCATION:	Latitude:	43°	30' 2	22"	North
	Longitude	79°	371	50"	West

ANTENNA CHARACTERISTICS:

. Nun	le of Operat nber of Elem be of Elemer	ments: Four nts: Guyed unifo base	l Steel to	-section,	
TOWER:	#1(SE)	#2(SW)	#3(NE)	#4 (NW)	
				s 2-	
HEIGHT ABOVE	550'	550 !	250	250	
BASE INSULATOR:	(203°)	(203°)	(92.3°)	(92.3°)	
OVERALL HEIGHT:	555	555'	255	255'	
FIELD RATIO:	100			-	
Nighttime	1.0	1.01	1.0	.92	
Daytime	1.0	.94	.47		
	42	÷.		1 14 E	
PHASING:					
Nighttime	0°	-5°	-66°	-71°	
Daytime	0 °	-65°	-75°		

GROUND SYSTEM:

120 equally spaced radials of No. 10
B & S gauge bare copper wire extend
from the base of each tower for a
distance of 390' (.4 wavelength) with
the exception of those joined along the
common chords. Radials are buried
approximately eight inches.

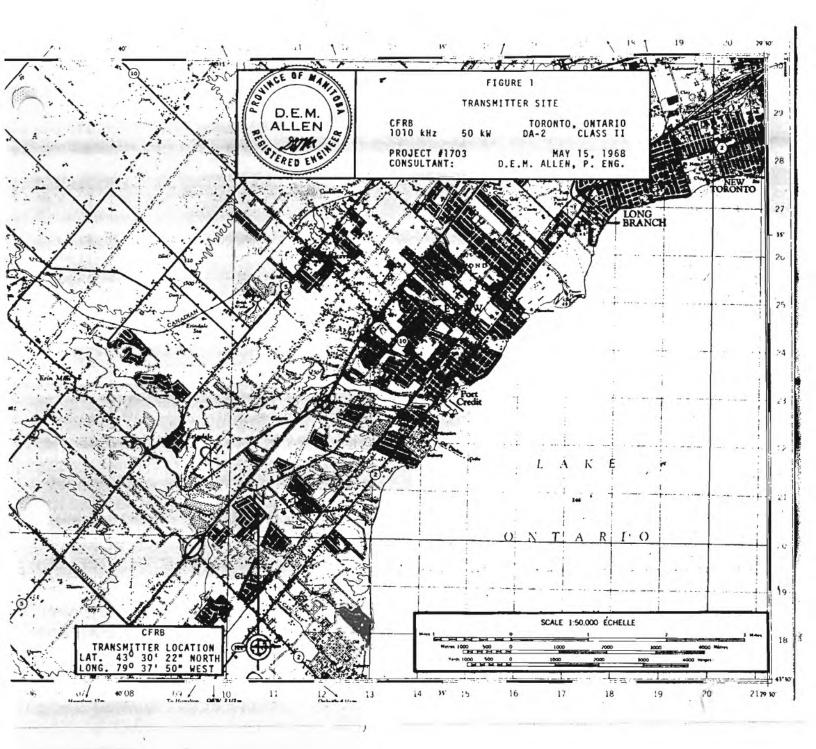
CFRB

DESCRIPTION SHEET - DIRECTIONAL ANTENNA (Continued)

SPACING AND ORIENTATION OF TOWERS:

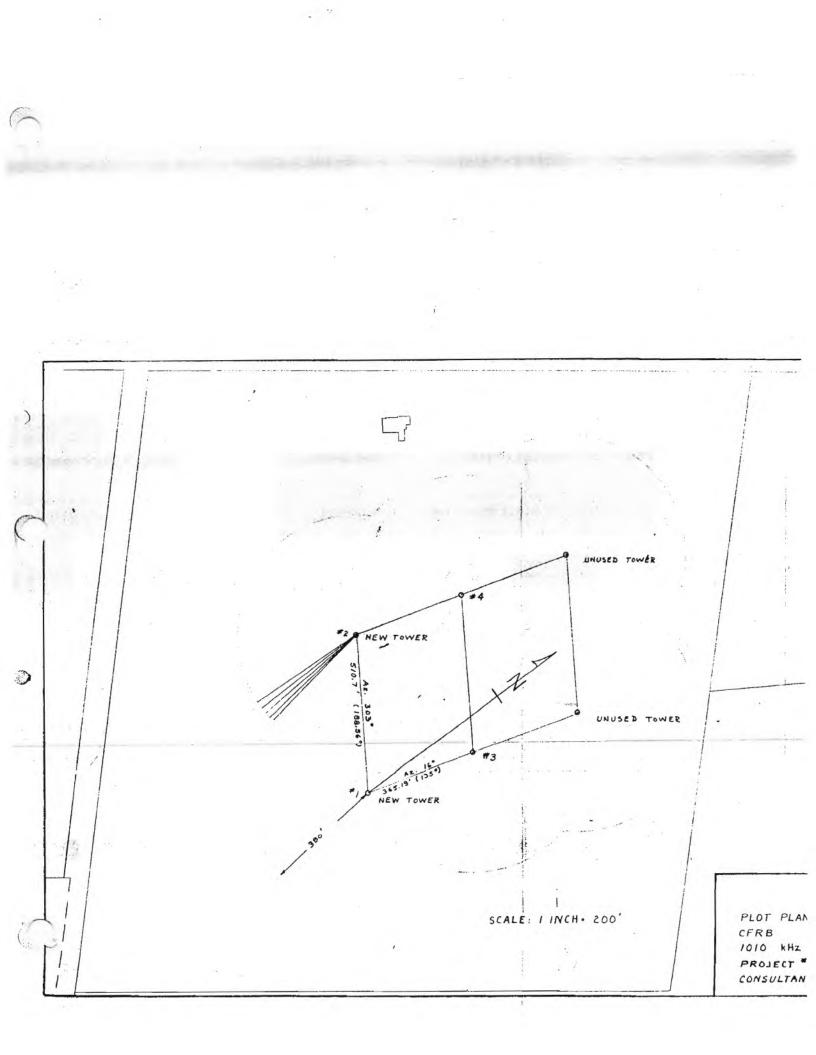
The towers are located at the four corners of a parallelogram whose long sides are 510.7' (188.56°) at azimuth 303° and whose short sides are 365.19' (135°) at azimuth 16°.

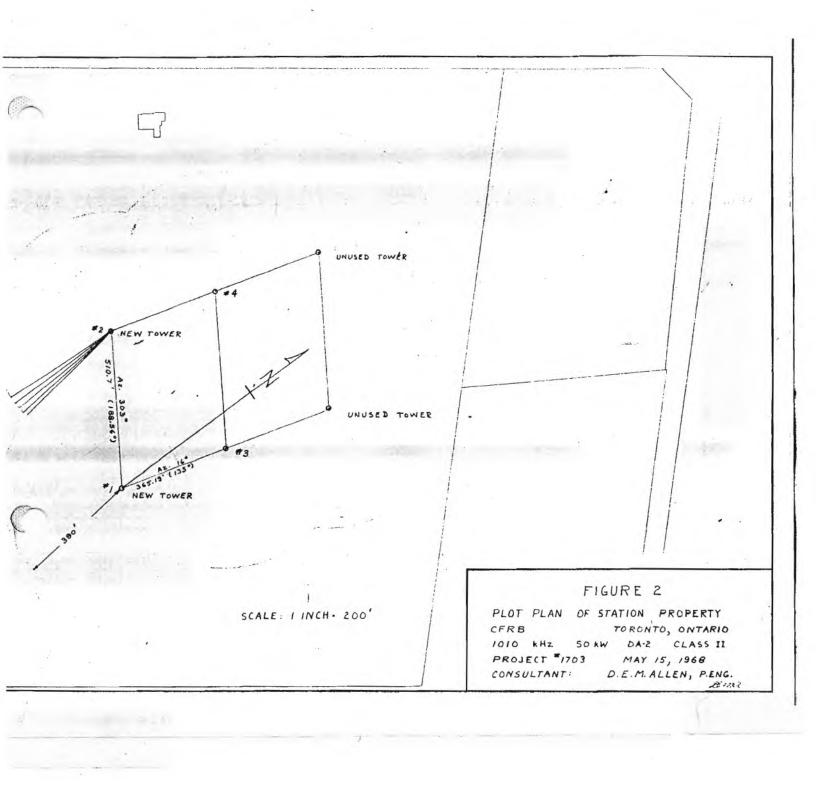
PREDICTED EFFECTIVE FIELD:

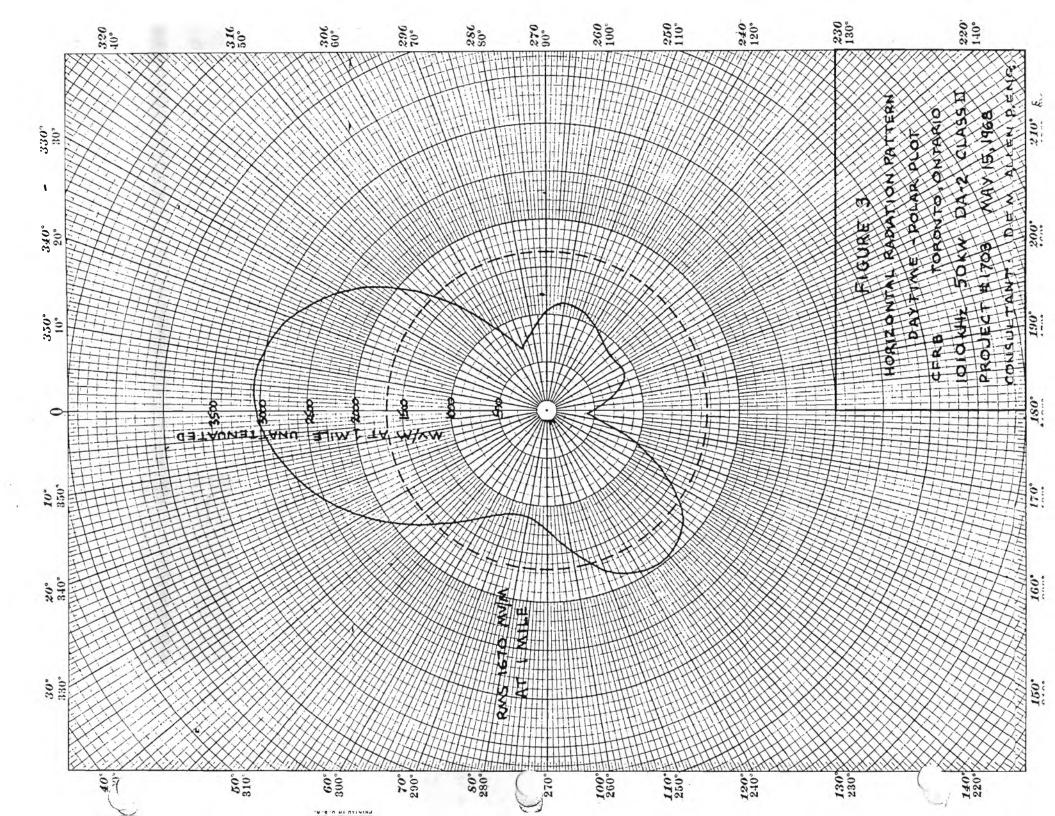

Nighttime:

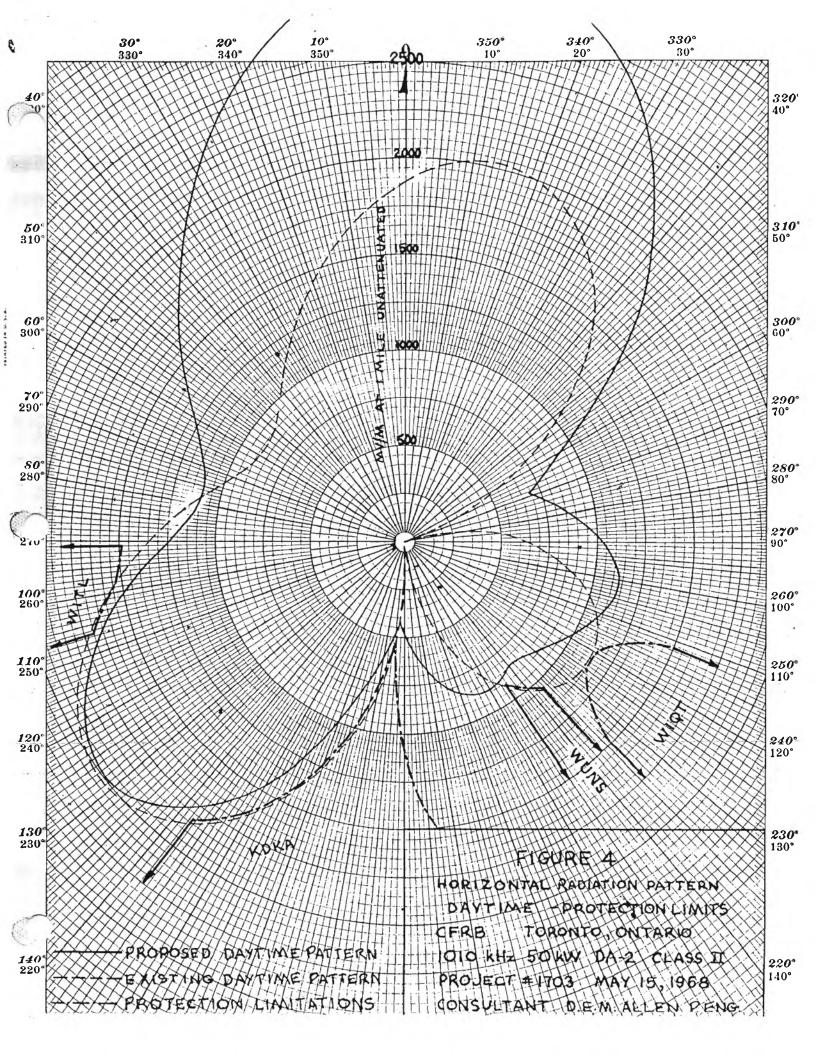
1365 mV/m at 1 mile for 50 kW 193 mV/m at 1 mile for 1 kW

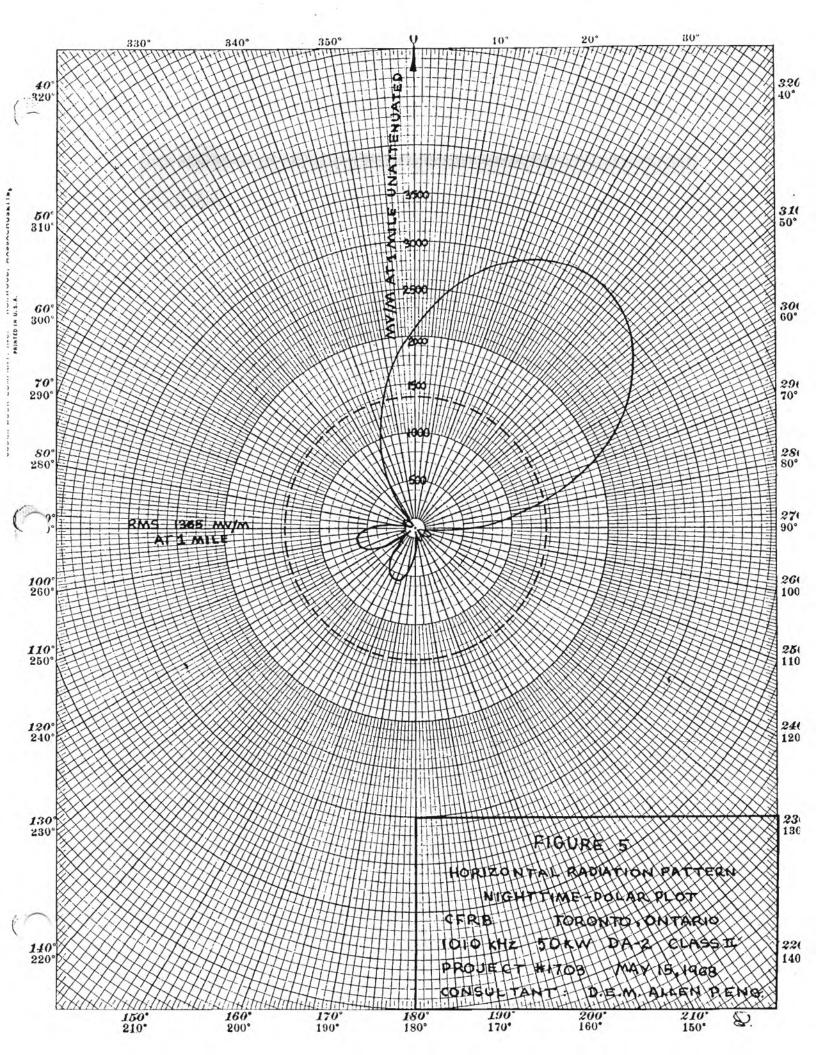
Daytime:

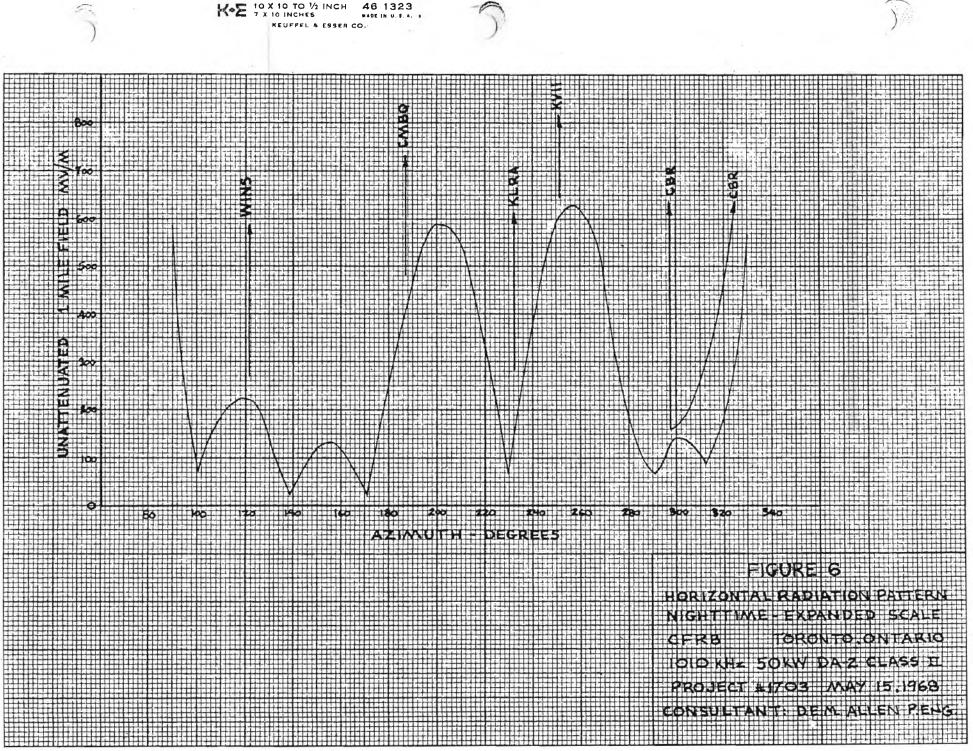

1670 mV/m at 1 mile for 50 kW
237 mV/m at 1 mile for 1 kW


. D. E. M. Allen, P. Eng., Broadcast Consulting Engineer.


 $\langle \$


.





C

ADDENDUM

\underline{TO}

TECHNICAL BRIEF

(Project #1703 - May 15, 1968)

APPLICANT: CFRB LIMITED LOCATION: TORONTO, ONTARIO STATION: CFRB FREQUENCY: 1010 kHz POWER: 50 kW MODE OF OPERATION: DA-2

Project #1703

Revision Date March 15, 1972

ADDENDUM

This addendum contains a revised nighttime radiation pattern for CFRB, Toronto. CFRB has been authorized to operate with the Nighttime Radiation Pattern shown in an approved Technical Brief dated May 15,1968, (Project #1703). This addendum has been prepared to show a proposed change in the field phase of Tower #3, (Northeast) from -66° to -64.2°. The purpose of this small change is to increase the radiation towards WINS, New York to a value close to that which has been authorized for CFRB for some twenty-three years. The allowable radiation towards WINS is 138.9 mV/m and it is proposed, with this revised pattern, to radiate 133 mV/m rather than 107 mV/m as shown in the Technical Brief dated May 15, 1968. This increase in proposed radiation will result in more latitude in the adjustment of the Nighttime Array of CFRB.

This addendum contains the following:

- Description Sheet - Directional Antenna

- Table 2 Nighttime Interference Analysis

- Figure 5 Horizontal Radiation Pattern - Nighttime -Polar Plot

- Figure 6 Horizontal Radiation Pattern - Nighttime -Expanded Plot

- Figure 7 Vertical Radiation Patterns - Nighttime -Azimuths 40° & 108.5°

- Figure 8 Vertical Radiation Patterns - Nighttime - Azimuths 121.5° & 124°

- Figure 9 Vertical Radiation Patterns - Nighttime -Azimuths 187.1° & 232.2°

- Figure 10 Vertical Radiation Patterns - Nighttime -Azimuths 297.8° & 300°

D. E. M. ALLEN, P. ENG. BROADCAST CONSULTING ENGINEER

March 15, 1972

DESCRIPTION SHEET - DIRECTIONAL ANTENNA

STATION: CFRB	MAIN STUDIO: Toronto, Ontario				
FREQUENCY: 1010 kHz	POWER: 50	kW	CLASS: II		
NOTIFICATION LIST NO:	DA	TE:			
GEOGRAPHICAL LOCATION:	Latitude Longitude		22" North 50" West		

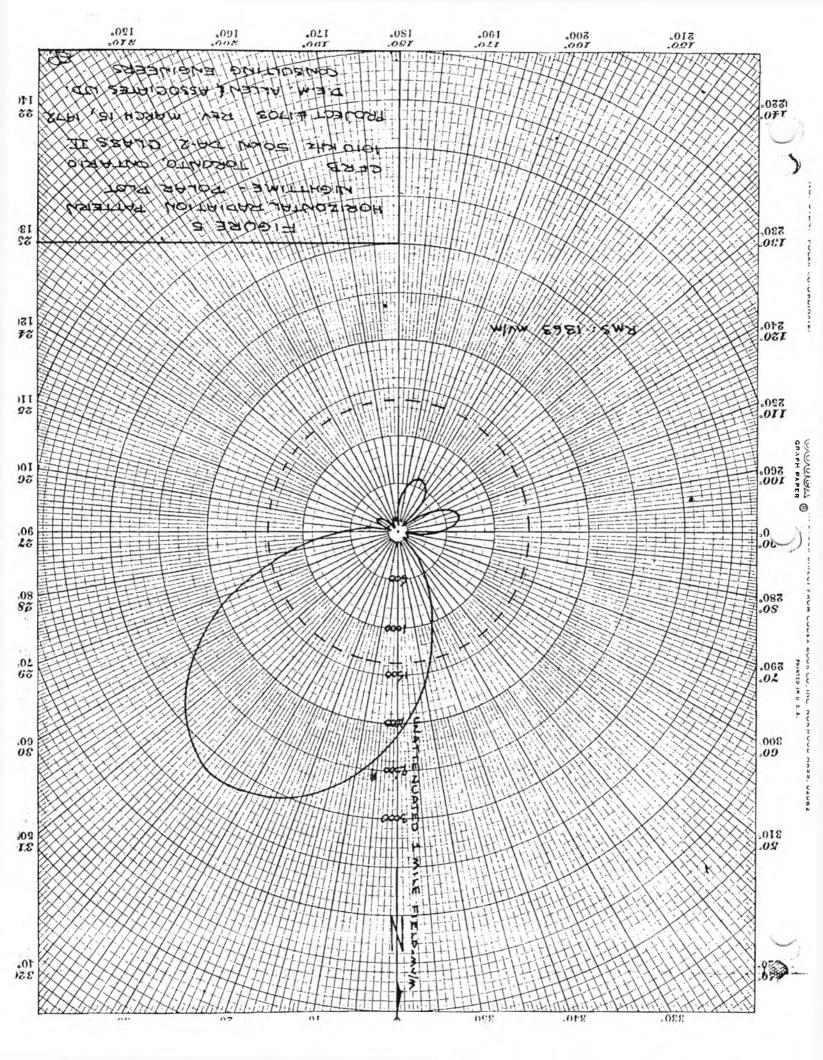
ANTENNA CHARACTERISTICS:

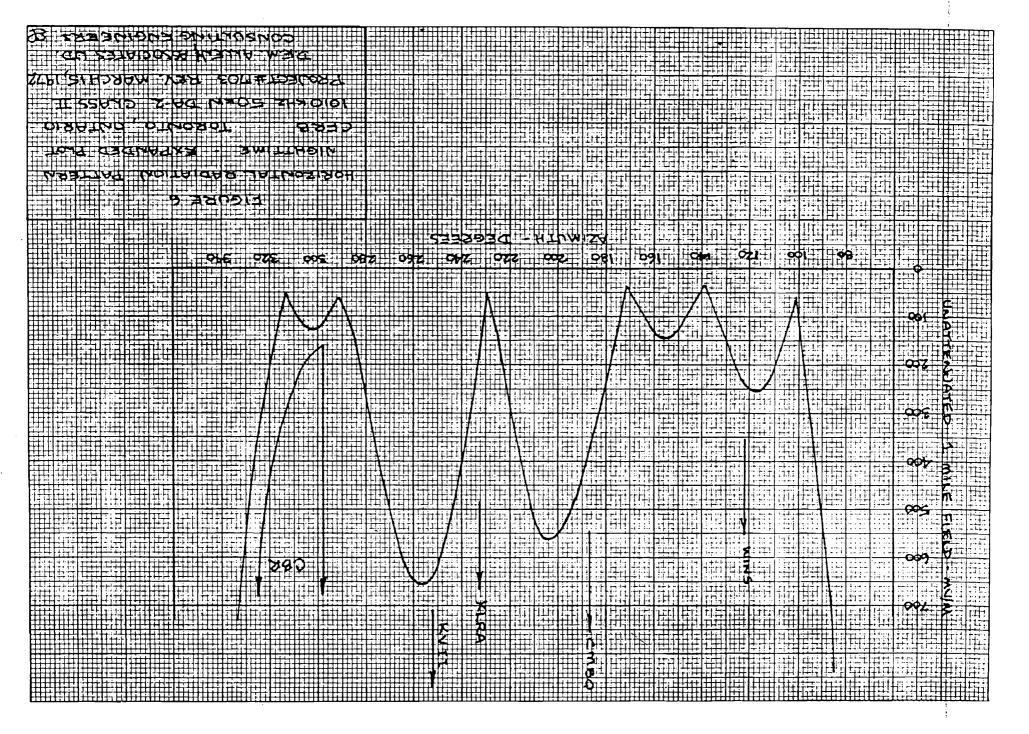
Mode of Operation: DA-2 Number of Elements: 4 (four)

Type of Elements: Guyed steel towers, uniform crosssection, base insulated for series feed

-				
TOWER:	#1(SE)	#2(SW)	#3(NE)	#4(NW)
HEIGHT ABOVE BASE INSULATOR:	550 ' (203°)	550' (203°)	250' (92.3°)	250' (92.3°)
OVERALL HEIGHT:	555'	555 '	255'	255'
FIELD RATIO: Nighttime Daytime	1.0 1.0	1.01 .94	1.0 .47	.92
PHASING: Nighttime Daytime	0 ° 0 °	-5° -65°	-64.2° -75°	-71°'

GROUND SYSTEM: 120 equally spaced radials of No. 10 B & S gauge bare copper wire extend from the base of each tower for a distance of 390' (.4 wavelength) with the exception of those joined along the common chords. Radials are buried approximately eight inches.

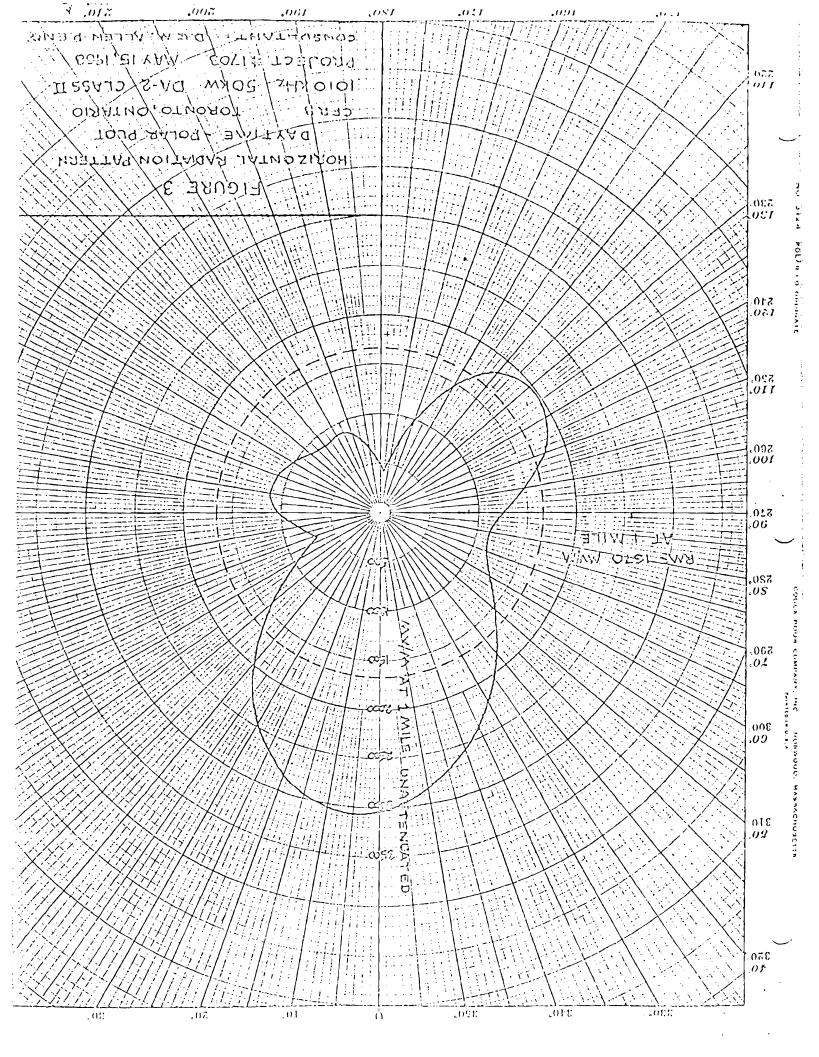

SPACING AND ORIENTATION

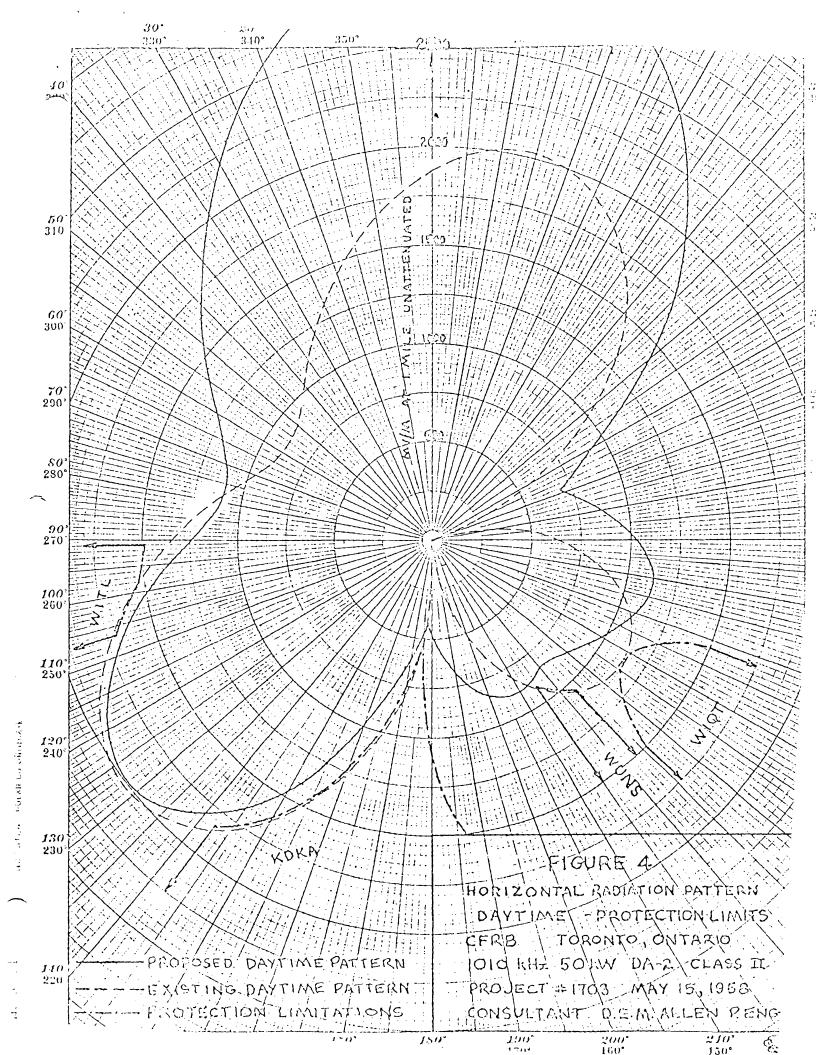

OF TOWERS: The towers are located at the four corners of a parallelogram whose long sides are 510.7' (188.56°) at azimuth 303° and whose short sides are 365.19' (135°) at azimuth 16°.

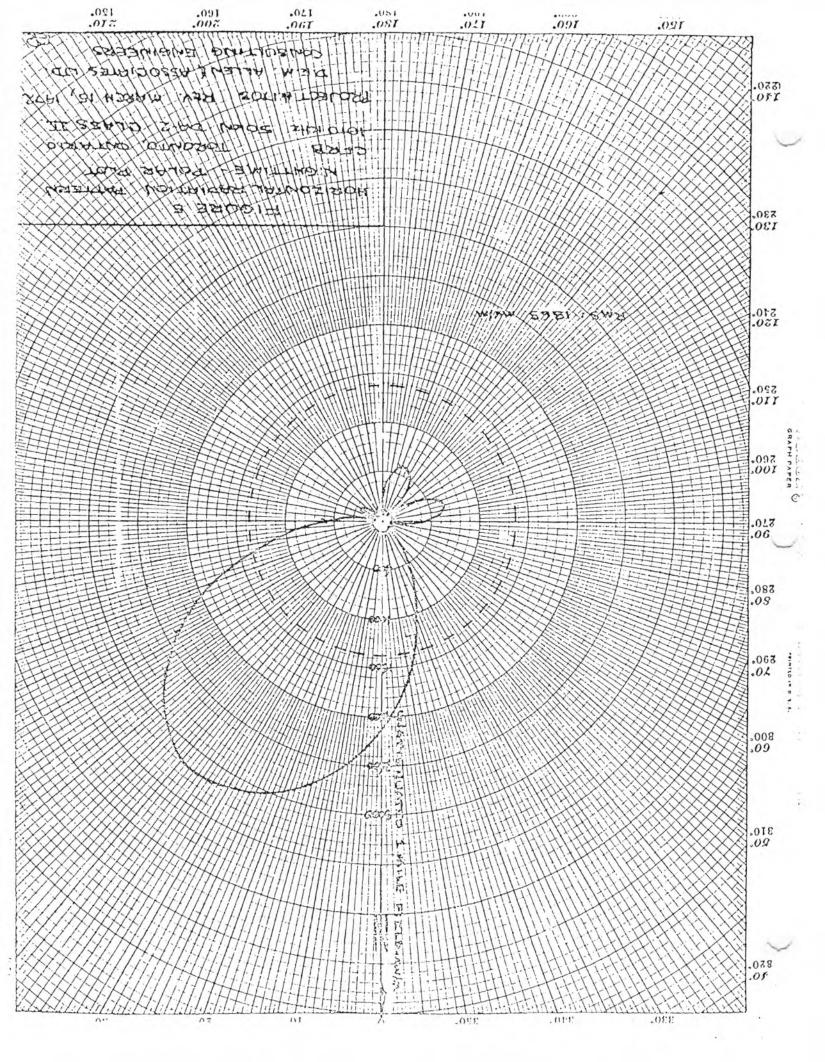
PREDICTED EFFECTIVE FIELD:

Nighttime	1363	mV/m	at	1	mile	for	50	kW
	193	mV/m	at	1	mile	for	l	kW
Daytime		•			mile mile			

March 15, 1972


KEUFFEL & ESSER CO. KOLTES ADDIA 10 1323


DESCRIPTION SHEET - DIRECTIONAL ANTENNA


STATION: CFRB		MAIN STUDIO:	Toronto, O	ntario
FREQUENCY: 1010	kHz	POWER: 50 kW	CLA	SS: II
NOTIFICATION LI	ST NO: 290	DATE:	Hey 3, 1972	
GEOGRAPHICAL LO	CATION:		° 30' 22" N ° 37' 50" W	
ANTENNA CHARACI	ERISTICS:			
Mode of Opera Number of Ele Type of Eleme	ments: 4 (fo nts: Guyed	ur) steel towers, on, base insul		
TOWER:	#1(SE)	#2(SW)	#3(NE)	#4 (NW)
HEIGHT ABOVE BASE INSULATOR	: 550' (203°)	550 ' (203°)	250' (92.3°)	250' (92.3°)
OVERALL HEIGHT:	555 '	555'	2551	255
FIELD RATIO: Nighttime Daytime	1.0 1.0	1.01 .94	1.0 .47	.92
PHASING: Nighttime Daytime	0 ° 0 °	-5° ~65°	-64.2° -75°	-71°
GROUND SYSTEM:	gauge bare of each tow length) wit along the c	spaced radials copper wire ex er for a distan h the exception ommon chords. ly eight inches	tend from th nce of 390' n of those Radials are	ne base (.4 wave- joined
SPACING AND ORI OF TOWERS:	The towers of a parall 510.7' (188	are located at elogram whose 1 .56°) at azimu are 365.19' (1	long sides a th 303° and	are whose
PREDICTED EFFEC	TIVE FIELD:			
Nighttime		t 1 mile for 50 t 1 mile for 1	D KW L KW	
Daytime		t l mile for 50 t l mile for 1) kw L kw	

March 15, 1972

---- D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS --

FINAL

PROOF OF PERFORMANCE

DIRECTIONAL ANTENNA SYSTEMS

STATION:

LOCATION:

CFRB

1010 kHz

50 kW

DA-2

TORONTO, ONTARIO

FREQUENCY:

POWER:

MODE OF OPERATION:

CLASS:

II

PROJECT #1707

OCTOBER 20, 1972 REVISED MAY 31, 1973

FINAL PROOF OF PERFORMANCE

DIRECTIONAL ANTENNA SYSTEMS

BROADCASTING STATION CFRB

TORONTO, ONTARIO

1.0 PURPOSE:

The purpose of this Final Proof of Performance is to demonstrate that the antenna systems of Broadcasting Station CFRB, Toronto, Ontario, are in proper adjustment within practical limits. This submission substantiates the information filed in the Preliminary Proof of Performance for CFRB dated October 26, 1970 (Project #1705).

2.0 GENERAL COMMENTS:

Broadcasting Station CFRB is a Class II Station authorized for operation with a power of 50 kW on a frequency of 1010 kHz. The directional patterns authorized are those shown in the approved Technical Brief dated May 15, 1968 (Project #1703) daytime, and the addendum dated March 15, 1972 for the nighttime pattern.

There are some numerical differences between the currents and impedances listed in this submission and those shown in the Preliminary Proof of Performance dated October 26, 1970 (Project #1705). These small numerical differences are due to a rearrangement of some components and leads on the antenna coupling and phasing equipment panels, which was necessitated by certain mechanical difficulties encountered with the antenna changeover relays.

October 20, 1972

2.0 GENERAL COMMENTS: (Cont'd.)

As noted in previous Proofs of Performance filed for CFRB, certain anomalies in Field Strength Measurements do occur, and this is so even along radials. However, as the distance from the station increases, the anomalies seem to diminish. This is quite evident on Radial #7 at Azimuth 303° in the Nighttime Pattern as shown in Figure 19. No doubt due to the low value of the direct radiation compared with the reradiated fields from nearby power lines and other structures, the actual fields measured are somewhat suspect, however at the greater distances along the radial in question, it becomes obvious that the actual radiated 1 mile field is shown.

The directional patterns shown in Figures 1, 2 and 3 indicate that the protection requirements of the station are met.

3.0 DESCRIPTION OF ANTENNA SYSTEM:

- 3.1 Number of Radiators: 4 (Four)
- 3.2 Type of Radiators:

Guyed steel towers, uniform cross-section, base insulated for series feed

3.3 Height of Towers above base insulators:

> Tower #2 Centre-East & Tower #3 Centre-West: 250' (92.3°) Tower #5 Southwest &

Tower #6 Southeast: 550' (203°)

3.4 Overall Height above ground:

Tower #2 Centre-East & Tower #3 Centre-West: 255'

Tower #5 Southwest & Tower #6 Southeast: 555'

October 20, 1972

3.0 DESCRIPTION OF ANTENNA SYSTEM: (Cont'd.)

3.5 Orientation and Spacing:

The towers are located at the four corners of a parallelogram whose long sides are 510.7' (188.56°) at Azimuth 303° and whose short sides are 365.19' (135°) at Azimuth 16°.

3.6 Details of Ground System: 120 eq

Measured Efficiency:

120 equally spaced radials of No.10 B & S gauge bare copper wire-extend from the base of each tower for a distance of 390' (0.4 wavelength) with the exception of those joined along the common chords. Radials are buried approximately eight inches. In addition to the normal radials, 120 radials 100' long extend from the base of each tall tower.

- 3.7 Location: Latitude 43° 30' 22" North Longitude 79° 37' 50" West
- 3.8 Painting & Lighting: The towers are painted and lighted in accordance with Department of Communications Broadcast Procedure No. 16.

Daytime

1680 mV/m at 1 mile for 50 kW
237 mV/m at 1 mile for 1 kW

Nighttime

1345	mV/m	at	1	mile	for	50	kW
191	mV/m	at	1	mile	for	1	kW

October 20, 1972 Revised May 31, 1973

3.9

- 4.0 IMPEDANCE MEASUREMENTS, OPERATING DATA AND CALCULATIONS:
 - 4.1 Impedance Measurements
 - 4.1.1 General

The method of measuring self-impedances at this installation is generally known as the radio frequency bridge method. Self-Impedance Measurements were made directly using a General Radio 1606-A RF Bridge and associated equipment. To measure the operating impedances of the towers, an operating impedance bridge was used directly with the station transmitter as the RF source.

- 4.2 Test Equipment and its Accuracy
- 4.2.1 General Radio Type 1606-A Radio Frequency Bridge, Serial No. 496, Accuracy ±1%
- 4.2.2 RF Signal Generator, Delta Electronics Model D15-1, Serial #055 Receiver Generator calibrated at the time of use against existing stations in the broadcast band
- 4.2.3 Null Detector, Superheterodyne Receiver, CBY 46145, Serial #3638
- 4.2.4 Operating Impedance Bridge Delta Electronics Type OIB-1, Serial #398, Accuracy 5% -1 ohm, checked against Type 1606-A Bridge
- 4.3 Measured Impedances

The following values of self and operating impedances were used in all relevant calculations. The subscripts 2, 3, 5 and 6 refer to the Centre-East, Centre-West, Southwest and Southeast towers respectively. This tower numbering system has been used to correspond with the designation system utilized by the staff of CFRB in relating to the original 4 tower antenna system.

October 20, 1972

4.0 IMPEDANCE MEASUREMENTS, OPERATING DATA AND CALCULATIONS:

4.3 Measured Impedances (Cont'd.)

> To provide a correlation between the numbering system utilized in the approved Technical Brief and the system utilized in this submission, the following Table has been prepared.

> > Marian Numbers and Decemintian

		Tower Number	and Descri	ption	
	This Submi	ssion	App	roved	Technical Brief
•	#2 Centre #3 Centre #5 Southwe #6 Southea	-West est		#3 #4 #2 #1	Northwest
4.3	.l Self-Impe	edances			•
	Using RF B	ridge	• ·		
	Z ₂₂ =	74 +j8l ohms			
	^Z 33 = 8	31 +j94.5 ohm	5		
	^Z 55 = 5	52 -j177 ohms			
	Z ₆₆ = 5	53 -j178 ohms			
4.3	.2 Operating	g Impedan ce s			
	Using Opera	ating Impedan	ce Bridge		
	Day	zime		Nic	ghttime
	$Z_2 = 90$	+j63 ohms	^Z 2	= 6]	1.5 +j52 ohms
	$z_5 = 80$	-j189 ohms	z ₃	= 56	5 +j63 ohms
	$Z_6 = 26$.5 -j189 ohms	^Z 5	= -]	.3 -j235 ohms

- D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS

October 20, 1972 Revised May 31, 1973

Page 5

15 -j201 ohms

 $z_{6} =$

4.0 IMPEDANCE MEASUREMENTS, OPERATING DATA AND CALCULATIONS:

4.4 Antenna Currents

Tower	Current	Tower Meter Reads (amperes)	Theoretical Field Ratios
Daytime			
#2 - Centre-East #5 - Southwest #6 - Southeast	14.0 16.1 22.2	14.0 16.1 22.2	.47 .94 1.00
Nighttime			
#2 - Centre-East #3 - Centre-West #5 - Southwest #6 - Southeast	21.4 19.5 10.3 13.7	21.4 19.5 10.3 13.7	1.00 .92 1.01 1.00

4.5 Phase Monitor Readings

Phase Monitor is a Potomac Instrument Inc. Type AM19, Serial #182 with a Weston Digital Voltmeter Type 1240, Serial #2295 for digital readout.

Tower	Phase Reading	Theoretical Field Phase	Remote Current Magnitude
Daytime			
#2 - Centre-East Base Loop #5M - Southwest Middle Loop #6M - Southeast Middle Loop	0° -148.8° -80.1°	0° +10° +75°	50.0 47.1 53.2
Nighttime #2 - Centre-East Base Loop #3 - Centre-West Base Loop #5M - Southwest Middle Loop #6M - Southeast Middle Loop	0° 1.3° -103.1° -95.7°	0° -6.8° +59.2° +64.2°	100.0 94.6 52.5 53.2

It should be noted that the middle loop sampling loops on towers #5 and #6 are used for monitoring, since the tower current towards the centre of these towers is more indicative of the radiated field phase and magnitude.

October 20, 1972 Revised May 31, 1973 Page 6

D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS -

4.0 IMPEDANCE MEASUREMENTS, OPERATING DATA AND CALCULATIONS: 4.6 Power Analysis 4.6.1 Daytime Antenna $14.0^2 \times 90 = 17,650$ watts P, = $P_5 = 16.1^2 \times 80 = 20,700$ watts $22.2^2 \times 26.5 = 13,050$ watts Р_б = 51,400 TOTAL watts Common Point Input $Z_{CD} = 51 + j3$ ohms ggI = 31.9 (meter reads 31.0) amperes $= 31.9^2 \times 51 = 51,900$ watts Pcp Transmitter Readings PA Plate Voltage: 10.8 kV PA Plate Current: 6.0 amperes PA Plate Input: $6.0 \times 10.8 = 64.8 \text{ kW}$ Efficiency = $51,900 \times 100 = 80.2$ % 64,800 4.6.2 Nighttime Antenna $P_2 = 21.4^2 \times 61.5 = 28,200$ watts $P_3 = 19.5^2 \times 56 = 21,300$ watts $P_5 = 10.3^2 \times -13 = 1,380$ watts $P_6 = 13.7^2 \times 15 = 2,820 \text{ watts}$ TOTAL 50,940 watts

October 20, 1972 Revised May 31, 1973

4.0	IMPEDANCE MEASUREMENTS, OPERATING DATA AND CALCULATIONS:
4.6.2	Nighttime (Cont'd.)
	Common Point Input
	z _{cp} = 48 -jl ohms
	I = 33.4 (meter reads 32.5) amperes
	$P_{cp} = 33.4^2 \times 48 = 53,500 \text{ watts}$
	Transmitter Readings
	PA Plate Voltage: 10.8 PA Plate Current: 6.2 amperes PA Plate Input: 6.2 x 10.8 = 67 kW
	Efficiency = $\frac{53,500 \times 100}{67,000} \times 100 = 79.8$ %
	The transmitter is an RCA BTA-50F 50 kW transmitter.
5.0	ANTENNA EFFICIENCY AND HORIZONTAL PATTERNS:
5.1	Antenna Efficiency
	The scale of the horizontal patterns was determined by two methods as follows:
5.1.1	Measurements were taken along a number of radials, eight for the daytime pattern and seven for the nighttime pattern. The results of these measure- ments were plotted (Figures 6 to 20 inclusive), and the resulting one mile unattenuated fields were then plotted (Figures 1, 2 and 3).
5.1.2	The unattenuated one mile field at Azimuth 358° was determined by running a radial while operating with the daytime pattern and an antenna power of 50 kW.

October 20, 1972

5.0 ANTENNA EFFICIENCY AND HORIZONTAL PATTERNS:

5.1.2 (Cont'd.)

This unattenuated field was found to be 3200 mV/m at one mile. It was found upon examination of the directional/non-directional ratio in the main lobe, together with the one mile field at 358° as determined above, that a size factor K of 1500 mV/m would result in a best fit in plotting the daytime horizontal pattern for the arc from 295° to 359.5°.

It was found upon examination of the shape of the non-directional radiation pattern, that there was some distortion present. To evaluate this distortion, a number of short radials were run on both day and night patterns, and it was found that three values of K were acquired. These values are as follows:

- K = 1200 mV/m between azimuths 77° and 282°
- K = 1500 mV/m between azimuths 295° and 359.5° and for azimuth 64.5°
- K = 1700 mV/m between azimuths 7° and 54°

5.2

Derivation of the Directional Horizontal Patterns

The shape of the patterns shown in Figures 1, 2, and 3 were determined as follows:

Field Intensity Measurements were taken at various points for both directional and non-directional operation. These points were on radials at approximately 15 degree intervals, the distance from the array in all instances being at least ten times the spacing between the #3 and #6 towers. For each point the measured field intensities were expressed as a ratio and multiplied by the size factor K.

The resulting 50 kW directional unattenuated 1 mile field intensity was plotted (See Figures 1, 2 & 3), and the areas within the horizontal patterns were equated to equivalent circles, the radii of which are shown in Figures 1 and 2. The equivalent non-

October 20, 1972

5.0 ANTENNA EFFICIENCY AND HORIZONTAL PATTERNS:

5.2 Derivation of the Directional Horizontal Patterns (Cont'd.)

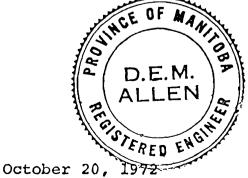
directional one mile field for 50 kW was found to be 1680 mV/m for the daytime pattern and 1345 mV/m for the nighttime pattern. On Figures 1, 2 and 3 the measured patterns are shown dashed, the solid lines are the theoretical patterns.

5.3 Sample Calculation

Point #1 - Azimuth 07°

Field Intensity - Daytime Directional = 460 mV/mField Intensity - Non-Directional = 250 mV/mDirectional/Non-Directional ratio = $\frac{460}{250}$ = 1.84

The 50 kW l mile field (unattenuated) at Point #l = 1.84 x 1700 = 3128 mV/m.


All measured values at each point for both patterns have been analyzed in the above manner.

6.0 FIELD INTENSITY MEASUREMENTS:

Field Intensity Measurements were taken with an RCA Type WX-2D Field Intensity Meter, Serial #1266, and a Nems Clarke Type 120E Field Intensity Meter,
Serial #1309. All normal precautions were taken in regard to power lines, wire fences, etc.

7.0 QUALIFICATIONS AND SEAL:

The qualifications of the undersigned, who is responsible for the preparation of this Final Proof of Performance, are on file with the Department of Communications, Ottawa.

D. E. M. Allen, P. Eng. Broadcast Consulting Engineer

Page 10

Revised May 31, 1973

- D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS •

TABLE 1

ANTENNA SELF-IMPEDANCE DATA

Frequency (kHz)	Resistance (ohms)	Reactance (ohms)
Tower	#2 Centre-East	
960	55	+j54
970	58	+j60
980	61	+j65
990	65	+j71
• 1000	69	+j76
1010	74	+j81
1020	79	+j87
1030	83	+j93
At 1010 kHz from	n Curves Z ₂₂ = 7	74 +j81 ohms

Tower #3 - Centre-West

960	58	+j67
970	62	+j72
980	67	+j78
990	71	+j82
1000	76	+j87
1010	80	+j93
1020	86	+j100
1030	92	+j107

At 1010 kHz from Curves $Z_{33} = 81 + j94.5$ ohms

(Continued on Page 12)

October 20, 1972

٠÷.,

TABLE 1

(Continued)

ANTENNA SELF-IMPEDANCE DATA

Frequenc	y Resistance	Reactance
(kHz)	(ohms)	(ohms)
	<u> Tower #5 - Southwest</u>	
960	83	-j240
970	75	-j226
980	68	-j211
990	62	-j200
1000	57	-j189
1010	52	-j177
1020	48	-j166
1030	44	-j154
At 1010 k	Hz from Curves Z ₅₅ =	52 - j177 ohms

Tower #6 - Southeast

960	85	-j242
970	77	-j227
980	70	-j214
990	63	-j202
1000	58	-j190
1010	53	-j178
1020	48.5	-j166
1030	44	-j154
At 1010	kHz from Curves Z ₆₆	= 53 -j178 ohms

October 20, 1972

TABLE 2

DIRECTIONAL/NON-DIRECTIONAL RATIO MEASUREMENTS (Daytime) Directional Directional Point Azimuth Non-Directional Unattenuated Field Intensity No. (degrees) Field Intensity 1 mile field (mV/m)(mV/m) $(D/ND \times K)$ (mV/m)25.5 42.5 64.5 77· 147.5 170.5 226.5 313.5 359.5 NOTE: Because of the distorted shape of the non-directional reference, three different K factors were used: K = 1200 between Azimuths 77° and 282° K = 1500 between Azimuths 295° and 359.5° and for Azimuth 64.5° K = 1700 between Azimuths 07° and 54° Page 13 October 20, 1972 Revised May 31, 1973

- D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS

TABLE 2 (Cont'd.)

DIRECTIONAL/NON-DIRECTIONAL RATIO MEASUREMENTS

(Nighttime)

	Azimuth degrees)	Non-Directional Field Intensity (mV/m)	Directional Field Intensity (mV/m)	Directional Unattenuated 1 mile field (D/ND x K) (mV/m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	$\begin{array}{c} 0.7\\ 1.6\\ 25.5\\ 3.3\\ 42.5\\ 54\\ 64.5\\ 77\\ 87\\ 100\\ 108\\ 122\\ 137\\ 147.5\\ 161\\ 170.5\\ 178\\ 186\\ 193\\ 199\\ 214\\ 226.5\\ 193\\ 199\\ 214\\ 226.5\\ 240\\ 254\\ 273\\ 282\\ 295\\ 305\\ 313.5\\ 321\\ 329\\ 343\\ 359.5 \end{array}$	$\begin{array}{c} 280\\ 360\\ 330\\ 300\\ 340\\ 630\\ 540\\ 410\\ 420\\ 980\\ 890\\ 460\\ 460\\ 460\\ 500\\ 360\\ 190\\ 305\\ 230\\ 160\\ 140\\ 130\\ 120\\ 160\\ 140\\ 130\\ 120\\ 105\\ 160\\ 190\\ 225\\ 150\\ 200\\ 175\\ 300\\ 480\\ 360\\ 280\end{array}$	$\begin{array}{r} 390 \\ 580 \\ 590 \\ 540 \\ 620 \\ 1000 \\ 760 \\ 420 \\ 210 \\ 170 \\ 185 \\ 90 \\ 44 \\ 80 \\ 64 \\ 30 \\ 49 \\ 62 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 54 \\ 27 \\ 45 \\ 85 \\ 67 \\ 45 \\ 85 \\ 67 \\ 45 \\ 10 \\ 12 \\ 7 \\ 33 \\ 150 \\ 270 \\ 380 \end{array}$	$\begin{array}{c} 2370\\ 2740\\ 3040\\ 3060\\ 3100\\ 2700\\ 2110\\ 1230\\ 600\\ 209\\ 249\\ 235\\ 115\\ 192\\ 214\\ 189\\ 193\\ 324\\ 540\\ 618\\ 500\\ 270\\ 514\\ 637\\ 423\\ 240\\ 100\\ 90\\ 60\\ 165\\ 468\\ 1125\\ 2030\\ \end{array}$
NOTE:	Because referenc	of the distorted e, three differen	shape of the non- it K factors were	directional used:
	K = 1500 Azim	uth 64.5°	; 295 ⁰ and 359.5 ⁰	and for
	K = 1700 r 20, 197 d May 31,		5 U/~ and 54~	Page14

TABLE 3

FIELD INTENSITY MEASUREMENTS

				50 kW Di	rect	ional		
(+)			RAD	IAL #1		AZIMU	TH 380	
	Point	No.	* *	Distance (miles)	F	ield Day	Intens	ity (mV/m) Night
	$\begin{array}{c} 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141 \end{array}$			$\begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.6\\ 1.7\\ 1.8\\ 1.9\\ 2.0\\ 2.55\\ 3.1\\ 3.6\\ 3.85\\ 4.5\\ 5.0\\ 5.5\\ 6.0\\ 7.15\\ 8.2\\ 9.15\\ 10.0\\ 12.2\\ 14.7\\ 17.4\\ 20.2\\ 23.2\\ 26.8\\ 30.6\\ 34.4\\ 38.0\\ 41.0\\ 45.3\\ 49.2\\ 54.7\\ 65.0\\ 72.0\\ 84.5\\ 95.7\\ 126.0\\ \end{array}$		6 5 4 1 1 1	1 9 5 3 2 0 75 75 50 2 49 41 090	3300 3000 2550 2470 2400 2240 2490 1950 1390 1620 1490 1100 1030 843 605 493 570 430 445 360 308 238 245 205 107 98 33 27.2 12.7 9.7 10.2 8.6 6.4 3.1 2.8 2.7 2.3 1.9 .76 .65 .141
October	20. 1	973						Pa

age 15

TABLE 4

FIELD INTENSITY MEASUREMENTS

Daytime Pattern

50 kW Directional

RADIAL #2 AZIMUTH 121.5°

Point No.	Distance (miles)	Field Intensity (mV/m)
201	1.0	1000
202	1.1	892
203	1.2	782
204	1.3	664
205	1.55	755
206	1.63	746
207	1.65	728
208	1.77	700
209	1.9	683
210	1.96	655
211	2.03	618
212	2.11	582
213	2.16	551
214	2.25	528
215	2.4	446
216	2.65	387
217	3.14	273
218	3.76	223

October 20, 1972 Revised May 31, 1973

- D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS -

TABLE 5

FIELD INTENSITY MEASUREMENTS

50 kW Directional

RADIAL #3	3	AZIMUTH	1450
-----------	---	---------	------

Point No.	Distance (miles)	Field Inter Day	nsity (mV/m) Night
301	1.0	600	105
302	1.1	790	130
303	1.2	575	95
304	1.3	585	100
305	1.4	425	72
306	1.5	425	70
307	1.72	495 475	86
308	1.76	515	80 84
309 310	1.85	495	83
311	1.9	470	79
312	1.96	445	76
313	2.04	415	69
313 314 315	2.04 2.13 2.27 2.4	375	64
315	2.27	335	55
316	2.4	305	50
317	2.56	255	44
318	2.84	200	34
319	3.08	180	30
320	3.42	160	27
321	3.75	135	22
322	4.25 4.6	140	23
323 324	4.0	120 12	20
324	27.5 30.6	8.0	2.2
326	34.0	8.4	1.6
327	37.7	6.9	1.5
328	42.3	5.2	.64
329	47.0	4.2	.96
330	53.0	3.7	.4

October 20, 1972 Revised May 31, 1973 Page 17

- D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS -

TABLE 6

FIELD INTENSITY MEASUREMENTS

50 kW Directional

	RADIAL #4	AZIMUTH 1900	
Point No.	Distance (miles)	Field Intensit Day	y (mV/m) Night
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432	$ \begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.6\\ 1.7\\ 1.8\\ 1.9\\ 2.0\\ 2.1\\ 2.4\\ 2.45\\ 3.0\\ 3.11\\ 3.3\\ 3.48\\ 3.7\\ 3.92\\ 4.18\\ 4.36\\ 4.95\\ 19.2\\ 21.1\\ 25.0\\ 27.5\\ 30.3\\ 34.2\\ 37.2\\ 40.8\\ 45.5\\ \end{array} $	$ \begin{array}{c} 645\\ 520\\ 415\\ 430\\ 385\\ 375\\ 350\\ 340\\ 330\\ 320\\ 295\\ 290\\ 220\\ 185\\ 120\\ 115\\ 105\\ 85\\ 70\\ 85\\ 80\\ 16.5\\ 10\\ 12\\ 11\\ 9.8\\ 6.6\\ 5.3\\ 3.9\\ 2.9\end{array} $	$\begin{array}{c} 415\\ 325\\ 280\\ 265\\ 255\\ 250\\ 235\\ 220\\ 210\\ 205\\ 190\\ 185\\ 140\\ 150\\ 92\\ 88\\ 85\\ 88\\ 78\\ 63\\ 48\\ 57\\ 55\\ 9.1\\ 9.4\\ 8.2\\ 5.7\\ 6.8\\ 4.5\\ 3.0\\ 2.3\end{array}$

October 20, 1972 Revised May 31, 1973

Page 18

- D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS -

TABLE 7

FIELD INTENSITY MEASUREMENTS

50 kW Directional

RADIAL #5 AZIMUTH 220°

Point No.	Distance	Field Inten	sity (mV/m)
	(miles)	Day	<u>Night</u>
501 502 503, 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 522 523 524 525 526 527 528 529 530 531 532 532 533	$ \begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.6\\ 1.7\\ 1.8\\ 1.9\\ 2.0\\ 3.0\\ 3.5\\ 4.0\\ 4.5\\ 5.0\\ 5.5\\ 6.0\\ 7.0\\ 8.0\\ 9.0\\ 10.0\\ 12.3\\ 15.7\\ 19.3\\ 23.0\\ 26.9\\ 32.0\\ 38.1\\ 45.4\\ 55\\ 64.8\\ 77.5 \end{array} $	$ \begin{array}{r} 1900\\ 1900\\ 1620\\ 1480\\ 1420\\ 1230\\ 1180\\ 1100\\ 1080\\ 1030\\ 890\\ 530\\ 455\\ 400\\ 342\\ 335\\ 240\\ 258\\ 180\\ 125\\ 138\\ 115\\ 105\\ 52\\ 38\\ 28.5\\ 21.5\\ 13.5\\ 7.8\\ 6.4\\ 3.4\\ 1.25\\ .78 \end{array} $	240 317 225 260 258 204 210 193 196 184 170 85 79 73 72 56 45 46 33 22 32 25 18 9 6 4.9 3.9 2.3 1.3 1.15 .59 .22 .13

October 20, 1972 Revised May 31, 1973

TABLE 8

FIELD INTENSITY MEASUREMENTS

50 kW Directional

RADIAL #6 AZIMUTH 260°

Po	int	No.	Distance (miles)	Field Intensity (mV/m Day Night)
	602345666666666666666666666666666666666666	,	$ \begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.6\\ 1.7\\ 1.8\\ 1.9\\ 2.0\\ 2.25\\ 2.7\\ 4.2\\ 4.88\\ 5.8\\ 7.5\\ 8.3\\ 10.0\\ 16.3\\ 18.6\\ 22.2\\ 26.9\\ 33.4\\ 38.3\\ 45.7\\ 54.2\\ 63.7\\ 73.8\\ 83.3\\ 101.5\\ 120.8 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
er	20,	1972		Page	2

October 20, 1972 Revised May 31, 1973

1

TABLE 9

FIELD INTENSITY MEASUREMENTS

50 kW Directional

RADIAL #7 AZIMUTH 303⁰

Point No

oint	No.	Distance (miles)	Field Day	Intensity (mV/m) Night
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 731 732 733	•	(miles) 1.0 1.1 1.18 1.3 1.4 1.49 1.6 1.7 1.8 1.9 2.0 2.7 3.55 4.05 4.5 5.3 6.2 7.4 9.3 10.0 12.3 15.2 17.7 21.5 28.3 35.6 43.4 50.2 57.0 68.6 77.3 89.1 93.3	Day 2400 1100 1030 795 710 680 670 620 600 655 500 415 322 260 252 220 160 120 105 77 56 44 24 16 9 9	Night 340 235 145 185 150 98 115 89 105 94 72 56 46 37 19 31 15.5 17 14.5 11 8.5 5.6 3.5 2.3 .3 1.3 .4 .63 .9 .56 .8 .4 .7 .24 .87 .11 .085 .43 .045
734 735		94.4 108.0		.35 .05 .37 .054

October 20, 1972

PROJECT #1707 ·

TABLE 10

FIELD INTENSITY MEASUREMENTS

50 kW Directional

RADIAL #8 AZIMUTH 3580

Point	No.	Distance (miles)	Field Day	Intensity (mV/m) Night
801 802 803 804 805 806 807 808 807 808 807 808 807 808 807 808 807 808 807 808 807 808 807 808 807 808 807 807		$\begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.6\\ 1.7\\ 1.79\\ 1.9\\ 2.0\\ 2.5\\ 3.2\\ 3.65\\ 4.15\\ 5.0\\ 5.5\\ 6.0\\ 7.8\\ 8.8\\ 10.0\\ 11.1\\ 13.8\\ 15.0\\ 16.8\\ 18.3\\ 20.8\\ 23.2\\ 26.2\\ 28.8\\ 32.7\\ 35.5\\ 39.7 \end{array}$	2710 2280 2350 1940 2230 2180 1840 1890 1300 1570 1550 1110 795 740 710 530 500 445 260 250 190 165 135 115 100 100 73 65 42 37 24 22 18	$ \begin{array}{r} 1750\\ 1560\\ 1520\\ 1300\\ 1550\\ 1410\\ 1220\\ 1200\\ 850\\ 980\\ 920\\ 740\\ 560\\ 470\\ 440\\ 340\\ 320\\ 260\\ 170\\ 165\\ 120\\ 105\\ 87\\ 75\\ 58\\ 56\\ 43\\ 41\\ .5\\ 58\\ 56\\ 43\\ 41\\ .5\\ 58\\ 56\\ 43\\ 41\\ .5\\ 15.5\\ 13.5\\ 11.5 \end{array} $

(Continued on Page 24)

October 20, 1972

I.

TABLE 10 (Continued)

Point No.	Distance (miles)	Field Inte Day	ensity (mV/m) Night
834	44	14.5	9.3
835	49.5	7.4	4.7
836	54.0	6.5	4.0
837	58.4	3.9	2.5
838	59.8	3.1	1.9
839	62.6	3.2	2.1
840	67.8	3.0	1.95
841	74.7	.92	.59
842,	82.3	.79	• 5
843	88.7	.48	.32
844	102.2	. 32	.2
845	111.9	.26	.16
846	123.0	.20	.13
847	132.3	.24	.15

October 20, 1972

;

Page 23

665

Ľ.

ADDENDUM

TO THE FINAL PROOF OF PERFORMANCE

CFRB

TORONTO

ONTARIO

In reviewing certain sections of the Final Proof of Performance dated October 20, 1972, the need for more detailed explanations has been considered in relation to two points.

Point #1

Shape of the daytime directional radiation pattern:

The original polar plot, Figure 1, dated October 20, 1972, exhibited a distortion of the minima centred on Azimuth 70°.

Steps were taken to readjust the daytime array, and the resulting daytime horizontal radiation pattern is shown in Figure 1, Revised May 31, 1973.

Point #2

Explanation of the Phase Monitor Readings shown on Page 6 of the Final Proof of Performance of CFRB dated October 20, 1972 (Project #1707), Revised May 31, 1973:

There is a wide discrepancy between the theoretical phases and the measured phases of 5M and 6M.

Using Tower #2 as the reference tower, the sampling lines to 5M and 6M are 164° longer at 1010 kHz. This additional length is due to the fact that the loops at 5M and 6M are mounted at the current loops on these tall towers, and there is an additional length of line used to form an isolation coil at the base of these two tall towers. The length difference was measured electrically to be 164°.

(Cont'd.) on page 25

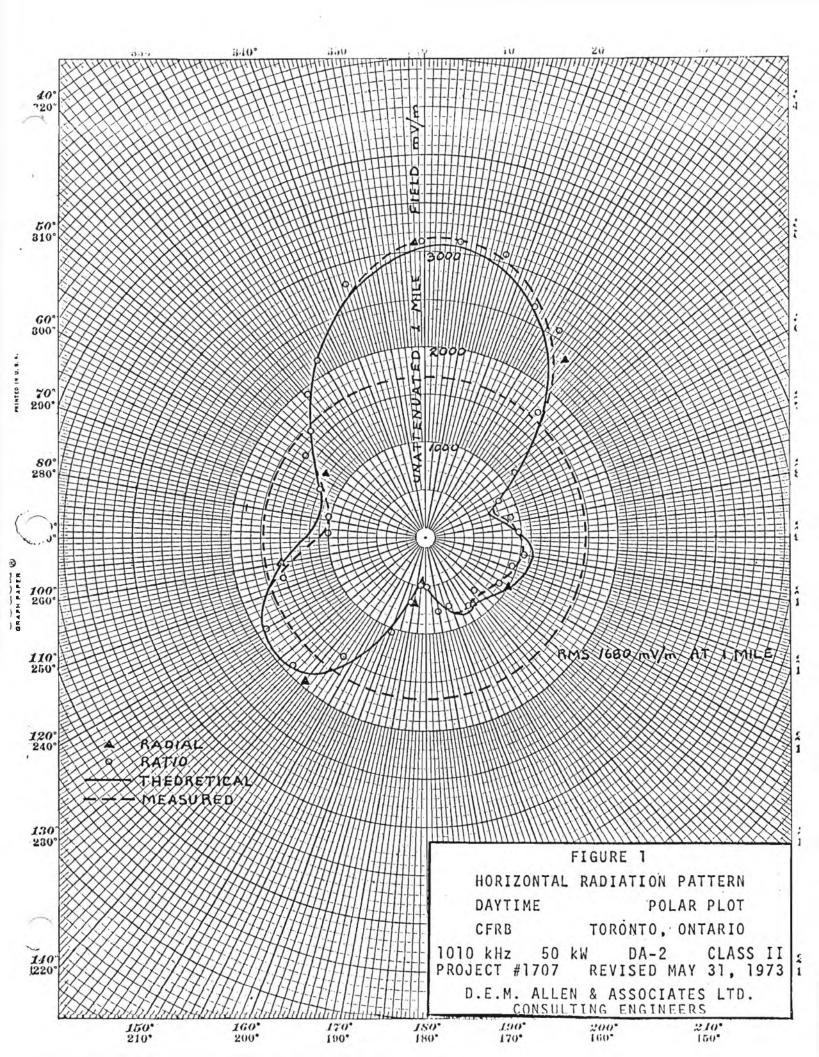
Revised May 31, 1973

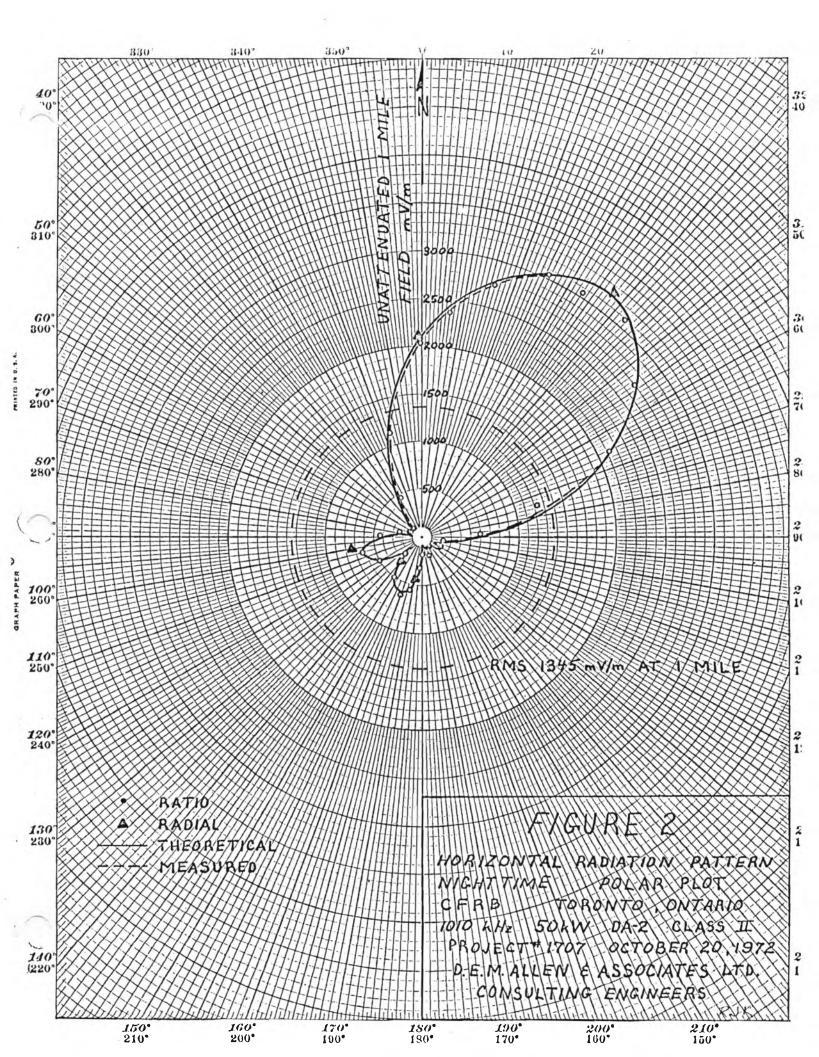
ADDENDUM

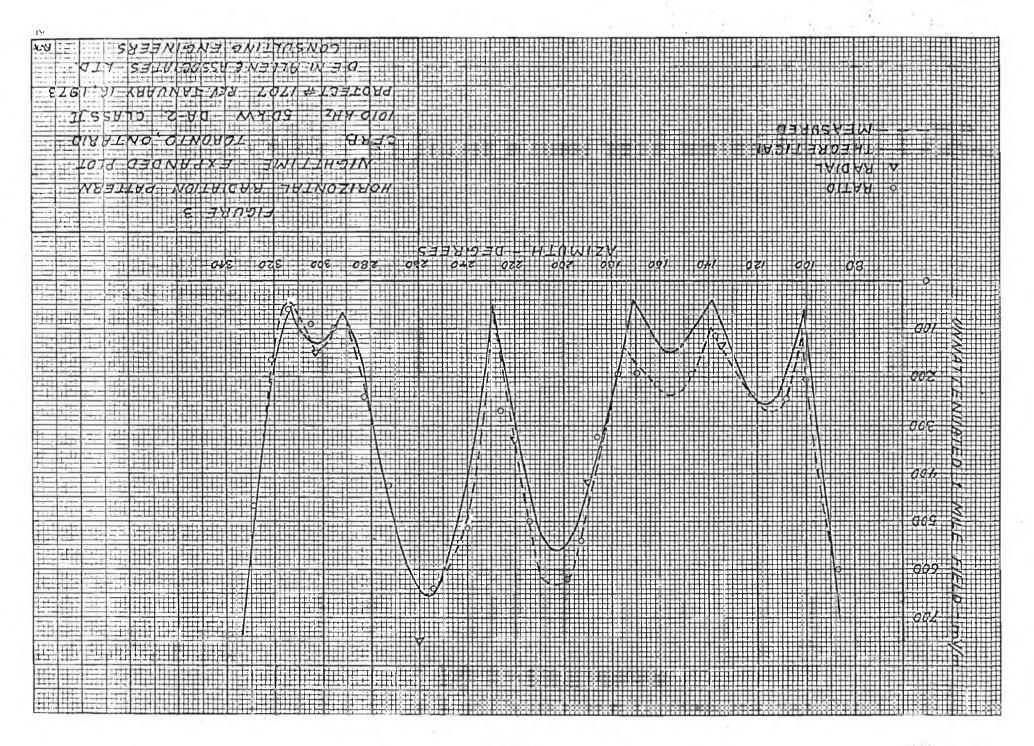
Point #2 (Cont'd.)

Therefore, if we want to determine the actual current phase at the current loops on Towers #5 and #6, we should add +164° to the 5M and 6M readings tabulated on Page 6, and compare this value with the Theoretical Phase.

The table on the next page provides this information.

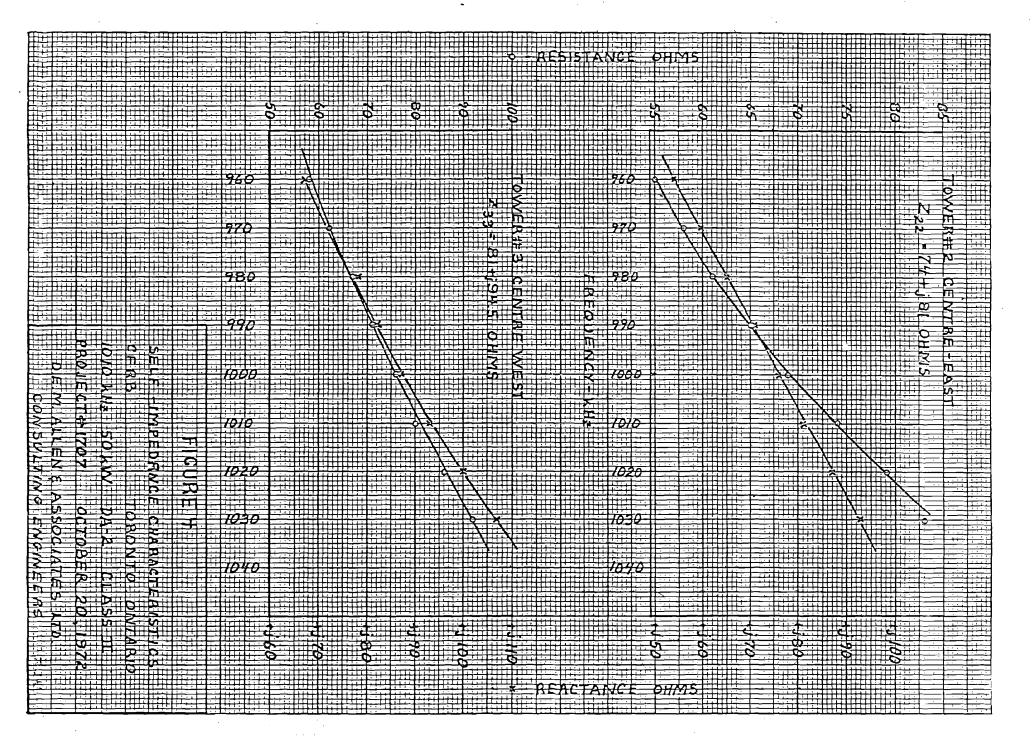

Revised May 31, 1973


Tower	Phase Monitor Reading	Correction due to Sampling Line Length	Current Phase At Loop	Theoretica Field Phase
Daytime				
#2 Centre East Base Loop	. 0°	0 °	0°	0 °
#5M Southwest Middle Loop	-148.8°	+164°	+15.2°	+10°
#6M Southeast Middle Loop	-80.1°	+164°	+83.9°	+75°
Nighttime				
#2 Centre East Base Loop	0 °	0°	0 °	0°
#3 Centre West Base Loop	1.3°	0 °	-1.3°	-6.8°
#5M Southwest Middle Loop	-103.1°	+164°	+60.9°	+59.2°
#6M Southeast Middle Loop	-95.7°	+164°	+68.3°	+64.2°

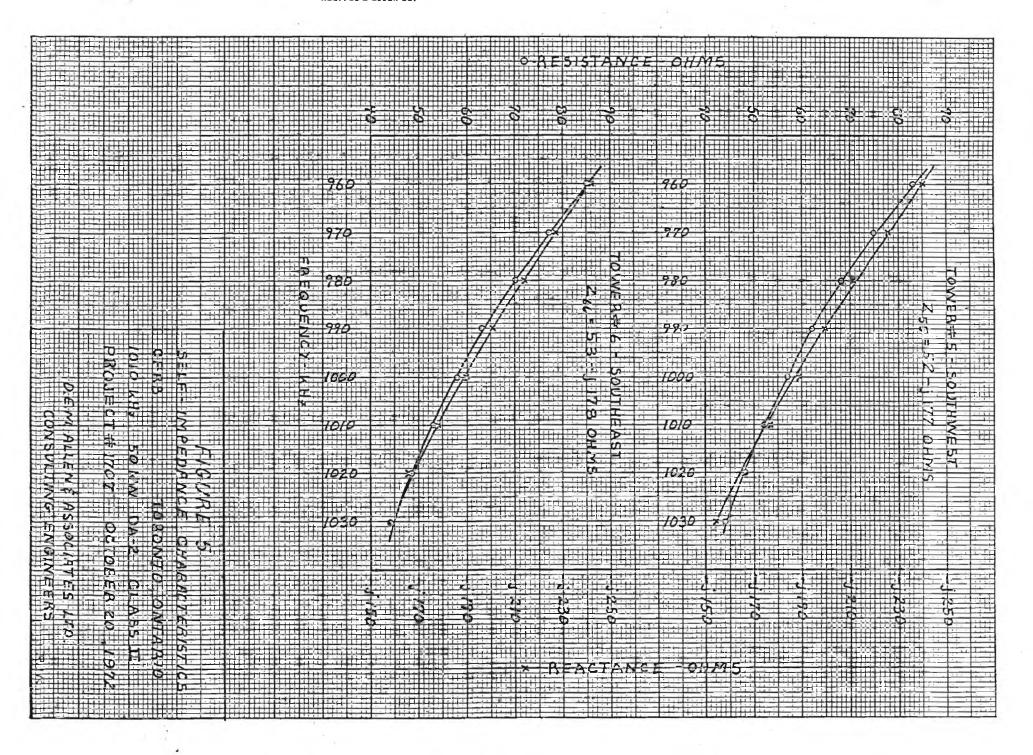

Revised May 31, 1973

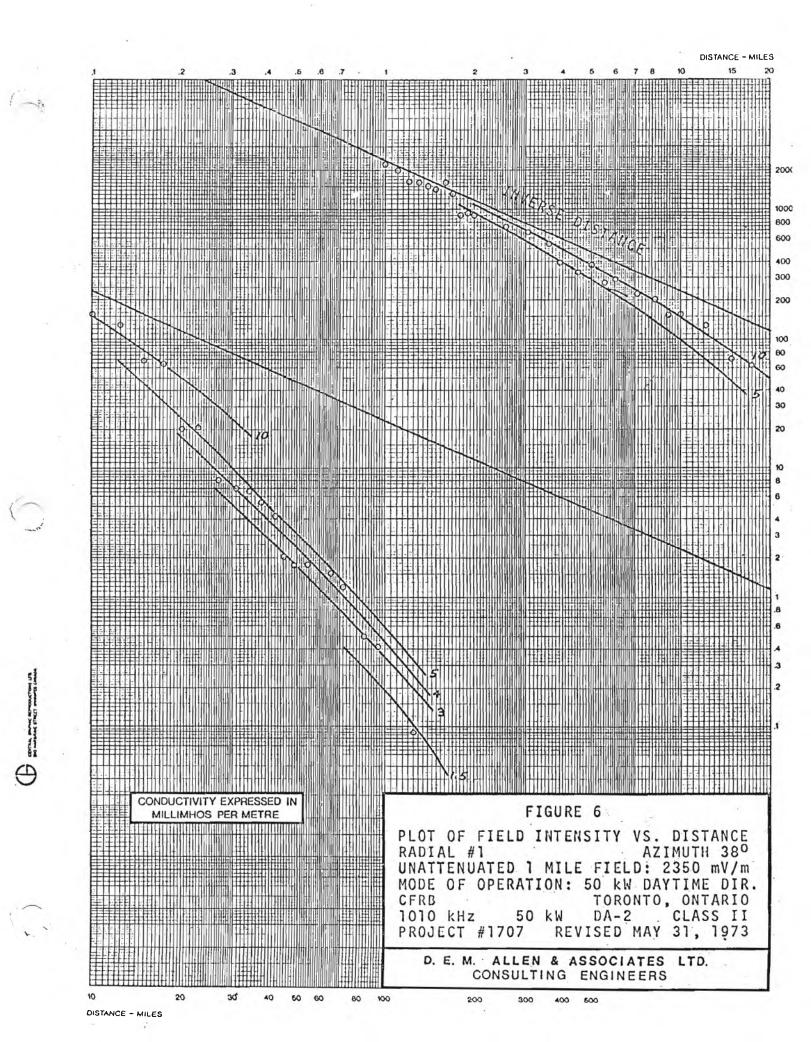
ŕ

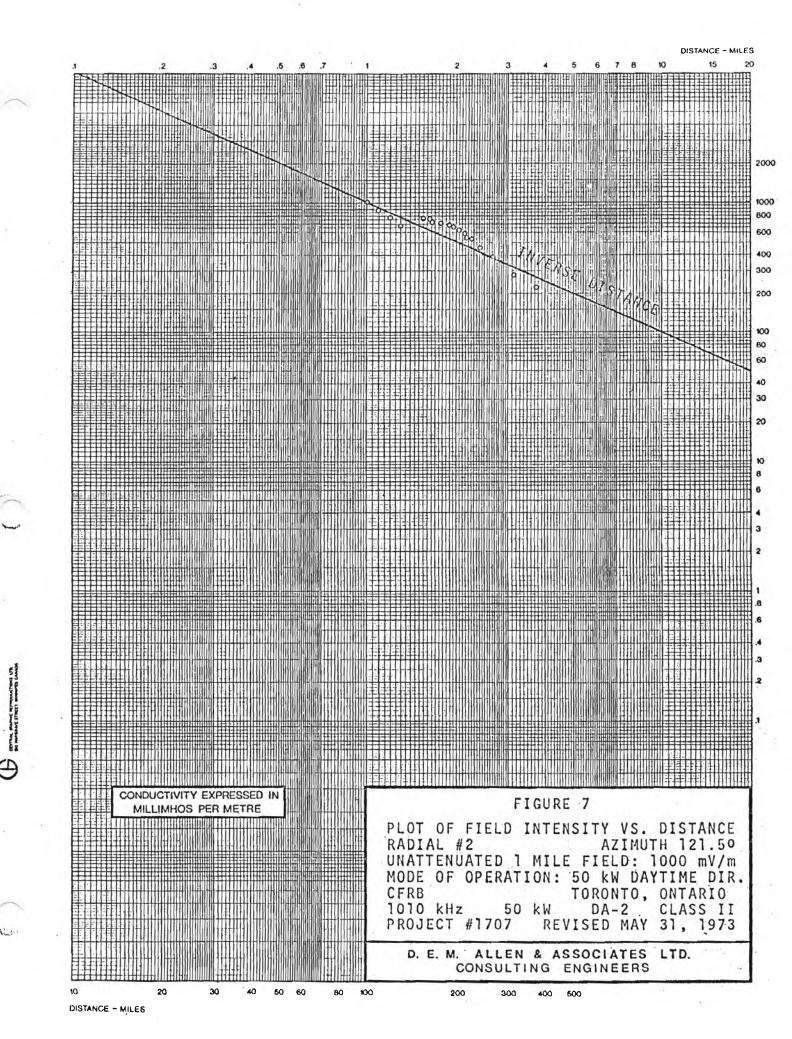
D. E. M. ALLEN & ASSOCIATES LTD. CONSULTING ENGINEERS

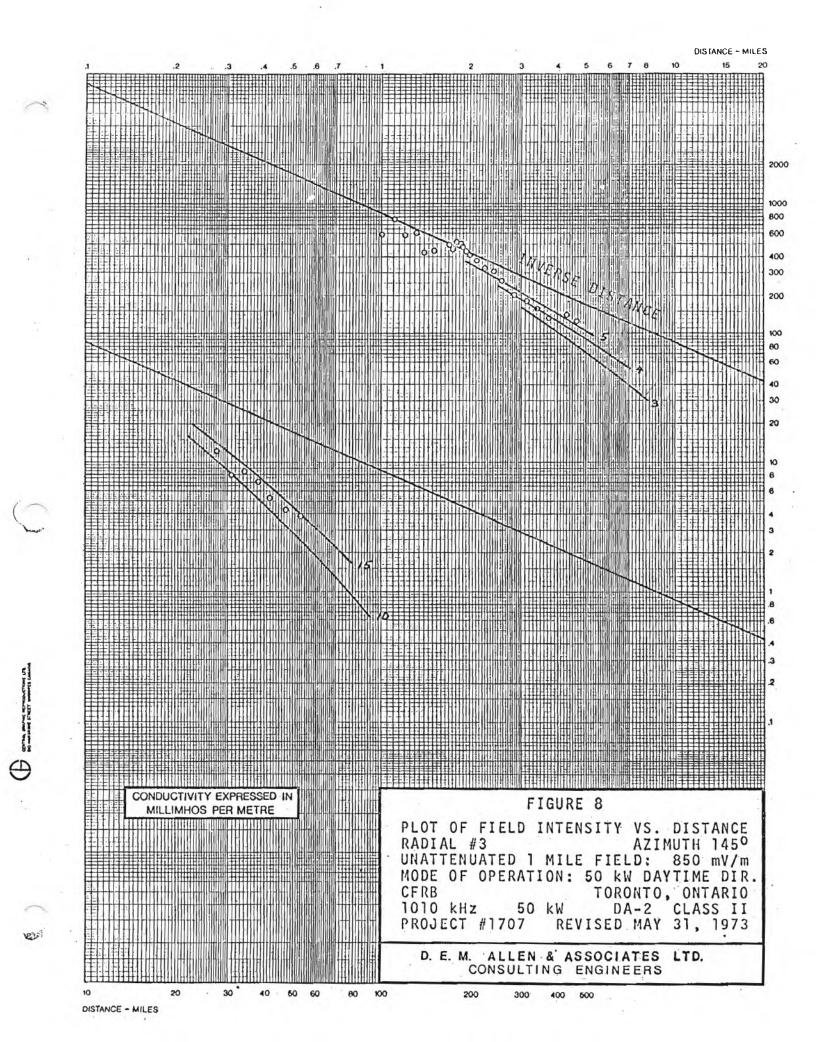


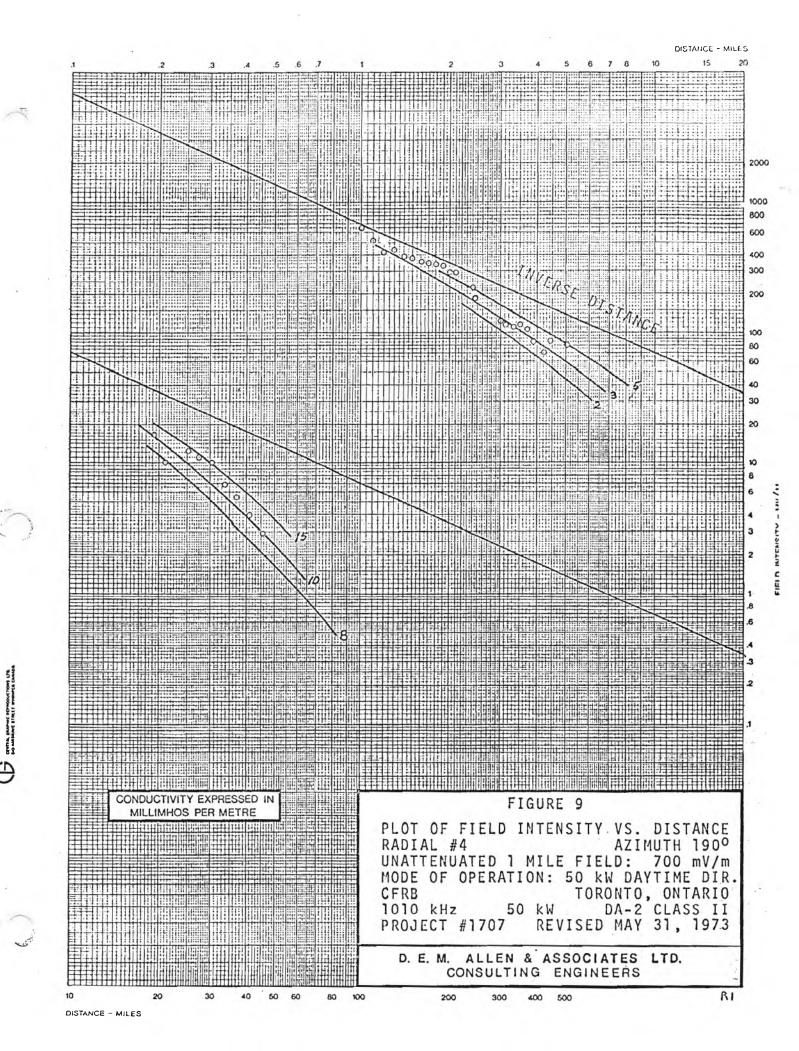
KOE 1 X 10 TO V INCH 46 1323

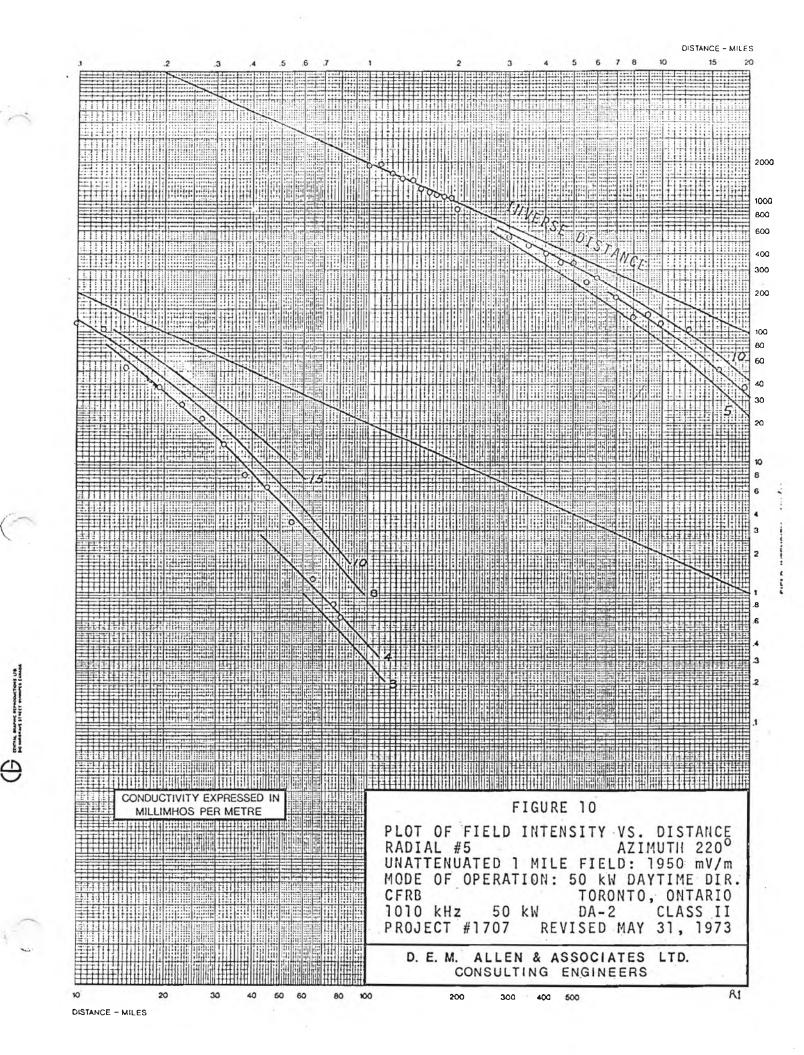

C

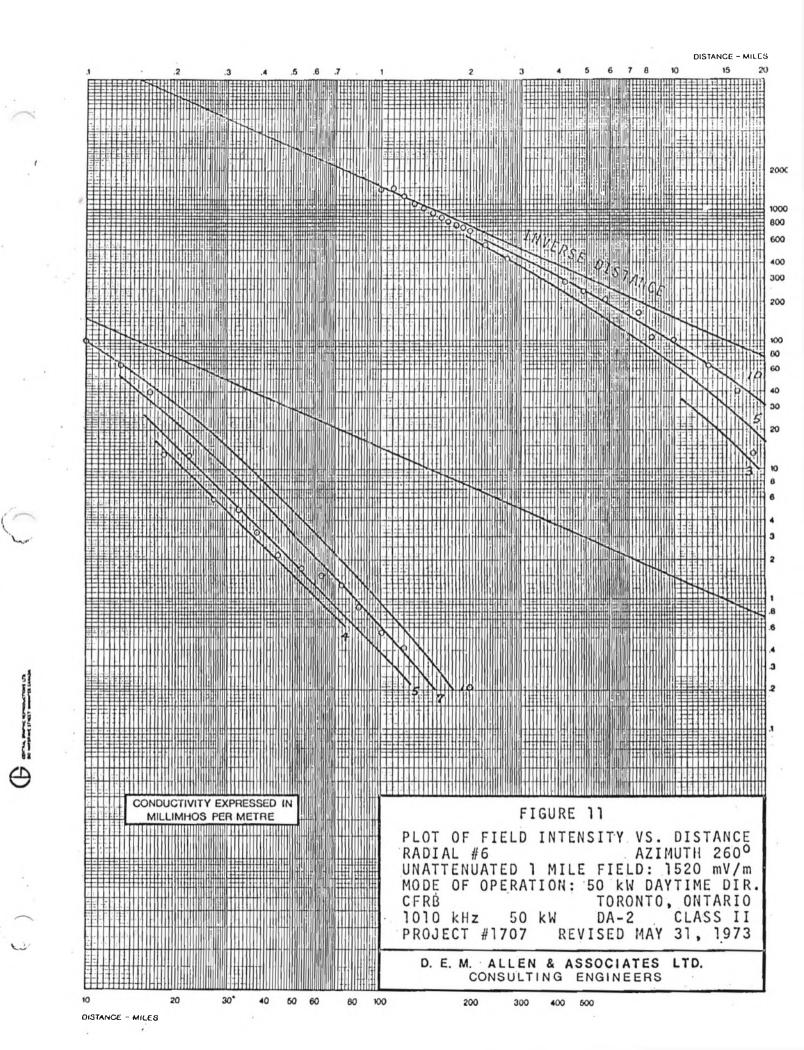


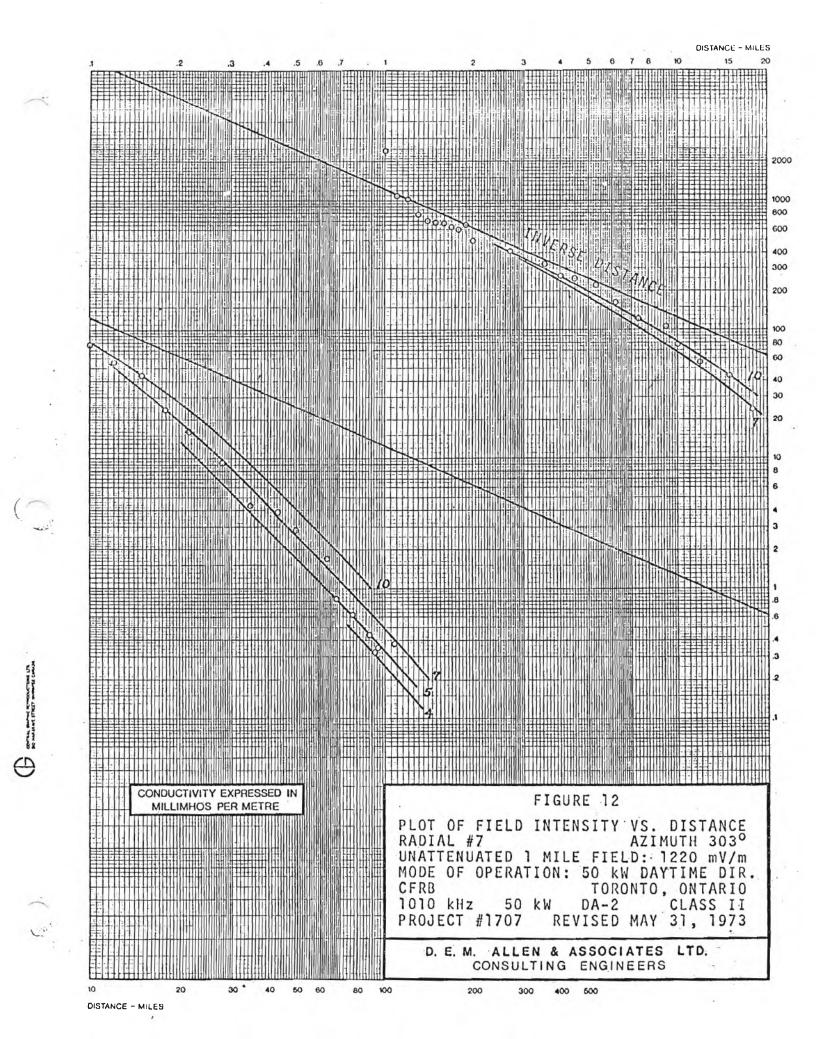


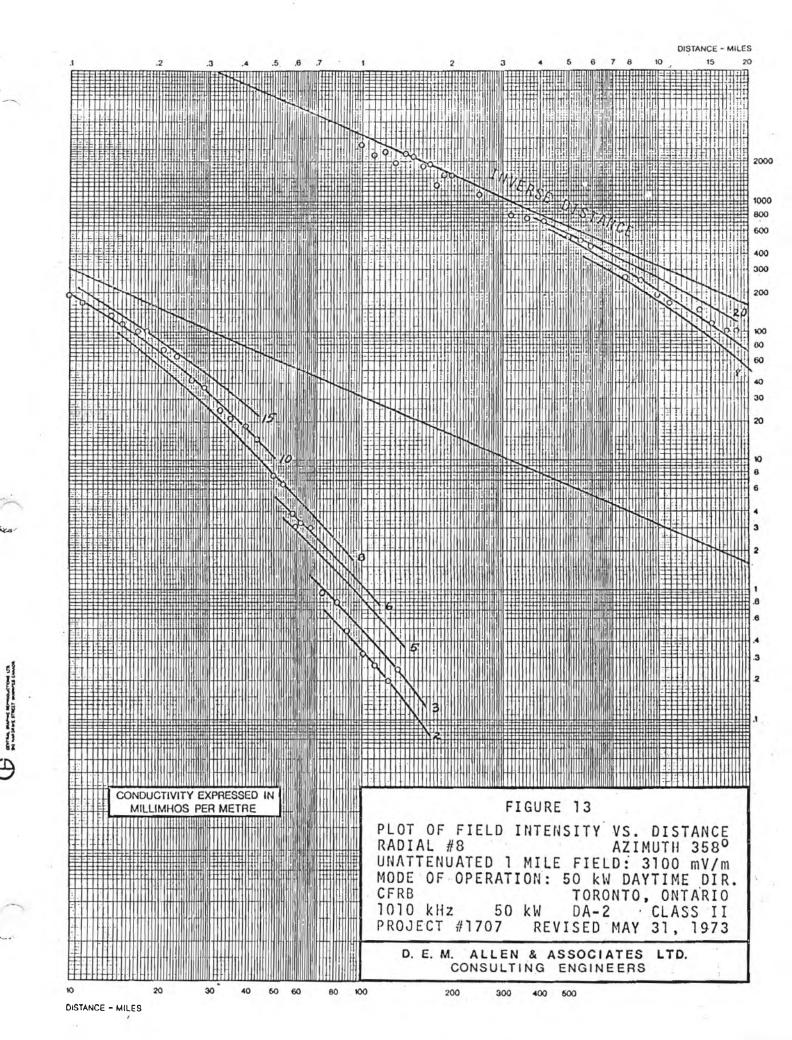

ť.

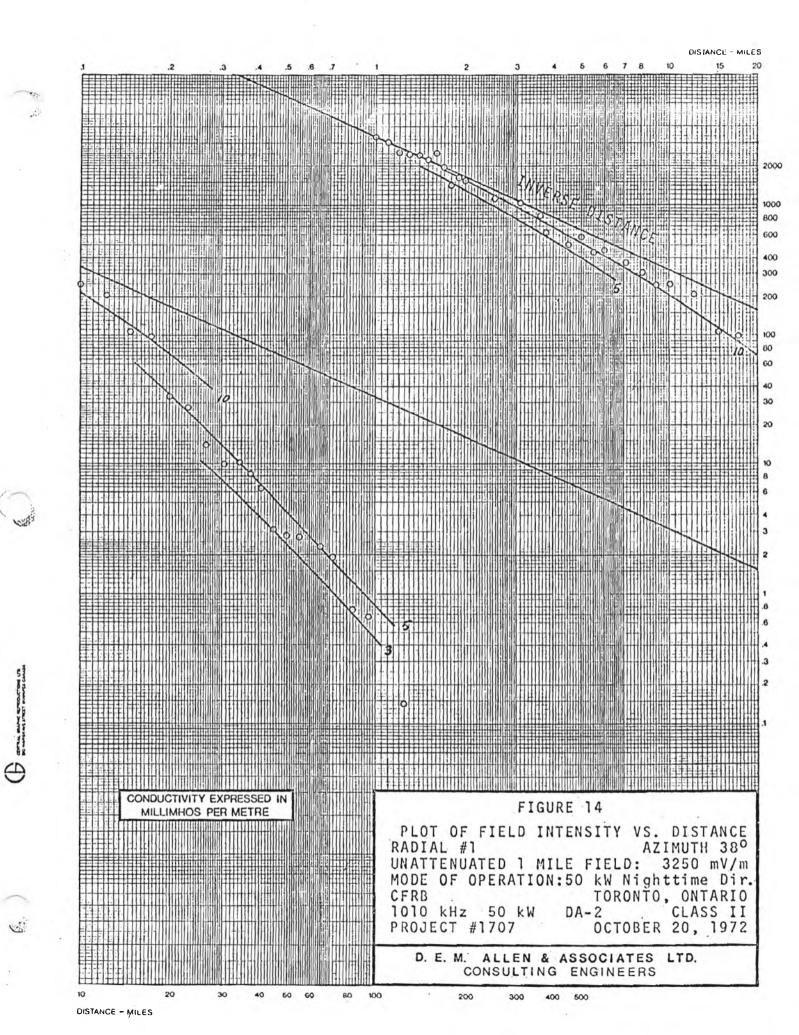

K-E 10 X 10 TO 1/2 INCH 46 1323 KEUFFEL & ESSER CO.

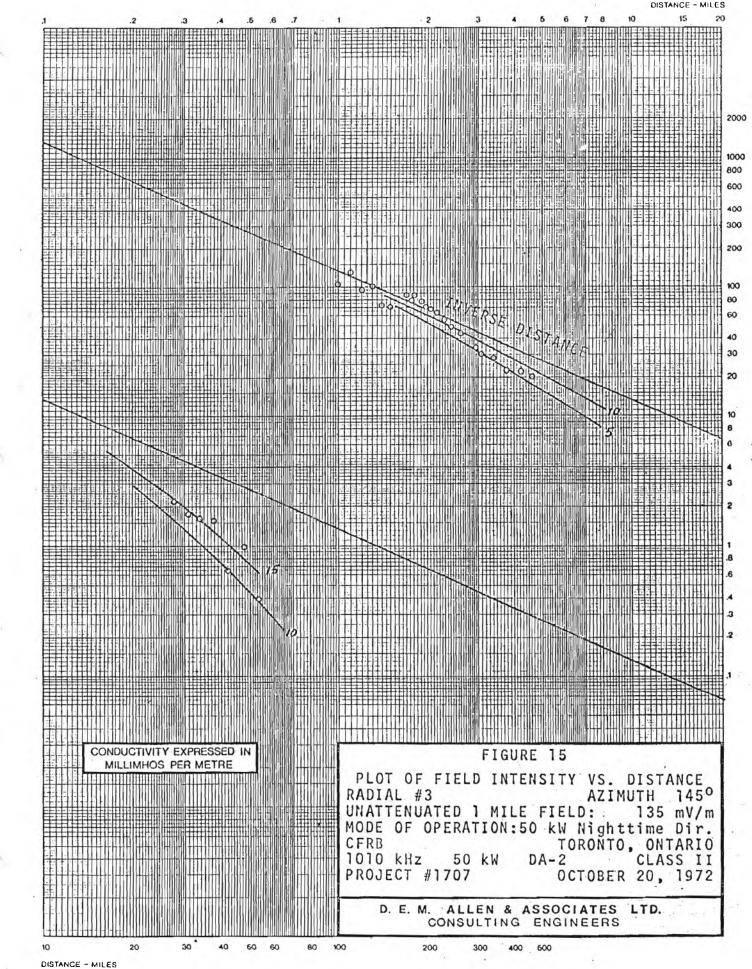


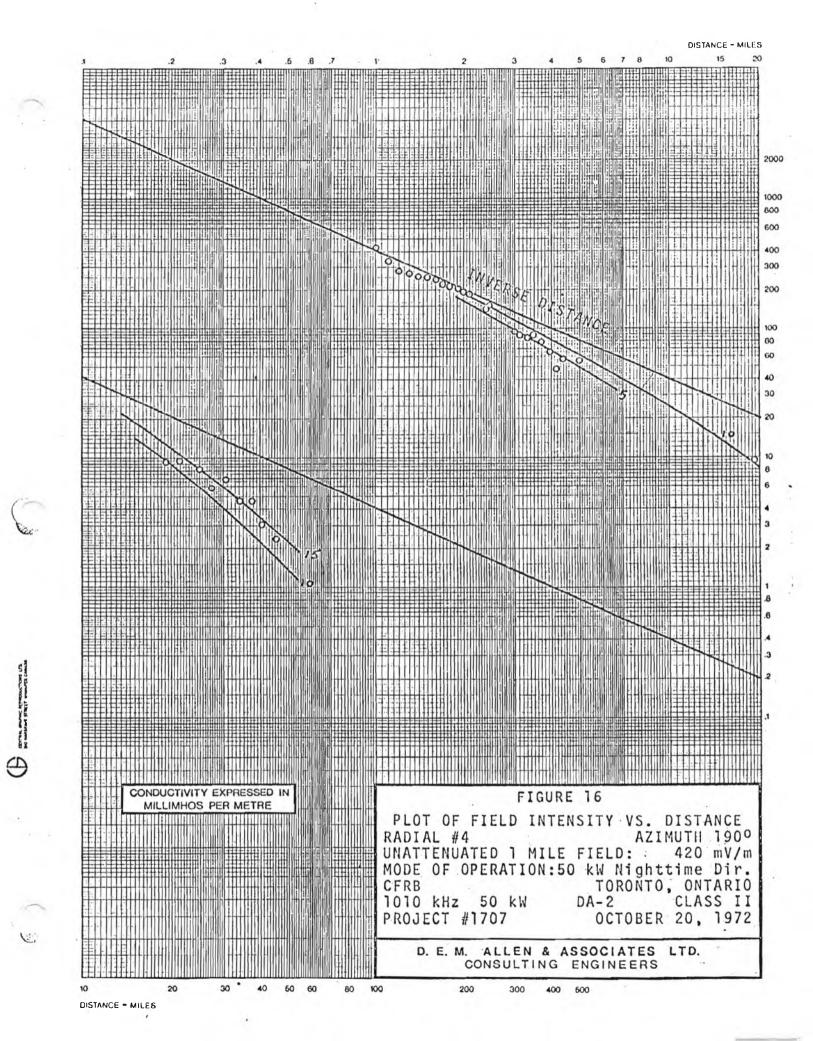


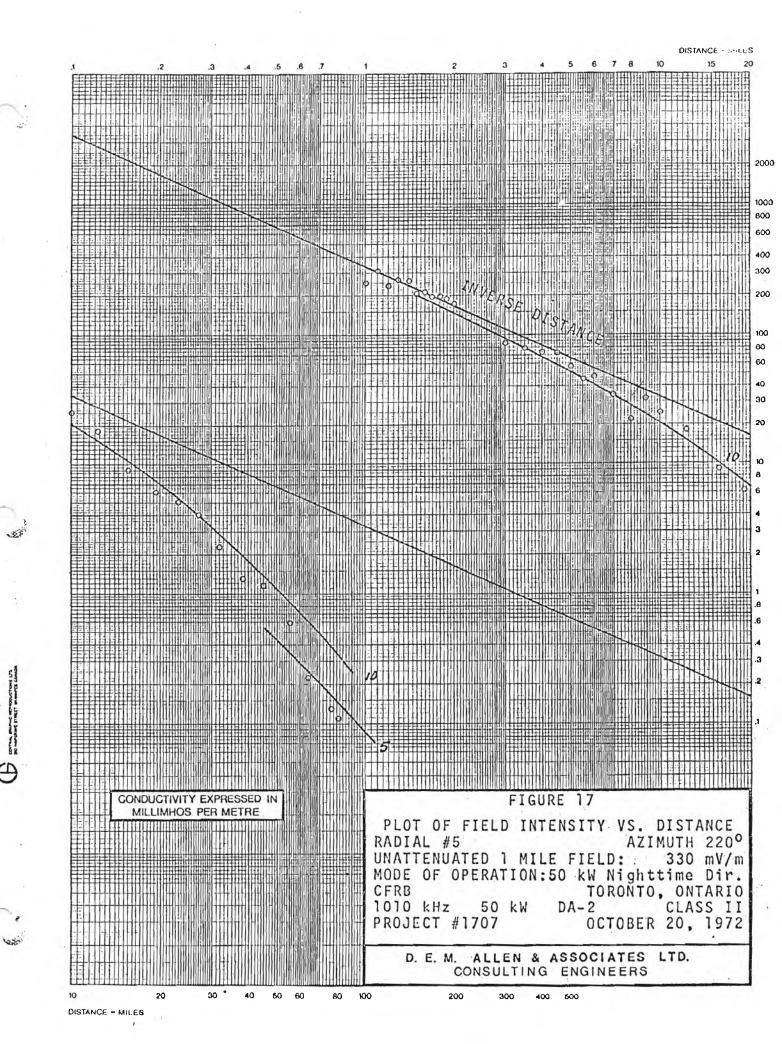


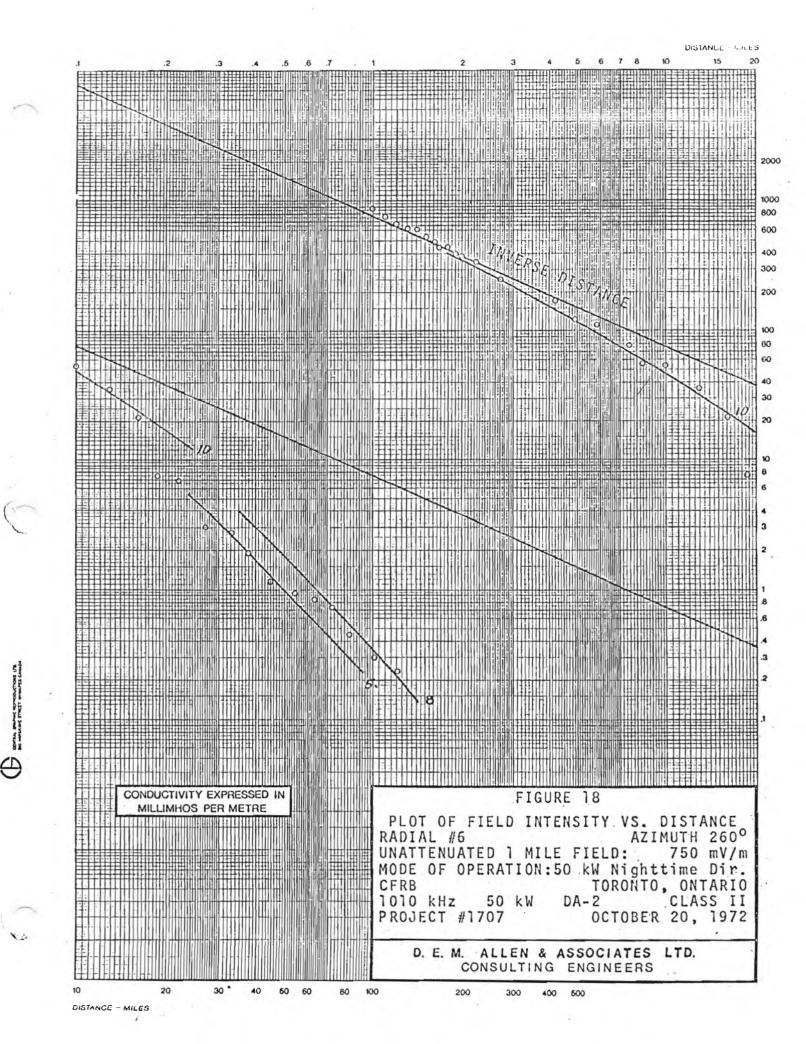


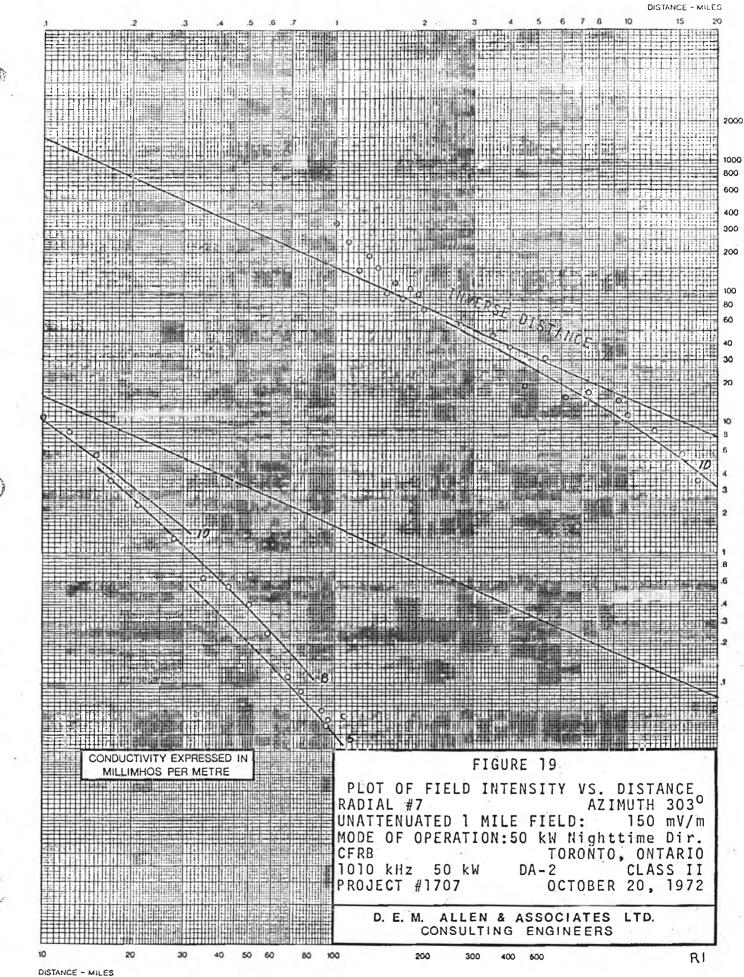




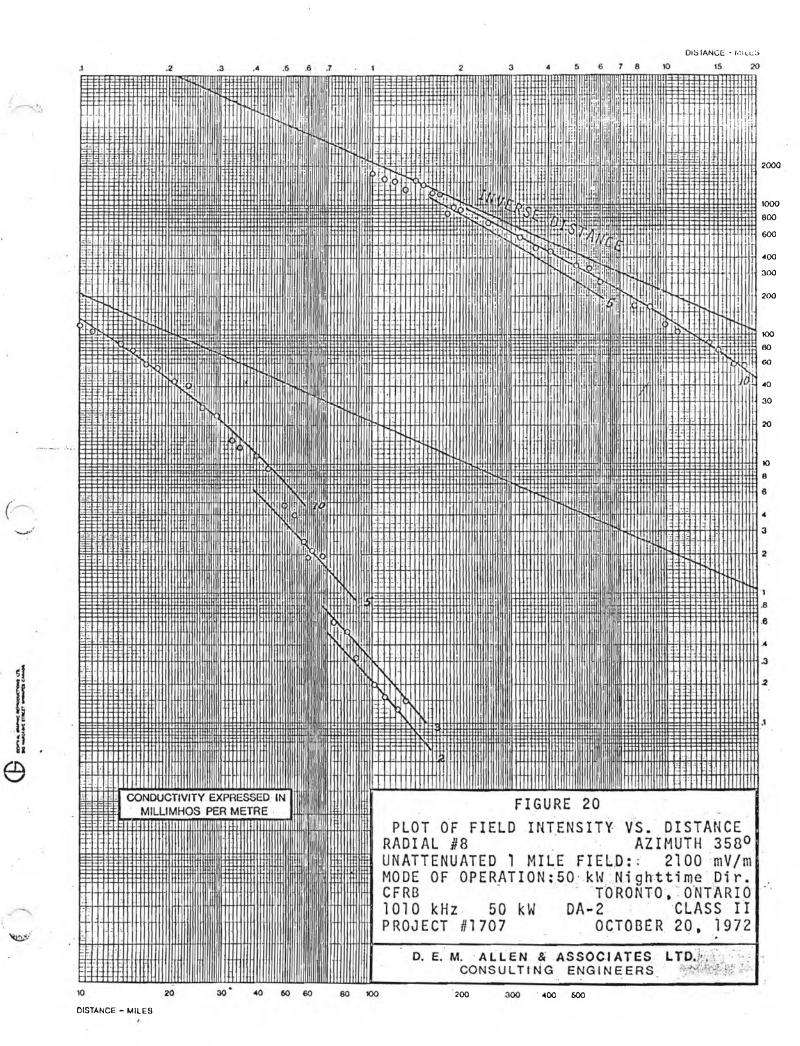


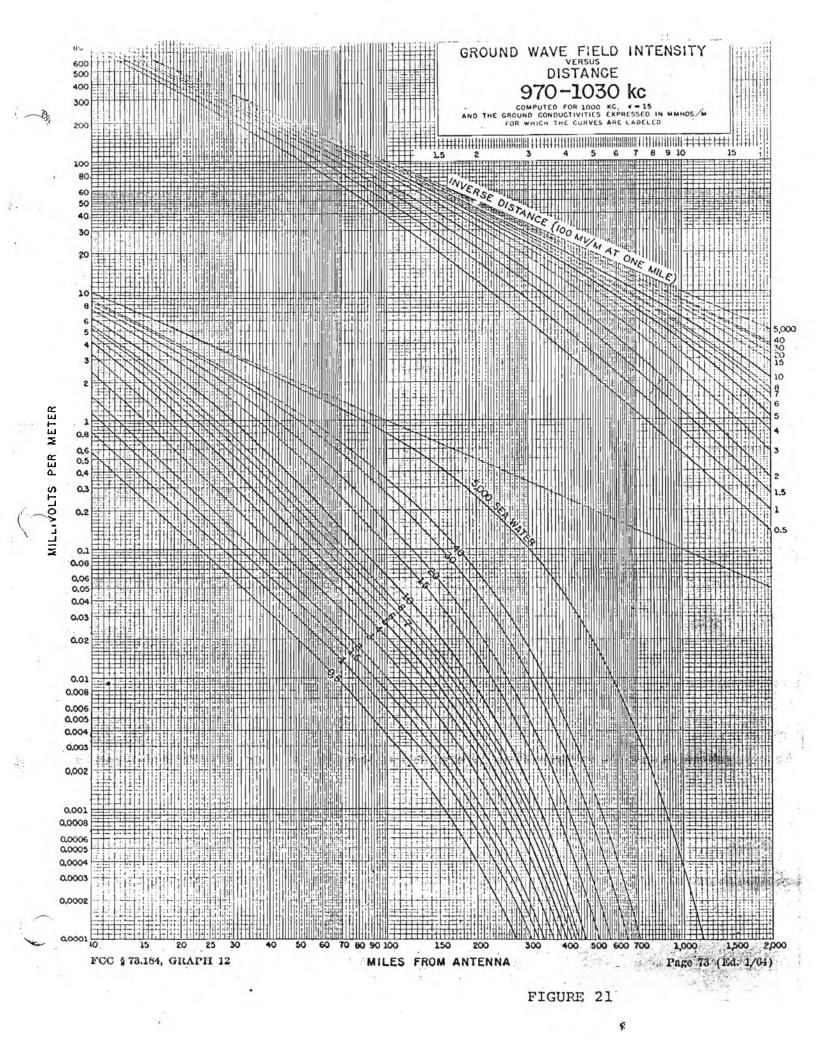





the s

SOTIAL ANIMA TOTAL CANCEL CANCEL





ענונוג שוואיל אנישטאלו שוואינו ליאיש

FIELD INTEN

STATION CALL: CFRB LUIT STUDIO LOCATION: TORONTO, ONTARIO UG-133 <u>TECHNICAL BRIEF</u>

16-13.

PREPARATION DATE: 19 MAY 1993 REVISED DATE: 21 APRIL 1997

1

LICENSEE: STANDARD RADIO INC.

ELDER ENGINEERING INC. -

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1	INTRODUCTION	1
2	OBJECTIVES	1
3	SITE DISCUSSION	1
4	FREQUENCY ASSIGNMENT	2
5	ARRAY LOCATION	3
6	ARRAY DESIGN	3
7	GROUND SYSTEM	4
8	PHASOR	5
9	PATTERN DISTORTION	5
10	ASSUMPTIONS AND SOURCES OF INFORMATION	6
11	DAY PRIMARY SERVICE	8
12	DAY SECONDARY SERVICE	9
13	NIGHTTIME PRIMARY SERVICE	10
14	NIGHT SECONDARY SERVICE	10
15	MAXIMUM FIELD INTENSITIES	11
16	RADIATION EXPOSURE	13
17	LIST OF PROTECTED STATIONS	15
18	DAY INTERFERENCE ANALYSIS	16
19	NIGHT INTERFERENCE ANALYSIS	16
20	INTERMODULATION AND CROSS MODULATION	18
21	IMAGE INTERFERENCE	18
22	OTHER SIGNIFICANT INFORMATION	19
23	ENGINEER'S SEAL AND SIGNATURE	19

Г L

TABLE OF CONTNENTS

TITLE

-

TABLE

ANTENNA DESCRIPTION SHEET	1(1-4)
	1(1-4)
AERONAUTICAL CLEARANCE FORM 16-879	2
HORIZONTAL RADIATION PRINTOUT	3(1-2
IMPEDANCES, CURRENTS AND POWER	4(1-2)
DISTANCES TO CONTOURS	5(1-8)
CFRB Eu CALCULATIONS	6(1-4)
AM STATIONS WHICH SERVICE MISSISSAUGA	7
DAY INTERFERENCE ANALYSIS	8(1-4)
NIGHT INTERFERENCE ANALYSIS	9(1-11)
COMPARATIVE Eu'S	10

FIGURE

HORIZONTAL RADIATION PATTERNS	1(1-2)
SKETCH OF SITE, TOWER LAYOUT	
AND GROUND SYSTEM	2(1-2)
PREDICTED CONTOUR MAPS:	
25 AND 15 mV/m	3-1
5 AND 2.0 Eu mV/m	3-2
0.5 mV/m	3-3
COMPARATIVE CONTOUR MAPS:	
DAY 1 V/m	4-1
DAY .25 V/m	4-2
NIGHT 1 V/m	4-3
NIGHT .25 V/m	4-4
DAY 25 mV/m	4-5
DAY 5 mV/m	4-6
DAY 0.5 and 0.1 mV/m	4-7
NIGHT 25 mV/m	4-8
NIGHT 5, 3.2 AND 2.0 mV/m	4-9
PROTECTED CONTOUR MAP	5
NIGHT Eu AND 0.2 Eu OF CKXD	6-2

<u>EXHIBIT</u>

MEMORANDUM OF UNDERSTANDING

1(1-9)

- ELDER ENGINEERING INC.

TECHNICAL BRIEF

<u>1</u> - INTRODUCTION

This brief was prepared on behalf of Standard Radio Inc., licensee of CFRB, Toronto, Ontario. It was prepared in accordance with Broadcast Procedures and Rules, Parts I, II and the Interim MF Working Arrangement between FCC and DOC of February 1991, together with the Memorandum of Understanding in Exhibit 1.

2 - OBJECTIVES

The principal objective is to improve CFRB's day and night transmitting facilities, service and site utilization, partly as a result of recent developments on 1010 kHz in the United States of America.

<u>3 - SITE DISCUSSION</u>

In 1988, the Separate School Board demanded part of CFRB's antenna site, for Lakeshore Secondary school. Two years later, several adjacent industrial land users objected to the rezoning application. Also in 1988, several adjacent high rise developments were proposed, which would have had a significant impact on CFRB's transmissions. The proposed building heights were reduced, to help satisfy our concerns.

These activities were the result of the rapid growth, construction boom and scarcity of vacant land in this part of Mississauga. They forced Standard Radio to re-examine the possibility of relocating CFRB's transmitting facilities. They are located in an area that was rural

in 1948 and is now urban and surrounded by industrial-commercial operations, with residential beyond. Due to the hostile environment, pattern distortion became excessive and it has been impossible to conduct a satisfactory supplementary proof of performance for many years. For all of these reasons, a thorough search was conducted. Many open areas were considered and detailed plans were developed in 1990-91, for relocating to Lakeside Park.

However, for economic and other reasons, it became clear that the most feasible alternative is for Standard Radio Inc. to retain CFRB's present site.

4 - FREQUENCY ASSIGNMENT

We understand that CBY (later CJBC) Toronto, commenced operating with 1 kW ND-U on 1010 kHz, in 1942. It moved to 860 kHz in 1948, when CFRB commenced operating on 1010 kHz, at 50 kW, DA-2. Under the Rio Agreement, its assignment became class A. Sector augmentations have been notified, but are not yet implemented.

In 1990, Standard Radio Inc. was approached by Westinghouse Broadcasting Inc., licensee of WINS, New York City (50 kW, DA-1, class B, 1010 kHz). WINS transmitting facilities are located in a hostile environment and its array is old. It operated on special temporary authority from the FCC. Westinghouse proposed a new, improved array for WINS to help solve the problems.

Because CFRB has a class A assignment, the Canada USA Bilateral MF Agreement requires no additional impairment of its nighttime skywave service. WINS proposed antenna could not meet this requirement. Accordingly, a special agreement was required between licensees, that was also acceptable to both administrations.

- 2 -

A Memorandum of Understanding has been negotiated between licensees, a copy of which is included herein as Exhibit 1.

The allocation engineering benefits to CFRB may be summarized as follows: - the nighttime assignment of KSYG, Little Rock will be deleted - CFRB will partially substitute its contributions to other cochannel stations.

The target skywave radiation from WINS new night pattern to CFRB's Eu contour will be obtained or confirmed by means of helicopter "talk-downs" - that is, fine tuning of the array in conjunction with airborne field intensity measurements.

CFRB's minor lobe and null detail will be augmented significantly, in order to compensate for scatter from neighbouring buildings, towers, etc., which cause considerable pattern distortion.

The other improvements to CFRB's array and service coverage are discussed in Section 6.

5 - ARRAY LOCATION

The new array will be in almost the same location as the present one.

<u>6 - ARRAY DESIGN</u> (Reference - Tables 1 to 4 and Figure 1)

CFRB's present array is a parallelogram with two guyed radiators of height 76m (92.3°) and two of 167.6m (203°). There is also an emergency non-directional radiator.

The proposed array is a parallelogram consisting of the two existing 167.6m (203°) tall, series fed, guyed masts and two new ones. The design improvements include increased radiation efficiencies, lower RSS/RMS ratios for better stability and higher Q' or safety factors, as follows:

	DA	AY	NIGHT		
	PRESENT	PROPOSED	PRESENT	PROPOSED	
RMS(mV/m at 1 km)	2687.6	2935	2193.5	2800	
RSS/RMS	1.178	1.087	1.381	1.244	
Q %	2.5	5.35	2.5	5.35	
Q mV/m	79.2	170.6	75.7	186.3	

The horizontal RMS radiation values were calculated assuming 50 kW and a loss of 1 ohm per radiator.

The night pattern includes eight sector augmentations as a precaution, because of the large number of potential reradiators in the area.

7 - GROUND SYSTEM Reference: Figure 2(1-2)

Counterpoises of 6m radius will be used, to reduce the RF losses and to improve array stability. Each counterpoise will include at least forty galvanized pipes 3cm-4cm diameter, secured 3m above ground. A chain link fence will surround each counterpoise, partly to protect against public access and vandalism. Beyond the counterpoises, the ground system will consist of 120 equally spaced radials per tower, of #10 AWG bare copper wire. They will be buried 25cm-50cm below grade and have typical lengths of 168m or 0.57 wavelength. Some of the south westerly radials will be shorter than average with a minimum length of 145m (0.49 wavelength), these will be terminated with ground rods. Where feasible, the new radials will be bonded to the

ELDER ENGINEERING INC.

existing ones, to improve and/or extend the ground system. As a result, the effective lengths of those under the main lobe will be at least 223m, or 0.75 wavelength

5 -

<u>8 - PHASOR</u>

The phasing, tuning, power dividing and filtering system will be conservatively designed and rated. The main phasor will probably remain at the existing building near the present Tower 3.

<u>9 PATTERN DISTORTION</u> Reference: BPR-II-B-2.8

The minimum radiation from the proposed day pattern is 1200 mV/m at 1 km, except from the incidental null on about 077° . The minimum augmented night horizontal radiation values are approximately 400 mV/m.

As a result, only a night pattern scatter comparison has been made, because it is more susceptible to excessive distortion.

Five significant reradiators are considered in the following table:

	APP <u>Hei</u> <u>m</u>		MATE <u>Dis</u> <u>km</u>	<u>Brg</u> . True	FROM	ETICAL RA CFRB (V/m <u>Proposed</u>	
1 St. Lawrence Cement Co. Chimney	167	203	1.5	164°	0.163	0.407	+150
2 Petro Canada Oil Refinery Chimney	72	87	1.7	109°	0.315	0.196	-38
3 CHUM's six towers	72	87	2.1	159°	0.221	0.354	+60
4 Ontario Hydro MW Tower	70	85	2.3	178°	0.290	0.372	+28
5 High rise apartment building	70	85	0.8	020°	4.746	6.218	+31
		E	LDER E	NGINEERI	NG INC. —		

We expect that CFRB's higher Q and sector augmentations will provide sufficient head room to include the increased scatter from these and other obstructions.

However, if necessary, as a last resort, we shall seek permission on behalf of CFRB, to treat some of them, such as item 1, 3 or 4. Item 4 has already been treated by CHUM, so would require additional or modified stubs. Suitable filters would then be designed, installed and adjusted, to reduce the scatter to an acceptable level.

Standard Radio Inc. will normally bear all related expenses, including those due to a loss of revenue resulting from CHUM having to suspend operation if 1010 kHz ATU filters are required in their system for the first time. However, if detailed measurements prove that such filters would have been necessary to reduce scatter to an acceptable level, based upon CHUM's present facilities and CFRB's incident field intensities in 1965, Standard Radio Inc. reserves the right to negotiate equitable cost sharing with CHUM Ltd. Other issues are referred to in Section 20 and in the present agreements between licensees, dated 10 July 1964 and 16 May 1969.

10 - ASSUMPTIONS AND SOURCES OF INFORMATION

Values of ground and lake conductivity used to establish protection requirements, were based upon the official DOC map dated January 1980 and FCC Figure M3.

Conductivity values used to predict service contour locations were based upon 1987 - 1991 measurements, made on 880, 1010 and 1050 kHz, in order to obtain realistic conservative estimates. The conductivities assumed and distances to contours are shown in Table 5.

Typical conductivity values are as follows:

- 6 -

	CONDUCTIVITY (mS/m)				
	DOC	CFRB	1993/97		
	MAP	1972 PROOF	BRIEF		
Metropolitan Toronto					
East	8	5	3.5		
North and Central	8	10	4-6		
West	5	10	6		
North of Metropolitan					
Toronto (5 mV/m)	8 & 10	10	3-5		
Lake Ontario	15	15	15		

The proof of performance for CFRB's present facilities was conducted in 1972. The measured contours are included on comparative contour maps, as required in BPR-I-3.3.2. However, subsequent construction and expansion of the Metropolitan area has greatly increased signal absorption. It is evident that CFRB's service contours north of Toronto have shrunk considerably, as a result. Also, CFRB's coverage along the north shore of Lake Ontario was not measured during the 1972 proof. Recent measurements made in the southeast part of Toronto indicate that coverage to this area benefits greatly from the over-water path and extends much further than shown in the proof.

Because of these two factors, the contours in the 1972 proof do not accurately represent CFRB's present coverage. For this reason they have been revised, using the measurements made since 1987 to locate the primary service contours and to estimate the location of the secondary service contours. The revised contours are also shown on the comparative contour maps. Information on related assignments was obtained from the Department's Broadcast Database, downloaded on January 14, 1997. Stations were protected as required by the current MF agreements and Industry Canada's domestic rules except where special agreements apply.

All maps were current editions obtainable from Energy, Mines and Resources Canada. The following sheets were used:

Scale	Title	Number
1:50,000	Hamilton	30M/5
1:50,000	Toronto	30M/11
1:50,000	Brampton	30 M /12
1:500,000	Toronto-Ottawa	31SW
1:500,000	Windsor-Toronto	40NE and 30NW
1:500,000	Manitoulin-Owen Sound	41SE
1:1.000,000	Lake Erie	NK-17
1:1,000,000	Hudson River	NK-18
1:1,000,000	Georgian Bay	NL-17
1:1,000,000	Ottawa	NL-18
1:2,000,000	Ontario	MCR 39

11 - DAY PRIMARY SERVICE (Reference: Figures 3-1, 3-2, 4-5 and 4-6)

The 25 mV/m contour extends up to 43 km north, beyond Kleinburg and Maple, 37 km northeast to western Scarborough, 43 km southwest to enclose Hamilton and 22 km west to Milton. Major towns and cities enclosed include most of Metropolitan Toronto, all of Woodbridge, Mississauga, Oakville, Burlington, Stoney Creek, Hamilton, Brampton and Vaughan. Compared to the revised present contour, there will be a reduction in service to Georgetown, an increase in coverage to the densely populated easterly portions of Toronto and Hamilton.

The extent of primary service is considered to be 5 mV/m. This contour extends: 82 km north enclosing Alliston, Cookstown, Bradford, Newmarket, Aurora and Richmond Hill; 65 to 90 km northeast enclosing Stouffville, Markham and the southerly parts of Pickering, Ajax, Whitby and Oshawa; 67 km southeast enclosing St. Catharines and Niagara Falls; 75 km south and southwest enclosing Cayuga and Brantford; and 47 to 65 km west and northwest enclosing parts of Cambridge and Orangeville.

Service north easterly and southerly will be improved. There will be some reduction in coverage westerly.

<u>12 - DAYTIME SECONDARY SERVICE</u> (Reference: Figures 3-3 and 4-7)

The 0.5 mV/m contour will extend 120 to 210 km. It will enclose an area bounded by Brighton and Peterborough in the northeast, Midland and Thornbury to the north, Listowel to the west, Strathroy and West Lorne to the southwest. To the southeast and south it will extend beyond the Niagara Escarpment and Lake Erie. Major centres enclosed include Orillia, Barrie, Kitchener, Waterloo, Stratford, Simcoe, Woodstock, London and St. Thomas. It will provide satisfactory service in rural areas and small communities.

CFRB's nominal daytime Eu is 0.1 mV/m. As proposed, this contour will extend from approximately Windsor to Kingston, as well as north to Parry Sound and the Bruce Peninsula. It is free from groundwave cochannel and adjacent channel interference in Ontario and will continue to provide satisfactory fringe service in favorable locations.

-9-

- 10 -

13 - NIGHTTIME PRIMARY SERVICE

(Reference: Figures 3-1 and 4-8)

The 25 mV/m contour will extend 40 to 50 km north and northeast enclosing Mississauga, most of Metropolitan Toronto, also parts of Markham, Richmond Hill and Vaughan. To the southwest it will extend 28 km enclosing most of Burlington. To the northwest it will extend at least 10 km and enclose most of Brampton.

Coverage will be increased significantly to the northeast and southwest.

<u>14 - NIGHT SECONDARY SERVICE</u> (Reference: Figures 3-2, 3-3 and 4-9)

The calculated groundwave Eu of 2.0 mV/m will extend 95 to 170 km north and northeast enclosing communities along Lake Ontario from Toronto to Brighton, Port Perry, Uxbridge and Barrie. Southerly and south easterly it will extend 50 to 80 km, enclosing Burlington, Hamilton and Grimsby, and most of St. Catharines. Westerly it will extend 40 to 50 km enclosing Brantford.

The 3.2 and 2.0 mV/m contours are compared on Figure 4-8, because CFRB's Eu as a former class II or B station would be approximately 3.2 mV/m. However, as a class A assignment, its proposed Eu is 2.0 mV/m per Figure 4-A, Annex 2 of the Bilateral Agreement. Further details are provided in Table 6.

As for the primary contours, there will be significant coverage gains in most directions, but losses to the west.

The 0.5 mV/m or 25% Eu contours will provide useful intermittent service. The 0.5 mV/m groundwave contour will extend 70 to 240 km.

All the objectives of BPRII-C-3 will be met, of course.

recommended or implemented by CFRB's engineering staff. Bell Canada or DOC's District Office staff are not normally involved.

An important reason for the small number of interference problems is that the area has been blanketed by CFRB for many years. As a result, residents and business staff know how to avoid, minimize or tolerate potential interference.

In most areas, CFRB's field intensities will increase by approximately 25% or 2 dB. The Department's past experience indicates that simple remedial measures are normally successful, if the field intensity is under 3 V/m. We estimate that these contours will extend an additional 300 metres maximum.

If receivers are overloaded and/or external cross-modulation interference is caused, to other users of the radio spectrum within the 0.25 V/m contour, as at present, CFRB is prepared to accept financial and technical responsibility to remedy all valid complaints, as required in section C-10.3.2, defined in C-10.4 and restated in the Appendix to the application.

In the unlikely event that there is a substantial number of complaints which cannot be resolved satisfactorily, as a last resort, Standard Radio Inc. undertakes to reduce CFRB's power to a DOC stipulated level, as required.

After CFRB's new facilities are fully installed and in temporary use for scheduled broadcasting, it will not be feasible to revert to the present ones. This normal commitment is impractical because parts of the old array will be modified and used in the new one, the terms of the CFRB-WINS Agreement and other factors.

from Ond

16 - RADIATION EXPOSURE

Health and Welfare Canada's Radiation Protection Bureau's Safety Code 6 of May 1991, contains recommendations for protecting RF workers and the general public from nonionizing radiation at frequencies above 10 kHz. At 1010 kHz, the time (6 minutes) and spatially averaged limits are:

	E FIELD	H FIELD	CONTACT CURRENT
WORKERS	594 V/m	4.85 A/m	40 mA
PUBLIC	277 V/m	2.17 A/m	15 mA

Safety Code 6 states that the immediate vicinity of unmanned high power sources of RF radiation must be fenced off, to prevent unauthorized access to places where overexposure could occur.

CFRB's site will be posted with appropriate warning and danger signs on fences surrounding the property and the counterpoises to discourage public access. There will also be motion detectors or other security devices.

Incidentally, the above Safety Code 6 limits are lower than those in ANSI/IEEE C95.1-1992, which is presently under consideration by FCC.

Another relevant document is the FCC's Office of Science and Technology Bulletin #65, dated October 1985. If 50 kW were radiated from one tower of height 180°, its E and H field strengths at a radius of 6m - i.e. the counterpoise fence, would not exceed 265 V/m and 1.4 A/m per OST65's Figure 3; (OTS65 Table 1 indicates that the minimum or worst case distance to ensure that the public E and H field limits are not exceeded is 22m, regardless of tower height.) As previously noted, the counterpoises will be enclosed within chain link fences and locked gates, to prevent unauthorized access. These will be 2.4m high, vinyl clad and bonded to the support posts, which will be spaced 3m-3.5m apart and grounded. As a result, there is no risk whatsoever of contact currents exceeding 15 mA, between these fences and persons who touch them.

To provide background information, finger contact currents were measured on accessible metal on April 15, 1993. Those on the emergency tower's lower guy wires were 33, 43 and 70 mA, respectively. The hydro pole guy near CFRX produced 14 mA. The main towers' bottom guy insulators are at least 3m agl, so that the guys above are inaccessible from ground level. The security fences are wooden. No other currents could be measured on site. Other tests were made under the main lobe immediately north northeast of the site on various metal objects including fences, hydro poles, a fire department communications tower and playground swings. No currents were measurable, even on the 2-20 mA scale.

Contact currents will also be measured during CFRB's proof of performance to verify compliance with the Safety Code 6 criteria.

- 14 -

<u>17 - L</u>	<u>JST O</u>	F PRO	TECTED	STATIONS

Ì

The most relevant ones are as follows:

- 15 -

CALL	LOCATION	<u>kHz</u>	<u>kW</u>	MODE
WCMF	Rochester, NY	990	2.5N/5D	DA-2
WCCD	Parma, OH	1000	0.5	DA-D
WLNL	Horseheads, NY	1000	5	ND-D
CBR	Calgary, AB	1010	50	DA-2
CKXD	Gander, NF	1010	1 *	ND-U
-	Thunder Bay, ON	1010	5N/10D	DA-N
KTNZ	Amarillo, TX	1010	.5N	DA-2
KXEN	Festus-St. Louis, MO	1010	.5N/50D	DA-2
WCST	Berkley Springs, WV	1010	.016N/.25D	ND-U
WINS	New York, NY	1010	50	DA-1
WIOI	New Boston, OH	1010	.021N/1D	ND-U
WITL	Lansing, MI	1010	.013N/.5D	DA-2
WMOX	Meridian, MS	1010	1N/10D	DA-2
WPMH	Portsmouth, VA	1010	.45N/5D	DA-2
WQYK	Tampa, FL	1010	5N	DA-2
WTGC	Lewisburg, PA	1010	.01N/.76D	ND-U
WIOJ	Jacksonville, FL	1010	4.3N	DA-2
WOLB	Baltimore, MD	1010	.026N/1D	ND-U
KDKA	Pittsburgh, PA	1020	50	ND-U
WYSL	Avon, NY	1030	· 1	ND-D

* Presently 1 kW; 5 kW authorized

18 - DAY INTERFERENCE ANALYSIS

All related cochannel and adjacent channel assignments are adequately protected. The protected contours are shown on Figure 5. The analysis is contained in Table 8. Some stations presently accept interference from CFRB and none of these limitations will be increased.

<u> 19 - NIGHT INTERFERENCE ANALYSIS</u>

All related cochannel and adjacent channel assignments are adequately protected. The analysis is contained in Table 9.

CBR's skywave and groundwave protection requirements have been carefully considered. The proposed interference from CFRB to CBR's night 0.5 mV/m groundwave contour will not exceed the presently notified levels, including sector augmentation. (As a result CBR's skywave service will be protected along the Alberta-Saskatchewan border. The CBC does not require protection north or east of this because those regions are served by their stations in Edmonton and Watrous.)

As a result of the special agreement, referred to in Section 4, KSYG has been omitted from the protection analysis. CFRB and WINS will partially substitute for KSYG contributions, as summarized on Table 10.

Notifications with less than 250 watts are not specifically protected, in accordance with DOC-FCC's understanding or agreement.

Cuban stations have been excluded from the interference analysis, because Cuba was not a signatory to RAMFBC-R2 and their assignments are not recognized by FCC.

- 16 -

The vacant allotment at Thunder Bay, Ontario has an Eu of 9.0 mV/m, which will decrease to 8.39 mV/m.

The Eu of CKXD, Gander, Newfoundland will increase from 13.8 mV/m to 15.0 mV/m. In October 1980, CHUM Ltd. was authorized to change CFYQ's, now CKKD's frequency to 1010 kHz and to increase its power to 5 kW. The frequency change was implemented but not the power increase. CKXD remains at 1 kW ND-U.

CKXD's 1 kW Eu contours at present and as proposed, are compared on Figure 6-1. CFRB's proposals would reduce the radius from approximately 5.2 to 4.9 km. The affected area is a ring 350 metres wide with no resident population. As shown, it covers uninhabited land, swamp, lake, short sections of highways and runways. A similar situation would apply, if CKXD's power had been increased to 5 kW, as shown on Figure 6-2.

Accordingly, the CFRB proposals would not cause objectionable interference, or be detrimental to CKXD's service.

Moreover, since CFRB was granted class A status in 1984, CKXD's power increase would create objectionable skywave interference to CFRB's skywave service. This would not comply with the protection requirements of BPR-II. Accordingly, we have requested that authority for the power increase not be renewed.

The present CFRB proposals fully comply with all the requirements of BPR-II-C-12, with one exception. Based on preliminary negotiations with NewCap Broadcasting in 1993, an agreement between licensees would have required significant financial compensation. In this case, in accordance with spectrum management policies and precedents, no compensation is justified, therefore an administrative decision is required.

20 - INTERMODULATION AND CROSS MODULATION

As at present, CFRB's proposed 250 mV/m day contour will enclose CHUM's site and its 250 mV/m night contour will not. Interaction between the arrays is higher than normal because their carrier frequency separation is only 40 kHz or 4%. Filters may be desirable, to avoid third order products on 970 kHz and/or 1090 kHz.

As required in BPR-II-C-8, we hereby undertake to study the potential interference situation. Suitable filters will be designed and installed at CFRB as at present, to reduce the interference to non-objectionable levels. Standard Radio Inc. will bear all reasonable expenses, including those due to a loss of revenue resulting from CHUM having to suspend operation, if an isolation filter is required at CHUM's common point, for example.

CFRB and CHUM have been located inside each others 250 mV/m day contours, since CHUM moved site in the early 1960's. A similar commitment was made for CHUM then and for CFRB's change of facilities in the early 1970's.

Reradiation is an important and closely related factor, which will be controlled by the ATU filters in CFRB's array.

<u>21 - IMAGE INTERFERENCE</u> (Reference: BPR-II-C-7)

The intermediate frequency on normal broadcast receivers is approximately 455 kHz, so they are not susceptible to image interference from stations operating on frequencies above 700 kHz. Therefore, CFRB's 1010 kHz transmissions cannot generate this type of interference.

- 18 -

22 - OTHER SIGNIFICANT INFORMATION

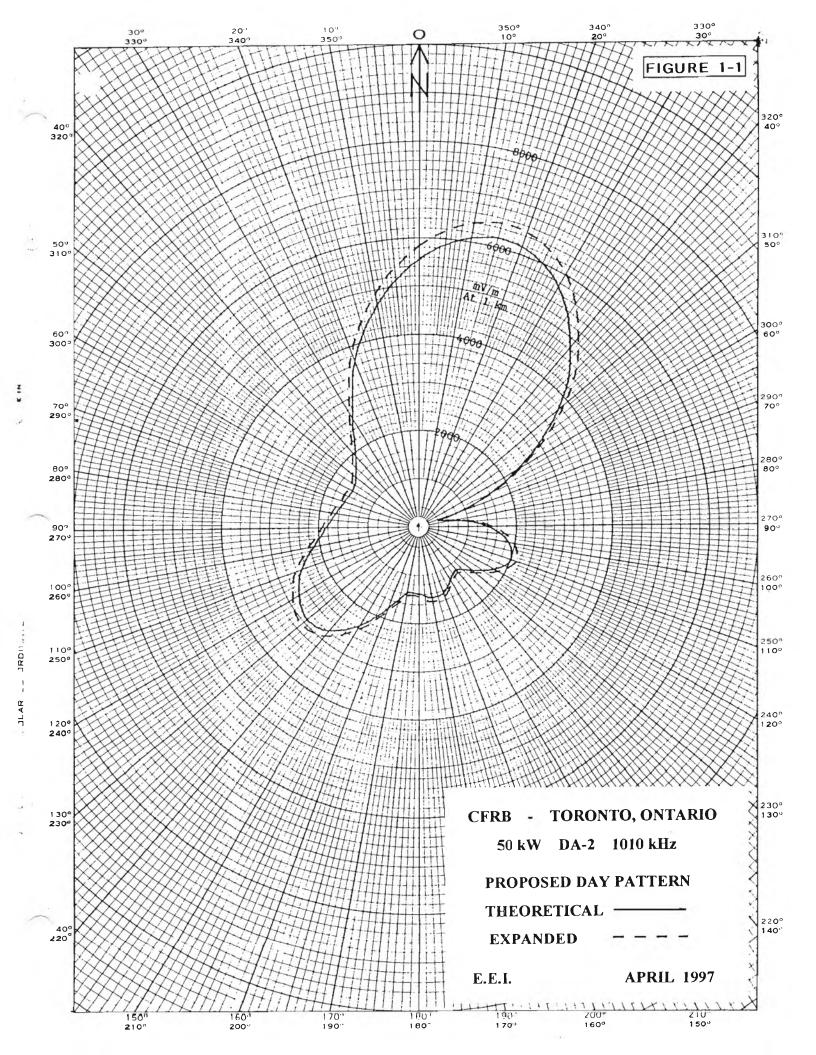
The transmitting facilities will be unattended and remotely controlled as at present. AM stereo will continue to be used.

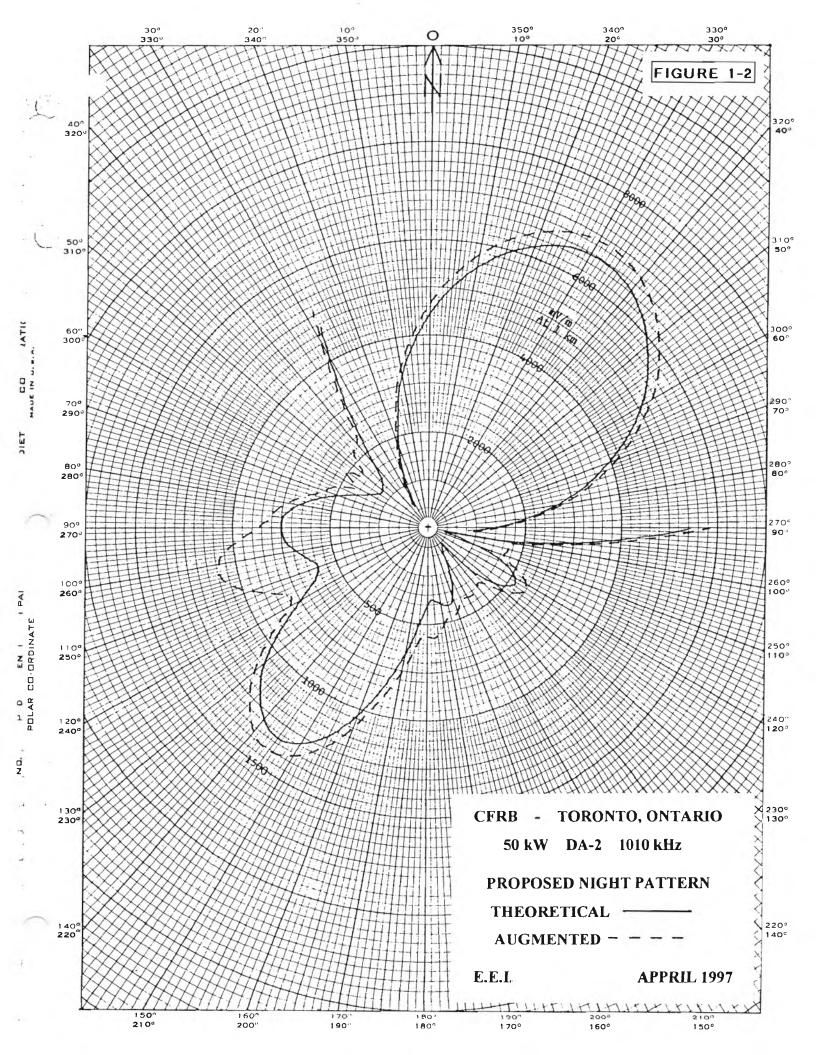
The installation will be made in accordance with DOC, NHW and CSA requirements, standards of good engineering practice and local hydro codes.

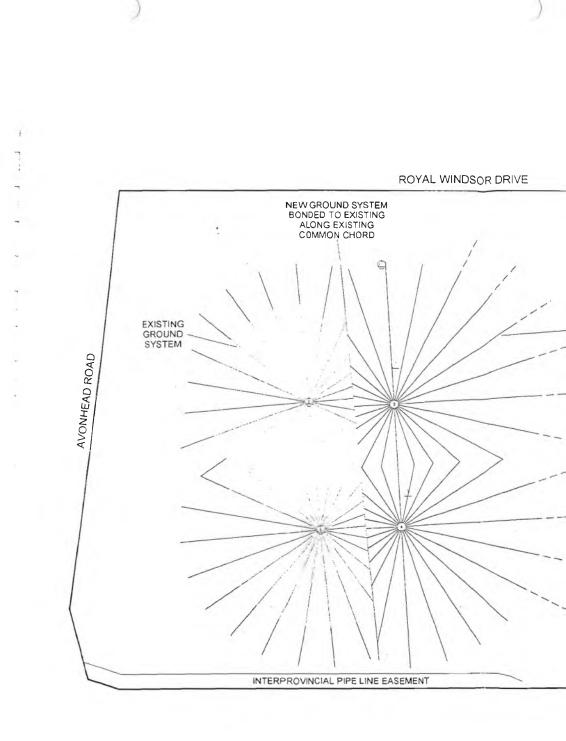
Standard Radio's shortwave station CFRX shares CFRB's site. Its transmitting facilities with 1 kW on 6070 kHz, may be relocated slightly. Further details will be provided later.

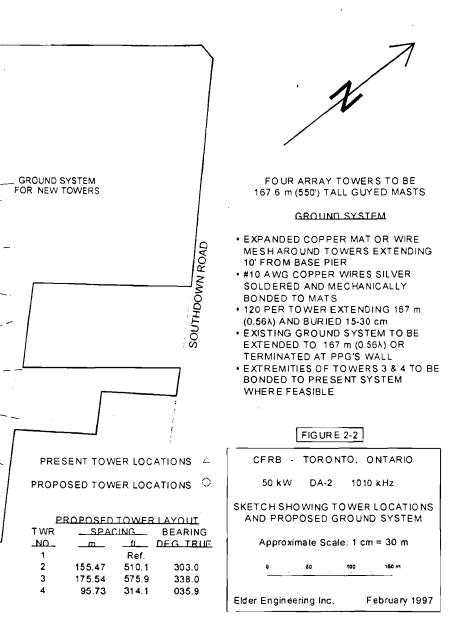
23 - ENGINEER'S SEAL AND SIGNATURE

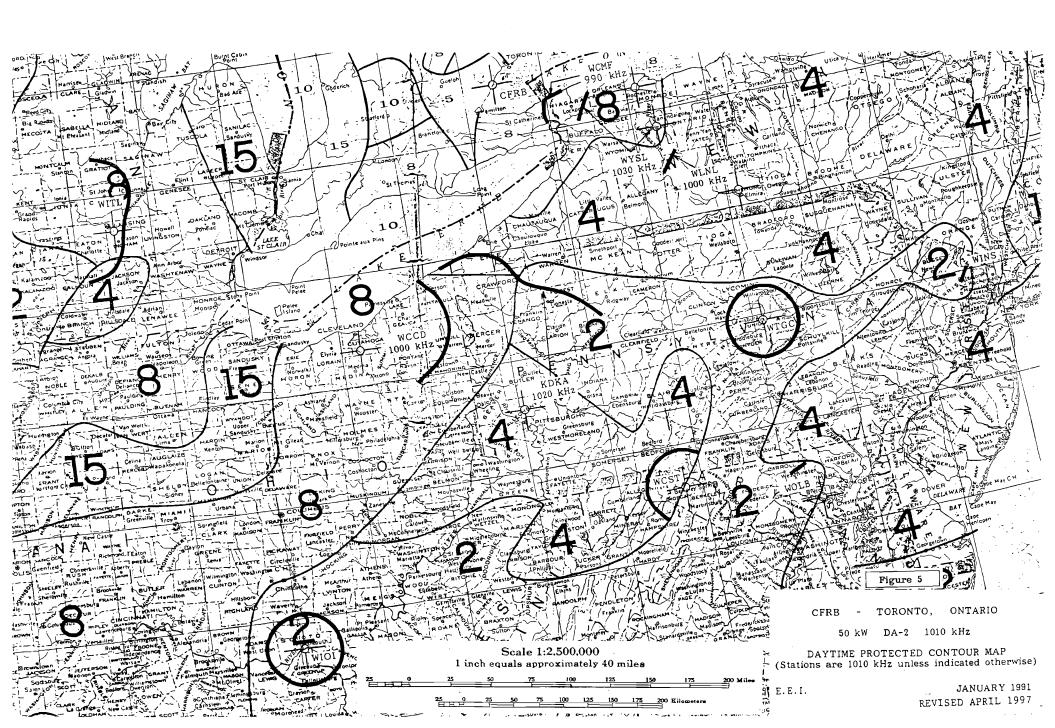
This brief was prepared by the undersigned consultants, who practice in the field of broadcast engineering.

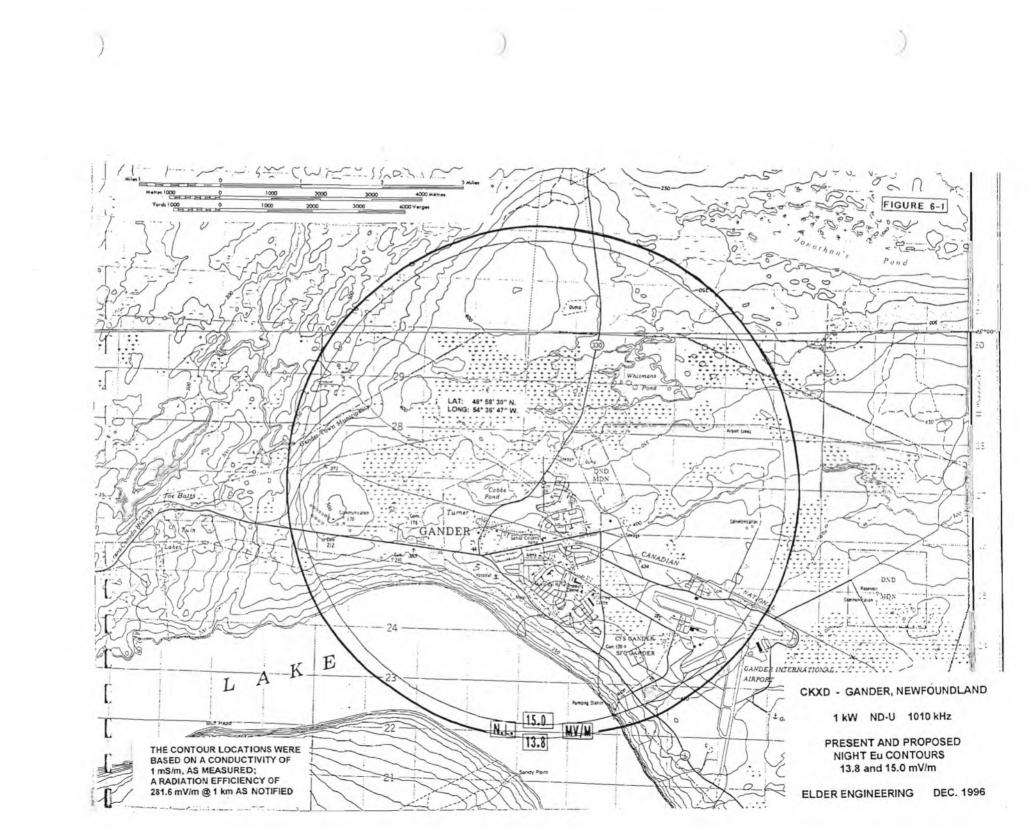

K. Stevent Hulu


K. Stuart Hahn, P. Eng.


gordow Elder


J. Gordon Elder, P. Eng.


21 April 1997



)

ATTACHMENT A

MEMORANDUM OF UNDERSTANDING

Exhibit 1-1

This MEMORANDUM OF UNDERSTANDING ("Memorandum") is made and entered into this 29th day of <u>May</u>, 1992, between GROUP W RADIO, INC., owner, operator and licensee of AM Station WINS, New York, New York ("Group W") and STANDARD RADIO INC..

WHEREAS, Stations WINS and CFRB are co-channel stations operating on the same frequency of 1010 kHz, the use of which is governed by the provisions of the AGREEMENT BETWEEN THE GOVERNMENT OF THE UNITED STATES OF AMERICA AND THE GOVERNMENT OF CANADA RELATING TO THE AM BROADCASTING SERVICE IN THE MEDIUM FREQUENCY BAND ("Treaty"), entered into between the Governments of the United States and Canada on January 17, 1984; and

WHEREAS, Group W and Standard each desire to make changes in operation of their respective stations which require modifications to the operating parameters of each station as presently specified in the Treaty; and

WHEREAS, Group W and Standard each believe that these changes in the operating parameters are in the best interest of their listening audiences and will promote the more efficient utilization of the frequency by both the United States and Canada under the Treaty; and

WHEREAS, Group W is willing to undertake certain arrangements with another United States station operating on the frequency in order to reduce interference to other stations and further Station CFRB's use of the frequency. NOW, THEREFORE, in exchange for the mutual commitments contained herein and other good and valuable consideration, receipt of which is hereby acknowledged by Group W and Standard, Group W and Standard hereby agree as follows:

Article I

Notification of Revised Operating Parameters

1.1. Group W and Standard agree to seek the concurrence and approval of their respective Governments to the modification of the Treaty to incorporate the revised operating parameters for Station WINS and Station CFRB set forth in Schedule 1 and Schedule 2 attached hereto. To this end, each Party shall use reasonable efforts to induce its respective Government to give appropriate notification under the Treaty to the other Government specifying the revised operating parameters governing the Party's station and to signify Governmental agreement to the revised operating parameters similarly notified by the other Government for the other Party's station. Each Party shall also use reasonable efforts to induce its Government to give appropriate notification of the station's revised operating parameters, to the extent required, to the International Frequency Registration Board.

1.2. During the term of this Memorandum, neither Group W nor Standard shall take any action with respect to the respective operation of Station WINS or Station CFRB which would prevent or impede the performance of their obligations under this Memorandum.

-2-

1.3. Group W and Standard agree to mutually cooperate with each other in fulfilling the terms of this Memorandum. Each Party shall be solely responsible for dealing with the agencies and instrumentalities of its Government and shall, when requested, cooperate with the other Party in securing the necessary consents and approvals of the other Party's Government.

Article II

Associated United States Frequency Changes

2.1. As a prerequisite to and in order to permit the modification in operating parameters of Station CFRB specified in Schedule 2, Group W agrees to endeavor to induce AM Station KBIS, Little Rock, Arkansas, which also operates on the frequency of 1010 kHz, to discontinue operation and relinquish its license to use the frequency pursuant to procedures recently adopted by the United States Federal Communications Commission ("FCC") in MM Docket No. 89-46. Group W will use reasonable efforts to negotiate an acceptable arrangement with Station KBIS providing for the relinquishment of the KBIS license in return for the payment of compensation by Group W, provided that Group W shall not be obligated to compensate Station KBIS in an amount deemed unreasonable in the sole judgment of Group W for the relinquishment of its license. Group W shall have no obligation under this Memorandum to make such payment until such time as it has received from the FCC a construction permit through a Final Order no longer subject to review, reconsideration or appeal by the FCC or any court with jurisdiction to review said Order, fully

-3-

effectuating the modified operating parameters for Station WINS set forth in Schedule 1.

2.2. It is expressly understood that the negotiation of an acceptable arrangement with Station KBIS is a prerequisite to the seeking of revised operating parameters for Station WINS and Station CFRB as provided in Article I. Except as to applications already on file with an agency or instrumentality of the Party's Government or other notifications or actions that are expressly required by law, Group W or Standard shall not disclose the terms of this Memorandum or the intended changes to be sought in the Treaty (except to Station KBIS as may be required in the sole judgment of Group W in the furtherance of the negotiation of an acceptable arrangement) to any other person or entity until such time as Group W has entered into a definitive arrangement with Station KBIS, subject only to FCC and other necessary Government approvals, as contemplated in paragraph 2.1. It is the intent of the Parties that the consummation of all actions and transactions contemplated hereunder will be mutually contingent upon each other.

2.3. Should Group W after undertaking due efforts be unable to negotiate an acceptable arrangement for the relinquishment of license of Station KBIS in a reasonable period following execution of this Memorandum, Group W may at its option cancel this Memorandum with no liability or obligation to Standard under Article IV of this Memorandum.

-4-

Article III

Cost of Modification of Facilities

3.1. All costs and expenses associated with the planning, construction and implementation of each station's modified facilities in furtherance of the operating parameters set forth in Schedules 1 and 2 shall be borne exclusively by the respective licensee of each station. No obligation is imposed by this Agreement on either Group W or Standard to pay for the cost of modification of facilities of the other Party's station, including all associated legal, engineering and other consulting costs, or to compensate the other Party for such costs. Except as expressly set forth in Article II and IV of this Memorandum, each Party shall also bear all of its costs associated with the effectuation of this Memorandum and the acquiescence of its Government to the modified operating parameters for Station WINS and Station CFRB set forth in Schedule 1 and 2.

Article IV

Cancellation of Memorandum

4.1. If the modifications to the Treaty contemplated by this Memorandum are not obtained within three years from the date of this Memorandum, this Memorandum may be cancelled by either Party on thirty days written notice to the other Party with no liability or obligation to the other Party. Furthermore, this Memorandum may be cancelled at any time during the first three years on thirty days written notice to the other Party, provided that the Party so canceling the Memorandum reimburses the other

-5-

Party for its reasonable legal, engineering and other expenses, including without limitation, any payments or expenses relating to the relinquishment of the KBIS license, incurred to date of cancellation in seeking to implement the terms of this Memorandum.

Article V

Regulatory Approvals and other Terms

5.1. Each Party's obligation to implement the terms of this Memorandum shall be subject to whatever regulatory or Governmental approval may be required from the agencies or instrumentalities of the Party's respective Government, specifically including as to Group W, the FCC and the Department of State of the United States and, as to Standard, the Canadian Radio-Television and Telecommunications Commission, and the Department of Communications of the Government of Canada.

5.2. The construction and performance of all obligations imposed by this Memorandum shall be governed by the laws of the State of New York, without giving effect to the choice of law provisions thereof, except as to any question involving the rights, obligations or limitations of the Party's ability to deal with the agencies and instrumentalities of its respective Government, in which case the laws of that Governmental entity shall apply.

1

1_

5.3. This Memorandum may be executed in one or more counterparts, each of which shall be deemed an original and all

-6-

of which, when taken together, shall constitute one in the same instrument.

5.4. This Memorandum embodies the sole understandings between Group W and Standard and is expressly intended to supersede any prior understanding, agreement, exchanges of correspondence, written or oral, between the Parties. This Memorandum may be modified only upon the written agreement of both parties, duly executed by both parties.

IN WITNESS HEREOF, the Parties have executed this Memorandum of Understanding on the day and year written above.

:25 1.1 1

E.

新教

GROUP W RADIO, INC.
By: Rule Mir
VILE PRESIDENT
Title
STANDARD RADIO INC.
By:
VICE PRESIDENT AND GENERAL MANAGER
Title

FREQ IN KLIZ D'	NT CATIF PY	LATITUDE	LONCITUDE	PUIS HRES (KW))IR CL		RMS E) (MV/M) P		/CTEUR Q (HV/H)	NOI
FREQ CA	ALL SIGN CT	LATITUDE	LONCITUDE	POWER HILS (KW)	DIR CL	S ELECT ITT (DFG)			Q-FACTOR (MV/M)	NOI
NO. DE TOUR	RAPPORT CHAMPS	PHASE (DEGREES)					ANTENNES A CHA) OD SECTIONALI			
		PHASING (DECREES)				TOP-LOADED(T ANTENNA DATA) OR SECTIONALI	ZED(S)		
1010	CFRB CA	43-30-15 N	79-37-52 N	1 50.0 N	A D		2800.00	ON TORDN	та 186.35	
1 2 3 4	1.120 1.000 1.280 1.270	0.0 280.0	0.0 188.56 212.9 116.1	303.0 338.0	203.0 203.0 203.0 202.0					
AUG ∯ AUC ∯	AZIMUTH AZIMUTH (DEG)	ARC SPAN (DEG)	RAYONNEMENT RADIATION (MV/M)		AUG # AUG #	AZIMUT AZIMUTH (DEG)	SPAN RAI	YONNEMENT DATION V/M)		
1		15.0	4.05.0 4.05.0		5	256.0	34-0 11	•		
2 3 4	178.0	20.0	570.0 729.0		7 8	303.0 313.0	10.0 5 12.0 5 14.0 5	520.0		
1010	CFRB		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
AUG 🖸 AUG 🛃	AZIMUT AZIMUTH (DEG)	ARC SPAN (DEC)	RAYONNEMENT RADIATION (MV/M)	AUG 🛔 AUG 🛔		UTH SPAN	RAYONNEM RADATION (MV/M)	ENT		E AI

<u>рунн</u>и т_0

K

)		:		.) IEDUL	-E 1	ŗ			•		n,)	ζ
•	INDICATIF D'APPEL	РҮ	LATITUDE	LONGITUDE	PUIS (KW)	HRES	DIR	CL	S HAUT ELEC	EUR T (DFG)	RMS (MV/M)	ET PR	VILLE	FACTEQ (MV/M)	NOI
FREQ KIIZ	CALL SIGN	CT	LATITUDE	LONGITUDE	POWER (KW)	IIRS	DIR	CL	S ELEC HT(D			RMS (MV/M)		CITY	Q-FACTOR (MV/M)	NOI
NO. DE TOUR	E RAPPO CHAMP		PHASE (DECREES)	ESPACEMENT (DEGREES)		TATION REES)						NNES A C SECTIONA				
TOWER NUMBER			PHASING (DEGREES)	SPACING (DEGREES)		TATION REES)	ELECT (DEGR		TOP - LO ANTENN			SECTIONA	LIZE	D(S)		_
1010	WINS	US	40-48-14N	74-06-24W	50.00	D	D	В	P			2496.96	NY	NEW YO	RK 70.71	
1. 2. 3. 4. 5.	1.0000 0.8400 0.9300 0.7000 0.1000)))	0.0000 115.7000 104.1000 -142.6000 -111.5000	100.0000 142.5000	0.00 317.00 234.00 272.80 104.50	000 000 000	147.9 147.9 147.9 147.9 147.9 90.0)))								
AUG # AUG #	AZIMI AZIMI (DEG	UTH	ARC SPAN (DEC)	RAYONNEMENT RADIATION (MV/M)			AUG // AUG //		AZIMUT AZIMUT (DEG)		ARC SPAN (DEG)	I	RAYON RADAT (MV/M			 ·
1. 2. 3.	194. 249. 274.	0	20.0 40.0 24.0	320.0 220.0 300.0			4. 5.		294.0 357.0		30.0 30.0		260.0 500.0			
1010	WINS	US	40-48-14N	74-06-24W	50.00) N	D	В	P			2439.47	NY	NEW YO	RK 70.71	• • • •
1. 2. 3. 4.	1.000 1.070 1.200 1.280	00	0.0000 95.4000 86.6000 182.0000	0.0000 90.0000 100.0000 142.5000	0.0 317.0 234.0 272.8	0000	147.9 147.9 147.9 147.9	9								
AUG # AUG #		UTH	ARC SPAN (DEG)	RAYONNEMENT RADIATION (MV/M)		AUG // AUG //		AZIMU AZIMU (DEG)	лтн	ARC SPAN (DEG)		RAYONNE RADATIO (MV/M)		••••••		 [
1. 2.	265.0 280.0		40.0 32.0	225.0 210.0		3. 4.		296.0 336.0		30.0 28.0		150.0 200.0	P			