ANALOGUE
Working with current mode amplifiers

RF ENGINEERING
Direct conversion SSB

APPLICATIONS
Radio chips: synthesisers and scanners

DESIGN BRIEF
High frequency log

SYSTEMS
Software engine for GPS

HYPOTHESIS
The EM waves which heal

PC REVIEW: SPICE FOR WINDOWS
RANGER 2 CAD: TRY BEFORE YOU BUY
The PC82 Universal Programmer and Tester is a PC-based development tool designed to program and test more than 1500 ICs. The latest version of the PC82 is based on the experience gained after a 7 year production run of over 100,000 units.

The PC82 is the US version of the Sunshine Expro 60, and therefore can be offered at a very competitive price for a product of such high quality. The PC82 has undergone extensive testing and inspection by various major IC manufacturers and has won their professional approval and support. Many do in fact use the PC82 for their own use!

The PC82 can program E/EPROM, Serial PROM, BPROM, MPU, DSP, PLD, PEEL, GAL, FPL, MACH, MAX, and many more. It comes with a 40 pin DIP socket capable of programming devices with 8 to 40 pins. Adding special adaptors, the PC82 can program devices up to 84 pins in DIP, PLCC, LCC, QFP, SOP and PGA packages.

The unit can also test digital ICs such as the TTL 74/54 series, CMOS 40/45 series, DRAM (even SIMM/SIP modules) and SRAM. The PC82 can even check and identify unmarked devices. Customers can write their own test vectors to program non standard devices. Furthermore it can perform functional vector testing of PLDs using the JEDEC standard test vectors created by PLD compilers such as PALASM, OPALjr, ABLE, CUPL etc. or by the user.

The PC82’s hardware circuits are composed of 40 set pin-driver circuits each with TTL I/O control, D/A voltage output control, ground control, noise filter circuit control, and OSC crystal frequency control. The PC82 shares all the PC’s resources such as CPU, memory, I/O hard disk, keyboard, display and power supply.

A dedicated plug in card with rugged connecting cable ensures fast transfer of data to the programmer without tying up a standard parallel or serial port. Will work in all PC compatibles from PC XT to 486.

The pull-down menus of the software makes the PC82 one of the easiest and most user-friendly programmers available. A full library of file conversion utilities is supplied as standard. The frequent software updates provided by Sunshine enables the customer to immediately program newly released ICs. It even supports EPROMs to 16Mbit.

ORDERING INFORMATION
PC82 complete with interface card, cable, software and manual only £395

Please add £7 carriage (by overnight courier) for UK orders, £20 for export orders, and VAT where applicable.

ACCESS, MASTERCARD, VISA or CWO.

Free demo disk with device list available.
Despite occasional bursts of enthusiasm, the direct conversion SSB receiver has been overlooked. But the Weaver receiver is a natural candidate for use with digital signal processing techniques. For the radio amateur it is a most fascinating receiver to play with. Nic Hamilton explains.

Spice is now available in Windows. John Anderson found it a good package with one or two shortcomings.

Seetrax has made a version of its Ranger 2 software available on shareware. Martin Cummings says hurry while stocks last.

Current mode amplifiers have much in common with conventional op amps. Potentially, they offer much more performance in many areas. Terence Finnegan lays down the design rules to get the best out of your applications.

EM fields have had a bad press, mainly because of their links with childhood leukaemias. But, as Elizabeth Davies explains, they may also play a role in curing disease.

Charles Bovill looks at the life of the brilliant electronic engineer whose inventions proved vital in World War II.

Log amps are useful for problems such as identifying radar pulses. But Ian Hickman explores their other applications.

Martin Eccles reports on new wave audio design.

A pictorial look at the shortwave imperial wireless chain, or the beam system, as it came to be called.

In next month's issue: Applied DSP for audio applications. Off-the-shelf digital processing products will soon become as widely used as integrated power amp chips, Martin Eccles reports on new wave audio design.

MAY ISSUE IS ON SALE APRIL 29

April 1993 ELECTRONICS WORLD + WIRELESS WORLD 265
THE BEST LOW COST PROGRAMMERS
Designed & Manufactured in the UK

SPEEDMASTER 1000
SPEEDMASTER 1000E
UNIVERSAL PROGRAMMER

- Superfast PC based programmer
- Programmes: EPROMS UP TO 8M BIT, FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, MICROs (8748/51), PALs, GALs, EPLDs, PEELS, MACHS, MAPLs, MAX
- Plugs directly into parallel port
- 1000E Version has ROM/RAM emulator built in: 128k (1 Mbit) standard, optional 512K (4 Mbit)

MICROMASTER 1000
MICROMASTER 1000E
UNIVERSAL PROGRAMMER

- Programmes: EPROMS UP TO 8M BIT, FLASH EPROMS, EEPROMS, BPROMS, NVRAMs, PALs, GALs, EPLDs, PEELS, MACHS, MAPLs, MAX etc.
- PLUS over 80 different Micros including 8748/51, 68HC705, 68HC711, PICs, Z86, TMS320, TMS370 etc DIPs WITHOUT ADAPTORS OR PERSONALITY MODULES!
- Package adaptors available.
- 1000E Version has ROM/RAM emulator built in: 128K (1Mbit) standard, optional 512K (4 Mbit)

SPEEDMASTER 8000
GANG/SET PROGRAMMER

- 8 way, PC or stand alone
- Super-fast programming times, manufacturer recommended algorithms
- 32 pin devices as standard
- Support for 8748,51, TMS370, PIC Micros and 40 pins

WHY BUY AN INFERIOR IMPORTED PROGRAMMER WHEN YOU CAN HAVE A MANUFACTURER APPROVED UNIVERSAL PROGRAMMER/EMULATOR DIRECT FROM ICE TECHNOLOGY!

- We offer the best range of low-cost programmers available, now including our unique UNIVERSAL PROGRAMMERS WITH BUILT IN EMULATORS
- Unrivalled device support, for example the Micromaster 1000 programmes PICs, Z86, 87C705, 68HC705, TMS370, 77C82 ETC WITHOUT ADAPTORS, as well as the full range of Eproms, PLDs etc supported by all our universal programmers.
- Approved by National Semiconductor for their full range of PALs, GALs, and MAPLs - other programmers claiming approval are often only approved for EPROMs - a much less exacting specification!
- All our programmers and programme/emulators work off the standard parallel port with any IBM compatible PC, even laptops
- Unbeaten programming times: Programme a 27256 in just 5 SECONDS including download and verify.
- Easy upgrade path between Models.

FOR MORE DETAILS, DEVICE LIST AND DEMO DISK CALL NOW ON
TEL +44 (0)226 767404 FAX +44 (0)226 370434
ICE TECHNOLOGY LTD, UNIT 4, PENISTONE COURT, STATION BUILDINGS, PENISTONE, S. YORKS, S30 6HG, UK.
Right to eavesdrop?

Most people reading last month’s lead news story “Government bans sale of unbuggable phones” will have felt a degree of pleasure at the thought of Big Brother deprived of the ability to snoop on its citizens.

To recap, the DTI has vetoed the incorporation of an advanced encryption algorithm into the new GSM portable phone standard because conversations made using the system will be unable to be decoded by parties other than the intended recipient, at least in real time. This has alarmed both the FBI in the US and our own intelligence services who fear that their targets will be able to communicate freely through relatively secure channels.

A direct result of the veto is that manufacturing and export plans for the new phone system are being delayed or postponed. Although this allows other Far Eastern digital cell phone systems to gain competitive advantage, the real questions concern whether governments should snoop on their citizens.

The instinctive reaction is to applaud any development which reduces a State’s ability to interfere yet this seems to be at odds with other, equally instinctive attitudes. For instance, most people would accept that car number plates perform a socially useful function. Similarly, they may be used in evidence when prosecuting dangerous drivers.

Slightly removed but equally acceptable would be the use of number plates as an identifier where a car is used in the commission of non-motoring crime. Similarly, they may be used in evidence when prosecuting dangerous drivers.

To recap, the DTI has vetoed the incorporation of an advanced encryption algorithm into the new GSM portable phone standard because conversations made using the system will be unable to be decoded by parties other than the intended recipient, at least in real time. This has alarmed both the FBI in the US and our own intelligence services who fear that their targets will be able to communicate freely through relatively secure channels.

A direct result of the veto is that manufacturing and export plans for the new phone system are being delayed or postponed. Although this allows other Far Eastern digital cell phone systems to gain competitive advantage, the real questions concern whether governments should snoop on their citizens.

The instinctive reaction is to applaud any development which reduces a State’s ability to interfere yet this seems to be at odds with other, equally instinctive attitudes. For instance, most people would accept that car number plates perform a socially useful function. Similarly, they may be used in evidence when prosecuting dangerous drivers.

Slightly removed but equally acceptable would be the use of number plates as an identifier where a car is used in the commission of non-motoring crime. Similarly, they may be used in evidence when prosecuting dangerous drivers.

Continuing the motoring analogy, consider the roads themselves. Anyone who drives in a law-abiding fashion may use them unmolested for their own purposes. The police and security services regularly track target vehicles along a route but most of us wouldn’t know and couldn’t care.

Likewise the public phone system. The majority of people do not give a second thought about the possible eavesdropping by other parties on a private conversation. In reality, the public phone system is just that: public. Police and security services intercept at will, with or without a court warrant yet most of us lose no sleep over this.

On the contrary, we welcome the proper use of intercept in bringing criminals to book and the placing of terrorists behind bars. It is hard to criticise the use of the phone system’s digital technology to facilitate this: for instance the special arrangements on call box lines, the ability to set up a remote intercept with a few keystrokes, the terminal identifiers which are as useful as a car number plate.

The Government has made a mistake in creating a fuss over encryption standards for portable phones. It has simply reminded criminals of the dangers of using the public phone system. They will make a special effort to conduct their business in a way which can’t be intercepted by the Government or anyone else.

No parliamentary committee could ever eliminate the occasional abuse of technology by those who are supposed to act in our interests. However, official surveillance systems are, on balance, a good thing in a democracy. Our principal goal should be to increase its strength. A Bill of Rights and a Freedom of Information Act seems to provide the best check against the routine abuse of official surveillance.

Frank Ogden
UPDATE

Radio chips star at US convention

The world's chip companies look for a quickly growing market in chips which go into pocket telephones and PC-based wireless modems. The problem for the chip-makers is how to provide highly integrated, high frequency chips which operate at low power.

ISSCC '93 covered both sides of radiocomms - the baseband signal processing functions, and the IF/RF modulation functions. Two papers covering the IF and RF modulation and demodulation functions came from National Semiconductor and AT&T.

The National paper described a fully integrated bipolar or cmos front end with built-in image rejection on a monolithic chip. The use of a quadrature two-phase mixer to implement the RF to IF frequency conversion greatly simplifies the receiver hardware by eliminating the costly, bulky filters required with a single mixer.

The 2.5GHz image reject front end, consists of an LNA, complex mixer, bias and power-down stages, and contains on-chip all the required elements including the mixer phase shifting circuitry. The chip consumes 60mW in a 15GHz, 0.8µm biCMOS process technology. At 1.89GHz with a 111MHz IF signal, image rejection is 14.1dB, conversion gain 7.6dB and the noise figure is 18dB.

The front end comprises an RF amplifier, an image reject mixer, three phase shifters, output, bias and power-down circuits. The image-reject mixer is composed of two Gilbert-cell mixers. The RC phase shift circuits are connected to both mixers. One phase shifter performs the image rejection while the other loads the other side of the mixer. The dummy section ensures the mixers are loaded equally increasing image rejection by 8dB.

A second paper on the IF/RF function came from AT&T. It described a two chip 900MHz transceiver for the North American IS-54 dual-mode cellular telephone standard.

One chip is a direct up-conversion modulator. The other is a double conversion receiver. Both are made in 12GHz bipolar technology. As the modulator performs catastrophic for the large reflector antenna and phased array radars used in military and civil communications. The system, which involves calculation of the aerial aperture field in both complex far-field and near-field patterns, will run on a variety of software platforms including dos. Contact Chris White, ERA, 0372-374151.

BT in touch with virtual reality

British Telecom is developing virtual reality techniques to help in repairing electronic circuits. The picture shows Melanie Collins, a BT technician, at the end of a virtual reality link being instructed by an expert in the repair of electronic equipment.

BT is working on four virtual reality projects - telepresence, data visualisation, emotional icons, and controlling a communications network. Telepresence applications include mobile teleworking between head office and service centres, directing medical operations from remote locations, and electronic news gathering.

Visualisation techniques can be used, say, to build up a picture of lightning strike patterns as they affect a telecommunications network. Emotional icons can be used to provide a humanised interface with data in network control applications and can also be linked to artificial intelligence to assist decision making.
A new generation of VLSI technology—
the quarter micron generation—was
demonstrated at the '93 ISSCC along with
the 256Mbit drams that are the fruit of it.
But, it seems, even dram designers are
having to move up the design hierarchy
from designing at the cell level to designing
in blocks.

Memories. One of the design features of
Hitachi's 256Mbit dram was a subarray
replacement redundancy technique.

Conventional redundancy techniques
of replacing defective lines by on-chip spare
lines will, apparently, no longer be sufficient
for 256Mbit and beyond. Instead a
subarray-by-subarray replacement technique
has to be used. The downside for using the
subarray technique is an area increase
of 3.5%. The upside is that using the technique
should double yields.

Another key design issue for Hitachi's
256Mbit was how to reduce the data-
retention current (comprising both refresh
and standby current). Although low voltage
operation is effective in reducing refresh
current, it causes an increase in standby
current due to the subthreshold current of
depth-submicron MOS transistors.

Hitachi solved the refresh current problem
by reducing the operating voltage from 3.3V
to 1.5V. The standby current problem as
been addressed by inserting a switching
PMOS transistor between the wordline
voltage and the driver transistors' common-
source terminal which limits the
subthreshold current to the driver transistors
in the standby state. The result is that the
total data retention current of a 256Mbit can
be less than that of a 64Mbit.

Analogue systems. Analogue technology, it
seems, continues to push away at the
frontiers of active filter technology and three
analogue papers at this year's conference
demonstrated the design limits in low
distortion, high operating frequency and low
operating voltage. Massachusetts Institute of
Technology demonstrated a 2V CMOS
op amp where the chip swings very close to
either rail with a gain bandwidth of 63MHz.
An enhancement technique provides gains
of more than 10,000 with operation down to
2V. The swing is symmetrical with the
output going to within 100mV of either rail.
In a couple of sessions on emerging
technologies, this year's ISSCC showed
some interesting hints of where
microelectronics technology could be
heading. Two papers looked at mixing
microelectronics and micromechanics to
make smart micro-machines, and an MIT
paper discussed extending micro-machining
into binary optics.

Tohoku University described the use of multiple
wavelengths to extend on-chip parallel computing into a third dimension. A
breakthrough potential in nanoelectronics in
the use of resonant tunnelling transistors and

Continued over
Scientist find a way round the oval

The first semiconductor laser to produce a low divergence circular beam of light has been developed by scientists from IBM, Rochester University, and Cornell University. The beam can widen or diverge by less than half a degree, compared to 30° for a typical commercial semiconductor laser. From such a laser a point-like beam would be 58ft wide after travelling 50ft, compared with 10.5in with the new laser. Semiconductor lasers produce an oval beam which causes problems when squeezed into circular optical fibre. Sometimes only 30% of the light gets into the fibre. The new device is a 150μm surface emitting laser made of gallium arsenide. It has a concentric circle grating (see picture) made up of 600 grooves etched into the semiconductor surface. As the laser light fans out from the centre of the grating towards the grooves, the waves are deflected by the grating’s ridges and interfere with each other, producing a coherent laser beam which is emitted from its surface. A small portion of the light does escape from the sides, but this may end up being useful in developing laser arrays.

Jedec plans 2.5V chip spec

The Joint Electronic Development Engineering Council (Jedec) plans to complete specifications for chips operating from 2.5V power supplies within the next year. Although 3.3V ICs have only just started breaking into the market, work has started on the development of the new standard that will further reduce the power requirements of portable equipment such as notebook and palmtop computers. Key members pushing the development include Dec, Hewlett-Packard, Apple, Intel, AMD, and NEC. According to Michael Pearson, chair of the 2.5V interface task group in Jedec’s JC-16 committee, there are two main reasons for lowering the voltage. First, as ICs continue to shrink in size, the amount of power used must also be lowered, to let them perform at optimum levels. The second reason is to save battery life in portable devices and notebook PCs. While the development of the 2.5V standard has been backed by several industry players, it is also meeting some resistance. Hitachi of America said that it may be a little premature to develop a new voltage standard because it wants to keep only two generations of drums using different voltages, and if there were more than a couple of choices, it would force Hitachi to support additional types of drums.

ERA sees large impact from neural nets

Artificial neural networking will have considerable impact in the next decade on control, signal, and image processing, according to a report from ERA Technology. The report looks at recent applications in speech, handwriting, credit rating, and the control of vehicles and robots. It also describes a practical demonstration of neural networking as applied to fabric inspection and ground probing radar. Neural computing attempts to process data in a similar fashion to the human brain. These networks are trainable and do not need complex computer programs. ERA says that this can lead to solutions to problems in machine vision, linear control of non-linear plant, pattern recognition, and modelling chaotic systems. The guide listing initiatives to attract girls and women into engineering. The guide has been published as part of the Wise (women into science and engineering) campaign. Courses are listed for various age groups starting at 13 years old. Some of these provide girls and women with practical help. And some have hours to suit mothers with children at school or offer childcare facilities. It is called Awards, courses, visits and is being sent to all secondary schools in the UK, careers services, and further and higher education institutions. Awards for girls and women are listed as are details of visits to engineering departments in education and industry. Copies are available free from the Engineering Council, 10 Maltravers Street, London WC2R 3ER (send A5 sae).
EASY FAST & POWERFUL
CAD SOFTWARE THAT GIVES YOU THE EDGE

ISIS - SCHEMATIC CAPTURE

Easy to use yet extremely powerful schematic entry system with all the features you need to create input for ARES or other CAD software. Now available in a super-fast 32 bit version capable of handling huge designs even on A0-sized sheets.

- Graphical User Interface gives exceptional ease of use - two mouse clicks will place & route a wire.
- Automatic wire routing, dot placement, label generation.
- 2D drawing capability with symbol library.
- Comprehensive device libraries.
- Heterogeneous devices (e.g. relay and coil) allowed in different places on the schematic.
- Special support for connector pins - put each pin just where you want it.
- Output to printers, plotters, Postscript.
- Export designs to DTP and WP packages.
- Netlist formats for most popular PCB & simulation software.
- Bill of Materials and Electrical Rules Check reports.
- Multi-sheet and hierarchical design support.
- Automatic annotation/packaging.
- ASCII data import database facility.

ARES - PCB DESIGN

Advanced netlist based PCB layout software newly updated to version 2.5. Major new features include SMT library, real time snap (for those tricky SMT spacings), thermal relief power planes and enhanced autorouting.

- Graphical User Interface.
- Real time snap.
- Auto track necking.
- Curved, 45/90 or any angle tracks.
- Extensive through hole and SMT package libraries as standard.
- 2D drawing capability with symbol library.
- Connectivity highlight.
- Output to printers, plotters, Postscript, Gerber and NC drill.
- Gerber View facility.
- Graphics export for DTP etc.
- Advanced netlist management with forward design modification.
- Component renumber and back-annotate to ISIS.
- Full physical and electrical design rule checks.
- Autorouter handles single, double or multi-layer boards.
- Power plane generator.
- Strategy & DRC information loadable from ISIS.
- Gerber import utility available.

ISIS ILLUSTRATOR

Schematic drawing for MS Windows 3.X - produces high quality schematics like you see in the magazines with your choice of line thicknesses, fill styles, fonts, colours etc. Once entered, drawings can be copied to most Windows software through the clipboard.

New version 1.10 includes library browser and export to WMF and EPS files.

just £179

CADPAK - BUDGET PRICE CAD

Two programs - ISIS SUPERSKETCH and PCB II - for the price of one.

CADPAK has everything you need to produce circuit diagrams and PCBs on your PC and is exceptionally easy to use. It also has many advanced features from ISIS & ARES, not normally found in entry level products.

from £275

only £79

Call us today on 0274 542668 or fax 0274 481078 for a demo pack.
Combination, multi-copy and educational discounts available. Prices exc P&P and VAT.

14 Marriner's Drive, Bradford, BD9 4JT.

CIRCLE NO. 106 ON REPLY CARD
Greek researchers have taken another step nearer development of the self-analysis circuit by using the harmonic content of the power supply current to reveal critical information about circuit operation.

Some months ago we read of a self-testing CMOS circuit that would measure its own power consumption and flag any obvious faults (Op amp that tests itself, Research Notes, EW + WW, October 92, p. 800). The approach allowed a clearly malfunctioning circuit to be identified and possibly switched out of use. Supply current measurements not only give a go/no-go indication, they can also indicate to some extent the nature of the fault, depending on whether the current is up or down and by how much.

The analysis has now been taken further in a recent paper by D K Papakostas and A A Hatzopoulos of the Aristotle University of Thessaloniki in Greece (Electronics Letters, Vol 29, No 1). They have shown that even more information about the functioning or non-functioning of a circuit can be extracted by studying the spectrum of the power supply current — in other words its harmonic content — when it is handling a test signal. The fundamental frequency in this case is of course determined by the frequency of the test signal.

Their approach is based on the knowledge that \(I_p \) in most circuits is critically dependent on a whole variety of parameters, right down to parasitic capacitances. All faults, say Papakostas and Hatzopoulos, can be considered as changes in some branch currents that will cause more or less significant changes in the supply current.

The Greek researchers have developed fault "dictionaries" using not just variations in RMS values of supply current, but also the values of the first five harmonics of its spectrum. Analysis of higher order harmonics was not deemed necessary.

An example of the circuits tested using the harmonic approach is the active filter. Using the Spice program, a total of 32 "hard" faults — 15 open circuits and 17 short circuits — were simulated. Shorts were defined as connections of less than \(1 \Omega \); open-circuits as more than \(10^3 \Omega \).

With only the basic RMS current value used, 15 simulated faults were spotted, though only three could be precisely localised. But using the enhanced fault dictionary, with details of spectral harmonics allowed, detection of all 32 faults and localisation of 30 of them was achieved — a vast improvement.

Take the example of resistor RF2 in the diagram. If this resistor goes short or open circuit, the power consumption remains the same. But if the harmonic structure of \(I_p \) is analysed, the two fault conditions can very readily be distinguished from each other and from the normal operating condition.

The only two fault conditions which can be sensed but not precisely located, say the authors, are R6 open-circuit and RA short-circuit.

Astronomers analysing data from the orbiting Rosat X-ray observatory have found evidence for huge amounts of mysterious so-called "dark matter" in and around small groups of galaxies. This discovery provides more evidence in support of current theories that the observable sky accounts for only 5% of the total mass of the universe. The rest is thought to consist of dark matter, so named because it radiates no energy and hence can not be observed directly.

Dark matter is important because its existence — or lack of it — places powerful constraints on how the universe will eventually end. If there were no dark matter, the expansion that began with the Big Bang some 15,000 million years ago would, according to modern cosmological theories, go on forever. On the other hand, if 95% of the universe does consist of dark matter, then its gravitational attraction would eventually bring the expansion of the universe to a halt or even reverse it, leading eventually to what has been dubbed the "Big Crunch".

The latest evidence from the Rosat team comes from X-ray images of three galaxies known as the NGC 2300 group, located about 150 million light years away in the direction of the constellation of Cepheus. They show that the galaxies are immersed...
MARCONI TF 2022 Signal Generators AM FM
10Khz to 1000Mhz .. £1100
FARNELL RB1030-35 Electronic Loads 30V at 35A Capability. 3.5 Digit LED Readout of Volts and Amps .. £199
RACAL RF Millivoltimeters 9301 £99 9302 £115
SAYROSA 252 Automatic Modulation Meters £99

MARCONI TF 2008 10khz to 520 mhz AM FM sweep £299
MARCONI TF 2015 10mhz to 520 mhz AM FM £199
FARNELL SSG520 Synthesised Signal Gens 10Mhz-520Mhz £499
FARNELL TTS520 Transmitter Test Sets 10Mhz-520Mhz £649
FARNELL LA520 Wide Band Amplifiers (27db) for SSG520 £75

BIRD DUMMY LOADS 150W £80 500W £95

OSCILLOSCOPES
34 Models in Stock ... These are just a selection

FARNELL DTV 12-14 12Mhz Dual Trace £150
FARNELL DTC12 12Mhz with Component Tester £175
TEK/Telequipment D755 50Mhz Dual Trace and Timebase £245
TEK/Telequipment D83 Dual Trace and Timebase £275
PHILIPS PM3217 50Mhz Dual Trace and Timebase £325
GOULD OS3600 + DM3010 100Mhz Dual Trace and TB + DVM £375
TEK 475 200Mhz Dual Trace and Timebase £475
HP1740A Dual Trace and Timebase 100Mhz £575
TEK 2215 60Mhz Dual Trace and Timebase £575
HP1741A 100Mhz Dual Trace and Timebase + Storage £675

All prices excluding VAT & carriage.

-CIRCLE NO. 107 ON REPLY CARD

April 1993 ELECTRONICS WORLD+WIRELESS WORLD
in a huge cloud of hot gas about 1-3 million light years in diameter.

The team believe that a cloud like this would have dissipated into space long ago, were it not held together by the gravity of an immense mass. The mass required to restrain the gas cloud is calculated to be some 25 times greater than that of the three visible galaxies themselves.

Dr Richard Mushotsky of NASA’s Goddard Space Flight Center says that one of the galaxies has a very strange shape, looking as if it is running into a wall. But examining an optical photograph shows no “wall” there to see. Yet something – presumably dark matter – must be exerting a very strong gravitational pull to hold the visible galaxy in its rather strange configuration.

Although this latest X-ray data adds to the growing body of evidence that the universe is pervaded by large amounts of this invisible dark matter, astronomers still do not have the slightest idea of what it might consist.

Bright lights time for the optical computer?

A research team at the University of Colorado at Boulder has built what is believed to be the world’s first general-purpose optical computer that stores its own program and processes information using light. It was developed under the direction of electrical and computer engineering professors Harry Jordan and Vincent Heuring.

Heuring emphasises that, while optical processing is not new, this present machine’s ability to manipulate instructions defines it as an all-optical computer. Two years ago AT&T Bell Labs developed an optical processor capable of performing calculations with light beams. But that machine relied on electronically-held control programs.

The Colorado machine, described formally as a bit-serial optical computer, consists of a complex array of lasers, optical switches and optical fibres, about the size of a large desk. Laser beams are used to encode the computer’s instructions and data into light pulses that are then stored in about 4km of spooled glass fibre. Information fed into one end of the fibre emerges 20µs later. At this rate about a thousand bits of data can be fed into one end of the fibre before one comes out at the other.

Describing this novel form of optical dynamic memory, Harry Jordan says: “For the first time we have a computer in which the program and the data are always on the fly in the form of light, eliminating the need for static storage.”

Control beams from other lasers are used to route the light pulses from the memory through individual optical switches for processing. The machine’s 66 optical switches – fabricated from lithium niobate by AT&T – can be turned on and off at microsecond rates to perform simple calculations. In addition to the main memory fibre spool, the computer’s fibre network includes a number of shorter delay loops that also store data dynamically. All the light pulses are precisely timed with a master laser clock running at 50MHz.

The proof-of-concept machine is comparable in power to a small personal computer, though it is still a long way from being a marketable product. The Colorado team predict that although optical components will increasingly feature in hybrid commercial machines, an all-optical commercial computer is probably several decades away. They believe that the next generation of optical computers will have millions of switches interconnected through free space, using mirrors instead of fibres.

All-optical computers will eventually have a number of advantages over present-day electronic machines, the main ones deriving from the fact that photons – the units of light – can cross each other without mutual interference. Because of this, and because photons do not require wires for travel, an unlimited number of “soft” interconnections can easily be made. Light pulses are also faster and more predictable in their behaviour than electrical pulses and retain their shape better.

First applications for all-optical computers are likely to include super-speed graphics processing and telecomms switching.
2 serial & 1 parallel ports
256k RAM - expandable
12 MHz Landmark speed
2 meg hard drive
1.2 meg 5-1/4 floppy
1.4 meg floppy
EGA driver on board

Only £249.00

POWER SUPPLIES

Power: One SPL250-250P 250 watt (300 w peak). Semi open frame giving 12v 35A, 5v 1.5A, +12v 4A (peak), +5v 2A (peak). £365.00 (E)

Power: One SPL250, 120 watts. Selectable for 12v (4A) or 24v (2A), 5v 20A or 12v 1.5A. Switch mode, New. £350.00 (D)

Astec APL 40 watts. +5v 5A, ±12v 2.5A, ±5v 0.5A, £229.00 (C)

Boshel 1000. Switch mode, ideal for drives &系统. £239.00 (C)

Fameill G6/40A. Switch mode. ±5v 6A, ±12v 2.5A, ±5v 0.5A, ±15v 5A. £309.00 (D)

Demos 150. Switch mode, ±5v 4A, ±12v 1.5A. £299.00 (D)

End of line purchase scoop! Brand new NEC D2246 8'85 Megabyte of hard disk storage! Full CPU control and industry standard SMD interface. Ultra hi-speed transfer and access time! £495.00 (E)

MONITORS

19" Forthore Model MTS-9600 SVGA multifunction with resolution of 1024 x 768 0.28 pitch. "Test" switch for word processing etc.. Overscan switch included. Ideal for the PC - 386 or PC-286 with VGA card added. Also compatible with BBC, Amiga, Atari (including the monochrome high resolution model), Am-

 surfing. etc. in good condition (possible minor scratches on screen) 90 day guarantee. Only £198 (E)

Philips Model CM7537 VGA multifunction with 640 x 480, CGA, EGA or VGA, digital/analog, select switch. Sounds ad volume control. There is also a special "Test" switch for word processing etc. also compatible with IBM PCs, Amiga, Atari (including the monochrome high resolution model), BBC,

Archimedes. etc. Good used condition (possible minor scratches on screen) 90 day guarantee. 15" x 14" x 12". Only £179.00 (E)

Philips SC7027 similar (not identical) to above for EGA/CGA PC and compact. 640 x 350 resolution. With Test switch with amber or green screen selection. 14" x13" x 13". Only £199.00 (E)

KME 10" high resolution monitor. Light 0.28" dot pitch for superb clarity and modern styling. Operates from any sync (sync split at last effort....)

TV test transmitter

Nikon PL -2 Projection lens meter/scope

Newton Derby 400 Hz 70 Kw converter

Rhode & Schwarz SBUF TV test transmitter

1000's of items+info on line

Free dial -up database!

DISTEL © The Original V21. V22 & V22 Ms

CALL FOR PRICING ON NTSC VERSIONS!

DISPLEY

Surplus always warranted for cash!
Thinnest wire in the world

Scientists in Japan have produced what is probably the thinnest metallic wire in the world - a mere 2nm in diameter. The development could be significant, both for fundamental science and electronics.

The breakthrough that made the latest development possible was the discovery about seven years ago of "Buckyballs", football-shaped molecules consisting of 60 or more atoms of carbon arranged in a lattice structure. Buckyballs, or Buckminsterfullerenes, were named after the inventor of the geodesic dome and have, over the years, proved singularly interesting research subjects. Chemists have used them to trap atoms, while physicists have made them both semiconducting and superconducting.

Just over a year ago, Sumio Iijima from NEC's Fundamental Research Laboratory in Tsukuba, Japan, discovered yet another interesting three-dimensional carbon structure whilst investigating buckyballs. By chance Iijima and his team had synthesised what are now dubbed nanotubes. These are hollow carbon tubes, just over a nanometre in diameter, built from concentric graphite-like sheets.

Hot on their heels, NEC colleagues Thomas Ebbesen and Pulickel Ajayan developed a way of synthesising nanotubes in bulk. Now, following speculation that these tubes might be able to act as fine capillaries and suck up liquids - rather like super slim drinking straws - the original NEC team led by Sumio Iijima have demonstrated that this is indeed possible.

In Nature (Vol 361, No 6410) they explain how the nanotubes were opened up and made to suck up molten lead. The process involves electron beam evaporation of the lead onto the surfaces of freshly prepared carbon nanotubes. The samples were then heated to 400°C - above the melting point lead - and examination by transmission electron microscope showed that many of the nanotubes had acquired tiny nanometre-diameter lead cores. Precisely how the process opens up the normally-closed tubes and allows the lead to enter is not yet known. The team speculate that it may be the result of a chemical reaction between the lead, the carbon atom tubes and oxygen.

Although the tube fillings appear to be a little disordered structurally - and there is as yet no certainty that these micro-wires consist of pure lead - the prospects are nevertheless exciting. Nanotubes may one day prove to be a practical means of manufacturing extremely fine electrical wiring, far thinner than anything that be created by etching or vapour deposition.

While lead is not the greatest electrical conductor, there is no reason why the technique can not be applied to copper or silver. It may also prove valuable for encapsulating materials that are not chemically stable when exposed to air.

From a theoretical point of view, nanometre-diameter wire can be expected to reveal some of the interesting properties associated with low-dimensional structures in general. Studies of quantum electronics too may be greatly accelerated.

Study says chip-making puts babies at risk

Pregnant women working in chip fabrication areas are 40% more likely to suffer miscarriages than women working in non-fabrication areas. That is one conclusion to come out of the largest health study of representative samples of the US's quarter-of-a-million workers in the semiconductor industry.

Researchers at the University of California Davis School of Medicine led by Dr Marc B Schenker, a professor of occupational and environmental health, have also shown that the odds of women chip fabrication workers becoming pregnant are about 50% lower than women from non-fabrication control groups.

The precise reasons for these striking differences are not entirely known, but the UC Davis researchers and their collaborators say the findings suggest that exposure to photoresist or developer solvents - including glycol ethers - may be responsible for the higher rates of miscarriage.

In the three-year, $3.8 million study, researchers evaluated the health conditions of 15,000 workers from 14 company sites in seven states. The San Jose-based Semiconductor Industry Association funded the multidisciplinary study which was designed and conducted independently by the University of California Davis.

Research Notes is written by John Wilson of the BBC World Service.
NEW

THE DEFINITIVE 'OFF-AIR' FREQUENCY STANDARD

Only £195.00 +VAT carriage extra

- Provides 10MHz, 5MHz & 1MHz
- Use for scientific calibration equipment that relies on quartz crystals,
 tickers, VCOs, over crystals
- Phase locks to GPO/TDF (voltage controlled oscillator) and traceable to
 GPO
- Fully ADD-ABLE also phase locked to ALLODS (continental controlled and traceable to
 GPO)
- British-designed and British manufactured

ADVANCED ACTIVE AERIAL

The aerial consists of a lightweight outdoor unit with a control aerial box inside, giving excellent indoor performances: SOIP + 90dBm, TOIP + 55dBm. For the first time this permits full use of an active system around the IF and mt broadcast bands where products found are only those radiated from transmitter sites.

- General purpose professional reception 4KHz-30MHz.
- 10dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuator allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise - 150dBm in 1Hz. Clipping 16 volts/metre.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh, GU6 7BG

Telephone: 0483 275997. Fax: 276477.
In spite of the occasional burst of enthusiasm in recent years, the direct conversion SSB receiver has been overlooked. And, in a neglected corner of a neglected subject lies the Weaver receiver. It deserves better. For the professional, it is a natural candidate for use with digital signal processing techniques. For the radio amateur, it is a receiver design that will be novel to most, and is fascinating to play with. By Nic Hamilton G4TXG.

There are three ways of explaining how the Weaver receiver works in literature. Donald Weaver, in his paper 'A Third Method of Generation & Detection of Single-Sideband Signals' uses plenty of sin and cos maths. This is fine for mathematicians, but not so good for engineers. The Radio Communication Handbook uses diagrams that resemble articles of evening dress. The method of explanation is reminiscent of a Victorian manual of etiquette on how to tie a bow tie. It starts off with a tie and neck. Then there a few illustrations showing fingers, neck and tie in impossible positions, and finally a perfectly formed knot surmounted by a huge grin. Single-Sideband Systems and Circuits uses the concept of negative frequency with a complex number topping.

Although these concepts are rather tricky to master, this last method is the best; the Weaver receiver becomes simple to understand, and there are many other uses for these concepts. An alternative explanation follows.

The receiver system works by converting the RF input down to audio frequencies in one direct step, without using intermediate frequency stages. For reasons to be discussed later, this is done twice, using two RF mixers, one of which is supplied with an LO signal phase shifted in comparison to the other. The resulting audio signals are then passed through low-pass filters and finally combined in a second 'rotary' AF mixer stage, which is driven by a second LO.

Because the output of the RF mixers is at audio frequency, the Weaver receiver is classed as a direct conversion receiver. However, the receiver is best viewed as a type of superhet, with two parallel audio IF stages between the first (RF) and second (AF) mixers. This article uses superhet terminology. Fig. 1 shows the block diagram of a Weaver receiver.

Consider one of the IF low pass filters. It has a cutoff frequency of 1.3kHz, half the width of the final audio output. This may seem rather surprising, but look at Fig. 2. This shows the signals to be found at various points on the block diagram. The left hand column shows that there are two possible RF input frequencies that will generate an IF output of 1kHz. One is 1kHz above the 1st LO frequency, and one 1kHz below the 1st LO frequency. So, although the IF audio filter is only 1.3kHz wide, the information passing through the filter is due to an RF bandwidth of 2.6kHz, half of which is below the 1st LO frequency, and half above. This process of getting a quart into a pint pot is achieved by the mixer folding the audio spectrum over.

Unfortunately, this folded signal is unintelligible as ordinary speech, so the job that the Weaver receiver performs is to unfold the audio spectrum into something intelligible. To do this, a second RF mixer is used, but it is provided with an LO that is phase shifted by 90° with respect to the LO of the first mixer (sin and cos are 90° apart). This extra mixer also provides a folded audio output, however the out-
put is folded differently. The second column of Fig. 2 shows the waveforms on the outputs of the two mixers. Note that, while the waveform at X is the same for both RF input frequencies, the waveform at Y is phase inverted. This is not to say that the waveform at X is useless, on the contrary, it serves as the reference that enables the phase inversion on point Y to be seen.

At this point in the discussion, it is simpler to consider these X and Y IF signals as being connected to the X and Y plates of an oscilloscope to form a Lissajous figure. The result for both RF input frequencies will be a circle (This is why sin and cos are called circular functions). However, the RF input that is 1kHz above the LO frequency will give an anti-clockwise rotating spot, and the RF input that is 1kHz below the LO frequency will give a clockwise rotating spot.

Explaining AF mixing

To recover the original audio signal, the X and Y IF signals are connected to the rotary AF mixer. This imparts an extra clockwise or anti-clockwise twist to the spot's motion. The speed of this extra twist is 1.7kHz, which is the second LO frequency. The resulting outputs are shown in the right-hand two columns of Fig. 2. The outputs are still circles, but with differing rates of rotation, depending on whether the original RF signal was greater or less than the first LO frequency.

Assume that the receiver is to be used to demodulate LSB. The upper row of Fig. 2 shows that an RF input of 1.001MHz gives an IF of 1kHz, and the output from the rotary mixer is 2.7kHz. The lower row shows that an RF input frequency 1MHz−1kHz also gives an IF of 1kHz, but this time gives a rotary mixer output of 700Hz.

If the Weaver receiver is used to demodulate LSB, the direction of the extra twist from the rotary AF mixer is reversed. The RF input of 1.001MHz now gives a 700Hz AF output, and the RF input frequency 1MHz−1kHz an output of 2.7kHz.

The circuit of the rotary mixer that gives this extra twist is discussed later. Note that, for the purposes of this illustration, the receiver has two audio outputs with a 90° relative phase shift. This allows the rotary AF mixer outputs to be discussed as circular Lissajous figures. However, for an SSB receiver, only one of the two outputs is needed.

Mixers

For the direct conversion receiver, the RF mixer's performance is vital: apart from the LO, there is very little other RF circuitry. If a direct conversion receiver does not work satisfactorily, the RF mixer is usually to blame. The wanted output frequency from an RF mixer can be either LO+RF or LO−RF. In the direct conversion receiver, the mixer must translate the RF input down to audio frequencies. So it will be assumed that LO−RF, the difference frequency, is the wanted output.

The ideal RF mixer would have two inputs, RF and LO, and the output would consist of just one frequency, the difference between the input frequencies. It would have no harmonic responses. How might this be achieved?

To generate a lower frequency output, the cycles of the input waveform must be lengthened thus the output must be phase-retarded each cycle with respect to the input. To do this, a voltage variable phase shifter is required. It must be able to shift the phase of the input signal by a full 360°, and be continuously variable. A block diagram of a circuit which does this is shown in Fig. 3.

The circuit works by splitting the incoming RF signal into a 0° and a 90° component. The two signals are then passed to two balanced mixers. These act both as phase inverters and as voltage controlled attenuators. The phase inverter action means that the phase of the upper mixer's output can be either 0° or 180°, and the phase of the lower mixer's output can be either 90° or 270°. A judicious mixture of these four phases results in a continuously variable phase from the output of the sum-

Fig. 1. The Weaver receiver principle. Although it looks like a direct conversion to baseband system, it is in fact a heterodyne arrangement with an intermediate frequency of 1.7kHz. Individual sidebands are resolved by quadrature product detection at 1.7kHz. Although the IF audio filter is only 1.6kHz wide, the information passing through the filter is due to an RF bandwidth of 2.6kHz, half of which is below the 1st LO frequency, and half above. This process of getting a quart into a pint pot is achieved by the mixer folding the audio spectrum over. The second mixer unfolds it to its full width.
Design considerations

The Weaver receiver has been ignored as a design for analogue receivers. For receivers using digital signal processing it has been considered and rejected. The reasons for this rejection are quoted as these.

"The problem of DC offsets would necessitate AC coupling. However, this would place a notch in the effective receiver passband which could be troublesome for certain modulation modes."

This design proves that the central notch can be made as narrow as 10Hz. The resultant degradation of SSB is negligible. Even when tuning around a strong carrier wave, the notch is quite hard to find by ear. However, the notch does result in a short burst of 1.7kHz from the receiver output each time there is a large change in LO frequency. For the HF band, the synthesiser would have to cover over two decades of frequency range and provide quadrature outputs. The VCO must have a one octave frequency range. To receive the full HF frequency range, extra divide by two circuits may be used. It is simple to make the frequency dividers provide the necessary 90° outputs.

Gain and phase matching of the (cos and sin) channels have to be accurately maintained over a very wide bandwidth to avoid sideband image problems. This receiver achieved an AF distortion suppression of 30dB without difficulty, and this is almost inaudible. DSP techniques would reduce the distortion.

1/f noise in the mixers and audio amplifiers should be minimised. The receiver's noise figure is about 20dB, which is about 10dB higher than a standard HF receiver. This is mainly due to the choice of amplifier circuit at the input of the LP IF filter. The noise floor could be lowered, but this would reveal 1/f noise and greater hum sensitivity. The advantage would be that, given a clean LO, lowering the receiver's noise floor would further increase its spurious free dynamic range.

RF sub-octave filtering would be essential to prevent unwanted signals at harmonics of the input signal from mixing with harmonics of the local oscillator. This design makes the point that, by running the mixers with an accurate square wave drive, and by using 3rd harmonic response cancellation, the complexity of the preselector is considerably reduced.

Remember that it is standard practice to quote the suppressed carrier frequency of an SSB signal. So, for LSB, the receiver should display LO+1.7kHz, and for USB, the receiver should display LO-1.7kHz.

Squarewave LO drive

Using a double balanced diode ring mixer as a voltage variable RF attenuator is likely to cause intermodulation products. Imagine that the LO input is a sine wave. As the instantaneous LO voltage nears 0V, the RF voltage has a greater effect on the diode currents, so the mixer attenuation varies depending on the RF input waveform. This is another way of saying that it is generating intermodulation products. To avoid this, the mixers must be provided with a square-wave LO drive in order to achieve the required strong signal handling performance. This works because the diode current is at its saturation value most of the time, and passes through the 0V danger zone much more quickly.

In this receiver, the square wave input to the mixer is generated by a frequency divider with a 1:1 duty cycle output waveform. The LO mixer drive of the lower mixer in Fig. 3 can be expressed as a Fourier series:

\[C(t) = 4/\pi [\cos \omega t - 1/3 \cos 3 \omega t + 1/5 \cos 5 \omega t - 1/7 \cos 7 \omega t + ...]\]

This shows that the second harmonic component of the mixer drive waveform is theoretically zero. In fact it will be present, but will be very small. The result is that the mixer's 2nd harmonic response will be similarly small. This is not the case for the 3rd harmonic response, which will have a conversion loss only 20log(1/3) or 9.5dB larger than the fundamental frequency conversion loss. The upper mixer drive in Fig. 3 may also be expressed as a Fourier series:

\[C(t) = 4/\pi [\cos \omega t - 1/3 \cos 3 \omega t + 1/5 \cos 5 \omega t - 1/7 \cos 7 \omega t + ...]\]

Compare the two series, and notice that the terms for the 3rd and 7th harmonics change signs. This results in the two mixers giving the same AF amplitude output in response to a 3rd or 7th harmonic RF input frequency, but the outputs are phase inverted with respect to each other. When they are added together in the summing junction, these harmonic responses cancel. The result of this is a mixer in which all the harmonic responses cancel, with the exception of the 5th, 9th 13th etc. It is difficult in practice to build the RF input phase shifter so that the accuracy is better than 5°. This gives a theoretical 3rd harmonic signal cancellation of 29dB (see box). Add to this the 3rd harmonic conversion loss (see above) of 9.5dB. Thus the minimum 3rd and 7th harmonic rejection should be about 40dB. Inaccuracies of the 0/180° phase shift in the mixer limit the even order harmonic rejection to about 50dB.

The effects of error

For a pure sine wave input to the receiver, the outputs of the IF amplifier/filters should be equal and have 90° phase shift. However, the phase and amplitude are always slightly in error, so the Lissajous figure, which should be a perfect circle, is always slightly elliptical. This ellipticity can be viewed as the result of a small circular component rotating in the opposite direction to the main component. The demodulator interprets this as a small signal of the opposite sideband to the main signal, so, when demodulating USB, the distortion takes the form of an LSB image. This is the worst case in-band AF distortion referred to in Table 1.

Note that the harmonic responses of the mixers give a residual output from the two IF filters. Although the resultant frequency seen in the filters will be the same, the relative phase and amplitude between the two signals will be random for any given frequency. Because the two IFs have signals that are not of identical amplitude and 90° phase shift, the rotary mixer will not be certain whether to
give a USB or an LSB output, and so gives a mixture of both.

Spurious demodulation is possibly the worst fault of direct conversion receivers: strong signals (usually 7MHz AM broadcast) are directly demodulated to audio frequencies, irrespective of the LO frequency. Spurious demodulation occurs because of imbalance in the mixer. The SBAI is inherently well balanced: it has all its diodes fabricated on one substrate. The SRAI/# uses a ring of eight matched diodes in separate packages, and will not be so well balanced. This may explain why the spurious demodulation performance of the two types is similar, even though the SRAI/# has a higher 3rd order input intercept point.

However, the third order intermodulation products start appearing above the receiver noise floor at the same signal level as the onset of spurious demodulation. In fact, for a superhet, an AF detector on the mixer output would be a good indication of mixer RF overload.

In the Weaver receiver, the spuriously demodulated signals are frequency shifted by the second mixer, making them unintelligible. This is an advantage: off tune SSB interference is subjectively far less annoying than, for example, being able to hear the BBC World Service in the background on every frequency. All direct conversion receivers are prone to "combination of direct pickup and LO radiation".

To reduce hum, homodyne and phasing receivers have a 400Hz high pass filter on the mixer outputs. This removes 50Hz and its first seven harmonics without any loss of SSB signal information. The Weaver receiver cannot do this because the IF filters must pass frequencies down to 5Hz. In this receiver, any hum is converted by the AF mixer into two tones close to 1.7kHz, which are impossible to filter out. As a result, the Weaver receiver's mixers must have a hum output much smaller than other direct conversion receiver types.

Implementation

Looking at block diagram Fig. 4, the main receiver components are these:

The **isolator** reduces the signal levels arriving at the mixer when necessary. A 7.2MHz half-wave dipole at night can produce signal levels as high as 0dBm (223mV across 50Ω or 1mW) — causing severe direct demodulation. It is high time automatic RF attenuators were standard in HF receiver design.

The **preselector** performs three functions. The first is simply to minimise the out-of-band RF energy arriving at the mixer. This reduces the susceptibility of the receiver to interference from intermodulation products or direct demodulation. The second function is to attenuate sub-harmonic frequencies. These will suffer harmonic distortion in the isolator and mixer, and give spurious products at the receiver frequency. The third function is to attenuate frequencies at harmonics of the receiver frequency. These may produce harmonic responses from the mixer.

The isolator passes the signals from the preselector to the mixer at unity gain, but attenuates LO leakage from the mixer attempting to travel in the opposite direction by up to 80dB. Reference 6 explains the use of an isolator to reduce local oscillator radiation and RF generated hum and microphony.

The 90° phase shifter is a broadband device, but, because its only function is to cancel the 3rd harmonic response of the mixers, the frequency range of the cancellation need only be from the 3rd harmonic frequency of the lowest input frequency to the receiver's top frequency. This phase shifter gives 90°±4° over a 4 to 30MHz frequency range.

The complex mixer (Fig. 5) is an implementation of Fig. 3, one to provide the sine output and one the cosine. The mixers are driven by a square wave derived from a divide by four flip-flop stage. The two square waves have a 90° relative phase shift. This phase shift is used to give the correct phase relationship between the two IF filter signals in order that the correct USB or LSB detection can be applied. It must therefore work over the full frequency range of the receiver.

The 1.3kHz LP IF filter and amplifier stages have a 6th order 0.1dB Chebyshev frequency response. A more complex filter would give better selectivity, but it would make the phase and amplitude matching of the two stages harder. It is instructive (and pretty) to connect the outputs of these filters to the X and Y plates of an oscilloscope. The true phase nature of the RF input signals can then be displayed. It is, for instance, easy to spot the broadcast stations that use AM to PM conversion, or dynamic carrier control.

The 5Hz high pass filter removes the DC component of the IF signal that is to be connected to the rotary mixer. Most of this DC component arises from mixer imbalance, and the residue from amplifier offsets. The DC level controls the amount of 1.7kHz in the output, so the spurious content must be removed.

The mixer DC offset depends on the LO frequency, so, for each large frequency change, a step function is applied to the HP filter.

<table>
<thead>
<tr>
<th>Table 1. Performance figures for the prototype receiver. The measurements were made with the RF attenuator and preselector disconnected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency coverage</td>
</tr>
<tr>
<td>Detector type</td>
</tr>
<tr>
<td>RX 3rd order input intercept point</td>
</tr>
<tr>
<td>Selectivity</td>
</tr>
<tr>
<td>Centre frequency notch width</td>
</tr>
<tr>
<td>Sensitivity</td>
</tr>
<tr>
<td>Harmonic responses (receive frequency 2MHz w.r.t. -108dBm)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sub-harmonic response (2MHz in) w.r.t. -108dBm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AF distortion</td>
</tr>
<tr>
<td>Spurious demodulation (100% AM)</td>
</tr>
</tbody>
</table>

![Graph](image_url)
transient response of the HP filter causes a 1.7kHz ping at the receiver output. So the cut-off frequency of the filter is a compromise between the desire to use the narrowest possible notch width in the centre of the AF passband, and the desire for the ping caused by each frequency change to be shortest.

A 0.5Hz high pass filter would result in less of the AF passband being lost, but would take a long time to arrive at its final value. This would result in a prolonged 1.7kHz whistle every time the receiver’s frequency was changed. 5Hz was chosen as a reasonable compromise, and gives a negligible reduction in speech intelligibility.

The rotary AF mixer is a rotating switch which selects one of eight phases for the AF output. If four phases are used, an audio image appears between 3.8kHz and 6.4kHz, and this imposes a severe filter requirement on the subsequent LP filter. With eight phases, this image is moved up to 10.6kHz to 13.2kHz, well out of harm’s way.

The 3.2kHz LP filter removes the 3rd and higher harmonics of the 2nd LO frequency, and some high frequency mixing products which are generated by the Rotary AF mixer because it operates in discrete phase steps.

Circuits are not given for the attenuator, preselector, LO, or AGC stages since there is nothing unusual or design specific about them.

Receiver frequency response

The effects of all the audio frequency signal processing can be seen in the graph (see Table 1). The fundamental shape is of two 1.3kHz LP filters glued back-to-back, and centred on the 2nd LO frequency of 1.7kHz. In the centre of the passband is a 10Hz wide notch formed by the 5Hz HP filters. The 3.2kHz LP filter’s cut-off can be seen at ±3.2kHz; it causes the receiver response to roll-off faster on the high frequency side of the passband than the low frequency side.

At the AF output shown on Fig. 4, all frequencies less than 400Hz will contain interference and no signal. The subsequent loudspeaker amplifier will therefore be AC coupled. The frequency response of the receiver from the RF input to the loudspeaker output will thus resemble the response graph, but will have an extra notch 800Hz wide centred on 0Hz.

RF circuit description

The isolator stages use two dual grounded gate JFETs. The circuit has been adapted to a push-pull type in order to reduce the second harmonic distortion. Both live and ground of the RF input are connected to the receiver using 100nF capacitors. The LO input is similarly decoupled. This stops 50Hz hum current from flowing from the ground of the antenna connector or external LO, past the low noise AF input, and into the mains supply earth. A small potential due to this current would be developed at the low noise input of the 1.3kHz LP IF amplifier.

The 90° phase shifter, if made with perfect
components, would give the response shown in the graph, right – a computer simulation. Unfortunately, the most accurate inductors to hand had a tolerance of 10%. As previously explained, a 3rd harmonic rejection of about 40dB could be expected depending on the accuracy of the 90° passive phase shifter. This has not been achieved, see Table 1. Note that this harmonic rejection was measured at 6MHz, which is where the inaccuracy of the 90° phase shift is greatest, so the phase error due to component tolerance was positive, and added to the predicted error.

The phase shifter design is simplified by using a branch impedance of 100Ω, which means that the inductors must be exactly 10,000 times the capacitor values, so the E6 series of component values can be used.

The LO divider is a 74F74. This provides a square wave drive current of 14mA for the mixers. The 74F logic series is not guaranteed to operate at a clock rate higher than 100MHz; this would limit the maximum receiver frequency to 25MHz. In practice, all the devices so far tried have operated at greater than 120MHz. For higher guaranteed speeds, use ECL.

The mixer inputs are connected in series, giving an input impedance of 100Ω to match the phase shifter impedance. The IF outputs of the mixers are matched at RF by a 51Ω resistor. At AF, the mixers are mismatched. This reduces the audio band 3rd order input intermodulation distortion to a value that is just sufficient to escaping from the mixer compartment.

Signal Cancellation

There are two places in the receiver architecture where the signal path splits into two, which then rejoin. At each of these joining places, the aim is to cancel out unwanted signals. This happens in the RF mixer where 3rd and 7th harmonic responses of the mixers are cancelled out, and again in the rotary mixer where the two low frequency IF signals are combined in order to cancel out the unwanted sideband.

In the first instance cancellation depends on the accuracy of the 90° phase shifting network. This is composed of all pass filters, so the amplitude error will be very small, and the phase error dominant. However, the amplitude error can be dominant; for example, there is a 90° hybrid junction design that has constant phase difference, but has amplitude ripple.

This is the exception. The phase error is dominant in most circuits. Imagine the errors to be due to an RC LP filter. At one tenth of the cutoff frequency, the amplitude error is 0.044dB, and the phase error is 5.7°. Look at the graph; it shows the amount of signal cancellation that may be expected for various phase and amplitude errors. An amplitude error of 0.04dB with no phase error gives a signal cancellation greater than 50dB, whereas a 5.7° phase error with no amplitude error gives a signal cancellation of 27dB. The lower value of signal cancellation will prevail.

There is also a less obvious splitting and combining point in each of the balanced mixers. These work by selecting a phase of either 0° or 180°, depending on the direction of the instantaneous LO current flow through the mixer. The phase shift between these two states must be exactly 180° and the amplitude of the two states must be exactly equal for the even order harmonic responses to cancel completely. In this case, the two paths through the mixer may be thought of as splitting and rejoining in time.
RF DESIGN

make the leakage of the 2nd harmonic of the 1.7kHz LO inaudible in the front-end noise.

Rotary AF mixer description

The 5Hz high pass filters must be first order to keep the transient response free of overshoot. For this a simple resistor/capacitor time-constant is used. An alternative but more complex candidate for this circuit is the critically damped filter, which has a transient response that arrives at the final value rather more promptly than a resistor/capacitor filter.

The OP117 op-amps have very low DC offset and would normally require no adjustment. However, a small amount of 1.7kHz leaks from the subsequent mixer circuit into the AF output. The offset potentiometers on the op-amps allow a small amount of signal to pass in anti-phase to the mixer leakage thus cancelling it out.

The rotary mixer contains two inverters: one on the sine channel and one on the cosine channel, their outputs are -sine and -cosine creating four phases to choose from, Fig. 7.

Four more phases are interpolated by the resistor networks around the analogue inputs of the DG508 analogue switch.

The 5Hz highpass filters must be first order to keep the transient response free of overshoot. For this a simple resistor/capacitor time-constant is used. An alternative but more complex candidate for this circuit is the critically damped filter, which has a transient response that arrives at the final value rather more promptly than a resistor/capacitor filter.

The OP117 op-amps have very low DC offset and would normally require no adjustment. However, a small amount of 1.7kHz leaks from the subsequent mixer circuit into the AF output. The offset potentiometers on the op-amps allow a small amount of signal to pass in anti-phase to the mixer leakage thus cancelling it out.

The rotary mixer contains two inverters: one on the sine channel and one on the cosine channel, their outputs are -sine and -cosine creating four phases to choose from, Fig. 7.

Four more phases are interpolated by the resistor networks around the analogue inputs of the DG508 analogue switch. The resistor values are chosen such that, at the DG508, the source impedance of all eight phases are equal. Also, the sine, cosine, -sine and -cosine phases are attenuated by a voltage ratio of 0.5, so that all the phases have an equal RMS voltage. There are now eight phases for the DG508 rotary mixer to choose from.

The second LO is generated by a 555 oscillator at 27.2kHz. This signal is connected to the 4029 up/down counter. As the DG508 has only three digital inputs, one of the four counter outputs is unused. This gives a choice of using a clock rate of 27.2kHz, and not using the Q1 output of the 4029, or of using a clock rate of 13.6kHz, and not using the Q2 output. While this last option provides identical control of the DG508, some of the 850Hz generated by the 4029 inevitably leaks into the audio output, so the 27.2kHz option is to be preferred. Note that the majority of low frequency circuitry is enclosed by a screened box, and that all the supply and signal connections are made using feed-through filters. This must be done to prevent RF harmonics of the 2nd LO from leaking into the RF stages of the receiver.

The 3.2kHz low pass filter is a 5th order 0.1dB Chebyhev filter. The filter input resistor has been reduced in value to allow for the mixer source impedance.

In the output of the conventional mixer (balanced modulator), the sum and difference frequencies are present at the same time. This is because the conventional mixer approximates to the rotary mixer by using two phases: 0 and 180 degrees. The mixer cannot distinguish between clockwise and anti-clockwise rotation. The output contains the two frequencies as if the mixer were rotating both clockwise and anti-clockwise simultaneously.

References:

Create your schematics quickly and efficiently using EASY-PC Professional. Areas of the circuit can be highlighted on screen and simulated automatically using ANALYSER III and PULSAR, our analogue and digital simulation programs.

If the results of the simulations are not as expected, the configuration and component values of the circuit can be modified until the required performance is achieved.

The design, complete with connectivity, can then be translated into the PCB. The connectivity and design rules can be checked automatically to ensure that the PCB matches the schematic.

Affordable Electronics CAD

<table>
<thead>
<tr>
<th>Product Description</th>
<th>US$</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASY-PC Professional: Schematic Capture and PCB CAD</td>
<td>$375.00</td>
<td>£195.00</td>
</tr>
<tr>
<td>PULSAR: Low cost Digital Circuit Simulator - 1500 gate capacity</td>
<td>$195.00</td>
<td>£98.00</td>
</tr>
<tr>
<td>PULSAR Professional: Digital Circuit Simulator - 50,000 gate capacity</td>
<td>$375.00</td>
<td>£195.00</td>
</tr>
<tr>
<td>ANALYSER III: Low cost Linear Analogue Circuit Simulator</td>
<td>$195.00</td>
<td>£98.00</td>
</tr>
<tr>
<td>ANALYSER III Professional: Linear Analogue Circuit Simulator - 750 nodes</td>
<td>$375.00</td>
<td>£195.00</td>
</tr>
<tr>
<td>EASY-PC: Low cost, entry level PCB and Schematic CAD</td>
<td>$195.00</td>
<td>£98.00</td>
</tr>
</tbody>
</table>

We operate a no penalty upgrade policy. You can upgrade at any time to the professional version of a program for the difference in price.

Number One Systems Ltd.

Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK.

For Full Information: Please Write, Phone or Fax.

Tel: 0480 461778
Fax: 0480 494042
USA tel:011- 44 - 480 461778 fax 011- 44 - 480 494042
System requirements
System requirements are not specified, but the review was carried out using:
- Windows 3.1
- Windows 386 Enhanced mode
- 8Mbytes ram
- 486 PC
- VGA screen
- Output to a Windows supported pen plotter or printer.

SpiceAge for Windows edit window shows the analysis options

Users who know Spice well will be up and running with SpiceAge for Windows with little delay. Windows pull-down menus give access to all aspects of the package, including setting test nodes, starting simulations and plotting the graphs. No great increase in functionality is claimed over previous versions, so the question for any potential user is whether support for Windows is a worthwhile addition.

Simulation speed is adequate – for small networks. But some circuits require a small time step so that sampling rate errors may be removed. Under these circumstances simulation can take several minutes – even on a fast 486 machine. Even so, processing is still significantly faster than wiring and checking a breadboard.

Overall, the simulation capability is impressive. Frequency or time response can be displayed for any node, with four nodes specified at any one time. In the frequency domain, the response can be displayed as a Bode plot, a complex plot (Nyquist) or as real and imaginary parts. In the time domain, the responses of the system to a wide variety of predefined generators can be displayed as a family of response curves for each variant.

Fourier analysis of the time response allows determination of harmonics in the waveform. But be careful here as there may not be an integral number of fundamental periods in the transient analysis. The Hanning window option, sometimes referred to as the raised cosine window, can help, enhancing the repetitive nature of the waveform by weighting the data at the centre of the window relative to the edges.

Graphing could be better. Graph scales can be set, but to display the rescaled graph requires a tedious resimulation. On the plus side there is a very useful real time cursor which enables, as the mouse is moved, the XY co-ordinates of the cursor to be displayed at the top of the window. Also the delta mode, implemented when the left hand mouse button is depressed, makes for quick and convenient determination of -3dB points, bandwidth and risetimes accurately from the graph. Scaling is normally automatic, and seems to be sufficient, though a pop up window will control the scale of the graph if required.

One of the sillier aspects of the system is the scrollable tool bar, the "ribbon of buttons" used to input the correct component type letter into the Spice model. For example, pointing the mouse at the resistor icon and clicking, results in "R" being input. Of course the "R" can be pressed on the keyboard, and as this is a tool for analysing an existing design, the nodes and components would have already been defined and would only take a few seconds to key in by hand.

Quiescent analysis and models
A circuit can be analysed for its DC quiescent levels, presented in table form. Unfortunately presentation could be better. The font is small, and when the quiescent conditions are analysed using a Monte Carlo technique on the component tolerances, the table of values is both crowded and illegible.

One useful feature is that some models have a temperature coefficient built into their definition, allowing analysis of temperature effects on the circuit response. What a pity this does not extend to making temperature the dependent variable so that attributes can be directly plotted against it.

Models comprise a set of primitives, eg resistor and capacitor, and library networks such as transistors and op amps. Library networks created by the user are treated in the same
Prototype Butterworth band pass filter, Impedance one ohm.

A frequency response shows a flat pass band.

*R A frequency response shows a flat pass band.

But compatibility could be a problem. There are several dialects of the "standard" Spice language, so models supplied by op-amp manufacturers may not run immediately on SpiceAge. However, the manual provides two methods of defining the same component, including the normal .MODEL syntax of the original SPICE simulators.

Manual

The package comprises a loose-leaf A5 manual and a disk and the software is not copy protected. The manual appears to have been produced quite cheaply with single sided photocopied pages, but is well written and logically arranged.

Installation is simple and uneventful.

Spice for beginners?

Spice is a modelling system for electronic networks, where a series of attributes and parameters of the component parts of the network are individually defined. Modelling takes the form of frequency, time or quiescent simulations.

Emphasis these days is on "right first time", and Spice offers the opportunity to check circuit performance without recourse to any lab work. But beware, Spice will not simulate things for which there is no information – eg parasitic inductances and capacitances – and unmodeled modes of circuit operation such as inputs exceeding the supply voltage etc.

Further, aliasing due to the effective sampling rate can cause spurious results. Thus it should be used as a useful test-bed for the circuit operation, and offers an ideal tool to tolerance the circuit.

Half a good idea?

Halfway through entering a circuit I decided I should save the file. But when I tried, the only response was a beep from the computer, no disc access and no message. Indeed as much as I tried I could not save the file either as itself or as an alias. Using the Windows clipboard eventually allowed me to save file, and I then looked into the problem. What I found was that there was a syntax error in one line and SpiceAge was refusing to save until the file was syntactically correct. Great idea – but a message to that effect would have helped!
The only way round this is to analyse for a particular component setting and icon the graph for later comparison with different component settings.

The different windows that pop up for setting graph colours, selecting the nodes to monitor and other features are utilitarian and intuitive to use.

SpiceAge for Windows is a very competent analysis tool, capable of taking on most electronic and dynamic systems models. There are one or two rough edges, but it is, without question, a really good base tool which every engineer should consider for tackling analogue circuits.

That said, that the package really needs is schematic capture and netlist, so that the node list format can be extracted from the actual circuit diagram. The advantages this would give are clear – minimal effort expended inputting data and a guarantee that there are no discrepancies between circuit and model.

Development of the software has been going on for two years, in a continuous manner (indicated by the test software revision number V1.182).

But its £395 price tag takes it into an area where some potential users might opt for a cheaper DOS product instead. That would be a shame because the system under Windows is intuitive, easy to use and delivers the results.

Supplier Details

SpaceAge for Windows, £395 + VAT.
Those Engineers Ltd, 31 Birker Road, Mill Hill, London
Tel: 081 906 0155 Fax: 081 906 0969

The only way round this is to analyse for a particular component setting and icon the graph for later comparison with different component settings.

The different windows that pop up for setting graph colours, selecting the nodes to monitor and other features are utilitarian and intuitive to use.

SpiceAge for Windows is a very competent analysis tool, capable of taking on most electronic and dynamic systems models. There are one or two rough edges, but it is, without question, a really good base tool which every engineer should consider for tackling analogue circuits.

That said, that the package really needs is schematic capture and netlist, so that the node list format can be extracted from the actual circuit diagram. The advantages this would give are clear – minimal effort expended inputting data and a guarantee that there are no discrepancies between circuit and model.

Development of the software has been going on for two years, in a continuous manner (indicated by the test software revision number V1.182).

But its £395 price tag takes it into an area where some potential users might opt for a cheaper DOS product instead. That would be a shame because the system under Windows is intuitive, easy to use and delivers the results.

Supplier Details

SpaceAge for Windows, £395 + VAT.
Those Engineers Ltd, 31 Birker Road, Mill Hill, London
Tel: 081 906 0155 Fax: 081 906 0969
Seetrax has made a version of its Ranger2 software available on shareware. Martin Cummings says hurry while stocks last.

Last year we reviewed Ranger1, an entry level PCB design package with its expensive stable-mate, Ranger2. It is a sign of the fast moving cad market that Seetrax is now offering a version of Ranger2 free of charge, on shareware. The package includes schematic capture, PCB layout and autorouter, output drivers and a manual. Quality, features and performance of the package are a match for most of the competition. So what is the catch?

For many people there isn't one. In an interesting marketing ploy, Seetrax is offering a version of its software with all the features – but with restricted capacity – for nothing. The limitation is 32 parts or 128 component pins. Up to this point the package is a fully functional design tool: beyond the threshold you can design but can neither save nor output.

Offering Ranger2 as try-before-you-buy shareware is no doubt seen by Seetrax as a good way of demonstrating the software. Get a feel for all the functions, climb up the learning curve, then if you are happy, buy the full version without the limitations.

Some non-professionals, and perhaps those working in educational establishments, will probably not find the 32 part limit a problem. To them it is a very attractive offer, and I fully recommend they take advantage of it.

Using Ranger2
As with similar packages an outer menu or shell co-ordinates all the programs necessary in the design cycle. It organises all the relevant files for a job and allows jobs to be given a meaningful name up to 28 characters long – saving many
When moving parts, signals are highlighted to show the effect of the move.

Far right This circuitry, routed with the autorouter, is the maximum circuitry possible on the free version.

Setting up the costs of the autorouter.

A library is built up for each job and can be listed on screen or printed.

Manual

The free version of Ranger2 is delivered on two 720k disks together with a professionally printed 90 page A5 demonstration manual. Most of the booklet is a training exercise; fold-out diagrams and plenty of text navigate you through a design from start to finish. The simple two sheet design uses about 30 components so gives an immediate feel for the complexity allowed by the free version.

Those who register and pay the £20 fee are rewarded with a 400 page reference manual.

Software and libraries are expanded as they are installed onto the hard disk and eventually occupy 3MB - the installation routine gives full control over where things go by asking questions at every step.

Ranger 2 brief specifications

Up to eight sheets per design
16 layers
One thou resolution
Component flip for double sided placement
Automatic net length minimisation
Up to 32in square board
Signal highlight capability
Multi strategy autorouter
Gerber photoplotter output
Output for drilling and routing machines

Supplier Details

Demonstration version (32 parts, 128 pins) free of charge
Shareware registration fee £20
Full version (1400 parts, 16000 pins) £599
Seetrax, Hinton Daubney House, Broadway Lane, Lovedean, Hants PO8 0SG.
Tel: 0705 591037, Fax: 0705 599036

Copper fill can be implemented on selected sections of the board, either solid or as a cross hatch pattern.

hours thinking up awful abbreviations. Like all the main screens this menu is text based, but it is mouse operated and easy to use.

The schematic editor screen layout has menu boxes down the left hand side and along the bottom. They are well organised into screen control functions such as pan and zoom, with a separate set for design work. Operation has a nice feel to it, the menu boxes turn green as you move over them then turn red when selected - there is also no inadvertent operation as was found in the Ranger1 review.

Five fixed magnification levels can be selected and one or two levels can be jumped depending on which mouse button is pressed. It might be useful to have variable magnification selected by defining a zoom window, but the fixed levels
seem adequate in practice. In addition to mouse control, all
the screen control functions can also be keyboard selected,
either for example F1 for zoom, space bar for pan.
The grid can be called up on both schematic capture and
layout editors. On schematic capture the grid pitch is set and
you have to live with it. Pitch is adjusted according to zoom
level and it is important when drawing to know that Ranger
will snap onto either the full or half grid position.
The artwork editor allows full control over grid pitch – I
would prefer full control on both but have to accept that the
automatic adjustment is good enough in most cases.
Plenty of scope is available to draw a schematic. It can be
spread over up to eight sheets, each of which can be from A5
up to A1 in size, and is an extremely useful function for
organising circuits onto sheets relating to function with well
data.

28 volumes of components
To add a symbol, select it from the master library and put it
in what is called the tray. Components can be searched for in
the libraries. So if looking for a 1N4002, type in 1 and it can
find over 300, 1N and it knows of 33, 1N400 it can find 7
and 1N4002 it finds just one.
The full version of the software comes with 28 volumes of
components, each volume being a category, for example vol-
ume 12 is Zilog microprocessor devices, volume 25 is A-to-
D converters, and so on. The demonstration software only
includes 11 volumes although this still leaves a surprisingly
good spread of components – particularly for the amount of
money involved – and even includes some surface mount
devices.

As a design is built up, parts are transferred into a job spe-
cific library. The device library editor shows all the com-
ponents so far used by the job. By clicking on a device a text
screen lists seven key details such as symbols per device, ter-
minals per device, which outline to use, and so on. Creating
a new device involves entering these details and drawing the
graphic symbol to use on the schematic.

Several configuration screens allow pad and drill and track
sizes to be defined. Various shapes of pad are possible
including square, rectangular and round ended. Track sizes
from 1in down to 0.001in can be defined in steps of 1 thou
and the press of a key will switch from imperial to metric
units.

Of the 16 layers, layer 0 is reserved for drilled pads, layers
1 and 2 are the outer copper layers, and all the others can
have their function defined as copper, silk screen, ground
plane, or several other power planes. The colour for all
screen items can be selected.

Moving symbols around the screen is easy and smooth.
The align function makes later connection simplicity itself.
First of all choose a component with which others are to be
aligned. Then, when in either X or Y align mode, click on
any other components and they jump into alignment.
The result is a neatly arranged schematic and, more impor-
tantly, there is no messy position adjustment to straighten
wires when connecting up. The feature is simple and very
effective and one that I have not come across elsewhere.

Best user interface
In general, the user interface is one of the best I have come
across. Screen update is so fast that it ceases to be noticed.
Moving connections and tracks takes a bit of practice, but
adjusting the position of components and text is smooth and
natural and the commands are all readily available at the
press of either a mouse button or key.

There is no doubt that, without the 32 part limitation,
Ranger 2 is a competent design tool with an easy to use per-
sonality and suficient features to compete well with the
many other packages available.

The version distributed free shares all these benefits and at
first sight appears too good to miss.

It is fair to say that many of Ranger’s good features are
wasted on small circuits; for example the autorouter, multi
sheet schematics and automatic component numbering will
be of little or no benefit.

There are no catches, but take a look at typical circuits that
are likely to be laid out and count the components before
excitement gets the better of you.

Those in secondary or further education should also take
notice. As well as demonstration software the shareware ver-
sion is also a superb training aid. If you want to learn about
integrated schematic capture and PCB layout, or you need to
teach others, this is an excellent opportunity and a very good
deal.
SILENT EFFORTLESS MOVEMENT with our 35mm ballrace complete with retaining ring £1, Order Ref. 5P2. 6-12V AXIAL FAN is a Japanese-made 12v DC brushless axial fan, 93mm square. Its optimum is 12v but it performs equally well at only 6v and its current then is 10mA. FM CORDLESS RADIO MIKE, hand-held battery-operated professional model, has usual shaped body and head and is tuneable to transmit and be picked up on the 100mhz radio. You would use Order Ref. 8P50, Order Ref. 8P49.

4 MORE SPEAKERS:
Order Ref. 1SP11 is Japanese-made 6W, 60W, rated at 12v max. This is a very good introduction. The makers are SANYO, but you wouldn't want to order lots of these at £1 each. Order Ref. 900 is another Far East-made 6W, 40W max made, using Japanese Hitachi tools and technique, only £1 each. Order Ref. 896 is 6W, 60W, 10W, exceptionally good sound, and yours for only £1. Order Ref. 897 is another 8W speaker rated at 5W but its unusual feature is that it has a built-in tweeter. Still only £1.00.

SAW V FLY LEAD curiously so they fold out but don't hang down. Could easily save a child from being scalded. 2-core, 5A, extends to 5m, £1 each, Order Ref. 656, 2-core, 13A, extends to 3m, £2 each. Order Ref. 2P290.

POWER SUPPLY WITH EXTRAS main input is fused and filtered and the 12v dc output is voltage regulated. Intended for high-class equipment, this is mounted on a PCB and also mounted on the board but easily removed, 2-12V, £1 each. Order Ref. 70. ULTRASONIC TRANSUDERS 2 metal cased units, one transmits, one receives. Built to operate around 40kHz. Price £1.50 the pair, Order Ref. 1.5P4.

100W AM EXTRAS IN THE FORMER normal primary 0-20v at £2.50, £4.50, Order Ref. 4P24. 40W at 2.5A, £4. Order Ref. 4P59. 50V at 2A, £4, Order Ref. 4P60. Philipines do not manufacture a new and, actually, a better kit for essential easy mounting, brand new, still in maker's packing, offered at less than price of tube alone, only £15. Order Ref. 15P1.

16-CHANNEL DUBLINE DISPLAY screen is 85mm x 36mm, Alpha-numeric LCD dot matrix module with Integral microprocessor made by Epson, their 1602DTAR, £8, Order Ref. 8P46.

INS-TESTER WITH MULTIMETER internally generates voltages which you enable to read insulation directly in megohms. This multimeter has four ranges. AC/DC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex British Telecom, but in very good condition and guaranteed OK, probably cost at least £50 each, yours for only £7.50, with leads, carrying case £2 extra, Order Ref. 7.5P4.

MORSE CALL RAIN best make "PAPST" 4½" square, metal blades, £8, Order Ref. 8P6.

2MW LASER Helium Neon by PHILLIPS, full spec. £30, Order Ref. 3P01. Power supply for this kit is complex and reverse case is £15 Order Ref. 15P16, or in larger case to house tube well £18, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube £69, Order Ref. 69P1.

½HP 12V MOTOR – THE FAMOUS SINCLAIR C5 brand new, £15, Order Ref. 15P6.

SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hours, in neat plastic case, £5, Order Ref. 5P3.

AIR SPACED TRIMMER CAPS 2-20 pf ideal for precision tuning UHF circuits, £3, Order Ref. 3P13.

DIGITAL MULTI TESTER M3800, single switching covers 30 ranges DC volts 0-500, dc volts 0-500, dc current 500 microamps at 250 milliamp, resistance 0-1meg-ohm, decibels 20-156dB. Fitted diode protection, overall size is 80x40x21, £35. Complete with long-term 40 year service guarantee.

2 50 OHM LOUDSPEAKER, replacement for radio phone, baby alarm, etc. Also makes good pillow phone. £2, Order Ref. 905.

PHILIPS NES DEP-ENERGY KIT 4W, 2.5W while in metal test frame, useful for ventilation otherwise undrilled. Made for GPO so best quality, only £3 each.

ASTEC 135W PSU Mains input, 3 outputs:- +12v at 4A, +5v 2A and 5v 0.5A output. Very well made. Price £2, Order Ref. 2P312.

DOUBLE HEADPHONE OUTLET A standard type stereo plug with 2 leads coming out, each terminating with a standard size

AC/DC volts 0-500, dc volts 0-500, dc current 500 microamps at 250 milliamp, resistance 0-1meg-ohm, decibels 20-156dB. Fitted diode protection, overall size is 80x40x21, £35. Complete with long-term 40 year service guarantee.

DIGITAL MULTI TESTER M3800, single switching covers 30 ranges DC volts 0-500, dc volts 0-500, dc current 500 microamps at 250 milliamp, resistance 0-1meg-ohm, decibels 20-156dB. Fitted diode protection, overall size is 80x40x21, £35. Complete with long-term 40 year service guarantee.

These instruments are ex British Telecom, but in very good condition and guaranteed OK, probably cost at least £50 each, yours for only £7.50, with leads, carrying case £2 extra, Order Ref. 7.5P4.

MORSE CALL RAIN best make "PAPST" 4½" square, metal blades, £8, Order Ref. 8P6. MINI CASSETTE MOTOR but will operate from 14v upwards as it is so well made. Speed, of course, increases with voltage and is speed regulated at 9v. £1, Order Ref. 540.

STOP THOSE PEAKS as they come through the mains, they can damage your equipment. 2A unit is a combination of cores and caps gives complete protection. £2, Order Ref. 2P315.

SOLAR KIT BARGAIN A recent lucky purchase enables us to offer 2 solar models at approximately half price. The Aerocraft kit comprises all the parts to make a model aeroplane, solar cell and motor to drive its propeller. The kit was £7.50 but can be yours for only £3.75, Order Ref. 3.75P9. The second one is the Vintage Gramophone. Again, this comprises all the parts to make a model solar cell which drives the module which plays the tune. Again, the kit was £7.50 but can be yours for only £3.75, Order Ref. 3.75P7.

INSULATION TAPE 5 rolls of assorted colours, only £1, Order Ref. 911.

GENERAL PURPOSE FAN KIT comprises beautifully made "Boxer" fan, transformer and switch to give control and wall mount from the mains. Complete with perforated front panel which, if bent, could make a suitable stand for a desk fan, etc. Or, it could be used as a general purpose blower or for fume extraction in cooker hood, etc. Complete kit £6, Order Ref. 6P28.

DOUBLE HEADPHONE OUTLET A standard type stereo plug with 2 leads coming out, each terminating with a standard size stereo jack which then is a 5 pin socket. It is very useful, especially when you need to work on the last one. £10. Order Ref. 10P99.
Did the earth move?
In response to the queries raised by AJ Quinton (EW + WW, Letters, August 1992) and Martin W Berner (Letters, January 1993), there is much evidence to show that special relativity's postulate of the absolute constancy of the speed of light is incorrect.

Devices such as the navigational laser-ranging interferometer for Doppler imaging, the global positioning satellite, the monitors of wave-like perturbations in the ionospheric F region, the behaviour of the transponder in Pioneer 10, right down to ordinary police radars, all show that \(v = c \), not \(v = c \).

If special relativity is incorrect, then the famous zero-velocity result of the 1887 Michelson-Morley experiment, and the less well-known positive result of the 1924 Michelson-Gale experiment favour the geocentric paradigm, that is the earth really is stationary; in an absolute sense at the centre of the universe, and that it's the latter that's doing the moving!

This is the opinion of an increasing number of top-notch PhD scientists, such as the Tychonian Society in Europe and the Cercle Scientifique et Historique in Europe (see "The earth is not moving - 400 years of deception exposed", M Hall 1992).

Recent independent research in Australia and Russia has shown that there has been a decrease in the speed of light, which has many far-reaching effects in all areas of science, and implies that the usual estimates for the age of the universe have to be downgraded from billions to only thousands of years (see Richard Milton's "The facts of life - Shattering the myth of Darwinism," 1992).

In addition, a decrease in the speed of light has the effect of shifting light from the stars to the red end of the spectrum, just like the Doppler effect, and voids the necessity to interpret the red shift as being due to an expanding universe.

Contrary to the impression given by the media, close examination of the evidence for the Big Bang makes it turn out to be more of a damp squib (see E Lerner's "The Big Bang never happened," 1992).

Arenon Goldberg
London

Light fantastic
There must be many readers who, like Martin W Berner (EW + WW, Letters, January 1993) are mystified, if not completely baffled, by the theory of Doppler shift as applied to light.

The mystery, I suspect, stems from Einstein's postulate that the speed of light (c) as measured by all observers is independent of the speed of the source or the observer.

An alternative theory (Letters, November 1990 and March 1991), postulates that an observer moving with velocity \(V \) towards a light source would measure the velocity of the light to be the vector sum \((c + V) \).

The theory is difficult to prove by experiment because, except for high-energy particles, nothing on our planet moves at a speed comparable to that of light. For instance, satellites orbit the earth at about 8000m/s, which is only 0.0000027c. So, for most practical purposes on earth, \((c + V) = c \).

However, many galaxies beyond the Milky Way are known to be travelling at speeds that are a high fraction of the speed of light, and astronomers measure the Doppler Shift in the light from such galaxies to estimate their speeds of recession.

Einstein's postulate implies that the speed of galactic light reaching Earth from such galaxies is the same as the speed of light from a local source. This, I believe, has lead to some misinterpretation of astronomical data.

For those who are interested in the mathematics: According to Einstein's theory, if a source of frequency \(F \) is moving with velocity \(V \) at an angle \(\theta \) relative to an observer, then the observer would measure the frequency to be \(f \) where:

\[
f = F \sqrt{1 - \left(\frac{V}{c}\right)^2} \cos \theta
\]

But according to the alternative theory

\[
f = F \left(\frac{c}{V} + \frac{2}{c} \cos \theta + 1\right)
\]

Consider the case when radiation from the source is observed transverse to the direction of motion, that is \(\theta = 90^\circ \).

According to the first equation

\[
f = F \left(\frac{c}{V} + \frac{2}{c}\right)
\]

and from the second equation

\[
f = F \left(\frac{c}{V} + \frac{2}{c} \cos \theta + 1\right)
\]

Expressed in plain English, according to Einstein's theory, if the relative velocity \(V \) is at right angles to the line connecting source and observer, then the observed frequency \(f \) is lower than the transmitted frequency \(F \) (as in equation 1). According to the alternative theory, the observed frequency \(f \) is higher than the transmitted frequency \(F \) as in equation 2. A test using a laser pulse transmitter (ger controlled by USO) and a receiver plus counter/timer would determine which of the two theories is correct. Any suggestions would be welcome.

John Ferguson
Camberley

Power response
I would like to respond to two of the comments that have appeared in letters pages about my article "Natural radiation focused by power lines" (EW + WW, November 1992).

Harold Kirkham's letter (EW + WW, March 1993) neatly pinpoints the areas that need more research, but I can answer some of his points.

First, his comment on the labelling of the graph - it should be "of normal" as he suggests - mea culpa.

The Geiger tube I used for the field measurements detects charged particles over 50keV which penetrate the charge space inside the

Water winner
With regards to Peter Wivel's question (EW + WW, Letters, February 1993) for help in his project to improve power distribution to remote villages in Nepal, my suggestion would be to eliminate or reduce the distance the batteries have to be moved. I do not know much about Nepal except that it is a mountainous country and, I assume, has many fast-flowing streams.

Therefore I propose the construction of many small charging stations (one per dwelling, even) using a vehicle alternator or old dynamo driven by a water wheel. A belt drive may be required to run the machine at a suitable speed.

Given a supply of used or military surplus electrical machines, which should not prove too difficult or costly to secure, the technology involved in this is certainly within the capabilities of the villagers.

Another possibility which is rather more innovative is a solid fuel thermoelectric charger. Only copper and iron conductors would be cheap enough, and about 300 hot junctions are required for charging a 12V battery if the temperature difference is in the region of 400K. Nevertheless it may be practical - I seem to remember a report many years ago of a radio powered by a paraffin lamp developed for the eastern USSR.

For a discharge limiter, a simple solution would be a relay whose coil is in series with a zener diode across the battery and whose make contact is in series with load. It might be possible to make the relays locally if magnet wire were supplied. The zener diodes would have to be brought in but are not costly items.

To prevent chattering, the relay armature might lock in the released position until manually reset. This is a simple mechanical matter.

John Woodgate
Ravleigh
Essex
tube. Biologists classify charged particles up to 1 MeV as most destructive to cells.

The graph showing the zone of interaction is a distillation of many hundreds of field readings with the detector tube parallel, or at right angles, to the line at varying distances.

Here’s how the figures break down: tube self count 30/min; average background away from line about 50/min; this gives a net sky plus ground count of 20/min; and this is factored 33% sky, 67% ground or about 7/14.

If the ground count is stable and remains at 14, any increase in recorded count will be due to extra sky particles. To get a doubling of sky rate the total count must rise to more than 58/min.

To make sure that the figures used were conservative, I double checked all field readings against the recording taken on the fixed detector tube. That coincidence with a solar emission peak were not used.

The exact particle dynamics near a multiphase power line are complicated, and will not be as simple as Kirkham makes out. True, the net electrodynamic effect of an individual conductor will be zero over each cycle, but the current and voltage curves may not be accurately in phase and adjacent phases will be 120° different, so the electrodynamic effect between phases will not average zero unless each particle passes through the electrodynamic balance point between the lines at the correct angle. All interactions will be nonlinear because of the inverse square law effect of distance from the line. The particle interaction between crossing lines, or entering switchyards or distribution networks on the upper floors of large buildings will provide great scope for future analysis!!

DE Jeffers of the National Grid Company makes some more general points (Letters, February 1993).

First, I totally agree with Professor Doll’s report which found no firm evidence that the electromagnetic radiation from power systems is a direct carcinogenic hazard.

The effect I described is quite different, and fits the observed epidemiological data published since 1976, much better than any other explanation to date. It also has the great virtue that no new disease mechanism has to be invented, because the effects of penetrating radiation are well documented, and current bioresearch shows that all ionising radiation has an effect on cell replication even at levels below current safety limits.

The other important point to come from my research is that sky radiation is much more solar emission dependent than suspected, and that secondary charged particles are highly organised by the ambient electric and magnetic field as they reach the ground.

This means that people living and working near power lines are subject to wide variations in natural radiation over the solar cycle, especially if they live at altitude or high geomagnetic latitudes where the magnetosphere concentrates incoming solar particles in the auroral zone.

There is some independent evidence for a geomagnetic latitude effect on cancer statistics. Taking the so-called radiation cancers we find that the IARC lists male average incidence at 300 per million for Scandinavia and 150 per million for central Europe. There will also be an altitude effect. It may not be coincidental that the first studies to show a link between power-line routing and cancers in the 1970s were based on Denver which is at 5000 feet where the sky background rate will be at least double.

A good test of my hypothesis that solar particles can influence cancer statistics close to power lines would be to see if there is an 11 year period in childhood leukaemia cases.

There’s lots more to find out!!

Anthony Hopwood
Upton-on-Severn
Worcester

Twin speakers

In response to PC Meunier’s letter “Speakers in series” (EW + WW, November 1992) issue, connecting loudspeakers in series is often convenient but I have never seen it advocated for high-fidelity applications. In fact, way back in 1958, GA Briggs in his brilliant book Loudspeakers pointed out:

“...the virtues of parallel working are already well known”. I guess though that non-hi-fi loudspeakers were Meunier’s case in point since there is no mention of damping factor.

In cases where different types of loudspeaker are to be connected together then I can imagine that transformers allowing parallel connection might offer a better solution.

Obviously no two speakers are identical, but when the speakers are the same type, surely connecting them in series causes less degradation than introducing all the non-linearities of a transformer into the circuit. As a bonus, the series solution is cheaper, lighter, less labour intensive, and possibly even more efficient.

Martin Eccles
Newcastle-under-Lyme
Staffordshire

Will to work

I live among what is left of British industry in the north west of England near a wool combing factory. Most mill owner’s, like the consumer electronics industry (such as making radios and televisions), took their money and ran when it became cheaper to produce in the Far East.

It is not that industry needs to get off its bottom, people, as we have seen with the miners, are desperate to work. If industry could produce goods that are wanted at a reasonable price, rather than importing goods to an ever increasing extent, there would be hope for us all.

Peter C Gregory
Ashton-under-Lyme

The ears have it

I read Ben Duncan’s article “Proof of the golden ears hypothesis” (EW + WW, June 1992) with much interest concerning what I take to be noise and harmonic distortion improvements by using series connected capacitors.

Rather than explain this away without practical examples, as Phil Denniss did in “Distorted Proof” (Letters, November 1992), I have tried the idea in a Quad 405(2) amp issue 7 on C_{19}, C_{10}, and C_{19}. Improvements I noted were in the near total absence of mains noise (hum). I have noticed no sonic degradation comparing my amp to...
another of the same specification.
I have also tried an earlier suggestion concerning R_3 and C_3 and my own idea of replacing IC_1 with an AD847 op amp, all with good results.

I consider the practical application of ideas should have a larger voice than those who elect to put pen to paper rather than plug in their soldering iron and at least try.

Furthermore, the market place continues to dictate an interest in valve equipment despite its poor harmonic distortion. Perhaps chasing mathematical perfection without reference to actual listening is an aim which satisfies some, but falls short of any real involvement in why musicians seek to provide enjoyment for us the listeners.

Chris Daly
Tasmania Australia

Beavering a way across land
Your reply to Andrew Ainger (EW + WW, December 1992) that communication via earth probes "emerged in the early 50s" was roughly right, but you didn't say which century.

Almost from the inception of the telegraph, attempts have been made to signal via probes in earth and water, initially using sensitive galvanometers and later headphones. Ranges up to 1km have been reported.

In World War I, field telephones using an earth return were vulnerable to eavesdropping.

Around 1950, a published article claimed a range of a mile using CW via an audio oscillator/power amp, transmitter, and voltage amp receiver. In the 1960s, I chose earth probe communications as a youth club project. Transmitters used were a 20W valve amp and a 4W transistor portable amp, both having multiple tapped output transformers to match the earth impedance, which varied with moisture content.

Receiver were two-transistor headphone amps.

We seldom did better than about 0.5km, although with up to 30 eager young beavers to keep occupied, the situation was not conducive to serious investigation. Contrary to Ainger's experience, there was plenty of interference.

RF filters were required to attenuate broadcast signals (the entire AM band simultaneously), together with 300Hz high-pass filters to remove 50Hz+ harmonics from supply system earth leakage. Even then, higher harmonics were present with up to the 20th being easily heard, and I suspect this was the main factor limiting receiver sensitivity.

A tuned carrier seemed a good idea, and a system consisting of a 4W power oscillator on 80kHz, with an LF converter feeding a receiver with BFO at the other end, was tested. Results were poor, but before this the idea had been abandoned.

There may be a snag. The earth, being a conductor, will radiate, and receive, electromagnetic waves, even if inefficiently (see above, re AM interference). If this happens, the earth station merely becomes another transmitter adding to the existing hum load.

Hopefully there may be bands of frequencies too high or too low to be radiated in this way.

I commend Ainger in his efforts, and will appeal if he reports answers to his queries. I will applaud loudly, with astonishment, if he can generate a signal in Harpenden which is heard in New Zealand.

His linear resistance wire model is not a good analogy for earth impedance. Most of the voltage drops occur in the immediate vicinity of the probes, where earth current density is high.

Between probes, the earth is, for practical purposes, of infinite cross-section. So the measured impedance between two probes has more to do with probe contact with the soil than with conductivity or distance between the probes (though these should be as far apart as possible).

These questions have been well researched by the electricity supply industry and literature is available.

I suggest the circuits shown should include a DC blocking capacitor in series with the probes to prevent electrochemical potentials from the probes upsetting the amplifier DC conditions.

In a permanent installation, some means of isolating the probes during thunderstorms is mandatory since lightning strikes can generate dangerous or even fatal earth potentials.

If he contacts me (by mail, not earth!) I can supply further details of our tests including a method of measuring probe efficiency.

Ronald Salter
Victoria Australia

Lipschutz defence
Perhaps the most insulting aspect of WF Blanchard's letter (EW + WW, February 1993) is his description of Captain Lipschutz's work as "ideas". As was pointed out in the original article (May 1992), the version of the equipment using the radio method was well worked out and built. It was intended, as was also pointed out, as a simple method of demonstrating automatic plotting, which would have been the preferred method of display for the inertial system to come if the first demonstration had attracted more than a cursory glance.

Lipschutz was not an inexperienced navigator at the time; he already had his pilot's licence and was employed as a radio officer at Lydda.

Indeed, his work was held in such high esteem that it was the authorities there who asked him to submit his work. He was, and is, no amateur.

Errors caused by skywaves would be relative to the power of the beam and the main beam would predominate. Even lower frequencies have been used for many years in ADF beacons that surround the globe, with very little trouble from skywaves. Airliners still use beacon-hopping as a valid method of navigation, although the need for it is now, of course, diminished by other means of navigation.

As regards the plotting relative to true north, means not described in the article afforded a method of carrying that out. It was incorporated in a differential drive that would allow the aircraft to bank and turn without affecting the results.

Lipschutz was largely responsible for installing the Adcock antenna at Lydda and was responsible for feeding data to aircrews. He was fully aware of the characteristics of Adcock antennas. But the main thrust of the article was intended to show that the arrogance experienced by Lipschutz probably cost many aircrew lives. Since the equipment was tested and shown to work as expected, it seemed at least possible that someone, somewhere might show some interest, in view of the fact that navigation was in such a parlous state that more crews were lost when trying to find their home bases than were shot down over enemy territory.

It does no one any good at all to denigrate the work of others, particularly in wartime when so much is at stake. Or in peacetime either, for it is still happening. How much highly marketable ingenuity has found stony ground in the UK since the war and yet has been able to flower for another country's profit?

Philip Darrington
Appledore
Kent

IFF guide
With reference to the correspondence on navigation aids (EW + WW, February 1993 and earlier), from 1941 onwards all coastal command aircraft not fitted with centimetre radar had at least ASV Mk II (air to surface vessels, 176MHz), even Beaufighters.

We used to modify IFF (identification friend or foe) sets to act as homing beacons. Since this was then a secondary system, these beacons worked to maximum radar range (110 nautical miles) particularly with Wellingtons which had stacked dipoles on the fuselage as well as yagis under the wings. They were much appreciated by the air crews.

Of course they could have been used by the Germans to attack our bases but I personally saw only one such attack when the hangar which housed the beacon at Wick in Scotland was machine gunned by a reconnaissance aircraft early in 1942.

We used these beacons all over the Mediterranean subsequently.

Eric Carr
Basingstoke
Hants
Having covered the radio and computer hardware, Philip Mattos returns to the software design. Conventionally the reduction of the spread-spectrum signal to a single carrier is done in hardware. To do this in software is unique, and demands a very fast processor.

The GPS signal arrives at the antenna some 20dB below the noise, at 1.5GHz, spread over a 2MHz bandwidth. We rely on the radio system to amplify it to a level that can be digitised, and to downconvert it to a frequency that can be sampled. It cannot improve the signal to noise ratio however.

Extraction of the signal from the noise requires correlation with a code identical to that used in the satellite to spread the carrier, and the code must be exactly in synchronism with received signal. 'Correlate' means multiply each sample of signal by the appropriate bit of the code, and integrate over the length (epoch) of the code, or several epochs. This operation gathers in the energy from the 2MHz bandwidth, back to a single carrier, plus the 50 baud data. In the lms code epoch it gives 30dB S/N gain; in the 20ms data bit time, 43dB. These are of course theoretical numbers, but practice comes close if it can be made to work.

To do this, one has to simultaneously find and hold the satellite in the time and frequency domain, to an accuracy of about 10ns and 100Hz. This is interesting when the CPU timer has a resolution of a microsecond, and an interrupt response of up to three microseconds. Read on, it can be done without any hardware assistance.

Once the system is locked, it can be easily understood. The traditional all-hardware design, circa 1980 is shown in Fig. 1. The signal is filtered only after correlation, so the frequency must be scanned until it hits the filter. However the code generator must also be drifted through all possible phase relationships with the signal, and both must be correct simultaneously.

This process is known as acquisition, and takes considerable time. Once the system is locked, it must be held locked by tracking the code-phase, the carrier phase, and the extracted data modulation. The data must be interpreted to give the required information about the satellite orbits from

<table>
<thead>
<tr>
<th>Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
</tr>
<tr>
<td>Punctual</td>
</tr>
<tr>
<td>Late</td>
</tr>
<tr>
<td>Code Generator</td>
</tr>
<tr>
<td>PLL</td>
</tr>
<tr>
<td>Recovered Data</td>
</tr>
<tr>
<td>Code phase</td>
</tr>
</tbody>
</table>

Fig. 1 Fully hardware system (circa 1980). The original hardware systems adjusted the LO to hit a narrow filter, then ran three correlator channels, to maintain the tracker, the central one to extract the data in a phase locked loop. This took a PC board per satellite.
and clock errors, then in concert with the timing information derived from the code tracker, the user position is calculated.

Finally, most systems also include a layer of navigation functions, such as distance to next waypoint, estimated time of arrival, off-track error etc.

Software structure

The software is organised in a series of parallel processes or tasks, as shown in Fig. 2. The transputer is a parallel processor executing any number of tasks apparently simultaneously. It can do this because it has a hardware scheduler, almost a thousand times faster than the equivalent function performed in a software operating system.

It is thus programmed as if there were a CPU available for each task. This makes each task simple and efficient, while the hardware-managed communication between the tasks gives automatic synchronisation.

There are five major processes in the system between the input from the radio, and the output to the screen. The first two run at high priority, the rest at low.

I/O. The first is the I/O process that handles the data from the radio. The data is packed bytes of one bit samples. As the system samples at 2MHz, a byte is delivered every 4µs. The I/O task runs once a millisecond, and simply executes an input instruction to load 256 bytes of data from the transputer link. This takes less than a microsecond to execute, but must be done immediately the buffer is full, as it is only 4µs until the next byte. Alternate milliseconds are loaded into two different buffers (“ping-pong” buffers).

Synchroniser. There is no sufficient time, even with the transputer’s rapid re-schedule time, to manage communications from this task in under the 4µs limit. Thus communication with the next real task, the GPS task itself, is not direct, but via a synchroniser task. There are three shared memory areas between the I/O and synchroniser tasks...the two buffers, and a sync word.

The I/O job does not run on milliseconds timed by the transputer clock, but by counting the bytes of data from the radio. Thus it is the sample clock that controls it. They may or may not be the same... on a portable, they would be, for economy of crystals, but on a PC-based GPS, the transputer clock is supplied by the mother board, so differs. Thus each time a buffer is full, the I/O job reads the transputer timer and puts the value into the sync word.

The synchroniser job reads the sync word, and waits to one millisecond later, plus a 30µs safety margin, before accessing buffer A, then another millisecond, then accesses buffer B. This method guarantees that the sync job is never using the CPU at the instant the I/O job needs to swing the buffers, and also guarantees that processing is never done on an input buffer while it is being written.

The synchroniser job simply idles maintaining sync until it gets a request from the GPS job for a block of data, which it then delivers over an Occam channel from the appropriate buffer.

GPS. The GPS job is the main part of the task, and is in fact some six tasks internally as shown in Fig. 3. The main tasks are:

1. to acquire the satellites, that is to get into lock in the time and frequency domain;
2. to track them, ie maintain lock, a much easier task;
3. to manage them, that is select the correct ones according to elevation, geometry, health, etc;
4. to download data from them, in order to know their orbital positions and other system information;
5. to manage the data, purging that which is out of date;
6. most importantly, to calculate the user position.

How each of these is done will be covered in summary later... full detail would fill a book. Acquisition, tracking and downloading will be covered in detail seen from the flow of the signal point of view.

User/Nav. The user task is the one that implements the user commands, and generates the information requested for display. It does not actually handle the display, because that is hardware dependent, and thus isolated for portability to different licensee’s screens/keyboards.

The navigation task takes the calculated position in WGS84 coordinates, and translates them into the coordinate scheme of the user’s choice... my software supports the 47 datums of the GPS spec, in Lat-Long, UK Ordnance Survey Grid Reference, in UTM (Universal Transverse Mercator), and MGRS (Military Grid Reference System). OSGB is supported to one metre resolution for surveyors, or the conventional 6 figure, 100 metre version for leisure use.

Additionally, waypoints and route plans are supported here. Waypoints are simply stored positions, with textual names in my version, and route plans are threads through the waypoints. Normally entered before the journey, or in a yacht even before the season, one route is selected, and the receiver will then advise the distance and course to steer to the next point, the same from the last point, the expected time of arrival and many other parameters.

Part of the user task is the dialogue to allow selection of which parameters to display, because they cannot easily be displayed at the same time due to limitations of screen size.

Console Handler. As mentioned earlier, this is essentially a hardware driver to maintain
The performance of a GPS receiver is not easily quantifiable as it depends so much on the importance of particular features to a particular user. Accuracy should not be a feature, as the receiver does not contribute significantly to the errors in standalone operation. The errors are essentially the ionosphere and Selective Availability.

The figures show the accuracy of the system at a surveyed point over many hours, with multiple constellations. Left hand figure is just before the end of the Gulf war, when there was no SA, and also benefits from being 0200 to 0500 local time, when there is almost no ionospheric effect. There are only two spikes of error over 10 metres, and the RMS error is less than five metres. Right hand figure is a week later when SA was reactivated, and the steep curve down from 90 metres of error is typical of SA. Cold start time, warm start time, and reacquisition time after obstruction are other measures, and for a portable, size, weight and power consumption. One example of a small light portable is the Panasonic KXG-5500, which has a low-cost 32-bit transputer as its computing engine.

Performance without SA. The position plot against time for 18/4/91 shows the performance before dawn (no ionosphere problems) with an rms error of about five metres from a surveyed position, over four different constellation.

Performance with SA. A week later, with SA turned on, and in the daytime, the position wanders by up to 90 metres, but two receivers behave identically, so the error can be removed by differential means.

Software walkthrough

The signal processing software is best understood by following the flow of the signal through the software, rather than the flow of control through the code. It is also easier to understand the acquisition process, of finding time and frequency lock with the satellite, after the tracking process is understood, though in real life, they occur in the reverse order.

Figure 4 shows the downconvert and code track part of the software, needed to maintain timing lock. The incoming signal is one bit per sample, with the samples at a 2MHz rate. The transfer frequency from the radio is anywhere from zero to 2MHz, but band limited to about 1MHz. The first task is to mix it down to baseband, using a software local oscillator (LO). The LO is set 4kHz below the nominal carrier, but this has to be found empirically because temperature drifts of the oscillators can move it by a few tens of kilohertz. The output of this mixer is a signal centred at 4kHz, but still 1MHz wide... a problem in hardware, but here we are simply multiplying numbers together.

\[A \times (B \times C) \text{ and } (A \times B) \times C \] are identical if there is no numerical overflow, so we can do either first. The benefit of doing the mixdown first is that it can then be shared between all the satellites and not repeated for each.

The second mixer multiplies the signal by a locally generated copy of the satellite spreading code, which is used to put any length of text string on the screen.

Example

1.5001MHz
1.496 MHz

Code
Gen

Fig. 4. Downconvert and code track software. Shown as a signal flow diagram, as if it were hardware, the DSP software is very easily understood. This section runs both when downloading and when positioning, the prime output being signal for downloading, and code-phase when positioning.
Custom metalwork — good & quick!
Plus a wide range of rack-mounting cases etc. from stock. Send for our new Product Catalogue.
regenerates the carrier, simultaneously spreading out any interfering carriers.

The benefits of the downconversion and the despread are not seen until the resultant samples are filtered. As the frequency has been brought down to about 4kHz, not zero, the first filter is reasonably wide at 64Hz. This is achieved by adding the samples in groups of 128, with the further benefit that the 2046 samples per millisecond become 16 samples, a much more manageable number.

The next stage is to bring the signal even close to baseband, and reduce the bandwidth further. This is done by mixing it with another software LO, again from a memory buffer, so CPU time is only used at start-up. 32 versions are held, at 250Hz intervals from 0-8kHz to allow for the doppler shift between the satellites even after the first LO has compensated for the radio temperature drift. The nearest channel is used, both as in phase and quadrature signals (I-Q): both channels are then low pass filtered to yield just one IQ sample pair per millisecond.

These are passed to the carrier tracker process for downloading data, but are also used internally to control the code tracker.

Code tracking. Due to the motion of the satellites, the motion of the user, and differences in reference oscillator frequencies, the relative time offset between the user and the satellite varies. To keep the synthetic code in sync with the received one, it must be adjusted finely to about 10ns accuracy.

This is achieved by dithering the timing back and forward by one sample period, and maintaining two average amplitudes, one for the early version, and one for the late version. The normalised ratio between these two amplitudes, (E-L)/(E+L), gives an error signal that can be used to manage the tracking in a stable feedback loop.

Note that the error signal does not indicate when to step the code generator phase by one sample. That would result in very coarse tracking. The code generator is run at a pre-calculated rate of drift relative to the reference clock, and the error signal, integrated over several seconds, is used to make fine adjustments to that rate. Only if the error is very severe is there a direct adjustment made to the code phase. This illustrates the flexibility of having all the algorithm in software. Further benefits are achieved by having different time constants for the loop when searching for satellites, and when locked, with a ramp in between the two.

Independence of code and carrier tracking loops is yet another difference between this and conventional receivers. Many receivers achieve smooth code tracking only by feedback from the carrier tracker. While very effective on a large ship, this makes them fail very easily on land, with trees and reflections preventing the carrier tracker from locking.

Demodulation. The 2046 samples/ms have now become just one IQ pair per millisecond. More important is that a megahertz wide signal has now become a kilohertz wide, a 30dB signal to noise ratio gain. The residual carrier frequency is now also very low, less than 250Hz.

The final step is to run a software phase locked loop (PLL) to remove all the carrier, yielding a precise frequency measurement, and the demodulated data, Fig. 5.

The IQ pairs are squared to remove the data phase inversions, but this puts in a DC offset dependent on the signal amplitude. To avoid this, they are recombined as I^2-Q^2, which removes the DC and gives a continuous signal at twice the carrier frequency (2f).

A PLL is run on this, generating both the 2f signal to maintain the loop, and regenerating noise free I and Q carriers in phase with the original signals. They are multiplied by the original signals to yield two copies of the modulation. These are filtered in a 20ms filter to match the baud rate and reduce the noise bandwidth, and are then combined to reject the noise present from the image frequency.

The filters are classic integrating filters, and do not reduce the sample population, as we do not wish to smear data peaks. They simply add 20 samples together. However a classic implementation as shown in Fig. 6a requires 19 add operations per millisecond. The version of Fig. 6b requires just one add and one subtract, and the storage space for the 20 integers was needed in both versions. More important than the 18 arithmetic operations saved is the indexed loading of the operands.

Data Extraction To extract the data and the 20ms timing edges needed for position resolution, the structure of Fig. 7 is used. The filtered data, if noise free, would be reduced from square waves to ramps, but achieving the same peak amplitude, while any noise at a frequency higher than 25Hz is severely attenuated. In fact 50Hz noise conveniently hits a deep notch. The data amplitude is sampled at three points, nominally early, punctual and late. The sign of the punctual signal is then the data bit, 0 or 1, while the normalised ratio of the rectified early and late signals (E-L)/(E+L), as in the code tracker, is used to advance or retard the sampling point. This is done directly on the phase, however, as the data edges are synchronous with the code epochs, so are not continuous, but must fall on a one millisecond clock edge in satellite time. Thus the tracker has simply to find the correct one of 20 possible phases.

Fig. 5. Carrier Tracker 2f loop. The carrier tracker only runs during downloading, and again mimics earlier hardware designs... with the advantage that a software oscillator can output several frequencies and phases, and take phase steps on command.

Fig. 6a and b. Filter implementations. This is a continuous 20ms filter that optimally drags 50baud data from the noise. In fact, at this point the GPS signal is well above the noise, as it has been filtered to a few hundred hertz bandwidth. The two implementations shown produce the same output, but one is ten times faster. Note it must be cleared at startup.
What more do you need than a practical, easy to use and fast program to design your electronics in your own way? Layol is the ideal solution to do just that. Just ask the thousands of satisfied users!

Layol
- Netlist import via Project Manager from Layol Schematics
- Also for OrCAD/SDT, Schema III, Tango etc.
- Forward Annotation
- Graphics netlist entry
- Manual-, Interactive and Auto Routing
- Design Rule Checking
- SMD Support
- Extensive component library
- User definable Macro’s

Powerfull output drivers for:
- Gerber photoplotters
- Excellon, Sieb&Meyer and HPGL drillingmachines
- HPGL, DMPFL compatible penplotters (with open pads)
- Adobe 2.0 Postscript (with open pads and 10 greyscalea)
- HP-Laserjet, Deskjet and Epson compatible printers

Layol is priced at £99 up to £999 (ex. carriage & VAT) which includes: Layol Schematics, 90 days FREE updates and technical support.

UK Distributor
Pentagram Electronic Designs
6, Pasture Close, Clayton, Bradford BD14 6LY
Phone: (0274) 882609 Fax: (0274) 882295

International headquarters
Baas Electronics by Rijkstraatweg 42
3281 LW Numansdorp The Netherlands
Phone: (+31) 1865 4211 Fax: (+31) 1865 3480

CIRCLE NO. 117 ON REPLY CARD

TEKTRONIX 7000 SERIES OSCILLOSCOPES
Dual Trade Plug-in with TB from £2200
Many Plug-in options available. 4 Traces, Differential etc. PLUG-INS SOLD SEPARATELY

TEKTRONIX 7000 Dual Trace 20MHz-200MHz Digital Sweep (Open 10MHz-200MHz)
£2175

HP 2200 Dual Trace 50MHz-500MHz Digital Sweep
£5800

HP 4658 Dual Trace 100MHz-200MHz Digital Sweep
£10500

TEKTRONIX 475 Dual Trace 200MHz Digital Sweep
£20500

SCHLUMBERGER 5218 Dual Trace 200MHz Digital Sweep with Trig View
£20000

LYONS pg739 Pulse Gen. PRE 191-20MHz9150

HP 1820 with 85588 100kHZ-1500MHz.
MARCONI TF2370 30MHz-110MHz.
HP 140T with 85534 & 85520 1kHz-110MHz
HP 1407 with 85541. 855520 500kHz-1250MHz .

TEKTRONIX 7000 SERIES OSCILLOSCOPES
Phone: (0274) 882609 Fax: (0274) 882295
6, Pasture Close, Clayton, Bradford BD14 6LY
Pentagram Electronic Designs
Layol Schematics, 90 days FREE updates and technical support.

Layol’s priced at £99 up to £999 (ex. carriage & VAT) which includes:

وهذه القائمة تشمل جميع الأجهزة والأدوات المتاحة، حتى الأجهزة الصغيرة والمعدات المتخصصة في مجال الإلكترونيات. لازال أفضل解答 لمجموعة واسعة من المستخدمين.

CIRCLE NO. 118 ON REPLY CARD

EPROMS
2764A-250 1.80 1.70 62256LP-100 3.00 2.50
27C64-150 1.80 1.70 62256LP-70 3.30 2.80
27C128-150 1.85 1.65 6264LP-100 1.50 1.40
27128A-200 1.65 1.50 6264LP-70 1.70 1.50
27C256-250 1.85 1.70 6116LP-100 0.85 0.70
27C256-200 1.98 1.80 628128LP-80 10.50 10.00
27C512-150 2.50 2.00 Z80A CTC 1.00 0.75
27C010-150 3.30 2.80 Z80A P10 1.00 0.75
ICL8121 0.90 0.65 780A S10/0 1.80 1.40
MM58274CN 4.40 3.60 780B CTC 1.20 0.82
PAL22V10 4100 3.80 Z8930 (4 meq) 1.40 0.80
6522P 2.40 1.80 8255-5 1.50 1.20
74LS, 74HC, 74HCT Series available
Phone for full price list

All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road,
Purley, Surrey CR8 4HA
Tel: 081-668 7522. Fax: 081-668 4190.

CIRCLE NO. 119 ON REPLY CARD

April 1993 ELECTRONICS WORLD+WIRELESS WORLD
The data bits are then scanned for the preamble, a defined pattern that identifies the start of a packet, or subframe in GPS terminology. While acquiring, this must be done on a per bit (20ms) basis, but once found it is automatically maintained by counting, so need only be checked for correctness on a 0.6s basis. The preamble defines both word and subframe sync, so subframe of 10 30-bit words is assembled, and passed to a background task for parity/checksum tests and storage. This is best done on a subframe basis, rather than per word, because the checksum overlaps between words.

Acquisition mode

Acquisition is much harder than tracking, because instead of one code phase to compute for, we must do 2046. Instead of one 250Hz channel, we must cover about a hundred. On the other hand, it does not need to be done in real time, because in a software solution, off-air samples can be stored in memory for real-time, because in a software solution, off-the other hand, it does not need to be done in real-time. In the background, the subframes are checked for continuous. In the foreground, bits are packed 32 to a word, and packed to a background task for parity/checksum tests and storage. This is best done on a subframe basis, rather than per word, because the checksum overlaps between words.

Fig. 7. Data-bit Extractor. Data is extracted by detecting the peaks and running a narrow bandwidth PLL to maintain correct sampling. The rectifier removes the data from the tracking channel. Note this is dependent on the integration ramp from the 20ms filter. If the filter were omitted, this would need a differentiator to find edges, which gives very poor noise performance.

though on high sample rate machines (we have done one at 10MHz) the phase step may be more than one sample during acquisition. The same structure is used as the code-tracker described above, but the loop is opened and swept through all the possible offsets. The problem is also minimised by reducing the bandwidth in steps, not directly to 250Hz. First the output of the correlator is processed

Fig. 8. Data operations. Data operations are shown as a flow chart, as they are not continuous. In the foreground, bits are packed into words, and words into subframes. In the background, the subframes are checked for errors, and either archived or decoded.

Background task

START

50 loops/sec

Input one databit

In sync already?

No

Yes

Pack into current word

Preamble match?

No

Yes

Word full?

No

Yes

Pack into subframe

Subframe full?

No

Yes

Transmit to background job

0 X 0 = 0

0 x 1 = 1

1 X 0 = 1

1 x 1 = 0

This upsets the human brain until it is realised that the binary 0 does not represent a null value, but represents -1, which matches our perception:

-1 x -1 = 1

-1 x 1 = -1

1 x -1 = -1

1 x 1 = 1

The apparent inversion of the result using exclusive OR is not a problem, it is only the same as using an amplifier that inverts.
OSCILLOSCOPES

MARCONI ELECTRONIC VOLTMETER TF 2604...£30
LYONS PULSE GENERATORS TYPE PG2B 0-10MHz.........£250
HEWLETT PACKARD TEST OSCILLATOR 6518 10Hz TO
HEWLETT PACKARD RMS VOLTMETER - MODELS
PHILIPS PM 8226 SIX LINE PEN RECORDERS...£1299
HEWLETT PACKARD 18015 WITH 87558 SWEPT
HEWLETT PACKARD 182T WITH 87558 SWEPT
TEKTRONIX 494 10816-21G11; as new..
TEKTRONIX 494P 101OLT-ZIGHL as new
GOULD OS4200 DIGITAL STORAGE SCOPE DUAL
PHILIPS 3261-120MHz DUAL TRACE.........From £325
PHILIPS 3211-15MHz DUAL TRACE
HEWLETT PACKARD 1744A-100MHz DUAL TRACE

FISCHER PROPR1NT S (ELECTROGRAPHIC POROSITY
FISCHER POROPRINT SD
FISCHER PRINTER F3050
HEWLETT PACKARD LOGIC ANALYSERS WITH PODS -
HEWLETT PACKARD RMS VOLTMETERS - 3406A -
HEWLETT PACKARD 8620C SWEEP OSCILLATOR

WANDEL & GOLTERMANN SPM 12 LEVEL METER 200Hz-
WANDEL & GOLTERMANN SPM 60 LEVEL METER 60-1z-
WANDEL & GOLTERMANN PS 60 LEVEL GENERATOR
HEWLETT PACKARD 8745A 15 PARAMETER
WANDEL & GOLTERMANN DISPLAY UNIT SG3 200Hz-

ALL EQUIPMENT IS USED, WITH 30 DAYS GUARANTEE
PLEASE CHECK AVAILABILITY BEFORE ORDERING.

CALL FOR INFO OR FREE EVALUATION KIT
Tsien (UK) Limited
Telephone: (0223) 277 777
Fax: (0223) 277 747
32-bit variables using the XOR instruction, which will take two machine cycles, 100ns at 20MHz, the slowest available transputer speed, or 66ns at 30MHz. The critical part is that we have multiplied 32 samples in one instruction, or an equivalent time per sample of 3ns or 2ns respectively.

Fine. This is excellent, but many machines have XOR instructions, and at least one other has the serial link I/O facility that allows the data to be loaded this fast in the first place. The final crunch is the filtering operation.

The traditional DSP enthusiast would be looking for a MAC, or multiply and accumulate instruction to do both jobs, but the transputer is a very fast general purpose processor, not a DSP.

It does however have the BITCOUNT instruction. This counts the number of bits set in a word, with a facility to add-in a previous result, making it cascadable over any number of words.

This instruction takes a worst case of 34 cycles on a 32 bit machine, 18 on a 16-bit transputer. Thus the total processing time for 32 samples is some 36 cycles, less than 2µs, for 16µs of signal samples.

However we have left out the overheads. The operands for these instructions have to be loaded, and the results stored, and the whole sequence run in a loop. Loading takes four cycles per operand, and storing is avoided by keeping the rolling result in a register, as the transputer's register stack is deep enough. The loop overheads become negligible by putting 16 copies of the code in line before looping. Thus the resultant time is 44 cycles per 32 samples, 2.2µs on a 20MHz machine, 1.5µs on a 30MHz CPU.

The Occam code for the high-speed processing is shown in Fig. 9, and the equivalent assembler in Fig. 10. Note that with help from the programmer, ie the way in which the expression is nested with no intermediate storage, the Occam is just as efficient as the assembler.

When acquiring timing lock with the satellites, the carrier phase is not important, so the code above premixes the carrier and synthetic code in advance. When running live, this is not so easy, as each adjustment to the code-phase distorts the carrier phase. Also, the work of the first downconversion can be shared over several satellites.

Thus in the 2046 samples per millisecond models, the downconversion is done separately.

In the 2000 samples/ms models, where carrier-phase compensation is much easier, as each millisecond is the same number of bytes (250), rather than (256.256.256.255), the combined-then-compensate method is used.

The output of the mix/filter operation is a block of 16 samples every millisecond, each representing 64µs. Each now has a value between −64 and +63, ie, seven significant bits, but they occupy a full machine word, 16 or 32 bits depending on processor. This is important, as sign-extension is very slow. It comes for free here by pre-loading the BITCOUNT operations with −64.

In acquisition, the work done next on these 16 samples is an FFT. In tracking, it is further downconversion in 1Q, some 32 multiplies, around 20µs. However as this now occurs only once per millisecond, it is no longer a problem.

One or two transputers

The GPS receiver based on the software described here has been running since 1989 in some guise, with first positions in mid 1990, and the software has been essentially unchanged since February 1991. The major effort put into it since then has been re-hosting it onto different CPU boards, different I/O systems for clients, and of course the occasional bug-fix. My serious effort in the meanwhile has gone into the radio design, covered in an earlier article, and into studies as to how it can be improved for the next serious client.

The major deficiency with the current single transputer system is that while it can code track four satellites simultaneously for positioning, it can only carrier track on one satellite at a time (20MHz CPU). A 30MHz CPU could handle two, but the software changes would be so major that it was not worthwhile. This means that data downloading is sequential at cold-start, and on a change of satellite, positioning is interrupted.

These problems are very unfortunate considering that the major benefit of the software approach is the acquisition and re-acquisition time.

The solution is to provide two transputers, with the benefits of full parallel downloading and positioning, and plenty of spare CPU for map handling, as described in the third article in this series. This has now been built and is running in the office. It is transportable, but not portable. It went to the Wireless World studios for photography in October 1992, and the maps displayed in the screen-shots were real, not superimposed.

Applications

The pros and cons of raster and vector maps, colours, pan and zoom will all be covered in the next article, on applications of GPS. The technology is now at the stage where it is a small black box costing a few hundred pounds/dollars that is built in to a larger system, be it a jumbo jet or a combine-harvester.
SMALL SELECTION ONLY - LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Marcel TP2006 - AM FM signal generator - £100 to £510 - from £350

HP358A network analyzer type A - £800 to £960

HP8616A signal gen 1.8GHz - 4.5GHz old colour £200, new colour £400

Recall D960 3MHz RMS voltmeter - £250

HP sweeper plug-ins - £620 to £240 - from £150 - £210 - 10kHz - 260kHz - 2.1 - 6.5GHz - 625kHz 1.2 - 4.5GHz

Telecommunication CT14 linear scanner - £2 - £450

Recall D960 plug-in - 10MHz to 1000MHz - old colour - £100

HP 8570A storage oscilloscope - £10 to £150

Teledyne D950 25MHz X-Y display - £75 to £150

HP sweeper D960 A & B - plug-in from £100 to £160 also 10MHz to 20MHz P.O.R.

HP439B network analyser type 86280B - 2-18.6GHz - £150 - £190

Teledyne 7510-7514-7516-815-850-852 - £500

Hewlett Packard 8601A - £500

Systron Donner spectrum analyser - £750 to £1500

Hewlett Packard 8558B spectrum analyser - £250 to £300

Fluke 1720A 60Hz frequency counter - £100 - £150

B&K 4921+ 4149A microphone.

B&K 2425 voltmeter - £150

B&K 7003 tape recorder - £200

B&K 2425 value meter - £100

B&K 8214+ 1170A - £80

B&K 8214+ 1170A - £60

B&K 4921+ 4149A microphone.

B&K 2425 voltmeter - £150

B&K 7003 tape recorder - £200

B&K 2425 value meter - £100

B&K 8214+ 1170A - £80
Inside Information

Television

Is the only magazine in Britain that provides comprehensive up-to-date coverage of video and TV technology for both the amateur enthusiast and the professional engineer.

The magazine is available now at your newsagent priced £2.20

Or call our subscriptions hotline today for your copy on 0789 200 255 - remembering to quote ref no. TV4

Dear Newsagent please reserve a copy of Television for me each week which:

☐ I will collect ☐ you can deliver with my normal delivery

Name
Address

Postcode Telephone No

CIRCLE NO. 128 ON REPLY CARD
Analysing performance of current mode op amps

Current mode amplifiers have much in common with conventional op amps. Potentially they offer much more performance in many applications. Terrence Finnegan lays down the design rules to get the best out of your application.

Current mode amplifiers are now over ten years old. They originated in their present form from the Comlinear Corporation of Loveland, Colorado, who brought out a hybrid in 1980 and who I think hold the basic patents covering the concept.

But the early devices did not catch on because they were expensive, around £150 each, and Comlinear probably tried to push the technology too far. The CLC220 for instance had a bandwidth of over 200MHz. But the concept did take hold and Elantec brought out the first monolithic device, the EL2020, in the mid 1980s eventually followed by devices from PMI, Analog Devices and others.

Comlinear's approach to design focused on the traditional op-amp's variation of bandwidth with gain.

Conventional op-amps (Fig. 1) have a differential, high impedance input stage which feeds several following gain stages. Open loop output of the amplifier to a first order is

\[V_0 = A(s)[V_i - V_2] \]

where \(A(s) \) is a complex gain function.

With the feedback completed, a sample of the output voltage is applied to the inverting input and the closed loop gain becomes:

\[V_o = \frac{G}{1 + \frac{G}{A(s)}} \]

where \(G = \frac{R_1 + R_2}{R_1} \).

To see the effect the gain setting \(G \) has on the frequency response, \(A(s) \) is separated into a numerator \(N(s) \) containing the zeros of the frequency response and a denominator \(D(s) \) containing the poles of the response. Substituting this into the expression for the closed loop gain and re-arranging gives:

\[V_o = G \frac{N(s)}{N(s) + G \cdot D(s)} \]

\(G \) not only scales the gain magnitude as expected, but it also multiplies the effect of \(D(s) \) on the closed loop response. Locations of the closed loop poles are now functions of \(G \).

This is the chief design failure of traditional voltage mode op amps, mathematically stated, leading to difficulty in compensation and gain-bandwidth product specmanship among manufacturers. The several gain stages also cause propagation delays and slew rate problems (see "Current alternative to operational amplifiers" by Frank Ogden, EW + WW, August, pp.643-644).

Comlinear reasoned that if they could develop an amplifier structure which would remove \(G \) from the denominator of the closed loop gain expression, then performance would improve dramatically. They succeeded in this aim — and the current mode amplifier was born.

In one of its application notes1 the company describes operation of the non-inverting current mode op amp.

In Fig. 2, the unity gain input buffer forces \(V_2 \) to equal \(V_1 \). Current \(I_{in} \) flowing into or out of the input terminal is amplified by a transimpedance amplifier, generating the output voltage. The complex transfer function of the transimpedance amplifier is \(A(s) \) ohms and \(V_o = I_{in} A(s) \). Operation is described by:

\[I_{in} = \frac{V_1 - V_2}{R_1} \]

But \(V_o = I_{in} A(s) \) and \(V_2 = V_1 \), forced by the buffer. So

\[V_o = G \frac{V}{V_1} \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \]

which after re-arranging and again letting \(G = (R_1 + R_2)/R_1 \) becomes:

\[V_o = \frac{G}{V_1} \frac{N(s)}{1 + \frac{R_2}{A(s)}} \]

Again setting \(A(s) = N(s)/D(s) \), we have:

\[\frac{V_o}{V_1} = \frac{G}{N(s) + R_2 \cdot D(s)} \]

The closed loop gain equations for the two operating modes are now in the same form and we see that \(R_2 \) has replaced \(G \) in the fre-
Solving these nodal equations gives the expression for the closed loop voltage gain as:

\[G = \frac{E_4}{E_1} = \frac{Y_{in}(Y_1 + Y_2)}{Y_1(Y_2 + Y_2 + Y_{in}) + Y_2 Y_{in}} \]

The transfer function of any device is the ratio of the Laplace transform of the output of the device to the Laplace transform of the input signal resulting in output, for all initial conditions zero. The Laplace integral which generates the transform is defined as:

\[L_p = \int_0^\infty e^{-st} \, dt \]

where \(s \) is a complex frequency variable of the form \(\sigma + j\omega \). All possible values of \(s \) are therefore defined as points on a plane called the \(s \)-plane, having axes \(\sigma \) and \(j\omega \). The input signal is not specified and for convenience, a signal having an easily transformed equation is usually chosen. The simplest signal to use is the unit impulse, which has a transform equal to one. This simplifies the definition of the transfer function to:

"The transfer function of any device is the Laplace transform of the output of the device in response to a unit impulse input".

From this information, the transient response of any circuit in response to any input stimulus can be derived.

When the input signal is a constant amplitude constant frequency sinusoid, as is usually the case for circuit analysis, the output signal at steady state will also be sinusoidal, but of differing amplitude and/or phase. In this case, the expression for the frequency transfer function is simplified and is obtained from the \(s \) transfer function by setting \(\sigma = 0 \) and using the substitution \(s = j\omega \).

For linear RLC circuits, the frequency transfer function can also be derived using standard AC circuit theory. The familiar equation of a straight line is \(y = mx + c \) where \(x \) is the independent variable, \(y \) the dependent variable, \(m \) the slope and \(c \) the intercept on the \(Y \) axis. The equation may be more conveniently recast for our use as:

\[T(s) = \frac{a_1 s + a_2}{b_1 s + b_2} \]

where \(s \) is the complex frequency as before. When a transfer function is the quotient of linear terms, represented by this equation, it is called bilinear. So any bilinear transfer function of the form \(T(s) = \frac{N(s)}{D(s)} \) may be represented as:

\[T(s) = \frac{a_1 s + a_2}{b_1 s + b_2} \]

where the coefficients \(a \) and \(b \) are real constants and may be positive or negative. If \(T(s) \) is written in the form:

\[T(s) = \frac{s + z_1}{s + p_1} \]

then we say that \(z_1 \) is the zero of \(T(s) \) and \(p_1 \) is the pole of \(T(s) \). These quantities are located on the real axis of the s-plane, at \(s = -z_1 \) and \(s = -p_1 \), as shown in the figure (poles are conventionally shown by a cross, and zeros by a circle).

For first order transfer functions, \(p_1 \) is always on the negative real axis, while \(z_1 \) may be on either the positive or the negative part of the real axis. A pole in the transfer function will cause the output amplitude to fall with rising frequency at \(-20\mathrm{dB/decade}\), starting at the pole frequency, and the phase of the output will lag increasingly behind the input with rising frequency, the phase being \(-45^\circ\) when \(\omega = p_1 \). The reverse is true for a zero in the transfer function on the normal real axis. Gain will rise at \(+20\mathrm{dB/decade}\) above the zero, while the phase will lead and will be \(+45^\circ\) when \(\omega = z_1 \). The effects of a zero therefore tend to cancel out those of a pole and are often introduced in loop compensation to improve stability.

Obviously, a coincident pole and zero will cancel completely and have no net effect. A zero in the transfer function on the positive real axis however can be a problem. It will cause the output amplitude to increase with rising frequency, as before, but with a lagging phase. Since a corresponding pole cannot exist on the positive axis, there is no way of cancelling out the "right-half-plane zero" and instability can sometimes result, for instance in flyback, boost and Cuk switch-mode power supply topologies.

But the function:

\[T(s) = \frac{s - \sigma_1}{s + \sigma_1} \]

is useful in the "all-pass" circuit, because the rising gain characteristic of the zero at \(\sigma_1 \) exactly cancels the falling gain characteristic of the pole at \(-\sigma_1 \), while the two lagging phase characteristics add together giving an overall \(-180^\circ\) phase lag when \(\omega = \sigma_1 \). The circuit finds application as a phase compensator, or where several are used together, a differential output between two properly designed circuits can provide an exact 90° phase difference over a wide frequency spread—a useful analogue function.

More complex transfer functions can have multiple poles and/or zeros, which need not necessarily be located just on the real axes. For instance, second-order transfer functions with terms in \(s^2 \) have pole-pairs which are complex conjugates of each other, which can be located anywhere in the left-half of the s-plane.
Some relationships for simple first-order transfer functions, between pole/zero locations on the s-plane and magnitude and phase responses.

<table>
<thead>
<tr>
<th>(T_p(s))</th>
<th>Pole and zero</th>
<th>Magnitude response</th>
<th>Phase response</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{K}{s})</td>
<td>(j\omega)</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>(Ks)</td>
<td>(j\omega)</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>(\frac{K}{s + p_1})</td>
<td>(j\omega)</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>(K(s + z_1))</td>
<td>(j\omega)</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>(\frac{s + z_1}{s + p_1}) for (z_1 > p_1)</td>
<td>(j\omega)</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>(\frac{s}{s + p_1})</td>
<td>(j\omega)</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>(\frac{\sigma_1}{s + \sigma_1})</td>
<td>(j\omega)</td>
<td>[Diagram]</td>
<td>[Diagram]</td>
</tr>
</tbody>
</table>
AC behaviour

The important parameters defining AC behaviour are transcapacitance \(C_T \) and feedback resistor \(R_f \). The time constant formed by these components is analogous to the dominant pole of a conventional op amp and cannot be reduced below a critical value if the closed loop is to remain stable.

Transforming the admittances back into resistances in the closed loop gain equation, substituting \(Y_{in}(1+sC_T R_f)R_f \) and simplifying yields:

\[
G = \frac{R_1(R_1 + R_2)}{(1+sC_T R_f)(R_R + R_{in} + R_1 R_2 + R_1 R_2 + R_1 R_2)}
\]

Now \(R_1 R_2 \) is larger than all the other resistive products and \(R_1 R_2 > R_{in}(R_1 + R_2) \). Hence:

\[
G = \frac{R_1 + R_2}{R_1(1+sC_T R_f)}
\]

showing that the time constant \(C_T R_f \) forms the dominant pole and thus defines the bandwidth. There are also subsidiary poles formed by \(R_1 \) and \(R_{in} \) which modify the shape of the frequency response curve.

DC behaviour

The gain at DC can easily be computed from the gain equation and simplifies to \(G = \frac{R_1 + R_2}{R_1(1+sC_T R_f)} \) as expected. But, it is instructive to compare the equivalent open loop gains of voltage mode and current mode op amps, to assess their comparative performance. The equivalent open loop gains of a standard voltage mode op amp in the same circuit configuration is given by:

\[
G = \frac{R_1}{R_1 + R_1}
\]

and the above analysis shows that the equivalent open loop voltage of a current mode op amp depends on \(R_f \). Also, ratio of the open loop gain to the closed loop gain equals \(\frac{R_2}{R_f} \) effectively fixed for all closed loop gains as \(R_2 \) is either specified by the manufacturer or built into the device.

Buffer \(A_2 \)

In practice, buffer \(A_2 \) is a compound emitter-follower, having a finite gain and therefore a finite input impedance directly proportional to the load. Input impedance appears across \(R_f \) and so the in-circuit value of \(R_f \) and hence the effective loop gain \(A_{eq} \) is load dependent. Bandwidth will also be affected by any load capacitance, reflected back across \(C_T \). Performance is usually quoted for a given load, often 400Ω, and the actual performance with the user load can be quite different. Do not forget that \(R_f \) also forms a part of the load.

Comparison between operating modes

An interesting comparison can be drawn from this analyses about the way the two parameters of gain and bandwidth transform between the two operating modes. Voltage mode devices have a fixed loop gain and a variable closed loop bandwidth. In contrast, current mode devices have a variable loop gain and a fixed closed loop bandwidth. Table 1 summarises the performance parameters.

We can also indicate the magnitude of the gain-bandwidth product for a current mode device as \(GBW = \frac{R_f}{2C_T R_f} \), although whether this has any practical significance is a matter of conjecture.

Reference

\[
A_{eq} = \frac{R_f}{R_1(R_1 + R_2)} = \frac{G R_f}{R_1 R_2}
\]

When \(R_2 > R_1 \):

Some manufacturers quote this ratio as a "goodness factor" for their op amps. While this may be true at the device level, the in-circuit loop gain is clearly the factor of interest and the above analysis shows that the equivalent open loop voltage of a current mode op amp depends on \(R_f \). Also, ratio of the open loop gain to the closed loop gain equals \(\frac{R_2}{R_f} \) effectively fixed for all closed loop gains as \(R_2 \) is either specified by the manufacturer or built into the device.

Buffer \(A_2 \)

In practice, buffer \(A_2 \) is a compound emitter-follower, having a finite gain and therefore a finite input impedance directly proportional to the load. Input impedance appears across \(R_f \) and so the in-circuit value of \(R_f \) and hence the effective loop gain \(A_{eq} \) is load dependent. Bandwidth will also be affected by any load capacitance, reflected back across \(C_T \). Performance is usually quoted for a given load, often 400Ω, and the actual performance with the user load can be quite different. Do not forget that \(R_f \) also forms a part of the load.

Comparison between operating modes

An interesting comparison can be drawn from this analyses about the way the two parameters of gain and bandwidth transform between the two operating modes. Voltage mode devices have a fixed loop gain and a variable closed loop bandwidth. In contrast, current mode devices have a variable loop gain and a fixed closed loop bandwidth. Table 1 summarises the performance parameters.

We can also indicate the magnitude of the gain-bandwidth product for a current mode device as \(GBW = \frac{R_f}{2C_T R_f} \), although whether this has any practical significance is a matter of conjecture.

Reference

\[
A_{eq} = \frac{R_f}{R_1(R_1 + R_2)} = \frac{G R_f}{R_1 R_2}
\]

When \(R_2 > R_1 \):

Some manufacturers quote this ratio as a "goodness factor" for their op amps. While this may be true at the device level, the in-circuit loop gain is clearly the factor of interest and the above analysis shows that the equivalent open loop voltage of a current mode op amp depends on \(R_f \). Also, ratio of the open loop gain to the closed loop gain equals \(\frac{R_2}{R_f} \) effectively fixed for all closed loop gains as \(R_2 \) is either specified by the manufacturer or built into the device.

Table 1. Performance parameters

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Voltage mode</th>
<th>Current mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open loop gain</td>
<td>(A_0) fixed by device manufacture</td>
<td>(A_{eq} = G R_f) varies with the closed loop gain</td>
</tr>
<tr>
<td>Closed loop bandwidth</td>
<td>(f_{3dB} = GBW/10) varies with the closed loop gain</td>
<td>(f_{3dB} = 1/(2\pi C_T R_f)) fixed by device manufacture</td>
</tr>
</tbody>
</table>

BOOK REVIEW

Fibre Optic Cabling, by Mike Gilmore, extends the understanding of optical fibres needed for practical application in telecommunications and data-comm to a more soundly based level, at which theory can confidently be applied to unfamiliar techniques. Nonetheless, this is essentially a practical treatment for engineers and laymen alike, which also covers the installation and commercial aspects of the technology.

Optical fibres in general terms and their use in communications form an initial chapter, as an introduction to more specific discussion. Five chapters cover fibres and connection practice, both theoretical and practical considerations being treated, and are followed by three more on cables, highways in general and highway design in particular. A final chapter on the hardware of optical fibres then presents the choices available in cables and assemblies, connectors, splicing and enclosures. Specifying fibre systems appears to be an undeveloped art, its vagueness contrasting sharply with that commonly found in copper-cabled systems; one chapter is therefore an attempt to introduce a little rigour into the process.

Acceptance testing, installation practice and final acceptance testing are all subject to contractual obligations and are therefore supremely important if reputations are to survive a contract; three chapters describe methods of ensuring survival of both reputations and systems. Documentation and maintenance form the two final chapters in the design and installation part of the book, but the penultimate section is illustrative of the author's experience with real systems — a case study. Future developments such as single-mode fibres and fixed, blown-fibre cables are then discussed in an end-piece.

This is no "penny-a-line" text cobbled together by a media man, but is the result of hard-won experience by a practitioner, the author not only being Managing Director of an optical-fibre cabling company, but also chairman of one of the BSI working groups in this area.

Butterworth Heinemann, 318 pp, hardback £35.
Electronics Workbench°
The electronics lab in a computer°

"...you can do 10 times as many experiments with Electronics Workbench than you'd get done with the real stuff."

- Jerry Pournelle, Ph.D., Byte Magazine

Building and testing circuits is fast and easy with Electronics Workbench. Just click-and-drag with a mouse to add parts, run wires, and adjust instruments. The traces on the simulated instruments are the same as you'd get on real equipment.

DOS Professional Version – UK£189
DOS Personal Plus Version – UK£139
Macintosh Version – UK£139

Shipping £2.50. Offer valid in UK and Ireland only.
Macintosh and DOS Personal Plus versions are in monochrome only. All trademarks are the property of their respective owners.

Includes two independent modules:
- **Analog Module** with passive and active components including transistors, diodes, and op-amps; a function generator, an oscilloscope, a multimeter, and a Bode plotter.
- **Digital Module** with gates, flip-flops, adders, a word generator, a logic analyzer, and a unique logic converter and simplifier.

Robinson Marshall (Europe)
To order in UK, call 0827-66212 or fax 55688
To order in Ireland, call or fax 1-2829883

FREE DEMO
Call or fax for your copy

DOS and Macintosh versions available

CIRCLE NO. 125 ON REPLY CARD
BOOKS TO BUY

Analog Electronics
Ian Hickman
Good all-round electronics designers are hard to find, according to the recruitment specialists. There are either bad all-rounders or good specialist (for example, microwave, power supply, microprocessors specialists). Many young designers have been lured away from the fundamentals of electronic design to more glamorous digital work, yet there are many simple pieces of electronic equipment for which a purely analogue realisation is still cheaper, more reliable and more appropriate than a micro-processor-based solution. Analogue staff are in desperately short supply, and in many fields - telecommunications for example - analogue skills are very much in demand. Ian Hickman’s latest book includes many examples from his large collection of circuits (built up over thirty years in commercial, professional and defence electronics), selected for their usefulness in a wide range of applications. Hardback 320 pages. Price £32.40

Circuit Designers Companion
Tim Williams
This compendium of practical wisdom concerning the real-world aspects of electronic circuit design will be invaluable for linear and digital designers alike. The subjects covered include grounding, printed circuit design and layout, linear ICs, logic circuits and their interfaces, power supplies, electromagnetic compatibility, safety and thermal management. How to design to production and tool restraint is stressed throughout. The style is direct, lucid and non-academic, aimed at the practising designer who needs straightforward, easy-to-follow advice. Hardback 320 pages. Price £26.50

Electronic Alarm Circuits Manual
R M Marston
One hundred and forty useful alarm circuits, of a range of applications. Hardback 320 pages. Price £32.40

Filter Handbook
Stephen Miewidowski
A guide to electronic filter design and implementation, clearly written and without the enormous amount of mathematics usually found on this subject. Especially of interest to electronics engineers and technicians, students, enthusiasts and also radio amateurs. Hardback 224 pages. Price £25.50

Modern Electronic Test Equipment
Keith Brindley
Describes in a down-to-earth manner how the main categories of test equipment work, allowing the reader to compare available instruments, make an informed choice and then to use the equipment to the best advantage. Any engineer, technician, scientist, student or teacher who reads the book will have a better understanding of the equipment and get better service from his instruments. Paperback 224 pages. Price £15.95

Servicing Personal Computers
Michael Tooley
This book sets out the principles and practice of personal computer servicing in a handy reference manual. It contains a wealth of information, including a large number of circuit and block diagrams. Various software diagnostic routines have been included together with listings and, where appropriate, actual screen dumps. Numerous photographs show typical adjustments and alignment points. It is for anyone concerned with the maintenance of personal computer equipment or peripherals, whether professional service technician, student or enthusiast. Paperback 256 pages. Price £27.00

Newnes Radio and Electronics Engineer’s Pocket Book
Keith Brindley
A compendium of facts, figures and formulae for the designer, student, service engineer and all those interested in radio and electronics. Paperback 304 pages. Price £10.95

Newnes Electronic Assembly Book
Keith Brindley
Hardback 320 pages. Price £11.95

Newnes Z80 Pocket Book
Chris Roberts
Aimed at practising electronic and software engineers and technicians involved with the design, manufacture, testing of maintenance of Z80 type microprocessor based equipment. It is also aimed at students following courses in microprocessor related subjects. Contents include: packages, pinouts and specifications; processor operation and signal timing; internal architecture; the flags; instruction address modes; instruction set; interrupt response; programming techniques and support chips. Hardback 185 pages. Price £13.95

Newnes 68000 Pocket Book
Mike Tooley
Hardback 272 pages. Price £13.95

Newnes 8086 Pocket Book
Ian Sinclair
Hardback 342 pages. Price £11.95

Newnes Electrical Pocket Book
21st Edition
E A Parr
Paperback 526 pages. Price £13.95

Diode, Transistor and FET Circuits Manual
R M Marston
Specifically aimed at the practical design engineer, technician and experimenter but will also be of interest to the electronics student and the amateur. Subjects covered include basic diode circuits, Schottky diode circuits; Transistor principles; Transistor amplifier circuits; Transistor oscillators and astables; Transistor audio amplifiers; Transistor circuit miscellany; FET Principles; JFET circuits; MOSFET circuits; VMOS circuits; Unijunction transistor circuits. Over 340 carefully selected and outstandingly useful practical circuits, diagrams, graphs and tables. Paperback 240 pages. Price £13.95

Digital Audio and Compact Disc Technology
L Baert, L Theuissen and G Vergult
Essential reading for audio engineers, students and hi-fi enthusiasts. A clear and easy-to-follow introduction and includes a technical description of DAT (digital audio tape). Contents includes principles of digital signal processing, sampling, quantization, A/D conversion systems, codes for digital magnetic recording, principles of error correction, the compact disc, CD encoding, optoelectronics and the optical block, servo circuits in CD players, signal processing, digital audio recording systems, PCM, Video 8, R-DAT and S-DAT. Hardback 240 pages. Price £18.45

Stephen Beale and James Cavetto
Desktop scanners are quickly becoming standard components in personal computer systems. With these electronic reading devices, you can incorporate photographs and illustrations into a desktop publishing program, convert printed documents into text files, and perform advance-capability facsimile transmission. The book is an informative guide to selecting, installing and using a scanner. Paperback 25 pages. Price £20.95

Open Systems: The Basic Guide to OSI and its Implementation
Peter Judge
A concise, clear guide to this complex area of computer standards, untrammelled by jargon and with appropriate analogies to simplify this difficult topic. This book is essential for users and suppliers and is required reading for all in the computer industry.

"It is the best introduction to the subject I have
Thirty well known contributors share some of their Analog Circuit Design displays and CCD audio delay-line circuits.

Quashing spurious oscillations: The analogue-digital interfaces underlying the design of useful and competent experimenters who can build a practical circuit to suit individual needs. Instead, its primary goal is to present a total of over 300 practical circuits, diagrams and tables, and is specifically aimed at the practical design engineer, the professional experimenter. Easy-to-read, down-to-earth, non-mathematical but a very comprehensive manual.

Electronic power control circuits can be used to control (either manually or automatically) the temperature of heating devices such as electric fires or radiators, or the loudness of audio signals, etc. This control can be achieved using electromechanical switches or relays, or electronic components such as transistors, SRGs, TRIACs, or power ICs, etc. This book takes an in-depth look at the system signal is coded, modulated, demodulated and processed, and they will obtain a good understanding of the way in which the system functions. Several actual systems are described and a number of analyses and design rules are included. This book is aimed at systems design engineers involved in the commissioning, design and installation of communications and television services equipment. Service engineers and technicians will also find it valuable reading.

A Practical Programming Guide with type-in-rules are included. This book is aimed at systems engineers to choose the right processor. Steve Heath is processor designers to choose the right processor. Steve Heath is processor technology specialist for Motorola. Hardback 330 pages.

Credit card orders accepted by phone 081 652 3614

Price £19.95 to EW + WW Readers
LOG AMPS FOR RADAR- AND MUCH MORE

Log amps are useful for the problems associated with identifying radar pulses. But there are many other applications too. Ian Hickman explores their versatility.

The free-space inverse square law applies to propagation in both the outgoing and return signal paths for RF radiation pulses. Returned signal power from a given sized target is therefore inversely proportional to the fourth power of distance – the well-known basic RF radar range law.

With the consequent huge variations in the size of target returns with range, a fixed gain IF amplifier would be useless. The return from a target at short range would overload it, whilst at long range the signal would be too small to operate the detector. One alternative is a swept gain IF amplifier, where the gain is at minimum immediately after the transmitted pulse and increases progressively with elapsed time thereafter.

Because the scheme has its own difficulties and is not always convenient, a popular arrangement is the logarithmic amplifier. With this, if a target flies towards the radar, instead of the return signal rising by 12dB (amplitude increasing by a factor of x^4) every time the range halves, it increases only by a fixed increment, determined by the scaling of the amplifier’s log law.

This requires a certain amount of circuit ingenuity: the basic arrangement is an amplifier with a modest, fixed amount of gain, and the ability to accept an input as large as its output when overdriven. Figure 1 explains the principle of operation of such a “true log amplifier” stage, such as the GEC Plessey Semiconductors SL531. An IF strip consisting of a cascade of such stages provides maximum gain when none of the stages is limiting. As the input increases, more and more stages go into limiting, starting with the last stage, until the gain of the whole strip falls to 1 (0dB). If the output of each stage is fitted with a diode detector, the sum of the detected output voltages will increase approximately as the logarithm of the strip’s input signal. Thus a dynamic range of many tens of dB can be compressed to a manageable range of as many equal voltage increments.

A strip of true log amps provides, at the output of the last stage, an IF signal output which is hard limited for all but the very smallest inputs. It thus acts like the IF strip in an FM receiver, and any phase information carried by the returns can be extracted. The “amplitude” of the return is indicated by the detected log (video) output; if it is well above the surrounding voltage level due to clutter, the target can be detected with high probability of detection and low probability of false alarms.

Many (in fact most) log amps have a built-in detector: if the log amp integrates several stages, the detected outputs are combined into a single video output. If target detection is the only required function, then the limited IF output from the back end of the strip is in fact superfluous, although many log amps make it available anyway for use if required.

The GEC Plessey Semiconductors SL521 and SL523 are single and two stage log amps with bandwidths of 140MHz and 100MHz respectively; the two detected outputs in the SL523 are combined internally into a single video output. These devices may be simply cascaded: RF output of one to the RF input of the next, to provide log ranges of 80dB or more. The later SL522, designed for use in the 100 – 600MHz range, is a successive detection 500MHz 75dB log range device in a 28 pin package, integrating seven stages and providing an on-chip video amplifier with facilities for adjustment of gain and offset (i.e. slope and intercept, discussed below) as well as a limited IF output.

The design of many log amps, such as those just mentioned, includes internal on-chip decoupling capacitors which limit the lower frequency of operation to around 5MHz. These are not accessible at package pins and so it is not possible to extend the operating range down to lower frequencies by strapping in additional off-chip capacitors. This limitation does not apply to the recently released Analog Devices AD606, which is a nine stage 80dB range successive detection log amp with final stage providing a limited IF output. It is usable to beyond 50MHz and operates over an input range of -75dBm to $+5$dBm.

The block diagram is shown in Fig. 2a, which indicates the seven cascaded amplifier/video detector stages in the main signal path preceding the final limiter stage, and a further two amplifier/video detector “lift” stages.
(high-end detectors) in a side-chain fed via a 22dB attenuator. This extends the operational input range above the level at which the main IF cascade is limiting solidly in all stages. Pins 3 and 4 are normally left open circuit, whilst OPCM (output common, pin 7) should be connected to ground.

The 2µA per dB out of the one pole filter, flowing into the 9.375kΩ resistor between pins 4 and 7 (ground) defines a log slope law of 18.75mV/dB at the input to the X2 buffer amplifier input (pin 5) and hence of 37.5mV/dB (typ at 10.7MHz) at the video output VLOG pin 6. The absence of any dependence on internal coupling or decoupling capacitors in the main signal path means that the device operates in principle down to dc, and in practice down to 100Hz or less, Figure 2b.

In radar applications, the log law (slope) and intercept (output voltage with zero IF input signal level) are important. These may be adjusted by injecting currents derived from VLOG and from a fixed reference voltage respectively, as described later, into pin 5. A limited version of the IF signal may be taken from LMLO and/or or LMHI (pins 8 and 9, if they are connected to the +5V supply rail via 200Ω resistors) — useful in applications where information can be obtained from the phase of the

Fig. 2a (left). Block diagram of the Analog Devices AD606 50MHz, 80dB demodulating logarithmic amplifier with limiter output; 2b (above) shows that the device operates at frequencies down to the audio range.

Fig. 3a. Circuit used to view the log operation at low frequency; 3b input signal (lower trace), increasing in 10dB steps and the corresponding VLOG output (upper trace). The dip at the end of each 10dB step is due to the momentary interruption of the signal as the attenuator setting is reduced by 10dB and the following overshoot to the settling of the Sallen-Key filter.

To scope (lower trace)
IF output. For this purpose, the variation of phase with input signal level is specified in the data sheet. If an IF output is not required, these pins should be connected directly to the decoupled +5V.

The wide operating frequency range gives the chip great versatility for applications other than radar; for example, in an FM receiver, the detected video output with its logarithmic characteristic makes an ideal RSSI (received signal strength indicator). It can also be used in a low cost RF power meter and even in an audio level meter.

Principles of radar

In radar, a pulse of RF radiation – for example from an aeroplane – is transmitted from an antenna. The antenna (generally the same and probably directional) then receives the echo.

The radar designer faces a number of problems; for example in the usual single antenna radar, some kind of a switch is needed to route the transmit power to the antenna whilst protecting the receiver from overload. At other times all of the miniscule (small) received signal is routed from the antenna to the receiver.

From then on, it is a battle to pull out wanted target returns from clutter (background returns from clouds, the ground or sea, etc) or, at maximum range, receiver noise, in order to maximise the Probability of Detection, PD, whilst minimising the Probability of False Alarm, PFA.
attenuation was reduced to zero in 10dB steps, using the
digital storage oscilloscope in roll mode, with all the
steps clearly visible on the upper trace. The 317Hz test
signal is not very completely delineated, due to having
only three or four points per sample at the 0.5s/div
sweep speed, but its peak amplitude (about 2V, some-
what in excess of the device’s recommended maximum
input of 1Vrms) is clearly indicated.

The 80 to 70dB step is somewhat compressed, probably
owing to picking up stray RF signals since the
device was mounted on an experimental plug board, and
not enclosed in a screened box. With its high gain and
wide frequency response, this chip will pick up any sig-
als that are around.

The device proved remarkably stable and easy to use,
although bear in mind that pins 8 and 9 were connected
directly to the decoupled positive supply rail, as the lim-
ited IF output was not required in this instance.

Figure 4a shows how a very simple RF power meter,
reading directly in dBm, can be designed using this IC.
Note that here, the slope and intercept adjustment
have been implemented externally in the meter circuit,
rather than internally via pin 5. Where this is not possi-
bile, the arrangement of Fig. 4b should be used.

This is altogether a most useful device: if it is hung on
the output of a TV tuner with a sawtooth on its varactor
tuning input, it provides a simple spectrum analyser with
80dB range log display. Clearly some extra IF selectiv-
ity in front of the AD606 would be advisable.

References
1. GEC Plessey Semiconductors Professional Products IC
Handbook.

LOW COST RANGER PCB
DESIGN FROM SEETRAX

- Circuit Schematic
- Circuit Capture
- PCB Design
- Host Of Outputs
- All-In-One Design System

£100

Fully Integrated Auto Router

£50

Ask Us About Trade-in Deals

Call Now For Demo Disk on 0705 591037

Seetrex CAE • Hinton Daubney House
Broadway Lane • Lovedean • Hants • PO8 0SG
Tel: 0705 591037 • Fax: 0705 599036

What The Press Said
About RANGER1

For most small users, Seetrex Ranger1 provides a
sophisticated system at an affordable price. It is better
than EasyPC or Tsien’s Boardmaker since it provides
a lot more automation and takes the design all the way
from schematic to PCB. Other packages separate designs
for both, that is, no schematic capture. It is more expensive
but the ability to draw in the

Source JUNE 1991
Practical Electronics
The healing face of electromagnetic fields

How can the same portion of the electromagnetic spectrum both hurt and heal? Elizabeth Davies explains that the secret seems to be in our ability to tune them to our needs.

Not all news about electromagnetic fields is bad. Extensive publicity has been given to the role of electromagnetic (EM) fields in the onset of child leukaemias1. Worries over our exposure to mains frequencies and the fields produced by transformers have followed. But EM fields are not only thought to cause disease - they are also thought to cure it.

Over the last thirty years, low frequency EM fields have been finding more and more therapeutic applications. In orthopaedics they are used routinely by some surgeons to stimulate delayed bone union2. Many limbs have been saved from amputation by this technique.

Long-term venous ulcers, creating holes in flesh right down to the bare bone, have been healed quickly and completely by EM fields, and necrotic hip joints and osteoporotically thin bones have been revived to health and full density by low frequency fields.

So fields that can hurt, seem also to have a role in healing. Bymodulating cell growth to create a synchronised tumour cell population, a single dose of cytotoxic drug may be used to destroy all the tumour cells in one go, avoiding many of the side effects of prolonged chemotherapy.

Black box/bone box?
The inherent beneficial effects of EM fields on bone cells seem to stem from the material structure of bone. Bone has piezoelectric properties: it reacts electrically to deformation; it produces streaming potentials in its fluids during stress; and it has semiconductor properties due to its collagen matrix. Natural occurrence of indigenous fields may be essential to normal bone function. Reproduction of these fields by exogenous signal generators, utilising Helmholtz coils, (a non-invasive technique) or by implanting electrodes (an invasive, surgical technique) has been shown to heal bones: the electronic signal generators used are known colloquially as “bone boxes”.

Following years of research (see box - History) by 1974 a method had been developed for optimising the waveform of the electrical stimulation, by simulating the endogenous waveform.

Shielded electrodes were attached to the surface of a bone, which was then subjected to mechanical loading - as in normal biological activity - and the electric signals produced were recorded on an oscilloscope.

Mechanical stimulation was stopped and a coil of copper wire placed close to the bone was connected to a Taccusel PIT-20-2A potentiostat. Driving characteristics of the potentiostat were then adjusted until the induced electric field picked up by the electrodes was identical to that produced by the mechanical deformation. Inductive coupling of the signal, via Helmholtz coils, avoided signal distortion evidenced by direct coupling, due to different dielectric properties of the many biological tissues involved in transmitting the signal. Variations of the signal were used to treat the damaged bones of live animals, (dogs, rabbits, rats, chickens).

By comparing the results with damaged bones of a similar control group given placebo treatment, the most effective signal was optimised. In this way signals were developed for different pathological conditions of bone and other connective tissue.

Unclear picture
But the scanty and incomplete picture formed by the research to date, shows that a great deal more time and money must be invested in unravelling the important parameters of both signal and receiver in this apparently important biophysical interaction.

Many orthopaedic therapeutic devices are now on the market, all designed by different companies and generating different signal waveforms, and all claim to have an indispensable characteristic in their waveform...
Osteonecrosis has been treated by Bassett's signal.

-0.38 ms

4.6 ms

Osteonecrosis has been treated by Bassett's signal.
HYPOTHESIS

HYPOTHESIS

0.28ms 5ms

CALLING ELECTRONICS ENGINEERS

The signal/tissue response must be researched more thoroughly - different tissues seem to respond differently to different signals. But one practical problem is that only a small range of signal parameters can be investigated thoroughly with one biological model in the time scale of a normal research project. Researchers have used a range of models and signal parameters, but few have attempted a really substantial study using one model for a whole range of signal parameters, or vice versa. The problem lies in the temporal and financial constraints imposed on any piece of research.

What is wanted is a good, inexpensive variable research tool, so that basic research can be standardised. Researchers need a signal generator, inductively coupled to Helmholtz coils, that will produce, athermally, square pulses as well as sine waves - of different frequencies, amplitudes, continuous or gated in trains.

The unit would also need to generate, via a second pair of coils, a DC magnetic field of variable strength. With this addition, it could also be used to test the cyclotron resonance theory.

Such a tool could be used with a number of specified biological models, to exhaust all of its parameters, and a completed map compiled. Until this happens research remains enigmatic, exciting but fragmentary and lacking in systematic coordination of investigative effort.

CALLING ELECTRONICS ENGINEERS

The technique could provide a complementary and even supplementary therapy for many diseases. Fine tuning of the body by EM fields might provide a remedy for presently incurable diseases, such as multiple sclerosis and osteoarthritis.

Yet this innovative non-invasive therapeutic technique remains underfunded and languishing in relative obscurity, applied and researched only by a few visionary and committed individuals. Many doctors are unaware of the existence of a therapeutic application of EM fields, and some biologists still adamantly deny any possible effect of insubstantial "fields" upon solid flesh and bone.

The effects are subtle, there is no doubt, and their safety needs to be further explored. Only collaboration of electronic engineers, mathematicians, biologists, doctors, physicists, biochemists and chemists will unravel the knot of bioelectromagnetic interactions.

*Elizabeth Davies is currently completing her PhD research thesis. She is employed in the Pharmacy Department, University of Brighton.

References

ULTIboard/ULTIcap evaluation system:
- all features of the bigger versions
- full set of manuals
- design capacity 350 pins

Price incl. S & H. excl. VAT: £75
Purchase price is 100% credited when upgrading to a bigger version.

ULTIboard/ULTIcap evaluation system: all features of the bigger versions
full set of manuals
design capacity 350 pins

Price incl. S & H. excl. VAT: £75
Purchase price is 100% credited when upgrading to a bigger version.

ULTIboard/ULTIcap schematic design tool. ULTIcap uses REAL-TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTIshell, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTIboard. Good manual placement tools are vital to the progress of your design, therefore ULTIboard gives you a powerful suite of REAL-TIME functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Your design ideas are quickly captured using the ULTIcap schematic design tool. ULTIcap uses REAL-TIME checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTIboard's REAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTIboard's powerful TRACE SHOVE, and ROUTE WHILE MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with theDos extended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net, all correct pins are connected to the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTIboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ULTIboard's backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen/photo plots, dot matrix/laser or postscript prints and custom drill files.
Preset on time for battery equipment

This circuit was designed to switch an alarm on for a short time after a switch is momentarily made, while normally drawing no current.

Operating switch Sw1 applies voltage to the load and to the 555 timer IC1. Current drawn by the 555 illuminates the led, D2, to indicate that the circuit is on and also to reduce current drain by lowering the supply voltage to the timer. At switch-on, pin 3 of the timer is high, so that Tr2 is conducting. After the momentary switch contact, Tr2 still supplies load current until C1 charges through R1 – about 2s with the values shown. Capacitor C1 eventually triggers the timer, pin 3 goes low, both transistors turn off and the circuit becomes quiescent. Diode D1 discharges the capacitor when the load voltage collapses. Resistor R2 is an additional load to avoid an intermediate state in which feedback puts the timer into a linear configuration.

State machine for 2.5s division ratio

In Circuit Ideas for December 1991, p.1051, Yongping Xia proposed a method of pulse frequency division by 2.5. My method uses a programmable logic device and state machine technique, thereby showing that PLDs can be used for asynchronous logic.

Figure 1 shows input and output, which are to be repeated until the starting input/output relationship is repeated, the divider then cycling in a loop.

Input conditions for every state transition are shown in Fig. 2, the state chart compiled by inspection of the waveforms in Fig. 1. Each of the ten states is given an unique state code and, since the operation is asynchronous, it must be a Gray code sequence in which the progression is by a change of only one code bit each time.

To program the PLD, one must prepare a file to define pin functions, state code bits and logic conditions for active inputs and outputs. In the several design software packages such as Cupl, Abel and some shareware software from the manufacturers mentioned in this journal for July 1989 p.667, there is provision for defining transitions using the format:

Again, in an asynchronous system, the PLD clock input must be programmed and connected in the inactive state. A rough idea of a practical circuit is shown in Fig. 3, but a manufacturer’s data is needed for a working design.

Fig. 1. Input and output waveforms of 2.5 divider. Cycle repeats when starting conditions are repeated.

Fig. 2. State chart of divider system. Ten states are needed, numbered in Gray code, since the system is asynchronous.

Fig. 3. Basic implementation of system.
Stepper motor control

Two chips, a universal shift register and a darlington transistor array, form a stepper motor controller with no visible discrete devices; the free-wheeling winding diodes are in the array. Pulses into the data shift right/left inputs of the 74194 universal shift register produce logic sequences for both directions of motor rotation, depending on the polarity of the direction control signal to the S₀ and S₁ inputs; the input data is sequentially output from Q₀₃ or Q₃₀ at each positive-going clock pulse. Each device in the XR2003 seven-transistor array handles a 500mA continuous collector current at up to 45V and devices may be paralleled. The inverter on the direction input to the 74194 is part of the XR2003.

- **V Lakhshminarayanan**
 - Centre for Development of Telematics
 - Bangalore
 - India

Programmable instrumentation amplifier

Gain of this three-op-amp amplifier is given by \(A = (1 + \frac{2R}{R_x}) \), \(x \) being the value of one of the resistors in the IH5070. Selecting this resistor by the A₀-A₂ lines produces a programmed-gain amplifier. The TAB1042, as well as being a conventional op-amp, is also an analogue switch, shutting down when no bias current goes to pin 8. A timer feeds pin 8, so that the operating time is programmable from about 1s to 24h.

- **Kamil Kraus**
 - Rokycany
 - Czechoslovakia

DO YOU HAVE A £100 CIRCUIT?

AS OF THE JULY ISSUE, EACH MONTH’S TOP CIRCUIT IDEA AUTHOR WILL RECEIVE £100. ALL OTHER PUBLISHED IDEAS WILL BE WORTH A MINIMUM OF £25. WE ARE LOOKING FOR INGENUITY AND ORIGINALITY IN THE USE OF MODERN COMPONENTS

April 1993 ELECTRONICS WORLD + WIRELESS WORLD
4-digit display for binary data

To present 14-bit binary signals on a seven-segment display, this circuit uses three ICs, one of them an eprom.

In the diagram, Q4 and Q5 outputs of the free-running counter IC1 drive the A14 and A15 addresses of the 64Kbyte eprom IC3, input data being taken to A0-13. Output from IC3 00-06 is a seven-segment drive signal for the display, taken via current-limiting resistors.

Outputs Q4 and Q5 from IC1 drive a 3-to-8 decoder IC2, whose outputs Y0-3 select one of the four displays, since the input data chooses four different addresses. As an example, if the input is 1A4Chex., equivalent to 6732, the address is 1A4Chex. when ICI Q4 and Q5 are 0, IC2 Y0=0 and the right-hand display operates. Since Y1,2,3=0, the other three are off. If Q4=1 and Q5=0, the address is 3A4Chex., Y1=0 and the next display comes on. In this way, if 1A4Chex., 3A4Chex., 5A4Chex. and 7A4Chex are programmed with the seven-segment of 2,3,7,6 respectively, the displays show these characters one by one, flicker being reduced by a high scan speed.

Maximum display is 9999 and the display is off for greater numbers.

The following QuickBasic listing generates the eprom files, files 1 to 4 storing the seven-segment forms of four digits right to left.

```qb
DIM N(4)
DIM SEGMENT(4)
OPEN "DATA1" FOR OUTPUT AS #1
OPEN "DATA2" FOR OUTPUT AS #2
OPEN "DATA3" FOR OUTPUT AS #3
OPEN "DATA4" FOR OUTPUT AS #4
FOR NUMBER = 0 TO 9999
    N(1) = NUMBER-INT(NUMBER/10)*10
    N(2) = INT(NUMBER/10)-INT(NUMBER/100)*10
    N(3) = INT(NUMBER/100)-INT(NUMBER/1000)*10
    N(4) = INT(NUMBER/1000)
    FOR I = 1 TO 4
        SELECT CASE N(I)
            CASE 0
                SEGMENT(I) = 40
            CASE 1
                SEGMENT(I) = 79
            CASE 2
                SEGMENT(I) = 24
            CASE 3
                SEGMENT(I) = 30
            CASE 4
                SEGMENT(I) = 19
            CASE 5
                SEGMENT(I) = 12
            CASE 6
                SEGMENT(I) = 02
            CASE 7
                SEGMENT(I) = 78
            CASE 8
                SEGMENT(I) = 00
            CASE 9
                SEGMENT(I) = 10
        END SELECT
        WRITE #I, SEGMENT(I)
    NEXT I
NEXT NUMBER
CLOSE #1
CLOSE #2
CLOSE #3
CLOSE #4
```

Yongping Xia
West Virginia University
Morgantown WV, USA

Transconductance squarer

An op-amp and a dual fet combine to give an output k_{v+}^2 when $v_+>0$.

National Semiconductor’s 2N5452 n-channel dual fet has good matching between the two devices and low output conductance. Normally, the voltage between the fet gates and the non-inverting op-amp input is constant at Vp, the pinch-off voltage of the two transistors. V_{GS2} is $(v_+)^2$ and i_{on} is proportional to v_+^2.

The coefficient k is adjustable by means of the 5kΩ input variable, the two diodes and the 4.7kΩ resistor ensuring that i_{on} does not exceed I_{SS} and affording negative feedback should v_+^2 become greater than Vp, output voltage must lie within the 5-15V range.

Including an absolute-value detector at the input produces a true squarer, in that either polarity of input gives the same output.

With a 741, the circuit works at several kilohertz.

Alexandru Ciubotaru
University of Texas at Arlington
Texas
USA
MICROWAVE CONTROL PANEL. Make steamed, with touchscreen. Comes with a digital display, digital clock, and 2 relay outputs.

FIBER OPTIC CABLING. Choose from a fibre optic fibres sheathed in black pvc. Fine fibre diameter is 7.0 micron or 2.0 microns.

480v PRIMARY, 120v SECONDARY. Core length, 12v, 24v, 48v, 120v, 240v, and 420v. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches.

PASSIVE INFRARED MOTION SENSOR. Connects to your camcorder, giving you a 100' range! (tune TV to a spare channel).

FROM either a video camera, video recorder or computer to any standard TV set within a 100' range! (tune TV to a spare channel).

LOW COST! WALKIE TALKIES! Par of battery operated, giving you a 100' range! (tune TV to a spare channel). Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches.

TOWERS INTEGRATION TRANSDUCER SELECTOR GUIDE. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches.

GEIGER COUNTER KIT. Comes with tube, PCB and all components to build a battery operated geiger counter. Geiger counter is small and can be carried in your pocket. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches.

ACORNS BATTERY RECORDER. Made for BBC laboratory. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches.

LOW COST! OZONE FRIENDLY LATEX. Our price just £9 ref 09P1. As above but with 4 litre 1 litre in-line reduction box (800 rpm) and 0.25 litres. New. £10 ref 10P2. Limited stocks available.

LOW COST! PHILIPS LASER. 2Mw helium neon laser tube. On/off switch, IEC inlet and standard IN CAR POWER SUPPLY. Plugs into agar socket and gives up to 12 volts. For years, up to 15 volts. Power lead is fused and short circuit protected. £19 ref 19P3. Complete with tech info just £9.00. They have a metal tab instead of a button and you may want to fit an LED. Combined power and data leads £6 ref 06P1. Complete with tech info just £9.00. They have a metal tab instead of a button and you may want to fit an LED. Combined power and data leads £6 ref 06P1.

BASIC CPU ASSEMBLY. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches.

WORLD'S LARGEST SELECTION of remote controls. Our price just £9.00 ref 09P1. As above but with fitted 4 to 1 in-line reduction box (800 rpm) and 0.25 litres. New. £10 ref 10P2. Limited stocks available.

MINIATURE HARD DISK RECODERS. A complete disk pack, with a 1024k disk and 2 transistors. Turn your camcorder into a cordless camera! Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches. Complete with 4 digit display, digital clock, and 2 relay switches.

MONITORS. Brand new units complete with tech info just £9.00. They have a metal tab instead of a button and you may want to fit an LED. Combined power and data leads £6 ref 06P1. Complete with tech info just £9.00. They have a metal tab instead of a button and you may want to fit an LED. Combined power and data leads £6 ref 06P1.

Example of Complete systems.

386SX-33 system £399.00
- Intel 80386SX (33 MHz), 2MB RAM £29.95, 10MB hard disk £99.00, 3COM 3C509B network card £30.95, Windows 3.x £49.95, Bubble Memory £99.00, Monitor £149.00, Floppy Drive £49.95, Speaker £29.95, Mouse £29.95, PS/2 keyboard £29.95.

COMMODORE 64 COMPOUND packaging £1,500.00. Our price just £1,300.00 ref 130P1. As above but with fitted 4 to 1 in-line reduction box (800 rpm) and 0.25 litres. New. £10 ref 10P2. Limited stocks available.
NEW PRODUCTS CLASSIFIED

ACTIVE

A-to-D & D-to-A converters

Television D-to-A. Maximum conversion rate of 60MHz, with a linearity error of 0.1% are offered by Fujitsu's MB40730/80 10-bit digital-to-analogue converters. The ±3/2 variant accepts ECL input and provides 0 to 2V output, while ±0 takes TTL input to give 3.5V output. Hawke Components Ltd, 0256 608080.

8-bit amplifier. LF4197 is a high-speed sample-and-hold amplifier from National Semiconductor, which will acquire a 10V step to within 0.01% in 160ns. It uses ±5V to ±18V supplies and is input-compatible with cmos, TTL or ECL. National Semiconductor, 0793 614141.

8-channel data acquisition.
Unintrode's MN7450-1 self-calibrating, 8-channel, 47kHz, 16-bit data acquisition devices contain an input multiplexer, software-programmable-gain amplifier and a 16-bit sampling A-to-D converter. The input multiplexer has make-before-break operation and latchted address inputs, and the amplifier is gain-programmable for A=1,2,4 or 8 with no extra components. MN7450 allows inputs of 0-5V or ±2V, while MN7451 accepts 0-10V or ±10V. Unintrode (UK) Ltd, 081 318 1431.

Discrete active devices

Fast rectifiers. For use with high-frequency switched-mode power supplies, inverters and as free-wheeling diodes, Gl has available the Ultra Gold UG series of superfast discrete active devices, which exhibit a recovery wheeling diodes, GI has available the fast rectifiers. For use with high -input of 0-5V or ±5V, while MN7451 is programmable for A=1,2,4 or 8 with a 16-channel multiplexer, software-programmable -gain amplifier and a 16-bit sampling A-to-D converter. The input multiplexer has make-before-break operation and latchted address inputs, and the amplifier is gain-programmable for A=1,2,4 or 8 with no extra components. MN7450 allows inputs of 0-5V or ±2V, while MN7451 accepts 0-10V or ±10V. Unintrode (UK) Ltd, 081 318 1431.

Digital signal processor

Adaptive comb filter video gen. Motorola's MC141621 advanced comb filter video signal processor separates luminance and chrominance from composite video signals. This being an "advanced" design, it examines the horizontal and vertical signal transitions before selecting the type of filtering to minimise dot-crawl, cross-colour and colour smear. The device can also be used in A-to-D conversion or as a normal comb filter. Motorola Inc., (USA) (602)244-3816.

Fast, 3V DSP, TMS320C5x 16-bit digital signal processor range now includes 3.3V devices having increased speed to 25ns, rather than suffering the more common reduction in speed. There is power management to give 1.5mA/95ps and two power down modes for increased battery life. Texas Instruments, 0341 223252.

Linear integrated circuits

9MHz dual op-amp. A "Butler" front end - a combined JFET and bipolar circuit - is used in Analog's OP-285 op-amp to give a 9MHz gain/bandwidth, 15V/slew, 250V/offset and 4kHz gain. Long-term voltage drift is 300µV/Analog Devices, 0932 253230.

50MHz log amplifier. Although chiefly intended as a demodulating logarithmic amplifier for signal strength indication in mobile telephones and receivers, Analog's AD696 is also useful as a limiting amplifier in FM demodulators and in wireless links; both limiting and logarithmic outputs are present. Dynamic range is -75 to 3dBm to within ±1dB. Analog Devices, 0932 253230.

850MHz video buffer. Packaged as a standard op-amp, Harris's new HFA1112 closed-loop buffer amplifier combines 850MHz bandwidth with 0.033dB gain flatness at 100MHz, 1,720V/µs slewing and programmable gain of +1, -1 or 2. Third-harmonic distortion is -80dB at 50MHz and differential phase and gain are 0.02degree and 0.02%. Harris's UHF1 technology is employed in the new device. Harris Semiconductor, 0276 698885.

Mosfet driver. LTC1154 is a single, high-side mosfet driver that has extensive overload protection, draws only 8µA standby and 85µA on. To drive n-channel fets for high-side switching, an internal charge pump is incorporated, as is programmable over-current sensing. An enable input allows control of banks of the devices. Linear Technology Ltd, 0276 677676.

Supervisor ICs. Maxim's MAX7034 offer protection to sensitive circuitry against power failure, providing battery back-up, power failure warning, automatic and manual reset, while drawing only 200µA of quiescent current and 50µA in back-up mode. MAX703 is meant for 5V supplies and the 704 for 10% rails. Ram contents are protected by switching to an emergency voltage when the supply falls below the trip threshold. Maxim Integrated Products Ltd, 0734 845255.

18W audio amplifier. Using mixed bipolar/nmos/mos, SGS-Thomson's TDA7294 is a class-AB audio power amplifier, working on up to ±40V to give 50W continuous and 180W with a music signal. At 5W and 1kHz, THD is 0.005% and over the full band of 20Hz-20kHz and at 50W, THD is 0.1%. Muting is effective for a short time after switch-on to avoid snaps, crackles and pops. SGS-Thomson Microelectronics, 0635 608090.

Logic building blocks

Delay lines. A choice of four programmable delays is available in the Dallas DS1020 9-bit delay line, a cross device whose delay is variable in 256 steps to maxima of 73.75ns in the fastest device or to 520ns in the slowest of four. Logic states are reproduced without inversion at the output after the delay. There is an inherent delay of 10ns in all the devices. Joseph Electronics Ltd, 021 643 6999.

Memory chips

Data saver. If the voltage supply to the Xicor's Autostore Novram falls below a preset level, automatically saves the contents of a computer's memory in the event of an all-power failure of the computer. At power-up, the data is recalled into the less-than-35ns sram for use. Data is thereby protected during accidental power failures or

Mixed-signal ICs

Telephone chip. Mitel's TQ2200C is a digital telephone circuit, which has a high-level output data control format for the ISDN interface. Fully differential audio paths have gain controls for transmit, receive and side tones and a transmit amplifier. A-law and μ-law are implemented, with CCITT G.714 filtering. Transducers interface directly to the device. The use of digital signal processing enables half-duplex, hands-free speakerphone switching and the TC200C generates all 16 DTMF tones. Mitel Semiconductor, 0291 430000.

DTMF receivers. Mitel's MT3X7XB family of low-power DTMF receivers are 8-pin devices for integrated telephone answering machine, end-to-end signalling and fax application. These devices decode all 16 tone pairs into a 4-bit binary code, blocked out synchronously as serial data. The /708 has a software-controlled guard time, while the /718 uses an internal counter for guard-time validation with no other guard-time circuit. Mitel Semiconductor, 0291 430000.

Memory chips

Data saver. If the voltage supply to the Xicor's Autostore Novram falls below a preset level, automatically saves the contents of a computer's memory in the event of an all-power failure of the computer. At power-up, the data is recalled into the less-than-35ns sram for use. Data is thereby protected during accidental power failures or
Compensated oscillators. As an alternative to oven-controlled crystal oscillators, SEI offers the老师的208 series of digitally compensated devices that cost less than half the price of oven types and use a hundredth of the power. Short-term stability is better than 2×10^{-8} and in the long term better than 0.5ppm in a year. Frequencies range from 4MHz to 25MHz with a tolerance of better than ±0.3ppm. External adjustment can handle ±0.5ppm. SEI Ltd, 0706 367501.

Microprocessors and controllers

9V microcontrollers. New in the Hitachi H8/300 family of microcontrollers is the H8/329 series, which is equivalent to the earlier H8/305, but with 9V operation. Four members of the series, H8/323/8/7/6, H8/325, but with 3V operation. These ceramic devices use 10um layers and are packaged in 0402-1206 cases, using X7R, X7S or Y5V dielectrics, the X7R types offering greater temperature stability. TDK UK Ltd, 0737 772323.

Metal-film resistors. Three ranges of metal-film resistors from Vishay offer temperature coefficients of 15ppm/°C (VY55), 25ppm/°C (VE55) and 50ppm/°C (VC55). Tolerances available are 0.05%, 0.1% and 0.5%. The epoxy encapsulation withstands immersion in solder to 300°C. Vishay Components (UK) Ltd, 0915 144155.

Displays

LCD graphics. Three LCD graphics modules by Hitachi, meant for the handheld computer market, provide a 320 x 240 resolution, which is equivalent to a quarter VGA, in a slim package weighing 200g. Colours available are blue on grey, blue on white and black on white. Two of the modules are back-lit by fluorescent tubes. Hitachi claims that the displays "seriously challenge CRTs and other technologies in a wide range of applications". Hitachi Europe Ltd, 0629 585000.

Filters

Microwave filters. Frequency-selective limiting filters from GEC-Marconi provide selective limiting of high-level signals without affecting coincident small signals at other frequencies in the pass band. Bandwidth is up to 1GHz in the 1.5-4GHz range, frequency selectivity being better than 10MHz for up to 30dB compression of high-level signals. GEC-Marconi Research, 0245 73331.
Filter modules. Kemo's 1600 series of filter modules is meant for data-acquisition use, and is digitally programmable to cut off over a 255:1 frequency range, three models now available cutting off from 2Hz to 51kHz. There is low variation of DC and no high-frequency clock breakthrough or input aliasing, the filters being continuous-time designs. Low, high, band-pass and band-stop types are available and there is an evaluation board. Kemo Ltd, 081 658 3036.

Instrumentation
Pattern generator. GV-698 is Promax's multi-standard video pattern generator, which produces test patterns for pal, Secam and NTSC broadcast systems, any of the formats within these systems being available in the one instrument. The instrument produces eight pages of teletext and Nicam signals. A carrier is tuned by keyboard, manual tuning or by channel number to a resolution of 50kHz. Alban Electronics Ltd, 0727 832266.

PC frequency generator. Smooth transitions between all the frequencies needed to run PCs from 260 to 486 turbo are handled by the Integrated Circuit Systems ICS2655 desk-top instrument. Output is up to 155MHz and consists of clocks for general comms, keyboard, floppy, system reference, bus and CPU. Amega Technology, 0256 330201.

Sgl. gen. for modulation analyser. Rohde & Schwarz's FMA modulation analyser family is augmented by the AM/FM calibrator/AF generator, which supplies AM or FM signals for calibration and an unmodulated 10kHz level calibrator. Outputs include single and two-tone signals, stereo multiplex and VOR/ILS/Tacan baseband signals. Together, the two form a complete transmitter test set for broadcast, communications and avionics. Rohde & Schwarz UK Ltd, 0252 811377.

Large display. Lascar's DMX908 7.52mm dot-matrix liquid-crystal display is an eight-character, two-line type offering 0.5mA consumption (50mA with back lighting), a low profile, high contrast and a wide viewing angle. Interface is standard, being IDC header. Lascar Electronics Ltd, 0794 884567.

Data conversion. MicronetWorks conversion products catalogue is now available, containing data on over 75 families in D-to-A and A-to-D devices and data acquisition. Unirude (UK) Ltd, 081 318 1431.

Power supplies
DC/DC converter. From a wide-tolerance 5V input, Power General's HDU1-35 DC-to-DC converter provides 3.3-5V or 2-5V power for mixed-voltage systems. A single output is selected to provide 2V or 3.3V. 24W or 33W. Case size is 2in square and .0625in in height. It offers remote shut-down, continuous short protection and a pi filter internally for low EMI. Stabilisation and regulation are both 1%. Gresham Power Electronics Ltd, 0722 413060.

Radio communications
Miniature 20MHz oscilloscope. Hitachi's V209 oscilloscope measures 215 by 110 by 350mm, but has many of the features of a standard bench instrument. The display is 63.5 by 50.8mm and sensitivity 5mV/division (1mV with multiplication) and the timebase speed is from 0.5us/division to 0.2s/division. The two channels may be chopped, added or alternated or used in X/Y form. Thurlby Thandar Instruments, 0480 412451.

Computer board level products
Audio for virtual reality. The Convolver from Crystal River allows the addition of "3-D" audio to virtual-reality applications, using headphones. Several different modes can be used: up to four independent sound sources can be positioned in an anechoic environment; a single source with reflections from six surfaces are simulated; and further PC cards work in parallel to support more sources. Inputs are four synchronised 16-bit A-to-D converters sampling at 50kHz and outputs are transducers have a life of over 10 million cycles. Depending on the model, linearity is from 0.25% to 2% and the servo or bush-mounted devices are available in four models of size 9 with a diameter of 22.3mm. Vishay Components (UK) Ltd, 0915 144155.

Large display. Lascar's DMX908 7.52mm dot-matrix liquid-crystal display is an eight-character, two-line type offering 0.5mA consumption (50mA with back lighting), a low profile, high contrast and a wide viewing angle. Interface is standard, being IDC header. Lascar Electronics Ltd, 0794 884567.

Data conversion. MicronetWorks conversion products catalogue is now available, containing data on over 75 families in D-to-A and A-to-D devices and data acquisition. Unirude (UK) Ltd, 081 318 1431.

Power supplies
DC/DC converter. From a wide-tolerance 5V input, Power General's HDU1-35 DC-to-DC converter provides 3.3-5V or 2-5V power for mixed-voltage systems. A single output is selected to provide 2V or 3.3V. 24W or 33W. Case size is 2in square and .0625in in height. It offers remote shut-down, continuous short protection and a pi filter internally for low EMI. Stabilisation and regulation are both 1%. Gresham Power Electronics Ltd, 0722 413060.

Radio communications
Miniature 20MHz oscilloscope. Hitachi's V209 oscilloscope measures 215 by 110 by 350mm, but has many of the features of a standard bench instrument. The display is 63.5 by 50.8mm and sensitivity 5mV/division (1mV with multiplication) and the timebase speed is from 0.5us/division to 0.2s/division. The two channels may be chopped, added or alternated or used in X/Y form. Thurlby Thandar Instruments, 0480 412451.

Computer board level products
Audio for virtual reality. The Convolver from Crystal River allows the addition of "3-D" audio to virtual-reality applications, using headphones. Several different modes can be used: up to four independent sound sources can be positioned in an anechoic environment; a single source with reflections from six surfaces are simulated; and further PC cards work in parallel to support more sources. Inputs are four synchronised 16-bit A-to-D converters sampling at 50kHz and outputs are transducers have a life of over 10 million cycles. Depending on the model, linearity is from 0.25% to 2% and the servo or bush-mounted devices are available in four models of size 9 with a diameter of 22.3mm. Vishay Components (UK) Ltd, 0915 144155.
Low cost data acquisition for IBM PCs & compatibles

All our products are easy to install - they connect directly to either the printer or serial port and require no power supply. They are supplied with easy to use software which collects data for either display or print-out.

ADC-10
- 8-bit resolution
- one channel
- 10-25K samples per second
- Oscilloscope/Voltmeter software
- 0-5V input range
- Connects to printer port

£49

ADC-11
- 10-bit resolution
- 1 channel
- 2-10K samples per second
- Data logger software
- 0-2.5V input range
- Connects to printer port

£75

ADC-16
- 8, 12, 16-bit resolution + sign
- 4 by 4 or 4 differential inputs
- 216 or 300 8-bit samples per second
- ± 2-5V input range
- Data logger software
- Connects to serial port

£99

All prices exclusive of VAT.

PICO TECHNOLOGY LTD
Broadway House, 149-151 St Neots Road, St Neots, Cambridgeshire PE19 2JU

TEL: 0954 - 211716 FAX: 0954 - 211880

CIRCLE NO. 130 ON REPLY CARD

TELECOMMUNICATIONS TRAINING
A MODULAR SYSTEM

TIMS is a new telecommunications training product covering analogue and digital signal processing techniques. It can easily be incorporated into any existing course on telecommunications in universities and colleges.

For further details contact:
ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre,
Elloe Road, Leyton, London, E10 7BT.
Telephone: (081) 539 0136
Fax: (081) 539 7746

CIRCLE NO. 131 ON REPLY CARD

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information

Windows accelerator. A Windows accelerator card running at 800 by 600 pixels and a 16-bit palette is introduced by Surtech. Sprinter 2 has 1Mbyte of ram, is powered by the WEITEK 5166 processor and accelerates Windows activity by up to 25 times. It supports 286, 386 or 486 dos and is supplied with Windows 3.0 and 3.1 drivers and high-resolution dos drivers for Lotus 1-2-3, AutoCad, Word, Works and Ventura Publisher. Surtech Interconnection Ltd, 0256 51251.

Software
Design on 386/486 PCs. Schematic Design Tools 386+ from Orcad is a true protected-mode design tool using 32-bit addressing and data structures. It is compatible with all current Orcad products, and existing STD designs and libraries are translatable into STD386+ format. ARS Microsystems Ltd, 0256 381400.

CAD translators. Instead of the normally rather messy methods adopted to use files generated by a given CAD system in a different environment, the RSI-Translator's range of intelligent database translators accepts CAD files in the one format, interprets and assigns all the information and writes the data out in a different format. Software upgrades are accepted. Betronex Ltd, 0920 469131.

Half-bridge simulation. HB-SIM by Design Automation is intended to ease the design of half-bridge (Class D) power amplifiers or power converters. The program simulates steady-state periodic time-domain waveforms up to 1000 times faster than Spice, or half a second on a 33MHz 486 PC. Also presented are power output, power input and power loss in each component, and harmonic spectra. Any parameter can be swept, the plot of swept parameter and result being drawn. Design Automation Inc., (USA) 617 862-8998.

Heat-transfer computation. HotBox from CHAM is software to assist designers to plan and check cooling strategy in electronic equipment. Solving fluid-flow and heat-transfer equations, HotBox calculates flow patterns and temperature distribution, displaying them in an easily interpreted manner. It runs on most computers, including the PC. Concentration, Heat, Momentum, 081-947 7651.

Two independent 16-bit D-to-A converters for conventional stereo. Division Ltd, 0454 615554.

PC multimedia. PictureBook 2 from Orcad is a Windows application with teletext, and PictureBook 2 is a Windows 3.1-compatible system for the creation of books from a variety of inputs, including live video. Digitel Ltd, 0763 242955.
Diodes in temperature measurement

While almost any silicon diode is usable as a temperature-measurement transducer, giving about –2mV/°C slope in a reasonably linear manner, Motorola's MTS102 silicon temperature sensor is designed for the job in automotive, industrial and consumer use. It provides higher accuracy at ±2°C from –40°C to 150°C and comes in a TO-92 package. The electronics needed to make a complete system consists of diode excitation, offsetting and amplification and Burr-Brown's application bulletin AB-036 discusses these requirements in detail.

Figure 1 is the circuit diagram of the simplest type of system. A current source for exciting the diode gives the best results, since resistor bias suffers from the effects of power-supply variation, particularly in low-voltage, single-rail circuits. Fortunately, Burr-Brown's REF200 dual 100µA current source/sink perfectly matches the MTS102, which is specified for 100µA working. In the circuit of Fig.1, one of the sources excites the diode and the other supplies offset current.

Choice of op-amp for signal conditioning is not difficult; any precision type is usable, but B-B recommends its OPA177 low-cost type for ±15V supplies and the OPA1013 dual single-supply device for 5V working. Its inputs common-mode to ground and the output reaches to within 1.5mV of the supply voltage. There are two disadvantages to this basic circuit: span and zero adjustments are interactive and the output decreases for increasing temperature. If the output goes to a digital system, neither of these should be important.

Transfer function is

\[V_o = V_{BE} (1 + R_2 / R_1) - 100\mu A \times R_2, \]

where \(V_{BE} \) is the diode voltage at 25°C, \(V_1 \) is the minimum output voltage, \(T_c \) is the diode temperature coefficient and \(T_{MIN} \) is the minimum process temperature. \(V_{BE25} \) lies between 0.580 and 0.620 for \(T_c \) between –2.315 and –2.183 in mV/°C.

The circuit of Fig. 2 affords independent adjustment of span and zero by virtue of the addition of \(R_{zero} \). This arrangement avoids it, but needs a negative power supply line.

Choice of op-amp for signal conditioning is not difficult; any precision type is usable, but B-B recommends its OPA177 low-cost type for ±15V supplies and the OPA1013 dual single-supply device for 5V working. Its inputs common-mode to ground and the output reaches to within 1.5mV of the supply voltage. There are two disadvantages to this basic circuit: span and zero adjustments are interactive and the output decreases for increasing temperature. If the output goes to a digital system, neither of these should be important.

Transfer function is

\[V_o = V_{BE25} (1 + R_2 / R_1) - 100\mu A \times R_2, \]

where \(V_{BE25} \) is the diode voltage at 25°C, \(V_1 \) is the minimum output voltage, \(T_c \) is the diode temperature coefficient and \(T_{MIN} \) is the minimum process temperature. \(V_{BE25} \) lies between 0.580 and 0.620 for \(T_c \) between –2.315 and –2.183 in mV/°C.

The circuit of Fig. 2 affords independent adjustment of span and zero by virtue of the addition of \(R_{zero} \). This arrangement avoids it, but needs a negative power supply line.
APPLICATIONS

R_{ref} in series with the diode. A method of calculating component values is given in the bulletin.

This circuit also has the possible drawback that its output is inverting, which brings us to Fig. 3, in which the temperature-to-voltage conversion is positive, although a negative power supply line is needed. Otherwise, the circuit is the same as that of Fig. 2, with the diode and reference reversed.

To obtain the best of both worlds, the circuit in Fig. 4 is a non-inverting, single-supply design. The sensor output goes to the inverting op-amp input, the buffer A_1, preventing sensor loading.

Finally, the arrangement of Fig. 5 measures the differential temperature between two sensor diodes.

Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford, Hertfordshire WD1 8YX. Telephone 923 33837.

Synthesised oscillators for radio

Motorola's MC145170 is a frequency synthesiser with a very wide range — from a few hertz to 160MHz. Application note AN1207 gives enough information to allow the design of two oscillators: an HF type for use at 9.2MHz and 12.19 MHz, and a VHF oscillator for up to 160MHz (or rather less at temperatures over 85°C). Figure 1 is the basic configuration: the MC145170, a filter and the voltage-controlled oscillator, plus an output buffer, the contents of the Motorola chip being indicated in Fig. 2. Operation is as normal: the reference oscillator and the VCO feed the multiplying and dividing counters, their

Fig. 1. Basic block diagram of a phase-locked-loop frequency synthesiser, in this case using Motorola’s MC145170 PLL IC and a low-pass filter.

Fig. 2. Essential constituents of the Motorola chip, which also has the reference oscillator and the divide and multiply counters.

Fig. 3. MC145170 in an HF oscillator for 9.2-12.19MHz working in 230kHz steps.
APPLICATIONS

Figure 4. A VHF oscillator using the MC145170, this time with both outputs driving a differential amplifier, the LF351. Increased filtering reduces VCO sidebands.

outputs being compared in the phase detector. Either a sine oscillator or a voltage-controlled multivibrator followed by an integrator can be used.

Figure 3 is the circuit of the HF synthesiser, which has a resolution of 230kHz, a lock time of 8ms and overshoot a maximum of 15%. In this case, a squarewave output is acceptable and an MC1658 voltage-controlled multivibrator can be used; since its input loading is fairly large at 350µA maximum, the fet in the active filter avoids filter response degradation. Resistor R1 and C are the filter components and the application note provides a method of component calculation.

To program the circuit, three registers must be programmed: the C register, which configures the device, setting the phase detector to the correct polarity, turning off unused outputs and activating the phase-detector output; the R register for the divider providing the phase detector reference; and the N register, which sets the tuned frequency. Both C and R registers are programmed once on power-up.

The buffer A cleans up the MC1658 output before feeding it back to the synthesiser, since any spurious signal would cause miscounting in the N counter. A buffer's response is low enough to perform the filtering.

Figure 4 is the VHF synthesiser, which has a range of 140-100MHz in 100kHz steps and uses both fR and fT outputs of the MC145170, hence the op-amp. Filter calculations are again given in the note. In this case, the filtering is enhanced to avoid a small amount of reference frequency feeding through the filter and giving rise to larger VCO sidebands. Enhancements consist of the op-amp feedback components together with the split R1/2 and Cc, and the input circuitry to the MC1648 VCO - R14 and C5.

Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP.

More gain from the SL6140

GEC Plessey's SL6140 is broadband amplifier IC with AGC, providing 15dB of linear gain into 50Ω at 400MHz, or over 45dB into 1kΩ. The AGC controls gain over a 70dB range by voltage applied to an external series resistor. Bandwidth depends on the load, being 25-400MHz for loads of 1kΩ-50Ω.

Application note AN45 describes a method of tuning input and output to match a 50Ω source and load and to give increased gain over a smaller bandwidth. Figure 1 is the circuit diagram of a single-ended 100MHz amplifier having 35dB power gain.

At the input, a parallel tuned circuit across the differential inputs has the signal applied to one end via the coupling capacitor, the

Configuration:
- 20 pF 1 MHz
- 1 MO
- +5 V

Configuration:
- 100 pF
- 16

Output:
- MC145170
- 4 x 5.6 kΩ
- 2 x 1500 pF
- R1/2
- R112
- NaN-10-10A1-0
- Cc

Configuration:
- 2.4 kΩ
- 4700 pF

Configuration:
- 0.1 µF
- 360 pF

More gain from the SL6140

Configuration:
- +5 V
- 20 nH
- 100 pF

Configuration:
- 2 x MV2115
- R14
- 360 pF

Configuration:
- +12 V
- 4700 pF

Configuration:
- +12 V
- 4700 pF

Configuration:
- +5 V
- 20 pF

Configuration:
- +5 V
- 20 pF

Configuration:
- 1 kHz

Configuration:
- 1 MO

Configuration:
- 100 pF

Configuration:
- 100 pF

Configuration:
- 100 pF

Configuration:
- 1 kΩ

Configuration:
- 1 kΩ

Configuration:
- 20 µF

Configuration:
- 10 µF

Configuration:
- 500 pF

Configuration:
- 100 µF

Configuration:
- 1 MO

Configuration:
- 100 pF

Configuration:
- 100 pF
other end being decoupled. Since capacitor C_j forms part of the matching network, the tuned frequency is given by $f = \frac{1}{2\pi \sqrt{L_1 C_j C_j}}$. Output matching is done by connecting a parallel tuned circuit from one of the open-collector amplifier outputs to V_{cc}, the coupling capacitor again forming a part of the matching network from a high amplifier impedance to the 50Ω load. Coupling capacitors $C_{1,2}$ are adjustable to set maximum gain, short of oscillation caused by too high impedances at input and output. Since only one amplifier output is used in this circuit, an improvement is brought about by transformer coupling to the output, as shown in Fig. 2, in which both are in use to effect a further 6dB increase in gain.

Frequency scanner

GEC Plessey's SL6639-1 is a direct-conversion FSK data receiver for up to 200MHz working and featuring extremely low power consumption—about 3.7mW. It is intended for use in pagers, direction indicators, security systems and remote control. Application Note AN96 describes a scanning system to be used with the SL6639-1, which scans the local oscillator, detects a transmission and the received data and goes on to scan the rest of the band. The system needs no expensive components, runs at audio frequencies and requires only minor changes to the SL6639-1 demo board.

Figure 1 is the system diagram, which shows that a ramp generator scans the local oscillator through the required band. The appearance of a signal from the receiver test output to the stop circuit causes a series of pulses which are used to slow the ramp rate, so that the scanning slows to a rate, settable by P_2 in Fig. 2, low enough to allow the receiver to detect the correct number of bits. Stop pulses come from the circuit of Fig. 3, which consists of a high-impedance input amplifier, a gyrator simulating a 1H inductance to resonate at 1kHz, and a comparator. When the output of the LC tuned circuit exceeds the threshold set on the comparator, pulses are produced. All the op-amps are contained in one TAB1043.

A constant-current source, D_2 and T_3 in Fig. 3, feeds a capacitor to produce the ramp waveform. Potentiometer P_3 sets a voltage on the comparator input which, when exceeded by the ramp, generates a reset pulse at the comparator output to switch on T_4 and take the ramp back to zero. When stop pulses are detected by D_1, T_1 switches T_2 off, reducing capacitor current and

Fig. 1. Block diagram of scanner system for GEC Plessey's SL6639-1 FM data receiver.

Fig. 2. Ramp generator. Ramp rate set by P_1, rate in slow section by P_2. Pulses from stop circuit detected and used to switch capacitor charging current to low level, slowing the ramp.

Fig. 3. Stop pulse circuit which uses a gyrator simulating 1H inductance.

NOTE:

POTS ARE FOR EVALUATION ONLY
slowing the ramp to a rate set by P_2.

Figure 4 is the local oscillator, a circuit designed for the SL6639, but with no crystal. It is a Colpitts type with a Varactor diode tuning control accepting the ramp input.

GEC Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW. Telephone 0793 518000.

SL6639 OPERATION

The incoming signal is split into two parts and frequency converted to baseband. The two paths are produced in phase quadrature and detected in a phase detector which provides a digital output. The quadrature network may be in either the signal path or the local oscillator path.

The input to the system is an FSK data modulated signal with a modulation index of 18. f_2 and f_0 represent the "steady state" frequencies (i.e., modulated with continuous "1" and "0" respectively).

When the LO is at the nominal carrier frequency, then a continuous "0" or "1" will produce an audio frequency, at the output of the mixers corresponding to the difference between f_2 and f_2 or f_0 and f_0. If the LO is precisely at f_c, then the resultant output signal will be at the same frequency regardless of the data state; nevertheless, the relative phases of the two paths will reverse between "0" and "1" states.

By applying the amplified outputs of the mixers to a phase discriminator, the digital data is reproduced.

FREE TO SUBSCRIBERS

Electronics World offers you the chance to advertise ABSOLUTELY FREE OF CHARGE!

Simply write your ad in the form below, using one word per box, up to a maximum of twenty words (remember to include your telephone number as one word). You must include your latest mailing label with your form, as this free offer applies to private subscribers only. Your ad will be placed in the first available issue.

This offer applies to private sales of electrical and electronic equipment only. Trade advertisers should call Pat Bunce on 081 652 8339

All adverts will be placed as soon as possible. However, we are unable to guarantee insertion dates. We regret that we are unable to enter into correspondence with readers using this service, we also reserve the right to reject adverts which do not fulfil the terms of this offer.

Please send your completed forms to:
Free Classified Offer: Electronics World, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
INSTRUMENTS TO BUY

FREQUENCY COUNTERS
MX1010F and MX1100F are 8-digit frequency counters offering a broad range of features.
MX1010F: 1Hz to 100MHz, sensitivity of 15mV and resolution to 0.1Hz, data auto set, 10:1 attenuator, high impedance input – £129.00 plus VAT (£151.58).
MX1100F: 1Hz to 1GHz, features as MX1010F except ranges 70MHz to 1GHz and 50Ω impedance. £160.00 plus VAT (£188.00).
SC-130 and SC-40 are full featured, microprocessor-based, hand held frequency counters providing portability and high performance. Both instruments provide measurement of frequency, period, count and RPM plus a view facility enabling min, max, av and difference readings.
SC-130: 5Hz to 1.3GHz, 8 digit readout, sensitivity typically 10mV, high impedance input, battery condition indicator. £109.00 plus VAT (£128.08).
SC-40: As SC-130 except 5Hz to 400MHz. £89.00 plus VAT (£104.58).

MULTIMETERS
The 180 series of high performance multimeters provide advanced features and are supplied complete with probes, battery and rubber holster. The case is dust and splash proof making it ideal in most environments. Designed to meet IEC348 Class II safety standard.
183: 3 1/2 digit large LCD display, ACV, DCV, ACA, DCA, resistance, continuity buzzer, diode test, hold, basic accuracy 0.5%. £39.50 plus VAT (£46.41).
185: 3 1/2 digit LCD, bar graph, ACV, DCV, ACA, DCA, resistance, continuity buzzer, diode test, hold, temperature (-40°C to 1370°C), capacitance (1pF to 40µF), frequency (1Hz to 200kHz), max/min, edit, %, compare, basic accuracy 0.3%. £74.50 plus VAT (£87.54).
187: As 185 except auto ranging. £99.50 plus VAT (£116.91).
285: As 185 except 4 1/2 digit true rms, basic accuracy 0.05%. £109.50 plus VAT (£128.66).

MULTIMETERS (2)
The MX170B and MIC-6E offer low cost measurement yet retain a large number of features. Supplied complete with probes.
MX170B: 3 1/2 digit LCD, compact size, ACV, DCV, ACA, DCA, resistance, diode test, low voltage battery test. £24.00 plus VAT (£28.20).
MIC-6E: 3 1/2 digit LCD, ACV, DCV, ACA, DCA, resistance, diode test, buzzer. £33.50 plus VAT (£39.36).

20MHz 2-CH OSCILLOSCOPE
The CS4025 20MHz dual trace oscilloscope offers a comprehensive range of facilities including a high sensitivity vertical amplifier providing from 1mV to 5V/div in CH1, ALT, CHOP, ADD, CH2 modes with inverse polarity on CH2. The horizontal timebase offers a sweep range of 0.5s/div to 0.5µs/div plus x10 sweep expansion and X-Y mode. Triggering can be auto or normal from vert, CH1, CH2, line or external sources with coupling provided for AC, TV-F and TV-L. The CS4025 is supplied complete with matching probes for £295.00 plus VAT (£346.62).

PROGRAMMABLE POWER SUPPLIES
The PPS series of GPIB programmable DC power supplies offer high performance yet are extremely competitively priced using a 16x2 backlight LCD and 14 button keypad. All functions and conditions are easily selected and displayed. Overvoltage and overcurrent are selectable as is output enable/disable. Terminals for output and sense are provided on the front and rear to allow easy rack mounting.
PPS-1322: 0-32V 2A (GPIB) £375.00 plus VAT (£440.63)
PPS-2322: Dual 0-32V 2A (GPIB) £555.00 plus VAT (£652.13)
PROGRAMMABLE POWER SUPPLIES

MX2020

MX 9000

MIC-4070D

SC 130

Buy top quality instruments direct from Electronics World + Wireless World and avoid disappointment. If you are not satisfied, return the goods and we will refund the purchase price*.

FUNCTION GENERATOR
The MX2020 0.02Hz - 2MHz sweep function generator with LED digital display offers a broad range of features. Output waveforms include sine, square, triangle, skewed sine, pulse and TTL. Lin and log sweeps are standard as is symmetry, DC offset and switchable output impedance from 50Ω to 600Ω. The digital display provides readout of the generator's frequency or can operate as separate 10MHz frequency counter. £199.00 plus VAT (£233.83).

LCR METER
The MIC-4070D LCD digital LCR meter provides capacitance, inductance, resistance and dissipation measurement. Capacitance ranges are from 0.1pF to 20,000pF plus dissipation. Inductance ranges from 0.1μH to 200H plus a digital readout of dissipation. Resistance ranges from 1mΩ to 20MΩ. Housed in a rugged ABS case with integral stand it is supplied complete with battery and probes at £85.00 plus VAT (£99.88).

FOUR INSTRUMENTS IN ONE
The MX9000 combines four instruments to suit a broad range of applications in both education and industrial markets including development work stations where space is at a premium.

The instruments include:
1. A triple output power supply with LCD display offering 0-50V 0.5A, 15V 1A, 5V 2A with full overcurrent protection;
2. An 8-digit LED display 1Hz - 100MHz frequency counter with gating rates of 0.1Hz, 1Hz, 10Hz and 100Hz providing resolution to 0.1Hz plus attenuation inputs and data hold;
3. A 0.02Hz to 2MHz full featured sweep/function generator producing sine, square, triangle, skewed sine, pulse and a TTL output and linear or logarithmic sweep. Outputs of 50Ω and 600Ω impedance are standard features;
4. An auto/manual 3 1/2 digit LCD multimeter reading DCV, DCA, ACV, ACA, resistance, and relative measurement with data hold functions.

The MX9000 represents exceptionally good value at only £399.00 plus VAT (£468.83).

FG SERIES FUNCTION GENERATORS
The FG500 series sweep/function generators provide two powerful instruments in one package, a 6MHz or 13MHz sweep/function generator and an intelligent 100MHz frequency counter. The microprocessor based instruments offer sophisticated facilities yet remain extremely competitively priced. A menu driven display allows easy set up and operation. A 16 character by 2-line LCD display provides clear and unambiguous readout of generator output and frequency measurement.

FG-506: 2Hz to 6MHz sweep/function with 100MHz counter £325.00 plus VAT (£381.88)
FG-513: 2Hz to 13MHz sweep/function with 100MHz counter £482.00 plus VAT (£566.35)

Credit card orders accepted by phone 081 652 3614

Please send me the following instruments. ...

I enclose a cheque/postal order/eurocheque to the value of £..............................made payable to Reed Business Publishing Ltd or Please debit my Access/Visa/American Express/Diners Club with £..............................

Card Number..Date...

Name..Address...

..Postcode...Phone...

Return to: Lorraine Spindler, Rm L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please allow 21 days for delivery.
Although external components often determine an op amp's performance, the chips themselves are not always trouble-free: oscillations and noise represent two possible areas of difficulty.

External components often determine an op amp's performance. But op amps aren't always absolutely trouble-free: oscillations and noise are two possible areas of difficulty, among others. It is mostly the components around op amps that cause many of their problems. After all, the op amp is popular because external components define its gain and transfer characteristics.

So, if an amplifier's gain is wrong, you quickly learn that you should check the resistor tolerances, not the op amp. If you have an AC amplifier or filter or integrator whose response is wrong, you check the capacitors, not the op amp. If you see an oscillation, you check to see if there's an oscillation on the power-supply bus or an excessive amount of phase shift in the feedback circuit.

If the step response looks lousy, you check your scope or your probes or your signal generator because they're as likely to be the problem as the op amp is. The overall performance of your circuit is often determined by those passive components. And yet, there are exceptions. There are still a few ways an op amp itself can foul up.

Before we discuss serious problems, you should be aware of the kind of op-amp errors that aren't significant. First of all, it generally isn't reasonable to expect an op amp's gain to be linear, nor is its nonlinearity all that significant.

For example, what if an op amp's gain is 600,000 for positive signals but 900,000 for negative signals? That sounds pretty bad. Yet, this mismatch of gain slope causes a nonlinearity of about 10µV in a 20Vp_p unity gain converter. The voltage coefficients and temperature coefficient errors of the feedback resistors will cause a lot more error than that. Even the best film resistors have a voltage coefficient of 0.1 ppm/V, which will cause more nonlinearity than this gain error.

Recently I heard a foolish fellow argue that an op amp with a high DC gain such as 2,000,000 or 5,000,000 has no advantage over an amplifier with a DC gain of 300,000 because, unless your signal frequency is lower than 0.1 Hz, you cannot take advantage of this high gain. Obviously, I don't agree with that. If you have a step signal, the output settles to the precise correct value in less than a millisecond -- not 1s or more. The amplifier with the higher gain settles to a more precise value. It does not take any more time. I guess he just doesn't understand how op amps work.
Especially since he doesn't even want to talk about gain nonlinearity!

Many old amplifiers had low DC gain and poor gain linearity whereas more modern devices like the N/C OP-07 and the LM607 (gain = 6,000,000 min) have much less.

Similarly, an op amp may have an offset voltage temperature coefficient specification of 1µV/°C, but the op amp's drift may actually be 0.33µV/°C at some temperatures and 1µV/°C at others. Twenty or thirty years ago, battles and wars were fought over this kind of specsmanship, but these days, most engineers agree that you don't need to sweat the small stuff. Most applications don't require an offset drift less than 0.98µV for each and every degree; most cases are quite happy when a 1µV/°C op amp drifts less than 49µV over 50°C.

Also, you don't often need to worry about bias current and its temperature coefficient, or the gain error's TC. If the errors are well behaved and fit inside a small box, well, that's a pretty good part.

There is one classical caveat. Namely: If you run an op amp in a high impedance circuit such that the bias current causes significant errors when it flows through the input and feedback resistors, do not use the Vos pot to get the circuit's output to zero. Example, if you have an LM741 as a unity gain follower with a source impedance of 500kΩ and a feedback resistor of 470kΩ, the 741's offset current of 200nA (worst-case) could cause an output offset of 100mV. If you try to use the Vos trim pot to trim out that error, it won't be able to do it. See Fig. 1.

If you have only 20 or 40mV of this I x R error, you may be able to trim it out, but the TC and stability will be lousy. So you should be aware that in any case where the Ios x R is more than a few millivolts, you have a potential for bad DC error, and there's hardly any way to trim out the errors without causing other errors.

When you get a case like this, unless you are willing to accept a crude error, then you ought to be using a better op amp with lower bias currents.

Fig. 1. If you run an op amp at such high impedances that Ios x R is more than 20mV, you'll be generating big errors, and a Vos trim pot can't help you cancel them out. Please don't even try!

Especially since he doesn't even want to talk about gain nonlinearity!

An uncommon mode

A good example of misconstrued specs is the common mode error. We often speak of an op amp as having about CMRR (common mode rejection ratio) of 60dB. Does this number mean that the common mode error is exactly one part in 100,000 with a nice linear error of 10µV per volt? Well, this performance is possible, but not likely. It's more likely that the offset voltage error as a function of common mode voltage is nonlinear. In some regions, the slope of Δvos will be much better than 1 part in 100,000. In other regions, it may be worse.

It really bugs me when people say "The op amp has a common mode gain, Acm, and differential gain, Amd, and that the CMRR is the ratio of the two. This statement is silly: It's not reasonable to say that the op amp has a differential gain or common mode gain that can be represented by a single number. Neither of these gain numbers could ever be observed or measured with any precision or repeatability on any modern op amp. Avoid the absurdity of trying to measure a "common mode gain of zero" to compute that your CMRR slope is infinite. You'll get more meaningful results if you just measure the change in offset voltage, Vos, as a function of common mode voltage, Vcm and observe the linear and nonlinear parts of the curve of the sort shown in Fig. 2.

How not to test for CMRR

First thing to remember is how not to measure CMRR. In Fig 3, driving a sine wave or triangle wave into point A, will make it seem as if the output error, as seen by a floating scope, will be (N+1) x (Vcm/CMRR). But that's not quite true: you will see (N+1) x (CMR Error + Gain Error). So, at moderate frequencies where the gain is rolling off and the CMRR is still high, it is mostly the gain error that will be seen, and the curve of CMRR vs frequency will look just as bad as the Bode plot.

An LF356 run in the circuit of Fig. 3 gives an error of 4mVpp at 1kHz - a large quadrature error, 90° out of phase with the output (see the upper trace in Fig. 4). If you think that is the CM error, you might say the CMRR is as low as 5000 at 1kHz, and falls rapidly as the frequency increases. The actual CMRR error is about 0.2 mV (see the lower trace of Fig. 6) and thus the CMRR is about 100,000 at 1kHz or any lower frequency.

Note also that, on this unit, the CM error is not really linear: as -9V is approached, the error becomes more nonlinear. (This is a
ANALOGUE DESIGN

Fig. 4. Upper trace shows the "CMRR" error taken using the circuit of Fig. 3. But it is not the CMRR error, it is really the gain error, 4mV pk-pk at 1kHz. Lower trace shows the actual common-mode error - about 1/20 the size of the gain error - measured using the circuit of Fig. 7.

-9V/+12V CM range on a 12V supply; I chose a -12V supply so my function generator could overdrive the inputs.)

How to test properly

So how can we test for CMRR and get the right results? Fig. 5 is a fine circuit, even if it has limitations.

If $R_1 = R_{11} = 1k$, $R_2 = R_{12} = 10k$, and $R_3 = 200k$ and $R_4 = a 5000$ pot, single-turn carbon or similar, the noise gain is defined as $1 + (R_2/R_1)$, or about 11. If we put a +11V sine wave into the signal input, the CM voltage is about -10V. The output error signal will be about 11 times the error voltage plus some function of the mismatch of all those resistors.

Connect the output to a scope in cross-plot (X-Y) mode and trim that pot until the output error is very small - until the slope is nominally flat. Whether or not the CMRR error is balanced out by the resistor error is unimportant. Just observe that the output error, as viewed on a cross-plot scope, is quite small. Now connect in R_{100}, a nice low value such as 200Ω. Computing the noise gain, it rises from 11 to 111. It was $(1 + R_2/R_1)$, and then increases to $(1 + R_2/R_1) + (R_2 + R_1)R_{100}$. In this example, that is an increase of 100. This means a change of V_{CM} equal to 100 times the input error voltage (and that is V_{CM} divided by CMRR).

Of course, it is unlikely for this error voltage to be a linear function of V_{CM}. So look at it with a scope in cross-plot (X-Y) mode. Too many people pretend that CMRR is constant at all levels and that CM error is a linear function of V_{CM}. They just look at two points and assume every other voltage has a linear error.

Another good reason to use a scope in the XY mode is to allow visual subtraction of the noise. An AC voltmeter can certainly not be used to detect the CMRR error. For example, in Fig. 4, the CM error is fairly stated as 0.2mV pk-pk, not 0.3mV pk-pk (as it might be if a meter that counted the noise was used). A good amplifier with a CMRR of about 100dB will show the CM error to be about 0.05mV pk-pk; as this is magnified by 100, an output error of 2mV pk-pk can easily be seen. With a really good unit having a CMRR of 120 or 140dB, the aim will be to clip in R_{100} - eg at 20Ω - and then the Δ (noise gain) will be 1000. The noise will be magnified by 1000 - but so will the error.

Fig. 5. Evaluating CMRR with confidence and precision, both AC and DC.

Connect the output to a scope in cross-plot (X-Y) mode and trim that pot until the output error is very small - until the slope is nominally flat. Whether or not the CMRR error is balanced out by the resistor error is unimportant. Just observe that the output error, as viewed on a cross-plot scope, is quite small. Now connect in R_{100}, a nice low value such as 200Ω. Computing the noise gain, it rises from 11 to 111. It was $(1 + R_2/R_1)$, and then increases to $(1 + R_2/R_1) + (R_2 + R_1)R_{100}$. In this example, that is an increase of 100. This means a change of V_{CM} equal to 100 times the input error voltage (and that is V_{CM} divided by CMRR).

Of course, it is unlikely for this error voltage to be a linear function of V_{CM}. So look at it with a scope in cross-plot (X-Y) mode. Too many people pretend that CMRR is constant at all levels and that CM error is a linear function of V_{CM}. They just look at two points and assume every other voltage has a linear error.

Another good reason to use a scope in the XY mode is to allow visual subtraction of the noise. An AC voltmeter can certainly not be used to detect the CMRR error. For example, in Fig. 4, the CM error is fairly stated as 0.2mV pk-pk, not 0.3mV pk-pk (as it might be if a meter that counted the noise was used). A good amplifier with a CMRR of about 100dB will show the CM error to be about 0.05mV pk-pk; as this is magnified by 100, an output error of 2mV pk-pk can easily be seen. With a really good unit having a CMRR of 120 or 140dB, the aim will be to clip in R_{100} - eg at 20Ω - and then the Δ (noise gain) will be 1000. The noise will be magnified by 1000 - but so will the error.

Fig. 6. Circuit (a) allows testing of an op amp's common-mode input capacitance. When $C_1 = C_3 = 5pF$, measure $V_i = V_o$; when $C_1 = C_3 = 1000pF$, measure $V_i = V_o$. Then $C_{cm}=C_1 x (V_o-V_i)/V_o- V_i \times C_1/C_3$. For best results, connect the signal to the plus input of the DUT with a small gator clip. Do not put the plus input pin into the device's socket. Circuit (b) allows testing of an op amp's differential input capacitance. For this circuit $C_{diff}=V_o/p-p x C_{total}/[V_{o-p-p}]/V_{o-p-p} - V_o/p-p$, where $C_{total}=C_{cm}+C_{scope}+C_{scope}+100pF$.

-340 ELECTRONICS WORLD + WIRELESS WORLD April 1993
This circuit provides a high resolution view and gives a good feel for what is happening, rather than just showing numbers. For example, with a 22mVp-p output signal that is caused by a 22μV error signal, the CMRR really is way up near a million, which is much more useful than a cold "119.2dB" statement. It also teaches that the slope and the curvature of the display are important. Not all amplifiers with the same "119.2dB" of CMRR are actually the same; some have a positive slope, some a negative slope, and some curve, so that if a two-point measurement is taken, the slope changes wildly, depending on which two points are chosen. (Increasing the amplitude of the input signal makes it plain where severe distortion sets in – that is the extent of the common mode range.)

The limitation is that with the noise gain set as high as 100, then this circuit will be 3dB down at F_BW/100. So only use this up to about 1kHz on an ordinary 1MHz op amp, and only up to 100Hz at a gain of 1000.

Bias current
Another op amp spec not to worry about is the differential input impedance: instead, measure the bias current. There is a close correlation between the bias current and the input impedance of most op amps, so if the bias current is low, the input impedance (differential and common mode) must be high enough. Generally, an ordinary differential bipolar stage has a differential input impedance of 1/(20 / I_b), where I_b is the bias current. This number varies if the op amp includes emitter degeneration resistors or internal bias compensation circuitry.

Common mode input resistance can easily be tested by measuring I_b as a function of V_CM. The circuits of Fig. 6 are quite useful here. Input capacitance data is nominally of interest only for high impedance high speed buffers or for filters, to make sure that the second source device has the same capacitance as the op amps that are already working adequately.

False error characteristics
Sometimes, an op amp may exhibit an "error" that looks like a bad problem, but isn't. For example, if an op amp's output is ramping at -0.3V/μs, it might be surprising to find that the inverting input, a summing point, is not at ground. Instead, it may be 15 or 30 or 100mV away from ground. How can the offset voltage be so bad if the spec is only 2 or 4mV?

Why is the inverting input not at the "virtual ground" that the books teach us?
The virtual ground theory is applicable at DC and low frequencies, but if the output is moving at a moderate or fast speed, then expecting the summing point to be exactly at ground is unreasonable. In this example, dV_in/dt equals 2μVs the unity gain frequency V_x the input voltage. So 15mV of V_in is quite reasonable for a medium bandwidth op amp, such as an LF356, and 50 or 70mV is quite reasonable for an LM741.

To make an op amp move its output at any significant speed, there has to be a significant error voltage across the inputs for at least a short time.

Also beware of op amp models and what they might mistakenly say. For instance, the "standard" equation for a single-pole op amp's gain is A = Ao(1/1 + jωT), implying that when the DC gain Ao changes, the high-frequency DC gain, A, changes likewise. But this is incorrect. There is almost no correlation between the high frequency response and the spread of DC gain, on any op amp. Several ways can be used to get an op amp's DC gain to change: change the temperature, add on or lift off a load resistor, or swap for an amplifier with higher or lower DC gain.

Although the DC gain can vary several octaves in any one of these cases, the gain-bandwidth product stays about the same. If there ever were any op amps whose responses did vary with the DC gain, they were abandoned many years ago as unacceptable.

Op amp spec sheets often give the open loop output impedance as 50Ω. But by inspecting the spec sheets at two different load resistor values, the DC gain can be seen to fall by a factor of two when a 1kΩ is applied. If an op amp has an output impedance of 1kΩ, its gain will fall by a factor of two when a 1kΩ load is applied. But if its output impedance were 50Ω, as the spec sheet claimed, the gain would only fall 5%. So, whether it is a computer model or a real amplifier, be suspicious of output impedances that are claimed to be unrealistically low.

Real trouble
What real trouble can an op amp cause? A part may have a bad V OE. Or if the temperature is changing, the thermocouples of the op amp's Kovar leads may cause small voltage differences between the op amp leads and the copper of the PC board. Such differences can amount to 1/10 or 1/20 of a Celsius degree times 35μV/C, equal to 2-3μV.

Remember, too, that not all op amps of any one type have the exact same output voltage swing or current drive or frequency response. Designers can fall into the habit of expecting parts to be better than average. When they receive parts that are still much better than the guaranteed spec but worse than average or "typical," they find themselves in trouble.

Occasional oscillations
One of the most troublesome problems associated with op amps is oscillation. Just as an oscillator can be built out of any gain block, then it must be accepted that any gain block can also oscillate when not wanted. Op amps are no exception, though most op are well behaved, and only four basic precautions need to be taken to avoid oscillations.

-Always use some power-supply bypass capacitors on each supply and install them near the op amp. For high frequency op amps, the bypass capacitors should be very close to the device for best results. Ceramic and tantalum bypass capacitors are often needed.

Troubleshooting Analog Circuits
In this book Bob Pease brings together many of the techniques he has developed over the years to expedite debugging and trouble-shooting analogue circuits.

Based on his popular series in the US's EDN magazine, the book also contains new and updated material. Pease's approach to problem identification and isolation makes the book a useful aid to any analogue or digital engineer—whether experienced or not.

Available direct by postal application to Lorraine Spindler, EW + WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Cost £21.45 including postage and packing. Cheques made payable to Reed Business Publishing Ltd.

CREDIT CARD ORDERS
ACCEPTED BY PHONE
081 652 3614

Troubleshooting Analog Circuits
Based on his popular series in the US's EDN magazine, the book also contains new and updated material. Pease's approach to problem identification and isolation makes the book a useful aid to any analogue or digital engineer—whether experienced or not.

Available direct by postal application to Lorraine Spindler, EW + WW, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Cost £21.45 including postage and packing. Cheques made payable to Reed Business Publishing Ltd.

ROBERT A. PEASE
Troubleshooting Analog Circuits
Published by Butterworth-Heinemann.

CREDIT CARD ORDERS
ACCEPTED BY PHONE
081 652 3614
Fig. 7. The basic inverter (a) and integrator (c) can be easily modified to decouple capacitive loads (b) and (d).

Many analyses claim to predict capacitive loading effects when the op amp’s output is resistive. But the output impedance of an op amp is usually not purely resistive, and if the impedance is low at audio frequencies, it often starts to rise inductively at high frequencies, just when you need it low.

Conversely, some op amps (such as the NSC LM6361) have a high output impedance at low frequency which falls at high frequencies – a capacitive output characteristic. So adding more capacitance to the load just slows down the op amp a little and does not change its phase very much. But if an op amp is driving a remote, low resistive load that has the same impedance as the cable, the terminated cable will look resistive at all frequencies and capacitive loading may not be a problem.

An inverter’s and integrator’s capacitive load can be decoupled as shown in Fig. 7. If the components are well chosen, any op amp can drive any capacitive load from 100pF to 100µF. The DC and low-frequency gain is perfectly controlled, but when the load capacitor grows large, the op amp will slow down and will eventually just have trouble slewing the heavy load.

Figure 8. By adding just a single resistor, the noise gain of a standard integrator can be tailored.

Using bypass capacitors is not just a rule of thumb, but a matter of good engineering.

Avoid unnecessary capacitive loads; they can cause an op amp to develop additional phase shift, making the op-amp circuit ring or oscillate. For example a 1x scope probe, a coaxial cable or other shielded wire added to an op amp used to convey its output to another circuit. Unless the op amp is proven to be stable driving that load, add some stabilising circuits. It does not take a lot of work to apply a square wave or a pulse to the op amp to see if its output rings badly or not. Check the op amp’s response with both positive and negative output voltages because many op amps with PNP follower outputs are less stable when V_ref is negative or the output is sinking a current.

Add a feedback capacitor across R_f unless it can be shown that this capacitor is not necessary (or is doing more harm than good). This capacitor’s function is to prevent phase lag in the feedback path. Of course there are exceptions, such as the LF357 or LM349, which are stable at gains or noise gains greater than 10. Adding a big feedback capacitor across the feedback paths of these op amps would be exactly the wrong thing to do, although in some cases 0.5 or 1pF may be helpful.

Figures 9a and 9b show two formulae can be used to obtain considerably improved bandwidth and excellent stability.

For high values of gain and of R_f, use:

$$C_F = \frac{C_m}{\sqrt{\frac{G_{BW}}{R_F}}},$$

where G_{BW} is the gain-bandwidth product. In those cases in which the gain or impedance is low, such as where \(1 + R_F/R_1 \approx 5 \times 10^4\), use the following equation

$$C_F = \frac{C_m}{2 + \frac{2R_F}{R_1}}.$$

These equations came from real analytical approaches that have been around for 20 years. The value of C_F computed is not that critical; it is just a starting point. The circuit must be built, trimmed and tested for overshoot, ringing, and freedom from oscillation. If the equation gave 1pF and a clean response can be obtained only with 10pF, you would be suspicious of the formula.

Note that when moving from a breadboard to a PC board, the stray capacitances can change, so the value of C_F must be rechecked. In some cases a separate capacitor may not be needed if 0.5pF is built into the board.
Multi-DEVICE PROGRAMMER
EPROMs - EEPROMs - FLASH - Micros - PLDs - GALs

Introductory Offer only £299.00

✓ Fast Programming - Intelligent Algorithms
✓ Connects to Computer Port
✓ On Line "HELP" System
✓ Easy to Use Menu Driven Software
✓ Supports a Wide Range of Devices without Adapters. Including:

EPROMs E²PROMs Flash EPROMs
PLDs GALs PALCEs - 16V8, 20V10, 22V10
8748 and 8051 families including 87C751

Contact SMART Communications for our full range of programmers including stand-alone programmers, gang programmers and our comprehensive universal device programmer

2 Field End, Arkley, Barnet, Herts EN5 3EZ Telephone: 081-441 3890

CIRCLE NO. 132 ON REPLY CARD

Those Engineers LTD
31 Birkbeck Rd - Mill Hill - London NW7 4BP
Tel: 081-906 0155 - Fax: 081-906 0969

CIRCLE NO. 140 ON REPLY CARD
DEVELOPING ANTENNAS FOR BEAM STATIONS

The four-panel Canadian transmitter at Bodmin. Nearest, to the right of the picture, is the absorber and signalling panel, which kept the load on the generators constant between "marking" and "spacing" in the Morse transmission by diverting the high-tension supply through resistances by type CAM2 oil-cooled valves during spacing periods. In the foreground are two signalling relays, with a change-over switch on the diagonal panel. Two magnifiers, one for each waveband follow, and the end panel contains the No 1 magnifier, or power oscillator and the high-frequency coupling circuits, which convey energy to the aerials.

Above The two lines of aerial masts at the Bodmin beam station, opened in 1926 to handle short-wave transmissions to Canada and South Africa. The beams followed great circle tracks, each at right-angles to its line of aerial masts. Alignment required celestial accuracy.
The shortwave Imperial wireless chain - the beam system as it came to be called - like its long-wave high power predecessor was based on pairs of stations, a transmitter and receiver. Many were in fact conversions of stations begun for high-power links.

Experiments by Marconi and colleagues in 1923/24, using wavelengths between 92 and 32m had established that the shorter the wavelength, the longer the daylight range (when signals were supposedly at their weakest).

Test transmissions on 32m, using a power of only 12kW, were received in Montreal, New York, Buenos Aires and Sydney, in October 1924. These results came just in time to halt mast construction at some of the planned stations.

Smaller antenna and reflector systems could be substituted. These consisted of a five-mast system, the 287ft high masts spaced 650ft apart, producing a 1300ft antenna path for each of the two discrete wavelengths.

Precise alignment of the masts was of vital importance, and had to be carried out with great care - using fixes on the sun and stars - to ensure that they were square-on to the shortest great circle path to the destination.

The angle of elevation was 10-15° from the horizontal for ranges of 2000 miles upwards. Phasing coils were used between half-wave sections to bring antennas into phase (later replaced by a zigzag array to produce non-radiating phase reversing).

To ensure the efficient transmission of high-frequency power between the transmitter and the antennas, C S Franklin, who designed the array, devised the concentric feeder. This consisted of air-insulated concentric copper

A standard wave meter, used for checking the transmitted wavelengths.

The machinery hall at Bodmin. Power required was less than 20 kW, compared with up to 1000kW for an equivalent longwave transmitter. Rectifiers, in the background, provided high-tension DC anode supplies for the valve transmitters.
The Australian Beam Station at Grimsby was designed to work in two directions, west in the morning and east in the evening, both following the great circle path, in order to allow for the effect of the position and altitude of the sun on transmissions. Two aerial systems, either side of a central reflector, were employed, and can be seen here either side of one of the three masts. The reflector can be traced just to the right of the mast by a line of balance weights, used to keep the array taut under wind pressure.

Tubes, held apart by porcelain spacers - in principle the same design as modern coaxial cable. It was carried on iron supports driven into the ground. A symmetrical branched distribution kept the supply to all the antenna wires in phase.

Transmitters used a valve drive taking less than 100W; output was then amplified in three successive stages. Duplicate drives were installed where different wavelengths were used for day and night transmissions, permitting a wavelength change to be effected in about 10 minutes.

New valves had to be designed to overcome problems with the high frequencies in use. These were the oil-cooled CAT (cooled anode transmitting) valves.

The receivers consisted of a single RF stage and demodulator with additional AF amplification stages as required. To cope with frequency drift from the transmitters, the tuned stages were given fairly wide band-pass, while limiting circuits were used to offset fluctuations in signal strength due to the ionosphere.

Bodmin in Cornwall was the transmitting station for Canada and South Africa, with the receiving station at Bridgewater, Somerset. Grimsby and Skegness, on the East Coast, served Australia and India, while Dorchester and Somerton covered North and South America.

The Australian desk at the Central Radio Office, London, where messages were sent to Grimsby, and received from Skegness, by land line, and from where the automatic stations were controlled.
WARNING!

THIS TAX COULD SERIOUSLY DAMAGE THE HEALTH OF YOUR BUSINESS

It is strongly rumoured the government will impose VAT on magazines and newspapers. Not just daily and Sunday newspapers, but magazines like this one. Magazines providing information designed to help you in work, to run your business. Specialist information which can only be obtained from specialist magazines.

For publications bought by you or your company it will mean an increase in cover price. It is also possible that magazines you received free will be subject to an imputed cover price, forced to pay a non-refundable tax on income they can't earn, money they haven't got. Your favourite most job-useful magazine could be closed down.

VAT on specialist business magazines would be a tax on information, a tax which would drastically reduce the range and quality of information that helps businesses grow, compete, increase efficiency and market their products. Information which only the specialist business press provides.

Public opinion can change government policy. If the information provided by the business press is important to you, if you disagree with a tax on information, fill in the form below and send it freepost to Ian Locks at the Periodical Publishers Association.

In addition, a letter to your MP would be very helpful.

Published by Electronics and Wireless World in the interest of preserving a most useful source of business information.

TO:
Ian Locks, Chief Executive, Periodical Publishers Association, Freepost, WC2B 6UN

I disagree with any government proposal to tax information, by imposing VAT on specialist business magazines.

Name:

Job Title:

347
JOHN "RADIO" BROWN

JIG Brown C.ENG MIEE who died on January 11 1993, aged 77, was a brilliant electronic engineer and inventor of several devices that proved of vital importance to the War effort in 1940-45.

After the war, he carried out valuable work in the development of medical electronics, notably for cardiac investigations and treatment. But he is perhaps best remembered for his work with the Special Operations Executive (SOE). Communications between the UK, agents in the field and underground groups in occupied Europe and other parts of the world were crucial to success of SOE activities. It was John “Radio” Brown, exploiting his skill, exceptional technical knowledge and attention to the minutest detail, that made this communication possible.

Development work, carried out day and night at SOE station IX by John Brown, laid much of the basis for good communications. His originality in producing light and small transmitter-receivers overcame the difficulties experienced with previous large and heavy equipment that had led to the arrest and often execution of agents operating in the field. Light but powerful suitcase transmitter-receivers designed and produced by Brown, the A Mk I and B Mk II, carried the SOE communications load for the duration of the War.

The equipment usually had a power output of about 20W and operated on Morse code, in the range 3-15MHz – it must be remembered that at the time radio transmission and reception were dependent on thermionic valves consuming relatively high power.

Not content with designing the communications equipment, John Brown also developed the ancillaries, including a pedal generator adaptable for wind drive and a thermocouple charger for the batteries. The charger consisted of a large number of couples housed in a brazier, and in a single night this could fully charge the accumulators.

In 1944 Britain needed communication receivers covering from 150kHz to 15MHz to enable radio broadcasts to be heard anywhere in the world. The coded broadcasts would indicate the arrival of parachutists, and other SOE activities, and the extensive waveband was needed to penetrate the extensive enemy jamming of so many frequencies being broadcast by the BBC. To meet the requirement John Brown designed, in very little time, the miniature communications receiver (MCR), 20,000 of which were rapidly produced and dropped in occupied countries all over the world.

It is impossible to estimate the value of Brown’s work and his contribution to the success of SOE operations. But countless lives were saved by the efficient communications enabled by his designs.

Brown held the rank of Major in the Royal Signals and after demobilisation ran his own company Aveley Electric where he carried out development of important electronics connected with cardiac diagnosis. He travelled to several countries lecturing on clandestine radio techniques.

Charles B Bovill

In 1944 Britain needed communication receivers covering from 150kHz to 15MHz to enable radio broadcasts to be heard anywhere in the world. The coded broadcasts would indicate the arrival of parachutists, and other SOE activities, and the extensive waveband was needed to penetrate the extensive enemy jamming of so many frequencies being broadcast by the BBC. To meet the requirement John Brown designed, in very little time, the miniature communications receiver (MCR), 20,000 of which were rapidly produced and dropped in occupied countries all over the world.

It is impossible to estimate the value of Brown's work and his contribution to the success of SOE operations. But countless lives were saved by the efficient communications enabled by his designs.

Brown held the rank of Major in the Royal Signals and after demobilisation ran his own company Aveley Electric where he carried out development of important electronics connected with cardiac diagnosis. He travelled to several countries lecturing on clandestine radio techniques.

Charles B Bovill

John Brown's suitcase radio employed a 6V6 as PA and a 7H7 as crystal oscillator. The superhet receiver used three valves.

The PA coil output circuits were flexible enough to load up to anything – including a bedstead.
REPRINTS

a ready made sales aid

If you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation (minimum no. 250), contact:

Jan Crowther
Room 1006, Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS, UK
Telephone: 081-652 8229 Fax: 081-652 4728

CIRCLE NO. 134 ON REPLY CARD

Quickroute for Windows 3/3.1 and DOS
A New Generation of PCB and Schematic Design Software

Quickroute 2.0 for Windows 3/3.1
Supports over 150 printers/plotters

Quickroute 1.5 for DOS
Supports dot-matrix, LaserJet and HPGL

Easy to use and fast to learn!

Our first product - Quickroute 1.2 for DOS - was called 'exceptional value for money' by Everyday Electronics (Sep92) and EW&W (May92) said 'Cheap...it may be. But...Quickroutes performance puts it in an altogether much bigger league'. Now there are two new versions: Quickroute 2.0 for Windows, and Quickroute 1.5 for DOS, and they are even better!

With the new 'button bar' you get instant access to all the powerful object selection and improved editing features with a single mouse click. There's built in help, faster turbo draw for rapid zoom & pan, a new filled polygon object type for earth planes, and with the Windows version - support for over 150 printers and plotters and a new simple schematic capture tool. Quickroute also comes with a simple auto-router tool, curved track capability, and schematic/PCB symbol libraries. Just fill in the coupon below, or phone, for more details on the new generation of Quickroute products.

Please send cheques payable to POWERware to: POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK. Telephone 0860 602486

Send me Quickroute 2.0 for Windows 3/3.1 at £59
Quickroute 1.5 for DOS at £39
Both versions for just £79
All prices inclusive. Add £4 for P+P outside the UK

Name

Address

Disk Size

CIRCLE NO. 141 ON REPLY CARD
We also welcome the opportunity to quote for ARTICLES FOR SALE

VALVES AND C.R.T.'s
(also Magnetrons, Klystrons, 4CX250/350)

Minimum order charge of £50 + VAT

WAREHOUSE CLEARANCE OF CATHODE RAY TUBES

CRT’s for monitors, scopes, radars etc, (not domestic television). BIG discounts available for orders of 10 or more pieces. Offers considered.

Enquiries from Trade/Export most welcome. We have large quantities of the following types, plus 400 other types in smaller quantities. Updated March 1993 Catalogue available on request.

2J3D P1 £12.00 CV3846 £12.00 F31-12LD £88.00
3RP1A P.O.A. CV8897 £46.00 LD708 £41.00
3JP1 £12.00 D0-2100GH £53.00 LD729 £41.00
5AP7 P.O.A. D3-1110GH £53.00 M7-120W £10.50
7ABP33A £12.00 D3-6300GH £53.00 M14-100C £23.00
12CPF4 £18.00 D3-150GH £53.00 M17-150VR £11.00
6R £16.00 D1-173QG £53.00 M23-112QG £41.00
190CB4 £29.00 D1-173GR £53.00 M31-162V £41.00
107R £29.00 D1-181QG £53.00 M31-184W £41.00
1936P £29.00 D1-200M £53.00 M31-190Q £41.00
1424A Q1 £39.00 D1-200Q50 £53.00 M31-191Q £41.00
94AT 0M P.O.A. D1-100Q50 £53.00 M31-2171Q £41.00
CME1431W £14.00 D1-100Q50 £53.00 M31-350Q £29.00
CME1822W £18.00 DG7-5 £41.00 M8-141W £41.00
CME224W £14.00 DG7-6 £41.00 M44-120C £41.00
CME3130GH£31.00 DG7-32 $41.00 M44-120C £41.00
CRE1420 £18.00 DG7-33 $53.00 MV8-5 £47.00
CV1587 £29.00 E4122-B-9 $29.00 SE52BP3I £29.00
CV176 £47.00 F28-130L5 $100.00 SE52BP3I £41.00
CV2302 £53.00 F16-101M $41.00 SE52BP3I £23.00
CV240 £41.00 F11-100GR $41.00

Please add £3 P&P in UK and 17.5% VAT. For overseas P&P please enquire. 10,000 Minimum order charge of £50.

BILLINGTON EXPORT Ltd
Unit 1E. Gillmans Industrial Estate. Billingshurst. Sussex RH14 7EZ.

Calls by appointment only.

Telephone: 0403 784961 Fax: 0403 783519

Min. Uk order £50 + VAT. Min. Export order £50 + Carriage.

GOLLEDGE ELECTRONICS

CRYSTALS OSCILLATORS FILTERS

Quality products from standard stock. Over 600 stock lines. Specials made to order.

GEM support, design advice, prototype quantities, production schedules.

Personal and export orders welcome. SAE for our latest product information sheets.

COPY SERVICE ALSO AVAILABLE

HOT MONEY

PAID FOR ALL TYPES OF CATHODE RAY TUBES

For surplus cathode ray tubes. (also Magnetrons, Klystrons, 4CX250/350)

STEWART OF READING

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

M & B RADIO
86 Bishophgate Street,
Leeds LS1 4BB
Tel: 0532 435649
Fax: 0532 426881

ARTICLES FOR SALE

TELEPHONE MODIFICATION HANDBOOK

How are hackers making cellular phone calls for free?

• How to have two phones with the same number
• Techniques for decoding & changing cellular phones’ EAMS

Descriptions of cellular phones’ vulnerabilities!

Cellular phone manufacturers ESN codes

Complete Manual only £50

SPY Supply, 108 New Bond Street
London W1Y 9AA
(US) 617-327-7272

Sold for educational purposes only

Cooke International

SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS, GENERATORS, OSCILLOSCOPES, POWER METERS, ETC.

ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE

COPY SERVICE ALSO AVAILABLE

EXPORT, TRADE AND U.K. ENQUIRIES WELCOME.

SEND S.A.E. FOR LISTS OF EQUIPMENT AND MANUALS.

ALL PRICES EXCLUDE VAT AND CARRIAGE

DISCOUNT FOR BULK ORDERS.

OPEN MONDAY–FRIDAY 9AM–5PM

ELECTRONIC TEST & MEASURING INSTRUMENTS

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB

Tel: (+44) 0243 545111/2 Fax: (+44) 0243 542457

* COMMUNICATIONS EQUIPMENT PURCHASED *

ARTICLES WANTED

HIGH END TEST EQUIPMENT

ARTICLES WANTED

Equipment, Components, Cable and Electronic, Scrap. Boxes, Receivers, Transmitters, Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

STEWART OF READING

110 WYKEHAM ROAD
READING, RG6 1PL
TEL: 0734 60841
FAX: 0734 351696

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.
ARTICLES WANTED

WE WANT TO BUY !!

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.HENSON LTD.
21 Lodge Lane, N.Finchley, London N12 8JG.
5 mins, from Tally Ho Corner.
TELEPHONE 081-445-2713/0749
FAX 081-445-5702.

FREE CLASSIFIED

ELECTRONIC COMPONENTS Bargain bags. New capacitors, resistors, IC's, connectors, stepper motors, PSU's, & scrap PCB's SAE to: Ian Stirling, Cottaracre Star Of Markinch, Glenrothes KY7 6LA.

WANTED Information, samples of "DS" electrical fittings (with replaceable fuse) Andrew Emmerson, 71 Falcutt Way, Northampton, NN2 8PH.

WANTED MANUAL for Dumont oscilloscope type 1100P J.P. Mawson, 280 Abbeystead Road, Sheffield S7 1FL.
Phone 0742 552125.

WANTED USER MANUAL For internal Eprom Programmer 6920-CEP to buy or loan for copy against deposit. Bill 0625 868112.

SMALL COMPUTER and PSU (patented for computer game) £10.00 Sontanoux, 28 Llanwarr Wyne, Ascot, Berks, SL5 9HT. (0344) 24136.

WANTED VALVES, especially KT66, KT88, PX4, PX25 (also transistors, IC's, capacitors, valve radios)if-6). If possible send written list for offer by return to Billington Export, 1E Gillmans Ind Est, Billingshurst, Sussex, RH14 9EZ. Tel: 0403 784961. Fax: 0403 783519

APPOINTMENTS

The EISCAT Scientific Association performs ionospheric research with incoherent scatter radar systems operated in northern Norway, Finland and Sweden. As an important step in the evolution of the EISCAT Scientific Association a new radar station, the EISCAT Svalbard Radar (ESR), will be built on the island of Spitsbergen in the Svalbard Archipelago north of Norway.

For the construction of the EISCAT Svalbard Radar instrumentation a

System Integration Engineer

will be installed. This engineer will assist the Radar Project Engineer in technical matters and conduct and supervise digital engineering as well as the interfacing of digital and analogue instrumentation of the ESR system, work on the acquisition of auxiliary subsystems, specification and execution of test procedures, the implementation of monitoring and control systems and the integration, tests and quality control of the ESR system to be installed on Svalbard.

A highly qualified and well motivated individual, possessing a degree in electronic engineering, computer engineering or technical physics as well as practical knowledge of digital and analogue instrumentation is required. Familiarity with modern system software design is important and practical knowledge of RF engineering is desirable. The successful candidate should be prepared to be substantially involved in the practical construction of the radar system. An ability to communicate effectively in spoken and written English is essential. The system integration engineer will initially work at the EISCAT site in Tromsø, Norway, but must also be willing to spend considerable time at the Svalbard site during the system implementation and tests.

This position will be available for a period of four years through the entire construction, implementation, test and initial operation phase of the EISCAT Svalbard Radar. The salary will depend on qualifications and experience and will follow the corresponding Scandinavian scales.

More information on the EISCAT Scientific Association and a detailed description of the EISCAT Svalbard Radar can be obtained from The Director, EISCAT Headquarters, P.O. Box 812, S-981 28 Kiruna, Sweden (Tel.: +46-980-79153; Fax: +46-980-79161). Applications should be sent to the same address by 30 April 1993.

FREE CLASSIFIED

If you are interested in a particular article or advertisement, you should take advantage of our reprint service. We offer an excellent, reasonably priced service. For further details and a quotation (minimum no. 250), contact:

Jan Crowther
Room 1006
Quadrant House
The Quadrant
Sutton, Surrey SM2 5AS, UK
Telephone: 081-652 8229
Fax: 081-652 4728

April 1993 ELECTRONICS WORLD+WIRELESS WORLD
DISK DRIVE CONTROLLER CARDS (cont. £2.50)

KTT PLL (500 kHz), AT SCU 286-AT, AT 80186EX, AT 80286EX, AT 80386 EX, AT 486 EX, IO card.

Many SCSI card for hard drive, CS, MASP, MA etc. Future Developments Technology offers new high-speed drive interfaces which supports drives under MS-DOS, Lotus 1-2-3 and Microsoft Excel. The SCSI-2 card is standard on all systems £11.95. SCSI-2 allows addressing of up to 7 devices. £29.95.

IBM COMPATIBLE AT MOTHERBOARDS, CARDS etc

IBM MDA (48x) I/O board with onboard 9-pin parallel, DB25 serial. Contact both for securing cost. £39.95. Landmark 120 MHz, IBM MDA SBC, run with onboard parallel, 9-pin parallel. Focusing on fibre-optic lights in both IBM and MS-DOS environments. £39.95.

IBM MDA (48x) 50 MHz processor with onboard 16-bit ISA. Contact both for securing cost. £39.95. Landmark 120 MHz, IBM MDA SBC, run with onboard parallel, 9-pin parallel. Focusing on fibre-optic lights in both IBM and MS-DOS environments. £39.95.

IBM MDA (48x) 50 MHz processor with onboard 16-bit ISA. Contact both for securing cost. £39.95. Landmark 120 MHz, IBM MDA SBC, run with onboard parallel, 9-pin parallel. Focusing on fibre-optic lights in both IBM and MS-DOS environments. £39.95.

IBM MDA (48x) 50 MHz processor with onboard 16-bit ISA. Contact both for securing cost. £39.95. Landmark 120 MHz, IBM MDA SBC, run with onboard parallel, 9-pin parallel. Focusing on fibre-optic lights in both IBM and MS-DOS environments. £39.95.