No empty promises – just power, reliability and value for money

The CP1128 really is the only low cost, high performance device programmer that can handle over 2000 devices from 44 manufacturers.

The CP1128 programs an unparalleled range of devices including EPLDs, EPROMs, PALs, PEELs, FPLAs, EEPROMs, EPLDs, ERASICs, GALs, and EEPLDs.

Added to this is a free lifetime update service that makes sure that, if a device fits in the socket, you can probably program it.

Now the market leader in PC based programmers, the CP1128 supports 28 pin devices including the AMD MACH series and the PLS105B from MMM.

BP has been qualified by all the major device manufacturers including AMD, AMI, Atmel, ICT Lattice, NS, Samsung, SGS and TI. This means that you can feel secure that your programming yields will be maximised because your devices are being programmed exactly as specified by the manufacturer.

The best news of all though is the price – at £985 you're buying performance and range as well as future proofing your investment. If you need caviar and you're working on a baked bean budget, call us now for a copy of our catalogue.

We're the number one for low cost and high performance programmers, and power packed software.

A few questions to ask when you're thinking about buying a new PC based programmer.

Is it manufacturer qualified? – are we first in the queue to get new device information? Can you move it from machine to machine? – Do you have to mess around with interface cards or does it plug in quickly and easily to the parallel port. Where is it made? – "Made in Taiwan" doesn't necessarily mean cheap and nasty.... but Western products are usually built up to a quality rather than down to a price.

How many devices does it support? – not just the main stream but more specialised devices like DSPs, 5ns PALs and Toshiba sequencers. Why not ask whether the programmer supports the Intel 8755EP?

And a few for when you're buying a PC based cross assembler/emulator.

How fast is it? – there's no substitute for raw speed when you need to get the job done fast. Who supports it? – is it a real product with proper company support or written by one man in his garage? Is it good enough to sell world wide? – and does it stand comparison with world class products?

ECAL costs from £195 to £875 depending on options The CP1128 costs £985 Unconditional 1 year guarantee on all our products

MUTÉK (MSS) Ltd.
Frome Road, Bradford on Avon, Wiltshire BA15 1LE
02216 6501/6502 or fax - 5083

‘Here's a complete development and debug environment for all processors’
ECAL runs on your PC and works with every processor you'll ever use – over 170 at the last count – from the Z80 to the 8086 to the 1750A.

"An assembler that works with me"
The way some assemblers grind, you'd think they were written by people who hate programmers. Ours is made for people who make their living by writing code - people who need benefits not hassle.

"A system that's well supported"ECAL is sold by Mutek – if you call us with a problem you'll be able to talk to someone who uses the package and can speak to you intelligently about it. Not just a good salesperson; not an answering machine and absolutely not a schoolboy genius programmer in his lunchbreak.

"An assembler that is fast"ECAL keeps up with your creative skills because it takes care of the grunt work while you provide the human input. 7000 lines of code in 15 seconds (on a 10MHz 286 AT) is just one way of saying how fast it works — we can show you lots.

"An integrated assembler/emulator"You can use ECAL cross assembler software on its own (and enjoy the benefits of its immense speed and ease of use) or you can run it with the stunningly powerful EPROM emulation package. This hardware – software combination is so incredibly slick it reduces the normal edit-assemble-load-run-debug-do it all again drudgery from many minutes to a few seconds. It's not just a downloaded EPROM emulator but the closest you can get to real in-circuit emulation for all your processors, at a fraction of the cost of one normal ICE.

Don't put it off any longer - we can't tell you everything about this product in one ad (or even 10). Call us right now and we'll send you, absolutely free, a demo package that shows why you'll want to junk your old assembler and development system. Don't use the bingo card, don't wait, do it now or you'll waste even more time.
CONTENTS

FEATURES

PC INSTRUMENTATION...376
Are PC cards for instrumentation a real alternative to
dedicated measurement equipment? Steve Rogerson
reports on the new generation of flexible friends.

REVIEW - DSplay-XL ...383
Do you really need another DSP package? If you have
a DSP32C card then you might well say yes to DSplay-
XL, says Allen Brown

HARMONY IN C? ..389
Join Mosely examines a marriage of everyone's trendiest
language to the world's favourite microcontroller. Read
on for developments.

BEYOND THE BLUE HORIZON..........................400
A coastline the size of Australia's requires several
hundred conventional sets for intruder protection. The
alternative is to install an HF over-the-horizon system.
However, there are serious implications for other HF
operators.

PLAYING A BETTER TUNE408
In the final part of his series on FM radio, John Linsley
Hood examines frequency synthesis and RDS.

FEC,CRCs AND ERROR CORRECTION415
Error detection in digital data communication is well
known. But to correct errors without asking for re-
transmission has the aura of magic about it. David
Bacon blows the gaffe.

BETTER VIDEO SWITCH?427
Video signal routing places special demands on
semiconductors. Siliconix has come up with a special
device for the job.

REGULARS

RESEARCH NOTES..365
A question of logic, believing one's ears, humming a
new tune, plastic conductors and taking the guesswork
out of superconductivity.

UPDATE ..371
Circuit breakers for optical circuits, bullish book-to-
bills, Big Blue blesses Japan, cells for hot cellphones
and the technology behind the latest Ariane launch.

NEW PRODUCTS CLASSIFIED395
Our monthly product news presented by device function

CIRCUIT IDEAS ..421
Absolute value differencing, high frequency digital
oscillator, single-phase to three-phase converter, 40W
power voltage doubler, on-board transistor tester.

APPLICATIONS ..439
Avalanche transistor for fast power pulses,
instrumentation amplifier with ultra-low bias currents,
pre regulator tolerating high power factor, low-voltage,
narrow-band FM receiver chip.

HOPE FOR THE BIG SCREEN?432
Even though the UK satellite broadcast market seems to
be falling apart at the seams, the US is still kicking
around some 23 proposals for HDTV technical
standards. writes Geoff Lewis.

MUSIC AND MOVEMENT IN SILICON427
Will DSP chips such as AT&T's DSP3210 bring
animation and stereo sound to the PC? Allen Brown
looks and listens.

Next month:The science of Chaos. The picture shows the
colourised phase map of a chaotic system inherent in the
harmonic generation of a varactor diode circuit. In short,
chaos has come of age. Nick Beard considers the theory,
practice and commercial software of chaos.

BROADCAST...443
CCD cameras gain confidence for broadcast use, but
time still takes its toll. By Pat Hawker.

LETTERS..405
All at c, hardware vs software, electronic cameras
exposed, turning a deaf ear, testing audio, women, the
shortcomings of RDS, ELFin signals, singing the blues,
 savage science, stopping the drift, crossed field
antennas.

ELECTRONICS WORLD + WIRELESS WORLD
We are currently undertaking a programme of reader
research. Please help us to give you the magazine that you
would wish by scoring individual editorial items. Please
mark your appreciation (or otherwise) using the scale '1
(low) to 5 on the post-paid reader-reply card located
between pages 424/425 of this issue. These item key can be
found at the end of each article. F.O.
This PCB was designed and routed using PCB Eagle bought for only £23.00

You can try PCB Eagle for yourself for only £23.00, complete with manuals, libraries and drivers.

SCHEMATICS, LAYOUT, AUTOROUTE AND DRC IN ONE PROGRAM

Designing PCB layouts, drawing schematics and autorouting used to be a complex and expensive business, demanding extensive training and software costing many thousands of pounds.

UK INTRODUCTORY OFFER

PCB Eagle 2.0 allows users to be "up and running" immediately and at a cost which represents a 400% saving against comparative software. To date over 4,000 copies have been sold and now PCB Eagle is available in the UK exclusively from CAD specialists, P.M.S. (Instruments) Limited.

The primary Layout Editor module must be purchased first for the software to operate successfully. The Autorouter and Schematic modules may then be added depending upon individual requirements and applications.

TECHNICAL REQUIREMENTS

PCB Eagle runs on PC XT/AT/PS2's or equivalent and requires 640K byte RAM, DOS 3.0 or above, a mouse, hard disk and of course an EGA or VGA card and monitor. Output drivers are supplied for most printers - EPSON, NEC, etc., laser printers, Postscript, HPGL plotters, Gerber Photo Plotter.

Prices of the 3 Modules are:
- Layout Editor £335
- Autorouter £260
- Schematic Editor £350

HOW DO I GET MY DEMO COPY?

A demo kit is available at the special price of £23.00 inc VAT. The kit comprises complete full manual, library and device drivers which function exactly as the PCB Eagle programme (however drawings cannot be printed or saved, except demos). If you prefer to review the specification of PCB Eagle, complete the Enquiry Card or telephone Nicola on (0628) 38036

PCB EAGLE 2.0

P.M.S. (Instruments) Ltd. Waldeck House, Reform Road, Maidenhead, Berkshire SL6 8BR
Tel: (0628) 38036 Fax: (0628) 770562
Octogenarian adolescence

Electronics can now stuff a bomb down a factory chimney. Passive entertainment is the stuff of life and any pre-teen child without its hand-held computer game is made to feel deprived. Markets are created for devices for which there has been no demand simply because they can now be made and must be sold: they are solutions looking for problems.

Eighty years is a good, round number from which to take stock. This journal (then called The Marconiograph) came into being in 1911 in response to the need for marine wireless operators to be kept up to date with the emerging technology.

Wireless was concerned, in the main, with safety of life at sea and was quite definitely on the side of the angels.

Then came the 1914-1918 war and the cracks began to appear: wireless was used to enable reconnaissance pilots to spot for the artillery and to report on troop movements. It was no longer solely a force for good.

After the war, amateurs started to pitch in. In those days, the entertainment consisted largely of obtaining the best possible time signal from the Eiffel Tower — not absolutely guaranteed to put one’s emotions in total chaos. But the spark was there, and soon the British Broadcasting Company was putting out real entertainment. Television came along, as did the second war, bringing in its train a whole raft of new uses for electronics, as it was now called, most of them being more or less pelvic in intent. Now, we have the gimmicks.

All that being so, there are those who consider the kind of engineering that pays our salaries to be not only not quite angelic, but an invention of the devil. They point to a developed world full of well entertained zombies: a world that is ruled by unnecessary computers; the reckless and cynical development of offensive weaponry; and gimmicky gone mad.

But they reckon without the benefits which, viewed dispassionately, outweigh the adolescent applications of a branch of engineering which is still, relatively speaking, in its first flush of youth.

Computers do, admittedly, carry an aura of mindless, misguided domination, but it is difficult to envisage a part of modern life that has not been improved by their use. We have all heard of Gas Boards emitting bills for three and a half million pounds and thereby causing little old ladies to suffer fits of the vapours, but without the computers there would quite possibly be no gas — at least at a reasonable price. The little old ladies would probably find some difficulty in collecting their pensions, too.

In medicine, in industry, in transport (air transport, in particular), electronics in all its forms is an enabler; without it, many of the endeavours now taken for granted would not simply be more hazardous or inconvenient, but would not be possible at all.

Electronics has the capability, if properly used, to enhance our lives. Once it has emerged from its present half-developed phase, it is to be hoped that it can be seen without its glamour, as a useful, but not magical assistant. The next eighty years should be interesting.

P.R.D.

This issue is the last on which my name will appear — at least, as Consulting Editor. When I joined Wireless World as an editorial assistant thirty years ago, no one could have foreseen the changes that would take place — a computer was then a large room filled with steel racks, rather less powerful than a modern PC. But I have been fascinated to observe the changes and shall be even more interested to watch progress in the future.

Many retired people tell me that they are now so busy, they cannot understand how they ever found time to go to work. I hope to be the same.

P.R.D.
LABCENTER PUTS YOUR PC TO WORK

Why spend hours of your valuable time designing PCBs by hand or with a non-integrated CAD package when your PC can do it for you?

ISIS provides the easiest of ways to enter a circuit diagram into your computer and ARES has all the features needed to convert it into an elegant PCB layout. Both packages share the same Graphical User Interface, and the way that they integrate guarantees that your PCB will always match the original circuit.

ISIS - Intelligent Schematics

ISIS DESIGNER £275
An easy to use schematic capture package for anyone needing to enter designs prior to further processing with ARES or other EDA software. It features our modern Graphical User Interface and an Intelligent Diagram Editor.

ISIS DESIGNER+ £475
A sophisticated design management tool - features such as an automatic annotator/packager, two systems for hierarchical design and ASCII Data Import make DESIGNER+ one of the most powerful schematics packages currently available for the PC.

ARES - Advanced Routing

ARES £275
A netlist based, multi-layer PCB design package that can integrate with ISIS or other schematics software. Includes connectivity checker, design rule checker, power plane generator and auto annotator.

ARES AUTOROUTE £475
Our new autorouter uses an advanced, multi-strategy algorithm to achieve very high completion rates, yet when driven from ISIS, there is remarkably little setting up to do - Package, Router-Strategy and DRC data can all be read from the netlist. As we said at the beginning, Powerful Software Saves Time.

- Auto wire routing.
- Auto dot placement.
- Auto name generator.
- Powerful editing facilities.
- Object oriented 2D drawing with symbol library.
- Comprehensive device libraries available.
- Output to dot matrix, pen plotters, lasers, POSTSCRIPT.
- Export to DTP packages in IMG or DXF formats.
- Multi-sheet and hierarchical designs handles in single file.
- Netlist output to most popular EDA software.
- Bill of Materials and Electrical Rules Check reports.

COMBINATION PRICES

<table>
<thead>
<tr>
<th>Package</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIS DESIGNER & ARES</td>
<td>£495</td>
</tr>
<tr>
<td>ISIS DESIGNER+ & ARES AR</td>
<td>£675</td>
</tr>
<tr>
<td>ISIS DESIGNER+ & ARES AR</td>
<td>£650</td>
</tr>
</tbody>
</table>

Prices inc UK delivery, exc VAT.

Call for a demo pack today - 0274 542868.

14 Marriner's Drive, Bradford. BD9 4JT

CIRCLE NO. 117 ON REPLY CARD

364 ELECTRONICS WORLD+WIRELESS WORLD May 1991
Navy solves question of logic

Design for a programmable array logic decoder has won a special commendation in the British Aerospace Engineering Design Prize, administered by the Design Council, for Sub-Lieutenant Peter Hoe-Richardson.

Sub-Lt Hoe-Richardson from the Royal Naval Engineering College in Plymouth, recognised the need for a decoder which would allow circuit board designers to test the programmable logic devices (PLDs) used in their work.

But existing tests for PLDs — the blank chips which allow the facility to create customised logic circuits on one component — cannot recognise a component without previous knowledge of its characteristics. So details of customised circuits have to be sent off to chip-test manufacturers for inclusion in their “library” before a test can be conducted.

Sub-Lt Hoe-Richardson found a way of by-passing this time-consuming and expensive process by designing a system which can look at a component and test it not by comparison but by analysis, from first principles. To avoid damage during test, the unknown chip is tickled up using low voltages and limited currents.

The system is based on an IBM computer and uses two microprocessors to produce a full report on the logic of the device under test.

It can reveal up to 30 variable functions contained in any logic device and not only tells the designer whether a component is working, but, if there is a problem, also pin-points exactly which part of it is at fault.

A prototype of the programmable array logic decoder has been built and is now being used regularly by other students at the Royal Naval Engineering College.

Can you believe your ears?

Some months ago I wrote about perfect (or absolute) pitch, the intriguing ability some musicians have to identify a note correctly or to sing a specified note to an accuracy of better than 1%.

Quite coincidentally I have come across another piece of research on music that suggests we may not all hear tunes in the same way. There appear to be acoustic equivalents of optical illusions.

Remember the wire-framed cube where a particular corner can appear either at the front or the back, depending on how you perceive it? Well, it seems that under certain conditions, pairs of consecutive musical notes can be equally ambiguous; they can appear to rise in pitch to one listener and fall to another. The reason is not that some of us have an inverted frequency response; it is because of the way our brains perceive musical pitch.

Contrary to what some physics textbooks say, perceived pitch is not just a matter of the frequency of a note; the harmonic content is also important. (That’s why Pavarotti’s top notes often sound so high when the fundamental rarely exceeds 500Hz.)

Professor Diana Deutsch of the University of California, San Diego, decided to create a series of computer-generated note pairs with the individual pairs separated by a half-octave or tritone. Each note consists of six octave-related harmonics whose amplitudes are controlled by a fixed bell-shaped filter envelope. Listening to these organ-like tones, it’s easy — with the help of a piano — to identify the pitch class (C, C#, D etc), but very difficult to assign them to any particular octave. The problem is (deliberately) made worse by the fact that a half octave rise or a half octave fall end up on the same note of the scale.

When I played some recordings of these paradoxical tritones to an assortment of golden-eared BBC staff, it was instantly apparent that, for any given note pair,
some people perceived the interval as rising while others heard it as falling.

Professor Deutsch says that, unlike most optical illusions, this aural paradox tends to be perceived in a consistent fashion by any one individual. It is unrelated, though, to age, sex or even musical ability.

The striking conclusion to emerge from extensive research on students was that the way a paradoxical tritone is perceived depends very much on where you come from. English students nearly always perceive it as rising, whereas Californians perceive it as falling.

Professor Deutsch has strong evidence that we all have an in-built "pitch circle" in which — other things being ambiguous — we perceive one note as higher than another. For English people F# and G are "high" notes. The orientation of the pitch circle appears to be developmental feature that is fixed early in life.

Such speculation is fun, but it also has three intriguing implications. The first of which is that we must all have some measure of perfect pitch in order to distinguish qualitatively between the different notes of the musical scale.

A second point is that these findings may explain why (contrary to common sense) music sometimes sounds different when transposed into a different key.

Finally, although ambiguous tritones don't occur in isolation in real music, there may remain residual ambiguity in other intervals or in situations where the orchestration leads to paradoxical harmonic content. Diana Deutsch says that music is too complex to identify differences in listener perception precisely, but she says that the "possibility of basic disagreement at the perceptual level should be considered in evaluating the issue of communication between composer, performer and listener."

In other words, what you hear when you listen to Beethoven's 5th may be quite different from what I hear.

Humming a new tune to tackle global warming

In audio equipment hum is normally an undesirable feature. But scientists who have constructed what is effectively the largest hum generator in the world hope that their research is going to be universally welcomed — particularly by those concerned about global warming of the planet.

The generator is part of an experiment now underway near Antarctica as part of a sensitive method to measure changes in average sea temperatures that might signal global warming.

It is essentially several huge underwater aluminium loudspeakers suspended 250m beneath the US Navy research vessel Cory Chouest, located in sub-Antarctic waters near the appropriately named Heard Island. The hum frequency, 57Hz, was

Organic family of conductors shows promise for electronics

Klaus Bechgaard created the first organic superconductor a decade ago.

"Until fairly recently, people did not worry about the electrical properties of organic materials," says Dr Cowan. "They just assumed they were insulators.

Now we're trying to understand this class of materials to learn how to make structural changes in predictable ways."

Dr Cowan has been looking for organic salts whose crystals show metal-like electrical conductivity. Below room temperature, these organic materials behave as metals do; their conductivity increases as the temperature decreases.

But below a certain critical temperature, their behaviour changes and the salts perform either as semiconductors or superconductors. The newest salt in the series, using tellurium to improve its electrical properties, remains metallic to very low temperatures, as low as 1.5K.

Dr Cowan's research focuses on understanding this behaviour by studying the structure of the crystals. In metals, electrons can move in three dimensions, whereas in organic materials electrons can generally move in only one or two dimensions.

Organic conductors are quite different from metals in many respects, and the highly one-dimensional aspect of the materials could be particularly interesting. Resistance, optical and magnetic properties are all different under different conditions. Even the researchers themselves are different; they are in the main individuals interested in bridging the gap between organic chemistry and physics (organic chemists traditionally are a little more comfortable going the other way, bridging the gap between chemistry and biology).

Compounds are difficult to make, but several groups are working in this very rapidly growing area, particularly in Japan. While new batteries, semiconductors, and other electrical devices will not be created overnight from these materials — they are expensive and require much lower temperatures than materials in use — they do hold promise for the future.
chosen to minimise interference to and from shipping, breaking waves and sea creatures.

Object of the experiment, involving around 20 measuring stations in 12 collaborating nations, was to detect the 57Hz pulses and calculate the transit time from Heard Island to different parts of the world. Sound travels at approximately 1.5km/s through water and its velocity is critically dependent on temperature.

The researchers calculate, for example, that if the sea temperature changes by as little as 0.05°C then the transit time to Bermuda will change by 105ms.

Since the experiment was switched on, all the various listening stations have picked up the sounds clearly and on time. In the case of Bermuda, hydrophones detected the signals exactly three hours after despatch — the time taken to cover 16,000km.

By sending the acoustic signals below the level of the bulk of the noise generated by shipping and waves and by suitably coding the pulses, the team found that the received signal-to-noise ratios were more than adequate, even over these distances.

Professor Walter Munk of the US Scripp Institute of Oceanography, who conceived the experiment, says this is the first time man-made sounds (other than explosions) have travelled right round the world. Happily, loud though they are, the sounds do not seem to be having any harmful effects on the whales, seals and dolphins that live round Heard Island.

Although the experiment has been a success in technical terms, it cannot of course yet provide any instant answers on the subject of global warming.

Dr John Church, one of the Australian Collaborators from the CSIRO Oceanography Division, says that the underwater acoustic measurements will have to be repeated over at least a ten-year period before any long-term global temperature trends can be discerned.

But if the world is indeed warming up, the Big Hum will certainly detect it; measurements can be made of temperature changes no greater than a few thousandths of a degree.

Taking the guesswork out of superconductivity

Unusually among the physical sciences, the practice of high temperature superconductivity has always been streets ahead of the theory. So much so that although there are now thousands of scientists working with the new ceramics, it is been virtually impossible to predict how a particular formulation will work.

A lot of high temperature superconductivity research has therefore been of the try-it-and-see variety and behind many of the current research programs there still lies a cookery-book approach in which each new material is tested for its superconductivity and — just as importantly — its engineering properties.

But such guessing of how a particular new compound will behave may soon fall out of favour, thanks to the first predictive theory that has been developed.

Henning, Poulsen et al at the Riso National Laboratory in Denmark have shown (Nature Vol. 349 no 6310) that there is a link between the amount of oxygen in a superconductor and the transition temperature at which it becomes superconducting.

In the high transition temperature \(\text{Ba}_2\text{Cu}_3\text{O}_6+x\), the conduction layer consists of two corrugated \(\text{CuO}_2\) planes separated by yttrium atoms.

In general, the more oxygen, the higher the transition temperature.

Perhaps more significantly from a theoretical standpoint, the new work provides an explanation for why the oxygen content is significant. It examines the structure of the classic yttrium barium copper oxide \((\text{YBa}_2\text{Cu}_3\text{O}_{6+x})\) superconductor and concludes that, of the various conduction and charge reservoir layers, only the ordered \(\text{CuO}_2\) structures are significant in terms of superconductivity.

The details of the theory are highly complex but agree remarkably well with experimental results and mean that, in future, many chemical structures can be eliminated before being synthesised in the laboratory. That in turn may help focus the direction of high temperature superconductivity research which is still producing tens of thousands of potential, but useless, materials.
EURO BELL

18 DALSTON GARDENS, STANMORE, MIDDLESEX HA7 1DA

BELL 80X86 MOTHERBOARDS

<table>
<thead>
<tr>
<th>CPU SPEED</th>
<th>LAND SPEED</th>
<th>MAX CACHE</th>
<th>SLOTS</th>
<th>8/16/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>MHz</td>
<td>MB</td>
<td>on MB</td>
<td></td>
</tr>
<tr>
<td>8086/V20</td>
<td>12</td>
<td>4.9</td>
<td>1</td>
<td>8/4/1</td>
</tr>
<tr>
<td>80286</td>
<td>12</td>
<td>16</td>
<td>4</td>
<td>2/4/1</td>
</tr>
<tr>
<td>80286/IDE</td>
<td>16</td>
<td>21</td>
<td>4</td>
<td>2/4/1</td>
</tr>
<tr>
<td>80286/IDE</td>
<td>20</td>
<td>27</td>
<td>4</td>
<td>2/4/1</td>
</tr>
<tr>
<td>80286</td>
<td>24</td>
<td>32</td>
<td>8</td>
<td>3/4/1</td>
</tr>
<tr>
<td>8086S</td>
<td>20</td>
<td>26</td>
<td>8</td>
<td>2/6/1</td>
</tr>
<tr>
<td>80386</td>
<td>20</td>
<td>28</td>
<td>16</td>
<td>2/6/1</td>
</tr>
<tr>
<td>80386</td>
<td>25</td>
<td>34</td>
<td>16</td>
<td>2/6/1</td>
</tr>
<tr>
<td>80386</td>
<td>25</td>
<td>43</td>
<td>16</td>
<td>64K 2/5/1</td>
</tr>
<tr>
<td>80386</td>
<td>33</td>
<td>56</td>
<td>16</td>
<td>64K 2/5/1</td>
</tr>
<tr>
<td>80486</td>
<td>25</td>
<td>114</td>
<td>32</td>
<td>2/5/1</td>
</tr>
<tr>
<td>80486(ES)</td>
<td>25</td>
<td>114</td>
<td>32</td>
<td>64/128K 2/5/1</td>
</tr>
<tr>
<td>80486(ES)</td>
<td>33</td>
<td>150</td>
<td>32</td>
<td>64/128K 2/5/1</td>
</tr>
</tbody>
</table>

PRICES £ MOTHERBOARDS

- 8086/V20 £70 (640KB)
- 80286 £85 (1MB)
- 80286/IDE £120 (2MB)
- 80286 £165 (4MB)
- 80286 £190 (8MB)
- 8086S £200 (16MB)
- 80386 £290 (32MB)
- 80386 £350 (64MB)
- 80386 £435 (128MB)
- 80386 £620 (256MB)
- 80386 £765 (512MB)
- 80486 £1165 (1GB)
- 80486(ES) £1270 (2GB)
- 80486(ES) £1345 (4GB)

PRICES £ COMPLETE SYSTEMS

- 8086/V20 £350
- 80286 £450
- 80286/IDE £490
- 80286 £535
- 80286 £580
- 8086S £670
- 80386 £350
- 80386 £350
- 80386 £350
- 80386 £350
- 80386 £350
- 80386 £350
- 80386 £350
- 80486 £350
- 80486(ES) £350
- 80486(ES) £350

MOTHERBOARDS

SYSTEM CASES WITH PSU

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip top compact table top</td>
<td>£98</td>
</tr>
<tr>
<td>Low profile table top</td>
<td>£106</td>
</tr>
<tr>
<td>Stylish compact table top</td>
<td>£119</td>
</tr>
<tr>
<td>Mini-Tower (baby AT) table top</td>
<td>£144</td>
</tr>
<tr>
<td>Traditional wide (full AT) desk top</td>
<td>£136</td>
</tr>
<tr>
<td>Midi-Tower (full AT) table top</td>
<td>£136</td>
</tr>
<tr>
<td>Std Tower (full AT) floor base</td>
<td>£229</td>
</tr>
<tr>
<td>Midi-Tower (full AT) dual 220 Watt</td>
<td>£750</td>
</tr>
</tbody>
</table>

NETWORK STARTER KITS

Network Software plus Workstations

<table>
<thead>
<tr>
<th>Workstation</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>APX(10user lic)</td>
<td>£470</td>
</tr>
<tr>
<td>Novell ELS 1</td>
<td>£750</td>
</tr>
<tr>
<td>APX(10user lic)</td>
<td>£730</td>
</tr>
<tr>
<td>Novell ELS 2</td>
<td>£1680</td>
</tr>
<tr>
<td>APX(24user lic)</td>
<td>£1560</td>
</tr>
<tr>
<td>Novell Adv 286</td>
<td>£3080</td>
</tr>
<tr>
<td>APX(24user lic)</td>
<td>£2520</td>
</tr>
<tr>
<td>Novell Adv 286</td>
<td>£4020</td>
</tr>
</tbody>
</table>

For low cost workstations choose from BELL 80X86 systems with no hard disc.

ARCNET - LOWEST COST

<table>
<thead>
<tr>
<th>Network Card</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Mbit/sec</td>
<td>£259</td>
</tr>
<tr>
<td>8-bit Workstation card</td>
<td>£277</td>
</tr>
<tr>
<td>16-bit Workstation card</td>
<td>£319</td>
</tr>
</tbody>
</table>

TOKEN RING - IBM'S FAVOURITE

<table>
<thead>
<tr>
<th>Network Card</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Mbit/sec</td>
<td>£279</td>
</tr>
<tr>
<td>Workstation card</td>
<td>£279</td>
</tr>
</tbody>
</table>

Add £59 for 2MB, £169 for 4MB, £35 for DOS 3.3 or £69 for DOS 4.01 or DR-DOS 5. Add £50 for Mono VGA or £230 for colour VGA or £300 for Super VGA.
HARD DISC DRIVES

<table>
<thead>
<tr>
<th>FORMATTED ACCESS</th>
<th>TYPE</th>
<th>MAX TA/ RX</th>
<th>BUFFER</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MByes</td>
<td>msec</td>
<td>bytes/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>32</td>
<td>240</td>
<td>16</td>
<td>£190</td>
</tr>
<tr>
<td>160</td>
<td>64</td>
<td>567</td>
<td>16</td>
<td>£259</td>
</tr>
<tr>
<td>240</td>
<td>128</td>
<td>1152</td>
<td>16</td>
<td>£315</td>
</tr>
<tr>
<td>320</td>
<td>256</td>
<td>2390</td>
<td>16</td>
<td>£359</td>
</tr>
</tbody>
</table>

EURO BELL

TEL: 081-206 2095

SERIAL & PARALLEL CARDS

1 serial with sockets for 2nd serial £14
2 serial card £22 : 1 parallel card £10
3 serial, 1 parallel, 1 gomes ports £22
4 serial, 2 parallel £29
4 serial port card, cables, for XENIX, UNIX, C-055 - AST-FourPort/XN compatible £19
8 serial port card, cables, for XENIX, UNIX, intligent 80186 based high performance £395

FLOPPY DISC DRIVES

5.25" - 360KB £59 = 1.2MB £66
3.5" - 720KB £56 = 1.44ME £61
Cable for one/two drives 3.5/5.25 £17
5.25" tray for 3.5" drive £29

DISC CONTROLLERS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FLPPY</th>
<th>FIFO</th>
<th>AVERAGE</th>
<th>XT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/F</td>
<td>BUFFER</td>
<td>byte/sec</td>
<td>AT</td>
</tr>
<tr>
<td>MF</td>
<td>NO</td>
<td>2KB</td>
<td>150K</td>
<td>8-bit</td>
</tr>
<tr>
<td>MF</td>
<td>NO</td>
<td>8KB</td>
<td>225K</td>
<td>8-bit</td>
</tr>
<tr>
<td>MF</td>
<td>YES</td>
<td>2KB</td>
<td>440K</td>
<td>16-bit</td>
</tr>
<tr>
<td>MF</td>
<td>YES</td>
<td>8KB</td>
<td>600K</td>
<td>16-bit</td>
</tr>
<tr>
<td>MF</td>
<td>YES</td>
<td>32KB</td>
<td>1.1M</td>
<td>16-bit</td>
</tr>
<tr>
<td>IDE</td>
<td>YES</td>
<td>depends on drive</td>
<td>16-bit</td>
<td>£25</td>
</tr>
<tr>
<td>IDE</td>
<td>YES</td>
<td>plus 2-serial & parallel</td>
<td>16-bit</td>
<td>£39</td>
</tr>
<tr>
<td>ESQI</td>
<td>NO</td>
<td>but TAPE</td>
<td>400K</td>
<td>8-bit</td>
</tr>
<tr>
<td>ESQI</td>
<td>YES</td>
<td>400K</td>
<td>6-bit</td>
<td>£99</td>
</tr>
<tr>
<td>ESQI</td>
<td>YES</td>
<td>1K</td>
<td>1.1M</td>
<td>16-bit</td>
</tr>
<tr>
<td>ESQI</td>
<td>YES</td>
<td>2MB</td>
<td>2.8M</td>
<td>16-bit</td>
</tr>
<tr>
<td>ESQI</td>
<td>YES</td>
<td>8MB</td>
<td>2.8M</td>
<td>16-bit</td>
</tr>
<tr>
<td>SCSJ - ESA</td>
<td>2MB</td>
<td>16MB</td>
<td>32-bit</td>
<td>£1185</td>
</tr>
<tr>
<td>SCSJ - ESA</td>
<td>2MB</td>
<td>16MB</td>
<td>32-bit</td>
<td>£159</td>
</tr>
</tbody>
</table>

MONITORS

Mono Graphic / Hercules 720x348
Amber or White, £75/12", 85/14"
MonoGraphicAdaptor/Printer Port
Hercules compatible £20
As above plus Colour Graphic £24

VGA Mono Paper White:
14" 640x480 res £95
17" 1024x768 res £699
21" 1280x1024 res £1999

Colour VGA & MultiSync
14" 640x480 res VGA £625
14" 800x600, 1024x768 VGA £315
14"800x600 MultiSync, 31/4mm £539
14" 800x600, 1024x768 £1699
800x600,1280x768 £850
28mm MultiSync £439
16" 800x600, 1024x768, £789
28mm MultiSync £1699
20" 1280x1024 MultiSync £1699
20" 1280x1024 "Trinitron" flat anti-glare screen, high contrast, MultiSync £2539

CALL OUR SALES DEPT FOR DETAILS:

Complete Systems Integration of BELL BX86 Computer Systems with complex System Software such as High Performance CAD, NOVELL Networks, APX LAN Networks, X.25 Cooms, Xenix-IX and UNIX, TCP/IP-NFS, etc with Single Supplier contract and Support.

On-Site Hardware Maintenance Service - 4 / 24 / 48 hour response Export Department for Foreign Orders

CIRCLE NO. 140 ON REPLY CARD
UNBEATABLE PRICES

FIRST FOR QUALITY AND SERVICE

GREAT OFFERS

- **ON TRIED AND TESTED USED EQUIPMENT**

WE BUY TOP QUALITY TEST EQUIPMENT

<table>
<thead>
<tr>
<th>LONDON OFFICE AND HEADQUARTERS</th>
<th>IR Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorcan House</td>
<td></td>
</tr>
<tr>
<td>Meadfield Road</td>
<td></td>
</tr>
<tr>
<td>Langley</td>
<td></td>
</tr>
<tr>
<td>Berks SL3 8AL</td>
<td></td>
</tr>
<tr>
<td>Telephone:</td>
<td>0753 580000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWEEP GENERATORS</th>
<th>FUNCTION GENERATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 8670C Sweeper Mainframe</td>
<td>HP 3200B 500MHz Oscillator</td>
</tr>
<tr>
<td>HP 86242D 9 GHz Plug in</td>
<td>£ 500</td>
</tr>
<tr>
<td>WAY 1081 1MHz-1GHz</td>
<td>HP 3325B Synthesizer/Level Meter</td>
</tr>
<tr>
<td>£ 1,395</td>
<td>£ 3,250</td>
</tr>
<tr>
<td>£ 750</td>
<td>RF GENERATORS</td>
</tr>
<tr>
<td>£ 2,500</td>
<td>HP 8657A 1GHz Synthesizer/Signal Generator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOGIC ANALYSERS</th>
<th>DIGITAL MULTIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 1630G 65 Channel Logic Analyser</td>
<td>FLUJF73 Digital Multimeter (handheld)</td>
</tr>
<tr>
<td>HP 1631D Logic Analyser/Digitising Scope</td>
<td>£ 60</td>
</tr>
<tr>
<td>Tek 1240 Logic Analyser</td>
<td>FLU4S Dual Display + IEEE/IEEE Battery</td>
</tr>
<tr>
<td>£ 1,450</td>
<td>£ 550</td>
</tr>
<tr>
<td>£ 4,000</td>
<td>FLU8026B Digital Multimeter (handheld)</td>
</tr>
<tr>
<td>£ 895</td>
<td>£ 150</td>
</tr>
<tr>
<td>£ 2,500</td>
<td>DIGITAL MULTIMETERS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECTRUM ANALYSERS</th>
<th>SERVICING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR MS610A 2GHz Spectrum Analyser</td>
<td>STG PP39-1 Prom Programmer</td>
</tr>
<tr>
<td>ADV TR4131 3.5 GHz Spectrum Analyser</td>
<td>£ 450</td>
</tr>
<tr>
<td>HP 35660A Dual Channel Dynamic Signal Analyser</td>
<td>STG PP41-2 Gang Programmer</td>
</tr>
<tr>
<td>£ 2,750</td>
<td>£ 950</td>
</tr>
<tr>
<td>£ 4,650</td>
<td>STG PPG2 Prom Programmer</td>
</tr>
<tr>
<td>£ 12,500</td>
<td>£ 500</td>
</tr>
<tr>
<td>£ 4,500</td>
<td>STG Zm2000 Module</td>
</tr>
<tr>
<td>£ 10,950</td>
<td>£ 250</td>
</tr>
<tr>
<td>£ 11,500</td>
<td>EX-DEMO EQUIPMENT (AS NEW)</td>
</tr>
<tr>
<td>£ 23,000</td>
<td>GRUFG7 Colour Generator</td>
</tr>
<tr>
<td>£ 1,000</td>
<td>HAM 1005 100MHz Oscilloscope</td>
</tr>
<tr>
<td>£ 5,500</td>
<td>£ 600</td>
</tr>
<tr>
<td>TEK 2710 Spectrum Analyser</td>
<td>PROJECTORS</td>
</tr>
<tr>
<td>PROTOCOL ANALYSERS</td>
<td>EX-DEMO EQUIPMENT (AS NEW)</td>
</tr>
<tr>
<td>HP 491B Protocol Analyser</td>
<td>GRUFG7 Colour Generator</td>
</tr>
<tr>
<td>£ 1,250</td>
<td>HAM 1005 100MHz Oscilloscope</td>
</tr>
<tr>
<td>£ 2,750</td>
<td>£ 600</td>
</tr>
<tr>
<td>£ 2,750</td>
<td>MICROCOMPUTERS</td>
</tr>
<tr>
<td>£ 8,000</td>
<td>SOUNDCARD</td>
</tr>
<tr>
<td>£ 4,000</td>
<td>SOUNDCARD</td>
</tr>
<tr>
<td>OSCILLOSCOPES</td>
<td>MCUS</td>
</tr>
<tr>
<td>HP 54501A 100MHz Quad Channel Digitising Scope</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,950</td>
<td>MCUS</td>
</tr>
<tr>
<td>HP 54502A 2 Channel Digitising Scope 400 Ma/s</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 3,500</td>
<td>MCUS</td>
</tr>
<tr>
<td>HP 54503A 4 Channel Digitising Scope 500 MHz B/W</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 3,250</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 550</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,750</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,350</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 3,950</td>
<td>MCUS</td>
</tr>
<tr>
<td>PHI Pm3315 60MHz D.S.O.</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 475</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 2,100</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 875</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,600</td>
<td>MCUS</td>
</tr>
<tr>
<td>TEK 2225 50MHz Oscilloscope</td>
<td>MCUS</td>
</tr>
<tr>
<td>TEK 2225C 100MHz D.S.O.</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,250</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,950</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,350</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,500</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 2,100</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 2,750</td>
<td>MCUS</td>
</tr>
<tr>
<td>TEK 2445A 150MHz Oscilloscope</td>
<td>MCUS</td>
</tr>
<tr>
<td>TEK 2445B 150MHz Oscilloscope</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 2,450</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 2,950</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 3,250</td>
<td>MCUS</td>
</tr>
<tr>
<td>TEK 2465A 350MHz Quad Channel Oscilloscope</td>
<td>MCUS</td>
</tr>
<tr>
<td>TEK 2465A-OPT15 350MHz Oscilloscope</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 3,321</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 666</td>
<td>MCUS</td>
</tr>
<tr>
<td>TEK 7511 Plug in Sampler</td>
<td>MCUS</td>
</tr>
<tr>
<td>PULSE GENERATORS</td>
<td>MCUS</td>
</tr>
<tr>
<td>Tek PSS56 Pulse Generator</td>
<td>MCUS</td>
</tr>
<tr>
<td>£ 1,281</td>
<td>MCUS</td>
</tr>
</tbody>
</table>

All prices advertised are exclusive of carriage and VAT. All equipment sold subject to availability. Warranty period 12 months on all equipment (except computers MDS —3 months).

For further information telephone 0753 580000

CIRCLE NO. 118 ON REPLY CARD

ELECTRONICS WORLD + WIRELESS WORLD May 1991
Circuit breakers for optical circuits?

Researchers at the Department of Electronics and Computer Science, Southampton University have come up with a fusing system to prevent optical fibres from blowing out at high power levels.

Optical fibres, particularly the germanium doped variety, are liable to damage from the so called fibre fuse effect. For instance, if a section of fibre is disturbed while transmitting high optical power, a process of thermal runaway may be initiated which can lead to the melting of the glass core. This occurs as the result of a shock wave which propagates along the fibre in the direction of the source of energy, permanently damaging the fibre core and preventing it from guiding light.

"High" in this context means power levels above 300mW.

Initiating processes include localised heat, the cleaving of the fibre or contact of the fibre output tip with absorbing materials. The breakdown process is analogous to the damaging SWRs which can occur at breaks in microwave waveguides.

The progress of the fibre fuse can often be seen as a bright spot of scattered light which propagates back along the fibre towards the source of light. The destruction of over a kilometre of fibre due to this damage mechanism has been reported.

Damage mechanisms have been observed using both a continuous wave argon and Nd:YAG lasers indicating that the effect is probably wavelength independent.

One solution for single mode fibres has been the inclusion of a tapering section of fibre where the core diameter is reduced by 8%. Such a circuit breaker element has been found to stop the advance of a fibre fuse produced elsewhere in the fibre. This work indicates that low-loss tapers could be inserted into a fibre link at regular intervals in order to reduce significantly the length of optical fibre which may have to be replaced as a result of a fibre fuse event. Tapering, however, of multimode fibres has so far not proved successful.

Douglas Clarkson

Bullish book-to-bill

Semiconductor order books are filling up on both sides of the Atlantic with book-to-bill ratios rising significantly last month. The ratio, which relates the total value of forward bookings in a month with the total value of delivered components over the same period, provides a barometer of business prospects: the higher, the better.

In the UK, a high level of order intake is expected to continue into the early summer and the annual ordering cycle normally reaches its peak.

Components body ECIF said that the book-to-bill ratio rose to 1.28 in February, having risen from 1.07 in January, and 0.98 in December last year. Analysis shows that ratios of 1.24, 1.23, 1.29 and 1.28 have been recorded in the years '88, '89, '90 and '91 respectively. In the US, the book-to-bill rose to 1.09 at the end of February from 0.96. This was due in part to semiconductor distributors and users reflilling their inventories after trimming them last year.

A spokesman for the Semiconductor Industry Association in the US said the industry has been recovering since December.

Big Blue blesses all Japan PC

IBM has agreed to licence personal computer technology to 11 leading Japanese companies in an attempt to establish its own PC architecture as a standard in the Japanese market.

This follows IBM's recent move to make its internally developed Japanese language version of the dos PC operating system available.

IBM will agree to licence VGA PC graphics technology and, possibly, its MCA bus system together with OS/2 to third parties. These include laptop maker Toshiba, ICL-parent Mitsubishi and the big consumer electronics companies Matsushita, Sharp and Sony. These companies already manufacture PCs for external markets.

Efforts to sell clones in Japan have been hampered by lack of software written with Japanese dialogue. IBM hopes to encourage software companies to write products for the domestic Japanese market through availability of totally Japanese hardware.

At the moment, Japan's PC market is dominated by non-standard machines made by NEC, just about the only major electronics company not involved in the deal.
Cells for hot cellphones

In April, Britain's Home Secretary Kenneth Baker launches Crime Prevention Week. He will make headline news by announcing that the theft of cars is rising by over 20% a year, nearly twice as fast as crime in general. It is most unlikely that the Home Secretary will admit that many car thieves could be caught if only the police understood, and used, available technology which is already available.

More than a million people in the UK now have cellular telephones on the Cellnet and Vodafone networks. Around half of them are installed in cars and, if the vehicle is stolen, will give telltale clues to the whereabouts of the car and identity of the thief. But the police have no guidelines on setting the traps which are available; individual officers are completely ignorant of them.

This squandered opportunity to detect crime is typified by the sorry tale of best-selling author Margaret Drabble's car, which was stolen over a weekend from outside her home in Hampstead, North London. Her husband, historian Michael Holroyd, tried 'phoning the Cellnet cellular telephone in the car. A man answered, telling Holroyd "I'm the thief who has stolen your car. Get lost!'"

Ms Drabble telephoned Cellnet, hoping that as network operator it could trace her car by telephone calls which the thief made or received. Cellnet told Drabble she must wait until Monday morning and talk to her Service Provider, Motorola. Cellnet did, however, stop further use of the stolen telephone. The Hampstead police came and said there was nothing they could do.

By coincidence, Motorola also supplied Cellnet with the computer "switches" which route calls round its network and should therefore know better than any company how the system can be used to trap thieves. But Motorola told Drabble that call tracing on Cellnet was "not yet possible", although it could be done on the rival Vodafone network, which uses switches made by Ericsson. In fact both types of switch can trace calls.

Although the networks are reluctant to discuss security matters, both Cellnet and Vodafone have private call-tracing arrangements with Scotland Yard; both networks allow tracing in similar fashion. But unwritten policy says that this is only done where human life is at stake or a serious crime is involved. Neither Cellnet nor Vodafone know the names of subscribers. These are held by the service providers who allocate numbers given them by the network operators. It is only as special concession that Cellnet and Vodafone will now block calls from a cellphone if the user reports it stolen at night or over a weekend.

The key point is that if an attempt at tracing is to be made, the subscriber should not block calls immediately, but the police and Service Provider must have the initiative to offer this advice. Also the subscriber must feel confident that the police will act on information obtained.

The network system keeps track of the mobile so that it can route incoming calls to any mobile via the nearest base station which has spare channels. It does not normally make a permanent log of this location information, but if the police request a "trace" the system can start to record; information is most accurate in busy cities where the cells are small. There are additional tricks which the network operator can play to sharpen the location.

Neither network will undertake the intensive manual work involved in tracing mobiles in "real time" (rather than from logs after the event) unless they are convinced that the police will show a similar commitment to real-time detection. Both networks have high-level contacts with Scotland Yard and use them to check whether requests are as important as a junior officer claims. The unspoken policy of both Cellnet and Vodafone is that, unless the police take car theft more seriously and someone pays for the time it takes a cellphone network to trace mobiles, such crimes should be solved by the insurance companies, not technology.

The Crime Committee of the Association of Chief Police Officers is responsible for setting police guidelines. It confirms that there is no guideline for police action following the theft of cars fitted with cellphones; action is left to individual forces and officers. The Home Office's Crime Prevention Centre knows of no guidelines either. At local level, the Crime Prevention Office for Hampstead knew of no special action to be taken when dealing with the theft of cars with cellphones.

We could find no-one at any level in the police who knew anything at all about cellphone call tracing. The Home Office and local crime prevention officers could only suggest removing phones from cars or marking them with ultraviolet ink. In practice, most carphones cannot be removed and removing them would prevent their being used to trace the car.

To add to the confusion, Cellnet advises subscribers to use a lock, either mechanical or electronic, on their telephone to prevent its being used. This would also prevent tracing.

We have deliberately omitted any description of the simple procedure which would allow the police to catch car thieves with very little detection work. Currently, only beat officers with interest and initiative, or senior officers investigating serious crimes, use it. We have offered to discuss this loophole in the system with the ACPO's Crime Committee for inclusion in guidelines.

Barry Fox
AVO-METER Ex British Telecom this is a 19 range 20k O.P.V. top grade instrument, covers AC & DC voltages, current and resistance, very good condition, fully working and complete with heads £50, leather carrying case £2 (batteries not included but readily available).

12 VOLT 1.5 AMP-HOUR rechargeable battery by Jap YUASA brand new, charged ready for use £6.50 each. Solar charger to house this and keep it ready £29.50.

EPSON FLOPPY DRIVE 7 models in stock, all double sided brand new and with manual models MD230BH, M230BH, MD2308BH, these are 3¼" and MD340, MD521L, SD580L, these are 5¼" £49.50 any model.

100 WATT MAINS TRANSFORMERS all normal primaries - 20-0-20 volt 2V/30 volt 3½A, 40 volt 2½A and 50 volt 2A all upright mounting, these are £4 each, perfect for electricians.

FIELD TELEPHONES The 373 is a very powerful system for home or business, unused and in perfect order but less PSU, only £19.50. Handset £5 extra.

CAR SECURITY ALARM protect your car (or other valuables) with an ultra-sonic alarm, complete transmitter receiver and piezo shrieker, casd new and ready to go one PFS battery is fitted £80, now years for £10.

9" CATHODE RAY TUBE Philips M24A/360W, which is not only high resolution but has also X Ray and implosion protected, regular price over £30, you can have them at £12 each and you will receive the deflection coils as well tubes are guaranteed unused.

80 WATT MAINS TRANSFORMERS two available in good quality, both with normal primaries and upright mounting, one is 20V 2A the other 20V 2A each or £10 for £27 carriage paid.

PROJECT BOX size approx 8" x 4" x 4½" metal, sprayed grey, louvered fronts for ventilation otherwise uninstalled made for GP0 so best quality, only £3 each or £10 for £27 each.

12 VOLT SOLENOID has good ½" pull or could push if modified, size approx 1½" long by 1" square, £1 each or 10 for £9.

WATER VALVE ½" made up with hose connections, ideal for auto plant spray or would control air to cars etc, £1 each or 10 for £9.

5V 2½A POWER SUPPLY 230V mains operated, mains filtered and DC-voltage regulated with mains on/off switch and indicator, £6 each or 10 for £50.

HIGH VOLTAGE CAPS if you use these ask for our 1 3Kv Capacitor list, we have over ¼ million in stock and might save you a lot of money.

TW50K 5.25 INCH FLOPPY DISK DRIVE with power supply built into a professional wide case complete with mains lead. Connections are via a 37 pin 'D' socket, full connection details supplied. Brand new by famous Japanese maker £59.50.

EXPERIMENTING WITH VALVES don't spend a fortune on a mains transformer we can supply one with standard mains input and cascs. of 250-0-250V at 75 mA and 6.3V at 3 A. price £5.

15Watt Bohm 8" SPEAKER & 3" TWEETER made for a discontinued high quality music centre, give real hi-fi and for only £4 each.

TIME TENS OINER using transformers and novel circuitry, our ionizer emits at least ten times as many ions as does any other kit on offer, nor do we know of a ready built model that is as good, you don't need a tester to see if it is working just bring your head close to it and feel the stream of neg ions. It's a kit complete with case, nothing else to buy yours for £14.50.

ULTRASONIC TRANSMITTER/RECEIVER with Piezo alarm, built into preformed case, is triggered by movement disturbing reflected signal, intended for burglar alarm, car alarm etc. has many extras, time delay, auto reset, secret rff device etc. £40 instrument yours for £10.

MOVEMENT ALARM goes off with slightest touch, ideal to protect car, cycle, doorway, window, stairway, etc. etc. Complete with piezo shrieker ready to use. Only £2 (PBP battery not supplied).

STEREO HEADPHONE extra lightweight with plug £2 each or 10 pairs for £18.

B.T. TELEPHONE LEAD 3m long and with B.T. flat plug ideal to make extension for phone, Fax etc. 50p each. £49 per 100, £300 per 1000.

WATER PUMP very powerful and with twin outlets, mains operated, £10 each.

Prices include V.A.T. Send cheque/po大战al order and quote credit card number. A/c £3 post and packing. Orders over £25 post free, unless postage quoted separately.
Pan-Europe aim for Astra 1B

Astra 1B satellite, launched from Kourou early in March, will not only double the system's channel capacity; it will also play an important part in extending Astra's coverage throughout Europe.

The flight, originally scheduled for February 21, was delayed briefly after routine checks by Arianespace on another rocket's engine revealed an anomaly in the start-up sequence.

Target markets for 1B are France and Spain, with some consolidation in Germany, where three channels were the first to sign, and in the UK, where the target is three or four more channels. Sky has already announced it is taking two of them, to complete its five-channel service. Other names in the frame are the Children's Channel and Discovery (possibly sharing a transponder) and as outsiders, CNN and Disney. Thames Television, an Astra shareholder, has options on two transponders. However, it is likely to hold back until the launch of 1C in 1993, or at least until after the current ITV franchise round.

1B will transmit on 11.45-11.70GHz, adjacent to 1A (1.20-11.45GHz). Existing receivers — including 16-channel Amstrad models — can be retuned to pick up the new services, and Astra will be publishing leaflets on how to do this for the more popular models. Astra also plans to give greater promotion to the radio services it carries.

Launch technology

The new satellite, like 1A, is built by GE Astro-Space and carries 16 transponders, plus six spares, but differs from it in several important respects. It is bigger, with a wingspan of 24.4m (19.3m on 1A) and heavier, weighing 2550kg at launch, 1246kg in orbit (1812/1042kg for 1A). It is also more powerful. Its TWTAs (traveling-wave tube amplifiers) have an output of 60W, instead of 45W, and the footprint of the vertical-mode transponders can take in the Canary Islands, although at least a 1.2m dish will be needed.

1B has also been blessed with a considerably longer design life. With good housekeeping and no unforeseen difficulties, it is expected by its owners, SES, to remain in orbit and transmitting for at least 14.5 years, and possibly longer.

There is really only one factor which influences the life-expectancy of a spacecraft, and that is the amount of fuel it can carry for its station-keeping manoeuvres. In the case of 1B, two factors have allowed this to be maximised. One is a change in the design of the apogee engines, which are used during the launch for the transfer from launch orbit to geostationary orbit. Previously, they used solid fuel. The new engines, made by Royal Ordnance, part of British Aerospace, use the same fuel — liquid hydrazine — as the attitude-control motors. Thus, any fuel unused in launch can be saved to extend the lifetime. In addition, Astra's co-passerenger on Arianespace Flight 42 is a lightweight weather satellite (MOP 2), which means spare payload capacity, taken up by 1B with additional fuel.

The newest Astra satellite is bigger and more powerful than its predecessors and is intended to last longer.

Peter Willis reports from Kourou

These factors are added to the natural advantage provided by Arianespace's near-equatorial location at Kourou. The site gains maximum benefit from the boost given by the Earth's rotation, thus allowing heavier payloads to be put into orbit. This advantage is quite considerable: the ESA (European Space Agency) which operates the Guiana Space Centre) at Kourou, has calculated that the same rocket, if launched at Cape Kennedy only 23° to the north, would be 15% less efficient.

Kourou is a classic example of the French capacity to seize opportunities and exploit even the most unpromising assets. French Guiana, which is mostly swamp and jungle, has never been good for much more than a naval staging post, but has for 40 years been run as a department (coun-

ty) of France, and still is. Now, however, it is the home of the world's most advanced space-launch centre.

Kourou is completely industrialised and run on a production-line basis. The site is criss-crossed by railway lines so that one rocket can be rolled-out from hangar to launch base while the previous launch platform is being returned to the hangar for the next campaign.

Elsewhere on the site, preparations for the "next model" are well under way. Ariane 5, due for roll-out in 1995, will have a payload of 6800kg, compared with 4200kg on the present 4 series, and 1800kg on the first Ariane rocket in 1979. Already in position is the stump of a new-style umbilical mast which will replace the present gantries and greatly simplify hook-up procedures.

At present, practically everything to do with Arianespace is imported into Guiana. For Ariane 5, however, the solid fuel will be manufactured and tested on site.

Although Ariane is thought of as a French project, it is in fact pan-European — with, however, a majority French shareholding of 58.5%, followed by Germany with 19.6%. Sadly, the UK has only 3.2%, roughly in line with its contribution to the actual rocket, which consists of the Spelda, a sort of circular pallet which holds and separates the two satellites.

Astra 1B is the 42nd launch from Kourou since December 24, 1979. Of the previous 41, over 90% have been successful. The four failures were flights 2.5, 18 and, in February last year, 36, which blew up when a piece of rag blocked the water supply to one of the four rocket motors.

By the time Astra 1D is launched in 1994, Ariane will be approaching, or may even have passed, its 100th flight.

Peter Willis
These are all aspects of the intelligent home.
Yet building this kind of intelligence into your customer's homes is no longer the difficult option.

Because now, one of the most sophisticated systems is also among the easiest to install.
The SUPERSWITCH WireLess Security Alarm System is wire free, making installation quick and clean, while being difficult for intruders to defeat.

Passive infra-red movement detectors, magnetic contacts, smoke alarms and portable panic buttons protect doors, windows and rooms, communicating with the controller by radio signals, while giving regular diagnostic status checks the same way.
The portable controller can operate 3 separate zones in one house; upstairs, downstairs, even the garage.
The system provides status indications at the controller and offers 24 hour protection using portable emergency/panic transmitters and photo-electric smoke detectors.
The SUPERSWITCH WireLess system is approved by the DTI and complies with BS 6799.3.

Like the entire SUPERSWITCH range, which includes electronic time controls for domestic applications, this is a rare example of advanced technology making life simpler for a change.

So now you can plan for your customers' peace of mind without compromising your own.
There are three basic ways a PC can be used in an instrumentation environment. It can act as a controller (via an IEEE488 bus); it can have a bus extension card linking to a box containing various data acquisition cards, or it can function as a normal PC with cards slotted in transforming it into an instrument in its own right.

Bus extension is an area that is generating a lot of excitement at the moment — especially with introduction of the updated 488.2 and its associated command language SCPI (standard command for programmable instruments). Users can control instruments from different manufacturers using a common set of English language type commands, specific commands being related to common test and measurement functions.

But it is the normal PC with cards slotted into its back to turn it into an instrument in its own right that is the main interest of this article.

PC instruments

Prime advantage of the PC-plus-cards method is that it is a lot cheaper than buying a dedicated instrument — assuming the user has a PC in the first place.

Storage and analyses of results is easier through accessing the full resources of the PC and automation is simplified as users can write programs to handle complete data collection.

Big disadvantage is that the atmosphere inside a PC is inherently noisy, so resolution of the instrument is a problem. Space is also limited inside the PC, but the external box alternative can get round both these problems.

On price, the PC approach can be anything from 10 to 50% of the cost. For example, a 150 to 250 node digital analyser could easily cost £20,000 but a plug-in card for a PC could cost as little as £2000.

Martin Board from systems design and application specialist Aces, estimates that in general the plug-in card system can be 40 to 50% cheaper than a boxed instrument.

But on top of that: “You could end up with something at about a tenth of the price that works better than a boxed instrument because it is customised to the application,” he says.

Similarly, as Nick Challacombe from Labtech Notebook is an important advantage.
Keithley Instruments points out, with a PC you can have a complete eight-channel data acquisition system from about £400. An equivalent eight-channel digital multimeter will be more than £1000.

Undoubtedly a key advantage is cost. Typical cost of a board configuration is around £1000 with software from a few hundred pounds to couple of thousand (you could write your own though this is time consuming). Costs for stand-alone instruments are considerably higher.

Another advantage of the PC is that a dedicated system imposes an architecture on the user whereas a PC system does not have these constraints.

Overcoming space restrictions
The restricted input and output space limiting the number of cards that can be fitted can be a serious problem with the PC. Often the situation is made more difficult because PC users are already using some expansion slots for networking or other functions.

One solution is that adopted by Arcom whose boards use a transparent offset address scheme and only take up two or four I/O bytes regardless of how complex the function is.

The lowest byte is a pointer and the second is used for 8-bit data transfers. The other two are for 16-bit transfers for boards such as A-to-D converters. Behind the pointer byte is a bank of 256 registers of which 128 provide the requirements of the I/O devices used. The rest are special function registers to simplify configuration, test, diagnostics and general use of the board. The on-board registration system means that from one I/O on a PC you can link to 128 different addresses.

Paul Reeve from Arcom distributor Dean Microsystems says that Arcom products are aimed at the industrial control market where the cheapness and flexibility of the PC and its access to spreadsheets and databases etc is important.

Modular data acquisition
Another way to obtain the most out of the PC's limited space is used by Burr-Brown in its PCI modular data acquisition system. Burr-Brown's system relies on a family of base boards, called carriers, onto
which various modules can be added. The
carrier board plugs directly into the PC
bus and provides mounting space for up to
three I/O modules that determine the exact
functionality of the system.

Modules such as A-to-D and D-to-A
convertors and counter/timers communi-
cate with each other via the intelligent
instrumentation interface (13) bus on the
carrier. Using the bus each module can
send and receive analogue, digital and
synchronisation signals between adjacent
modules and in some cases between adja-
cent carriers. The carrier also provides
power supply voltages to each module on
the bus plus other functions such as digital
I/O, a pacer clock and high speed DMA
transfers.

The simplest board is the general-pur-
pose carrier which supports up to three
I/O modules and provides mounting
space, regulated DC power, 13 bus com-
munications and PC bus interfacing. 32
points of fully buffered TTL-compatible
digital I/O are arranged in 4bytes of 8-bit
each and each byte, under software con-
trol, can be configured for either input or
output use leaving all three module posi-
tions free for additional I/O functions.

The multifunction super carrier pro-
vides on-board 12-bit A-to-D conversion
for as many as 16 single-ended input sig-
nals. The analogue input channel can be
expanded in 32 channel increments up to
80 channels using analogue expander
modules.

The digital section has 16 channels of
digital I/O, a programmable burst/rate
generator and two general-purpose coun-
ters. Two high performance carriers, each
with 32 points of fully buffered digital I/O
and an 8MHz programmable pacer clock,
are for use in timing data acquisition and
in DMA transfers of data to and from
memory.

Finally there are the smart carriers with
on-board DSP capabilities using the
TMS320C25 processor to process data at
20 to 200 times faster than by PC alone.

Plug-in cards can now turn the PC into
anything from a digital multimeter to a
full vision system — all with an
overwhelming cost advantage over
conventional equipment.

Familiarity breeds contentment
Applications cover all data acquisition
areas; from laboratory research to moni-
toring industrial processes. It is a small
step from monitoring to using the PC to
actually control the process based on the
readings it is receiving. But there can be
problems here. Nigel Wait from Burr-
Brown distributor Altek has a warning:
"For a simple application the PC is the
easiest and cheapest solution but its stabili-
ity is not good. Cards are long and thin
and can move and connectors are open to
dust and moisture".

However, a growing role for the PC
seems likely. Chris Bower from Diamond
Point makes the point that people are
familiar with a PC. "We get a lot of
queries for our PC-based stuff because
people like to stick with what they know."

Diamond Point sells the Quatech range
of PC based data acquisition and industri-
al control products that provide A-to-D,
D-to-A and digital I/O capabilities. One of
its recent introductions is the WSB100
waveform synthesiser for use with the
PC/AT which can generate analogue sig-
als independent of the host computer.
The output signal is defined by a set of up to 32,768 points and data point generation rate is software-selected from 50ns/point (20MHz maximum) to 1075s/point in 25ns intervals. The rate clock can also come from the so-called external clock input while external clocks can vary from DC to 50MHz.

Programming can achieve either continuous repetition of the same pattern or output of a programmed number of cycles, from 1-65,536. A delay factor may be programmed to determine the time interval between the end of one cycle and the beginning of the next cycle.

The system can be used as a laboratory tool for reproducing or simulating noise, audio signals and power line signals.

Vision systems
Philips has recently introduced a single board product for PC and VME bus systems. When plugged in, a PC turns into a low cost vision system for high speed recognition, measurement, positioning, quality control and guidance applications. The board can take inputs from up to four cameras, perform real-time recognition and can identify objects from a video camera in only 30ms.

At the heart of the system is the TMS34010 graphic system processor, a video frame buffer and two Febris correlator chips.

Richard Jones from Philips explains its advantages:

Marconi's Midata 511 combinatorial tester handles analogue, digital and mixed signals, the range configurable by plug-in cards

"Most systems have a frame grabber and then process the image, so they need an expensive processor. Our system can recognised images as they are screened by the camera".

There are two hardware circuits on the Philips card which are programmed to compare shapes stored in the software. Cost of the card is £4000, whereas a dedicated system could cost £8000 or more.

The camera supplies the input signal to an 8-bit A-to-D converter whose output is connected to a input look-up table having 12-bit input and 8-bit output.

Operation is in one of two modes. In input grey conversion mode, all 8 bits of the converter are connected to the table. The three extra bits are connected for the selection of one out of eight input conversion tables. Tables determine the processing of the video input data after being digitised.

In overlay mode output from the correlator can be stored in one bit. plane which is reserved for overlay data. By selecting a table which converts only 7 bits of the converter, the correlation output can be stored in the overlay bit-plane.

Output from the converter is also fed into the correlator circuit. With this correlator, real time recognition of objects in the input picture and simple binary operations such as shrink, grow and edge detection are possible. As Jones is keen to make clear, the product is a lot more than just an expensive frame grabber.

Testing digital PCBs
For less than £1000 Aces' Locate-192 PC-based hardware and software package is designed to enable electronics manufacturers and service and repair organisations to test, digitally based PCBs, cables and subassemblies.

Companies can install the package on any standard PC with a hard disk to automate their test operations at a fraction of the price of a full-blown ATE system.

Each of the 192 test channels is TTL/CMOS compatible and can be programmed as an input or output. The channels are brought out to four 50-way on-board connectors and accessed via four ribbon cables attached to the rear of the computer.

The software uses English style commands and includes conditional and unconditional branching, looping, full subroutine capabilities, 100 run-time variables and comprehensive array handling. Test program source files can either be prepared using the package's built-in text editor or a standard commercial wordprocessor. The compiler has error reporting in the text editor to help users debug programs.

After compiling, the optimised code is checked for I/O pin contention before finally saving the object code.

Test software, once proven, can be
INSTRUMENTATION

introduced into the working environment. The operator is carried through operations via on-screen prompting from the software. Typical operational features include printed test results, on-screen requests highlighted in reverse video, and screen presentation of the last 20 pins tested.

Combined signal testing
A different type of test system is Marconi's Midata 511 combinatorial tester handling analogue, digital and mixed signals and providing in-circuit and functional test facilities. The range of functions is configurable by plug-in cards and the test frame can accommodate up to 21 instrument and function cards including digital multimeter, universal counter/timer, programmable waveform synthesizer, and dual voltage source.

US firm Strawberry Tree supplies data acquisition and control boards for the PC, available from Adept Scientific, which can use a range of software including the firm's Workbench PC.

For example, at just under £500 the ACrJ-12 data acquisition board has eight differential analogue inputs and 12 digital I/O lines. Or at £700-900 the ACPC-12 range of 12-bit resolution data acquisition boards has eight or 16 differential analogue inputs and 16 digital I/O lines.

Two recent products are the ACPC-I/O-40 (£255) and ACPC-I/O-160 (£495) digital interface boards with 40 or 160 digital I/O lines. They are suitable for laboratory or factory use for applications such as detecting contact closures, operating relays, pulse counting, frequency measurement and timing.

Workbench costs an extra £795 and is basically a data acquisition and control program using 14 icons and interconnecting wires to program, measure and control temperature, pressure, flow and other analogue and digital inputs and outputs. It can also act as a control, data logging and display software environment.

A window style interface is used and various graphic symbols or icons represent functions used in data acquisition and control.

These can be selected and wired together on screen to create a symbolic representation of what actually happens in the hardware. Only valid options are presented in the menus because the software reads what cards are installed, their number of channels and configuration.

More 'scope for DMM
The MetaByte range of PC instrument products from Keithley plugs directly into the PC and can be operated in bench or programmed modes.

In bench mode they work just like a standard external instrument but with the computer screen used to display information normally seen on leds, LCDs and calibrated knobs. In programmed mode the outputs are controlled and inputs monitored by a program running in the PC and operating in a similar way to an IEEE488 instrumentation system.

For example the £720 PCIP-DMM 4.5 digit multimeter board uses English language style programming and can handle DC and AC voltage, current and resistance measurements. All the software is included in the price. The display operates in a pop-up mode. When activated, the DMM display takes up one third of the screen allowing three separate instrument displays to be viewed at a time. Operation is by keyboard or mouse.

Or at just over £1000 the PCIP-Scope is a 10MHz two-channel sampling digital oscilloscope with 2ns sampling for repetitive waveforms.

Other boards include waveform generators, voltage references, counter/timers and a 16 channel logic analyser.

£375 spent with Fairchild could buy the PCL860 digital multimeter card. Multichannel measurement for up to 256 channels can be implemented using the on-board 16-bit D/O port to control the external relay multiplexer boards.

DC and AC voltages and resistance can be measured and there are 16 TTL compatible output channels. Software comes in the form of a device driver, loaded into the machine during the system configuration each time the computer is rebooted or turned on.

National Instruments plug-in boards combine analogue, digital and timing inputs and outputs. Many have programmable channel sampling order and conversion modes, separate gain for each channel, and pre-, post- and delayed analogue and digital triggering.

To control them there are software drivers for programming in C, Basic and Pascal as well as add-on packages for Lotus spreadsheets and application packages such as LabView 2, LabWindows, Labtech Notebook, Parameter Manager, and VisionScope.

So it is now clear that the PC can be turned into anything from a digital multimeter to a full vision system, as well as having its well known ability to control other instruments via the IEEE488 bus.

PC-plus-card instruments are a fraction of the cost of dedicated boxed instruments — and they can often have more functions and are better customised to the particular application.

Editorial survey: use the information card to evaluate this article. Item C.
LOW NOISE GASFET PREAMPLIFIERS
Aligned to your specified frequency in the range 5–1000MHz. Masthead or local use.
TYPE 9006 NF 0.6dB. Gain 10–40dB variable. In the range 5–250MHz 50ohms £94
TYPE 9006 FM. As above. Band II 88–108MHz 750ohms £94
Two-stage Gasfet preamplifiers. High Q filters. Tuned to your specified channels in bands IV or V. 75 ohms.
TYPE 9002 NF 0.7dB. Gain 25dB adjustable .. £123
UHF two-stage Gasfet preamplifiers. High Q filters. Aligned to your specified frequency in the range 250–1000MHz. 50 ohms.
TYPE 9004 NF 0.7dB. Gain 25dB adjustable .. £123
TYPE 9035 Mains power supply unit for above amplifiers £53
TYPE 9010 Masthead weatherproof unit for above amplifiers £15

PHASE LOCKED SIGNAL SOURCES
Very high stability phase-locked oscillators operating directly on the signal frequency using a low-frequency reference crystal. Phase noise is typically equal to or better than synthesized signal generators. Output will drive the Types 9176 and 9177 wideband linear power amplifiers and the Types 9252 and 9105 tuned power amplifiers.
TYPE 8034. Frequency as specified in the range 20–250MHz. Output 10mW .. £154
TYPE 9036. Frequency as specified in the range 250–1500MHz. Output 10mW £291

WIDEBAND AMPLIFIERS
Monolithic microwave integrated circuits in a fully packaged microstrip module format. Full-wave shorty diode protected inputs. Temperature compensated bias circuitry. Voltage regulated local or remote operation.
TYPE 9301. 100kHz–500MHz NF 2.0dB at 500MHz, Gain 30dB. Power output + 12.5dBm, 16mW £165
TYPE 9302 10MHz–1GHz NF 2.0dB at 500MHz, Gain 30dB Power output + 12.5dBm, 18mW £165
TYPE 9303 Gasfet. 10MHz–2GHz, NF 2.5dB at 1GHz, Gain 10dB, Power output + 18dBm, 65mW £165
TYPE 9009 Gasfet. 10MHz–2GHz, NF 3.8dB at 1GHz, Gain 20dB, Power output + 20dBm, 100mW £165

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or V. 28V + DC supply.
TYPE 9252. 10mW input, 500mW output ... £308
TYPE 9259. 500mW input, 3 watts output ... £352
TYPE 9262. 500mW input, 10 watts output ... £638
TYPE 9263. 2–3 watts input, 15 watts output .. £484
TYPE 9266. 10 watts input, 50 watts output. Integral forced air cooling and output transistor protection £1,919
See below for Television Amplifiers in bands I and III.

TMOS WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 9246. 1 watt output 100kHz–175MHz 13dB gain £182
TYPE 9247. 4 watts output 1–50MHz 13dB gain .. £204
TYPE 9051. 4 watts output 20–200MHz 13dB gain £204
TYPE 9176. 4 watts output 1–50MHz 28dB gain .. £314
TYPE 9177. 4 watts output 20–200MHz 28dB gain £314
TYPE 9173. 20 watts output 1–50MHz 10dB gain .. £374
TYPE 9174. 20 watts output 20–200MHz 10dB gain £374
TYPE 9271. 40 watts output 1–50MHz 10dB gain £748
TYPE 9172. 40 watts output 20–200MHz 10dB gain £748
TYPE 9235. 5A mains power supply 24/28V ... £198
TYPE 9035. 10A mains power supply 24/28V ... £308

RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG.
Tel: 0303 893631. Fax: 0303 893838

CIRCLE NO. 121 ON REPLY CARD
DSplay-XL — signally significant software?

Do you really need another DSP package? If you have a DSP32C card then you might well say yes to DSplay-XL says Allen Brown.

Digital signal processing (DSP) has been receiving its fair share of attention from the writers of PC software of late and to add to the plethora of DSP software which runs under MS-dos, Burr-Brown has introduced DSplay-XL.

But what makes DSplay-XL significantly different from other packages is the fact that it uses the PC only as a host plat-

Fig. 1. FlowGram showing connected function blocks and the edit pop-up menu.

form for performing real-time DSP functions.

To exploit the full features of the package at least one PC expansion card, hosting the much favoured AT&T DSP32 or DSP32C 32-bit floating point digital signal processor, is required. The package can be run without a processor board but operation is limited. Burr-Brown manufactures a number of expansion boards which feature the AT&T chip (the ZPB series) and it is a mark of confidence in the DSP32C that the company should produce a dedicated software package to support it.

In fact, DSplay-XL can be used to control several DSP320C processor boards running concurrently, either operating on separate tasks or cascaded for a single task. It will also work with the expansion card from Loughborough Sound Images (the LSI DSP32C) hosting the DSP320C.

For this review an LSI DSP32C card was used in a 386-PC with VGA graphics.

Description

The package is basically a development environment enabling the user to generate DSP routines to be down-loaded to the processor expansion card. It also permits control of the card and provides an inter-

![FlowGram showing connected function blocks and the edit pop-up menu.](image-url)
Fig. 8. Spectrum analyser display showing the transfer function of a low pass filter.

Real-time excellence

The area where DSplay-XL really excels is in its real-time operation.

One of the edit options is O-scope, leading to a menu containing four options for a real time display: a 'scope with one channel, two channels, complex channels or a spectrum analyser.

To display real-time signals a block must first be created for the acquisition of data from the expansion board's A-to-D converter(s). Link this to a scope block and you have an effective oscilloscope or spectrum analyser with control over display settings.

Figure 7 shows the response of the real-time spectrum analyser with the landscape option active giving the waterfall display. However intermediate blocks can be inserted before the display is shown, such as previously designed digital filters.

Figure 8 shows the transfer function, working in real-time, of a low pass filter. By creating an output block the signal out of the digital filter can be fed into one of the expansion board's D-to-A converters to provide a filtered real-time signal. Through the high-level FlowGram design, the user can construct and realise a real-time multi-channel, digital processing system. Alternatively, synthesised signals can be defined using the appropriate blocks in a FlowGram and directed via an output block to the card's D-to-A converter.

Using the PC's graphics as a 'scope or spectrum analyser display can cause problems, since the DSP32C acquires and processes data at a significantly greater rate than the VGA is able to display it. What tends to show on the screen is therefore a snapshot of incoming signals. But the lock option will slow the DSP32C down to match the display rate and allow the user to observe all the processed signal.

When using the real-time facility I did experience difficulties with the trace disappearing and the appearance of the error message: Buffer Read Timer Out. There was no reference in the user's manual to this condition.

User Functions

Despite DSplay-XL's large library of block functions, users will probably want to construct their own function blocks, and a significant part of the package is given over to this option by providing a low level language development environment.

Five features — a text editor, an assembler, an installer, a debug facility and a librarian — are available for this task and to ease the first time user into the system a number of examples are included in the User's Guide.

The debugger is linked to the monitor program ZPB32MON which is a utility allowing examination of the register contents of the DSP32C (Fig. 9). When satisfied with performance, a newly created block function can be added to the function library by using the librarian.

These features are fine for users familiar with the assembly language of the DSP32C. But C is now taking on a significant role as a programming language and so it is surprising that no provision has been made to accommodate the AT&T DSP32C C compiler. AT&T have often emphasised the efficiency of their compiler and most software development for the DSP32C will involve a mix of assembly language code and high level code.

The ZPB32MON is not unlike the monitor supplied separately with Loughborough Sound Images's expansion board and the contents of the DSP32C internal registers and a disassembled part of the user code is visible (Fig. 9). Normal functions of a software monitor are included (single stepping, breakpoints etc.) with the additional capability to display the contents of memory graphically. This is an attractive feature for viewing unprocessed and processed data and will appeal to engineers who like immediate and visual access to signals.

I have mixed feelings about the User's Guide. It comes in a standard three-ring binder with more pages that can be comfortably accommodated. For the first-time user I feel there is an inadequate number of examples in the early part of the Guide. A lesson that seems to be rarely heeded by manual writers is that engineers often learn through examples.

A sufficient amount of easily accessible information is presented without getting bogged down in detail. But the section on error conditions is feeble and provides no more information than appears on the screen.

Help facility is evoked by the customary F1 key, but on the whole it tends to be rather weak and lacking in information — a slight oversight in the product's design.

To obtain a hard copy of the display the appropriate screen print driver must be installed. Only screen drivers for the IBM Graphics Printer and the HP LaserJet are supplied.

Generally impressive

I am generally impressed with DSplay-XL. It has a gentle learning curve and on no occasion did the package fall over. If you have an expansion card hosting the DSP32C then you should certainly con-
consider acquiring DSplay-XL, forming as it does a comfortable interface between user and processor with a very convenient method of implementing real-time DSP.

The only notable reservation I have concerns that of the dos memory. I feel this could be a constraint upon sizeable FlowGrams design and I would expect a future release DSPlay-XL to make use of Extended memory.

References

<table>
<thead>
<tr>
<th>ZPB board: LSI32C</th>
<th>model: LSI32C</th>
<th>address: 0x0230</th>
<th>state: BREAKPOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulators: R 1</td>
<td>0x00100000</td>
<td>Mem 1: 0x00000000</td>
<td>Mem Z: 0x00000000</td>
</tr>
<tr>
<td></td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0-5.5/255.0-02</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0-1.0/001.0-00</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0-3.5/212.0-01</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>ZPB32 interface</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>ERR: DfffR</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>ESIR: DfffR</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>PCR: 0x00267</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>PIR: 0x00001</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>SI0C: 0x00000000</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
<tr>
<td>ID: 0x00001</td>
<td>0x00100000</td>
<td>0x00000000</td>
<td>0x00000000</td>
</tr>
</tbody>
</table>

Type command letter or, move marker and press <Enter>

Fig. 9. Screen display of ZPB32MON software monitor showing the register contents of the DSP32C.
For Frequency Counters

Whatever your need in frequency counters, Thurlby-Thandar can supply it.
The range includes basic frequency counters, models with period and totalise functions and dual channel universal counter-timers with TCXO options. Prices start from only £89 + VAT.

Bench and portable applications are catered for with models offering up to 200 hours operation from batteries. Frequencies from DC up to 1.3GHz can be measured to high accuracy.

TF820
This low-cost 1.3GHz frequency meter features high sensitivity over its full frequency range.
The 8 digit display provides a maximum resolution of 0.1Hz. A choice of battery or mains operation is available. It costs £169 + VAT.

Contact us now for full details of all our counters.
Thurlby-Thandar Ltd.
Glebe Rd., Huntingdon, Cambs. PE18 7DX
Tel: (0480) 412451 Fax: (0480) 450409

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins from Tally Ho Corner

Telephone: 081-445 2713/0749
HARMONY IN C

ICC8051 from IAR seems to offer the prospect of the perfect marriage; compilation from everyone's trendiest language, C, to the world's favourite microcontroller, the 8051 and its siblings.

John Moseley confirms that even perfect marriages have their rocky moments

IAR cross-compilers support a number of different processors

which will compile HELLO, optimising for size and giving full debugging information. If the compilation fails you are thrown out into the cold, harsh light of dos, where you have to read a separate file to find out why, going back to the word-processor to re-type a miss-spelling or change some punctuation. Then you save the file, close the word processor, try to remember the incomprehensible mnemonics for the command line string to trigger the compiler and pray. Sooner or later your program compiles correctly and you can go through the whole jolly loop again, trying to get the program to link and load (separate programs each). Once you've gone through this a few times the program

User-hostile?
After copying the disks onto my hard drive, I fired up the program, confident in my ability to muddle through without reading the manual. This was my first mistake. The program is very definitely not intuitively obvious; it is a complex system and after a few minutes of error messages, I admitted defeat and opened the binder to retire for extended study.

The ICC package is a pure command-line system. You prepare your C program using a text editor (a word-processor or a dedicated programmer's editor like BRIEF). Once you've written the code, you save it in your object file (HELLO.C; say) you leave that program and load the compiler from dos using a cryptic string of parameters. This will typically require a string of gobbledygook like

ICC8051 HELLO.C -gA -L -z -x

This review describes the latest version of IAR's C cross-compiler for the 8051 family of microcontrollers, described in the brochure as ICC8051 version 4.00. It runs on a PC, accepts standard C and generates highly optimised assembly code for a variety of processors belonging to the Intel 8051 family. Because the user interface and C compiler section of this program is common to all IAR's cross-compilers, much of this review will be relevant to people interested in other processors.

IAR is a Swedish company which, over the last few years, have developed a wide range of software tools for engineers developing embedded systems. It has developed assemblers, linkers, compiler families, debugging tools that produce code for, amongst others, the 8031, 8096, 6801, 68HC11, 68000, 65021 and Z80.

Four 5.25in disks and documentation comprise the package, which includes not just the cross-assembler (ICC8051) but also a relocating macro-assembler, a universal linker/loader (XLINK) and a universal librarian (XLIB). There are also a few miscellaneous support files.

...
runs and you can get down to the really
hard work of fixing the program logic and
solving bugs, whilst staggering between
four different programs, all with incompat-
ible commands.

All of this is in tedious monochrome
with a text-only display. It is hard work
to read, it is an effort to understand what
is happening at any given time and it is
very, very, frustrating. This is definitely
not what I expect from a professionally
produced piece of software in the 1990s;
user interface belongs to the age of the
telebyte and not that of the mouse. I
think the part that most infuriates me is
that this wish list is so easy to fix: none of
these things is complicated. I strongly
suggest that IAR's people go away and
look at Borland's latest offering, Turbo
Pascal v 6.0.

Performance
After the crudeness of the front end, I
approached the details of the compiler
with some trepidation. However, I was
very impressed. The program is extremely
powerful, very well thought-out and pro-
duces some excellent fast and concise
code.

This is clearly apparent from the start,
when the package offers a choice of six
memory models, all offering different
code size, data size and speed trade-offs.
It is possible to develop code for a single-
chip solution (''Tiny'', with on-chip rom
and ram), for a vast solution with 8Mbyte
of bank-switched memory (''Huge''), or
for anything in-between. The main differ-
ences between them relate to where code
is stored (internal/external rom) and
where variables are stored.

Which memory model you use obviously
depends on the application, but the range
should cover most needs. There are
some functions such as malloc and scanf

The benefits of using C on a micro-
controller are very definite, very
worthwhile and very easy to measure.
Everyone's favourite programming
language, C, came out of the closet
thirteen years ago. When first
described, it was primarily a systems
language, used for writing operating
systems and compilers (it was initially
developed to write UNIX). Since then,
it has migrated downwards; not only
is it ubiquitous for serious program-
ners in the PC world, but it is increas-
ingly used to develop efficient pro-
grams for microcontrollers and
embedded systems.

The major benefit is the compara-
tive ease of writing a large piece of
code in a powerful high-level lan-
guage. Being able to use instructions
such as for and while loops makes it
much faster to develop systems; to a
large extent, the developer can con-
centrate on the task at hand rather
than the intricacies of the assembly
code. The switch construct, which
allows the program flow to select
between a number of alternatives, is
an elegant way of dealing with differ-
ent conditions; easy to code and
understand.

Embedded systems, particularly
those using a standard microcontroller
chip, have their own specific needs
and expectations, and these need to
be considered by any company want-
ing to release a high-level compiler for
these devices. In particular, any pro-
gram developed for these systems will
need to combine two virtues: it
needs to be ''memory-stingy'', since it
is often a requirement that the pro-
gram fits into on-chip memory; and,
for real-time control application, it
must be fast. It should also be rugged
for vital reliability and allow for the
realities of supporting low-level hard-
ware; microcontroller systems are
always designed with lots of interrupts
and i/o operations, so the compiler
must allow for easy, efficient and flu-
ent access to these functions.

A further advantage to using a stan-
dard high-level language is the im-
provement in documentation and
support that can be made. It takes a
major effort to produce assembly-lang-
guage code that is even remotely
comprehensible to an outsider. In C, it
is easily possible for any competent
engineer to write clear, easy to under-
stand programs which other people
will be able to follow, use and main-
tain.

C is a very modular language which
relies to a great extent on defining
functions. The core of the language is
tiny and the bulk of what is supplied
when you buy a compiler is a range of
function libraries. This means that
the resulting program can be very com-
 pact (it need only include the func-
tions actually used) and also encour-
ages re-usable code; once you've
developed a sub-routine to read and
filter signals from an A-to-D converter,
it can be used time and again.

Functions are designed to be written
as independent modules, the compiler
handling all the messy tasks of relating
them to the rest of the program. The
same isn't true of assembly- language
routines, since a programmer has to
know which registers are used for
what, which memory areas are
reserved, etc., which makes it very dif-
ficult to develop ''general'' assembler
routines that can be re-used in differ-
ent programs.

The (comparative) standardisation of
C as a language allows users to port
code from one microcontroller to
another, so long as suitable compilers
exist for both targets. A circuit could
be redesigned to use a newer proces-
sor and the existing C code should be
easily carried across, recompiled
and executed on the new device, without
needing to re-write the code in its
entirety. At least, that's the theory!
INSTRUMENTS

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PRICES FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCE—BRYANS 6000 X Yr1 Recorder</td>
<td>£650</td>
</tr>
<tr>
<td>BBC CON/CON Data Servo 120</td>
<td>£450</td>
</tr>
<tr>
<td>2 Channel Chart Recorder</td>
<td>£1700</td>
</tr>
<tr>
<td>BRUER & KJÆER 2221 Sound Level Meter</td>
<td>£325</td>
</tr>
<tr>
<td>CLARE 5201/CJ Flash Tester, COMPARK 5600 Autolab Thermoregulator, providing automatic scanning of up to 10 thermocouple inputs.</td>
<td>£480</td>
</tr>
<tr>
<td>COMARK 4600 Printer for COMPARK 5600 Autolab Thermoregulator.</td>
<td>£1800</td>
</tr>
<tr>
<td>DIGITAL 200 Protocol Analyser for data communications testing up to 75kbps.</td>
<td>£7200</td>
</tr>
<tr>
<td>DIGITAL 200 Protocol Analyser for data communications testing up to 128kbps.</td>
<td>£2500</td>
</tr>
<tr>
<td>DWYTT TRO Multi-standard 1200, 19200, 38400 and 56kbps full duplex modems; conforms to CCITT V.22, V.23, V.21 with Bell 212A, 202 and 103 options.</td>
<td>£2500</td>
</tr>
<tr>
<td>DRUCK DPI 600 I.S.2 Portable Pressure Calibrator, 2 bar Calibration</td>
<td>£350</td>
</tr>
<tr>
<td>DRUCK DPI 600 I.S.5 Portable Pressure Calibrator, 7 bar Calibration</td>
<td>£350</td>
</tr>
<tr>
<td>DUX BICE 865 Microprocessor</td>
<td>£850</td>
</tr>
<tr>
<td>ELAN Universe 1000 Universal Programmer</td>
<td>£1300</td>
</tr>
<tr>
<td>ELAN Stack Modules for ELAN Universe 1000 Universal Programmer</td>
<td>£300</td>
</tr>
<tr>
<td>FARRELL AP40/50 Autoranging Power Source for testing DC up to 50kW, Output 60V, 50A maximum</td>
<td>£2500</td>
</tr>
<tr>
<td>FEEDBACK FP/GO6 Sweep Function Generator, frequency range 0.01Hz to 1MHz.</td>
<td>£1050</td>
</tr>
<tr>
<td>FIREBIRD 1500A Data Error Analyser for evaluating communication links and hardware performance</td>
<td>£1500</td>
</tr>
<tr>
<td>FIREBIRD 6000 Data Error Analyser designed to analyse, evaluate and troubleshoot digital communications systems and equipment.</td>
<td>£3750</td>
</tr>
<tr>
<td>FIREBIRD 4092/5233/424/425/</td>
<td>£550</td>
</tr>
<tr>
<td>188 Asynchronous Interface.</td>
<td>£2900</td>
</tr>
<tr>
<td>FIREBIRD 4040 4232/4204/S/8/V, X 2 DTE/DEC interface</td>
<td>£675</td>
</tr>
<tr>
<td>FIREBIRD 4020/5 DTE/DEC interface</td>
<td>£175</td>
</tr>
<tr>
<td>FIREBIRD 3068 64kps G.703</td>
<td>£795</td>
</tr>
<tr>
<td>Corinna direct interface</td>
<td>£475</td>
</tr>
<tr>
<td>FIREBIRD 4030 2.048Mbps G.703</td>
<td>£795</td>
</tr>
<tr>
<td>Unshielded Interface</td>
<td>£175</td>
</tr>
<tr>
<td>FIREBIRD 3068 2.048Mbps G.724</td>
<td>£675</td>
</tr>
<tr>
<td>Structured Interface for Framing/CR/C4 testing</td>
<td>£375</td>
</tr>
<tr>
<td>FIREBIRD 3044 T2 Interface</td>
<td>£2500</td>
</tr>
<tr>
<td>FIREBIRD 6000 Jitter Option 6007/8</td>
<td>£1295</td>
</tr>
<tr>
<td>FLUKE 9010A Microsystem Troubleshooter. Suitable for locating faults in microprocessor based circuit boards.</td>
<td>£375</td>
</tr>
<tr>
<td>GOULDS21 20MHz Digital Storage Oscilloscope.</td>
<td>£1295</td>
</tr>
<tr>
<td>GOULDS21 20MHz Digital Storage Oscilloscope.</td>
<td>£1425</td>
</tr>
<tr>
<td>GOULDS Type 135 Waveform Processor</td>
<td>£125</td>
</tr>
<tr>
<td>HEWLETT PACKARD 8121A Pulse Generator</td>
<td>£2000</td>
</tr>
<tr>
<td>HEWLETT PACKARD 8536A Frequency Counter.</td>
<td>£3000</td>
</tr>
<tr>
<td>HEWLETT PACKARD 5410A 1GHz</td>
<td>£3500</td>
</tr>
<tr>
<td>Digis司马c Oscilloscope.</td>
<td>£3500</td>
</tr>
<tr>
<td>HEWLETT PACKARD 5410A 1GHz Miniature Active Probe.</td>
<td>£3500</td>
</tr>
</tbody>
</table>

HEWLETT PACKARD COMPUTERS

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>PRICES FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>98582A</td>
<td>Data commms I/F for series 200/300 computers</td>
<td>£220</td>
</tr>
<tr>
<td>98735A</td>
<td>16" high res. color monitor</td>
<td>£1450</td>
</tr>
<tr>
<td>98756A</td>
<td>17" high res. mono monitor</td>
<td>£895</td>
</tr>
<tr>
<td>98758A</td>
<td>19" high res. mono monitor</td>
<td>£950</td>
</tr>
<tr>
<td>98514A</td>
<td>1280 x 1024 pixel mono card suitable for use with 98765 screen</td>
<td>£1120</td>
</tr>
<tr>
<td>95542A</td>
<td>512 x 400 pixel color card for use with 95741B screen</td>
<td>£450</td>
</tr>
<tr>
<td>95843A</td>
<td>512 x 400 pixel color card for use with 95741B screen</td>
<td>£975</td>
</tr>
<tr>
<td>93112A</td>
<td>High speed disc interface for 360 computer</td>
<td>£565</td>
</tr>
<tr>
<td>98546A</td>
<td>Display compatibility disc for use with 200 series s/w or series 300 computers.</td>
<td>£390</td>
</tr>
<tr>
<td>98640A</td>
<td>Analogue input card for series 200/300 computers</td>
<td>£400</td>
</tr>
<tr>
<td>9692A</td>
<td>Data commms interface</td>
<td>£250</td>
</tr>
<tr>
<td>7955B</td>
<td>304byte disk drive</td>
<td>£1550</td>
</tr>
<tr>
<td>7951B</td>
<td>150byte 64K drive</td>
<td>£1220</td>
</tr>
<tr>
<td>7995B</td>
<td>304byte disk drive</td>
<td>£650</td>
</tr>
<tr>
<td>7971B</td>
<td>150byte 64K drive</td>
<td>£850</td>
</tr>
<tr>
<td>9144A</td>
<td>1/4" tape drive</td>
<td>£850</td>
</tr>
<tr>
<td>4621AU</td>
<td>UK keyboard for series 300</td>
<td>£75</td>
</tr>
<tr>
<td>7470</td>
<td>A2 4 color plotter</td>
<td>£350</td>
</tr>
<tr>
<td>7471</td>
<td>A3 6 color plotter</td>
<td>£525</td>
</tr>
<tr>
<td>7550</td>
<td>A3 8 color plotter</td>
<td>£1450</td>
</tr>
<tr>
<td>7551</td>
<td>A4/2 A6 pen plotter</td>
<td>£1950</td>
</tr>
<tr>
<td>7994</td>
<td>A4+ A8 8 pen plotter</td>
<td>£2950</td>
</tr>
<tr>
<td>HP2235</td>
<td>Ruggoped 24 pin dot matrix high speed line printer RS232/HBIS interface</td>
<td>£820</td>
</tr>
<tr>
<td>96257</td>
<td>Mybyte memory card for series 200/300 computers</td>
<td>£550</td>
</tr>
<tr>
<td>96267</td>
<td>RGB color card for series 300/500 computers</td>
<td>£450</td>
</tr>
<tr>
<td>96571</td>
<td>130C+ 16" color workstation</td>
<td>£3225</td>
</tr>
<tr>
<td>3571BU</td>
<td>12" monochrome monitor for 200/300/300 computers</td>
<td>£148</td>
</tr>
<tr>
<td>97613</td>
<td>Think666 plotter RS232/HBIS interface</td>
<td>£155</td>
</tr>
<tr>
<td>222B</td>
<td>Quiet Printer RS20/Parallel</td>
<td>£270</td>
</tr>
<tr>
<td>9122C</td>
<td>3.5" Dual microfloppy disc (1.44MB disc)</td>
<td>£680</td>
</tr>
<tr>
<td>9122D</td>
<td>3.5" Dual microfloppy disc (1.44MB disc)</td>
<td>£475</td>
</tr>
<tr>
<td>9121D</td>
<td>3.5" Dual microfloppy disc (360KB disc)</td>
<td>£240</td>
</tr>
<tr>
<td>9133C/10.5" 3.5" single microfloppy disc plus 10.5" hard disc</td>
<td>£580</td>
<td></td>
</tr>
<tr>
<td>9133C/20.5" 3.5" single microfloppy disc plus 20.5" hard disc</td>
<td>£950</td>
<td></td>
</tr>
<tr>
<td>8651X</td>
<td>310 monochrome MONO computer unit including 13" monitor and keyboard</td>
<td>£1500</td>
</tr>
<tr>
<td>8652X</td>
<td>330 monochrome MONO computer unit including 13" monitor and keyboard</td>
<td>£3290</td>
</tr>
<tr>
<td>8650A</td>
<td>Expansion chassis for series 300 computer systems</td>
<td>£785</td>
</tr>
<tr>
<td>8657X</td>
<td>320 monochrome MONO computer unit including 13" monitor and keyboard and 4MB RAM</td>
<td>£3200</td>
</tr>
<tr>
<td>8657X</td>
<td>360 monochrome MONO computer unit including 13" monitor and keyboard</td>
<td>£4750</td>
</tr>
</tbody>
</table>

IBM

- **Model:** 3910D1E
- **Type:** IBM Co-ax Terminal
- **Price:** £385

Prices quoted are for one-off quantity and exclude VAT. All products sold are fully tested and calibrated to manufacturers specification, and will be eligible for manufacturers maintenance contract where appropriate.

First Rental Limited
PO Box 19, Newark Close, York Way, Royston, Herts, SG8 5HN
Fax: (0763) 242106

Ring (0763) 247251
Computer Peripherals and PC's also available.
Prices quoted exclude carriage charges and VAT and are subject to availability.
Small looped program for deriving a Fibonacci series, in which each number in the series is the sum of the two preceding ones.

It is possible to mix C and assembler, calling an assembly language routine when necessary. This will usually only be needed for time-critical sections of code, such as interrupt handlers or very fast loops (IAR estimates that between 2% and 10% is typical). There are various ways of doing this, including the formal, "correct" method, which involves understanding exactly how the compiler works.

I found the simplest way is a bit of a cheat, but works well and is easy to understand. Start by creating a C-stub that is a procedure which declares the variables and parameters but which does nothing with them (the equivalent of a no-op). Compile this and get the resulting object code, which you attack with assembler. The top and tail of the object module can then be used, safe in the knowledge that they are compiler-generated and compatible with the rest of the program, as interfaces to the hand-coded meat of your assembler routine. This is a very powerful way of mixing the two languages (if not particularly elegant).

This means that it is possible to create routines in either C or assembler, depending on which is most suitable. The code produced by IAR is so efficient that there is often very little to choose between them, even for time-critical routines. This is particularly true for interrupt handlers, since the code is optimised by only saving the registers required.

In general, the code produce was very concise and efficient. The program does all the obvious things, such as choosing the best type of jump (IMP,LJMP, LJMP) for a situation, moving constant sections of code outside loops. Jumps to jumps and jumps over jumps are eliminated, non-varying calculations are performed at compile-time, not run-time and arithmetic has been optimised. In addition, the developers claim that they spent a lot of effort to produce efficient C code for all the commonest C commands and sequences.

I found that for most of my trivial review programs, the compiled software ran about 10-20% slower than the handheld-coded versions. Common sense suggests that there were bottlenecks in these programs, and I could have easily improved on this figure by selectively mixing in a little assembler. It is possible to optimise for speed or size (-s or -O), but I couldn't see any significant differences; in general a short section of code will run quickly too.

To put this 10% in perspective, the largest program I tested was for an 8031-based controller I developed some time ago. This was about 4K of convoluted code, which had taken several months to write and debug. To write a C program for the same task took a few evenings and the result was significantly easier to understand; it ran at almost exactly the same speed as the assembler version; both were comfortably within the system's design specification.

As you'd expect from a standard C implementation, the system supports the full range of variables, including IEEE-format floating-point functions. For people who need floating-point arithmetic in this system, this will probably justify the purchase on its own.

A few miscellaneous points to complete the review. The IAR cross-compiler supports all the common versions of the 8051 microcontroller, with fourteen different options, including the 8031/2, the 8051/2, and confusingly named 321, 521, 252, 515, 535, etc. It runs on most development platforms, including the PC, VAX, Sun and Apollo. The same company makes a range of related products, including a sophisticated debugger (C-SPY) and cross-compilers for most standard processors, which are all compatible and allow you to swap code easily from one to another.

Summary

This is a Land-Rover of a program; it is very powerful, well designed to do a job and it does that job extremely well. However, no-one could describe it as attractive, comfortable or easy to use. The user interface is a pig: it is archaic, unfriendly and irritating.

The compiler does everything that you might expect or require from an Ansi C compiler, and it does it well. The extensions to the language (Bit and SFR data types and IATA, XDATA memory commands) provide easy access to the special functions of the 8051 series of microcontrollers, while the #PRAGMA directive means they break the Ansi standard in a standard sort of way.

The 8051 code produced is very concise and efficient, and executes at a respectable speed; I estimated it to be about 10% slower than hand-crafted code, and that figure could definitely be improved upon by selectively using assembler. When you consider the dramatic savings in development time that an engineer will find by using C instead of struggling along at the op-code level, this program looks increasingly attractive.

Other than my loathing of the user-interface, I can't find serious fault with this program. If you are working with the 8051 I strongly suggest you have a close look at the ICC51, which could save you a lot of time and grief. If I were developing 8051 applications on a regular basis I'd definitely buy it. But I'd still rather buy version 4.1 with the integrated environment and text editor.
HEWLETT PACKARD COMPUTERS

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>PRICES FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>9662BA</td>
<td>Data comes if for series 200/300 computers</td>
<td>£220</td>
</tr>
<tr>
<td>9765A</td>
<td>16" high res. color monitor</td>
<td>£1450</td>
</tr>
<tr>
<td>9766A</td>
<td>17" high res. mono monitor</td>
<td>£895</td>
</tr>
<tr>
<td>9766A</td>
<td>19" high res. mono monitor</td>
<td>£950</td>
</tr>
<tr>
<td>9654A</td>
<td>1290 x 1024 pixel mono monitor suitable for use with 9875 screen</td>
<td>£1120</td>
</tr>
<tr>
<td>9542A</td>
<td>512 x 400 pixel mono card for use with 35711B screen</td>
<td>£450</td>
</tr>
<tr>
<td>9543A</td>
<td>512 x 400 pixel color card for use with 35711B screen</td>
<td>£975</td>
</tr>
<tr>
<td>9311A</td>
<td>High speed disc interface for 360 computer</td>
<td>£565</td>
</tr>
<tr>
<td>9546A</td>
<td>Display compatibility card for use with 200 series low on series 300 computers</td>
<td>£390</td>
</tr>
<tr>
<td>9664A</td>
<td>Analogue input card for series 200/300 computers</td>
<td>£400</td>
</tr>
<tr>
<td>9662BA</td>
<td>Data comes if for series 200/300 computers</td>
<td>£250</td>
</tr>
<tr>
<td>7959B</td>
<td>304byte disc drive HPB interface</td>
<td>£1550</td>
</tr>
<tr>
<td>7958B</td>
<td>152byte disc drive HPB interface</td>
<td>£1220</td>
</tr>
<tr>
<td>7954B</td>
<td>534byte disc drive SGD interface</td>
<td>£2650</td>
</tr>
<tr>
<td>9144A</td>
<td>1/4" tape drive</td>
<td>£850</td>
</tr>
<tr>
<td>46021AU</td>
<td>UK keyboard for series 300</td>
<td>£75</td>
</tr>
<tr>
<td>7944</td>
<td>A2 colour printer</td>
<td>£350</td>
</tr>
<tr>
<td>7945</td>
<td>A3 colour printer</td>
<td>£525</td>
</tr>
<tr>
<td>7946</td>
<td>A3 black printer</td>
<td>£1450</td>
</tr>
<tr>
<td>7970</td>
<td>A/2A 2 pen plotter</td>
<td>£1950</td>
</tr>
<tr>
<td>7995</td>
<td>A4-40 pen plotter</td>
<td>£2950</td>
</tr>
<tr>
<td>2225</td>
<td>TN/plot printer</td>
<td>£155</td>
</tr>
<tr>
<td>2227B</td>
<td>Quiet plotter, RS232/Parallel</td>
<td>£270</td>
</tr>
<tr>
<td>912C</td>
<td>3.5" Double microflop disc (360kbyte hard disk)</td>
<td>£680</td>
</tr>
<tr>
<td>912D</td>
<td>3.5" Double microflop disc (720kbyte hard disk)</td>
<td>£475</td>
</tr>
<tr>
<td>912D</td>
<td>3.5" Double microflop disc (360kbyte hard disk)</td>
<td>£240</td>
</tr>
<tr>
<td>913C/10</td>
<td>3.5" single microflop disc plus (200kbyte hard disk)</td>
<td>£550</td>
</tr>
<tr>
<td>913C/20</td>
<td>3.5" single microflop disc plus (512kbyte hard disk)</td>
<td>£950</td>
</tr>
<tr>
<td>9656K</td>
<td>310 mono system c/w 13" monitor keyboard and 400/300 computer</td>
<td>£1500</td>
</tr>
<tr>
<td>9656X</td>
<td>330 mono system c/w 13" monitor screen and keyboard</td>
<td>£3250</td>
</tr>
<tr>
<td>9658A</td>
<td>Expansion chassis for series 300 computers</td>
<td>£785</td>
</tr>
<tr>
<td>9657X</td>
<td>332 mono system c/w 13" monitor and keyboard and 400/300 computer</td>
<td>£3200</td>
</tr>
<tr>
<td>9657X</td>
<td>360 mono system c/w 13" monitor screen and keyboard and 400/300 computer</td>
<td>£4750</td>
</tr>
</tbody>
</table>

IBM

| IBM | 3191D | IBM Co-ax terminal | £385 |

Prices quoted are for one-off quantity and exclude warranty. All products are fully tested and calibrated to manufacturers specification, and will be eligible for manufacturers maintenance contract where appropriate.
that can’t be used in the very smallest models, as they need too much space. PRINT and SPRINT can be used, as long the message string is short enough.

In even the trivial examples shown, it makes a difference which memory model is used. I found that as the program became larger the differentials grew; choosing the right model would have a major impact on speed.

In addition to allowing several memory models, ICC supports a number of 8051 features. There are a number of extensions to standard ANSI C, with the addition of bit and SFR data types and Code, Data, Idata and Xdata memory attributes. These give you the flexibility to put variables wherever you want, regardless of the memory model. For example, you could optimise a large program by putting selected key variables in internal memory, or a look-up table can be placed in ram. Essentially, this is an extension of the standard REGISTER command. Bearing in mind the above point about speed, it is obviously dangerous to use the smallest, fastest data types wherever possible and exclude non-critical variables to external memory.

These keywords are extensions to ANSI C and are hence non-standard commands. The #pragma directive allows for the controlled and documented use of such extensions, so no changes to source code would be needed if the program were switched to a different ANSI-standard compiler. In other words, the directive allows both portable code and the use of processor-specific features.

The 8051 is primarily a register/memory-oriented device, in contrast to C’s stack-based philosophy; this can pose problems for compilers. Rather than use a software stack for passing parameters, IAR has adopted a static memory system, with parameters and variables put in a fixed location in memory. When they’re not longer needed, for example a local variable when leaving its scope, the location can be used by a different parameter, the whole operation being performed transparently by the linker. The advantage of this is that the code is fast and dense, not having the slow stack operations. When the linker does its work, it detects recursive code and saves variables that are still active, so recursion is supported (as required by ANSI). However, re-entrant code is not supported.

The 8051 internal stack is fairly small, so there is a limit on the number of function calls/returns that can be made. Optionally, the system can use space in external memory as a stack, which allows deeper nesting, but with a speed penalty. This may also be required for recursive functions, where the stack can grow very quickly.

In the compiler, IAR has gone to a great deal of effort to use the particular features of the 8051 processor, and I liked what I saw. One of the strong points of the 8051 architecture is its range of Boolean operations and these are fully supported. The data type Bit exists and can be used freely; this is a C extension and nothing to do with C bit-fields. For example:

```c
Bit x, y, z;    /*Define 3 bitwise variables*/
```

```c
x = y & z;    /*and mess around with them*/
```

```c
z = 0;    if (y)
```

will generate the following 8051 assembler:

```asm
MOV C, y
ANL C, z
MOV x, C
CLR z
JNB y, LABEL
```

It is obvious that this an efficient (and fast) implementation of the original code. By using the SFR data type (single byte int) to define absolute addresses, it is possible to create very powerful functions very easily. A set of #include files are provided which define the conventional names and addresses of the SFRS for several 8051 families.

Continued on page 394
NEW HIGH PERFORMANCE
8051 C COMPILER

ICC 8051 4.05 C-SPY 2.15
high performance time saving

- extremely fast and code efficient
- recursive calls and bank-switching supported
- 8051 C: SFR & BIT variables, CODE, DATA, IDATA & XDATA keywords
- C interrupts, monitor, no init keywords
- ANSI C and K&R C
- in-line Assembler
- maths unit support

- C & Assembler debug
- set/examine variables, registers and memory
- window orientated with on-line help
- simulator & emulator interface
- extended memory support.

IAR SYSTEMS
9 Spice Court,
Ivory Square, Plantation Wharf,
York Road, London SW11 3UE
Telephone: 071-924 3334
Fax: 071-924 5341

CIRCLE NO. 104 ON REPLY CARD
Small looped program for deriving a Fibonacci series, in which each number in the series is the sum of the two preceding ones.

```c
#include <stdio.h>

unsigned fib(int x)
{
  if (x < 2) return 1;
  return fib(x-1) + fib(x-2);
}

unsigned result1111;
main()
{
  int loop;
  for (loop = 0; loop < 50; loop++)
    result1111 <<= 1;
  printf("\n\nresult is %d\n\n", result1111);
}
```

It is possible to mix C and assembler, calling an assembly language routine when necessary. This will usually only be needed for time-critical sections of code, such as interrupt handlers or very fast loops (IAR estimates that between 2% and 10% is typical). There are various ways of doing this, including the formal, "correct" method, which involves understanding exactly how the compiler works.

I found the simplest way is a bit of a cheat, but works well and is easy to understand. Start by creating a C-stub: that is a procedure which declares the variables and parameters but which does nothing with them (the equivalent of a no-op). Compile this and get the resulting object code, which you attack with assembler. The top and tail of the object module can then be used, safe in the knowledge that they are compiler-generated and compatible with the rest of the program, as interfaces to the hand-coded meat of your assembler routine. This is a very powerful way of mixing the two languages (if not particularly elegant).

This means that it is possible to create routines in either C or assembler, depending on which is most suitable. The code produced by IAR is so efficient that there is often very little to choose between them, even for time-critical routines. This is particularly true for interrupt handlers, since the code is optimised by only saving the registers required.

In general, the code produce was very concise and efficient. The program does all the obvious things, such as choosing the best type of jump (jmp, jmp far, jump) for a situation, moving constant sections of code outside loops. Jumps to jumps and jumps over jumps are eliminated, non-varying calculations are performed at compile-time, not run-time and arithmetic has been optimised. In addition, the developers claim that they spent a lot of effort to produce efficient C code for all the commonest C commands and sequences.

I found that for most of my trivial review programs, the compiled software ran about 10-20% slower than my hand-coded versions. Common sense suggests that there were bottennecks in these programs, and I could have easily improved on this figure by selectively mixing in a little assembler. It is possible to optimise for speed or size (+s or -z), but I couldn't see any significant differences; in general a short section of code will run quickly too.

To put this 10% in perspective, the largest program I tested was for an 8031-based controller I developed some time ago. This was about 4K of convoluted code, which had taken several months to write and debug. To write a C program for the same task took a few evenings and the result was significantly easier to understand; it ran at almost exactly the same speed as the assembler version; both were comfortably within the system's design specification.

As you'd expect from a standard C implementation, the system supports the full range of variables, including IEEE-format floating-point functions. For people who need floating-point arithmetic in their system, this will probably justify the purchase on its own.

A few miscellaneous points to complete the review. The IAR cross-compiler supports all the common versions of the 8051 microcontroller, with fourteen different options, including the 8031/2, the 8051/2, and confusingly named 321, 521, 252, 515, 535, etc. It runs on most development platforms, including the PC, VAX, Sun and Apollo. The same company makes a range of related products, including a sophisticated debugger (C-SPY) and cross-compilers for most standard processors, which are all compatible and allow you to swap code easily from one to another.

Summary
This is a Land-Rover of a program; it is very powerful, well designed to do a job and it does that job extremely well. However, no-one could describe it as attractive, comfortable or easy to use. The user interface is a pig; it is archaic, unfriendly and irritating.

The compiler does everything that you might expect or require from an Ansi C compiler, and it does it well. The extensions to the language (Bit and SFR data types and idata, xdata memory commands) provide easy access to the special functions of the 8051 series of microcontrollers, while the #pragma directive means they break the Ansi standard in a standard sort of way.

The 8051 code produced is very concise and efficient; and executes at a respectable speed. I estimated it to be about 10% slower than hand-crafted code, and that figure could definitely be improved upon by selectively using assembler. When you consider the dramatic savings in development time that an engineer will find by using C instead of struggling along at the op-code level, this program looks increasingly attractive.

Other than my loathing of the user interface, I can't find serious fault with this program. If you are working with the 8051 I strongly suggest you have a close look at the ICC51, which could save you a lot of time and grief. If I were developing 8051 applications on a regular basis I'd definitely buy it. But I'd still rather buy version 4.1 with the integrated environment and text editor.

Specification

PC, XT, AT or compatible computer, MS-dos 3.xx upwards.

CGA, EGA, VGA or Hercules mono graphics.

Memory 512K minimum, 640K recommended.

Dos extender (Rational Systems DOSF-16M) is included to support 16M ram.

Hard disk required.

Supplier: IAR systems, 9 Spice Court, Ivory Square, Plantation Wharf, York Road, London SW11 3UE. Telephone 071 924 3332.

Price £1195 includes the C cross-compiler, assembler, linker and memory support programs.

IAR have now released version 4.05 which includes optimisation of floating point maths routines for faster speed and support for new members of the 8051 family including SAB8051/7/537 version with maths hardware.

Editorial survey: use the information card to evaluate this article. Item E
ACTIVE
A-to-D & D-to-A converters
Sub 1μ conversion AD671 is claimed to be the fastest monolithic 12-bit fast-settling D-to-A converter. It offers 500μs maximum conversion time. AD576E performs a full 12-bit conversion with no missing codes (NMC) in 1μs. Power consumption is 300μW. Both devices are designed for high speed applications. AD671 accepts standard instrumentation-level input signals. Dynamic specifications include a maximum integral non-linearity of ±1 LSB at 500ns and ±2 LSB at 750ns. Analog Devices, 0932 232222.

Fast dual 12-bit cmos. DAC780X 12-bit, four quadrant multiplying cmos D-to-A converters have a high speed digital interface to enable their output currents to settle to 0.01% full scale in 0.8μs. Operation is from a single +5V supply. 11μW. High stability on-chip resistors provide true 12-bit performance over the industrial temperature range of -40°C to +85°C. The devices feature 1LSB max differential linearity, 1LSB max gain error, 90dB mcrstall and full monolithic gain — all guaranteed over temperature. Burr-Brown International Ltd, 0293 33837.

500μs 8-bit device. TKA10C 8-bit A-to-D converter has a conversion rate of 500μMs. Input track-and-hold supplies band widths up to 1GHz — so two devices can be interleaved for 1Gσ's sample rates — and helps reduce aperture jitter to less than 2ps. Tektronix UK Ltd, 0628 486000.

Discrete active devices
Low resistance mosfet. SMP6010-3OL 30V, 60A power mosfet has an on-resistance of 20mΩ — claimed to be the lowest for any such device in a TO-220 package. It provides more efficient and cooler operation so that fans can be eliminated and in some cases heatsinks can be omitted. The device can carry 10A continuous current with a voltage drop of 0.1V. Birtlec Richfield, 0403 50111.

Ge Schottky rectifiers. State-of-art metallisation techniques are used in germanium Schottky rectifiers offering high efficiency at low temperatures. Vp is down in the 0.3 region compared with silicon devices giving 0.5-0.6V. So the GPD G60S series is attractive to designers of low-voltage power supplies — 1.5V, 3V, 5V or 7V for example. Good performance at low temperatures and high inherent efficiency and low heat dissipation of germanium technology means that designers can produce power supplies of simpler design and greater all-round reliability. Germanium Power Devices Corp, 508 475 5982.

Low saturation transistors. 2SD2727 is a 60V, 3A bipolar transistor with an HFE of 500 to 1500 and a saturation voltage of 0.3V. A zener diode between base and collector is included for overvoltage protection. 2SD2092 is a 100V, 3A bipolar transistor with the same HFE and saturation voltage figures as the 2127 device. Toshiba Electronics (UK) Ltd, 0276 694600.

PNP substitutes for Darlington. For applications needing low saturation voltage and high gain, a new series of PNP Super E-line transistors offer minimum gains of 300 at 10mA combined with high saturation voltages down to 0.15V typical with a 1A collector current and 10mA base drive are specified. With collector-emitter voltages of 25V and 200V respectively, the ZTX789A and ZTX799A represent the extremes of the range. Saturation voltage of the 2A continuous ZTX799 is typically 0.15V at 1A while that of the 0.5A ZTX796 is 0.15V at 200mA. Zetex plc, 0161 267 4963.

High-performance SOT23 addition. Forming a current rating of at least 50 when carrying 300mA, the FM7555 has an fT of 100MHz, making it fast enough for video applications. It has an output capacitance of 10pF and a collector-base breakdown rating of 160V. Continuous collector current handling of the 555 is 1A while its peak rating is 2A so the device has numerous uses, including power-amplifier driver stages, medium-power output stages, and relay/solenoid/motor switching. At 10kHz collector current of 10mA base current, saturation voltage of the device is 0.3V while base-emitter saturation with the same drive and load is 1V. Capable of dissipating up to 425W. Zetex plc, 0161 267 4963.

Digital signal processor
More choice. TMS320C51 and TMS320C16 continue the expansion of TIA's fixed point DSP family. Key features of the TMS320C51 include single-cycle multiply/accumulate; zero-overhead looping and context switching; on-chip serial ports and timer; PLL for dynamic bit manipulation, and Jtag. TMS320C16 fixed-point DSP provides an object code compatible performance upgrade path for TMS320C10 and TMS320C15 users, and a low cost alternative to the TMS320C25. It has 8k on-chip roms: 10 per unit (10,000). Texas Instruments, 0234 223252.

Linear integrated circuits
Mixed-signal ICs motor control. Three new mixed-signal ICs are designed for driving the three-phase brushless DC spindle motors used in hard disk drives. A8901SLB and A8902SLB, are designed to drive the low-voltage (5V) hard disk drives used in laptop applications. A8903SLB is tailored to drive the higher voltage (12V) Winchester drives more commonly used with desktop PCs and workstations. They combine back-EMF sensing with power Mosfet outputs and programmable control logic. Allegro Microsystems, Inc, 0932 253355.

Wideband buffer amplifiers. 900MHz AD9620 and 750MHz AD9630 are unit gain wideband buffer amplifiers. A 0.989 V/V (0.994 V/V typical) the AD9620's guaranteed minimum gain accuracy over frequency to 2V pk-pk input swing is claimed to be 29mV/V better than competitive version. The AD9630 has a minimum gain accuracy of 0.983V/V (typically 0.995V/V). The AD9620 and AD9630 respectively slew at 2.200 and 1.200V/μs and guarantee 1.6 and 1.5μs maximum rise and fall time for a 1V step over the operating temperature range. Analog Devices, 0932 232222.

Analog multipliers for video processing. HA2547 two-quadrant analog multiplier integrates two differential voltage input sections to provide a multiplication function and a current output proportional to the product of the two voltage inputs up to 100MHz. It has a low multiplication error of 1.6%, low noise of 75mV/Hz and wide signal bandwidth of 100MHz. It also features large input signal ranges of 2V for the control input and 5V. Harris Semiconductor (UK), 0276 686868.

Closed loop buffer amp. Elanted EL9162 high-speed bipolar monolithic buffer amplifier provides an output current of 250mA which combines with an 80MHz bandwidth. With a 50Ω load, the device provides a gain accuracy of 0.999. Its output short-circuit current limiting scheme protects the device under both a DC fault condition and AC operation with inductive and capacitive loads. METL, 0844 278781.

High-performance PLL with serial interface. 16-pin MC145157 frequency synthesiser can directly interface with VCOs in the NF, HF, and VHF bands. Architecture allows programming with either bit- or byte-formats. Bit/Register eliminates address and steering bits for random access to the three registers. Tuning is accomplished through two byte serial transfer to the 16-bit N register. R counter division range is 5 to 32 767, and direct access to the phase detector input is allowed; N counter is 40 to 65 535. Operating voltage range is 2.5 to 6V, and maximum operating frequency is 160MHz at Vcc = 500mV pk-pk with a 4.5 to 6V supply. $4.17, 500-999. Motorola Inc, 0151 512 986880.

Speech recording and playback. NEC's new speed chip, PD77501 simplifies design of solid-state voice messaging circuits by integrating a dual-tone multi-frequency receiver, an analogue front end, and speech memory management for fixed and re-usable vocabularies on to a single silicon chip. So it has the ability to carry out analogue to ADPCM coding/decoding of acoustic signals simultaneously with the detection of the 16 DTMF tone pairs. The chip is equipped with user programmable sound-level detection threshold for the recording mode. The analogue acoustic signal is sampled at a fixed rate of 6kHz and quantised with a 10-
NEW PRODUCTS CLASSIFIED

PASSIVE

Silicon carbide varistors. Power Diodes Ltd is offering a full range of equivalents for the silicon carbide varistors previously manufactured by Philips under catalogue numbers 2322 552-555 and 2322-564. They are completely interchangeable with the Philips products sold under the trade name Ampexor in the USA, Valvo in Germany and Mullard or Philips in the UK and France. Power Development Ltd, 0293 528898.

Displays

15mm thick LED graphics displays. Two Sriko Instruments graphics displays, complete with VGA controller boards have 640 x 480 pixel displays and use RC film technology with side-mounted cold cathode backlights to produce a good black and white image. Total thickness of either display is under 15mm, making them smaller, lighter and flatter than many others on the market. The G643G (and G642G) weighs 460g and 791133. £16.34. GEC Plessey Electronics (Europe), 0737 0480 412451.

Instrumentation

Digital voltmeter. DMH-30 digital panel meters are built directly on ceramic using ultra-low profile, surface mount components and thick film, hybrid techniques. 1.20m in x 0.8in in x 0.2in and fully encapsulated 0.5% and 0.1% accuracy. £99.00 (+vat) including probes. "Thurby Thandar" Ltd, 0480 412451.

Microprocessors and controllers

Low cost microcontroller. TE-180 microcontroller — a high performance, low-cost microcontroller with the Hitachi CPU — is a powerful single board computer with 8K or 32K of user selectable static ram and a 40K option. User applications software is contained within an eprom with an option to expand to 16K. The system includes two RS232 ports, timers, 24 I/O lines, and keyboard area. Options include a system monitor rom, a clock/calendar with battery backup, and a "watchdog" timer feature with user selectable count down and alarm features. Cost is £95 for a device assembled and tested. Adi Electronics (Europe), 0908 260007.

Memory chips

Fast NVSRams. PNC106C68 and PNC11C64 W206 W200 have a 32bit wide write access times of 25ns and a memory capacity of 64K. They also have address and chip enable access times of 25, 35 and 45ns with a non-volatile eeprom cell incorporated into each static memory cell. The sram can be read out up to 10A. Rambus Semiconductor, 0391 518000.

Largest eeprom. Organised as 256 x 8, the XM28C200 eeprom is comprised of four of Xicor's propriety X28C513 64K x 8 LCC's mounted on a co-fired multilayered ceramic substrate. This allows the module to conform to the Jedic standard 32 pin 600 mil wide pinout and allows a direct upgrade to existing 1MB module/multilithic devices. It also offers upgradability to forthcoming Xicor 4MB devices. When combined with data polling or toggle bit testing, this effectively provides a 40byte write cycle enabling the module to be written in 10s. Micro Cali Ltd, 0844 261939.

Power supplies

Dual output DC/DC converters. LF series DC/DC converters provide up to 500V DC isolation between inputs and outputs. The single in-line converters in the series are high efficiency 750mV devices, requiring only 0.18W of board space. Units are available with 5V or 12V inputs providing isolated ±5V, ±12V or ±15V outputs. The 750mV output power can be drawn from one pin, so the LF...
series is suitable for single output rail applications. No heat sinks or derating is required for operation over the temperature range -25 to +80°C. Amplicon Liveline Ltd, 0273 608331.

Voltage monitor, VM1 voltage monitor provides early warning if a battery or other DC levels drop below a predetermined voltage. In three voltage ranges: 3.5 to 7V DC (6V nom); 7 to 13.8V DC (12V nom); and 18 to 27.5V DC (24V nom), the VM1 has active high and low open collector outputs to indicate when the input voltage has been reached. Collector outputs can drive up to 100mA. It consumes 35mA, resolves to 10mV and operates across the temperature range -10 to 70°C. Amplicon Liveline Ltd, 0273 608331.

Low power switching regulators. SC7630 cmos switching regulators provide input voltage step-up and regulation to specified fixed voltage using only an external coil. Maximum drive current is 100mA at 5V from a 1.5V source. In standby modes only 3mA is consumed. All devices incorporate precision low-power reference voltage and precision low-power reference voltage regulator internal comparator and inductor driving transistors. 7631 has a built-in CR oscillator; 7633 driven by external crystal oscillator ; 7635 and 7836, driven by a minimum voltage signal. Hero Electronics Ltd, 0255 405015.

Radio communications products
Radio modules for wire-free operation. For general serial data links at up to 200m range, the TXM-418 SAW controlled transmitter module is type approved to MPT1340 and requires 10mA from a 6-12V supply. 10mm x 30mm size and SIL PCB mounting allow it to be used in space conscious applications. Frequency modulation is used and data rates up to 10Kb/s may be transmitted. The matching 0.5μV sensitive, double conversion heterodyne receiver module, RXM-418, has both analogue and digital data outputs, a signal strength output, carrier and jam detect outputs. PDS Telemetry Ltd, 081 569 3141.

Switches and relays
Smallest snap-action switch measures only 7.5mm x 2.5mm x 5mm and weighs 0.2g. It has straight, angled or reverse angled terminals, and is available with a hinge lever, pin plunger or simulated roller lever. Operating spring is stainless steel with gold or silver contacts. AT 0.5A (30V DC) and 20 operations per minute, mechanical life is 20,000. Switch resistance is up to 30g. All switches are produced to a common standard. Applications include computer peripherals, video cameras, car stereo or portable electronic equipment. Matsushita Automation Controls 0908 567725.

Transducers and sensors
Ultrasonic ceramic microphones. Panasonic's ultrasonic ceramic microphones utilise a piezo ceramic element as a sensor for transmitting and receiving selected ultrasonic frequencies in air. The ultrasonic ceramic microphone has a resonance type vibrator so is highly sensitive, with high sound pressure level. Applications include burglar alarm systems, automatic door openers, flow rate detectors and remote control systems in TVs etc. Alan Butcher Components, 0258 840011.

Pressure transmitter. DataMate, with pressure ranges of 1-32bar and 1% accuracy, the transmitter produces 4-20mA output on two wires. It can be used with corrosive media thanks to its stainless steel body. port and diaphragm and because electrical connections may be made through protective conduit. Excitation voltage is 12-45V DC operating temperature range of -18 to +100°C. Control Transducers, 0234 217704.

No iron DC motor, 3042 CR ironless rotor DC motor from Faulhaber can be fitted to planetary gearheads of 23-38mm diameter to give torque outputs of up to 15Nm. Reduction in size means the motor offers the performance of a 35mm diameter by 57mm long motor in a body measuring 30 x 42mm. Nominal rated at 133W, 5000rpm, a life of at least 5000h can be expected at these operating conditions. Stall torque is up to 156mNm with a maximum power of 23W. It incorporates a sapphire ball bearing, copper commutator and copper impregnated carbon brushes. Electro Mechanical Systems Ltd 0734 817391.

Vision systems
Low cost teletext decoder. Universal Teletext decoder (Unitext CF70095) has been developed to replace the current generation of single page teletext decoders — incorporates an 11Mips risc processor and automatic rfi (fastext) handling on-chip with display graphics to program customised pictures and screen displays. Unitext can decode pages requiring World Standard Teletext (WST) level 1.5. This includes packet 26 processing for overwriting characters in the main teletext display. Without adding any external MPU software, Unitext is able to handle teletext processing for the majority of European languages. Texas Instruments, 0234 223252.

Computer board level products
Single-board PC-AT. A single-board computer — promising the functionality of PC-AT on a board smaller than a 5.25in disk drive — the SBC-AT incorporates controllers for hard disk, floppy disk and graphics and will run MS-dos or Xenix applications. Up to 4Mbytes of memory, a battery-backed real-time clock and watchdog timer and 80287 co-processor socket are all included. 256k rom/ram disk allows dedicated applications to run on a diskless system. ABA Electronics Ltd, 0264 353025.

STBus 80386 board. Arcorn's “world's first” 80386-based processor board for STBus, provides a powerful compute engine for industrial applications. SC1M386SX board combines CPU with memory and I/O capability, to offer a platform for real-time systems that will run PC-compatible software, or Unix applications. It costs from £885 with 1Mbyte ram. The all-cmos board is based on the 5X version of the 80386 CPU, and is available in 16- or 20MHz selections. Chips and Technologies' SCATXSX chipset is used to give compatibility with PC AT computers. Eight surface-mount memory sites allow the board to be supplied with up to 4Mbytes of dynamic ram, extendable up to 16Mbytes using a local expansion facility. Arcorn Control Systems Ltd, 0223 411200.

PCbus system integrity monitor. PCGyscon's watchdog can be manually set for variable time-out periods, and can be started under program control. The voltage sensor monitors the triangle +5, +12 and -12v voltage rails and can be programmed to trip at a wide range of levels, as can the temperature sensor. Two further isolated channels are also available for user-defined connections, to monitor digital power-fail signals, the cooling fans, a control switch, or some other critical system function. Alarms from any of these sources can be programmed to produce a variety of results, such as generating a system interrupt, or
PORTABLE TESTING

The portable testing plug-in module for GRiD system is built-in link adaptors, capable of compressing digitised data, and improves overall sound quality. Two 27MHz 56001 DSP devices share a dual-port RAM. The dual 56K board's two processors each have a 74ns instruction cycle and, combined, provide 27Mips. Each processor has access to 32K x 24bits of local memory for zero wait state operation. Loughborough Sound Images Ltd, 0509 231843.

PC performance booster. Number Smasher-860 — based on Intel's i860 64-bit microprocessor can be plugged into a standard ISA slot on any PC-AT 286, 386 or 486 machine. Available in 33 and 44MHz versions, it can perform 80Mflops and is ideally suited for numerically intensive applications. 8Mbytes of high performance memory can be upgraded to 32Mbytes. Two built-in link adaptors, capable of running at 1.5Mbyte/s, enable communication with the host PC or transputer systems. Package includes an ND2-860 C, Pascal or C++ compiler, running under Interactive Unix, SCO Unix, Xenix or M/7Xdos. £5,000. Microway (Europe) Ltd, 081 540 0614.

Portable GPIB control. GD-GPIB is plug-in module for GRiD system 1500 series laptop computers. A PC with the GD-GPIB can become a cost-effective IEEE-488.2 controller for portable testing applications. It can monitor, control, and communicate with over 4000 instruments. The NAT482 chip performs the basic IEEE-488 talker, listener, and controller functions as well as all of the controller functions required by the more recent IEEE-488.2 standard. The GD-GPIB sustains data transfer rates of 400Kbytes/s for read and write operations. The GD-GPIB fits in the standard GRiD adapter case for simple, compact integration. National Instruments Ltd, 081 523 545.

Cards for VGA LCD monitors. VGA LCD driver and adapter card, dedicated to driving the Citizen 640 x 480 pixel VGA LCD panel from any PC-AT bus machine feature a complete kit of parts. As well as the VGA driver card and adapter card (with supply interface and inverter), the kit includes the ultra-thin Citizen CCDL backlit VGA LCD panel together with the necessary connections. An Automap technique automatically maps up to 256 simultaneous colours into as many as 32 shades of grey, giving excellent graphics with colour emulation on an LCD. There is auto-expansion of images to fill the screen. Rugged Displays Ltd, 0734 819521.

Computer systems

Laptop industrial data acquisition. Aimed at data acquisition, the GRDi-case 15353AS is rugged 386-based portable and can be powered from internal batteries. It uses standard (full or half size) expansion cards, two of which can be housed in an external detachable, tray. Fully populated, it can handle 200 channels of analogue I/O, 64 digital lines and 10 counter/timers. The 15353AS has up to 8Mbyte ram, a 40Mbyte or 100Mbyte hard disk drive and a 10-in VGA display (backlit LCD or plasma). 15lbs with tray fitted. GRiD Computer Systems Ltd, 081 697 6565.

Development and evaluation

Low-cost programming platform. ICE751 is a low cost development and programming platform for the Philips 87C751 microcontroller. It uses a bond-out version of the 87C751 processor connected to a dual port memory on-chip eeprom and an emulation cable that can be plugged into users' target boards. RS232 buffered serial port passes data and accepts commands from a host PC. The processor contains 2K bytes of internal eeprom, 64bytes of ram, 19 I/O lines, a 16 bit timer, a fixed rate timer, on-chip oscillator and PC bus interface. There are two modes of operation; download and go, allowing 2K bytes of memory to be used by the 87C751 or debug where 48 bytes of the 2K bytes of memory and 12 bytes of stack space are used by the monitor to enable download facilities. MicroKmps Ltd, 0483 269999.

Computer peripherals

Industrial VEA monitor. Industrialised version of the NEC-3D multisync colour monitor is housed in a 19-in rack-mounting steel case and protected by an anti-glare safety glass cover. It is designed to withstand rough handling, dust, dirt, water and other rigours of industrial environments. All the common graphics standard supported including MDA, CGA, EGA, VGA and super VGA in up to 1024 x 768 resolution. The basic electronics of the unit remain unaltered to maintain compatibility with most PC/AT and 386 based computer systems. Blue Chip Technology, 0244 520222.

Still video camera. Canon's second ion still video camera — the RC 260 — handles record, playback and erase functions and can capture images electronically, on 2-in floppy disk. With a film adapter, it can also convert slides or negatives to ion images. New features include time lapse photography, internal playback, preview facility and wider angle 9.5mm lens. 410g. It can be connected to IBM, Macintosh, Amiga, and Atari computers for applications such as DTP. £499.99. Canon (UK) Ltd, 081 773 3173.

Optical key readers. Rolsecure's infra-red optical key and optical key reader can be integrated into security and monitoring applications, providing a secure means of identifying a specific user. The metal key has over 16 million combinations and the reader head is designed for panel mount applications. System format is an optical key and reader for use with a customer's hardware and software. Interface boards allow connection to the user's system; one allows the reader head to be up to 100m from the user's system; another provides circuitry and software to read an optical key and output its keycode via an RS232 port. Rolsecure Ltd, 0952 680277.

Software

Windows 3.0-based cae. Max+Plus II is an integrated case system offering hierarchical schematic capture and hardware description language logic entry, logic synthesis and timing simulation for the Classic and Max EPLDs. The enhanced memory management capabilities provided by Windows 3.0 enable Max+Plus II to partition very large designs into a set of EPLDs — becoming more important since system-level logic descriptions of 50,000 gates or more are becoming routine. With Max+Plus II, the designer can identify critical timing paths in the source design, and the software then automatically synthesises the design and fits it into multiple EPLDs, ensuring optimum performance at the board level. Altera Corporation, 0628 325116.

Windows 3 waveform display. Famos (fast analysis and monitoring of signals) software allows stored data to be viewed in either binary or ascii file format to be displayed and analysed using Windows 3 protocols. Multiple windows each of up to four waveforms can be displayed simultaneously. Zoom facilities, continuous X and Y interpolation with twin interactive cursors, and wide range of arithmetic and analysis functions are included. Biodata Ltd, 061 834 6668.

Pads-supperrouter 3.35. Pads-supperrouter 3.35 is the latest release of the popular rip-up and re-tidy 100% PCB auto-router available on a PC. Enhancements include improved routing algorithms to give faster routing times to 100% completion and ability to have infinite SMD pads on top and bottom layers of the same board, and route correctly to the pad whether it is on grid or not. Tracks exit orthogonally from pads, preventing etch-trapping angles. £2150. Computer Aided Design Services 0767 600774.

First 80386-based board for STEbus, from Arcom.

Editorial survey: use the information card to evaluate this article. Item F.
NEW!

DATATESTER

64k bit error rate tester and datascopc, only £845 + VAT

- 64k full duplex operation
- Multiple interface support
- Comprehensive bit error rate testing
- Monitor and generate/capture data
- Easy 'soft key' set-up
- Set-up and rev.ew data on PC or terminal
- Completely portable, weighs only 13kg
- 2 year warranty, free ongoing technical support

COMPONENTS

M & B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST/EQUIPMENT DEALER

Spectrum analysers
- HP 14110 (AT) 214 MHz analyser
 £2999
- HP 14115 (AT) 854 MHz Spectrum Analyser 9 1 to 1600 MHz
 £219
- HP 1867R 85468 Spectrum Analyser 0 1 to 2000 MHz
 £230
- HP 8513A 10 MHz analyser 10 MHz to 40 MHz
 £600
- HP 8553B Spectrum Analyser
 £1299
- Tektronix T4655 Spectrum Analyser
 £1599
- Tektronix 485 Spectrum Analyser
 £999
- Tektronix 7400D Logic Analyser
 £799

Oscilloscopes
- Tektronix 4655B 250 MHz - 2 Trace
 £1790
- Tektronix 2056 200 MHz - 2 Trace
 £1900
- Tektronix 2252 50 MHz Dual Trace
 £1500
- Tektronix 4666 Digital Storage GPH
 £1799
- Tektronix 7022B/1876B
 £1799
- Tektronix 4254 200 MHz Dual Trace
 £1599
- Tektronix 4751 200 MHz Dual Trace in good use
 £1499
- Tektronix 4754A 100 MHz - 4 Channel
 £1599
- Tektronix 4755 100 MHz Dual Trace DL
 £2195
- Tektronix 2217 50 MHz Dual Trace 4-way with probes etc
 £1395
- Tektronix 1251 200 MHz Dual Trace
 £2399
- Tektronix 92523C/DiffOSCilloscopes with TVLine Trigger
 £3200
- GTE D6505B 50 MHz Dual Trace
 £2399
- GTE D5260 30 MHz Dual Trace
 £2190
- Tektronix G2003 50 MHz 3 Trace Storage
 £2099
- Tektronix CGU150 35 MHz Dual Trace DL
 £1499
- Tektronix T292R Dual Beam Dijm Mount
 £2395
- Tektronix G2641A NIM 115 BIS DijmCloupsscopes
 £1215

General TIM
- HP 2277 15 MHz LCR Meter
 £999
- HP 1610A 10 GHz Option 10 kHz to 18 CHZ
 £1999
- HP 5384A Timer Counter
 £2999
- HP 14711P with Genl Connectors
 £2999
- HP 3468A True RMS Voltmeter
 £3499
- HP 3458A Digital Voltmeters
 £2499
- HP 8112A Programmable Pulse Generators
 £1499
- Kenneth MARTIN TV Field Strength Test Set
 £2499
- Tektronix 1417 Communications Receivers
 £2299
- Tektronix 1417 Communications Receivers
 £2299

Special Offers
- Dual VHF 20 CHZ with 38 Channel Bannans
 £1399
- RS 5004A 2400 Primary 110V secondary replacing transformbors, yellow GRP enclosures
 £1499
- RS 5004A 2400 Secondary Transformers
 £1499

Oscilloscopes
- Marconi TF9800 1.5 MHz to 220 MHz AM/FM SIG
 £550
- Marconi TF9800 1.5 MHz to 220 MHz AM/FM SIG
 £550
- Tektronix 515C GPIB 250 MHZ
 £550
- Tektronix TF2432A 560 MHz Freq. Source
 £275
- Tektronix TF2432A 560 MHz Freq. Source
 £275
- Tektronix 2501 1000 MHz Signal Generator
 £1999
- Tektronix 2501 1000 MHz Signal Generator
 £1999

Other items
- Tektronix 800 1000 MS/s sampling
 £699

VINTAGE

Kemo

Series 21

21CF30 Low Cost Filter/Amplifier System

ECONOMICAL

- **Differential input**
- **Switched 4mA source**
- **2550-1 cutoff span**
- **24 to 135dB per octave rolloff**
- **16 channel 19" rack frame**
- **8 channel ‘miniframe’**
- up to 8 frames per interface
- **Wide range of control options**

The Kemo 21CF30 is a multi-channel computer controlled filter/amplifier system. It replaces the conventional 'tuner'. The system uses a single function at a substantially lower price. Software compatibility with the HP 2020 allows easy substitution and expansion of existing systems. All channels are addressable individually. The 21CF30 is a member of the Series 21 Synch. Conditioning Components Family. Innovative design and construction features are used in today's manufacturing costs, resulting in units suitable for cost-effective applications.

FREQUENCY RANGE

The 21CF30 card will cover a 2550 1 range, implemented as 8255 1 ranges a decade apart. Four-precision frequency options are available as standard 0.1Hz, 1Hz, 10Hz and 100Hz. These give maximum variations of 2550, 250, 25 and 2.5 Hz respectively.

GAIN RANGE

A unity gain preamplifier at stage level will allow a gain range from 0 to 2550 and 0 to 250. A unity gain preamplifier at stage level will allow a gain range from 0 to 2550 and 0 to 250. A unity gain preamplifier at stage level will allow a gain range from 0 to 2550 and 0 to 250. A unity gain preamplifier at stage level will allow a gain range from 0 to 2550 and 0 to 250.

FILTER RESPONSE TYPES

Each 21CF30 card has a two response characteristic determined at the factory. The card is available in several standard filter responses which are obtained overleaf, see the booklet 'Selective Filters - Guide to Responses' for more information. The most popular response type is the broadband 135dB octave, for peak protection.

OTHER FEATURES

- The 21CF30 is provided with a programmable AC input excitation (3.3v 0 to 3v) in addition, a programmable time constant is available for AC transients in addition, enabling the 21CF30 to offer a complete front end and for peak response to an AC input.

- The output can be set to zero on the circuit board, offering very low input impedance. Standard output is in BNC, but additional output is provided in the Series 21 frames for a multivolt output card which can be used as an auxiliary member of the main output. This is available with a choice of 3 to 125v, 0 to 3v and 3v to 36v DC. The 21CF30 is independent, and a full output will not affect the operation of the other. Multivolt output is not currently available.

All prices plus VAT and carriage

86 Bishopsgate Street, Leeds LS1 4BB
Tel: 0532 435649 Fax: (0532) 426881

Kemo Ltd
12 Goodwood Parade • Elmers End • Beckenham • Kent • BR3 3GZ
Telephone 0181 658 3838 Fax: 0181 658 4054

THE ELECTRONICS WORLD + WIRELESS WORLD

May 1991

CIRCLE NO. 105 ON REPLY CARD

Kemo Series 21 Low Cost Filter Amplitier System

ALL PRICES PLUS VAT AND CARRIAGE
So far, only the military superpowers — America and Russia — have had the motive, money and technical ability to build operational defence-radar systems using that most difficult of techniques, over-the-horizon detection. Within a few years there will be a third member of the club: Australia.

The Australian government has allocated A$970 million (about £390 million) for the construction of two very long range over-the-horizon radar (OTHR) systems. Together, they will survey the air space and ocean off the northern coast of Australia, detecting and tracking moving targets to a range of several hundred miles offshore. Surveillance for air defence is their main function, but the Australian Ministry of Defence says the performance will be good enough to detect surface vessels and act as a deterrent to drug smugglers and illegal immigrants.

Necessity has forced Australia into the big league. Hundreds of conventional radars would be needed to protect the vast coastline, further they would not detect low-flying aircraft beyond a few tens of miles away, leaving no time for effective countermeasures in such a sparsely populated country.

Prime contractor to build the OTHR complex will be Telecom Australia; the technical expertise will be mainly native Australian, acquired through 20 years of study and experiment by the Australian government’s Defence Science and Technology Organisation.

Britain’s GEC-Marconi will make an important contribution through a £120 million sub-contract: Marconi Radar Systems will be overall design authority and Marconi Communication Systems will supply specialised transmitters and receivers.

Marconi companies have worked on OTHR for many years: private-venture work has included experimental systems around the British coast. MoD has funded several project definitions but has never ordered an operational system.

Conventional microwave radar uses wavelengths measured in centimetres and millimetres. Definition of targets and the resolution — the ability to discriminate
targets close to each other — can be good, but the beam goes straight to the target and the reflection comes straight back. This limits detection to objects that are in the line of sight; anything over the horizon is out of sight.

OTHIR is radar at HF, with wavelengths of typically 20m. Definition and resolution are poor by microwave standards, but at HF, a radio beam has the property that the ionosphere will reflect it, provided the angle of incidence and the frequency are right.

Hence, a beam launched at a low angle can hit the ionosphere after perhaps 1000 miles, be reflected and come to earth again after another 1000 miles, well round the curve of the earth's surface. Targets on the surface at that point generate further reflections, some of which follow a reverse path back towards the radar.

Below is the transmitting array, some 400 yards long. It is separate from the receive array so that it can transmit continuous wave to get as much energy as possible to the surveillance area. A groundplane of wire mesh in front of the array reflects upwards in the direction of transmission the energy that otherwise would be lost into the ground.

FM RADAR RESOLUTION

Conventional radar uses pulses of RF energy to measure the distance from the transmitter of a reflecting object. Time is measured from the pulse being sent from the transmitting antenna to the reflection being detected by the receiver, usually using the same antenna. Since the velocity of propagation is accurately known, distance to the reflecting object is simple to determine.

Uncertainty arises owing to the finite length of the pulse and the width of the beam of radiation, which is scanned over the area being searched to determine the direction of the target. The length of the pulse sets the limits of certainty in range since, if two targets are separated in space, in the direction of transmission, by less than half the length of the transmitted pulse (1µs equals about 5 miles), their returns merge and the result is only one "paint" on the radar display. Similarly, if the width of the transmitted beam is too large, the same target will be detected at more than one angle of the scanned beam. Minimum area in which targets can be discriminated, set by pulse length and beam width, is called a cell.

In the continuous-wave radar used in Jindalee, there is no pulse with which to measure time and, therefore, range. In this case, range is measured by frequency modulating the transmission. When a target is "illuminated" by the beam at a given instantaneous frequency, the echo returns at that frequency, but by that time the frequency of transmission has changed. Range is therefore determined by measuring the time between transmission at the given frequency and reception of the return at that same frequency. In the same way that pulse width sets the range resolution in a pulsed radar, the length of time that the frequency in an FM radar stays unchanged sets the size of the cell in the range dimension. If the frequency were to be held constant for 50µs, cell size would be about 10 miles. Cell size in azimuth is set by the beam width; in the case of Jindalee, beam width is 0.5°, so the width of the wave front at a distance of 1200 miles is 1200 tan 0.5, or about 10 miles.

P.D.

Further, the ionosphere's reflection efficiency varies between day and night and with the seasons and is affected by sunspot activity and wind at high altitudes. These variables affect the range and bearing from the transmitter of the ground area illuminated.

As for the radar, the returns from wanted targets are very weak indeed and are swamped by clutter returns from unwanted targets and by galactic, atmospheric and man-made noise. The beam width...
RADAR

may be well controlled at transmission, but inevitably its width at the target is enormous. Great ingenuity is needed to find the position of detected targets within the vast ground coverage area.

Another problem is that outside interests must be accommodated. Frequencies in the HF band are widely used for radio communication and radar must avoid these channels, those with higher priority and adjacent channels. This can rule out a lot of channel space.

Very large antenna arrays are needed, since adequate resolution demands that the aperture is many times the wavelength — in the case of the receiving array at least 100 times the wavelength. Worse still, separate transmitting and receiving arrays are required because the only way to get sufficient power onto the targets over such a long distance is to transmit continuous wave. All this means that large, well separated sites must be found.

Changeable ionosphere

Australia set out to solve these problems in the early 1970s, being helped considerably by the Americans, who lent equipment and offered advice to help the Australians avoid blind alleys.

Their first task was to establish the characteristics of the ionosphere over Australia. That done, and the ionosphere deemed suitable for the job in hand, in the late 1970s a fixed-beam radar of limited capability was built near Alice Springs in the centre of Australia to investigate the practical feasibility of HF. It was called Jindalee (an aboriginal word meaning "bare bones") and looked north-west at aircraft in the civil air lanes between Singapore and Australia.

Between 1979 and 1985, Jindalee Stage A was expanded into Stage B, which approximated a simple, scanning operational radar. Its purpose was to see whether OTHR would provide information of genuine value in the defence of Australia. The trial proved positive and the experience was used to define the further development necessary to produce the optimum operational radar. This is what Telecom Australia and GEC-Marconi will build.

Stage B has proved the general lines on which the inherent problems of OTHR will be solved in operational radars. Obviously, the ionosphere cannot be changed to solve the problems it poses, but it can be probed continuously and enough learned of its instantaneous nature to allow for its effects on radar propagation.

In this, the Australians have been helped by work done by makers of HF communications equipment and users to improve the reliability of HF communication. The Falklands war demonstrated the hard way that satellite communication alone is not sufficient for a hundred percent reliable contact 24 hours a day.

To monitor the ionosphere, the whole segment of interest in the HF band is scanned continuously by probe signals, characteristics of the signals received at various sites enabling a real-time picture of ionospheric behaviour to be built up.

At any time, certain frequencies emerge as optimum for radar use. Some will be eliminated because they are permanently forbidden (distress frequencies, Flying Doctor frequencies, etc.) or are guard bands around forbidden frequencies.

Probing will have shown that some are carrying communications traffic and, by convention, cannot be used for radar until they have been quiet for 30 minutes. What is left is available.

This is not as bad as it sounds. Channel usage, ionospheric behaviour and general noise have a tendency to follow regular behaviour patterns with time. Schedules have been built up through the years which will guide radar operation and in some ways influence radar design to take advantage of the cyclical nature of the contrary forces.

With regard to siting, the transmitting array must be placed so that the beam will be reflected and return to earth to cover the ground areas of interest; the receiving antenna is normally close by. This means that arrays covering coastal sea areas have to be a long way inland and this factor, together with accessibility, led to the choice of Alice Springs for the experimental installations. The transmitter is about 100 miles north-east of the town and the receiver about 25 miles north-west. Separation is about 60 miles, which is enough to be sure the receiving array does not pick up energy directly from the transmitter.

Jindalee in practice

Operational systems will need to take in much more of the Australian coastline. One radar will be near Laverton in the south-west of the country, and the other near Longreach in the north-east. The operations centre will be between the two, in South Australia.

The intended configuration of the operational systems has not been disclosed. Stage B Jindalee, on which they will be

Continued over page

THE WOODPECKER THAT ECHOED AROUND THE WORLD

Over-the-horizon radar has earned itself a very bad reputation among other HF radio users through its potential to cause world-wide interference.

In the early 1970s the Russians built a massive OTHR located about 100 miles east of Moscow for ballistic missile early warning. Using a highly directional phased transmitting array several miles long, the station radiated 100μs pulses with an estimated peak power of 20MW at a PRF of 10Hz. The operating frequency varied from 5 to 20MHz depending on time of day.

Unlike modern HF radars which rely more on computerised signal processing and frequency agile sources than the brute force of the Russian system, the Russian "woodpecker," so called because of its remorseless staccato chip when heard over the air, could wipe out reception of other HF services in a band up to 100kHz wide. The sheer impulse power could cause receiver blocking several thousand miles away even when detuned from the woodpecker operating frequencies.

The Russians compounded the interference caused by their search for incoming ballistic missiles by operating the system 24 hours/day. Neither did they respect international frequency planning. Woodpecker mostly used amateur radio frequency allocations although it often strayed into marine and fixed service frequency allocations.

The US also built OTHR stations, but used technology to reduce the interference caused to other HF users. With stations located in New England on the East Coast and Alaska looking west, the radars use a PRF of about 50Hz and an order of magnitude less power than their Russian counterpart. Slower rise and fall times on the transmitted pulses reduce band splatter to around 10kHz.

The US early warning systems shift frequency every few seconds reducing the potential for sustained interference. However, this quality has as much to do with the avoidance of potential enemy jamming as good neighbourliness. The USAF Command and Control Centre at Cheyenne Mountain, Colorado continually calibrates its BMES using commercial transatlantic and transpacific aircraft movements.

F.O.
There is nothing new about the use of the HF band (3-30MHz) for radar, but its recent growth is viewed by many users of this crowded band as something close to spectrum abuse, even though such installations offer unique and probably irresistible attractions for military and some civilian applications.

They not only add relatively broad transmissions (even with CW FM modes) which result in yet more overcrowding to frequencies not yet allocated to radar, but also present potential environmental and health hazards. This is not to deny that the Australian Jindalee installation, for example, is operated responsibly and with consideration to other users of HF, but the insoluble problem with long-range back-scatter and bistatic radars is their need to follow the maximum usable frequency as it traverses the spectrum.

From the first experiments in the UK on about 6MHz in 1935, the UK "Chain Home" was initially planned to use frequencies of the order of 11MHz, thought likely to produce maximum returns from aircraft, and finally implemented between 20 and 30MHz with RF pulses of 350kW, later upped to 750kW. Centimetric and millimetric radar came later.

HF radar came back to Orfordness in the mid-1960s, when RCA built what ultimately proved an unsuccessful over-the-horizon HF radar. But before it was aborted, there were many complaints from North Sea trawlersmen of sparks being drawn from their rigging — just one indication of the problems that surround these massive, megawatt installations.

The appearance in the 1970s of the Russian "Woodpecker" HF pulse radars brought chaos to the HF bands for a time (see separate box) — a problem that lessened but did not disappear with improved pulse shape that stayed within somewhat narrower channels.

By the end of the 1980s, work on long-range (3000km) radars had been joined by medium-range sky-wave and ground-wave radars for the detection of ships, low-flying aircraft and sea-state radars, fortunately needing less power.

While the supposed "zapping" of America by the Russian OTH radars had no basis in substance, there could be problems for those living close to the installations; there is also concern, possibly justified, that such radars add to the ionospheric heating already brought about by the high-power HF broadcast stations.

High-power HF radars have been built in a number of countries. CNET France has its major Valensole backscatter installation at Lannion and did not endear itself to radio amateurs when it was revealed at a 1988 conference that one of the frequencies used was 14,147kHz, right in the middle of the exclusive world-wide amateur band.

It is not surprising that many people view the return of radar to HF with misgivings.

Pat Hawker

One phone call brings the WORLD to your door.

If you have trouble finding us in your newsagent, why not consider a subscription? One phone call to Lindsey Gardner will bring Electronics World delivered directly to your home.

The cost? Just £20 for 12 issues.

The magazine arrives in a protective sleeve and should arrive in the same pristine condition of a shop-purchased copy. If it isn't, then we will replace it free of charge.

Please call Lindsey on 081-661 3614. Alternatively, complete the coupon below.

NAME_________________________

ADDRESS_______________________

Postcode_____________________

I enclose payment for £20 by cheque/money order made payable to REED BUSINESS PUBLISHING GROUP.

Please charge my Access/Visa/American Express Card. Expiry date ___/___/___
RADAR

based, has a transmitting array rather less than one-quarter mile long and a receiving array 1.75 miles long. Each consists of numerous individual transmitters or receivers in line, connected electronically for integrated operation. The receiving array has to be long to achieve a narrow beam width for a reasonable target resolution in azimuth — about 0.5° — at the wavelengths used, which are around 20m.

A phased-array transmitting antenna steers the beam through the scan angle. It moves in steps in both azimuth and range, pausing for several seconds at each step to flood the coverage area. Because the wavefront travels such a long way to get to the volume of air space in which it will seek targets, expanding all the way, it is very large by the time it arrives. After 1,200 miles it is 10 miles wide.

Azimuth precision is improved by using the long receive array to divide the azimuth dimension of the coverage area into several narrow angle sectors, each of which is examined individually for evidence that targets are present. Division is done by digital manipulation of the signals arriving at the array elements. The width of a narrow receive "beam" sets the azimuth dimension of a radar cell. However, because transmission is continuous, there is no pulse duration as in conventional radar to set the size of a cell in the range dimension. Nor can the range of cells be measured using pulse out-and-return times. Instead, the transmitted beam is frequency modulated in steps during the dwell period. The duration of a modulation sets the cell range dimension and the time interval between transmission at a particular frequency and returns (if any) at that frequency sets the range to the cell being examined.

Detecting and recognising radar returns from wanted targets in the overwhelming mass of received noise and clutter is done by sophisticated digital signal processing. Recent advances in this field, made possible in turn by advances in semiconductor technology which have made number-crunching computers available at economic prices, are vital to practicable OTHR systems.

While the radar beam dwells on a coverage area, the gross return — wanted targets, clutter and noise — from each cell is sampled for long enough for the content that is phase coherent with the transmitted beam to accumulate and build up above the noise, which does not accumulate because it is not phase coherent. This reveals the presence of a target or targets, wanted or unwanted.

Because the purpose of the radar is to detect moving targets (mainly aircraft, but also larger, steel-hulled ships), wanted targets can be distinguished from the bulk of unwanted targets (which will be stationary) by using digital Fourier transforms to detect the Doppler shift. Targets are confirmed as aircraft or ships by tracking from cell to cell; unwanted moving targets, such as meteors, do not generate persisting tracks and are easily eliminated.

As with all engineering systems, Jindalee's great advantage of exceptional range — minimum about 500 miles, maximum about 1,500 miles — has to be paid for by disadvantages in other respects.

Wide tolerances have to be allowed on displayed target positions because it is impossible to be sure that all ionospheric effects have been taken fully into account. Tolerance on range measurement can be 20 miles, range resolution similar.

Continued on page 413
Imagine, Alvin and Brian are sitting together on a park bench in the dark, listening to the Archers on their Walkmans. For a moment, Alvin shines his torch due south. At exactly the same time, Brian shines his torch due north. A short time later, the north-going and south-going wavefronts have moved away from them by equal distances. Therefore, they are midway between the two wavefronts.

Brian lives due north so, after bidding goodnight to his friend, he strolls directly home and goes to bed. While he is walking home, the north wavefront moves away in front of him at constant speed c. Likewise, the south-going wavefront moves away behind him at constant speed c. Therefore, as he lies in bed enjoying sweet dreams, he is still midway between the two wavefronts. Alvin, however, has doted off on the bench and so stays, where he is. The two wavefronts move away from him, also at constant speed c. north and south, so he therefore is also equidistant between them.

The problem is, Alvin and Brian are no longer in the same place. Well, this is a problem isn’t it?

C.W. Pigott
St Alhans
Herfordshire

There are many simple electronic proofs that c is constant to the source or a target, but is not a limit. In WWII we had a moving target indicator (MTI) radar on our ship that could tell us distance, speed and heading of 20 or more targets. The radar pulse from the magnetron was always the same frequency.

Chemists know quite well the precise frequencies absorbed and radiated by most elements. How do astronomers get blue and red shifts from stars? They must add or subtract radial velocity between the source and observer. This same effect is present with 21cm spin/hop radiation from hydrogen clouds. We now use a wide light-year to give the distance electromagnetic radiation (light) travels in a year. At the same time astronomers know light from a blue-shifted quasar travels much further toward the earth in a light year than light from a red quasar.

Police will soon be proving this many times daily with their new laser speed-traps. A good laser operates on only one coherent frequency (a laser is an excellent clock) out of the 320 trillion electromagnetic frequencies in the spectrum of white light. From a car closing at 55mph, the laser back a higher frequency than it transmits. How? The reflected signal from a car travels 55mph faster than the speed of light in air. Most distant quasars have a radial motion towards or away from the earth much faster than any car will travel.

However we get up-Doppler, it is because an electromagnetic signal of a given frequency comes to our receivers or detectors faster than c. Does all radiation travel at c and get the velocity of the source or target? You can beam a laser through a vacuum, air, water, glass, etc. and also reflect, refract or disperse the beam, but this never changes the frequency independent from the laser.

John H. Ecklin
Alexandria, VA
USA

Hardware vs software

I would like to apologise to readers who had difficulty following some of the arguments in the article "Removing the Bottleneck" (E+WA+WW, February 1991, pp.39-142). I guess I didn’t make some points clearly enough in the article that I submitted to the editors because it appears that, in the process of shortening the article to fit between the more profitable advertisements, some key arguments were lost and some were so changed that they suggested the opposite to what I had intended. I would like to clarify here three of the more important points.

Firstly, the article needs "An active switch will cause the output wire to mirror whatever is happening on the input wire". In fact the output is the opposite of the input. The switch works in the same way as a bipolar npn transistor with input wire tied to base, emitter to ground, collector to output wire and the wires pulled to the positive rail. So when the input is "passive", that is at positive voltage in the above, then the switch emits an "active impulse" — it pulls the output to the dominant ground state. When the input is "active" (at ground) then the output is "passive" (effectively disconnected) and can float high or be pulled to ground by another switch. The above mechanism is essentially the same as that used in the logic families RTL, DTL, TTL, ECL, HIL, BTL, and NMOS.

Secondly, the text of the article suggests that only 1% of a typical computer's computers results in figures of roughly 99% memory and 1% processor. But looking more closely at the processor reveals that most of it, namely the I/O latches, the registers, the microcode store, etc., is just another layer of memory, albeit the fastest. It is only the ALU and similar circuits that do the actual computing (add, subtract, and, or, compare, test, etc.) The ALU accounts for only a tenth or so of the processor, hence an overall efficiency of 0.1%.

Lastly, the impulse matrix described in the text would use conservative 1980s 3-micron CMOS technology and yield a speed index of 109 impulses per second. The figures in the last column of Table 1 are for a similarly sized 1990s impulse matrix using 1 micrometer BiMOS technology, which would consequently be one thousand times as fast.

Archie Medes
Deep Why, Australia

Electronic cameras exposed

Information on camera autofocus mechanisms is hard to find; so this article (March 1991, pp.191-195) would be of great interest to many amateur photographers. However, it left me wondering if one part of it was entirely accurate.

I have a Konica AA-35 half-frame camera with a 24mm f4 lens which seems to have sufficient depth of field to cover for any errors inherent in its two-stage autofocus system. The distance between centres of the two IR windows is 17mm.

George Cole states "When the shutter is pressed, a beam is sent from the camera and reflected from the subject into the receiver. The time taken for the camera to detect the beam indicating the subject distance". Taking a subject-to-camera distance of, say, 1.5m, this time would be t = d/vel = 2 x 1.5/3 x 109 = 10s

Is it likely that such a response time could be achieved? Is it not more likely that the system just measures the quantity of infrared radiation received, with the assumption of an average reflectance of, say, 18%?

D. L. Smith
Daventry
Northamptonshire

Turning a deaf ear

Far be it for me to accuse John Greenbank of bigotry, but I suggest that the preference of hi-fi dealers and, ultimately, their influenced customers in their choice of amplifier A over amplifier B is in any way due to technical merit — oh, come, come now. For a number of years, hi-fi products have been consumer durablesbase and subject to all the hype that one expects in the marketing process. The reviewers and "experienced" dealer staff to whom one attributes such doubtful integrity are 100% a component part of that machinery, and nowhere will you ever get them to explain the subjectivity except, perhaps, in Which? magazine. The techniques which the hi-fi business has adopted with such enthusiasm are in no way different to the puerile, women-debating adverts on TV for soap powder.

The whole issue could be resolved quite easily, if those in the subjectivist camp are prepared to accept the challenge. If amplifier A is really that much superior to amplifier B, then subject all concerned to a carefully controlled, double-blind A-B listening test and analyse the results in a proper scientific manner. I, for one, am more than ready to accept the outcome. But no — it won’t be accepted, will it? The goalposts are not movable and there is too much to lose.

Reg. Williamson
Kidsgrove
Staffordshire

John Greenbank, in his March letter about subjective audio equipment testing, says "truth of the kind being sought is not discovered by assertion and counter-assertion". I fully agree with this, which is why my letter in
the December 1990 issue (p.1044) had much to say about the actual results of various carefully organised listening tests — such results largely speak for themselves. However, it seems to me that a fairly extreme example of assertion is John’s statement that dealers unambiguously prefer a well known power amplifier to the Quad current-dumping one. He cannot possibly know whether this statement is true, for neither he nor anyone else is in a position to find out the views of all dealers. Even if a substantial number of dealers do prefer some “well known amplifier” that is at present fashionable in audiophile circles, the true reason may be that the product is very expensive and hence gives more profit per sale. These dealers are probably the same ones that try to persuade the customer to spend hundreds of pounds on special cables which confer no sonic benefit whatever — not the sort of dealers that Quad would choose for the sale of its products.

John has been willing to damn Quad in print, but I am left wondering why he didn’t feel magnanimous enough to mention at the same time the make of the preferred amplifier!

Peter J. Baxandall
Malvern
Worcestershire

New test for audio amplifiers

The pages of your journal have long rung with the clash of pens on subjective versus quantitative measurement of audio equipment. No matter how often this topic is debated, the same conclusions are always inevitable.

If two amplifiers measure identically, but sound different, then unquestionably we are not measuring the right things. As DSP techniques advance, it follows that in time it will become possible to compare audio reproduction in the laboratory by measuring only. Conversely, no sensible person would consider purchasing a bottle of vintage wine on the basis of a gas chromatograph analysis of its contents. Music, like good wine, is a sensory experience: its enjoyment cannot be measured. The “Golden Ears” brigade have lowered the subjective review to ludicrous depths, and the vocabulary of hi-fi is now identical to that of wine-tasting, and equally meaningless applied to either.

It is possible to become formally qualified as a wine-taster. A Master of Wine takes many years to achieve his (or her) high status. Because of the subjectivity/quantitative dichotomy, it is not possible to attain a formal qualification in audio auditing. An electronics engineer offers no more to music than a chemist can to wine.

Classical musicians, unfortunately, listen “in their heads”, and can be satisfied by a wind-up gramophone with a sock stuffed up the horn as their domestic sound source. Pop musicians need constant levels above the pain threshold to hear anything. What is needed is a subjective test which prospective purchasers can perform for themselves with a minimum of procedure, but with controlled repeatability.

Any traveller will have first-hand experience of the Distant Piano Effect. As you sign the register in an unfamiliar hotel you can hear, faintly, piano music playing somewhere in the same building. Even with ears ringing after hours of long-haul journeys, and listening through maybe five intervening sets of swing doors, it is immediately discernible that the piano is real, played by an actual person, or that it is piped, canned or some other draughty meg music. It is even possible to tell the make of piano and how recently it was last tuned or dropped. No hi-fi can yet achieve the same emotional subtleties and nuances.

This common effect can therefore provide the basis of a true, “double-blind” listening test. The immediate advantage is that it can be provided to visitors at any current hi-fi show venue. Far better, surely, to lounge at the hotel bar listening to live versus recorded performances happening several floors below, than to cram sweating into hundreds of exhibitors’ cells only suitable for demonstrating in-bath audio? Few exhibition hotels offer domestic living-rooms, but most possess a reasonable Steinway or Yamaha. All sell wine.

Thus hi-fi can be subjected to a simple subjective test which evaluates directly the emotional experience coefficient in real versus reproduced music, while simultaneously allowing a control cross-reference to other senses. My own experiments indicate that audio designers still have a lot of ground to cover. Californians, in particular, make much better wine than loudspeakers.

Why discuss complicated, esoteric audio testing when a simple “real or simulated” judgement can offer the layman self-evaluation?

T.W. Woodford
South Carlton
Lincolnshire

Women and mathematics

I feel that I must reply to Charles Small’s letter in your March issue on the ability of women at mathematics. Since IQ tests were used in the 1930s to “prove” the mental inferiority of ethnic minorities, I think people should be wary of using similar tests to “prove” that women cannot do maths. There may be a tendency for boys to be better at maths just as there is for girls to be better at languages but it is a tendency only and must not be used to stop women from studying maths and science.

I also feel that he has underestimated the effect of social conditioning. A study by Dr Lloyd has shown that, even at age 4 or 5, girls are often stopped from playing with Lego and other constructive toys by their male classmates, who feel these toys are for them. This may seem trivial, but many engineers and scientists will admit that their interest in science started at an early age with such toys. Interestingly, the proportion of girls from girls’ schools that study maths and science is greater than the proportion of girls at mixed schools who study such subjects. This is hard to explain in terms of the natural ability of girls at maths, but can be seen as evidence of pressure for girls to conform to a female stereotype in the mixed schools.

My final point is that I am disappointed by Mr Small’s letter because, as a woman engineer, I do not like the implication that I am in some way abnormal or unfeminine. Hopefully in the future, the place of women in science and engineering will be so assured that this will be a non-issue.

Katrina Joss
Swindon
Wiltshire

Reference

1. Lloyd B., Rules of the gender game, New Scientist, no 1993 p.60
December 2, 1989.

RDS in theory

I was interested to read the letter from T.G. Parrott in the February 1991 issue. As a technical consultant and reviewer for FWWD magazine, I have carried out comparative tests on most of the current RDS-capable Band II mobile receivers using both calibrated trials routes and a computer-controlled test rig. I agree that only a very few RDS receivers currently perform at all well, and those that do are European-sourced; those of Japanese origin all have more or less poor implementations of RDS. The limitations appear to be due to a combination of software which is nowhere near subtle enough, and hardware embodying an AF switching strategy which is some way from the best choice for European (and especially UK) conditions.

What is perhaps worse is that no manufacturer has yet seen fit to produce an implementation of the very important EON (Extended Other Networks) facility. It can be done quite easily (conversion of a commercial receiver took me approximately two days) and greatly increases the usefulness of RDS: it seems odd that manufacturers fight shy of incorporating it.

I suspect that none of the Japanese majors has truly understood what RDS is about and how to make it work properly, and no doubt having an indigenous network to play with does not help. From my own work, I have come to the conclusion that field trials over known routes are much more useful for RDS development than any amount of laboratory work.

J.H. Nelson
Shrewsbury
Shropshire

ELFin signals

I was interested in the letter from Mr Pickworth in EW + WW, February 1991 because I have had a lot of experience looking for interference. Mr Pickworth, who lives in Surrey, gave his position as 10km from Droitwich and 45km from Rugby. I had had some experience of navigation on land, sea and air, so I plotted his position on my aeronautical chart which shows radio masts. I found he lives about 15km east of Kenilworth, which is a long way from Surrey. Also the oscilloscope pictures had no time scale, so I did not write to you.
Now in March, Mr Pickworth has moved to Market Harborough, which is 22km and 48km from Rugby and Droitwich. Also he has told us that the PRF is 50, which is what I should expect.

In the last 30 years electronics has become very small but also very large. The power control systems for very large electric motors and furnaces are now electronic.

Thyrists are capable of handling thousands of amps and thousands of volts. They cause trouble for the power supply people, who make and want to sell complete sine waves, but the furnace designer only wants to buy the back half of the sine wave.

This switching generates 50Hz PRF damped oscillations which Mr Pickworth has found. I cannot visualise Mr Pickworth's circuit; he appears to use a horizontal antenna on the ground between two earth rods in wet clay — then he calls it elevated. He also refers to a common earth. Common to what?

The size of the signals from GBR and R4 surprises me. The receiving antenna is horizontal but both transmissions are vertically polarised; the relative size may be a function of the measuring equipment. The tuned circuit is tuned by a capacitor box. Capacitance for GBR is 150 times that for R4 and the Q is unknown, so the dynamic impedance at 198kHz is 100 times larger and we should expect a larger output even though the transmitter is further away. GBR is only 22km away, is very powerful and has a huge array supported by £2m of research.

I suggest Mr Pickworth removes all mains equipment; I have always used the microvoltmeter made by Level Electronics for this work. Then sound out the farmer, his bull and his dog. If all are friendly, move the experiment into a large field away from all overhead and underground cables, water troughs or any other man made devices.

Then let us know the results and include a circuit diagram with lengths of wire, positions, etc.

Michael Samain
Salford

Singing the blues
The need for absolute pitch in humans (Research Notes, March 1991) may have an origin based on the need to comprehend language. In Thai and possibly other languages, the tone of a word decides its meaning. There are five tones, normal, falling, high, low and rising. Most words are monosyllables comprising a consonant vowel combination. The tone of the vowel can provide up to five totally different meanings.

There may be few problems in distinguishing rising and falling tones without a well developed sense of pitch, but only context will enable the tone deaf to distinguish words using the other tones. The inherited characteristic to develop absolute pitch could have evolved for survival in Thailand and other countries with tonal languages.

Guy Selby-Lowndes
Billinghurst
West Sussex

Savage science
A very brief note to say how refreshing and heartening it was to read the "Flights of Conscience" editorial in the March 1991 issue. A unique chance to apply sanctions in order to get rid of Saddam Hussein's murderous regime was abandoned — politically we may yet pay heavily for this. Our fascination with the "murderous technology" seems also to paralyse our feelings for the thousands of fellow human beings torn apart by these weapons.

You rightly point out the hypocrisy which has been prevalent in this war. Western politicians would like us to turn a blind eye to their failings — I hope you will continue to ask awkward questions. You have an important platform from which to do this.

Shirley Tanley
Bow Street
Dyfed

Stopping the drift
In your article by John Lindsey Hood, I was interested in the reference to early VHF tuners. I too built a tuner based on the design by S.W. Amos and G.G. Johnstone (WR April/May, 1955). Frequency drift was a real problem, so perhaps older readers might be interested in the complete answer to this snag.

The design used the then-popular magic-eye tuning indicator; not liking this item, I used a centre-reading moving-coil meter for a tuning indicator.

In parallel with the meter is another meter movement with the dial removed; in its place is a piece of Bakelite with a small piece of sheet copper attached. The meter has a flat needle which, together with the copper sheet, forms a very small capacitor and, when connected to the oscillator tuning section, controls its wanderings caused by thermal changes. The AFC meter is 10-1ma, the tuning meter 5-0-5mA and the tuning meter moves hardly at all when an AFC is working.

This tuner is in daily use feeding a Mullard amplifier built at the same time; total replacements to date — four valves.

R. Scholey
Grimsby
South Humberside

Cross-field antenna
I sometimes wonder whether the CFA has suffered from "the Giraffe effect" — someone seeing a giraffe with its long neck for the first time is supposed to have said "I simply don't believe it." We are so accustomed to the idea that an effective radiator should have a size comparable with the wavelength that anything else is automatically disbelieved.

The CFA can be justified by Poynting's theorem that the integral of $E \times H$ over a closed surface is equal to the rate of change of stored field energy within the enclosed volume. He also showed that the power flow in an electric circuit can be measured either as the product of currents times voltage in the conductors or in terms of the integral of $E \times H$ where E and H are the electric and magnetic fields associated with the current in the circuit.

So now describe a surface which is closed around the CFA except that it is penetrated by the feeder which provides an $E \times H$ proportional to the flow of power into the system: since field energy is not going to accumulate indefinitely in the enclosed space, there must be a corresponding flow of $E \times H$ outward through some other part of the closed surface, i.e. the CFA must radiate. To validate this argument the CFA must have resistive input impedance, so that there is an inward flow of real power through the feeder; but this has been established by measurements in the UK as well as in Egypt.

The theoretical confusion has arisen from a mis-interpretation of one of Maxwell's equations for the propagation of a plane wave in a continuous medium which is usually presented in the form

$$ \mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B} = \nabla \cdot \mathbf{J} $$

where J is the current density. It is tempting to say that J times the area of cross-section of an antenna wire is equal to the antenna current j, and therefore H is proportional to j.

But this is entirely fallacious.

Each term in the differential equation refers to conditions at a particular point in space, and the same point for all of them, so the current in a more or less distant antenna wire is irrelevant to the propagating wave. This is illustrated by the calculation of skin effect in a metal or of the penetration of radio waves into sea water with H being the density of eddy current at the depth in the medium which is under consideration. Maxwell's equations for the propagation of an electromagnetic wave in a continuous medium, which is usually assumed to be non-conducting so that $H=0$, have no relevance to boundary conditions such as must occur at the boundary between an antenna and the surrounding medium.

Thinking about the CFA has clarified another problem. When presenting power loss as the standard way of finding the radiated field from a resonant half-wave dipole I was always troubled about the complexity of vector algebra involved, but now the reason is apparent: the H field is strongest at the centre and the E field at the ends of the dipole. It is also out of phase. So it is only because H in the radiated field depends on the E field, not on the current in the wire, that one gets the distinction between the "near field", produced mainly by the current in the wire, and the "distant field" or radiated field which derives from the electric field between the ends of the dipole.

D.A.Bell
Walkingdon
Beverley
Yorkshire

Editorial survey: use the information card to evaluate this article. Item H
In the last part of his series, John Linsley Hood describes the evolution of stereo broadcasting and the influence of higher-quality sound on requirements for studio-transmitter links. He also examines frequency synthesis in local oscillators and RDS.

Historically, the BBC has shown a continuing interest in the possibility of transmitting stereo radio signals since before 1957 and broadcast experimental programmes on a fortnightly basis from 1958, one channel being transmitted on VHF FM and the other using a standard medium-wave AM broadcast transmitter.

Meanwhile, the search for a stereo broadcast system which could be employed with existing VHF FM transmissions was being pursued with enthusiasm in the USA and a number of alternatives had been proposed. Six of these possible competing methods were tested by the Federal Communications Commission in the USA in 1961. The final choice was for an amalgamation of pilot-tone systems proposed by Zenith and GE, now defined as CCIR recommendation 450/1970, and broadcasting in the USA, using this system, was authorised by the FCC in June 1961. (See the WW editorial comment of the same date).

System requirements
The basic need was for a method of transmission on a single carrier of a stereo signal, having a +0.3dB audio bandwidth of 40Hz-15kHz, which would be received by an existing monophonic receiver as a normal L+R mono signal, but as a stereo signal by a receiver equipped with a decoder. It should not significantly degrade the existing FM transmissions received by normal mono FM sets.

In the Zenith/GE pilot-tone system1, this was accomplished by the method shown in Fig. 1. The existing L+R signal was broadcast to a maximum modulation level of 90% of the permitted 75kHz deviation, together with a L-R signal, which was transmitted as a double sideband AM signal, with an equivalent 45% peak modulation level. The transmission was centred on a suppressed 38kHz sub-carrier which could be regenerated from a continuously present 19kHz pilot tone, broadcast at a 10% modulation level.

This composite signal had the equivalent modulation depth of the existing 40Hz-15kHz mono transmission, where 100% was equivalent to a modulation of 75kHz.

Stereo decoding methods
In principle, all that is needed to receive the stereo signal is to use the 19kHz pilot tone to generate a suitable-amplitude 38kHz carrier waveform, from which the double-sideband L-R supersonic signal, which occupies the 23-53kHz part of the audio spectrum, can be resolved into the required L-R audio output. The L+R and L-R signals can then be converted into the left and right audio channels by the simple matrix system, also referred to as a frequency-division multiplex decoder, shown in Fig. 2.

A practical decoder of this type was shown by Browne2, and illustrated in Fig. 3, in which both the 38kHz carrier regeneration and the matrix addition were accomplished simultaneously.

Unfortunately, this simple circuit does not offer reverse compatibility in which a mono signal can be received in the absence of the stereo pilot tone. This drawback could be removed by the simple expedient of making V2 self-oscillatory, although this would slightly degrade the mono s/n ratio.

This method of stereo signal decoding was the major technique used during the 1960s, and formed the basis for the bulk of the stereo decoder ICs designed during this period, such as the Motorola MC1304, MC1305 and MC1307 and similar devices from the other major semiconductor manufacturers.

A survey of the various possible techniques for decoding the Zenith/GE pilot-tone stereo signal was made by Wireless World in September 1966, (pp. 445-448), shortly before the BBC began making test

transmissions using this system. This survey drew attention to the possibility of using a simple 38kHz channel-switching (time-multiplex) system, of the kind shown in Fig. 4, as an effective method of decoding the composite signal. There were some inherent problems in this technique, as discussed later.

A channel-switching decoder, using the circuit shown in Fig. 5, was described by Waddington in 1967. He used a pair of silicon planar transistors in a shunt-mode chopper circuit, driven by a 38kHz signal derived from the 19kHz pilot tone by way of a frequency multiplier and phase-splitter circuit.

Although Waddington’s circuit provided automatic (stereo-mono) reverse compatibility, several difficulties still remained with the 38kHz switching technique, of which the most immediately obvious was a 6dB fall in mean signal level when a stereo signal was received, due to the chopping action of the switching circuit.

A further problem was that the correct matrix addition of the L-R and L-R components of the composite signal in the time-multiplex mode would only be obtained if the reconstructed 38kHz switching signal had the correct phase relationship to the other modulation components. This was critically dependent on the adjustment of the tuned circuits in the frequency multiplier chain; if these were incorrectly tuned, the stereo separation would be greatly impaired.

Both of these problems were solved by the very elegant phase-locked-loop stereo decoder shown in Fig. 6, described by Portus and Haywood. The PLL circuit regenerated an accurate 38kHz square wave, locked in phase to the 19kHz pilot tone, so that the maximum practicable stereo separation could be ensured without the need for very accurate alignment of a tuned-circuit frequency-multiplier chain.

Equality of gain between mono and stereo operation and true reverse compatibility was automatically ensured by the

![Fig. 1. Zenith-GE composite stereo modulation characteristic, producing compatibility with existing mono receivers.](image)

![Fig. 2. Stereo decoder using frequency-division multiplex system. Channel separation was critically dependent on tuned-circuit alignment.](image)

![Fig. 3. Practical decoder of the Fig. 2 type from 1962, in which carrier regeneration and matrixing were simultaneous. Mono was not received without pilot tone.](image)

May 1991 ELECTRONICS WORLD + WIRELESS WORLD
use of the long-tailed pair switching circuit, shown in Fig. 7. A major tribute to the technical superiority and innovative quality of this design was paid by the semiconductor manufacturers, who promptly copied the design philosophy and introduced monolithic ICs, starting with the CA3090 in 1971 and, as a more exact replica, in the MC1310, LM1310, CA1310 and so on in 1972.

Channel separation and distortion specifications for BBC and IBA transmitters, and for various decoder systems, fed from an ideal signal input, were quoted by Brook.

Although some minor improvements have been made in the circuitry used in this IC system, it is undoubtedly true that the majority of contemporary stereo FM tuners use the 1310 type of decoder. Its only drawback is that the 38kHz square wave switching waveform, which is rich in odd-order harmonics, will also demodulate wide-band noise or adjacent-channel signal components based on its 3rd and 5th harmonic frequencies if they are present in its input signal: this may degrade the overall stereo s/n ratio.

The problem of the unwanted demodulation of signals near the third harmonics of both the 19kHz pilot tone and the regenerated 38kHz sub-carrier has been addressed in the LM1500A. The basic PLL oscillator operates at 228kHz and the 19kHz and 38kHz waveforms derived from this by way of a three-stage Johnson counter are free of any second or third harmonics, or their multiples. Sansui, in its TU-D99X receiver, uses a Walsh function generator to synthesise a pseudo-sinusoidal 38kHz demodulator waveform to reduce harmonic-related interference from ultrasonic and adjacent-channel signals. An explanation of this technique is given by Thomas.

Typical channel separation levels in excess of 45dB are claimed for most of the commercial PLL decoder ICs — a performance which could only be obtained using the frequency-multiplex systems of the type shown in Fig. 2 if their tuned circuits were very carefully aligned.

However, it should also be remembered that for this order of channel separation to be obtained in practice, with any of these decoder types, it is necessary that the relative amplitude and phase of the L-R and L-R modulation components should be correct in the input signal. This requirement places considerable demands on the gain and phase characteristics of the audio stages preceding the decoder.

Fig. 7. Long-tailed pair used in Portus and Hayward design was responsible for elimination of gain inequality.
PCM distribution

From the inception of the BBC broadcasting service it had been customary for the BBC to rely on high-quality telephone-line links to carry the programme signals from the studio to the transmitter; in these early days, the transmitter was likely to be fairly close to the studio and a close relationship had grown between the BBC and the GPO for the maintenance of this service.

However, the bandwidth of even these high-quality links was only some 50Hz-1kHz and the proposed audio bandwidth of 40Hz-15kHz for the new FM service could not be guaranteed, particularly for lines serving some of the projected, more remote transmitter locations. Moreover, with the new stereo broadcasting service, precise time coherence between the L and R signal channels would be essential, since any relative time delays would alter the apparent stereo image position.

The BBC decided to make use of the existing 6.5MHz-bandwidth television transmission network and to encode the audio signals in digital form. This approach was similar to that subsequently adopted by Philips in their Compact Disc recording system, but at a 13-bit rather than 16-bit resolution level, and with a 32kHz sampling rate instead of 44.1kHz.

This sampling rate imposed an absolute upper limit of 16kHz on the audio passband so, to allow a practicable low-pass filter slope, the broadcast signal bandwidth was amended to 40Hz-14.5kHz (0.2dB). The BBC 13-channel PCM encoding system is shown schematically in Fig. 8.

The way this works can be explained most easily by considering the path of a single signal channel, in which the signal first passes through a 15kHz low-pass filter with a very high attenuation rate, followed by the HF pre-emphasis network — 50μs in the UK and Europe.

Effective low-pass input filtering is essential in any digital encoding system because the presence of any components at a frequency above half the 32kHz sampling rate would create problems of aliasing, in that signals above 16kHz would be reproduced identically to those at the same frequency interval below 16kHz.

An intrinsic characteristic of the PCM system is that, after the final digital-to-analogue decoding process, the recovered waveform has a staircase-type structure in which the relative size of each individual step is determined by the sample resolution. To reduce the extent of this granularity distortion, which becomes more significant as the amplitude of the encoded signal becomes smaller, the overall input signal level to the encoder should be as high as possible.

On the other hand, it is essential that this A-to-D encoder should not be overloaded, and also that the signal should not be subjected to hard clipping, since both of these would produce audible unpleasant effects. The BBC therefore use delay-line type limiter circuits, in which the signal is delayed for long enough for an appropriate and gradual reduction in gain level to be applied. These limiters are arranged to have an absolute maximum output level of 2dB above the nominal peak programme level.

An ingenious feature of these limiters is that their actions are linked, so that if the peak output level is exceeded in one half of a stereo channel, the other channel is also limited to prevent any sudden shift in the position of the stereo image.

Since the action of peak limiting can itself introduce harmonic components, the signal encounters a further 15kHz low-pass filter before passing to the A-to-D encoder. A clocked, double-ramp-type converter transforms the amplitude and bandwidth-limited signal into a digitally encoded pulse train which is fed, along with the bit streams from up to twelve other channels, to a time-domain multiplexing circuit.

The output pulses from this are fed through a sine-squared filter, which greatly reduces harmonics beyond the second, giving a final output of a rounded-off pulse of 158ns duration at 158ns intervals. Since there is little harmonic output above the second, there is a negligible energy
content above 6.33MHz, which allows the composite signal to be carried by a 625-line TV channel.

As in the Philips Compact Disc system, a parity bit is added to each preceding 13-bit word. This provides a check on the accuracy of encoding of the preceding five most significant digits, so that if an error is detected, the faulty word can be rejected, and the preceding 13-bit word substituted.

If the error persists, the signal output is muted until a correctly encoded signal is again received. This technique gives a high degree of immunity to noise and transmission-line errors.

With a 32kHz sampling rate, the 6.336MHz channel bandwidth allows a group of 198 bits in each sample period. This contains 13 multiplexed 14-bit channels (182 bits) and 16 spare bits. Of these, 11 are used to control the multiplexing matrix and four are employed to carry transmitter remote-control instructions.

Decoding system. At the receiving end, the incoming bit stream is cleaned up, decoded using the circuit layout sketched in Fig. 9, and fed to the stereo encoding system, described below.

Stereo encoding systems. The technique employed in the Zenith/GE stereo encoding system is shown in Fig. 10. In this, the input left and right stereo channels are passed through a matrix circuit, such as that shown in Fig. 11, to generate a pair of L+R and L-R signals. In principle, an encoder of this type is required for each programme channel at each transmitter location.

The L+R (mono) signal, occupying the 40Hz-15kHz part of the audio spectrum, is then filtered and added to the double-sideband L-R modulated output of a balanced mixer, fed from a 38kHz crystal controlled oscillator, which gives rise to the 23-53kHz part of the modulation spectrum. If the mixer is accurately balanced, the 38kHz carrier component will be largely absent from the mixer output — 40dB suppression is typical.

Signal from the 38kHz quartz oscillator is then divided in frequency by two, filtered and phase corrected to provide the required sinusoidal 19kHz pilot tone, which is then added to the signal to allow the suppressed 38kHz carrier waveform to be regenerated within the decoder circuit.

Additional carrier signals

In the USA, supplementary sideband components have been added to the FM stereo signal for some years. They are called SCA (Subsidiary Communication Authorisation) or Storecast, and consist of signals transmitted as a 10% level double-sideband modulation based on a 67kHz sub-carrier. These signals are usually relatively low-quality continuous broadcasts intended to provide background music for restaurants and supermarkets; stereo FM receivers designed for use in the USA need care in decoder design to prevent inadvertently demodulated SCA signals from interfering with the wanted programme.

In Europe, an additional low-level, (3% modulation) HF signal is now added as a carrier for Radio Data System (RDS) broadcasts, which provide time, station identification and programme and road traffic information. This is transmitted as a phase-shift keyed, 7.5kHz bandwidth modulation of a 57kHz sub-carrier, initially locked in quadrature to the pilot-tone third harmonic to avoid interference with other 57kHz sub-carrier modulation.

Data is transmitted in 16-bit words at 1187.5bit/s and allows a variety of supplementary data to be broadcast. A full explanation of this system and its potential has been given by Shute[11] and commercial RDS decoders are now available as DIY add-on components for existing FM receivers. They usually require effective screening to avoid interference with the audio output signals.

Frequency synthesiser systems

Domestic users of FM receivers demand some means of accurate, preset, push-button station selection. This required accurate and stable tuning mechanisms — better, probably, than could be obtained from the existing Varicap-diode voltage-controlled tuning systems — and has encouraged the development of relatively low-cost, IC-based frequency-synthesiser techniques, using variations of the method outlined in Fig.12.

In its simplest form, the outputs of both the local oscillator X in the receiver frequency changer (which is voltage controlled because of the varicap tuning sys-
Fig. 12. Phase-locked-loop frequency synthesiser provides simple and accurate tuning for domestic users.

With the growing availability of RDS information, it is practicable for details of both the station selected and the programme being received, to be displayed on an information panel. It is also feasible for the tuner to select automatically either the type of programme material required — speech, drama, pop or classical music — or the transmitter giving the best signal strength for that programme. This will be of particular value to car radio users travelling through the reception areas of local transmitters.

References

Editorial survey: use the information card to evaluate this article. Item I.
A two-year guarantee on all our second-hand Test and Measurement equipment!

To give you the confidence that you really did save money by buying second-hand, we are the only company to offer you the protection of a two year guarantee on all the Test and Measurement equipment we supply.

Dealing in equipment from the leading manufacturers such as Hewlett Packard, Tektronix, Marconi, Philips, Gould, etc., we can offer you the best test in the best test. Call us now for more information.

0800 521231
International Callers No. 41 334 809 226

Capella-Technos, Park House, The Pavilions, Downsmill Road, Bracknell, Berkshire, RG12 1Q. Fax: 0258 8669230

11A

PC WAVEFORM GENERATOR

FEATURES

- Powerful complex waveform generator
- Four analogue outputs
- TTL outputs
- External trigger input
- Up to 6MHz clock rate
- Comprehensive software included
- Standard waveform library
- User definable waveform library
- Full graphical editor
- Time delay, continuous & single shot
- Example microcode and assembler also included for OEM applications.

APPLICATIONS

- Arbitrary waveform simulator
- Low cost ATE
- Process control
- Robotics
- FREE DEMO DISK ON REQUEST

We also supply a full range of DIY parts for PCs and clones. Call us for more information or a free catalogue.

Designed and manufactured by us in the UK. Full technical support from the designers!

Unit 14A
Sunrise Business Park, Blandford Forum, Dorset. DT11 8ST.
Telephone (0258) 451347
Fax (0258) 456046

BLACKMORE ELECTRONICS LIMITED

ELECTRONICS WORLD + WIRELESS WORLD

May 1991
With computers routinely pushing zillions of bits around without a single error, digital methods can seem infallible. In many cases, however, and particularly in data communications, it is not economic to build-in the noise immunity enjoyed by computers. Some form of error recovery then become essential.

An important and fascinating class of error protection is known as forward error correction, or FEC for short, which has the ability not only to detect errors, but to correct them, and to do so without requesting any re-transmission of the original data.

FEC coding is based on completely way-out mathematics and has a reputation for being incomprehensible, at least to normal people! This reputation is undeserved; although the theory may be pretty opaque, FEC coding is quite straightforward to implement, in either hardware or software. In this article, I will try to give an insight into how FEC methods work, with the minimum of mathematics and enough details to put FEC coding into use.

Hamming space
First, a look at the useful concept of Hamming space. Most engineers know that the Hamming distance between two binary words (of the same length) is the number of corresponding bits which are different. Hamming space is simply the space in which Hamming distances exist. Thus the binary values 10011011 and 10111010 are separated by 2 in Hamming space, since they differ in two bits.

The simple parity bit illustrates the principle of Hamming space. Figure 1 shows the complete Hamming space diagram for a 2-bit value protected by an even parity bit, which is chosen such that there is an even number of 1s in every 3-bit word. The Hamming space diagram shows all eight possible words, of which half are valid (an even number of 1s) and the other half are invalid. You can quickly see, by inspection, that no two valid words are adjacent. Every valid word is separated by a Hamming distance of 2 from every other valid word. This immediately shows how the parity bit can be used to detect a single-bit error. Every word is transmitted with the overall even parity. If, in transmission, one bit gets changed, this moves the word a Hamming distance of 1, so the word can only become one of the invalid values.

At the receiving end, each word needs to be tested simply to see whether it is valid or not. This can be done by indexing into a hardware or software look-up

FEC, CRCS AND ERROR CORRECTION

Error detection in digital data communication is well known. But to correct errors without asking for re-transmission has an aura of magic about it. David Bacon reveals the trick.

Fig. 1. Complete Hamming space diagram for 3-bit even parity.
Fig. 2. A Hamming separation of 5

Table, which is much faster than counting 1's. However, with the simple parity bit, errors can only be detected, not corrected because although it can be established that an incoming word is invalid, there is nothing to indicate which valid word was transmitted.

Correcting errors
Now suppose there was a way of adding several bits to the information to be sent, such that the valid words are all separated by Hamming distances larger than 1. Since there are now several times the number of invalid words than valid words, the valid words should be distributed uniformly within the available Hamming space such that their minimum spacing is as large as theoretically possible. Consider a tiny fragment of such a Hamming space diagram, as shown in Fig. 2. Here, two valid words, A and F, are Hamming 5 apart. If an incoming word arrives in the form of C, the most probable interpretation is that it started as A, and suffered two bit-errors in transmission. Thus, it should be corrected to A. A word arriving as D or E would be corrected to F.

If the Hamming separation between valid words throughout the entire diagram is nowhere less than 5, you can correct up to two errors in each word. This is the basis of FEC. The only problem is how to compute the additional bits needed to distribute valid words evenly throughout Hamming space. But first, some essential terminology.

Coming to terms
A very common situation, for example a 7-bit ASCII character protected by, say, an even parity bit, can be described in FEC terminology as "even-parity (6,7)". This gives the following information: "Each transmitted word, consisting of data plus protection, has 8 bits, of which seven bits are the data and the rest protection. Protection bits are computed by even parity."

The complete 8-bit word is called the codeword, the 7-bit block of data being the message; the remainder, in this case just 1 bit, is the suffix. The description before the brackets indicates how the suffix is computed. In this case, it is by even parity.

Even-parity (8,7) can only detect a single-bit error in each 8-bit codeword. It cannot correct errors, so it isn't an FEC code. In contrast, there is a real and very powerful FEC code called Golay (23,12), in which the data to be transmitted must be split up into 12-bit messages. An 11-bit suffix is then added to each 12-bit message to make a 23-bit codeword. The complete set of valid codewords has the remarkable property that their minimum Hamming distance is 7. If you mentally expand Fig. 2, you will see that this allows correction of up to three errors in each codeword.

Computing the suffix
In a datacomms specification using Golay (23,12), the error protection is likely to be defined something like this: "Error protection is provided by Golay (23,12) coding having a generator polynomial G(x) given by

\[G(x) = x^{11} + x^{10} + x^9 + x^5 + x^4 + x^2 + x^0 \]

The suffix F(x) is computed such that \(x^{11}.M(x) + F(x) \) is a multiple of \(G(x) \), where \(M(x) \) is the message polynomial."

This is the kind of thing which can be confusing if met unexpectedly. In fact, the computation is not particularly difficult. Since "Golay (23,12)" means that data will be transmitted in codewords of 23 bits, of which 12 bits consist of the actual message, an 11-bit suffix must be added. (In practice an extra dummy bit is usually thrown in to make the codeword up to the more convenient size of 24 bits, or 3 bytes, but ignore this.)

The next thing is the value of the generator polynomial \(G(x) \), in which the use of "\(x \)" may need explanation. It is often retained because the original maths allows arithmetic to any base. In a binary world, \(x = 2 \), and thus \(G(x) \) is the binary value 10000110101 or the 12-bit value C75 in hex.

Message bits are always transmitted first, followed by the suffix. So, considering first the message, here are the 12 bits written in transmission order:

```
abcdfghijkl
```

The "a" is transmitted first and, in datacomms, it is normal for data to be transmitted in increasing order of significance, so that "a" will be the least-significant bit of the actual data.

However, in the maths used to calculate the suffix, bits written in transmission order are taken in the normal sense of most-significant on the left. So, while computing the suffix, treat the message purely as a string of bits. Ignore meaning, and treat "a" as most-significant.

To add the suffix, make space at the least-significant end of the codeword. Provisionally, do this by adding 11 zeros, so the prototype codeword, now the correct length but not yet the correct value, in transmission order, looks like:

```
abcdfghijkl0000000000
```

Adding 11 zeros at the least-significant end of a binary number is equivalent to multiplying it by 2\(^{11}\). This is the origin of the term \(x^{11}.M(x) \) above: it is simply clearing space for the suffix.

Now, to compute the actual suffix, the 23-bit prototype codeword as above must be divided by the generator polynomial \(G(x) \). The remainder, when this division is completed, is the suffix, and is used in place of the 11 zeros.

Fig. 3. Hardware coding for Golay (23,12)
INTERFACING WITH C

by

HOWARD HUTCHINGS

Interfacing with C can be obtained from Lindsey Gardner, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM5 2AS.

Please make cheques for £14.95 (which includes postage and packing) payable to Reed Business Publishing Group.

Alternatively, you can telephone your order, quoting a credit card number. Telephone 081-661 3614 (mornings only, please).

A disk containing all the example listings used in the book is available at £25.50 + VAT. Please specify size required.

C HERE!

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer.

But, rather than turning up old issues of the journal to check your design for a digital filter, why not have all the articles collected together in one book, Interfacing with C?

The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a "getting started" introduction to the running of the many programs scattered throughout the book.

This is a practical guide to real-time programming, the programs provided having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Source code listings for the programs described in the book are available on disk.
The only thing you need to know, which is sometimes explained and sometimes assumed, is that division must be according to the rules of modulo-2 arithmetic. Since division can be accomplished by repetitive subtraction, we only need to define modulo-2 subtraction.

Modulo-2 works on the principle that there are only two numbers in the Universe, namely 0 and +1 (not even -1). Thus there are only four possible subtraction sums, which are:

- 0 - 0 = 0
- 0 - 1 = 1
- 1 - 0 = 1
- 1 - 1 = 0

Digital hardware engineers will recognise this as the exclusive-Or function. It is also the same as modulo-2 addition, represented by the “+” symbol in circuit diagrams to follow.

Back to school — long division
To calculate a sample Golay (23, 12) codeword, assume that the data to be sent is the current year, 1991, expressed as a 12-bit binary number. Written with the most-significant bit on the left, this is 01111000111 transmitted, in normal datacomms practice, least-significant bit first. So because, in FEC maths, the first bit transmitted is the most significant bit, write the prototype codeword with the bits in reverse order and followed by 11 zeros:

11100011111000000000000

Now divide this by 110001110101. Using the modulo-2 rules, this can be done by the old-fashioned school method of long division. Unlike 10-base arithmetic, in each column position the number being subtracted can either be subtracted once, or not at all. This depends purely on whether the most-significant bit of the previous subtraction is 1 or 0, respectively. Thus, after each subtraction, ignore leading zeros and just move the generator polynomial along to the next position, starting with a 1, pulling down enough digits to cover it.

Replacing the last 11 zeros by the remainder now gives the correct suffix, and hence the valid Golay (23, 12) code-word to transmit the decimal number 1991 is

11100011111011101110001

To confirm that this is a multiple of the generator polynomial, you should be able to divide it by 110001110101 and get a zero remainder.

Software implementation
The above division process can easily be done in software. Because in a real situation there will be many messages to code but only one generator polynomial, it is easier to bit-reverse the generator, which only has to be done once, and to process each message with the first bit to be transmitted in the least-significant position. This means swapping the above scheme left-to-right. The kernel of the task can be written in C as shown in the software Golay (23, 12) coding:

```c
int i; /* loop counter */
unsigned long buf; /* working buffer */
unsigned long poly = 0xme3; /* bit-reversed */
buf = message; /* generator poly */
/* note: higher bits = 0 where suffix will go */
for (i = 0; i < 12; i++) /* do 12 times: */
    { if (buf & poly) /* if leading bit = 1 */
        buf ^= poly; /* subtract poly */
        buf >>>= 1; /* shift word for next */
    } /* if required */
buf = (buf << 12); /* assemble complete */
/* codeword */
```

Figure 4. Software Golay (23, 12) coding.

Rather than shifting the generator polynomial along the word, shift the word through the buffer so that, at the end of the For-loop, only the suffix is left in the buffer. If the complete codeword is needed, it can be re-assembled by shifting the suffix 12 places to the left, and Or-ing the message back into its original position.

Hardware implementation
For real-time datacomms you normally need to generate FEC codewords in hardware, using shift-registers and Ex-Or gates in a circuit which implements the long division process. In Fig. 3 there are eleven shift registers R0 to R10 and six Ex-Or gates, indicated by “+”. Dataflow is left-to-right through all of these. The ganged double-pole, double-throw switch represents gating. Starting with R0-R10 all cleared to zero and the ganged switches as drawn, the twelve message bits are applied in transmission order to the input and the registers and transmission hardware are clocked for each (twelve clocks).

Then the ganged switches are moved to the other position, and a further eleven clocks will output the suffix and simultaneously clear the registers for the next
codeword. Thus codewords can be generated continuously.

How does it do it? First, note that the positions of the Ex-Or gates coincide with the 1s in the generator polynomial, written with the least-significant digit on the left, except for the first 1. It might be worth mentioning here that generator polynomials always start and end with a 1.

Second, when the signal on the “bus” is a 1, clocking the registers will do a modulo-2 subtraction of the generator plus a shift of the result one place to the right. When the bus signal is zero, only the shift occurs.

Third, the bus value comes from the Ex-Or gate on the extreme right, which performs a modulo-2 subtraction between each message bit in transmission order, that is, decreasing significance, and the most significant bit of the result of any preceding subtraction and shift.

With this under your belt, remembering the bit-reversal, it is not too difficult to see that Fig. 3 implements a modified form of the modulo-2 division (see box), in which each message bit is dealt with by itself, as illustrated in Fig. 4. It wouldn’t work in 10-base arithmetic, but it produces the same result (as shown in the box) where there are no carries between columns.

The calculation is repeated in Fig. 4, using the method followed by the hardware, with each stage identified. The decision whether to subtract and shift, or just shift, depends only on the most-significant bit at each stage, as controlled by the right-most Ex-Or gate in Fig. 3. If you care to draw up a table of all register contents for each pulse in Fig. 3, you will find that they contain the remainder at each stage.

Decoding

There are various ways in which an FEC codeword can be error-corrected in software. A very simple “brute-force” method would be to generate a look-up table for every possible codeword, all 223 of them, for Golay (23,12). Although there are several refinements to this sort of approach, none has the elegance of the most widely used technique, the so-called “syndrome” method. Like the coding procedure, this relies on the remarkable features of modulo-2 maths, and can be readily implemented in either software or hardware.

Look first at the basic maths of the syndrome method. To make this less cumbersome, we will forsake the Golay (23,12) example for the time being, and turn to a much smaller code. This has (7,4) structure, and the generator polynomial is binary 1011.

Figure 5 shows two modulo-2 division calculations. The first takes the message 1000 and computes the suffix 101. The second takes the codeword 1000101 but with the third bit errored so it is 1010101, and performs a division to see if the remainder is zero.

It isn’t: the remainder after dividing the incoming codeword by the generator polynomial is 110, indicating at least one errored bit. The syndrome procedure is now as follows. The division continues, with additional bits being supplied at the least-significant end of the word. These additional bits must be 0s when they cor-
respond to non-errored bits in the codeword, and 1s when corresponding to errored bits. In this example, since the third bit is errored and the rest are good, add two 0s and then a 1. The 1 reduces the remainder to zero and the example need not be taken any further.

Now the remarkable property of the maths at this point is that the remainders at each stage of the second division process map without ambiguity to the positions of the original errors. For instance, the last error in the word, wherever it comes, will always leave a remainder of 101. This is the first three bits of the generator; the last 1 is supplied, and thus the remainder goes to zero. If there are two consecutive errored bits, anywhere in the codeword, the penultimate remainder will be 010, and the last 101 as before. All remainders which require a 1 to be supplied, and which thus indicate an errored bit, are a unique function of the errored bit's position and the error pattern relative to the last errored bit in the codeword.

It is thus possible to supply the additional 0s and 1s for the repeat division from a look-up table or rom, and this can be "programmed" by running software which generates a test codeword with every possible combination of 2- and 3- errored bit patterns, relative to the last bit of the codeword, plus the one-error case.

Figure 6 shows how Fig. 3 can be modified to decode and error-correct Golay (23,12) codewords. The array of shift-registers and Ex-Or gates, which performs the modulo-2 division, is exactly as before. The 11 address lines of the 2048 by 1-bit rom are driven by the register outputs. Note that if you are using this hardware division system, the rom must be programmed with the remainders which appear in the bit-by-bit method illustrated in Fig. 4. This can be simulated in software just as easily as the "bit-parallel" division shown in Fig 5 (and the box).

In operation, the registers must be cleared to all zeros and the input codeword applied bit-by-bit, in transmission order, with the gating switch as drawn. The registers and the 23-bit delay register are clocked 23 times to put the complete codeword through the first division process. If the codeword contains errors the registers will now hold a non-zero value.

In practice, the second division would be run even for a zero remainder, since this is easier than omitting it. Thus after the complete codeword has been clocked through the registers, the switch is moved to its other position, and the system is clocked 23 more times. During this second process, the register contents will select 0s and 1s as required, according to the error pattern. The same bits are used to correct the original codeword, delayed by 23-clock periods.

Since it takes 46 clocks to correct a 23-bit codeword, the system needs to be duplicated to correct continuous codewords. With a little extra gating, the rom and 23-bit delay can be shared between both halves of such a system, but the rest would have to be doubled-up.

Can we draw any conclusions? Well, for improved completeness a few comments can be made:

— There is a great deal more to FEC methods than the very short treatment given here.

— The FEC suffix is sometimes called a cyclic redundancy check, or CRC.

— A suffix computed from a generator polynomial can also be used for very efficient error detection, without correction. In these cases the message is much longer than the suffix, or even of indeterminate length.

— With a computer and a lot of time, you can go searching for efficient generator polynomials yourself. Choose a generator, and codeword and message sizes, compute the suffixes for all possible messages, and find the smallest Hamming separation between valid codewords. You'll be lucky to be the first to find a useful code, but who knows?

Apart from that, in my opinion FEC codes are great fun. I also find it fascinating to think that the underlying maths is, and always has been, part of the Universe, waiting to be discovered and put to use. At least, that's what I think. Some would say that it didn't exist until someone first thought about it. Either way, I have enormous respect for those who did.

Editorial survey: use the information card to evaluate this article.
Absolute-value differencer

Using a single battery supply, the outputs of these circuits are \((V_a - V_b)\) or \((V_b - V_a)\), whichever gives a positive answer, which is the magnitude or absolute value of \((V_a - V_b)\).

In the simple version (top), the more positive input, selected by \(D_1\) and \(D_2\) — a “highest wins” gate — to the non-inverting input. Diodes \(D_3\) and \(D_4\), which form a “lowest wins” gate, select the smallest input and feed it to the inverting input. The output is therefore the larger of \(V_a\) or \(V_b\) minus the smaller of \(V_a\) or \(V_b\).

One disadvantage of the Fig.1 circuit is the forward voltage drop of the diodes. An improvement is the lower circuit, in which the diode gates are replaced by analogue switches controlled by an ALD2701 op-amp comparator, which has a good common-mode input voltage range and output swing and is therefore very suitable for battery-powered circuits. If a fast op-amp or a dedicated comparator IC were used in this position, a degree of hysteresis would be needed to avoid oscillation at the switching point.

M. Neal
London SW15

High-frequency digital oscillator

Needing a high-frequency digital crystal oscillator for use in a frequency synthesiser, I decided to save a few components by using a comparator as the oscillator to produce a square wave directly, instead of using a sine-wave oscillator and squaring the output with the comparator.

The circuit is similar to other oscillators of this type using one inverting gate, but not many gates can match the speed of the AD9685, which I used to produce ECL levels; for TTL levels, I would suggest the AD9686. A 10MHz waveform is obtained reliably, but I see no reason why much higher frequencies should not be obtained, perhaps with component value changes. Pay particular attention to the loading of the crystal. Using the 9685 gives the facility to drive a 50Ω load if the output is properly terminated.

Since the 9685 will oscillate at over 500MHz, a large, low-inductance ground plane is needed, as are short lead lengths and decoupling capacitors close to the supply pins. Analog Devices advise against the use of IC sockets.

Phil Denniss
Department of Plasma Physics
University of Sydney
Australia
40W voltage doubler

A cheap audio power IC, the TDA 2004/5, will serve to make a regulated voltage doubler giving up to 4A at 20V from a 12V car battery. The original circuit was designed to power a car radio amplifier, which needs an 18V, 4A(pk) regulated supply.

With a few extra components, the IC is used as a switching H bridge that includes thermal and overvoltage shutdown and current limiting. Since the transition times are 200ns when the IC is driven by more than 10V, switching rates of up to 300kHz can be used. In this circuit, the frequency is 35kHz; standard 85°C electrolysics give 2A continuous in an ambient temperature of 50°C or less. For higher temperatures, use 105°C, low-ESR capacitors. Efficiency is 80% for loads of 500mA to 1.5A; Schottky diodes could be used for higher efficiencies, but are expensive.

The output voltage stays within 0.1V from no load to 2A and ripple is about 0.1Vpk-pk; no-load current is only 10mA. Thermal shutdown occurs after a few seconds when the output is loaded to 4A on a 13.5V supply.

Ian Hegglun
Manawatu Polytechnic
New Zealand

On-board transistor tester

This instrument will test transistors without removing them from the printed board. A 555 multivibrator oscillates at a frequency of 1kHz, its output being taken to a 7474 D-type flip-flop connected as a toogle, which produces complementary square waves (Q and /Q) at 500Hz. Diodes D2 and D3 are red and green LEDs in the same package. Base drive for the transistor under test comes from the midpoint of the Q and /Q potential divider.

With no transistor connected, the bicolour LED appears amber, since both LEDs switch on and off at 500kHz. If a good p-n-p transistor is connected, it is on when Q is low and /Q is high, since its base/emitter is forward-biased; in this condition, neither led lights since a low Q reverse-biases D4 and the voltage across D3 is equal to V_Clevant which, for a good transistor is 0.1V. During the next pulse, Q becomes high and /Q low and a good transistor at the terminals will be off; in this condition, D3 is off because it is reverse-biased and D4 is on. The opposite effect applies if a good n-p-n transistor is connected.

A good transistor has a collector/emitter voltage of around 0.1V and a silicon diode drops about 0.6V. Each of the two loops formed by D3 and D4

Continued on page 425
THE ORIGINAL SURPLUS WONDERLAND!

MONITORS

MONOCHROME MONITORS

There has never been a deal like this one! Brand spanking new & boxed monitors at unbelievable prices. These are over-engineered for ultra-high performance. All come with glass panels, high滈 terminted with etched non-glare screen plus switchable high/low impedance input and output for daisy-chaining. All come with original cables, stand and stand end brackets. Beautiful high contrast screen and attractive case with cushioned frame. Lifetime guarantee on parts and labour. Only £95.99 each (b) or £159.99 (d) for 18".

CALL FOR DISCOUNTS ON HIGHER QUANTITIES!

Zenith ZVM-1240-EA brand new 12" amber flat screen with optional swirl and tilt base. Surfer filter with dark line. Standard TTL PC compatible. 18 bars/line. Screen is coated with "state of the art" tinted grey case. Standard 9 pin D plug (supplied) and 9 pin F type, 1 metre cord, mains lead terminated with IEC connector, 240 volts complete with operations manual. Free swirl/swivel base. An absolute gift at £59 (E) or £105 (G).

COLOUR MONITORS

Decca 16" 800 x 600 pixel colour monitor. Features a flat tube, beautiful look test case and guaranteed 80 column resolution, features usually seen only on colour monitors costing £500 or more. At the price of our previous Ready to connect to most computers or video outputs. 75% contrast input with integral audio. Features include: horizontal and vertical sweep, contrast on green Inputs; auto 15 Mhz to 150 Mhz bandwidth. £295 (E) 3/£475 (G).

Brand new and boxed 8 key PC/XT type key boxes in standard IBM grey with very attractive matt finish and "skid"-sky solid feet. Features include: 10 key Numeric keypad, 2 key Joystick and 12 key Joystick. Only £115 (E) 3/£235 (G).

CALL FOR DISCOUNTS ON HIGHER QUANTITIES!

FLOPPY DISK DRIVES

NEW 5¼" inch from £29.95!

Massive purchase of 5¼" drives enables us to present this prime product at industry low prices. All units (unless stated to the contrary) come on brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from a +5 & 12vdc; are of standard size and shape. £105 (E)...

TEF-6D-50-40.80 DS half height. BRAND NEW £79.00 (E)

Specials

TEF-6D half height series in your choice of track double sided 360/360 or track double sided 720x. £24 fully guaranteed. £17.50 (E) 3/£34.95 (G).

CHOOSING YOUR 8 INCH

Shugart 800/000 £89.95 (E)

Shugart 850 double sided refurbished & tested £225 (E)

Mitsubbi M286/83 twin double switchable hard and soft side £250 (E) 3/£416.66 (G)

Special Offers

Dual 8" drive with true capacity housed in standard case with built in power supply! £150 (E)...

Ideal as exterior drive!

End of Brand new. Stop! Brand new NEC D22/4 £8 5" memegraph of big hard disk storage! Full CPU control and industry standard 360 track double sided. £25 only. £30 for 5 or 10 (£50 for 10). £20 for 5 or 10 (£40 for 10). £15 for 1 or 5 (£30 for 5).

Supression Devices SDA 10X. Extra compact general purpose suppressor! Plastic moulded case with single bolt fixing and snap connectors. £6.50. £16 for 10 (£32 for 10). £25 for 10 (£50 for 10).

Mains Suppression & Filt RS232 interfaces

RS232 SDA 221 2 amp mains filter £17 gives an extra wide frequency range of 150 kHz to 300 MHz. Can take single and composite video. Quality manufactured to BS 613 standards. Dimensions 117 x 117 x 35.0mm. £15.95 (E) 3/£28 (G).

RS232 SDA 01325. Similar to above rated at 1-3/4 amps. £14.95 (E) 3/£28 (G).

Supression Devices SDA 10X. Extra compact general purpose suppressor! Plastic moulded case with single bolt fixing and snap connectors. £6.50. £16 for 10 (£32 for 10). £25 for 10 (£50 for 10).

AC-1032. Similar to above but 230 volts £24.95 (B) £22.95 (G)...

AMAZING TELÉBOX!

Converts your colour monitor into a QUALITY COMPUTER TV MONITOR WITH VIDEO TUNER!

Brand new high quality, fully cased, 7 channel UHF/FAL TV tuner with full interlace and switchable PAL/NTSC on board microprocessor gives ultra-clean picture with no afterimage. £199 (E) 3/£299 (G)...

AMAZING TELÉBOX!

The revolutionary way to add a quality computer monitor into your set-top environment: £299.95 (E)...

TELEBOX ST for computer video input monitors. £29.95 (B) £25.95 (G)

TELEBOX RGB for analogue RGB monitors. £65.95 (B) £55.95 (G).

TÉC Telebox also suits IBM multiscreens with monitors and typical composite and S-Video output. Oversea versions VHF A UHF cal...

BRAND NEW PRINTERS

TÉC Printer FP1500-25s daisywheel printer renowned for its reliability. Diablo type print mechanism gives superb high speed and quality. Serial RS-232C with full daisywheel. IBM compatible. £80. If you are looking for a full range of products in this field you can: Bree AM2-120 £39.95 (E) 3/£66.66 (G)...

BRAND NEW PRINTERS

TechWriter FP1500-25s daisywheel printer renowned for its reliability. Diablo type print mechanism gives superb high speed and quality. Serial RS-232C with full daisywheel. IBM compatible. £80. If you are looking for a full range of products in this field you can: Bree AM2-120 £39.95 (E) 3/£66.66 (G)...

V112 2300 BAUD MODEMS

Master Systems 2:12 microprocessor controlled V22 duplex/full duplex 2300 baud modem. Fully BT approved unit, provides standard V22 and V112/full duplex/full modulus at 1200 baud. Can save your phone bill and connect to time by a simple variation of your normal phone number. Fully protected, with 1200m single multiplex and 2 wire connection to BT. Units and cables sold separately. Fully tested and complete with data and a full 90 day guarantee. What more can you ask for at this price?

000 (E)

Only £99 (E)

V22 1200 Baud MODEMS

Brand new 1200 baud modem. Fully BT approved unit, provides standard V22 and V112/full duplex/full modulus at 1200 baud. Can save your phone bill and connect to time by a simple variation of your normal phone number. Fully protected, with 1200m single multiplex and 2 wire connection to BT. Units and cables sold separately. Fully tested and complete with data and a full 90 day guarantee. What more can you ask for at this price?

000 (E)

Only £99 (E)
The Leader range of signal sources covers audio generators, video generators, basic RF generators, RF generators with audio/video modulation, standard synthesised generators and Swemar generators.

The following lists just a few items from the comprehensive range:

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAG-27A</td>
<td>Audio 10Hz-1MHz</td>
<td>£138</td>
<td></td>
</tr>
<tr>
<td>LAG-126</td>
<td>Low Distortion 5Hz-500kHz</td>
<td>£486</td>
<td></td>
</tr>
<tr>
<td>82530</td>
<td>CPU</td>
<td>1.000 Hz</td>
<td></td>
</tr>
<tr>
<td>82586</td>
<td>8251A</td>
<td>1.300 MHz</td>
<td></td>
</tr>
<tr>
<td>82515</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82516</td>
<td>82563</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82517</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82518</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82519</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82520</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82521</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82522</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82523</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82524</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82525</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82526</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82527</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82528</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82529</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82530</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82531</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82532</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82533</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82534</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82535</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82536</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82537</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82538</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82539</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82540</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82541</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82542</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82543</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82544</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82545</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82546</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82547</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82548</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82549</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82550</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82551</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82552</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82553</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82554</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82555</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82556</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82557</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82558</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82559</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82560</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82561</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82562</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82563</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82564</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
<tr>
<td>82565</td>
<td>82562</td>
<td>1.420 MHz</td>
<td></td>
</tr>
</tbody>
</table>

Contact: Thurlby-Thandar Ltd., Glebe Rd., Huntingdon, Cambs. PE18 7DX. Tel: (0460) 412451 Fax: (0460) 450409 Telex: 32250
between pins 5 and 6 of the flip-flop has one collector/emitter drop and two diode drops to impress on the leds which, at 0.1+1.2 = 1.3V, is insufficient to turn on one of the leds which stays off if the transistor is good and on if the device has one shorted junction to make it behave like a diode; in this case the voltage drop is 1.2 + 0.6 = 1.8V.

Therefore, one led lights if the transistor is good (both p-n-p and n-p-n); both leds are off for a transistor with shorted C/E junction; and both are on if the transistor is bad. Diodes D1,2,3,4 prevent false indications of normality when a transistor with a B/C short or a B/E short is connected.

V. Lakshminarayan
Centre for Development of Telematics
Bangalore
India

Single-phase to three-phase converter

This is a method of deriving a three-phase sine-wave reference using a frequency tracking phase-shift network.

In the diagram, the analogue multiplier IC1, with R and C, forms a voltage-controlled transfer-function generator, of which the transfer function is

\[\frac{V_o}{V_{in}}(s) = \frac{V_{CM}}{(1+V_{CM}RC)} \] (1)

where \(V_{CM} \) is the multiplier control voltage.

The input signal \(V_{in} \) is half-wave rectified by IC1 and the multiplier output \(V_o \) is half-wave rectified by IC3 after being amplified by a factor of 2 in IC3. Integrator IC2 forms a low-pass filter and high-gain comparator for these two rectified signals, its output being the control voltage \(V_{CM} \) of the multiplier. This feedback loop maintains the magnitude of the transfer function at 0.5 and, under this condition, the phase of the transfer function is exactly 60°.

The phasor diagram shows how the other two phases are derived from the output of the transfer-function generator. If \(V_A = V_{in} \) is the reference phase, \(V_o \) has half the amplitude of \(V_A \) and leads it by 60°. In conjunction with the transfer-function generator, IC3 forms an all-pass network which doubles the phase lead of \(V_o \) while retaining the amplitude to that of \(V_A \) to form the second phase \(V_B \). The third phase \(V_C \) is formed by inverting \(V_o \) and amplifying it by 2 in instrumentation amplifier IC5.

Input to the circuit must be sinusoidal with no DC offset, although input amplitude is not important. Operation is from 5Hz to 100Hz, distortion is less than 2%, phase error is better than 0.7 degrees and the input should be between 1V and 5V.

Ajoy Raman and K. Radhakrishna Rao
Indian Institute of Technology Madras

Editorial survey. Use the information card to evaluate this article. Item K.
MARCONI INSTRUMENTS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP1720C</td>
<td>5555 1-150MHz sweep generator</td>
<td>£100</td>
</tr>
<tr>
<td>HP1721C</td>
<td>555A 2GHz sweep generator</td>
<td>£500</td>
</tr>
<tr>
<td>HP3520A</td>
<td>25 MHz-5GHz</td>
<td>£350</td>
</tr>
<tr>
<td>HP5965A</td>
<td>20Hz-40MHz</td>
<td>£750</td>
</tr>
<tr>
<td>HP1141T</td>
<td>8555A 110MHz system</td>
<td>£2000</td>
</tr>
<tr>
<td>HP1142T</td>
<td>8555B 1250MHz system</td>
<td>£2250</td>
</tr>
<tr>
<td>HP1141T</td>
<td>855A 18GHz system</td>
<td>£3250</td>
</tr>
<tr>
<td>TEKTRONIX 2100</td>
<td>2100MHz</td>
<td>£100</td>
</tr>
<tr>
<td>MARCONI 2170 110MHz</td>
<td>£3000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOVONTO 1129</td>
<td>AM/FM signal generator</td>
<td>£1000</td>
</tr>
<tr>
<td>COLE mains check set</td>
<td>£325</td>
<td></td>
</tr>
<tr>
<td>FARNELL SG0020 signal generator</td>
<td>£500</td>
<td></td>
</tr>
<tr>
<td>FARNELL AM/FM automatic modulation meter</td>
<td>£325</td>
<td></td>
</tr>
<tr>
<td>FLUKE 80288 transistor (AM)</td>
<td>£125</td>
<td></td>
</tr>
<tr>
<td>FLUKE 5480A-4 2-channel 50MHz oscilloscope</td>
<td>£125</td>
<td></td>
</tr>
<tr>
<td>GRODLE 2503-5 digital storage oscilloscope</td>
<td>£750</td>
<td></td>
</tr>
<tr>
<td>JU LLOYD 440 single pen chart recorder</td>
<td>£325</td>
<td></td>
</tr>
<tr>
<td>NATIONAL 7750A waveform & filter meter</td>
<td>£325</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6100M 4-channel 50MHz oscilloscope</td>
<td>£375</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6102M 10MHz dual-trace 100/2000 scope</td>
<td>£400</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6150A standard pattern generator NTSC</td>
<td>£2500</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6150B colour encoder PAL</td>
<td>£500</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6170 VHF modulator C250, PM6199 UHF</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6550 F. modulation meter</td>
<td>£500</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM7512 pulse generator 1-5MHz</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6510 250MHz counter (time 0-500)</td>
<td>£50</td>
<td></td>
</tr>
<tr>
<td>PHILIPS PM6801 receiver with 9764/01 temp unit</td>
<td>£450</td>
<td></td>
</tr>
<tr>
<td>PROSET K401 digital phase meter</td>
<td>£100</td>
<td></td>
</tr>
<tr>
<td>RACAL 9001 signal generator 5-50MHz synthesized</td>
<td>£850</td>
<td></td>
</tr>
<tr>
<td>RACAL 9002 signal generator 5-50MHz synthesized</td>
<td>£850</td>
<td></td>
</tr>
<tr>
<td>RACAL 9006A synthesized 1-5MHz</td>
<td>£50</td>
<td></td>
</tr>
<tr>
<td>RACAL 9103A micro wattmeter 0-0.2mW</td>
<td>£90</td>
<td></td>
</tr>
<tr>
<td>RACAL 9301 EFM micro wattmeter</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>RACAL 9952 200MHz counter timer</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>RACAL 9915M frequency counter 500MHz</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>RACAL Store T55 instrumentation tuneable</td>
<td>£1750</td>
<td></td>
</tr>
<tr>
<td>RALD/ROBERTS & ARMSTRONG fibre optic end angle measurement</td>
<td>£500</td>
<td></td>
</tr>
<tr>
<td>SCHLUMBERGER 410A receive test</td>
<td>£50</td>
<td></td>
</tr>
<tr>
<td>SCHLUMBERGER 4121 mobile radio test set</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>SCHLUMBERGER SRT6-GE126 excite cell test set</td>
<td>£50</td>
<td></td>
</tr>
<tr>
<td>SALES & SERVICE UJ2117/3 SECOM colour bar generator</td>
<td>£250</td>
<td></td>
</tr>
<tr>
<td>SOUND TECHNOLOGY 100AM FM stereo sig gen Band II</td>
<td>£500</td>
<td></td>
</tr>
<tr>
<td>SYSTEM VIDEO TV vectorscope waveform monitor 19</td>
<td>£350</td>
<td></td>
</tr>
<tr>
<td>SYSTRON DONNE RM1 sweepfunction generator</td>
<td>£750</td>
<td></td>
</tr>
<tr>
<td>TELEQUIPMENT CT71 transistor curve tracer</td>
<td>£90</td>
<td></td>
</tr>
</tbody>
</table>

WANTED: Top Quality Test Equipment. Please Phone or Fax Us.

Please note: All our equipment is now checked to manufacturers' specifications by independent laboratories to BS5750 certificates of calibration to this standard to be supplied at very reasonable costs. All items guaranteed for 30 months (90 days) and 7 days return for full refund warranty. URGENTLY REQUIRED FOR STOCK – high end test equipment, cash waiting for first quality second-hand instruments. ALL PRICES SUBJECT TO ADDITIONAL V.A.T.
Better video switch chips?

Video routing places special demands in semiconductor switches. Siliconix has produced a special device for the job.

Switch configuration

The switches are fully bilateral, allowing signal transmission in either direction when closed, with an $R_{DS(ON)}$ of less than 100Ω.

Switch control may be either direct by parallel DC addressing, or serial via the Philips I2C bus, as appropriate. The Philips two-wire (data and clock) bus structure has been widely adopted for television and two addresses have been allocated for use with DG894.

As can be seen from the truth table of Fig. 2, with Serial Mode (SMO) selection pin at logic 0, the address to which DG894 responds will be determined by the logic state of the SEL (SELection) pin. This allows two of these devices to be used simultaneously on any I2C bus system, while retaining independent control. Two further addresses have been allocated by Siliconix, so that a second version of the device, with different metal-mask, could allow simultaneous operation of four of these switch arrays, if desired.

The truth table also shows the eight selections possible by DC address control where the I2C bus is not implemented. Note that in this mode the SEL pin does not have any effect on the switch configuration. This allows operation of the device in a manner that is compatible with earlier Philips digital switch buses, via the SMO pin.

TRUTH TABLE

<table>
<thead>
<tr>
<th>SMO</th>
<th>SEL</th>
<th>SDA</th>
<th>SCL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>12C</td>
<td>Bus Operation</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>All Switches OFF</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Y.C</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Y1,C1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Y2,C2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>SCART1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SCART1,Y1,C1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SCART1,Y2,C2</td>
</tr>
</tbody>
</table>

X = Don't care

Fig. 2. Truth table. With SMO at 0, DG894 responds to address set by SEL pin.

Fig. 1. Arrangement of switches in the DG894.
It should also be pointed out that the number of switch-state selections is only limited to eight by the number of address lines available; in the I²C bus control mode, further combinations such as Y,C plus Scart1; Y1,C1 plus Scart2 are possible.

Applications

The chip can obviously be used singly, for example, to switch between two Scart connections and/or three S-VHS connections.

Alternatively, Fig.3 shows an application which uses two DG894 plus some standard circuit blocks to switch a variety of input standards to a common RGB plus sync output.

Process

The device is fabricated using Siliconix's d/cmos process, allowing optimisation for high-frequency signals, while maintaining low on-resistance and low capacitance. On-chip cmos circuitry provides the necessary level shifting, logic interface and latching functions to ease system design.

Should even higher bandwidths and/or lower crosstalk be required, this is possible by the construction of T switches, together with the necessary control logic, on-chip. Figure 4 shows a cross section of an n-channel device made with the d/cmos process, incorporating dinos and pmos transistors. The fabrication of the T switch is shown; the short channel feature of the
DIMOS devices offers 8 to 10 times less channel capacitance than a conventional lateral MOS transistor for a given R

The p-n junctions would become forward biased if input signals were more negative than the p substrate: for this reason, the negative supply is necessary for signals which swing below ground.

An example of the crosspoint technique is shown in Fig. 5, which is an 8 x 4 crosspoint which utilises the T switch method to provide 300MHz bandwidth, with -85dB crosstalk at 5MHz.

Fig. 5. Wide-band 8 x 4 cross-point switch, using DG894.

Siliconix, Weir House, Overbridge Square, Hanbridge Lane, Newbury, Berks. RG14 5UX. Tel: 0635 30905.

Editorial survey: use the information card to evaluate this article. Item 1.

MICROPROCESSOR DEVELOPMENT TOOLS

EMULATORS - SIMULATORS - COMPILERS - ASSEMBLERS - DEBUGGERS - PROGRAMMERS

77C82 8085 Z8 68000 8051 8086 64180 32010 68HC11 87C752 6301 6502 Z80 V20 809 740 Series V40 80188 etc.

8051 DEVELOPMENT SYSTEMS

- Pascal, C and Assemblers
- Multitasking support
- Source level debug
- Supports ALL 8051 variants
- Programmers including support for 87C751

NEW MITSUBISHI 740 SERIES

Integrated:
- Assembler
- Editor
- Emulator with Real Time Trace

UNIVERSAL TOOLS

- Universal Assembler
- Compilers
- Simulators
- Dis-Assemblers
- Programmers for PROMs, PALs etc.

IN-CIRCUIT EMULATORS

68HC11 77C82 8051 8086 NEC V Series 68000 Z80 80188 80186 and more

SMART COMMUNICATIONS

2 Field End, Arkley, Barnet, Herts EN5 3EZ. Telephone: 081-441 3890
Many Radio Amateurs and SWLS are puzzled. Just what are all those strange signals you can hear but not identify on the l.f. and h.f. frequencies? A few of them, such as c.w., RTTY, and Packet you'll know — but what about the many other signals?

Hoka Electronics have the answer! There are some well known CW/RTTY decoders with limited facilities and high prices, complete with expensive PROMS for upgrading, etc., then there is Code 3 from Hoka Electronics!

It's up to you to make your own choice — but it will be easy once you know more about Code 3.

Code 3 works on any IBM-compatible computer with MS-DOS having at least 640kB of RAM.

Code 3 hardware includes a complete digital FSK Converter with built-in 230V ac power supply and RS232 cable, ready to use. You'll also get the best software ever made to decode all kinds of data transmissions. Code 3 is the most sophisticated decoder available, and the best news of all is that it only costs £249 plus VAT!

The following modes are included in the basic program (with the exact protocols).

<table>
<thead>
<tr>
<th>Packet Radio AX 25.</th>
<th>Any speed up to 480 baud.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H: Synchronous/asynchronous, all speeds</td>
<td></td>
</tr>
<tr>
<td>Fast: Weather charts, photographs with 16 grey scales</td>
<td></td>
</tr>
<tr>
<td>Auto scales at 60, 120, 240, 480 baud</td>
<td></td>
</tr>
<tr>
<td>Morse: Automatic and Manual speed with wpm indication</td>
<td></td>
</tr>
<tr>
<td>Press DPA; 78a spec. 300 Baud ASCII</td>
<td></td>
</tr>
<tr>
<td>Wirtsdicht: 17th spec. 300 Baud ASCII</td>
<td></td>
</tr>
<tr>
<td>Sport Information: F70 spec. 300 Baud ASCII</td>
<td></td>
</tr>
<tr>
<td>Autocode: MK 5a 1/2 with all known interlavers</td>
<td></td>
</tr>
</tbody>
</table>

All modes in preset and variable user-defined baud rates and shifts.

Five options are available to use with the Code 3 and consist of:

1. OSCILLOSCOPE — this facility displays the measured frequency versus time, including split-screen, storage and non-storage modes at £25.

2. PICCOLO MK VI (Everybody wants this facility, but it's only on offer from Hoka), the well-known multimode at £60.

3. ASCII "SAVE TO DISC" Store all decoded text to Disc as ASCII £25.

4. COQUELET (Another multitone system. Only on offer from HOKA): £60.

5. SPECIAL ARQ/FEQ — Various other new ARQ/FEQ systems. £80.

Plus many other special codes. Send for details, price on application.

COMING SOON — THEY SAID IT WOULD BE IMPOSSIBLE BUT HOKA HAVE DONE IT AGAIN — AUTOCALCIFICATION OF SYSTEMS NO MORE TIME WASTED RURAL TO WORK OUT WHAT SYSTEM IT IS — LET THE NEW "OPTION 6 — AUTOCALCIFICATION" TELL YOU!

Along with the many facilities listed above, the analysis section of the Code 3 offers you a wide choice of unique facilities such as a 5 kHz to 200 MHz frequency spectrum analyser for shift measurement, plus precision speed measurement up to 0.0001Baud resolution. Other analysis facilities include Speed Bit analysis, Speed Measurement, Character Analysis, Auto-correlation of MOD and RAW signal, Bit Analysis. All these state-of-the-art features are included in Code 3 to assist the experienced user.

All options are available from the main menu, saving or loading to or from hard or floppy disk in RAW Bit form (no loss of unknown signals), hard copy with printer, on-screen tuning indicator and very easy to use online Help-files.

To order, phone us for more details or send cheque, payable to:

Hoka Electroni
Felko Clockstr. 31
NL-9665 BB Oude Pekela
The Netherlands
Tel: 010-31-9797-12227
Fax: 010-31-9797-2465

Please specify disk size 3½ or 5¼ when ordering!

All prices e.v. VAT and Shipping: price includes a free 6-month software update and life-time tech. support.

CIRCLE NO. 131 ON REPLY CARD

CIRCLE NO. 112 ON REPLY CARD

ELECTRONICS WORLD + WIRELESS WORLD
May 1991

423, KINGSTON ROAD, LONDON SW20 8JR
SHOP HOURS 9–5.30 MON–SAT. TEL 081-542 6383

CIRCLE NO. 111 ON REPLY CARD

WIDEWAVE BUSINESS COMMERCE RECEIVERS

HOKA ELECTRONICS

84 Church Street
Langford, Biggleswade,
SG18 9OA, Beds
Tel: 0462-700644
Fax: 0462-700583

Please use the same address for all orders.

For details please contact your local wholesaler or agent.
May 1991

NEVADA COMMUNICATIONS
189 London Road, North End, Portobello Road SE2
Telephone: 0705 562149
Fax: (705) 560926

CIRCLE NO. 112 ON REPLY CARD

HALCYON ELECTRONICS

Computers, test equipment, video monitors, amateur radio gear, oscilloscopes, scientific instruments, connectors, printers, power supplies, disk memories, timers, dividers, component bridges, frequency counters, signal generators, semi-conductors, integrated circuits, etc.

SPECIAL OFFERS

FARRIS, E02L variable stabilised DC 30-200 1mA. Voltage 6.3V & 2.5V. £2.50 3V fuse. £50.00 (includes VAT & P&P). 3001A 100mV–100V £29.

HOKA ELECTRONICS

84 Church Street
Langford, Biggleswade,
SG18 9OA, Beds
Tel: 0462-700644
Fax: 0462-700583

Please specify disk size 3½ or 5¼ when ordering!

All prices e.v. VAT and Shipping: price includes a free 6-month software update and life-time tech. support.

To order, phone us for more details or send cheque, payable to:

Hoka Electroni
Felko Clockstr. 31
NL-9665 BB Oude Pekela
The Netherlands
Tel: 010-31-9797-12227
Fax: 010-31-9797-2465

Please specify disk size 3½ or 5¼ when ordering!

All prices e.v. VAT and Shipping: price includes a free 6-month software update and life-time tech. support.
“Multi-media” is the combination of image, sound and communications and 1991 will be its year — at least according to Microsoft. But turning the concept into reality on the PC is a difficult task, even with the much heralded Intel 80486 32-bit microprocessor.

However many multi-media tasks lend themselves to the techniques found in digital signal processing (DSP), including document image processing, graphics animation, image compression, speech generation, speech recognition, processing sound quality and high speed data comms. So multi-media tasks could be performed on a dedicated processor, acting as a slave to the PC’s central processing unit (CPU).

DSP for multi-media
AT&T, having recognised the future market for multi-media PC workstations, has recently released its DSP3210 which builds on the DSP32c 32-bit floating point digital signal processor to satisfy multi-media needs.

One of its appealing features is the 32-bit bus master interface allowing the DSP3210 to be linked with processors from either Intel or Motorola. To meet multi-media real-time requirements it has its own operating system, VCOS, which supports multitasking, multiprocessing (several DSP3210s) and allows the DSP3210 to use the PC’s memory.

Initially the DSP3210(s) would appear as an enhanced processor on expansion boards which host either the extended industry standard architecture (esia) or IBM micro channel architecture (MCA) interface bus.

In the first instance multi-media operation would be transferred to the enhanced processor board by the system CPU and run as a closely coupled peripheral.

A reasonable assumption is that most multi-media applications will be coded in C — reflected by AT&T providing an optimised C compiler for the DSP3210. With this objective in mind, VCOS comes with its own multi-media function library for sound and graphics processing.

The first releases of the DSP3210 have a context latency of 80ns, making the device eminently suitable for real-time applications.

The 32-bit bus master on the DSP3210 allows the device to make efficient use of the PC’s own memory; it can access the system dram without the intervention of the CPU by using a memory request and acknowledgement protocol.

In principle it can execute code from dram but for real-time processing, data and program instructions can be imported directly into the DSP3210's internal ram from the PC's (slow) dram.

DSP3210 brings music and movement to PCs
Will DSP chips such as AT&T’s DSP3210 bring animation and stereo sound to the PC? Allen Brown takes a look — and listen.

DSP3210 advantages
There are three areas of the multi-media concept where the DSP3210 scores well.

Graphics processing is inherently intensive from a computational point of view. Manipulating 3-D images requires standard functions such as matrix multiplication, and the DSP3210 is well suited to performing this type of operation especially since it has support for floating point via the clip-test register in its DAU.

Algorithms for image animation will also prove to be compute-demanding since differential and translation calculations are involved. For image storage and retrieval, a variety of compute intensive compression algorithms is needed.

Efficient data throughput is vital to give the ability to process information quickly. The DSP3210 with its DMA and SIO facilities can engage in rapid access to mass storage devices or through comms links to remote data storage sites.

Sound processing whether speech recognition or synthesis, may use many signal processing algorithms. Although speech recognition is proving to be particularly difficult to implement, speech synthesis is showing more promise.

Editorial survey: use information card to evaluate this article. Item N.

Closer look at the DSP3210

The CAU contains a 32-bit arithmetic logic unit, a barrel shifter and a rich complement of 32-bit registers which are supported by 32-bit buses.

The DAU on the other hand has 40-bit accumulators for single extended precision arithmetic and a 32-bit floating point multiplier and adder (mac). This is able to operate in a single machine cycle to perform a floating point mac — an essential feature for fast signal processing.

It is also able to convert its floating point numbers into IEEE-754 floating point format or a variety of other formats including A-law and u-law for comms applications.

Other functional elements include a serial I/O (SIO) unit which supports multiprocessor interfacing and comms links, a direct memory access controller (dmac) with two 32-bit buffered channels operating with the SIO unit and a timer.

The times are used for interval measurement, event counting, waveform generation and is needed for real-time interrupts. To make the DSP3210 appear more like a general purpose microprocessor.

All interrupts and error conditions are treated as prioritised exceptions, handled through a relocatable vector table containing start addresses of service routines for the exceptions.

Block diagram of the DSP3210
HIGH POWER AMPLIFIER: For use with a car of 150 watts output. Frequency response 420Hz to 20kHz and a signal to noise ratio between 85 and 90dB. Input voltage 2.4 volts for output of 10 watts. Price £50 for 307FDS described below. A bargain at a total of £50. Offer subject to end of stock.

HIGH POWER CAR SPEAKERS: Stereo pair output 1.000 watts each. Includes 100watt 8 ohm speakers, 10watt 4 ohm speakers, 2 tweeters and oris cable. £30.00 for pair 71P93.

PERSONAL STEREO Features bag with carry handle, speaker grilles, self priming. £10.00 for 51P93. A fine portable stereo system giving high sound quality. £10.00 for 71P93.

PASSIVE INFRARED RED MOTION SENSOR. Complete with up to 8 separate adjustable detection zones. A new and affordable method of protecting and adjusting the input level to suit your existing car stereo. 70dB noise level, needs no pre-wiring. With £39.00 off for SP97B described below. A excellent bargain at £25.00.

MICROFONE CONTROL PANEL. Mainly operated with touch sensitive pads, key display, digital clock, and 2 relay outputs one for power and one for optional power programming. Includes 2 proximity controller and adjustable volume controls. £60.00 for 51P93.

FM TRANSMITTER: Complete with a standard working 13A plug. £25.00 for 71P93.

KINETIC LIGHTS: Two Prigung lamps set one with a range of up to 2000 feet. £25.00 for 51P93.

FIBRE OPTIC CABLE: Stranded with protective sheath in Violet. Price £4.00 for 51P93.

HIGH POWER AMPLIFIER: Complete with ac adapter. £25.00 for 51P93.

FM CORDLESS MICROPHONE. Small hand held unit ideal for a mobile phone. £20.00 for 71P93.

BATTERY CHARGER: Complete with a plug in charger and battery pack. £15.00 for 51P93.

10 BAND COMMUNICATION RECEIVER: Shortwave radio receiver complete with a microphone or battery. Complete with shoulder strap and mains lead. Now only £19.00, under 100MHz.

WHISPER 2000 LISTENING AID. £45.00 for 71P93.

TOOL KIT: Various items for the car. £15.00 for 51P93.

CABLE TIES: 140mm x 3mm wired nylon pack of 100 £3.00 for 10P93.

FREE AUDIOMETERS and WIRELESS MICROPHONE. Send a name and address to the above address. For a donation of £1.00 each to the National Society for the Blind.

$99.00

Bullbar new units consisting of a camera, 14mm monitor, 70 metres of cable, a set of 3 camera, 14cm monitor, 70 metres of cable, a set of 3 MEAT DISC DRIVE £15.00 for 61P93.

BRAND new units consisting of a camera, 14mm monitor, 70 metres of cable, a set of 3 MEAT DISC DRIVE £15.00 for 61P93.

1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE YOUR COPY SEND US A X99 SAE FOR A FREE COPY.

GEIGER COUNTER KIT. Complete with tube, PCB and all components to build a battery operated geiger counter. £30.00 for 51P93. Includes 1000 cell of which 500 are new, holding 100watt 10 ohm speaker.

COMPO CABLE KIT. These consist of complete composite video, stereo audio, FM or AM, stereo audio, 6V DC, 500 ohm balanced outputs. £30.00 for 51P93.

HIGH RESOLUTION MONITOR. Black and white Philips tubo in fresh condition. All in working order complete with controller, optional power supply and is easy to use. £20.00 for 51P93.

BARNET ACIDS AAA SIZE 200MAH 1.2V PACK OF 12 £1.00 for 10P93. £2.00 for 12P93.

Bullbar new units consisting of a camera, 14mm monitor, 70 metres of cable, a set of 3 MEAT DISC DRIVE £15.00 for 61P93.

FREE AUDIOMETERS and WIRELESS MICROPHONE. Send a name and address to the above address. For a donation of £1.00 each to the National Society for the Blind.

GEIGER COUNTER KIT. Complete with tube, PCB and all components to build a battery operated geiger counter. £30.00 for 51P93. Includes 1000 cell of which 500 are new, holding 100watt 10 ohm speaker.

COMPO CABLE KIT. These consist of complete composite video, stereo audio, FM or AM, stereo audio, 6V DC, 500 ohm balanced outputs. £30.00 for 51P93.

HIGH RESOLUTION MONITOR. Black and white Philips tubo in fresh condition. All in working order complete with controller, optional power supply and is easy to use. £20.00 for 51P93.

BARNET ACIDS AAA SIZE 200MAH 1.2V PACK OF 12 £1.00 for 10P93. £2.00 for 12P93.

Bullbar new units consisting of a camera, 14mm monitor, 70 metres of cable, a set of 3 MEAT DISC DRIVE £15.00 for 61P93.

FREE AUDIOMETERS and WIRELESS MICROPHONE. Send a name and address to the above address. For a donation of £1.00 each to the National Society for the Blind.

GEIGER COUNTER KIT. Complete with tube, PCB and all components to build a battery operated geiger counter. £30.00 for 51P93. Includes 1000 cell of which 500 are new, holding 100watt 10 ohm speaker.

COMPO CABLE KIT. These consist of complete composite video, stereo audio, FM or AM, stereo audio, 6V DC, 500 ohm balanced outputs. £30.00 for 51P93.

HIGH RESOLUTION MONITOR. Black and white Philips tubo in fresh condition. All in working order complete with controller, optional power supply and is easy to use. £20.00 for 51P93.

BARNET ACIDS AAA SIZE 200MAH 1.2V PACK OF 12 £1.00 for 10P93. £2.00 for 12P93.

Bullbar new units consisting of a camera, 14mm monitor, 70 metres of cable, a set of 3 MEAT DISC DRIVE £15.00 for 61P93.

FREE AUDIOMETERS and WIRELESS MICROPHONE. Send a name and address to the above address. For a donation of £1.00 each to the National Society for the Blind.

GEIGER COUNTER KIT. Complete with tube, PCB and all components to build a battery operated geiger counter. £30.00 for 51P93. Includes 1000 cell of which 500 are new, holding 100watt 10 ohm speaker.

COMPO CABLE KIT. These consist of complete composite video, stereo audio, FM or AM, stereo audio, 6V DC, 500 ohm balanced outputs. £30.00 for 51P93.

HIGH RESOLUTION MONITOR. Black and white Philips tubo in fresh condition. All in working order complete with controller, optional power supply and is easy to use. £20.00 for 51P93.

BARNET ACIDS AAA SIZE 200MAH 1.2V PACK OF 12 £1.00 for 10P93. £2.00 for 12P93.

Bullbar new units consisting of a camera, 14mm monitor, 70 metres of cable, a set of 3 MEAT DISC DRIVE £15.00 for 61P93.

FREE AUDIOMETERS and WIRELESS MICROPHONE. Send a name and address to the above address. For a donation of £1.00 each to the National Society for the Blind.
A 20MHz top quality oscilloscope for £270?

This special offer, only available through Electronics World + Wireless World, represents unbelievable value.

We have assured ourselves that the Model 1021 oscilloscope from Japanese instrument manufacturer, Leader Electronics, more than meets its published specification and is of an exceptionally high build quality. Our judgement is backed by an unequivocal guarantee.

At £270 (inclusive of test probes, packaging and delivery but excluding VAT) the instrument is an absolute bargain.

- 20 MHz dual channel operation
- Variable trigger hold-off
- 5mV/div Y1/Y2 sensitivity a: 200MHz
- 1mV/div Y1/Y2 ± 5mag at 7MHz
- 200ns/div to 0.2s/div sweep rate
- DC to 500kHz X bandwidth
- X/Y operation using Y channel
- X/Y phase shift <3° at 20kHz
- 8 cm x 10 cm display area
- Calibration accuracy better than 3%
- 1kHz internal calibrator
- Special video signal trigger modes
- Rise-time <17.5ns
- Graticule illumination
- Two x 10 probe sets included
- Unequivocal guarantee

To place your order please send in a cheque for £310.50 (which includes VAT) to the address shown. Alternatively complete the coupon with your credit card details or phone in your credit card order on 081-661 3614 (mornings only).

LEADER OSCILLOSCOPE 1021 ORDER FORM

Please send me the special offer instrument

☐ I enclose a cheque for £310.50 (inc. VAT) payable to Reed Business Publishing Group

☐ Please debit my credit card

Exp. Date

☐ Access ☐ Visa ☐ American Express ☐ Diners Club

To the sum of £216.50

Name: Mr. Ms. (with initials)...

Address

Daytime tel no:

Signature
Defining progress to HDTV broadcasting

Geoff Lewis takes a North American view of the latest manoeuvres in the battle to establish an HDTV standard.

At the end of 1987 there were two major contenders for the world HDTV standard — Japan and Europe — plus some 23 North American proposals. North America would only countenance NTSC-compatible systems because of the huge investment in NTSC by viewers, programme originators and transmitting authorities. Additional information needed to extend services to high definition was to have been provided via an augmentation channel.

But by the end of March 1990, the Federal Communications Commission (FCC) had decided that this was wasteful of frequency spectrum and so it proposed the alternative of simulcast: a station could transmit HDTV in parallel with its normal NTSC service using an alternative 6MHz channel for the new service.

NTSC-compatibility no longer seemed to be a constraint, but where was the necessary spectrum to provide these additional transmissions?

On cable and broadcast, channels can only be reused if mutual interchannel interference can be avoided, thus giving rise to the term "taboo" channels.

Interference is primarily from the power distribution within each channel spectrum, power being particularly high at carrier frequencies due to sync pulse modulation. So if the power could be more evenly distributed throughout each channel, interference should not arise and the taboo channels could be used for a high definition service.

Again, this implied a further non-compatible change to the TV signal, but allowed a high definition service to be started without disenfranchising the present NTSC users. In the future, the current NTSC channels would no longer be needed and so could be released.

The FCC further stipulated that firm
proposals by each contesting organisation had to be lodged by a deadline, resulting in six proposals being presented by end of June 1990. These included analogue, analogue/digital and purely digital systems.

During this period a tight schedule of demanding test procedures was drawn up. All competing systems were to be demonstrated under normal working conditions, with specified test signals and software so that an objective and subjective decision could be reached by June 1993 on the best proposal. This would allow the FCC to present a firm proposition for the preferred system to the 1994 Plenary session of the CCIR, ensuring that there would now almost certainly be three alternatives for the world standard title.

The six contenders include a channel compatible system from the Massachusetts Institute of Technology (MIT), a spectrum compatible system from Zenith Corporation, the narrow-muse system from NHK Japan, an advanced compatible TV system from a consortium formed by Sarnoff Labs, Thomson, Philips and NBC (ARTC), the Digitalistingu HDTV system from General Instruments Corporation and super-NTSC from Faroudja Labs. This was the situation as late as November 1990.

SC-HDTV

Spectrum compatible high definition television (SC-HDTV), the original proposal from Zenith Electronics Corporation adopts a new scanning standard to achieve high definition images. A line scan rate of 787.5 lines per frame with 59.94 frames per second gives a line frequency of 47.203kHz — three times that of NTSC.

Aspect ratio is 16:9 as internationally agreed. With 720 active lines per frame and 1280 active pixels per line, sequential or progressive scan yields a vertical resolution equal to that of a 1050 lines interlaced image.

Complex analogue and digital processing squeezes the video signal into two 3MHz baseband components. These amplitude-modulate quadrature versions of a single carrier using double sideband suppressed carrier techniques so the transmission occupies a single 6MHz channel. The carrier is thus positioned in the centres of the transmission bandwidth and since there are no carriers or sub-carriers being transmitted, the spectral power has a more even distribution.

Possibility of interference with other channels can be minimised through offset carrier techniques. Analogue signal compression is used to reduce the peak transmitted power and the complementary expansion in the receiver improves the signal to noise ratio.

The video signal source is typically RGB format with up to 37MHz bandwidth, matrixed to provide luminance and two colour difference components. Luminance is filtered to remove the DC and low frequency components which are digitised, time compressed and multiplexed together for transmission in analogue form. The complex transmission signal carries vertical and horizontal sync pulses, but at an amplitude not exceeding the average video level. Conventional NTSC techniques are used up to the second detector stage so that a standard receiver with suitable changes of scanning speeds can be used for display. A few VLSI circuits (asic) should perform all the necessary complementary processing, time expansion and filtering to restore the video signal to its RGB format.

During December 1990 it became apparent that the above proposal was just a place mariner. Zenith Electronics and American Telegraph and Telegraph Corporations had spent the previous 18 months in extensive cooperative research to produce an all-digital solution. Since Faroudja Labs has withdrawn because its system was not Taboo-channel friendly, this must now leave the two analogue/digital proposals as outsiders.

Technical details of the Zenith-AT&T proposal is still a little sparse but testing is due to start in the SC-HDTV time-slot (October 1991). The basic image format is retained but the coding which allows the digital HD signal to be contained within a 6MHz bandwidth is completely new. This has been achieved by combined efforts in video compression technology, algorithms, motion compensation and filtering — all of which take the properties of human vision into consideration. The high speed digital signal processors (DSPs) which can operate at speeds as high as 4G operations per second are being provided by AT&T Microelectronics. Since the system is digital and includes error correction coding, it can be transmitted at a lower relative power level, so that it will not introduce mutual interference between neighbouring analogue channels.

The image signal is analysed on a frame by frame basis for compression and motion compensation so it is very likely that the discrete cosine transform (DCT) is employed in the coding process.

Although not specifically mentioned, it is most probable that the digital filtering will be of the recently developed quadrature mirror filter (QMF)² type allowing for frequency fold-over and aliasing to occur in the coding chain.

By using complementary filters in the receiver decoder, these artifacts become self-cancelling and allow perfect reconstruction of the original signal even under noisy conditions. Furthermore the three-dimensional filter needed for TV image processing can be produced simply by cascading one dimensional filters.

Digicipher HDTV

Digicipher HDTV system, General Instruments Corporation, is a completely
digital system. If it performs to expectations, the technology should last well into the next century (one of the main requirements of any HDTV concept). The system — described as VHF/UHF-, cable, satellite- and VCR-friendly — includes ghost cancelling, encryption and controlled access with CD quality sound plus a tele-text/data service.

The modulated carrier frequency can safely be transmitted on any taboo 6MHz channel without problems. The final carrier is 16-QAM digitally modulated (each symbol represents 4 bits), with a symbol rate of 4.86MHz. Highly complex signal processing in the transmitter and receiver is expected to be performed using asics.

Scanning parameters include 1050 lines at 2:1 interface, with 59.94Hz field rate and 16:9 aspect ratio. A luminance and chrominance bandwidth of 22 and 5.5MHz respectively provides for a vertical resolution of better than 660 lines. High definition video input can be provided in either RGB or YUV format. Luminance and colour difference components are then sampled at 51.8MHz and multiplexed into a single data stream. Forward error correction (FEC) bits are added to give a performance better than one uncorrected error in 24h.

Bit rate compression is achieved through a complex DCT which makes use of the redundancy within a television image. The image area is divided into blocks, superblocks and macroblocks or pixels and the amplitude of each element is replaced by a DCT coefficient. These are further processed in a differencing technique and then coded using a variable run length code, to reduce the number of bits needed to define an image.

Incidentally, it is likely that a similar technique will find its way into HD-mac in Europe.

Telelta of Italy has been involved with a data compression codec developed within the Eureka program for various applications, which also uses a DCT algorithm in a similar way. Motion processing information is coded into the bit stream and frame synchronisation is provided by the inclusion of a unique 24-bit data pattern with line sync being derived by a counter. The ARTC system previously known as advanced compatible television (ACTV) together with narrow muse and super NTSC have previously been described.

Where next?

Trying to predict three years progress in the television industry is almost impossible, but a gambler should weigh up the following parameters before placing a bet.

Muse has been around for some time but is a proven technology from the 1970s. Although the muse-to-NTSC converter has now been reduced to VCR size, artifacts produced when displaying horizontal or diagonal motion are unacceptable.

A muse-to-pal version has been demonstrated, but the problems are even more intractable due to the eight field pal sequence. The all digital systems are state-of-the-art technology, as yet unproven, but are probably more compatible with ideas of the 21st century.

The smart money would now seem to favour the digital system that provides the highest image resolution achievable. At present the Zenith system with its 1575 lines at 30 frames per second, is probably the digital outsider.

HDB-mac

B-mac (multiplexed analogue components) systems have been selling into the medical, education, training, off-course betting and racing services, and financial institutions, in many places around the world.

Judging by press statements, HDB-mac is set to follow suit particularly in video-conference applications. Due to its 10.5MHz bandwidth, it is not being promoted as a North American standard for HDTV.

In essence the system consists of a modified standard B-mac encoder with extended bandwidth filters to cater for the high definition input signals and a pre-processor stage. Horizontal and vertical filtering produces spectrum folding at 7MHz and the encoder then compresses this and adds the other signal components to provide a combined bandwidth of 10.5MHz.

At the receiver, a standard B-mac decoder removes the folded component, selects the central 4:3 aspect ratio section and converts the high definition signal into a standard NTSC signal.

The HDB-mac decoder processes the same signal but at 16:9 aspect ratio, with 525 line sequential scanning at 59.94Hz field rate using a field store convertor. The system provides vertical and horizontal resolutions of 480 and 950 lines respectively — somewhat below that normally accepted as HDTV.

Are we ready for HDTV?

Does all this activity bring high definition images any closer to realisation?

HDTV only makes sense when viewed on large brightly-illuminated screens and so is unlikely to find a place in an average sized home using a cathode ray tube to provide the display.

Generally it is agreed that development of a flat plate-type solid state display is some ten years away. If this is so, the driving force in the HDTV market is unlikely to be the domestic viewer. More likely the technology will be influenced by other applications.

The computer industry wants improved definition images but seems not to be prepared to spend its own money on developing the necessary CRTs. With this in mind, why is there the urgency to define a single world HDTV television standard?

References

Editorial survey. Use the information card to evaluate this article. Item M.
Take the Sensible Route!

BoardMaker is a powerful software tool which provides a convenient and fast method of designing printed circuit boards. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC-based and dedicated design systems by integrating sophisticated graphical editors and CAM outputs at an affordable price.

NEW VERSION

In the new version V2.23, full consideration has been given to allow designers to continue using their existing schematic capture package as a front end to BoardMaker. Even powerful facilities such as Top Down Modification, Component renumber and Back Annotation have been accommodated to provide overall design integrity between your schematic package and BoardMaker. Equally, powerful features are included to ensure that users who do not have schematic capture software can still take full advantage of BoardMaker’s net capabilities.

£295

BoardMaker V2.23 is still a remarkable £295.00 and includes 3 months FREE software updates and full telephone technical support.

NEW AUTOROUTER

BoardRouter is a new integrated gridless autoroute module which overcomes the limitations normally associated with autorouting. YOU specify the track width, via size and design rules for individual nets, BoardRouter then routes the board based on these settings in the same way you would route it yourself manually.

This ability allows you to autoroute mixed technology designs (SMD, analogue, digital, power switching etc) in ONE PASS while respecting ALL design rules.

GRIDLESS ROUTING

No worrying about whether tracks will fit between pins. If the track widths and clearances allow, BoardRouter will automatically place 1, 2 or even 3 tracks between pins.

FULLY RE-ENTRANT

You can freely pre-route any tracks manually using BoardMaker prior to autorouting. Whilst autorouting you can pan and zoom to inspect the routes placed, interrupt it, manually modify the layout and resume autorouting.

£495

BoardRouter is priced at £295.00, which includes 3 months free software updates and full telephone technical support. As a special introductory offer, BoardMaker and BoardRouter can be bought together for only £495.00.

Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 0DJ
Tel 0223 277777
Fax 0223 277747

Don't just take our word for it. Call us today for a FREE Evaluation Pack and judge for yourself.

All trademarks acknowledged
IBM-PC bus input/output cards

The flexible solution

- PC/AT/386/486 compatible
- Steel cased
- Splash/dust proof
- 8088 to 80486 CPU
- Any disk combination
- Up to 10 free slots

Send, or call today for details.
Telephone 0244 520222
Hawarden Industrial Park, Manor Lane, Deeside, Clwyd, CH5 3PP Fax 0244 531043

Industrial computers

The complete solution

- Full range of cards
- Analogue and digital
- Serial and watchdog
- Designed and made in the UK
- 3 year warranty
- PC/AT and PS/2 cards

Send, or call today for details.
Telephone 0244 520222
Hawarden Industrial Park, Manor Lane, Deeside, Clwyd, CH5 3PP Fax 0244 531043

R.ST. LANGREX SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT’s, camera tubes, diodes, ignitrons, image intensifiers, IC’s, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thyratons, transistors, transmitting tubes, triodes, vidicons.

All from major UK & USA manufacturers.

Where still available.

Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP.
Tel: 081-684 1166
Telex: 946708
Fax: 081-684 3056

CIRCLE NO. 132 ON REPLY CARD

Custom metalwork — good and quick!

Plus a wide range of stock products including:

- Nine sizes of standard 19" rack cases
- New "clam" case in any depth
- Eight-card 1U Eurocard case
- Audio, video and data patch panels
- Rack blanking and ventilation panels

All use the unique IPK extrusion, giving strength and rigidity with no visible fixing screws.
Rack mounting strips, cable trays etc. from stock.

IPK Broadcast Systems
3 Darwin Close, Reading, Berks RG2 0TB
Tel: (0734) 31030 Fax: (0734) 313636

CIRCLE NO. 124 ON REPLY CARD

ELECTRONICS WORLD + WIRELESS WORLD May 1991
Avalanche transistor for fast power pulses

Transistors operating in avalanche mode exhibit extremely fast switching and provide much higher current than that obtainable from conventional devices. It has long been known that fast, high-power pulse generators could be designed using these transistors, but suitable devices have not been obtainable. Zetex, however, now produce the ZTX415, which will produce a 10ns pulse at 60A.

Fig. 1. Negative-impedance slope in secondary-breakdown region

Figure 1 shows the characteristic of an avalanche transistor, which exhibits a negative region called secondary breakdown, in which controlled switching of very high currents at high speeds is possible. Output pulse capability is limited by primary breakdown V_{CBH}, on-state voltage and mean dissipation.

Avalanche current I_{USB}, passed in the secondary breakdown region, depends on the supply to the device and its 'on' state characteristic. Figure 2 shows peak current plotted against pulse width for a sine-squared type of pulse; pulses of more than 60A reduce life span, but there is still the provision for about 1000 40ns pulses at 140A, at worst. A single-capacitor load arrangement was used to derive the Fig. 2 curves, as shown in Fig. 3.

For a V_C of 250V, avalanche current temperature dependence is slight, varying from 36A at 0°C to about 32A at 180°C. Static voltage characteristics largely dictate the circuit techniques to be used and the usable range. For a high-voltage pulse, the transistor must have a high V_{BCS} and, to produce a device with a minimum of 260V, high-voltage technology is used, which makes it possible to obtain high-current pulses with little external circuitry.

Below a minimum voltage, the device switches in a non-avalanche mode. This "starting voltage" depends on the external circuit; for a simple, single-capacitor arrangement, starting voltage varies as in Fig. 4, which shows this voltage as a function of capacitance for different drive currents. A somewhat lower starting voltage can be obtained by using a base drive with a faster rise time.

Figure 5 shows a typical application — a pulse generator, in two configurations, which uses the reflection from an open-circuit delay line; the width of the rectangular output pulse depends on the length and impedance of the line. A similar circuit, shown in Fig. 6a, uses a single capacitor to produce the 7ns sine pulse of tens
Fig. 6b. Pulse from circuit of Fig. 6a.

Fig. 7a. Further variation of pulse generator to give 80ns pulse.

Fig. 7b. Pulse output from Fig. 7a.

Fig. 8. Parallel connection of avalanche transistors for higher current.

Fig. 9. Series stack for high-voltage pulses

Instrumentation amplifier

OPA2107 from Burr-Brown is a dual, twin-fet operational amplifier, intended for use in analogue circuitry needing precision, low-noise performance and can be used as an upgrade for designs currently using bifet amplifiers. In the new device, the difet dielectrically isolated process is used to maintain very low bias currents, without compromising input offset voltage, drift and noise. Quiescent current is less than 2.5mA/amplifier. Circuits are unity-gain stable, with good phase margin.

A precision instrumentation amplifier, shown in the diagram, uses the INA106 as an output difference amplifier to extend the input common-mode range to ±10V from the ±5V of a unity-gain difference amplifier. Here, the output voltage is

\[E_o = \left(100 + 2R_f / R_g\right)(E_2 - E_1) - 1000(E_2 - E_1) \]

Leakage current between closely packed pins, as in the SO-8 surface-mount package, can be a problem, which is reduced by thorough cleaning of the board. A further reduction is gained by the use of guard tracks to encircle high-impedance nodes with a low-impedance connection at the same potential on all layers of a multi-level board.

Burr-Brown International Ltd, 1 Millfield House, Woodshots Meadow, Watford WD1 8YX. Tel: 0923 33837

Zetex plc, Fields New Road, Chadderton, Oldham, Lancashire OL9 8NP. Tel: 061 627 5105.
High power-factor preregulator

Power factor is the ratio of real power in watts to apparent power in volt-amps. When current is sinusoidal and in phase with the voltage, power factor is unity; if current is out of phase, less power is transmitted to the load, but the out-of-phase current plus that needed by the load must still be carried, the wiring and circuit breakers thereby being heavier and costlier than necessary.

With the huge number of computers and other equipment using line rectifiers and capacitor-input filters, the simple expedient used when the current is sinusoidal of placing capacitance across the equipment to bring the phase back into line is defeated by the non-sinusoidal current waveform.

For use with this type of equipment, Unitrode have the UC3854, which contains all the active devices needed to obtain power factors close to unity and further to make a preregulator capable of working from any power outlet in the world, regardless of voltage or frequency.

Two main sections of the circuit are the control circuit using the UC3854 and the power section. The power section is a boost converter, in which the inductor operates in the continuous mode. Duty cycle depends on the input/output voltage ratio and input current has a low switching-frequency ripple so that line noise is low. Output voltage is higher than the peak of the highest expected line voltage.

For control, the UC3854 sends PWM gate-drive pulses from pin 16 to the power mosfet, the duty cycle of the signal being controlled by four inputs to the device. Input \(V_{SEN} \) controls output direct voltage; \(I_{AC} \) affects line-voltage waveform; \(I_{SEN} \) and Multi out control line current; and \(V_{RMS} \), the RMS line voltage. Additional controls set start-up delay and the duration of soft-start.

To force the current to follow the voltage, a sample of power-line voltage is fed to pin 6, \(I_{AC} \) where it is multiplied by the output of the voltage amplifier in the internal multiplier to generate a reference signal for the current control loop. The current-control loop has a very wide bandwidth to enable line current to follow line voltage closely.

Line feedforward keeps input power constant with varying input voltage. The multiplier divides line current by the square of the RMS value of line voltage; its output is a current that increases with current at pin 6 and voltage at pin 7, decreasing with the square of the voltage at pin.

Unitrode (UK) Ltd, 6 Cresswell Park, Blackheath, London SE3 9RD. Tel: 081 318 1431.
Low-voltage, narrow-band FM receiver

Motorola's MC3367 is intended for narrow-band audio and data communications up to 75MHz in circumstances that need low power consumption; a VCC down to 1.1V is permissible.

Input RF is converted to 455kHz IF, filtered by a ceramic filter, amplified and taken to a conventional quadrature demodulator; modulation bandwidth is 3 to 5kHz. There are buffers for audio or data amplification, active filtering, on-board voltage regulation, a programmable low-battery detector and disable circuitry.

MC3367 can be used as a high-performance FM IF for low-power, dual-conversion receivers, but is also usable as a stand-alone, single-conversion, narrow-band receiver at frequencies up to 75MHz, when image-frequency interference is not a problem. In this case, an RF preamplifier will be needed to overcome preselector losses.

The oscillator is a crystal-controlled Colpitts type, with parallel-resonant resonators for fundamental-mode crystals and third-overtone crystals for higher frequencies; two 455kHz ceramic filters are used for best channel and sensitivity response, but can be replaced by 100nF coupling capacitors with some performance degradation.

Data buffering provides a voltage gain of about 3.2 and needs about 250mV of external bias; a single-pole RC filter on the buffer input supplies the bias and some post-detector filtering. This and the audio buffer (which must be AC-coupled) can be used to allow simultaneous audio and very low-speed data reception, or to receive audio only and provide a noise-triggered squelch. Application note MC3367 gives full practical details of the circuit.

Motorola Ltd, European Literature Center, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP. Tel: 0296 395 252.

Editorial survey: use the information card to evaluate this article. item O.
Picture clears for CCD full-facility cameras

For more than 20 years Plumbicon/lead-oxide-vidicon camera pick-up tubes and close relatives such as the Saticon have dominated the high-quality broadcast scene. But it now seems likely that the present generation of tubed cameras will be the last, with the solid-state CCD-sensor camera taking up the challenge not only for portable, lightweight electronic-news-gathering (ENG) cameras but also, most recently, for full facility studio and major outside broadcast events.

Broadcasters agree that CCD cameras are now routinely producing pictures of a quality equivalent to that of the best pick-up tube cameras when carefully set up by experienced staff — a quality which in practice cannot be maintained on a day-to-day basis.

But this does not mean that CCD cameras cannot be further improved; in some respects their introduction has put the clock back rather than forward. There are still, as John Wardle (BBC Head of Technical Investigations and Evaluation) stressed at an IEE Colloquium “Recent Advances in Broadcast Television Cameras: Optics, Sensors and Processing”, quite severe problems of sensor blemish and reliability, streaking, reflections, flare, camera ergonomics, including poor weight distribution and the need for strain-free viewfinders and hoods.

CCD sensors also set more difficult requirements in limiting the effects of chromatic aberrations and specification of the zoom lenses; new glass materials are helping.

Of the three main types of CCD arrays, interline-transfer (IT) sensors continue to suffer from vertical smear produced by very strong highlights and are used primarily in ENG and for other less critical cameras.

Frame-interline-transfer (FIT) chips overcome this problem at the expense of larger total chip area and complexity. They are significantly more costly, though their performance under working conditions far exceeds the average performance level of tube cameras.

Frame-transfer (FT) cameras use a mechanical shutter to eliminate vertical smear and are featured by one manufacturer. The BBC has decided that only FIT or FT cameras offer high enough overall quality for studio or OB use.

Initially, the problem that delayed introduction of CCD sensors throughout the 1970s was primarily that of achieving a sufficiently high packing density in the chip to provide adequate resolution with a reasonable yield. The number of horizontal pixels, under 100 in 1972 and about 250 in 1980, rose to about 500 by 1986 and currently is about 750-800, representing some 440,000 to 480,000 total pixels, all ideally active and providing identical performance characteristics. A Sony proto-

Broadcasters agree that CCD cameras are now routinely producing pictures of a quality equivalent to that of the best pick-up tube cameras.

Digital signal processing used by Panasonic in the AQ-20 camera and AJ-D310 camcorder.
type 16:9 aspect ratio, DTV FIT CCD camera has 1920 horizontal pixels and 1036 vertical pixels (over two million pixels) but this requires an extremely large chip with consequently a much reduced yield.

The BBC has found that "it is practically impossible to purchase CCD sensors without any defects and particularly even with no defects in the central zone" (specified for tubes). It has also been found that, despite claims for infinite life without replacement, CCD sensors tend to develop extra blemishes quite quickly. John Wardle says: "BBC experience so far is not good, with several cameras failing due to increased blemishes over a three or four month period, and others during the acceptance period".

On camera ergonomics, he suggested that more of the weight of a camera plus zoom should be towards the back adding that the early-1970s EMI-2001 camera, if fitted with CCD sensors, "would still be the choice of many cameramen".

The morning session was devoted to camera optics, an arcane subject for many electronics engineers. Jacques Angenieux described his patented "intelligent" lens and prism with microprocessor control that can deliver an image virtually free of longitudinal chromatic aberration, which has become more important with the emergence of CCD sensors.

Several speakers emphasised the importance of the modulation transfer function (MTF) of lenses involving complex acceptance tests; the need for in-service checks to measure MTF degradation; the need for optical manufacturers to provide more information on and specifications of their products. An EBU technical document "Specifications for film and television lenses" is due to be published shortly, resulting from some eight years work by an EBU specialist group on lenses. Improved optics will be needed for DTV although the demanding requirements for these are already met for film-making. A high-quality zoom can cost up to £50,000 more than the camera.

Ian Sheldon (Sony Broadcast) explained how the new Hyper had sensor offers double the sensitivity of the Had (Hole Accumulated Diode) sensor introduced about a year ago. This is achieved by having an on-chip microlens array that serves to concentrate the light onto the photosensitive areas of the array without introducing any performance disadvantages to the basic had sensor, although adding to fabrication difficulties. The had sensor has a heavily-doped P-type region only two or three molecules thick at the surface to trap random electrons generated there. This reduces dark current and dark noise; also, since there is no need for a polysilicon electrode, it provides much higher sensitivity.

Steve Owen (Panasonic Broadcast Europe) made a strong case for more digital signal processing within the camera head. Panasonic believes that future cameras and virtually all broadcast technology will be digital.

Digital signal processing was first introduced about one year ago in the lightweight AQ-20 camera in conjunction with an analogue CCD sensor. Similar processing is used in the AJ-D310 digital camera/recorder, shown at IBC-90, with 480,000-pixel FIT sensors.

Intelligent dynamic prism developed by Angenieux to eliminate longitudinal chromatic aberration.

Sony's microlens array of the Hyper had CCD doubles sensitivity, providing equivalent of an extra f-stop.

Editorial survey: use the information card to evaluate this article. Item P.
COMMERCIAL QUALITY VHF/UHF RECEIVER

The IC-7700, advanced technology, continuous coverage communications receiver has 99 programmable memories covering aircraft, marine, FM broadcast, Amateur radio, television and weather satellite bands. For simplified operation and quick tuning the IC-7700 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by tuning the main tuning knob FM wide/FM narrow/AM upper and lower 155 modes with 6 tuning speeds 0.1, 1.0, 5.0, 10, 12.5 and 25kHz. A sophisticated scanning system provides instantaneous access to the most used frequencies. By depressing the Auto-M switch the IC-7700 automatically memorizes frequencies in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. Readout is clearly shown on a dual colour fluorescent display. Options include the IC-12 in/out radio remote controller, voice synthesizer and IC-27 headphones.

Please send information on Icom products & my nearest Icom dealer.

Name/address/postcode:

Job Title:

Tel:

Post to Icom (UK) Ltd Dept. WW, FREEPOST, Herne Bay, Kent CT6 8BR
WANTED}

TRANSMITTER

Serious buyer wishes to purchase used 50W UHF transmitter.
Please call Mr Parry in New York
212 541 4420

STEWART OF READING

110 WYKEHAM ROAD,
READING, BERKSHIRE, P.L.
TELEPHONE 0734 60041
FAX 0734 351696

TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Sinclair, Electronics, Stockholders,
23 Norman Lane, Raby Hey, Woking,
Herts AL9 9TQ. Telephone: 0432 812 193.
Mobile: 0860 214302. Fax: 0432 812 387.

WANTED:

- Test equipment, receivers, valves, transistors, transformers, components, cable and electronic scrap.
- Prompt service and cash.

M & B RADING

86 Bishopping Street,
Leeds LS1 4BB.
Tel: 0532 435649
Fax: 0532 426881

WANTED

SCRAP 9 SURPLUS

ELECTRONIC
EQUIPMENT, COMPONENTS,
VALVES, PCB'S ETC
(SENSITIVE EQUIPMENT SMASHED AND SCRAPPED). I AM ALL SQUARED UP FOR COMPLETE DISCRETION AND IMMEDIATE SETTLEMENT.
EALING HEALTH AUTHORITY
DISTRICT ESTATES DEPARTMENT

INSTRUMENTATION ENGINEER
£12,000-£14,000 per annum inclusive

We are looking for an electronics/ instrument engineer to work in the Electromedical Unit of the District Estates Department. The work involves repair, calibration, safety and performance testing on a variety of medical equipment in use throughout the District Health Authority. Applicants should possess an HNC, HTEC or equivalent in electronics engineering and have a good knowledge of medical engineering systems.

For an informal discussion/further information contact Mr M. Trand, Medical Electronics Manager. Tel: 081-574 2444 Ext. 3668.

Job description and application form available from the Personnel Department, St Barnard’s Wing, Ealing Hospital, Uxbridge Road, Southall, Middlesex UB1 3EU.

Closing date for receipt of applications 17 May 1991.

WORKING TOWARDS EQUAL OPPORTUNITIES
IBM COMPATIBLE AT MOTHERBOARDS, CARDS etc.

25 Mhz 486 Very latest board mated with extra 60K cache. Landsmark speed approx 100 Mhz. Floating point co-processor built in CPU. Eight expansion slots. ISA for all cards. $799 (carr.)

33 Mhz 286 Very performance mated board. Same system: 12Mbyte Quantum hard disk drive controller card. Landsmark speed 22 Mhz. accepts up to 8 Mbyte SAMP RAM, otherwise in our systems $499 (carr.) $599.

12 Mhz AT compatible board. $995 (carr.) Full A20 bus with diagnostic etc. 8052 socket. Landsmark speed of 16 Mhz, accepts up to 4 Mbyte of SAMP RAM, on board. $99.00 with 1 Mbyte RAM. (carr.) $59.00 (carr.)

16 Mhz 286C microprocessor card. AT Mark IO hardware. EGA 2 serial, 1 game. 2 floppy IDE hard drive $375 (carr.)

XT AT compatible board. $695 (carr.)

Monitors - Mono

14 inch 1024 x 768 VGA Latest model. VGA 0.28 dot pitch. Displays up to 1024 x 768 at a very high quality. $279 (carr.) $499. (carr.)

Hitachi cad colour monitors

25" monitor: $1095.00 Plus VAT up to 1280 by 1024 (ex dem.) $995 (carr.)

20" fixed frequency 50 Hz, VGA monitor: $395.00 Plus VAT (ex dem.) $345.00

16" fixed frequency 60 Hz, VGA monitor: $215.00 Plus VAT (ex dem.) $195.00

(see the above page for all details)

DIGITISES (ex dem.)

Hewlett-Packard 1200: 12" x 12" PC compatible, standard interface, supported by all PC applications packages offering display input and UPS (ex dem.) $599 (carr.)

20" fixed frequency, VGA monitor: $395.00 Plus VAT (ex dem.) $345.00

16" fixed frequency 640 x 480, VGA monitor: $215.00 Plus VAT (ex dem.) $195.00

(see the above page for all details)

Laser Printer

Acorn LP-16 HP LaserJet compatible: 8 mips. 300 x 300 DPI. 128K expandable to 4 Mbytes, standard Comes with interface, with warranty paper tray giving paper capacity of 400 sheets to other Laser writer $295 (carr.) $220

Power Supplies

Astec BM100 (IBM XT/AT compatible: 150W: (carr.) 15A at 5V: 3A at 12V: 4A at 25V. 5A at 0.5A: fan cooled. New.)

Farnell 1010 (carr.) 5A at 20A: 12V at 2A: 12V at 2A: 24V at 5A: 80w at 1A. Professional plus $299.00

 differed (3) cables, plus and accessories for above available from local stores.

VGA Cards

16 bit VGA and: 256K, all emulations. All BIOS and supported by all PC applications packages offering display input and UPS (ex dem.) $599 (carr.)

16 bit 1024 x 768 super VGA card: Very high resolution with 64K and drivers for Windows 3.3. Acorn VGA etc. Full manual and disk pack.

External leases. (carr.) $199.00 Plus VAT (ex dem.) $179.00

FAX CARD Plug in card expansion slot. Giving powerful fax features: AT5: Cipher 1: Approved Group II Intelligent replacement card with multiple modem and soft, scheduling. With disk, cassettes and full user manual $199.00

Ethernet Card: Novell compatible $195 plus VAT (ex dem.)

(see the above page for all details)

OVERSEAS ADVERTISING AGENTS
France and Belgium Pierre Moussard: 18-20 Place de la Madeleine, Paris 75008

United States of America Jay Feiman. Reed Business Ltd. 205 East 42nd Street, New York, NY 10017 - Telephone (212) 867 2080 - Tlx 23827.

Printed in Great Britain by Riverside Press, Gillingham, Kent, and by Westype by Martin Graphics, Sidcup, Kent DA1 4DT. for the proprietors, Reed Business Publishing Ltd, Quadrant House, The Quadrant, Surbiton, Surrey KT6 4DX. Enquiries and complaints to Advertising: (081) 557 0000. Information: (081) 557 1000. Distributed by M&B Electrical Products, Ltd., 101 New Oxford Street, London WC1N 1DX.

COLOURJET 132
COLOUR INK JET PRINTER

Compatible with:–
IBM pc
Archimedes
Nimbus
BBC Micro
Amiga
Apple Mac
(serial version)

LOW COST
LIST PRICE
from £636 + VAT

EMULATES OTHER COLOUR PRINTERS EG. IBM 3852, Canon PJ1080A, Quadjet
PRINTS OVERHEAD TRANSPARENCIES

EDUCATIONAL DISCOUNTS AVAILABLE

INTEGREX LTD.,
CHURCH GRESLEY, SWADLINCOTE
DERBYS. DE11 9PT
Tel (0283) 551551
Fax (0283) 550325
T/x 341727 INTEGX
IC PROGRAMMING TESTING & ERASING SOLUTIONS

PC82 UNIVERSAL PROGRAMMER & TESTER £395

Universal programmer. The complete designer's kit. This will program EPROMS, EEPROMS, BPROMS, PALS, GALs, EPLD's, Z8 and 87XX microprocessors. A unique feature is the testing of logic parts such as 74LS393 etc. The PC82 can check and identify parts. Already programmed are the TTL & CMOS logic test vectors. Software is supplied to write vectors for most unique chips. One of the most popular programmers in the USA.

TTL, CMOS, DRAM & SRAM TESTING
PC82 can test and verify any TTL/CMOS logic chip, DRAM & SRAM. The software will also identify a TTL chip. Do you have a few TTL chips aside not knowing whether they are working?

ADAPTERS FOR PC82
A range of plug-in adapters to expand the capability of the PC82.
PLCC for Pals, 4-gang Eprom, 4-gang Gal, & 4-gang Pal are popular examples from the extensive range.

DEVICE GUIDE

EPROM NMOS 2716, 272010 (1 mbit) Vop 12.5, 12.9, 21.25
EPROM 27513, 270104000, 8764-87256; CYC2XX SERIES
EEPROM 2816, 2816A, 2817, 2817A, 2864A
EEPROM 9306, 9307, 9308, 9356, 93C500, 26, 44, 56, 66, 28256A
BPROM 32x8 to 4096x8, incl. 63S050, 7C28X, 29X.
PAL 10, 12, 14, 16, 16/20- L, R, P1, 1, 2, 4, 8, 10 (20/24-pin)
GAL 1618, 18, 2816, 2818, 22V10
EPLD 2010, 22V10, 6F10, 1200, 600, 690, 910, 5C501, 32, 60, 90
CMOS EPAL C16L8, R4R6, R4, C18V8, C20G10, LV8, R6R4, C22V10
MPU 28, 8748, 49, 51, 51, 53, 1532, C552, Inc. encryp, lock bits
Device testing TTL/CMOS logic, DRAM & SRAM

FEATURES ALL MODELS
For the IBM PC, install the interface card and programming socket, load the menu-driven software and you have a complete design system at your fingertips.

EASY TO INSTALL
The programmer comes with an interface card that plugs into any free slot of your PC. There is no DMA channel to worry about and it occupies limited I/O space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again.

S U I T S A L L P C ' s
The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPaq the programmers will work. The software is text only monographico so is compatible with any machine.

SOFTWARE DRIVEN
All software for the programmers is supplied on 5 1/4" low-density disks. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu-driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically. Free software updates for new types which are continually being added.

The menu-driven software is a full editing, filing and compiling package as well as a programming package. Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled instantaneously. Device blank check, checksum, program, verify, read and modify are all standard features. Hex to bin file conversions included for popular file formats including Intel Motorola etc. 2 ways/4 ways bin file splitter for 16/32 bit file data. Selection of speed algorithm for FAST, INTELLIGENT, INTEL etc.

PC86 HANDY POCKET TESTER £99
Tests all popular TTL 74/54, CMOS 40/ 45 & DRAM types, can search and display type number of unknown/house marked types. Simple operation. 9 volt battery operated with LCD display.

M1 FAST ERASER £99
NO MORE WAITING FOR EPROMS TO ERASE. New advanced UV source gives under 2 minute erasure time on most types of modern EPROM. Digital down counter & display plus added features for simple operation in use. Large capacity e.g. 13 x28 pin devices. Small footprint. Designed for heavy industrial/workshop use. UK design & manufacture.

PC84 EPROM PROGRAMMERS
1-GANG £139, 4-GANG £199 & 8-GANG £299
PC84 -1, -4, -8 Eprom programmers only. The variant is only gang size. The -4 and -8 gang will program multiple EPROMS simultaneously. Device sizes are from 2716 to 271000 both C and NMOS. 2IF (zero insertion force) sockets are used on all models.

ORDER INFORMATION
ACCESS, VISA or CWO. Official orders welcome from Government bodies & local authorities.
Please include VAT or carriage. plus VAT on all UK orders. All pricing includes software, interface card, socket box and full instructions. (Prices do not include VAT or carriage)

CITADEL PRODUCTS LTD
Dept. WW, 50 High St. Edgware, Middx. HA8 7EP
Tel: 081-951 1848

CIRCLE NO. 101 ON REPLY CARD