ELECTRONICS WORLD

+ WIRELESS WORLD

JULY 1990 £1.95

PC SOFTWARE
Lab Windows reviewed

TECHNOLOGY
Choosing and using programmable logic

ENGINEERING
Micro-cap circuit simulation

CIRCUIT DESIGN
PRECISION AMPLIFIERS
MICRO-CAP III.
THIRD-GENERATION INTERACTIVE CIRCUIT ANALYSIS. MORE POWER. MORE SPEED. LESS WORK.

MICRO-CAP III.™ the third generation of the top selling IBM® PC-based interactive CAE tool, adds even more accuracy, speed, and simplicity to circuit design and simulation.

The program’s window-based operation schematic editor make circuit creation a breeze. And super-fast SPICE-like routines mean quick AC, DC, Fourier and transient analysis – right from schematics. You can combine simulations of digital and analog circuits via integrated switch models and macros. And, using stepped component values, rapidly generate multiple plots to fine-tune your circuits.

We’ve added routines for noise, impedance and conductance – even Monte Carlo routines for statistical analysis of production yield. Plus algebraic formula parsers for plotting almost any desired function.

Modelling power leaps upward as well, to Gummel-Poon BJT and Level 3 MOS – supported, of course, by a built-in Parameter Estimation Program and extended standard parts library.

There’s support for Hercules® CGA, MCGA, EGA and VGA displays. Output for laser plotters and printers. And a lot more.

Naturally, you’ll want to call or write for a free brochure and demo disk.

Data Technology Datech Ltd.
Sidcup Technology Centre,
Maidstone Road, Sidcup,
Kent DA14 5HT.
Telephone: 081-308 1800
Fax: 081-308 0802

MICRO-CAP III is a registered trademark of Spectrum Software
Hercules is a registered trademark of Hercules Computer Technology
IBM is a registered trademark of International Business Machines, Inc.
CONTENTS

FEATURES

CURRENT FROM VOLTAGE 568
Supply current sensing allows conventional op-amps to function in a current rather than voltage amplification mode without the requirement for a floating load.

AUDIO MIXER DESIGN 575
Resolving conflicts between headroom, noise contribution, linearity and current consumption stretches a talent for analogue design to the limit.

HIGH ACCURACY BRIDGE AMPLIFIER 582
Bridge amplifiers are notoriously difficult to trim. Derek Shell presents a design which requires just one precision resistor and has no common mode error.

SUPERCAPACITOR FILTERS 584
Frequency dependent, negative resistance filters provide high accuracy alternatives to analogue LC and digital stored coefficient designs.

MODEMS FOR TELEMETRY 588
Increasing use of telemetry has spurred development of transmission standards. The chip makers back the new systems with advanced products.

INTERFACING WITH C 591
Signal processing with C unavoidably requires mathematical spadework. Howard Hutchings presents the essentials for serious application development.

OPTICAL FIBRE GYROSCOPES 608
Not all gyros need a spinning mass. John Nuttall points out that the optical alternatives possess unique advantages which may outweigh the added cost.

REVIEW – LABWINDOWS 615
The IBM PC data acquisition business is booming. Allen Brown reviews a software development package which takes the effort out of code writing.

CHOOSING AND USING PROGRAMMABLE LOGIC 621
System designers face a bewildering choice of architectures with which to integrate glue logic functions. Steve Hannington provides a guide through the maze.

REVIEW – MICROCAP III 629
Fast, accurate and easy to use: Ben Duncan uses all the superlatives on this circuit analysis program. Why?

AUDIO PREAMPLIFIER DESIGN 634
Excessive preamplifier headroom.

REGULARS

COMMENT .. 555
Who questions, who cares.

RESEARCH NOTES 559
Microchip fuel cells, atomic snooker and battery powered contraceptives.

UPDATE ... 562
Renewed concern over non-ionising radiation hazards.

NEW PRODUCT CLASSIFIED 597

LETTERS .. 602

PIONEERS 605
At the tender age of six, Irving Langmuir nearly killed himself sniffing chlorine. He lived, and went on to improve the performance of thermionic valves and many other contemporary technologies.

CIRCUIT IDEAS 612

APPLICATIONS 640
A new chip-set provides high accuracy compression and expansion for radio microphone systems.

PATHAWKER 642
Will HDTV ever find a consumer market? Plus a better system for digital FM transmission.

More information on an advertised product? Use our special reply form on the last page.
BELL RANGE OF IBM COMPATIBLE COMPUTER SYSTEMS

Technical Information

<table>
<thead>
<tr>
<th>CPU</th>
<th>Clock Speed</th>
<th>Land -mark MHz</th>
<th>Max. RAM Mb</th>
<th>Cache MB</th>
<th>Slots</th>
<th>8/16/32 bits</th>
<th>Prices (£): Motherboards</th>
<th>Prices (£): Complete Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>8086</td>
<td>12</td>
<td>2.8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45 109</td>
<td>669 999</td>
</tr>
<tr>
<td>80286</td>
<td>16</td>
<td>16.5</td>
<td>8</td>
<td>3</td>
<td>4/8</td>
<td>24/40</td>
<td>109 169</td>
<td>739 869</td>
</tr>
<tr>
<td>80286</td>
<td>16</td>
<td>21.5</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>139 213</td>
<td>775 905</td>
</tr>
<tr>
<td>80286</td>
<td>20</td>
<td>27.0</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>189 265</td>
<td>875 999</td>
</tr>
<tr>
<td>80386SX</td>
<td>16</td>
<td>21.0</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>239 315</td>
<td>925 1019</td>
</tr>
<tr>
<td>80386SX</td>
<td>20</td>
<td>27.5</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>299 395</td>
<td>999 1095</td>
</tr>
<tr>
<td>80286</td>
<td>20</td>
<td>34.0</td>
<td>16</td>
<td>-</td>
<td>1/2</td>
<td>6/16</td>
<td>509 699</td>
<td>1279 1305</td>
</tr>
<tr>
<td>80386</td>
<td>25</td>
<td>43.0</td>
<td>16</td>
<td>32</td>
<td>2/6</td>
<td>8/16</td>
<td>629 719</td>
<td>1389 1419</td>
</tr>
<tr>
<td>80386</td>
<td>25</td>
<td>43.0</td>
<td>32</td>
<td>32</td>
<td>2/6</td>
<td>8/16</td>
<td>849 939</td>
<td>1769 1809</td>
</tr>
<tr>
<td>80386</td>
<td>33</td>
<td>58.0</td>
<td>16</td>
<td>32</td>
<td>64/256</td>
<td>8/16</td>
<td>1189 1269</td>
<td>2109 2139</td>
</tr>
<tr>
<td>80386</td>
<td>33</td>
<td>59.0</td>
<td>32</td>
<td>128</td>
<td>1/2</td>
<td>6/16</td>
<td>1509 1595</td>
<td>2499 2529</td>
</tr>
<tr>
<td>80486</td>
<td>25</td>
<td>114.0</td>
<td>16</td>
<td>64</td>
<td>2/6</td>
<td>8/16</td>
<td>2799 2895</td>
<td>3769 3799</td>
</tr>
<tr>
<td>80486</td>
<td>25</td>
<td>114.0</td>
<td>64</td>
<td>64</td>
<td>2/6</td>
<td>8/16</td>
<td>3569 -</td>
<td>- 3089</td>
</tr>
</tbody>
</table>

All systems include: 1Mb RAM, 3.5" or 5.25" Floppy Disc Drive, Case, Power Supply and Mains Lead, 102-key AT Compatible Keyboard, Monitor, 2 Serial Ports, 1 Parallel Port, 1 Games Port. *2Mb RAM included **1Mb RAM included

PLEASE ADD 179 for Mono VGA; 1269 for Colour VGA; 169 for MS-DOS 4.01; 159 for MS-DOS 3.3; 129 for House.

HARD DISC DRIVES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>ACCESS NODE</th>
<th>PEAK</th>
<th>DIM</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>40 MFM</td>
<td>625K</td>
<td>3.5"</td>
<td>£169</td>
</tr>
<tr>
<td>127</td>
<td>28 MFM</td>
<td>625K</td>
<td>3.5"</td>
<td>£219</td>
</tr>
<tr>
<td>32</td>
<td>40 MFM</td>
<td>625K</td>
<td>3.5"</td>
<td>£189</td>
</tr>
<tr>
<td>32</td>
<td>28 MFM</td>
<td>625K</td>
<td>3.5"</td>
<td>£189</td>
</tr>
<tr>
<td>32</td>
<td>40 RLL</td>
<td>940K</td>
<td>3.5"</td>
<td>£189</td>
</tr>
<tr>
<td>32</td>
<td>28 RLL</td>
<td>940K</td>
<td>3.5"</td>
<td>£189</td>
</tr>
<tr>
<td>47</td>
<td>28 RLL</td>
<td>940K</td>
<td>3.5"</td>
<td>£249</td>
</tr>
<tr>
<td>47</td>
<td>28 RLL</td>
<td>940K</td>
<td>3.5"</td>
<td>£249</td>
</tr>
<tr>
<td>66</td>
<td>24 RLL</td>
<td>940K</td>
<td>3.5"</td>
<td>£309</td>
</tr>
<tr>
<td>115</td>
<td>16 ESDI</td>
<td>1.2M</td>
<td>5.25"</td>
<td>£339</td>
</tr>
<tr>
<td>150</td>
<td>16 ESDI</td>
<td>1.2M</td>
<td>5.25"</td>
<td>£659</td>
</tr>
<tr>
<td>210</td>
<td>16 ESDI</td>
<td>1.2M</td>
<td>5.25"</td>
<td>£659</td>
</tr>
<tr>
<td>320</td>
<td>16 ESDI</td>
<td>1.8M</td>
<td>5.25"</td>
<td>£779</td>
</tr>
<tr>
<td>640</td>
<td>16 ESDI</td>
<td>1.8M</td>
<td>5.25"</td>
<td>£779</td>
</tr>
</tbody>
</table>

For single drive: £10. For dual drive: £15. 5.25" tray for 3.5" drives: £19

DISC CONTROLLERS

Combined Floppy (360/720kB+1.2/1.44M)

- 1:1 interleave MFM 450kb/byte/sec £179
- 1:1 interleave RLL 600kb/byte/sec £299
- 1:1 interleave ESDI 800kb/byte/sec £169
- 1:1 interleave ESDI 1.8Mb/byte/sec £189

XT 8-bit hard disc controller 1:1 MFM - £149

SYSTEM CASES WITH POWER SUPPLY

System Enclosures include Front Panel controls and wiring, PSU and Fans:

<table>
<thead>
<tr>
<th>Table top</th>
<th>Profile</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>200x200x119</td>
<td></td>
<td>1900W</td>
</tr>
<tr>
<td>200x119</td>
<td></td>
<td>1900W</td>
</tr>
<tr>
<td>230x119</td>
<td></td>
<td>1900W</td>
</tr>
<tr>
<td>230x199</td>
<td></td>
<td>1900W</td>
</tr>
<tr>
<td>230x1229</td>
<td></td>
<td>1900W</td>
</tr>
<tr>
<td>400x1899</td>
<td></td>
<td>1900W</td>
</tr>
</tbody>
</table>

BELL VGA MONITOR CONTROLLERS

<table>
<thead>
<tr>
<th>Columns</th>
<th>Rows</th>
<th>Colours</th>
<th>Size (Kb)</th>
<th>Chip PAN</th>
<th>£ Type Scroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>460 460</td>
<td>800 800</td>
<td>1024 1024</td>
<td>16 256 256</td>
<td>0AK</td>
<td></td>
</tr>
<tr>
<td>460 460</td>
<td>800 800</td>
<td>1024 1024</td>
<td>16 256 256</td>
<td>128K</td>
<td></td>
</tr>
<tr>
<td>460 460</td>
<td>800 800</td>
<td>1024 1024</td>
<td>16 256 256</td>
<td>256K</td>
<td></td>
</tr>
<tr>
<td>460 460</td>
<td>800 800</td>
<td>1024 1024</td>
<td>16 256 256</td>
<td>512K</td>
<td></td>
</tr>
</tbody>
</table>

ALL VGA controllers support: 8 bit and 16 bit bus.

VGA Mono with 64 grey scales.

Hercules, MDA, CGA and EGA software.

TIGA/DGIS/8514A MONITOR CONTROLLERS:

- Texas Instruments T134010 and T134020 based Graphic Processor
- Controllers from £549 — High-Res, High-Speed, High-Colour.

MACHINES

Hercules Monitors 720x348:

- Amber, Green or Paper-White
- 12" £270
- 14" £279

VGA Mono Paper-White:

- £14 £480
- £17 £1024 £768
- £21 £1280 £1024

Colour VGA/PGC/8514A:

- £14 £640 £480
- £17 £1024 £768
- £21 £1280 £1024

CALL OUR SALES DEPARTMENT FOR DETAILS OF:

-悉数协处理器、DRAM/SIMM/SIPs、Keyboards, DOS etc.
- Single and Multi-User UNIX/XENIX systems.
- On-Site hardware maintenance contracts.
- Complete system integration of hardware and software.
- Installations & on-site training.
- Export Department for foreign orders.

EUROBELL

18 Dalston Gardens, Stanmore, Middlesex HA7 1DA
Tel: (081)-206-2095 Fax: (081)-206-2096

COMPLETE SYSTEMS - MOTHERBOARDS - DISC & TAPE DRIVES + CONTROLLERS

MOTHERBOARDS & ADAPTERS - DRAM/SIMM/SIP MEMORY - I/O CARDS - KEYBOARDS

DTP/CAD - ETHERNET/ARCNET - NOVELL - TCP/NFS - DOS/C-DOS - XENIX/UNIX
Who questions, who cares?

There is some good news and some bad news. First, the bad news. The worldwide electronics industry is heading for another of its cyclical recessions.

And the good news? The UK electronics industry has atrophied to the point where recessions don't matter any more. A deeply cynical and pessimistic view, perhaps. But how can you be optimistic when you see small, highly innovative companies fighting for their life and their larger counterparts fighting each other to sell off their electronic interests?

The Liverpool company Rytrak started life in December 1988, the brainchild of two ex-GECh first Research engineers who knew a better way to deposit high quality polysilicon on large glass substrates. The revolutionary low pressure chemical vapour deposition process brought with it the promise of the world's most advanced LCD flat-screen TV and computers, an initial £450 000 venture capital funding from 3i, and the personal blessing of the Duke of Gloucester.

Rytrak built and delivered four of its £350 000 CVD machines and has orders for at least two more. Its products and processes have attracted interest from Sharp, Toshiba and Hitachi. It attributes its present problems to cash flow.

All companies must exist on the basis of sound financial planning but it seems wrong that a spark of high-tech enterprise should find itself extinguished so readily. Rytrak may have got its sums wrong or a likely customer may have suffered from indecision. Either way, a product and process of such commercial potential would not be allowed to founder in Japan.

As regards the destructive practices of larger companies, we can do no better than to quote our friends at Electronics Weekly writing in their Ruminator column:

"Funny old world, isn't it when last year’s tale that the only way to compete in electronics was to forge transnational company link-ups to share R&D and manufacturing costs in semiconductors and telecoms, is succeeded by this year’s tale that R&D is unnecessary in the electronics industry and that making telephone exchanges is an unprofitable business to be in.

"We appreciate that this is the softening up process to ease the moment when the UK’s share in our only telephone exchange manufacturer, GPT, can be sold off to Siemens, and when the chip process R&D at Caswell can be abandoned which will inevitably lead to the demise of our only significant chip maker, Plessey.

"Curious too when we also see the top brass at STC apparently indecently anxious to shuffle off its interest in our one remaining large computer maker, ICL. And then we remember the apparent relief with which Thorn flogged off our last significant consumer electronics business, Ferguson, to the French. It seems that the bosses want the UK out of electronics in high end communications, components, consumer and computer.

"Yet the 4Cs are the fastest growing areas of an industry which is expected to be the world's largest within a decade. Funny old world, isn't it?"

We could have added a few more abdications of our own, and have done so frequently in this column: the UK semiconductor industry in its virtual entirety with the magnificent exception of Zetes, and a complete infrastructure in the UK's passive component business. We don't have an easy answer. The hard one goes right back to the beginning of the educational system and students' perceptions of working in industry. However, those who really matter, the British boardrooms, don't appear to have any answer at all.

Or even to have asked themselves the question.

Frank Ogden
Tools for the professional engineer and programmer

80XX in circuit emulation
Excellent software, a truly capable user interface and up to 64K of emulation memory combine to give an advanced 8031/51/32/52 and 8053 PC based emulator. A large trace buffer, unlimited breakpoints and a single step mode make debugging easy and fast. Prices from £685 to £875.

PC BIOS support
If you need to have your own PC BIOS - for security, quality control or just because you need custom facilities - you need these tools. A complete, documented BIOS for AT or XT with source and a 300 page manual priced from £90.

Universal cross assembler
ECAL is a highly polished and well produced cross assembler with a straightforward user interface. It supports all known processors and gives ultra fast assembly supported by more features than packages at ten times the price. There are many hundreds of happy users and the latest release costs only £495.

Analogue PC layout
This is the first PC layout package specifically for the analogue designer. It gives you the capabilities you really need to turn out first class work. Ideal for microwave (with built in impedance calculations), HF and high power systems it costs £820.

PAL programming
The best sub-£1000 PAL programmer available, the PLD1100 is pin programmable and handles over 1000 different devices. New PALs are supported without free lifetime update service. The PLD1100 is approved by most PAL/PLD manufacturers, carries a one year warranty and costs £385.

EPROM emulators
The EPR2 is an EPROM emulator with a difference. It has truly excellent support software and a simple but complete user interface that operates with your PC. Your target system can be developed faster and you save time and frustration. Prices from £385.

Processor emulators
We offer emulators for processors from the common to the really obscure - from the 8051 to the 77C82. Dedicated development systems are available for the Mitsubishi 747 series, the Dallas DS5100, the Phillips 80C552 range and several others. Please call for details.

EPROM programmers
The Expro 40 universal programmer can program EPROMs, single chip micros as well as a range of PALs and most bipolar PROMs and is compatible with all PCs and clones. Complete with driver software and interface card the Expro 40 is £485.

Mutek (MSS) Ltd. Frome Road, Bradford on Avon BA15 1LE 02216 6501/2

CIRCLE ENQUIRY NO. 120 ON BACK PAGE

The North's Premier Electronics Exhibition

...that's Leetronex '90 ... the one Exhibition where you can literally plug directly into the fast moving world of Electronics ... with over 125 leading Exhibitors, including many of the market leaders, Leetronex '90 will again be the North's leading Electronics Exhibition ... whatever your connection with the industry ... buying, selling, contracting, manufacturing, using or researching ... you'll be in your element at Leetronex '90!

FREE HOTEL BOOKING SERVICE
TOPICAL SEMINARS
EXHIBITOR & PRODUCT INFORMATION
FREE PARKING

3rd·4th·5th·JULY·1990
AT THE UNIVERSITY OF LEEDS EXHIBITION CENTRE

CIRCLE ENQUIRY NO. 121 ON BACK PAGE
Radio waves at the edge of Eternity

There may or may not be a restaurant at the end of the Universe, but we may soon know what's happening at the outer edge of our own solar system. That at least is the prospect offered by some new calculations from the Polish Academy of Sciences.

In a recently published paper (_Nature_, Vol. 343 No 6267) Andrzej Czechowski and Stanislaw Grzedzielski investigate some mysterious 3kHz radio emissions that were picked up in 1983 by the Voyager 1 and Voyager 2 spacecraft. At that time both craft were between the orbits of Saturn and Uranus.

The precise origin of these emissions remains a mystery; they could have been the result of some interaction between the solar wind and the planets or they could have originated from outside the solar system, possibly in a nearby star. For the purposes of the latest research the origin of the radio waves is much less significant, however, than their behaviour.

What Czechowski and Grzedzielski have done is to examine the characteristics of these 3kHz radio emissions and use them to calculate the distance to the edge of the solar system, or more precisely the position of the heliopause. That is where the wind of charged particles from the Sun meets the flux of particles that form the interstellar medium.

According to the Poles' calculations, the position of the heliopause is between 60 and 100AU (astronomical units) from the Sun — that's 60-100 times the distance between the Sun and the Earth. Pluto's orbit is about 50AU, so unless there is a Planet X at a greater distance, the Sun's electromagnetic influence ends just beyond the planetary system. That in turn is significant, because Voyager 1 is already 40AU out on its journey and could therefore reach the edge of the solar system within the next few years.

Precisely how the Polish scientists reached their conclusion is almost as interesting as the conclusion itself. Whatever the origin of the faint 3kHz emissions, they were observed to drift upwards in frequency at a rate of 1kHz per year until they faded away. This rise of frequency is attributed to Fermi acceleration, an effect that takes place when radio waves bounce off a moving structure. That moving structure, according to Czechowski and Grzedzielski, is the solar wind moving outwards from the Sun at 400km/s. The other reflecting surface that forms a cavity within which the waves are trapped must inevitably be the fixed heliopause at the edge of the solar system.

The Poles go on to argue that the rate of increase of frequency of the RF emissions in such circumstances must depend entirely on the number of times they bounce off the solar wind. That in turn must depend on the size of the cavity of which the solar wind forms part. Ultimately it provides a measure of one unknown factor, the distance of the heliopause.

Before Voyager 1 reaches the heliopause, probably in 1996, it will first pass the so-called termination shock, a point at which the particles of solar wind cease to travel at supersonic speeds. This should occur in about 1993 and should be detectable by Voyager as a hiccup in the density and temperature of the wind.

When eventually Voyager 1 reaches interstellar space it will be able to make the first ever observations of the world beyond the Sun's influence. We'll then know what magnetic fields and what chemical elements exist in deep space.

Microwaves in a skid

Albert Wuori of Michigan Technical University in Houghton is researching a novel but highly practical use for microwave energy. It's part of a $6.5 million US National Research Council programme to find a satisfactory way of de-icing roads.

Over in the States where they've had a particularly rough winter, just about everything has been tried from high-pressure anti-freeze jets to sandblasting devices. The trouble is that anything capable of melting the ice completely passes along the road as a stream of slush. Ultimately, the idea is to develop a practical vehicle that will travel at about 20mph, loosening ice and then dispersing it mechanically.

One problem, of course, with such a high-power system would be ensuring that stray microwave energy was kept within safe limits for public exposure, no mean task! The best solution, suggest the researchers, would be to incorporate microwave-absorbing materials in the surface layers of roads likely to be affected by ice. That way much less RF would be needed to do the trick.
A PROGRAMMER FOR THE 90s

Just compare the features:-

- High speed download - 1M bit per minute from a PC using the Centronics port.
- Full set programming - up to 8 eproms can be programmed simultaneously.
- Device coverage currently to 4M bits. (No adaptors needed for 32 pin eproms.)
- Modular construction protects your investment and offers the flexibility to fit two different modules for different applications.
- Standard ram size of 2M bits. Just £250 for an extra 6M bits.
- Ease of use - 48 character LCD with user selectable operating system for R&D and production.

A quick 'phone call will bring you our colour brochure or a demonstration.

LLOYD RESEARCH LTD.

7/7A Brook Lane, Warsash, Southampton, SO3 9FH.
Tel: (0489) 885515. Fax: (0489) 885853.

PCB EAGLE is the complete board layout solution at an affordable price; - Yes complete - No starter kits followed by expensive upgrades.

It's easy-to-learn, quick to use and runs on an IBM PC.

So at "one-per-desk" prices you can afford several for your engineering team. Look at what it offers:

- MANUAL OR AUTOROUTE, TRACK/SIGNAL/BOARD ROUTING
- 255 LAYERS, 1MIL RESOLUTION, UP TO 64" X 64" BOARDS
- CONTINUOUS ZOOM, AUTOPAN, UNLIMITED UNDO/REDO (OOPS)
- RATSNEST, RIPUP, RUBBERBAND, CUT & PASTE FUNCTIONS
- INTERACTIVE OR NETLIST ENTRY (EG ORCAD)
- COMPONENT & USER SPECIFIC MACRO LIBRARIES
- COMPREHENSIVE DESIGN RULE CHECK AND DISPLAY
- USER CONFIGURABLE FUNCTION KEYS, MENUS, SETUPs, COLOURS etc.
- FREE DRIVERS FOR STANDARD PLOTTERS & PRINTERS
- RUNS ON IBM PCX/AT, 640KB, 5" FLOPPY, EGA OR VGA COLOUR

designed in house!

Why not try out our demo and see for yourself how you can 100% autoroute this board in 54 seconds!

EAGLE Layout Editor
EAGLE Autorouter
EAGLE Schematic Capture
EAGLE Demo Kit + Manual

Cadsoft (UK)

Tel: 050587 2338, Fax: 050587 4149
Atomic snooker

Scientists at IBM's Almaden Research Centre have demonstrated their ability to roll individual atoms on a surface and to build sub-microscopic structures one atom at a time.

This should make possible a wealth of future applications such as building molecules atom-by-atom, altering individual molecules, making ultra-small electrical circuits far smaller than individual atoms, or even building sub-microscopic structures on surfaces.

More immediately, the new technique will assist in studying the fundamental behaviour of atoms on surfaces. This knowledge is crucial to everyday industrial processes, such as catalysing chemical reactions and manufacturing semi-conductors.

Physicists Donald Eigler and Erhard Schweizer have described in Nature vol. 344 no 6266 how to move individual atoms across the surface of a metal crystal and how to demonstrate their new technique by moving atoms forming the element xenon into a pattern forming the letters "IBM". Each letter is about 500,000 times smaller than those on this page, while the atoms themselves are separated by only 13Ångstroms.

The scientists created the first-ever atomic cluster built one atom at a time — a chain of seven xenon atoms bound together. These demonstrations required the atoms to be cooled to -269°C to eliminate thermal motions. Eigler says he realised the xenon atoms in the seven-atom chain were bonded together because he could relocate up to three of them at a time by dragging one xenon atom. The ability to position individual atoms in this way has the potential to advance fabrication techniques to a scale of less than 10⁻⁹m, more than 500 times smaller than that currently used in semi-conductor chip manufacturing.

The scientists used a scanning tunnelling microscope (STM) both to move the atoms into place and to view their progress. The STM, invented in the early 1980s by Nobel Prize-winning scientists at IBM's Zurich Research Laboratory, can image individual atoms on a metal or semiconductor surface by scanning the tip of a needle over the surface at a height of only a few atomic diameters. By plotting the path of the atomic tip, it's possible to make an atomic-resolution image of the surface. Eigler and Schweizer discovered that, by bringing the STM tip slightly closer to a xenon atom on the surface, they could drag the atom across the surface when they moved the STM tip parallel to the surface. At the desired position, the scientists raise the STM tip, leaving the atom fixed in its new location. The process is like moving a magnet by the motion of another magnet nearby, but not touching.

The shape of the surface is important. To another atom, even an atomically smooth surface would look like the bumpy, waffled surface of a large egg carton. To move over the surface, the atom must traverse its depressions and crests. Eigler and Schweizer's method requires that the STM operator maintain a delicate balance of several attractive forces between the atoms. For example, the atom's attraction to the tip must exceed the lateral force that prevents an atom from riding over a crest into the next depression. But to keep an atom from flying off the surface, the force that binds it to the surface must be stronger than the atom's attraction to the STM tip. Although in this technique it is possible to tune the attractive forces by controlling the height of the STM tip above an atom, the process will only work with particular combinations of atoms and surfaces.

In creating these structures, the scientists had to plot the course of the atoms across the surface carefully so the atom being moved would not collide with, or get close enough to be attracted to, any other xenon atoms along the way.

This achievement grew out of Eigler's desire to understand how atoms and molecules interact with surfaces. To do this, Eigler built an STM that could operate with extraordinary sensitivity and precision. He not only reduced contamination and unwanted atomic motion by placing the STM in a high vacuum and cooling it with liquid helium, he also carefully isolated the STM from vibrations as faint as those from the sound of a person's voice and heat sources as weak as a nearby human body. As a result, Eigler's STM can resolve vertical changes in an atom's apparent shape as small as 0.002Ångstrom — far smaller than any single atom.
Micro-chip fuel cell with a big future

Fuel cells have always been attractive in theory because of their high conversion efficiency (50+ % compared with 35% or so for a heat engine) and also because they can provide endless power if the fuel supply is maintained. The US space shuttles, for example, derive their electricity supplies from fuel cells fed with hydrogen and oxygen gases. The only snag is that conventional fuel cells are technologically complex and hence expensive.

Against that background comes what appears to be a highly significant development from Bell Communications Research in New Jersey. In a letter to Nature (vol. 343 no 6258), C. K. Dyer describes a novel fuel cell which can be made using microchip technology, which is potentially cheap to manufacture and which produces a high output using mixtures of hydrogen and oxygen in widely varying ratios. Hitherto, fuel cells have required the input gases to be separated and purified if they are to produce reasonably high output voltages.

Dyer's cell is deceptively simple, consisting of little more than two platinum electrodes separated by a microscopically thin layer of pseudoboehmite, a natural form of hydrated aluminium oxide.

To make his cells, Dyer took a quartz substrate and sputtered on a layer of platinum. About 50nm of aluminium was then RF sputtered on top of the platinum. Subsequent boiling in water oxidised the entire aluminium layer to form the pseudoboehmite. Finally a thin, gas-permeable layer of platinum was added to form the top electrode.

When fed with mixtures of hydrogen and air in a very wide range of proportions, the cell gave a virtually constant output of around 1V. Useful currents could also be drawn.

As yet, Dyer has no idea of exactly how the cell works, nor why it can maintain its voltage and polarity with such a wide variation of feedstock. Equally puzzling, but gratifying, is the cell's ability to operate at room temperature, given that it has a solid electrolyte. The more practical consequence of this design, however, is that it offers prospects of easy fabrication, cheap production and high power density.

Replacing the quartz substrate with Kapton and using the acid polymer Nafion results in a cell which performs just as well as its laboratory prototype, but has the potential to be rolled up or made with a high surface area, just like electrolytic capacitors. Already power densities of around 100W/kg are achievable, while Dyer believes that 1kW/kg should be relatively easy to manage.

In concluding his paper, Dyer says that, regardless of how the cell works, the fact that it can be easily and uncritically reproduced should lead eventually to a broad range of applications from small lightweight fuel cells to new uses in information processing. (To which one could add electric vehicles, where recharging with liquid gas or suitable hydrocarbons would give the convenience of petrol with the efficiency and environment-friendliness of electricity.)

What shape is an atom?

A fuzzy blob? A miniature solar system? The answer seems to depend on how you look at it; whether like the IBM team you use a scanning tunneling microscope or whether, like Dr Peter Teubner of Flinders University in Adelaide, you use an active method.

Teubner and his team are reported (Aust Sc. & Tech Newsletier vol. 2, no 5) to have measured the precise threedimensional shape of a sodium atom. The technique involved using a laser to excite the atom and then firing electrons at the excited atom. By observing whether or not the electrons gained energy in the collision as the polarisation of the laser beam was varied, Teubner was able to plot an exact representation of the atom's p-orbital — effectively the shape of the atom. So detailed are the results that the Flinders teams describe them as having all the detail of real photographs.

The actual shape of the sodium atom, though, is no less intriguing than the technique used to image it. Teubner describes it as resembling a peanut about 10^-10m in length! (On that basis one wonders if some of the big accelerators producing condensed matter are just expensive peanut butter machines). Perhaps the team is wise now to set its sights on calcium, which Teubner describes as "a more theoretically interesting but less ambiguous atom".

Potential new contraceptive?

Novel ways of keeping us out of the family way know no bounds, according to a conference report published in the General Practitioner.

Tests on baboons in the USA have apparently shown that sperms can be immobilised and even electrocuted by means of a 'battery device' surgically inserted in the female cervix. The report, I hasten to add, emphasises that satisfactory results, i.e. no little baboons, were achieved by means of a low current that caused no discomfort to the animals (male, I hope, as well as female).

Research Notes is written by John Wilson of the BBC World Service science unit.
NEW DIMENSIONS

IN CAE

Over 15,000 engineers around the world use SCHEMA CAE products to improve their PC Board, ASICs and PLD designs. Why? There is no more comprehensive or cost effective software available for the PC. Call today for your FREE demo disk and see for yourself how SCHEMA can increase productivity in design and manufacturing.

SCHEMA III schematic capture
SCHEMA SUSIE logic simulator
SCHEMA PLD pld design/selection
SCHEMA PCB board layout & routing

FREE DEMO DISKS
30 DAY GUARANTEE - SITE LICENSE AVAILABLE

Represented by: AUTOMETRIX U.K.
Phone: 0672-63650 Fax: 0672-63417

CIRCLE ENQUIRY NO. 124 ON BACK PAGE

ECA - 2
FAST, FRIENDLY, FLEXIBLE FEATURES

ECA-2 is a powerful user-friendly program for analogue circuit analysis. In association with a specially tailored graphics entry program, you can draw and analyse your circuits simultaneously.

Even with just some of its features we have been able to show in this ad, you will be pleasantly surprised by its pricing. Shown below is a small corner of its facilities. To see more, you must contact us for a free demo disk which is the complete program limited only in the size of circuits it can handle. The full version is able to handle upwards of 500 circuit nodes!

Components

ECA-2 accepts simple two terminal linear components such as resistors and capacitances. It includes current and voltage sources and transmission lines. Diodes are described by the exponential diode equation wherein (amongst other parameters) the user can define the emission coefficient, energy gap, temperature correction factor, and forward and reverse resistances. This enables real diode characteristics to be matched. Transistors, thyristors and operational amplifiers can also be modeled. There can be saved as macro models and a number of popular devices is supplied on the disk.

Furthermore, non-linear functions can be added to any component to enable for example zener diodes and voltage-variable capacitors to be created. It is possible to define components in terms of their real and imaginary parts, for example to define the band-width or phase shift.

Statistical Analysis

A rather pessimistic worst case analysis can be run. It also performs a sensitivity analysis indicating which parameter contribution is the most important factor, whilst R&D has negligible effect. A more realistic estimate of production yield is obtained by a Monte Carlo analysis which can be tabulated or displayed as a graph. Just 25 runs of a 3rd order Chebyshev filter are shown here.

Transient Analysis

This calculates circuit conditions over the prescribed time range at the prescribed intervals. This is a full non-linear analysis which is illustrated here by a quadrature oscillator. A small initiating pulse is required and is produced by the pulse generator whose output resistance is made very large so that it has no effect on the subsequent operation.

ECA-2 allows up to four points to be plotted and here the quadrature waveforms and the current in R5 are plotted.

DC Signal Analysis

Here the analysis is carried out at a fixed temperature with the signal generator set to dc. An interesting application of this is the Schmitt Trigger where the dc command is used to step the input from 0V to 5V in 0.5V steps. The loop which then causes the voltage to reverse so that the hysteresis loop can be traced. In conjunction with the sweep command this allows the effect of altering the resistor R1 from 5 kΩ to 30 kΩ in three logarithmically spaced steps to be observed.

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.

A good range of properly supported and proven programs is available and our expert staff are at your service.

Telephone: Charles Clarke on 071-435 2771 for a demonstration disk.

106a Fortune Green Road • West Hampstead
London NW6 1DS
Tel: 071-435 2771 • Fax: 071-435 3757

CIRCLE ENQUIRY NO. 125 ON BACK PAGE

July 1990 ELECTRONICS WORLD + WIRELESS WORLD
Weak field effect overpowers thermal noise, says report

A recent paper in the prestigious journal *Science* indicates that cellular responses to very weak oscillations in electric fields may not be overwhelmed by the ever-present thermal noise and therefore cannot be dismissed on theoretical grounds. The authors, Dr James Weaver of the Massachusetts Institute of Technology, Cambridge, Mass., and Dr Dean Astumian, of the National Institute of Standards and Technology, Gaithersburg, Maryland, state that thermal noise causes randomisation of cellular processes and is important because it is fundamental, and because other biological response mechanisms have a threshold close to the thermal noise limit.

In their paper in the 26 January issue of *Science* (247; 459-62), titled, “The response of living cells to very weak electric fields: The thermal noise limit,” the authors present a physical model in which cells are considered as possible detectors of very weak periodic electric fields. This yields a general relation between cell size and both thermally induced fluctuations in membrane potential and the maximum change in membrane potential caused by an applied field.

They show that a small but repeated electric field concentrated in a narrow band of frequencies can trigger transformations in the shape of macromolecules, especially enzymes bound to cell membranes. The simplest version of the model provides a broadband estimate of the smallest applied electric field to which membrane macromolecules can directly respond (about 10^{-7}V/cm).

Based on the assumption that the molecules are sensitive to specific frequencies and that the cell has a mechanism to enable the signals to generate a cumulative effect over time, Weaver and Astumian provide models to show that thresholds for electric field effects can be reduced by a factor of 100,000 below the thermal noise level, reaching levels as low as 4×10^{-9}V/m at 100Hz and 10^{-12}V/m at 1kHz. According to the authors, the optimum coupling would occur in the range of 1kHz to 1MHz, based on the relaxation times of transitions between different structural arrangements of enzymes.

They conclude: “We have shown that the lower limit for a minimum detectable field imposed by competition between an applied field and thermal noise is small. Other sources of noise that might lead to larger minimum detectable fields are not considered but should be investigated. However, the estimates presented here argue that concerns due to very weak environmental electric fields cannot be dismissed on grounds of being swamped by thermal fluctuations.”

The model proposed by Weaver and Astumian implies that frequency “windows”, like those discovered by American researchers Drs Ross Adey and Carl Blackman, would be expected. Their model is also in line with the experimental and theoretical work of biophysicists like Prof Herbert Frohlich at the University of Liverpool and Dr Cyril Smith at Salford University, showing that, contrary to the view that any electromagnetic field bioeffects are likely to be due only to induced tissue currents, high coherent electromagnetic fields can disturb cellular functioning at very low intensities by acting on coherent internal cellular fields.

Further recent experimental evidence that such coherent electromagnetic processes act as the engine for biological dynamics is reported in another paper, by Emilio del Guidice, a research nuclear physicist at the University of Milan, and others (including Dr Cyril Smith) in the journal *Physica Scripta* (1989; 40: 786-91) entitled, “Magnetic flux quantisation and Josephson behaviour in living systems.”

Plessey has won British Standard BSW450 approval for its c-mos gate arrays, covering the 2μm CLA family (up to 9mm square). Plans are in hand to extend the approval to the 1.4μm c-mos process with die sizes up to 14.5mm square.
THE ORIGINAL SURPLUS WOOLFORD!

MONITORS

MONOCHROME MONITORS

THIS MONTH'S SPECIAL!

A replacement of replacement keyboard, switchable for IBM PC, XT or AT-Caps, for a special deal that is 100% sealed and new. Brand New keyboards with full backwards compatibility. Name brand and in a box. Absolutely fantastic value.

IBM KEYBOARD CONVERTERS

Brand new and boxed! We have over 100 IBM keyboards in stock. A full range of IBM and compatibles. A great deal at a great price. A must have item for any computer user.

ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS

Brand new and boxed! We have over 100 IBM keyboards in stock. A full range of IBM and compatibles. A great deal at a great price. A must have item for any computer user.

POWER SUPPLIES

We have a full range of power supplies for all your computer needs. From small, inexpensive models to high-end, high-capacity units. We have something for every budget.

COOLING FANS

We have a full range of cooling fans for both the home and the office. From small, quiet fans to large, powerful units. We have something for every need.

RECHARGEABLE BATTERIES

We have a full range of rechargeable batteries for all your computer needs. From small, inexpensive models to high-end, high-capacity units. We have something for every budget.

PREFERENCE FORM

Please fill out the preference form below and we will send you a full range of information for your computer needs. We have something for every budget.

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE

![CIRCLE ENQUIRY NO. 12 ON BACK PAGE](image-url)
In Brief

It should soon be possible to send short packets of data and facsimile transmissions via the maritime satellite system. The International Maritime Satellite Organisation has successfully shown that its Inmarsat communications network has these capabilities.

Short data reports, of up to 32 characters, can be sent in a few tens of seconds to almost anywhere in the world, from either a fixed or mobile terminal. This will allow, for example, management and monitoring of unmanned lighthouses, ships’ owners or charterers can obtain positional data, and ships can themselves transmit weather data to a base station. And it will be faster and more reliable than either radio telex or Morse code.

US Vice-President Dan Quayle was in Europe recently visiting the Headquarters of the European Space Agency. He is chairman of the US National Space Council and thus in charge of developing policy on the final frontier. He met with Prof. Remar Lust, ESA Director-General, to discuss joint NASA/ESA operations, such as the proposed International Space Station Freedom, and President Bush’s plans to send humans to the Moon and Mars.

The extent of the Vice-President’s personal involvement with the latter was unrevealed.

A growing part of British Telecom’s enormous annual profit comes from the sale of natural fertiliser. This operative is stripping pigeon guano into one of the huge dish-shaped collectors sited at the top of London’s Telecom Tower, about 130m above ground level.

BBC denies bowing to political pressure

A controversial interview for a BBC TV programme on the possible health risks from overhead power lines was dropped after electricity industry chiefs complained to the corporation’s director-general, Michael Checkland.

The programme, in the Nature series, broadcast on March 22, had to be quickly re-edited after Mr Checkland requested the deletion of an interview with Dr Robin Cox, chief medical officer of the Central Electricity Generating Board (CEGB).

In the interview Dr Cox apparently appeared flustered over a question about his reaction to a statement by his predecessor, Dr John Bonnell, in a 1979 letter written to a Mrs Stella Ross of Innsworth, Gloucestershire, in which he repeated, “my firm assurance that the overhead power lines owned and operated by CEGB at Innsworth and elsewhere will not cause ill effects to your health.”

Dr Cox stopped the original interview, complaining of having been ambushed by the question about the letter, which nonetheless had been in the public domain since it was quoted in the book, “Electromagnetic Man” by Cyril Smith and Simon Best, published by J. M. Dent in July 1989.

After Dr Cox had read the letter, a second interview was conducted in which Dr Cox described the statements in Dr Bonnell’s letter, as “expressing his personal view,” despite the fact that they were written on CEGB-headed paper and signed in his capacity as then chief medical officer.

According to a report in the Independent on Sunday (April 1), Nature told Dr Cox at the time that it would not promise to use the second interview. However, on March 19 Mr Checkland received a letter from Tim Beaumont, chief public relations officer of the National Grid, asking for reassurance that the first interview would not be used.

Mr Checkland then told Ron Neil, managing director of BBC regional broadcasting, to intervene, according to the Independent on Sunday report, though a BBC spokesman denied it was acting under pressure from the electricity industry, saying that the “concern was with fair play,” and that “no journalistic points” were changed. However, the production team were “incensed” by what they definitely saw as censorship.

The newspaper reports that Mr Beaumont’s approach to Mr Checkland was prompted by a desire to “protect the position and reputation of Dr Cox” and not to protect the industry itself from potential embarrassment. Mr Beaumont claimed Dr Bonnell was “writing in a particular context” and said that there had been no change in the CEGB’s position. He is quoted as commenting: “What we say is that we cannot establish any causal link (between power lines and ill health) and we’ve always said it.”
EASY-PC, SCHEMATIC and PCB CAD

NEW VERSION:-
NOW DRAWS EVEN EVEN FASTER!

BRITISH DESIGN AWARD 1989

Also:- over 400 Symbols!

Fast Professional Quality Output - Affordable Price

SMITH CHART PROGRAM - Z MATCH II CIRCUIT ANALYSIS BY COMPUTER ANALYSER II

For IBM, PC/XT/AT and clones

Z MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.

Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS, with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES, MICROSTRIP, STRIPLINE and WAVES.

The program takes account of TRANSMISSION LINE LOSS, DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY.

Z MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES.

£195 ex VAT for PC/XT/AT etc.

“ANALYSER II” - Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by 'breaking the loop'.

Can save days breadboarding and thousands of pounds worth of equipment.

£195 ex VAT for PC/XT/AT etc.

Write or phone for full details:
Number One Systems Ltd. The CAD Specialists
REF: WW, HARDING WAY, SOMERSHAM ROAD, ST. IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.
Telephone: 0480 61778 (6 lines) International: + 44 480 61778 ACCESS, VISA, AMEX Welcome.

CIRCLE ENQUIRY NO. 127 ON BACK PAGE

July 1981 ELECTRONICS WORLD + WIRELESS WORLD

565
US Navy plans to site a relocatable over-the-horizon radar (ROTHR) at Brawdy in Wales are causing concern among local residents over possible hazards to health. A local campaign group, Pembrokeshire Against Radar Campaign (contact Lin Miles, 0437 721596), has already been formed after meetings of the local people.

Details of the plans were published in a US Navy budget document for 1991 and uncovered recently by the Wales on Sunday newspaper. Although they are public knowledge in the USA, only a handful of key MoD officials here were aware of them. The plans involve a joint US/MoD project, with the UK paying approximately 90 per cent of the total £10 million development cost. The US will pay a further $90 million for the radar and computer system itself.

The land required is stated as some 37,653 acres (nearly 60 square miles) although a University of Edinburgh military specialist, Michael Spaven, is quoted by Wales on Sunday as suggesting that 2,000 acres (around 3 square miles) would be closer to the mark for this type of base. Neither the US Navy nor the MoD would clarify the point.

The ROTHr receiver site and operations centre are to be at Brawdy but the transmitter site (so far undisclosed) will be at least 30 miles away for technical reasons.

The radar's range will be at least 1,800 miles, focused on the Baltic Sea, with a vision span of 63°, and will form part of the US Navy's worldwide network of over-the-horizon radars. Few transmission details are available, except that it will transmit in the frequency range between 5 and 28MHz.

Assessing the health effects of low-level radiation, scientists at Georgia Tech, Atlanta, USA, use mice to determine the level of cancer pathogenesis associated with occupational microwave exposure, for instance to air traffic control personnel. The study, one of the largest ever conducted concerning the effects of low level microwaves, will take 18 months to complete. Photo Gary Meek

and at a peak power of 200kW.

According to Jane's Defence Weekly (7 April), the receiver aerial system needs to be 2590m long, consisting of two parallel rows of 372 supporting poles and 43 equipment shelters. Wherever this is sited it will have a major environmental impact. From a military viewpoint the radar could even pose a danger to aircraft at the nearby RAF airfield, possibly having to be switched off each time an aircraft takes off or lands because of the danger to the electronics on board the aircraft.

In the USA there has been concern and debate for some time about the possible health hazards from the radar, known as PAVE PAWS (Precision Acquisition of Vehicle Entry Phased Array Warning System), sited at such locations as Upper Cape Cod in Massachusetts and Beale Air Force Base in California, and which operates at 450MHz, with a repetition of 18.5Hz.

Most recently, a Chinese study reported in the Journal of Bioelectricity found significant deficits in visual response, memory and an indicator of immune system function in those living near radar and radio installations for as little as a year. A Polish study of military personnel exposed to radar—by Dr Stanislav Szmbiegiel at the centre of Radiobiology and Radioprotection in Warsaw, has found an increased cancer risk of over threefold in certain groups.

It is these and other results that worry local Brawdy residents and which MoD officials will have to try to circumvent. The Ministry of Defence will have to notify the local planning authorities before proceeding with the development but that may be the only chance the public has to comment on the scheme, since the Government has no obligation to put the proposals before Parliament.
SMC
South Midlands Communications

RADIO
TRANSCIEVERS/RECEIVERS
SMC, the leading European specialist in general radio communications, have developed modular systems for rapid delivery, particularly useful for emergencies, disasters, political unrest and aid concerns. This can consist of rugged, simple-to-use, HF transceivers, e.g. the FT80C with a frequency range of 1.5-30MHz used with either one of the SMC basic wide band antennas, or more efficient, the multi-spot frequency antennas complete with transportable masts.

More powerful and complex transceivers are also available.

Where monitoring or reception is required then either the FRB9900 HF receiver with VHF option or the FRG9600 VHF, UHF all mode scanning receiver are available with proven quality, sensitivity and reliability, at realistic prices.

ANTENNAS
The TWB2530 and TEB3 are just two samples of the large range HF, VHF and UHF antennas available from SMC. Both have been specifically designed for users with very different requirements showing the breadth of our capability. The rugged transportable TWB2530 is a fully self contained extremely lightweight, yet tough enough to withstand rough handling and quick assembly in adverse terrain. The TEB series of spot frequency HF beam antennas give excellent forward gain, rugged construction for long life, at a cost effective price.

If you require further information on the 300 various support mounts, HF, VHF or UHF antennas, simply call for our new short form catalogue.

Both can be supplied with the most efficient antennas and desirable accessories.

SMC LTD, SM HOUSE, SCHOOL CLOSE, CHANDLERS FORD INDUSTRIAL ESTATE, EASTLEIGH, HANTS S05 3BY
Tel: (0703) 255111. Telex: 477351 SMCOMM G Fax: 0703 263507

CIRCLE ENQUIRY NO. 128 ON BACK PAGE

Radar & Fibre-Optics
Training Equipment

A full range of professional training equipment now available from a leading manufacturer including:

- Radar
- Fibre optic
- Analog & Digital Comms
- Microwave
- Telephony
- Simulators

Several of these high quality products have been winners of the prestigious Worlddidac awards, Geneva, Switzerland, with our Radar Trainer taking this years Gold medal.

Contact:
Lab-Volt (UK) Ltd
4A Harding Way,
St. Ives Industrial Estate
Huntingdon,
Cambridgeshire
PE17 4WR
Tel: (0480) 300695.
Fax: (0480) 61654

CIRCLE ENQUIRY NO. 130 ON BACK PAGE
Current amplifiers from voltage op-amps

Over the years, the semiconductor industry has tried to provide circuit designers with a cheap, high quality, versatile analogue building-block, often with the sole aim of producing a controlled voltage output from a voltage input. The most popular of these networks is the conventional utility, high-gain, voltage-mode op-amp (referred to in this article simply as an op-amp). It has become customary for engineers to think of analogue signal processing in terms of voltage variables and this tendency has resulted in numerous voltage signal-processing circuits.

For example, the op-amp is easily configured into controlled voltage-source amplifiers, such as the voltage-controlled voltage source (VCVS) and current controlled voltage source (CCVS or transresistance amplifier), but not so easily into controlled current-source amplifiers such as the VCCS or transconductance amplifier and CCCS. Why should this be so?

Well, negative feedback can be derived by sampling either output voltage or current into the feedback network. Voltage sampling is easy; all that is required is to connect to the output node and ground. The result of voltage sampling is that the output impedance reduces from its 50–100Ω open-loop value, making the closed-loop output performance of the circuit approach an ideal voltage source. A high output impedance requires a feedback signal proportional to output current; that is, output current sampling. The architecture of the standard ‘5-leg op-amp’ makes this very difficult and current output circuits (CCCS and VCCS) are much less easy to design than voltage-output circuits.

Traditional methods

The most commonly used amplifier having a controlled bipolar current output, and frequently encountered in standard textbook designs, has the load in the feedback loop of a voltage op-amp, as shown in Fig. 1. Although the amplifier’s voltage gain varies with R_L, the current in the feedback loop remains fixed, assuming a fixed V_{IN} and R. A practical limitation of this approach is that the current-driven load cannot be grounded. Despite this drawback, the circuit does have some interesting features: nearly all the input current is drawn through the load by the action of negative feedback. The input current only differs from the load current by the current flowing into the op-amp, which is extremely small due to the high open-loop voltage gain and input impedance of the op-amp, so the current gain of the circuit is very close to unity.

The circuit shown in Fig. 2 and developed by Howland solves this problem of grounding. It acts as a current source, providing $i_L = -V_{IN}/R_I$, for the condition that $R_2/R_1 = R_2/R_4$. If the ratios of these resistances are equal, the circuit will function with a theoretically infinite output resistance, determined by the combined positive and negative feedback action of the op-amp.

However, a major drawback of this combined positive and negative feedback approach is that very small departures from ideal balance conditions either drastically reduce the output resistance or result in instability because the output resistance becomes negative!

A detailed analysis based on an ideal op-amp gives

$$I_L = -V_{IN} \left[\frac{R_2}{R_1} \right] - V_L \left[\frac{R_3}{R_4} \right] \frac{R_2}{R_1}$$

and

$$r_{out} = \frac{V_L}{i_L} = R \left[\frac{R_2}{R_1} \right] \left[\frac{R_3}{R_4} \right]$$

From this equation the output impedance is seen to be negative if the practical values of resistors are such that the denominator becomes negative, which will occur if $[R_2/R_1] < [R_3/R_4]$. If this condition is not met it will not necessarily result in instability, since it depends on the value of load resistance. But if the parallel combination of the output resistance and the load is negative, the circuit will become unstable and will either oscillate or latch-up.

Supply-current sensing extends the capabilities of conventional voltage op-amps to give current-mode operation. John Lidgey and Chris Toumazou survey the methods used and present a universal circuit
The problem arises when the positive feedback exceeds the negative feedback. An alternative way of viewing the circuit from a stability standpoint is to look at the two feedback factors. The negative feedback factor B_N is determined by the potential divider ratio $B_N = R_2/(R_1+R_2)$ and the positive feedback factor B_P by the ratio $B_P = (R_4/R_3)/(R_3+R_4/R_3)$. For stability the inequality $B_P < B_N$ must be satisfied. Working through the algebra yields the same result, that $(R_4/R_3) < (R_2/R_1)$ if the circuit is to be stable for the worst case of R_1 open-circuit and, perhaps more practically, $(R_4/R_3') < (R_2/R_1)$, where $R_3' = R_3/R_4$.

Other practical problems with the circuit relate to the fact that the positive feedback increases with decreasing load, resulting in a progressive loss of all the well known advantages of negative feedback. For example, the bandwidth decreases with reducing load and the output offset voltage will be more significant with decreasing load.

The Howland design is typical of many similar controlled output-current amplifier topologies which are all based on a combination of positive and negative feedback and which all have the same problem of requiring closely matched resistor networks; as a consequence, they are potentially unstable if the matching is not perfect. To overcome this difficulty, an alternative design approach is required in which positive feedback is not used.

Extending the op-amp

Output current from an op-amp's output terminal must come from the power supplies. By Kirchhoff's current law for the standard 5-leg op-amp shown in Fig. 3, if there are no other signal paths to ground, $I_1+I_2+I_3+I_4 = 0$ and, since I_1 and I_4 are close to zero, then $I_2+I_3 = -I_1$, so that by sensing the supply currents, one can derive a current proportional to output current.

The technique of supply-current sensing to provide the conventional op-amp with a well-defined current output facility was first reported by Graeme in 1974. He showed that a precise VCCS could be achieved by using a pair of complementary field-effect transistors to sense the current flowing in the supply rails of a conventional op-amp, as shown in Fig. 4. Opposing fet current sources T_1 and T_2 are controlled by the high-gain feedback around the op-amp. The circuit is symmetrical and behaves as a self-balancing bridge; a voltage difference at the input is balanced out by the op-amp's negative-feedback action, causing the input voltages to the op-amp to be virtually equal.

The difference in fet currents produces the output current, the difference current being controlled by comparing the input voltage V_{IN} to the feedback voltage provided by the current sensing source resistors R_s. Input voltage controls output current to within the accuracies of the resistors selected and within the gain-bandwidth and power-supply rejection limitations of the op-amp.

The circuit works well and avoids the output impedance uncertainties of earlier Howland-type designs. However, as a consequence of using two independent negative feedback connections, one for each output polarity. the circuit performance is again sensitive to resistive mismatch.

Supply-current sensing was not an entirely new mode of op-amp operation, since it had been previously used as a means of power boosting a low-power op-amp.

In 1975, Hart and Barker suggested an alternative method in their realisation of a class-B voltage-to-current converter, shown in Fig. 5. The circuit configuration is similar, with the op-amp as its main gain block, together with a set of complementary current-mirrors used...
C-mos op-amp chip using the circuit of Fig. 16. Voltage gain is 63dB, unity-gain bandwidth 2MHz.

to sense the phase split output current flowing through the collector leads of a class-B output stage. The class-B cascode transistor connection, Tr1 to Tr3, provides the circuit with high common-emitter current gain, a high breakdown voltage and high output resistance. Positive and negative current-mirror circuits, denoted by P and N respectively, could be the improved 4-transistor G.R. Wilson current-mirror, together with an output fet to improve the overall output impedance and maximum output-voltage swing.

Although Hart and Barker's class-B scheme catered for much higher load-voltage excursion than did Graeme's proposal and avoided the undesirability of resistor matching, the class-B mode in which the circuit operates resulted in considerable crossover distortion. This problem was identified by Rao and Haslett, who showed that much better high-frequency performance and improved output current drive could be obtained if the output circuit were operated in class-AB. In further work they related the class-AB voltage-following action to that obtained by the classical class-AB push-pull output stage of an op-amp and showed how the output signal current could now be sensed via the op-amp's supply leads using a current-mirror arrangement, as shown in Fig. 6.

This led Hart and Barker to use complementary current-mirrors as external current-sensing elements, which resulted in a practical class-AB versatile op-amp structure, shown in Fig. 7, connected as a transconductance amplifier. This circuit is a current-conveyor; a very versatile analogue building-block.

Using the circuit of Fig. 7, they developed a universal operational amplifier converter, shown in Fig. 8. In this design the arrangement of feedback resistors within the op-amp circuit sets the amplifier to any one of the four main amplifier types, namely voltage, current, transresistance and transconductance.

Poor high-frequency performance of these schemes, due to the lateral p-n-p transistors available at that time, was avoided by Huijing and Veclenturf, who replaced the positive-supply sensing current-mirror by an elegant negative current-mirror source, shown in Fig. 9, which used a local amplifier with n-p-n transistors. As a discrete design, the high-frequency performance was now limited by amplifier A of the simulated current-mirror source, but a
single-chip realisation was built later, providing a much better high-frequency performance.

A further problem encountered with these class-AB current converter designs is the current output limitation imposed by either the op-amp or transistors used in the current-mirrors. Nedungadi\(^1\) showed that, using a similar converter structure to that in Fig. 8, together with a high current output class-AB amplifier, current outputs greater than 100mA could be obtained while still maintaining high conversion accuracy and high efficiency. This high-current converter technique is shown in Fig. 10.

The essential difference between Fig. 10 and previous schemes is that the outputs of the current-mirrors are fed back to the input of the circuit, while the converter output is taken from the op-amp. This arrangement ensures that only the input current is passed through the current-converter section of the circuit, irrespective of the output current magnitude. For example, with a current gain \(A_I\) of \(-100\) and an output current \(I_o\) of 100mA, the converter need only supply 1mA, which is easily and accurately achieved using standard op-amps and transistor arrays.

Wilson\(^2\) determined that the output signal distortion in the converters shown in Figs 3–8 was due to the current mirrors being connected in open-loop at the output of the circuit, where collector-voltage modulation effects are significant. By adopting a similar approach to Nedungadi and connecting the current-mirrors in a feedback arrangement, this source of voltage modulation could be reduced considerably.

During this work he introduced a current-mirror symbol which simplifies diagrams. This symbol and circuits for the low-distortion series and shunt feedback converters are shown in Figs. 11, 12 and 13 respectively. Wilson went on to show how previous current amplifier designs, based upon the open-loop mirror approach, could also be improved to the low-distortion type by simply connecting the mirrors in shunt feedback. In this way, the main distortion component of the converter is referred to the input side of the op-amp. Unfortunately, the current transfer accuracy of the converter is still limited by the current transfer performance of the current-mirror circuits. Furthermore, this feedback arrangement results in much poorer frequency performance than with the open-loop converter structure.

This new trend of using current-mirrors to sense the op-amp’s output current and provide well-defined bipolar output properties proved far superior to traditional feedback techniques.

Current followers

The current-follower is the current equivalent in the current domain to the voltage-follower in the voltage domain. It is a circuit with extremely low (ideally zero) input impedance and extremely high (ideally infinite) output impedance. When used with a signal source, it produces a current drive to a load equal in value to the short-circuit current obtainable from the input signal source.

Figure 14 shows a simple but high-performance current-follower which was featured in an earlier article\(^3\), using a 741 op-amp and CA3006 transistor arrays for the current-mirrors. The circuit has a current-gain equal to the current transfer ratio of the current-mirrors, so it is important to use high-quality current-mirrors.

One of the main features of this circuit is its wide bandwidth due to the load isolation from input to output. Also, because the op-amp is connected

Fig. 9. Improved positive-supply current mirror by Huijsing and Veelenturf gives better high-frequency performance.

Fig. 10. High-current amplifier by Nedungadi, using circuit similar to that of Fig. 8, but with class-AB amplifier at output.

Fig. 11. Current mirror symbol, originated by Wilson.

Fig. 12. Low-distortion series-feedback current converter by Wilson, with current mirrors in feedback loop to avoid collector-voltage modulation.

Fig. 13. Shunt-feedback converter, using ideas of Fig. 12.
as a voltage-follower with a grounded non-inverting input terminal, the output node of the op-amp is held at virtual ground, providing a very low input impedance and high slew-rate capability, since the op-amp has no appreciable voltage signal swing at its output.

An interesting universal follower-based amplifier was described in ref.16 in which, using only two current-followers and two voltage-followers, it is possible to configure any of the four amplifier topologies (VCVS, CCCS, CCVS and VCCS) without global feedback simply by using interstage resistors, either in series to define input current from a voltage drive or in shunt to ground to provide input voltage from a current drive.

Figure 15 illustrates such a follower-based voltage amplifier using input and output voltage-followers, with an intermediate current-follower to provide voltage gain defined by (R_2/R_1). One of the most attractive features of this structure is that the normal gain-bandwidth trade-off does not occur; the bandwidth is independent of gain setting and remains virtually constant.

A further feature is the lack of overall output to input feedback. Stabilising negative feedback is used within each follower block so that no additional feedback is necessary when the gain-defining resistors are added. As a result, any phase lag from input through to output does not affect the stability of the amplifier.

In Fig.15, the bandwidth of each voltage-follower section is close to the gain-bandwidth product of the op-amp. The frequency performance of the current-follower section, shown in ref.16, is determined by the driving source impedance R_s, which in this case is R_i. The larger the value of R_s, the higher the frequency performance. Resistor R_i can be chosen to maximise the bandwidth of the amplifier and the voltage gain can be set independently with R_2. High gain and wide bandwidth can thus be set simultaneously.

However, there is a limitation on the size of R_i and hence voltage gain and bandwidth of the amplifier due to the limited output impedance of the current-mirror circuits. Experimental results using conventional op-amps have indicated improvements of more than 50 times the gain-bandwidth capability of the individual op-amps used in the system.

Seven-terminal op-amp

Rather than the five legs of a conventional op-amp, it would be very useful if seven terminals were available. The additional two being the collectors (drains) of the output push-pull pair. This would then allow direct output-current sensing, rather than unnecessarily sensing the whole of the supply current. Such a modification could be easily carried out by semiconductor manufacturers and the device versatility would be extended considerably to allow true output-current sensing, rather than full supply-current sensing.

Sensing the entire supply current is undesirable as it leads to unnecessarily high shot-noise levels. Also, although the power supply rejection of op-amps is generally good, it would be better not to modulate the power-supply connections to the input stages of the op-amp.

The circuit diagram of a c-mos op-amp with uncommitted output drains is shown in Fig. 16, in which the additional two terminals are created by simply taking the output drains to two external pins. The op-amp shown, together with on-chip c-mos current-mirrors, has recently been implemented as an in-

Fig. 14. Wide-band current follower by Lidgey and Toumazou, in which load is isolated from input.

Fig. 15. Follower-based amplifier by Lidgey and Toumazou without overall feedback. Central current follower provides gain.

Fig. 16. Authors' c-mos op-amp with free output drains, fabricated in 2micron N-well process.
Fig. 17. Measured voltage response of circuit of Fig. 16. No change in bandwidth occurs at gains from 0dB to 30dB.

A fully integrated circuit in a 24-pin N-well cmos process. The circuit comprises three matched 7-terminal op-amps and four high-performance current-mirrors, allowing configuration into any of the supply-current sensing circuits. To ensure good matching, all the op-amps are placed closely together and share the same bias circuit.

Figure 17 shows the measured gain-frequency response curve of the seven-terminal op-amp connected as a current follower and used in the universal follower-based voltage amplifier of Fig. 15. The voltage-followers are the remaining two op-amps on the chip. Results demonstrate that the gain can be varied from 0dB to 30dB with no significant change in bandwidth, as expected.

References

HITACHI OSCILLOSCOPES

DESIGN

HITACHI OSCILLOSCOPES

from £319

The highest quality. The Hitachi name is synonymous with quality and reliability and is backed by an extended warranty on every model.

The keenest pricing. With prices starting from £319 + VAT for a 20MHz dual trace model, the price-performance ratio can not be bettered.

The largest range. Totaling 26 models the Hitachi range covers every bandwidth from 20MHz to 200MHz plus DSOs to 200MS/s.

And immediate delivery. We can supply any model from stock. Our sales engineers can arrange an on-site demonstration. Ask for full details of the Hitachi range.

Thurlby

Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Camb. Tel: (0480) 412451

CIRCLE ENQUIRY NO. 117 ON BACK PAGE

DSOs – a low cost alternative from Thurlby

If you already have an oscilloscope and are looking for a high performance DSO, look at the DSA511 and DSA524 digital storage adaptors. Both offer exceptional performance and versatility at very low cost – from £445.

- 10MS/s or 20MS/s sample rate, 1K or 4K stores
- 20MHz or 35MHz storage bandwidth
- Dual Channels, 2mV per division sensitivity
- Full digital control and waveform transfer
- Multiple save memories, waveform processing,

There's much more to say, so send for the full data.

Thurlby

Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Camb. Tel: (0480) 412451

CIRCLE ENQUIRY NO. 118 ON BACK PAGE
Quickroute Professional CAD System for IBM’s

A brand new full featured CAD system only available from Pineapple Software for PCB or circuit design with a unique easy to use ‘autotourning’ facility for less than £100.00!

Quickroute Professional combines the latest user interface with pull-down menus, icons and full mouse support, with all the powerful features you would expect from a modern CAD system.

This is just the start of a fully expandable system which will grow to include circuit capture, net list, bill of materials, and a digital autorouting system.

Perhaps the most surprising feature of Quickroute Professional is that it includes an auto-router. Although not as powerful as the much more expensive systems it is extremely fast and simple to use. Just point the mouse at the start and finish positions on the PCB, select autoroute and Quickroute does the rest. You can select to route on any layer or combination of the eight available. You can also enter a ‘rats-mesh’ of routes and leave Quickroute to route them.

PCB or circuit designs can make use of several different object types. These include pads (6 styles, 16 sizes), tracks (24 sizes), symbols (any no.), preset integrated circuits (32 styles), bit images (40 x 40 grid images), text (4 sizes, mirrored/normal), circles/ellipses/rectangles and arcs. You can design your own bit images to increase the flexibility of any design. All these objects are selected pictorially from windows and not just by name.

Quickroute Professional comes complete with drivers for both 9 pin printers and HPGL compatible plotters. Hardcopy can be obtained in a variety of qualities from draft to production quality in virtually any scale.

FEATURES

- Continual zoom work in any scale from x0.0001 to x100001
- Simple auto-router with ‘rats-mesh’ feature
- CGA/EGA/VGA/Hercules graphics system support, optional Microsoft compatible mouse
- Pull-down Menu, icons and Windows
- Output to 9 Pin IBM or Epson printers, or HPGL plotters. Print/Plot in any scale and various qualities
- Block commands include move/delete/copy/rotate/reflect
- Powerful symbol creation/edition/rotation. Grab portions of the board and store as symbols, custom ‘hot spot’ etc.
- Layers, 2 Ulk screen, automatic solder mask generation, 96 pad styles/sizes, 24 track widths, any number of symbols, 40x40 bit images, circles, all iso, arc, ref, rect, text in various sizes/styles, filled shapes etc.
- Choose objects/styles/types pictorially
- Fully upgradable system to include net list, bill of materials, digital autorouter and circuit capture to become available in due course.
- FREE Demo disc - just write or phone now!

PRICE £95.00 P & P Free

Please add 15% VAT to all prices

Please address all enquiries to: Pineapple Software, Dept EE, 39 Brownlela Gardens, Seven Kings, Ilford, Essex IG3 9NL.

Tel: 081-599 1476

ARCHIMEDES REAL TIME COLOUR VIDEO DIGITISER

This new real time colour video digitiser offers grabbing of high quality moving colour images from TV, Video, or cameras. Powerful software enables images to be scaled to any size very easily, and 30 software **"** commands allow easy incorporation of all facilities into your own programs. For full details and a free demo disc please write or phone now!

MARCHONI TRACKER BALLS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atari ST</td>
<td>£49.83</td>
</tr>
<tr>
<td>Amiga</td>
<td>£49.83</td>
</tr>
<tr>
<td>IBM</td>
<td>£315.00</td>
</tr>
<tr>
<td>IBM A3000</td>
<td>£65.00</td>
</tr>
<tr>
<td>IBM A3000</td>
<td>£65.00</td>
</tr>
<tr>
<td>IBM ECA-2</td>
<td>£675.00</td>
</tr>
</tbody>
</table>

OTHER IBM SOFTWARE and HARDWARE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM EGA</td>
<td>£790.00</td>
</tr>
</tbody>
</table>

COMPUTER ADD ONS

MAINBOARDS

- 286 (to 24Mhz) £386.00
- 386 (to 33Mhz) £790.00
- DISK CONTROLLERS
 - 1/0 £790.00
- GRAPHICS CARDS
 - KEYBOARDS £265.00
- CASES £790.00
- POWER SUPPLIES £790.00

Call for price list

- Examples
 - 20Mhz 286 mainboard £265.00
 - 20/25Mhz 386 mainboard £580.00
 - 25Mhz 386 mainboard with 32Kb cache £790.00
 - 33Mhz 386, 64Kb cache, 4Mb RAM £1400.00

Complete Systems and machine upgrade service

Datamation Services Limited
852 Plymouth Road, Slough SL1 4LP
Tel: 0753 696499 Fax: 0753 696211

IPK

Standard products and custom metalwork

- Standard products include a wide range of 19" rack mount cases, rack mount strips and blanking and ventilation panels
- Bespoke work dealt with quickly and efficiently
- All products manufactured and fabricated in-house

Contact: (0734) 31 1030 for further details

Ian P Kinloch & Company Limited,
IPK House, 3 Darwin Close,
Reading, Berks RG2 0TB

Circle Enquiry No. 132 ON BACK PAGE
Once a sequence of electronic keyboards has been built up at a multi-track recording session, one may wish to add conventional instruments to the mix, for instance guitar, vocals or a saxophone solo. Since these instruments can be added live to the synthesiser parts it is both a shame to sacrifice quality and a costly luxury to use a multi-track to piece together the final touches to the mix. Far better to use a mixer to add the saxophone or vocals and guitar to the synthesiser parts and record the result as the master-tape.

The requirement for such a mixer might be: six (mic or line level) input to two output; effect-send sub-mix (in my case to an echo chamber); some form of tone control and clear metering of all inputs (including effect-return); effect-send sub-mix and stereo output.

The block diagram for the mixer filling the specification is shown in Fig. 1. The tone control circuit is a unity gain circuit (all controls flat) so it may be substituted after each input pre-amp to achieve this alternative configuration.

The main justification for using discrete components lies in the decision to rely on a battery supply for the mixer. A further design decision was the choice of the domestic/semi-professional signal amplitude level of 0VU, equivalent to -10dB(V). The VU is a unit intended to express the level of a complex wave in terms of decibels above or below a reference volume, and it implies a complex wave — a programme waveform with high peaks. 0VU reference level therefore refers to a complex-wave power-reading on a standard VU meter.

The usual convention is to assume that the peaks of the complex wave will be 10dB higher than the peak value of a sine wave adjusted to give the same reference reading on the VU meter. In other words, if we adjust a music or speech signal to give a reading of 0VU on a VU meters the system must have at least 10dB headroom over the level of a sine wave adjusted to give the same reading if the system is not to clip the programme audio signal.

In this mixer, 0VU is set to be equivalent to -10dB(V). The peak-to-peak value of a -10dB(V) sine wave is:

$$2\sqrt{2(1\times10^{-10})}\text{V}$$

or 894mV. A complex music or speech wave will therefore have a peak-to-peak value of 10dB (or 3.16 times) higher — 2.82V pk-pk. The mixer provides more than the stated 10dB headroom since, in practice, more headroom is occasionally necessary.

Well-designed audio circuits should certainly be able to swing 3V pk-pk when running on a single 9V cell. With the grounds of cost I decided that it would be ideal if the mixer could run from a single PP3-type battery for at least eight hours in continuous use. Low-noise op-amps like the NE5534, which would be suitable for the microphone input stages, have a typical supply current of 4mA on a 9V supply. However, the worst-case figure is 10mA.

Audio mixers are relatively unsophisticated yet present many conflicting design requirements: headroom, noise contribution, linearity and current consumption. Resolving these stretches analogue design talent to the limit. By Richard Brice.

Fig. 1. Mixer block diagram.

Continued on page 578
Buy top quality test equipment with complete confidence!

Electronics World + Wireless World now offers a range of highly specified test equipment selected by our own staff for performance and value for money.

You don't have to compromise. Our equipment is manufactured by world class manufacturers such as Korea's hi-tech giant, GoldStar. We offer an unequivocal guarantee backed by a nationwide service network.

To place your order by telephone, simply call Lindsey Gardner on 081-661 3614. Orders may be faxed (081-661 8939) or sent in by post using the printed form.

We offer same-day despatch for account and credit card orders received before midday. All prices include delivery but exclude VAT.

GoldStar OS-7040
40MHz dual channel operation
1mV/div Y1 and Y2 sensitivity
20ns/div to 0.2s/div sweep rate
12kV post-deflection accelerator
Delayed sweep: A intensified, B delayed
High quality probe set
Three year guarantee
Price £529

GoldStar OS-7020
20MHz dual channel operation
1mV/div Y1 and Y2 sensitivity
100ns/div to 2s/div sweep rate
8cm X 10cm display area
Versatile trigger modes
Scale illumination
Built in calibrator
Three year guarantee
Price £295

Lodestar RF signal generator SG4150B
Test bench oscillator covering 100kHz to 150MHz in six fundamental ranges. Setting accuracy 3%. Facility for operation with external crystal. Maximum RF output: 100mV
Coarse and fine attenuation, internal and external modulation with external AF output.
The generator incorporates a mains power supply and weighs 2.5kg. Price £79.

GoldStar multimeters

DM8135
Dual display standard multimeter
Conventional 3½ digit display
'Analogue' bar graph readout
Accuracy ±0.5% DC, ±1% AC
Price £69.95

DM8433
Temperature measurement -20 to +150°C
Capacitance to 20µF
Extra-large 3½ digit display
£79.95

DM8434
4½ digit display
0.05% accuracy
Capacitance to 20µF, 0.1pF resolution
Frequency to 230kHz, 1Hz resolution
Transistor hFE test
Price £99.95

The Solatek ICT10 IC tester and programmer card fits into the backplane of any IBM compatible XT/AT computer turning the machine into a powerful IC programming and test facility.

In the programming mode, the ICT10 can work from an existing chip or reference file and write the contents to four devices simultaneously. It also performs a programming check.

The ICT10 will test industry supported logic devices and identify unknown devices by writing the industry reference number directly to screen. It also tests dram and sram parts.

The card performs the following functions after installation:
- Multi-function eprom programmer
- Identifies unknown 74 series TTL and 4000 series CMOS
- Tests all major 74 series and 4000 series logic devices
- Tests both dynamic and static memory devices

Price £295

GoldStar frequency counters

All models feature:
- 8-digit high brightness led display
- Accuracy ±1Hz or 1 count
- Sensitivity 10mV into 1MΩ or 500Ω
- Hold function
- Mains powered

Dimensions 210 x 260 x 76mm

Weight 1.8kg

FC7011
Range 1Hz to 100MHz
Reference stability 5ppm 0 to 50°C, 5ppm/year
Price £169

FC7102
Range channel A 1Hz to 100MHz; channel B 60MHz to 1GHz
Reference stability 1ppm 0 to 50°C, 1ppm/year
Price £219

FC7051
Range channel A 1Hz to 100MHz; channel B 60MHz to 550MHz
Reference stability 5ppm 0 to 50°C, 5ppm/year
Price £189

AM2001
Analogue 20kV multimeter
DC current 0.01μA to 10A fssd
AC voltage 50 to 1000V fssd
Resistance 0 to 10MΩ
Ratiometric 3½ to 40dB
Display jewel pivot with mirror
Price £19.95

DM7333
Capacitance to 20μF
Frequency to 200kHz (10Hz resolution)
Transistor hFE test
Extra-large 3½ digit display
Price £74.95

DM7333
Capacitance to 20μF
Frequency to 200kHz (10Hz resolution)
Transistor hFE test
Extra-large 3½ digit display
Price £74.95

ELECTRONICS WORLD GOODS ORDER FORM

Please send the following goods:

<table>
<thead>
<tr>
<th>Model number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total value £

VAT at 15% £

Cheque/P.O./credit card total debit payable to Reed Business Publishing

Credit card details

Number

Expiry date

Access [] Visa [] American Express [] Others []

Address

Phone

Signature
8mA at 25°C. This would give an 1Ω for the microphone input stages of 32mA which, running on a PP3 with about 100mA/h capacity, would give just three hours of use simply supplying the mic amplifiers.

Alternative op-amp series commonly used for audio, the LF355 or the TL071, have typical current drains of 1.5mA and may be considered suitable alternatives. However, they are less suitable for the mic input amplifiers. This is because (being fet input) they have a relatively large input noise voltage generator and virtually no input noise current generator, and are therefore relatively noisy when matching a low-impedance source like a microphone.

Input amplifiers

Each of the four input-stage amplifiers is formed from a transistor ring of three. The design requirement is for good headroom and a very low noise figure.

![Fig. 2. The noise generator model of a bipolar transistor showing both current and voltage noise sources.](image)

Figure 2 shows noise sources (V_n and I_n) added to a perfect transistor. V_n has the RMS value of:

\[
V_n = \sqrt{4kT(\alpha B + \frac{1}{2\beta})} \text{ volts}
\]

I_n has the RMS value of:

\[
I_n = \sqrt{\frac{4kTB}{(2B/\beta_m)}}
\]

Because \(\beta_m\) appears in both equations we can sketch what will happen to \(V_n\) and \(I_n\) as the value of \(\beta_m\) changes (which is the same thing as saying, as collector current changes) — see Fig. 3. Now it is apparent that the total noise which appears as a signal at the base of the transistor will depend on the source resistance. If this is high then the noise current generated by the current noise generator must be made small because this signal will flow through the large resistance and generate a large voltage signal at the transistors base. If the source resistance is low, then the magnitude of the current generator is not important, but the magnitude of the corner-frequency, is dependent on the transistor type and sample. The magnitude of \(I_n\) is better modelled as:

\[
I_n = \frac{4kTB}{28(\beta_m(\omega + 1))} \text{ where } \omega = 2\pi f
\]

The effect of 1/f noise is further complicated because not only does its magnitude decrease with decreasing collector current (as shown in the above equation) but the flicker-noise corner-frequency itself falls with decreasing collector current. Because an audio signal contains frequencies down to 20Hz, flicker noise must be considered and its reduction ensured by the choice of a low flicker-noise type transistor, like the BC109, operating at a low standing current.

Substituting in the above equations for \(I_n\) and \(V_n\) with assumptions for the following values: \(k = \text{Boltzmann's constant } = 1.38 \times 10^{-23} \text{; } T = \text{average room temperature } = 290K; B = \text{bandwidth } = 20\text{kHz. Typical figures for a BC109: } \beta = 200; r_{bb'} = 200\Omega; \beta_m = 2mAV \text{ for an emitter current of } 50\mu A. \text{ So } V_n, \text{ which is the predominant generator for a low source resistance, is:}

\[
V_n = \sqrt{3.2 \times 10^{-10}} \text{ (450) or 380V RMS or } -128\text{dB(V). The important term here is the equivalent resistance term } (r_{bb'} + 1/\beta_m). \text{ Its typical value of 450 Ohm is not much larger than the magnitude of the real part of the impedance across the output terminals of a moving-coil microphone (230Ohm). This means that the thermal noise generated in the resistive part of the microphone impedance produces a significant proportion of the total input noise. If we take a typical output voltage from the microphone to be 1mV RMS then this noise will be } -68\text{dB. The magnitude of the current noise generator is:}

![Fig. 3. Sketch of voltage and current noise sources as a function of collector current and transconductance.](image)

![Fig. 4. Ring-of-three microphone channel amplifier.](image)
or 40pA RMS.

The total calculated noise-figure for the amplifier fed from a resistive source of 20kΩ (and with the gain set to maximum) is about 12dB, this being a measure of the amount by which the total noise from the amplifier exceeds what it would be if the amplifier were totally noiseless. The noise figure of the amplifier gradually deteriorates at lower gains due to the thermal noise generated in the feedback resistors.

It might be thought that the current noise generator term derived above is so vanishingly small that we do not need to consider the increase in this generator due to flicker noise. This would indeed be the case if, as in the above calculation of noise figure, the noise current simply flowed in the microphone resistance.

However, if we draw the input stage the other way around, as in Fig. 5, it becomes very clear that the noise signal, which may be considered in every way just like the wanted audio signal, is AC-coupled into the microphone load. So, at frequencies below about 1.7kHz, the current generator develops its voltage signal not simply across the microphone impedance but across the potential divider which forms the bias supply for the input transistor. This has an equivalent resistance of 10kΩ, and the noise current flowing across it will generate a noise voltage signal of 124nV in a bandwidth of 1.7kHz — this figure ignores the increased effect of flicker noise at extremely low frequency.

The 10kΩ source resistance at low frequency requires an optimum operating g_m of 1.4mA/V and an operating current of 35µA; thus the final design, like so many other engineering solutions, is a compromise. A low collector current is used to ensure low flicker noise by matching the input stage to the source impedance at low frequency with some sacrifice of noise figure in the mid and high frequency bands.

The amplifier shown in Fig. 4 has a calculated input noise density of 3nV/VHz and a calculated input noise current density of 0.3pA/VHz, ignoring flicker noise.

The frequency and phase response remain much the same regardless of gain setting. This seems to go against the intractable laws of gain-bandwidth product: as we increase the gain we must expect the frequency response to decrease, and vice-versa. In fact, the ring-of-three circuit is an early form of the current-mode-feedback amplifier currently very popular in video applications.

The explanation for this lies in the variable gain-setting resistor R_e. This not only determines the open-loop gain by controlling the proportion of the output voltage fed back to the inverting port, but also forms the dominating part of the emitter load of the first transistor and consequently the gain of the first stage. As the value of R_e decreases, so the feedback diminishes and the closed-loop gain rises. At the same time the open-loop gain of the circuit rises because T_1's emitter load falls in value. The current consumption for all four mic pre-amps is 3mA.

Mix amplifiers

The mix amplifiers shown in Fig. 6 are based on a conventional transistor pair circuit. The only difficult decision in this area is the choice of the value for R_e. It is this value, combined with the input resistors, that determines the total contribution each input may make to the final output. In the end, I opted for a value that allowed for unity gain so that an input registering 0VU on the input meter will register 0VU on the output meter with the channel fader fully open. For there to be unity gain through the system there must be some gain because of the lossy fader and pan arrangement shown in Fig. 7.

Other circuitry

Good, clear metering is a real advantage. But led bar-graph displays and the
DESIGN

associated ICs to drive them, while otherwise excellent, would take more current from the battery supply than the mixer electronics itself, so the obvious choice is a moving-coil meter. The written specification for VU meter is as follows:

The volume indicator is a standardised instrument developed for the control and monitoring of sound programme. It shall be a root-mean-square type of instrument with a full-wave type of rectifier. The rectifier law shall be intermediate between linear and square law, having of an exponential of 1.2 ± 0.2. The sensitivity shall not depart from that at 1kHz by more than 0.2dB between 35Hz and 10kHz at an input level of 0VU, nor more than 0.5dB between 25Hz and 16kHz.

The frequency response of the circuit and meter arrangement shown in Fig. 8, relative to a signal of 0VU at 1kHz, is: -3dB points, 15Hz and 60kHz. The response is less than 0.5dB down at 50Hz and 20kHz — this is not really to specification, but it shows a good widespread response nonetheless.

Notice that the rectifiers and meter are fed from the collector of Tr, which is a current source in parallel with Rc. Because Rc is a high value in comparison with the emitter load of Tr, the voltage gain is very small during the part of the input cycle when the rectifier diodes are not in conduction. This alleviates most of the problem of the Si diode offset voltage.

On a practical level remember that a VU meter is an indicator of the average power of a waveform: it is not a peak-reading instrument like a BBC PPM meter. Failure to appreciate this (and on a practical level this means allowing the meter needle to swing into the red section on transients) will mean the mixer is operating with inadequate system headroom. In operation the meter needles should only very occasionally swing above the 0VU reference level on complex programme. Provided input trim levels and main faders are set with this rule in mind, clipping will very rarely be encountered, even under conditions of moderate abuse!

The tone control circuit, Fig. 9, is based on the nearly universal Baxandall tone-control circuit, with the gain element a buffered common-emitter amplifier. The circuit values are modified to give the more gentle response at extremes of boost and cut.

BRAND NEW & BOXED

AVO Model 8 MK5
Multimeters
With AVO Ever-Ready Case,
Probes, Leads & Spare Batteries . .
SPECIAL . . . £125.00

ANCHOR SURPLUS LTD.
The Cattle Market
NOTTINGHAM
ENGLAND
NG2 3GY

ALL PRICES EXCLUDE VAT & CARRIAGE

ALL GOODS FULLY TESTED & GUARANTEED

 IF YOU ARE NOT 100% SATISFIED... YOU GET A 100% REFUND ON THE PURCHASE PRICE!!

MARCONITF2008
HF/VHF/UHF Sig Gen 1MHz - 520MHz
AM/FM/CW
TESTED AND CALIBRATION VERIFIED

£350.00!!

PHILIPS PM 3217
Double trace oscilloscopes 50MHz, special
with manual and probes.
"TESTED AND CALIBRATION VERIFIED"

£300.00!!

TEK 475 SCOPES
200Mhz. Dual Beam Delay Timebase . .
TESTED & CALIBRATION VERIFIED . .
SPECIAL . . . £485.00

TELEPHONE:
(0602) 864041 or
864902 for
Immediate Attention
(24hrs Ansa)

ACCESS

Just Arrived
SPECTRUM ANALYSERS
Various — please for stock
and details
from £1000

Just Arrived
MK328, SPY, Receivers, MICRO
SRE 2.5 - 30 MHZ,
AM-CW-SSB-CAL Complete sets
with manual 12V OP

£150.00!!
SPECIAL OFFERS

National oscilloscope VP 5503A dual trace with third trace, 35 MHz, £425.00 c/p 16.75
Gould advance OS 1100A oscilloscope, 35 MHz, dual trace, £375.00 c/p 16.75
Telequipment D 65 oscilloscope, 20 MHz, delay dual trace, £280.00 c/p 16.75
Telequipment D 67A oscilloscope, dual trace delay, £315.00 c/p 16.75
Ampex terminal 12" non glare screen, 15W & swivel display, primary port printer, port etc. model 21 £180.00 c/p 16.75
9" Nec monitor, 240 vac input, composite video input, £25.95 c/p 6.80
19" colour monitor, 240 Vac input, composite video input, ex equipment tested with no scene burn, £125.00 c/p please ring
25" colour monitor, 240 Vac input, composite video input, new, case size 23 x 17" x 21/4", £195.00 c/p please ring. Both 19" & 25" monitors made by Electrohome
Teac 1/2 height floppy disk drive FD 55 B80/1, £49.95 c/p 6.50
Teac 1/2 height floppy disk drive FD 55 F96 TPI single double density, 125-250k 40 track 300m, £26.00 c/p 4.50 ex equip
Teac 1/2 height floppy disk drive FD 55 F56 TPI 50,000 kbytes 80 track 300m SA400 interface, £49.95 c/p 6.50.
Tandon (Winchester) hard disk drive 1/2 height TM 252 10Mb new ex equipment, £57.50 c/p 6.50
Enubex-Persyst C.G.A. colour graphics controller new & boxed £45.00 c/p 4.50
Heracles compatible monochrome graphics controller with serial port new & boxed £35.00 c/p 4.50
Plantronics acoustics communications headsets new & boxed (Auralite) type, type 570 complete with earpads instructions etc, £70.00 c/p 3.50 qty discounts
Coulant DC/DC converter + 5 VDC output 48 VDC new £200.00 c/p 3.00 qty discounts
Test & measurement/audio communications/computer equipment a way lots in stock, power supplying transformers plugs sockets & connectors, components fans panel meters cables etc.

We would like the opportunity to tender for surplus equipment

Official orders credit card telephone orders accepted with Access, Amex, Visa cards. Diesmex ensures width is at rates less £10000. Please ring for rates not shown. All prices inc. V.A.T. unless stated. Stock list available.

FIELD ELECTRIC LTD

B. BAMBER ELECTRONICS

PYE RADIO TELEPHONES
Pye Westminster Motorcycle Sets type W15FM, P Band. Will tune to 4 meters, sets complete with control box mounted on unit but less mike & speaker etc
Pye Olympic type M202, FM High Band, less mike & speaker £15 + £3 P.P.
Pye M293, FM High Band, complete but less mike, £15 + £3 P.P.
Pye M294, FM less mike & speakers, High Band only £100 + £3 P.P.
Pye M296, UHF less Mike & Speakers £120 + £3 P.P.
Pye Base Power Unit type AC200 £100 + £3 P.P.
Pye Base Power Unit type AC150 £85 + £3 P.P.
Pye Repairer type PC1 £20 + £3 P.P.
Pye Repairer type PC2 £30 + £3 P.P.
Pye Repairer type PC1 £15 + £3 P.P.
Pye Repairer type PG1, FM High Band £20 + £3 P.P.
Pye Pocketonetics type PF2AM, High Band £25 + £3 P.P.
Pye Pocketonetics type PS5020, FM High Band £25 + £3 P.P.
Pye Pocketonetics type PS5012, UHF £25 + £3 P.P.
Pye Pocketonetics type PS85 £150 + £3 P.P.
Pye Base Station type F30/60, Mid Band, less cabinet £15 + £3 P.P.
Pye Base Station type L200, UHF, less cabinet £35 + £3 P.P.
Pye Base Station type F414, UHF £75 + £3 P.P.
Pye Base Station type F414, Mid Band £150 + £3 P.P.
Pye Pocketonetics Car Adaptor for PS500 £40 + £3 P.P.
Pye Battery Charger type BC29, for PS500 £40 + £3 P.P.
Airtel UHF Filter Duplexer, 3 Cavity type, model M40A-3/14 £25 + £3 P.P.
Pye Marconi A/M/F Modulation Meter type TF3000 £60 + £3 P.P.
Marcron A/M/F Modulation Meter type TF2003, with shoulder strap carrying 25-250MHz & 380-500MHz £250 + £20 P.P.
Polywave Microwave Signal Generator model MSG2-2A £120 + £15 P.P.
Hatfield Selective Level Meter type 1001 £150 + £15 P.P.
Marcion Circuit Magnification Meter type TF1245 with Oscilloscopes type TF248 & TF247 £300 + £30 P.P.
Marcion A/F Power Meter type TF893A, 20A-35KHZ, 20Wm-10W £120 + £10 P.P.
Pye Signal Generators type SG5U, 370MHz-470MHz £30 + £5 P.P.
Pye Signal Generators type SG3V, 70MHz-170KHz £30 + £5 P.P.

All prices quoted VAT excl. Check availability before ordering.

CALLERS BY APPOINTMENT ONLY

HENRY'S

404 Edgeware Road, London W1 2ED Instruments/Audio 01-724 3564 Security/Communications/CCW 01-724 0323 Components 01-724 2214 Fax 01-724 1096 Trade/Education/Export 01-258 1831

TELEPHONE YOUR ORDER WITH VISA/ACCESS OPEN 6 DAYS A WEEK FOR CALLERS

Prices correct at Sept 89

ADDS VAT (£1,000+)

CREDITS

5 STATION ROAD, LITTLEPORT, CAMBS CB6 1GE
PHONE: ELY (0539) 365189

CIRCLE ENQUIRY NO. 135 ON BACK PAGE

7/90 ELECTRONICS WORLD + WIRELESS WORLD

HENRY'S AUDIO ELECTRONICS

404 Edgeware Road, London W1 2ED Instruments/Audio 01-724 3564 Security/Communications/CCW 01-724 0323 Components 01-724 2214 Fax 01-724 1096 Trade/Education/Export 01-258 1831

TELEPHONE YOUR ORDER WITH VISA/ACCESS OPEN 6 DAYS A WEEK FOR CALLERS

Prices correct at Sept 89

Also stocked
Tools, components, CB, public address, CCTV, security, communications, TV, radio, audio, computer accessories.

CREDITS

7/90 ELECTRONICS WORLD + WIRELESS WORLD

CIRCLE ENQUIRY NO. 136 ON BACK PAGE

581

July 1990 ELECTRONICS WORLD + WIRELESS WORLD
High-accuracy bridge amplifier

Derek Shell describes a differential bridge amplifier which needs only one precision resistor and has no common-mode error.

If a Wheatstone bridge is arranged to drive a non-inverting feedback amplifier, with the measurement and reference nodes taken to the op-amp positive and negative op-amp inputs respectively, feedback action will force the bridge into balance. The current injected into the reference node via the feedback resistance must therefore modify the voltage drop across the reference resistance by an amount equal to the bridge current multiplied by the deviation between measurement (transducer) resistance and reference resistance. The voltage drop across the feedback resistance therefore provides an amplified measurement of resistance deviation.

By holding the bridge reference node at virtual ground by the additional op-amp circuit shown in Fig. 1, together with the measurement amplifier circuit, the voltage across the feedback resistance appears at the measurement amplifier output referenced to ground. We now have a two op-amp bridge differential amplifier which requires only one precision resistor, has no common-mode error and suffers from only one op-amp offset error which adds directly to signal input.

Another very useful consequence of the virtual grounding of the bridge reference node and, since the bridge is forced into balance, also of the measurement node, is that the voltages across both upper bridge resistors are held constant at bridge voltage, hence constant.
bridge currents are generated without recourse to constant current generators. The bridge voltage will, of course, require accurate definition, and can be generated by a reference zener and resistance to the positive supply. The derivation of errors from op-amp 1 input bias currents and offset, referring to Fig. 3, is as follows.

\[
\begin{align*}
(V_o - I_b - I_{fb}) & = \frac{V}{\frac{R}{\text{RF}}} \\
(I_b - v_{\text{off}} - I_{fb}) & = \frac{(I_b - v_{\text{off}} - I_{fb})(R + \delta R)}{R} \\
V & = \frac{(I_b - v_{\text{off}} - I_{fb})(R + \delta R)}{R} \\
I_b - v_{\text{off}} & = \frac{\delta R I_b}{R} + \frac{\delta R}{R} \\
\end{align*}
\]

Scale factor error terms are

\[
\begin{align*}
I_{\text{off}} & = \frac{R}{\text{RF}} (1) \\
v_{\text{off}} & = \frac{R}{R} (2)
\end{align*}
\]

Output offset error terms are

\[
\begin{align*}
I_b & = \frac{R}{R} (3) \\
v_{\text{off}} & = \frac{R}{R} (4) \\
v_{\text{off}} & = \frac{R}{R} (5)
\end{align*}
\]

Deriving errors from op-amp2 input bias and offset, as in Fig. 4, gives:

\[
\begin{align*}
\left[\frac{V_o - v_{\text{off}} + I_b - v_{\text{off}} - I_{fb}}{R_b} \right] & = \frac{(V_o - \delta I_b)(R + \delta R)}{R} \\
(I_b - v_{\text{off}} - I_{fb}) & = \frac{\delta R I_b}{R} + \frac{\delta R}{R} \\
V & = \frac{v_{\text{off}} + \delta R I_b}{R} \frac{R}{R} \frac{(1 - v_{\text{off}} + I_{fb})}{R_b} \\
\end{align*}
\]

Scale factor error term is

\[
\begin{align*}
v_{\text{off}} & = \frac{R}{R} (6) \\
\end{align*}
\]

Output offset error terms are

\[
\begin{align*}
v_{\text{off}} & = \frac{R}{R} (7) \\
I_{fb} & = \frac{R}{R} (8)
\end{align*}
\]

In the case where lead resistance compensation for remotely sited transducers must be applied, involving appreciable variation of lead and dummy lead resistance with temperature, the additional op-amp circuit shown in Fig. 2 will maintain constant bridge currents.

Figures 3 and 4 provide detailed analysis of errors introduced by op-amp offset and bias parameters.

Error derivation

Error term (5) expresses an error equivalent to measurement amplifier input offset added to signal and is intrinsic to any amplifier configuration. Excluding this term from consideration, therefore, the accuracy requirement from this amplifier configuration is that the sum of all the other error terms should be substantially less than errors deriving from tolerances in the bridge resistors, feedback resistor and bridge voltage.

With relatively non-stringent values of 0.1mV, 5nA and 10nA for offset voltage (nulled), offset current and bias current for op-amp, total scale factor and output offset errors of 0.01% and 1mV respectively should be achievable over a wide range of transducer drive and signal amplification requirements, given suitable optimisation of resistance values and bridge voltage.

This bridge amplifier configuration has the merits of simplicity, low component count and high accuracy. Compared with the conventional three op-amp differential amplifier used to amplify a differential bridge signal, it offers a reduced precision resistor count from 3 to 1 with a corresponding reduction in scale-factor error, a reduction in op-amp count, and a halving of op-amp input offset-voltage errors which add directly to bridge signal.
FDNR filters — a simplified approach

Most analogue circuits are simple in their basic operation, but the authors of textbooks seem to delight in the complicated exposition, sprinkling so much superfluous mathematics around as to obscure the wood with trees.

A typical textbook approach to circuit analysis takes into account all the characteristics of an active device, which results in algebraic equations too long to fit on one line and completely obscures the important principles at hand. How much better, surely, to start with a simplified model to demonstrate the principle and then to indicate any modifications and allowances that must be made to accommodate the vagaries of real devices.

I applied this principle a few years ago, on coming across an article describing an application of FDNR filters in the Hewlett Packard Journal. I had heard of frequency-dependent negative resistances before — their use was proposed as long ago as 1969 — but apart from noting that the circuits looked fearfully involved, I had not had occasion to take any further interest. This time, however, I resolved to get to grips with them, and knowing that a textbook was only likely to confuse me, set about analysing the circuit from scratch.

FDNR filters are not just a curiosity: they offer a realistic approach to some filtering applications. For instance, the Hewlett Packard 5420A digital signal analyser uses them as input anti-aliasing filters to provide identical, matched, low-pass filters on each of its two input channels.

The technique permits the realisation of filters with the flat pass-band, closely controlled phase response and stable drift-free characteristics required for the two identical input channels of a precision measuring instrument, characteristics which it would be difficult to obtain in the 0–30kHz range with filters using wound inductors.

Of course, it would be possible, if that instrument were being designed today, to consider the convenient and economical switched-capacitor filter ICs available from a number of manufacturers. But, being time-discrete filters, they would still need to be preceded by a conventional anti-aliasing filter of some kind. And even then, one would be wary of incorporating a switched-capacitor filter, with its high-level clock signal and the possibility of spurious responses, in the front end of a sensitive measurement system.

The FDNR

To see how FDNRs may be used in filters, consider first how inductors and capacitors are used in conjunction with resistive terminations to make a frequency-selective network, for example a low-pass filter. Figure 1(a) illustrates that the voltage across an inductor is proportional to the rate of change of current through it, that voltage across a resistor is simply proportional to the current, and that voltage across a capacitor is proportional to the integral of the current (or the current is proportional to the rate of change of voltage, which comes to the same thing). It also shows a device called an FDNR or sometimes a D element, with the characteristics shown.

For a constant-amplitude AC input current, the voltage across an inductor rises at 6dB/octave with increasing frequency; across a resistor it is constant in amplitude; and across a capacitor it falls at 6dB/octave. Across an FDNR it falls at 12dB/octave, for which reason it is sometimes called a “supercapacitor” and is denoted by four parallel lines, twice as many as a normal capacitor symbol. Similarly, where the \(j_O \) term associated with an inductor indicates a 90° leading voltage, for a capacitor the \(1/j_O \) or \(-j_O^2\) term indicates a 90° lagging voltage and for an FDNR the \(1/(j_O^2) \) or \(-1/j_O^2\) term indicates a negative resistance. (Remember that \(j^2 = -1 \), i.e. two 90° phase shifts give a phase shift of 180° — a sine wave in antiphase or a “negative” sine wave.

For the steady-state condition, which

Ian Hickman's explanation of frequency-dependent negative-resistance filters is the result of his unwillingness to rely on the maths-spattered textbook method of learning.
is all we are considering here, the complex frequency variable \(s \) can be considered as shorthand for \(\omega \), where \(\omega \) is the frequency of a sine wave in radians per second, so \(\omega = 2\pi f \), where \(f \) is the frequency in Hertz. My apologies if this recaps a bit breathlessly, but the main drift of the article is how FDNRs work.

The algebra is fairly simple; the response of the second-order low-pass filter at (b) is as follows.

\[
\begin{align*}
v_o &= i,R = i = \frac{1}{j\omega} \\
v_i &= i = \omega L + v_o \\
i_c &= i = i_o = v_o = v_o (\pi j\omega + 1/R) \\
v_o &= i_o (\pi j\omega + 1/R) \\
&= v_o (\pi j\omega + 1/R) + v_o \\
&= \frac{1}{j\omega L + (\pi j\omega + 1/R)C + 1} \\
&\text{and if } L = C = 1,
\end{align*}
\]

where \(D \) stands for damping, not for anything to do with D elements. The LC section is driven from zero source impedance, leading a load of resistance \(R \). It turns out that, for the normalised case of \(L = 1H, C = 1F \), for which the corner frequency \(\omega_0 = 1\text{radian/s}, D = 1, Q = 1/R \).

For a practical filter, we would choose a value for \(Q \) to give the flattest possible pass-band response, rather than the peaky response illustrated.

Figure 1(c) shows the same two-element section with a resistor substituted for the inductor, and an FDNR for the capacitor. To be consistent, a capacitor must be substituted in (c) for the resistive termination in (b). The algebra for (c) is followed through in exactly the same way as in (b) and produces

\[
v_v = \frac{1}{s^2 + sC + 1}
\]

This is the same second-order expression for \(v/v \) as in (b), but with the damping term \(D \) equal to \(C \), so \(Q = 1/C \) for the normalised case where the resistance \(R \) and the FDNR \(R' \) both equal 1\(\Omega \). So in principle, given the appropriate FDNRs, we could realise any LC filter as an RR' filter, where \(R' \) indicates an FDNR.

Figure 2 shows an FDNR circuit, in which \(C_a = C_b \) and \(R_a = R_b \). It can reasonably be described as a somewhat
includes A_1. Now consider the AC conditions and, in particular, the frequency ω_0 at which $1/(oC) = R$. For convenience, normalise everything, so that $R = 1\Omega$. $C = 1F$ and $\omega_0 = 1/rad/s$.

We need to determine the relationship between the voltage applied to node 5 and the current i, flowing as a result, as a function of frequency.

As a start, assume that there is a voltage $v_{1,0}$ of 1V RMS and frequency 1rad/s at node 1, as shown in Fig.2(a), and define its phase as the reference phase for all the other voltages and currents in the circuit. The double-subscript convention being used here indicates the node at which the voltage is measured and the node with respect to which it is being measured, in that order: thus $v_{1,0}$ is the voltage at node 1 with respect to node 0, ground.

Because of its large voltage gain, an op-amp with negative feedback must have its two inputs at virtually the same voltage for any value of output voltage - assuming that it is not overdriven. In which case the output voltage would be at one of the supply-rail voltages. We therefore know that the voltage at node 3 with respect to ground is 1/0° and at node 5 it is also 1/0° for the same reason. Furthermore, node 1 is connected only to an op-amp input, which draws negligible current: therefore, since $R_1 = R_2$ and i, flows through both, $v_{1,0} = 1/0°$.

We can now fill in $v_{1,s}$, $v_{1,2}$ and $v_{1,3}$ on the voltage vector diagram of Fig.2(b) and i, on the current vector diagram (c) as shown. Given that $v_{1,s}$, the voltage across C_s, is lagging by 180°, the current i, through C_s must be lagging by only 90° as shown in (c): since $i_s = i_3 + i_4$, we can now also mark in i_3, the output current of A_1. The current i_3 flows through both R_2 and C_s, so we can mark in $v_{3,5}$, which must be just the opposite, since $v_{5,3}$, the voltage across C_s, is lagging by 270° (which is the same as leading by 90°). Then, the current through C_s, must be lagging by 180°, as shown in (c). We can now finally mark in i_3, since $i_3 + i_4 = i$.

Current i is 180° out of phase with voltage $v_{1,s}$ at node 5, i.e. it is flowing the opposite way to what we would expect if we saw a resistance looking in at node 5. What we have is a resistance equal to $v_{1,s}/i$, or $(1/0°V)/(1/188°A)$, which is 1Ω.

Figure 2(d) shows the current vector diagram for a frequency of 0.5rad/s. Since, at this frequency, the reactance of C_s is 2Ω, i_3 is now only 0.5A and i, as shown. In consequence, $v_{1,0}$ is only 0.5V and, since the reactance of C_s is also 2Ω, a mere 0.25A is enough to provide the 0.5V drop $v_{1,s}$ across C_s. At one octave lower than before, the resistance looking into node 5 is still negative but is now -4Ω. Similarly, at a frequency of 2rad/s, we see 0.25Ω.

The negative resistance is inversely proportional to the square of the frequency and, to put it another way, if an alternating current of constant amplitude is injected into node 5, the resulting voltage drop falls at $-120B$ octave with increasing frequency, as well as being in anti-phase. This is a frequency-dependent negative resistor, subject only to the limitation that one end is anchored firmly to ground.

Since op-amps are not capable of supplying amps of current, except on paper, it is more sensible to choose values for R, R_2 and R_3 in the range 1kΩ to 5kΩ. They need not be equal, but the analysis is a little more complicated if they are not. The FDNR will work as described down to a frequency where the op-amp input currents are no longer negligible compared to i_s and up to the frequency at which the op-amp output impedances are no longer low considering the size of i_3, or where their frequency response begins to fall off, whichever is the lower. At the frequency where $R = 1/(oC)$, the input impedance at node 5 is simply $-R$.

FDNR filter design

In many applications, the fact that the FDNR is not floating is no problem. Figure 3(a) shows a three-pole, elliptic, low-pass filter operating between source and load impedances R_s and R_L, which would normally be equal. In (b), the transformed filter using resistors instead of inductors and FDNRs in place of the capacitors operates between capacitive source and load impedances; the resistors R_s and R_L are added purely to define the behaviour at 0Hz, where the reactance of the terminating ca-
pacitors has risen to infinity.

In (c) is a normalised seven-pole, elliptic low-pass filter used as an anti-aliasing filter in the H-P S420A digital signal analyser; while (d) shows the corresponding FDNR filter scaled for a 3kHz cut-off. Resistor R_n is equal to 85.6kΩ which, added to the series resistors in lieu of inductors, totals 100kΩ. In conjunction with R_n, a 100kΩ DC return at the non-inverting input of the output op-amp, the DC attenuation is 6dB.

At higher frequencies in the pass-band, the same 6dB attenuation occurs, due now to the reactance of the two equal-value source and terminating capacitors. An attenuation of 6dB in the pass-band sounds a bit odd, but this is because we have been considering the input as V_s, the source EMF. If, as is usually the case, the source resistance R_s in Fig.3(a) is considered as the internal or matched resistance of the source and the filter input measured at the input to L, instead, the pass-band attenuation is zero, as expected. The final circuit of Fig.3(d) provides greater than 80dB of stop-band attenuation for frequencies above 80kHz.

Returning for the moment to the prototype normalised seven-pole filter of Fig.3(c), one can see that FDNRs are particularly convenient for low-pass, rather than high-pass filters and also how the choice of T-sections rather than π-sections reduces the number of FDNRs by one.

Design procedure

Practical FDNR filter design proceeds much as normal, starting with a design such as that of Fig.3(c), where the values are normalised; that is, are in Henries and Farads, calculated for a cut-off frequency of 0.159Hz (1/22Hz or 1 rad/s) with a Ω characteristic resistance source and load. The inductor values in Henries become the resistor values in Ohms and the reciprocal of the capacitor values becomes the value of the supercapacitors, D elements or FDNRs, in minus Ohms. The reciprocal of the characteristic resistance becomes the terminating capacitor value in Farads.

The design is then normalised to the desired cut-off frequency by dividing the R and multiplying the D values by the new cut-off frequency — equivalent to dividing both L and C values by the desired cut-off frequency when normalising an LC filter. A suitable multiplying factor is then chosen to bring the R values to a manageable level — say 2.5kΩ for R_n, corresponding to L_n in Fig. 3(a) — and the same multiplying factor applied to the D elements.

The value of negative resistance required at the cut-off frequency is now determined, and the appropriate value for the two capacitors of each D element can be selected, given the values of R_n, R, and L_n used, see Fig.2(a).

References

The illustrations in this article are based on drawings from Analog Electronics, Ian Hickman, Heinemann Newnes, 1990, by permission of the publishers.

Toroidal Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Price List

<table>
<thead>
<tr>
<th>VA</th>
<th>Mail Order</th>
<th>1</th>
<th>5</th>
<th>6</th>
<th>16</th>
<th>25</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8.77</td>
<td>6.75</td>
<td>6.42</td>
<td>6.08</td>
<td>5.60</td>
<td>5.10</td>
<td>4.68</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10.32</td>
<td>8.27</td>
<td>7.84</td>
<td>7.40</td>
<td>6.84</td>
<td>6.24</td>
<td>5.64</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>11.25</td>
<td>9.15</td>
<td>8.74</td>
<td>8.30</td>
<td>7.72</td>
<td>7.13</td>
<td>6.54</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>11.95</td>
<td>10.10</td>
<td>9.7</td>
<td>9.30</td>
<td>8.72</td>
<td>8.13</td>
<td>7.54</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>14.70</td>
<td>14.00</td>
<td>14.00</td>
<td>13.32</td>
<td>12.74</td>
<td>12.15</td>
<td>11.56</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>15.75</td>
<td>15.03</td>
<td>15.03</td>
<td>14.34</td>
<td>13.76</td>
<td>13.17</td>
<td>12.58</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>16.27</td>
<td>15.55</td>
<td>15.55</td>
<td>14.86</td>
<td>14.28</td>
<td>13.69</td>
<td>13.10</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>17.29</td>
<td>16.59</td>
<td>16.59</td>
<td>15.90</td>
<td>15.32</td>
<td>14.73</td>
<td>14.15</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>17.80</td>
<td>17.10</td>
<td>17.10</td>
<td>16.42</td>
<td>15.84</td>
<td>15.26</td>
<td>14.68</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>18.31</td>
<td>17.61</td>
<td>17.61</td>
<td>16.94</td>
<td>16.36</td>
<td>15.78</td>
<td>15.20</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>18.81</td>
<td>18.12</td>
<td>18.12</td>
<td>17.46</td>
<td>16.88</td>
<td>16.30</td>
<td>15.72</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>19.31</td>
<td>18.63</td>
<td>18.63</td>
<td>17.98</td>
<td>17.40</td>
<td>16.82</td>
<td>16.24</td>
<td></td>
</tr>
</tbody>
</table>

These prices are for single primary with two equal secondary equal & coded fly leads.

S tandards for PSTN-based modem communications are well established. From 75b/s to 14 000b/s, some thirteen standards cover a variety of bit rates, interface specifications and modulation techniques. With modems, increased speed not only increases the cost, but also the likelihood that the received data will contain errors. For this reason, most high-speed communication systems possess some form of software-controlled error correction, which further increases cost.

Many low-cost, low-data-rate telemetry systems have used DTMF tones for signalling purposes, allowing a limited amount of data to be sent at a very low speed. Later, single-chip devices for the CCITT V21 (300b/s) and V23 (1200/75 or 1200/1200b/s) standards became available.

V23 evolved from terminal applications where the user was assumed to be able to type at up to 75b/s but could receive from a host computer at 1200b/s. The 1200/1200 specification allowed a higher data rate from the terminal, but the transmission was half duplex, so that only one modem could transmit while the second had to wait until the message was complete.

More recently, V22 allows 1200b/s in either direction at the same time (full duplex), reducing line occupancy and therefore costs. So, how is this improvement achieved?

V23 calls for the use of frequency shift keying (FSK), which is the transmission of two different tones to represent 0 and 1, the receiving modem filtering the signal to extract the data. On the other hand, V22 is a differential phase shift keying (DPSK) system in which the carrier is modulated through four phases, each representing two bits or one dibit.

Most communications textbooks show a proof that a standard telephone line has an optimum data rate of 600 symbols/s due to the multiplexing of PSTN lines, so V22 will operate at up to 600dibits or 1200b/s, since each symbol is two bits.

Telephone-line telemetry for the public utilities is growing fast. Gordon Lindsay presents two circuits for modems using Sierra’s modem and controller chips.
Line bandwidth accommodates two such carriers at a time; carrier frequencies are separated into high and low bands, allowing full-duplex working. Analysis shows that the probability of errors is higher in V23 than in V22 and furthermore, V22 circuitry can be contained in one chip, although it is more complex than V23.

The high probability of correct reception using V22 means that such systems do not need error-correction software, except where more than 64Kbyte of data is being sent or in the presence of extremely bad noise; such a large amount of data is unusual in remote telemetry. In many cases, error-correcting modems need a call setup time longer that required for transmission and the use of an error-correcting protocol such as the CCITT V42 recommendation would increase on-line time far too much for it to be an advantage in some systems.

Modem design
Complete modems usually consist of three discrete sections: host interface, modem circuit and line interface. Typical host interfaces are RS232 connections or parallel buses for microprocessors. The line interface is subject to local PTT requirements and must also meet safety specifications. Sierra Semiconductor's modems are configurable in both respects.

In remote telemetry application, Sierra's SC11016 conforms to V21 and V22 and contains all analogue and digital circuitry needed, including an on-chip DTMF dialler. It is controlled by sending commands to the IC through a simple interface to set the mode (transmit, receive or test), data rate, auto answer, transmit and receive levels and autodialling functions. A second chip provides the host interface in either RS232 or microprocessor connection.

Source code, which uses the Hayes AT command set, is available for all the modem control functions to run on an 8031 microcontroller, so that the modem is usable with any type of host equipment.

In initiating a call, the SC11016 generates DTMF tones for dialling and is then set to monitor line status. If the call is answered, it performs the specified handshaking functions and is set to transmit. Line monitoring continues during transmission and is followed by the specified termination sequence; if the connection fails in mid-transmission, the modem reports the reason for failure. It automatically answers and receives incoming data. The SC11016 operates on a minimum carrier of -43dBm and with s:n ratios of <20dB.

Figures 1 and 2 show designs for two modems: one using a parallel controller and the other an 8031 with the SC11016. The controllers contain all the software in internal rom to allow the use of fewer chips than in the micro-based solution. Modems and controllers are available in surface-mounting packages and a complete system need occupy only 75x75mm.

The SC11016 is a c-mos device, needing a single 5V supply. Software-controlled power-down sets it to standby when it is inactive, in which condition it draws 3.5mA. Power-up takes 5ms. ■

Gordon Lindsay is Applications Manager at Sierra Semiconductor
PRICE LIST

Prices

- **E800**: 9.50
- **E810**: 5.50
- **E820**: 2.50
- **E830**: 1.50
- **E840**: 0.55
- **E850**:
- **E860**: 2.50
- **E870**: 2.50
- **E880**: 1.50
- **E890**: 0.55

Domestic Prices

- **EUR800**: 9.50
- **EUR810**: 5.50
- **EUR820**: 2.50
- **EUR830**: 1.50
- **EUR840**: 0.55
- **EUR850**:
- **EUR860**: 2.50
- **EUR870**: 2.50
- **EUR880**: 1.50
- **EUR890**: 0.55

Other

- **EUR801**: 18.50
- **EUR895**: 1.95
- **EUR802**: 0.55
- **EUR803**:
- **EUR804**:
- **EUR805**:
- **EUR806**:
- **EUR807**:
- **EUR808**:
- **EUR809**:
- **EUR810**: 5.50
- **EUR811**: 1.50
- **EUR812**: 0.55
- **EUR813**:
- **EUR814**:
- **EUR815**:
- **EUR816**:
- **EUR817**:
- **EUR818**:
- **EUR819**:
- **EUR820**: 2.50
- **EUR821**: 0.55
- **EUR822**:
- **EUR823**:
- **EUR824**:
- **EUR825**:
- **EUR826**:
- **EUR827**:
- **EUR828**:
- **EUR829**:
- **EUR830**: 1.50
- **EUR831**: 0.55

Export Prices

- **EUR801**: 18.50
- **EUR895**: 1.95
- **EUR802**: 0.55
- **EUR803**:
- **EUR804**:
- **EUR805**:
- **EUR806**:
- **EUR807**:
- **EUR808**:
- **EUR809**:
- **EUR810**: 5.50
- **EUR811**: 1.50
- **EUR812**: 0.55
- **EUR813**:
- **EUR814**:
- **EUR815**:
- **EUR816**:
- **EUR817**:
- **EUR818**:
- **EUR819**:
- **EUR820**: 2.50
- **EUR821**: 0.55
- **EUR822**:
- **EUR823**:
- **EUR824**:
- **EUR825**:
- **EUR826**:
- **EUR827**:
- **EUR828**:
- **EUR829**:
- **EUR830**: 1.50
- **EUR831**: 0.55

Phone

- **Phone**: 0474 560521
- **Fax**: 0474 333762
Signal processing with C unavoidably requires mathematical spadework. Howard Hutchings presents the essentials for serious application development.

When computers are used to control engineering systems, the best they can do is to take occasional snapshots or samples of events. Provided events are changing slowly and the computer is sampling rapidly, Shannon’s sampling rule will be satisfied. It will be possible to recover the digitally processed signal without corruption attributable to aliasing.

To illustrate the potential hazards of periodic sampling, visualise a rotating radar scanner tracking the progress of an approaching aircraft. The air traffic controller patiently monitoring a flickering cathode-ray tube might observe a steady approach when the flight path could in fact be wavering, vertically and horizontally, about its ideal projected path. Because the radar aerial is rotating relatively slowly compared to the rate of change of the plane’s flight path, much of this data is missed completely.

The stroboscopic effects of sampling add to the confusion: an event taking place at one frequency appears to occur at a completely different frequency.

How many snapshots?

It’s not my brief to become involved with the sampling theorem, but one ought to be in a position to answer a few questions. The analogue signal presented to the a-to-d converter will be processed into a series of discrete samples: how many snapshots must be taken to characterise the signal completely? To avoid aliasing, it is necessary to sample at a rate which is at least twice the highest frequency present, the Nyquist frequency. The Fourier spectrum of the signal (Fig. 3.1), together with the sampling frequency, illustrates this point rather nicely.

Some a-to-d converters latch the analogue input at the start of conversion and hold it long enough for the a-to-d to complete the conversion cycle. Such a device is called a sample-and-hold. If the input is not latched, then the analogue signal must not change by more than 0.5 LSB during conversion. If it does the digital output will be fraudulent.

Consider, for instance, the behaviour of an n-bit a-to-d converter without sample-and-hold. Let the full-scale anal-

Copies of the software listings for the entire series are now available on disk. Please see page 594 for details.

LOGIC input be \(V_x \), and the conversion time \(T \). For a resolution of \(2^n \), i.e. \(1/2^n \), we may write:

\[\delta V = \frac{1}{2^n} \]

Hence the smallest detectable change in the analogue input voltage is given by:

\[\delta V = V_x/2^n \]

During the conversion cycle the change in analogue input signal must be less than \(\delta V \) to avoid ambiguity. Using Fig. 3.2 we may assume:

\[T b(t)/\delta t \leq V_x/2^n \]

Expressed simply, at the start of the conversion cycle the rate of change of the analogue input should be less than, or equal to, the full-scale input voltage divided by the product of the conversion time multiplied by 2 raised to the power of the word length. Adopting a sinusoidal input as an easy-to-understand example:

\[f(t) = V_x \sin \omega t \]

Differentiating with respect to time, we may write:

\[\delta f(t)/\delta t = \omega V_x \cos \omega t \]

Murphy’s Law: If anything can go wrong it will
Assume that the conversion starts at $t = 0$:

$$\delta(t) = 0V_B$$

Equating the rates of change, it follows that:

$$2\pi f V_B = \frac{V_s}{2\pi f}$$

Notice that the highest frequency which can be successfully processed without sample-and-hold will be:

$$f = \frac{1}{2T} Hz$$

Substituting numerical values soon convinces one of the serious limitations inherent in this type of converter. For example, the 8-bit AD7820 half-flash converter converts in 2µs. With sample-and-hold, the sampling theorem predicts the Nyquist frequency to be 250kHz. Without sample-and-hold the frequency is approximately 300Hz.

Before leaving this introduction it is worth mentioning that some form of digital signal processing will inevitably follow the sampling. Provided that the constraints imposed by the sampling theorem have been satisfied, it will be possible to recover the characteristics of the signal without corruption due to aliasing. Delivering the data back to the real world in analogue form requires further signal reconstruction, usually through a d-to-a converter and suitable low-pass filter (Fig. 3).

The a-to-d converter is synchronised with the main program by control signals which establish the signal processing time (T). A constant conversion rate and fixed processing time are essential to good design because they allow the behaviour of the system or filter to be modelled mathematically. The processed output is converted back to analogue form via the d-to-a converter.

Mathematical modelling

No-one has yet seen an electron, though some electronic engineers occasionally feel them. But progress is still made. Why should this be so? The answer is due in part to the inherent simplicity of Ohm's law, which provides a mathematical model that allows us to predict how a circuit will work, or ought to, behave. The ability to forecast the behaviour of a circuit or system, before it is built, is a basis for good design.

Electronic signal processing frequently involves the operations of integration, differentiation and time delay. Rather than describe the characteristics of the signal or linear system in the time domain, it is usually more convenient to use the complex frequency domain, or (if the signal is sinusoidal) the frequency domain.

A study of sampled data systems ought to include exposure to differential equations followed by familiarity with Laplace and z-transforms. Any mathematics is auxiliary to the main text, and mathematical methods are adopted only when it is impossible to make any further progress or develop a realistic understanding on the basis of intuition.

Wherever possible, mathematical relationships are shown diagrammatically, in an attempt to dispel the fog of abstraction. But remember that mathematical notation is usually a very terse and precise method of describing the facts. Accept this and understanding will come with use.

Laplace transforms

Laplace transformation decomposes a differential equation into an algebraic equation, allowing much of the manipulation to be carried out in a simpler domain. For example, differentiation in the time domain is equivalent to multiplication by s in the complex frequency domain. This is illustrated in Fig. 3.4 where double-headed arrows symbolise the integral relationships between domains.

Stated formally, the transformation from the time domain to the complex frequency domain is given by:

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

Electronic calculus

Time domain integration and differentiation are well understood. Provided the problem is selected carefully, classical analysis gives elegant solutions with a minimum of fuss. Electronic calculus compels engineers to adopt alternative methods to describe the characteristics of the linear processors which perform these operations.

The formal integral relationships between domains have already been outlined. One can identify certain key operations and describe the integral domain relationships by means of arrows. Figure 3.5 contains an adequate.
though by no means exhaustive, summary.

Fig. 3.5. A few important results demonstrating the equivalence of time-domain and frequency-domain signal processing.

Sampled-data signals are composed of a sequence of numerical values which represent the amplitude of the signal at the instant of sampling. Provided the sampling frequency is greater than twice the bandwidth of the signal it will be possible to process successfully these signals using digital methods. However, this is not the complete story. To produce a valid mathematical model of the sampling process, asynchronous conversion must be avoided. Instead the a-to-d conversion subroutine should be synchronised with the main program to ensure the time between samples is constant – this validates the use of z-transform methods to model time delays.

The next order of business is to present some important z-domain properties and to establish the relationships with the Laplace transform. The s-domain model of delayed signals includes the exponential term \(e^{-skT} \) which makes it difficult to use this equation:

\[
\text{delayed signal: } f(t - kT) = e^{-skT} F(s)
\]

Fortunately there is another transform purpose-built for this application, the z-transform, which models time delays and advances with ease. Simply substitute:

\[
z = e^{sT}
\]

(time advance of one sampling interval)

or:

\[
z^{-1} = e^{-sT}
\]

(time delay of one sampling interval)

Figure 3.6 displays the transformations between domains diagrammatically. As an aid to comprehension, recall that the operation of multiplication by \(s \) in the complex frequency domain was equivalent to time domain differentiation. Similarly, multiplication by \(z \) in the z-domain is equivalent to a unit time delay in the time domain.

The output pulse train of the impulse modulator assumes the pulse width of each sample to be infinitesimally small, while the height is a precise replica of the sampled signal at that instant only. In other words, the output data sequence can be modelled as a set of weighted and delayed impulses. Adopting the notation of sampled signals, the impulse train shown in Fig. 3.9 can be completely represented by the expression:

\[
f^*(t) = f(0) \delta(t) + f(T) \delta(t - T) + f(2T) \delta(t - 2T) + \ldots
\]

The Laplace transform of the weighted impulse train is:

\[
F(s) = f(0) + e^{-sT} f(T) + e^{-2sT} f(2T) + \ldots
\]

Substituting \(z = e^{-sT} \) we commute from the s-domain to the z-domain:

\[
F(z) = z^0 f(0) + z^{-1} f(T) + z^{-2} f(2T) + \ldots
\]

As a first attempt at describing the characteristics of the sampled-data signal, consider the a-to-d converter modelled as an impulse modulator. Fig. 3.8. When the switch is in position A, the output \(f^*(t) \) is equal to the input \(f(t) \). Changing the switch to position B makes the output zero. The interval between samples \(T \) depends on the sampling frequency, where \(f = 1/T \).

In a practical a-to-d, the switch would be electronically controlled, designed to produce a train of pulses whose amplitudes are modulated by the input signal \(f(t) \).

The mathematical toolkit is now extensive enough to evaluate the z-transform of the decaying exponential signal \(f(t) = e^{-aT} \), sampled every T seconds as shown in Fig. 3.10.

Inspection of Fig. 3.10 shows that the output of the impulse modulator will be...
PROGRAMMING

Fig. 3.10. Sampling the signal \(f(t) = e^{at} \) every \(T \) seconds,
the data sequence:
\[a, a^2, a^3, \ldots \]

Each of these terms weights the corresponding delayed impulse, hence the sampled time domain signal can be expressed as:
\[f'(t) = 1 \delta(t) + e^{-aT} \delta(t - T) + e^{-2aT} \delta(t - 2T) + \ldots \]

The sifting property of the impulse function allows us to write down the Laplace transform directly without having to integrate, so that:
\[F(s) = 1 + e^{-aT} + e^{-2aT} + \ldots \]

The relationships between the \(t \), \(s \) and \(z \) domains are shown clearly in Fig. 3.6, hence the \(z \)-transform can be written as:
\[F(z) = 1 + z^{-1} e^{-aT} + z^{-2} e^{-2aT} + \ldots \]

The series expansion of \(F(z) \) is an infinite geometric series of the form:
\[1 + r + r^2 + r^3 + \ldots \]

Provided that \(r < 1 \) the sum of such a series is given by:
\[\frac{1}{1 - r} = \sum_{n=0}^{\infty} r^n \]

Using this result we can readily express \(F(z) \) in closed form and write the \(z \)-transform as:
\[F(z) = \frac{1}{1 - e^{-aT} z^{-1}} \]

Multiplying the numerator and denominator by \(z \) results in the standard form:
\[F(z) = \frac{z}{z - e^{-aT}} \]

Zero-order sample-and-hold
Much of the foregoing analysis was necessary to consolidate our perception of sampled signals. However, practical a-to-d converters do not produce impulses, they process analogue waveforms into rectangular signals or pulses. Perhaps the most common is the zero-order sample-and-hold. Its effect is to take a sample and hold this snapshot constant until the next sampling event occurs one period later. Figure 3.11 contains the details.

Notice that the sampled signal \(f^*(t) \) has been decomposed into a train of rectangular pulses each of width \(T \):
\[f^*(t) = f(0) [u(t) - u(t - T)] + \]
\[f(T) [u(t - T) - u(t - 2T)] + \]
\[f(2T) [u(t - 2T) - u(t - 3T)] + \ldots \]

The Laplace transform of the processed output is:
\[F^*(s) = \frac{f(0)}{s} [1 - e^{-Ts}] + \]
\[\frac{f(T)}{s} [e^{-Ts} - e^{-2Ts}] + \]
\[\frac{f(2T)}{s} [e^{-2Ts} - e^{-3Ts}] + \ldots \]

Taking out the common factor:
\[\frac{1 - e^{-Ts}}{s} \]

shows that the Laplace transform of the sampled data signal is equal to the transfer function of a-to-d (the common factor), multiplied by the output of the impulse modulator examined previously:
\[F'(s) = \frac{(1 - e^{-Ts})}{s} \]

Thus the linear behaviour of the zero-order hold a-to-d converter can be modelled by the transfer function shown below and represented schematically in Fig. 3.12.

\[F'(s) = \frac{(1 - e^{-Ts})}{s} \]

Interfacing with C
An accompanying set of 49 source code C listings presented with this series is now available on disk, price £25.50 + VAT. We will shortly be publishing a book “Interfacing with C” written by Howard Hutchings and based on the series, but containing additional information on advanced processing techniques. We are now accepting advance orders, price £14.95.

Prices include post and packaging. Please send cheque or company order to Lindsey Gardner, room L301, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Credit card orders can be phoned through on 081-661 3614 (mornings only).

Fig. 3.11. Modelling the sampled signal as a train of weighted pulses. The effect of the a-d converter is to take a sample in zero time and hold this snapshot constant until the next sampling instant occurs one period later.

594 July 1990 ELECTRONICS WORLD + WIRELESS WORLD
The Laplace transform of the sampled signal is more usefully expressed in terms of its z-transform. To simplify the algebra associated with this type of problem simply substitute $z^{-1} = e^{-st}$ in the transfer function.

$$F(z) = (1-z^{-1}) \frac{F(s)}{s}$$

$$= \frac{(z-1)}{z} \frac{F(s)}{s}$$

The Z symbol means "look up the z-transform of the Laplace transform within the brackets."

Table 3.2 lists some useful Laplace and z-transform pairs.

Table 3.2. Transform pairs

<table>
<thead>
<tr>
<th>Signal $f(t)$</th>
<th>Transform $F(s)$ of $f(t)$ sampled signal</th>
<th>$F(z)$ of $f(t)$ sampled signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(t)$[step]</td>
<td>$\frac{1}{s}$</td>
<td>z^{-1}</td>
</tr>
<tr>
<td>t[ramp]</td>
<td>$\frac{1}{s^2}$</td>
<td>$\frac{z}{z-1}$</td>
</tr>
<tr>
<td>$\exp(-at)$</td>
<td>$\frac{1}{s+a}$</td>
<td>$\frac{z}{z-e^{-at}}$</td>
</tr>
<tr>
<td>$1-\exp(-at)$</td>
<td>$\frac{a}{s(s+a)}$</td>
<td>$\frac{z(1-e^{-at})}{(z-1)(z-e^{-at})}$</td>
</tr>
</tbody>
</table>

Example of obtaining the pulse transfer function of the continuous system

$$F(s) = \frac{ka}{s(s+a)}$$

$$Y(s) = \left[\frac{1-e^{-at}}{s} \right] F(s)$$

which may be written in terms of z transforms as,

$$Y(z) = (1-z^{-1}) \frac{ka}{s(s+a)}$$

$$= \frac{z-1}{z} \frac{ka}{(z-1)(z-e^{-at})} = \frac{k(1-e^{-at})}{z-e^{-at}}$$

The resulting z-transform leads naturally to the formation of a difference equation. Converting from transforms to sequences we use the method shown in Table 3.3 to predict the behaviour of the system for a variety of time constants and/or sampling intervals.

Confident use of the transforms listed in Table 3.2 requires experience and the fastest way to gain experience is by making mistakes, preferably in private! The aim is to establish some confidence in the mathematical shorthand by way of an easy-to-understand example. Consider the effect of applying a unit-step to an ideal integrator. The following investigates this processing operation in each domain and demonstrates equivalence.

Method 1. Signal processing in the time-domain. Standard calculus allows us to write the processed output $y(t)$ as the integral of the input $x(t)$.

Since $x(t) = 1(t > 0)$, we can write

$y(t) = \int_0^t x(t) \, dt$

$y(t) = 1$

Clearly, the operation of integration has converted the unit-step into a ramp-function.

Method 2. Signal processing in the complex-frequency domain. Inspection of Table 3.1 shows that the transform of the unit-step:

$$x(t) \rightarrow X(s) = \frac{1}{s}$$

The operation of integration in the complex frequency domain is equivalent to division by s. Figure 3.4 contains the details. In this case the output $Y(s)$ equals the transform of the input signal $X(s)$ multiplied by the transfer function of the integrator $H(s)$:

$$Y(s) = X(s) H(s)$$

$$= \frac{1}{s} / \frac{1}{s} = 1/s^2$$

To obtain the time-domain response we employ inverse transformation, i.e. use Table 3.2 in reverse to obtain $y(t) = t$. This is clearly in agreement with the time-domain analysis. These are standard results used by control engineers to model the dynamic behaviour of systems and are adopted by electronics engineers to model the effects of electronic calculators.

Method 3. Signal processing in the z-domain. In this case the input signal will be processed through a z.o.h. a-to-d converter and suitable stored program, conveniently modelled by the transfer function $H(z)$. The behaviour of the composite system will be described by:

$$H(z) = z^{-1} Z \left[\frac{H(s)}{s} \right]$$

Division by s is equivalent to time-domain integration, so that the z-transform model is given by:

$$H(z) = \frac{z^{-1}Z}{z} \left[\frac{1}{s^2} \right]$$

Using table 3.2 we may write the z-transform of $1/s^2$ directly, so that:

$$H(z) = \frac{(z-1)Z}{z(z-1)^2}$$

which simplifies to:

$$Y(z) = \frac{T}{z-1} X(z)$$

Making the interval between samples unity and cross-multiplying gives the result:

$$zY(z) = Y(z) = X(z)$$

To obtain the difference equation we convert from transforms to sequences:

$$y(n+1) - y(n) = x(n)$$

expressed in terms of the current output:

$$y(n) = x(n-1) + y(n-1)$$

Table 3.3 The effect of processing a unit-step through a digital integrator.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Previous output $x(n-1)$</th>
<th>Current input $x(n)$</th>
<th>Previous output $y(n-1)$</th>
<th>Current output $y(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

This confirms the anticipated result.

Next month: Using convolution to commute between frequency and time domains.

References

3. C. C. Foster, Real time programming — neglected topics, Addison-Wesley, 1981.
The Question of all SWL and HAM's:
what's about all the 'strange signals' you hear on LW and SW but can't identify? A few of them you'll know as CW and RTTY, may be Packet, but all the other ??

There are some well known CW/RTTY-decoders with their limited facilities and high prices, and high-priced PROMs for upgrading etc. and there is Code 3 from Hoka Electronics

It's now on you to make a choice, and it will vary very easy if you know more about Code 3

Code 3 works on any IBM-compatible computer with MS-DOS, having at least 640 kB of RAM.

The hardware of CODE 3 includes a complete digital FSK-convertor with built-in 230 V-power supply and RS 232 cable, ready to use, and, last but not least you'll get the best software ever made to decode all kinds of data-transmissions, so you will have the most sophisticated decoder available for an unbeatable price, which may be the best news of all: just L249 - ex VAT

Following modes are included in the base-program (with exact protocols):

- Packet Radio AX.25, 50 to 1200 Bd
- Hell synchronous/asynchronous, all speeds
- Fax Weather Charts, Photos with gray tones, 60/90/120/180/240 rpn
- Morse automatic and manual speed with indicator of Wpm

Press DPA
Wirtschaftsdienst
Sport Information
Autospec Bauer
SPREAD 21 and SPREAD 51
DUPLEX ARQ Attrace
ASCII
Baudot
ARQ
ARQ-S
ARQ-Swe
ARQ-E
ARQ-N
ARQ-E3
ARQ-6
TDM 242
TDM 342
FEC-A
FEC Sel-FEC
FEC-S

All modes in preset and variable user-defined speedrates and shifts.

There are 3 Options available:
1) OSCILLOSCOPE, displays the measured frequency versus time, split-screen, storage and non-storage mode, L25.-
 Everybody wants it, but only we have it.
2) PICCOLO MK VI, the well known multitone-mode, L50.-
3) Long-time auto-storage in ASCII, up to several days, L 25.-
A lot of other special codes available, P.O.A.

Besides this the analysis-part offers you a wide choice of unique facilities: built-in LF-Spectrumanalyser for shift measurement and tuning, precision-speed measurement up to 0.001 Baud resolution.

Character Analysis, Autocorrelation of MOD- and RAW Signal, Bit Analysis are some other state-of-the-art features of CODE 3 and may be very helpful for the more-experienced user.

All options available from main menu, saving or loading to or from hard disk or floppy in 'Bit-form' (no loss of unknown signals), hardcopy with printer, on-screen-tuning-indicator and Help-files, very easy to use.

The actual use of part of this program may be illegal in some countries, any liability is disclaimed!

To order:
Phone us for more details or send cheque, payable to HOKA ELECTRONICS
Tekio Clockstraat 31
NL-9665 BB Oude Pekela
The Netherlands
Phone (31) 5978-12377 Fax (31) 5978-12645
Please specify disk size 3½ or 5¼" when ordering! All prices ex. VAT and shipping, but including 6 month software updating free of charge!
Discrete active devices

Low-noise transistor. A silicon-planar RF transistor combines low noise, low intermodulation distortion and high cut-off frequency. In versions for surface-mount or through-hole assembly. It has a 1.3GHz transition frequency for a wide variety of VHF and UHF applications, and while passing 20mA of collector current is capable of driving low impedance loads or high power at 500MHz. When dissipating 500mW the device produces less than 5dB noise, and its intermodulation distortion figure is typically -45dB. Collector-emitter voltage and peak collector current are 15V and 50mA respectively while collector capacitance is rated at 1.5pF maximum. Zetex plc, 061-627 4963.

Linear integrated circuits

Ultra-low noise amp. The INA103, put forward as an ultra-low noise, low distortion instrumentation amplifier, is intended for professional audio and instrumentation applications. The claimed noise and distortion performance is 1.2pV/√Hz, with less than 0.002% THD across the 20kHz bandwidth. The input stage is designed to interface with low source impedance transducers. Similarly, the output stage has been designed to suit audio applications, and is said to operate from a wide supply range (up to ±25V), giving it low noise immunity and further enhancing its output drive capability. Burr-Brown International Ltd, 0234 223252.

Four-quadrant multiplier. The MPY600 monolithic, four quadrant signal multiplier is said to give designers extra-wide bandwidth for demanding video, RF, and IF applications. For signals up to 30MHz, the complete multiplication function is provided in a low-impedance voltage output from the device’s on-chip output op amp. Differential current outputs extend multiplier bandwidth to 75MHz and the device needs no external circuitry. Burr-Brown International Ltd, 0293 33837.

Low-power op amp. The dual-mono-lich EL2322 op amp builds on the low power demands and high bandwidth that characterize its popular precursor, the EL2020. The EL2232, offering two amps at the same power as the EL2022, is optimised for low power applications. The EL2232 has a maximum power dissipation of 0.15W at 5V power supply. With a bandwidth of 600kHz, it is suitable for high-speed video, audio and control amplifier circuits. Elantec Inc, 0101 408 945 1323.

Monolithic amplifier. Beyond its typical 700ns acquisition and 200ns hold mode settling times, the HA5340 is claimed to be the first monolithic sample-and-hold amplifier defined and specified in the hold mode for low distortion (72dBc at 200kHz, 5V p-p). The resulting claimed high performance and predictability are said to make it a cost-effective monolithic alternative for applications requiring high noise immunity and further enhanced bandwidth. The input stage performance is also available in military versions in compliance with MIL-STD-883. Elantec Inc, 0101 408 945 1323.

Audio amplifier ICs. A new family of stereo power amplifier ICs needs only a handful of external components for building up a X 2 x 11W stereo or 2x22W mono audio amplifiers without bootstrapping. The TDA1515 TDA1519 family are each claimed to eliminate up to ten peripheral components, saving printed board area and significantly reducing component, assembly and logistics costs. The ICs are suitable for in-car equipment such as radios, and CD and cassette players, where available space is often limited. Philips Components, 010 31 40 72 43 24.

Memory chips

Super-fast srams. A new generation of 1Mbyte srams, claimed to be the fastest available, features access times of 25, 30 or 35ns through a new high-speed architecture. 0.8um dram technology is the driving force for the development of these srams. Access times down to 12ns are being achieved with less complex 16k srams, and 20ns with 256k srams using the 1.2um process. The new 0.8um process has extended the same speed advantages to the more complex 1Mbyte devices. Configurations include X1, X4 (with output enable for system expansion) and X8. Power consumption is only 27.5mW in standby mode and 650mW in active mode, from a single 5V supply. Micron Technology, 081-905 1255.

Microprocessors and controllers

Low-cost microcomputer, The Flat Controller is a low-cost microcomputer based on a highly integrated Z80 device. Its 44kbyte memory and vectored interrupts are claimed to make it more powerful than other 8-bit microcontrollers, and suitable for embedded applications. The I/O bus permits the addition of further devices, two or more Controllers may be interconnected, and a distributed network may be built using serial links. Ashton Computers, 0386 881256.

4-bit microcomputer. Features of a low-power, low-volumes 4-bit microcomputer from Seiko Epson, the SMC6281, include up to 104 segment LCD drive, 1K of rom, 96 words of ram, low-battery detect circuit, timebase counter a 10 pin watchdog, comparator, and sound generator. It operates from as low as 0.9V, and 2.5uA. Heron Electronics, 0525 405015.

Single-chip microcomputer. Enhanced features provided by the V25 + single-chip microcomputer (uP0731Q5) include additional I/O status flags and a transmit clock output to simplify data communication. The DMA controller is also incorporated in hardware to enable data transfer rates of up to 5Mbytes to be achieved. The Microcontroller module. The latest module for the TMS370 family of 8-bit configurations is a low-power microcontroller, PACT, a new programmable acquisition and control timer module. PACT is a software-definable timing and state machine module that designers configure to meet their realtime control requirements, directly servicing external events in a realtime control system. Instead of producing the host CPU, PACT is claimed to provide engineers with unprecedented flexibility by integrating a programmable timing processor, a zero-memory data memory, and an A-D converter on the same device. Texas Instruments, 0223 223052.

Optical devices

RS232 in-line optical isolator. OP322 optical isolators can be inserted into RS232 data lines to provide complete electrical isolation in a cylindrical housing with flying leads and D-type connectors they are normally powered from the signal lines. Uses include protection of computers, blocking out noise, and breaking earth paths. Prices from £74 + VAT. Scimarn Engineering, 0730 63461.

Optical impulse generator. An optical impulse generator operating at 1300nm allows users to select from two output pulse modes. In low energy mode, the OIG362 produces an optical impulse up to 5mW with pulse widths of ±35ps. In high energy mode, it provides an optical impulse up to 15mW with pulse widths of 300ps. This flexibility, plus its well-defined impulse, makes it useful for laser pulse applications. Tektronix Ltd, 06284 6000.

Programmable logic arrays

Faster PLD. A 10ns version of AMD's PALCE16V8, a kom programmable logic device (PLD), has been configured as more than a dozen different versions of standard, low density, PAL circuits. Pin, function, and fuse-map compatible with low-density GAL devices, the new 10ns speed grade is said to be 33% faster than the earlier 15ns circuit, and is expected by its maker to become the industry-standard low-density moderate speed PLD solution. AMD (UK) Ltd, 0483 740440.

Power semiconductors

DC motor control IC. The SG3731 provides a bi-directional pulse train output in response to the magnitude and polarity of an analogue error signal input, and can also be used in audio modulators and amplifiers using carrier frequencies up to 350kHz. A wide supply voltage output to the control circuitry (±3.5 to ±15V) and to the output drivers (±2.5 to ±22V) may be either from dual positive and negative supplies, or single-ended. The circuit contains a triangular oscillator, with output enable for system expansion and X8. Power consumption is only 27.5mW in standby mode and 650mW in active mode, from a single 5V supply. Micron Technology, 081-905 1255.
For Function Generators

Whatever your need in function generators, Thurlby-Thandar can supply it.

The range covers maximum frequencies from 200kHz up to 20MHz and includes models with full sweep facilities and models with pulse generator facilities. Prices start from £110 plus VAT.

All our function generators feature high setting accuracy (including digital display on some models), low distortion and precision attenuators.

TG2001
This 20MHz function generator features digital readout of frequency, amplitude and offset, variable symmetry, variable start/stop phase and full trigger facilities. It costs £595 + VAT.

Contact us now for full details of all our generators.

Thurlby-Thandar Ltd.,
Glebe Rd., Huntingdon, Cambs. PE18 7DX
Tel: (0480) 412451 Fax: (0480) 450409
NEW PRODUCTS CLASSIFIED

Passive components

Miniature potentiometer. *The Model 3362 cermet trimming potentiometer, a 4½” square single-turn sealed device, offers a choice of seven terminal styles and incorporates a multi-wire wiper arrangement which minimises contact-resistance variation. It also has a rotor suitable for automatic machine adjustment and graduated scale for easy orientation. The sealed package makes the device useful in harsh environments such as industrial applications and immersion cleaning processes. Resistance values range from 20Ω to 2MΩ, and contact-resistance variation is within ±1% (whichever is greater). Standard resistance tolerance is ±20%, although ±10% version is available to order, and adjusting angle is 240°. Bourns Electronics Ltd., 0276 692392.

High-performance VGA graphics. *The INMOS IM717 is a high-performance monochrome or monochrome colour loop-up table device, a single monolithic high-speed IC compatible with the RS170 video standard. It is designed to replace TTL/ECL components in computer colour display circuits compatible with IBM PS/2 VGA graphics systems. Its advantages in VGA graphics circuits are said to be reduced component costs, reduced board area usage and relatively low DC power consumption. It is downward software compatible with the IM717 family. Hawke Components Distribution, 081-979 7799.

Displays

Flat Sin monitor. *A new 5½-bit monochrome monitor is designed for instrumentation applications but can also be used in other areas such as security systems. It comes in kit form (pre-screened CRT and monitor shield) or as a standard Eurocassette, with flexible mounting options, and may be driven from either 12V or 15V DC. Screen dimensions are 94 x 70mm allowing a pixel resolution of 512 x 440. Digilite Ltd, 0793 261600.

High-performance VGA graphics. *The INMOS IM717 is a high-performance monochrome or monochrome colour loop-up table device, a single monolithic high-speed IC compatible with the RS170 video standard. It is designed to replace TTL/ECL components in computer colour display circuits compatible with IBM PS/2 VGA graphics systems. Its advantages in VGA graphics circuits are said to be reduced component costs, reduced board area usage and relatively low DC power consumption. It is downward software compatible with the IM717 family. Hawke Components Distribution, 081-979 7799.

Filters

Filter arrays. *The LMF 120 and LMF 121 mask-programmable switched-capacitor filter arrays are capable of implementing up to a 12-pole filter in one 16-pin cost-effective package, being designed for applications including communications terminals such as mobile phones, anti-families filters, biomedical instrumentation, control systems, and real-time audio analysers. Both can realise all filter types. The LMF 120 has right-half-plane zeros and the LMF 121 left-half-plane zeros. National Semiconductor, 0044 793 697572.

High-performance filter. *The PDSP 16256, a programmable, variable-length FIR filter, is intended for use in high-performance filters, pulse compressors and convoys, providing filter function without software development, with options selected by loading a control register. It contains sixteen 16-bit multiplier accumulators that can be multi-cycled to provide from the 128 stages of digital filtering at sample rates from 20MHz to 2.5MHz. The device may be configured as one long filter, or as two half-length filters for filtering complex data, and can be cascaded to provide filters of any length. Plexxe Semiconductors, 0793 518000.

Instruments

Precision universal counter. *The GT200 is said to be the first precision universal counter in a PC-resident format, and to provide all the performance and features found in a bench-top universal counter but with easier programming and lower cost. Designed to run on IBM PC XT AT and compatibles, it can measure frequencies with 10-digit resolution per second of gate time, and make timing measurements to 100ps resolution without averaging. Its two DC-coupled input channels are specified for input frequencies of DC to 75MHz, and can accept input signals from −5V to +5V. Auxiliary inputs arm the trigger and allow gated counting. The instrument performs frequency, period, time-interval, delay-time-interval, ratio, totalising, gated totalising and pulse-width measurements, can sustain 2000 measurements per second, and is supplied with a "virtual" front panel. Amplicon Liveline, 0273 570220.

Portable air-velocity meter. *The Data-Trak is a portable air-velocity meter, weighing only 1.05kg and measuring 132 x 219 x 60mm. It is powered by a rechargeable NiCd battery and has four 300mA current outputs, two for the water-temperature measurements and the other two for the air-temperature measurements. Star Tek Instruments, 0273 570220.

Power supply. *The ECPC single Eurocard power supply module operates from 12V DC. The PM8902, is said to satisfy the need for high-performance portable power supplies. In addition, its high voltage and low current power supply will provide 250W to 500W to the system, with the option to extend the output to 1000W. ECPC Single Eurocard, 0273 570220.

Oscilloscope. *The Micronix 10-MHz oscilloscope, with 100MHz bandwidth, is capable of measuring frequencies from 10kHz to 100MHz. It has a 10-bit digital-to-analog converter and a 12-bit analog-to-digital converter. It has a dual-trace capability and is capable of measuring voltages from 1V to 25V. The oscilloscope is powered by a rechargeable NiCd battery and has a built-in printer. Micronix Instruments, 0273 570220.

Interface card. *A design guide for the EPC2 single Eurocard PC-compatible interface card is described in this section. It is designed to work with IBM PC/XT/AT and compatible systems, and is said to be the first interface card to provide all the features of an IBM PC/XT/AT and compatible system. The card is powered by a rechargeable NiCd battery and has a built-in printer. EPC2 Single Eurocard, 0273 570220.

LCD detection system. *"IS." is a liquid-crystal detection system said to be very precise and versatile, and able to detect hot spots in silicon wafers and packaged devices at intervals less than 1µm. Temperature can be regulated very precisely (±1°C) and tests can be carried out within a temperature range of −10°C to +130°C. It is claimed that the system can analyse a wide range of ICs, including SO, DIP, LCC, PGA, hybrid circuits, or isolated dies, and can be used wherever high-precision temperature monitoring operations are needed. I.R.S. 0958 70946.

100MHz logic analyser. *The PCL-510 is a complete hardware/software package consisting of a 100MHz sampling oscilloscope with 8K memory depth, with 12-bit digitising. The oscilloscope is capable of measuring frequencies from 1MHz to 100MHz. It has a dual-trace capability and is capable of measuring voltages from 1V to 25V. The oscilloscope is powered by a rechargeable NiCd battery and has a built-in printer. Micronix Instruments, 0273 570220.

Antenna aligner. *Propron is a spectrum analyser unit and TV display combined into one compact, portable piece of equipment, designed as a research tool and developed to meet the needs of data communication installation where high-precision positioning and repeatability are essential. The display screens the full spectrum of a satellite IF or UHF at a glance, making accurate Yagi alignment and satellite dish alignment a simple operation. Oakbury Components Ltd, 0793 771143.

Oscilloscope power. *A pocket-sized power supply module operating from 12V DC, the PMS902, is said to satisfy the need for high-performance portable combination oscilloscopes. It will power any analogue or digital storage Smart Scope to give true laboratory performance in the field, and may be driven by a car battery, an optional 12V portable power pack, or other 12V DC supply. Output is 115V RMS AC (60Hz) rated at 102W. Philips Test & Measurement, 0923 240511.

Immunity test system. *The TS9980 test system allows automatic measurement of the electromagnetic immunity of radio and TV receivers, tuners, AF and video amplifiers, etc. The menu-driven user interface is claimed to permit easy operation, so that error-free measurements are quick and practical. A significant feature is the interpretation of test results by colour graphs and numerical outputs. All results can be recorded on a printer or a plotter and stored for later evaluation. Rohde & Schwarz UK Ltd, 0252 811377.

60MHz oscilloscope. *The Hitachi V560 60MHz, three-channel oscilloscope features delayed timebase, cursor measurement and screen readout. The cursor system can be used to measure voltage difference (DV), time differences (DT), or frequency (fT). These values, as well as set-up parameters and delay time, can be displayed on screen. On channels 1 and 2, sensitivity can be varied between 5mV/div and 50V/div over the full bandwidth, 1mV/div and 2mV/div are available up to 10MHz, and 0.1V/div and 1V/div are available on channel 3. Sweep time on the main A timebase can be varied between 5ns div and 50ns div, and the delayed B timebase between 50ns div and 500ns div. A x 10 magnifier gives maximum sweep time of 5ns div on both timebases. Thury-Thandar Ltd, 0480 412451.

Interfaces **Processor card.** A variant of the ECPG single Eurocard PC-compatible processor card is said to drive virtually...
NEW PRODUCTS CLASSIFIED

todays all types of backlit LCD displays, including 640 x 200, 1024 x 800 and 2048 x 400 formats. The ECPC-LCDs driver chip and software are claimed to run standard MD A/microphone) and CGA software. CGA colours being emulated with greyscale and cross hatch pattern. Text fonts stored in ram can be designed with utility programs provided with the card. To save expense, the ECPC-LCD includes a non-volatile memory. The switch-mode power supply to generate the additional voltages required. DSP Design Ltd, 071-482 1773.

16/24 digital I/O board. Providing 64 opto-isolated digital inputs and 48 with provision for a watchdog security handler. The TVM-743 digital input/output board also has available up to 16 opto-isolated inputs with selectable debouncing delays of 15 s, 250 s, 1 s and 1 ms. Minimum impulse width is 60 s. Input can be selected in groups of four for contact closure toward ground or +24 V. Each input may assert an interrupt request and I/O isolation is 100 V. KV Electronic Systems Ltd, 0372 373603.

Fault-protected multiplexers. Of two new families of fault-protected multiplexers, one claims protection against voltage up to +75 V, the other is +350 V. The unprotected are provided to relieve the multiprocessor from maintaining a constant address on the logic bus. The MC140379 are high-voltage multiplexers with, respectively, 1 of 8 and dual 1 of 16 configurations. These devices are said to permit less than 1 nA per channel of input leakage current when the power is off and the inputs are at +75 V. With supplies of ±15 V the device is protected against continuous input voltage of ±60 V with equally low leakage currents. Maxim Integrated Products, 0734 815625.

Hard-disc interface chip. The ADG900 incorporates a fully digital data separator simulating analogue PPR, with a temperature-compensated internal time reference. Features include write precompensation, clock and RW clock generation with accuracy claimed better than 7 ms, and direct interface with hard-disc controller chips. H7261, H7201, H7201 (cmos) to support the ST506-ST412 standard with MFM data at 5 Mbit/s and enable simple, compact, hard-disc controller units to be built. NEC Electronics (UK) Ltd, 0908 811.133.

Power supplies. DC/DC converters. The XC series of 15 W, 24 V input DC/DC converters are a wide range of isolated and pulse-width modulated (PWM) converters. All models are claimed to provide output with established ±15 V. All models are designed for mounting onto PCBs and are free-air convection cooled. Remote on-off control is provided and an internal LC filter input is standard. Aplicon Liveline, 0273 570220.

48W input converters. A series of 48 W DC/DC converters for telecommunications applications claim to provide a power range of 5 to 20 W, with low ripple and efficiency as high as 83%. The 2 series offers a wide 30 to 72 V input range, with single and dual output voltages of 5, 12, and 15 V. A built-in filter reduces reflected noise from the converter back to the input voltage source, while continuous six-sided shielding is said to minimise EMI-RFI radiation. Aplicon Liveline, 0273 570220.

3000W power supplies. New switching power supplies in the SuperSwitch range are claimed to deliver from 400 to 3000 W but if monopower operation is needed they can be paralleled so that they feature the same current. SuperSwitches are said to provide reliable power with up to 150,000-hour demonstrated MTBF. They meet the international safety and emission specifications of VDE, IEC, CSA, UL and CEC, and, at no cost, are subjected to 100% dynamic burn-in. They are available in six commonly used single output voltages from 5 V to 48 V. A 2 V rail version is available with a power rating of up to 14000 W. Astec Europe Ltd, 0483 765066.

High performance PWM. The SG1825 high-speed current-mode pulse-width modulator (PWM) is claimed to show no output driver "float", to have no pulse-width instability at cold temperatures and to offer lower start-up current and higher ground noise tolerance than the industry standard. For high-frequency switched-mode power supply applications, it is claimed to reduce volume and weight of power supplies and to improve reliability. A new linear Schottky fabrication process is claimed to result in very short propagation delays through the current limit comparator, logic, and output drivers. A four-fold increase in switching frequency is claimed. Birtcop Sales Ltd, 0372 377779.

20W converter. The SB2430VS 4002 is an unisolated 20 W DC/DC converter in the industry standard 2 x 2 in package, designed for use in remote mobile and vehicular applications. Operating from input voltages of 8 to 48V, it delivers a precisely regulated 5 V at 4 A. Typical efficiency is claimed to be 84% with 80% maintained even at half load. With an operating temperature range of -25 to +75°C ambient air, full output power is delivered without the need for derating. Computer Products Power Conversion Ltd, 0234 273838.

Space-saving converters. The MAX654/67 DC/DC converters feature a guaranteed 1.15 V start-up and are said to continue to function as the input voltage. Over the output voltage range of 400 mV to 6.5 V, the device is claimed to supply up to 450 mA (MAX658) of output current with a minimum of external components, achieving typical conversion efficiency of up to 75%. In generating a regulated +5 V or +3 V from a low input source. Kudos Thame Ltd, 0734 351010.

Programmers. Mid-range programming system. A new mid-range programming system featuring universal pin drivers for up to 44 pins is targeted at a new generation of programmable logic and memory IC users. The 2900 Programming System is designed to handle the different PLD architectures as well as eproms, eeproms and programmable microcomputers in a variety of packages, both DIP and surface-mount. Instromatic UK Ltd, 0287 467471.

Switches and relays. Rugged float switches. Two rugged PVC float switches are claimed to be capable of operation down to 0.75 m and temperatures up to 60°C for interchangeability for normally-open and normally-closed operation and are available for top- or bottom-level indication. Other specifications include contact ratings of 10 WA switching current of 0.5 A DC and each switching voltage of 200 VAC or DC. Wide resistance to chemicals is said to include many strong acids and alkalis. FR Electronics, 0202 879369.

Transducers and sensors. Low-cost pressure sensors. Models 90 and 93 are radiation hard, solid-state pressure sensors said to be capable of measuring in both gauge and absolute, pressure ranges from 0.5 to 100 bar with infinite resolution and ±0.25% accuracy. Both use 316 stainless steel to prevent the sensor from corrosive liquids, gases, with a 1.4-18 NPT pressure fitting welded to the body providing a pressure connection. Output span is 0-50 mV (typ.) with a 5 mA excitation. EuroSensor, 071-405 6060.

Vision systems. High resolution CCD imager. A frame transfer 1-Mbit TV CCD imager is said to be capable of offering a full 1032 TV lines per picture width and using standard three-phase clocking, is offered for high-performance commercial, industrial and military systems. The CC7 series has four optional ranges and offers either conventional fixed barrier anti-blooming, or a gated anti-blooming system providing fast unwanted charge dumping with a 4000:1 dynamic range. Full support modules have been developed and a provisioned camera circuitry giving a 1 V video signal output is available now. Intensified coupled versions will also be available. EEV, 0245 493493.

Computer board level products

Flexible MSC. A multi-channel serial card for PCs, the MSC-8, is claimed to be perfectly matched to other boards. It has eight serial channels on one card, each able to be set to RS232, RS422, RS485 or 20mA loop at any individual address location and any interrupt channels. It is intended for use in industrial applications for communicating with large numbers of intelligent sensors and instruments and in lams, shopfloor data collection, time and attendance systems, etc. Blue Chip Technology, 0244 520220.

Demonstration card for Plessey's SL6539 RF data receiver

Vector/signal processor. The IMS B420 Vectra, the latest addition to INMOS iQ Systems range of TRANspuMter Modules (TRAMS) offers both scalar and vector operation. TRAMs signal processing in a single compact module.
NEW PRODUCTS CLASSIFIED

It combines the general purpose scalar processing and communication capabilities of the transputer with the functionality of a high-performance vector-signal processing co-processor in a four-standard TRAM. The latter is said to make it ideal for many DSP-based systems and numerically intensive application areas. NMOS Ltd, 0454 616616.

Data communications products
Sine wave generators. Two integrated circuits each replace multiple components in the generation of highly precise sine waves. The ML2035 programmable sine wave generator is the industry's first integrated sine wave generator in an eight-pin mini-DIP while the ML2036, in addition to the capabilities of the ML2035, allows control of sine wave magnitude, prevents steps in voltages when inhibiting the sine wave output, and provides clock outputs designed to drive other devices. Ambar Cascom Ltd, 0296 434141.

High-speed modem. Smartmodem 9600, a CCITT V.32 modem for Data Communications Network applications, is BABT approved for connection to UK phone systems and is intended primarily for leased-line applications. The product contains automatic dial back-up features and is designed for mainframe and LAN environments requiring high-speed, full-duplex communications for transferring large volumes of data. Hayes Microcomputer Products, 081 848 1858.

Single-chip coder. A series of cmos PCM coder and decoder ICs are the XR-173052/3053S and 3057, intended to implement the transmit and receive functions in digital telecommunications circuits. The first three use a compressed-law PCM format, the 3057 an A-law PCM format. Each contains separate D A and A D circuitry, all necessary.

TI's MOD2434 single-board modem

sample-and-hold switched capacitor filters, precision voltage reference, internal auto zero clamping, and a serial I/O interface. Microlog Ltd, 0483 729551.

Miniature receiver. A miniature, low power, direct conversion, RF data receiver for the personal communications market is claimed to be ideal for applications such as wristwatch pagers. The SL6039 is a low-noise, RF cassette amplifier and a data demodulator. Its on-chip channel filters detect frequency-shift keyed transmissions and reduce the need for additional external components. This compact solution of a complete radio receiver in one MP28 miniature DIL package permits smaller RF modems, security devices, and pagers that can be built into wristwatches or credit card-sized packages. In contrast to custom chips, the SL6639 opens the market for a wide range of manufacturers. Plessey Semiconductors, 0793 516000.

Multi-standard modem. The MOD2434, a single-board multi-standard PC modem designed to transmit error-free data worldwide, is said to contain an innovative configuration of digital signal processors and microcontrollers, which, combined with new and more efficient software algorithms, is claimed to result in an impressive array of features. These include auto-adaptation in both originate and answer modes, error-free transmission at 9.6kbps and compatibility with existing communications software. The unit is also claimed to be smaller and less expensive than any comparable product. Texas Instruments, 0234 223232.

Mass storage devices
Paged memory board. A paged-memory expansion board for STE/US users, SPER, is said to be ideal for implementing rom- or ram-based system facilities. It allows designers to build systems with rugged solid-state memory for industrial computing applications where dust or vibration might adversely affect a delicate floppy drive mechanism. It can be populated completely with rom to house large application programs, with all ram for fast datalogging tasks, or with a mix of both. Arcom Control Systems Ltd, 0223 411220.

Software
Interactive autorouter. Pads-Push-n-Shove uses a costed-Maze algorithm operating in a push-and-shove mode. When a connection being routed is blocked by previously routed tracks, the push and shove feature moves these existing tracks aside in order to make room for the connection being routed. The software is useful in designing analogue PCBs as well as boards that have critical circuits wherein the exact track pattern must be controlled. It operates in interactive automatic, steered automatic and manual modes. Lloyd Doyle Ltd, 0932 245000.

CALL AMPLICON FOR PERSONAL COMPUTER INSTRUMENTATION

PC99 25MHz Storage Scope and Waveform Generator
Single board two channels. Together with software turns your PC into a powerful oscilloscope and provides FFT, Integration, Correlation, Wave Smoothing, Convolving, Differentiation, Filtering and Curve Fitting.

GT200 Precision Universal Counter Virtual Instrument Measure up to 100MHz on two channels with 10 digit resolution or make timing measurements to 100 pssec without averaging. Virtual front panel runs under DOS with access to high level features such as statistics and save/recall instrument set ups. Easily programmed in any language - get the performance of a precision instrument for the price of a board.

LOGIMER Replaces BIOS to perform diagnostic tests on IBM PC/XT/AT Model 30/286/386 Clones. Gives exact fault down to chip level with or without the screen working. ONLY £249 in no time!

GPIB Interface boards and software for IBM PC/XT/AT Model 30/286/386 Clones. PS2 and Apple Mac. Plus bus cables, extenders, isolators, expanders and data acquisition boxes.

Have you got YOUR copy of our 1990, full colour, 272 page technical catalogue with prices on the page?
Stock orders up to 5pm despatched same day

AMPICON LIVELINE LTD,

CENTENARY INDUSTRIAL ESTATE, BRIGHTON BN2 4AW
SALES PHONE 0273 570220
FAX 0273 570215
TELEX 877470
FOR INSTRUMENTATION, DATA ACQUISITION AND POWER SUPPLIES CALL US FREE ON

0800 525 335

CIRCLE ENQUIRY NO. 104 ON BACK PAGE

July 1990 ELECTRONICS WORLD + WIRELESS WORLD

601
Appropriate technology

I was very interested in your editorial in the May 1990 issue of Electronics World and Wireless World. I could not agree more with your statement, “Instructions are complicated because equipment and software offer so much. Users, in the main, haven’t actually requested the diversity of features. They appear because equipment and software designers can put them there at ‘little cost’.”

I would go further and say that I find most systems are designed around what technology can do (system-centred) rather than what people actually need (human-centred). It is becoming increasingly apparent that the system-centred approach is wrong. For example: factories are increasingly apparent that the current trend of de-skilling through automation. The UK has suffered enough. We are at a turning point. Let us design systems that prepare us for the year 2000 and beyond. Let us go forward, not with technology that is technically tasty and that scratches some mental itch, but with technology that is appropriate to our needs!

Let us all adopt the human-centred design philosophy that builds skill rather than kills skill!

A WS Ainger

BICC Systems Development Centre

Hemel Hempstead

A rotten apple

I would like to add my voice to the current discussion on the relative merits of the Apple Macintosh versus the IBM PC family.

Until recently I was a programmer in a York company using both Macs and PCs. Fortunately most of my work was connected with the PC rather than the Mac. I rapidly came to the conclusion that the mouse environment is only of value within art packages, where it is far superior to the cursor keys for drawing purposes. Otherwise it is slower and more awkward to move around in a text editor using the mouse, and involves the highly annoying need to keep taking one hand off the keyboard. Similarly, the mouse is more cumbersome than typing text responses to a command-line prompt.

Far more annoying is the slowness resulting from using a micro to run a supercomputer-sized operating system containing many inefficiencies and ridiculous design features.

One would have thought that with a 1Mb ram and a basic system file of around 330K the entire system could be loaded at boot time and held in memory thereafter. Yet trivial disk accesses to get data (often only a few bytes) are made all the time, and make operating a Mac without a hard disk a nightmare of switching floppies.

Compiling and linking, say, 100K of C source from hard disk can take about 10 minutes on the Mac, against about one minute on the PC. The code on the PC can be launched for testing in a couple of seconds; on the Mac, 20 seconds is more likely, and the machine will crash more often than not — a rare occurrence on the PC.

Relaunching the Mac and reactivating the development environment can easily take four minutes. A reboot from a System disk, apparently identical to one that works perfectly, can fail with an obscure error such as, “Cannot load needed resource.”

Privateer television

The recent provision of large numbers of additional television channels by Sky and BSB might be regarded by some as signalling the ultimate demise of terrestrial television. After all, the cost of the satellite services, however great, must surely be dwarfed by the huge expenses incurred by the BBC and IBA in maintaining a country-wide network of UHF transmitters.

Such economic arguments ignore the technical vulnerability of the satellites. Quite obviously, the uplinks will always be captured by the strongest signals. Could we entertain the prospect of a national television service which may be held hostage by anyone with a big dish and a magnetron?

J. Wilson

London SW20

To identify the missing (and how so?) resource involves breaking to the monitor and tracing back through the incredibly complex chain of code which displays the error message to locate the parameters of the failed GetResource call.

Hardly the ideal machine for the computer illiterate, as it purports to be.

C. G. Bulman

Fishergate

York

Riddle of Inertia

R. A. Waldron in the May letters (p. 429) glosses over the real problem of motion under gravity. The mass or inertia of a freely moving body measures its reluctance to move faster when pushed. The electrostatic force between two bodies is proportional to the product of the electric charges on them. Similarly, the gravitational force between two bodies is proportional to the product of the ‘gravitational charges’ on them. However, all experiments show that the gravitational charge on a body is simply proportional to its mass. This empirical fact does call for an explanation, and in his General Theory of Relativity Einstein provided one.

Mach’s principle attributes the...
mass of a body to its interactions with the rest of the universe, and Assis in his 1989 paper (Foundations of Physics Letters 2, 301) postulated a ‘relational’ theory in which the interaction used was Weber’s force for gravitation. On the basis of that paper Graneau claimed in his January 1990 article that the inertia of a body depends on the instantaneous positions of objects in the rest of the universe, i.e. on instantaneous action at a distance. However, towards the end of the paper, Assis wrote, “The greatest limitation of this model is that it is based on an action-at-a-distance theory. As a result, it is not definitive or final theory, but should be valid in systems with slowly varying motions in which time retardation is not a serious factor.”

C. F. Coleman
Grove
Oxfordshire

RC oscillators
Recent letters have revived interest in RC oscillators. Around 1938 I was interested in crystal, LC, and RC filters and realized that RC networks could be used as frequency discriminating devices in oscillators. Because of the low effective Q value it was necessary to operate the maintaining amplifier in class-A to obtain a sinusoidal waveform with low distortion and this necessitated the use of an amplitude-limiting device. I used small filament lamps as thermal devices for the AGC system in the maintaining amplifier and oscillators of this type were used in the following few years when I, and many others, were busy on other things. Soon after the war, I used a commercial 2W mains filament lamp and a full theory was given in an article circa 1945 in Electronic Engineering. Since then thermistor, isolators, photo cells and fets have been used in place of filament lamps in attempts to reduce distortion and amplitude bounce. A completely bounce-free oscillator with low THD (0.01%) has been produced by the undersigned and an article on it is in preparation.

At the instant of switching on, voltage and current transients are present together with noise, and microphony when valves are used, and these contain frequencies close to those of oscillation which are amplified and fed back, positively, to rapidly build up to the operating amplitude, in a good design. This assumes that no spurious voltage is applied to the AGC system as this can result in a delayed amplitude build-up. It is perhaps of interest to note that because of the relatively poor frequency discrimination of RC networks in oscillators, compared with crystals and LCs, the noise level is usually inferior.

We are living in an age of technical reinvention and although it is important to remind readers of the state of the science it is ethical for the author to ensure that the reader understands what is new and what is old and should be known. Too many authors enjoy the adulterations of a semi-technical public by forgetting to give credit to past work by other people and thus, in effect, claim this as their own work. RC networks are no exception to this practice in as much as we have recent examples in letters and articles in EW + WW. As examples, a letter reinvented the circuit of an RC oscillator I patented over 45 years previously and a recent article on RC networks described networks mainly used in amplifiers that were known before the war under the general title of ‘Wheeler networks.’

F. G. Clifford
Wetton
South Africa

Lumpy Universe
A regular expansion after the Big Bang appears to be entirely consistent with a lumpy universe (Research Notes, May) and in particular with an ‘onion skin’ model giving separated walls of galaxies. It is reasonable to assume that, immediately following the Big Bang, matter would be leaving the focal point in all possible directions and over a wide range of speeds. If all particles originated from exactly the same point in space and time there would be a near infinite series of concentric spherical shells each expanding at a slightly greater rate. Velocity differences, between closely spaced particles, would be negligible. The smallest irregularities of mass would tend to grow under gravitational forces, giving a random distribution of mass concentrations.

On the other hand if the origin had significant dimensions, in space and time, a fast shell would overtake earlier slow shells. Shells would clump automatically in a regular way. Whenever major clumping occurred the resultant gravitational forces would overcome some of the velocity differences; a more massive shell would continue at an intermediate velocity. Irregularities of mass, within each shell, could grow to form larger bocies.

Astronomers were discussing this concept several years ago. It is easy to demonstrate on a computer. Why has it been ignored by mainstream astronomers? Are there weaknesses that appear under deeper analysis?

R.G. Silson
Tring
Hertfordshire

Gyroscopes
In the March edition of EW + WW, there are two letters with comments relating to my letter of December 1989. As an engineer I fully agree that experiment is the final arbiter of any theory, which is why my armchair is very close to the laboratory.

I find it difficult to believe that a difference of 20% from the classical results of mechanics could go unexploited for so long. I for one would be delighted to rationalise such phenomena, should they exist.

One specific case mentioned by Bruce DePalma was that of pendulum with a rotating bob — this is easily tested using a simple toy gyroscope and two pieces of string. If the axis of rotation is maintained horizontal by suspending the gyroscope with equal lengths of string from each end of the axle there is no measurable variation of the periodic time. However, if suspension is from one end only such that the axis of rotation is free to change its orientation then interesting gyrations take place and the system no longer behaves like a simple or compound pendulum. The motion is complex because the gyroscopic effects couple with the pendulous motion and, in general, the detail of the motion depends on the starting conditions. There is no evidence that classical mechanics needs to be modified.

The experiment indicated by Alex Jones was repeated by myself some 15 years ago, except that in place of the bearings I mounted the base on four flexible steel strips such that the stiffness was low in one direction of the horizontal plane. In this case movement of the frame is clearly seen to take place. The higher the spin speed the lower the precessional rate, giving a smaller centripetal acceleration to the centre of mass of the rotor. Thus a smaller force is required to prevent motion of the frame. The horizontal force required to prevent lateral motion could easily be less than 0.1% of the weight, in which case rolling friction would be enough to provide the constraint.

I believe that I have said enough on this matter, save to say that advancement in science does require speculation but it must be coupled with well documented experimental apparatus and procedure. Also it is essential that predictions are made by the proper use of existing theory and compared with experimental results. The application of the theory of three-dimensional dynamics of a rigid body is not easy and therefore false conclusions are often drawn. The effects of friction often make prediction a lengthy procedure, but classical mechanics still gives the most concise explanation of the macroscopic dynamics of bodies at low speeds.

H. R. Harrison
Senior Lecturer, Engineering
Dynamics
City University
London E1

Continued over page...
LETTERS

Alpha-torque Forces

I would like to respond collectively to the alpha-torque letters in the September and October 1989 and February 1990 issues of your journal. Good luck to Simon Young with his MKII water-arc gun. I hope he is careful and will let us know what he found.

A common theme in the letters of Coleman, Bell and Carpenter is that I have ignored electromagnetic forces. It is my considered opinion that these forces are non-mechanical and therefore cannot be weighed with a balance. For this reason they cannot contribute to the fritadine atomic bonds in wire-fragmentation experiments. Ampère tension, as I have called it, is the strongest evidence in favour of Ampère's force law and against the Lorentz force law. I would go further and argue that we still do not understand how e.m.fs are produced in wires. At this point textbooks invoke the Poynting vector mechanism which somehow generates an electric field in the wire. The Poynting vector stands for field energy momentum. With an electrodynamic impulse pendulum we have shown that this momentum does not exist. All these experiments are fully described in my book, "Ampère-Neumann Electrodynamics of Metals" (Hadronic Press, Nonantum MA, 1985).

As Carpenter admits, the electrons slip freely through the metal lattice unless they run up against the metal surface. But there are no surface barriers in the way in the direction of current flow. Even in the shortest pulses there appears to occur no pile-up of electrons which could give rise to a Coulomb explosion. Perhaps I should have outlined why pinch forces cannot explain the liquid mercury fountain. If we consider the more simple example of a cylindrical column of liquid metal, the pinch force will certainly generate axial hydrostatic pressure. Pressure is not unidirectional. It will push liquid up and down. The downward thrust will prevent the entry of fresh liquid to the column (at the copper stem). This makes the observed circulation of liquid metal impossible.

Bell's comment makes it necessary to say a few words about electron beams in vacuum. Longitudinal Ampère tension would disrupt these beams. In practice, these beams are very stable, which proves that they are not subject to Ampère tension. It does not prevent the electrons from responding to externally applied magnetic fields, as they certainly do in magnetic focussing and deflection. It all goes to show that a current in a wire is something very different from an electron beam in vacuum. It is a fact that charges connecting in particle accelerators do obey the Lorentz force and not Ampère's law.

Carpenter raises a valid point about three types of energy involved in electrodynamic experiments: mechanical work, electric power and stored magnetic energy. Anyone who has looked at my book will know how I have agonised to clarify this issue. I made the mistake of talking about the virtual work principle, which is unambiguous only in the interchange of mechanical work with gravitational potential energy. In fact I may have drawn the alpha-torque forces in the wrong direction, but reserve judgement until more experimental facts come to light. John Carpenter asks whether field theory should be overlapped? This is not my objective. I have tried to establish an alternative for the restricted area of metal electrodynamicstics. In my view two theories are better than one. My remaining comments will illustrate this.

In the last 50 years several EM pumps for liquid metal have been developed for sodium-cooled nuclear reactors. They are all provided with an external electromagnet which is expensive and clumsy. The designers argue that magnetless pumps do not work. Eighty years ago Carl Hering (J. AIEE, vol.42, p.139, 1923) proved them wrong. He knew Ampère's action - at-a-distance law and pumped liquid metal without magnets in a hundred furnaces.

Science versus subjectivism

I have no quarrel with subjective assessments. When these are scientifically conducted and the limitations born of psychological, logical statistical factors are fully appreciated. I am concerned at the virulence of the virus of unscientific, indeed anti-science, subjectivism which is increasingly pursued with religious fervour in audio matters.

I am therefore concerned that the recent article "Better CD" is devoid of any quantifying data. It latches on to the latest "in" idea that everything is subject to RF pollution (riding on the back of public concern about pollution of a more general nature). Even if there was some RF pollution, would this necessarily be a bad thing? I would remind readers that RF "pollution" is essential in order to straighten out the non-linearities in analogue magnetic recording, and it is also quite vital at dithering crossover distortion.

Some CD players may not bias the op-amps for zero DC at their outputs, so what? Who says this is a bad thing? As a point of fact, many op-amps perform better when biased away from "centre" - particularly the 741 family which have a nasty crossover region around zero. I might well bias op-amps in the middle to avoid field theory problems only because they have a shorter life expectancy. But why use such an elaborate current source when a junction fet with source resistor would do just as well, and with far fewer components? And what is this mystique about strange-valued resistors in non-critical positions?

I am not at all surprised that a panel of self-styled "expert listeners" thought it all sounded better: they always do, and the rating of slam/ focus/definition/ rhythm/musicality and all that garbage is nearly always in direct proportion to the cost of the product/modification and in inverse proportion to the size of the company promoting it.

Is there any reason why meaningful objective measurements should not be presented together with sufficient methodological and statistical data on the subjective experiments, so that the reader can be sufficiently well informed to form his own judgment of their validity?

If you really want to hear the difference then why not listen to the difference, by use of a differential amplifier connected between the outputs of modified and unmodified back-ends, fed from a common dac? Warning: you might hear nothing!

David Birt
Bietshingley
Surrey

Water-arc explosions are far more effective projectile accelerators than railguns. The US Army develops railguns, and recently said they do not understand how water-arc guns work and, therefore, they will not research them.

For 30 years it has been known that lightning strikes which cause forest fires produce hardly any thunder. The loudest thunder claps, associated with the largest lightning currents, are relatively cold. So what causes thunder? Since no suitable electrodynamic forces could be found in our textbooks, meteorologists lost interest in the subject.

Over the same period of time more than a billion dollars have been spent worldwide on hot nuclear fusion. We are still waiting for a demonstration of ignition! Could it be that the same electrodynamic forces which are responsible for thunder make it so difficult to contain the plasma in Tokamak fusion reactors?

Peter Graneneu
Centre for Electromagnetics Research
Northeastern University
Boston
USA
If the SAS slogan "Who dares wins" applies to scientists then we would expect some fireworks from a budding chemist. If not literally fireworks, then some strong stinks at least. For example, Irving Langmuir, who was to receive a Nobel Prize for chemistry, did not do things by halves. At the tender age of six, he nearly killed himself by sniffing chlorine.

It happened when Arthur, Irving's older brother by nine years, had access to a well-appointed chemistry laboratory. Probably not realising how dangerous chlorine is, he took to sometimes carrying a small bottle of the gas about with him and sniffing it. Taking the bottle home he offered Irving a smell. Irving, "never a cautious type," took a gulp and "nearly strangled on the spot." Several anxious choking days passed before he could breathe properly again.

Father banned further chemistry experiments, except in the classroom. Undeterred, Arthur grew up to become a successful industrial chemist and Irving gained an international reputation for both chemistry and physics.

Irving Langmuir was one of the first immensely successful industrial scientists. He was fortunate to spend most of his working life at the General Electric (G.E.) Research Laboratories at Schenectady in New York, where industrial research was expected not only to yield practical results but to expand knowledge as well. His early successes in improving incandescent lamps must have paid his salary for the rest of his career, and he was left free to let his imagination run riot — to the enormous benefit of electronics and science in general.

Langmuir's career path was set by his choice of postgraduate study. After graduating from Columbia University in 1903 with a degree in metallurgical engineering he left the USA for Germany where he enrolled for a PhD at the University of Gottingen. There he studied physical chemistry under Prof. Walther Nernst, inventor of the Nernst lamp, who suggested that Langmuir should examine the dissociation of water vapour and carbon dioxide around glowing platinum wires. These

Irving Langmuir
(1881-1957)
"World's Foremost Scientist"
W. A. Atherton

Langmuir with film balance and trough.

studies not only gave Langmuir his PhD in 1906 but the basic techniques which were to flower later at the G.E. laboratories.

On returning to the USA he lectured at the Stevens Institute of Technology in Hoboken, New Jersey. In the summer of 1909 he took vacation employment at the G.E. Research Laboratories. When due to leave he was asked to stay — higher education thus lost a teacher but industrial research gained a genius.

His first task was to study thermal conduction and convection in gases at high temperatures. For this the new tungsten filaments, developed by W. D. Coolidge from an Austrian invention, were used. At first Langmuir felt embarrassed at the amount of time he enjoyed "playing" but discovering nothing, but the director of the laboratories, W. R. Whitney, reassured and encouraged him.
Then Langmuir did discover something — namely that hydrogen gas behaves in a very peculiar way at extreme temperatures. In 1912 he explained this as the dissociation of hydrogen molecules into single atoms. It was an important scientific discovery which he used much later in his invention of the hydrogen torch, for which a patent was awarded in 1934.

One of the problems with the early tungsten filament light bulbs was that the inside of the glass blackened with time. It was widely held that a better vacuum would solve this and other problems. Langmuir could not think of any way to get an empty void empirically so he turned the problem inside out by adding extra gas so he could, once again, study the behaviour of gases.

His approach has been likened to treating a case of poisoning by giving something more poison. To Langmuir it made sense because he could extrapolate back from his results to predict what would happen if a perfect vacuum was obtained. What he showed was that even the minutest amount of water vapour must be avoided. Beyond that, however, a better vacuum did not lessen the blackening, which was caused by the evaporation of tungsten. Instead of further improvements to the vacuum he suggested the opposite — filling the bulb with gas. “You’re dreaming!” Whitney told him, but allowed that he should try it. The result was today’s argon-filled light bulb, a money spinner if ever there was.

His work on light bulbs inevitably led him to his closest cousin, the thermionic valve. The tungsten filament of the lamp became the early cathode of the valve and every physicist wanted to improve the emission of electrons from its surface. At the same time as Langmuir was improving the incandescent lamp, others were inventing new applications for radio valves.

Langmuir (left) and W. D. Coolidge showing the pilotron to Sir J. J. Thomson when he visited the labs in 1923.

When he studied the electron emission from tungsten filaments he found that, at temperatures close to the melting point of tungsten, the emission was orders of magnitude less than predicted by theory. Tracking down the cause of this mystery led him to the discovery of electron space charge, the results of which he described in a law. This recognition and theoretical understanding of space charge was one of the turning points in the development of the scientific design of thermionic devices.

Further studies led to the discovery that the addition of a tiny amount of thorium to the tungsten filament gave an enormous increase in the electron emission. Originally thorium oxide had been added in an attempt to prevent crystal growth of the tungsten metal, but Langmuir’s detective work showed that a layer of thorium formed on the tungsten surface, resulting in the vast increase in electron emission. Thoriated tungsten filaments became standard, and the G. E. Labs at Schenectady further confirmed their international importance to what would become known as the electronics industry.

Recognition of his work came in 1920 when he was awarded the Rumford Medal of the American Association for the Advancement of Science. It was not the first, and certainly was not the last, honour he was to receive. On a visit to Japan in the mid 1930s he was described as the world’s foremost scientist.

Another way in which Langmuir influenced the design of electronic valves was through his improvements to vacuum pumps. In 1915 he examined Gade’s diffusion pump and, as was his style, gained both theoretical understanding and practical improvements. After the First World War Langmuir’s mercury diffusion pump became a familiar sight in laboratories.

His work covered an incredible range of interests and he had an international reputation in subjects which we cannot even touch on here. It is no surprise to learn that he pioneered the artificial production of rainfall and snowfall.

Early in the war he had spent time studying the formation of clouds and icing. This required measurements of particle size using Rayleigh’s law of light scattering. But how do you turn that into a tool to help win a war? Langmuir’s answer was to use it to make far bigger and better smoke screens. The “white” smoke which he and his colleague, V. J. Schaefer, produced became an artificial fog which protected troops during the invasion of Europe. For three days during the crossing of the Rhine a 65-mile front was blanketed with the fog. According to Langmuir’s biographer, Rosenfeld, its introduction into the Pacific by the US Navy ended the destruction caused by kamikaze attacks.

The story of the invention of this smoke screen began with a new filter for gas masks, which then needed a new smoke generator to produce smoke to test the filters. Later, when a smoke screen was needed, Langmuir and Schaefer were partway there. On 23 June, 1942, Army brass hats were dragged to the top of a suitable mountain before dawn to witness in the valley below a perfect demonstration of how to generate vast amounts of clear white smoke.

Another problem, how to prevent aircraft wings icing up, led to post-war experiments with cloud seeding. It was on 13 November, 1946, that Schaefer first seeded a cloud, using six pounds of dry ice. Langmuir reported that, “The whole supercooled cloud was converted to small ice crystals.” In his diary he simply wrote, “It worked!”

Experimental results improved and on a winter’s day that year they turned a cloud into snow. But the snow became a storm and the storm a blizzard, and the storm within G. E. over the legal implications led to the company waiving all royalty rights to the patents, and for the first time worrying about what Langmuir was up to.

By the time of his death at Falmouth, Massachusetts, on 16 August, 1957, Irving Langmuir’s interests had spanned a range of science from electronic vacuum tubes to changing the weather. He was born in Brooklyn, New York, on 31 January, 1881, the third of four sons of Charles and Sadie Langmuir. His grandfather had emigrated from Glasgow to
Canada and his father from Canada to New York, where Irving was educated at public schools in Brooklyn. He belonged to a big family; besides three brothers he had an abundant supply of aunts, uncles and cousins.

In 1892 a trip by his parents to Europe resulted in his father's appointment as the Paris representative of the New York Life Insurance Co. The four boys were shipped out to Europe and met at Le Havre by their father. Irving continued his schooling in Paris for the next three years. By that stage his love for the outdoor life, especially hiking, was well established, as was all the boys' love for dramatic chemistry experiments — chlorine excluded. Irving recalled that he had a workshop when he was nine and his own laboratory when he was 12.

He completed his schooling back in the USA, claiming that, "Until I was 14 I always hated school and did poorly at it." After that it was Columbia University and on to Göttingen.

Hiking was by no means his only athletic interest. He also climbed, hence his eagerness to drag the Army chiefs to the top of a mountain to witness the smoke screen demonstration. Probably his greatest climbing feat was to conquer the Matterhorn in 1921, when he was 40 years old.

Skiing was also a favourite activity, and it is said that he introduced the sport to Göttingen. In 1910, according to his biography, he did a lot of canoeing, camping and skating, took lessons in tennis, bowls, horse riding and dancing, went sleighing in the moonlight, swam, hunted, fished, and became a scoutmaster. His spare time was spent in the darkroom for he was a keen photographer. He also became interested in that new gadget, the motor car.

In his younger days, it is said that he was uncomfortable with the ladies. His diary for 29 June, 1910, records him meeting and dancing twice with a Miss Mersereneau. In time he came to use her first name, Marion. They were married in 1912, forming a long and happy union in which they had two children, Kenneth and Barbara.

His wife also gave him a wonderful epitaph: "He was as great a husband and father as he was a scientist."

References

Not all gyros need a spinning mass.
John Nuttall points out that those using optical sensing possess unique advantages which, in some applications, outweigh their high cost.

Many devices detect rotation: shaft encoders and resolvers, for example, detect rotation relative to a fixed reference. But a gyro is different, because it needs no such reference — it measures absolute rotation. Today, the word is used for any sensor of absolute rotation, even if there is no spinning wheel. In technological applications, gyros are the sensors, acting as an integral part of a measurement or control system.

A typical application for a gyroscope is the stabilisation of an aerial on a moving object. Here, the aerial is mounted on a gimbal system giving two degrees of freedom, the gimbals being controlled to give zero rotation of the aerial. Similarly, an autopilot system requires gyroscopes to detect the aircraft's rotation.

At a more complex level, gyroscopes form the heart of inertial navigation and inertial surveying systems. These aim to measure the motion of a body entirely from within the body (i.e. without the use of radar, beacons or landmarks). Displacement and velocity cannot be measured directly, so the displacement has to be obtained by double integration of acceleration measurements, which are collected in three axes. Of course, one needs to control (or at least know) the direction in which the three accelerometers are pointing, and thus three gyroscopes are necessary.

Optical gyro
The majority of gyroscopes in use today are mechanical instruments, based on spinning masses. This is true for both the least demanding applications (such as some stabilisation systems) and the most demanding applications (such as inertial navigation). However, in recent years, optical methods of rotation sensing have become practical, and there are perceived advantages in cost, reliability and performance. How real these perceived advantages are, will be discussed later in this article.

First on the scene was the ring laser gyro and most gyroscopic companies now make an RLG, usually intended for aircraft navigation. More recently, there has been feverish development of fibre-optic gyroes. These appear in a number of forms, with confusing sets of initials to describe the variants. In this article, I will describe the original best-known interferometric fibre-optic gyro, which I call the FOG.

The Sagnac interferometer
Optical rotation sensing is based on the Sagnac effect, which was first demonstrated as early as 1912. In the Sagnac interferometer, there are three mirrors and a beam splitter (Fig. 1). (An ideal beam splitter reflects half the light incident on it like a mirror, and transmits the other half like a window.) Light is sent both ways round the circuit, in which any non-reciprocities show up as a phase shift between the two beams.

Fig. 1. Sagnac interferometer using mirrors and a beam splitter. Light is sent both ways round the circuit, in which any non-reciprocities show up as a phase shift between the two beams.
is incident on the detector. It is clear that, if care is taken to ensure that the two beams of light follow exactly the same path, the lengths of the two journeys will be exactly the same. They will therefore interfere constructively at the detector.

There are some circumstances in which it is possible to make the lengths of the counter-rotating journeys different. Such effects are called non-reciprocities, and the one we are interested in is the rotation-sensitive or Sagnac effect. The effect of rotation on the passage of light can properly be explained only in terms of General Relativity, but the Sagnac effect can be visualised in a simple way. If the light travels round in the opposite direction to the rotation, the distance the light has to travel seems less than the distance when there is no rotation. On the other hand, if the light is travelling with the rotation, the distance seems greater. The two beams will reach the detector having travelled different distances and will therefore be out of phase with each other.

Using this model, one can calculate the phase shift as

\[\Delta \Phi = \frac{8\pi A \omega}{c}, \]

where

- \(A \) = the area enclosed by the light path
- \(\omega \) = the applied rotation rate (radians/second)
- \(c \) = the velocity of light
- \(\lambda \) = the wavelength of the light (in vacuo)

It is usual to enhance the effect by using a long length of optical fibre wound into a coil of many turns instead of one 'turn' of free space (Fig. 2). Assuming a circular coil of total length \(L \) and radius \(R \), the phase shift is

\[\Delta \Phi = 4\pi L R \omega / \lambda c \]

Of course, the phase shift between two beams of light cannot be measured directly. All that can be measured is the intensity of light incident on a photodetector. Hence, for example, a 2π phase shift cannot be distinguished from no phase shift: the amplitude is bound to be some cosine function of rotation rate and therefore multiple-valued. This is not an encouraging start to instrument design.

Also, even after magnification by the number of turns, the Sagnac effect is uncomfortably small. Taking \(L = 500 \text{ m} \), \(R = 50 \text{ mm} \), \(c = 3 \times 10^8 \text{ m/s} \) and \(\lambda = 1.3 \times 10^{-6} \text{ m} \), gives \(\Delta \Phi \) (in radians) = 0.8 to 0.8 (in radians/s). For the rotation rate of the earth on its axis (15°/hour), \(\Delta \Phi = 6 \times 10^{-4} \) radians, while for 1000°/s, \(\Delta \Phi = 14 \) radians, or more than two optical wave lengths.

On the standards of existing instruments, the ability to detect the earth rotating on its axis is not particularly demanding. Thus, the designer of a fibre-optic gyro has three problems to overcome: he has to produce a detection system capable of measuring the small phase shifts; he has to ensure that other sources of non-reciprocity do not drown the effect of slow rotations; and he has to cope with the potential problem of the gyro output being ambiguous because of the cosine effect.

Measuring the phase shift

The trick required to measure small phase shifts successfully involves the use of a phase modulator inside the sensing loop. It is essential that this component is not in the centre of the loop, but near one end. A modulator can be made by using a piezoelectric device to stretch the fibre in response to an applied voltage, increasing the phase length of that portion of the fibre and hence the time for light to travel through it.

Light which reaches the detector consists of two beams which have passed round the coil in different directions. At any instant in time, the light leaving the coil in the two directions passes through the modulator at different times (separated by the transit time of the loop). Thus if the modulator is fed from an
TECHNOLOGY

oscillator, the two beams of light have been through the modulator at times when its effective length was different and the phases of the two beams have been altered by different amounts. The maximum effect is obtained when the modulator period is chosen to be twice the transit time of the loop.

Analysis of this system needs several pages of mathematics but, in short, it reveals that for a modulator angular frequency of ω there will be a large signal from the detector at 2ω, but no signal at ω when there is no non-reciprocal effect in the loop. In the presence of rotation, however, a small signal at ω appears, proportional to the rotation rate. Isolating and measuring this signal is carried out by conventional phase-sensitive detection, as illustrated in Fig. 3.

The above is an open-loop detection system, and some stunning results have been obtained using it. For example, workers at Stanford University, California, in the early 1980s, built a gyro with noise level corresponding to rotation as slow as a few millidegrees/hour in a 1Hz bandwidth. On this parameter their device was as good as a typical ring laser gyro, and not much poorer than the best of mechanical gyros. To achieve this, of course, they had to optimise many other aspects of the gyro design too. Also, their device was not really a detector of rotation, but rather a detector of the absence of rotation which had limited commercial possibilities.

Closing the loop

Successful as open-loop detection systems are at giving low noise and hence high sensitivity, a closed-loop system is needed to get respectable linearity of the sensor. Such an approach is very common in sensor design. The idea is to counteract the rotation-induced non-reciprocity with another non-reciprocity. There are a number of possible 'real', physical non-reciprocities to choose from (e.g. the Faraday effect), but the greatest success has been obtained with an artificial effect, again based on the modulator.

Ideally, one wishes to increase the path length for light passing in one direction, while decreasing it for light passing in the other. That is not possible, but we can again exploit the fact that the two components of the light arriving at the detector at any instant have passed through the modulator at different times. Thus, if a steady ramp is applied to the phase modulator, one beam always sees a smaller phase length in the modulator than the other, and this does the trick. Figure 4 shows this more clearly.

The gradient of the ramp is such that it gives the extra phase shift ΔΦ (= 4π LRw/uc) in the transit time of the loop τ (=nL/c), where n is the refractive index of the fibre. Of course, in reality, the phase modulator cannot carry on indefinitely, but once the phase shift has reached 2π, it can be reset to zero.

Fig. 4. Closing the loop. Clockwise-rotating light passes through the modulator later than counter-clockwise-rotating light by a time equal to the transit time of the loop (τ). It therefore sees a phase shift bigger by ΔΦ. The gradient of the ramp is controlled so that ΔΦ counteracts the rotation-induced phase shifts.

The time between resets is λ/2R₀, and during this time a rotation of λ/2R radians has occurred. This means that each reset of the phase modulator corresponds to a rotation through a certain angle and, by counting the resets, the angle can be found. Thus the closed-loop FOG is an angle-measuring instrument, in contrast to the open-loop FOG which is basically an angular-rate-measuring device.

Integrated optics

In the case of the gyro in which 500m of fibre is wound into a coil of 50mm radius, the formulae above give a reset every 1.95 × 10⁻³ radians or four arcseconds! This illustrates the amazing sensitivities that are considered normal in the gyro business. If the gyro is rotating at 1000rps, the reset rate is roughly 900kHz. Of course, modern electronics can count at this rate, but it is not realistic to drive a fibre-stretching phase modulator at anything like this speed.

The technology that can provide phase shift with the required bandwidth is integrated optics — the optical analogue of integrated circuits. Then all that is needed is a source, a detector, a coil and the IO chip. All the other optical components — and there are more than I have mentioned in this article — can be built onto the IO chip (Fig.5).

Integrated optics is a new technology, and it might be that the gyro is its first commercial application.

Other non-reciprocities

Because the rotation-induced non-reciprocity is so small, it is essential to minimise other sources of non-reciprocal phase shift. There are many such effects including the Faraday effect (magnetic fields) and the Kerr effect (electric fields). Effects such as the rate of change of temperature gradient also make their contribution. A special winding system is required — sometimes called ‘anti-Shupe’ winding in honour (?) of the man who first pointed out the difficulties caused by rate of change of temperature gradient. Careful choice of fibres, sources and other components, and careful engineering of the assembly are all needed to minimise these effects.

Why develop a FOG?

The fibre-optic gyro has caught the imagination of many people throughout the world, and traditional gyro companies have been amazed by the increased interest in rotation sensing by universities and by other companies. The glamour of the research is easy to see; it involves
The majority of companies are not aiming to produce a FOG capable of competing with a ring laser gyro. (The Ferranti RLG, for example, can detect less than 0.01°/hr, or one thousandth of the earth's rotation speed.) Instead, they are aiming to compete in the larger volume market of around 1 to 10°/hr, which is dominated by small, relatively cheap, rotating-mass gyros. Fibre gyros are considered to have a number of advantages over rotating-mass instruments. Personally, I believe some, but not all, of these claims.

The FOG offers a high maximum angular rate capability. For example, agile missiles roll at 1000°/s or more, and few mechanical gyros can reach that speed, since a mechanical gyro has to be torqued to follow the vehicle's rotation. The FOG does not mind high rates.

The FOG offers angle-measuring rather than rate measuring. If you use the cheaper mechanical gyros you have to derive the angle by measuring rate and integrating, which is an inherently poorer method than measuring angle directly.

A further potential advantage of the FOG is its dormancy. This word is used to describe its ability to be stored unused for a long period of time, and to work reliably when required. The FOG is thought to have good dormancy, because there are no obvious deterioration mechanisms.

A FOG has near zero switch-on time, in contrast to mechanical gyros which take some time for the wheel to come to speed. For some applications, this is very important.

It is often said that the FOG can be designed to operate at extremes of temperature. Mechanical gyros always have lubrication problems at both high and low temperatures, but the FOG does not have such restrictions. It is claimed that measurements could be taken during the drilling of an oil well, when the gyro would have to survive long periods at 125°C or even 175°C. However, the high-temperature FOG seems some way off, since many of the problems with light sources and other components in such hostile environments are, as yet, unsolved.

Similarly, the FOG shows promise in surviving severe vibration and shock which worry the mechanical gyro engineer because of the danger of bearings and the effect of resonances. It seems likely that a FOG would survive harsh treatment and work well afterwards, but it is not obvious that it will work through it!

It has been claimed that the FOG has the advantage in size and weight, but someone was probably joking. FOGs are remarkably large compared with mechanical gyros of similar sensitivity. Some companies are working on very small FOGs, but, since the sensitivity depends on the radius, there are problems here.

Cost is the biggest problem of all. If you were to try to put together a laboratory model of a FOG today (using commercially available fibre, sources, detectors, and an IO chip of existing design) aimed at a sensitivity of 10°/hr, you could spend £10 000 to £20 000 on optical components before assembly. Of course, 'once the demand rises, costs will fall'. However, the market for gyros is not large when compared with, for example, the telecommunications market, and development teams have been waiting for the price cuts for several years. Unfortunately, mechanical gyros are good enough, or almost good enough, to meet many requirements. There is new competition too from simple vibratory gyros (such as the Ferranti PVG) which are suitable when low mass, low cost and ruggedness are more important than sensitivity.

My own belief is that the first significant applications for FOGs will come in an area where cost is not a prime consideration, but where there is a requirement for the FOG's unique combination of abilities.

The author is with Ferranti Defence Systems Ltd, Edinburgh.

BOOKS

SPC Digital Telephone Exchanges, by F. J. Redmill and A. R. Valdar. The SPC of the title refers to "stored-program control" of telephone systems, which has largely replaced relay logic control in modern telephony.

Part 1 deals with fundamentals, introducing telecomms networks and switching systems and the elements of SPC exchanges. In part 2, the principles of digital signal encoding, switching and signal handling in exchanges are described, with a look at the design and architecture of exchanges and the synchronisation of networks.

SPC software and systems form the main part of part 3, which enters into considerable detail in describing exchange control, including integrity and maintainability. Finally, aspects of network operation, planning and the implications of the introduction of integrated-service digital networks are considered in part 4.
CIRCUIT IDEAS

5¼in disk drive for the PS/2

IBM PS/2 computers do not take standard IBM PC 5¼in diskettes. This interface circuit allows a conventional 5¼in disk drive to be connected in place of the second 3¼in drive on a PS/2. It does not occupy a bus expansion slot.

The problem is level conversion. The disk drives are connected in parallel along a bus that comes out of the disk controller. On the PS/2, this bus uses c-mos tristate buffers for output and c-mos gates for input. The PC uses TTL-level inputs and open-collector outputs with 150Ω pull-up resistors (Fig. 1), the resistor pack being on the last drive in the chain.

Figure 2 shows the interface circuit. Outputs from the drive are pulled up by resistors R1 - R5, and then shifted to c-mos levels by a 74HC373 tristate buffer. If the 74HC373 is unavailable, a 74C373 will probably do, and the newer 74HCT373 should be ideal. Signals from the PS/2 to the drive have an easier journey because c-mos outputs can drive TTL inputs. However, the 150Ω pull-up resistors must be removed. For all lines except drive select 1 (DSI), this is easy — just unplug the terminating resistor pack from the disk drive. But DSI has its own terminating resistor soldered in place on each drive. Accordingly, Q1 and Q2 convert DSI from c-mos to open-collector output.

The two types of disk drives have almost identical edge connectors, the difference being that the 3¼in PS/2 drive has six additional positions, two grounded for isolation and four used for power. Of lines 1-34, the interface requires only five to be broken; the rest are wired straight through.

The interface gets its power from lines 37-40; so can the disk drive if it is a low-power model. Caution is in order because PS/2 documentation does not indicate how much power is available for the disk drive.

No special software is needed for the 5¼in drive, because the PS/2 BIOS already supports it; it is merely necessary to configure the machine appropriately. On the PS/2 50 this is done by booting the machine from the reference diskette and selecting "Change configuration" to edit the information stored in c-mos ram. The F6 key cycles through possible values for each item, and F10 stores the new information. If, on rebooting, the machine comes to a halt with '162' on the screen, this means the information in c-mos ram doesn't match the hardware found; pressing F1 will let boot-up continue.

The basic outline of this circuit was suggested by Clyde Washburn and is used with his permission.

Michael Covington
University of Georgia
USA

Versatile temperature compensation

Positive and negative temperature coefficients may be corrected in many critical applications using this circuit.

IC1 is a temperature sensitive device whose terminal voltage has a positive temperature coefficient of 10mV/K. By inverting this slope in IC2, and summing varying proportions of the two slopes (R1, IC1), any linear correction can be applied to subsequent circuitry.

In the original application, the output was applied to a Varicap diode in the tuned circuit of a drifting IF oscillator.

The zener diode D2 exhibits a very low temperature coefficient at a standing current of 6.5mA, as do most zeners of this particular value. It is chosen to supply a standing current of 7.5mA (including 1mA for IC) from the supply rail, which is assumed to be already
Old 16K dram controller handles 64Kbit

A controller for 64Kbit drams can be made with this relatively cheap 16K dram controller, the Intel 8202, by multiplexing two extra address lines external to the chip. On-chip refreshing still works because the 8202 has a 7bit refresh counter, which is all that is needed by a 64K ram. Additional multiplexing is performed by a 74LS157 and all the other gates on the circuit are required to make it work with a 68000.

RAMSEL, generated by the computer's chip-select circuits, activates the 8202. It multiplexes the address lines A1 to A14 and generates all the control signals for a dram. The type of cycle it performs (read or write) is determined by RD and WR, WE and CAS and ANDed with UDS and LDS to generate WE and CAS signals for the upper and lower bank in the memory chip array. The external multiplexer uses RAS as a selector and the multiplexed line is used as A7 on the drams.

When a read or write cycle is finished, XACK is asserted for 25ns at 20MHz crystal speed, so it is held by an RS flip-flop until the 68000 recognises it (as DTACK). After the 68000 has completed its cycle, it negates its control signals and RAMSEL should go high, clearing the flip-flop, thus negating DTACK.

Buffers should be used on the data bus and memory data lines, but I found it worked well without them. If they are used, they should be enabled by LDS and RAMSEL, or LDS and RAMSEL for low bank. Crystal frequency should be between 18.5 and 25MHz; the faster the better.

The circuit should also work using an 8203 with 256K drams, giving 512K, but I have not tried it.

Mark Stephens
Wellington
New Zealand

stabilised and suitable for supplying IC\textsubscript{2} and IC\textsubscript{3}, that is 10 to 30V.

In practice, the circuit is allowed to stabilise to normal operating temperature, and R\textsubscript{1} is adjusted to equalise the voltages at points A and B. The circuit is then altered to a different temperature and R\textsubscript{7} adjusted to provide the desired degree of compensation. With the values shown, slopes from -50 to +50mV/K are possible.

Alan Diverall
Dorking
Surrey

July 1990 ELECTRONICS WORLD + WIRELESS WORLD

613
Pulse producer stimulates muscles

This circuit produces pulses which are some multiple of the supply voltage. It was first used in battery-powered equipment to supply pulses for electrically stimulating muscles, but there must be other uses.

When the input is low, the capacitors charge in parallel through the diodes up to nearly the supply voltage. When it goes high, the capacitors discharge in series through the n-p-n transistors until the input goes low again to produce a negative pulse output (Fig. 1). A positive pulse could be produced by inverting the polarity of the whole circuit.

This is simple and more efficient than generating a high voltage and then switching it. In the circuit of Fig. 1, the initial voltage 12V is supplied by capacitor C (220μF) for 1s, sufficient to turn the relay on. Then the series resistor R, (330Ω), chosen to have about the same value as the relay coil resistance, decreases the initial current from 36 to 18mA. The delay between relay operations must be no less than 150ms.

Battery saving relay control

In the circuit of Fig. 1, the initial voltage 12V is supplied by capacitor C (220μF) for 1s, sufficient to turn the relay on. Then the series resistor R, (330Ω), chosen to have about the same value as the relay coil resistance, decreases the initial current from 36 to 18mA. The delay between relay operations must be no less than 150ms. Charge storage effects can be reduced using speed-up capacitors and Baker clamps, or by mosfets, as in Fig. 2. Mosfets also reduce the drop in output voltage caused by the base current, but care must be taken with regard to gate source voltage rating. S.A.G. Chandler Engineering Department University of Warwick Coventry

Figure 2 gives a better solution in terms of power saving; the relay is turned on by unipolar pulses. The minimum duty cycle of the oscillator G1 could be found empirically with the 1MΩ trimmer for a specified relay. In this circuit, with a 390kΩ trimmer, total DC current is about a quarter (9mA) of the 36mA coil current. Gate G2 introduces a 1s start delay to trigger the relay on at full current. Gates G3 and G4 turn off the output transistor when the control voltage is zero (SW open). Standby current is a few microamps. Kerim Fahme Aleppo Syria
The ordinary business type personal computer has become an accepted platform for data acquisition. A truly bewildering variety of signal acquisition and processing cards can now be hooked into the host computer backplane. The software industry, initially slow to respond, has begun to meet the demands of the systems integrators. The advances made in card design, reflected in their sophisticated data acquisition features, are now matched by an equally impressive range of software products which can be used to great effect to control and maximise the card's features.

LabWindows, from National Instruments, is an example of a data acquisition software development environment. It greatly eases the writing of software for exercising control over I/O expansion cards or GPIB (IEEE-488) interface cards.

It is simply unacceptable to expect an engineer to write low level software before he can use commercially available data acquisition products. Some GPIB interface cards are quite unfriendly and a great deal of time can be spent specifying the parameters for all the call instructions. If the card is used for an automatic test equipment (ATE) application, a considerable amount of time can be spent in the low level programming: this is an inefficient use of engineering manpower resources. LabWindows' author, National Instruments, has produced a fully comprehensive software development system for instrument control and data acquisition in recognition of the problem.

When LabWindows is up and running on a PC, it presents the engineer with the Microsoft QuickBASIC or C program development shell. This is complemented with a high level set of mouse driven options, through the use of dialogue boxes with menus. An engineer who is familiar with Windows programming will feel instantly at home with the front end user shell of LabWindows.

Tedious low level GPIB commands are replaced with slider icons and control boxes (slider icons and control boxes are shown in Fig. 1, each representing an instrument function or parameter). As the engineer requires the instrument to perform a set of functions, the respective sliders or control boxes are evoked. Each slider and control box generates a call instruction and these are compiled into a file structure which forms the control software.

LabWindows is a substantial program which is ideally suited to an 80386 machine although it will run sluggishly on XT's and everything else in between including MCA and EISA boxes. The basic product comes on twelve floppy disks. There are two extra disks with the Advanced Analysis utility which only runs on a 386-PC hosting an 80387 coprocessor.

Documentation extends to an awe inspiring total of seven ring-bound manuals which are, in general, very well written. The installation of the program is straightforward and it powers up to

LabWindows developer's kit

The data acquisition and signal processing add-in card market for the IBM PC is currently booming. Allan Brown reviews a software development package which takes the effort out of code writing.
REVIEW

Fig. 2. The lines of code in the top window generate a pair of sinusoids. Numerical output automatically displays in the second window as the program executes.

Fig. 3. The plotted results from Fig. 2. If satisfied, the lines of program code may be added to a master file.

give the high level language window environment for either QuickBASIC or C. National Instruments has been very thoughtful in presenting a 'Getting Started' manual which provides the engineer with a friendly introduction to LabWindows and an opportunity to get acquainted with many of its features. Extensive support has been given to a wide range of graphics adaptors and the figures presented in this review are of the standard VGA.

The essence of LabWindows is to allow the engineer to write a skeleton program without any input, output, graphics or analysis code included. These features are contained in extensive libraries and can be evoked from the menu options. For example, the first five lines of code shown in Fig. 2 generate a pair of sinusoids. Numeric outputs are shown in the second window which is automatically generated when the program is executed. To display the results graphically, the cursor is moved to the position in the code where the graphics routine is required and the GRAPHICS option is chosen from the LIBRARIES highlight in the command bar at the top of the screen. This leads to a graphics function tree and the engineer is confronted with various options. By choosing 'Plot Y over Index' the control panel with its slider icons and control boxes, as shown in Fig. 1, appears. The mouse is moved to each slider and control box to make the appropriate setting. As each slider or control box is activated, the corresponding low level code is generated at the base of the screen. To test the code, after setting variables, the GO! option in the command bar is activated. Plotting results are shown in Fig. 3. If satisfied, the KEEP option places the two lines of generated code in the developer's source code. This code may be accessed through the RETURN! option – as can be seen in Fig. 1. This method of code generation certainly takes the burden out of data acquisition programming and will almost certainly become a standard software design technique for such applications.

Much emphasis is given to the interactive nature of the software. The engineer is able to access instruments and control expansion cards from a high programming level with remarkable ease. This interactive feature is very attractive for program development purposes because it enables the engineer to test sections or modules of code on the real hardware. Users who are proficient in both QuickBASIC and C have the opportunity to write some modules in either syntax. There is an option in the program menu which allows a switch from one to the other. It is therefore possible to mix modules since the compiled modules are language independent.

Much work has gone into the context sensitive help files. This is an appealing feature and is considerably better than the blanket help file so often encountered. LabWindows also allows the engineer to amend software errors by using the debugging tools found in the Microsoft shell. These include single line stepping, breakpoints and variable watching as the program progresses. It contains all the editing features of the Microsoft shell such as cut and paste, search and copy. These are very useful development tools which require practice to gain a degree of proficiency. In fact LabWindows is such a comprehensive package that the engineer will require quite a lot of practice before he becomes a master of the product. General Instruments is aware of this fact and the initial learning curve, via the 'Getting Started' manual, is very gentle and quickly establishes confidence.

Each entry in the command bar at the top of the screen has an associated function tree. This is a hierarchical structure consisting of a set of dialogue boxes as shown in Fig. 4. The various options are therefore evoked by working through the function tree.

When the LIBRARIES option is activated from the command bar the engineer has the choice of evoking seven options from the dialogue box. These include FORMATTING & I/O, GRAPHICS, ADVANCED ANALYSIS, DATA ACQUISITION, RS-232 and GPIB calls. As further options are chosen, more dialogue boxes are generated. The Formatting and I/O allows the engineer to read or write to files in a variety of formats, whether floating point or scientific with power ten exponents, etc. Control can also be exercised over display format.

Graphics

The GRAPHICS option is very well designed and lends itself, with remarkable ease, to a variety of plotting requirements. Not only singular plots as shown in Fig. 3 but also multiple plots as shown
in Fig. 4. Data can also be displayed in scatter plots or even strip charts which is particularly convenient for representing real-time temperature measurements. Many I/O expansion cards have several analogue inputs and, by calling on the options from the graphics functions, code can be compiled to allow the input data from each channel to be displayed either directly on the hard copy device or to the graphics displays. RS232-PC. The Advanced Analysis library augments the standard library to provide an extensive range of routines. Within the Advanced Analysis library (Fig. 6), the routines can be broadly grouped into analysis, signal processing and statistics. The analysis group includes features for signal generation and a remarkable choice of array operations (1 & 2 dimension and complex). The signal processing section contains frequency and time domain options but, to my way of thinking, the selection is somewhat limited. But the inclusion of Butterworth and Chebyshev digital filter options is welcome. Statistics is an important tool in the field of data acquisition. The package incorporates an extensive range of statistical processing options within the Advanced Analysis utility. These comprise the standard functions (mean, variance, median, histogram, etc) and three curve fitting routines. In addition, there are routines for matrix operations — quite indispensible for tackling multi-variable inputs. The use of these library routines is straightforward since they can be generated from sliders and control boxes in their respective function panels.

Although many of these functions are available in other data analysis packages, the Advanced Analysis utility has the benefit of its processing speed. It is one of the few packages which run the 80386/80387 processor pair to its full potential.

Instrument functions
One of the exciting aspects of LabWindows is the ease with which it allows the engineer to control instruments connected to the PC via the GPIB bus or RS-232 bus. INSTRUMENT FUNCTION program files (or alternatively instrument drivers) are modules which reside in a...
dedicated directory and are accessed from the INSTRUMENTS option in the command bar. When an instrument is loaded, its name is automatically entered into the INSTRUMENTS FUNCTION tree. Moving further down the tree reveals the function files as a set of options which are used to configure the instrument to perform specified tasks (Fig. 7).

National Instruments supply an impressive list of instrument drivers for a variety of commercial products — scopes, frequency meters, frequency generators, etc — from a number of different manufacturers.

It may be necessary to create an instrument driver and this is quite an involved process. In fact a complete manual, 'Instrument Library Developer's Guide', is dedicated to the task. To set up an instrument file, a function tree must be created which will consist of a subset of dialogue boxes which generate the functions to be performed by the chosen instrument, similar to Fig. 5. To begin the design process, the FUNCTION TREE EDITOR is evoked from OPTIONS in the command bar, which generates the standard Microsoft shell editor. By choosing the CREATE option from the command bar a dialogue box appears where the instrument name is entered.

Help files permeate the whole of LabWindows and the user, when designing an instrument driver, can add custom help files by evoking the HELP EDITOR. This results in the appearance of a help option in the dialogue box. In a similar manner, control panels with dialogue boxes and sliders can be created. Each time a new feature or option is introduced, its corresponding call routine is added to the FUNCTION MODULE file. The completed module will therefore consist of a list of call routines and the module can either be used interactively by the engineer or added to an executable file during the linking phase of the program development.

Program Compiler

The interactive nature of LabWindows allows the engineer to test each program module in realtime. By the time the program is complete, the engineer will have a high degree of confidence that the program as a whole will satisfy the requirements. The program modules can be compiled in the standard manner under the Microsoft shell using the appropriate compiler for either QuickBASIC or C. On a 383-PC, the Microsoft compilers work at an impressive rate; it is possible to construct a batch file to perform this task for several modules. This creates a number of object files which are language independent. The LWLINK utility is then used to link the LabWindows call routines with the engineer's created object files. When LWLINK is evoked, it generates a screen display as shown in Fig. 8. The created object files are entered into the region in the top left of the screen and the appropriate libraries, from where the call routines are accessed and highlighted. After the linking operation is complete the engineer is left with a complete program in an .exe executable file format. Extensive use of the LabWindows libraries results in very large files.

DOS provides limited flexibility in program construction. It is customary with OS/2 and UNIX/386 to use a feature known as dynamic link libraries (DLLs). When the object modules are linked, the library routines are not included in the executable file. They are called from hard disk as required by the executable file, resulting in much smaller executable files. LabWindows would be better suited to the alternative operating systems and one may look forward to this in future versions.

In use

LabWindows is well thought out and it matches many of the requirements for developing data acquisition and ATE system software. I have very few reservations in recommending the package apart from program size and data file size. Since LabWindows is a comprehensive tool, it is very likely that many users will have major programming loads for it and I envisage the 640k DOS boundary creeping up very quickly. Before embarking on a large project I would feel more comfortable if there was some provision to include DOS extenders to eliminate the threat.

Supplier: National Instruments UK Ltd, 21 Kingfisher Court, Hambridge Road, Newbury, Berks RG14 5SJ, Phone 0635-523545.

Price: £495 basic package; £895 Advanced analysis module.
Choosing and using programmable logic

Over the last ten years, the number of different types of programmable logic devices (PLDs) has rocketed. There are now roughly 3000 devices supporting over 300 distinct architectures under a dozen acronyms, including EPLDs, GALs, FPGAs and ASPIcs.

The potential for confusion is enormous. Choosing the right part for the job can be a daunting task and getting objective help in decision making may not be easy: the market is intensely competitive, and every manufacturer has its own axe to grind.

The best chance of a disinterested evaluation will come from someone not connected with device manufacture but intimately involved with the devices themselves.

Stephen King is product manager for the Test Products Business Unit of Data I/O, a world class manufacturer of device programming equipment. Together with David Pashley, divisional manager of distributor Instrumatic, he outlined the current state of the PLD product maze and offered a way through it.

King describes the world of programmable logic in terms of four categories: simple or complex PLDs, field programmable gate arrays (FFGAs) and application-specific programmable logic (ASPL). MMI, now part of AMD, set the ball rolling with its programmable array logic (PAL) devices in 1977. PAL is now an MMI trademark, and most of the common acronyms are some company’s legal property.

PAL was not the first family on the market, that was Signetics’ field-programmable logic array (FPLA), launched in 1975. But where PAL made the running was not only in the introduction of the devices, but also in the first software design tools and its PAL design handbook. It was these three things that “kicked the industry off the ground”, King said.

There were architectural differences too. FPLA included programmable AND and OR matrices. PAL’s OR array was fixed, leaving only the AND array programmable. That made design easier, at the cost of reduced design flexibility.

MMI’s design software allowed the engineer to enter designs in Boolean equations, which were automatically converted into a fuse map by the tool. Signetics required all this to be done manually, including logic equation reduction.

These types of simple PLD remain by far the most commonly used, and the cheapest. The 22V10 is currently the most popular device in the world; it costs 90 cents, the design tools are cheap or even free, and a design can be up and running in a day.

The next big step forward was a result of a change in technology from bipolar to c-mos. Because twice the circuit complexity can be fitted onto the same size c-mos die as bipolar, the functionality of the parts increased dramatically. That happened in 1985, led by companies such as Lattice, Altera and Cypress, and produced a marked growth in the use of programmable logic.

“The complexity of the devices has caused the PLD market to go absolutely crazy,” Pashley said. “Whereas a few years ago people were using PLDs just as a substitute for some TTL packages to do glue logic functions, now it’s very common to find whole boards populated solely with PLDs performing all the logic functions.”

Erasable functions

One of the earliest families was Lattice’s generic array logic, GAL, another trademark. These were intended as general purpose arrays, offering

Still using glue logic? Think again. Designers can select from 3000 programmable logic types within 300 distinct device architectures sold under a dozen different acronyms. Steven Hannington investigates...
LABTOOL XP6005

The XP6005 Universal programmer is a member of the new range of Labtool Programmers introduced by Dux (UK)

Designed to be controlled and powered by your IBMPC or compatible via a Labtool parallel interface card the XP6005 gives you:

* **Outstanding Price-Performance**
 The system is capable of programming a vast range of logic and memory devices throughout the many different device technologies.
 At present the XP6005 library supports PALs, GALs, PEELs, IFLs, EPLDs, EEPLDs, EPROMs, EEPROMs, bipolar Proms and single chip microcomputers.

* **Free Software Support for New Devices**
 Coupled with your PC the XP6005 provides a unique universal concept, allowing Dux (UK) to add new devices to your library, on request.

* **Easy To Operate Menu Driven Functions**
 Simple device manufacturer and part number selection ensures correct programming.
 Selection of worse case supply or nominal supply verification with commercial or military reject options.
 Automatic or manual selection of industry standard data transmission formats, such as MOS Technology, Motorola S, Intel Hex, JEDEC, Binary etc.

* **On Line Help Information**
 Effortless SET programming for 4,8,16 or 32-Bit words via screen prompts.
 Straight forward testing of TTL, CMOS, Static RAM and Dynamic RAM devices.
 Built in programmer calibration ensuring user confidence.

* **Powerful Data and Vector Editing**
 Full screen memory editor, allows data movement, data transfers or fill memory, with a search option in HEX or ASCII.
 Logic verification vectors are easily produced for functional tests.
 Efficient parallel Computer-Programmer communication, transfers 256K in 22 seconds.

* The XP6005 High Performance Programmer is available at a total price of ONLY £776.00 (excluding VAT) which includes the Adaptor Card and the Parallel Cable.

Bovinger House,
172 Winchester Road, Four Marks,
Alton, Hants. GU34 5HZ
Tel: (0420) 63724 Fax: (0420) 63833
registered or combinational outputs, such that a single device could do any of the jobs of a number of the simple PLDs. One part fits all, as it were.

These were also the first erasable devices, including Altera's Electrically Erasable PLDs (EPLDs), which take half an hour under a UV lamp to wipe clean; and erasable PLDs (EPLDs), such as Lattice's GAL, which automatically erase with each reprogramming.

Typically, complex PLDs have a similar architecture to the simple ones: programmable AND and output macrocells. But they offer greater flexibility, such as asynchronous operation and a choice of feedback paths, allowing an output pin to be tristated and used as an input, for example. This opens up a number of potential applications.

"You can build any function you want," said King. "Maybe you want a counter: you can go off and buy a commercial counter, but if you want a short count, you have to add extra logic on your board.

"With a complex PLD, you can get the counter to count up to whatever value you want and quit there. You don't need any of the extra logic."

The disadvantage of c-mos is that it is slower than bipolar. Texas has recently launched a 5ns bipolar part, whereas the top speed of c-mos is around 15ns. C-mos is also slightly more expensive than bipolar.

According to Pasley, the price differential extends beyond the extra complexity on a gate-for-gate count. Whereas the simple 22V10 is equivalent to roughly 300-400 gates and costs under one dollar, the newest, biggest PLDs correspond to around 2000 gates and cost $50. This happens because nearly everybody makes the simpler types, whereas the more complex ones are proprietary. The differential is expected to reduce, however.

One result of the arrival of complex, c-mos PLDs was that the market blossomed from $46 million worldwide in 1984 to nearly $800m last year. Part of this growth is also due to the advent of the next step on the PLD ladder: field programmable gate arrays (FPGAs).

A new level of complexity

FPGAs employ a completely different architecture to PLDs. They have macrocells, but instead of being lined up on the output pins, they are distributed throughout the device and linked by a programmable interconnect matrix. As the name suggests they have

Evolution of the PLD

The first PLDs were made in the early 1970s. Known as programmable read-only memories (proms), they comprise a programmable or array fed by a fixed AND array (Fig. 1). The AND array is a 'fully decoded' array, meaning that all possible combinations of the inputs 10...10 have a unique product term. The size of the array in a prom, due to this full decoding, grows as 2^n, where n is the number of inputs. This can result in a very large and costly device.

Proms tend to be slower than other PLDs due to the switching time of large arrays. Some small proms operate fast enough to find success as logic elements. Moreover, most logic functions don't require that all possible combinations of the inputs should be available, since many of the combinations are invalid or impossible.

The primary uses of proms have been in memory-type applications such as display look-up tables, and software storage known as firmware. Figure 2 shows the written programming conventions.

Figure 3 shows a typical PLD input buffer. Its two outputs are the true and complement of the input, as shown by the truth table. Figure 4 illustrates the written convention used to reduce the complexity of a logic diagram without sacrificing any of the clarity. The traditional representation of an AND gate shows three inputs: A, B, and C. The PLD representation has the same three inputs. This shorthand reflects the three distinct input terms of the prior drawing. The structure of a multiple-input AND gate is known as the Product Term.

Continued over page
The C289 Quickpulse Programmer doesn't write code quicker than your current development system. In fact, it doesn't write code at all. But it can get that code from your development system into an EPROM faster than ever before.

The chances are, that with YMODEM data downloading at 38400 baud and quickpulse programming algorithms, the C289 will download and programme upto 5-10 times faster than your current programmer.

ELECTRONIC COMPONENTS LTD.

All items guaranteed to manufacturers spec.
Many other items available.
'Strictly on V.A.T. and post and package'

<table>
<thead>
<tr>
<th></th>
<th>1+</th>
<th>100+</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZX100</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>ZX101</td>
<td>0.80</td>
<td>0.65</td>
</tr>
<tr>
<td>ZX817</td>
<td>0.90</td>
<td>0.70</td>
</tr>
<tr>
<td>ZX7400</td>
<td>0.70</td>
<td>0.35</td>
</tr>
<tr>
<td>ZX80C</td>
<td>0.75</td>
<td>0.55</td>
</tr>
<tr>
<td>ZX80C10</td>
<td>0.80</td>
<td>0.50</td>
</tr>
<tr>
<td>ZX80C15</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>ZX80C20</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>ZX80C25</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>ZX80C32</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td>ZX80C125</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>ZX80C150</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>ZX80C175</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>ZX80C200</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>ZX80C250</td>
<td>0.29</td>
<td>0.15</td>
</tr>
<tr>
<td>ZX80C300</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>ZX80C400</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>ZX80C500</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>ZX80C600</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>ZX80C750</td>
<td>0.20</td>
<td>0.14</td>
</tr>
<tr>
<td>ZX80C900</td>
<td>0.18</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Please add VAT, P&P

AWR TECHNOLOGY
3040365918
Enterprise House
Western Rd DEAL Kent

KESTREL TECHNOLOGY LTD.

This the next best thing to your development system...

Of course the Intel approval ensures that the data your development system generates is exactly what's in the EPROM, (no matter how fast is gets there!)

And a wide range of adaptors means that you're not just limited to EPROMs.

But don't take our word for it. To get the best programmer next to your development system, phone, fax or write to us today.

STACK LIMITED
Wedgebrook Road, Bicester, Oxfordshire OX7 7UL, England.
Telephone (0869) 240404 Fax: (0869) 245500

CIRCLE ENQUIRY NO. 140 ON BACK PAGE

CIRCLE ENQUIRY NO. 141 ON BACK PAGE

CIRCLE ENQUIRY NO. 142 ON BACK PAGE
more in common with gate arrays than the earlier PLDs.

Products vary according to the nature of the interconnect matrix. The Xilinx LCA, for example, is ram-based, and configures itself every time it powers up. Actel, on the other hand, makes rom-based parts that are one-time programmable.

King quoted an application example for the Xilinx part in a video board. The part could be used to emulate EGA or VGA operation simply by downloading the relevant programs into the device. Previously, each emulation would have required a separate IC; now, they can all be done on the same chip.

The expected appeal of FPGAs as an alternative to custom gate arrays is the avoidance of the NRE costs, which can amount to between $20,000 and $50,000 per device and take six months to complete. And may not work. According to King semiconductor manufacturers estimate that roughly half of all custom gate array designs made don’t actually do the job when finally plugged into the board.

“That’s the big risk with a gate array,” he said. “The FPGAs take all that away. In theory. You don’t have to spend months simulating. You don’t have to spend that NRE charge with the semi house, and you can do the design and have it working in a week. If it doesn’t work, no big deal: you just debug it, fix it and try again.”

FPGAs do not currently offer the gate density available from full gate arrays, but they are getting there. However, they are more difficult to incorporate than either simple or complex PLDs and, as Pashley pointed out, their present cost per gate is considerably more.

The fourth and final sector of programmable devices in Data I/O's worldview is application specific programm-
In the world of device programming Stag proudly stands head and shoulders above the rest and for good reason. With sheer dedication Stag has made an art out of the science of silicon and offers the most comprehensive range in programming technology.

The System 3000 is the most advanced universal programmer available today, it is fully equipped to program devices in every known technology including NMOS, CMOS, HMOS, ECL, Fuse-Link, AIM, DEAP and Isoplanar-Z Bipolar, it also has an in-built expansion capability to support new devices when available.

The ZL30A is a dedicated logic programmer designed to meet every PLD requirement, it combines a super-fast programming speed with a powerful editing facility and can be used as a stand alone unit or as a remote control unit via the RS232C or IEEE-488 interface. The ZL30A used with the Tangent-autohandler sets new standards in PLCC-SMD programming.

The PP42 is a powerful and versatile Gang/Set programmer with a comprehensive range of development system features.
able logic (ASPL), also known as ASPIcs. These are geared towards a specific application, but are programmable within that application. They currently constitute about 4% of the market.

Altera’s EPB1400 user-configurable microprocessor peripheral is an example. It comprises specialist interface functions, such as a bus port transceiver, input registers and output latches, around a programmable logic core. It includes general purpose logic macrocells for functions such as address decoding, interrupt logic and state machines.

The importance of design tools
King believes semiconductor manufacturers exercise a lot of influence on the user’s choice, particularly through offering free, or low-cost, design tools. He thinks such tactics are sound and useful to users. “It’s one engineer talking to another,” he said. “That’s what it amounts to. They’re pretty good about it.”

Design tools are key: it was the availability of such tools that got PLDs off the ground in the first place, and they remain critical. Lack of software support is holding the FPGAs back, for example.

With PLD tools, designs can be entered using a variety of techniques, including Boolean equation, state diagrams or schematics. The design software automatically reduces the logic and outputs a Jedeic file. Data I/O also makes a test tool called PLDtest Plus which automatically adds test vectors to the Jedeic file, which is then downloaded to the programmer to produce and test the device. The whole process is more or less automatic. Not so with FPGAs yet.

FPGAs have taken a similar design route to gate arrays, which typically means using schematics. This may not always be the case. Data I/O’s Future Designer system allows FPGAs to be designed in exactly the same way as other PLDs from the same range of methods. But there is still some way to go before FPGAs become as easy to use as PLDs.

“Optimisation is a lot more complex, because you’re dealing with several levels of logic,” King said. “That’s where the device manufacturer has to come into play. He provides the optimisation tools to do that. That’s where the real complexity comes into it because it requires tools from a couple of different suppliers.

“Working with programmable interconnects may involve aspects such as delay times, and that’s where it gets more complex.”

Even with the simpler PLDs, the sheer variety of sources of supply and architectures means that standardisation is non-existent. Pin arrangements — the assignment of power and ground, for example — can vary, along with a wide variety of programming algorithms, device speeds and even packaging options.

There are three ways of handling this: limit yourself to a single device type; use a programmer with adaptors; or use a universal programmer. The first option has obvious limitations and the second, according to Ashley, is unpopular with users because of inconvenience or unreliability. King makes a technical argument against the use of programming adaptors.

“Devices during programming are fairly sensitive,” he said. “The machines are tuned to deliver maximum performance at the head of the programmer. If you stick another socket in there, it can cause problems, such as noise on the lines.”

Data I/O’s Unisite programmer uses pin-driver technology to avoid the need for adaptors. But it’s not cheap: around £12 000 for the 40-pin version. The recently launched 2900 programmer provides similar functions for prices in the range of £3500 to £6500, though it is limited to 44-pin devices. Unisite will be upgraded this summer to cater for up to 188 pins.

Testing of devices once they have been programmed is an issue that hasn’t been properly addressed yet, King believes. In the case of a full gate array, there is a generally acknowledged path between the customer’s design simulation and test at the semi house, with PLDs there is a tendency for in-house buck-passing to develop.

“That’s been the big question in the industry over the last year or so,” said King, “to identify who’s responsible for testing PLDs: is it the production department or the designer? It’s important, but nobody wants to own up to the responsibility.”

Such issues might be settled some time in the future. By that time, PLDs will have got faster — down to 2ns, King predicts — and FPGAs will have become much more popular. Their prices will have fallen and design tools will have become as easy to use as those for PLDs.

“I don’t know if it’s the tools that are driving the technology, or the technology that’s driving the tools,” said King. “But we’re definitely chasing each other around right now. It’s tough keeping up with the technology because every year there’s a couple of hundred new devices added to the pile.”
THE LOGICAL PROGRAMMING CHOICE

The P600 Universal Module is the latest in a range of modules for the AP100 high performance programming system.

- The P600 Universal Module supports the programming of EPROMs, EEPROMs, bipolar PROMs, PALs, GALs (including CMOS PALs and EPALs), FPLs, FPA and FPGA. All major manufacturers are supported in one module, ensuring that the users programming requirements will be met in a single unit, without the expense of adaptors or personality cards.
- Universal pin drive circuitry supports 20, 24 and 28 pin devices in a single multidrive ZIF socket.
- Latest intelligent software is incorporated to ensure fast programming and high yields, including Quick Pulse (INTEL) and Flashrite (AMD).
- RS232 and Centronics ports and remote control as standard – full implementation of the JEDEC data transfer standard for programmable logic devices ensures that the P600 will support proprietary software such as PALASM, CUPL, PLAN and so on.
- Specific hardware/software is incorporated to check the performance of the devices being programmed – tests include variable voltage thresholds and vector testing. Preloading of registers and security fuses is supported.
- The P600 Module is self-calibrating, with all the programming voltages referenced to a single precision band-gap voltage reference. All voltages are checked and adjusted to accommodate temperature, drift and so on.
- The system is expandable with other modules available to support 32/40 pin EPROM/EEPROMs, and single chip micros for both development and production environments.

*Price exclusive of VAT at the current rate.

GP Industrial Electronics Ltd,
Unit E, Huxley Close, Newnham Industrial Estate,
Plymouth PL7 4JN. Telephone: (0752) 342961.
Facsimile: (0752) 342764. Telex: 42513 SHARE T G.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner
Telephone: 01-445 2713/0749

CIRCLE ENQUIRY NO. 144 ON BACK PAGE

CIRCLE ENQUIRY NO. 145 ON BACK PAGE

WE HAVE THE WIDEST CHOICE OF USEFUL LIGHTS IN THE COUNTRY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L827</td>
<td>LED Display</td>
<td>£1.50</td>
</tr>
<tr>
<td>L828</td>
<td>LED Display</td>
<td>£1.50</td>
</tr>
<tr>
<td>L829</td>
<td>LED Display</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

Please call for details and latest prices.

SUMMER SALE

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP100</td>
<td>Universal Mainframe</td>
<td>£2290.00*</td>
</tr>
<tr>
<td>P600 Module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Out-of-this-world performance at a down-to-earth price.

The new 2900 Programming System brings the cost of high-performance programming down to earth. Buy only the device libraries you need today and expand capability when you need it with simple software updates. The 2900 supports virtually every programmable logic and memory device on the market - even surface-mount packages. Its innovative technology makes programming faster, easier, and more affordable than ever before. And with Data I/O's industry-standard design and testing software, you can create a complete PLD development solution. Data I/O is now available exclusively from Instrumatic UK Ltd, so the world's most advanced programmers are now backed by the very best service and support.

To learn how the 2900 is setting a new standard for price and performance, call today for a free tutorial booklet.

0628 476741
MICRO-CAP III under test

Micro-cap III (Computer Analysis Program) is a stand-alone, feature-packed analogue simulator, produced in California by Spectrum Software. Although it has no sister programs, it's encouraging to know that the series has been around for a comparatively long time, as software goes. Micro-cap I was introduced in 1982, and the III series reviewed here was first released in 1988.

The authors claim, "Micro-cap III combines the speed and accuracy of spice-like numerical methods with a modern, easy-to-use interface ... which avoids the mistakes that are easily made with spice, even by experienced users." In its latest version 3 format, released March 1990. Micro-cap III (from now on abbreviated to MC3) can handle circuits or macros comprising up to 500 components, with an unlimited maximum node-count. Overall, the authors claim, it is the easiest to use and among the most powerful of all PC-based simulators.

The manual cites, "Speedy analysis, using a proprietary Sparse matrix technique." Spectrum says it has shipped more than 10,000 copies of the Micro-cap family, with most sales made in the USA. The majority are in use in large corporations, in all phases of electronics except RF.

System considerations
With Spectrum's own Windows-like video interface, MC3 requires around 590k of DOS base memory in full use, a borderline condition for many PCs with memory usage that isn't finely tuned. Datech, which distributes MC3 in the UK and Europe, can help with optimising your PC's configuration.

As an immediate measure, I had to disable my machine's EMS and CACHE and reduce files and buffers in CONFIG.SYS to get the required 590k. A co-processor is optional.

Micro-cap's computational speed can be best appreciated with a 386 machine. MC3 automatically detects the system's highest-resolution graphics mode — CGA, EGA, VGA, MCGA and Hercules are all recognised.

Fast, accurate, easy to use — this computer circuit analysis program gets all the superlatives. Ben Duncan explains why

The hardcopy outputs are specified for HP LaserJet or Epson printers, and HP or HI plotters. I had no trouble interfacing with an Epson/IBM-compatible Star printer, but there were some text offset problems with my HPGL-compatible plotter. The programme disks are copy-protected, with 'hidden files' which prevent them being loaded onto more than two hard disks at one time.

The V3.0 software occupies about 3MB and can be supplied in all the standard floppy formats. Installation, de- and re-installation are straightforward, being taken care of by a special menu.

Operation and schematic entry
The schematic is entered directly. Using the mouse is straightforward and is doubly easy if you've already mastered a schematic drawing program. But it is unfortunate that the manual takes the Windows environment for granted — having graduated via DOS it was unfamiliar to me, and I was left feeling handicapped and frustrated at first. Scrolling and panning are certainly fiddly, requiring a fine touch on the tiny icons.

All commands can be entered directly from the keyboard. This is good, as judicious use of both mouse and keys is an unbeatable speed combination. However, if you try to use the keyboard from the start, you'll waste a lot of time hunting through the manual. The quick reference card wasn't functionally ordered and some keyboard commands have been omitted — the software world seems impervious to learning aids or refinements of any kind, even low-budget ones!

Also, there is no keyboard macro facility — the F key is dedicated. Eventually, I found myself absorbing the key commands one by one, once I had conquered MC3 with the mouse.

Schematic elements can be moved, copied and block deleted. Separate circuit files can be merged. The relevant library page can be directly called up on any part by pointing. You can write descriptive text on the screen. There's also a pull-down notepad screen for each circuit file, but the wordprocessing function depresses me, behaving like PRED, the DOS editor.

Circuits can be macroed up to ten levels. With suitable high level macro-models in place, MC3 should be capable of analysing complex feedback systems in every branch of engineering and the physical sciences.

A circuit containing several op-amp stages, or typically 30 discrete components, can be viewed in one go. Layout density is principally limited by component labels, for which there is a choice of only two positions, and the need to keep these from overlapping for clarity. Circuits with value, tolerance and temperature coefficient appended to every passive part will need to be spread out.

For larger circuits, the screen scrolls, or you can use the three-level zoom.

July 1990 ELECTRONICS WORLD + WIRELESS WORLD 629
MC3's "6-way x 3-channel" palette (colour selection) is quite versatile but it doesn't allow nodes to be a distinct colour from the component text. To overcome the way that node numbers can change as a circuit develops, MC3 allows you to label the nodes you want to monitor with fixed text labels, e.g. "In_.put.

Components are listed on and can be picked from the right-hand COM (component) menu. I was impressed by the ease with which the parts I most used could be dragged into a bespoke order on the top page. To expand the visible drawing area, the COM menu can be put away, assuming you're content to enter from the keyboard. Passive component values can be entered with engineering units (e.g. 1k, Inf) or scientific notation (1E-9).

The available components aren't systematically depicted in the manual. DIY graphic symbols for custom components and macro circuits can be created with a shape editor. MC3 already includes n-channel, mes-fets (sic), transmission lines, polynomial sources and logic gate macros alongside all the basic components, sources and drawing aids. The thyristor/triac/ujt family is not represented, but they should be modelled either as bipolar macros, or by including basic mathematical expressions for the transfer function in the component labels, as a model statement. By this route it should be possible to model any conceivable component - even a fictional one - given enough patience.

For example, "25pF'(1+1/1E6)" models a capacitor with a value that varies with frequency. The Micro-cap manual and newsletter give examples of an opto-coupler and a triode tube, among others. For these and other completely new component types, you'd use the shape editor to create the necessary graphic symbol.

Libraries, parameters and printing

MC3 allows an unlimited number of custom component library sets, which could be allocated to different areas of design or to specific projects. Each library set comprises a generic passive label library (i.e. where a commonly used component value or string is labelled "X" or "7" to save entry time) and individual libraries for the five kinds of active device models (diodes, BJTs, J-fets, and mos- and mes-fets), as well as for plain current sources; independent and dependent linear and non-linear (polynomial) sources, such as V controlled sources; transistors; and transmission lines. Each library can contain at least 50 parts.

Two sample libraries (STD.1.2) are supplied. These include the parts, sources and labels for some 20 sample circuits, as well as semiconductor models for device types that are doubtless common fare in California. With not a "BC" or "2SA" in sight, the listing is not so impressive in the UK, Europe or Japan.

MC3's choice of independent signal sources begins with sine and pulse primitives and setting these up was easy. Sine waves can be programmed with exponentially decaying or ascending amplitude and/or frequency, and non-integral periodicity. You can enter a DC offset and any initial phase and source resistance. Pulses range from one-shots to continuous square or triangular waveforms. More complex waveforms can be generated by summing or adding suitable sources in series.

For example, to design a filter to clean up a noisy automation system in a recording studio, I had no trouble simulating the staircase waveform emerging from the dac, using a chain of square-wave sources with suitable staggered transition periods.

Alternatively you can design and enter custom waveforms using mathematical text expressions or enter them as a user source file. Or where applicable, you can use the waveforms emerging from analysed circuits.

The esoteric process data required to accurately model semiconductors (after Ebers and Moll or Gummel and Poon) is a big stumbling block to the simulator business. Datech suggested it should be available from the makers, but in practice, the makers of discrete transistors ignore requests or claim they don't have an item readily available. In reality, makers are shy about revealing intimate details of their processes to public and competitors alike. In contrast, op-amp makers (beginning with PMI and Texas) are eagerly promoting spice-models for their ICs.

MC3's "Global settings" menu allows you to choose between the EM-2 and GP models for BJTs and diodes, and mosfets and j-fets can also be modelled at two levels of detail. Without any help from the manufacturer, one is faced with modelling familiar transistors using either a curve tracer, or MC3's pep (parameter estimation program). Accessed via DOS, the pep utility computes the EM2 (or level 1) parameters for diodes and transistors using figures that can be garnered from most data sheets, possibly with the help of a few measurements. The manual is quite informative.

<table>
<thead>
<tr>
<th>Micro-cap III - key specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>System:</td>
</tr>
<tr>
<td>PC or PS/2 compatible, >DOS 3.2. 386 processor preferred. Hard disk essential. Microsoft or compatible mouse. At least 576K of available memory, preferably 560K. EMS > 1MB for highest capacity when performing simulations with large numbers of timepoints.</td>
</tr>
<tr>
<td>Drawing Elements</td>
</tr>
<tr>
<td>- Any user-defined symbol plus: Passive components: Rs, Cs, Ls, transmission lines, transformers, non-linear magnetic cores.</td>
</tr>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Switches - voltage, current and time-controlled. Macros, representing other complete circuits.</td>
</tr>
<tr>
<td>Computation</td>
</tr>
<tr>
<td>Sparse array Maximum no. of nodes: unlimited Maximum no. of parts: 500 Macro nesting: up to ten times On-line Utilities</td>
</tr>
<tr>
<td>Utilities accessed via dos:</td>
</tr>
<tr>
<td>PEP derives Eber-Moll parameters. TOSPACE creates SPICE circuit files. CONVERT updates MC3-CAP II circuits.</td>
</tr>
</tbody>
</table>
at this point, using extracts from Motorola data sheets to illustrate the process.
In practice, there remain some nagging uncertainties, like, "How reasonable were those figures I had to guess?" And, "Up to what frequency can this model be relied upon?" The pep gives a basic clue by plotting the characteristic curves of semi-conductors, enabling a check against published data. Still, I'd like to see programs such as pep echo a number of the main data sheet curves before I felt really confident that my DIY models are reasonable. Also, while some Gummel-Poon data is given for the semi-conductors in the sample libraries, the pep doesn't support OP (or level 2 fet) models, which are regarded as too complicated.

Compared to spice macros, MC3's op-amp models are simplistic, with three cascaded gain stages and two poles defined, and with no access to power rails. Library entry is easy since the data can be taken directly off the data sheet. Overall, I found MC3's op-amps fine for gauging the explicit behaviour of a wide variety of everyday circuits up to 1MHz. Alternatively, MC3 can import, convert and use the more detailed spice and p-spice models. Or, assuming a knowledge of mono-fab process parameters, you can compose your own discrete component macro. The elderly µA741 is provided as a sample.

Analyzing options
The analysis routines are immediately accessible once the schematic is drawn. If you forget to earth the circuit or connect all the nodes, you get a reminder on the screen and guilty components flash - you won't be able to analyse anything until you've fixed your mistakes. The analysis routines have many features in common. Irrespective of which you choose, both the stimulus (input) and the point being monitored can be single-ended or differential with respect to ground.

Plots on the screen are displayed in real time and can be printed as soon as the run has finished. You can also abort an analysis immediately if it is not giving the right result, allowing design by rapid iteration. Results can equally be sent to a plotter in real time, but this slows the plot on the screen. If saved, any subset of the original graph can be reviewed and plotted on the screen, or sent to the plotter (or printer) later, or both. You can also arrange for automatic plotting from DOS batch files. Graphs can be annotated with horizontal or vertical text.

During a run you can choose to dump a numeric listing to the printer, the screen or a file. The same information can be seen in a dynamic numeric readout that can be toggled during a run. To avoid generating too much data you can limit the number of increments, but I could see no way of limiting the output to specific frequencies of interest.

For example, the RIAA replay response for phono amplifiers is defined at arbitrary frequencies, so a call to Datech's support was needed. The answer was to divide the analysis into n runs integral with pairs of the spot frequencies, then use MC3's MERGE function to combine the output files. A SCOPE function allows any portion of the graph currently on the screen to be magnified, but the x- and y-axes are unscaled. Instead, measurement is performed with cursors, their positions revealed in an adjacent numeric display of the x- and y-axis limits and differences.

AC analysis (normally small signal) automatically computes the DC operating point (if required), then sends a 1V sine wave up any required node, and goes on to plot amplitude, phase and group-delay across any desired range of frequency. As with any simulator, results will be increasingly doubtful above (say) 1MHz unless realistic parasitic elements have been inserted. New with version 3 is the ability to perform large-signal analysis by calling up a suitable sine-wave source. Either way, Nyquist diagrams, input and output impedance (or admittances and conductances) and noise (in nV/√Hz) can also be displayed.

Of course, for some circuits, noise figures will be critically dependent on device modelling, and op-amp noise is not included. For gain and noise the
x-axis scales can be lin or log, and the numeric output includes the gain slope in dB/octave, but I was disappointed that multiple plots can’t be overlaid for ease of comparison. Also, the log scales are not subdivided as finely as they might be – for example, you’d need to use the scope cursors to check the accuracy of a 176kHz notch filter.

MC3 accepts fractional log cycles if, for example, you set the frequency to range from 1 to 20 (or 30 or 50) kHz. Sub-log scales are practical but take some getting used to since they turn out with unlabelled, linearly spaced yet logarithmically scaled divisions.

The DC analysis facility feeds a swept DC voltage or current into the circuit, across any desired nodes. The output can be a voltage or the current flowing through a sensing resistor. The DC facility would be much more useful if it was able to annotate the schematic with node voltages and branch currents. Such data would be immediately applicable to the preparation of service manuals, as well as aiding mental appraisal. Spectrum says it is working on this for the future. Log scales are not at present available, but the transient analysis module has this facility and with version 3 it can be set up to handle DC plots.

The transient analysis module plots up to ten voltage, current, energy or power responses, normally versus time. However, with version 3, there is now complete freedom as to which quantities you choose to place on the two axes, which opens the way to advanced DC analysis as well as numerous esoteric comparisons such as V_{be} versus energy in Joules. Log and lin scales can also be freely selected.

Waveforms are displayed in pairs. For one or two waveforms, a single graticule fills the entire screen, whereas ten waveforms would employ five individual scales, reduced to fit onto the screen. The display period can be a subset of the simulation time, allowing the middle or final group of micro-seconds to be seen in isolation. The numeric output’s printstep can also be reduced to a subset.

For different, highly non-linear circuits, the solution at each time-point can be iterated any number of times. The maximum number of iterations is entered in the global settings menu, with 200 as the default setting. If the Sparse matrix array is ill conditioned (a euphemism for “cannot compute”), the run may “hang”.

With more primitive simulators, hanging can be a royal pain, especially if there’s no dynamic numeric readout to verify the condition, but with the MC3 options menu, a genuine “hang” is supposed to sound the computer’s “bell.” Certainly the dynamic numeric monitor can be toggled (if left on, it slightly slows the simulation) to see if the run has stalled. The number of timepoints to be plotted or dumped numerically can be limited to a subset of the number that are calculated. Unlike the AC and DC analysis, where the driving source is implicit, some kind of signal source has to be added to the circuit.

Vital statistics

Irrespective of which analysis module you’re using, temperature and individual component tolerances can be stepped. In addition, and providing the graph has been saved, the Monte Carlo and Fourier analysis option can be selected. The Monte Carlo (MC) facility steps all the component tolerances randomly, with or without an overall “lot” tolerance for generic semiconductors. The MC menu allows Gaussian, Linear and Worst Case distributions to be seeded, with the maximum number of runs limited by memory alone — 100 runs on a notch filter circuit containing these op-amps took 30 minutes using an 8086 based machine.

Afterwards, the MC routine produces three-dimensional bar graphs showing various aspects of the distribution of the dependent or independent variables. By suitable setting up, useful statistics (such as percentage variation in a -3dB break point across a production run) can be displayed.

The Fourier analysis module presents a graphic display of the waveform’s magnitude, sine, cosine and phase coefficients. You choose to view between 8 and 128 harmonics, of which the individual displays are highly detailed but small and unscaled. Then you can opt to display and/or print out the numeric details, such as the amplitude and percentage of all harmonics, the sum of the even and odd harmonics, etc.

Bugbears and jewels

Library data and other screen dumps to the printer are easily accessed, but they waste time and paper by including superfluous Windows decor. 24-pin matrix printers are not supported and Spec-
trum admits that the dot matrix (cf. laser) printing facilities are a weak area. This is because a fixed set of binary drawing scales is used to speed up schematic entry and scrolling. Spectrum says higher resolution is planned for future versions.

I found MC3 was good at anticipating (and spotlighting) errors before they had an opportunity to cause hanging or lock-up. Simulators can play a multitude of tricks on the unwary, but MC3's UK users receive a newsletter which goes some way to documenting the (largely unpublished) tricks of the trade.

For example, a transient analysis of a rectifier circuit took 12 hours to run. At least, with MC3, you soon know when a simulation is going to be painfully slow. But by knowing a certain rule-of-thumb, you would change one of the diode's parameters and lo, the simulation would be completed within ten minutes. Repeated high-precision analyses can easily end up filling your hard disk with megabytes of rubbish, and with so many other on-line features, it is unfortunate that there is no facility to erase, sort and back-up files directly from the program instead of via DOS.

Conclusions
Any mention of analogue simulators gets a variety of reactions from engineering colleagues, ranging from bemusement to outright hostility. And yet all the chips in their computers were designed with simulators – for IC design, this is the only practical way. All simulators have a minimum time for setting-up and getting into gear, and MC3 seems well above average in this area, all the more so once you've invested time in entering regular devices and circuit macro-

Simulation is no substitute for your engineering knowledge, but it adds a mighty weight when you need to shove, and acceleration when you want to shift. It comes into its element when a major circuit needs repeated and minute analysis, or when competing (even competitors') topologies or networks are being compared.

The kind of methodical thinking needed to model and enter a circuit is often enough to trigger the inking of an answer in your own mind. Sometimes, the discipline of modelling a circuit moves the goalposts, making the model irrelevant. If it ultimately leads to a solution, who cares?

With simulators, the value-for-money judgment is quirky at best. Elementary software costing under £500 has already been reviewed in these pages, and Micro-cap III costs barely three times more, and yet (judging by conversations with colleagues) it seems as powerful and far easier to set up and use than the simulators included in some workstation packages costing over £20,000.

Dealing in abstractions, all simulators take a lot of learning, and the cost of the software is plainly irrelevant if it takes 1,000 hours of "playing" to reach the stage of feeling confident of getting accurate results fast. I think the average engineer will get to grips with MC3 faster than with any spice-based program.

Once MC3 (or any good simulator) has been mastered, and subject to the care taken in modelling, the engineer has effectively gained means of investigating the behaviour of global circuits and systems above and beyond the physical limits of engineering, if not the universe. Overall this is such an all-embracing programme, with uses in so many diverse branches of analogue systems analysis, that it would take several years of full-time exploration to assess and verify each avenue in detail against even the most niche-like realm of electronic circuit topologies.

For example, version 3 includes (for the first time) the Giles-Atherton state-variable magnetic model. Magnetic material analysis is outside my remit, but it will be of great interest to engineers seeking to design and optimise the magnetic materials used in transformers and other inductive components.

Datech's support was friendly, well informed and reasonably quick, and staff aims to solve any level of technical problem within a variety of response times ranging to a maximum of 36 hours. The software has a few quirks, but (as always) there's scope for refinements. The beautifully presented manual does not do it justice – it's refreshingly readable and cogent as simulator manuals go, but lacks nitty gritty details, and contains quite a few typos and omissions.

Micro-cap III is friendly, competent, workable and well backed-up. You could do a lot worse.
 AUDIO

PREAMPLIFIER DESIGN

Good preamplifier design has always centred on the available headroom, particularly in equalisation and tone control circuits. John Linsley Hood continues his story of audio development.

Although ceramic and "crystal" pick-up cartridges were of some importance during the early days of transistor-based preamplifiers, if only because magnetic stereo cartridges were relatively expensive, their circuitry was not examined in the first part of this article because the problems and constraints of frequency response equalisation did not apply to them in the same manner as for magnetic cartridges.

These cartridges are based on piezoelectric displacement-sensitive transducers, which give an electrical output proportional to the amplitude of the groove modulation. Other things being equal, this would lead to an uncorrected replay frequency-response curve from a disc recorded with RIAA equalisation into a high-impedance load of the form shown in Fig. 1.

In spite of the relatively poor linearity of the transducer element — a typical THD vs frequency graph for a ceramic cartridge at 0.003 cm groove modulation is shown in Fig. 2 — these cartridges were generally used among amateur constructors; input circuits for these devices, intended to optimise their performance, were described by Burrows,1,2 and myself.4

Crystal pick-ups are rather fragile, both humidity and temperature sensitive and are now seldom found, but ceramic cartridge types are robust, still being widely used in low-priced systems.

In contemporary applications, the mounting of the piezoelectric element and its linkage to the stylus assembly are generally arranged so that, with a nominal 47 kΩ resistive load, the cartridge's electrical output is roughly equivalent to that of a velocity-sensitive unit; a conventional, but low-sensitivity RIAA input stage can be used, though with some sacrifice of the low and high frequency response.

Headroom
Very few topics can have generated as much debate in the audio field as the question of the input overload margins practicable with any given circuit, a factor generally referred to as "headroom". Regrettably, much of this debate has been entirely misguided.

The reason for this is that all the signal sources applied to a preamplifier system have specific output limits. For example, in the case of a tape recorder, the recording level is generally chosen so that the peak output signal level is not more than 3 dB greater than the normal span of the recording range. At ±6 dB, the THD would probably have increased, in the case of a cassette recorder, from the typical 0.5% to some 3-5% and at +12 dB (4X) magnetic saturation of the tape would probably clip the output signal anyway.

Similar considerations exist for both FM tuners and CD players, where a ±6 dB overshoot beyond the normal maximum output is probably as large as can be anticipated, bearing in mind the rigid constraints which apply, either in maximum frequency deviation or because of the digital encoding of the signal.

In the case of the output from a typical magnetic pickup cartridge, the limits on
output voltage are just as real, though less obvious. In effect, the practicable output voltage from such a cartridge depends on the extent to which it is mechanically possible either to cut a steeply undulating groove on the record surface or for the pick-up stylus to follow it.

This subject was examined in an informative article by Walton and the maximum recorded levels which were feasible for a vinyl record at various groove diameters are shown in Fig. 3.

Below about 1kHz, maintaining a constant recording velocity would require the amplitude of the groove modulation to increase; even if the groove spacing is adjusted somewhat to allow for anticipated modulation levels, there is a physical limit to this permissible groove excursion. Above about 2kHz, the shape of the rear faces of the triangular-section cutter head means that, as the frequency of the modulation is increased, the cutter tool itself imposes a limit, for any groove diameter, on the closeness between succeeding groove deviations.

Under optimum conditions, Walton considered that, at a 7.5in groove diameter, a groove modulation velocity equivalent to 30dB above 1cm/s at 2kHz was the maximum which could be cut.

The Shure Corporation, which made a speciality of the design of pick-up cartridges with very high tracking ability, claimed of its best models that they were capable of tracking a groove modulation equivalent to +40dB ref. 1cm/s, decreasing with increasing recorded frequency. Shure obviously considered that, on its stereo test records, the +25dB at 10kHz velocities associated with the "musical bells" track would present formidable tracking problems to most of its competitors.

Therefore, if a recorded velocity of 5cm/s is taken as the normal maximum mid-band signal amplitude, the limitations of the recording process ensure that the maximum velocity the pickup encounters on a heavily modulated part of the recording does not exceed 3km/s — a 6x overshoot in output signal level. This practical limitation on the pickup cartridge output voltage was also detailed by Wolfenden using figures from Shure, and by Kelly, who confirmed this magnitude of feasible overload margin.

However, with the same kind of logic which persuades ordinarily sensible motorists that a 150MPH car is a much better proposition — under conditions where the legal speed limit is 70MPH — than one which will only do 100MPH, many circuit designers seem to think it necessary to provide RIAA-stage voltage overload margins in the range 20-30X or greater. By praising such achievements, reviewers perpetuate the belief that this style of design is both good and necessary.

In reality, the highest output voltage peaks are likely to be associated with blemishes on the record surface and, while it is obviously desirable that such sudden voltage excursions do not produce any prolonged paralysis of the amplifier, brief-duration overload clipping might make the equipment more comfortable to listen to.

Since a typical IC op-amp gain stage, when fed from a ±15V supply, is capable of a 9.5V RMS undistorted output-voltage swing, it should be capable of handling the output from any disc whose normal maximum output level is less than 1.5V RMS without clipping.

There are several practical solutions to the problem of ensuring that the output voltage characteristics of the signal source (a low-output moving-coil cartridge might generate 50µV/cm/s, a high-output variable-reluctance design offering 3mV for the same modulation depth) are suitably matched to the amplifier.

Of these, the most elegant is to offer a choice between separate low-sensitivity and high-sensitivity pickup inputs; this approach is almost universally used in the better preamplifiers. Alternatively, a preset gain control can be included at an appropriate point in the circuit chain; a typical arrangement, shown in outline form in Fig. 4, was adopted in the RIAA stage of a design of my own. An alternative approach is to place
the gain control as far forward in the preamplifier layout as is practicable, usually between the output of the RIAA stage and the input to the filter and tone-control stages, as shown schematically in Fig. 5(a). I adopted this layout for my 75W integrated amplifier design3 and I note that it is employed by Quad in all its current designs.

While this choice of gain-control position offers a complete solution to the problems of inadvertent input overload, it carries the penalty that any noise introduced by the various preamplifier stages will be present all the time, even when the input gain control is set to minimum, so great care must be exercised in the design of all the preamplifier stages to keep the noise levels as low as possible.

In view of this, the more common commercial approach is to place the gain control between the end of the preamplifier chain and the input to the power amplifier, as shown in Fig. 5(b): for this layout to be satisfactory, the gains of the preceding preamplifier stages must be chosen with care, having regard to the likely signal levels which may be applied to them.

Tone controls

In nearly all early preamplifier designs, some form of “tone control” was employed, and the quality of the design was often judged on the extent of the facilities it provided for adjusting frequency response.

These tone control systems generally consisted of separate “lift” and “cut” applied to the bass (below about 500Hz) and treble (above, say 1kHz) to allow for deficiencies in loudspeaker performance, programme material or listening environment. They were implemented either by passive RC networks of the kind shown in Fig. 6, or by a version of the celebrated feedback tone-control circuit due to Baxandall4, shown in a typical contemporary form in Fig. 7(a).

Among the advantages of the feed-
back layout is that it allows the use of an almost completely symmetrical circuit, based on linear-law controls; to achieve the same frequency response adjustments, component values in the passive circuit must be somewhat lopsided and will not give flat response settings at the mid-point position unless non-linear potentiometers are used.

Also, the feedback system allows the stage to be operated always at the minimum gain level necessary to achieve the required frequency response, whereas the gain stage preceding or following a passive RC tone control network will be operated at full gain all the time, possibly eroding the available headroom margins.

Figure 8 shows the frequency response adjustments which these tone control circuit layouts provide. Clearly, adjustments of such a simple nature cannot remedy all likely shortcomings in the frequency response of the whole audio system and this has prompted designers to offer more elaborate controls.

Graphic and parametric equalisation

More comprehensive facilities can be provided either by means of a simple switched adjustment to the values of the tone-control capacitors, as in the preamplifier layout of my 75W design, shown in Fig.7b, or by an arrangement in which the gain in each part of the audio band is made separately adjustable.

Most commonly, the pass-band is divided into individually controllable, octave-wide frequency segments, the layout being usually called a graphic equaliser. Figure 9 shows a typical circuit for this type of tone control due to Williamson, which provides the type of frequency response shown in Fig.10. As well as the separate, add-on graphic equaliser units now available, Hitachi offers a simplified graphic equalisation system on most of their current preamplifier designs.

A philosophical objection to the graphic equaliser is that, since the frequency response is built up from a series of humps and troughs, the only setting which will give a ripple-free frequency response is that in which all the controls are set to mid-position — a consideration which may affront the purist.

Perhaps because of this, the so-called parametric equalisation circuit was evolved. This is similar in its circuit structure to the graphic equalisation system, except that only one peak or trough is generated and both the amplitude and frequency of its point of operation can be altered to allow a specific adjustment at a single point in the audio band.

Other tone-control systems

As an approach which would offer local frequency correction, but without a large degree of frequency ripple, I suggested a system based on a switch-selectable group of RC elements. The possible frequency response curves are shown in Fig.11 and give rise to the name "Clapham Junction" tone control.

Better programme sources and greatly improved input and output...
transducer systems have reduced the problem of poor flatness frequency response and there is a growing tendency among the purist manufacturers to offer systems without any frequency response modification facilities whatever. This also reduces the cost of the equipment.

A sensible reaction to the improved standards of programme material and transducer performance was the proposal that only a simple adjustment of the slope of the frequency response curve from bass to treble was normally needed to correct for an over-bright or bass-heavy performance. Bingham\(^{\text{3}}\) published a circuit for a tilt control using the circuit shown in Fig. 12, which gives the kind of frequency response adjustment shown in Fig. 13.

This type of control is used by Quad in current preamplifier designs, using the circuit layout shown in Fig. 14, which gives the effect shown.

Filters

The original reason for the use of bass and treble steep-cut filters was the desire to obtain the best possible reproduction from 78RPM shellac discs pressed from material loaded with emery powder, which causes a continuous background hiss during replay. While this could be ignored, most good-quality preamplifiers offered some form of switched-frequency, steep-slope, HF low-pass filtering to reduce it. There was also usually a steep-cut, 10-50Hz high-pass filter to reduce the rumble caused by poor turntable bearings in the equipment used for the cutting and replay of the discs.

For treble filter systems, there is a choice of active or passive circuit layouts; for attenuation rates of 12dB/octave or greater, passive LC networks of the type shown in Fig. 15 are normally used. However, the inductors needed for rumble filters would be inconveniently large and prone to mains hum pick-up, so active arrangements are preferred.

Sometimes the rumble filter function would be incorporated within the RIAA equalisation network, as in earlier circuits by the author\(^{4}\), Dinsdale\(^{14}\) and Bailey\(^{15}\), whose circuit layout is shown in Fig. 16, but such filter stages are now commonly arranged as separate, cancelable, control blocks using one or other of the layouts shown in Fig. 17.

There is a necessary compromise in the choice of filter slope adopted, in that too low a slope is likely to be ineffective, whereas high attenuation rates will cause some degree of audible coloration, which can be particularly noticeable in the treble. Current practice is to retain some optional rumble filtering, since any coloration in the bass is likely to be lost among the room and loudspeaker cabinet resonances, which are prominent in this part of the spectrum.

![Fig. 11. Author's RC tone control, called the "Clapham Junction" circuit, for obvious reasons](image1)

![Fig. 12. Tilt or slope-adjustment tone control, which varies slope continuously from low to high frequencies](image2)

![Fig. 13. Adjustments of Bingham's slope control circuit in Fig. 12](image3)

![Fig. 14. Quad's slope control at (a) and its characteristic (b)](image4)

![Fig. 15. High-pass and low-pass filters for hum and rumble rejection at 12dB/octave](image5)
In the next part of this article I will look at ICs and other gain blocks, input switching systems, stereo image-width controls, and power supplies.

References

Fig. 16. Rumble filter incorporated in RIAA equalization stage in circuit by Bailey (1966)

Fig. 17. Unity-gain filters now used as separate blocks which can be cancelled if required

INDUSTRIAL PC-CARD SERIES
Engineering I/O Cards for IBM PC/XT/AT & Compilables

SERIAL & PARALLEL CARDS
PC Series RS-232 Card (COM1/2/3/4 Select) £19
PC Parallel Serial Card £18.50
PC Twin Serial Parallel Card £45
PC Dual RS-232 Card £60
PC 4 Port Multi Serial RS-232 Card £75
PC 8 Port Multi Serial RS-232 Card £100

RS-422 CARDS
PC Serial RS-422 Card £55
PC Dual Serial RS-422 Card £65
PC Dual Port RS-422/485 Card £130
PC 4 Port Serial RS-422 Card (AST Compatible) £140
PC 8 Port Serial RS-422 Card (AST Compatible) £250

IEEE-488 CARDS
PC IEEE-488 Card £130
Turbo Pascal, C & Quick Basic Support Pack £44

DIGITAL I/O CARDS
8 Bit I/O Card £40
16 Bit I/O Card £50

ANALOGUE/DIGITAL CONVERSION CARDS
8 Bit A/D/A Card £19
12 Bit A/D Card £85
14 Bit A/D Card £165

INTERFACE CONVERTERS
Serial to Parallel Interface Converter £55
Parallel to Serial Interface Converter £55
RS-232 RS-422 Bi-Directional Interface Converter £50
RS-232 RS-485 Bi-Directional Interface Converter £50
RS-222 20mA Current Loop Bi-Directional £70
PC RS-232 Repeater £30

PROTOTYPE CARDS
PC Universal Card £50
PC Extension Card + 3 Slot Board £50
PC System Design Tool £30

Audio

EDUCATIONAL SYSTEM
8088 16 Bit System + LCD Display
ROM/RAM DISK CARD
360K/1.2Mb PC EPROM/SRAM Memory Cartridge
INDUSTRIAL CONTROL CARDS
16 Channel Opto Input/Relay Output Amplifier and Multiplexer
8 Channel SSR Drive Card (280V/3A) DC (60V/5A)
APPLICATION SOFTWARE PACKAGES
PC-Lab/OAS Data Acquisition Packages
LAMTECH Data Acquisition Packages
ASYSTANT + Package
Unipulse Waveform Analysis Packages
DAO/SIP Signal Analysis Spreadsheet
COMMUNICATIONS
3270 Bi-Sync Emulation Card
PC Modem Net (4x1200 BPS)
PC Fax Card (Telecom Approved)
INDUSTRIAL COMPUTERS SUB-SYSTEMS
Industrial PC AT (80286 & 12MHz) Motherboard
Industrial Computer Chassis (19" Rack Mountable)
PC-BUS Card Cage
EPROM® PAL SINGLE CHIP PROGRAMMERS & TESTERS FOR PC XT AT
14/16/18 Galg E (E) PROM Programmers (16K-1024K)
PAL Programmable
768K-9731 Series Programmer
Digital & Memory Tester
Universal Device Programmer
MISCELLANEOUS
Voice I/O Card
Bar Code Reader
Magnetic Card Reader

£49

Complete range of PC-LabCards

5 Accessories

INQUIRY NO. 138 ON BACK PAGE
Applications

Comander for radio mics

Wire-less audio systems are finding increasing use in live performances, as well as in communications equipment where mobility is required. Designing such systems presents a difficult challenge; in particular, how to maintain adequate audio performance in view of power supply and current consumption limitations.

To reduce transmission noise, the audio signal is usually compressed at the transmitter and expanded at the receiver by using a telecommunications industry-standard compander IC, which has barely adequate audio performance by professional standards. This article describes a companding system utilizing the SSM-2120 dynamic range processor, which offers improvements over the other techniques in terms of noise, distortion and feedthrough.

Transmitters are battery powered, and hence impose severe constraints on supply voltages and current consumption; receivers are often AC powered, so bipolar supplies are more easily accommodated. Since the SSM-2120 requires split supplies, a voltage doubler circuit is necessary for the transmitter, though in some cases this may not be feasible. In this event, however, the SMM-2120 is still useful in the receiver expander circuit to complement any compressed signal, and improve overall system performance.

Compressor and limiter circuits

The design described is intended for ±9V DC battery power and includes a third-order high-pass filter for the elimination of subsonic noise and low-frequency pops that would cause compander overload or mis-tracking.

Figure 1 shows the connection of the SSM-2120 (U) VCA, rectifier, and control amplifier as a compressor, the VCA being connected in the feedback loop of the preamplifier U, to control the gain. The compressor is designed for a 2:1 compression characteristic; if the input rises by 6dB, the output level will only increase by 3dB. The gain compression can therefore be expressed as:

\[\frac{V_o}{V_i} = \frac{R_2}{R_1} \]

as long as the rectifier input currents are limited by \(R_1 \) and \(R_2 \), and the rectifier has a -10\(\mu \)A reference current.

The SSM-2120 rectifier and VCA have a dynamic range in excess of 100dB, resulting in exceptional tracking of the expander/compressor in the compander system.

Small-signal averaging time for a 10\(\mu \)F integration capacitor is 25ms, while the attack time to within 3dB of the final value is about 26ms and is almost independent of signal level increases for level changes in excess of +10dB. Decay rate is 3ms/dB. The high-pass filter keeps frequencies below 90Hz from the input of the rectifier, reducing the low-frequency distortion caused by the VCA control circuit.

DC and high-frequency feedback are provided for \(U \) without sacrificing bandwidth or stability. Output current from the signal-inverting VCA is summed, along with the microphone signal current, at the virtual-ground non-inverting input of preamplifier SSM-2134, U4. The 10k\(\Omega \) resistor at the input of the VCA limits the input current, while the 2200pF, 47\(\Omega \) network provides frequency compensation for the VCA, keeping it stable. Gain is adjusted for 0dBu with -50dBu applied to the microphone input terminals.

Fig. 1. Compressor-limiter circuit for transmitter. High-quality passive components are recommended.
The 100kΩ resistor from V_{CC} to pin 10 of U_1 establishes the operating current for the VCA. To keep power supply current to a minimum, all pins of the unused VCA should be returned to ground. Feedthrough trim is optional and can be used to minimise the VCA control voltage feeding through to the output.

Protection limiter

This uses the second rectifier and control amplifier for separate and independent attack and decay times, along with a steeper gain-reduction slope. A threshold control sets the predetermined gain-limiting point for high input-signal levels. Gain reduction ratio is 4:6:1 and typically the onset of gain limiting should be set to +10dB at the output.

As in the compressor control circuit, the rectifier input current is limited by R_4 and the rectifier also referred to 10μA. Lower precision capacitors and resistors can be used in this case and, as with the compressor, the attack time is much faster than the decay.

The VCA/preamplifier was designed as a system: the VCA was put in the signal feedback loop of the preamplifier principally to prevent preamplifier overload, while keeping the overall noise low, and minimising component count.

Power consumption

The application circuit requires two power supply voltages, ±9VDC. Power consumption of the circuit shown in Fig.

1 is less than 15mA from each supply. The design described will operate properly with good dynamic range as the battery voltage begins to fall below the nominal 9VDC. It is assumed that 2V batteries would be used, but for the smaller hand-held wireless microphones, a single 9V battery would be sufficient. Figure 2 depicts a DC-to-DC converter that will supply the -9VDC.

The converter circuit incorporates an astable oscillator running at 25kHz, which is followed by a capacitor-coupled level shifter and rectifier with a filter. An SE/NE555 timer is used in the "output sink" mode for maximum efficiency and longest battery life.

Receiver expander circuits

Figure 3 shows the control connection of the SSM-2120 (U_1) VCA. rectifier and control amplifier. The control circuit connection to the VCA produces a 1:2 gain expansion characteristic; if the input rise by 3dB, the output level will rise 6dB. Gain expansion ratio is $R_5 \cdot R_7$.

The rectifier input current is again limited by a 10kΩ resistor connected to pin 9 of U_1, and the rectifier is biased at 10μA current though a 1.5MΩ resistor connected to V_{EE}. The SSM-2120 rectifier and VCA each have a 100dB dynamic range, resulting in accurate tracking of the compressor.

Small-signal averaging time, attack and decay rate are identical to those of the compressor limiter circuit.

Control-circuit gain values provide a control voltage to the VCA section $+V_c$.
Much effort and a significant amount of both private and public (European Community) money continues to be devoted to the development of the compatible HD-MAC 1250:50/16:9 HDTV system capable of being transmitted to the home over a standard 12GHz DBS channel. As made clear in the recent ICC colloquium Image processing for HDTV, good progress is being made with the help of some extremely sophisticated electronics. But there remains the long-term problem for both HD-MAC and the Japanese Hi-Vision 1125/60/16:9 systems that nobody is prepared to guess if or when there will be a consumer-budget display device capable of doing real justice to the resolution possible with HDTV — or indeed what would be the gamma of such displays if based on solid-state technology. Then, again, a year or two back it was suggested that it would be essential to produce HDTV sets that could be sold for about £1,500, a difficult target indeed.

So at present HDTV broadcasting can hardly claim to be a market-led technology. There are still those non-engineers who would believe that HDTV could turn out to be Concorde of television: a technological triumph, a marketing blind-alley. The pictures produced by 625-line PAL are still capable of considerable improvement and wide-screen 625-line MAC pictures do not leave much to be desired for home viewing. HDTV production, however, offers considerable scope for generating very superior master tapes as the basis of broadcast, video or electronic cinematography programmes/cassettes.

Despite the important BBC contribution of DATV (digitally assisted television) that now forms an inherent part of the HD-MAC system, the BBC's £4 million co-production of The Ginger Tree was electronically shot on 1125/60/16:9 in Japan, Taiwan and the Isle of Man by drawing on the facilities of NHK and Sony Broadcast, with the tape standard-converted in Tokyo for 625/60/4:3 transmission in the UK. Producers are enthusiastic about HDTV.

BSB have promised that their film channel will transmit wide-screen (16:9) pictures, compatible with existing 4:3 screens, from the start of service, encouraged by research which shows that viewers prefer wide screens and would be prepared to pay a premium for wide-screen sets.

One of the first attempts to conduct research on the reaction to dynamic wide-screen pictures has been reported by Karen Pitts and Norm Hurst of the David Sarnoff Research Center ("How much do people prefer widescreen (16:9) to standard NTSC (4:3)?" IEEE Trans on Consumer Electronics, August 1989, pp160-169). With 110 non-export viewers, the researchers found a strong, consistent preference for 16:9 pictures, even when this meant some reduction in the height of the display.

The only variable to influence this preference was the comparative size of the images. But even with equal width pictures (i.e. with the height of the wide-screen pictures only 75% that of the 4:3 pictures) there was still a 72:28 preference for wide-screen. (A number of European broadcasters broadcast films in wide-screen format, leaving the top and bottom of the screen blacked out, though this is seldom done in the UK except for the opening titles.)

With a moderate decrease in the height of the wide-screen picture (equal diagonals) there was still a preference for wide-screen images 90% of the time. None of the other variables — size of 4:3 set, viewing distance, male-female, seat location — had any significance, although there were some variations with picture content.

Based on a 4:3 set price of £400, viewers indicated that they would be prepared to pay an extra £80 for equal-width 16:9; £90 for equal diagonals; £100 for equal area, and £140 for equal height pictures. For equal height pictures the widescreen premium thus amounts to 35%.

For the purpose of this research, pictures were presented side-by-side on Mitsubishi 35in direct-view monitors with suitable masking to represent either 26in or 20in 4:3 screens.

In Japan, the emphasis seems to be shifting away from the non-compatible 1125/60 component standard, except as a studio production standard, towards NTSC-compatible transmission systems based on a growing family of MUSE image-processing/bandwidth-compression techniques. As well as the full Hi-Vision HDTV, there is now "Clear Vision" based on 1125/60 material, transmitted in an NTSC-compatible format, but which permits the receiver to display each field twice and which includes a reference pulse which permits the receiver to eliminate by correction multipath "ghost" signals. Clear Vision receivers sell for about one-third of the price of Hi Vision, although even so are at a significant premium to current NTSC sets (by a factor of about three).
Taming the digital waves

Among the projects that the BBC Design & Equipment Department hopes to sell to industry is a digital audio link suitable for either a single stereo pair or for the six-channel (three stereo pairs) Nicam-3 distribution system in use for several years on BBC Radio. An interesting feature of the new link system, which is now in use as a low-power UHF link between Stockland Hill, Devon and the Channel Islands, is the use of tamed frequency modulation (TFM). This is a form of fast frequency-shift keying in which the abrupt phase changes are smoothed out, resulting in high spectral density and hence an outstanding degree of spectrum utilization.

TFM was originally proposed by Philips engineers in 1978, primarily for digital mobile-radio communications. They showed that digitally-controlled delta modulation (DCDM) speech at 16kbit/s can be transmitted using TFM in 25kHz radio channels, with the power radiated in the adjacent channel some 85dB lower than that in the allotted channel, substantially lower than for other constant envelope modulation techniques. With synchronous detection, there is a penalty of only 1dB in error performance compared with standard QPSK digital modulation.

Details of TFM as presented by Frank de Jager and Cornelis Dekker (IEEE Trans COM-26, May 1978) and by D. Mulijk (Philips Telecommunications Review, March 1979) indicated that the power density per bit rate at the edge of the adjacent channel can be -67dB compared with -42dB for filtered QPSK, which has the disadvantage also of requiring linear amplification. -22dB for phase-shaped (Nyquist pulse) QPSK and -14dB for minimum-shift-keying. Conventional 16kbit/s QPSK signals would have excessive bandwidth for use in 25kHz channels. In effect, TFM can meet the 70dB out-of-band selectivity values applied to analogue FM transmission.

The basic principle of TFM is to achieve proper control of the frequency oscillator, such that the phase of the modulated signal becomes a smooth function of time with comparable properties. The BBC modem operates at data rates of 676kbit/s (Nicam stereo channel) or 2048kbit/s (Nicam-3 six-channel distribution system for three stereo pairs) on a range of carrier frequencies between 7.5 and 70MHz and can be multiplexed with video links. In one current use, a BBC OB contribution link from Crystal Palace to Broadcasting House London uses a coaxial cable which also carries base-band video and carrier-video. An "over-video" system is being developed for the television service.

The advantages of TFM for digital communications were also explored in a paper by Dr P.D. White and a team of UK Philips Research Laboratories, (IEEE Proc, Vol 132, Pt F, No 5, August 1985): 900MHz digital cordless telephones. This used TFM for short-range cordless telephones, with the speech coded as 32kbit/s continuously variable slope delta modulation or adaptive differential PCM with a final data rate of 72kbit/s for time-division duplex modulation. This could be conveniently transmitted with a 100kHz channel spacing, with a spectral efficiency rather better than that of comparable analogue systems.

As a digital modulation technique, TFM appears to provide good spectral efficiency for a surprisingly small penalty in performance, though like all digital signalling systems is vulnerable to multipath propagation.

Broadcasting is by Pat Hawker
720 K 3.5" DISK DRIVE AT £29.95 + VAT
IBM COMPATIBLE PARTS ETC.

720 K 3.5 INCH DISK DRIVE! AMAZING NEW LOW PRICE TO CLEAR WAREHOUSE!
Japanese made, modern, low component, cast chassis drive. Surface mount design with industry standard interface. Removed from almost new systems, these are top quality drives in excellent condition. Boxed and with full six month guarantee.

$30.00 drive includes 1 megabyte disk, 800K ROM, 12 month guarantee.
$29.95 (carr. £3); £27 ten more. Power and data connectors to suit £0.99p. Special easy-fit kit available for Amstrad 1571/1560, IBM XT and AT, including adapter board and cradle for 5.25" inch slot, £6.95. Box of 3 5.25" disks £8.95 each (carr. £1). NB Drives work with virtually all computers including Amstrads, IBM XT and AT compatible BBC's etc. not Altairas and Amigas. Also New-Nov 10306 720 K 3.5" inch third height £32.50 (carr. £3); TRADE DISCOUNTS for 10, etc.

5.25" INCH DISK DRIVE
Standards, high quality IBM 360K half height drive chassis drive. NEW £29.95 (carr. £3.50).

HARD DISK DRIVES HARDWARE ETC.
---- NEW IN !!! 30 M Ginny Minicrib £225 'state of the art' hard drive with embedded controller and all cabling to connect straight to 16 bit AT slot £159 (carr. £5). Ex demonstration drives. 10 meg, £59; 20 meg, £119 - full height £89; 40 meg, £198; 53 meg, £249; 89 meg, £299; 178 meg, £399 all reputable makes - stock hanging all the time. HDD cables £5.00; 50 megabyte tape back up unit £39.

HARD DRIVE CONTROLLER CARDS
Western Digital XT Controller cards (RRL) £77.50, AT Controller cards (RRL) £39.00 WD 1006 1:1 interleave AT controllers (MFM) £58.00, Stock always changing.

IBM COMPATIBLE XT MOTHERBOARDS, CARDS AND KEYBOARDS.
1 MHz. 8888 turbo processor, 8 expansion slots, legal I/O, 8077 socket £64.95 (carr. £4) 8086 RAM for above £45.95. Note: Multi/IO board for XT systems including parallel port, serial port, real time clock, floppy disc controller and game port £34.95 (carr. £2); 5010 key IBM compatible keyboard AT for XT £29.95 (carr. £3.50).

MONITORS
12" Amber Hercules Monitors. 12 volt supply voltage (PSU needed) £34.95 (carr. £5)

IBM COMPATIBLE AT SYSTEM RUNNING AT 16MHz--ONLY £525

16 MHz IBM compatible computer system — very latest high quality manufacture. Landmark speed of 16MHz, using 80286-12 cpu, 1 megabyte RAM, 1.5 megabyte 5.25" inch floppy drive, printer card, 101 keyboard, 50 Watt power supply, floppy and hard disk drive controller, parallel and serial ports, neat flip top case taking up to nine 5.25" inch drives and eight expansion slots. £15.95 (carr.) £15 Stocks limited.

VGA CARD
Design driven full 16 bit VGA card, 256K RAM, upgradeable for 1024 x 768, complete with software to run will all major packages £129.95 (carr. £50).

DAISY WHEEL PRINTERS
£99.50 (carr. £6); Carbon ribbons £2.79 each (carr. £7.50). £2.00 each (carr. £6). Data Products DWO 55cps daisy printers — demonstration condition, £95 (carr. £14).

!!! BARGAIN OF THE MONTH !!! LASER PRINTER SPECIAL OFFER
Data Products DP12 - 1 page minute, HP Laserjet compatible. Soundly made, fast printer in near new condition. Solid fully working but without warranty. No problem with availability of service and maintenance. Unreliable product — ONLY £39.95 (carr. £26); hurry while stocks last!

HIGH RESOLUTION LATEST DESIGN VGA STANDARD COLOUR MONITOR
High quality Toshiba VGA standard 14" monitors, 0.29 dot pitch, attractive modern Euro-style case, £239 (carr. £12)

WESTINGHOUSE WP500 MODERN CARD
Standard card size to fit inside IBM or similar PC and communicate at 1200 Baud.
1200 Baud or 300 Baud. BT approved £24.95 (carr. £2.50).

POWER SUPPLIES
Farrelled 80 W; Cased 180 Watt PSU — £6 (carr. £4 or 2.9 V, £2.4 V at 5A and £5 at 1A. Very high quality British unit £29.95 (carr. £3)

ASTEC ACE21 cased 50 Watt PSU — £9.5 V at 5A £14.95; £2.5 V at 5A (fixed) and £12 at 0.5A £12.95 (carr. £3.50).

T L-ENDER — few only EGA CARDS £29
THEATRE LIGHTING CONTROL (second hand)
Rank Strand Compact 120 desk — well known spin- portable memory system to control 120 channels, irrepressible condition, with manual £995.
Rank strand 17 x 20 amp dimmer racks in cabinets, £450 each or £1275 for 3.
Rank Strand Dust 60 channel memory desk £999. Reed MRx-50 by 10 Amp dimmer racks £89.

SOUND EQUIPMENT all second-hand — please ring for current stock and prices.

N.B.
• VAT and carriage will be added to all items.
• Everything new unless stated otherwise.
• Access and Visa telephone service.

Matmos Ltd, Unit 11, The Enterprise Park, Leaves Road, Lindfield, West Sussex RH16 3LX
Please note new telephone numbers: 0444 48201 and 0444 483080 - Fax: 0444 484258

INDEX TO ADVERTISERS

CIRCLE ENQUIRY NO. 10 BACK PAGE

PAGE

PAGE

AB Electronics 607

Field Electric 581

PM Components 590

Pineapple Software 574

Airlink Transformers 587

GP Industrial 626

Professional Solutions 554

Amplicon 601

Halcon Electronics 596

R Henson 626

Amber Electronics 581

Holika Electronics 596

Richardson Electronics (Europe)

A&I Components 558

Ilan P Kimlock 574

Rosco Electronics 639

Barrie Electronics 628

ICOM (UK) 587

IBS

Buckman Hardy 628

Instrumatic (UK) 627

South Midlands

Conrad (UK) 558

Johns Radio 628

Communications 567

S choice 628

Spring Gardens

Cradit Products OBC 596

Krestel Elettronic 582

Strumich Engineering 657

Tsshair Electronics 567

Creative Data Systems 596

Components 622

Those Engineers 561

Dux (UK) 620

Lab-Volt (UK) 567

Thurby Thundar 573, 598

Datamation Services 574

Langrex Supplies 598

Dux Electronics 563

Leetroneix 556

MOP Electronics 598

Design Equipment 607

Lloyd Research 558

Matmos 644

Display Electronics 563

Mutek 556

Number One Systems 565

Ovation Inc 561

Numerics 567

Ovonic Inc 561

Index to advertisers

OVERSEAS ADVERTISMENT AGENDES
France and Belgium: Pierre Myrsac 18 20 Place la Madeleine, Paris 75008
United States of America: Jay Fearnam, Reed Business Ltd. 2/5 East 42nd Street, New York, NY 10168 - Telephone (212) 867 2002 - Telex 232927
Printed in Great Britain by Gala Ltd, Welwyn Garden, as 20 Plantation Trading Estate, Gala Ltd, Calderwood, Clydebank G82 7NR, and typeset by Lion Speed, Crayford, Kent, for the proprietors, Reed Business Ltd, Quadrant House, The Quadrant, Selsdon CR2 5TV © Reed Publishing Ltd 1990. Electronics and Wireless World can be obtained from the following: Australia: Reed and New Zealand: Gandon & Guest Ltd. Netherlands: A. J. G. H. Walker & Co; Canada: A. K. Kern and son; Subscriptions Service Ltd.; Gordon & Guest Ltd. SCI (UK) MEMBER; A Central News Agency Ltd. William Danson & Sons (A.A.) Ltd; UNITED STATES: Worldwide Media Services Inc. 1155 23rd Street, NEW YORK, N.Y. 10010; USA: Electronics and Wireless World 51500 (74313).

644

July 1990

ELECTRONICS WORLD + WIRELESS WORLD

INDEX TO ADVERTISERS

VISA & Access phone service

matmos
ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS. at types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, HYBRIDs, etc. RESISTORS, D/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, DISC CERAMICS, PLATE CERAMICS, ELECTROLYTIC, FILTERS, CONNECTING WIRES, CABLES, SCREENED WIRE, SCREWS, NUTS, CAPS, LEADS, TRANSFORMERS, etc. ALL AT KNOCKOUT PRICES

- Come and pay us a visit ALADDIN’S CAVES.

TELEPHONE: 445 0749/445 2713

R. HENSON LTD.
21 Lodge Lane, North Finchley, London N12.

Microprocessors
EPROM Emulator £99

Cross Assemblies £49

Programmers £99

Smart Communications
Tel: 081-441 3890

GOLLEDGE

ELECTRONICS

Quartz crystals oscillators and filters of all types. Large stocks of standard items. Special supply orders welcome - SAE for lists please. OCM support free. Design advice, prototype quantities, production schedules. Golledge Electronics, Merriott, Somerset TA16 5NS. Tel: 0490 733781.

ARTICLES WANTED

For multiple reprints of articles in this issue, please contact
Mark Green on 081-661-8672

ARTICLES WANTED

STEWART OF READING
110 WYCHAM ROAD, READING RG6 1PL
TEL: 0734 869411
FAX: 0734 351696

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

WANTED

Microphone Marconi Round/Sykes.
Magnetophone
Call reverse charge
01046 302 31009
Mr Erickson

WANTED

Recievers, Transmitters, Test Equipment, Components, Cables and Electronic Scrap, Boxes, PCB's, Plugs and Sockets, Computers, Edge Connectors. TOP PRICES PAID FOR ALL TYPES OF ELECTRONICS EQUIPMENT
A.R. Stedall, Electronics, Stockholders, 2 Normans Lane, Tabby Heath, Welwyn, Herts
AL5 9TD. Telephone: 0428 812 183.
Mobile: 0800 218 300. Fax: 0428 812 387.
Electronic Maintenance Engineer
MAIDSTONE

TVS has a vacancy for an Electronic Maintenance Engineer, based at Maidstone, to work on the full range of Studio, Central Area and Outside Broadcast equipment.

Ideally applicants should have a formal qualification in Engineering and some experience of maintaining broadcasting equipment. Full manufacturers’ training courses are provided where necessary.

The successful candidate will be appointed on Engineer/Senior Engineer scale, according to ability and experience.

Suitably experienced and qualified applicants should telephone Maidstone (0622) 684668 for an application form, quoting reference number 374M90/EW, which should be returned no later than 5 July.

TVS welcomes applications from all people regardless of sex, race or disability.

OXFORD MAGNETIC RESONANCE IMAGING UNIT

Senior Technician

Salary – Up to £17,996 depending on experience.

An MRI Unit is due for completion on the site of this large teaching hospital in the Summer of this year. It will house a 1.5 Tesla IGE Signa Advantage, the first unit of this type to be installed in Europe. It is our aim to establish a clinical and technical centre of excellence in MRI.

As this is the first of its type in Europe, this post offers an exciting opportunity for someone to gain specialised expertise in this new development. It is essential that applicants have a background in one or more of the following fields:-

- Micro-computer and network architecture
- Diagnostic Imaging systems
- 80X86 – Assembly Language programming
- Radio Frequency techniques
- Image Processing techniques

We plan to operate the MRI initially on a 5 day week, 12 hours per day basis. Therefore the Senior Technician in conjunction with the Principal Technician will be expected to provide an ‘out of hours’ technical support service. Car driver essential.

So, if you feel you would like to be part of our enthusiastic MRI team, then please contact Dermot Dobson, our Principal Technician, for an informal discussion on Oxford (0865) 742064.

In addition to the above salary, you will also be eligible for other benefits such as an excellent pension scheme and where appropriate financial assistance as part of our relocation package.

To obtain an application form and post details please contact Mike Fleming, Director of Personnel, Level 3, John Radcliffe Hospital, Headington, Oxford OX3 9DU.

Telephone Oxford (0865) 817250.

Closing date - 6 July 1990
Four leading international names investing in your expertise. A state-of-the-art environment in which to develop your skills. The opportunity to work at the leading edge of personal telecommunications technology - PCN.
And substantial rewards in terms of career advancement and diversification.

With the resources of STC, US West, Thorn EMI and Deutsche Bundespost Telekom, you can take the technology for granted: to produce the world's most advanced telecommunications device requires the very best equipment and technology. And, of course, the very best expertise.

To work successfully on a project of this scale and complexity, you will need significant experience in at least one of the following disciplines:
- System layout planning, site selection and evaluation, propagation, site design, regional network planning and forecasting, or standard methods and development.

But you will also need to be able to take a systems global overview, not be restricted by your own, albeit highly important, speciality. And we are quite happy to talk to you even if you are not presently working for a major telecom player since we have opportunities at a number of levels.

You should have at least a degree or HND, preferably a further professional qualification, and specific mobile communications experience.

Finding creative solutions to challenging problems will, however, be only part of your work, so you should also be a highly able communicator, possessing excellent written and verbal skills. We will also expect your total dedication to a highly demanding and challenging career within a rapidly expanding organisation.

But the rewards are there for the taking. We offer the attractive salary and benefits package you would associate with a company leading the revolution in personal communications. The purpose-built, ultra-modern offices with easy access to London and the countryside are thrown in for free.

For more information or an application form, please call Tom O'Grady on 081 905 1001 or write enclosing full C.V. to him at Unitel Ltd., Elstree Tower, Elstree Way, Borehamwood, Herts WD6 1DT.
Please quote Reference number EWW6.

Phones for people - not places.
APPOINTMENTS

Wanted urgently:
Practical people for the Third World.

Sharing your skill with people in the Third World is an experience which brings challenge and true job satisfaction. VSO has urgent requests for the following:

- Studio Electronics Engineer
- Hospital Electronics Engineer
- Lecturers in Power and Communication
- Refrigeration/Radio/TV Engineers
- Electrical Engineers for instruction/installation
- Electronics Instructors
- Maintenance and Repair Technician

For more details, please complete and return the coupon to: Enquiries Unit, VSO, 317 Putney Bridge Road, London SW15 2PN.
Telephone 081-780 1331.

Conditions of work:
- Pay based on local rates
- Equipment and re-equipment grants provided
- Rent-free accommodation usually provided
- National Insurance and medical insurance paid
- Language training provided where necessary
- Return flight paid
- Posts (always approved by our field staff) are for a minimum of two years.

BOOTHROYD STUART
Electronic Engineer, Programmer

Boothroyd Stuart is growing rapidly and plans to expand the Research and Development department during the next few months. They are seeking two engineers to work with Bob Stuart on the Meridian products. Applications are invited for both a senior and an intermediate post.

The successful applicants will have an interest and concern for audio and should have an understanding of the fundamentals of analogue and digital electronics and of microprocessors. We also seek in one of the applicants real experience of machine language microprocessor coding and some knowledge of DSP.

Salary and benefits will be according to ability and experience.

To apply please send a CV to Mrs Susan Stoppit, Boothroyd Stuart Ltd., 13 Clifton Road, Huntingdon PE18 7EJ.

ELECTRONICS WORLD

+ WIRELESS WORLD

SUBSCRIPTION ORDER FORM
Cut out and return to ELECTRONICS WORLD + WIRELESS WORLD, Subscription Manager, Reed Business Publishing Group, Stuart House, Perrymount Road, Haywards Heath, Sussex RH16 3BR.

Subscribe Now!
We are pleased to offer you 22% off the current UK subscription price of £30. This means you only pay £23.40 for 12 issues. We also pay the postage so subscribe now! 22% off

SPECIAL UK SUBSCRIPTION RATES

<table>
<thead>
<tr>
<th></th>
<th>1 YEAR</th>
<th>3 YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.K.</td>
<td>£23.40</td>
<td>£53.00</td>
</tr>
<tr>
<td>Overseas</td>
<td>£35.00</td>
<td>£77.00</td>
</tr>
</tbody>
</table>

Please send me ELECTRONICS WORLD + WIRELESS WORLD for 12 months.

Please invoice me

[] £23.40 payable
[] £35.00 payable

Please send me ELECTRONICS WORLD + WIRELESS WORLD.

Enter Number

Signature:

Name:
Job Title:
Company/Organisation:
Address:
Telephone:
Country:

NEWSAGENT ORDER FORM

Dear Newsagent, please deliver ELECTRONICS WORLD + WIRELESS WORLD every month to

Name:
Address:
Telephone no:
Signature:
Date:

Garibaldi - RF & Microwave

We are the specialist agency for 'Radio Frequency' design or test Engineers working from 1MHz to 1GHz! We have hundreds of top positions throughout the UK, working on RF mobile comms (GSM, PCN, CT2), opto, satellite, mm-wave & microwave projects. Please contact our consultant Simon Luttrell MSc on 0494 773 918
160 Bellingdon Road, Chesham, Bucks. HP5 2HF.
Richardson Electronics and SGS-Thomson team up to manufacture and distribute RF and Microwave Bipolar and FET Power Transistors.

Markets We Serve
Avionics
Broadcast
Cellular Communications
Instrumentation
Land Mobile Communications
Marine Communications
Military Communications
Radar
Satellite Communications
Telecommunications
Television
Tracking Systems

For service in the U.K., Eastern Block, Scandinavia, Benelux, Greece, Turkey, and Iceland contact:
Richardson Electronics (Europe) Ltd.
Inspiring House
Searby Road
Lincoln LN2 4DT
UK
Phone: (522) 542631
FAX: (522) 545453

For service in Italy contact:
G.E.B.-Richardson Electronics Italy-S.r.l.
Viale Europa, 40/46
50126 Firenze
Italy
Phone: (55) 68.52.92
FAX: (55) 68.53.33

For service in East/West Germany, Austria and Switzerland contact:
Richardson Electronics GmbH
Benstrasse 28, Bau B
D-8039 Puchheim
West Germany
Phone: (89) 80 02 13-1
FAX: (89) 80 02 13-8

For service in France contact:
Richardson Electronics France S.A.R.L.
Bat. Evolic B1
165/167 Bd. de Valmy
92706 Colombes
France
Phone: (1) 47.60.05.15
FAX: (1) 47.60.98.04

For service in Spain and Portugal contact:
Richardson Electronics Iberica S.A.
Calle Hierro, 9
1º Planta Nave 10 Edificio Legazpi
28045 Madrid
Spain
Phone: (1) 228 37 00
FAX: (1) 467 54 68

All other International inquiries please contact the European Corporate Headquarters:
European Corporate Headquarters
Richardson Electronique Brive S.A.
Avenue Roger-Roncier
19100 Brive-la-Gaillarde
France
Phone: 55.86.95.15
FAX: 55.86.07.45
For the IBM PC, install the interface card and programming socket, load the menu driven software and you have a complete design system at your fingertips.

EASY TO INSTALL

The programmer comes with an interface card that plugs into any free slot of your PC. There is no DMA channel to worry about and it occupies limited I/O space. The programmer socket box is connected via a ribbon cable to the back of the interface card so that the socket box is external. After the interface card is installed the PC never need be opened again.

SOFTWARE DRIVEN

All software for the programmer is supplied on 5 1/4" low density disk. The software can be copied onto hard disk using the DOS copy command. Programs are supplied for the various features and are menu driven. All programming is done from the menu, no hardware switches are needed. Just select the type and manufacturer and the programming is done automatically.

SUITs ALL PCs

The programmers will run on any compatible IBM machines such as XT's, AT's, '386 and '486. Whether it be AMSTRAD or COMPaq the programmers will work. The software is text only monographic so is compatible with any machine.

FEATUREs

The menu driven software is a full editing, filing and compiling package as well as a programming package. Save to disk and load from disk allows full filing of patterns on disk, to be saved and recalled instantaneously. Device blank check, checksum, program, verify, read and modify are all standard features. Hex to bin file conversions included for popular file formats including Intel, Motorola etc.

MODELS

PC84-1, -4, -8

EPROM programmers only. The variant is only gang size. The -4 and -8 gang will program multiple EPROMs simultaneously. Device sizes are from 2716 to 271000 both C and NMOS. ZIF (zero insertion force) sockets are used, as with all models.

PC83

PAL programmer only. Will program most 20 and 24 pin types including the 16 L, R, X and 20 L, R, X 4, 6, 8 and 16.

PC82

Universal programmer. The complete designers kit. This will program EEROMS, BPROMS, PALS, GALS, EPLD's and 87XX microprocessors.

A unique feature is the testing of logic parts such as 74LS393 etc. The PC82 can check and identify parts. Already programmed is the TTL test vectors and software is supplied to write vectors for any unique chip.

TTL, CMOS, DRAM & SRAM TESTING

PC82 can test and verify any TTL/CMOS logic chip, DRAM & SRAM. The software will also identify a TTL chip. Do you have a few TTL chips aside not knowing whether they are working?

DEVICE GUIDE

<table>
<thead>
<tr>
<th>PC82</th>
<th>PC83</th>
<th>PC84</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPROM 2716, 32, 64, 128, 256, 512, 1024 Vpp12.5, 21, 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPROM27C16, 32, 64, 128, 256, 512, 1024 Vpp 12.5,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEPROM 2816, 16A, 17, 17A, 64A, 256A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection of speed algorithm fast, intelligent etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte splitting for 16 and 32 bit files.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDROM 32x8 TO 406x6 63S080, 7C28X, 7C29X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPU 8748/9/51/52 C51/52 C252 inc. Encrypt, lock bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAL 10, 12, 14, 16, 18, 20 L, R, X, P 1, 2, 4, 8, 10 (20&24pin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS EPAL 16A, R6, R4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPROM 27C16, 32, 64, 128, 256, 512, 1024 Vpp 12.5,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device testing TTL, CMOS, & SRAM.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware config. available for software design.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDER INFORMATION

Please include £5 carriage plus V.A.T. on all orders. ACCESS, VISA or CWO. Official orders welcome from Gov. bodys & Public Limited Companies. All products carry a one year guarantee.

CITADEL PRODUCTS LTD. Dept. WW. 50 High Street Edgware, Middx. HA8 7EP. Tel: 081-951 1848

PRICE LIST

| PC84-1 1 Gang Eeprom |
| PC84-4 4 Gang Eeprom |
| PC84-8 8 Gang Eeprom |
| PC83 Pal Programmer |
| PC82 Universal Programmer |

All pricing includes software, interface card, socket box and full instructions.

(Prices do not include VAT or carriage)

Also available.

A wide range of PC expansion cards, Industrial control cards (A/D, D/A, and Digital I/O) and PC peripherals.