PROFESSIONAL LOGIC ANALYSIS FOR UNDER £400

In recent years, the personal computer has become an integral part of the modern electronics laboratory. The Logic Analyser is now as necessary to design, development, test and maintenance departments as a multimeter or an oscilloscope.

Flight Electronics' range of PC based Logic Analyser offers the advantages of low cost and high specification while saving the bench space normally occupied by stand alone alternatives.

Being PC based allows great flexibility in permanent storage of data and set ups, either to disk for recall at a later date, or for hard copy.

The Flight Electronics range of Logic Analyser cards has internal clock speeds of up to 200MHz and are suitable for use with XT, AT, monochrome and colour PCs.

Data acquisition can be displayed in both timing and state formats. Presentation of information is clear and uncluttered. The soft key controls mean simplicity of operation, making the products particularly suitable for both industrial and educational use.

Flight Electronics offers a choice of five models, ranging from a unit suitable for the first time student user to the complex requirements of the design and development laboratory.

We also supply a range of PAL/EPROM programmers for your PC. Call our sales office for a free copy of the Flight Electronics catalogue.

FEATURES

- Wide choice of specifications
- High specification at low cost
- Up to 200MHz internal clock
- Up to 3 independent clocks with 12 qualifiers
- 24 signal input channels
- Up to 16K memory depth
- 16 level sequential triggering (models 27200 & 27100)
- Pre and post triggering
- State listing in Binary, Hex and ASCII
- Timing display of all channels simultaneously
- User specified channel labelling
- Auto and conditional repeat
- Data save to and load from disc

We can even supply suitable PCs. Call our sales office for a quote.

FEATURES

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No</th>
<th>Price £</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK-2450 PC Logic Analyser</td>
<td>655-001</td>
<td>399.00</td>
</tr>
<tr>
<td>CLK-12100 PC Logic Analyser</td>
<td>655-002</td>
<td>499.00</td>
</tr>
<tr>
<td>CLK-2400 PC Logic Analyser</td>
<td>655-003</td>
<td>799.00</td>
</tr>
<tr>
<td>CLK-27100 PC Logic Analyser</td>
<td>655-004</td>
<td>999.00</td>
</tr>
<tr>
<td>CLK-27200 PC Logic Analyser</td>
<td>655-005</td>
<td>1599.00</td>
</tr>
</tbody>
</table>

CALL US NOW ON 0703-227721
CONTENTS

FEATURES

NEURAL NETWORKS
Conventional computers require description of a problem before they can begin to work on the solution. Neural based machines are able to define the problem for themselves. They achieve this by exploring connections within a problem and reinforce those which tend towards a useful result.

LIVING COMPUTERS 186
Neural networks operate in a manner not clearly understood yet, in spite of this limitation, can solve real problems.

ARTIFICIAL NEURAL NETWORKS 191
Tom Ivall reports on a recent IEEE conference which reflected the learning and training aspect of artificial intelligence.

DUMB INTELLIGENCE 194
Wilfred James argues the case that intelligence is nothing more than pattern recognition. He proposes a new generation of highly parallel machines based on memory rather than distributed processing.

KILLING FIELDS – THE MICROWAVE HEALTH HAZARD 208
The UK microwave exposure limits were originally determined by irradiating a body to the point where thermal tissue damage occurred, then backing off the power by a factor of ten. Our standards for safe exposure are still determined by this crude test. Meanwhile, a number of associative studies have linked cancer and blindness to microwaves exposure at power levels orders of magnitude lower. By Simon Best.

RIDING THE SOLAR STORM 220
There are still plenty of gaps in our knowledge about the causes and effects of solar magnetic storms. Anthony Hopwood discusses simple equipment which will measure the relative intensity of magnetic storms precisely.

REVIEW – PC VOLTMETER BOARD 224
An add-in voltmeter can turn a standard PC into a four channel, 6½ digit voltmeter.

DISPLACED RADAR 226
Separating the transmitter and receiver may offer advantages in separating ground clutter, while providing a greater degree of integrity. By Henry Hislop.

SHORT RANGE RADAR 231
The development of short range radar demo equipment turns up unusual design problems. Resolving centi-metre sized objects over just a few tens of metres calls for transmission pulse widths down to 1ns.

MINIATURE HF ANTENNA 253
Bryan Wells reports on further development and experiments with the barrel shaped crossed-field antenna first discussed in the March 1989 issue.

REVIEW – PC OSCILLOSCOPE BOARD 257
Amplicon’s PC99 oscilloscope board plugs into the back of a standard PC AT-atake converting the computer to a digital storage scope and function generator. How good, how efficiently?

REGULARS

COMMENT 179
Shock to the system. Is the Energy Secretary putting political expediency before public health?

RESEARCH NOTES 181
Superconducting wire, radio earthquakes, watched pots, stormy propagation and all optical repeaters.

UPDATE 202
Telepoint isn’t going to be the unmitigated marketing disaster which most people are expecting...says a Telepoint consortium. Plus a round-up of news from around the industry.

CIRCUIT IDEAS 213
An electronic compass, DC to DC step-up converter, optical fibre data link, programmable timer, etc.

LETTERS 234
The trouble with relative FSK, clash of symbols, mass confusion, tuned Vauxhalls, audio power and total disgust are just a few of the criticisms levelled at us.

PIONEERS 239
Alessandro Volta invented both a primary battery and a unit of electricity: One Volta = 13.350V

NEW PRODUCT CLASSIFIED 242
Round-up of new products at-a-glance.

APPLICATIONS 246
Audio current conveyor allows op-amp type circuit configurations without the global negative feedback associated with transient intermodulation distortion. Plus a low noise audio pre-amp chip.

In next month’s issue. Everything you need to know about silicon speech: how it is programmed, synthesized and recognized. Also the chance to win a Texas Instruments speech development board. We are offering 10 boards as prizes in a competition, based on applications ingenuity. Computers and signal processing do mix. We begin a major new series entitled ‘Signal processing with C’.

March 1990 ELECTRONICS WORLD + WIRELESS WORLD

177
UNBEATABLE PRICES

GREAT OFFERS ON TRIED AND TESTED USED EQUIPMENT

<table>
<thead>
<tr>
<th>TELECOMMUNICATIONS TEST</th>
<th>SIGNAL GENERATORS (Cont)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anritsu ME520A Digital Transmission Analyser</td>
<td>HP 3325A 21MHz Synthesiser/Function</td>
</tr>
<tr>
<td>HP 8903A Audio Analyser</td>
<td>Generator, with options 001 and 002</td>
</tr>
<tr>
<td>Marconi 2380/82 400MHz Spectrum Analyser & Display</td>
<td>HP 8161A Pulse Generator</td>
</tr>
<tr>
<td>Marconi 2955 Radio Communication Test Set</td>
<td>£ 5,000</td>
</tr>
<tr>
<td>W & G PF-1 Bit Error Measuring Set</td>
<td>£ 2,250</td>
</tr>
<tr>
<td>W & G PS-30 Level Generator</td>
<td>£ 1,750</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TELECOMMUNICATIONS TEST (Cont)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marconi 2981 Datacommunications Analyser</td>
</tr>
<tr>
<td>ARC 4600 Protocol Analyser</td>
</tr>
<tr>
<td>HP 4953A Protocol Analyser</td>
</tr>
<tr>
<td>Tektronix 1503 TDR Cable Tester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATACOMMUNICATIONS TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 64100-Opt64 Development Station, all pods available</td>
</tr>
<tr>
<td>Microtek 2S-80286 In-circuit Emulator</td>
</tr>
<tr>
<td>Stag PPZ Universal Programming Station with 2m2000 module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOGIC ANALYSERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 16300 43 channels, 100MHz, with disc drive</td>
</tr>
<tr>
<td>HP 1630G 65 channels, 100MHz</td>
</tr>
<tr>
<td>Tektronix 1240 72 channels, 100MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICROPROCESSOR DEVELOPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 64100-Opt64 Development Station, all pods available</td>
</tr>
<tr>
<td>Microtek 2S-80286 In-circuit Emulator</td>
</tr>
<tr>
<td>Stag PPZ Universal Programming Station with 2m2000 module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OSCILLOSCOPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi VC6050 60MHz Storage Scope, 40MS/s, "MINT"</td>
</tr>
<tr>
<td>Philips PM3055 50MHz Dual Timebase</td>
</tr>
<tr>
<td>Philips PM3219 50MHz Analogue Storage Scope</td>
</tr>
<tr>
<td>Philips PM3256 75MHz Ruggedised Oscilloscope</td>
</tr>
<tr>
<td>Philips PM3295 350MHz Oscilloscope</td>
</tr>
<tr>
<td>Philips PM3320 200MHz Digital Storage Scope, 250MS/s</td>
</tr>
<tr>
<td>Tektronix 2235 100MHz Dual Trace Oscilloscope</td>
</tr>
<tr>
<td>Tektronix 2440 300MHz Digital Storage Scope, 50MS/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGNAL GENERATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 2140-001 Pulse Generator</td>
</tr>
<tr>
<td>HP 3325A 21MHz Synthesiser/Function Generator, with options 001 and 002</td>
</tr>
<tr>
<td>HP 8161A Pulse Generator</td>
</tr>
<tr>
<td>HP 8340A Synthesised Sweep Generator, 26.5GHz</td>
</tr>
<tr>
<td>Marconi 2017 AM/FM Signal Generator, 1024MHz</td>
</tr>
<tr>
<td>Marconi 2022 RF Signal Generator, 1GHz</td>
</tr>
<tr>
<td>Marconi 2981 Datacommunications Analyser</td>
</tr>
<tr>
<td>ARC 4600 Protocol Analyser</td>
</tr>
<tr>
<td>HP 4953A Protocol Analyser</td>
</tr>
<tr>
<td>Tektronix 1503 TDR Cable Tester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COUNTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 5328A Universal Counter</td>
</tr>
<tr>
<td>Marconi 2432 Frequency Meter, 580MHz</td>
</tr>
<tr>
<td>Marconi 2435 Timer Counter</td>
</tr>
<tr>
<td>Phillips PM6654 Programmable Timer Counter, 120MHz</td>
</tr>
<tr>
<td>Marconi 8938 AF Power Meter, 35kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 436A Digital Power Meter, 18GHz</td>
</tr>
<tr>
<td>Marconi 6960 Digital Power Meter, 26.5GHz</td>
</tr>
<tr>
<td>Marconi 8938 AF Power Meter, 35kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER METER (Cont)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philips PM6659 Counter, 1.1GHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER SUPPLIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerson 1500W Voltage Conditioner</td>
</tr>
<tr>
<td>Franklin AP60-50 1kW Power Supply, 60V/30A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER LINE RECORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI 4800 Power Line Disturbance Analyser</td>
</tr>
<tr>
<td>Franklin 3600 Single & 3-Phase Power</td>
</tr>
<tr>
<td>Line Disturbance Monitor</td>
</tr>
<tr>
<td>Sension DPR-2 Demand Profile Recorder</td>
</tr>
<tr>
<td>Sension Hawk Energy Audit System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips PM8154 4800 Power Line Disturbance Analyser</td>
</tr>
<tr>
<td>Franklin 3600 Single & 3-Phase Power</td>
</tr>
<tr>
<td>Line Disturbance Monitor</td>
</tr>
<tr>
<td>Sension DPR-2 Demand Profile Recorder</td>
</tr>
<tr>
<td>Sension Hawk Energy Audit System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTERS & PERIPHERALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson FX1000 Centronics Printer</td>
</tr>
<tr>
<td>HP 2225A ThinkJet Printer, HP11 Interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCR MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 4192A LF Impedance Analyser</td>
</tr>
<tr>
<td>HP 4214A LCR Meter</td>
</tr>
</tbody>
</table>

All prices advertised are exclusive of carriage and VAT.
All equipment sold subject to availability.
Warranty period 12 months on all equipment (except computers MOS - 3 months).

WE BUY TOP QUALITY TEST EQUIPMENT

For further information telephone
LONDON 0753 580000

CIRCLE NO. 146 ON REPLY CARD
Secretary of State for Energy, John Wakeham, has some explaining to do. If he declines, then resignation seems the appropriate action for a Minister who allows his department, or the agents of his department, to put political expediency before public health.

In March 1988, the CEBG began a research programme investigating the possible health effects associated with power frequency electric and magnetic fields. Part of the research involved a commissioned 6000 person study into adult leukaemia following on from an earlier, smaller one looking at the childhood disease.

In September 1989, the CEBG issued an interim statement which concluded that the results of the adult health inquiry would be published at "the end of 1989". The conclusions of this study, which sets out to examine the public health implications of power line fields, have yet to be published even though Chief Medical Officer at the CEBG, Dr Robin Cox, admits possessing the preliminary findings. Furthermore, Dr Cox is not prepared to give any further commitment on the publication date in marked contrast to the earlier CEBG written statement.

It seems logical to look for a reason. Dr Cox says that the results "must await initial publication in a learned journal". This argument doesn't hold much water. The CEBG was certain enough of the publication timetable just a few months ago. It seems logical to look for other motives.

Given the weight of evidence connecting power line fields and disease derived from similar studies in the US, one might surmise that the CEBG study also casts suspicion on power line fields. Publication would most certainly interfere with the forthcoming privatisation scheduled for the end of this year. After all, the public outcry following a proven link between electricity and cancer would demand compensation and building control at the very least.

Supression of such a report, purely on political grounds, if proven, must result in the Minister's resignation.

One can't help but make comparison with the Government's attitude to the salmonella-in-eggs affair. In that instance it acted swiftly against the egg producers and terminally against hundreds of thousands of hens. It dispossessed nuns and inspired a flock of EEC directives. All this happened in defending us from a few giddy tummies just the merest shred of evidence.

Power line fields are implicated with a number of very serious diseases and the associated evidence, already to hand even without the current CEBG study, is far more damning than ever was the case with infected eggs.

The weight of evidence about the effects of power line fields was presented in last month's issue. It is sufficient to note that the US Congress Office of Technology Assessment concluded that "electric and magnetic fields produced by electric power systems may pose public health hazards." The report accepts that "even weak electric and magnetic fields can effect living cells." As a result, eight US states have implemented rights of way along major power lines excluding human habitation. People affected by the building of power lines in these states are entitled to compensation. Compare this with the apparent obfuscation in the UK.

We would be the first to say that more research is needed and that the links between power lines and disease have yet to be established definitively. However, there is enough evidence to state that the public interest is best served by a moratorium on house building under power lines, and that public warnings should be issued to users of certain electrical products. Any other course should be unacceptable.

There is no room for politics in public health.

Frank Ogden
THE COMPLETE 68000 TRAINING SYSTEM

- 68000 — LATEST 16-BIT TECHNOLOGY
- SUPERB DOCUMENTATION — COMPLETE WITH USERS MANUAL
- SOURCE LISTING AND 3 TECHNICAL MANUALS
- COMPLETE PACKAGE — START LEARNING IMMEDIATELY
- BUILT-IN ASSEMBLER
- POWERFUL DEBUGGING FACILITIES
- POWERFUL INPUT/OUTPUT
- 2 x RS 232 or 24 I/O LINES
- G64 EXPANSION BUS or 24 BIT COUNTER/TIMER
- EXPANSION MEMORY SOCKETS
- EXPANSION MEMORY

Flight Electronics Limited lead the field in microprocessor training systems. The NEW FLIGHT-68K designed and built in the U.K., has been designed specifically for education. The hardware is designed to be easily understood, yet is comprehensive enough for many advanced control applications. The board features a full specification 68000, versatile memory system, 68681 dual UART linked to two full specification RS232 ports, 68230 Parallel Interface/Timer plus a G64 bus connector which enables a wide range of low cost interface boards to be utilised.

The firmware is simplicity itself to use. All commands are self explanatory and will prompt the user for information where required, which means that users will be able to start learning about the 68000 in a matter of minutes!

A set of 53 monitor commands offer full program generation, debugging and system control facilities enabling the FLIGHT-68K to be used in a 'stand-alone' configuration using a terminal as the system console. For more advanced applications, the FLIGHT-68K may be used as a target for 68000 object code files.

Also available from Flight Electronics is a powerful macro cross-assembler for use with the BBC computer, enabling a full 68000 development system to be realised at very little extra cost!

The documentation provided with the system is a model of clarity and comprehensiveness, providing concise, easily accessible information on all aspects of the 68000 and the FLIGHT-68K. Much of the manual is written in a tutorial format, with a wealth of practical example programs.

Each system is supplied complete with protective case, power supply, User Manual, Monitor Source Listing and the original technical manuals for the 68000 and peripheral I.C.s.

Flight Electronics Ltd, Flight House, Ascupart St., Southampton SO1 1LU. Telephone: 477389 FLIGHT G (0703) 227721. LINES

TELEPHONE NOW FOR FULL DETAILS!

CIRCLE NO. 119 ON REPLY CARD
Superconducting wire by CVD

Using a new chemical vapour deposition (CVD) process to coat flexible fibres within a thin film of high-temperature superconducting material, researchers at the Georgia Institute of Technology have increased deposition rates considerably while achieving promising critical temperatures and maximum current capacity. Existing CVD technology for thin-film superconductors yields a coating just one or two microns thick during a one-hour deposition run. The new process yields 50 to 200 microns per hour, depending on production conditions.

In the past, carrier gas has been used to transport metal sources into a CVD reactor. Since the flow rate, temperature and pressure must be controlled for each vaporizer the process has often been delicate and time-consuming. To make matters even more difficult, reagent sources for the commonly-used 1-2-3 superconductor (yttrium, barium and copper) provide low vapour pressure. If heat levels are increased to speed vaporization, these metal sources undergo chemical reactions and form unwanted compounds.

To improve this situation, Principal Research scientist Jack Lackey replaced the vaporizers with a powder feeder. A combination of finely-ground yttrium, barium and copper metal-organic powders are mixed with argon gas before flowing into the horizontal reactor, thus eliminating the need for complex controls. During a 5-30 minute period, the team fed between 2 and 10 grams of powder into the reactor.

Thus far, the technique has mostly been demonstrated using rectangular, single-crystal magnesium-oxide substrates, but several types of flexible, thin fibres also have been coated. Ultimately, the team plans to coat inexpensive, commercially-available ceramic or metal fibres, possibly made of aluminium oxide and/or silicon dioxide. Other possible substrate materials include silicon carbide and carbon coated with a layer of an oxidation-resistant protective material. A coating barrier between the fibre and the superconductor should eliminate any undesirable chemical reactions.

Meanwhile, Lackey has designed a continuous fibre coater and hopes to commercialize the product.

Tune in for the big one

Earthquake prediction has always been something of an inexact science, rarely offering better than a 50% probability of a big 'quake in any one decade. And, while any warning is arguably better than no warning, there's little prospect of people being able to take any useful preventive action unless prediction improves greatly in accuracy. It's intriguing therefore to speculate on a finding presented by Stanford University electrical engineers at a recent meeting of the American Geophysical Union.

Antony Fraser-Smith and his colleagues were using very low frequency radio receivers set up under a US Navy contract to explore new ways of detecting submarines. Recordings, when subsequently analysed, showed that in the first few days of October – just prior to the big earth quake on October 17th – there was a sudden increase in the level of otherwise steady background noise.

Three hours before the actual disaster there was an even greater peak of VLF radio noise, quite unlike anything previously observed.

Coincidence perhaps? While many US seismologists are impressed by the remarkable fit between the radio emissions and the subsequent ground movement, Fraser-Smith himself cautions that there's no proof of a causal link. On the other hand, nothing similar was previously observed during the two years the experiment had been running; nor has any alternative natural or artificial explanation been offered.

Now the US Geological Survey is to consider setting up similar VLF monitoring systems in other parts of California. And if the same VLF emission is observed prior to the next big earthquake, the coincidence would be too much to explain away. Why ground movement might generate VLF radio waves remains a mystery.

Watched pot never boils – official!

A recent experiment by Wayne Itano et al at the National Institute of Standards and Technology in Boulder, Colorado provides the first clear evidence of one of the strangest predictions of quantum theory – that you can influence the behaviour of a system merely by observing it.

A recent report (Science, Vol. 246, 888) describes how the NIST scientists took a special magnetic ‘pot’, in which they trapped several thousand ions of beryllium-9, all initially in the ground state, level 1. By switching on an RF heater for just 256ms, the experimenters raised all the ions to a higher energy state, level 2.

That, at least, is what happened if no observations were made during the heating period. On the other hand, if the scientists took a peek at the beryllium while it was on the boil, a significant proportion of the ions failed to make it to level 2. If the experimenters looked 64 times, almost no beryllium ions changed state.

According to quantum theory, the very act of looking at the ions – done, incidentally, using ultra-short pulses of laser light – causes energy to be lost, thus returning them to a lower energy state. This, to be precise, only happens if the ions are in a transition state between levels 1 and 2. After 256ms they are safely in level 2 and hence remain unaffected. On the other hand, if the ions are watched every 4ms, then fewer than 1% of them will ever migrate to the upper level.

This finding that a watched (quatum) pot never boils is the first unambiguous confirmation of an effect noted in the late 1970s by experimenters at the University of Texas. The recent success, however, is the result of choosing an atomic process that proceeds slowly enough for the experimenters to observe it often enough to reduce significantly the probability of it taking place.

A logical question arising from this experiment is whether or not regular observation could arrest other quantum processes such as radioactive decay. In theory the answer is yes but, in practice, radioactive decay happens far too quickly for repeated observation. As Itano notes, any observation takes a finite time and there will always be gaps between observations when an atom can secretly decay without being noticed. Pity!
PROTEL PCB CAD SYSTEMS

Professional high quality PCB CAD SYSTEMS at a Price you can afford.

Conventional and SMD on both sides of the board.

<table>
<thead>
<tr>
<th>PROTEL AUTOTRAX at £999.00 is an affordable, precision design tool that improves productivity for occasional and expert users alike. It streamlines the PCB layout processes while providing powerful interactive design automation, and generates professionally accurate PCB artwork.</th>
<th>All Protel Users Contact J.A.V. for Technical Support & Upgrades. Version 3 Schematic users contact us now for free upgrade to Version 3.30.</th>
<th>PROTEL SCHEMATIC at £498.75 streamlines drafting operations, improving productivity, design practice and documentation. Used on its own or with Autotrax to form a powerful PCB CAD system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEL TRAXSTAR at £807.50* is a grid based, costed maze autorouter with full rip-up and re-route capability. The router incorporates a user-definable cost structure and allows separate cost structures for the route, rip-up and smoothing passes. Works with Protel Autotrax files.</td>
<td>FREE ONE YEAR HOTLINE SUPPORT</td>
<td>PROTEL EASYTRAX at £299.00 is a low cost entry level easy to use precision tool that generates professionally accurate PCB artwork, with support for a wide range of displays, photoplotters, pen plotters, laser and dot matrix printers all as standard. (NOW UNPROTECTED)</td>
</tr>
<tr>
<td>PROTEL TRAXVIEW at £430.00 is a new utility program for viewing and editing Gerber files. Includes Panelization.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.A.V. Electronics Limited, Unit 12a Heaton Street, Denton, Manchester, M34 3RG
Tel: 061 320 7210 Fax: 061 335 0119
The UK Distributor for the PROTEL CAD Software. Main Dealers for ROLAND Plotters. Dealers for Sage, Brother, OKI, Amstrad & Epson.
Evaluation Packs Available on Request. All Prices Exclude VAT. *Price Includes 5% Discount if Bought With Autotrax.

CIRCLE NO. 108 ON REPLY CARD

TELEVISION

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

FREE CLEANING CLOTH

Washable, re-usable & antistatic

Servicing the Mitsubishi HS 304 • We test the Maspro LCZE satellite signal level checker • Brown goods servicing—how to make it pay • Servicing a CD player—track search and skip techniques • CD player casebook

CIRCLE NO. 131 ON REPLY CARD

Entran

miniature transducers

- Stainless Steel Construction
- Static and Dynamic Use
- Ranges 0-150psi up to 0-7500psi
- Choice of Threads
- Internal Amplifier Option
- High Stability

Entran's products have taken an integral part in many high technology programmes in weaponry, aircraft, space, automotive, biomedical, nuclear where high integrity sensors are of the utmost importance.

FAST delivery now available!

Entran Ltd.

5 Albert Road, Crowthorne, Berks RG11 7LT. Tel: (0344) 778848

CIRCLE NO. 147 ON REPLY CARD

182 ELECTRONICS WORLD + WIRELESS WORLD March 1990
Ballistic electrons for high-speed switching

IBM researchers have demonstrated for the first time that fast-moving ballistic electrons can be focussed and steered as they travel at very low temperatures through gallium arsenide. The finding is the latest from a team led by Dr Mordehai Heiblum at the Thomas J. Watson Research Center in Yorktown Heights, N.Y. This group previously showed that ballistic electrons can travel through ultra-thin layers of gallium arsenide at speeds considerably greater than 10^7 kilometres per hour.

Under normal conditions, electrons moving through a semiconductor travel only a short distance (the mean free path) before colliding with atoms, other electrons, or impurities in the semiconductor and scattering. In the process they lose energy and change direction.

In these experiments, however, the mean free path is lengthened, so the electrons can travel across the semiconductor ballistically, that is, without scattering. At around 5K, the normal motion of atoms inside the semiconductor material is greatly reduced, lessening the chance of collision with the electrons as they speed past. As a result, at that low temperature, the mean free path can exceed 1 micron, providing room for the insertion of a tiny focusing device.

In their experiments, Heiblum and his team injected high-energy electrons on one side of a region of semiconductor material 2 microns across and collected them at the other. The electrons travelled ballistically though a region free of the impurities that might cause energy-wasting collisions. That region, known as a two dimensional electron gas, can be created at the interface between a single-crystal layer of gallium arsenide and another of aluminium gallium arsenide.

To demonstrate that the path of travel of the ballistic electrons could be controlled, the team applied a differential voltage across tiny metal gates as they injected the electrons into the semiconductor. They found they could steer the electrons about 60 degrees off the original path over a distance as great as two microns. This will, it's hoped, allow new types of extremely fast electronic switching devices and circuits to be made that use directed electron beams.

Stormy future for EHF satellite channels?

As the currently exploited microwave frequencies are beginning to fill up with an ever-growing volume of traffic, experimenters are paying increasing attention to parts of the spectrum beyond 20 GHz. Until recently these wide-open spaces have remained the province of specialist users, mainly because of the high cost of low-noise receiving equipment and efficient high-power satellite-borne transmitters. There are, however, other constraints, not least the problems of absorption by the atmosphere. At frequencies where the wavelength is of the order of 1 cm, raindrops behave like dielectric spheres that either absorb or scatter the signal in a random and unpredictable manner.

Above: installing the 12.5 GHz dish at the Rutherford Appleton Laboratory.
First major recorded rain event on Olympus 30 GHz beacon on August 10, 1989 at RAL.

One of the functions of ESA's advanced technology communications satellite Olympus, launched in July last year, is to send out test signals on 12.5, 20 and 30 GHz to enable researchers to monitor the effects of the weather on propagation.

Here in Britain a group at the Rutherford Appleton Laboratory - who incidentally were closely involved in designing the satellite itself - are in the process of commissioning three experimental propagation receivers, one for each of the Olympus beacons. The 30 GHz receiver, already working, demonstrated within a few days of switch-on just how severe can be the attenuation due to rainfall.

Dr John Norbury, who is responsible for the project, says that attenuation of 30 dB or more is relatively infrequent, but must be allowed for in any future commercial systems. Experiments on counter-measures are part of a parallel programme at RAL.

As these words appear in print, the 30 GHz receiver and its 12.5 GHz counterpart will be fully operational, to be followed by the 20 GHz system sometime in the middle of the year.

The 12.5 GHz system, as well as studying propagation, will be used to receive information for a satellite data transfer experiment to be undertaken by Dr John Burrell and his colleagues at RAL's Advanced Communications Research Unit, together with collaborators at the University of Buckingham and at Graz in Austria and Pisa, Italy. Results will be awaited with interest.
Record magnetic storage density

A team at the IBM Almaden Research Centre in San Jose claims to have set a world record in magnetic data storage density by successfully storing a gigabit of information on a single square inch of disk surface. This is 15 to 30 times greater than that of current hard disks.

To achieve gigabit storage density, the IBM researchers combined a number of advanced components, including experimental thin-film recording heads and disks with advanced electronics. The demonstration was performed on a precision test apparatus, though all of the critical hardware components were made by conventional manufacturing processes. Nevertheless, say the group, several more years of development will be required before gigabit technology could be incorporated into everyday commercial products.

The experimental dual-element, thin-film recording head used in the demonstration features an inductive "write" element and a magnetoresistive (MR) "read" element. Both elements operate while the head flies over the disk at a height of less than 0.05 microns — so narrow a gap that even light can't pass through.

The electrical resistance of materials that exhibit the MR effect changes according to the strength of any magnetic field present. By monitoring the rapid resistance changes that occur as an MR head passes over recorded magnetic bits, it's possible to detect bits too small for a conventional all-inductive head to recognise. In addition, since the strength of the signal produced by an MR head does not reduce with reducing disk velocity, an MR head has the advantage of providing an identical performance regardless of disk size and speed.

The aluminium disk used in the tests is coated with a thin film of magnetic cobalt alloy designed for very high bit density and very low magnetic noise—a critical advantage in reading the recorded bits. A thin coating of a hard material protects the alloy film from contact with the recording head.

In the gigabit demonstration, bits were stored at a linear density of 62,000 bit/cm along concentric tracks spaced at 2500 radial centimetre. Each data bit measures only 0.16 microns long by 4 microns wide — comparable in area to current optical-storage bit cells.

Quantum varactors for millimetre waves

Swedish researchers at the Chalmers University of Technology at Göteborg have proposed the use of a new device, the quantum barrier varactor diode (QBV), as an efficient source of millimetre waves. They say (Electronics Letters Vol. 25 No 25) that, because the QBV diode is a symmetrical device, it could replace conventional Schottky varactor multiplier diodes with higher efficiency and much simplified circuitry.

Conventional varactor diodes are reasonably efficient at generating over 100GHz by multiplication from lower frequencies. Thus a conventional varactor could multiply an input frequency of 35GHz by three with an efficiency of around 30%. The only problem is that, because a Schottky varactor is symmetrical, it yields even harmonics which need to be terminated reactively to avoid loss. A tripler therefore requires an "idler" circuit resonant at the second harmonic. A quintupler would require three such idlers—mechanically impossible and probably very lossy even if they could be implemented.

Enter the QBV diode with its natural property of generating only odd harmonics. A tripler based on this device would require no idler at all (there being no second harmonic) and a practical quintupler could be made with only a single idler (for the third harmonic).

The Swedish team have calculated the optimum device parameters for most efficient conversion, which could exceed 60% at an output level of around 40mW at 105GHz. Output power is limited mainly by avalanche breakdown (in either direction) due to the RF voltage swing across the diode. The main diode characteristics are shown below.

Authors E. Kollberg and A. Rydberg conclude that, because of the considerable simplification in circuitry, the QBV should prove a potentially very competitive device for millimetre wave generation.

Towards practical all-optical repeaters

Erbium (Er3+) doped fibre amplifiers are an extremely attractive prospect for optical repeaters because they operate at a wavelength of 1.5µm. This is a wavelength most commonly used for long-haul optical communications. If an erbium-fibre amplifier were practical enough to put down manholes or to sink to the seabed, it would neatly avoid the present need to convert optical signals to electrical signals and then convert them back again. The problem is that, to work efficiently, erbium-doped fibre amplifiers need to be pumped at a wavelength of around 0.98µm, for which no practical semiconductor lasers are available.

The development of such a laser by a team at the NTT Optoelectronics Laboratory in Japan is therefore a significant step towards all-optical repeaters. The team, led by M. Okayasu, report (Electronics Letters Vol. 25 No 23) laboratory experiments in which they created a strained-layer gallium-indium-arsenide quantum well structure using MOCVD epitaxy.

Output wavelength is 0.97µm and a peak power of 85mW is obtainable at a current of 150mA. The researchers say that at a reduced power of 30mW their laser diode shows good long-term stability with no marked deterioration of output. Further study, they say, is now under way to improve stability and cure the drop in efficiency at full power.

Even before this further development began the NTT team were already testing their lasers in conjunction with an erbium fibre amplifier. Two lasers with their outputs optically combined were used to pump such an amplifier at a wavelength of 1.536µm.

Maximum gain was reported to be 37.8dB, which represents 1.9dB for every milliwatt of pumping power — an excellent figure. On this basis a practical all-optical semiconductor laser-pumped erbium-doped fibre amplifier can't be very far away. That is in turn should greatly increase the reliability and the bandwidth of long-haul fibres that employ such devices.

Research Notes are by John Wilson of the BBC World Service science unit.

184

ELECTRONICS WORLD + WIRELESS WORLD March 1990
COLOURCEL

262, 143 MORE COLOURS THAN THE MODEL 'T'

Addressable to 262, 144 colours: per pixel, 160 pixels per inch, both axes. 1280 pixels per line. A4 width internal paper roll and cutter. Compatible with Integrex Fast Frame Grabber. Centronics Interface.

£2995 exc. VAT

PUBLIC SECTOR CUSTOMERS: FOR SPECIAL PRICING CALL 0603 695051

INTEGREX LTD., CHURCH GRESLEY, BURTON-ON-TRENT, STAFFS. DE11 9PT, ENGLAND
TEL: (0283) 215432 TELEX: 341727 FAX: (0283) 550325

CIRCLE NO. 140 ON REPLY CARD

* Near Photographic Quality

IMAGES BY MIKE KING
CITY POLY
Attempts to imitate natural neural network systems bring into focus the essentially different approaches of serial digital computing and the operation of the brain, in which each element is connected to many others. But these are early days in the process; the development of the relevant computing techniques is a bare 50 years old, while natural networks have been around slightly longer.

The first man-made computers were essentially fast adding machines. While there have been vast improvements in processing speeds, memory capacity and programming methods, the pattern of machine instructions being handled serially by a complex processing unit has largely persisted.

In the forward march of evolution there has been a consistent initiative to develop life forms with more highly developed nervous systems. Of course man prides himself in being the apex of cerebral achievement, but throughout nature there are many marvellous examples of various species with highly developed sensory mechanisms. It is widely realised that if man tries to imitate nature, then initially his neural network creations will be vastly inferior, even if to him they appear superbly clever.

The human brain has been referred to as "the neural network which already works". Figure 1 shows a magnetic-resonance image of the human brain, superbly indicating even fine structures such as the optic nerve and the pineal gland; it is a superbly developed connectionist system. There is therefore no highly localized site of processing power, although nerve bundles provide important functions for the routing of information. For those who wish to know more about the function and structure of the brain, the work of Angevine and Cotman is highly recommended reading.

Networks – natural and otherwise

The basic building block in the brain is the neuron, which can vary consider-

Spectrogram of speech resulting from representation of speech applied to neural nets, shown in lower half of screen. Picture by courtesy of British Telecom and the University of East Anglia.

Pattern recognition being performed by the WISARD system, developed by Professor Igor Aleksander at Imperial College.
ably in type and function but can be represented as shown in Fig. 2. Neurons communicate across synapses and receive inputs over larger axon connections.

This collective functioning is determined largely by the way in which neural units are connected physically together and also in the relative strengths of the interactions across the links. The mechanisms whereby cell-based networks can organize themselves to implement such intelligent functions are as yet very poorly understood. Contributing to the poor understanding is the overwhelming complexity of natural neural systems. The human brain, for example, may have as many as 10^9 neurons, each with around 1000 synaptic connections to other neurons.

Various mathematical models of neural units which could interact collectively were developed as long ago as the 1940s. The role of McCulloch and Pitts was to establish the early formal rules for abstract connectionist systems. Later, Hebb was to introduce the concept of neurons in the brain which were fired repeatedly or consistently together, influencing each other's metabolism and response to stimuli.

A simple and fairly widely adopted logical unit of a neural network is shown in Fig. 3, where the inputs A, B and C take the values 0 or 1. The values −2, +2.5, and +1 are the so-called weighting values of the inputs, so that the sum of inputs into the unit has value A(−2) + B(+2.5) + C(+1). If this value is greater than or equal to 2, then the value of the output is 1; otherwise it remains 0 as outlined in the table.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>sum</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Such logical units form building blocks of much more complex structures.

Figure 4a shows a simple two-layer association of units, while the system in Fig. 4b has a so-called hidden layer.

Note that, to simplify the modelling of such systems, each layer only feeds forward to the next. It is thus relatively simple to design such network topologies. But as the number of units increases, so too does the number of weighting connections. Figure 5 ind-

Fig. 1. Magnetic-resonance image of the human brain showing entry of the spinal column into the mid-brain and associated details of the cerebral hemisphere and cerebellum. Picture courtesy IGE.

Fig. 2. Building blocks of Nature’s neural networks — neurons. Connections are made across short-range synaptic links or over longer axons. Although only a few links are shown in the figure, typical neurons can have around 1000 links to other neurons.

Fig. 3. Simple neural unit consisting of three inputs and an output. The unit sums the inputs (0 or 1) and incorporates a specific weighting factor for each input (−2, +2.5 and +1). The unit’s output is therefore of value 1 when the summed value is greater than or equal to its threshold value (2).
The training process is termed “annealing”.

The field of neural network research now reveals a diversification of network models and associated training methods. Work at Imperial College London has, for example, developed ram-based network models, where the output value of the ram neuron is a look-up value corresponding to the address data presented to the input lines of the unit.

As the field develops, a particular model and training method which once provided a solution to a specific problem can be replaced by a more efficient model/training algorithm. As networks become more complex and contain more weighting values for estimation, the emphasis on speed of network analysis will become even more critical. Neural networks, however, will not be used to duplicate what present-day silicon circuitry already does well. Exact numerical representation and manipulation will remain the remit of conventional digital computers. It is very clear, however, that digital computers are an essential tool for the implementation of neural network solutions, both through their use to determine weighting factors and also to undertake simulations. One of the limiting factors in the current development of parallel, connectionist neural networks is indeed the availability of sufficiently powerful serial digital computers: solutions which take a Sun workstation several hours would occupy a PC for days on end. There is a finite level of complexity, however, beyond which even the mightiest computer grinds to a halt.

Applying neural networks

Neural networks are being widely investigated in the area of pattern recognition, one obvious form of which being that of recognition of human faces. This highlights the fact that conventional digital computers have not yet proved entirely satisfactory in solving such problems.

Neural network technology is being used, for example, in the validation of written signatures, the recognition of character patterns in the postal service and even in the recognition of star patterns for on-board satellite navigation. The WISARD pattern recognition system developed further at Imperial College under the direction of Professor Igor Aleksander has been developed using their specific ram model of the neural unit. Pattern recognition involving ram-based nets is being undertaken at the University of York.

Other associated application areas include classification of aircraft radar signals and automatic guidance systems for road vehicles. The ALVINN vehicle at Carnegie-Mellon University, aided by three Sun computers, can as yet only achieve a maximum driverless speed of 0.5m/s, but that may change. All these examples represent only a very small range of applications which are being developed in this one area.

Speech recognition. Significant work has also been undertaken in the field of speech recognition – an area which poses perhaps one of the greatest challenges to neural network technology. Various researchers are undertaking what could be described as an incremental approach, where each advance in performance brings the ultimate solution closer, though each improvement does not yet yield a practical solution.

An interesting project staged by the Carnegie-Mellon University and ATR Research Laboratories in Osaka highlights one promising way forward in offering a solution for efficient real-time speech-decoding facilities. The frequency spectrum of speech is dynamically analysed at 10ms intervals over 16 separate frequency bands, so that the input to the network is a rapidly changing window of sampled data. Using this system, a range of networks was developed to differentiate Japanese consonants. The approach of solving more difficult tasks just by implementing more complex networks proved somewhat counter-productive. In going from a conventional network to recognise G, D and B to one to
recognise B, D, G, P, T and K, the size of the network increased from 6000 connections to 18,000; training required some 18 days of supercomputer time. A modular construction, however, which identified consonant groupings and then specific consonants within a grouping proved more efficient, leading eventually to the dynamic identification of all 16 Japanese consonant sounds for a single controlled speaker. The skill of problem design is therefore of paramount importance when tackling more complex network problems and this modular approach will doubtless be a feature of other application areas.

Considerable interest is being shown in the use of voice recognition systems by telecommunications companies, no doubt in order to allow a patient, non-human listening service to differentiate between "yes" and "no" and other responses not remotely like either. Several projects in British Telecom's CONNEX neural network initiative relate to voice recognition.

It is not surprising, therefore, that there is significant interest from the life sciences in discovering the ways in which natural networks implement highly complex tasks. This confirms that research in neural networks has expanded far beyond the narrow confines of computer science. The emergent subject of cognitive science is a much more wide-ranging discipline and employs the skills of mathematicians, neurobiologists, neurophysiologists, psychologists and electronics engineers.

Another area of significant activity is the use of neural networks to reproduce speech from text, for which there are applications such as the quoting of stock market prices over the telephone and also in improved man/machine dialogue in industry and commerce.

Speech continues to be an amalgam of well established rules and a large number of exceptions and special cases. Numerous systems using conventional digital computers and phoneme reconstruction methods have of course already been developed. On a base of the initial work by developers of NETtalk at Johns Hopkins University, work is being undertaken using neural networks at a number of centres, no doubt to produce the ultimate human voice beloved of science fiction writers who have perhaps prepared us for the prospect of failing to differentiate between natural and synthesized speech.

Work in progress, such as that being undertaken by Fujitsu on speech production, indicates how much the subject has advanced in a relatively short time. Specific neural topologies whose inputs and outputs are not simply 0 or 1 are selected to learn analogue data more accurately and a more efficient training algorithm than back-projection allows more stable solutions to be derived.

The NETtalk system was a significant initial demonstration of the ability of neural networks to respond to a training set. Progressive training of a NETtalk configuration could be demonstrated as a transition from the initial babbling of the untrained network through to the highly recognisable speech obtained after extensive training of the system. Also, NETtalk indicated the essential resilience of a neural network. If, for example, certain weighting connections were given random values, the performance of the network could be heard to have been degraded, although it was not rendered inoperable; with additional training, the system was heard to recover its performance.

Expert systems. The role of neural networks as a means of implementing expert systems is one which has caused considerable interest, some annoyance and a certain amount of confusion. The ability of a neural network to solve a specific problem, producing as it were a black-box solution where the mode of producing answers is not clearly understood, goes against the traditional attitude of scientists who are used to understanding the tools and methods they use.

It is usually difficult to make valid comparisons between conventional expert systems and connective equivalents. One relevant exception, however, is that of a specific system for forecasting solar flare activity at Colorado University. Using an identical data set, the performance of THEONET, a neural-network implementation, was found to be at least as good as a previous expert-system solution called THEO. While the performance of the two systems may have been similar, the connective solution was implemented in less than a week, while THEO had required more than a man year of work to implement. The potential therefore, for developing connective expert systems is being taken very seriously.

Hardware
To date, most functioning neural-network systems exist as software simulations on a variety of digital computer systems. This represents a major gap between theory and application, though hardware implementation of neural network topologies has as a result become a major area of endeavour.

Part of the problem of implementing hardware-based networks lies in the conflicting demands of massive connectivity between neural elements and the degree of resolution required in the setting of values of weighting links. Many networks, for example, require at least a 16 bit resolution in weighting values to implement training algorithms effectively. Also, development has largely been directed towards solutions which can be dynamically updated, in contrast to systems which have, for example, fixed-value laser-trimmed resistive networks.

Hardware implementation of ram-based models has an immediate advan-
NEURAL NETWORKS

tage in terms of availability of VLSI chip-fabrication facilities. Greatest effort is being expended in developing systems which use analogue circuit elements. The approach adopted by several groups, including those at Edinburgh University and AT & T Laboratories, is the use of mos charge storage as the means of dynamically updating individual weighting values or storing the outputs of individual analogue neurons. Innovative analogue circuit designers are therefore at a premium in this field at present.

In the Edinburgh group's approach, voltage weighting values are implemented by off-chip D-to-A converters and used to width-modulated incoming pulses. Input pulses and modulated pulses are integrated with opposite sense at an output charge-retaining stage, so that for weighting voltages of around 2V the output voltage remains stable when the unit receives trains of input pulses. For values between 2 and 3V output neural voltage increases, while for between 1 and 2V it decreases. Such a neural unit is illustrated in Fig. 6.

Numerous researchers are also seeking to develop adaptive hardware networks, which will embody learning facilities to train their neural set dynamically. This will not only allow such systems to become much more self contained, but it should be possible to train them significantly faster than equivalent software simulations.

The work is spread from the one-man-and-his-PC type of activity up to the extensive R and D facilities of large corporations. The major developments have to date, however, largely originated from the outstanding work of individuals infused with original ideas. In the UK, several large companies have recently offered support for a Technology Club, founded by University College, London and the software houses Logica and SD to promote the implementation of neural-network technology. Also, the Annie project in neural networks is being funded as part of the European esprit initiative.

References

Further reading

PCB EAGLE is the complete board layout solution at an affordable price; -- Yes complete --
No starter kits followed by expensive upgrades.
It's easy-to-learn, quick to use and runs on an IBM PC.
So at "one-per-desk" prices, you can afford several for your engineering team. Look at what it offers:

* MANUAL OR AUTOROUTE, TRACK/SIGNAL/BOARD ROUTING
* 255 LAYERS, 1 MIL RESOLUTION, UP TO 64"x64" BOARDS
* CONTINUOUS ZOOM, AUTOPAN, UNLIMITED UNDO/REDO (OOPS)
* RATSNEST, RIPUP, RUBBERBAND, CUT & PASTE FUNCTIONS
* INTERACTIVE OR NETLIST ENTRY (EG ORCAD)
* COMPONENT & USER-SPECIFIC MACRO LIBRARIES
* COMPREHENSIVE DESIGN RULE CHECK AND DISPLAY
* USER-CONFIGURABLE FUNCTION KEYS, MENUS, SETUPS, COLOURS ETC.
* FREE DRIVERS FOR STANDARD PLOTTERS & PRINTERS
* RUNS ON IBM PCXT/AT, 640KB, 5" FLOPPY, EGA OR VGA COLOUR

-- designed by you!

Why not try out our demo and see for yourself how you can 100% autoroute this 8" x 6" board in 8 minutes!

(PC/AT286)

CadSoft (UK)

EAGLE Autoroute System £580
EAGLE Layout Editor only £330
EAGLE Demo Kit + Manual £10
(incl. VAT)

CIRCLE NO. 149 ON REPLY CARD
Tom Ivall reports on the IEEE conference, which reflected the connectionist approach to AI

The artificial neural network — an electronic system of interconnected elements processing information in parallel — may yet prove to be a solution in search of real problems. After more than four decades of research and the publication of what must be thousands of papers, not to mention dozens of books, this so-called ‘connectionist’ computing technique doesn’t seem to have found an application niche where its performance is clearly superior to those of conventional analogue or digital processing methods.

A recent IEEE international conference on ANNs, as they are known, added a further 90 papers to the existing swollen corpus of literature. And this after about the same number had been rejected. But the philosopher’s stone has not yet been discovered.

In spite of endless permutations of network topologies, interconnections, element characteristics, training algorithms and so on, the magic formula — of a really useful technique — did not reveal itself. That’s not to say it won’t appear eventually.

Charles Goodyear discovered how to vulcanize rubber not by science but just dogged experimentation. This could happen with the neural network.

These remarks are prompted by the many conference papers devoted to ‘toy’ problems — originated in the laboratory rather than the outside world. They came largely from the 22 British and 16 foreign universities making contributions. Industrial R&D labs were in a minority. Of course, some of these ‘toy’ problems could have been disguised versions of military requirements, as an MoD man hinted.

Pattern recognition seems to be the most promising field. This encompasses automatic speech recognition on the audio side and various visual tasks such as optical character recognition, robot control, tracking human face movements and identifying features of landscapes. Essentially the signal processing functions needed are discrimination and classification. This also applies to pattern recognition tasks not working on sense data but on other electrical signals. Examples include radar, electromyograph, digital telecoms, navigational bearing and non-destructive testing signals.

Network topologies

A network topology used in many of the reported experiments is shown in Fig. 1(a). This is the multilayer perceptron, an analogue network derived from the original Rosenblatt single-layer perceptron of 1959. Its input terminals receive signals in parallel which are features of the subject being analysed such as filter bank outputs in speech recognition and pixel values from two-dimensional image sources. The outputs give parallel data which is some function of the inputs and is meaningful as an interpretation of the input pattern.

Between inputs and outputs are several layers of interconnected computing elements or ‘neurons’. The output of every neuron element in a layer is connected through adjustable weighting (multiplying) circuits to the inputs of all the neurons in the next layer. Each
Learning and training

But a highly important feature of this kind of network (and others) is that the adjustable weights may be used to make it 'learn' a required relationship of the output to the input. In speech recognition, for example, it can learn to produce an output digital code representing a text word when a particular audio signal spectral pattern is applied to the inputs.

To achieve this, 'training' is necessary, with back propagation of error, in the current ANN jargon. With input signals applied and arbitrary initial weight settings, the resulting output signals are compared with the desired output signals for that relationship. The error between them is measured and used to adjust automatically the weight settings so that the mean squared error function is minimised.

This is achieved step by step (iteratively) with repeated applications of the input signals. When there are no further changes in the neuron outputs the system has completely converged and the desired overall input-output relationship is established.

Fig. 1. Principle of multilayer perception is shown at (a). Numbers of layers, neurons in a layer and values of weights are all variable. Each neuron (b) in this network computes the sum of the weighted inputs, applies a threshold and gives a two-state output signal.

The multilayer perceptron is an example of a so-called 'feedforward' network. Other ANNs discussed at the conference have 'feedback' topologies. Here the output of each neuron is fed back to all other neurons via the synaptic weighting circuits. The Hopfield feedback network operates on binary input signals and has stimulated a lot of recent work, especially in VLSI implementation. It can be used as an associative or content-addressable memory, in which storage locations are identified by their content rather than by their physical address. Thus the input signals can be an incomplete or noise-corrupted binary pattern to be recognised, and the network uses this information to address the storage location to which the correct, complete pattern has been supplied.

A learning algorithm can be used on this feedback network in much the same way as outlined above for the feedforward multilayer perceptron. Such a network tends to find stable configurations of taught patterns from incomplete inputs of such patterns.

A third kind of ANN topology is called the self-organizing feature map. Here the 'map' is a two-dimensional array of neurons. It organizes itself - without the supervised learning described above - so that clusters of neurons in particular neighbourhoods of the array are activated in response to particular features of the input data. Thus for speech recognition the network could end up with a fixed relationship between a particular input phoneme and a physical localized area in the two-dimensional array.

This is comparable to what happens when sensory stimuli activate biological neurons in the cortex of the brain. For example, individual audio frequencies evoke responses in neurons at particular anatomical locations. Thus the self-organizing feature map can be used for classification on the basis of the spatial positions of clusters of firing neurons.

Professor T. Kohonen of Helsinki University, the originator of this technique, showed a video demonstrating an experiment on speech recognition. As each word was spoken into a microphone, a wriggly bright trace weaved briefly among the corresponding letters of the alphabet displayed in two dimensions on a CRT screen.

Apart from their topology, ANNs can be categorised in several other ways: analogue or digital input; supervised (trained) or unsupervised learning; and the characteristics of the electronic neurons.
Their performance varies too. It emerged at the conference that multi-layer perceptrons have a rapid response in operation but need a lot of training time. Many of the systems described have not been built in hardware but merely simulated on conventional sequential (Von Neumann) computers. Here the modelling process takes a great deal of time, especially for training, but research at University College Swansea showed how it could be speeded up by using a parallel array of transputers (at least seven) for simulation.

One class of networks which seems to stand out operates digitally and makes use of standard, commercial logic chips. In this it has the edge on simulations and special VLSI still under development. An early British example was the Wisard optical pattern recognition machine devised at Brunel University in 1981. This uses simple rams as the computing elements, which are connected to provide discrimination in a parallel, neural-like network.

In each ram 'neuron' the address terminals form the multiple inputs while the data output terminal provides the output. Before training these rams produce only logical 0s, then logical 1s as the system learns to recognize optical patterns. Operating on 512 - 512 pixel images in 1/25th second and using 250,000 neurons, the Wisard has been built into commercial vision systems by Computer Recognition Systems of Wokingham, Berks. But topologically this device does not resemble the multi-layer perceptron of Hopfield ANNs previously mentioned.

A recent development from this logic-based approach is a new form of neuron element called a probabilistic logic node. As explained by Professor I. Aleksander of Imperial College, London, this kind of neuron makes possible weightless ANNs. Essentially it is probabilistic in function.

The ram, instead of storing just a 0 or 1 output in response to each input signal pattern, stores an n-bit number which represents the probability of that neuron's firing. For example, if the number of bits n x 3, then a range of (decimal) probability values between 0 and 7 can be stored in a ram location. So if value 4 is stored, the probability of firing is 4/7 or, more conventionally, 0.57.

ANNs built from such neurons can be trained. Here, the progressive weight adjustment in perceptrons is replaced by updating the contents of the ram neurons. Learning from errors is claimed to be faster than in the back-propagation method. Also, with this kind of neuron, rather than the Wisard one, the typical characteristics of multi-layer perceptrons and other established topologies are said to be obtainable. And there is the advantage of being able to use off-the-shelf digital logic devices as components.

But apart from this use of standard chips, the business of constructing ANNs emerged largely as a matter of designing special VLSI devices. Several universities are working on integrated mosfet technology to mimic neurons and synapses and produce analogue adders, multipliers, threshold detectors and storage elements. Multiplication for weighting is a real problem because it needs a lot of transistors and therefore silicon area.

Not conventional

An unusual solution reported by A.F. Murray of Edinburgh University is to use streams of pulses to represent information instead of the conventional analogue or digital voltage levels. The pulse repetition frequency is varied, rather like the variable firing rate in biological neurons.

In such a pulse stream the width of each pulse is multiplied by a fraction, representing the weight value, stored as an analogue voltage on a capacitor. This weight voltage is refreshed from an off-chip via a D-to-A converter and is therefore programmable.

Definitely a blue-sky project is a proposal to interconnect VLSI network layers optically, by multiple thin light beams, rather than by conventional conductors. STC Technology and Edinburgh University reported some experimental work on this hybrid of semiconductor and optoelectronic technology. Figure 2. shows the basic principle of interconnecting two ANN layers of silicon VLSI neurons. In each layer an external incident light source is modulated by liquid-crystal cells driven by the outputs of CMOS neurons.

The reflected light from the modulator is split and deflected into multiple thin beams by a hologram to produce a fan-out as shown. These interconnections fall onto photodiode detectors in the next layer. The outputs of the photodetectors are then amplified to form input signals to the CMOS neurons in that layer.

The idea is to get a large number of neurons on a single chip - 256 on 1cm² is suggested - and also achieve high connectivity between layers. This is possible because the necessary summing for each neuron and the multiplication for weighting the neuron inputs is done through the light beams themselves. So there is no need for adders and multipliers integrated on the chip, and silicon area is saved.

Two light intensities are added when the two beams fall on the same photodetector. Multiplication is achieved when the same light beam is consecutively reflected off two liquid crystal modulators: the reflection coefficients of the two modulators are multiplied.
In studying methods of reproducing the way the human brain works, using conventional computer hardware components, my philosophy has been to try to arrange a series of look-up tables which act at progressively higher levels until the desired result has been obtained.

The result of my efforts has not yet been a reproduction of the human brain in hardware, but a hypothesis of how it operates. I have never come across a hypothesis which answers as many questions (to me at least) so I offer my thoughts on the subject for comment and criticism.

One way of studying how the human brain works is to see how it evolved. Here, I will attempt to give a summary of the stages which led to its evolution.

Development of the brain
All animals, from the simplest to the most complex, must eat to live. The first simple animals discriminated between food and non-food items with their primitive digestive systems. The next stage of development enabled the simple animal to discriminate between food and non-food before it was ingested and to do this, the primitive animal had to be able to remember the difference. This type of animal had the first external sensor coupled to an internal memory unit. Further evolution resulted in progressive enhancements of the sensor and memory unit combination because they were advantageous. Each enhancement enabled the animal to find food more easily so that it could grow more rapidly and have more offspring.

The first sensor would have been a chemical discriminator which developed over time to become a sense of smell, where one sensor provided an evolutionary advantage, two were even better. Detection of light was possibly the next stage in evolution and, as with the development of smell, each step resulted in an improvement in the sensor and a corresponding increase in the number of memory cells needed to identify and remember what the sensor detected. An advantage is gained if the animal can learn from experience — a process which requires even more memory.

Wilfred James propounds his view that intelligence can be reduced to the two faculties of pattern recognition and memory, as a prelude to modelling the process in hardware.

The simplest memory system which could be developed would be one which is directly linked to the sensors themselves; there is no advantage in separating the sensor and memory functions more than is necessary. If one considers the first life-form which was able to recognize a shape or a pattern, it is safe to assume that its eye sensors were linked to a set of memory cells which were an extension of the eye itself. These pattern-memory cells would be linked in turn to a group of cells which were associated with the experience memory. A pattern match could have either a good (food) or a bad (predator) association and could be as simple as a sudden change in light level or the outline of a particular shape.

The rest of the stages of evolution of the brain itself do not need much description. Each stage of development has incorporated the best features of the previous stage. Pointers along the way include the use of camouflage by zebras and the eye markings on butterfly wings; both features evolved to counter a predator's ability to recognize visual patterns.

Intelligence
In this very brief survey of the evolution of the brain I have not mentioned intelligence. I have tried to work out where, in the path of evolution, one could say that intelligence originated and have come to the conclusion that there was no point when it provided an evolutionary advantage. Since evolution exploits advantageous developments, intelligence has never developed.

Obviously, there is something which everyone calls intelligence, or the word would never have been coined in hun-
hundreds of languages. If we take a step or two back along the evolutionary path, we can identify two advantageous facilities – pattern recognition and memory. I think I can show that what is called intelligence is only a combination of these two facilities.

Patterns and language
The ability to read is based on being able to recognise word patterns; to learn a foreign language, one has to learn the patterns of the foreign words. As one becomes more proficient in a foreign language, one learns more expressions which are not directly translatable between two languages, but relate to abstract patterns associated with the language. Some of these non-translatable patterns become transferred – glassnost, reggae, hamburger, savour faire, le weekend – the patterns relating to the region where they occur most often. Language is only a part of pattern recognition, but it is a tool which has developed to enable the concept of a pattern to be transmitted in an abstract form from one human to another.

It is said that a picture is worth a thousand words. Here it is even easier to see what concept is being dealt with without the need for an abstract description. Until the advent of photography just over 100 years ago there was no way of showing what something looked like except by a drawing, painting or statue. But most of us are quite happy to accept outline drawings as representations of things. A good cartoonist can capture the look of a person so that the drawing is instantly recognisable; the amount of detail shown is only a very small amount of that which would be contained in a photograph. Even if the shape is very distorted it can still be recognisable.

We obviously have an advanced pattern-recognition and storage system, which uses the minimum of memory to record the main features of whatever is represented. This in itself must be an evolutionary advantage; the more compactly data can be stored, the more can be stored within a limited space. The creature which can record and recall the greatest number of patterns is evolutionarily superior.

Pattern association
The next step is a secondary memory process to associate one pattern with another, which has to be developed if a person is to show any signs of intelligence. If it is very well developed and the person concerned has recorded many patterns, then he is thought of as being highly intelligent. If, on the other hand, pattern association is not well developed or the person has not learned a wide range of patterns, he is regarded as being mentally subnormal.

The process by which a pattern is learned is mysterious, or education would be simplified. However, there are several points which are worthy of note: firstly, a pattern is learned through necessity if one’s life depends on it; secondly, a pattern is learned through repeated exposure to it; thirdly, a pattern is learned if it fills an obvious gap or solves a mystery; fourthly, a pattern is more easily learned if it is associated in some way with pleasure. (All teachers should remember this!)

Associative links between patterns depend firstly on the number of patterns learned and secondly on the connectedness of the memory cells, which may be inherited or acquired. For most people, there is some link between the pleasure centre and the “gap filling” aspect of learning-pattern linking. The extent to which this linking operates is a guide to the motivation of the person concerned; the popularity of puzzles indicates that most of us enjoy filling in gaps. If the gap-filling pattern offered matches existing patterns, it is accepted as being valid and true – if it does not, it is taken to be false.

Humans cannot calculate
Whenever one looks, every so-called intelligent function can be explained by pattern linking. It is impossible for the human brain to perform the simplest calculation. Every so-called calculation is a series of look-ups of memorized patterns. Learning multiplication tables by rote follows the memorization of other patterns – additions and subtractions of combinations of 0 to 9 and the concept of the carry. With these patterns memorized, it is possible to learn the rest of the rule patterns of arithmetic.

Algebra is just a method of showing arithmetical patterns by alternative generalized patterns. Since mathematics operates under strict fixed rules (patterns), advancement in maths depends on learning a wide vocabulary of algebraic patterns which can be recalled for use when needed. Every step in any calculation is based on the use of patterns, ranging from the simple multiplication table to the concepts of calculus. We cannot calculate without using look-up table methods and our digital computers are programmed to use the same methods to do calculations.

Artificial intelligence
If there isn’t such a thing as human intelligence, there can’t be such a thing as artificial intelligence. Even so, since pattern-association ability is called intelligence in humans, the same thing must be true for machines. Von Neumann serial processing machines cannot provide a practical basis for any form of “real” artificial intelligence because they do not have a large-scale pattern-recognition capability. A machine which emulates the way a human brain works must therefore operate in a parallel manner.

Much of what is called parallel processing is, in fact, a number of sections of a serial process being dealt with simultaneously. True parallel processing is used in neural networks and a few other specialized machines, but it has been given much less exposure than serial processing in the technical press.

A parallel processor can handle a very large number of simultaneous pattern inputs and produce a secondary set of patterns which relate to the inputs. In turn, these secondary patterns can be processed again to produce tertiary patterns and so on. After several stages, the complex set of patterns will be resolved as one pattern, which will be recognised as being the logical conclusion. This final pattern could be a demand for more input or a prompt for an action.

There have been several attempts to devise neural networks which can perform the recognition function. Most of these have been based on the interconnection of a relatively limited number of memory cells and cross-linking cells.
In an effort to avoid the problem of making a complex network of such cells from discrete components, I have tried to use ordinary memory chips. My resources have not yet enabled me to produce a working machine, but I think I have worked out the principles which will enable such a machine to be produced.

I will attempt to explain these in terms which are familiar to those who have worked with the standard chips which make up a microprocessor computer. Please note that I have used the ASCII code only because most readers will be familiar with it. Any other arbitrary numbering system is equally valid. I refer to a 2×8 bit chip like the 6116 for the same reason. Readers may like to imagine other memory structures using any feasible type of static ram chip.

Character recognition

The dot-matrix system is now so widely used that it needs no explanation; its most common use is in printers and video displays. Quality of the display depends on the number of dots used, but a satisfactory representation of roman characters and arabic numbers can be achieved with a 7×9 matrix; such a matrix is made up of 63 pixels. A machine which will instantly recognise a character shown by such a display must therefore have 63 inputs, one for each pixel. Recognition of the character can be signified by the generation of the equivalent ASCII code for the character.

Only a few hundred different characters are needed, so a mapping process which will transform 63 inputs to eight outputs would be suitable. This could be done with 2K static ram/rom chips in stages. Six such chips have a total of 66 address lines and 48 data lines between them, which would enable 63 bits to be mapped down to 48 bits. A second stage could use four chips to reduce 44 bits to 32 bits; a third stage reduces 33 bits to 24 bits, a fourth stage 22 bits to 16 bits and a fifth stage also reduces 22 bits to 16 bits; the "lost" bits in the mapping of some stages to lower stages can be picked up in the later stages. The final result is 16 bits, eight of which identify the character; the other eight bits can be used to indicate vertical or lateral displacement, type face, size, and the reliability of the recognition process.

Everyone who has some knowledge of maths will immediately ask: "Where has all the lost information gone?" The answer is that nothing has been lost because it wasn't there in the first place. Although 63 bits represent an incredibly huge number in binary terms, (9.22373204×10^6), in practical terms they can only represent a few hundred generally recognisable patterns. If we look at the way the chips are programmed in each stage, we will be able to see that the problem is not losing information, but sorting out the difference between valid information and that which is useless.

Assume that each of the first set of chips is programmed with the numbers 0 to 255 in sequence for 24K bytes. The bit pattern repeats eight times in each chip. It is therefore possible to have eight different inputs on each chip which could give the same desired output. This duplication problem repeats itself at each stage until it reaches the final stage, which is programmed with what is being "seen", so a letter A would be programmed to be 01000001 (41H) and a letter a would be 01100001 (61H). Because of numerous duplications of numbers in the lower stages, there will be thousands of combinations which will also produce the same output. These unwanted combinations cannot be identified easily in advance, so a secondary process is needed to ensure that they have no effect; this process is, in essence, the reverse of the input process. The desired output is used to drive rams/roms to reproduce the matrix, which should cause the desired output.

This reproduced matrix is compared with the input matrix on a bit-by-bit basis. A 100% match is obviously desirable, but in the real world, a 90% match is likely to be more than sufficient to identify a wanted pattern. The ratios of the 1 bits and the 0 bits in the two matrices are compared and the reliability of the recognition is expressed as the proportion of bits which are correct. (63 true AND gates are required, i.e. 0.0=1, 1.1=1, 0.1=0, 1.0=0.)
It can be seen that it is also possible to use precisely the same process for progressively larger numbers of “missing” bits in the reference matrix. For example, it is fairly easy for a human to recognise letters printed on a dot-matrix printer which doesn’t print on one of its pins. It would be pointless to make a character recogniser which would reject a character which was printed with this fault because it would only have limited usefulness. This method of character recognition can be extended to cover larger matrices to allow larger, smaller and displaced letters to be recognised. An 18 x 14 matrix would permit a 50% displacement of a 9 x 7 character within its field of view in any direction, or deal with characters which are twice the size of the original.

The basic programming of such a character recognition unit would be done manually, but the rest of the variations – dots missing, size and displacement – could be handled by a microprocessor. As soon as one of these units has been made and programmed, the contents of the various RAM chips can be copied into PROMs for the mass production of character recognisers.

Cognitive processing
This is the term I have coined to refer to a processing method which uses an input system based on the principles of the character recogniser I have just described. For simplicity, I will continue to assume that the patterns to be recognised are characters, but any type of meaningful input pattern can be used, including sound patterns.

Word recognition
If a row of 80 character recognisers was made so that they covered an 8in × 1/6in rectangle, a whole line of typewriter type could be read at once. If a character recogniser identifies a letter with sufficient accuracy, it can produce an output bit which flags this fact and a group of adjacent recognisers which have set flags are assumed to have identified a word; a recogniser which identifies a blank area will set a “no character” space flag instead. In the assumption that ASCII code is being used to identify the characters, a word will consist of a number which is made up of the ASCII codes of its letters. A word could be of any length, but the number of positions on the line is limited to 80, one of which must be a space for a word end to be identified. It is therefore assumed that a word can have from 1 to 79 letters. The recognition of words uses a similar process to that which is used for letters; all the words on a line will be recognised simultaneously.

In an 80-letter line there can be no more than 40 single-letter words, since a word must be terminated by a space. In practice, provision would be made for up to 20 words on a line. The word recogniser used for any word is selected by the relative value of the position number of a word’s terminating space character, which simplifies the switching needed to connect a group of character recogniser outputs to a word recogniser input. The process of reducing a large binary number to a smaller one which has a pre-defined meaning has been covered in the character-recognition process.

Meanings of words
There is no universally agreed way of classifying words in order except alphabetically, but this order has no meaning and is purely arbitrary. One meaningful method of word classification is the one used in Roget’s Thesaurus. For the purpose of explanation, Roget’s numbers will be used.

There are just over 1000 classifications of words. Within each of these classifications all words which have similar or related meanings are listed.
words within each classification varying in quality and degree. By some arbitrary method, each word can be given a weighting number which indicates the sort of classification which is appropriate. A typical list might be:

- freezing: -9, stuffy: +1
- icy: -8, warming: +2
- cold: -7, warm: +4
- chilly: -5, tropical: +6
- cool: -4, hot: +7
- cooling: -2, scorching: +8
- temperate: 0, searing: +9

There may be some argument about which numbers are allocated to certain words but the numbers I have allocated will show the principle. It is therefore possible to convert groups of letters into a set of agreed numbers which represent word meanings.

It is at this point that the next stage of recognition becomes harder to define. There is already a system in use which gives words meaning: every computer which uses a high-level language has an interpreter to convert character sequences into computer operations. This principle has been extended in computer-based dictionaries for foreign languages. An arbitrary numbering system is used to link pairs or groups of letter sequences.

The meanings of patterns

Individual patterns can only have meaning if they are part of a larger pattern structure, which can be either parallel or serial. This text was serially produced but it could be reproduced by the parallel method of photography. However, the pages on which it is written are each an entity which cannot be defined in a serial manner. The meaning of the text can only be arrived at serially, while the medium on which it appears has no meaning at all.

If I have written my description correctly, the reader will have stored a sort of summary of the abstract concepts which are contained in it; each concept is a recognisable pattern which has been described by the words I have used. These concepts have most of their meaning in the context of the other concepts, which are part of the even larger concept pattern which will be conveyed by the article.

The article can only be understood if the various concepts it contains overlap each other in a logical manner. Since it is in print, it has the advantage that the reader can re-read it if some vital point has been missed.

These comments are a description of a pattern which can be duplicated by using a further extension of the character and word recognition processes.

In context

The key aspect of this type of pattern is time: the meaning of the later parts of this article is based on what was written previously. Parallel input to the recogniser I have described must be flagged with the time the information appeared. Concepts of begin, read, store, continue, until and end are already incorporated in existing computer languages. It is therefore logical to use a serial processor to control the parallel recognition unit.

The higher level of recognition is based on a context comparison between text which is currently input and that which has been seen previously. Since every context can (by definition) be defined in words, a context number can be generated. Each change or development of context will also be flagged with its chronological position. As each context is identified it can be used to refer back to previous inputs to refine individual word meanings which could not be unambiguously recognised when they were first seen. Context recognition can use the same cues as we ourselves use when reading a text. Titles and headings are two examples of such context cues.

Final stage

I hope that the vague terms in which the previous section was expressed conveyed the idea of developing meaning/idea/concept from a collection of lesser concepts. The final in-built command of the cognitive processor is to compare the knowledge gained, if any, with existing data. In the naive state, all input is new to the processor, so it is automatically stored. As time progresses, new input will either reinforce existing information or negate it. Stored information will thereby become more refined and reliable as a reference.

At a mature stage, the processor will be able to note that some new input is
very similar to existing data, so only the differences need to be stored. If the data is exactly the same, only the facts that it has been seen again and when it was seen are stored. If the same data is repeated many times, only the first occurrence, the times of the first and last occurrences and the number of repeats are stored. Gradually the recogniser will need to store less and less as it becomes more knowledgeable.

The difference in meaning between command and data information is dealt with at an early stage, but the later stages of context analysis can alter the interpretation of what is a command and what is data. The processor will learn by experience.

Thinking

A machine which can think is almost unthinkable, but the cognitive processor described can be made to emulate thinking. The input devices can be made to operate much faster than a human; in consequence it is likely that the machine will have periods when no new input is available. A random number generator controlled by the serial (control) processor can then select pseudo inputs from different parts of the memory for comparison. Where common patterns are discovered, these are labelled with cross references to each other in a concordance, the cross references including the degree of matching and the contexts involved in the two sources. If the common pattern is well defined, a search can be started for more occurrences of the same pattern, which can be added to the concordance list. The possibilities for such a machine are almost endless. A biological version of such a machine has been used to write this article.

Notes on possibilities

One line of 80 character recognisers, which each cover a 14×18 matrix, produces $80 \times 18 \times 14 = 20\ 160$ pixels or 2.5Kbyte. Using 2K types, about 32 chips would be needed to cover an 18×14 matrix in the way I have described. The word and context recognisers would use far fewer chips per stage, since they would have fewer bits to handle: about 500 chips would be needed to make a one-line reader/processor. A cognitive processor made on this basis would produce an output from an 80-character input in less than $2 \mu s$ using 120ns chips. This speed would be unaltered for all sizes of processor. A one-line cognitive processor could read text printed at 6 lines/in. (and act on the input) at the rate of 1.315 mile/s. A typical 50 000 word book could be read and "understood" in 8.3ms.

If custom chips are designed to reduce the number of steps needed, the processing time would be correspondingly faster. A cognitive processor which could read 1 000 000 pixels in less than a microsecond is conceivable.

Sound data is also formed in patterns which are received serially but processed after short-term storage in parallel chunks. Spoken language relies on the listener's ability to relate current input to that which has been received previously and our ability to understand a written text relies on the same processing system. This is why it is impossible to listen to one thing and read another at the same time, but it is easy to follow a written version of the spoken word even in another language (if you know both languages).

Since A-to-D sampling methods provide a satisfactory way of converting sound for digital storage, the data produced in, say, a 1s sample can be analysed in the same way as has been described for character and word patterns. There is no particular need to "know" how it is done; a cognitive processor simply needs to be read to aloud at the same time as it "sees" the text. Its in-built cross-referencing system would enable it to relate one input to the other and it would quickly learn the rules of pronunciation for itself so that it could read to you or understand any spoken commands within minutes.

The system I have attempted to describe would deal with the equivalent of a line of type in $2 \mu s$. A fast human reader could read the same type in about a second. Such a machine could "learn" at least 500 000 times as fast as a human, if not faster. It would have to have the Asimovian Laws of Robotics built into it.

The author

After serving in the RAF until he was 27, the author worked for various electronics companies until starting a degree course in computing and German at Hatfield Polytechnic, graduating in 1983 aged 30. He has been developing the ideas in this article for over 20 years, having become involved in the subject while designing artificial limbs using myoelectric input; at that time, he developed a novel type of memory using extremely fine glass fibres. He now works for Neosid.
On special offer: Hz, μF and °C

All digital multimeters offer V, A and Ω. Instruments from ELECTRONICS WORLD + WIRELESS WORLD can also give you Hz, μF and °C on selected models with up to 4½ digits of precision. At prices you wouldn’t believe.

DM 7333
- capacitance to 20μF
- frequency to 200kHz (10Hz resolution)
- transistor h_{FE} test
- extra large 3½ digit display
- £67.87

Our special reader offer, negotiated with South Korea’s technology driver, GoldStar, brings you a choice of four top quality digital multimeters. Each instrument has specific facilities to match your needs. Simply choose the model which suits you and fill in the coupon below. Alternatively, use your credit card to order the model of your choice by phone.

DM 6133
- 3½ digit display
- 0.3% accuracy
- £46
FREE POCKET CIRCUIT TESTER WITH EVERY ORDER
Test for AC line, continuity and polarity in a single instrument

The GoldStar DMMs are handheld, battery powered precision instruments with large, clear liquid-crystal displays. All measure DC voltage to 1000V, AC voltage to 750V, AC and DC current to 10A and resistance to 20MΩ. Instruments are supplied ready for use with battery, test leads and, where applicable, calibrated thermocouple probes. GoldStar multimeters carry a one year guarantee.

Please note that quoted prices are fully inclusive of VAT, postage and packing.

GOLDSTAR MULTIMETER ORDER FORM
Please send me model number __________ Price £________

□ I enclose a cheque/PO to the value of £________ made payable to Reed Business Publishing Ltd

□ Please debit my credit card

Expiry date __________

□ Access □ Barclaycard/Visa □ American Express □ Diners Club

Name: Mr. Miss (Initials must be supplied) __________

Address __________

Phone number __________ Signature __________

Please return to Electronics World – Wireless World, Room L301, Reed Business Publishing Group, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Phone orders to Lindsey Gardner on 01 661 3614 (mornings only).

Offer applies to UK only.

DM 8243

* 4½ digit display
* 0.05% accuracy
* capacitance to 20µF (0.1pF resolution)
* frequency to 200kHz (1Hz resolution)
* transistor hFE test
* £88.55

DM 8433

* temperature measurement
* -20°C to +150°C
* capacitance to 20µF
* transiton hFE test
* extra large 3½ digit display
* £72.45
Telepoint firm hits back

One of the four Telepoint consortiums has hit back at claims that Telepoint is doomed because of the competing threat of personal communication networks (PCN).

BYPS, a combination of Barclays, Philips and Shell, claims that the decision by European PTTs to support the Common Air Interface (CAI) as the leading technical standard for Telepoint will be a boost to the UK's fledgling Telepoint industry.

Peter Wright, BYPS' managing director, said: "There has been a lot of comment in the press about the importance of PCN. Much of it has been confused and has led to the perception that the Telepoint industry will not flourish. Telepoint exists now. PCN is still a long way off." It took five years for the Common Air Interface (CAI) standard to reach its current position and it will take at least another five years for PCN to establish a common workable technical standard.

He said: "Telepoint will be the first mass-market mobile communication system and the CAI will be the technical standard which underpins its successful development. CAI will allow manufacturers and consumers to get the best from the cost-effective mobile communication which Telepoint can offer."

An independent report from CMA Research suggests that CT2 cordless telephone technology has a future that is not as bleak as some industry observers believe. Interviews conducted last year among potential users of Telepoint and CT2 found a high degree of confidence in CT2.

Carl Morris, Chairman of CMA, said: "The key to understanding the future prospects of CT2 technology is to appreciate that Telepoint should not be considered the main thrust of CT2." He said that Telepoint is just the first marketable service to use CT2 and pointed out that the next CT2 development after Telepoint is the wireless PBX.

He added: "The general belief among operators, manufacturers and opinion leading prospective users seems to be that CT2 technology will really take off when it is used in the office and business environment."

Hopefully rendered obsolete by the new politics: millimetre wave seeker for the Maverick air-to-surface missile. Millimetre wave radar, with its small system size and high resolution, makes autonomous target detection, acquisition and tracking possible in a missile-size package. This 9.6in diameter seeker was designed and built by Hughes to be evaluated by the US Air Force in captive and free-flight tests. The demonstration programme is being managed at the Elgin Air Force base in Florida.

Computer shielding

Ugly metal shields to protect computer terminals from electromagnetic interference can be a blot on the landscape of a plush office complex. A Kent firm may have the answer. Magnetic Shilds has built a shield made of Mumetal sandwiched between two pieces of teak. As well as looking attractive, it cuts out crosstalk between adjacent terminals.

United Friendly Insurance in London is using them to block out electromagnetic interference from a nearby electricity substation. It can also help to stop rivals spying by remotely reading the data from the computer screen. Michael Eastland from Magnetic Shields said: "It does assist in stopping security tapping, but it does not stop it. It will make it more difficult."

The firm makes two sizes, the largest of which will hold most sizes of terminal, but the firm plans to extend the range to five in the near future. A space at the back of the shield allows access to sockets and ensures a free flow of air.

give your PC more muscle!

Install our plug-in I/O cards in your PC/XT/AT compatible and transform it into a powerful data acquisition and control system.

With a comprehensive range of analogue and digital input and output cards, your PC can be expanded to perform Herculean tasks and you can monitor or control almost anything!

Prices start at £125.00. We also produce an equivalent range of cards for Micro Channel Architecture (MCA).

Why not invigorate your machine NOW!

All Blue Chip Technology products are designed, made and supported in the UK.

Call us free on
FREE 0800 838 184

for literature detailing our full range of plug-in I/O cards for data acquisition and control.

Ask also for information about our industrial computers and complete ruggedised systems.

Blue Chip Technology, Hawarden Industrial Park, Manor Lane, Deeside, Clwyd CH5 3PP
Telephone: (0244) 520222 Facsimile: (0244) 531043 Telex: 61471

CIRCLE NO. 148 ON REPLY CARD

TEK 475 SCOPES
200Mhz. Dual Beam Delay Timebase...TESTED & CALIBRATION VERIFIED...
SPECIAL...£485.00

TELEPHONE:
(0602) 864041 or 864902 for Immediate Attention
(24hrs Ansa)

ANCHOR SURPLUS LTD.
The Cattle Market
NOTTINGHAM
ENGLAND
NG2 3GY

ALL PRICES EXCLUDE VAT & CARRIAGE

ALL GOODS FULLY TESTED & GUARANTEED

IF YOU ARE NOT 100% SATISFIED...YOU GET A 100% REFUND ON THE PURCHASE PRICE!!

ALSO IN STOCK NOW: TF2007A, 20028, 2006, 2008 Signal Generators...PHONE For Latest

TEK/TELEQUIPMENT D755
Oscilloscopes...50Mhz...Dual Trace...
Delay Timebase. C/W Service Manual and Probes...TESTED & CALIBRATION VERIFIED!
£275.00!!

TEK 100Mhz Digital Storage
Oscilloscopes
Excellent Condition
TESTED & CAL VERIFIED
£1200.00!!

HP 1600A LOGIC ANALYSERS
C/W PROBES & LEADS
TESTED
£300.00!!

(0602) 864041 or 864902 FAX: (0602) 864667

CIRCLE NO. 130 ON REPLY CARD
Optical chip doubles capacity

A photonic IC has been developed with what is claimed to be the highest capacity in the world. Such devices use photons as well as electrons to process information.

The device, from AT&T Bell Laboratories, can process 2Kbit of optical information in parallel, twice that of other photonic ICs. It is a single GaAs chip with 2K elements. Each element is a symmetric self-electro-optic effect device. (S-SEED), invented at Bell in 1987. An S-SEED can act as a logic gate, memory cell or switch.

An S-SEED is cascadable and operates as a three-terminal device; it uses differential inputs and outputs. Switching speed is less than 1ns and initial results show that the optical switching energy per device is 2.5pJ.

Holding power is 200nW per beam or 1mW for the entire array.

Prototypes of the new chip are being made and it is expected that it will be used in future optical computers and other optical systems. Edward Labuda, an AT&T executive director, said: "We're exploring the use of these ICs. We're a long way from development and delivery of whole systems using technology, but there is a lot of interest. We're happy to work with developers in other companies to design it into their systems."

The chips are 2mm square and come in a 32 × 64 element array in an open 24-pin package.

Beware the Ides of April

April could be a record month for nervous breakdowns among computer managers. A Friday the Thirteenth following so soon after Fool's Day is an ideal environment for computer viruses to flourish. The perpetrators of these software-wrecking bugs are unlikely to miss such a glorious opportunity.

The National Computing Centre has responded by putting out a fact sheet giving advice on prevention as well as telling you what to do if affected. Tony Elbra from the NCC's security department said: "The best way out of all viruses is by using back-ups."

But, if you haven't already started regular back-ups, it may be too late. The time-bomb viruses that are likely to hit in April may have been lying dormant for up to a year. Any back-up taken once the virus arrives will itself have the virus.

The golden rule if you are affected is not to panic. Do not switch the system off. Do not try using different data or different machines. This may just spread the virus. Contact a help desk for professional assistance. Some viruses can be easily cured if you know what you are doing.

Elbra said: "Most viruses are innocent. They are just a nuisance, such as a bouncing ball on the bottom of the screen. They are generally written by clever people with a warped sense of humour."

Fastest PNP Transistor

Scientists have produced PNP transistors capable of switching at 25GHz, more than three times the speed of present generation PNP products, claims IBM.

Developed for supercomputer applications, the new device technology will allow complementary high-speed silicon technology rather than the all-NPN arrangements currently used at high switching rates. This will enable semiconductor makers to build low power chips without speed sacrifice. Although the advantage has yet to be demonstrated, the advent of complementary bipolar circuits "may revolutionize logic design in the same way that the combination of mos and pmos devices in c-mos produced dramatic advances in mos technology". This will lead to larger, more complex IC systems, says IBM.

Patent Grant for Science Students

The British Technology Group is to sponsor a course on intellectual property law for science and technology graduates.

The £2000 scholarship will be at London University's Queen Mary and Westfield College and it has been introduced as a response to a growth in British-generated technology.

An MSc in intellectual property law does not fall in the academic fields for which postgraduate research funding is generally available and often students have to finance their own studies. The college will decide which applicants receive the BTG grant. BTG hopes the grant will improve its links with the college, whose intellectual property law unit is highly regarded for teaching and researching patent, copyright, trademark and information law in the UK. BTG has one of Britain's largest patenting departments.

• Betronex, Hertfordshire based CAD/CAE system maker, has announced a scholarship programme for students of computer-aided electronic engineering. It will award two students £1000 grants towards tuition costs at a college or university of their choice.

Laser Diode for Fast Optical Communication

A very fast GaAs laser diode for a high bit-rate optical-fibre communications incorporates an external electrical compensating network at up to 2.4Gbit/s, claimed to be a record for a dil-packaged device.

The Philips CQF60 has a LC compensation network that counters the effects of the inductance and capacitance of the encapsulation and feed-through connections, provides perfect 500 impedance matching and avoids electrical reflections. It uses a single Pindipl diluted to the conventional butterfly-style encapsulations.

The diode is a family covering 1.3 and 1.55μm wavelengths that includes devices with multimode and single-mode fibre pigtailed output power levels from 10μW to 1.5mW. Lasers with FP and DFB hetero-junction structures are available and some devices have integral TE cooling.

Update

Optical Switching operates a switch. An invented element GaAs chip with 2K hit is a single photonic IC with 2K. Information is used in future optical computers and other optical systems. Edward Labuda, an AT&T executive director, said: "We're exploring the use of these ICs. We're a long way from development and delivery of whole systems using technology, but there is a lot of interest. We're happy to work with developers in other companies to design it into their systems." The chips are 2mm square and come in a 32 × 64 element array in an open 24-pin package.
METEX & TEST LAB INSTRUMENTS
YOU PAY
TRADE PRICES!

3½ AND 4½ DIGIT Dmm's

ALL WITH CONTINUITY TEST (With Capacitance + With Hfe (With Freq.)

PRO SERIES METEX

3½ & 4½ DIGIT
All With Case, 20A AC/DC
17mm Display (3000 12mm)
3900 32 Range 0.5% (+) £31.50
3910 32 Range 0.3% (+) £56.53
3920 32 Range 0.2% (+) £64.57
3950 32 Range 0.1% (+) £52.93
39624 as 3900 with Bargraph £58.96
4030 4½ Digit 30 Range Data Hold 0.05% (+) £71.00
4050 as 4030 Plus 2 Freq. Ranges £76.38

STANDARD SERIES

3½ DIGIT 12 mm DISPLAYS
2315 17 Range 10 ADC £20.00
2318 33 Range 10 ADC (-) £22.27
2325 33 Range 10 ADC (-) £22.74
2327 35 Range 10 ADC (-) £80.42
2335 32 Range 10 ADC (-) £34.57
2346 36 Range 10 ADC (-) £37.25

METEX AUTORANGE

3½ DIGIT With Data Hold & Freq Counter
M50 21mm display £150.92
M51B 17mm display true RMS £168.29
M51B with Bargraph £184.32

TEST INSTRUMENTS

3000 LCR AC Bridge £102.30
M3020A AC Millivolt Meter 1MHz £39.90
2921 300 kHz Function Generator £98.50
4182A 150 MHz Fr Gen. Plus 6 Digit Counter £172.86
2903A 1 MHz, 41 Gen. plus 6 Digit Counter £168.16
TE200 150 MHz Rf Gen £30.00
(350 MHz Harmonic) £30.00

“POCKET” TEST INSTRUMENTS

YT20 Dual Scale Sound Level Meter 120dB £32.95
2759 VHS Video Head Tester £36.89
1065 Digital Lux Meter - 3 Ranges £46.83
87 Logic Probe £7.63
M625 Logic Probe/Pulse £14.76
300 AC Clamp Meter 600A/3000 £33.50
M70 Add-on AC Clamp Probe £15.68
for Dmm's £15.68
541 Electronic Insulation Tester 500V £75.25
541 Electronic Insulation Tester 1000V £79.98
545 TR Dip Meter 1.5 to 75 MHz £41.88
1021 LCD Temperature & data hold £36.72
3024 LCD Temperature Two 2/P £52.00

AUDIO ELECTRONICS ARE ALSO INSTRUMENT DISTRIBUTORS FOR
HAMEG • FLIGHT • BLACKSTAR
ALTAY • THURBY • THANDAR
CROTECH • LEADER AND HITACHI
PHONE FOR BEST PRICES.

INSTRUMENT CATALOGUE WITH DISCOUNT VOUCHERS
Send A4 SAE £1.50 clamped uk or £2.50 clamped for full catalogue

(Prices correct to 17.10.82)

TELEPHONE YOUR ORDER WITH VISA/ACCESS
OPEN 6 DAYS A WEEK FOR CALLERS

AUDIO ELECTRONICS
301 Edgware Road, London W2 1BN
Tel: 01-724 3564 Fax: 01-724 0322
Sales office 01-258 1851
TRADE/EDUCATION ORDERS ACCEPTED.
EDUCATION AND QUANTITY PRICES AVAILABLE

CIRCLE NO. 126 ON REPLY CARD

March 1990 ELECTRONICS WORLD + WIRELESS WORLD

Better tools to work with

• Antex TCS 240 V 50 W and TCS 24 V 50 W.
• Temperature Controlled Soldering Irons for electronic and electrical applications – especially field maintenance and repair.
• Temperature range 200° to 450° C. Analogue proportional control ± 1%. Max. temperature achieved within 60 seconds.
PLUS
• Antex M-12W, CS-17W, and X-25W. Available in 240 or 24 volt.
• Tools especially designed for fine precision soldering.

Ideal for all electronics craftsmen and hobbyists. For full information on the comprehensive Antex range of soldering irons, power supply units and accessories, please clip the coupon.

Antex (Electronics) Limited, 2 Westridge Industrial Estate, Takshil, Devon PL19 8DE. Tel: 0882 613565 Fax: 0882 617596. Telex 931210595 AE G
Please send me full details of the full range of Antex soldering products.

Name ____________________________
Address ____________________________
Postcode ____________________________

CIRCLE NO. 110 ON REPLY CARD
UPDATE

ATs get chip set boost

Intel has announced two chip sets based on the 386SX and 386DX microprocessors for use on IBM ATs and compatibles. They are claimed to be the only 16-bit two or three component solution for the entire price and performance range of 32-bit 386 microprocessor architecture.

They are called 82340 SX and DX and Young Sohn, an Intel marketing manager based in Santa Clara, said it "is the most flexible and cost effective solution for 386 PC AT systems available today, from entry level to high-performance computers."

The set brings down the total logic and TTL chip count for AT compatible computer systems to less than six components, compared to sometimes more than 25 components in comparable systems.

Samples are available now and production quantities are expected within three months.

- Sevenoaks based distributor Jermyn has announced ex-stock availability of Intel 80486 processors. They have previously been available to selected customers only.

Superchip can perform 200Mflops

Motorola and TRW have built a multi-million device superchip called CPUAX. It contains four million 0.5μm c-mos devices and can perform 200 million floating-point operations a second.

Dr. Thomas Zimmerman, a TRW director, said: "The CPUAX is the computational equivalent of some supercomputers that fill an entire room, require elaborate refrigeration systems and weigh several tons."

The CPUAX measures 2.1in square and weighs 1.5 ounces. When used with a TRW-Motorola 36K-device satellite chip that can test, monitor and configure the on-chip assets of the CPUAX, the CPUAX can repair itself.

Zimmerman explained: "The self-repair abilities of the CPUAX make it possible to work around the inevitable flaws that occur during fabrication. Also they enable the CPUAX to repair itself should any failures occur on the chip during operation."

It is intended to function as the central brain of an advanced digital signal processing system in various air, ground and space based systems.

- Motorola has announced an 88000-based risc CPU that will power a high-performance multi-user system, from Norway-based Dolphin Server Technology. Motorola and Dolphin have a technology agreement which gives Dolphin access to the 88000 instruction set and gives Motorola access to Dolphin’s processor technology.

BT has obscene headache

One in five telephone customers believe they get fairly or very bad value for money from British Telecom, according to a survey carried out by Oftel at the end of last year. Though bad, it is a slight improvement on the figures for 1988. While the figure for very bad value for money stayed the same at 4 per cent there was an improvement from 18 to 16 per cent who rated it fairly bad.

The best figures, though, were on customer satisfaction. Those who were fairly or very dissatisfied dropped from 15 to 9 per cent.

One of the main problems is the number of obscene telephone calls made to women, which is estimated at being more than ten million a year and there is evidence of substantial numbers of other types of nuisance calls. Sir Bryan Carsberg, director general of telecommunications, said: "I have asked BT to carry out a review of its procedures to deal with nuisance calls. I expect BT to be proactive in its efforts to protect customers from these calls, using the facilities provided by modern technology to the full."

Another problem is the number of unsolicited telephone sales calls being made, which has been rising steadily over the years. In a similar survey in 1985, 46 per cent said they had received such calls. The figure last year was a staggering 72 per cent. Sir Bryan said: "Telephone selling is extremely unpopular with telephone customers on the whole."

The good news is that in May last year BT hit its target of 95 per cent of call boxes in working order and this level has been maintained.

RSGB frets over proposed EMC law

A European Community directive and a DTI consultative document have been produced as a prelude to legislation on electromagnetic compatibility planned for mid-1991.

The directive tries to set standards for all marketed products covering radiation and immunity. Radiation refers to unwanted signals from equipment including toy trains, X-ray equipment, telephone exchanges and home computers. Immunity covers the ability of products to ignore the radiation from other devices.

The Radio Society of Great Britain is producing a response to the proposals and is seeking input from radio amateurs, short-wave listeners, amateur radio suppliers and associated bodies.

One of the RSGB’s worries is that it could cost a company £5000 in testing before it could sell anything. Such a figure could be disastrous for small companies. Buyers of kits and second-hand equipment of all kind—not only amateur radio—could be badly hit, since it is proposed that this type of apparatus shall be covered by the legislation.

Flat year for industry

Little growth is expected in the electronics industry this year, but 1991 is looking good, according to a Datquest survey commissioned by Semiconductor Equipment & Materials International (SEMI).

The survey adds that worldwide semiconductor production is expected to double in the next four years from $60 billion in 1990 to $120 billion in 1994. To meet this, more than 100 new wafer fabrication facilities are planned for the next two years, half of them in North America.

Paul Davis, SEMI’s European director, said: "To support the expected increase in production, capital spending will have to increase simultaneously.” And he added that Europe looks a likely target for expansion by Japanese semiconductor makers.

Significantly, equipment suppliers are expecting a 7% growth this year compared with only 3% for semiconductor device sales. Davis said: “This is very good news for our member companies which produce capital equipment for the semiconductor industry.”

206 ELECTRONICS WORLD + WIRELESS WORLD March 1990
EEDESIGNER III
A CAD SYSTEM BY BETRONEX AB, SWEDEN.

- Fully PC compatible, EE Designer is the world's leading CAD/CAE system for PCB design.
- The new upgraded EE Designer III, version 2.2 has been improved to offer even more features:
 - Curved tracks.
 - 96 different apertures for tracks, etc.
 - Additional libraries.
 - Simplified menu structure.
 - Improved autorouters.
 - Largest PC compatible database available.
- To find out more on EE Designer III simply circle the enquiry number below or call Betronex NOW!

Stay ahead with EE Designer.

BETRONEX (UK) LIMITED
1 Wells Yard, High Street, Ware, Hertfordshire SG12 9AS
Tel: Ware 0920 469-31 Fax: 0920 467835

EE DESIGNER: SCHEMATIC CAPTURE, CIRCUIT SIMULATION, PCB LAYOUT, COMPONENT PLACEMENT, AUTO ROUTING, DESIGN RULE CHECKING, PHOTO/PEN PLOTTING

Standard products and custom metalwork

- Standard products include a wide range of 19" rack mount cases, rack mount strips and blanking and ventilation panels
- Bespoke work dealt with quickly and efficiently
- All products manufactured and fabricated in-house

Contact (0734) 311030 for further details
Ian P Kinloch & Company Limited,
IPK House, 3 Darwin Close,
Reading, Berks RG2 0TB

Standard products and custom metalwork

- Standard products include a wide range of 19" rack mount cases, rack mount strips and blanking and ventilation panels
- Bespoke work dealt with quickly and efficiently
- All products manufactured and fabricated in-house

Contact (0734) 311030 for further details
Ian P Kinloch & Company Limited,
IPK House, 3 Darwin Close,
Reading, Berks RG2 0TB

Ready for assembly Prototype in 1-2 hours

- Directly at the CAD workstation
- No waiting for prototype boards
- The alternative

Milling and drilling plotter from LPKF.
- High working rate and maximum working precision.
- Double sided circuit boards, including SMD.
- For every Cad system (Gerber interface).

CIRCLE NO. 142 ON REPLY CARD

CIRCLE NO. 145 ON REPLY CARD
The microwave health hazard

The UK microwave exposure limits were originally determined by irradiating a body to the point where thermal tissue damage occurred, then backing off the power by a factor of ten. Our standards for safe exposure are still derived from this crude test. Meanwhile a number of associative studies have linked cancer and blindness to microwave exposure at power levels orders of magnitude lower. By Simon Best.

Epidemiological studies of RF/MW exposure are far less in number than those of exposure to ELF power frequency fields, Perhaps for obvious reasons. Far less of the general population are directly exposed to such fields, at least at levels that current safety guidelines would lead one to think might be harmful, although some can be exposed to high fields occupational. Thus, some of the earliest studies have been of individuals exposed through a military or similar situation. Between 1953 and 1977 the Russians irradiated the US Embassy in Moscow on a more or less continuous basis, but at levels so far below the US MW exposure safety guideline of 10 mW/cm² that the Americans could not believe they could be harmful.

A US Senate Report was finally produced on the irradiation, in which it detailed the irradiation and health studies performed during and afterwards. For example, from August 1963 to May 1975 the frequency of the beam ranged from 2.56 to 4.1 GHz and the intensity remained at about 5 mW/cm² at the strongest point of the beam. Other beams appeared in due course, boosting the intensity at times to 18 mW/cm². The irradiation stopped altogether in January 1979 but reappeared briefly in 1983 and again in 1988, when a frequency in the 9-11 GHz range was reported producing power levels of 0.01 mW/cm² inside the building.

Some of the health studies and results are difficult to evaluate and tended to be deemed inconclusive. One study of lymphocytes used 350 Moscow personnel, two-thirds of them male, and a group of some 1000 foreign service personnel resident in the US as controls. Although mean lymphocyte counts among Moscow personnel were 41% higher than the control group's, they were present equally among those personnel who had arrived afterwards. They showed a sharp and sustained drop-off after August 1977, when they reverted to the control group's levels.

The most extensive epidemiological study of ex-Moscow Embassy personnel was completed in 1978 by Dr Abraham Lilienfeld at John Hopkins University's School of Hygiene and Public Health. It assessed the mortality and morbidity of all Moscow Embassy personnel and dependants from 1953 to 1976 and matched them with a control group of US personnel who had been stationed in other East European embassies, none of which had reported irradiation.

The analysis of the medical records of some 3100 Moscow personnel and 2336 dependants, 1468 of them children, yielded some provocative results. Although overall mortality favoured the Moscow group, females in the group showed a non-significant but higher than average death-rate from malignant neoplasms. However, Moscow males showed a definitely significant raised rate of protozoal intestinal diseases, benign neoplasms, and diseases of the nerves and peripheral ganglia. Moscow females had a significantly higher rate of protozoal intestinal disease also, as well as complications of pregnancy and childbirth.

As a group, Moscow personnel suffered significantly more eye problems, psoriasis and other skin conditions, as well as depression, irritability, loss of appetite and difficulty in concentrating. And in the children four diseases—mumps, anaemic blood diseases, heart disease and respiratory infections—occurred in significantly higher numbers.

Although the evidence of a health hazard was very strong, the US State Department has continued to deny a radiation effect or liability, though it did try to appease by re-grading the Moscow post to carry a 20% extra salary. Three US ambassadors who served during the period have died of cancer and some former staff are still filing claims against the US Government.

If the microwave irradiation did wholly or partly cause the increased incidence of disease observed, then it was doing so at levels way below the 10 mW/cm² safety guideline then (and still) in force, but at levels around the Russian standard at the time of 10 mW/cm².

US Navy personnel exposed to radar during the Korean War were studied by Robinette and colleagues and Silverman, but no differences reaching significance were found between the high and low exposure groups for malignant neoplasms as the cause of hospitalization and/or death. But when the high-exposure group was divided into three sub-groups to provide a gradient of potential exposure, a trend did appear for increased number of malignant neoplasms in the sub-group...
rated as most highly exposed.

Recently, Dr Stanislaw Szmigielski, of the Centre for Radiobiology and Radioprotection in Warsaw, Poland, internationally known for his work on RF/MW radiation effects on the immune system, has reported on a five-year retrospective study of Polish military personnel exposed to RF/MW radiation over the period 1971-80 and their incidence of cancer. Typical exposure levels were estimated as 4-8 hours daily below 0.2mW/cm² (the Polish 'safety zone'), although some, defying the safety rules, reported brief exposures to levels up to 20 mW/cm². Szmigielski summarised his findings in his contribution to the magnum opus Modern Bioelectricity (a book of over 1000 pages, with 48 contributors on virtually every area of bio electro magnetics., as follows:

* The risk of developing clinically detectable neoplastic disease was about three times higher for personnel exposed occupationally to MW/RF radiations. The highest risk appeared for malignancies originating from the haematolymphatic systems (morbidity about seven times higher). Other more frequent neoplasms were located in the alimentary tract and in skin (including melanomas).

...Lester and Moore... reported an elevated risk of cancer close to (airport) radar installations. They observed that the highest cancer incidence tended to occur on leading terrain crests in the path of transmissions with the lowest occurring in the valleys...

* The highest risk factor of cancer morbidity related to occupational exposure to MW/RFs appeared for subjects at the age of 40-49 who had a 5-15 year period of exposure.

* Morbidity rates of neoplasms in personnel exposed occupationally to MW/RFs showed strong correlation with the period of exposure.

* Neoplasms of the same localization and/or type developed earlier (by about 10 years) in personnel exposed occupationally to MW/RFs than in those not working in the MW/RF environment.

Referring to immunological effects, Szmigielski and his co-workers feel that research to date suggests that the immune system exhibits a 'bi-phasic' reaction to RF/MW radiation, with initial exposure stimulating the whole system, followed by a gradual suppression of the whole immunity with increasing exposure and/or power densities.

In a recent communication on his current prospective study of the same population from 1986-90, Szmigielski reports that an analysis of the data to the end of 1988 'supports our earlier results from retrospective studies, although the differences between the exposed and non-exposed groups are somewhat smaller (although still highly statistically significant) than those found for the decade of 1971-1980.'

Preliminary results apparently indicated a doubling of the incidence of all forms of cancer among those exposed to RF/MW radiation.

Studies of those occupationally exposed in a non-military situation have also reported health effects. Vagero and Olin, in a study of cancer in the Swedish electronics industry, found a number of elevated incidences: for example, the relative risk for nasopharyngeal cancers in the radio and TV industry was 3.7 (CI 95% 1.0-13.5).

Mihlman, in a follow-up of a previous finding, found that a sample of 2,485 amateur radio operators showed a significant excess of deaths due to acute myeloid leukemia, multiple myeloma and non-Hodgkin's lymphomas.

Zaret has observed a particular type of posterior, subcapsular cataract
One study of lymphocytes used 350 personnel and a group of some 1000 controls... Mean lymphocyte counts were 41 per cent higher than among the control group...
different standards for different frequency bands.

In the UK, the NRPB published its exposure guidance for frequencies up to 300 GHz in May 1989, although this is due for revision in 1990 according to its author, Dr John Dennis. For frequencies above 30 MHz the NRPB recommends 1, 2.5 x f (GHz), and 5 mW/cm² for the ranges 30-400MHz, 0.4-2.0GHz, and 2-300GHz, respectively. At its lowest the NRPB guide line is still 10 times above the 100μW/cm² level being considered by the ANSI revision subcommittee and approximately 100 times above the levels at which the above Chinese study observed significant differences in those chronically exposed to micro waves.

The Ministry of Defence also published its guide to the safe use of RF energy (from 10kHz to 300GHz) in 1989. While not attempting to set any numerical limits, the MoD document summarily dismisses non-thermal RF effects in three sentences, without any discussion of specific studies, and endorses the ANSI 10 mW/cm² standard without giving any indication of the debate and revision currently in progress. Thus, its grossly biased presentation of the state of research findings and debate conceals more than it reveals and gives the impression that there is no need even to research the health status for Forces personnel exposed to RF/MW radiation.

It is to be hoped that when the NRPB revises its Guidance this year a more positive and informed attitude prevails and that due consideration is given not only to all the accumulated evidence, epidemiological, animal and cellular, but also to the growing RF and MW sources in the environment— from radio and microwave communication systems, radar, cellular phone systems and increasing satellite TV `footprints', and their complex possible interactions — that a large part of the population is now increasingly and chronically exposed to.

Simon Best is a medical journalist specialising in the biological effects of electric fields and co-author of the book 'Electromagnetic Man' together with Dr Cyril Smith. Simon Best holds a degree in psychology.
MAKING ELECTRONICS C.A.D. AFFORDABLE

- Are you still using tapes and a light box?
- Have you been putting off buying PCB CAD software?
- Have you access to an IBM PC/XT/AT or clone?
- Would you like to be able to produce PCB layouts up to 17” square?
- With up to 8 track layers and 2 silk screen layers?
- Plus drill template and solder resist?
- With up to eight different track widths anywhere in the range .002 to .531”?
- With up to 16 different pad sizes from the same range?
- With pad shapes including round, oval, square, with or without hole and edge connector fingers?
- With up to 1500 ICs per board, from up to 100 different outlines?
- With auto repeat on tracks or other features - ideal for memory planes?
- That can be used for surface mount components?
- With the ability to locate components and pads on grid or to .002” resolution?
- With an optional auto via facility for multilayer boards?
- With the ability to create and save your own symbols?
- That can be used with either cursor keys or mouse?
- That is as good at circuit diagrams as is at PCB’s?
- Which outputs to dot matrix printer, pen-ploter or photo-ploter (via bureaux)?
- Where you can learn how to use it in around an hour?

SMITH CHART PROGRAM Z MATCH CIRCUIT ANALYSIS BY COMPUTER ANALYSER II

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and BBC B, B+ and Master.

Z-MATCH - Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.

Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES, MICROSTRIP, STRIPLINE and WAVEGUIDES.

The program takes account of TRANSMISSION LINE LOSS, DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY.

Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES

£130 ex VAT for PC/XT/AT etc.
£65.00 ex VAT for BBC B, B+ and Master

All major credit cards accepted
WRITE OR PHONE FOR FULL DETAILS - REF WW

Number One Systems Ltd

BRITISH DESIGN AWARD 1989

£49 inc VAT

FOR IBM PC/XT/AT and clones inc. Amstrad 1512, 1640, R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER II" — Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. AND CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop".

Can save days breadboarding and thousands of pounds worth of equipment.

£195 ex VAT for PC/XT/AT etc.
£130 ex VAT for BBC B, B+ and Master

Harding Way, St Ives, Huntingdon Cambs, PE17 4WR
Tel: St Ives (0480) 61778 (5 lines)
We provide full after-sales support with free telephone hotline help service. Software updates are free within 6 months of purchase date.

CIRCLE NO. 109 ON REPLY CARD
Observing short pulses at low PRF

While setting software time constants in a microprocessor-based system, it became apparent that low to mid-priced oscilloscopes are useless for observing input-port enable pulses of 1µs or less at a repetition of 30Hz or 300 baud. This circuit, using a 4528 cmos dual-monostable IC, should help.

MV1 produces 1ms pulses, while MV2 produces 5ms pulses. As the 4528 is retriggerable, the Q output of MV2 stays high at an input pulse rate of 200Hz or above. Below 200Hz, the Q output of MV2 produces a 5ms pulse waveform with a mark/space ratio that varies with decreasing frequency. This waveform is integrated by R4 and C2 to produce a varying DC, which is applied via D1 to auxiliary timing resistor R5.

Above 200Hz or 2000 baud, R5 is in parallel with R4, and the output pulse from MV1 is 20µs. Between 200 and 60Hz, the output of MV1 varies from 20µs to 1ms. Below 60Hz, MV1 produces 1ms pulses.

The unit can be powered by two miniature alkaline cells (3V) or three miniature button NiCd cells (3.6V). The NiCd cells can be charged by applying 12V DC to the input connector.

Darren Yates
French's Forest
New South Wales

Low voltage switch

This switch for high-power applications has the advantages of a simple drive circuit, absence of simultaneous conduction, and a Vce(min) of 0.9V. It operates on 2.6V.

Transistors Tr1 and Tr3 work as comparators, Tr2 and Tr4 as regulators and Tr5 and Tr6 as power switches. Transistors Tr1 and Tr3 are equivalent to Russian part numbers KT301, Tr2 and Tr3 as KT363, Tr5 as KT817, and Tr6 a KT814. It should be acceptable to use standard p-n-p transistor equivalents.

Serge Khazanov
Leningrad
USSR
CIRCUIT IDEAS

40W step-up DC/DC converter

This circuit lets a 12V car battery supply equipment requiring a higher voltage. It is a switch-mode design with a fixed frequency of 35kHz and uses a PWM method of providing regulation. Input is 10.14V; output from V_{in} to 24V using resistors shown.

As the output voltage is adjusted, the maximum available output current will vary to keep the output power product about 40W. Output regulation was about one per cent but there is a 35kHz ripple at full load of 200mV.

Most of the lost power is given up as heat in the mosfet switch and the output diode, so adequate heat sinking of the BUZ71 is needed.

Care should be taken to make sure the core for the inductor L1 can cope with the switching currents and the required output without saturation. The current limit facilities of the SG3524 have not been used because of the variable output voltage. But if a fixed output voltage is needed this can be brought into use by sampling the current in the drain of the BUZ71 and comparing it to a reference voltage using the current limit sense circuits on pins 4 and 5 of the IC.

Anton Forte

Electronic compass helps the blind

This circuit produces an audible output with a varying pitch depending on its orientation to the earth’s magnetic field. The accuracy is not high but it can be used as a hand-held compass by blind people. There are already commercially available compasses for the blind based on the traditional suspended needle. This though is unsuitable if the sense of touch is impaired.

The heart of the device is the UGN-3501M Hall effect sensor IC₁ which has a monolithic Hall cell and a linear differential amplifier with differential emitter follower outputs. Typical sensitivity is 1.4mV/gauss. It is unsuitable for measuring small fields such as the earth’s since the drift is comparable with the signal. To overcome this, a flux concentrator in the form of a 6cm by 9mm ferrite rod is glued to each face of the IC.

The two outputs are fed into a differential amplifier IC₂. The output voltage for zero input can be adjusted by R₁₃. C₁ inhibits parasitic oscillations. The output of IC₂ is fed into a voltage-to-frequency converter based on the 555 timer IC₃. Its output drives the transistor in the grounded emitter configuration with R₁₂ used as a current limiting resistor. An audible note is produced from the loudspeaker. The circuit draws a total current of about 50mA.

R₃ acts as a pitch control giving an output of about 1kHz. In the circuit shown the pitch varies by an octave as the orientation is changed from north to south.

W. Gough
Department of Physics
University of Wales
Cardiff

ELECTRONICS WORLD + WIRELESS WORLD March 1990
Sauna is exceptionally easy to use. To create a sophisticated 3D thermal model, you simply choose a model type (heat sink, source, enclosure, board etc), enter dimensions and select the necessary materials from Sauna's menus. All the other details are handled by Sauna. Within just minutes, you will have a comprehensive, accurate model for an entire electronic enclosure, circuit board or heat sink. Seconds later, Sauna will have predicted a complete set of temperatures. There is no other package available which can so quickly model and analyse a complete electronic unit.

Moving heat sources, repositioning circuit boards, changing copper thickness, changing from ABS to steel for the enclosure, painting it, plating it, adding a fan – you can experiment with all these variables with the results appearing in seconds. A colour display will show you a heat map in different colours while you use your judgement to decide on the best arrangements. Then you can put it on record with a report.

THE COSTS. The biggest cost with most design software is your learning time. SAUNA almost does not need its tutorial-style manual and it does not need a heat transfer expert – it holds the expertise. So after a couple of hours of tutorial, you will be using it for real. Take off the savings in time, savings in quality problems, the saving of a heat transfer expert and add improved reliability – the cost of £995 + VAT is almost incidental!

In keeping with Those Engineer's circuit simulation software, SAUNA runs on PC compatible hardware and is supported by engineers who use it. Please contact us for all your design software requirements – analogue & digital simulation, schematics and PCB layout and control system simulation.
HITACHI OSCILLOSCOPES from £330

The highest quality. The Hitachi name is synonymous with quality and reliability and is backed by an extended warranty on every model.

The keenest pricing. With prices starting from £330 + VAT for a 20MHz dual trace model, the price-performance ratio can not be bettered.

The largest range. Totalling 26 models the Hitachi range covers every bandwidth from 20MHz to 200MHz plus DSOs to 200MS/s.

And immediate delivery. We can supply any model from stock. Our sales engineers can arrange an on-site demonstration. Ask for full details of the Hitachi range.

Thurlby
Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

CIRCLE NO. 129 ON REPLY CARD

DSOs – a low cost alternative from Thurlby

If you already have an oscilloscope and are looking for a high performance DSO, look at the DSA511 and DSA524 digital storage adaptors. Both offer exceptional performance and versatility at very low cost – from £445.

- 10MS/s or 20MS/s sample rate, 1K or 4K stores
- 20MHz or 35MHz storage bandwidth
- Dual Channels, 2mV per division sensitivity
- Full digital control and waveform transfer
- Multiple save memories, waveform processing,...

There’s much more to say, so send for the full data:

Thurlby
Thurlby-Thandar Ltd., Glebe Road, Huntingdon, Cambs. Tel: (0480) 412451

CIRCLE NO. 144 ON REPLY CARD

KESTREL ELECTRONIC COMPONENTS LTD.

- All items guaranteed to manufacturers spec.
- Many other items available.

‘Exclusive of V.A.T. and post and package’

<table>
<thead>
<tr>
<th>1+</th>
<th>100+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z8530</td>
<td>2.00</td>
</tr>
<tr>
<td>Z8536A</td>
<td>2.00</td>
</tr>
<tr>
<td>Z80B CPU</td>
<td>1.20</td>
</tr>
<tr>
<td>Z80B CTC</td>
<td>1.20</td>
</tr>
<tr>
<td>Z80B (CMOS) CPU</td>
<td>1.40</td>
</tr>
<tr>
<td>Z80B (CMOS) CTC</td>
<td>1.40</td>
</tr>
<tr>
<td>74LS00</td>
<td>0.13</td>
</tr>
<tr>
<td>74LS125</td>
<td>0.14</td>
</tr>
<tr>
<td>74LS138</td>
<td>0.14</td>
</tr>
<tr>
<td>74LS175</td>
<td>0.14</td>
</tr>
<tr>
<td>74LS240</td>
<td>0.28</td>
</tr>
<tr>
<td>74HC02</td>
<td>0.12</td>
</tr>
<tr>
<td>74HC147</td>
<td>0.20</td>
</tr>
<tr>
<td>74HC373</td>
<td>0.22</td>
</tr>
<tr>
<td>74HC370</td>
<td>0.12</td>
</tr>
<tr>
<td>74HC153</td>
<td>0.27</td>
</tr>
<tr>
<td>74HC373</td>
<td>0.22</td>
</tr>
<tr>
<td>74HC74</td>
<td>0.22</td>
</tr>
<tr>
<td>1.8432MHz Crystal</td>
<td>0.82</td>
</tr>
<tr>
<td>4 meg crystal</td>
<td>0.60</td>
</tr>
<tr>
<td>6 meg crystal</td>
<td>0.60</td>
</tr>
</tbody>
</table>

All memory prices are fluctuating daily, please phone to confirm prices.

178 Brighton Road, Purley, Surrey CR2 4HA
Tel: 01-668 7522. Fax: 01-668 4190

CIRCLE NO. 124 ON REPLY CARD

SIGNAL ANALYSIS on a PC

A plug-in card and software from Radioplan give your PC AT/XT these capabilities:

- Oscilloscope
- FFT Spectrum Analysis up to 4096 points
- Digital recording up to 500 kBytes
- Sampling rates up to 500 kHz
- Waterfall display of Spectrum frames
- Spectrograph with colour-coded amplitude

Applications include:

- Speech & acoustic signal analysis
- Radio signal modulation analysis
- Vibration analysis
- Impulse testing

Send for your brochure or demonstration disk to:

Radioplan Limited
Unit 14, Cheltenham Trade Park, Aire Road, Cheltenham, Gloucestershire GL50 8LZ
Telephone (0242) 224304, Telefax (0242) 227154; Telex: 437244 CMINTL

CIRCLE NO. 120 ON REPLY CARD

216 ELECTRONICS WORLD + WIRELESS WORLD March 1990
TTL compatible optical fibre data link

Off-the-shelf components can be used to make this 100bit/s to 40Mbit/s TTL-compatible optical fibre data link much cheaper than commercially available products.

The optical transmitter is based on the 74F38 quad open collector NAND buffer. Gate 1 reshapes and buffers the TTL data input and gates 2 and 3 connected in parallel drive the led. The parallel design reduces each gate’s output current by half. It also gives a faster led turn-off time because it halves the impedance that the led junction capacitor has to discharge through.

Using a low power led, the launched optical power in a 200μm PCS step-index fibre was about 60μW, giving about −12dBm. This was with a pull-up resistor of 56Ω and an led pumping current of 60mA. Optical rise and fall times were less than 6ns.

The optical receiver front end is made using a pin diode detector and a differential I/O video amplifier NE592 with an adjustable differential voltage gain from 0 to 400. The pin-compatible MC1733 amp can also be used.

The photocurrent from the incident light on the pin diode flows in the 200Ω resistor, generating a voltage at the amplifier input which is amplified with a gain of 100. Photodiode responsiveness is 0.5A/W giving an overall optical power to voltage conversion ratio of 5500V/W single ended.

Using the transmitter, the measured rise and fall times at the video amplifier output were 11.5ns, indicating a bandwidth of 30MHz and allowing digital transmission up to 40Mbit/s. The other input of the video amp is connected through a 220Ω resistor, bypassed by a 47μF capacitor to ground to balance the amplifier input bias currents and voltages.

The differential output of the receiver is AC coupled to an LM360 comparator via the 1μF-10kΩ capacitor-resistor combination, allowing for a minimum bit rate operation of 40bit/s. The use of a 0.1μF disc ceramic capacitor across the 1μF tantalums stabilizes the high-frequency operation. The comparator is driven differentially to reduce the effect of common-mode noise and its differential output provides the TTL data and data signals.

Successful operation through 1km of optical fibre (200μm PCS) has been demonstrated at 40 Mbit/s giving a better than 10−9 bit error rate.

Z. Ghassemlooy
City Polytechnic
Sheffield; and
I. Darwazeh
UMIST
Manchester

LC oscillator

Maintaining a wide tuning range in an LC oscillator needs some control to stop the output clipping. This circuit has no series capacitance but the approximate 30pF input capacitance of the emitter follower increases minimum capacitance.

With 100pF coupling the tuned circuit to the emitter follower, the effective tuning ratio is about 1:4 rather than the theoretical 1:7. Reducing the coupling capacitor to 22pF increases the ratio to 1:5.

The circuit works from 2 to 10MHz with essentially constant amplitude. The amplitude does, though, drop slightly at the end of the range. Replacing the first transistor by a decent RF device would improve the tuning range further.

Frantisek Michele
Brno
Czechoslovakia
Programmable timer

This 0 to 10min timer circuit was devised to control exposure times in a printed circuit process and its main advantage is that the time can be pre-set and, by pressing two switches, re-entered and started.

The tens of seconds digit will count from 0 to 5 using a 74157 data selector which either loads in the BCD switch value at pre-set or when a count is started. A fixed value of 6 is loaded at a count of 9 by decoding the outputs of the 74192 presettable up/down counter and loading the value 6 using Pin 11.

The minutes and seconds count (1 through 9 and are only pre-set for start purposes. Diodes detect zero count and IC1c prevents further clocking down. To over-ride this zero count on starting a new count, a 74123 monostable pulls briefly the reset line high. This is triggered from the start pulse generated from the start button. When operating the pre-set switch this pulse lets the counters be pre-set and the clock gate enabled. The other half of the 74123 generates a buzzer enable signal to indicate timeout.

A simple toggle using two NAND gates is used for pre-set and start and the NOR gate allows either pre-set or fixed values to be loaded in the tens of seconds counter.

C.C. Clarke
Kenilworth
Warwickshire

Don't waste ideas

We prefer circuit ideas contributions with neat drawings and widely-spaced typescripts but we would rather have scribbles on the back of an envelope than let good ideas be wasted.

We pay for all published circuit ideas. You can expect a minimum of £15, increasing to £40 for the best ones.
GET SHARP

Earn the chance to win a Sharp Personal Organiser in our Prize draw when you introduce a new reader to Electronics World.

Add your name and address to the coupon, then invite colleagues to complete it by taking out a subscription to Electronics World. If we receive their subscription before 30th March 1990 they will qualify for over 25% discount off the normal price:

Uk £22 for a year. Overseas £26.00 for a year.

As soon as we’ve received their subscription, your card will be entered in our prize draw.

Draw Rules
1. The prize in the draw must be won. The winning name will be selected at random out of a box by the Publisher of Electronics World.
2. The closing date for entries is 30th March 1990 and the draw will be conducted on 15th April 1990.
3. We reserve the right to publish the winner’s name.
4. Employees of Reed Business Publishing Group or any of its associated companies are ineligible, as are members of their immediate families and all persons under the age of 18.
5. The draw and prize allocation will be witnessed independently by a Commissioner of Oaths. No correspondence will be entered into concerning the result of the draw and no liability can be accepted for entries lost or rendered unrecognisable in the post.

Please enter your name and address here and ask your colleague to complete the rest.

NAME
ADDRESS
POSTCODE

Please send this coupon Freepost to Iain McGraw, Electronics World + Wireless World, FREEPOST, Ch 2297 Room H316, Quadrant House, The Quadrant, Sutton, Surrey SM2 5BR.
Solar magnetic storms are the precursor of auroral ionization and deeply affect radio propagation. Although severe storms can induce power surges which have enough energy to knock out circuit breakers, we still have gaps in our knowledge about their origins and behaviour. Anthony Hopwood looks at the development of simple equipment which will measure the relative intensity of magnetic storms precisely.

A sensitive compass (magnetometer) will display the normal diurnal magnetic variation as a very small shift around zero, peaking to the west about 1300 UT, and to the east about 0700.

Unfortunately sensitive magnetometers do not tolerate normal domestic activity and react alarmingly to any nearby ferrous movement or domestic electrical activity.

A less pernickety detector of the magnetic storm triggering an aurora is an earth-current monitor. The variation of current in long wires earthed at both ends was noted as early as 1848 when Barlow presented a paper to the Royal Society on spontaneous current flow in the early earth-return telegraph lines. At times the current flowing between the earth plates along the telegraph line was strong enough to work the system without a battery!

Barlow's original observations were enlarged by the Rev. Lloyd who carried out a detailed analysis of the diurnal and sporadic variations of current in telegraph lines between Rugby and Derby and Derby to Birmingham.

His conclusions were published in the Proceedings of the Royal Irish Academy in 1861-2. In them he notes the correspondence between line current disturbances and deviations of the magnetic compass at the Dublin Observatory.

He also mentions that the French
Physicist De la Rive "ascribes the current variations to a direct electrical action emanating from the sun" – a hypothesis which he attempts to demolish in his own work. To date I have not yet pinpointed De la Rive's original reference which may well be the earliest intimation of what we now know to be the true origin of magnetic storm phenomena recorded over 120 years ago.

Updated monitor

To measure accurately earth currents, the whole system must be isolated from the local mains earth, otherwise leakage, transients and voltage drops from local domestic and industrial consumers will obscure the relatively small long period natural changes. It is possible to use a fet input DC opamp system running off batteries, carefully isolated from the mains, which will not introduce spurious mains borne signals. I tried another way...

A sensitive galvanometer will detect the effect without amplification. I used a 10mA FSD recording microammeter as a totally non-electronic earth current recording system. This, like the Victorian telegraph systems is totally floating and isolated from the local mains.

Text books suggest that the theoretical earth current FD is at least 1volt/meter on a NS axis. An activity graph is shown in Fig. 1 (by R. Saunders). In fact using 6 x 2in copper foil electrodes buried on an EW and NS axis some 30m apart, currents of 1.5 and 4µA respectively were recorded between the pairs of plates once the chemical battery effects had been exhausted by shunting each couple with a permanent 2kΩ resistor.

The diurnal variation was very slight, being less than 0.1µA on the NS axis. There was one surprise – persistent long period wave trains sometimes appeared on both input channels and to a lesser extent on the reference mechanical zero channel – they turned out to be the long secondary waves from distant earthquakes, recorded electrically and confirmed mechanically thanks to the inherent seismic sensitivity of the 6in long printing pointer on the galvo!

The plates did indicate magnetic storms too – when the recording was checked against RSGB reported auror-
al events – but at such a low sensitivity that the record was not very useful.

The problem was insufficient distance between the plates which were restricted to the boundaries of my garden.

Not wishing to forgo the simplicity and reliability of the recording galvo I decided to tap an unorthodox but accessible distant earth for the NS signal axis at the Upton-on-Severn telephone exchange – so I wrote to BT Engineering at Worcester …

They readily consented when they learned that I only wanted a few BT microamperes from the earth return line, and that there would be no mains earth link.

A line was strung from the junction box on the house gable to the lab, and a 22kΩ resistor was fitted in the box to set the earth current at about 3μA. The original earth plates were then linked together to make a distributed local earth to complete the circuit via the recorder.

The first magnetic storm logged by the system started about 1300BST on 20 October 1989 when the earth currents started to carry an intermittent wave of 15/20 minute period, and the magnetometer showed a slight deviation.

At 2000 a large earth current transient occurred (Fig. 2) accompanied by an initial westward swing of the magnetometer followed by a rapid excursion to the East.

A check on the short wave showed an HF fadeout extending down to 14MHz.

The night-time earth currents remained disturbed with an easterly deviation on the magnetometer of 1.5 divisions (6mm). Cloud prevented any visual auroral observation.

Next morning HF propagation remained poor with normally audible transatlantic stations blacked out.

At 0830 BST, the magnetometer and earth current recorder showed increased activity, with vigorous current and magnetometer swings reaching a maximum Eastward deviation of 2.5 divisions (10mm) at 1100.

Instability continued all day, with a further sudden large magnetometer and current excursion at 1915. (Fig. 3).

Still being under cloud, I decided to check for radio auroral activity. My own standard ‘test’ for this is the BBC World Service transmitter on the 49m band which comes in at S9 on the meter. During auroral conditions, the signal stays at S9 but acquires rapid auroral echo and flutter to such an extent as to be unintelligible! This effect is due to the multiple additional propagation paths caused by auroral ionisation which play ducks and drakes with the signal on its short journey to my aerial … The magnetometer and earth currents remained disturbed until 0100.

Transient excitement

Next day there was still a slight 2.5mm. Eastward ‘hangover’ on the magnetometer (which decays over several days after any magnetic storm). My test for the ‘end’ of the storm is when the magnetometer returns to zero, and WWV from Colorado can be heard during the day on 20MHz.

Two features of the earth current recording which excited my curiosity were the large transients at 2000BST on 20.10.89 and 1915 on 21.10.89. The spacing seemed oddly coincident so a watch was kept on the earth current recording around 1830 on 22.10.89. This also showed a smaller but distinct isolated transient, with an even weaker but still distinct event around 1745 on 23.10.89.

A check back on the week’s recording before the storm showed no earlier similar events, so what mechanism caused them?

It was time to consult an astronomer. I asked Michael Guest FRAS if the moon might have blocked the particle stream from the sun at those times? ‘Unlikely’ he said ‘it was nearly at right angles to the Sun – Earth axis and it has no magnetic field’. The consistent 23.3 hour interval between successive transients certainly suggested a cyclic origin – but how?

The prime suspect was the moon, but this seemed even less likely when tables showed the lunar/terrestrial period to deviate more than two hours every 24 from the observed transient period.

The precession of the earth current transient from true rotation period is more likely to be due to the compression and recovery of the sun-facing magnetosphere and its internal shock wave structure in response to the incoming solar emissions. In that case the transient time may provide a rough indicator of the strength and velocity of the solar blast wave from a flare.

In any event it seems likely that any magnetospheric shock or standing wave effect that is big enough to induce surface earth current transients during a magnetic storm will have already been regularly observed by orbiting spacecraft, so we may not have to wait long for a full explanation of this intriguing observation.

REFERENCES:
BARLOW, ‘On the Spontaneous Electrical Currents observed in the Wires of the Electric Telegraph’ paper, Royal Society, 1848.
NOW YOU CAN LEARN ABOUT THE TRANSPUTER...

The most powerful microprocessor in the world using concurrent processing.

- State of the art technology!
 With major computer companies "designing-in" the Transputer, it is imperative that today's technology does not remain a mystery.
 In short, the Transputer Training System gives you a unique low-cost method of obtaining practical experience - fast!

- Saves your time
 Unpack, plug in and start learning. Everything you need including self-teach manuals in one package.

- Saves your money
 The complete system costs just £995.00 + VAT and uses any IBM Compatible PC with 640K RAM and hard disk as the host computer.

- Now with ½ price course option
 Attend our special 3 day course for just £200 extra if order with the system. Normal price of course is £400.

The unique Transputer Training System has been designed specifically for education and is therefore ideal for use in colleges and universities. The excellent self-teach manuals, included with the package, mean that it can also be used by engineers to rapidly evaluate the transputer and utilise its amazing power in real time applications.

The system is supplied with everything you need including:
- Interface card - takes a "short slot" in the PC and provides link in/out and control lines.
- Cable - links the interface card to the Transputer Module.
- Transputer Module - complete T414 based subsystem, supplied in its own sturdy case.
- Power supply - independent power to transputer if required.
- Development Software - folding editor, OCCAM compiler, downloader, terminal emulator and utilities, hosted on the PC.
- Example programs - no less than 28 fully worked examples.
- On Screen Tutorials - learn how to use the system 'on-screen'.
- Hardware Manual - full circuit diagrams, timing diagrams and circuit description.
- TDS User Guide - self contained tutorial guide to using the development software.
- Introduction to OCCAM - a complete self-teach course in OCCAM.
- OCCAM Programming Manual - the definitive guide to OCCAM.
- T414 Engineering Data - full specifications for the Transputer.
- C012 Engineering Data - full specifications for the Link Adapter.

The Transputer Module houses a 15 MHz T414 with 256K RAM and is external to the PC, so that the hardware is fully accessible. The module includes a wealth of test points, 14 status LEDs, 16 I/C lines, EVENT input, independent power supply, prototyping area and four 15 way D connectors, which allow access to the 10 M bits/sec links and control signals.

Full hardware and software support is provided for multi-transputer applications. Simply plug additional Transputer Modules into the spare link connectors using the cables supplied. In this way networks of any configuration using any number of transputers may be realised! Each module can run one or more concurrent processes and has access to its own local 1/4 Mb RAM and I/O system.

The I/O connector links directly to our Applications Board, which enables the Transputer to control DC motor speed, temperature, analog input/output, and much more!

CIRCLE NO. 118 ON REPLY CARD

FLIGHT ELECTRONICS LTD.
Flight House, Ascupart St, Southampton, SO1 1LU.
Telex: 477389 FLIGHT G Fax: 0703 330039

Call 0703 227721 today for a free full colour catalogue.

AVAILABLE NOW FROM STOCK!
John Martin looks at an add-in board which can turn a PC into a four channel 6½ digit voltmeter.

Software which is a joy to use completes the icing on the cake. The cake? An evaluation board which turns a standard PC into a high resolution voltmeter. The kit comprises the AD1175K 22bit A/D converter module mounted on the ACS505 evaluation mother board which plugs directly in the backplane of an IBM PC/XT/AT or compatible.

The 5½in disk contains a colourful menu-driven program which exercises the functions of the converter. It lets the user view the voltages on the analogue input ports and change some of the system's configurations like gain and offset. Any changes to the configuration can be stored in the internal non-volatile RAM.

The disc also contains: the same program in Basic; the Basic program listing; a simpler Basic program to do conversions; and a help-screen file for use with the executable programs. A screen-shot of the main menu of the program is in Fig. 1.

The user guide is well written and presented, containing absolutely everything that a user could wish to know about the internal and external operation of the converter and its evaluation board including circuit diagrams and board layout. Clear explanations are given for setting the board's base address and for selecting 50 or 60Hz mains frequency.

The program's functions and menus are well described as are the connections to and from the board and the commands that can be used. In fact the documentation told me things about my PC that are not covered in its own user manual! For instance I did not know that the IBM I/O address map contains a reserved area for prototype boards starting at address 300hex. Although I did not need this information, as the ACS5005 comes with a default address of 300hex preselected, it's still nice to know.

The converter is shipped separately from the mother board and needs to be plugged-in. This is simple enough but antistatic handling precautions should be observed. As mentioned, the base address of the board is factory set to 300hex but can be altered using the DIP switches on the board. Once installed, this setting can be changed using the supplied software.

The jumper link which selects 50 or 60Hz was factory set to 60Hz and so was changed to 50Hz. This is necessary to be compatible with the analogue input modules which have different gains for the various frequency settings.

The converter is a high accuracy, auto-zeroing 22bit module using a multislope integration technique to provide 16 conversions a second, or 20 a second with a 50Hz mains supply. It has a high impedance differential input with a nominal range of ±5V. The digital inputs and outputs are LSTTL compatible for direct interfacing with a microprocessor bus. Its power requirements are ±5 and ±15V.

The mother board accepts the AD1175K module which simply plugs into the board. It contains necessary address decoding logic, a four-channel analogue input multiplexer, a 5 to ±15V converter and links and switches to select the base address of the unit and whether a 50 or 60Hz mains supply is used. The board fits easily into an expansion slot of an IBM-compatible PC and provides the user with two 15-pin D-type connectors.

The male connector is for the analogue inputs but also provides access to the ±15V supplies and the internally generated reference voltage of ±6.35V. The female connector provides an 8bit I/O port with flags for use in interfacing with external equipment for control applications and so on. Conversion may also be triggered using a pin on this connector.
to ensure maximum supply-frequency rejection by the converter. The board fitted easily into the expansion slot of an Amstrad PC1640, leaving the D-type user connectors readily accessible at the side of the computer. Unfortunately, no mating connectors were supplied but they are common enough.

For testing, analogue channel #1 was connected to a variable power supply with a nominal output voltage of -4V; channel #2 was wired short-circuit and earthed; channel #3 was connected to an alkaline cell of nominal voltage 1.5V; and channel #4 was also wired as short-circuit and earthed. The evaluation program "AC5005.EXE" was run with the simple command "AC5005" and the "Work with analog port" option selected from the main menu. The results can be seen in the "messages" box in the screen-shot of the analogue menu in Fig. 2.

Inputs #2 and #4 should have been 0V but showed varying readings from 0V to as much as +7µV shortly after switch-on, reducing to a maximum of +5µV after a 45min warm-up period. Similar fluctuations occurred in the readings of channels #1 and #3. This noise is probably due to the electrically noisy environment inside the computer and the connections between the D-type connectors and the ADC module are PCB tracks of some length, also containing an analogue multiplexer. The noise quoted on the manufacturers data sheet is 5µV peak to peak.

A simple test of linearity used one channel of the system to measure the voltages of three constant-temperature 1.5V alkaline cells, first individually and then in series. The error between the arithmetic sum of the individual voltages and the actual series voltage was 0.001295%.

Although the analogue inputs are described as true differential, it should be noted that the cold leg of the differential pair is for remote ground sensing and should be within ±100mV of the analogue ground. This restricts the use of the kit if non-ground-referenced voltages are to be measured, or if the kit is to be used with shunts for current measurement. However, OEMs may wish to design analogue front-ends to overcome this problem and provide input scaling.

The software was excellent and the supplied routines, with the documentary support, provide the basis of a useful instrumentation system for the display of voltages and their incorporation into PC-based data logging and control applications. Software snobs who abhor Basic are reminded that the conversion time of 40ms should allow even the most unstructured and sloppy program to make full use of the 16 conversions a second!

OEMs who wish to incorporate the AD1175K converter into a laboratory instrument are supplied with all the information necessary to access the ADC's 16 registers and interface the data to a microprocessor bus. Analog Devices are to be congratulated on producing such a user-friendly package, which is as important as producing a good product.

The AC5005 includes software costs £350 plus VAT and the AD1175K £754 plus VAT. Both are available from Analog Devices, Station Avenue, Walton-on-Thames, Surrey KT12 1PP. Telephone: 0932 253320.
DISPLACED RADAR
Gift of second sight?

Separating transmitter and receiver avoids PRF anomalies and ground clutter and is more secure than monostatic types. Henry Hislop describes the advantages and disadvantages of the process.

Most radars use the same antenna to transmit and receive. Only a small part of the energy reflected by an aircraft is returned to that antenna; the rest is scattered in other directions. This energy can be received by other antennas in other places so that, in areas where radars are already operating, aircraft can be detected with no more than a receiver, in an arrangement known as bistatic radar.

Figure 1 shows how radio amateurs living near Heathrow airport are able to locate an aircraft with nothing more than a simple receiver and a small omni-directional antenna. First, by measuring the time delay between a signal received directly from the radar and the same signal received after reflection from the aircraft, they can plot an ellipse on which that aircraft must lie. Then, by noting how the amplitude of the direct signal varies with time as the radar antenna rotates, they can estimate the position of the beam when the maximum signal is reflected from the aircraft. As long as the radar antenna is rotating at a constant speed, these two measurements provide all the information needed to determine the aircraft’s position.

If the receiver is relatively close to the radar, the approximate position of aircraft detected in this way can be displayed on a plan position indicator by rotating the bearing line in synchronism with the radar antenna and using the pulses received directly from the radar to trigger the radial timebase. Such a display makes no allowance for parallax.

If the receiver is some distance from the radar, a more accurate display can be obtained by using a computer to determine where the transmitted beam intersects the ellipse on which the aircraft is known to be. The accuracy will depend on the angle at which the transmitted beam intersects the ellipse. It is greatest at long ranges and zero on a line joining the transmitter to the receiver. This problem can be overcome, as will be explained later.

Sensitivity compensation

Other things being equal, there is no reason why a remote receiver should be any less sensitive than one colocated with the transmitter. If, however, the antenna of a remote receiver is smaller or has a wider beamwidth than that of the radar, then the gain of that antenna will be less and the range at which aircraft can be detected with that antenna will be correspondingly reduced. If the simplest possible omnidirectional antenna is used with the remote receiver – so that there is no need for the receiving antenna to scan – then the sensitivity of the remote receiving system is likely to be about 30dB less than that of a typical air surveillance radar. This will reduce the maximum range at which aircraft can be detected by a factor of 5.6; typically from 250 miles to less than 50.

The maximum range at which aircraft can be detected with a remote receiver can be increased by designing the receiving antenna to be omnidirectional in azimuth but with the beam shaped in elevation to match that of the radar antenna. Further improvements can be obtained by rotating the receiving antenna broadly in synchronism with the radar antenna and using a beamwidth no wider than is needed to accommodate the angular errors caused by parallax and lack of synchronism. Very conveniently, the effect of parallax is greatest at short ranges where there is the least need for high antenna gain.

An interesting way of compensating for the lower gain of an antenna with a wide beam in azimuth is to reduce its beamwidth in elevation and use several narrower beams to cover the same total beamwidth.
elevation angle. If each of these beams is connected to a separate receiver, not only is the sensitivity improved but the remote receiver can determine the height of an aircraft; a facility that may not be available at the main radar.

Bistatic by design

At this point, the perceptive reader will realise that a simple idea that formed the basis of an amusing toy is now leading us towards an ingenious type of sensor with many valuable features. So far, for example, we have assumed no co-operation from the primary radar and that it is detecting aircraft with its own receiver in its own way and in its own time. Much more can be achieved if the radar is designed from the outset to work with its transmitter and receiver in different places.

Removing the restraints of co-location gives a new degree of freedom. Cynics have said that the invention of the T/R cell (which made it possible for a radar transmitter and receiver to share the same antenna) delayed the development of air surveillance by forty years.

If more than one transmitter is used with the same receiver, there is no need to depend on a narrow beam to determine the exact position of an aircraft. From each transmitter, the signals reflected by an aircraft will be delayed by an amount which defines an ellipse on which the aircraft lies. From two transmitters, for example, the signals reflected by an aircraft will define two ellipses on which the aircraft lies, and the exact position of that aircraft must be where those ellipses intersect, as shown in Fig. 2. The accuracy with which an aircraft can be located in this way is limited only by the range resolution of the system and can be much higher than is possible with a conventional radar.

A conventional radar distinguishes between aircraft and ground “clutter” by detecting the phase change between successive returns. The returns from a fixed object bear a constant phase relationship to the transmitted signal; the returns from an aircraft moving radially vary with time. With a conventional radar, therefore, it is difficult to distinguish between clutter and aircraft that are moving tangentially, but a receiver associated with two transmitters can detect aircraft moving in any direction.

With a conventional radar, problems arise if the interval between successive pulses is less than the time for a pulse to return from an aircraft at maximum range. A conventional receiver cannot distinguish between a pulse that has been reflected from an aircraft at long range and another pulse that has been transmitted later and reflected by an aircraft at short range. Both will arrive at the same time.

These ambiguities can be resolved if the transmitter and receiver are separated, because the returns from aircraft at long range are not received at the same azimuth angle as those from aircraft at short range. Freedom to use a higher pulse-repetition frequency makes it easier to distinguish between aircraft and ground clutter (for reasons that are beyond the scope of this article). Freedom to use a higher duty cycle makes it easier to transmit more power.

Fig. 2. Two transmitters form two sets of ellipses, crossing points locating aircraft more accurately.

Keeping a low profile

Without prior knowledge of the position of a receive-only station, it is unlikely to be the victim of high-intensity jamming which, by definition, is concentrated in a particular direction. Pairs of receivers can locate self-screening jammers by triangulation so that they can be engaged at the earliest opportunity.

The antenna of a conventional surveillance radar presents a prime target for anti-radiation missiles. These relatively crude weapons steer themselves towards a radar transmitter just as a moth heads for a light. A radar with its transmitter and receiver in different places can be protected against these weapons by reversing the roles of the antennas, so that the large directional antenna is used at the receiver where it will not attract attention by radiating and the omni-directional antenna is used at the transmitter where it can be made very small and robust. The whole system then presents a much more difficult target. Moreover, with this arrangement, the transmitter power can be increased to offset entirely the lower gain of the smaller antenna.

Compromises

All design is compromise. The design of a bistatic radar is no exception.

For most applications, the receiving antenna should be as large as possible; a large antenna captures more of the energy reflected by aircraft and its narrow beamwidth minimizes the returns from clutter and power from offset jammers.

If a bistatic radar with a narrow receiving beam has a long baseline and transmits with a low duty cycle then, for maximum efficiency, the receiving beam must be moved to follow each
transmitted pulse as it propagates outwards. This will demand that the receiving beam is steered electronically. If the radar transmits with a high duty cycle, or if more than one transmitter is used, it may be better to use a set of fixed receiving beams, each with its own receiver and signal processor. Either arrangement is likely to be expensive.

Whether or not the receiving beam is moved to follow each transmitted pulse, the receiver must be synchronized with the transmitter to an accuracy that depends on the range resolution. This can be done by receiving the radar transmissions directly, by passing timing signals via a wide-band link or by synchronizing both the transmitter and the receiver with some external reference. Whichever method is used must be protected against interference. A two-way link will enable the delay caused by the link to be measured and compensated but, unless precautions are taken, this may reveal the position of the radar receiver.

Given some method of synchronization, there is nothing to prevent the frequency, modulation, timing or beam position of the transmitter being changed in a pseudo-random sequence that is known to the receiver but cannot easily be predicted by a jammer. A two-way link will allow different sequences to be selected by the receiver in response to changes in the electronic environment. The speed with which this can be done will be limited by the delay introduced by the link but, for most applications, a delay of less than a millisecond is negligible. Opinions differ on the value of a faster response.

The cost and complexity of an efficient bistatic radar system will usually be more than that of a monostatic radar. For air-traffic control and strategic air defence, the important question is whether that extra cost is justified by the greater resistance to radiation homing, directional jamming and "stealth". For shorter range applications, the losses caused by transmitting a broad beam may be offset by the advantages of being able to use covert, low-consumption sensors.

The possibilities are endless. Perhaps one day we shall see a national network of radar stations; some receiving, some transmitting and maybe some doing both, but all co-operating to extract the maximum possible information about movements in the sky. For how much longer will the transmitters be earthbound?
ANTENNA ROTATORS
from winter

Quality Antenna Rotators now available in the UK from

CLARK MASTS: TECHNICAL SERVICES LTD

Primarily designed for mobile antenna systems Winter Rotators are now more widely used on fixed masts and towers for Post Office Broadcasting, Telephone, Television and Military purposes.

- Precise directional stability and control.
- Light in weight in proportion to the antenna size deployed.
- Suitable for parabolic antennas from 0.6m to 3.0m diameter.
- Can accommodate log periodic and other antennas to users special requirement.
- Designs based on 20 years experience.
- Electronically controlled antenna positioning in azimuth and elevation.

Write for free catalogue

CLARK MASTS (TECHNICAL SERVICES LTD).
20 Ringwood Road, Binstead, Isle of Wight, PO33 3NX England.
Tel: (0983) 67090. Telex: 86224. Fax: (0983) 811157

OSCILLOSCOPES

Top Quality Oscilloscopes for less than £200

The oscilloscope is an essential aid to today's test and measurement operations.

Flight Electronics offers a range of both dual and single beam scopes to suit applications in R&D and service departments, educational establishments and laboratories.

- 20 and 40MHz dual beam versions
- Single beam 5 and 10MHz versions
- Prices start from under £200
- Large, clear displays
- With and without delayed sweep
- Optional digital storage unit
- Two year guarantee

Want to know more?

Flight Electronics Ltd,
Flight House, Ascupart Street,
Southampton SO1 1LU
Telephone: (0703) 327721
Telex: 477389 FLIGHT G
Fax: (0703) 330039
FOUR NEW EPROM PROGRAMMERS FROM MQP

- Program 24/28/32/40 pin EPROMs, EEPROMs and Micro-controllers
- Easy to use menu driven software for MS-DOS included in the price
- High speed algorithms
- Low cost upgrades
- 1Mb devices and beyond
- Up and running in minutes
- Prices from only £195!
- Designed, manufactured and supported in the UK

MOP Electronics has a reputation for quality combined with value for money. Our Programmers are used and respected throughout the industry. We are proud to announce our Series II range of Programmers, consisting of Models 160, 170, 180 and 200. The Programmers maintain the high technical standard our customers have become used to, and introduce a new stylish yet robust package and a wider choice of features.

The Series II range has been specially designed with flexibility in mind. The rugged power supply readily supports the range of add-on modules: look out for the Bipolar PROM and EPLD adapters to be announced soon.

Each model in the Series II range utilises the serial port of your PC compatible, without compromising speed. This saves valuable expansion slots, and allows fast and easy installation or use by more than one computer.

Models 180 and 200 program virtually every EPROM available, together with EEPROMs, Emulators and single chip Microcontroller families.

Write or phone today for your Free Information Pack.

Tel: (0666) 825146 Fax: (0666) 825141

CIRCLE NO. 107 ON REPLY CARD

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner

Telephone: 01-445 2713/0749

CIRCLE NO. 122 ON REPLY CARD

FIBRE-OPTICS EDUCATOR

Versatile training equipment for education and industry.

FIBRE-OPTICS POWER METER

dBm and \(\mu W \) scale; battery life 500 hours.

FIBRE-OPTICS MONITOR

For continuity testing and voice commns.

For further details contact:
ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre,
Elloe Road, Leyton, London, E10 7BT.
Telephone: (01) 539 0136.

CIRCLE NO. 117 ON REPLY CARD
Letters

Relative FSK

The profession of telecommunication engineer exists because there is noise. Without noise there is no telecommunication problem.

F. R. Connor in December

EW + WW is undermining the profession. Noise is a paper tiger, he seems to claim.

Telecommunication engineers always have overlooked how easy it is to defeat this enemy. You just have to transmit your information signal twice, once as an upper sideband signal and once as a lower sideband signal, using the same carrier frequency. At the receiver you make a sum signal and a difference signal. The sum signal contains the information signal plus noise. However, the difference signal is just noise! So apply the principle of negative feedback to cancel the input noise and there you are!

Mr Connor even modifies what he calls Shannon’s famous equation. Famous, yes! But understood? How can he think that he can change a property of the channel, called channel capacity, with the construction of his receiver?

The editors of *EW + WW* are to blame. Let’s forget this ‘perpetuum mobile’ of data transmission theory as soon as possible.

P. van der Wurf

Geldrop

The Netherlands.

I would like to make a point about F. R. Connor’s article “Relative frequency shift keying” (*EW + WW*, December).

Take stereo radio. The originating signals are L (left) and R (right). These are combined to produce L + R and L – R. The received signals are L + R + N and L – R + N where N is the added noise.

Decoding these signals gives 2L + 2N and 2R, that is the right hand channel is noiseless mono from a stereo broadcast of L = R. So what is wrong with this theory?

N (left) and N (right) are not phase coherent and their subtraction or addition leaves the noise power unchanged.

That is why Connor’s hypothesis will not work.

E. Richards

Hitchin

Herts

In Hypothesis (*EW + WW* December 1989), the statement “noise voltages in the two channels are correlated prior to the detector” must be revised carefully. In the real world, they aren’t. But if they could, many other systems could be designed to reduce or even eliminate the probability of error due to such noise. To tell the truth, I fell into this trap ten years ago.

Also the statement “amplitude noise is removed by amplitude limiting” is not complete. The limiting process in actual circuits introduces a time (phase) delay which depends on the input amplitude, even for a step signal. So the amplitude noise at a limiter’s input (e.g., comparator) will be transferred to some degree to phase noise at the output, especially at relatively low input levels.

Finally, why do you still accept that DSB-SC and FSK are difficult to demodulate. You don’t yet realise the real importance of my circuit idea “DSB-SC detector” (*EW + WW* August 1987) which is not just a mere idea. I have been using it for eight years in my personal links for privacy (the suppressed carrier at each transmitter is deliberately vibrating).

I will not be surprised to read one day on your pages the name of a company or person who will adopt it as happened a few years ago to my little idea “Voltage regulator”, (*WW* October 1983) when it was seen again in November 1986 by Siliconix with a different output transistor.

It is not easy to be professional without being also practical and vice versa.

Kerim Fahme

Aleppo

Syria

The first thing that struck me about the “Relative frequency shift keying” article in the December issue was that, although the abstract claims that the system can approach the Shannon capacity, the equation $C = W \log_2[1 + K^2 S/N]$ bits indicates that the limit can be exceeded by an arbitrary factor just by increasing K_F, the gain of the feedback path.

The system transmits the same FSK signal in two adjacent channels. After filtering, the receiver multiplies the contents of the two channels together.

The signals labelled sum and difference in Fig. 3, normalized to unit amplitude are:

Sum signal $= \cos[2\omega_0 + \omega_1(t)] + \cos[2\omega_0 - \omega_1(t)]$

Difference signal $= \cos[2\omega_1 + \omega_1(t)] \times \cos[2\omega_0 - \omega_1(t)]$

where $\omega_0(t)$ and $\omega_1(t)$ are respectively the phase noises in the upper and lower channels and $\omega_0 = \omega_1$ for logic 1 and $\omega_1 = 0$ for logic 0 in the information stream.

The idea is that the sum signal which contains only noise can be fed back to remove the noise on the incoming signal at the second IF. The problem is that feeding back any amount of the sum $\omega_0(t)$ and $\omega_1(t)$ will not cancel $\omega_0(t) - \omega_1(t)$ which is the phase noise on the signal component (difference signal).

There is no possibility of improving the signal-to-noise ratio in this way, so Shannon’s capacity theorem lives to fight another day!

William Harrold

Harlow

The paper (*EW + WW* December 1989) by F. R. Connor is based upon a completely fallacious argument. The reference to relativity is irrelevant and that to Shannon, unhelpful.

The basis of the fallacy is the implied assumption that noise, as referred to a receiver’s input, is correlated about a central frequency point. In particular, that noise in one band, say below the given point, is identical to that in another band spaced symmetrically above that same point. This assumption is not true, except for low frequency noises which modulate carriers and/or local oscillators.

Thus the common noise, consisting of the addition of two

Clash of symbols

I am sure that Michael McLaughlin and I (*EW + WW* December 1989) are really in close agreement. I do agree with him that an international language, at least for circuit symbols, would be good. The trouble is that the natives keep on speaking their own dialects. The great and the good of the international Electrotechnical Commission designed the language which comes to us in the shape of BS3939; do we or do we not try to speak it? I’m afraid that the answer is no, we prefer our own tribal versions.

Even the standards committees themselves sway in the wind. The ‘wiggly resistor’ is in BS3939 although it is not a non-preferred form; the use of other symbols for logic elements is not in contradiction with BS3939 although again not the preferred way.

In 1985 Texas Instruments published an interesting “Explanation of new logic symbols” which was referring to IEEE 91 but they stated that ‘the shape of the symbols is not significant’. Perhaps they have not yet updated all their data sheets but they do not appear to be totally convinced by the logic of their own arguments. Philips, a good European company, uses rectangular resistors and non-square gates in their current data books – so much for the common language.

The Zener diode symbol symbol (BS5015-02413), referred to by McLaughlin, reprents a ‘unidirectional breakdown effect’. Whether the American symbol was based upon the characteristic of the Zener I don’t know but the BS/IEC version (05-02-04) represents a ‘bidirectional breakdown effect’: both interpretations are I suggest as sensible as the American ones, L.P. Best, Fleet, Hampshire.

234 ELECTRONICS WORLDF + WIRELESS WORLD March 1990
For business benefits - the more you look, the more you'll find.

At COMMUNICATIONS 90 you can find practical solutions to virtually any communications need. For international coverage, broad product range and choice in every sector, there's no show to rival it in the UK.

It should be evident, with over 400 exhibitors from far and wide, that COMMUNICATIONS 90 will be a matchless opportunity to assess and compare the latest products and services which can benefit the efficiency and profitability of any organisation.

There's nothing obscure about the success of COMMUNICATIONS. It provides hands-on experience, explanations and answers - from the best in the industry, all conveniently located under one roof, and against the background of the liberalised UK telecoms environment.

With so much to discover, plan your visit in advance. Send for the Visitor Information Pack which includes a full product profile, travel and accommodation arrangements and details of the top level conference, product trails and clinics – all of which make COMMUNICATIONS so much more than an exhibition.

So don't ponder the problem. Diary your visit to COMMUNICATIONS 90 now.
channels of the radar receiver in time. A repetitive pulse signal can be stretched in time by taking samples of this signal at different points of successive cycles, holding the value of each sample until the next one is taken.

Figure 1b shows an example of the signal that could be obtained by stretching in time the pulse signal shown in Fig. 1a. In this example, the stretched-in-time signal is only a rough approximation of the original pulse signal because a small number of samples are taken to reconstruct it. Nevertheless, the pulse width of the stretched-in-time signal is much greater than that of the original pulse signal.

Fig. 3. Power density for different operational modes with safety standard comparisons.

By increasing the width of a pulse signal, the time-stretching process causes the bandwidth of this signal to be considerably reduced.

Safety
To protect people working with microwaves, various standards exist concerning the maximum microwave radiation levels considered to be safe. The standards are usually expressed in units of power density (Watts per unit area) at a given frequency. The power density of electromagnetic waves is equal to the emitted power per unit cross-sectional area normal to the direction of propagation. Figure 3 shows three different safety standards and the power density levels associated with this training system: the maximum transmit power is fixed at 2mW. The aperture of the horn is 25cm² and the area of the antenna reflector is 490cm². In pulsed mode, the maximum pulse width is 5us, and the maximum PRF is 288x1024Hz.

In CW mode, Power density at horn = radiated power/area
= 2x10^-3 W/25 cm² = 0.08mW/cm² which is within the most stringent limit.

Fig. 2. Short range radar system block diagram. A 10GHz source operates at a peak power of 2mW in either CW or pulse mode providing a variety of display types up to 30m range.
The short range and high resolution required for operation inside a classroom or laboratory creates significant problems. A 15cm resolution requires a radar pulse width of 1ns and this, in turn, implies bandwidths in the gigahertz range. With high-speed electronics, the whole radar could theoretically operate with large bandwidths, but the cost would be astronomical.

At this point two major decisions were taken. The first was to design the receiver for direct baseband (homodyne) conversion. This eliminated the costly IF components and did not significantly reduce the instructionally attractiveness of the system.

The second decision was to use a bandwidth reduction technique, similar to the one used in high-speed sampling oscilloscopes. The transmitted waveform is designed to repeat a certain number of times for each 'apparent' RF pulse transmitted. The bandwidth of the received signal reduces to a value where normal signal processing circuitry can operate. It was felt that this difference from a real radar would not affect the training potential of the system.

The T/R switch or duplexer design also caused problems. The ultra-short pulses involved did not permit conventional switching of the antenna between transmitter and receiver. A ferrite duplexer was selected to solve this problem. It couples the outgoing and incoming signals while reducing mutual interference.

Sampling technique

Pulsed radars transmit an RF signal in short bursts, at a constant rate. The shorter the duration of these bursts, the better the range resolution of the pulsed radar. Since the radar training system operates over ranges of only a few metres, the duration of the RF signal bursts must be in the order of 1ns to obtain an adequate range resolution.

Once received by the antenna, the RF signal bursts are demodulated in the receiver to extract their envelope. A repetitive pulse signal is therefore produced at the receiver output. Fig. 1 shows an example of what the pulse signal from the I or Q channel of the radar receiver might resemble. The duration of each pulse can be as short as 1ns.

The development of short range radar demo equipment turns up unusual design problems. Resolving the position of centimetre sized objects over just a few tens of metres calls for transmission pulse widths down to 1ns. Lab-Volt has developed a pulse multiplication system which reduces the bandwidth requirements.

Such a pulse signal has an extremely large bandwidth. Therefore, the bandwidth of the circuitry involved in the processing of this pulse signal must also be extremely large. According to a rule of thumb currently used, the approximate bandwidth B required to process a pulse signal is equal to the reciprocal of the pulse width t of this signal. This is written

\[B = \frac{1}{t} \]

Therefore, the bandwidth of the circuitry required to process the pulse signals from the I and Q channels of the radar receiver would have to be approximately 1GHz. Such processing circuitry would be complex and costly.

In the radar training system (Fig. 2), this problem is avoided by stretching the pulse signals from the I and Q channels.
uncorrelated packets of noise, can not cancel each separate one of these packets in their isolated upper and lower carrier forms.

If the assumption were true, communication over infinite ranges with infinitely small powers would be possible.

Given uncorrelated noises, the performance will be limited by a near unity ratio of signal to noise power in the information band.

H. W. Hawkes
Winchcombe
Glos

Cross-field antenna
The CFA antenna (E+W + W - W March 1989) is not a fundamental alternative to dipoles and loops as implied in E+W + W November 1989. It consists of two separately fed aerials. One aerial is a short dipole with electric currents, the other consists of a loop with magnetic currents (i.e. a horizontal circular slot). Both are vertically polarized.

Each aerial generates its own separate combination of distant radiated, local inductive and local capacitive fields as described in standard text books. Both aerials have the same polar diagram, coincident phase centres and can be fed differentially in respect of phase and amplitude. The strong coupling, occasioned by the common phase centre, can cause feeding difficulties but can be exploited by an adjustment of phase and amplitude of each feed so as to tune and match the composite aerial.

It is advantageous for the tuning and matching to be via the aerial structure rather than externally in a smaller volume which could produce greater ohmic losses. A reduction of feed plus matching losses is of importance as a short dipole, with a given diameter, can then start to approach the effectiveness of a larger one; although the same level cannot be reached because of the inherent larger 1/R surface losses.

A dipole (particularly if of diameter comparable to the CFA) can also be resolved into electric plus magnetic currents that flow over the aerial surface (including the feed gap between the two dipole halves. However, because the field is common, no extra tuning benefits are obtainable.

The above explanation based upon conventional aerial coupling is preferable to that of interacting Poynting vectors. Such interaction is not in the classic exposition of Maxwell’s equations for transmission in a homogeneous medium. Indeed, if true there would be implications far beyond the aerial art as pointed out with clarity and impact in E+W + W Letters.

July 1989.
H. W. Hawkes
Winchcombe
Glos

Disgusted – Australia
I was surprised to receive an offer to resubscribe to your formerly excellent publication after letting my subscription lapse earlier this year. I can only hope that such an offer has been promoted by many lost subscriptions following the rape and engulfing of WW by E+W.

Wireless World was an institution to me for more than 20 years and I and many others have learnt a lot from authors of the calibre of John Linsley Hood and innumerable others. It's probably unavoidable progress that our beloved WW has become a trade rag with articles about computer busses and news items about selling solar powered megabytes to Botswanaland.

I suppose some grey-suited marketing boffin has dictated that this type of magazine is appropriate to the times we live in. One can only hope that someone else will emerge with a journal that concerns itself with the elegant art rather than the state of the industry.

M. S. Odell
North Balwyn
Australia
You forgot to say if you want to resubscribe – Ed

contacted as well as signal reports for the more usual antennas. In the same vein, “almost as good” does not support antenna performance either. Worse, measurements were made with a flashlamp and a neon bulb. Doesn’t Wells own a field-strength meter?

Its performance remains in doubt until we have some quantitative data as well as the construction details on the balun, transmatch and multiband tuner used in Wells’ research.

I’m very disappointed that you published such an article without any experimental details and without quantitative supporting evidence. After this editorial lapse, I cannot take you seriously.

J. R. Smallwood
Milford
USA

Mass confusion
Though John Ferguson (December letters) quotes correctly from an article in the June 1989 issue of Physics Today by Lev Okun of the Moscow Institute of Theoretical and Experimental Physics he does so in a totally misleading context. In fact Okun’s article was a strong affirmation of special relativity. What he criticised were confused concepts of mass resulting from the use of the restricted classical version of the force equation which states that force = mass × acceleration.

The proper relativistically invariant equation states that force = rate of change of momentum. The mass of a free particle is a scalar constant, that is its value is the same whatever the particle velocity.

Okun said that while ideas such as those of transverse and longitudinal mass are in effect anachronisms, the idea of a mass which changes with particle velocity, widely used in teaching relativistic physics, is in relativistic terms neither fish, flesh, nor fowl.

He particularly objected to the use of the equation "E = mc²" which purports to relate the total energy of a free particle to its velocity dependent "mass". The correct equation is the superficially similar E₀ = mc².

However, in this equation m represents the invariant mass, while E₀ is the rest energy, that is the total energy of the particle in a frame at rest. Pauli bears some responsibility for propagating the notion of a velocity dependent mass, but in a 1921 encyclopedia article, when special relativity was only 16 years old, and Pauli himself was only 21. In most respects that article has worn extremely well.

C. F. Coleman
Grove
Oxfordshire

Tuned Vauxhall
The new car (a Vauxhall Carlton – Opel Omega) had its broadcast receiving aerial bonded to the windscreen and I wondered if it might be possible to drive part of a car body as an aerial, as in aircraft practice.

The whole body shell might resonate as a cavity, with radiation leaking out through the windows. Rough calculation showed this possible, and experiment confirmed the preliminary estimates.

The body shell (see diagram) is tuned to resonance by a capacitor between the centre of the roof (point a, the rear of the sunroof frame) and the transmission tunnel below it.
LETTERS

(POINT [b]). FOR 27.8 MHz, C = 1 pF. DUE THE HIGH Q, AROUND 100 AT 27.8 MHz, A SIMPLE J MATCH CONNECTED BETWEEN POINTS a AND b PROVIDES A GOOD MATCH TO 50[ohm]. OVER 27.6 TO 28 MHz, SWR REMAINS BELOW 1.5 IF SET AT MINIMUM (NO PERCEPTIBLE METER READING) IN THE CENTRE OF THE BAND. POLARIZATION IS VERTICAL, OF COURSE.

THE J MATCH SECTION C A CAN BE REPLACED BY A SMALL INDUCTOR, ABOUT 100 HERNE, AND THE WHOLE ARRANGEMENT HOUSED UNDER THE PLASTIC CONSOLE BETWEEN THE FRONT SEATS.

Despite the low effective height, performance is comparable with that of a normal external aerial, certainly within 6dBf. At 4W drive, the power density in the body is less than that adjacent to the aerial of a hand-held Tx, for which no health-hazard has been reported at these frequencies and powers. DUE TO THE HIGH Q, THE VOLTAGE ACROSS THE RESONATING CAPACITOR IS HIGH. Thus a wide spacing between capacitor plates is necessary. For the same reason, the internal vertical rod a-b NEEDS TO BE INSULATED.

Although SWR is affected by passengers and driver this is only a problem for distances of less than about 15cm.

Since the length a-b is less than the 165cm specified in the CB licence schedule, the arrangement is presumably legal.

The arrangement is also useful for HF reception, being tunable across most of the 3 to 30 MHz band with a single capacitor. Maximum useful frequency depends on the car, but is unlikely to exceed 40 MHz even for a mini.

Interference from the car electrics in the case of the Carlton was found to be no greater than for an external antenna, and perfectly acceptable. The internal rod a-b between the front seats can be a nuisance, but one soon gets used to it.

T.S. CHRISTIAN

NORTH WALSHAM NORFOLK

INERTIA

Peter Graneaus' account of the Assis theory of inertia (EW+ WW, January) is interesting but it is surprising that there is no mention of the work of Prof. Jennison; see for example the article "What is an Electron", WW, June 1979. In the latter Jennison presents an elegant theory which, inter alia, accounts for the inertial property of matter while avoiding the need to invoke hypothetical interactions such as those which support the various ideas presented in Peter Graneaus' article.

If any theory depends on the introduction of presently unknown forces, fields, instantaneous interactions and so on then, at least, it is incumbent upon the theorist to explain what these are, where they come from and why they are there. In the absence of such explanations it would seem just as reasonable to support new hypotheses by the introduction of anything from magical dust to divine intervention! Jennisons work relied on down to earth theoretical reasoning involving known laws of physics. It would be interesting to have his views and to hear whether he has developed and/or changed his approach to the origin of inertia during the intervening years.

M.G.T. HEWLETT

MIDHURST W. SUSSEX

CCTV FOR BATC

The November 1968 issue of Wireless World contained a survey of closed-circuit television equipment. Of the 21 manufacturers included only two—one British and one Japanese—are still actively involved in CCTV, and many of the 'great' British names have left the market place. I am not aware of any museum which has saved any of this interesting but obsolete equipment, but some members of the British Amateur Television Club (founded in 1949 incidentally) are trying to save some of it. Could I ask anyone in a position to dispose of industrial CCTV cameras more than 20 years old to get in touch with me? We can arrange carriage, possibly even modest payment! Many thanks.

Andrew Emmerson

71 Falcutt Way

Northampton NN2 8PH

(0604 844130)

AUDIO POWER

J.L.L. Hood's article on evolutionary audio is good, but has three important errors. Referring to Fig. 9 (November), Hood says the compound emitter follower connection gives better quiescent current temperature stability than the conventional Darlington connection. This is incorrect, based on a false assumption that with the output transistor's base/emitter junction outside the inner bias loop the circuit is less temperature dependent.

Simple intuitive analysis of the circuit proves that the compound connection has the same temperature stability as the Darlington. The temperature stability of any compound connection is directly related to the g_m of the circuit, all things being equal, and if the g_m is the same, then the temperature stability will be the same. Considering the Darlington circuit, the total bias voltage would be 4x V_{BE} and would have a $4 \times -2 mV/°C$ temperature co-efficient, thus matching the total output and drivers against ambient changes.

Ignoring ambient changes or thermal tracking and considering the stability of a discrete Darlington circuit on its own with a fixed bias, for every degree rise in either driver or output device junction there will be a 2 mV increase in potential across the emitter resistor, increasing driver and output emitter current and junction dissipation accordingly.

Therefore the rate of increase of I_e with temperature is due to transconductance, which for R_o, as 0.22k would be 5A/V.

Compare this to the first derivative from the Darlington

MORE AUDIO?

I find articles somewhat removed from mainstream electronics and radio (such as the continuing Einstein debate) all that more interesting just because they are so removed. Long may EW+ WW continue to be a forum in which the more heretical elements in engineering can air their views. The only thing on which I disagree with you is the magazine title.

Electronics World + Wireless World is a bit of a mouthful and I assume it is only a matter of time before the + Wireless World bit is dropped. A title that has lasted 80 odd years will then disappear, presumably forever. I think it is the lack of a Towers guide to sort out one transistor from another. (I'm not that old, just halfway to my three score and ten.)

Can we also continue to have articles on audio and hi-fi? The article by Barry Fox was most welcome. I believe there is a growing disbelieving in the subjective approach to hi-fi, but dissidents are effectively muzzled by the hi-fi press who seem unwilling or unable to criticise the more esoteric and not-so-esoteric offerings of hi-fi manufacturers. Yours is the only magazine open to us disbelievers with enough street cred to talk on the hi-fi mags. Hopefully we can expect more articles like Barry's and indeed more by J. Linsley Hood and others of like mind and ability.

Philip Cadman

DUDLEY WEST MIDLANDS
connection shown as Fig. 2, with the quiescent current \(V_\text{be} \) set the same as before. \(V_\text{r} + V_\text{be} \) will appear across \(R_2 \). Since \(I_1 \) and \(I_2 \) for the driver are virtually equal then \(V_\text{be} + V_\text{re} \) also appears across \(R_1 \). \(I_1 \) is now a constant-current generator feeding into \(R_2 \). As \(I_1 \) is considerably greater than \(TR_1 \) base current, \(V \) across \(R_2 \) can be considered a voltage source to \(TR_1 \). Every degree temperature rise in \(TR_1 \) will cause 2mV increase in \(V_\text{be} \). Similarly, for every degree rise for the driver, \(V_\text{re} \), \(V_\text{be} \) and \(V_\text{r} \) will all increase by 2mV. So the circuit has exactly the same temperature stability as the Darlington. The only difference being the saturation voltage is now \(2 \times V_\text{be} + V_\text{be} \) for the Darlington.

Short circuiting \(R_1 \) and moving \(R_2 \) to the collector (Fig. 3) as in hood’s circuit will reduce the saturation voltage to that of the Darlington. With \(I_1 \) set as before, every degree rise in \(TR_1 \) will cause \(V_\text{re} \) to fall by 2mV, giving rise to a potentially large increase in \(I_1 \), again as before. As \(I_1 = I_2 \), the increased \(I_1 \) will appear across \(R_2 \), thus subtracting from the bias, giving stability.

Even though \(TR_2 \) collector effectively bootstraps \(TR_1 \) emitter, the \(I_1 \) stability is still the same as the Darlington. The transconductance \(g_\text{m} \) of the circuit is the same hence temperature dependence of \(I_1 \) is also the same.

However, hood has missed the most salient difference of the two circuits. The Darlington connection is used more extensively in commercial amplifiers because it is faster than the compound pair, and has better HF stability and lower distortion. The compound connection has the advantage that, with the circuit of Fig. 2, adding an additional resistor from \(TR_1 \) emitter to ground will give some voltage gain. This allows for lower overall swing requirements on the preceding driver stages, allowing lower voltage faster transistors to be used (with the disadvantage of higher distortion and output impedance).

A further disadvantage is that at clipping the driver saturates, leaving an operational output device working as a grounded emitter rather than a follower. This phase reversal occurs, giving a step at the clipping point and some HF instability. This is termed by Hood as latch up; his suggestion of adding driver base resistors does not totally solve the problem: the true answer is to ensure the output device saturates before the driver using the Fig. 2 circuit.

The third false assumption relates to slew rate. Hood thinks slewrate is limited by the class A driver’s collector current. This is false. It is simple to prove that, provided the driver \(I_1 \) is greater than the differential input stage tail current, then, for any given stability phase margin, slew rate is a direct function of input stage tail current and transconductance only and independent of \(C \) compensation.

Once this is appreciated it can be realised that the reason for asymmetrical slewing is not as Hood thinks but totally due to mismatch of the differential input stages collector currents (provided \(I_\text{driver} \) is greater than 1 mA). The way to improve slew rate (as in the Supermos amplifiers) is to operate the input stage with a very low transconductance which also improves linearity, and use extremely fast output devices biased in class A and hence eliminate the need for compensation capacitors. The potential then exists for slew rates at least 20 times that of the Hood designs.

Les Sage
Sage Audio Electronics
Bingley, Yorks

Geocentric physics
I found your December issue particularly rich in thought provoking matter on the true basis and purpose of scientific theory. Not only were there challenging letters from Harrison and Lerwill, but there was a nice speculative dose of scientific puzzling over the origin and nature of pulsars.

The laws that govern physics and attempt to control the cosmos are the distillation of millions of scientific observations reduced to a convenient shorthand for practical use. This is fine with something like the speed of light, because it can be demonstrated in a large number of ways or even realised as one of Grace Hopper’s pieces of wire! The problems start when we try to explain fundamental forces like gravity and magnetism.

The complexity of particle physics leads to a myopic view of the universe, which is reinforced by our own terrestrial prejudices. Einstein and Newton produced basic laws to help explain things. We are now told they are so full of errors they wouldn’t pass the Trades Descriptions Act! At the same time the entire state of the universe continues to be based on a belief that nothing can travel faster than light which is also constant, that zero is absolute and, worst of all, the red shifted light of distant galaxies proves that the more distant an object is from Earth, the faster it is receding.

I’m not saying the theory is wrong, I just want to caution against assuming our limited experience in one tiny corner of the universe holds good at the outer reaches.

Take the red shift. It works on Earth and can be demonstrated and used as a valuable yardstick in near space, but can we be certain that light coming from a galaxy thousands of light years away is not frequency shifted over such immense distances. Why shouldn’t the speed of light vary with the age of the universe?

Take the pulsars in Research Notes – it’s conveniently assumed that a pulsar emits two beams of radiation as it spins . . . why should it? We don’t expect an oscillator to rotate to throw off electromagnetic waves. Why shouldn’t a pulsar oscillate between different diameters, throwing off the surplus mass that makes it unstable as radiation? That would explain how the frequency decays with time until the pulsar turns into a neutron star, black hole or even a white dwarf – take your pick!

The truth is we are only making educated guesses, but our guesses may be too much conditioned by earthbound experience. One thing is certain – the true scientist keeps an open mind.

Anthony Hopwood
Upton-on-Severn
Worcester
VERSATEOWER:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2, 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

1912 metres with Versatower: 1 powerful 11.5m tubes, diodes, ignitrons, image intensifiers, electronics, photomultipliers, receiving tubes, distributors, systems for rapid delivery, powerful versatility.

Versatower: TELEFAX: 01480 258880 WALSALL. WEST MIDLANDS WS8 7EX. ENGLAND

Fax: 0543 361050

STRUMECH ENGINEERING LIMITED

Airport approach lighting
'Defence
Geographical survey
Environmental monitoring
Security surveillance
Communications

and environments demand the ultimate conditions

1912 metres'with Versatower:

pipes, diodes, ignitrons, image intensifiers, electronics, photomultipliers, receiving tubes, distributors, systems for rapid delivery, powerful versatility.

VERSATEOWER:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2, 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

1912 metres with Versatower: 1 powerful 11.5m tubes, diodes, ignitrons, image intensifiers, electronics, photomultipliers, receiving tubes, distributors, systems for rapid delivery, powerful versatility.

VERSATEOWER:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2, 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

1912 metres with Versatower: 1 powerful 11.5m tubes, diodes, ignitrons, image intensifiers, electronics, photomultipliers, receiving tubes, distributors, systems for rapid delivery, powerful versatility.

VERSATEOWER:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2, 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

1912 metres with Versatower: 1 powerful 11.5m tubes, diodes, ignitrons, image intensifiers, electronics, photomultipliers, receiving tubes, distributors, systems for rapid delivery, powerful versatility.

VERSATEOWER:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2, 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

1912 metres with Versatower: 1 powerful 11.5m tubes, diodes, ignitrons, image intensifiers, electronics, photomultipliers, receiving tubes, distributors, systems for rapid delivery, powerful versatility.

VERSATEOWER:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2, 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

1912 metres with Versatower: 1 powerful 11.5m tubes, diodes, ignitrons, image intensifiers, electronics, photomultipliers, receiving tubes, distributors, systems for rapid delivery, powerful versatility.
It is well known that Volta invented the primary battery and in so doing moved electrical science into an age of electrodynamics. What is less well known is that he proposed a fundamental unit of electric tension some years before that invention, when scientists were still deep in the age of electrostatics. It is perfectly appropriate then that the unit for electromotive force (a term he introduced) is named after him. We may be thankful, though, that his original unit was never accepted; it is roughly equal to 13350 volts!

Volta was already an established scientist with a reputation for experimental work when he announced the invention of the "Pile", the first electric battery. The importance of the invention was instantly recognised as being of the first rank and it opened new avenues of enquiry, including electrochemistry and electrodynamics. It quickly led to experimental electric light and industrial electroplating.

Volta was born in Como in the duchy of Milan in Northern Italy on the 18th February 1745 and died there 82 years later on the 5th March 1827. On his mother's side he came from a family with a leaning towards the law; his father's family was devoted to the church. One of his three paternal uncles was a Dominican, one a canon, and the third an archdeacon.

Alessandro, the youngest, was an active Roman Catholic and chose many clerics as close friends. His religion was important to him and he sought theological advice before his marriage in 1794. He was a large, vigorous man whom a friend once described as understanding "a lot about the electricity of women".

He was seven when his father died. When he was 12 one of his uncles took charge of his education, which began at a Jesuit college and nearly led to him becoming a Jesuit. His uncles decided they did not want that and so his education continued elsewhere. It was a wealthy friend, Giulio Cesare Galtoni, who provided the books and equipment which helped him to begin studying electricity.

The uncles had by now chosen his future career: the law. Somehow he avoided this path and continued to study what he termed his genius: electricity. Boldly, he wrote to leading scientists to discuss problems he encountered. One, Beccaria, recommended his own writings and also told Volta to experiment. So Volta began to develop his gift for making inexpensive but effective instruments.

Slowly, from the mid-1760's he learned the science and practice of electricity and in October 1774 he received his first academic appointment, at the Gymnasium in Como. The next year he was appointed professor of experimental physics. About the same time he made his first important invention, the electrophorus, and followed that with the discovery of methane.

The electrophore was probably the most significant electrical invention since the Leyden Jar capacitor. After considerable experimentation, in June 1775, he announced his "elettroforo perpetuo". It was an inductive device for repeatedly charging a tin-foil covered shield which, in turn, was used to build up a large charge on a Leyden Jar capacitor. Whilst others had come close, only Volta produced a sturdy and usable instrument.

In 1776, he briefly turned to the study of gases and discovered a new gas which we know as methane. "Inflammable air" (hydrogen) had been isolated chemically ten years earlier and was known to exist naturally. Volta became intrigued by the "different kinds of air" and searched the countryside for the telltale bubbles until he found a new gas at Lake Maggiore. Hydrogen, however, was more explosive and it was hydrogen and air (oxygen), not methane, that Volta used in an "inflammable air pistol" which was fired by an electric spark. The pistol fired a lead ball, denting wood at 15 feet. From related experiments he concluded that about 20% of common air was oxygen. He narrowly missed synthesizing water, but his method was successfully used later by Lavoisier, Laplace and Monge in France.

His discovery of methane obviously enhanced his scientific reputation and his reward was a travel grant, which took him to Switzerland and Alsace. The grant came from the Austrian government which then ruled Northern Italy. Then came Volta's appointment to the professorship of experimental physics at the University of Pavia; his popular professorship there ran for nearly 40 years. In 1781/82 he visited France and England, and in 1784 he went to Germany. On such state-financed trips he bought new equipment for the laboratory at Pavia. Most of the instruments he built up were destroyed in a fire in 1899.

Politically, Volta had much to be
thankful for to the Austrians, but in 1796 they were driven out of Northern Italy by the French, led by Napoleon. Volta was chosen in May of that year as one of a delegation to represent Como in honouring Napoleon. Later, he became an official of the new Government of Como but it was a position from which he soon resigned; his lingering loyalty to the Austrians, the damage done to his laboratory by French troops and his coldness towards the French led to his expulsion from pavia for a while. It did him no harm, however, when the Austrians retook the country in 1799; though they closed the university, Volta remained free.

Thirteen months later the French were back. The university was reopened. Volta was once again a professor and accepted his status as a citizen of the new republic. A trip to Paris to express the university's thanks to Napoleon became a triumph for Volta. The primary battery was by then well known and its chemical power had made scientific headlines. Even Napoleon attended his demonstrations at the French Academy and Volta was awarded a gold medal.

In many ways Volta's discoveries captured Napoleon's heart and he continued to be an admirer. A prize of 60,000 francs was announced for "whoever by his experiments and discoveries makes a contribution to electricity and galvanism comparable to Franklin's and Volta's," Volta was later given a pension, and made a count and a senator in the kingdom of Italy.

Volta's pile

The roots of Volta's invention go back to the discovery by his fellow Italian, Luigi Galvani, of frog legs fame. A full account was published in 1791 and caused great excitement amongst both physicists and the medical fraternity. The latter wondered if the "vital principle" had at last been found and pondered the possibilities for new treatments. Galvani was the second to report what we would now recognise as an electrochemical effect. The Swiss J.G. Sulzer having noted in 1762 that two dissimilar metals placed on the tongue gave a sensation of taste.

At first, Volta dismissed Galvani's reports as unbelievable. Pressed by colleagues, he at last investigated the phenomenon and, by the April 1 1791, had begun the series of careful step-by-step experiments which led him to the electric battery.

Galvani explained the excitation of the dead frog's legs as being caused by animal electricity, an explanation which Volta firmly rejected. Volta was led to believe that the current flow was caused by the contact of two different metals. In that he too was wrong. It was another Italian, G.V. Fabroni, who got the right explanation by pointing to a chemical action between the liquid, which always seemed to be present in both Galvani's and Volta's work, and the two different metals.

Volta repeated Sulzer's as well as Galvani's work. In one experiment he brought insulated zinc and copper discs into contact and found that they were charged on separation. By experiment he found that zinc and silver discs best suited his purpose and eventually he arranged pairs of them in a pile. Each pair was separated from neighbouring pairs by a piece of cardboard soaked in water or brine to provide, as he believed, a conducting path between the pairs. Letting all pairs touch one another, he knew, provided only the same effect as a single pair of discs.

The finished pile of discs and cardboard multiplied the effects of a single pair many times and he was able to receive a shock from his pile similar to that from a charged Leyden Jar capacitor. The vital differences were that Volta's pile did not need to be immediately recharged and could give a continuous current.

News of the invention was announced in a letter to the Royal Society in London: "The apparatus of which I speak," wrote Volta, "will Voltaic pile from the Wellcome Collection. This one appeared in the 1899 exhibition at Como and may have been used by Volta himself.

doubtless astonish you." The continuous current almost appeared as perpetual motion, "but it is nonetheless true and real, and can be touched, as it were, with the hands."

Volta's pile, "as high as can hold itself without falling," consisted of 30, 40, or 60 cells. From such primitive origins grew today's huge international industry. As an alternative to the pile, Volta also used pairs of metals soldered together with each end dipping into water or brine contained in goblets; this arrangement he called the crown of cups. Again, 30 or more cells could be arranged to produce a battery of cells. The word battery had, of course, been used earlier, not only for a battery of guns but for a battery of charged Leyden Jars.

Improvements were soon made by others. For greater voltages more cells were needed in the pile, which increased the weight and squeezed out the electrolyte from the cardboard discs. In Germany, J.W. Ritter turned up the edges of his metal discs and obtained batteries which lasted for two weeks! A horizontal wooden trough provided an even better battery: zinc plates, for example, could be fixed vertically to a support and lowered into the trough between vertical plates of the other metal. This trough arrangement has been suggested as the origin of our circuit symbol for the battery.

Volta received many honours in his lifetime, including recognition by learned societies in London, Paris and Berlin. His financial rewards from his university salary were boosted in 1805 by the annuity he received from Napoleon and, in 1809, by his senatorial salary. For the last two decades of his life "he had the income of a wealthy man."

Reference

The volt was formally proposed as a unit of EMF in 1863 by a committee of the British Association for the Advancement of Science, although it may already have acquired some usage amongst practical telegraph engineers. It was adopted internationally in 1881.
Oscilloscopes

Marconi TF2015 10MHZ-520MHZ Signal Generators

Tektronix 647 100MHZ Dual Trace Delayed T/B

Philips 3110 Dual Trace 10MHZ £110 Scopes

Gould Cossor CDU150 35MHZ Dual Trace Delayed T/B

Telequipment 061 15MHZ Dual Trace £100

Gould WP 1740A 100MHZ Dual Trace £450

HP 1715A 200MHZ Dual Trace with DVM Opt £750

WP 1703A Dual Trace Storage Scope £400

Tektronix 212 500KHZ Dual Trace Miniscope £375

Tektronix 7915 15MHZ Dual Trace £195

Tektronix (Offer Price) £599

Tektronix 7603 Main Frame

Tektronix 2465A 350MHZ Four Trace

Tektronix 2445 150MHZ Four Trace £1250

Tektronix 475 20MHZ Dual Trace Delayed

Oscilloscopes

Fluke 6160A

Philips PM5234 100KHZ

Racal 3061/3062 10MHZ Synthesized £350

Racal 3092

Offer)

Marconi TF995

Marconi TF2008 10KHZ-520MHZ AM/FM

Marconi TF2016A 10KNZ-120MHZ AM/FM

Marconi TF2604 Valve

Marconi TF2600 Valve

Marconi TF2303 Mod Meier

Marconi TF2300 Mod Meter (1GHZ)

Marconi TF2120 Function Generator

Marconi TF1313

Marconi TF2160 Monitored

Marconi TF2331 Distortion Meter

WP 1417 Spectrum Analyser 8552Ú8552A

THRELKO

Bishopgate 5TH 4TH 1817A 18

March 1990 ELECTRONICS WORLD + WIRELESS WORLD

You need

FREE CATALOGUE - Electrovalue Ltd., Freepost - 3rd Epworth Road, Egham, Surrey TW20 8AA.

Phone: 081-470 6472 / 6473. Fax: 081-470 6474. CIRCLE NO. 143 ON REPLY CARD

When you need COMPONENTS

(C.W.O. Post Free U.K.)

ALL PRICES PLUS VAT AND CARRIAGE

86 Bishopgate Street, Leeds LS1 4BB.

Tel: 0532 435649. Fax: (0532) 426881

CIRCLE NO. 135 ON REPLY CARD

For Logic Analysers

Whatever your need in logic analysis, Thurlby-Thandar can supply it.

The widest range of analysers available stretches from basic 16 channel models through value-for-money 32 and 48 channel analysers up to highly sophisticated modular units with up to 112 channels.

Our analysers have an unbeatable level of support including disassemblers for most popular 8 and 16 bit microprocessors.

LA3200/4800

This range offers exceptional value for money with up to 48 channels and 100MHz timing from around £1000 + VAT.

Contact us now for full details of all our LAs.

Thurlby-Thandar Ltd., Glebe Rd., Huntingdon, Cambs. PE18 7DX.

Tel: (0480) 412451 Fax: (0480) 450409

CIRCLE NO. 128 ON REPLY CARD

FREE CATALOGUE - Electrovalue Ltd., Freepost - 3rd Epworth Road, Egham, Surrey TW20 8AA.

Phone: 081-470 6472 / 6473. Fax: 081-470 6474. CIRCLE NO. 143 ON REPLY CARD
NEW PRODUCTS CLASSIFIED

ACTIVE

Asic
C-mos production process, ECPF-12 is the name of ES2's 1.2 micron dual-layer metal c-mos process, developed to offer die-size reductions for manufacturers wanting to integrate high-complexity designs on a single chip in excess of 100mm². Asic designs prototyped by ES2 can be transferred for manufacture by Philips, European Silicon Structures, 0344 525252.

High density c-mos, 26000 and 47 000 gates with over 70% utilisation are offered by Motorola's HDC02 and 027 high density c-mos micron arrays. The channelless sea-of-gates architecture gives 300ps I/O delays, with a fan-out of 2. The 027 has 168 I/O pins and the 047, 212. Slow rate control macros provide two choices of output slew rate. Motorola, 0296 395252.

A-to-D and D-to-A converters
Digital to analogue. The DAC-8229 has a voltage output and is a direct replacement for Cedis' AD7526/7628. It is a single chip dual 8-bit c-mos device designed for outputs of 0V to +10V. Features include two integral output DACs, matched to 0.1%, 8-bit endpoint linearity, a write time of 50ns, and low power consumption. Available in 20-pin Cerdip and plastic packages. Cedis, 0734 585171.

Development and evaluation
State machine. The 125MHz CY7C361 76 high speed state machine sold by Ambar Censcom allows EPLD based logic design for systems with clock rates up to 66MHz. It incorporates an on board clock doubler. Power consumption is 700mW. New PLD architecture has been used to improve performance over other PLD based state machines. Production quantities will be available next quarter. Ambar Censcom, 0296-434141.

Discrete active devices
Barrier diodes. Hi-Rel II V GaAs planar diode devices, obtainable from Marconi, offer high pulse burn-out resistance, low local oscillator drive requirements, high tangential sensitivity, together with improved 1/f side band noise performance. These combine to give good detection sensitivity and temperature stability. Marconi Electronic Devices, 0529 500500.

High performance semiconductors.
Lower noise, better linearity, faster transition frequencies or reduced capacitance are the operational goals of Siemens latest FET silicon transistors. Its BFQ 82 noise level is less than 1.6dB at 800MHz with a gain of 17dB (at 1GHz) while its BAT 64 Schottky diode draws 20mA forward current, and has an overall capacitance of 6pf. Siemens, 0932 752323.

M Fetset for telecoms. Toshiba has announced a new M fetset designed to produce extra power for high frequency operations. JLS96-4S provides a power output of 33.5 dBm at 14.5GHz with a gain of 5.5dB. The 100µm device has a thermal resistance of 9°C/W. Dimensions are 2.1mm by 0.53mm and Toshiba has increased the thickness of the chip to 70 micron. Toshiba Electronics (UK), 0276 694600.

General microprocessors
STD multiprocessor. 276632 single board STD bus multiprocessor computer with DOS extension can enhance performance, control, modularity and development facilities within control applications. 8MHz V40 chip IPC uses its own resources, not the system's. 80K on-board memory. 58K expansion socket.

Siliconix 9120 SMS chips operates at mains input voltages; 9112 is intended for voltage transverting. Siliconix 0635 309050

three parallel ports, two serial ports. Optional maths co-processor. Wordsworth Technology, 0732 966985.

Processor. Primarily designed as a serial I/O module, the S1ME/775 5U VME card can be used as a general purpose CPU card or stand-alone single board computer. Its CPU is a 68000 or 68010 running at 12.5MHz and it has eight RS232/RS422 serial channels. It can be configured up to 5.5MB of 150ns dual port static ram accessible to local bus and VMEbus. B&M, 0703 270770.

Linear integrated circuits
Op amp. AD843 is said to be the fastest FET input monolithic unit on the market 135ns settling time of 10V steps to within ±0.01%, 34MHz gain-bandwidth. The manufacturer also claims low cost and low power use as two of its features. Available in five temperature performance grades and also to Mil Std 9815. Analog Devices, 0932 253320.

Operational amplifier. Optimised for a gain of 5, the Harris HA-2548 from Thane Components has a gain-bandwidth product of 150MHz, a slew rate of 120V/s, a loop gain of 130dB and 30V offset voltage. Settling time is 200ns to 0.01% (10V step). Available from stock in 8-pin cerdip and 8-pin can packages. Thane Components, 0844 261188.

Memory
C-mos exprom. Seiko Epson has introduced a 512 bit device working at just 0.9W, obtainable from Hero Electronics. The SP128651 series is available In 8-pin SOP or DIP packages. They operate from 0.9V to 5.5V at the read stage with a supply current down to 40A A maximum of 1.5V. Design is 10000 erase/write cycles per bit and a ten year bit retention time. Hero Electronics, 0525 405015.

Optical devices
Laser light sources. Two environment resistant lasers are now available from Lambda. Both are stabilised single mode sources. Model 7160 produces emission at 1300nm. 7170 emits at 1550nm. Units are portable - weighing 1260s - held in water-tight heavy-duty metalised cases. Power is from internal 12V batteries. Features include adjustable level setting. Lambda Photometrics, 05027 64334.

Triac optocoupler. Siemens says its IL 429 is the first optocoupled triac delivering 2A at 55°C without additional cooling. Sensitivity is said to be so high that an input of less than 8mA (typically 4mA) is enough to switch up to 2A. A safety factor greater than 2 is promised with operation on 230V AC systems. Siemens, 0932 752323.

Oscillators and crystals
Miniature oscillator. The Hall Effect of FTS time base oscillator, available from Racal-Dana, offers long term frequency stability of ±10ppm per year. Its dimensions are 2x3x4in and it may be installed directly on instruments or systems. The unit uses 10W at 240V and will warm up to the above accuracy in 6 min. Standard output is a 10MHz sine wave delivering 0.5V RMS into 50ohms, with options. Racal Dana, 0703 643265.

Power semiconductors
Easy mounting transistors. Low on-resistance transistors in an industrial plastic package offering easier mounting can now be obtained from Siliconix. Nine devices are included. In the range, based on the popular TO-220 package, and they do not suffer from the size disadvantages of the larger TO-3 packages. The devices also run cooler with greater reliability. Siliconix, 0635 309050.

PASSIVE

Miniature potentiometer. 10mm square, over 750 000 combinations all with conductive plastic elements to ensure low noise; the miniature Wilberforce Electronics potentiometer can now be obtained from Radiation. The model 400 has eight standard taprers and can be supplied in single or dual gang configurations. It is sealed for wave soldering. Radiation Components, 0276 26466.
High frequency capacitors. The equivalent series resistance of Siemens B45177 tantalum electrolytic capacitors has been cut by over 50%. It now ranges between 45 and 330 mohms to meet the requirements of switched-mode power supplies. Capacitance values are 4.7uF to 330uF with current ratings of 1.1A to 4.6A. RMS. Siemens, 0132 753232.

Connectors and cabling

Cable ends. Conctec has extended its range of insulated cable ends to include types for use with stranded conductors from 0.25 up to 70mm² cross section. Standard and long versions can be supplied in all sizes; short and intermediate versions are available for most commonly used sizes of cables. Conctec Supplies, 0902 366556.

Cables and hoods. Thomas & Betts 300 series, fully screened flat and round cables and associated hoods are being offered by Highland Distribution. Cable used is 32AWG stranded. Screening is with PVC-coated aluminium tape with additional braiding of tinned copper wire. External coating is flexible PVC. Eight versions are available. Highland Electronics, 0444 245012.

Displays

Rackable monitors. Use in hostile environments is the aim of this range of 19in rack mounting units, supporting all the common graphics standards including EGA and VGA, in colour and monochrome. All are encased in nickle-plated mild steel with a 6mm thick Perspex screen to protect the monitor. Prices start at £489 for the mono version. Blue Chip Technology, 0244 520222.

Small VGA colour monitor. 9in VGA screen units for mains-use with a maximum current consumption of 0.7A are available from Components Bureau. The Sony Trinitron tube used has a short persistence B22 phosphor, with high resolution to 640 x 400 on a display area of 140 x 110mm with a dot pitch of 0.256mm. Dimensions are 164 x 210 x 310mm. 5.2kg. Components Bureau, 0223 216949.

LED displays. A range of single digit seven-segment numeric LED displays from 7.62mm to 17.8mm, manufactured by Everlight Electronics, can now be obtained from MB Electronics. Colours include a choice of reds, green, yellow and orange. Each is equipped with a decinal point. MB Electronics, 0204 25544.

Colour terminal. ELF colour 14E terminal has VT220/VT320 compatibility with additional VT100, VT100, M220 and Viewdata emulations as standard. All keys are programmable. Its high resolution screen has 0.31mm dot pitch and offers 16 colours. Graphics and character sets can be defined. Easidata says it is designed to be a low cost display, £850 complete. Monotype Easidata, 0784 242477.

NEW PRODUCTS CLASSIFIED

High frequency capacitors. The equivalent series resistance of Siemens' B45177 tantalum electrolytic capacitors has been cut by over 50%. It now ranges between 45 and 330 mohms to meet the requirements of switched-mode power supplies. Capacitance values are 4.7uF to 330uF with current ratings of 1.1A to 4.6A. RMS. Siemens, 0132 753232.

Connectors and cabling

Cable ends. Conctec has extended its range of insulated cable ends to include types for use with stranded conductors from 0.25 up to 70mm² cross section. Standard and long versions can be supplied in all sizes; short and intermediate versions are available for most commonly used sizes of cables. Conctec Supplies, 0902 366556.

Cables and hoods. Thomas & Betts 300 series, fully screened flat and round cables and associated hoods are being offered by Highland Distribution. Cable used is 32AWG stranded. Screening is with PVC-coated aluminium tape with additional braiding of tinned copper wire. External coating is flexible PVC. Eight versions are available. Highland Electronics, 0444 245012.

Displays

Rackable monitors. Use in hostile environments is the aim of this range of 19in rack mounting units, supporting all the common graphics standards including EGA and VGA, in colour and monochrome. All are encased in nickle-plated mild steel with a 6mm thick Perspex screen to protect the monitor. Prices start at £489 for the mono version. Blue Chip Technology, 0244 520222.

Small VGA colour monitor. 9in VGA screen units for mains-use with a maximum current consumption of 0.7A are available from Components Bureau. The Sony Trinitron tube used has a short persistence B22 phosphor, with high resolution to 640 x 400 on a display area of 140 x 110mm with a dot pitch of 0.256mm. Dimensions are 164 x 210 x 310mm. 5.2kg. Components Bureau, 0223 216949.

LED displays. A range of single digit seven-segment numeric LED displays from 7.62mm to 17.8mm, manufactured by Everlight Electronics, can now be obtained from MB Electronics. Colours include a choice of reds, green, yellow and orange. Each is equipped with a decinal point. MB Electronics, 0204 25544.

Colour terminal. ELF colour 14E terminal has VT220/VT320 compatibility with additional VT100, VT100, M220 and Viewdata emulations as standard. All keys are programmable. Its high resolution screen has 0.31mm dot pitch and offers 16 colours. Graphics and character sets can be defined. Easidata says it is designed to be a low cost display, £850 complete. Monotype Easidata, 0784 242477.
accommodated. Circuit Plating Equipment, 0635 33656.

Component preformer, French manufactured Lopuit CK machine, introduced to the UK by John Minister, is suitable for preforming axial components at up to 20,000/hr - ideal for small to medium batch runs. It can handle most bandformed layers and cutting and banding is adjustable within 0.1mm. Component design produces easy changeover and low set-up times. John Minister Automation 0303 56816/7.

Wire twister, Rush’s model WT20 is an improved version of its WT12 and incorporates an LCD pre-setable read-out and special wire clamping mechanism. It is particularly useful for twisted pairs and can twist two or more wires, up to 16AWG, of any length up to a speed of five twists/sec. Rush Wire Snippers, 0264 51347.

Power supplies

Compact supply, Acct. s. ‘JF’201, 2000W switchable power supply from Astec UK. Provides 2 or 5V DC output at 400A, with other outputs of 12, 15, 24, 28 and 48V DC. Dimensions are 5 x 9 x 10in – a power density of 9W/in². 208/230V AC or 300V DC input with full output at typical efficiencies of 85%. Switching at 100kHz. Two forward converters are used. Astec UK, 0246 455946.

Capacitor charging unit, Series 5000 modular power supply is a low profile 19 in rack mount with a charging rate of 600w/s. Voltages are 1, 2, 5, 10, 20 and 30kV with regulation and resolution figures of 0.5%. Maximum repetition rate is 10 pulses/though other voltages and rates are available. Hartley Measurements, 0752 344606.

Selectable requirements, Astec MS series supplies from Thame Power are rated at 1200W and can provide any combination of 5, 12, 15, 24, or 48V outputs. Configurable AMPSS modules can be factory or customer selected for particular requirements. Overall efficiency is 75%, with a 500kHz switching frequency. Dimensions are 8 x 5 x 11 in. Thame Power, 0494 442966.

Dual laboratory power supplies. The Twopack power supply 4002/2 from Weir gives a total of 120W from two identical, isolated, 0-30V, 0-2A sections. True constant current/constant voltage operation and output protection diodes allow series/parallel connection, also giving 0-30V, 0-4A and 0-60V, 0-2A. Simultaneous monitoring of each rail is possible. Weir Electronics, 0243 865991.

Switches and relays

Sub-miniature switches. LIMA A6 series switches are designed for surface mounting and are fully sealed to allow wave and flow soldering. Resistor ratings with silver contacts are 250V AC at 2A, 125V AC at 5A. Gold contacts give 5V AC/DC and 10A maximum or 20V AC/DC at 0.4A maximum. Insulation resistance is at least 1000MΩ.

Electric strength is 1KV for 1 minute. Arrow-Hart (Europe), 0752 701155.

Light load relays. Standard and high sensitivity relays have been made available by Devlin in its M3 series for PCB mounting. At rest load the contact maximum switching current is 1A AC/DC. Maximum switching power is 30W DC 50VA AC with maximum switching voltage of 60V DC 120V DC. Devlin Electronics, 0256 467367.

Sil relays. A relay 3.7mm wide, 15.1mm long and 6.6mm high, claimed to be the smallest currently available, has been introduced by Pickering. Its series 109 requires half the board needed by some other Sil relays. Switches are rated at 10W 20V and 0.5A maximum. 5V, 5001 and 12V 1000Ωfils are available. Pickering Electronics, 0255 428141.

Transducers and sensors

Photodector. Centronic’s Q535 series of devices has a photodiode mounted together with an amplifier in a hermetically sealed TO8 package with a low profile cap. Simplified system design should be possible through elimination of a head amplifier. Four versions: uv (250-400nm) visible (400-900nm); IR (600-1,000nm) and eye response are available. Centronic, 0699 42121.

Data communications products

Communications controller, Celds has extended its range of Zilog microcontrollers with its type 16C30 – delivering 4x transmission rate of current 5-channel industry standard SCSs. It operates at a data rate of 10MB/s which Celds says is the fastest available. Bus bandwidth has been improved to 12.5MB/s. The device can operate two protocols simultaneously. Celds, 0734 565171.

Signal processing codec filter. Siemens SICOPF 2 for ISDN switching systems can process two channels on one chip. An 10M-2 interface should avoid compatibility problems and programmed filter.

ICP series of dedicated on-board eprom programmers. Stag Microelectronics 0707 332148.

coefficients will enable matching of national standards. Power consumption is maximum 5Wf for both channels in power-down mode. Siemens, 0932 752323.

Software

PCB design. RUN Electronic Design System for the Apple Macintosh, can deal with surface mounted devices on a multilayer board, and PCBs up to 32 x 32in with up to 50 layers can be created with an internal resolution of 0.0005in. Autocode algorithms included, and up to 24 signal and power layers. Prices from $1000 to $9500. Formula GmbH.

Image processing. Real time display, full image set-up, acquisition and analysis control are the features of Metabyte’s MX-RMAC designed for use with PC/XT/ATs and compatibles. Systems must be equipped with Metabyte’s MV frame/line grabber board. Menu selection should allow inexperienced users to access all features. Keiftley instruments, 0734 861287.

PC-based network management. CMS Nuclear 200 is network software for PC/XT/AT at PS2 and compatibles which Ralac-Milgo says offers the benefits of mini-computer systems, but at lower cost. It will control up to 512 devices. Operator training is minimised through mouse control and windows/menus. Facilities include monitoring, control, and database management. Ralac-Milgo, 0256 769111.

PCB design, Cadstar Professional, running on PC/AT, PS/2, compat 386 or compatibles, will help with design of large, complex, multilayer PCBs encompassing surface mount and fine line technologies. This enhanced version of the standard Cadstar package will cope with 5400 connections and over 50 000 segments. It has and blind and via capabilities over all 16 permitted layers. Rapid-Reader (CN) 0684 29416. Back-up utility, SitBack from Roalan is a memory resident utility especially useful for users who forget to back up their files. At defined intervals SitBack is a jumper button allowing created or changed files without disturbing normal use of the PC, and without user intervention. Uses 13k system memory and costs £99. Roalan International, 0202 865121.

Parallel DMA link. Ikon 10092 card provides a high speed parallel DMA port between Versatile or Centronics-type hard copy devices and IBM compatibles. It can be used in any AT-compatible or with a peripheral device adapter such as that provided with Apollo DN3000/4000 workstations. Taking up a single AT slot it allows a 6MHz PC/AT system to transfer data at up to 425 kBytes/sec. GMT Electronic Systems, 0372 373603.

DIMA parallel interface. Compatible with DE DR1/1-1A, Q-bus, MicroCax ii and 16-bit and 22-bit backplanes, the GT370 DMA board features 16-bit input and output ports, used to transfer parallel data to and from the Q bus under program control or DMA. For heavily driven I/O or DMA driven the unit contains a jumper allowing selectable interleave on and off the bus. Lighthouse Electronics, 0825 68849.

I/O controller. The IO 186/107 analogue and digital I/O board for Multibus II systems manufactured by Concurrent Technologies is available through Rapid Silicon. It has a 10MHz 80186 CPU, six analogue outputs (employing 12-bit A/D converters and amplifiers), 16 single-ended digital in and eight differential analogue inputs (0 to +10V and 0 to –10V) and 48 digital I/O lines. Rapid Silicon, 0494 457267.

In-circuit emulator. Reduced program download time – typically 4s for a 16k object and symbol file – is one of the advantages of Nohau’s 68HC11 emulator. Nohau claims this is the first emulator to be PC-resident rather than stand alone. Higher sample rate, through eradication of the usual serial link, is another plus. Nohau UK, 0962 733140.
<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DET21</td>
<td>66238</td>
<td></td>
</tr>
<tr>
<td>A1714</td>
<td>19191</td>
<td></td>
</tr>
<tr>
<td>DF92</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>CK5676</td>
<td>187 (C 4.50</td>
<td></td>
</tr>
<tr>
<td>E186F</td>
<td>E182 (C 9.00</td>
<td></td>
</tr>
<tr>
<td>EBBCC</td>
<td>195.00</td>
<td></td>
</tr>
<tr>
<td>ON REQUEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK5676</td>
<td>187 (C 4.50</td>
<td></td>
</tr>
<tr>
<td>E186F</td>
<td>E182 (C 9.00</td>
<td></td>
</tr>
<tr>
<td>EBBCC</td>
<td>195.00</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>65K5</td>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>75K5</td>
<td>29.50</td>
<td></td>
</tr>
</tbody>
</table>
Audio current conveyor

A recently introduced integrated circuit could be the answer to the harshness in sound that has been a common criticism of compact disc players. The device uses a current conveyor configuration to give low-distortion and wide-bandwidth functions such as gain blocks, inverters and virtual ground inputs without the global negative feedback required by most other circuits such as operational amplifiers. It is therefore inherently free of dynamically induced distortion.

Global feedback techniques can introduce dynamic distortion such as transient intermodulation (TIM) and slewed induced distortion (SID). Many audio signals are band limited and therefore may not contain the fast edges needed to generate the type of distortion but there are notable exceptions. For example, the dynamic characteristics of op-amps in the D-to-A stages of digital recording and compact disc equipment must be considered carefully to eliminate distortion.

The new IC could be the answer. It comes in two versions, PA630 and PA630A, and each has two unity gain buffer amplifiers, a current mirror, and a current conveyor block. The PA630 is a 16-pin device and the PA630A has two extra pins to give more flexibility in interfacing.

Each unity gain buffer amplifier (Fig. 1) consists of four emitter followers and two current sources. The quiescent operating point of each can be set independently with an external resistor. This arrangement produces a fast unity gain buffer that uses only the local feedback inherent in the emitter follower configuration.

The current conveyor consists of two complementary cross-coupled current mirrors and an output transistor. This arrangement produces a virtual ground without the global negative feedback needed in op-amp type circuits. One mirror can set up an opposing reference current to define a net output current of zero at one of the pins for any desired input current. This combination of a current conveyor and opposing current mirror lets many useful function blocks be realised.

The on-chip circuitry consists of a connection of Wilson current mirrors, an emitter degeneration compensation scheme to optimise the transient response and stability of these mirrors, and an output mirror arrangement to improve output impedance.

The nature of the high impedance current output allows for some interesting applications. Since the input reference (ground) and output reference (cold end of the load) can be independent, signals can be level shifted between any two voltages in the common mode range. This could be used to isolate two grounds in a system while still retaining DC coupling. In audio systems this could help eliminate noise caused by ground loop circulating currents.

Fig. 1. Functional schematic of the PA630

Fig. 2. The output from the CD player
SPECTRUM ANALYSERS

HP1167 9555 B 0.1-1500MHz £2,950
HP1147 9555 B 9kHz-1.5GHz £2,950
HP85668 32GHz GPIB £2,950
HP85669 130MHz GPIB £1,550

MARCONI 2731/10MHz GPIB £1,350
MARCONI 2380-82 10GHz GPIB £1,100
TAKE E DA RIKEN TR9305 832 GHz GPIB £950
TAKE E DA RIKEN TR9605 832/834 GHz GPIB £1,100

MARCONI INSTRUMENTS

2316 2337 1kHz oscillator/level meter £1,000
344G 6437 microwave power meter/head £630
651F FM signal generator 140-1700MHz £375
6778Q sweep 0.1-15kHz £1,250
DA208A PCM regenerator test set £2,000
TF1204A/D 24GHz O-Meter and oscillator

TM320-inductor set £200
TF2113 FM signal generator 800-960MHz £200
TF2300 modulation meter £300
TF2302 modulation meter £300
TF2303 modulation meter automatic £300
TF2305 modulation meter digital £250
232G 20GHz counter-30GHz option £150
TF2561 power meter 0.3W 30GHz £150
TF2560 modulation meter-20GHz £300
TF2560B video voltmeter 1mV-300V fid £175
TF2504D electronic multi-meter £250
TF267A/7A multimeter tester £400
2526A 829B digital transmission analyser £1,500
2533 digital in-line monitor £1,500
2903 844G power meter/microwave head £300
1959A audio power detector-10kHz-10kW £200
2991/2909 noise generator filters £950
6606A/6646 11.2GHz £1,950
2018 synthesized signal generator 0-50MHz £850
4608 signal source 2-40GHz £1,250
4612 FM signal generator 40-500MHz £195
4138/30 P/B 40MHz ball-ball counter £325

2104 synthesized signal generator £350
2108 synthesized signal generator 0.08-114MHz £350
TF1230 PCL extension bridge £325
TF1273 UHF attenuation 0-114MHz £300
TF2130 spectrum analyser 114MHz £200

TEST & MEASUREMENT EQUIPMENT

ADOREY TR1008 up controlled signal gen 0-3.5GHz £950
ANRITSU MS331 B1-1 MHz-2GHz 1 video signal generator £450
ANRITSU MS2711B video signal analyzer £200
AVO CD1535 8kHz-5MHz £375
AVO PM1601 oscilloscope £300
AVO BPR15B acoustical breakdown tester to 12V £950
AVO BPR15D 1-10A acoustical breakdown tester to 12V £950
BRANDENBURG 490 kHz-5V 2023 LP 200V £750
BRÜEL & KJÆR 4406 response test unit £225
BRUEL & KJÆR 2350 level/ravrec 2.5-5000pV £225
BRUEL & KJÆR 2425 voltmeter £225
WATTSU SMU 100 b spectral component analyser £1,000
WATTSU SMU 100 b spectral component analyser £1,000

ADDITIONAL E-X STOCK T & M KIT

ROHDE & SCHWARZ 50MHz-wattmeter £1,950
ROHDE & SCHWARZ PZC instrument computer £1,950
ROHDE & SCHWARZ SM1 1GHz signal generator £1,950
SHIBAURA-DENSHIN 10MHz-1MHz power supply £1,950
SCHWARZ SMS 110MHz spectrum analyser £750
IBM 1130 195MHz computer £1,950
IBM 7090 8.5GHz computer £1,950

ADDITIONAL E-X STOCK T & M KIT

SCHWARZ SMS 110MHz spectrum analyser £750
BRUERL & KJÆR 4406 response test unit £225
IVATSU SMU 100 b spectral component analyser £1,000

BRUERL & KJÆR 4406 response test unit £225

Est. 35 years

RALEF ELECTRONICS
36 EASTCOTE LANE, S. HARROW MIDDLESEX MA8 0BU
TEL: 01-422 3597 FAX: 01-422 4049

HEWLETT PACKARD

1192B transient function £250
7513A probe modulator £250
529A Logic comparator £250
539A 10GHz Logic troubleshooter £250

361 AUP P-scan attenuator 0-500dB £250
4 P E scan analyser £250
65-DA power supplies 0-3kV £1,000
704DB01 2-pm KY disciples high-speed £250
82-18401 signal data generator £1,000
96-17 logic troubleshooting kit £250
948FL mmveter £1,500
948A function generator 1kHz-50MHz £950
3511A AF waveform £1,250
653A 110MHz spectrum analyser plug-in £250
7435A log voltmeter/amp £250
5430A structural behaviour analyser £1,250
8420A vector voltmeter £1,000
6415B/01 chopper/stabilised signal generator £225
11710 desk converter (10MHz) for 66dB £750
1417B 8553/8553 110MHz spectrum analyser £990
7244A decade discriminator £125
7025A digital CRO meter £250
861A 14GHz signal generator 0-14GHz £250
8690A 20GHz signal generator £250
950891 1GHz spectrum analyser £2,250
5242A 220MHz frequency counter £150
5242B 4GHz frequency counter option £150

Software development tools

APRIL Empro Emulator £170 inc P&P

8/16 bit emulation up to 32K as standard. 2764, 27128, 27256 devices.

Power drawn from Device Under Test

Low power consumption (30mA typ).

Intelligent PC software to load

Binary, Intel format files etc.

Software includes a full function monitor with on board help.

Dimensions: 200 x 112 x 30.

Access time better than 150ns.

All cables & documentation supplied.

If you would like more information or place an order please write to:

Business Integrated Test Systems

Unit 1, Holmside, Harrow Rd. East
Dorking, Surrey, RB4 2AU

March 1990

FULL SPECTRUM MONITORING

The world is at your fingertips with ICOM's new IC-R9000 radio communications receiver with continuous all mode, superior wideband range of 100kHz to 1999 MHz and a unique CRT display that shows frequencies, modes, memory contents, operator-entered notes and function menus. The revolutionary IC-R9000 features IF Shift, IF Notch, a fully adjustable noise blanker and more. The Direct Digital Synthesiser assures the widest range, lowest noise and rapid scanning. 1000 multi-function memories store frequencies, modes, tuning steps and operator notes. Eight scanning modes include programmable limits, automatic frequency and time-mark storage of scanned signals, full, restricted or mode-selected memory scanning priority channel watch, voice memory scanning and a selectable wideband or your tuned frequency.

ICOM

Tel: 0227 343593. Telex: 965179 COM G

Please send information on Icom products & my nearest Icom dealer.

Name/address/postcode:

Job Title: _____________________________

Tel: ________________________________

Post to Icom (UK) Ltd Dept WW, FREEPPOST, Herne Bay, Kent CT6 8BR

CIRCLE NO. 158 ON REPLY CARD

CIRCLE NO. 134 ON REPLY CARD

COMMUNICATION COMPONENTS

CIRCLE NO. 132 ON REPLY CARD

27513
Fig. 2 shows the PA630 used in a typical compact disc player where the current output of a D-to-A converter, which must drive into a virtual ground, is opposed by a 2mA current to establish the zero reference for the audio signal. The current conveyor together with a buffer section provides the virtual ground and performs the I to V conversion with a high frequency roll off. The filter is a Salen and Key second order linear phase based around a buffer connected as a unity gain op-amp.

Operation
Each unity gain buffer amplifier consists of four emitter followers and two current sources as shown in (a). The quiescent operating point of each can be set independently with an external resistor (Rset) connected as indicated. Pin 1 and pin 3 may be left open to save current if this buffer is not required, but since the other buffer provides internal bias, it must be powered up with an output stage current of no less than one tenth of the conveyor quiescent current. As the current sources are actually Wilson mirrors (2 Vbe), and the output devices are five times larger than the input transistors, the quiescent current in the output stage can be calculated as:

\[5[V_{cc}+V_{ee}-2.8V]/R_{set}\]

The current conveyor block consists basically of two complementary cross-coupled current mirrors and an output transistor. Referring to (b) if pins 5 and 6 are shorted to ground, and current is sourced from pin 7, then to a first order, equal currents are sourced into the ground and pin 10. Of particular interest is the fact that pin 7 will be driven to a virtual ground potential, regardless of the current levels being sourced. Conversely, pin 10 becomes a high impedance output. Current is therefore conveyed from pin 7 to pin 10 unaltered, except for impedance level. This arrangement produces a virtual ground without the global negative feedback required in op-amp type circuits.

By using both the conveyor and the current mirror, the inverting gain block of (b) is produced. Since pin 7 is a virtual ground, and the mirror is a Wilson (2 Vbe), R3 sets up a quiescent current around the loop equal to:

\[|V_{ee}-1.4V|/R_{3}\]

If Vin is left open or connected to ground, pin 10 will also be at ground, since all currents balance. The gain of this block is \(R_{2}/R_{3}\) and it is bidirectional up to the level of current set by R3. It should be noted that both the...
Courses to satisfy the demand for vital but scarce skills in

ANALOG CIRCUIT DESIGN

Continuing Education Courses at Imperial College, London, England

Further details from: Peter Combey, Continuing Education Centre, Imperial College; London SW7 2AZ, U.K. Call (44)-1-589-5111 Ext 3033/4 or FAX (44)-1-584-7596
APPLICATIONS

input and output are actually currents that are converted to voltages by resistors R_1 and R_2 respectively. By eliminating one or both of these resistors, many current mode applications can be addressed.

A non-inverting configuration of the circuit is shown in (c). The gain is R_2/R_1 and R_3 sets up the quiescent current as before. By making $R_4=R_1$ and $R_5=R_3$, transistor output impedance errors are minimized.

The additional pins on the PA630A can be used to interface with two external jfets which buffer the output, as shown in (d). This provides high output impedance, improved accuracy, and lower distortion.

Tape head amplifier

The voltage level at the output of the playback heads is too small to be useful without a large amount of low-noise preamplification. The preamp should have enough open loop gain so that the correct equalisation curves can be produced in the feedback networks of the amplifier.

The NE542 dual amplifier provides a matched pair of gain blocks that minimise amplifier noise and maximise the signal-to-noise ratio. Each of the two amplifiers is independent with individual internal power supply decoupler-regulator. Open loop gain is $104\mu A$ from two stages of voltage gain and one stage of current gain.

When designing low noise devices special care must be focussed on the input stage. If different topography is used, the stage should be designed so that one of the differential transistors is turned off. This reduces the noise by a factor of 1.4 since only one transistor is producing noise. Current sources and mirrors cannot be used for biasing loads because active elements will contribute more noise. The first gain stage of the NE542 allows this (see Fig. 1).

Although the differential input configuration degrades the noise performance slightly, using differential inputs has the advantage of higher input impedance letting smaller capacitors and larger resistors be used.

The second stage, also shown in Fig. 1, is a common-emitter amplifier Q_5 with a current source load Q_6. The Darlington emitter-follower Q_3-Q_4 provides level shifting and current gain to Q_5 and the output current sink Q_6. The voltage gain of the second stage is about 2000 making the total gain of the amplifier typically 160 000 in the differential input configuration.

The non-inverting input has been internally biased from a 1.4V internal voltage source. From the zero differential rule, the output voltage will be set by the R_4 and R_5 resistor feedback network in Fig. 2. The base of $Q2$ needs 0.5μA bias current. Hence R_5 should pass at least 5μA for stability.

DC amplifier gain is defined by the ratio of R_4 and R_5. Open loop AC gain can be regained by adding a shunt capacitor across R_5. The low frequency 3dB corner is then defined by the capacitor-resistor break point.

Design of a preamplifier starts by determining the gain and output signal amplitudes in reference to the standard $800\mu V$ input signal level. The NE542 is used to achieve a $100mV$ output at 1kHz following a $7.5\mu s$ equalisation curve. The closed loop gain becomes 32dB at the highest frequency.

The NAB equalisation curve is achieved by adding frequency-selective AC feedback as shown in Fig. 3. Resistors R_4 and R_5 select the DC gain. Lower corner frequency $0.159/(C_4 \times R_4)$ gives a C_4 of $0.0047\mu F$.

The upper corner frequency is similarly fixed by the reactance of C_4 and R_7 and is equal to $0.159/(C_4 \times R_7)$. Midband gain is fixed by $(R_6 + R_7)/R_6$. Solving for the 1kHz gain of $42dB$ gives a value of 88Ω for R_6. The final calculation of the low frequency cut-off of the preamp determines the size of C_2 from C_2 equal to $0.159(f_{out} \times R_6)$.
SPICE•AGE
Non-Linear Analogue Circuit Simulator £245 complete or £70 per Module

Those Engineers have a reputation for supplying the best value-for-money in microcomputer-based circuit simulation software. Just look at what the new fully-integrated SPICE Advanced Graphics Environment (AGE) package offers in ease-of-use, performance, and facilities:

- **SPICE•AGE** performs four types of analysis simply, speedily, and accurately:
 - Module 1 - Frequency response
 - Module 3 - Transient analysis
 - Module 2 - DC quiescent analysis
 - Module 4 - Fourier analysis

1 **Frequency response**
SPICE•AGE provides a clever hidden benefit. It first solves for circuit quiescence and only when the operating point is established does it release the correct small-signal results. This essential concept is featured in all Those Engineers’ software. Numerical and graphical (xy, x, lin) impedance, gain and phase results can be generated. A probe node feature allows the output nodes to be changed. Output may be either dB or volts; the zero dB reference can be defined in six different ways.

2 **DC Quiescent analysis**
SPICE•AGE analyses DC voltages in any network and is useful, for example, for setting transistor bias. Non-linear components such as transistors and diodes are catered for. (The disk library of network models contains many commonly-used components – see below). This type of analysis is ideal for confirming bias conditions and establishing clipping margin prior to performing a transient analysis. Tabular results are given for each node; the reference node is user-selectable.

3 **Transient analysis**
SPICE•AGE performs Fourier transforms on transient analysis data. This allows users to examine transient analysis waveforms for the most prevalent frequency components (amplitude is plotted against frequency). Functions as a simple spectrum analyser for snapshot of transients. Automatically interpolates from transient analysis data and handles up to 512 data values. Allows examination of waveform through different windows. Powerful analytical function is extremely easy to use.

4 **Fourier analyses**
SPICE•AGE performs Fourier transforms on transient analysis data. This allows users to examine transient analysis waveforms for the most prevalent frequency components (amplitude is plotted against frequency). Functions as a simple spectrum analyser for snapshot of transients. Automatically interpolates from transient analysis data and handles up to 512 data values. Allows examination of waveform through different windows. Powerful analytical function is extremely easy to use.

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.

A good range of properly supported and proven programs is available and our expert staff are at your service.

Telephone: Charles Clarke on 01-435 2771 for a demonstration disk.

NEW: HANNING WINDOW: RESULTS LOGFILES

3 Transient analysis
The transient response arising from a wide range of inputs can be examined. 7 types of of excitation are offered (impulse, sine wave, step, triangle, ramp, square, and pulse train); the parameters of each are user-definable. Reactive components may be pre-charged to steady-state condition. Up to 13 voltage generators and current generators may be connected. Sweep time is adjustable. Up to 4 probe nodes are allowed, and simultaneous plots permit easy comparison of results.

CIRCLE NO. 117 ON REPLY CARD

C.A.D. SOFTWARE MADE EASY

ISIS SCHEMATIC CAPTURE
An exceptionally easy way to draw circuit diagrams on your PC. Once the design is on the computer, you can generate a parts list, perform an electrical rules check, extract a netlist for PCB design and/or simulation, print hard copy on a wide range of printers and plotters, or else export it to a DTP package to create professional quality documentation.

- Auto wire routing
- Auto dot placement
- Auto name generator
- Powerful editing facilities
- Object oriented 2D drawing with symbol library
- Support for hierarchical and multi-sheet designs
- Comprehensive device libraries
- Output to dot matrix, pen plotters or lasers

PC-B PRO/AR PCB DESIGN
User friendly PCB layout software with optional auto-router. The layout editor (PC-B PRO) handles 2 copper layers plus overlays and solder resists whilst the auto-router (PC-B AR) will route single or double sided boards on a 25 or 50 thou grid. Together with ISIS, you have an integrated design system that really puts your computer to work.

- Auto generation of silk screen overlay as components are placed
- Auto generation of solder resist, simple to complex
- Configurable object sizes
- On screen overview display
- On screen pin numbering
- Connectivity highlight
- Back nest list verification against schematic
- Dot matrix, laser, pen plot and Gerber drivers

PRICES

<table>
<thead>
<tr>
<th>Software</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIS</td>
<td>£399</td>
</tr>
<tr>
<td>PC-B PRO</td>
<td>£299</td>
</tr>
<tr>
<td>PC-B PRO/AR</td>
<td>£399</td>
</tr>
<tr>
<td>ISIS + PC-B PRO</td>
<td>£599</td>
</tr>
<tr>
<td>ISIS + PC-B PRO/AR</td>
<td>£749</td>
</tr>
</tbody>
</table>

Call for FREE demo disks - 0274 542868.

CIRCLE NO. 113 ON REPLY CARD
A major difference between this article and its predecessor in the November issue is that, as an amateur radio group, we have become convinced, since that article was written, that the CFA does indeed work effectively. We are now concerned with its performance and the potential for further development.

The question of whether the theory expressed in the original article by Hately, Kabbary and Stewart in the March 1989 issue is the correct explanation for the practical results we have experienced, we must leave to others better qualified to judge. However, we feel that whatever opinion may be expressed in this context, the authors have produced what appears to be some entirely original thinking which ought to be acknowledged as such.

Matching the feed

Since my previous article, I have made efforts to achieve a matched feed system for the CFA – for two reasons. Firstly, a matched system with more or less “flat” lines might avoid the criticism that all we have been doing is using the combination of the feed lines, the CFA and a matching unit to create a resonant system in which most of the radiation is from the feed lines.

The second and more important practical reason for a reasonably matched system is to obtain correct phasing; Hately confirmed that the required phasing between the plates and cylinders of the CFA is the 90° shown by our experiments.

The next step was to use a noise bridge to check as carefully as possible the approximate impedance of the plates and cylinders of the present version of the barrel-shaped CFA. (Previously I had obtained some very doubtful results, suggesting a very high radiation resistance and of course a substantial X_c.) Eventually, repeated measurements suggested that the impedance for both plates and cylinders in the $R + jX$ form was of the order of 10Ω and 1000Ω. Because of the difficulty of making accurate low-value resistance measurements with the noise bridge, these figures were checked by substituting with 1% 8-12Ω carbon resistors. It seemed that the resistance values might be overstated, but only slightly.

An obvious way, neglecting reactance effects, of matching 12Ω to 50Ω co-ax seemed to be a one-to-four, balanced-to-unbalanced transmission-line transformer that could be effective over the range 3-30MHz. I constructed this transformer along the lines shown in Fig. 1, only to find that although it behaved perfectly well with a pure resistance load, its transformation ratio varied widely with even a slightly complex load and did not provide even a reasonable match for the transceiver. I put this down to its inability to cope with the inherently high capacitive reactance of the CFA, together with my use of ferrite core material of unknown specification. Attempts to cancel out the reactance with a conjugate inductive element did not achieve the desired result.

Series-section matching. My next thought was to try series-section matching and wrote a simple Basic programme so that I could vary the line-impedance values to see which combination could provide a match and also be of the shortest possible length. I eventually settled on the...
rather clumsy and complicated looking system indicated in Fig. 2. A 1m length of 300Ω ribbon makes the balanced connections to the CFA, and is immediately followed by a bifilar-wound line transformer in the form of a sortabalun. (A balun of this kind is intended to provide a transition from balance to unbalance without necessarily forcing balance to earth).

A second series of impedance measurements was now required at the transceiver side of the sortabaluns for use in the final series-section calculations. The sortabaluns did not appear to affect the resistance values, but their inherent inductive element counterbalanced some of the CFA capacitive reactance. The impedance finally used for the series-section calculations was \(R = 10 \) and \(X_C = 100 \) with 50Ω co-ax as the main line and 300Ω ribbon as the series-section. Mixing balanced and unbalanced lines in this way is not very elegant, but seemed to be the only practical way to achieve the required transformation. Figure 2 also includes a very simple and effective phasing system drawn from a recent article in CQ Magazine, August 1989.

Operating experience with this system has shown that the phasing method works well and has produced the best CFA results so far on 40m, for which the series-section matching was designed. Without altering the matching sections, the system also gives acceptable results on 20m – I managed a contact in Western Connecticut in relatively poor conditions, using 350W PEP to maintain a Q5 signal. The CFA is located about 25 feet above ground, inside the roof space of my house.

Perhaps the most surprising and puzzling results of all with this 40m matching arrangement is that it has produced even better results on the 80m band, where it has, at times, equalled the 272ft-circumference horizontal loop at 35 feet that I normally use.

These results on 80 and 20m caused me to question exactly what was happening in the series-section matching. It seems that one way of interpreting Fig. 2 is that it places plate and cylinder lines in parallel at the phasing unit, which suggests that the matching system has fortuitously provided a transformation to 100Ω on each line and a

Fig. 2. Series-section matching. Phasing unit design appeared in CQ August 1989, p. 30.

50Ω load for the transceiver.

To check this possibility I used a PL259 T connector to submit the plate and cylinder series-section "matched lines" directly to the transceiver without any other intervention; the result – a perfect match and 1:1 SWR.

Further measurements showed an impedance at the end of each line of 100Ω and a small inductive reactance. Reinroducing the phasing circuit made no difference to the 1:1 SWR once it was correctly adjusted to give equal RF voltage readings in the two feed lines to the CFA. I think it is important to stress that a perfect match was available without any additional tuning or matching unit over the whole 40m band, so the series-section match was working, but in an unpredicted way.

Fig. 3. Dimensions of CFA.

Fig. 4. Alternative 90° phasing method, adapted from ARRL Antenna Compendium Vol. 1, p. 67. L1 consists of 7 bifilar turns of 32-strand insulated wire on Amidon T200 Red Mix iron powder toroid.
Hybrid combiners. Meanwhile, my attention had been drawn to an article in the ARRL Antenna Compendium, Volume 1, p.67, on phasing four 40m vertical antennas by means of hybrid combiners. The initial combiner, a four-port device - all ports presented with 50Ω loads - produces two of its outputs at ±45°. If my matching to 50Ω had not been shown to be flawed, this would have been a more or less ideal way to provide single-band phasing for the CFA, particularly since it was a broad-band device.

The “Twisted-wire Hybrid Combiner” was not difficult to construct as illustrated in Fig.3. Despite the mismatch with 100Ω plate and cylinder lines, I was delighted to find it worked well over the whole 40m band with a direct match to the transceiver and an SWR of about 1.13 without a matching unit. It may be slightly down, less than an S point, in comparison with the tuned phasing system. Again the hybrid is supposed to exhibit heavy dissipation in the dummy load if not presented with the correct 50Ω to each port. This did not seem to amount to as much as 5W: probably accounted for by, at least the two antenna lines are about equal at 100Ω.

The question of why I failed to produce the designed 50Ω transformation with the series section intrigued me; running the computer programme again, I discovered that I had been working at the limits of what a 6:1 series-section combination could achieve.

Slotted 300Ω ribbon. If the CFA impedance had a resistance of less than about 8Ω, the series section would not work. In fact, its length approaches the length of the main line and the total becomes more than a half wavelength. This made me think that I might try out an electrical half-wave length of slotted 300Ω ribbon as the feeder to plates and cylinders. On 40m this would mean that whatever impedance existed at the antenna would be repeated at the opposite end for any measurement purposes. I could also use the two sortabaluns to provide balance transition from the transceiver end of the 300Ω ribbon and use the CQ tuned phasing system and a final matching unit for the transceiver’s 50Ω needs. This arrangement would also provide multiband operation. This arrangement is now in use and works well on 80, 40 and 20 metres.

All the effort with the series-section experiment had been useful experience and did provide matching of a kind which, so far as I could measure, eliminated most feeder radiation.

In making all the measurements that have been described, resistance values of somewhere between 7 and 12Ω have been encountered from the CFA at 7.07MHz. These values are much larger than any DC resistance values, even if the circuits were closed. Does this confirm that the CFA does create a radiation resistance element as required for antenna operation? If not, where does this apparent resistance come from?

The cross-section antenna was described by F.M. Kabbara, M.C. Hately and B.G. Stewart in the March, 1989 issue of Electronics and Wireless World. It is intended to synthesize directly the Poynting vector $S = E \times H$ from separately stimulated E and H fields and one result of the development is an extremely small and compact design which is independent of the radiated wavelength.

There have been criticisms of the design, some correspondents saying that it cannot possibly be practicable, but Bryan Wells has made models which appear to work well. He described some initial experiments in the November 1989 issue.

Bryan Wells' original CFA developed from an original and patented idea by Hately and Kabbara.
55 WATTS = 3 HP = YOUR SPACE PROBLEM SOLVED

- Single, Dual, and Triple Outputs
- 55 Watts Fan Cooled
- 35 Watts Convection Cooled (55W pk)
- 90% Efficiency
- 0-70°C operating range
- -25°C option
- RFI meets VDE 0871 Curve B
- Dual AC input
- DC input options
- Meets VDE 0804, 0806 IEC 380, 950, BS 5850 UL & CSA
- M.T.B.F. 80,000 hours
- All outputs independently regulated
- No minimum load required
- Pi Filter option to Telecomm Specs.
- OV Protection
- TTL Shutdown

- 400+ Standard Models available
- AC input
- Wide range DC input
- Chassis or PCB mount

- 1000+ standard models available
- Dual AC input
- DC inputs from 9.6VDC to 275VDC
- 6U or 3U
- 160mm or 220mm

- 750W, 1000W, 1500W
- Single or three Phase input
- DC inputs from 24VDC to 220VDC
- Power factor correction
- M.T.B.F. 130,000 hours
Allen Brown reviews an IBM compatible backplane card which converts a personal computer into a 25MHz sampling digital oscilloscope.

IBM PC architecture is hosting an ever growing variety of I/O expansion cards. The PC99 card from Amplicon converts a typical business machine into a dual function instrument: it acts as a 25MHz sampling oscilloscope with storage and, secondly, it provides a two channel waveform generator.

The electronics takes the form of a full length card with an 8-bit ISA bus which can also be accommodated in an IBM AT (clone) or 386 based machine. The PC99 can produce two output analogue signals as well as sample two input analogue signals. To make the card convenient to use, there is an additional module which fits into the D connector of the card providing two input BNCs, two output BNCs and a fifth BNC for a trigger signal.

A set of software drivers accompany the card and produce a rather attractive mouse driven screen display. It will run under the Hercules, EGA and VGA display formats. However when used with a VGA on an OPUS VI, the results were a little disappointing - only two thirds of the screen was occupied by the display.

The input waveforms can be frozen and stored to disc for recall and display at a later time. When operating in its...
INDUSTRIAL PC-CARD SERIES

Engineering I/O Cards for IBM PC/XT/AT & Compatibles

EDUCATIONAL SYSTEM
8088 16 Bit System + LCD Display
ROM RAM DISK CARD
360K/1.2MB PC EPROM/SRAM Memory Cartridge

INDUSTRIAL CONTROL CARDS
16 Channel Opto Input/Relay Output Amplifier and Multiplexer
mV/ma Signal Conditioner Card
8 Channel 5S Drive Card AC (20V/3A) DC (80V/3A)

DATA INTERFACE TEST SETS
Parallel Tester
RS-232 Break Out
Tri-State Tester
Loopback Tester
Interface Problem Check Test Set

COMMUNICATIONS
3270 Bi-Sync Emulation Card
PC Modem Net (4 x 420 BPS)
PC Fax Card (Telecom Approved)

INDUSTRIAL COMPUTERS SUB SYSTEMS
Industrial PC AT (8028 8-12MHz) Motherboard
Industrial Computer Chassis (19" Rack Mountable)
PC-BUS Card Cage

EPROM/PAL/SINGLE CHIP PROGRAMMERS & TESTERS FOR PC AT
1/4/8/16 Gang E(P)ROM Programmers (16K-1024K)
PAL Programmer
8760-9705 Series Programmer
Digital & Memory Tester
Universal Device Programmer

MISCELLANEOUS
PC Talk (8K Bit/Sec 8 Bit Linear Sampling Rate)
PC TV Video-Picture Framestore

Remote Control

Electronic Design Software

Schematic Capture
PCB Design
Gerber-View/Translator

Keith Harris
0202-876300

CIRCLE NO. 156 ON REPLY CARD

CIRCLE NO. 104 ON REPLY CARD

CIRCLE NO. 141 ON REPLY CARD

This is a very small sample of stock at STEWART & Co. Please check in store before ordering. CARRIAGE on all units £1.60 VAT to be added to total of goods and carriage.

STEWART OF READING
10 WYKEHAM ROAD, READING, BERKS RG1 1PF

Callers welcome 9am to 5.30pm Mon-Fri. (Until 8pm Thurs)
Tel: 0734 68041 Fax: 0734 351696

STEWART & Co.

258

ELECTRONICS WORLD + WIRELESS WORLD March 1990
storage mode, the PC99 can display up to seven waveforms at any one time, five recalled from storage and the two live inputs. As seen from Fig. 1, the display is well laid out and the seven different colour attributes of each waveform adds to display clarity.

The use of the mouse contributes to the usefulness of the package and this enables easy switching between waveforms, triggering levels and the instrument options shown on the bottom right of the display.

Oscilloscope
The PC99 signal inputs pass through anti-aliasing filters and lead to separate ADCs. The ADCs are 8-bit devices with sampling frequencies of 20MHz. The effective bandwidth of each channel, is therefore at best 10MHz. When operating as a 'scope, in its storage mode, the two channels can be displayed with a maximum time base setting of 25MHz.

Despite the attractive screen presentation, the PC99 has three outstanding oversights in its design. Firstly, it is unable to cope with input waveforms with negative voltages. When an AC waveform is fed into the card, the negative half cycles are chopped off. An extraordinary characteristic for any oscilloscope, it could conceivably be useful for looking at the unbiased outputs from square law detectors.

Secondly, the user has no screen control over the input signal gain. This deficiency necessitates external attenuators or amplifiers on the input signals.

Thirdly, the input voltage range is limited to between 0V and 2.5V. Although these specifications are laid out in the rather poor user manual, they render the board as almost useless as a general purpose oscilloscope. However if there is a requirement to analyse only positive waveforms, not exceeding 2.5V which are band limited to below 10MHz, then the PC99 will serve the purpose well.

Waveform generator
The second mode of operation of the PC99 is for waveform generation (see Fig. 2). Four types of waveforms can be generated, sine, square, triangle (with adjustable symmetry) and pulse (single or continuous). Once the waveform has been specified by the user then it can be channelled through one of the digital to analogue converter outputs.

Two independent waveforms can be produced simultaneously by the PC99 card and these can also be displayed on the screen. This feature is attractive, but does not offer anything more than a standard waveform generator apart from two independent outputs. It is a great shame that this facility is so limited, since this type of unit could offer extensive options for waveform synthesis, for example five tone waveforms or FSK signal generation with varying degrees of added noise.

The final analysis
It's all very well having I/O expansion cards for PCs but unless they offer distinct features and advantages over conventional instrumentation, their value must be questionable. I can see no benefit of having the PC99 installed in a PC when the service provided by a modest priced scope and signal generator is considerably better. The PC99 cannot be recommended as a practical, general purpose 'scope because of the severe limitations it imposes upon the input waveforms. This limits potential applications to very tightly specified input conditions. It may be useful for highly sanitised demonstration purposes.

Amplicon say it is well aware of the limitation on input mentioned by our reviewer, but points out that the package was designed primarily for, and in consultation with educational establishments, who are prepared to use their own input signal conditioning with a view to keeping the price of the package as low as possible.

Nevertheless, the company has plans to produce a signal-conditioning package to provide a more flexible input requirement.

Operating environment
PC99 costs £699 plus VAT and consists of the card, manual and software. An advanced wave processing software package is now available, for an additional £195 plus VAT, which enables further mathematical manipulation, such as spectrum analysis, integration, differentiation and statistical operations.

The package is obtainable from Amplicon Live line Limited, Centenary Industrial Estate, Hughes Road, Brighton, East Sussex BN2 4AW. Telephone 0273 570220.
Wanted urgently Practical people for the Third World.

Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance. You could make this priceless contribution by working with VSO.

We have a wide range of jobs for qualified electricians and electronics technicians in many countries including Kenya, Malawi, Zimbabwe, Nepal and Egypt. Among these jobs are some specialist ones, including technicians for:

- Audiology
- Secondary school equipment
- Medical equipment

For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.

Conditions of work: • Pay based on local rates • Posts are for a minimum of 2 years • Many employers will grant leave of absence.

I'm interested. I have the following training/experience:

Name ____________________________
Address __________________________

Helping the Third World help itself.
Charity no. 31577.

Please mention Electronics & Wireless World when replying to adverts.
Train to become an Air Traffic Engineer

£7,064 rising to £15,000

Aged
18-24
BTEC
HNC
HND

Each year, there are over three million aircraft movements within UK airspace.

As you might imagine, Air Traffic Controllers rely on a wide range of highly advanced systems from radars and radio beacons through to the complex data communications network that ties the whole operation together.

The planning, commissioning, installation, calibration and maintenance of all these technologies is the responsibility of Air Traffic Engineers. Arguably the most highly trained and well supported practical engineers in Europe.

Regardless of your experience to date, the process of becoming part of the team begins with a 6 month residential course at our own College of Telecommunications Engineering in Buckinghamshire. Here you'll be introduced to advanced radio telephony, aircraft navigation aids, specialised computer systems for the processing of radar and communications information, and high power primary and secondary surveillance radars.

Following a further 7 months on-job experience, you'll become an ATE based at one of our centres which are spread from Scotland to Cornwall. Typically, as an experienced engineer, you could expect to earn over £20,000.

As your career develops - and promotions are based entirely on merit - you will periodically return to college to keep abreast of new techniques and you'll be encouraged to study for higher technical qualifications. We are very proud of the fact that many of the CAA's senior managers began their careers from where you are now.

To join us, you will need a minimum qualification of a BTEC National Diploma or HNC in Electrical and Electronic Engineering (or the SCOVEC equivalent) and be aged 18-24 as of 1st April 1990.

These roles are open equally to both men and women, so to apply please write to the following address giving your personal details (including a contact telephone number), your qualifications and experience and tell us why you think you could fit into our team. Alternatively, call 01-832 5870 (24 hours) for an application form.

Write to: CAA, Engineer Recruitment (WW), Room T1223, CAA House, 45-59 Kingsway, London WC2B 6TE
The closing date for receipt of applications is 1st March.
The selection programme will take place at the College of Telecommunications Engineering during April and May.
Radio Investigation Service
Keeping The Wavelengths Clear

Assistant Telecommunications Technical Officers
up to £14,335

The Radio Investigation Service is part of the Department of Trade and Industry’s Radiocommunications Division. Its brief is simple – to keep the wavelengths clear of interference and illegal operators. We have vacancies in LONDON & WORCESTER.

You will be responsible for the routine inspection of licensed operators, ensuring that they comply with the relevant regulations. You will assist in the detection of illegal operators, collecting and presenting evidence for prosecution. In addition you will assist in the investigation of interference to authorised radio and TV services, and advise on remedial action.

Candidates must be qualified in radio telecommunication subjects to BTEC/SCOTEC standard and have at least 2 years’ experience in the field of radio technology.

Starting salaries depend on experience, qualifications and location. A clean driving licence is essential. Relocation expenses may be available up to £5,000.

For further details and application form please contact Sue Mulvaney, (PM/PRTU) on 01-215 0066, quoting reference PR/ATTO (D). The closing date for receipt of applications is 9th March 1990.

The Civil Service is an Equal Opportunities Employer.
TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMI-CONDUCTORS: all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, PENTIUMS, THYRISTORS, etc. RESISTORS, C/F, M/T, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC-CERAMICS, PLATE CERAMICS, ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc. ALL AT KNOCKOUT PRICES

Come and pay us a visit at MALDON'S CAV

TELEPHONE: 445 0749/445 2713
R. HENSON LTD
21 Lodge Lane, North Finchley, London N12.
(5 minutes from Tally Ho Corner)

ARTICLES FOR SALE

Cooke International

USED ELECTRONIC TEST INSTRUMENTS

Adet AP401 Programmable Attenuator 0-90dB £75.00
H.P. 8004C or 8005D VHF Signal Generators 10-420MHz £120.00
H.P. 6121A RF Signal Generator 400MHz-1.2GHz £180.00
H.P. 8410A Microwave Network Analyser Main Frame with 8411A Harmonic Frequency Converter, 8412A Phase Magnitude Display, 8413A Phase Gain Indicator and 8414A Polar Display £2500.00
H.P. 5365A Timer/Counter 11 digits, 500MHz, HP11 £275.00
R&S SMI1 Signal Generator 4.8-12GHz (As New) £1500.00
Saelron Model 1172 Frequency Response Analyser (Ex ATE) £725.00
Systrom Donner 6162 Timer/Counter 512MHz £275.00

NEW SURPLUS:

1000 HM264APJ-12 rams £2.50 ea
206 Bulgin P580/110 RC sockets 30p ea
51 Bulgin P8820/3/3A mains filter £3.00 ea
98 R 2KB820 rectifiers (used) 15p ea
116 NMC2C16Q-55 Empres 22s ea
127 C04M1713E 250p ea
100 C04M1715E 200p ea
500 TLD62CP 250p ea
100 ME4012BP 100p ea
150 TLD72CP 20p ea

Any quantity

Lindos: 0394 380307

STEWART OF READING

110 WYKEHAM ROAD,
READING RG6 1PL
TEL: 0734 68041
FAX: 0273 351686

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

FIELD ELECTRIC LTD.

Telephone or S.A.E. for new stock list for
Monitors: Disk Drives: Hard Disk Drives
Keyboards: Computers: Printers: Test &
Measurement Equipment: Diecast All Boxes:
Fans: Power Supplies: Telephone
Equipment: Audio Equipment: Transducers:
Transformers: Microwave Equipment.

TO ADVERTISE
IN THE CLASSIFIED SECTION
PLEASE PHONE
01-661 8640

ARTICLES WANTED

WANTED

Receivers, Transmitters, Test Equipment, Components, Cable and Electronic. Scrap. Boxes, PCB's, Plugs and
Sockets, Computers, Edge Connectors.

WANT TO ADVERTISE IN THE CLASSIFIED SECTION PLEASE PHONE 01-661 8640
DAISYWHEEL PRINTER

FACIT ULTRA FAST DOT MATRIX PRINTER

Prints at up to a maximum of 500 CPS. Made to a high standard for heavy duty use, Compact simline desktop model (only 26 inches wide). Ideal for Universities, large mailing lists, or any serious application £349.00 (carr. £25).

12" FAMOUS NAME COLOUR MONITORS

Quality analogue RGB input, high definition, suitable for Amiga, Atari, BBC etc. £99.50 (carr. £65).

QUALITY VGA CARD

Up to 800 x 600. Fully compatible, 256K £115 (carr. £3).

HITACHI PROFESSIONAL CAD COLOUR MONITORS

CM1685A 16" ultra high resolution in two CAD frequencies: 48 KHz £325 (carr. £25), 54 KHz £395 (carr. £25). CM2086A 20" ultra high resolution CAD 48 KHz £495 (carr. £35).

HITACHI CD2500 20" CD ROM DRIVE

Full height 5.25" 550 megabyte, high sierra spec., including IBM controller card MS-DOS extension, and manual £265 (carr. £4).

STC SCRIBE KEYBOARDS

Keyboards as supplied with Scribe wordprocessors. These are serial units but no data is available. £5.95 (carr. £3).

SOUND EQUIPMENT all second-hand.

Speakers, amps, mics etc. regularly in stock — please ring for details. Studio speakers expected in soon.

ISTOP PRESS 360K 5.25" half inch disc drive, new at £34.95 AT computer with 1meg RAM and 1.2 Meg floppy drive — phone for details and our usual price-setting price.

N.B.
* VAT and carriage must be added to all items.
* Everything new unless stated otherwise.
* Access and Visa telephone service.

Matmos Ltd., Unit 11, The Enterprise Park, Lewes Road, Lindfield, West Sussex RH16 2LX.

Telephone: (04447) 2091 and (04447) 3830 - Fax: (04447) 4258

CIRCLE NO. 116 ON REPLY CARD

INDEX TO ADVERTISERS

Appointments Vacant Advertisement appear on pages 260-262

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Electronics</td>
<td>G H Systems</td>
<td>Number One Systems</td>
</tr>
<tr>
<td>Anchor Surplus</td>
<td>I R Group</td>
<td>PM Components</td>
</tr>
<tr>
<td>Antex Electronics</td>
<td>Ian P. Kinlock</td>
<td>Practical Computing</td>
</tr>
<tr>
<td>Audio Electronics</td>
<td>ICOM (UK)</td>
<td>R Henson</td>
</tr>
<tr>
<td>Betronex UK</td>
<td>Imperial College</td>
<td>Radioplanar</td>
</tr>
<tr>
<td>Byte Computers</td>
<td>Integrex</td>
<td>Rail Electronics</td>
</tr>
<tr>
<td>Blue Chip Technology</td>
<td>JAV Electronics</td>
<td>Reed Exhibition Company</td>
</tr>
<tr>
<td>Business Integrated</td>
<td>Johns Radio</td>
<td>Roscoe</td>
</tr>
<tr>
<td>Test Systems</td>
<td>Kestrel Electronic</td>
<td>South Midlands</td>
</tr>
<tr>
<td>Cadsoft (UK)</td>
<td>Components</td>
<td>Communications</td>
</tr>
<tr>
<td>Clark Masts</td>
<td>L J Technical Systems</td>
<td>Stewart of Reading</td>
</tr>
<tr>
<td>(Technical Services)</td>
<td>Lab Centre</td>
<td>Strummech Engineering</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>Lab-Volt (UK)</td>
<td>Television Magazine</td>
</tr>
<tr>
<td>Electrovalue</td>
<td>Langrex Supplies</td>
<td>Those Engineers</td>
</tr>
<tr>
<td>Ellmax Electronics</td>
<td>Laplace Instruments</td>
<td>Thurlyl Thandar</td>
</tr>
<tr>
<td>Entrant Limited</td>
<td>M & B Radio (Leeds)</td>
<td>216, 241</td>
</tr>
<tr>
<td>Flight Electronics</td>
<td>MQP Electronics</td>
<td></td>
</tr>
<tr>
<td>223,229,180,IFC</td>
<td>Matmos</td>
<td></td>
</tr>
</tbody>
</table>

VERAS WHEEL PRINTER

FACIT ULTRA FAST DOT MATRIX PRINTER

Prints at up to a maximum of 500 CPS. Made to a high standard for heavy duty use, Compact simline desktop model (only 26 inches wide). Ideal for Universities, large mailing lists, or any serious application £349.00 (carr. £25).

12" FAMOUS NAME COLOUR MONITORS

Quality analogue RGB input, high definition, suitable for Amiga, Atari, BBC etc. £99.50 (carr. £65).

QUALITY VGA CARD

Up to 800 x 600. Fully compatible, 256K £115 (carr. £3).

HITACHI PROFESSIONAL CAD COLOUR MONITORS

CM1685A 16" ultra high resolution in two CAD frequencies: 48 KHz £325 (carr. £25), 54 KHz £395 (carr. £25). CM2086A 20" ultra high resolution CAD 48 KHz £495 (carr. £35).

HITACHI CD2500 20" CD ROM DRIVE

Full height 5.25" 550 megabyte, high sierra spec., including IBM controller card MS-DOS extension, and manual £265 (carr. £4).

STC SCRIBE KEYBOARDS

Keyboards as supplied with Scribe wordprocessors. These are serial units but no data is available. £5.95 (carr. £3).

SOUND EQUIPMENT all second-hand.

Speakers, amps, mics etc. regularly in stock — please ring for details. Studio speakers expected in soon.

ISTOP PRESS 360K 5.25" half inch disc drive, new at £34.95 AT computer with 1meg RAM and 1.2 Meg floppy drive — phone for details and our usual price-setting price.

N.B.
* VAT and carriage must be added to all items.
* Everything new unless stated otherwise.
* Access and Visa telephone service.

Matmos Ltd., Unit 11, The Enterprise Park, Lewes Road, Lindfield, West Sussex RH16 2LX.

Telephone: (04447) 2091 and (04447) 3830 - Fax: (04447) 4258

CIRCLE NO. 116 ON REPLY CARD

INDEX TO ADVERTISERS

Appointments Vacant Advertisement appear on pages 260-262

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Electronics</td>
<td>G H Systems</td>
<td>Number One Systems</td>
</tr>
<tr>
<td>Anchor Surplus</td>
<td>I R Group</td>
<td>PM Components</td>
</tr>
<tr>
<td>Antex Electronics</td>
<td>Ian P. Kinlock</td>
<td>Practical Computing</td>
</tr>
<tr>
<td>Audio Electronics</td>
<td>ICOM (UK)</td>
<td>R Henson</td>
</tr>
<tr>
<td>Betronex UK</td>
<td>Imperial College</td>
<td>Radioplanar</td>
</tr>
<tr>
<td>Byte Computers</td>
<td>Integrex</td>
<td>Rail Electronics</td>
</tr>
<tr>
<td>Blue Chip Technology</td>
<td>JAV Electronics</td>
<td>Reed Exhibition Company</td>
</tr>
<tr>
<td>Business Integrated</td>
<td>Johns Radio</td>
<td>Roscoe</td>
</tr>
<tr>
<td>Test Systems</td>
<td>Kestrel Electronic</td>
<td>South Midlands</td>
</tr>
<tr>
<td>Cadsoft (UK)</td>
<td>Components</td>
<td>Communications</td>
</tr>
<tr>
<td>Clark Masts</td>
<td>L J Technical Systems</td>
<td>Stewart of Reading</td>
</tr>
<tr>
<td>(Technical Services)</td>
<td>Lab Centre</td>
<td>Strummech Engineering</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>Lab-Volt (UK)</td>
<td>Television Magazine</td>
</tr>
<tr>
<td>Electrovalue</td>
<td>Langrex Supplies</td>
<td>Those Engineers</td>
</tr>
<tr>
<td>Ellmax Electronics</td>
<td>Laplace Instruments</td>
<td>Thurlyl Thandar</td>
</tr>
<tr>
<td>Entrant Limited</td>
<td>M & B Radio (Leeds)</td>
<td>216, 241</td>
</tr>
<tr>
<td>Flight Electronics</td>
<td>MQP Electronics</td>
<td></td>
</tr>
<tr>
<td>223,229,180,IFC</td>
<td>Matmos</td>
<td></td>
</tr>
</tbody>
</table>
Affordable, standalone, PCB fault-diagnosis equipment.

The most economical way yet to improve the speed and efficiency of PCB servicing and manufacturing defects analysis.

24 and 40 pin Variants.
Providing a host of features for rapidly testing digital ICs in circuit.

Save and Compare.
Data from a known good PCB can be saved enabling a suspect board to be compared in minutes without circuit documentation.

Automatic Circuit Compensation.
An IC is tested in the way it is connected. No need to program each test.

Search Mode.
To identify unmarked ICs and give an equivalent for replacement.

Manufacturing Defects Analysis.
Rapid access to circuit information to locate production faults.

Out of Circuit Testing.
ZIF sockets make the units ideal for goods inward inspection and checking a device is functional before soldering.

Phone for your data and information pack now!

0226 350145
Telecommunications Training
from fundamentals to state-of-the-art technology

Lab-Volt offers a comprehensive range of telecommunications training equipment that covers basic electronics, analogue and digital communications circuits and systems, fibre optics, and microwave and radar technologies.

Our equipment is:
- modular and easy to upgrade
- industry relevant
- engineered for educational purposes.

Lab-Volt closely relates its telecommunications training equipment to operational systems found in industry, with educational enhancements such as fault insertion switches in many of the modules, labelled and easily-accessible test points, short-circuit protection, silk-screened component identification, and full signal compatibility for system-level modules. We supply student and instructor manuals that are written specifically for the equipment; they provide practical hands-on technical training with step-by-step exercises, laboratory experiments, and troubleshooting activities.

For more information about our telecommunications training equipment, please contact:

Lab-Volt (U.K.) Ltd.
4A Harding Way
Industrial Estate
St. Ives
Cambridgeshire
PE17 4WR
Or Call: 0480 300695