Radio-code clock modules – 25% exclusive EW discount

Valve preamplifiers

Low-noise antenna amplifier

Accessing Internet

‘Non-slewing’ audio power

Charging circuits

Applying avalanche transistors

Transmission lines explained

EW reader special offer – 30V 5A psu
ULTiboard's interactive strength has always been the major selection criterion of professional Printed Circuit Board designers. Now that every ULTiboard Designer system will be supplied with a SPECTRA SP4 Autorouter, ULTiboard designers now get the best of both worlds.

All ULTiboard Designer Users with valid update subscription got a MAINTENANCE UPGRADE with the SPECTRA SP4 (4 signal layers + power/ground layers) Shape based Autorouter. This shows that ULTImate Technology is the PCB-Design Tool vendor that really cares for their customers!

THE ULTIMATE ULTiBOARD Entry Designer* £1295 (excl. VAT) will now be supplied with SPECTRA Shape Based Autorouter * free Upgrade with EMC-EXPERT mid 1996 (list price at release £1875)
Contents

190 DESIGNING VALVE PREAMPS
Morgan Jones details how to get the best from valves in hi-fi preamplifiers.

196 FRACTIONAL-N SYNTHESISERS
Cosmo Little discusses implementing the fractional-N synthesiser and shows how adding a second accumulator reduces low-frequency spurs.

202 SPEED CONTROL WITH SERVO OPTION
Designed for use with a 12V motor, Matthew Hall’s pwm speed controller is adaptable for use with a servo arm.

205 GATES CONVERT DC TO DC
Ian Forster has found that 74AC logic gates – with their high switching speed and low output impedance – help make simple and cheap low-power dc-dc converters.

208 LOW NOISE ANTENNA PREAMP
In D Conway’s low-noise, narrow band masthead amplifier, dual mosfets eliminate the balun, enhance overload capability and reduce harmonics.

212 TRANSMISSION-LINE PRINCIPLES
Bill Russell shows how transmission lines can be explained clearly and simply via basic measurement equipment and an artificial delay line.

216 HANDS-ON INTERNET
Using a working yet almost free demo version of PSpice as an example, Cyril Bateman runs through the practicalities of downloading software from the Net.

219 AVALANCHE TRANSISTORS
Ian Hickman has been looking at how ordinary transistors avalanche and at a couple of extremely rare devices specified for avalanche operation.

223 PUTTING THE POWER BACK IN
Design criteria for battery charger circuits are dictated by cell type, the application and operating conditions. John Lenk examines popular IC charger designs.

229 BUILDING BLOCKS OF TIME
Traditionally, Radio-Code time signal receivers have been expensive, self-contained units, but now there are low-cost modules providing access to the raw time signal for well under £30.

244 COAXIAL CABLE CHOICES
Nick Wheeler discusses choosing the right combination of cable and connector.

256 NON-SLEWING AUDIO POWER
Giovanni Stochino shows how his ‘non-slewing’ technique can be applied to audio power with excellent results.

Regulars

179 COMMENT
A computerised confidence trick.

180 NEWS
Government rejects electronics advice, Quarter-size PCMCIA, Road-toll trials, New semiconductor, Molecular diode.

185 RESEARCH NOTES
Single-electron switch, War robots, Bose-Einstein condensate, Hearing mechanisms, Scientists rethink superconductivity.

234 CIRCUIT IDEAS
Inductance on a capacitance meter, Remote resistance measurement, Short and continuity test for coax, Measuring conductivity, RS232-to-RS485 PC-powered converter, Dual rail regulator, Programmable voltage-to-time converter

247 NEW PRODUCTS
Pick of the month – classified for convenience.

252 LETTERS
Cable simulation response, Valve amplifiers, Internet integrity, EMC.

25% DISCOUNT
This high-performance 30V, 5A power supply is normally £159 excluding VAT and delivery, but EW readers can obtain it for just £139 – fully inclusive. See page 210.

Radio-Code module offer
Galleon is offering EW readers discounts on modules designed for a variety of Radio Code receiving requirements. See page 232.

APRIL ISSUE
ON SALE MARCH 28

EW reader discount
Representing a very comprehensive guide to switching and linear power supply design, John Lenk’s set of books is available to EW readers at a 10% discount. See page 226.
The Universal Programmer that stands-alone

with everything you need. Don't buy your next programmer until you see the 'Eclipse'

- Windows and DOS user interface
- Unparalleled in speed & sophistication ideal for R&D and volume production
- 96 to 256 pin drivers
- Programms PLDs, EPLDs, FPGAs, PROMS, EPROMS, E/EPROMS, FLASH & Micros
- Universal DIP, PLCC, PGA and QFP modules - no more socket adaptors
- Stand-alone or remote operation

Europe's largest programmer manufacturer

call today on +44 (0)1707 332148
or fax +44 (0)1707 371503 for further information

All trade marks are acknowledged and respected

CIRCLE NO. 106 ON REPLY CARD

Quickroute 3.5 is a powerful, affordable and easy to use integrated schematic & PCB design system for Windows. With its multiple button bars, 'tool hints' and 'parts bin', Quickroute helps you to design quickly and efficiently

There are four different versions of Quickroute giving you a choice of features & price. Quickroute is available with multi-sheet schematic capture, auto-routing, 'engineering change' (modification of a PCB from a schematic), copper fill, and a range of file import/export options. See the table for a selection of features.

Prices are Designer (£149), PRO (£249) and PRO+ (£399). The Personal edition is available for just £68, but has the manual provided on disk as on-line help. Post & Packing is £5 (UK), £8 (EC), £12 (World). VAT must be added to the total price.

'...of all the products included here, this is my personal favourite... Really, that's all I have to say about Quickroute - it certainly gets my vote!' - Review of QR 3.0 & other products

Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.

email info@quicksys.demon.co.uk

Prices and specifications subject to change without notice. All trade marks are acknowledged & respected.

CIRCLE NO. 108 ON REPLY CARD
A computerised confidence trick

Although I'm not particularly ancient I can remember quite clearly what one kilobit of program ram and a large logic board that ingenuity could produce from the original Sinclair ZX81 computer. It provided an object lesson in efficient programming. Working with such limited resources required absolute focus on the intended application for the program.

I also remember equally clearly that, as a former components editor on our sister publication Electronics Weekly, I wrote with some awe about the power of the MIPS R3000 rise architecture. This cache equipped microprocessor had been designed to run multitasking Unix at the heart of a high end graphics workstation. Much has happened over the last 10 to 15 years, six of which I spent as editor of this magazine. But I am not sure that the progress I see around me is always in a forward direction. Having marvelled at the latest generation of games hardware and its astonishing polygon animation, it should have been no surprise to learn that the particular one that I was looking at used as its main processor the same workstation architecture in its R4000 incarnation. There is no problem here. The games machine companies always said that they would eventually lead the way in the use of raw processing power and, being totally focussed on the trivial, we pundits never really believed them or paid much attention.

It is amazing what a single-minded application feeding into a mass market can achieve. Comparing the performance of Sony's PlayStation with that original ZX81, it is easy to see what the extra megaflops and megabits have achieved. Not so with the Intel/Microsoft personal computer market. The combine regularly doubles the power of its offerings but without a commensurate doubling of utility. Microsoft continues to turn out sloppily programmed, convoluted and memory intensive software. Intel matches this with increasingly powerful general purpose microprocessors to make the inefficient software architecture run at halfway decent speed.

It is not even as though we need the dubious sophistication of the duopoly's latest offerings. The majority of business applications should require relatively modest memory and processor requirements; spreadsheets, wordprocessors, presentation graphics and networking involve relatively little data computation and manipulation. It shouldn't take 16Mbits of ram, 133MHz processors and a Gbyte of hard disk to run the things that you or I want to do - unless we are working in professional graphics.

Yet the Intel/Microsoft axis has pumped so much marketing money into persuading us all that computer gear more than a couple of years old is fit for nothing but scrap that it almost amounts to a confidence trick. It causes people and businesses to spend needlessly on upgrades while at the same time creating chronic inefficiency by forever trapping users on a perpetual learning curve.

Even the computer manufacturers are not immune from the effects of the duopoly's cavalier marketing. One household name PC maker found that it was unable to pay for the massive shipment of microprocessors and other chips which it had bought from Intel. Being loaded with your money is fit for nothing but scrap that it almost amounts to a confidence trick. It causes people and businesses to spend needlessly on upgrades while at the same time creating chronic inefficiency by forever trapping users on a perpetual learning curve.

Even the computer manufacturers are not immune from the effects of the duopoly's cavalier marketing. One household name PC maker found that it was unable to pay for the massive shipment of microprocessors and other chips which it had bought from Intel. Being loaded with your money is fit for nothing but scrap that it almost amounts to a confidence trick. It causes people and businesses to spend needlessly on upgrades while at the same time creating chronic inefficiency by forever trapping users on a perpetual learning curve.

Games machines have advanced phenomenally - but have pcs made the same progress?
Government rejects microelectronics advice

The recommendations of the Government’s high technology advisory panel highlighting the need for a microelectronics R&D centre have fallen on deaf ears.

The first 63 projects bidding for funding under the Technology Foresight initiative were named last week and the proposal to set up a university-based microelectronics centre providing R&D and training support was not among them.

Although the strong emphasis on multimedia and broadcast technologies in the IT projects is welcome, there is some surprise at the omission of the microelectronics bid.

According to Neil Downie at semiconductor manufacturing equipment and materials trade association JEMI (UK) there is a need for technology development and training support and companies were prepared to fund it. “Inward investors don’t do R&D here and we need to encourage them,” said Downie.

One of the Government’s IT advisors on the Foresight programme lan Barron, founder of Inmos, said there was a need for a microelectronics R&D house to support the high levels of inward investment by semiconductor manufacturers. “We need to maintain a source of expertise for inward investors to call on and use,” said Barron.

The shortlisted projects were selected from over 500 involving collaborations between industry and university research groups. The average size of the projects is £4m, ranging from £500,000 funding for the smallest up to £15m for the largest. The winning groups will be named at the end of May.

There were just six projects named under the heading of Information Technology, Electronics and Communications (ITEC), they included the setting up of four UK centres of excellence in mobile communications, microsystems at the Rutherford Laboratory, broadcast and data mining at the University of Ulster. There were also projects looking at multimedia at Lancaster University and display technology at Thom EMI’s CRL.

Road toll trials: “No problem”

Department of Transport (DoT) has denied its motorway tolling trials, due to start in July, are in jeopardy following the decision of a second consortium to withdraw last week. The Tollway group, led by US firm Arntech and including Serco and WS Atkins, has pulled out just one week after Siemens announced its withdrawal citing lack of government commitment to a commercial system.

But the DoT says it expects a preliminary shake-out. “We are basically in discussion with many companies which want to participate in the trials and these discussions will go on for another six weeks. We’ll know which companies will definitely participate in the trials in six weeks time,” said a DoT spokeswoman.

However, the departures of Siemens and Tollway could be followed by others if the UK trials do not begin on time. A number of the six remaining consortia prefer involvement in trials for a South Korean system, scheduled to begin this Spring.

But Tony Kellett, the technical director of Peek, the company leading the Tollstar consortium, believes competition will remain intense.

Small format memory-card imminent

A miniature memory card a quarter the size of the PC Card (PCMCIA) format will appear in the summer as part of an initiative by electronics firms in Europe, the US and Japan.

The standard format, dubbed the Miniature Card, is expected to be small enough for use in cameras and audio equipment as well as notebook PCs. Details of the format, including interface specifications, will be released during February, with first products using the card expected in July.

Bill Howe, general manager for memory components at Intel, a leading member of the Miniature Card Implementers Forum, said: “We believe flash memory is the ideal storage medium for hand-held consumer devices and for bringing that data back to the PC for further use. We have several design wins for Miniature Card in hand and will ship product in the second quarter of this year”.

Internal memory of up to 64Mbytes of either flash, DRAM or ROM will enable the cards to store image, text and voice data. Data transfer to the PC will probably be via a standard PCMCIA adaptor. The ruggedised package with a pinless connector, at 38 x 33 x 3.5mm, is a quarter the size of PCMCIA cards.

The small format memory cards are expected to have applications in digital cameras, audio recorders, mobile phones and other consumer equipment.

Companies supplying the core semiconductor technology include Advanced Micro Devices, Fujitsu, Intel and Sharp. End user system support includes Compaq Computer Corporation, Hewlett Packard, Konica Corporation, Nokia Mobile Phones and Olympus Optical Company.

The Miniature Cards will compete against Compact Flash from SanDisk and the as yet unannounced Solid State Floppy Disk Card from Toshiba. Compact Flash however only offers flash memory and uses connector pins less suited for consumer systems.

Richard Ball, Electronics Weekly
Circuit board designers unprepared for EMC

PCB designers have a lack of knowledge concerning the new EMC Directive, according to a survey by Zuken-Redac, the pcb and multi-chip module CAD/CAM software company.

The survey of 135 UK printed circuit board designers showed that 94 per cent were unprepared for the EMC Directive even though 84 per cent were fully aware of the new regulations.

Zuken-Redac said most companies had no opportunity to improve their designs with respect to EMC in advance of January 1996, the starting date for complying with the EMC Directive.

Another worrying point is that 80 per cent of all PCB designs are carried out on PCs. However, there are few PC-based PCB CAD design tools with integrated EMC design rules. Suppliers such as Zuken-Redac, VeriTest and Mentor Graphics are only now introducing the required tools.

Even though PCB designers do not necessarily have to make their products comply, they may be supplying to original equipment manufacturers, designing without EMC in mind during the early stages can lead to rework and time-to-market delays later. In most cases this will cost a significant amount of time and hence money until EMC design at the PCB level is more fully appreciated.

Layout designers with no EMC knowledge have no way of knowing whether their design is helping or hindering the final system in terms of EMC.

Current available design tools for EMC can be roughly classified into predictive and analysis types. Tools using predictive and analysis techniques, such as Ultimate's EMC Expert or Zuken-Redac's EMC Adviser, are now released for the PC, compare the design with a set of standard EMC rules giving a qualitative result, as opposed to quantitative results, at the expense of some accuracy.

Modelling the EMC characteristics of individual components on the PCB, such as carried out with Mentor's Quad Quiet, has the potential to give the most accurate results, but this depends on the accurate modelling of each device. The disadvantage here is the heavy processing overhead and only the fastest PCs can handle the workload. It may be that accurate EMC analysis cannot be carried out on PC based systems.

New combined bipolar/fet switching device

Zetex has produced a novel device for high side switching from low side control signals.

The ZHD100 'treeswitch' was originally designed for a specific automotive application but is now being offered for general sale.

The equivalent circuit is a p-n-p transistor with its base connected to the drain of an n-channel MOSFET. This is very similar to an igbt, where the collector and source are also connected. Dave Casey, co-developer of the device said: "There is a parasitic igbt in the structure which we have suppressed."

The advantage of separating the collector and source is that the low saturation voltage of the transistor can be fully exploited. In saturation, the igbt becomes a diode with a voltage drop of about a volt. The source of the treeswitch can be taken more negative than the collector which allows the transistor to fully saturate down to a few millivolts.

The p-n-p transistor is made by diffusing n, then p structures into a p-type substrate.

The fet is diffused as a p-well, similar to the emitter, with an n-type island in it. The gate metallisation for the fet overlaps the n-island and the main base n-type diffusion. It is insulated from the substrate by an oxide layer.

Pulling the gate positive with respect to the source attracts electrons into the p-type material below it which forms an n-channel between the base and source. This allows base current to flow and turns the transistor on.

The transistor has Zetex's matrix architecture which results in a low saturation voltage. The fet sits in the middle of it and is small in comparison, limiting the amount of current it can pass. This makes the fet approximate a constant current device, removing the need for a drain-base current limiting resistor.

The ZHD100 is rated to switch half an amp at 80V. At high voltages the device dissipation is predominantly from the 10mA base current. If the full output current of the device is not required this can be reduced by adding a series resistor between the source and ground.

There are other high side switches on the market. Casey said: "The matrix architecture results in a very small chip compared with its competitors. The small chip leads to a low device cost."

Pentium P7 slips back

Sources close to Intel report that the forthcoming P7 microprocessor, the successor to the Pentium Pro, will be delayed by as much as a year and will not involve Hewlett-Packard to the same extent as was previously believed.

The P7, now code named the Merced, is likely to be launched in 1998, not 1997 as has been previously believed by Intel. Also Hewlett-Packard's involvement in Merced now seems to be to define the 64-bit instruction set and software interfaces. Originally, Hewlett-Packard and Intel said they would both be involved in the design of the chip.

The Merced will feature a new 64-bit instruction set but it will also run x86 instructions in native mode rather than relying on emulation technologies. Hewlett-Packard is believed to be working on its own microprocessor design to support the same microcode.

The P7 delay could be a deliberate Intel ploy to give it more time to establish Pentium Pro in the marketplace. There is less pressure on Intel to bring out new microprocessor architectures since its competition is struggling.
Cellular phone speech and noise are improved by superconductors

Superconducting technology is being used in the US to improve the noise performance and voice quality of cellular phones. Ameritech Cellular Services reported excellent results from the use of a cellular system radio-frequency filter incorporating superconducting devices from Illinois Superconductor. Ameritech said that use of the filter at the cell site, improved voice signals by more than a third and was 10,000 times more effective at eliminating interference and signal noise.

The SpectrumMaster filter also allowed more cellular phone users to access the system and increased the receive path range. There were also fewer dropped calls and an increase in the number of usable channels. Ameritech said that the filter is especially effective at cell sites that have problems from interference, either from buildings or from other radio signals. If other cellular phone system providers adopt the filter, it could open a major new market for superconducting materials and help drive the development of other superconductor based technologies.

High temperature ceramic superconductors continue to operate above the boiling point of nitrogen (77K).

Poor demand for video games hits 3DO

Video games console designer 3DO, said that its third quarter results will be worse than expected due to poor demand for video games systems during the recent Christmas season. 3DO said that it will be forced to establish reserves against large inventories and a five million dollar charge due to recent changes in its business model which includes a focus on Internet related products. The troubled company continues to struggle to establish its video hardware in an increasingly competitive market that includes Nintendo, Sega and newcomer Sony with its PlayStation.

Speech secure enough for banking?

Cambridge-based speech recognition technology firm Vocalis, is to develop a speaker verification system for secure banking over telephone lines as part of the EU-funded CAVEx (Caller Verification in banking and telecommunications) project.

The project’s primary objective is to prove that speaker verification can be applied to financial transaction services, providing an initial level of protection.

"It is a pilot scheme acting as a demonstrator for the feasibility and applicability of this technology. Banks have been very cagey and we have to prove that this technology is feasible," said Richard Winsky, senior research scientist at Vocalis.

CAVEx is expected to last two years, after which the technology and the security provided by it will be upgraded. First field trials are expected within the year.

The actual deployment of speaker verification technology will await the outcome of the R&D work in CAVEx. The resulting system is to complement other security mechanisms.

Modem makers boosted by Internet connections

Upward spiralling numbers of Internet connections in the US, with consumers linking their pcs to online services, is good news for modem suppliers.

More than 18.6 million modems were shipped last year, generating revenues of about $5.8bn, exceeding earlier expectations, said US market research firm International Data Corporation (IDC). The market grew 82 percent compared with 1994 shipments of 10.2 million.

The increased shipments, however, came at the expense of falling prices for almost all modem speed categories except in sales of top speed V.34 (28.8kbit/s) equipped modems which held their sales value. The sales boom was led by U.S. Robotics, GVC and Hayes Microcomputer Products. IDC foresees continuing boom times for the modem industry for at least the next few years as the popularity of the Internet and online services continues to attract millions of new users and as modem owners upgrade to faster modems.

● US Robotics, the Illinois-based modem maker is reported to be planning a move into the market for consumer telephone hand sets, to offset falling prices which is squeezing margins in its core modem business.
SYNTHESISED SIGNAL SOURCE
an innovative design from an established 'Off-Air' Company
* Custom designed chip set
* Sinewave output 0dBm into 50Ω
* Can be run independently or genlocked to external source
* dc to 16MHz in 0.1Hz steps, with option 0.0001 Hz steps
* Freestanding rack mounting, or OEM options available
* Increased resolution and increased stability options available
 Models available October, contact us for prices

'OFF-AIR' FREQUENCY STANDARD

** Options available include enhanced receiver, sine wave
** British designed and British manufactured
** For ADDED VALUE also phase locks to ALLOUIS (cesium
** Phase locks to DROITWICH (rubidium controlled and
** Use 1 for calibrating equipment that relies on quartz crystals,
** Provides 10MHz, 5MHz & 1MHz
** Increased resolution and increased stability options available

- Output frequencies: 10MHz, 5MHz, 1MHz
- Short-term stability: better than 5×10^-12 (1 day)
- Typical - 0×10^-8 (1 sec)
- Long term - tends to 2×10^-12 (100 sec)
- Can be on-air, Stanford
- 2x10^-12 (1000 sec)
- PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN
- Price on application

TEST EQUIPMENT

** Halcyon Electronics
** 423, Kingston Road, Wimbledon Chase, London SW20 8JR
** Shop hours 9-5.30 Mon-Sat. Tel 0181-542 6383. Fax 0181-542 0340

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG
Telephone: 01483-275997 - Fax: 276477

10 OUTLET DISTRIBUTION AMPLIFIER 4

A compact mains powered unit with one balanced input and ten AC and DC isolated floating line outputs.
* Exemplary RF breakthrough specifications giving trouble-free operation in close proximity to radio telephones and links.
* Excellent figures for noise, THD, static and dynamic IMD.
* Any desired number of outlets may be provided at microphone level to suit certain video and audio recorders used at press conferences.
* Meets IEC65-2, BS415 safety.
* Advanced Active Aerial 4kHz-30MHz *PPM10 in-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units *Stabilizers and Fixed Shift Circuit Boards for hohl reduction
* Broadcast Monitor Receiver 150kHz-30MHz *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifier *Peak Deviation Meter
* PPMV hybrid, PPM3 microprocessor and PPM8 IEC/DIN – 50 +6dB drives and movements *Broadcast Stereo Coders.

JOHN MORRISON
SOFTWARE and OEH HARDWARE MODULES

** PIC ICE II
In Circuit Emulator for PIC16C54-55-56-57-71 and 84
Replaces all 18 or 28 pin PIC's. All ports Bi-directional D52 output, RTCC input, on board A/D converter for PIC16C71. Supplied with PICDEV software suite, user manual, connecting leads and headers, user sample files and hardware circuit projects.
£159.95

** MEGAPROM EPROM PROGRAMMER
EPROMS, E² PROMS and FLASH memories from 2Kb to 8Mb
INC. MICROCHIP 24L series.
Operates via host IBM PC and Centronics port, uses standard printer cable, on board production quality ZIF socket.
£99.95

** SMARTCARD/PIC CHIP PROGRAMMER
ON BOARD ISO 7816 INTERFACE, software runs on host IBM PC allowing the user to program SmartCards or PIC16CH4's on a SmartCard emulator, also Programs PIC16C848 on a target board via an on board header. The perfect SmartCard development tool. Supplied with a full suite of software.
£79.95

Please add £1.75 for P&P to UK mainland.
All prices subject to VAT at the prevailing rate (17.5%)
The MICRO MODULE
A NEW LOW COST controller
that gives you customisation
for as little as £95 one off
- VAT

and that's just
the half of it...

FEATURES
- 16/32 bit 8x37 CPU for fast operation
- Up to 1 Mbyte of EPROM space onboard
- 32 Kbyte SRAM fitted as standard
- RS232 serial with RS485 option
- MODBUS & other protocols supported
- Up to 22 digital I/O channels
- 2 Timers/counters/match registers
- 'C port or Mbus & Watch dog facilities
- Large Prototyping area for user circuits
- 32 Kbyte SRAM fitted as standard
- Program in C, C++, Modula-2 & Assembler
- Real Time multitasking Operating System
- Large Proto-typing area for user circuits
- 32 Kbyte SRAM fitted as standard
- A full range of other Controllers available

P.C. 'C' STARTER PACK AT ONLY £295 + VAT
The Micro Module will reduce development time for quick turnaround products/projects and with the P.C. 'C' Starter pack allow you to start coding your application immediately, all drivers and libraries are supplied as standard along with MINOS the real time operating system all ready to run from power on.

Cambridge Microprocessor Systems Limited
Unit 17-18, Zone 'D', Chelmsford Road Ind. Est., Great Dunmow, Essex, U.K. CM6 1XG
Phone 01371 875644 Fax 01371 876077

For users of PCs, 8051 & 68000

CIRCLE NO. 113 ON REPLY CARD

Finally an upgradeable PCB CAD system to suit any budget...

BoardCapture - Schematic Capture
- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full underride facility (10 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardCapture - Design Capture
- Complete program design with schematic editing
- Design rule checking
- Interactive panel modification
- Automatic symbol generation
- Standard annotations

BoardMaker1 - Entry level
- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level
- All the features of BoardMaker1 plus
- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical & electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

BoardRouter - Gridless autorouter
- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard
- Printers - 9 & 24 pin Dot matrix, HP Laserjet and PostScript
- Peripherals - HP-Graphitc, Roland & Houston
- Photoplotters - All Gerber 3X000 and 4X000
- Excelon NG Drill / Annotated drill drawings (BM2)

Contact Tsien for further information on
Tel 01354 695959
Fax 01354 695957

Talon (UK) Ltd
Aylesby House Wenny Road Chatteris Cambridge PE16 6UT

CIRCLE NO. 114 ON REPLY CARD
Single electron switches presage quantum computing

Many obstacles have to be overcome before we can make practical use of single-electron devices, and fundamental research is feverishly being carried out to this end around the world. But the ultimate goal, of developing devices whose principles of operation are quantum mechanical — progressing electronics far beyond the scalability and performance limits of conventional circuits — means the field is hot one for science.

The work of one team in the US gives a good indication of where we are in development of real single electron devices — and also gives a glimpse of what could be achieved.

M G Ancona and colleagues at the Naval Research Laboratory in the US noted that comparatively little attention has so far been paid to the development of circuit architectures capable of exploiting single-electron device performance at circuit level. So he has devised a set of principles for single-electron digital circuits (sedc) and then used these rules to design some circuits ('Design of computationally useful single-electron digital circuits', J App Phys, Vol 79, No 1, pp. 526-538).

For computational use, circuits require non-linear rather than linear operation, which means mixing control and data circuits. Since the data now are single electrons, some portion of the control must also operate on this level. To achieve this Ancona has devised a single electron switch (ses).

Physical basis for the ses is direct electron-electron repulsion. The switch is composed of two circuits, a switching circuit and control circuit, made up of a number of islands. The circuits interact through a capacitor, and the principle is that repulsion makes it energetically unfavourable for islands 3 and 6 (see figure) to be occupied.

When the 'switching island', 2, is occupied by an electron, the gate biases must cause this electron to transition, in a fully Coulomb-blockaded manner, to island 4 if island 6 is occupied, and to island 3 if island 6 is unoccupied. In this way, the electron in the switching circuit would be under the control of the electron in the control circuit.

Ancona says he has discovered a number of capacitance and bias values that allow this switch to operate, though have not discovered the optimum as yet.

Ancona also shows how the switches could be linked together to make And/Or and Xor circuits, and 1 bit memories.
Hearing in two different ways

Georges Zweig at Los Alamos National Laboratory has spent a lot of time looking into ears. As a result, he has shown that how we hear loud sounds is quite different from how we hear soft ones. Now his theories of the mechanics of hearing are opening new directions in acoustic research that could lead to better hearing aids, improvements in the technology of cochlear implants and further development of speech-recognition machines.

For loud sounds, the textbook understanding of hearing is essentially correct: sound waves enter the ear canal and vibrate the eardrum, whose oscillations are transmitted by the tiny bones of the middle ear to the inner ear, creating waves in the fluid-filled tubes of the cochlea. Sensory hair cells in the cochlea respond to motion of the fluid, generating electrical impulses that are interpreted by the brain as sensations of tone. Low-frequency tones excite hair cells further from the middle ear than do tones of higher frequency. Deafness is often associated with the destruction of hair cells.

For very quiet sounds, however, the ear is not just a passive receiver of sense impressions. Instead, the ear responds to and amplifies faint waves generated by soft noises. Zweig, a physicist in Los Alamos’ Theoretical Division, has recognised a symmetry governing behaviour of these waves in the cochlea and has developed an equation that describes what happens to these subtle travelling waves within the ear.

“Understanding how the ear functions has important implications for signal processing, for how you go about extracting information from many kinds of signals, not just speech and not just signals in the frequency range of hearing,” says Zweig.

Back in the 70s his work led to the discovery of the continuous wavelet transform, a way of displaying and extracting time and frequency information in a signal. Now, continuous wavelet transforms are used by other researchers in mathematics and engineering, with implications for a broad range of endeavours from music production to seismic testing to submarine surveillance.

Zweig hopes a clear picture of how the ear works also can help build better speech recognition systems.

“When you look at how the ear responds to speech, what you see in it are the acoustic signatures or the resonant modes of the mouth, including how the vocal folds are moving in the throat. This is the kind of information you would need if you wanted to identify electronically whether one thing was being said rather than another, or who said it,” says Zweig.

Zweig can also use his wave equation to explain common ringing in the ear. He shows that wave energy not transferred to the middle ear is reflected again and amplified again, combining with the original wave. This backward and forward wave amplification and reflection can set up a standing wave or resonance in the cochlea. If the process runs away with itself, the ear begins to whistle spontaneously.

Scientists rethink superconductivity

Could a new type of electron behaviour be responsible for ‘high-temperature’ superconductivity? A team at IBM has conducted an experiment to suggest that this could be the case, opening the door to the production of new high temperature superconductors with predictable properties. Eventually, scientists hope they will be able to find superconductors that don’t need to be cooled at all.

Superconductivity is believed to result from the ability of electrons to overcome their mutual repulsion and pair up in ways that enable them to pass unimpeded through the host material. In recent years, two different types of electron behaviour have received significant support from theoretical physicists as possible keys to the mechanism of high-temperature superconductivity: ‘s-wave’ electron pairing where charge-induced vibrations in the material hold the pairs together, and ‘d-wave’ where the electron magnetic spins are critical.

Conventional low-temperature superconductivity is caused by a well-understood form of s-wave pairing. But some scientists have been sceptical that this should be the starting point for theoretical explanations of the higher-temperature phenomena.

Unfortunately, past experiments to distinguish between s-wave and d-wave have given mixed results. Now Chang Tsuei, John Kirtley and co-workers at IBM's TJ Watson Research Center and at State University of New York campuses in Buffalo and Stony Brook have come up with the most convincing evidence yet for d-wave electron pairing. The result is expected to be a shift in research that could spawn superconductors designed to exploit d-wave pairing, and perhaps nearing the goal of room temperature operation.
MICROMASTER LV PROGRAMMER

The Only True 3V and 5V Universal Programmers

ICE Technology's universal programming solutions are designed with the future in mind. In addition to their comprehensive, ever widening device support, they are the only programmers ready to correctly programme and verify 3 volt devices NOW. Operating from battery or mains power, they are flexible enough for any programming needs.

The Speedmaster LV and Micromaster LV have been rigorously tested and approved by some of the most well known names in semiconductor manufacturing today, something that very few programmers can claim, especially at this price level!

Not only that, we give free software upgrades so you can dial up our bulletin board any time for the very latest in device support. Speedmaster LV and Micromaster LV - they're everything you'll need for programming, chip testing and ROM emulation, now and in the future.

Speedmaster LV £495
Programmes 3 and 5V devices including memory, programmable logic and 8748/81 series micros. Complete with parallel port cable, software, re-charger and documentation.

Micromaster LV £625
As above plus support for over 130 different Microcontrollers, without adaptors, including PICs, 89C51, 68HC705/711, ST6, Z8 etc.

FEATURES
- Widest ever device support including EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, PALs, MACH, MAX, MAPL, PEELS, EPLDs, Microcontrollers etc.
- Correct programming and verification of 3 volt devices.
- Approved by major manufacturers.
- High speed: programmes and verifies National 27C512 in under 11 seconds.
- Full range of adaptors available for up to 84 pins.
- Connects directly to parallel port - no PC cards needed.
- Built in chiptester for 7400, 4000, DRAM, SRAM.
- Lightweight and mains or battery operation.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

ICE Technology Ltd. Penistone Court, Station Buildings, Penistone, South Yorkshire, UK S30 6HG
Tel: +44 (0)1226 767404 Fax: +44 (0)1226 370434
BBS: +44 (0)1226 761181 (14400, B11)

CIRCLE NO. 116 ON REPLY CARD

APPROVED by major manufacturers including
AMD MICROCHIP ATMEL
from only £495
THE ONLY PROGRAMMERS WITH TRUE 3 VOLT SUPPORT

8 bit Emulator card £125

16 bit Emulator card £195
As above but containing 16 bit ROM/RAM emulator. Configuration: 128K by 16, 256K by 8, 2 by 128K 8, expandable to 512K by 16/1024K by 8.
Bose-Einstein postulate is condensed

A US group looks to have made a breakthrough in the decades-long effort to understand the rare state of matter known as the Bose-Einstein condensate (BEC). BEC, a mysterious quantum-mechanical state in which matter is coherent and has ‘laser-like’ properties, was first postulated more than 70 years ago by Indian physicist Satyendra Nath Bose and Albert Einstein. It has been observed in liquid helium and superconductors, and more recently in semiconductors.

Now work of professor Wolfgang Ketterle and his colleagues in the Research Laboratory of Electronics (RLE) and the Department of Physics at Massachusetts MIT is expected to allow scientists to move beyond demonstrating BEC to using it to study little-understood quantum mechanical effects.

BEC is achieved by chilling a gas of atoms to such a low temperature that the normal motion of the atoms is suddenly halted and they lose individual identity and display uniform behaviour as required by the rules of quantum mechanics. Because of this, scientists believe they may be able to study quantum effects on the rather large scale of several hundredths of a millimetre (atoms are 10,000 times smaller).

The MIT advance has been to obtain Bose-condensed atoms with a very much higher production rate than previously, and reaching this level in 9s, compared with the several minutes required by devices used in the other experiments.

Keys to the achievement were a special arrangement of laser beams to collect and cool the atoms and a unique magnetic trap that kept the atoms from escaping.

The result: a Bose condensate with about 500,000 sodium atoms BEC is a ubiquitous phenomenon which plays significant roles in condensed matter, atomic, nuclear and elementary particle physics, as well as astrophysics.

According to the MIT team: "The study of BEC in weakly interacting systems holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles, and may also advance our understanding of superconductivity and superfluidity in more complex systems."

For more information please contact professor Ketterle at MIT -- wolfgang@amo.mit.edu

War machine that won’t stop

You might think "It doesn’t get tired, it doesn’t get hungry, it doesn’t get sleepy - and it’s expendable" sounds like a quote from Research Notes’ favourite film The Terminator. In fact you wouldn’t be far wrong. Because it is actually a project manager’s chilling description of a prototype robot soldier that is currently being tested in the US.

‘Sarge’, being developed at Sandia National Laboratories, could well become standard battlefield equipment, serving as a ‘force multiplier,’ to increase soldier/Marine effectiveness and survivability. Its prime aim is to engage in remote surveillance, as evidenced by its full name – surveillance and reconnaissance ground equipment.

The final, complete tug (teleoperated unmanned ground vehicle or ‘tug-vee’ to you, me and Norman Schwarzkopf) will be produced by the hundreds and put into the armed forces inventory. Individual or multiple robots will be assigned to infantry units and battalions.

Unlike the walking, talking, metal humanoid Hollywood robots with lasers for eyes, Sarge is a much simpler machine, and the latest in a long line of prototype battlefield robots.

Its base platform is a commercial recreational ‘four-wheeler,’ a Yamaha Breeze, with the addition of a roll cage and four video cameras – two for surveillance and two for driving – on a pan/tilt platform.

Everything – steering, throttle, cameras – can be remotely operated from a suitcase-size operational control unit miles away.

Sarge’s predecessor, Dixie, had to be teleoperated via a 1200-baud radio link. Coupled with the slow speed of its processor, that caused a 75ms delay between user command and machine response.

Operators had to drive ahead, or plan for what was coming up to compensate.

With Sarge, the lag time has been much reduced. Its command/response delay is approximately 20ms, thanks to its much faster modern processors and communications equipment.

The developers hope that Sarge will make it unnecessary for a contingent of soldiers to have to go out on reconnaissance during combat, to determine the enemy’s position and assess the situation.

Instead, the robot could be sent ahead, and images captured by its video cameras would be relayed back. If there is an enemy ambush, the number of casualties would be less than one.

"Obviously, using a robot for surveillance is different from using a person," says project manager Bryan Pletta. "It’s not going to be as good at some things as a person would be, with eyes and ears and a brain".

Gaining acceptance of the use of robotics among infantry soldiers may be a challenge too.

"Right now, using robotics is a pretty radical departure from the way they currently do things," Pletta says.

The next critical part of the project is the manufacture of eight to ten Sarge units to be given to infantry battalions, getting them involved in development up-front.

"The program will actually give them to infantry battalions and say, ‘This is yours, keep it. Take it home, learn how to use it. Try and figure out what you could do with it if you had one,’"

Take it home?

Bryan Pletta can be contacted at Sandia National Laboratories, Albuquerque, USA.
Your doorway to EDA solutions

It doesn't matter whether you're a one-man design team, or a project leader for a major multinational, you still demand the best EDA tools for your application, along with technical support you know you can trust.

ARS Microsystems offers key design solutions across a broad range of technologies with price competitive windows-based software that makes the most advanced design techniques available to every user, and backed up with technical support from a team of EDA experts.

Contact ARS Microsystems NOW for your entry into a new world of EDA.

- VHDL Design Entry (text & graphical), Synthesis and Simulation tools from leading vendors including Data I/O, Model Technology, Synthesia and OrCAD.
- Analogue (PSpice) and Digital simulation of designs including multiple programmable devices on a single pcb.
- PLD/CPLD/FPGA & board-level design software using Schematic Capture or HDL entry, supporting all major silicon vendors (Xilinx, Altera, Lattice, AMD, Cypress, Actel, QuickLogic, Atmel, etc.)
- PCB Layout software with Automatic placement, Automatic routing, design for manufacturing control, fast circuit options for the design of EMC compliant products.
Preamplifiers receive a variety of signals at different levels, process them, and pass them to the power amplifier. They should do this without adding noticeable noise or distortion and they should be convenient to use.

Figure 1 is a block diagram of a typical pre-amplifier. Working back from the output, there is a line stage providing a limited amount of gain. This stage may be designed to drive long cables. It is preceded by the volume control and input selector; associated with this will probably be some form of switching to provide facilities for tape machines, which may, or may not, be buffered.

One of the sources to the selector switch will be an RIAA equalised disc stage, although many modern pre-amplifiers neglect this stage because it is so difficult to design. The excuse for this is that the long-playing record is obsolete. This may be so, but there are still many treasured collections of LPs that need to be played, so a proper pre-amplifier should include a disc stage.

The pre-amplifier only has to provide a very limited output voltage to the power amplifier; even the most insensitive power amplifiers will not require more than 4 or 5V rms to drive them into clipping. This means that the line stage may be optimised for linearity, rather than headroom, but it will have to drive the capacitance of the output cable without loss of high frequencies. It may need to be able to drive power amplifiers of lower input impedance, such as transistor amplifiers.

Since the stage will be preceded by the volume control, the power amplifier will amplify all of its self-generated input noise, so we will need to ensure that this noise is minimised, the stage also requires a low output impedance, coupled with low gain which ought to be quantified.

Low capacitance screened cable has a capacitance of around 100pF per metre. To avoid inducing hum from the power amplifier mains transformers into the pre-amplifier, it will probably be necessary to separate them by one metre. By the time the routing of the cable between the line stage and the input connector of the power amplifier has been allowed for, about 1.5m of cable will have been used. This is equivalent to 150pF. A valve amplifier will typically have input capacitance around 20pF, so it should be possible to drive 170pF.

In combination with the shunt capacitance of the cable, the source impedance forms a low-pass filter whose -3dB cut-off we can calculate from;

$$f_{-3dB} = \frac{1}{2\pi CR}$$

It would be useful, however, to have the high frequency roll-off within the audio band to be far less than 3dB. As a result, it is necessary to find out what f_{-3dB} corresponds to a given amount of loss at a given frequency. This can be found from,

$$f_{-3dB} = \frac{f_{(dB\ loss)}}{10^{\frac{1}{20}}-1}$$

As an example of using this equation, we find that for 0.1dB roll-off at 20kHz, we require $f_{-3dB} = 131\text{kHz}$. It should be noted that this formula is only valid for a single high-frequency CR or LR network. We can now determine that for 0.1dB loss at 20kHz, driving 170pF of capacitance, we need an output impedance of 7kΩ, and preferably less.

For a single low-frequency CR or LR network,

$$f_{-3dB} = f_{(dB\ loss)} \frac{1}{10^{\frac{1}{20}}-1}$$

Using this formula, 0.1dB roll-off at 20Hz corresponds to an f_{-3dB} of 3Hz.

Once stages are cascaded, both high and low-frequency cut-offs begin to move towards the mid-band. For 'n' stages, each with identical low-frequency cut-off, the cut-off frequency of each individual stage is related to the cut-off of the composite amplifier by,

$$f_{-3dB(\text{individual})} = f_{-3dB(\text{composite})} \sqrt{2^n-1}$$

Applying this formula to a three-stage ($n=3$) capacitor coupled amplifier, you will now find that the 3Hz cut-off for the entire amplifier requires each stage to have a 1.5Hz cut-off. The traditional value of 0.1pF coupling capacitor into 1MΩ grid-leak gives a cut-off of 1.6Hz.

Traditional power amplifiers had input impedances of 1MΩ or more; this is a useful impedance, because it allows a low value of coupling capacitor from the pre-amplifier. A value of 47nF almost meets our 20Hz 0.1dB criterion, but 100nF is better. Note that many modern valve amplifiers have an input impedance of 100kΩ.
require a 1pF coupling capacitor.

A power amplifier input stage using a triode with a sensitivity of 2V rms has excellent noise performance. But the higher gain of a pentode not only results in increased sensitivity – 125mV rms is common – but the intrinsically noisier pentode further worsens the already compromised signal to noise ratio.

Because of the previous low-frequency cut-off and noise considerations, valve pre-amplifiers should be designed to drive 2V into 1MΩ – even if it means modifying the power amplifier to achieve this match.

Typically, a sensitivity of around 250mV rms is needed at the input of the line stage. This results in an A₁ of 8 for the line stage, but it may be useful to have 3dB more than this, to allow for unusually low recording levels. As a result, maximum allowable gain A₁ is 16, so an A₁ of 12 would be fine.

This stage will be preceded by the volume control, which is discussed later. For the moment, it will suffice to simply state that it will probably be a 100kΩ potentiometer, whose maximum output resistance will be 25kΩ.

The question of potentiometer output resistance is crucial, because it forms a low-pass filter in conjunction with the input capacitance of the line stage. Using the earlier argument of 0.1dB high-frequency loss at 20kHz (~3dB at 131kHz), you can see that the maximum allowable input capacitance of the line stage is around 50pF.

If the input sensitivity of the stage is around 170mV, i.e. 2V/12, and a signal to noise ratio of 80dB or more is needed, then the self-generated noise of the stage referred to the input would be 170mV–100dB, which is 1.7pV. This is certainly achievable with triodes.

Together with the previous arguments, this results in a table of requirements as follows.

\[A₁ = 12 \]
\[Z_{\text{out}} = 7kΩ \max \]
\[C_{\text{in}} = 50pF \max \]
\[V_{\text{noise}} = 1.70μV \max \]

Output coupling 100nF

A good design is a simple design, so you should check to see whether the common cathode triode such as the ECC82, a low μ triode will suffice Fig. 2.

\[A₂ = 15.5 \]
\[Z_{\text{out}} = 7.7kΩ \]
\[C_{\text{in}} = 30pF \]

Gain is certainly satisfactory, as is the input capacitance due to Miller effect and strays. The output impedance however is a little over the required value. Although the output impedance is higher than the ideal, input capacitance is considerably less than the allowable maximum.

Reduced roll-off at this point compensates for the slightly increased high-frequency roll-off at the output. Provided that great care is taken with the capacitive loading of the output cable, or the stage is converted to a p-follower, this would be a satisfactory solution.

Sadly, the ECC82’s octal predecessor, the 6SN7, would have an input capacitance of around 70pF, because C_{gd} is 3.9pF, and would therefore only be suitable if a 50kΩ volume control could be tolerated.

Controlling volume

The volume control is an essential part of a pre-amplifier and should be treated with the same care as any other part of the design.

Human ears have a logarithmic response to sound pressure level, so if you want a volume control that has a uniform perceived response to adjustment throughout its range, you need to use a logarithmic potentiometer. This is the root cause of all our problems.

It is not a problem to make a linear potentiometer, all you need do is to deposit a strip of carbon of uniform width and thickness onto an insulator, put terminals at each end, and arrange for a contact to scrape its way round.

In an attempt to produce a logarithmic law, the coating thickness is made variable, in deference to audio sensitivities, a pressed metal screening can is fitted, and two potentiometers are ganged together on one shaft. Making the coating thickness continuously variable would be expensive, so the logarithmic law is approximated by a series of straight lines, Fig. 3.

It is surprising how good a fit to the ideal logarithmic curve can be made using only four different resistance tracks, but it will come as no surprise to you that this still results in steps in the response as the knob is rotated.

You would also expect the mechanically linked potentiometers to produce identical levels of attenuation all the way from 0dB to 60dB. Some of them are remarkably good, but the carbon track potentiometer’s natural habitat is buried in the undergrowth of a television.

If quality is paramount, and a control that is not continuously variable is acceptable, a

Listing: QBASIC routine for calculating potentiometer tap resistors.

```
CLS
A = 0
B = 0
N = 0
PRINT "This program calculates individual values of resistors between"
PRINT "taps of a potential divider string."
PRINT "How many switch positions can you use?"
INPUT S
PRINT "What step size (dB)?";
INPUT D
PRINT "What value of load will be across the output of the potentiometer?";
INPUT L
PRINT "What value of potentiometer is required?"
INPUT R
DO UNTIL N = S - 1
Y = (((R - L) / 10 ^ (-A / 20)) + SQRT((L / 10 ^ (-A / 20)) - R) ^ 2 + 4 * R * L)) / 2
C = R - Y - B
PRINT A: "dB "; C: "ohms"
B = B + C
A = A + D
N = N + 1
LOOP
PRINT A: "dB "; R - B; "ohms."
```
switched attenuator can be used. Such an attenuator has conventional resistors connected to a switch in order to control volume. Adherence to the logarithmic law can now be perfect, as can channel balance. Commercially made switched attenuators are available with resistors fabricated directly onto the ceramic substrate of the switch wafer. Their performance is excellent.

The practical disadvantage of the switched attenuator is that you can only have as many different volume levels as switch positions. Although rotary switches are available with 30 positions — as opposed to the more usual 12 — this still limits us to 26 or 27 positions once an end stop is fitted.

For a normal volume control, it is often desirable to have a mute position, followed by a -60dB position, then uniform steps all the way up to 0dB. Already 6 of the 30 positions have been used, so 60dB divided by 24 steps gives 2.5dB per step. This is too coarse, and commercial attenuators coarsen the lower levels to allow finer control at the upper levels, but this still only brings the basic step size down to 2dB.

If you don’t mind wiring individual resistors

Requirements for RIAA equalisation

This panel defines the requirements for a high-performance RIAA equalisation circuit.

- **Low noise and no hum.** It has to be admitted that valves are not as quiet as the latest generation of low-noise IC op-amps, but they can be made quiet if you use dc heater supplies. Pentodes are too noisy, and care is needed when using triodes.

- **Constant input impedance.** This might seem obvious, but many designs have failed to appreciate this requirement. Cartridge manufacturers design for a specific loading of resistance and capacitance. They use this to equalise mechanical deficiencies of the generator system. This is particularly noticeable for moving magnet designs such as the older Shure and Ortofon models.

- **Accurate RIAA.** It is unbelievable how many designs have incorrect RIAA equalisation — ancient and modern. This is either down to a failure to use the correct equations, or to appreciate the loading conditions.

- **Low sensitivity to component variation.** Valves age, and as they do so, their anode resistance rises. When a valve is replaced, neither the new value of r_A or C_AG may be the same as the old valve. Neither of these effects should noticeably affect the accuracy of RIAA equalisation.

- **Good overload capability.** But what capability is necessary? Using a Tektronix TDS420 digital storage oscilloscope, the dynamic range of LPs was investigated in conjunction with a high quality record playing system. The TDS420 was first used in 'envelope' mode to find maximum output of the cartridge, and monitored an entire day of listening to music. The largest musical peaks were found while playing a Mobile Fidelity pressing of Beethoven’s 9th Symphony. Before equalisation these peaks rose to +16dB above the nominal 5cm/sec level, but clicks due to dust or scratches rose to about twice this level at +22dB, Fig. 6.

 Individual clicks were then captured, and it was found that the vinyl/cartridge tip mass resonance was being excited, producing an oscillation at 56kHz for this particular moving coil cartridge, Fig. 7. If these ultrasonic signals were to overload the pre-amplifier, they would generate intermodulation products that would come back down into the audio band, and make the clicks much more noticeable.

 You should now allow for variable cartridge sensitivity of about 6dB; if you need more than this, the disc stage should be reconfigured. A good design should not operate permanently at its limits, so a further 6dB margin is desirable. This gives a total of 28dB in the audio band, rising to 34dB or more at ultrasonic frequencies. Very few pre-amplifiers of any age achieve this requirement simultaneously with low noise.

 Worn/old discs generate more ultrasonic energy than a new disc. This may be due to dust ground into the groove walls, or because they were played by a cartridge that mistracked, causing wall damage as the stylus flailed from side to side of the groove. Inadequate ultrasonic overload margin is the reason why some pre-amplifiers will make worn records sound unplayable, but a good pre-amplifier is able to extract the best from the disc.

- **Low distortion.** This is an obvious requirement, and is linked to overload capability.

- **Low output impedance.** Ideally, the stage should be able to drive cable capacitance, so that it can drive a tape machine, or be sited within the plinth of the turntable.
onto switches yourself, you can do rather better than 2dB steps. It is necessary to design your pre-amplifier so well that all incoming signals arriving at the volume control are at precisely the same level. Additionally, the output of the pre-amplifier is perfectly matched to the power amplifier, and is only able to overload the amplifier on the last few steps of the volume control. This is feasible, and will allow you to use 1dB steps.

Usually, you will also need a separate mute switch in addition to the volume control. This type of arrangement is surprisingly convenient, and a matched, truly logarithmic volume control is a pleasure to use.

Assuming that you have a pair of 30-way, switches available to make a volume control, you need to calculate the values of resistors required. You could do this by hand, but a programmable calculator or computer makes life so much easier.

One form of switched attenuator is similar to the conventional potentiometer. It has a string of resistors from which you can take the appropriate tapping. The Qbasic Listing shown generates the resistor values for this attenuator; it is not a miracle of programming, but is quick and easy to use, and can easily be modified for different versions of Basic. It could also be made to run on a programmable calculator.

The program asks for the load resistance across the wiper. This is the grid-leak resistor of the following valve. It is tempting to try to use the potentiometer as the grid-leak, but this is a poor practice, and can cause noise problems. It is in the form of unbiased transistor junctions, and may cause distortion. Most of the time, you will not be recording the source, so the tape output is switched off.

As the circuit stands, the rotary selector switch could suffer from crosstalk due to capacitance between adjacent contacts. On high-quality traditional pre-amplifiers, this problem was solved by having two switches. One selected the source, and the other deselected the short-circuit to ground on that source. Unfortunately, such wafer switches are no longer available, but a method that works almost as well is to use alternate contacts as inputs on a standard wafer switch, and connect the unused contacts to ground, which then guards the signal contacts.

A further advantage of the alternately grounded contacts is that if a tape loop is not required, the combined source/mute/tape switch may be dispensed with, since alternate positions of the selector switch provide the mute function, Fig. 5.

Criteria for RIAA equalisation

RIAA is the abbreviation for 'Recording Industry Association of America'. It is the worldwide standard for equalisation of 'microgroove' records, as opposed to the numerous standards for 78s. The European standard is known as IEC, and has an additional −3dB point at 20Hz (7950µs) on replay only in order to reduce rumble.

Most manufacturers of quality pre-amps assume that their products will be complemented by equally good turntables, and that rumble will not be a problem, so they ignore the IEC recommendation. Their equalisation is therefore RIAA.

If power amplifiers were let down by their phase splitters, then the Achilles heel of the pre-amplifier must surely be the RIAA disc stage. The stage has to satisfy so many contradictory requirements at the same time that its design and execution is fraught with problems.

The 'Golden Age' of valves produced power amplifier designs that became classics. There are no classic RIAA stages; they vary from mediocre to plain awful.

Requirements for an RIAA stage are shown in the panel. The next stage is to consider a suitable topology. Constant input impedance and low noise requirements eliminate shunt feedback. Low noise also rules out the pentode. You are therefore left with a combination of triode stages having active equalisation determined by series feedback, or with passive equalisation. Each of these contenders may be further broken down into performing the equalisation all in one go, or splitting it over a number of stages.

To tackle the problem of RIAA equalisation,
it is necessary to define RIAA equalisation.
The equalisation is specified in terms of time
constants; 75µs, 318µs, and 3180µs. The
RIAA equation plus some spot results are
given below.

\[s = 2\pi \]
\[G_s = \frac{318 \times 10^6 \times s}{(1 + 3.18 \times 10^5 \times s)(1 + 7.5 \times 10^5 \times s)} \]

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Gain (dB ref. 1kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>+10.802</td>
</tr>
<tr>
<td>20</td>
<td>+17.592</td>
</tr>
<tr>
<td>30</td>
<td>+16.558</td>
</tr>
<tr>
<td>40</td>
<td>+14.862</td>
</tr>
<tr>
<td>50</td>
<td>+13.509</td>
</tr>
<tr>
<td>70</td>
<td>+11.899</td>
</tr>
<tr>
<td>100</td>
<td>+8.418</td>
</tr>
<tr>
<td>200</td>
<td>+6.289</td>
</tr>
<tr>
<td>400</td>
<td>+4.778</td>
</tr>
<tr>
<td>500</td>
<td>+3.612</td>
</tr>
<tr>
<td>700</td>
<td>+1.862</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>-3.789</td>
</tr>
<tr>
<td>3000</td>
<td>-6.204</td>
</tr>
<tr>
<td>4000</td>
<td>-8.034</td>
</tr>
<tr>
<td>5000</td>
<td>-9.522</td>
</tr>
<tr>
<td>7000</td>
<td>-11.876</td>
</tr>
<tr>
<td>10000</td>
<td>-14.502</td>
</tr>
<tr>
<td>20000</td>
<td>-19.915</td>
</tr>
<tr>
<td>30000</td>
<td>-23.218</td>
</tr>
<tr>
<td>40000</td>
<td>-25.605</td>
</tr>
<tr>
<td>50000</td>
<td>-27.474</td>
</tr>
</tbody>
</table>

From the table we see that considerable gain is
needed at low frequencies, while high-frequen-
ty attenuation must continue indefinitely.
Because the high-frequency attenuation con-
tinues indefinitely, you can now exclude the
series feedback 'all-in-one-go' topology. This is
because the gain of this topology can only
fall to unity. Although this failing can be
easily compensated after the feedback ampli-
ier, it does mean that the response before
compensation is rising. In turn, this means that
ultrasonic overload capability within the
amplifier is being compromised.
Because the 1kHz level is around 20dB
below the maximum level at low frequencies,
any 'all-in-one-go' passive network must have
a minimum of 20dB of loss, and probably
more. This is because the network will have
the grid-leak resistor of the following valve in
parallel with it, which will cause additional
attenuation. You will find that it is extremely
difficult to design a pre-amplifier of acceptable
noise and overload capability using such a net-
work, so this topology can also be excluded.

If you decide to use either of the two previ-
ous topologies, the relevant formulae are given
in the definitive paper by Stanley P. Lipshitz,
'On RIAA equalisation Networks', Journal of
the Audio Engineering Society, 1979 June,
Vol. 27, No 6, pp. 458-481.

Of the four possible networks that Lipshitz
gives, these reduce to two for passive equali-
sation. Of these two, only one has a capacitor
in parallel with the lower arm of the network.
This feature is important because it allows
stray and Miller capacitance to be taken into
account. It is therefore the only feasible net-
work for a valve pre-amplifier. Fig. 8. Relevant
equations for this passive network are,

\[R_1C_1 \quad 2187\mu s \]
\[R_2C_2 \quad 750\mu s \]
\[R_3C_3 \quad 318\mu s \]
\[C_1/C_2 \quad 2.916 \]

These numbers have not been rounded.
Remember that any grid-leak resistor in par-
allel with the lower arm of the network, or
non-zero output impedance of the driving
stage, changes the effective value of \(R_1 \) as
seen by the network. Therefore, the values for
the network must be calculated using the
Thévenin impedance seen by that network.
Likewise, any stray or Miller capacitance will
need to be subtracted from the calculated
value of \(C_2 \).

For any 'all-in-one-go' topology other than
the above network, it is essential to refer to the
Lipshitz paper, and read it thoroughly before
embarking on design.
You are now left with only two possibilities
for equalisation - split active, and split pas-
sive. The first job is to define how to split the
equalisation. Fortunately, there is only one
rational way to split the equalisation, and that
is to pair the 3180µs with the 318µs, but to
perform the 75µs separately.
The 75µs time constant defines a low pass
filter whose -3dB point is at around 2122Hz
and rolls off at 6dB/octave thereafter. This is
an ideal filter for use early in the pre-ampli-
ifier since it allows high-frequency overload
capability after that stage to rise at 6dB/octave
above cut-off. This is exactly what is needed.
It is usual to perform the 75µs time constant
passively following the input stage. This has
the advantage of ensuring that the impedance
seen by the cartridge is constant with
frequency, apart from input capacitance.

The 3180µs, 318µs pairing defines a shelf
response with a level variation of exactly
20dB. Using IC op-amps it is equally conve-
nient to perform this actively or passively, but
with valves it is more convenient to use pas-
sive equalisation.

The preceding description allows you to
define the optimum way of achieving RIAA
equalisation in a valve pre-amplifier. Assume
a passive 75µs stage, followed by passive
paired 3180µs, 318µs over several stages of
triodes. All you need now do is to define the
topology and operating conditions of each
stage, and calculate component values.
It is now possible to draw a block diagram of
the pre-amplifier, Fig. 10. Note that the block
diagram has completely ignored practicalities
such as coupling, or decoupling, capacitors and
grid-leak resistors. Nevertheless, it represents a
simplicity of design to which we should aspire,
i.e. dc coupling throughout. This ideal is
achievable, but it is not ideal for the novice
designer, you will need to be a little more cau-
tious in your first attempt.

Morgan will discuss implementing the valve RIAA stage,
por and balanced preamplifiers in a second article.

Further reading
Lipshitz, S. P. 'On RIAA equalisation Networks',
Journal of the Audio Engineering Society, 1979
June, Vol. 27, No 6, pp. 458-481.
Wright, A. 'The tube pre-amp cookbook' 1994.
Fractional-N synthesisers

Cosmo Little discusses implementing the fractional-N synthesiser, and shows how adding a second accumulator to the basic synthesiser system described last month reduces low-frequency spurs.

In my first article, I discussed the basic fractional-N synthesiser with a single accumulator, and provided a simulation of its performance. In this article, I examine an modification to the method which uses a second accumulator to generate a different sequence of divisors. This important enhancement reduces the low frequency spurs seen in the previous simulation.

In addition, I discuss here some methods of implementing the fractional-N synthesizers in hardware and software.

Two-accumulator fractional-N loop

Invented by Racal, this modification to the fractional-N loop is based on the idea that it is possible to change the frequency spectrum of the error waveform. This avoids the large discrete spurs that appear at low frequencies when generating a small fractional increment. This could be possible by dividing by a greater range of numbers based on N.

Obviously, it is feasible to divide by any number, provided that the average over a full cycle of accumulator additions - a maximum of the accumulator modulus - equals the required fractional divider.

Numbers are selected on the following basis. The loop filter is an integrator at low frequencies and as a result integrates the error voltage which builds up as a ramp as described last month. If a large negative error voltage is generated at the right intervals, the integrator can be reset to zero. This negative error voltage could be produced by dividing by N+1, and then immediately by N-1 at the next reference cycle.

Provided that a division by N+1 always has a corresponding division by N-1, the mean loop divisor has not been altered. As the normal control mechanism requires periodic division by N+1, the combination of the two controls results in divisions by N-1, N, N+1, and N+2.

I have never found this argument - ref 2, p201 - convincing as the error voltage is modified by the loop forward transfer response, not the loop filter. Forward transfer response is a constant multiplication by N at low frequencies. However the above algorithm certainly works, as will be seen later.

The second control may be implemented by means of a second accumulator, which accumulates the contents of the normal accumulator. These will be referred to as accumulators A and B. As an accumulator is an integrator, overflow of accumulator B can be used to initiate a correction cycle of division by N+1 and N-1.

A simple combinational logic function can be designed to combine the overflow state of both accumulators and the previous overflow state of accumulator B which must be stored in a latch.

Operation of accumulator B is shown in the document Program 1, as is the effect on the time error waveform. The waveform still has about the same peak to peak amplitude as that for the single accumulator fractional-N loop, but the peaks are only reached on pulses. These pulses contain less energy at low frequencies. If you make a mental average through the area of pulses, you will find that the main low frequency waveform is a triangle wave of much lower amplitude.

A correction waveform may be constructed for the two-accumulator fractional-N loop, but the relationship to the contents of accumulator A is more complicated. The rule is that if B has overflowed in the previous reference cycle, then the value in accumulator A must be complemented - i.e. subtracted from the modulus.

A 5% accuracy of the correction voltage has been assumed in the document, and all other parameters are the same as for the right-hand MathCad document in the last issue of EW. This allows the Fourier transforms of the error voltages to be directly compared. But note different Y axis! The improvement is dramatic. The frequency range in both graphs extends to fref/2, so a typical natural loop frequency would be 5kHz. Frequency components higher than this are progressively filtered out.

Automatic correction of the correction voltage by synchronously rectifying the error voltage is possible for the two-accumulator loop. This turns out not to depend upon accumulator A at all, but only upon the overflow state of accumulator B. The graph in the document shows that the function does work.

There is a possibility that other algorithms could result in even lower low frequency spurious content to the error voltage. You could divide by a larger set of integers, for example. Alternatively, there might be a better sequence of the set of four integers than that generated by the two accumulator implementation.

Implementation the fractional-N loop

The lack of widespread use of the fractional-N technique may partly be due to the lack of any commercial large-scale-integration digital chip for implementing the accumulators and correction circuits required. This contrasts with the large number of single-loop synthesiser chips available, most with provision for controlling dual modulus prescalers, and having microprocessor interfaces for setting up the various internal dividers.

Figure 1 gives a possible block diagram for a single chip implementation of the two accumulator loop. Everything is included except the d-to-a converters for generating the correction voltage. Because of the difficulty of implementing the inverse scaling of the correction voltage with change of vco frequency, a simple latch is provided for controlling a d-to-a converter. It is assumed that the controlling microprocessor will calculate the scaling factor.

For many applications binary accumulators
Fig. 1. This block diagram suggesting how the dual-accumulator fractional-N synthesiser could be implemented on a single chip includes everything except the d-to-a converters for producing the correction voltage.

Fig. 2. It is possible to use a processor to calculate the dual-accumulator algorithm in real time if the reference frequency is not too high.
are adequate. This means that the output can only be an approximation to a decimal frequency. For some applications such as signal generators, binary-coded-decimal accumulators will be needed.

It is important that the phase detector used should have very good linearity at small phase offsets. Otherwise the error voltage from the phase detector will not match the correction voltage. Digital tristate phase/frequency detectors are very poor in this respect, and should only be used for initial acquisition. A sampling phase detector should be used for tracking. This approach is used in the GEC/Plessey range of chips.

Until a manufacturer decides to make a suitable lsi chip, low budget designers must look for other ways to implement the synthesiser. Single chip microprocessors are cheap, and are powerful general purpose logic machines. It is feasible to use a processor to calculate the two accumulator algorithm in real time provided that the reference frequency is not too high.

A possible block diagram is shown in Fig. 2. The processor must be synchronised to the overflow of the loop divider, either by an interrupt or by polling a port. The processor may take most of a reference cycle to calculate the next value of N and the correction in ram. The processor could then respond to an interrupt and output the next values in less than 1µs. This correction system is shown in Fig. 2.

Microprocessors have advanced considerably over the past decade, and it is likely that a 16-bit digital signal processor could calculate the algorithm in 10µs, making possible a 100kHz reference frequency. For even faster implementations, the processor could calculate the algorithm in advance, and store all the values of N and the correction in ram. The processor could then respond to an interrupt and output the next values in less than 1µs.

A low-cost implementation is possible by using a single chip synthesiser with dual modulus prescaler control, and adding logic to delay the change of modulus from P+1 to P by up to three input cycles. This will change the overall division ratio. This idea is outlined in Fig. 3.

Programming of the 'N' and 'A' counters must be altered from the usual arrangement to ensure that the four divisors are available without requiring the 'A' counter to be zero, as otherwise the logic would not work. A little thought will show that provided the 'A' counter has a higher modulus than the prescaler, P, then programming for any four adjacent integers will always be possible.

This implementation would require only 1x2 bit for the 16-bit input port on the processor, and one spare interrupt. If sufficient ram was available to store the divisors and corrections, then the main system processor might have sufficient capacity to run the synthesiser as well.

One advantage of the ram storage technique is that decimal accumulators can be as easily programmed as binary. As the algorithm is calculated once only for each frequency change, the extra time required to calculate for decimal accumulators would not matter.

Predicting vco spurii

One final MathCad document is offered, Program 2. This 'document' calculates the level of the vco sidebands due to the fractional-N mechanism. It communicates with either Programs 1 or the right-hand MathCad document in the last issue of EW using a data file, so the appropriate program should be run first. It is also necessary to design a sensible phase-locked loop using the phase-locked-loop MathCad document presented last month.

Loop time constants are copied across manually to Program 2. The document then calculates the voltage-controlled oscillator spurious sideband levels. The simplification is made that the voltage-controlled oscillator spurious modulation index is small, so each component of the phase modulation of the voltage-controlled oscillator only results in one pair of sidebands.

Further reading

Digital PLL Frequency Synthesizers, Ulrich L. Rhode, Prentice Hall.

Frequency Synthesis by Phase Lock, William F. Eden Wiley.

Frequency Synthesizers, Theory and Design Vadim Manassewitsch, Wiley.

Phase Locked Loops. Application to coherent receiver design, Alan Blanchard, Wiley.
Program 1. This MathCad document is for evaluating operation of the fractional-N synthesiser's second accumulator, designated B. It also shows how the time error waveform is affected.

Phase lock loop comparison frequencies, \(f_{\text{PLL}} \): LP image part of loop detector, \(N \approx 15 \)

Fractional part of loop divider, \(N \approx 1 \) Accumulator modulus, \(Modulo = 2^4 \).

Correction DAC modulus, \(DAC = 2^4 \).

\[
\text{Correction DAC modulus, } DAC (\text{mod}) = 2^4
\]

\[
N = 10 \quad N = 10 \quad N = 10 \quad N = 10
\]

The next two statements form the vectors of values in the two accumulators.

\[
A = \text{mod}(A + M, Modulo)
\]

Special vector function definition. returns 1 if next entry in vector is less than current entry. Serves to mark accumulator overflows.

\[
B = \text{mod}(13, A, Modulo)
\]

Logic section to create vector of divisors based on overflow of the two accumulators. Order of statements is important.

\[
N = \text{mod}((A, 1, N + 1), N) + N
\]

\[
N = \text{mod}((B, 1, N + 1), N) + N
\]

\[
N = \text{mod}((A, 1, N + 1), N) + N
\]

Graphs of accumulator content and loop divider

Create vector of time errors due to non-exact \(f_{\text{PLL}} \).

\[
T_{\text{error}} = T_{\text{PLL}} + T_{\text{VCO}}
\]

Create correction voltage from accumulator A. Note that Accumulator is truncated to no of DAC bits.

\[
\text{Corr.} = \text{DAC}(\text{mod}) \cdot \text{floor}(\text{mod}(A, \text{DAC})).
\]

Graphs of time error, correction, and voltage error

Fourier transform of error voltage, \(T_{\text{error}} \) spacing \(1/\text{REF} \) for all samples.

\[
0 ... -1/\text{FFT}(\text{VCO}) \quad \text{length}(\text{VCO}) = 0.08 \text{B} \quad \text{log}(\text{B}) = 0.032 - 0.025 \quad \text{V}_{\text{DC}} = -0.0 \quad \text{future}(\text{error})
\]

Automatic adjustment of error voltage correction by synthesiser self-calibration.

Program 2. MathCad routine worksheet for calculating vco sidebands due to the fractional-N synthesiser's mechanism.

Loop fixed parameters:

\[
\text{Op amp low frequency pole and open loop gain: } f_{\text{PLL}} = 10 \quad A_{\text{PLL}} = 10000 \quad \text{loop filter component values: } R_1 = 4700 \quad R_2 = 10000 \quad C_1 = 10 \times 10^{-9} \quad C_2 = 5 \times 10^{-9}
\]

Phase detector gain constant (volts per radian) \(K_p = 1.59 \quad V_{\text{VCO}} \) gain constant (radians per volt second) \(K_v = 50 \times 10^{-9} \quad V_{\text{VCO mod}} = 1.0 \times 10^{-9}
\]

Loop divider ratio \(N = 10 \quad \text{Additional low pass pole}(\text{Hz}) \quad \text{f}_{\text{PLL}} = 20000
\]

Data from previous fractional-N calculations:

\[
\text{Read} (\text{read}) \quad \text{SPUR} = \text{read} \quad \text{last(SPUR)} = 1.024 \times 10^3 \quad \text{len}(\text{SPUR}) = 1.025 \times 10^3
\]

\[
\text{calculated values}
\]

\[
1.0 = C_3
\]

\[
2.0 = \text{mod}(2.0, 1) = 1.0 + 1.0
\]

\[
-2.0 = \text{mod}(-2.0, 1) = 1.0 - 1.0
\]

\[
0.0 = \text{mod}(0.0, 1) = 1.0 - 1.0
\]

This graph is peak phase deviation of the VCO

VCO phase deviation in time domain

VCO single sideband spurd

March 1996 ELECTRONICS WORLD
If buying components from a catalogue makes you feel like this...

...we'll make you feel better.

Buying from your present supplier may feel like money down the drain. Buying from CPC is money in your pocket.

You get a choice of 39,000 quality products from over 300 leading manufacturers.

At CPC we only stock quality products from quality manufacturers. All the biggest equipment names are represented in our catalogue including TDK, 3M, Duracell, MK, Weller, Sony, CK etc.

Over 27,000 companies get a better deal with us. And the list is growing by the day. From our inception in 1967, we have enjoyed year on year growth, seeing our client base of 2,000 in 1986 boosted by a further 25,000 companies who have switched to CPC - and stayed!

The catalogue couldn't be easier to use. Whether you are a service engineer, OEM, school or manufacturer, whatever your component needs, you'll find them all listed in our easy to use index and cross reference section: Audio products, batteries, computer products, hardware, motor control, semiconductors, surface mount tools and original manufacturers spares are just some of the sections included.

Ordering couldn't be simpler. Our sales office is open Monday to Saturday taking orders by phone, fax and post.

Diamond Service means same day despatch is guaranteed. Representing the ultimate in customer service, CPC's Diamond Service ensures all orders received before 5.30pm, are despatched the same day - guaranteed.

How to open an account today. Just pick up the phone, give us the details and the job's done. And once you're on our database we'll send you bulletins on all the latest products and great offers from CPC, four times a month.

Free catalogue, free carriage. Once you've opened an account, we will send you a complimentary 1,700 page catalogue and with all orders over £50 carriage is absolutely free! So, if you want to stop your money going down the drain, call us today.

Open YOUR account today, tel 01772 654455 or fax 01772 654466

CPC, Faraday Drive, Fulwood, Preston, Lancashire.
Reference books to buy

For Audio Engineers

Audio Engineer's Reference Book

Subjects include:
- Recording, microphones and loudspeakers
- Digital audio techniques
- Basic audio principles
- Acoustics and psychoacoustics
- Audio and television studios and their facilities
- Radio and telephony

Comprehensive - over 600 pages
Written by leading authorities from the audio world
Easy to read, compiled for maximum accessibility
Concise and authoritative
Covers topics from noise measurement to studio installation

Invaluable reference work for anyone involved with audio - from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith - previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

Please supply me ______ copies of the Audio Engineer's Reference Book, (ISBN 0 7506 0386 0)
Fully-inclusive price - UK £62.50, Europe £68, Worldwide £78. Please add vat at local rate where applicable.

Remittance enclosed £____
Cheques should be made payable to Reed Business Publishing Group Ltd
Please return to: Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. ________
Exp date ________
NAME (Please print) ________
ADDRESS ________
POST CODE ________
DATE _______ TEL ________

VAT RATES
6% Belgium, 25% Denmark, 5.5% France, 7% Germany, 4% Greece, 4% Italy, 3% Luxembourg, 5% Netherlands, 5% Portugal, 3% Spain.
FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

Signature ________

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Credit card orders accepted by 'phone. Call 0181 652 3614

For TV & Video Engineers

TV & Video Engineer's Reference Book

Subjects include:
- Fundamentals of colour TV
- TV studios
- High definition TV
- Satellite broadcasting
- Distribution of broadband signals
- TV receiver servicing
- Video and audio recording and playback
- Teletext

Over sixty chapters on the latest techniques in video and television
Up to date reference on EMC requirements, DBS and HDTV
Easy-to-use reference, eminently suitable for students
Topics range from materials and construction to medical and defence applications of television.

The TV & Video Engineer's Reference Book will be of immense value to anyone involved with modern TV & video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Please supply me ______ copies of the TV & Video Engineer's Reference Book, (ISBN 0 7506 1953 8)
Fully-inclusive price - UK £42.50, Europe £48.00, Worldwide £58.00, Please add vat at local rate where applicable.

VAT NO ________
CONTROL ELECTRONICS

SPEED

control

with servo option

Designed for use with a 12V dc motor, Matthew Hall’s pwm speed controller is adaptable for use with a servo-arm mechanism.

This motor speed controller evolved from a need to be able control the speed of my 12V electric drill while drilling pcbs and the like. Having an interest in radio control, I also wanted a design that could be actuated by a servo arm.

Design considerations

To suit my needs, the motor controller needed the following attributes.

- High efficiency
- Complete control via one drive shaft, i.e. fast through to slow forward rotation, fast through to slow reverse and stationary.
- No moving parts eg. reversing relays switches etc. other than the drive shaft.
- When the controller is being actuated by a servo arm, the +45° moved by a typical radio-control servo will need to be mapped onto the full control range. Therefore provision to trim this mapping will be required.
- Performance maintained for small fluctuations in the supply voltage.
- Low cost

Regarding efficiency, it is widely accepted that pulse-width modulation control is more efficient than a simple rheostat since very little power is lost in the switching components as they are either fully on or fully off. Pulse-width modulation control also has the advantage that higher torques can be achieved at low motor speeds when compared with rheostat control.

Table 1. Suitable driver mosfets – prices and sources.

<table>
<thead>
<tr>
<th>Designation Type</th>
<th>Rs(on) (mΩ)</th>
<th>Price (each)</th>
<th>Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR4,6 BUZ11</td>
<td>0.033</td>
<td>£1.44</td>
<td>Maplin</td>
</tr>
<tr>
<td>TR4,6 BUZ10</td>
<td>0.08</td>
<td>£0.80/£0.65</td>
<td>Maplin/Grandata</td>
</tr>
<tr>
<td>TR3,5 BUZ271</td>
<td>0.15</td>
<td>£2.15</td>
<td>RS</td>
</tr>
<tr>
<td>TR3,5 MDT2955E</td>
<td>0.30</td>
<td>£1.97</td>
<td>RS</td>
</tr>
</tbody>
</table>

Table 2. Truth table of voltages within the output circuit around TR3-6.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>low</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>high</td>
<td>low</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>

![Fig. 1a). Pulse-width modulation motor controller extending from full power reverse, through stop, to full-power forwards.](image-url)
Hence, the design given here is based on PWM control.

Moreover, this design can generate high duty cycles and the motor switching components have low 'on' resistances. This leads to high efficiency at maximum speed so that nearly full power may be attained.

In this design, motor power is produced via a solid state complementary bridge driver, \(T_{3,6}\) on Fig. 1.

An optional alteration to the design appears in Fig. 1b. This makes the circuit fully compatible for control via a servo arm.

To keep the cost down, the only relatively expensive components in the design are output mosfets \(T_{3,6}\). When choosing these transistors, a compromise needs to be made between low \(R_{DS(on)}\) and low price. In practice having a low \(R_{DS(on)}\) is more important for motors requiring high currents. This is because whatever the on resistance of a switching mosfet, more power is dissipated in the device as the current through it increases.

With these considerations in mind, the Table 1 gives some possible types for \(T_{3,6}\) along with prices and corresponding distributors.

Circuit details

Resistors \(R_{4,6}\), together with \(VR_{1,3}, D_{1}, T_{11}\) and \(T_{2,2}\) form a linear sawtooth generator. Without \(R_{4,6}\), \(VR_{1,3}, C_{3}, T_{2,2}\), and with \(D_{1}\) shorted, the circuit would function as a standard unijunction transistor relaxation oscillator with a repeating cycle as follows.

Capacitors \(C_{1,2}\) charge through \(R_{2,3}\), the voltage at point [1] rising towards 12V according to a negative exponential curve.

When the voltage at [1] reaches the peak point voltage of the unijunction device, the emitter becomes forward biased and the dynamic resistance between the emitter and base 1 drops dramatically to a low value. Capacitors \(C_{1,2}\) are then rapidly discharged through the emitter.

When voltage at [1] drops below a critical value — usually about half the saturated emitter voltage for the given circuit — the unijunction transistor ceases to conduct and the cycle starts again.

The signal at point [1] is indicated in Fig. 2. With the improved circuit, comprising all the components, as the voltage at [1] rises, the voltages at [3] and [4] fall and rise respectively due to the increased conduction of \(T_{2,2}\).

The increase in voltage at [4] is effectively transferred to [5], since \(C_{3}\) is relatively large. This rising voltage at [5] makes \(C_{1,2}\) charge at a more constant rate, rather than progressively reducing which would occur if the linearisatation components were omitted and the charging voltage was the 12V supply.

Linearisation is further increased by the integrating network \(R_{1}C_{1}\), which provides further order compensation for the nonlinearity of the wave form. By adjusting \(VR_{1}\), a near-linear sawtooth may be obtained, a positive ramp appearing at [4] and a negative ramp at [3].

A suitable inverting amplifier, \(IC_{1a}\), then inverts, amplifies and shifts the voltage at [4] to a usable level, impedance and amplitude. Voltage at [6] therefore changes as per Fig. 3.

Fig. 3. Enhancing the relaxation oscillator produces a much more linear sawtooth.

Potentiometer \(VR_{3}\) is arranged such that when one wiper voltage is at the upper bound the other is at the lower and vice versa.

Op-amps \(IC_{2a,b}\), act as Schmitt triggers: for \(IC_{2a}\), when the sawtooth voltage at [6] is greater than the voltage at [11] the output at [13] is high. The same applies for \(IC_{2b}\) and points [12] and [14].

Note that since the thresholds for these schmitt triggers are actually derived from the upper and lower bounds of the sawtooth waveform, very high duty cycle can be achieved at their outputs. This technique offers a significant improvement over the duty cycle attainable using standard monostables. In addition, should the sawtooth voltage at [4] and [6] change by a small amount in amplitude or level, due to fluctuations in the supply voltage, the performance of the circuit will be maintained. This all helps to fulfil my first and fifth design considerations.

Note that \(R_{16,17}\) were introduced to provide a small amount of positive feedback, and therefore hysteresis in each schmitt trigger, to reduce any change or erratic triggering.

A simple truth table of voltages at points [13] and [14], Table 2, should help you understand the motor drive circuitry around \(T_{3,6}\).

Clearly when \(T_{3,6}\) conduct the motor will move in one direction and it will move in the opposite direction when \(T_{4,5}\) conduct.

Note that \(D_{1,7}\) and \(C_{9}\) are included purely to prevent the mosfets being destroyed by back emf, transient spikes, etc.
CONTROL ELECTRONICS

Fig. 4. These timing relationships show how the PWM control sweeps from full-power reverse to full-power forward.

In order to show more detailed operation of the circuit, and to show that VR3 corresponds to the full control range needed, I have produced a timing diagram/chart, Fig. 5. Sections d, e, and f are particularly useful in this respect.

Modification for servo actuation

Problems will arise when driving VR3 from a servo, since the typical angle of swing is +135° for a potentiometer, but only 45° for a servo.

Differential voltage $V_{101} - V_{1101}$ therefore needs to be amplified using,

$$V_{101} + V_{1101}$$

This is achieved by the modification as in Fig. 1b. Wiper voltages of VR3 may be varied between the upper and lower bounds of the sawtooth waveform at [6], without using the full range of VR3's travel. The amount of travel used is dictated by the position of VR4, and this can clearly be used to carry out the rimming outlined in the design considerations.

In practice the amplification introduced by IC3 may need to be so high that the outputs of IC4 will saturate, in order to provide the correct range of travel for the servo/VR3.

Under these circumstances R_{10} or R_{11} may require adjustment in order to reduce the gain provided by IC3, allowing V_{101} and V_{1101} to lie between the maximum and minimum output voltages of the op-amps IC4a and IC4b.

We are making progress with the new version 5 of SpiceAge

- Rapid digital filter modelling with links to SuperFILTER digital and analogue filter synthesizer (optional extra)
- Non-linear magnetic modelling including ferromagnetic hysteresis
- Extended scope of Modelmaker (optional extra), the utility that synthesizes opamps, transformers, attenuators, bipolar, JFET and MOSFET transistor library models
- Other benefits from this mature product which enjoys diligent maintenance and professional support include: a new manual; new (rationalised) pin convention; faster calculating; larger circuits; tougher convergence; helpful customer base (for mutual problem solving and model sharing); widening third party support with links to schematic capture and synthesis programs (native schematic capture also available as an optional extra).

Contact Those Engineers Ltd at 31 Birkbeck Road, LONDON NW7 4BP.
Tel: 0181 906 0155 Fax: 0181 906 0969 Email 100550.2455@compuserve.com
Gates convert dc to dc

The 74AC series of logic gates have a number of unique characteristics, including low static power consumption, very high speed and low output impedance. This makes them an useful building block for some simple and inexpensive power conversion circuits as described here.

These power conversion circuits can be considered as high frequency resonant impedance converters. Their Q is determined by the output impedance of the 74AC logic gate and the L/C ratio. This has the effect of multiplying the input 5V swing to a higher level, which is then rectified to produce a stepped up positive or negative - or both - dc supply.

Two basic circuits are shown in Fig. 1(a) and b). Components L_1, C_1 and C_2 are the resonant circuit, with D_1 - or D_2 in the voltage doubling case - providing rectification, with C_3 filtering the output ripple.

Output voltage against load current is shown for both circuits, equivalent to a 1.1kΩ output impedance for the circuit of Fig. 1(a) and 4.5kΩ for Fig. 1(b). Negative voltages can be generated by reversing the diodes.

Ian Forster has found that 74AC logic gates - with their high switching speed and low output impedance - make useful building blocks for simple and cheap low-power dc-dc converters.
Figure 2a) shows the idea applied to serial data communications. Here a quarter of a 74AC00 nand gate is used to generate either -10V by power conversion or +5V via L1 and R1. The main limitation on speed is the value of C3, which includes line capacitance; with the load shown the circuit was able to drive at an equivalent of 960 baud.

Figure 2b) shows another way the high drive capability of the 74AC gate can be used. Here the tuned circuit is formed by L1 and the capacitance of the piezoelectric sounder disk. Capacitor C1 prevents dc being applied to the disc. With the disc mounted in an appropriate Helmhotlz resonator, a very high sound level can be produced — in excess of 96dBa.

Delivering up to 60V

Figure 3a) shows a power converter high-side driving a channel mosfet as a 5V switch. Mosfets with a p-channel structure tend to have higher on resistance than equivalent n-channel devices and are also more expensive.

In this circuit L1, C1 and C2 are the impedance converter with Di rectifying the signal. Diode D2 limits the voltage to avoid damaging the gate. In this example, smoothing of the rectified signal relies on the gate source capacitance, and R1 provides a discharge path to allow modulation. As shown, with a 105Ω load resistor, the on resistance of Tr1 was measured as 0.54Ω and modulation with a 50kHz square wave at the control input gave a 1.27V rise and 3.11V fall.

Figure 3b) shows a converter using a much higher impedance transformation and hence higher output voltages. Under no-load conditions V+ is 65V and V- is -60V. With a simultaneous 68kΩ load, V+ is 43V and V- is -38V.

For interest, I found that it was possible to light a neon lamp with this circuit.

Power conversion circuits using this principle have a number of possible advantages; they are cheap, flexible, and, for use in communications circuits, both frequency stable and clock synchronous. This avoids problems associated with jamming of intermediate frequencies.
Whatever your specific interest; radio-controlled models, radio-communications or general electronics, the one component you can’t afford to be without is Electromail.

Electromail gives you instant access to Europe’s largest stock of electrical, electronic and mechanical components.

- 60,000 product lines available ex-stock.
- All top brands, tested and approved by our engineers.
- Order by Phone, Fax - 24 hours a day, 365 days a year.
- Repair and Calibration service available.
- Nominal P&P charge of only £2.95 + VAT on all standard delivery orders.

To find out more about Electromail, see the Internet: http://www.rs-components.com/rs/

Everything you need at the end of the phone!

TELEPHONE 01536 204555 24 HOUR A DAY ORDER LINE

CIRCLE NO. 122 ON REPLY CARD
RF DESIGN

Low-noise antenna preamp

In D F Conway’s low-noise, narrow-band masthead amplifier, input is shared between two mosfets. This eliminates the balun, enhances overload capability and reduces harmonic levels for high-level in-band signals.

This amplifier is specifically designed to be connected to a balanced antenna input for reception of signals over a narrow band of about 2MHz. It was originally designed as a mast-head amplifier for receiving weather satellite transmissions in the range of 137MHz to 138MHz. However, its centre frequency can be varied over a wide range by selecting suitable values for the tuned circuit components.

The amplifier has 28dB gain and a low noise figure. It is powered from a 12-15V supply, fed down the coaxial cable. Mast-head amplifiers are an effective method of enhancing weak signals because they provide a gain stage at the antenna. Any loss that occurs between the antenna and the first gain stage adds directly to the noise figure of the entire antenna/receiver system.

Most single transistor amplifiers have an unbalanced input which requires the insertion of a balun between a dipole antenna and the amplifier. These have insertion losses of about 1dB or more which is greater than the noise contribution of typical low noise amplifiers.

Parallel amplifiers

This amplifier uses two low-noise mosfets as parallel amplifiers to remove the requirement for a balun at the input and improve the dynamic input power range when compared to a single-device amplifier.

Sharing the input signal between two mosfets means that the amplifier will accept a 3dB higher signal before overloading, compared with a single device amplifier. This in turn raises the third-order intercept point by 9dB.

The circuit looks similar to a long-tailed pair but the inclusion of by-pass capacitor C1 decouples the sources of both mosfets to ground.

To ensure even power sharing between the devices, it is important that both signal paths have the same characteristics. Balance is achieved by a symmetrical circuit layout and by the input and output inductors. The transformer action of these inductors compensates for any gain variations between the two mosfets. This is so effective that varying RV, over its full range has no observable effect on the amplifier’s overall performance.

Implementation details

Correct operation of such a high-gain amplifier depends on good circuit layout and proper shielding. I constructed the amplifier on a double-sided pcb using surface mounted devices to minimise parasitic reactances.

The BF981 device is obsolete and has been repackaged as a BF991. I used the BF991 because the SOT-103 package can be mounted on its ‘back’ so that the rf signal paths through both mosfets were symmetrical.
Shielding made of sheet steel was used to isolate the input and output signals and prevent oscillation. Inductors are air cored, space wound using 18swg enamelled wire. The centre tap is a short piece of wire soldered to the centre turn. On the output transformer, the secondary winding is one turn that straddles the centre tap of the primary coil.

The setting up procedure consists of soldering a short link in place of C3 and measuring the supply current, which should be 10 to 20mA. Replace the link with C3 and adjust RV1 so that the supply current is now double the initial reading. Connect the antenna to the amplifier and adjust C4 and C5 to achieve maximum amplifier output at the desired input frequency.

Performance of the amplifier is fully recorded in the plots.

To summarise

This amplifier is suitable for receiving weak signals and is for use with a balanced antenna. Its narrow bandwidth provides good reception in the presence of high level out-of-band interference. As a bonus, using two mosfets to share the load significantly reduces harmonic levels for high-level in-band signals.

Reference
For a limited period, Vann Draper is offering over 25% discount on the 305 LDD – a bench power supply featuring digital display of both voltage and current. Normally, the 305 retails at £159 excluding VAT and delivery but it is available to EW readers filling in the coupon on the right at the 25% discount price of £139 – fully inclusive of VAT and delivery. Infinitely variable between 0 and 30V – with coarse and fine controls – and adjustable between 0 and 5A, the 305 LDD has a ripple figure of typically 10mV. Its load regulation is also excellent, at typically ±0.2%.

Accuracy of the supply’s dual 3.5-digit liquid crystal displays is 0.1 decimal digit. The output can handle a continuous short-circuit, overloading at 5.5A ±0.5A. When the overload circuit is activated, it causes both audible and visual alarms, resettable via a push-button on the front panel.

Dimensions of the 305 LDD are 310 by 260 by 120mm and its weight is 5.5kg. Housed in a light-grey steel enclosure, the unit is built to comply with UL, CSA and TUV safety standards.

Features of the 305 LDD
- 0-30V fine and coarse adjustments
- 0-5A adjustable
- 10mV ripple
- Digital displays for V and I
- Continuous short circuit protection
- ±0.2% load regulation

Use this coupon to order your 305 LDD

Please send me 305 LDD(s) at the fully inclusive special offer of £139

Name
Company (if any)
Address
Phone number/fax
Total amount £
Make cheques payable to Vann Draper Electronics Ltd
Or, please debit my Master, Visa or Access card.
Card type (Access/Visa)
Card No
Expiry date
Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 0116 2773945 or telephone on 0116 2771400.
Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics
This fantastic John Linsley Hood designed amplifier is the flagship of our Dinsdale and Bailey classics gives us incomparable design back...

Hart Audio Kits - your value for money route to ultimate Hi-Fi.

This unit provides a high quality headphone output for "stand alone" use or to supplement those many power amplifiers that do not have a headphone facility. Easily installed with special line-through feature and also providing line output for monitoring purposes. AHG-356C also provides an additional 1000 ohm headphone socket.

K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

ALPS “Blue Velvet” PRECISION AUDIO CONTROLS.

HART SUPER AUDIOGRADE SILVER SOLDER.

Soldering.

In order to achieve a sound result, first, you need to choose the right solder. Hart Super Audio Silver Solder is high performance, high purity silver solder that can be used in any application where high purity is required. The solder has a lower melting point than traditional silver solders, which means it can be used to repair or join components without the risk of damaging them.

“Chiora” SINGLE ENDED CLASS “A” HEADPHONE AMPLIFIER.

SPECIAL OFFER: Both units together. Kit Form.

K1100KIT Complete MONOBLOC Amplifier Kit.

K1100SC Complete SLAVE Amplifier Kit, £395.21

K1100B Complete STANDARD Amplifier Kit, £17.48

K1100C Complete CLASS A HEADPHONE AMPLIFIER.

K1100BSC Complete SLAVE Amplifier Kit, £395.21

K1100SC Complete SLAVE Amplifier Kit, £17.48

K2100 Complete Monoblock Amplifier Kit, £109.50

K3550 “Andante” Power Supply Kit, £110.50

K3565 “Andante” Power Supply Kit, £110.50

HC80 Replacement Stereo Cassette Headset.

The excellent performance of modern cassette recorders depends totally on the quality of the Hi-Fi head. Even the slightest amount of wear can impair the frequency response and distortion levels. Our range of replacement heads are manufactured from the foremost manufacturers in Japan, easily fitted to most standard stereo recorders (except Sony).

K1100 BSC Complete SLAVE Amplifier Kit, £395.21

K1100B Complete STANDARD Amplifier Kit, £17.48

K1100C Complete CLASS A HEADPHONE AMPLIFIER.

“Chiora” SINGLE ENDED CLASS “A” HEADPHONE AMPLIFIER.

SOLDERING.

The science of modern components makes the right soldering equipment essential for good results. Everything we offer is specifically designed for use in our own workshops. See our list of the full range. 434-002-0100 WESTON POWER SUPPLY W/ STAND. The Weston Multi-lamp test set is designed to be used in conjunction with your soldering equipment to ensure that your soldering is of the highest quality.

“THE ART OF LINEAR ELECTRONICS.”

The definitive linear electronics and audio book by John Linsley Hood. This 350+ page book will give you an unparalleled insight into the workings of all types of audio circuits. Learn how to read circuit diagrams and understand amplifiers and how they are designed to give the best sound. The book shows the path of passive and active components and there are separate sections covering power supplies and the sources of noise and hum.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI.

HART AUDIO Kits and factory assembled units use the unique combination of circuit designs by the renowned John Linsley Hood, the very latest in the field of easy home construction to professional standard, even in the subwoofers we were using easily assembled pretested circuits with all the components preTerminated, ready for instant use. All components fit directly on the single printed circuit board. Housed in the neat, black finished, Hart minibox with a headphone facility. Easily installed with special link-through feature and visual indication of supply line integrity. Volume and balance controls are Alps “Blue Velvet” components. Very easily built, even by beginners.

“THE LOUDSPEAKER DESIGN COOKBOOK” Vance Dickason.

“DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY” 0-7506-0164-2

“DIGITAL AUDIO CD AND DATA SAMPLING” 1998 272 pages

“TOWERS’ INTERNATIONAL TRANSISTOR SELECTOR” 0-7727-0166-1

“AUDIO” F.A.Wilson & P.A.5

“THE ART OF SOLDERING” S0-100, 250-150g Reel Superfine 24swg for ultra precise control and easy working.

“DIGITAL AUDIO AND COMPACT DISC TECHNOLOGY” 0-7506-0164-2

“DIGITAL AUDIO CD AND DATA SAMPLING” 1998 272 pages

“TOWERS’ INTERNATIONAL TRANSISTOR SELECTOR” 0-7727-0166-1

“AUDIO” F.A.Wilson & P.A.5

“THE ART OF SOLDERING” S0-100, 250-150g Reel Superfine 24swg for ultra precise control

“THE LOUDSPEAKER DESIGN COOKBOOK” Vance Dickason.

© Hart Audio Kts Ltd 1989. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher.
Bill Russell shows how transmission line principles can be explained clearly and simply with the aid of basic measurement equipment and an artificial delay line.

The concept of a travelling electromagnetic wave, and the ac voltage and current supporting the wave, has always been a difficult one to present in non-mathematical terms. Even in this age of computer simulation, students remain unconvinced, and ask if there is any simple way that they can establish the basic principles in the laboratory.

In the past, it was usual for most teaching establishments to have a lumped component line, with a delay of 1ms, a Zo of around 600Ω, and often with small current-sensing resistors so that progressive voltage and current waveforms could be displayed on an oscilloscope. The real problem - that of simultaneously displaying voltage and current against time and distance along the path of the wave - is not truly solved. However, progressive measurements allow the phase lag and phase velocity to be established. Additionally, current and voltage distribution along the line can be recorded with different terminations.

Unfortunately, the large inductors required for such lines are difficult to accurately fabricate. They also introduce significant losses, which result in discontinuities along the line, heavy attenuation, and a characteristic impedance Zo. Although Zo may have the correct magnitude, it has a definite reactive component, making such lines unsuitable for simple introductory experiments.

Evaluating the delay line
The discovery of a set of early 1980s computer boards containing 12-pin encapsulated 8µs, 8kΩ delay lines suggested a possible solution. A few simple measurements showed that these lines could be operated into a resistor of 8kΩ at frequencies of 100kHz to 200kHz. These lines produce negligible standing wave or attenuation. The delay appeared to be generally about 8.4µs. Frequencies of

- Fig. 3. Signals for a one-wavelength matched line. Output at the load, one wavelength from the input is in phase while at tap 5, half a wavelength from the input, the signal is 180° out of phase. In this and subsequent diagrams, the top waveform in each screen represents input voltage.
- Fig. 4. Ignoring a small capacitive lead, the ratio of input voltage to current gives a nominal resistance equal to that at the termination one wavelength away. This shows that the ratio of line voltage to current in a travelling wave is constant along the length of a matched line. Load is 8kΩ.

Fig. 1. Below, test set-up for the artificial lines. Simple resistive terminations of Zo, 2Zo and 0.5Zo are provided for each line.

Fig. 2. Above, this ac interface allows 50Ω signal generator output to be matched or mismatched to the line input. The 100Ω resistor in the return line monitors input current when required.
approximately 120kHz, 60kHz, and 30kHz allowed the lines to simulate one, half, or quarter wavelengths of uniform line. In addition each delay line had taps at each of the ten sections.

The initial exercise was to calculate the inductance and capacitance per section of the delay line using the simple theory of a lossless line.

Delay per section for $T_d=0.8\mu s$ is $\sqrt{\frac{L_1}{C_1}}$

Characteristic impedance for $Z_0=8\Omega$ is $\sqrt{\frac{L_1}{C_1}}$

Note that L_1 and C_1 are the inductance and capacitance per section. This gives:

$L_1=T_dZ_0=6.4\text{mH}$ and $C_1=T_d/Z_0=100\text{pF}$.

A second type of nominal delay, 4µs, and $Z_0=4\Omega$, gave 1.6mH and 100pF. Since these values are easily practicable, discrete lines could be fabricated in place of the encapsulated ones obtained so fortuitously. The simple test panel for the artificial lines is shown in Fig. 1. Simple resistive terminations of Z_0, $2Z_0$, and $0.5Z_0$, are provided for each line. Open circuit and short circuit options are also available.

Making measurements

Measurements using sine waves are described first, since these can be carried out with a standard 0.2Hz to 2MHz function generator and a 20MHz double beam oscilloscope. An ac interface, Fig. 2, allows the 50Ω output of the signal generator to be matched or mismatched to the input of the line. The 100Ω resistor in the return line monitors input current when required. Initial measurements are carried out with source and terminating resistors set at 8kΩ. The waveform generator output is adjusted to give a sine wave of 8V peak on the 200 to 200kHz range. Frequency is adjusted around 120kHz so that line input and output voltages on channel 1 and 2 are in phase.

The line is now equivalent to a transmission line of one wavelength and the voltage at each tapping point will establish the progressive phase lag over one wavelength, a slight indication of a standing wave, and a small attenuation over the ten sections. Figure 3 shows the output at the load end, and at the halfway point. This means that, as was to be expected, the artificial line is not entirely loss free, hence Z_0 will have a reactive element.

Channel 2 is now moved to the line end of the 100Ω resistor and the sensitivity increased to display the line input current of the nominally matched line. The ratio V_{in}/I_{in} gives the nominal value of line input impedance, and it will be noted that this is approximately 8kΩ with current leading by a small angle. Figure 4 shows the input voltage and current for the matched one wavelength line.

Readjusting frequency – so that the line behaves as one half, and one quarter wavelength – enables the simple properties of these line lengths to be established. This is provided measurements are carefully recorded and processed. For the purpose of this article, measurements were made using a storage oscilloscope with plotter interface so that a hard copy of the waveforms could be obtained. A selection of these results is shown in Fig. 5 and 6.

Fig. 5. In the half-wavelength matched line, outputs at the load and at tap 5 are 180° and 90° out of phase respectively.

Fig. 6. Half-wavelength matched line outputs at the load, top screen, and at tap 5, bottom screen, are lagging by approximately 90° and 45° respectively. Top waveform in each screen represents input voltage.

Fig. 7. With a wavelength line, a 16kΩ load results in a 2:1 mismatch at the end of the line, and inspection of the voltage at successive taps shows a 2:1 voltage-standing-wave having maxima at each end and in the centre (half-wavelength) and minima at quarter and three-quarter wavelengths from the input. The voltage/current at the input (8V and 0.5mA) gives a nominal input resistance of 16kΩ – identical to that at the load, one wavelength away. Due to the 2:1 standing wave of current, the line voltage/current at the quarter and three-quarter wavelength points will thus be 4V and 1mA, giving a line resistance at these points of 4kΩ. This is more appropriately shown by the measurement on a line of electrical length quarter-wavelength as in Fig. 10.

Fig. 8. Loading of 4kΩ also results in a 2:1 mismatch, with a corresponding standing wave. This time minima of 4V appear at each end and in the centre (half-wavelength). Input resistance is again equal to that at the termination i.e. 4kΩ due to the standing wave of voltage and current. Line voltage to current ratio will be a maximum of 16kΩ (8V and 0.5mA) at the quarter- and three-quarter wavelength points, and a minimum of 4kΩ (4V and 1mA) at the half-wavelength point.

Fig. 9. Due to the standing wave caused by the 2:1 mismatch, the voltages at input and load are minima of 4V but are in antiphase. If monitored, input current would be maximum of 1mA (input resistance 4kΩ). At tap 5 – the quarter-wavelength point – the voltage is a maximum of 8V and laggs by 90°. Standing wave current at this point would be 0.5mA (16kΩ).
In order to establish the properties of a mismatched line, the input is readjusted to the frequency. This makes the line equivalent to one wavelength, and the line is terminated in Z_0 or $Z_0/2$. Monitoring the voltage outputs at successive taps will indicate a 2:1 voltage standing wave on the line in each case with successive maxima and minima spaced at quarter-wave intervals. With a 16kΩ load, voltage maxima occur at each end and in the middle (half-wave point), with minima at the quarter-wave and three-quarter-wave points. With a 4kΩ load, a 2:1 standing-wave ratio is again produced but the relative positions of maxima and minima are interchanged.

Figures 7 and 8 show conditions at the input of these lines and by inference, conditions at successive wave points can be deduced. Figure 9 shows the input, output at the load, and the output at tap 5 for a mismatched line of half-wavelength. Figures 10 and 11 are included to show examples of the traditional quarter-wave matching section.

A second delay line used had characteristics of 4ps and 4ka. Connected to the main 8kΩ line and operated at a frequency which makes the 4ps line equivalent to quarter-wave, a 2kΩ load caused a standing wave in the quarter-wave section and acts as a rough match for the main 8kΩ line.

Due to the wide range of measurements provided by this delay line arrangement, the whole exercise is designed to be broken down into a progressive series of laboratory sessions. In this way practical expertise and theoretical understanding gradually increase and are mutually supportive. The use of artificial delay lines to measure the propagation of rectangular pulses will be examined in a further article.

Further reading
Having followed Doug Self's amplifier series, or Owen Bishop's introductory circuit design articles, you might have had a desire to learn PSpice hands on. Buying the required software can be prohibitively expensive. The cost of down loading an evaluation copy from the Internet, however, might surprise you.

Over the past year, in the Internet Newsgroups targeted to Electronics and this periodical, interest in using circuit simulation has doubled. An Internet 'Gopher' search against 'PSpice' produced 258 'hits' compared with 143 in February 1995.

Fundamental to circuit simulation is the 'device model' used with the simulation software. An op-amp could be described using the exact circuit description, but this would result in very large files and slow simulation, so most semiconductor makers issue disks of simplified 'MacroModels' extracted using the PSpice 'Parts' software. For most users simulations produced in this way are sufficiently accurate.

Burr-Brown offer a disk - part No AB/E-020F - for the company's op-amp catalogue. It includes four levels of model topologies, 'MacroModels' and three improved levels. These culminate in 'Level IV: Simplified Circuit Models' describing the op-amp at the transistor level for the most accurate simulations. Disks are available on request from the relevant customer service departments for most manufacturers.

This article demonstrates File Transfer Protocol, FTP, using the Internet software included with OS/2 Warp. Where possible actions needed using Windows or the Mac computer are also indicated - assuming you have access to a local FTP host.

Carrying out the quotes as shown should enable successful transfer of the PSpice software. The indicated costs assume BT costs at 3.5p per minute and Service Provider costs at £3 per hour, using a 14400 baud or faster modem with off-peak transfers typically at 100kbyte/min.

The best off-peak times are Saturday and Sunday mornings while America sleeps, however these times are used for file maintenance in the US (2-5am US local), hence the best times for large file transfers tend to be 10am to 1pm.

Constantly updating

The Internet is always changing, I recently downloaded a copy of PSpice Eval 6.1 from, 'ftp.iastate.edu/pub/pc/pspice'.

However, on preparing this article, I found a message saying PSpice

Macro-models for use with PSpice
Analog Devices
Apex Microtechnology Corp.
Burr-Brown Corp.
Harris Semiconductor.
Linear Technology Corp.
Texas Instruments Corp.

Spice Model Library.
Spice Models
Application Note AB/E-020F
Analog Products.
Spice models.
Mixed Signal Access

Useful Internet sources
Internet Newsgroups sci.electronics
sci.electronics.cad
sci.electronics.basics
sci.electronics.equipment
sci.electronics.components
had moved. An Archie search against 'PSpice' indicated two sources, located at 'klingon.ee.iastate.edu' and the new source at Microsim's FTP site 'ftp.netcom.com'.

Microsim's own source at 'ftp.netcom.com' offers the latest Windows evaluation version (6.2) of PSpice. This includes schematic capture, Optimiser and Polaris, in total around 12Mb of self extracting zipped files. Its transfer cost is £10.20.

Address 'klingon.ee.iastate.edu' has a slightly older version of 6.2 split into floppy-sized files. These might be easier to down load – in total around 14Mb silver – and with a transfer cost of £12.60. To use these Windows versions you must have a suitable 'win32.exe' file. This is available from either site. Also, a minimum of a 386 with co - processor is needed, together with 8Mb of extended memory, Dos 5 and Windows 3.1.

Address 'klingon.ee.iastate.edu' also has Mac and dos evaluation versions of PSpice, including 'pseval5 3' for dos which does not need a co - processor. While the dos versions do not have schematic entry, they have much smaller files, typically 2.5Mbbyte costing only £2.25 to down load. This is an ideal low-cost start to circuit simulation – especially if your only access to FTP is by 'E-Mail'.

Logging on to the net

Having decided which version of PSpice you want, start up your local FTP host and log-on to the chosen site using 'anonymous' FTP, Figs 1a) and 1b).

Change to the correct 'remote' directory, capture the screen or print this directory for later use, transfer the appropriate text files, save to disk and log-off, Figs 2 and 3.

Read the down-loaded text files; see Table.

Having read the text files, choose which packages are needed and highlight these on the directory printout. Repeat the above log-on, select Transfer Mode Binary, select the required files and down load.

With large file sizes, if for any reason the transfer slows down unduly, wait for 2-3 minutes, or longer if much of the file has already transferred, to see if it restarts and/or regains speed. If not log-off and try for a less busy time later. Some packages provide auto log-off after a pre-selected inactive period for example five minutes, Fig. 4.

The new package works fine, but corrupts the system files, such that none of the old software works. Once more, back-up first so that you can easily restore if needed.

For some readers wanting more information on requirements for accessing the Internet should see reference 1.

References

Fig. 2. Logged-on to 'ftp.netcom.com' with remote directory changed to '/pub/mi/microsim'. Change the remote directory by entering '/pub/mi/microsim' into current directory box. Now ready to transfer the highlighted remote file '62p2ldib.zip' into the directory. Note the system has been set to binary transfer mode. To initiate transfer, click on 'QuickTrans'.

Fig. 3. Logged-on to 'klingon.ee.iastate.edu' with remote directory changed to '/pub/pspice'. Change the remote directory by entering '/pub/pspice' into the current directory box. Now ready to transfer the highlighted remote file '62w2ine2.exe' into the local directory. Note the system has been set to binary transfer mode. To initiate transfer, click on 'QuickTrans'.

Fig. 4. OS/2 warp internet 'dialler'. Note the horizontal 'speedometer' bar above 'Connected through...' showing the present transfer rate as a percentage of the 'peak' rate attained for this session. Numbers show actual rates in and out, quantity of data transferred and elapsed time 'on-line'. The data in/out rate is continuously updated as prior five seconds averaged, during this session.

March 1996 ELECTRONICS WORLD

Table. Files on the net relating to PSpice – and where to find them.

<table>
<thead>
<tr>
<th>Remote host</th>
<th>Log-on:</th>
<th>Remote Directory</th>
<th>Text File also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsim.FTP (Windows only)</td>
<td>"ftp.netcom.com"</td>
<td>"pub/mi/microsim"</td>
<td>"message.txt"</td>
</tr>
<tr>
<td>Iastate.edu (Dos/Windows/Mac)</td>
<td>"klingon.ee.iastate.edu"</td>
<td></td>
<td>"wineval.bat"</td>
</tr>
</tbody>
</table>

Fig. 4. OS/2 warp internet 'dialler'. Note the horizontal 'speedometer' bar above 'Connected through...' showing the present transfer rate as a percentage of the 'peak' rate attained for this session. Numbers show actual rates in and out, quantity of data transferred and elapsed time 'on-line'. The data in/out rate is continuously updated as prior five seconds averaged, during this session.
INTERFACING WITH C

HOWARD HUTCHINGS

If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer. The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book. This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Credit card orders accepted by phone. Call 0181 652 3614.

A disk containing all the example listings used in this book is available. Please specify size required.

Please supply _______ copies of
INTERFACING WITH C Price £14.95
Please supply _______ copies of
Disk containing all the example listings £15.00

Remittance enclosed £_________

Interfacing with C can be obtained from
Jackie Lowe, Room L333, Quadrant House,
The Quadrant, Sutton, Surrey, SM2 5AS

Cheques should be made payable to Reed Business Publishing Group Ltd

Please debit my credit card as follows:
Access/Master Barclay/Visa Amex Diners

Credit Card No. ____________________________
Exp date ____________________________
NAME (Please print) ____________________________
ADDRESS ______________________________________

POST CODE __________________________
DATE ________ TELE ____________

SIGNATURE______________________________

VAT NO. ____________________________

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change.
Working with AVALANCHE transistors

On avalanching, a transistor can be made to produce extremely fast, high-current pulses. Ian Hickman has been looking at how ordinary transistors avalanche and at a couple of extremely rare devices specified for avalanche operation.

I have been fascinated by avalanche transistor circuits ever since I first encountered them in the early 1960s. They have probably been known since the earliest days of silicon transistors. I have never heard of them being implemented in germanium.

One important use for avalanche transistors was in creating extremely fast, narrow pulses to drive the sampling gate in a sampling oscilloscope. Such oscilloscopes provided, in the late 1950s, the then incredible bandwidth of 2GHz. At that time, other oscilloscopes were struggling, with distributed amplifiers and special cathode ray tubes, to achieve a bandwidth of 85MHz.

Admittedly, those early sampling oscilloscopes were plagued by aliased responses and, inconveniently, needed a separate external trigger. But they were steadily developed over the years, providing, by the 1970s, a bandwidth of 10-14GHz.

The latest digital sampling oscilloscopes provide bandwidths of up to 50GHz, although like their analogue predecessors they are limited to displaying repetitive waveforms, making them inappropriate for some of the more difficult oscilloscope applications, such as glitch capture.

The basic avalanche transistor circuit is very simple. A version published in the late 1970s apparently produced a 1Mpulse/s pulse train with a peak amplitude of 11V, a half-amplitude pulse width of 250ps and a 130ps rise time. It achieved this with a 2N2369 — an unremarkable switching transistor with a 500MHz fT and a Cbo of 4pF.

The waveform, reproduced in the article, was naturally captured on a sampling oscilloscope.

The avalanche circuit revisited

Interest in avalanche circuits seems to have wavered a little after the 1970s. Perhaps this was due to the fact that the limited number of specialised uses for which the devices are appropriate resulted in the spotlight always resting elsewhere.

A problem with designing an avalanche transistor circuit is the absence of transistor types specifically designed and characterised for this application. But this situation has recently changed, due to the interest in high power laser diodes capable of producing extremely narrow pulses. Applications for such lasers include range finding, Pockel cell drivers and streak cameras.

Two transistors specifically characterised for avalanche pulse operation, types ZTX413 and ZTX415, have recently appeared, together with an application note for the latter.

The avalanche transistor depends for its operation on the negative resistance characteristic at the collector. When the collector voltage exceeds a certain level, somewhere between VCEO and VCEO, depending on the circuit configuration, the voltage gradient in the collector region exceeds the sustainable field strength, and hole-electron pairs are liberated. These are accelerated by the field, liberating others in their turn. As a result, the current...
The resultant 'plasma' of carriers results in the device becoming almost a short circuit, and it will be destroyed if the available energy is not limited. If the current in the avalanche mode, I_{USB}, and the time for which it is allowed to flow are controlled, then reliable operation of the device can be ensured, as indicated in Fig. 1 for the ZTX415.

From the diagram, you can see that for 50ns wide pulses, a pulse current of 20A can be passed for an indefinite number of pulses without device failure. This is provided of course that the duty cycle is kept low enough to remain well within the device's 680mW allowable average total power dissipation P_{tot}.

Figure 2 shows a simple high-current avalanche pulse generator, providing positive going pulses to drive a laser diode. Peak current is determined by the effective resistance of the transistor in avalanche breakdown plus the slope resistance of the diode.

As both the preceding parameters are current dependent, it is not easy to determine accurately just what the peak value of current is. In practice however, this is not an insuperable difficulty. Energy dissipated in the transistor and diode is simply equal to the energy stored in the capacitor. Since, given the value of the capacitor and the supply voltage, the stored charge can be measured and the peak current estimated.

If, in a particular circuit, the avalanche- and diode-slope resistances are unusually low, the pulse width will be correspondingly narrower. If, in a particular circuit, the avalanche- and diode-slope resistances are unusually low, the pulse width will be correspondingly narrower.

Implementing the avalanche device
Having obtained samples of the ZTX415, I decided to investigate the performance in a variant of Fig. 2. This variant provides negative-going pulses, but substitutes a resistive load for the diode to allow quantitative measurements to be recorded.

First I produced a high-voltage source, giving up to 800V output, unlike that of Fig. 2. This source provided negative-going pulses, but substitutes a resistive load for the diode to allow quantitative measurements to be recorded.

Performance observations
Drop in collector voltage can be seen to be almost the full 250V of the supply, Fig. 4 b), lower trace. However, the peak voltage across the load resistor — upper trace — is only around -180V. This circuit provides a negative-going output, unlike that of Fig. 2.

The lower amplitude of the output pulse was ascribed to the esr — equivalent series resis-
tance — of the 2nF capacitor, which was a foil type, not specifically designed for pulse operation. This is confirmed by the shape of the pulse. Its decay is slower than would be expected from the 50ns timeconstant of the capacitor and the 25Ω load, plus transistor slope resistance in avalanche breakdown. This emphasises the care needed in component selection when designing fast laser diode circuits.

Peak pulse voltage across load corresponds to a peak current of 7.25A and a peak power of 1.3kW. However, the energy per pulse is only \(\frac{1}{2}CV^2 \), where \(C \) is 2nF and \(V \) is 250V, namely some 630μJ, including the losses in capacitor esr and in the transistor. This represents a mean power of 630mW, most of which will be equally divided between the 47Ω resistor and the first of the two 10dB pads, which is why the prf was restricted to a modest 10kHz.

In Fig. 4b), the lower trace shows the drop across the transistor during the pulse to be about 16V, giving an effective device resistance in the avalanche mode of 16/7.25 or about 2.2Ω. Thus, given a more suitable choice of 2nF capacitor, over 90% of the available pulse energy would be delivered to the load.

In Fig. 2, though, the laser diode slope resistance would probably be less than 25Ω, resulting in a higher peak current, and an increased fraction of the energy lost in the transistor.

Ringing on the lower collector trace in Fig. 4b) is due to the ground lead of the x10 probe; it could be almost entirely avoided by more careful grounding of the probe head to the circuit. As it also caused some ringing on the upper output-pulse trace, the probe was disconnected when the upper trace was recorded, Fig. 4b) being a double exposure with the two traces recorded separately.

At present, I cannot explain the negative underswing of the collector voltage, starting 200ns after the start of the pulse, before the collector voltage starts to recharge towards +250V.

Squaring the output

The shape of the output pulse from circuits such as Figs 2 and 4a), a step function followed immediately by an exponential decay, is not ideal: for many applications, a square pulse would be preferred. This is simply arranged by using an open-circuit delay line, in place of a capacitor, as the energy storage element.

When the avalanche transistor fires, its collector sees a generator with an internal impedance equal to the characteristic impedance of the line. Energy starts to be drawn from the line, which becomes empty after a period equal to twice the signal propagation time along the length of the line, as described in Ref. 4.

Figure 5 shows three such circuits, a) and c) producing negative-going pulses and b) positive going. If a long length of line is used, to produce a wide pulse, then version b) is preferable to a), since it has the output of the coaxial cable earthed. In a), the pulse appears on the outer of the cable, so the capacitance to ground of the outer — which could be considerable — appears across the load.

If a wide negative-going pulse is desired, then an artificial line using lumped components as in c) can be used. Here, the lumped delay line can be kept compact to minimise its capacitance to ground.

Where exceptional pulse power is required, ZTX415 avalanche transistors can be used in series to provide higher pulse voltages as in

Fig. 5. Circuits producing square output pulses: a), negative-going output pulses and b), positive-going pulses both using coaxial lines; c), negative-going pulses using a lumped component delay line.

Fig. 6. a) A circuit for providing higher output voltage pulses. b) Circuit providing even higher output voltage pulses. c) Circuit for providing increased output current pulses.
Figs 6a) and b). Alternatively, they can be used in parallel to provide higher pulse currents as in c).

A high speed version

Rise time of the negative-going edge of the output pulse in Fig. 4b) was measured as 3.5ns, or 3.2ns, corrected for the effect of the 1.4ns rise time of the oscilloscope. This is a speed of operation that might not have expected from a transistor with a minimum f_t of 40MHz and a maximum C_{ob} of 8pF, but this emphasizes the peculiar nature of avalanche operation of a transistor.

An obvious question was; could a substantially faster pulse be obtained with a higher frequency device? Low-power switching transistors, being no longer common in these days of logic ICs, the obvious alternative is an rf transistor, which will have a high f_t and a low value of C_{ob}. I therefore decided to experiment with a BFR91, a device with a V_{CEO} rating of 12V and an f_t of 5GHz.

I built the circuit of Fig. 7a) using a length of miniature 50Ω coaxial cable, cut at random from a large reel. It turned out to be 97cm. Given that the propagation velocity in the cable is about 0.7 the speed of light, the cable represents a delay of 4.85ns and so should provide a pulse of twice this length or, in round figures, 10ns.

In the upper trace, Fig. 7b) shows that the circuit produced a pulse of width 10ns and amplitude 5V peak, into a 25Ω load, delivering some 200mA current. Oscilloscope settings were 10ns/div, 2V/div with a centre line of 0V. The lower trace shows – again using a double exposure – the collector voltage at 20μs/div, 10V/div and 0V at the bottom of the graticule. With circuit values shown, at the 20kHz prf rate used, the line voltage has time to recharge virtually right up to the 35V supply.

Effects of a shorter line

I repeated the experiment, this time with the circuit of Fig. 8a). Line length was reduced to 22cm, some other component values changed and the prf raised to 100kHz. The output pulse is shown in 8b), at 1ns/div horizontal and more than 1V/div vertical, the variable sensitivity control being brought into play to permit the measurement of the 10% to 90% rise time. This is indicated as 1.5ns, but the maker’s risetime specification for a Tektronix 475A oscilloscope, estimated from the 3dB bandwidth, is 1.4ns.

Rise times add rms-wise, so if you were to accept these figures as gospel, it would imply an actual pulse rise time of a little over 500ps. In fact, the margin for error when an experimental result depends upon the difference of two nearly equal quantities is well known to be large.

When the quantities must be differenced rms-wise rather than directly, the margin of error is even greater. As a result, no quantitative certainty of the rise time in this case is possible, other than that it is probably well under 1ns. Unfortunately, a sampling oscilloscope does not feature among my collection of test gear.

This raises the intriguing possibility that this simple pulse generator might be suitable as the sample pulse generator in a sampling add-on for any ordinary oscilloscope, extending its bandwidth for repetitive signals to several hundred megahertz, or even a gigahertz.

For this application, it is important that the sample pulse generator can be successfully run over a range of repetition frequencies. With an exponential approach to the supply voltage at the firing instant, there is the possibility of jitter being introduced onto its timing, due to just how close to the supply voltage the collector has had time to recharge, Fig. 7b), lower trace.

The way round this is to use a lower value of collector resistance returned to a higher supply voltage. This ensures a rapid recharge, but the midpoint of the resistor is taken to a catching diode returned to the appropriate voltage just below the breakdown voltage. The collector voltage is thus clamped at a constant voltage prior to triggering, whatever the repetition rate.

References

Figures 1, 2, 5 and 6 are reproduced courtesy of Zetex plc.
Design criteria for battery charger circuits are dictated by cell type, the application and operating conditions. In this extract from *Simplified design of micropower and battery circuits* John Lenk examines the characteristics of popular IC controllers.

The first step in designing charging circuits must be to look in detail at an IC that provides fast-charging for popular NiCd/NiMH batteries. Maxim MAX712/713 controllers can fast-charge batteries from a dc source at least 1 V higher than the maximum battery voltage.

One to sixteen series cells can be charged at rates between one-third of the battery capacity, i.e. C/3 and four times capacity, or 4C. A voltage-slope-detecting a-to-d converter, timer, and temperature-window comparator determine charge completion.

The ICs (Figs. 1, 2, 3 and 4) are powered by an on-board +5V shunt regulator and draw a maximum of 51.1mA from the battery when not charging. A low-side current-sense resistor allows the battery-charge current to be regulated while still supplying power to the load. The MAX712 terminates fast-charge by detecting zero voltage-slope while MAX 713 uses a negative voltage-slope detection scheme. Both ICs are available in sixteen pin DIP and SO packages. An external power p-n-p transistor, blocking diode, three resistors, and three capacitors are the only required external components.

For high-power charging requirements, the ICs can be configured as a switch-mode battery charger that minimises power dissipation.

Basic operating principles

The ICs provide charging by forcing a constant current into the battery in one of two operating states: fast-charge or trickle-charge. During fast-charge, the current level is high, and once full-charge is detected, the current reduces to the trickle-charge state. The ICs monitor three variables to determine when the battery reaches full charge: voltage slope, battery temperature and charge time.

Full-charge state are determined by the IC's timer, voltage-slope (V) detector, and temperature comparators, and its voltage and current regulator controls output voltage and current, and senses battery presence.

In a typical battery-charging sequence, Fig. 5, when the batteries are already inserted before application of power, initially the IC draws negligible power from the battery.

When power is applied to DC IN, the power-on reset holds the IC in trickle-charge. Once the power-on reset signal goes high, the IC enters the fast-charge state as long as the cell voltage is above the under voltage-lockout (uvlo) voltage of 0.4V per cell. Fast-charging cannot start until the battery voltage divided by number of cells exceeds 0.4V.

As soon as the cell voltage-slope becomes negative, the fast-charge is terminated and the IC reverts to the trickle-charge state. When power is removed, the device draws negligible current from the battery.

Temperature may be used to control charging too, Fig. 6. The ICs can be configured so that either voltage-slope or temperature detects full-charge.

On a cold day, the battery pack may be too cold for fast charging. During the initial peri-
ANALOGUE DESIGN

If the battery will be inserted into an already powered-up IC (Fig. 7), to begin with, the charger output voltage will be regulated at the number of cells times V_{LIMIT} (pin 1) and the IC will be in the trickle-charge state. But on insertion of the battery, the IC will detect current flow into the battery and switch to fast-charge.

Once full-charge is detected, the IC will revert to trickle-charge. If the battery is removed, the IC will remain in trickle-charge, and the output will once again be regulated.

Powering the ICs

The ICs are inactive with the wall cube unplugged, Fig. 2, drawing a maximum of $5\mu A$ from the battery. Diode D_1 prevents current from flowing into the battery and when the battery temperature exceeds the limit set by THI (pin 5), the ICs will remain in the trickle-charge state. But on insertion of the battery, the IC will detect current flow into the battery and switch to fast-charge.

Fast charging

The IC enters the fast-charge state under one of the following conditions:

- **Upon application of power** with battery-current detection (GND, pin 13) voltage less than $BATT-$, pin 12; voltage and TEMP, pin 7, higher than TLO, pin 6; and the cell voltage less than WLO voltage.

- **Upon insertion of a battery** with TEMP, pin 7, higher than TLO, pin 6, and lower than $VLIMIT$ to exceed $+2.5V$, unless tied to $V+$.

Fig. 3. Pin connections for fast charging with a MAX712/713.

Fig. 4. Pin descriptions for a fast-charge controller.

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
</table>
| 1 | VLIMIT | Sets the maximum cell voltage. If $VLIMIT$ is tied to $V+$, the battery terminal voltage ($BATT+$ - $BATT-$) will not exceed $1.65V \times (\text{number of cells})$; otherwise, it will not exceed $VLIMIT \times (\text{number of cells})$. Do not allow $VLIMIT$ to exceed $+2.5V$, unless tied to $V+$.
| 2 | BATT+ | Positive terminal of battery |
| 3, 4 | PGMO, PGMI | PGMO and PGMI set the number of series cells to be charged. The number of cells can be set from 1 to 16 by connecting PGMO and PGMI to any of $V+$, REF, or $BATT-$, or by leaving the pin open (see Table 2). |
| 5 | THI | Trip point for the over-temperature comparator. If the voltage on TEMP rises above THI, fast charge ends. |
| 6 | TLO | Trip point for the under-temperature comparator. If the MAX712/MAX713 powers on with the voltage on TEMP less than TLO, fast charge is inhibited and will not start until TEMP rises above TLO. TLO must be set below the minimum operating temperature of the charger. |
| 7 | TEMP | Sense input for temperature-dependent voltage from thermistors |
| 8 | FASTCHG | Open-drain fast-charge status output. While the MAX712/MAX713 fast charges the battery, FASTCHG sinks current. When charge ends and trickle charge begins, FASTCHG stops sinking current. |
| 9, 10 | PGM2, PGM3 | PGM2 and PGM3 set the maximum time allowed for fast charging. Timeouts from 33 minutes to 264 minutes can be set by connecting to any of $V+$, REF, or $BATT-$, or by leaving the pin open (see Table 3). |
| 11 | CC | Compensation input for constant current regulation loop |
| 12 | BATT- | Negative terminal of battery |
| 13 | GND | System ground. The resistor placed between $BATT-$ and GND is used to monitor the current into the battery. |
| 14 | DRV | Current sink for driving the external PNP current source |
| 15 | V+ | Shunt regulator. The voltage on $V+$ is regulated to $+5V$ with respect to $BATT-$, and the shunt current powers the MAX712/MAX713 |
| 16 | REF | $2.0V$ reference output. Sources up to $1mA$. |

Fig. 5. Charging sequence when batteries are already inserted. Once the power-on reset signal goes high, the IC enters the fast-charge state.

Fig. 6. Temperature can be used to detect a full charge.
trickle-charge current. Setting and charged; where turned on. Select the value of shunted around the battery because Tr2 is charge to less than C/16. When the circuit is in trickle-charge rate for NiMH batteries. Some manufacturers recommend a lower rate depending on recommendations of the battery manufacturer. RSENSE. Other fast-charge rates can be used, but the trickle-charge rate is 1A, Trickle charge Circuits within the IC set trickle-charge current by increasing the current amplifier gain. When a fast-charge (IFAST) rate C2, C, 2C, or 4C is used, a C/16 trickle-charge rate is selected automatically, Table 2. Other fast-charge rates can be used, but the trickle-charge current will not be exactly C/16. For simplified design, use a rate of C2, C, 2C, or 4C, depending on recommendations of the battery manufacturer. Some manufacturers recommend a lower trickle-charge rate for NiMH batteries. Figure 9 shows a circuit that can reduce trickle-charge to less than C/16. When the circuit is in trickle-charge mode, some of the current is shunted around the battery because Tr2 is turned on. Select the value of R7 as follows:

\[R_7 = \frac{(V_{BATT} + 0.4V)}{I_{TRICKLE} - I_{BATT}} \]

where \(V_{BATT} \) equals battery voltage when charged; \(I_{TRICKLE} \) equals the IC trickle-charge setting and \(I_{BATT} \) equals the desired battery trickle-charge current.

Table 1. Maximum ratings and characteristics for fast-charge controllers.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+ Voltage</td>
<td>5mA < V+ < 30mA</td>
<td>4.5</td>
<td>5.5</td>
<td>5V</td>
<td></td>
</tr>
<tr>
<td>(I_{THI}) (Note 1)</td>
<td>5</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATT+ Leakage</td>
<td>0.1V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATT+ Resistance with Power On</td>
<td>PGMO = PGDA = BATT- = 30V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 Capacitance</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2 Capacitance</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF Voltage</td>
<td>2mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under/Overcharge Lockout</td>
<td>Per cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External VLIMIT Input Range</td>
<td>1.25</td>
<td>2.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI, TLO TEMP Input Range</td>
<td>0</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI, TLO Offset Voltage (Note 2)</td>
<td>0V</td>
<td></td>
<td>10 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THI, TLO TEMP, VLIMIT Input Bias Current</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLIMIT Accuracy</td>
<td>1.2V < VLIMIT < 2.5V</td>
<td>-30</td>
<td>30</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Internal Cell Voltage Limit</td>
<td>V LIMIT = V+</td>
<td>1.6</td>
<td>1.65</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>Fast-Charge VfastV</td>
<td>225</td>
<td>250</td>
<td>275</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Voltage-Slope Sensitivity</td>
<td>MAX13</td>
<td>-2.5</td>
<td>10</td>
<td>mV/μA per cell</td>
<td></td>
</tr>
<tr>
<td>Timer Accuracy</td>
<td>-15</td>
<td>15</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery-Voltage to Gas-Voltage Divider Accuracy</td>
<td>-1.5</td>
<td>1.5</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive Sink Current</td>
<td>V+ = 10V</td>
<td>30</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FASTCHG Low Current</td>
<td>PGMO = PGDA = 0.4V</td>
<td>2</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FASTCHG High Current</td>
<td>PGMO = PGDA = 10V</td>
<td>10</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/D Input Range</td>
<td>1.4</td>
<td>1.9</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Trickle-charge rate for fast-charge controllers.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGMO</td>
<td>BATT+, BATT- = 30V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGDA</td>
<td>BATT-, BATT+ = 30V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Not Applied</td>
<td>10mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Power Dissipation (Ta = +70°C)</td>
<td>500mW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Load Current (8.70mW/C above +70°C)</td>
<td>650mW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERDIP (400mW/C above +70°C)</td>
<td>800mW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Not Applied</td>
<td>10mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperatures Ranges</td>
<td>MAX713</td>
<td>0°C to +70°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX712</td>
<td>-40°C to +100°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX711</td>
<td>-55°C to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°C to +100°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10sec)</td>
<td>+30°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. The MAX713 is powered from the V+ pin. Since V+ shunt regulated to +5V, R1 must be small enough to allow at least 5mA of current into the V+ pin. 2. Offset voltage of THI and TLO comparators referred to TEMP. 3. If the load is connected as shown in Fig. 2, the battery current is regulated regardless of the load current (provided that the input power source can supply both).

Voltage loop

The voltage loop sets the maximum output voltage between the BATT+ and BATT- pins. If \(V_{LIMIT} \) is set to less than 2.5V, then the

Fig. 9. Reducing trickle charge for NiMH batteries
Simplified design of switching power supplies
Author John D. Lenk,
224 pages hardback
Switching power supply basics
Heat sinks for switching power supplies
Inductors/transformers for switching power supplies
Testing and troubleshooting
Simplified design approaches

Simplified design of micropower and battery circuits
Author John D. Lenk,
254 pages paperback
Introduction to micropower/battery design
Battery basics
Battery chargers
Single-cell circuits
Multicell circuits

Simplified design of linear power supplies
Author John D. Lenk,
246 pages hardback
Linear power supply basics
Heat sinks for linear power supplies
Discrete feedback regulator basics
IC linear regulator basics
Linear supply testing and connections
Linear supply design examples

Please send me
__ copies of Simplified design of switching power supplies at £22.50 ea.
__ copies of Simplified design of linear power supplies at £22.50 ea.
__ copies of Simplified design of micropower and battery circuits at £22.50 ea.
__ sets of all three books at the 10% discount price of £60.75 ea.

Postage* £
Total £

*UK postage is £2.50 for one book and £4.50 for two books or the set of three.
Europe postage is £5 for one book and £9.50 for two books or the set of three.
Rest of world, courier is £7.50 for one book and £13.50 for two books or the set of three.

Name
Address
Post Code

Method of payment (please circle):
Access/Mastercard Visa Cheque PO
Cheques made payable to Reed Business Publishing
Credit card No
Expiry Date
Signed

Send this coupon, or a clear photocopy of it to Electronics World editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS together with credit card type, number and expiry date, or postal order or cheque made payable to Reed Business Publishing. Alternatively you can fax your details on 0181 652 8956 or send an e-mail to jackie.lowe@rbp.co.uk with ordering details.
maximum BATT+ voltage, referred to BATT−, is V\text{LIMIT} multiplied by the number of cells as determined by PGMO, PGM1 connections. If V\text{LIMIT} is tied to V+, then the maximum BATT+ voltage, referred to BATT−, is 1.65 V multiplied by the number of cells, PGMO, PGM1.

When the battery is removed, the IC does not provide a constant current. Instead, it regulates BATT− to the maximum voltage, as determined above.

The voltage loop is stabilised by the C3 filter capacitor. A large filter capacitor is required only if the load is supplied by the IC in the absence of a battery. In this case, set C3, in farads, as follows:

$$C_3 = \left(50 \times I_{LOAD}\right) / \left(V_{OUT} \times BWVRL\right)$$

where BWVRL equals loop bandwidth in Hz (10,000 is recommended); C3 is greater than 10fF; ILOAD equals external load current in A, and VOUT equals programmed output voltage (V\text{LIMIT times the number of cells}).

Current loop

In the current-regulation loop, Fig. 10, stability of the current loop is set by capacitor C2 at the CC terminal. To get the exact value for C2, calculate the current-regulation loop bandwidth (BWVRL) using transistor characteristics (β,) etc.). For simplified design, use the transistor TR1 types and capacitor C2 values shown in Fig. 2.

The ICs dissipate power because of the current-voltage product at the DRV pin, which is part of the current loop. Power dissipation is shown in the absolute maximum ratings, Fig. 3 must not be exceeded.

Voltage-slope cut-off

The a-to-d converter inside both the MAX712 and MAX713 has 2.5mV resolution and stores cell voltage at sampling intervals (tA) determined by the PGM2/PDM3 connections. At two tA intervals, the voltage difference between tA intervals is obtained to determine the cell voltage versus time. Each a-to-d conversion is averaged over five, to filter out noise. Because the battery current is kept constant by the regulation loop - even when there is a varying external load – the conversion results are accurate.

The MAX712 terminates fast-charge when a conversion result is equal to, or less than, its predecessor. The MAX713 terminates when a conversion is at least 2.5mV less than its predecessor. This is the only difference between the two.

Temperature-charge cut-off

Charge cut-off can be controlled with ntc thermistors, Fig. 11. The same-model thermistor should be used for T1 and T2, so that both have the same nominal resistance. Voltage at TEMP is 1V (referred to BATT−) when the battery is at ambient temperature.

The threshold chosen for TLO determines the temperature below which fast-charging is inhibited. If TLO is greater than TEMP, when the IC starts up, fast-charge will not start until TLO goes below TEMP. The threshold chosen for THI sets the point at which fast-charging terminates. As soon as the voltage on TEMP rises above THI, fast-charge ends and will not restart after TEMP falls below THI.

Cold-temperature charge inhibition may be disabled by removing R3, T3, and the 0.022µF capacitor and tying TLO to BATT−. To disable the entire temperature-comparator charge-cut-off mechanism, remove T3, T8, T9, T3, R3, R5, and the associated capacitors then make the following connections: TEMP to REF, THI to V+, and TLO to BATT−.

Some battery packs may come with a tem-
temperature-detecting thermistor connected to the negative terminal of the battery pack. In this case, use the connections shown in Fig. 12. Thermistors T_2 and T_3 may be replaced with standard resistors if absolute temperature charge cutoff is acceptable.

Switch-mode operation

Switch-mode operation, Fig. 13, is used for applications where power dissipation of the pass transistor cannot be tolerated. An example is where heat-sinking is not feasible or is too costly. The appropriate circuit uses the error amplifier at the CC pin as a comparator, with a $33\mu F$ capacitor adding hysteresis.

Figure 13 is configured to charge two cells at 1A. Higher charge currents and greater numbers of cells can be accommodated by changing the 0.25Ω sensing resistor, and connections PGM0-3.

Switching waveforms, Fig. 14, associated with the circuit show that the arrangement cannot service a load while charging.

Switching frequency can be decreased by increasing the value of the capacitor connected between CC and BATT. Note that the two capacitors connected to the CC pin must be placed as close as possible to the pin and the leads must be as short as possible. The CC node is a high-impedance point—capabilities of producing high voltages—so logic lines must not be routed near the CC pin.

Line-voltage operation

Consumer-product ac-to-dc wall cubes typically consist of a transformer, a full-wave bridge rectifier, and a capacitor. Typical characteristics, Figs 15-17, show substantial 120Hz output-voltage ripple. So when selecting an adaptor for use with the 712/713, the lowest dip in the wall-cube voltage during fast-charge should be at least 1V higher than the maximum battery voltage.

Battery charging example

Figures 18 and 19 show the results of charging three AA 1000mAh NiMH batteries from Gold Peak (part number GP1000AAH) GP Batteries at a 1A rate using the 712 and 713. The circuit from Fig. 2 is used, but with temperature control as shown in Fig. 11. Conditions were:

DC IN uses a Sony AC-190 which is a 9V dc at 800mA ac-to-dc adaptor, Fig. 15.

PGMO is V+, PGM1 is RTEF, PGM2 is REF, and PGM3 is REG.

$R_1=2000\Omega$, $R_2=150\Omega$, $R_{SENSE}=250\mu F$.

$C_1=1\mu F$, $C_2=0.01\mu F$, $C_3=10\mu F$.

$V_{LIMIT}=3.75V$.

$R_2=10k\Omega$, $R_1=15k\Omega$.

T_1 and T_2 are both part # 13A1002 (Alpha Thermistor 00 1800-235-5445).

If R_3 and T_3 are omitted then TLO=BATT–.

Absolute maximum rating for the BATT+ input voltage must be limited by external circuits, Fig. 20, when DC IN is not applied. Current-sense resistor R_{SENSE} causes a small efficiency loss during battery use. The efficiency loss is significant only if R_{SENSE} is much greater than the internal resistance of the battery pack. The circuit in Fig. 21 can be used to shunt R_{SENSE} whenever power is removed from the charger.

Figure 22 shows a circuit used to indicate charger status, with logic-level outputs, and Fig. 23 shows a LED drive circuit that indicates charger status.

Part II will show how to use the MAX712/713 and other ICs in practical circuits designed for specific charging applications and cell.
Building blocks of time

Traditionally, Radio-Code time signal receivers have been expensive, self-contained units, but now there are low-cost modules providing access to the raw time signal for well under £30.

Radio controlled clocks - allowing access to a time reference accurate to a second in a million years - are proving more and more popular. A considerable fall in price has led to the sale of over 6,000,000 radio controlled clocks and radio time receiver chips in Europe - in the last twelve months alone.

In the near future, it is likely that radio controlled time receivers will replace traditional clocks in many commercial, personal time keeping and control applications.

Currently, radio controlled time is used for, heating system timing, accurate time stamping of data, encryption of data and digital signatures and synchronising clocks to an accuracy of milliseconds. It is also used for setting the time on fax machines, video recorders, wrist watches, etc.

What is time?
Time is no longer calculated by observing the stars but 'synthesised' in a laboratory. In Britain this is the responsibility of the National Physics Laboratory.

Every minute, the National Physical Laboratory, NPL, transmits a time telegram as a binary coded decimal signal. This contains the time, the date and the calendar day. NPL is part of an international network, each making a contribution to co-ordinated universal time. This means that world-wide, all clocks agree to the nanosecond.

Earth loses around 5ms a day. To ensure that solar and atomic times remain the same, laboratory time is reset approximately once a year.

MSF is the call sign of the NPL time code transmitter. Anyone can make use of the signal transmitted. Equipment require is a facility to receive and condition the time telegrams, and a receiver with a suitable tuned antenna. A receiver module measuring just 7mm by 24mm is shown in the photograph at the end of this article.

Table 1. Time telegram of MSF transmitter - binary code for seconds 17 to 30 and data for March 1996.

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Fast Code</th>
<th>DUT1 Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>Not used in modules</td>
<td>Not used in modules</td>
</tr>
<tr>
<td>2-16</td>
<td>17 year (tens)</td>
<td>80 year 00-99, bcd</td>
</tr>
<tr>
<td></td>
<td>18 year (tens)</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>19 year (tens)</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20 year (tens)</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>21 year (units)</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>22 year (units)</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>23 year (units)</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>24 year (units)</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>25 month (tens)</td>
<td>10 month 01-12, bcd</td>
</tr>
<tr>
<td>26</td>
<td>26 month</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>27 month</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>28 month</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>29 month</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>30 day of month (tens)</td>
<td>20 day of month, bcd</td>
</tr>
<tr>
<td>31</td>
<td>31 day of month (tens)</td>
<td>10</td>
</tr>
<tr>
<td>32</td>
<td>32 day of month</td>
<td>8</td>
</tr>
<tr>
<td>33</td>
<td>33 day of month</td>
<td>4</td>
</tr>
<tr>
<td>34</td>
<td>34 day of month</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>35 day of month</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>36 day of Week</td>
<td>4 day of week 1-7, bcd</td>
</tr>
<tr>
<td>37</td>
<td>37 day of Week</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>38 day of Week</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>39 hour (tens)</td>
<td>20 hour 00-23, bcd</td>
</tr>
<tr>
<td>40</td>
<td>40 hour (tens)</td>
<td>10</td>
</tr>
<tr>
<td>41</td>
<td>41 hour (units)</td>
<td>8</td>
</tr>
<tr>
<td>42</td>
<td>42 hour (units)</td>
<td>4</td>
</tr>
<tr>
<td>43</td>
<td>43 hour (units)</td>
<td>2</td>
</tr>
<tr>
<td>44</td>
<td>44 hour (units)</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>45 minute (tens)</td>
<td>40 minute 00-59, bcd</td>
</tr>
<tr>
<td>46</td>
<td>46 minute (tens)</td>
<td>20</td>
</tr>
<tr>
<td>47</td>
<td>47 minute (tens)</td>
<td>10</td>
</tr>
<tr>
<td>48</td>
<td>48 minute (units)</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>49 minute (units)</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>50 minute (units)</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>51 minute (units)</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>always set to "0"</td>
<td>0</td>
</tr>
<tr>
<td>53-58</td>
<td>always set to "1"</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>always set to "0"</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 1. Example of how date information is encoded in the MSF transmission. This represents March 1996.
Carrier frequency of the time telegram is 60kHz. The amplitude is switched off at the beginning of each second, for 100ms or 200ms; these periods are the so-called second markers. The short ones, at 100ms, correspond to a zero bit, i.e. binary 0, and the long ones, 200ms, to one bit, binary 1.

At the switch over to the next minute bits 52 to 59 are set permanently to 10000001_{2}. This sequence is unique and identifies the long ones, 200ms, to one bit, i.e. binary 1. Short ones, at 100ms, correspond to a zero bit, i.e. binary 0, and or 200ms; these periods are the so-called second markers. The modules outlined in Microcontroller modules are available for producing a battery powered radio clock unit or an alarm-clock radio. It is designed to drive an liquid-crystal or led display via static shift registers.
without multiplexing.

The micro controller within the module is a four bit device and it decodes the demodulated time telegram from the receiver modules. The controller also translates the time signal for different formats.

Serial i/o via RS232

A second module is available to facilitate accessing of the time signal on a computer. The MCM RS232 is designed for applications in which a host computer receives the exact time information via a serial interface.

The advantage of this module compared to direct host decoding of receiver output is the presence of exact time information all the time. Once synchronised, the controller predicts the incoming time information so that it can send out the translated RS232 data stream synchronously with the incoming rf signal.

There is also a switching output. Switch on and off times can be set by the host computer. If the switching output is connected to a mains switch the host computer can turn itself on and off by setting the appropriate switch on and switch off times.

An application showing the MCM RS232 serial interface and the EM2 MSF receiver modules is shown in Fig. 6.

An application circuit for the radio-controlled clock kit with an active antenna is shown in Fig. 7.
Receive radio-code time signals on your PC

Modules for Radio Code
The EM1, connected to the MSF passive antenna, receives the 60kHz Rugby signal and outputs the slow code comprising seconds 17 to 59. Operating from a 3V supply, the EM1 has an antenna input, supply pins, a keying input and an open-collector MSF output. Quiescent current in standby is less than 1µA.

MCM RS232, combined with an EM1 receiver and antenna, feeds decoded time information to a computer via RS232 via its internal microcontroller. MCM Radio, designed for stand-alone applications, forms the heart of a Radio-Code clock with LCD or LED read-out. This module includes alarm facilities.

Plugging a radio-code receiver into your PC’s COM port and running the dos and windows software supplied gives you access to the atomic-clock referenced 60kHz time signal transmitted from Rugby. This signal is accurate to a second in a million years and corrected automatically for summer/winter time.

Based on a highly-tuned and reliable receiver module with antenna, the system automatically updates the PC’s clock at switch on and at any other desired time. Under Windows, an icon is available signalling to the operator that the receiver is receiving the Rugby signal, and indicating the current time and date.

Time data received by the PC is via standard RS232 and well documented, allowing you to use atomic-clock referenced timing and date stamping in your own applications. Sending the ASCII letter o for example returns a 15-character string representing hours, minutes, seconds, day of week, day of month, month, year and summer-time and receiver status.

Normally, the receiver module together with dos and windows software costs £69.50, or £99.50 for a version with in-built liquid-crystal display for time and date display. Until 15 April 1996, Galleon is offering these two products to EW readers at special 25% discount prices of £52.13 and £74.63 respectively. All prices quoted are inclusive of VAT, but excluding £2 postage.

Access to atomic time accuracy via your PC

Applications include:
- research and development
- synchronising encryption-key changes
- broadcast transmission sync
- timing video monitoring in security systems
- controlling public and distributed clocks
- distributed timing for remote communications
- access control
- production monitoring
- linking remote networks
- data security

Ordering details

<table>
<thead>
<tr>
<th>Product</th>
<th>Normal price</th>
<th>EW discount price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM1</td>
<td>£16.99</td>
<td>£12.74</td>
</tr>
<tr>
<td>Pass antenna</td>
<td>£4.99</td>
<td>£3.74</td>
</tr>
<tr>
<td>Act antenna</td>
<td>£34.99</td>
<td>£26.24</td>
</tr>
<tr>
<td>Rec. w disp</td>
<td>£99.50</td>
<td>£74.63</td>
</tr>
<tr>
<td>Rec. w RS232</td>
<td>£69.50</td>
<td>£52.13</td>
</tr>
</tbody>
</table>

Please send your order to Galleon Systems Ltd, together with payment. Alternatively fax credit card number, type and expiry date with order on 0121 608 4477 or telephone Galleon on 0121 359 0981. If possible, include a daytime telephone number with your order. Address orders and all correspondence relating to this order to Galleon Systems Ltd, Aston Science Park, Love Lane, Birmingham B7 4BJ.

*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax Galleon Systems.
FOR cable / hyperband reception Telebox MB should be connected

TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner £69.95

...panel allow reception of 8 fully tuneable 'off air' UHF colour television

...push button controls on the front containing all electronics ready to plug into a host of video monitors

5 1/4" MINISCRIBE 3425 20mb MFM I/F (or equiv.) RFE £49.95 (C)

Complete with full manual.

Mitsubishi M2896 -63-02U 8" DS slimline NEW

3 1/2" Panasonic JU363/4 720K or equivalent RFE

ment and are fully tested, aligned and shipped to you with a 90 day

...drive & Integral 40Mb hard disk drive to the front. Real time clock

...limited (with battery backup) is provided as standard. Supplied in good used

...are virtually every type of power

THE AMAZING TELEBOX

AT 286

SPECIAL BUY

20" HD + 37" PL

LIMITED QUANTITY! At these 13th hour GI GRADE 286 systems

MITS 42A 34A 16"

Philips HD5203/10 32" large screen projection system £279.00

Ready for use with your existing Panasonic / Sanyo CRT or LCD monitor.

Virtually every type of power

IC's - TRANSISTORS - BULK

OBOSLETE - SHORT SUPPLY - BULK

6,000,000 items EX STOCK

For MAJOR SAVINGS - CALL FOR SEMICONDUCTOR HOTLIST

VIDEOMICROSCOPE

One of the highest specification monitors you will ever see!

... At this price - Don't miss it!

PHILIPS HC535 (same style as CMB383) astonishingly styled 14" colour monitor with both RGB and standard complete 15.625

KHz video inputs via SCART socket and separate phono jacks.

... Two fully tested & guaranteed (possible minor screen burns). In attractive black block plastic case measuring 61 cm x 33 cm x 13 1/2 cm.

... Sold at LESS than a third of makers price!!

The ultimate in 'Touch Screen Technology' made by the experts!! A host of available translation software enables direct con-

... the disabled or connection to a PC for a myriad of applications including: control pan-

... compatible with IBM, PC, IBM XTS, PS2 and extremely versatile. Totally new design with compact size !! A host of available translation software enables direct con-

... Please for further details on the above items

40x40x20 mm 12v DC

EPSON D0412 40x40x20 mm 12v DC

10,000 Power Supplies Ex Stock

Call for info list.

... For MAJOR SAVINGS. Call for SEMICONDUCTOR HOTLIST

... FLOPPY DISK DRIVES 3 1/2" - 8" are virtually every type of power

... HIGH Quality - All steel RackCab

... made by Eurocraft Enquiries Ltd to the highest possible spec, rack features all steel construction with removable side panels for easy access to the rear. Designed for 19" and 24" wide

... The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL output which continuously gives positional X & Y co-ordinates as to where a finger is touching the panel - as the finger moves, the data moves. The X & Y axes are individually controlled. The X-axis produces a standard serial RS232 or TTL ou...
CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving £100 cash for the month's top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

WIN A TTI PROGRAMMABLE BENCH MULTIMETER

"High accuracy, resolution and bandwidth – performance beyond the capability of handhelds"

![TTI Multimeter Image]

£100 WINNER

Inductance on a capacitance meter

Using this circuit, you can measure inductance by means of a capacitance meter. It offers the advantage over a gyrator in that the inductor is earthed.

\[
Y = j\omega L / (R_S + j\omega L) \times (V + Y) \\
Y = j\omega V / R_S \\
U = 2V - (V + Y) = V - j\omega L / R_S
\]

Since \(V/I_{in} = (R_S R_1)/j\omega L \), which is a capacitive impedance,

\[
I_{in} = \frac{V - U}{j\omega L / (R_S R_1)} \\
I_{in} = j\omega V / (R_S R_1) \\
1 / j\omega C = (R_S R_1) / j\omega L \\
C = L / (R_S R_1)
\]

Making \(R_S \) and \(R_1 \) 1k\Ω presents a 1H inductor as 1\μF, 10mH as 10nF, etc.

Marco Trinci
Montecatini Terme
Italy

Without calculation, this circuit measures inductance in terms of capacitance, while allowing the inductor to be earthed.
Remote multichannel resistance measurement

This low-power circuit measures the value of remote resistive sensors using any type of connection such as wire, infrared or ultrasonics; I use a vhf radio link.

With a UMC UM3758-108AM encoder/decoder, it is possible to transmit 8-bit data combined with 10 address bits. Depending upon the logical level on the mode pin, the circuit acts as a decoder or encoder. In this application, the address bits are hard-wired high and the measuring resolution is limited to 6-bit, for reasons explained later.

Serial data is supplied to the Rx input in decoder mode, where it is examined bit by bit as received. Only if two successive address/data combinations match is data transferred to the output pins D1_8, which latch the data until the next valid data is being received. The Tx/Rx output pin switches low if data matches, returning high after two successive unmatched address words.

System timing is controlled by IC1, a 74HC4060. The positive-going edge of the Q5 output of IC1 triggers an enable signal, the duration of which is adjustable by P1 about every 60s, depending upon R1, R2, C1. At the start of this enable time, the counter in IC4 is reset to zero by the positive-going edge of the oscillator enable signal via C3, R8. Diode D8 pulls the C4 clock signal, pulling down the clock input to disable counting. During the enable time, a sensor-dependent count is reached on the outputs Q4._9.

Be careful to avoid overcount by selecting the right combination between the enable time and the IC4 oscillator frequency, which depends on the sensor used.

At the end of the oscillator enable time, the falling edge of IC9 Q output triggers IC5a to switch on the power supply for both the UM3758 and the transmitter. To be sure that a minimum of three address/data codes are transmitted, the counter counts up to 36, transmitting the last two address/data codes with the +10% and -10% address/data codes present. The transmit time is 2.5s-3.0s, with R9=20mA. Raising the UM3758 oscillator frequency makes it possible to use an even shorter transmit time, but bear in mind that the receiver must be capable of detecting this signal. A low-loss, dual P-channel mosfet, a Siliconix SI9933DY with Rgs<0.2Ω, switches the transmitter/encoder supply.

To prevent any current flow through the transmitter logic draws less than 100μA, since early 1994 to study activity and feeding behaviour of the red deer. As the resistive element we use an electrolytic tilt sensor. I built the circuit using surface-mounted components but, except for the SI9933DY, they are also available in through-hole form.

Willem van der Veer
Institute for Forestry and Nature Research Wageningen
The Netherlands.

References
Little Foot series manual, Siliconix Ltd, Newbury, Berkshire RG14 5UX. Tel. 01344-485757.
PLASTIC 3055 OR 2955 equiv £5.00

TIP 141/2 CLEAT

BC477, BC488

96M000

M800

111M800

114M800

120M000

51M05833

54M1916

55M500

57M7416

57M7583

69M545

69M550

40M000

41M539

42M00000

44M444

44M900

44M000

48M00000

POWER TRANSISTORS

CRYSTAL OSCILLATORS

LM317T PLASTIC TO220 variable £5.00

68000-10 PROCESSOR

USED TMS2532JL

2816A-30 HOUSE MARKED Z80A S10-0

2114 EX EQPT 50p

4116 EX EQPT 50p

27C512 USED

7126312 DIGIT LCD DRIVER CHIP £2.00

2732-45 USED £2.10

P8749H MICRO £2.00

P8271 BCC DISCONTROLLER CHIP £3.00

DIODES AND RECTIFIERS

IC SOCKETS

POLYESTER/POLYCARB CAPS

Ceramic Filters

RF BIFS

MONOLITHIC CERAMIC CAPACITORS

QUARTZ HALOGEN LAMPS
They don't come much simpler than this one. Three electrical components test a coax. cable for shorts and continuity, provided you have remembered to isolate the sockets.

CIRCUIT IDEAS

They don't come much simpler than this one. Three electrical components test a coax. cable for shorts and continuity, provided you have remembered to isolate the sockets.

Measuring conductivity

To measure the contact resistance of physiological electrodes, current density must be kept below the threshold of feeling and be low enough to avoid polarising the electrodes.

In the instrument shown here, the reference current comes from the Howland current pump based on the INA105, which takes its 60Hz input from the display backplane drive, PR2, setting the output current at 1µA.

Voltage across the electrodes (R_x) is rectified by the AD736 and displayed. Measuring range is 0.1kΩ to 199.9kΩ. **A G Birkett**

London SE22
TERMS: CWON/ISA/ACCESS. POST & PACKING: £2.00, OVER 6,000 TYPES AVAILABLE FROM STOCK. OBSOLETE ITEMS for your special requirements. In addition to our standard range we will be pleased to quote on your special requirements.

OPEN TO CALLERS MON-FRI 9AM-4PM, CLOSED SATURDAY.
16 Knight Street, Sawbridgeworth, Herts CM21 9AT
Tel: 01279 600139
Fax: 01279 726379

B.K. ELECTRONICS
Unit 1 Comet Way, SOUTHEND-ON-SEA, Essex, SS2 6TR.
Tel: 01702 527672
Fax: 01702 420243

CIRCLE NO. 129 ON REPLY CARD

CIRCLE NO. 11 ON REPLY CARD

CIRCLE NO. 151 ON REPLY CARD

CIRCLE NO. 15 ON REPLY CARD

CIRCLE NO. 176 ON REPLY CARD

Prices are for 240 volt primary and two equal secondaries (with B4 colour-coded fly leads). Each transformer is supplied with a mounting kit (steel dish washer pads, nut and bolt). Mail order prices include VAT and postage. Please do not telephone to telephone or write with your particular requirements.
RS232-to-RS485 PC-powered converter

This simple circuit enables a PC RS232 serial port to control machines with RS485 drivers, supplying the power from the PC port.

K Guy Wilkinson
Bromsgrove, Worcester

Sense, but not sensibility for negative rails

A small modification to the standard negative half of a dual power supply regulator improves ripple performance and tracking.

Normally, the sensing voltage for the negative regulator comes from a resistive chain strung between positive and negative rails. Here, it is returned via \(R_1 \) to the common reference point. With \(R_{1,2} \) scaled suitably, an adjustment of the potentiometer between OV and 2.5V gives a \(V_{out} \) change from OV to 30V.

With this circuit, the negative output showed increased stability with reference to both OV and the positive rail and, on a 2A load, ripple is less than 0.5mV and a 1kHz switching waveform came out square. Tracking between the two rails is within 50mV. The filter formed by \(R_1 \) and \(C_1 \) removes any chance of ripple being injected into the reference from the negative rail.

Gregory Freeman
Nairne, South Australia

Compensated pad, top trace, shows much improved performance, over standard oscilloscope probe. Extra 8 µs delay on standard probe is due to greater length of coax.
Components & Systems from i0SiS

System Components from ISO901 Source

Half Size ISA Single Board Computers 386SX-40 to 486DX-100 with PC104, 2 Serial Ports IDE & FDD & Printer Port and a variety of on-board functionality:

FLASH/ROM Disc. Cache

- VGA CRT/Flat Panel Controller
- PC104 Modules
- 386 & 486 CPUS, Solid State Disc, Isolated RS232/485 VGA CRT/Flat Panel Display & SVGA Controllers

PCMCIA types I, II & III

- System Enclosures with Passive Backplanes
- Colour & Mono Flat Panel LCD Displays

System Integration and Support

2c Chandos Road, Redland

Bristol, BS6 6PE

Tel: 0117 973 0435

Fax: 0117 923 7295

Kestrel Electronic Components Ltd

- All items guaranteed to manufacturers’ spec.
- Many other items available.

‘Exclusive of V.A.T. and post and package’

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>27C04-15</td>
<td>2.60</td>
<td>8.30</td>
</tr>
<tr>
<td>27C08-15</td>
<td>2.40</td>
<td>6.00</td>
</tr>
<tr>
<td>27C56-15</td>
<td>2.20</td>
<td>6.50</td>
</tr>
<tr>
<td>27C12-15</td>
<td>2.00</td>
<td>7.00</td>
</tr>
<tr>
<td>27C16-15</td>
<td>1.90</td>
<td>7.50</td>
</tr>
<tr>
<td>27C128-15</td>
<td>1.80</td>
<td>8.90</td>
</tr>
<tr>
<td>27C256-15</td>
<td>1.70</td>
<td>9.40</td>
</tr>
<tr>
<td>27C512-15</td>
<td>1.60</td>
<td>9.90</td>
</tr>
<tr>
<td>27C1024-15</td>
<td>1.50</td>
<td>10.40</td>
</tr>
<tr>
<td>27C2048-15</td>
<td>1.40</td>
<td>10.90</td>
</tr>
<tr>
<td>27C4096-15</td>
<td>1.30</td>
<td>11.40</td>
</tr>
<tr>
<td>27C8192-15</td>
<td>1.20</td>
<td>11.90</td>
</tr>
<tr>
<td>27C16384-15</td>
<td>1.10</td>
<td>12.40</td>
</tr>
<tr>
<td>27C32768-15</td>
<td>1.00</td>
<td>12.90</td>
</tr>
<tr>
<td>27C65536-15</td>
<td>0.90</td>
<td>13.40</td>
</tr>
<tr>
<td>27C131072-15</td>
<td>0.80</td>
<td>13.90</td>
</tr>
</tbody>
</table>

Embbedded C Assembly Simulation

8051

- C compiler, first released in 1983, now features:
 - Easy to use interrupt support with register bank switching
 - IEEE floating point arithmetic
 - IEEE 695 source level debug output
 - Integrated relocatable assembler

- Simulator running under Microsoft Windows provides extensive support for the 8051 code development

65000

- Our first C compiler/assembly package:
 - now supports floating point arithmetic
 - has been widely adopted by many OEMs to support their 68000 and 68030 hardware

CPU32

- 8051 Compiler/Assembly, originally developed to accompany MicroSoft’s 68000 and 8086C0/C evaluation models
 - Now supports the CPU32
 - 8086 co-processor support
 - IEEE 695 source level debug output

Further Information From:

CRoSSWAre PRODuCTs

50 John's Innovation Centre, Caxton Road, Cambridge, CB4 4JL, UK

Tel: +44 (0) 1223 421263, Fax: +44 (0) 1223 421006

886 +44 (0) 1223 421207 (8-02) Internet: sales@crossware.com
High-power, isolated switch

This switching circuit is controlled by logic-level input, handles high power and the output is isolated from the control circuit. Optical isolation is normal, but a separate supply would have been needed for the mosfet drive; for that reason, a transformer provides the isolation, since drive is now provided by the control circuit.

Output from the oscillator $IC_1(a)$ is gated by $IC_1(b)$ in response to the input. Transistor Tr_1 and the output stage $Tr_2,3$ drive the transformer, which is on a small ferrite toroid, its secondary providing the mosfet drive, after rectification by the schotky diodes, which have a low forward voltage. The 560Ω resistor presents a low source impedance for rapid mosfet switching.

Keep the transformer primary and secondary well separated for a high breakdown voltage; leakage inductance is unimportant, since losses can be offset by an increased turns ratio.

Phil Denniss
Department of Plasma Physics
University of Sydney
NSW
Australia

Programmable voltage-to-time converter

As a step towards a v-to-t converter, Fig. 1 shows a programmed frequency divider that produces an output frequency of f_{out} divided by the binary input, also generating a repetitive output sequence depending on the binary input.

The circuit shows a four-bit circuit. Clock signals drive the counter, whose output at some point coincides with the binary input, coincidence being detected by the gating circuit, which produces a rising pulse edge to trigger the 74121 multivibrator for a wider pulse. Timing components are chosen to cover the duration of the clock period. Output, the clock frequency divided by the binary input, consists of the Anded clock and multivibrator output.

To form a voltage-to-time converter, use an 8-bit circuit of the form in Fig. 1, as shown in Fig. 2, where the 8-bit analogue-to-digital converter provides the binary input to the frequency divider. Output is the period of the divided clock frequency, which corresponds to the input voltage of the a-to-d converter.

K Balasubramanian
Cukurova University
Adana
Turkey
STOP! Just Take Two Steps to do Your Measurement

Plug in and Measure

You can simply plug the new TiePieSCOPE - HS508 into the parallel port of your portable or desktop PC. With the advanced software, you can use this two channel, 8 bits, 50 MHz measuring instrument as a fast digital storage oscilloscope, including a lot more features than a single oscilloscope! Moreover, the TiePieSCOPE - HS508 contains a multiple display voltmeter (up to 5 MHz true RMS), a spectrum analyzer with an harmonic distortion meter and a transient recorder for recording a variety of signals. The TiePieSCOPE - HS508 is supplied complete with user manual, software, and two probes.

Call now for a free demo diskette and our catalog!!

TiePie engineering (UK)
28 Stephenson Rd, Industrial Est., ST. IVES, CAMBS PE17 4WJ
Tel.: (01480) 460028 - Fax: (01480) 460340

TiePie engineering, The Netherlands
P.O. Box 115, 8900 AC LEEUWARDEN
Battenserree 2, 9023 AR JORWERD
Tel.: (31) 515 415 416 – Fax: (31) 515 418 819
Coaxial cable choices

There's a variety of coaxial cable and connector types available. Nick Wheeler discusses how to choose the right combination.

The simple, flexible, laboratory connector uses one of a small number of cable types. Some 49 types are listed in the American Radio Relay League (ARRL) handbook. These vary widely in overall diameter and performance. This article is intended to help in selecting the right type of cable, together with appropriate end connectors.

General considerations

While a coaxial connector assembly has much in common with a good-quality screened audio connector - and is often used for this purpose - it is designed for use as a radio-frequency transmission line. Its characteristic impedance, Z_0, is proportional to $\log b/a$, where b is the inner diameter of the outer conductor and a is the outer diameter of the inner conductor. If a coaxial connector assembly is driven from a source whose output impedance is Z_0 and terminated in Z_0, then the input signal will appear almost unchanged at the termination.

There will be a slight reduction in amplitude due to losses, and the signal will be delayed by the time it takes to traverse the length of the line. This is longer than the time taken to traverse the length of the line in free space. Thus in free space the velocity of propagation is some 30cm/ns whereas in typical lines it is 20-27cm/ns.

Coaxial structures

The centre conductor of a coaxial cable may be solid or stranded. For anything other than permanent fixed installations such as television down leads, stranded types are essential. All other things being equal, a solid conductor will be slightly less lossy than a stranded one.

Air is the ideal insulator, but this can only be achieved over short lengths. Next best is air-spaced PE (polyethylene). Suitably spaced PE washers keep the central conductor in position. In a different form of air spacing, the insulator has longitudinal voids so that in cross section it looks like a spoked wheel. This is very nearly as good as the washer approach and is much cheaper to make. It is commonly used for satellite down leads, and also for TV down leads.

Down leads used for reception usually have a Z_0 of 75Ω. This can be shown to be less lossy than otherwise physically similar 50Ω cable. The lower impedance cable has better power handling capability and is nearly always used for transmitting and receiving applications. It is also easier to match 75Ω cable to typical antennas.

Next in order of merit is foam PE, followed by PTFE and finally the cheapest - solid PE. Velocity factors associated with these materials are shown in Table 1.

There are three types of outer conductor. The first is a solid metal tube, invariably of copper, and in large sizes over 1cm, corrugated. Clearly such cables are not designed to be flexed repeatedly.

The next - and the most common - type uses copper braid, sheathed with PVC to minimise corrosion and damage. Braided sheath is not completely leak-proof. Small amounts of power can escape and be radiated, constituting a loss and possibly an EMI problem. Also, strong incident radiation may permeate the cable, causing interference.

Cables are available which include a layer of copper foil wound without gaps between the braid and the insulator. These can achieve sig-

Table 1. Velocity factors of common coaxial cable insulators

<table>
<thead>
<tr>
<th>Insulator Type</th>
<th>Velocity Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air space PE washers</td>
<td>0.89</td>
</tr>
<tr>
<td>Air space PE voids</td>
<td>0.86</td>
</tr>
<tr>
<td>Foam PE</td>
<td>0.79-0.80</td>
</tr>
<tr>
<td>Solid PTFE</td>
<td>0.7</td>
</tr>
<tr>
<td>Solid PE</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Fig. 1. Simple circuit providing a reliable 50Ω, 10m pulse source for assessing the performance of a transmission line. Connecting a 100MHz oscilloscope provides good test results.
nificantly better performance than braid-only cables - but at considerably higher cost.

Limitations of coaxial cable

Coaxial cable has an upper limit of usable frequency other than that imposed by insulator losses. This is due to higher order propagation modes, analogous to those found in waveguides. These set in at wavelengths shorter than

\[\lambda = \frac{n(a+b)}{2\sqrt{K}} \]

(Ref. 2)

Where \(K \) is the dielectric constant of the insulator.

Applying this, approximately, to RG58 cable, which is commonly used for laboratory hook-up connectors, gives,

- \(a = 1 \text{mm} \)
- \(b = 2.92 \text{mm} \)
- \(K = 2.3 \) for PE

As a result, \(\lambda \) is 4.06mm, or about 65GHz. It is unlikely that this phenomenon will be encountered in ordinary laboratory work. Note that in some electronic warefare search receivers, this may be a frequency of interest. Applying this formula to PTFE-insulated RG405 cable yields a slightly higher frequency, and is specified to 18GHz.

There is another limitation, more likely to be encountered, but only in connection with transmitters or other high power rf sources. As we are dealing with transmission lines, mismatch will produce current and voltage nodes and antinodes along the line. Under extreme conditions these can lead to voltage breakdown or local overheating.

An open circuited line is just as liable to cause damage as a short-circuited one.

Connectors for coaxial cables

Three main professional series of connectors are SMA, BNC and N-Type. Electrically, TNC is a close equivalent to BNC. Note that in some electronic warefare search receivers, this may be a frequency of interest. Applying this formula to PTFE-insulated RG405 cable yields a slightly higher frequency, and is specified to 18GHz.

There is another limitation, more likely to be encountered, but only in connection with transmitters or other high power rf sources. As we are dealing with transmission lines, mismatch will produce current and voltage nodes and antinodes along the line. Under extreme conditions these can lead to voltage breakdown or local overheating.

An open circuited line is just as liable to cause damage as a short-circuited one.

Connectors for coaxial cables

Three main professional series of connectors are SMA, BNC and N-Type. Electrically, TNC is a close equivalent to BNC. Note that in some electronic warefare search receivers, this may be a frequency of interest. Applying this formula to PTFE-insulated RG405 cable yields a slightly higher frequency, and is specified to 18GHz.

There is another limitation, more likely to be encountered, but only in connection with transmitters or other high power rf sources. As we are dealing with transmission lines, mismatch will produce current and voltage nodes and antinodes along the line. Under extreme conditions these can lead to voltage breakdown or local overheating.

An open circuited line is just as liable to cause damage as a short-circuited one.

- UHF connectors: poor performance in all respects.
- Phono: as the name implies, these are intended for audio but often used for video.
- Television down-lead types: these are not a good choice. Most rely on a solderless connection between the centre conductor and the tubular centre pin.

There is a comprehensive range of ‘connectors’ that are designed to access virtually every type from BNC.

The full range of BNC accessories and connectors is only available in 50Ω form, but the most commonly used parts also come in 75Ω form. These look identical, except that the 50Ω plug and socket is slightly larger than the 75Ω alternative. Note that mixing connectors of different impedances can cause damage.

In addition to the wide range of adapters, there are Z0 terminators. These can be either ‘stop end’ or ‘through’ types. The latter can save a lot of trouble when terminating at, say, an oscilloscope input. In addition ‘through’ attenuators are available.

Crimped cable attachments are quick and simple. Provided a cable strain relief is used these terminations are also durable. Clamp types impose only gentle forces on the outer braid and a good life is obtained without the need for a strain relief. If a fault does occur, the connector can be disassembled and remade.

The most common clamp and crimp connectors suit 5mm cable outside diameter. This should be regarded as the default size. Stripping coaxial cable is a difficult process but special tools are available.

Clamp tools cost upwards of £70. Such tools form the sleeve into a uniform hexagonal shape. Much cheaper tools designed for fitting spade-type connectors to power cables will not suffice.

N-Type connectors appear on equipment intended for use above 1GHz. The Type I can only be used with URM67 or RG 213U cable. They are both reasonably flexible at 10.3mm outside diameter.

For laboratory bench use the Type 2 free plug can be used with 5mm URM43 or URM 76. These parts are specially made to introduce the minimum possible Z0 discontinuities. They are characterised up to 10GHz.

SMA connectors are physically small and are available in crimp or clamp form. They are also made for assembly by soldering to RG402 and RG405 semi-rigid cable. In this form of assembly they are rated up to 18GHz.

Much of the circuitry of professional equipment operating above 1GHz consists of modules. These modules are often from different manufacturers, neatly plumbed together with semi-rigid coaxial cable and terminated with SMA connectors. The small size of these connectors often justifies their use in lower-frequency applications.

There are several useful parts in the SMA, series intended for direct mounting on PCBs. These can be used to provide detachable links to front-panel mounted connectors.

Testing for performance

In my view, there is no better way of testing a transmission line than feeding it with a pulse sourced from the correct Z0 and observing the effect across a correct termination at the other end. A 100MHz or better oscilloscope is advisable to avoid measurement errors.

There are many sources of suitable pulses. I used a variant of the circuit on page 61 of EW, Jan. 96. This is the box marked PG on Fig. 1. A logic-one pulse of less than 10ns duration in response to ttl drive is needed. A problem here is that a single logic gate cannot drive a 50Ω line directly. The device used must be able to sink or source 100mA.

In Fig. 1, PG produces logic-one pulses of about 10ns duration at a pulse-repetition frequency of 2MHz. These are applied to all six
inputs of a hex inverter. The outputs are all parallelised via 50Ω chip resistors.

Making the assumption that the output impedance of a gate in the one or zero state is zero, we then have a 50Ω source. A possible part is 74AC1104. A 74AC004 will also suffice. If it is loaded with 50Ω, the transmitted signal will be inverted with a peak amplitude of \(V_{pp}/2 \). This result is close to \(V_{pp}/4 \), accounted for by the effect of the parallelled matching resistors and the splitter.

The output has a peak amplitude of 1.1V, representing a loss of 0.37dB, or 4.3dB/10m. This falls between the 3.6dB/10m at 100MHz and 19dB/10m at 1000MHz quoted for this cable, which seems reasonable.

There is a delay - estimated at 0.4ns - between the output of the splitter and the channel-one input of the oscilloscope. This must be added to the 5ns delay scaled from the oscillograph.

Making the necessary corrections leads to a velocity factor of 0.53, which is too low for PTFE. However, it is near and making measurements to an accuracy of 1ns with a 100MHz oscilloscope is questionable anyhow.

In any case the cable is clearly fit for laboratory use. Undulations in the upper trace are obviously due to reflections. The amplitude of these undulations is approximately 0.1 of the main pulse, suggesting a standing wave ratio of about 1:1.2, which is normally insignificant.

In summary

Although there is a bewildering array of cables, plugs and sockets available, new designs should be based on the SMA, BNC and N-Type connectors. As for the cable, this should be RG174A or RG316/U, which suit SMA and appropriate BNC types.

Unless compactness is important, then URM76 or the slightly cheaper RG58C, 5mm outside diameter, are the cables to choose. These suit BNC clamp and crimp connectors and also N-Type type 2 free plugs. All other N-Type free parts require the use of URM 67 or RG213U. Most other cable sizes upwards of 5mm outside diameter can be terminated in BNC, but none of these has any pronounced advantage over those already mentioned.

There are 75Ω cables specifically intended for television and satellite down-lead applications. A limited range of BNC plugs and sockets are available in 75Ω form. Almost all 75Ω cables are ‘free’ plugs.

Further reading

American Radio Relay Handbook. (A good source on this subject, held in the reference section of most large libraries)

Services Textbook of Radio, Vol 5 (Long out of print, but good on line theory).
ACTIVE

Discrete active devices

High-voltage igbt. The first device to be available from Motorola's non-punchthrough, high-voltage, insulated gate bipolar transistor family will be the MAMF141200A120C5, which will cost around $1000 in small quantities. The family will contain devices rated up to 1200A at 1200V and is intended for motor drives, power conversion and welding. The package consists of a copper baseplate with multiple copper substrates; since these devices exhibit a positive temperature coefficient, they can be paralleled for higher currents, so that a number of modules can be produced using only a few, smaller, die sizes. Motorola, Inc. Tel., 00 1 602 244-3831; fax, 001 602 244-6002.

Digital signal processors

Audio processor. TDA1548T from Philips is an audio processor incorporating Bitstream filters for digital de-emphasis, volume and tone control, with Bitstream d-to-as and digital de-emphasis, volume and tone control, with Bitstream d-to-a. Its features include a two-way associative, 9kHz instruction cache, an 8kHz data cache, power saving, a static core and wait instructions for stand-by. Speed is measured at 175MHz. Associated chips are the R4761 memory controller and R4752 PCI bridge. Integrated Device Technology, Tel., 01372 363734; fax, 01372 378581.

Linear integrated circuits

Video d-to-a. SAA7167 YUV-to-RGB video digital-to-analog converter is an addition to Philips's Desk-Top-Video chipset and converts digital video sources with standard VGA graphics, thereby doing away with the need to access the computer's frame store memory. Together with the SAA7131 FMPEG decoder the new chip allows the production of cheap video playback cards for Pos. In addition, the chip will handle various input formats, on-chip colour keying between video and rgb inputs, PC bus control and direct drive to a monitor. Philips Semiconductors (Eindhoven), Tel., 00 31 40 7220911; fax, 00 31 40 724825.

High-current driver. Driving high-speed signals into low-impedance loads, Analog's AD815 driver has differential input and output, enabling it to replace multi-chip designs in asynchronous and high-bit-rate digital subscriber links and other twisted-pair cable driver functions, as well as in video distribution. Output is 450mA at 40Vp-p differential and the device will deliver up to 1Apk. Analog Devices Ltd. Tel., 01932 265000; fax, 01932 247401.

Memory chips

Fast srams. EDI's snappily named EDIBP2128LPBAC is a low-power, 55-100ns, 128 by 32 sram in a JEDEC 68-pin pack. It is pin-compatible with the EDI7F32128 flash unit, but has a battery backup and an industrial-temperature version. EDI (UK), Tel., 01276 472637; fax, 01276 473746.

Microprocessors and controllers

Low-cost, 64 bits. IDT's Onion R4640 embedded microprocessor, available in 80MHz, 100MHz and 133MHz versions, is designed for 64-bit performance at a 32-bit price, having a 64-bit core and 32-bit interface. Its features include a two-way associative, 9kHz instruction cache, an 8kHz data cache, power saving, a static core and wait instructions for stand-by. Speed is measured at 175MHz. Associated chips are the R4761 memory controller and R4752 PCI bridge. Integrated Device Technology, Tel., 01372 363734; fax, 01372 378581.

6x86 100MHz processor. The Cyrix 100MHz 6x86 superscalar, superpipelined processor is available for immediate delivery. It was formerly known as the MI processor, is compatible with the x86 instruction set and shows a benchmark performance figure of 678 on the Norton System Information v8.0, said to be considerably in excess of that for the 133MHz Pentium. Flashpoint, the supplier, also offers a motherboard from DTK with up to 128MB of ram, three PCI slots and five ISA slots. Flashpoint Technology, Tel., 01753 536715; fax, 01753 536733.

NEW PRODUCTS

Please quote “Electronics World” when seeking further information

PASSIVE

Optical devices

Blinking leds. Elcos offers surface-mounted leds that blink and four-padd multicolour types—the CR range, all on ceramic substrates. Blinking versions contain a blink ic whose frequency is trimmable by resistance or capacitance. All types have a wide viewing angle and a flat-top package for use in light-pipe applications. There are also the edge-emitter types which, when correctly driven, will display any colour, including white. Flint Distribution, Tel., 01530 510333; fax, 01530 510275.

Passive components

S-m electrolytics. Sanyo's SM Series OS-CON surface-mounted electrolytic capacitors are meant for automatic insertion and reflow soldering. They use an organic electrolyte, which affords a life expectancy of 220 years (t), a frequency range approaching that of film types, self regeneration after excessive loads, low esr and stable leakage current. Values are 1-150µF at 6.3-20V, the largest can size being 8.8x8.8x1.9mm. Inelco Ltd., Tel., 01734 810799; fax, 01734 810844.

Uhf chip capacitors. Syfer high-Q surface-mounted chip capacitors cover the 0.47pF-1nF range, a 10pF component in the 0805 size taking up 2mm by 1.2mm of board space, although rated at 100V and having a ±5% tolerance. ESR at 1GHz is 0.2Ω; Q at this frequency is 50 and rises to 200 at 100MHz. Flint Distribution, Tel., 01530 510333; fax, 01530 510275.

Accurate Al-foil capacitors. Resin-dipped aluminium-foil capacitors from Sang Jing are claimed to be the ideal replacement for tantalums, now experiencing a shortage, since they have tight specifications, have good temperature characteristics and are reliable. Leakage current is 0.01µA or 0.5µA, whichever is larger; working voltages are 6.3-50V; and values 0.1-470µF in tolerances of 10% or ±20%. Europa Components & Equipment plc. Tel., 0181-953 2379; fax, 0181-207 6464.

Precision ceramic capacitors. NPO multilayer ceramic capacitors offer very narrow tolerances for use in impedance matching in hf communications equipment. New production techniques have reduced the cost of these devices and this series provides tolerances of ±0.1pf in values of less than 2.7pf, with ±0.05pf available on request. They are suitable for wave or reflow soldering. Philips Components, Tel., 00 31 40 722790; fax, 00 31 40 724547.
Cermet trimmer. BI Technologies introduces the Model 23 Series of 4mm surface-mounted, single-turn cermet trimmer pots in sealed packages, which withstand infrared or convection reflow processing and cleaning. T-cross slots are provided for adjustment and the devices come in both J-hook and gull-wing styles. Standard range is 10Ω-2MΩ at 20% tolerance. BI Technologies Ltd. Tel., 01384 442393; fax, 01384 440252.

Audio products
Ceramic speaker. Meant for use in cellular telephones, Pedoka's ST-20PR piezoelectric speaker has a ceramic speaker. Meant for use in both J-hook and gull-wing styles. T-cross slots are provided for adjustment and the devices come in both J-hook and gull-wing styles. Standard range is 10Ω-2MΩ at 20% tolerance. BI Technologies Ltd. Tel., 01384 442393; fax, 01384 440252.

Notebook audio. From IBM, the PCMCIA Advanced Audio Adaptor, a PCMCIA device to add good quality stereo recording and playback to portable computers with a Type II expansion port. It provides output to headphones or speakers, accepts line input and has an electret microphone for recording; it is compatible with most games that need Soundblaster support. DIP Systems. Tel., 01483 20070; fax, 01483 200203.

Hardware
Emc racks. Barton Engineering has a range of emc racks for best performance at 1GHz of 70dB. They have full-length, lockable metal doors with detachable hinge pins and four-point locking; and drilled air wave guides for up to four fans. These racks consist of only ten parts. Rf isolation is through gold plated copper, low-compression, clip-on contacts on the doors and mesh panel on the sides. Finish is textured paint over nickel and the frame is nickel-plated. Barton Engineering and Export Ltd. Tel., 01227 272141; fax, 01227 771653.

Test and measurement
150MHz digital oscilloscope, Hitachi Denshi's newest digitising oscilloscope, the VC-7504, has a bandwidth of 150MHz and samples at 1000/samples on each of four channels simultaneously. Memory is 2Mbyte per channel. Additions to the facilities of its forerunner, the VC-7124, are long and split memory, compressed display, 4000 times magnification, storage of 2000 triggered events, single-shot and slow-roll modes and glitch function to enable amplitude and time frame of an event to be measured. In the long memory mode, the whole 2Mbyte memory is compressed and displayed to a screen capacity of 1Kbyte. Other features, too numerous to mention here, are incorporated. Hitachi-Denki (UK) Ltd. Tel., 0181 202 4311; fax, 0181 202 2451.

A/d multimeter. Two ranges of handheld multimeters by AVO have a dual display to give simultaneous viewing of volts/frequency, current/frequency, conductance and resistance. Two models in the M7000 series are in tough cases with rubberised holders for industrial use, one of them being of 0.2% accuracy and the other 0.3%, with a switchable choice of 4500 or 4000 counts. M6000 models provide true rms dc+ac and ac voltage readings and both are accurate to within 0.08%. Capacitance and diode test are included on all models. Avo International Ltd. Tel., 01304 502101; fax, 01304 207342.

Digital handheld multimeter. DI-Log's DL-2077 is a 405-digit count digital multimeter with a 43 segment bar graph and a X/Y zoom. It autoranges to provide V, I, R, true rms, frequency, temperature, capacitance and ohms in both normal and diode testing capability. Accuracy when reading voltage is within ±0.3% ± 1 digit of full scale. Di-Log Ltd. Tel., 01707 375050; fax, 01707 332577.

Digital delays. An improved version of the 9505A Digital Delay Generator is announced by EG&G. There is a better communications link and a new panel with an alphanumeric display; a shut-down memory retains current settings. Trips are simultaneously or externally to 2MHz and produces four independently variable delays from zero to 1MHz. Pulse widths are 30ns-1ms. A "scan" mode produces increasing delays and a burst of pulses can be generated. EG&G Instruments Ltd. Tel., 01734 773003; fax, 01734 773493.

Thermal imager. ThermoCAM is a small, portable infrared imager for testing boards, components and assemblies. It uses a focal-plane array camera, has a 256 by 256 pixel display in colour, 12-bit digital storage in PCMCIA cards, colour viewfinder and interchangeable lenses. Video or TIFF files can be sorted and viewed inside the camera and the software allows Windows-based analysis. The camera array is maintained at a constant temperature by a microcooler. Inframetrics Infrared Systems Ltd. Tel., 01256 50533; fax, 01256 50534.

Transducer calibration. For the rapid calibration of transducers, HBM has the DMCplus Digital Measuring Amplifier, with which the input quantity and output signal are processed to present on a PC screen the calibration curve, using HBM software. The curve is printable and saved as archive. HBM United Kingdom Ltd. Tel., 0181-420 7170; fax, 0181-420 7336.

Multi-purpose tools. Three very desirable SOG toolkits from Jensen. The Paratool is the top one, with pliers, wire cutter, poly-carbine, awl, knife blade, serrated blade, scale and a can-opener, all in one folding tool. The other two, Toolclip and Micro Toolkit are scaled-down versions with screwdrivers, but they all fold up very small. So far as we are aware, they are not associated with the Swiss Army. Jensen Tools. Tel., 01902 833246 (free); fax, 01904 785573.

Literature
CPC. Combined Precision Components has produced a monthly product supplement and a weekly offer list of 20 pages containing details of reduced prices. The 1996 catalogue of 1600 pages is also available. Combined Precision Components plc. Tel., 01772 654465; fax, 01772 654466.

Electrospeed. Connectors are a major content of Electrospeed's new colour catalogue, including those from Molex, Cinch, Hirschmann, Thomas & Betts and Multi-Contact. Other increased sections are those for emc and filtering, batteries and chargers. Electrospeed. Tel., 01703 644555; fax, 01703 610282.

IDT. Company and product data from IDT now comes in a number of ways: CD-rom; WWW; and fax. The CD uses Adobe Acrobat to display and print pages, including data sheets; the Web (http://www.idt.com) presents almost as much data and is updated daily, more information being also retrieved using anonymous ftp to ftp.idt.com/docs/docid.ext. Sales are on eurosales@idt.com. For...
Neanderthals not on line, there is Fax-on-Demand, offering all but manuals, which are too big. Call +1-408-492-8341, Integrated Device Technology. Tel., 01372 363734; fax, 01372 378651.

Bruel & Kjaer. A 9-page brochure from B&K introduces an 'integrated approach' to the measurement of sound and vibration and describes the company’s capability in the software field, which enables the production of dedicated programs for specific application. Bruel & Kjaer (UK) Ltd. Tel., 0181 954 2366; fax, 0181 954 9504.

PIC handbook. A new edition of Microchip’s Embedded Control Handbook for the PIC 16/17 family of field-programmable, eight-bit microcontrollers and memory is available. It includes over thirty new and revised application notes and software code for specific applications. There are also schematic and timing diagrams and maths routines. Arizona Microchip Technology Ltd. Tel., 01628 851077; fax, 01628 850259.

Snap switches. Cherry has a new publication describing the DG range of snap switches, which measure 12.8 by 5.8 by 6.5mm and switch up to 3A at 125Vac or 2A at 30Vdc. Cherry Electrical Products Ltd. Tel., 01582 763100; fax, 01582 768683.

Fluke. The 250-page 1996 instrumentation catalogue from Fluke, is now available free. The company’s products cover a very wide range of measuring instruments, latest additions being the Multi-product calibrator and a range of digital storage/analogue oscilloscopes in the Combiscope range. Fluke UK Ltd. Tel., 01923 245011; fax, 01923 225067.

Materials

Cleaning solution. Electrolube has a new solution, Printasolv, to remove ink from surfaces such as printer rollers, ink jets and franking machines. It is effective for solvent and oil-based inks, is economical in use and poses no threat to the ozone layer. Available in 400ml aerosols, it is sprayed onto a cloth or brush and applied to the surface, following which an Electrolube Air Duster helps drying. Electrolube Ltd. Tel., 01734 403014/031; fax, 01734 403084.

Production equipment

Solder-wave measurement. From Alpha Metals comes the Solder Wave Optimiser, a portable instrument to measure both board/wave data and temperature in wave soldering. Data shown includes dwell time, immersion depth, contact length and conveyor speed, preheat, maximum minus preheat temperature, maximum preheat slope and maximum slope over the wave. It also indicates wave-to-board parallelism, all data being down-loaded to a PC. The unit is simply passed through the soldering operation and collects all the data in one pass. Alpha Metals. Tel., 0181 6656666; fax, 0181 6654734.

Fluid dispenser. I & J Fisnar produces a finger switch fitted, by means of a Velcro band, to barrels, cartridges and soft tubes, allowing precise fingertip fluid dispensing from the company’s DSPE 501A pressure dispenser as an alternative to the more common foot switch. Intertonics Ltd. Tel., 01865 842842; fax, 01865 842172.

Pcb coordinate measurement. Martascan 100 coordinates measuring machines by Graticules are claimed to reduce the time to check hole size and position by over 80%, or from three days to half a day. Since the system has a cad interface, raw data files may be used without editing or translation. With a bed size of 1m square, the machine handles two average board of 450 by 250mm, measuring the average 3000 dimensions in two hours to within 25µ accumulative and ±25µ repeatability. Associated software is Windows-based. Graticules Ltd. Tel., 01732 359051; fax, 01732 770217.

UV light source. The Dymax Light-Welder 3010-EC is a high-power, high-intensity ultraviolet light source for the curing of adhesives, coatings and encapsulants. Either manual (pedal) operation by timer and foot-pedal or automatic via interfacing to dial tables, turrets etc. is possible. Intertonics Ltd. Tel., 01865 842842; fax, 01865 842172.

Power supplies

Electron beam power. A new series of electron beam power supplies is introduced by AP&T, the first being the Camera V, a 5kV (less than 1% ripple) type for electron beam deposition in film coating. The switched-mode design includes arc detection and recovery, which operates within 3ms, rapidly enough to leave constant emission control and melt unaffected. An arc rate monitor protects equipment in the vacuum chamber against multiple arcs. No water supply is needed, since the unit is air-cooled. Advanced Products and Technologies Ltd. Tel., 01908 724563; fax, 01865 725831.

50W dc-to-dc. Features of Abbott's NB series of 50W dc-to-dc converters are a total size of 1.5 by 3 by 0.4in and 90% efficiency. Outputs of 0-28V are available from inputs of 14-40V and interfaces for paralleling, sync., enable/disable and 'power good' are included, different pin arrangements being optional. Abbott Electronics Ltd. Tel., 01233 625404; fax, 01233 64777.

SLa chargers. In both rack-mounted and cabinets versions, the SLa family of chargers for sealed lead acid batteries can also be used as power supplies for other equipment, thereby being usable for powering pcs or floating 12V and 24V batteries up to 100Ah.

Please quote “Electronics World” when seeking further information.

March 1996 ELECTRONICS WORLD 249
NEW PRODUCTS CLASSIFIED

They are protected and can be used in series or in parallel to provide up to 250W, under 1% ripple and with a universal input in the 95-277Vac range. Electrosped. Tel., 01703 644555; fax, 01703 012929.

Bench supply. CPX200 from Thurby Thandar is meant for those who need 0-35V and 10A, but not necessarily at the same time. Output power of this dual supply is 175W per output, maximum current being adjusted in a switched-mode regulator as voltage decreases; 35V at 5A to 17.5V at 10A. Outputs work in constant-current or constant-voltage mode with auto crossover and mode indication. They can be connected in series or parallel. Thurby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480 450409.

150W, rack-mounted. Weif has a plug-in, rack-mounted unit in a 3U by 14HP panel containing a three-output, 100W convection-cooled (150W force-cooled) supply, approved to all manner of safety and emc standards and working over the 90-254V input range with no tap changes. The HSS 703 is completely enclosed, has a panel-mounted IEC socket, switch and mains fuse. Weif Electronics Ltd. Tel., 01243 865991; fax, 01243 866813.

Power to the Pentium. Semtech's MP60 series of 35W switching dc-to-dc converters have a connector conforming to Intel's voltage regulator specification for the P6 processor. They supply 10A continuously at 2.9V and additional functions can include a 'Power good' signal, output enable and upgrade present, and programmable output voltages of 1.5V to 3.6V. Semtech Ltd. Tel., 01592 773520; fax, 01592 774781.

40W/in² dc-to-dc. UPM converters from Ampliton Liveline use a synchronous-rectifier buck regulator optimised for 5V inputs. Power and control electronics are on separate boards to obtain improved thermal performance and isolation of the control circuitry from heat sources. The devices are meant to provide 280-660V mains, being optically isolated from the control circuit. International Rectifier. Tel., 01883 713215; fax, 01883 714234.

Radio communications products

Linear amplifiers. Pacific Amplifier Corporation's range of RF linear amplifiers covers the 1MHz-2GHz range and includes power amplifier sub-systems, power modules and low-cost lab. amplifiers. The PAC205 is a remotely controlled leadfeadbase front panel designed for the Special Mobile Radio band of 936-940MHz, while the PAC207 is a broad-band gain block for the 746MHz-930MHz cellular and telephony bands. Intermodulation is low at -60dBc and -30dBc respectively, for output powers of 80W and 30W. Anglia Microwave Ltd. Tel., 01277 630000; fax, 01277 631111.

Microwave amplifiers. Wessex has a new series of PCN and PCS microwave power amplifiers in modular form, in instrument cases or in rack-mounted versions. Bands covered are 1.805-1.880GHz or 1.930-1.990GHz with a gain of 20dB minimum (gain in band ±10dB pk-pk) to give 43dBm output power. They are unconditionally stable and protected against open or short-circuits and can be provided with cooling fans. Harmonics are 50dB down; spurious -70dBc. Wessex Electronics Ltd. Tel., 0117 9571404; fax 0117 9573843.

Protection devices

Transient suppression. For the surge protection of low-voltage semiconductors, from 2.6V to 4.5V, Semtech's four-layer enhanced punchthrough diodes are said to possess advantages over silicon avalanche types in having a leakage current of 10μA and capacitance of 50pF. Esd protection is to 15kV, peak pulse current is 30A and maximum clamping voltage at 1A 4.3V, 4.9V and 6.5V. Semtech Ltd. Tel., 01592 773520; fax, 01592 774781.

Snubber diodes. Fast-recovery, high-power diodes by IR are intended as snubbers for gate turn-off thyristors and possess a soft-recovery characteristic to avoid voltage spikes and ringing, which cause high power dissipation and misfiring of the switch. Devices in the SD133 N-RXX - SD453 N-RXX set are packaged as studs and there are others in disc form and as isolated modules; International Rectifier. Tel., 01883 713215; fax, 01883 714234.

Switches and relays

Hi relays. Matsushita's RK/RG high-frequency relays have either one or two changeover contacts and imposes an insertion loss of less than 0.3dB at 900MHz. Power consumption is 200mW - less when pulse driven - and can be made to latch with one or two coils. Size is 20×21.1mm, standing off 9.7mm. Matsushita Automation Controls Ltd. Tel., 01908 231555; fax, 01908 231599.

5GHz relay. Coto Wabash Corp. (US) offers a range of small, surface-mounted reeds handling 5GHz signals with less than 60psec rise times with less than 0.2dB insertion loss at 1GHz. Size is 9.3 by 4.6 by 4mm. Coil is for 5Vdc, is of 150Ω resistance and 10fF insulation resistance, giving a switching speed of under 0.5μs. Contact rating is 3W. Coto Wabash Corp. Tel., 0181 763 0550; fax, 0181 763 0560.

S-s relays. Solid-state relays in Crydom's PFC range handle 10Ams at 45°C ambient. They are controlled by a logic-level signal and operate from 280-660V mains, being optically isolated to 4kV, VDE certified to EN 60606-1 with UL approval. Inrush current can be as high as 250A at a dvdt of 500V/μs. Crydom Europe. Tel., 0181 763 0550; fax, 0181 763 0459.

Transducers and sensors

Absolute shaft sensor. Control Transducers has a range of absolute measuring sensors, which are effectively industrial rotary potentiometers using the Mystar plastic material for long life and reliability. A three-wire connection to the controller is needed. Design is such that axial and radial shaft play is taken up without effect on accuracy or life. Control Transducers. Tel., 01234 217704; fax, 01234 217083.
Computers

Rack-mount computer. AMC offers the AMG614 computer, which is intended to be part of ISA, PCI or EISA systems in telecomms or the AMC614 computer, which is a Rack-mount computer. AMC offers a 14-slot ISA, a 14-slot EISA system in telecomms or the AMC614 computer, which is a Rack-mount computer. AMC offers a 14-slot ISA, a 14-slot EISA system in telecomms or the AMC614 computer, which is a Rack-mount computer. AMC offers a 14-slot ISA, a 14-slot EISA system in telecomms or the AMC614 computer, which is a Rack-mount computer.

Outputs from the on-board fifo and driver, both differential, have a choice of active-high or active-low enable pins to three-state the outputs. ESD protection is to 10V.

Linear Technology (UK) Ltd., Tel., 01276 677676; fax, 01276 64851.

Development and evaluation

PIC development. Microchip offers the PICMASTER-178 universal circuit, a development tool for the PIC17C4X microcontroller family. It runs on PCs under Windows and includes an emulator control panel, a target-specific simulator, the PRO-MATE programmer, a PIC host-interface card, emulation control software, demo hardware and software and documentation. Arizona Microchip Technology Ltd., Tel., 01268 51077; fax, 01268 850259.

Programmers

Universal modules.

This is a VERY SMALL SAMPLE OF STOCK. SAE or Telep one far lists. Please check availability before ordering.

Used Equipment - GUARANTEED. Manuals supplied if possible. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering.

Stewart Electronics

When Performance is more important than size:-

two new re-programmable BASIC Stamp Computers.

NEW PRODUCTS CLASSIFIED

When Performance is more important than size:-
two new re-programmable BASIC Stamp Computers.

BS1-IC

8 I/O lines
up to 100 program lines
2,000 lines/sec
Comms to 2400 baud
£29 single price

BS2-IC

16 I/O lines
up to 600 program lines
SPI, DTMF
Comms to 19.2k baud
£49 single price

Programming package £66

Milford Instruments Tel 01977 683665 Fax 01977 683145

March 1996 ELECTRONICS WORLD+WIRELESS WORLD
Valve amplifiers made clearer

In the editing of the second extract from my book 'Valve Amplifiers', the precise need for the cathode build-out resistor in the concentric phase splitter was not made clear. When originally conceived in 1982, the purpose of the build-out resistor was to equalise the output resistances, reduce imbalance, and thereby reduce distortion.

However, when tested with square waves, I found that removing the build-out resistor caused a coggle on the leading edge of the waveform, which could not otherwise be eradicated. Each output of the phase splitter forms a low pass filter with any shunt capacitance, and since these capacitances are likely to be similar, the output resistances should also be similar to preserve high-frequency balance; hence the coggle when the build-out resistor was omitted. So although the build-out resistor was originally included to improve 1kHz distortion performance, it has been retained to improve transient response.

Various observers have commented that the output impedances are not equal, and that when the stage drives a real load, its impedance does not have to be a low impedance cables for yourself. Actually quite easy to make reliable and actually quite easy to make reliable chafing caused short circuits. It is interesting the extensive speaker cables - several GHz. Perhaps counter-intuitively, the value of the shunt capacitance increases considerably to achieve this match. Interestingly the extensive speaker cables which place the two conductors far apart to reduce capacitance, are doing the worst thing possible for frequency response.

A better approach to this task is to use cables with a build-out resistor in the anode. Miller capacitance is rendered obsolescent in a hi-fi shop, or a show, and see how many (British) valve amplifiers are for sale. The demand exists, so the product is made.

Morgan Jones
Southampton

Valve prejudice?

Frank Ogden's flippant assertion that only "a complete loony, suffering from terminal nostalgia would seriously consider valves for anything" (Letters, February) betrays him as a devout Philistine. The absurd notion that all past wisdom is rendered obsolete is somewhat unhelpful. The 'Soviet Union' presented a shining example of this folly and look where that got us. Is Mr Ogden seriously suggesting that musicians of the world over are all sick, demented, or just plain stupid?

The idea that "new" is inherently better than "old" is more in tune with adolescent truculence than with any considered intelligence. Please, Frank, don't use science as an excuse for your prejudices - it does neither you, nor us, nor science, any favours.

Simon Yorke
County Durham

Cable communication

Ben Duncan's article about loudspeaker cables in the February's issue was illuminating and highlighted very well the problems of the design and modelling of transmission lines. The lumped model has its limitations, but Ben Duncan has applied it well. The model he has used describes a quarter wave section of 600Ω cable operating at 10MHz, but at high audio frequencies it is a good approximation of two metres of 300Ω cable. This is a good basis for the analysis that followed but is tricky to modify to see the effects of different cable types.

A better approach for this task is to use Spice simulators. For simple scenarios such as considered here, the difference is small until alternative cable impedances are considered. With a 2m, 300Ω cable modelled the high frequency roll-off is indeed still present. It is a natural consequence of the end-to-end impedance transformation and consequent mismatch which takes place when a transmission line reaches an appreciable fraction of a quarter wavelength.

The greater the intrinsic mismatch, the worse the loss.

A better cable. To prevent this, and make the whole system flat in the frequency domain, the solution is to make the cable the same impedance as the loudspeaker - 8Ω. The impedance of the loudspeaker is then presented unchanged to the amplifier output at all frequencies and there is no roll-off. The response is flat up to the frequency at which the line starts to support non-TEM modes - several GHz. Perhaps counter-intuitively, the value of the shunt capacitance increases considerably to achieve this match.

Attempts have been made in the past to produce cables of low impedance by weaving enamelled wire together, but they have not been usable. The idea that "new" is inherently better than "old" is more in tune with adolescent truculence than with any considered intelligence. Please, Frank, don't use science as an excuse for your prejudices - it does neither you, nor us, nor science, any favours.

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
somewhere near.

Adhesive copper tape about 18mm wide is available from many stockists and is mainly used for electromagnetic shielding. A good sized reel can be had for about £10. The copper tape is stuck on each side of a soft plastic strip, about 1mm thick, to form a sandwich. The hole is then insulated with some tough plastic. The brown PVC tape used for packaging is suitable. The diagram shows a cross section of the cable. Connections to each end can be soldered with short pieces of thick wire. This assembly will lie flat under a carpet. In terms of the corrosion difficulties for stranded cables by the article, this has none of these, and being flat the skin essentially negligible. The cable will contribute only its resistive term to the circuit.

Make the cable disappear. If you really want to remove your loudspeaker cables from the equation, the answer lies within the power amplifier. Most designs use negative feedback, taken from as close as possible to the loudspeaker terminals as possible. This guarantees the most uncompromised voltage source possible at that point. The loudspeaker cables then degrade this to an extent dependant in their length and quality.

Power supply designers have known the answer to this problem for years. Even the simplest designs usually offer remote sensing terminals to guarantee the accuracy of delivery at the load rather than the supply terminals. They generally have a configuration that allows the user the choice of high accuracy with a bi-wired remote sensing setup, or by omitting the second pair of wires, the standard accuracy with the cable impedance degrading performance.

With an audio amplifier—which is just a fast ac power supply—this can be achieved with couple of simple modifications.

The feedback sensing point, which is used to define the location of the net voltage source, is coupled back to the comparator circuit with a resistor, usually several kilo-ohms. This sensing point can be moved by the addition of extra resistors and bi-wiring to the loudspeaker. The precise value of the feedback resistors is not critical as long as it is the same in both channels.

The effect of a change is merely on gain, pro rata to the change so the addition of a few ohms—10k is about right—will not change performance. Provided the bi-wiring is used, the new resistors can be shorted out and have no effect at all. The junction of these two resistors is taken to the far end of the speaker cable with a second wire, effectively moving the sensing point for the negative feedback all the way up to the speaker.

As far as the resulting driving

Creative fiction

Circuit simulators are extremely powerful tools for investigating electronic scenarios. I have always thought it too obvious to need saying that relying wholly on simulation can lead you off into deep error unless you do regular reality checks with real circuitry to ensure your model is not fallacious. I was wrong; it does need saying.

While I must decline to give Duncan's article 'Modelling Cable' in the February 1996 issue the full dissection it deserves, I feel it only right to reassure people who are appalled at the prospect of loudspeaker cables made up from a Sargasso Sea of 10mV 'mystery diodes', then determine hacker first? With all the information over the net, then a question? The very openness of the net should be questioned.

Interesting enough, I have recently read that a new encryption technique using a one pad key is awaiting the grant of its patent. It was promised that this would then be passed into the public domain. If business users are intent on passing sensitive information over the net, then a secure form of encryption is an absolute necessity.

Geoff Lewis
Canterbury
Kent

More current drive

I noted the letter by J.R. Allison (Bradford) in the December edition. He comments on the use of current feedback on audio amplifiers, or 'current-drive' as I prefer to call it in a system context. I should point out that such a subject has been investigated in the 1980s at Essex University by Dr Paul Mills, a then research student under my supervision but now with Tannoy.
Electromagnetic clarification?

Requirements of standards vary, but in particular, EN5501 specifies a voltage maximum, a distance and an antenna. This appears to be fine when the current measurement from the specified loop antenna, with its factors, is converted to a voltage. The resultant voltage can then be referred to the standard for a pass or fail. Fine so far. It is when one makes a measurement at 30m distant from the source, with a loop antenna, at a frequency of less than 2MHz that I see a problem. This measurement will be in the near field, with a current measuring device. How, then, is to be converted to a voltage when the voltage and current relationship is not established, as it is in the far field?

I consider the far field to be around \(\frac{1}{2} \lambda \) wave length distant of the source and the relationship in the far field to be, in simple terms, \(V_{\text{source}} \) to \(R_{\text{load}} \), or a correction factor of log 20.377, or 51.5dB.

M J Nicholas
Bournemouth
Dorset

Electro-magnetic confusion

The recent correspondence on electromagnetic compatibility in your February issue, barely touched on the growing electromagnetic pollution of the environment.

There seems to be a tendency to ignore the effects of broadband 'hash' on fashionable parts of the electromagnetic spectrum. The fact that most pcs block out radio reception on nearby long and medium-wave (150kHz - 1.5MHz) radio receivers is dismissed as unfortunate. But then the preferred band for 'serious' radio listening is fm.

The truth is that we are drowning in a sea of electromagnetic pulses from electronic light ballasts, domestic appliance controls and television and pc displays and systems – and nobody cares. This off-hand attitude to radio interference now extends far up the broadcast spectrum. We are shortly to be exposed to channel 5, which will occupy uhf channels 34-39. According to my frequency allocation list, the band 606-614MHz in that sector was allocated for radio astronomy.

The jamming of research radio reception does not end there. Electronics World readers may recall that the search for intelligent life elsewhere in the galaxy was recently stalled by a microwave oven in the observatory.

I fear it will take some spectacular computer system crashes due to rogue electromagnetic pulses to convince the slow-rute junkies, terabyte nerds, surfers and vhf anoraks currently in the ascendant that limiting electromagnetic pollution by improving the design, construction and screening of radiating equipment is in everyone's interest.

Anthony Hopwood
Upton-upon-Severn
Worcestershire

Early EMC

Electromagnetic compatibility is widely regarded as something invented in Brussels a few years ago, that became a legal requirement at the beginning of this year. In fact, controls on emission have been around for some forty years, one of the first being the requirement for 'suppression' of the ignition systems of petrol engines to minimise interference with early EMC

Among the rate was the requirement for 'suppression' of interference from amplitude modulated citizen's band transmissions.

Control of immunity in volume-produced products, however, is often considered to have been introduced only recently, as a result of interference from amplitude modulated citizen's band transmissions.

It is interesting therefore, to note that in the Dec 1971 issue, WW reproduced an item from The Marconigraph of sixty years previous concerning a patent issued to Capt. H. J. Round. This is not only the earliest reference to a 'valve' in the The Marconigraph, but also perhaps the earliest example of improvement of immunity.

For readers who do not have either of those issues to hand, the invention consists of a reversed-polarity diode connected in parallel with the diode detector of a simple detector-only receiver. Both diodes are provided including digital as an analogue process has merits, but that is a different story.

Professor M Hawksford
Centre for Audio Research and Engineering

*Acoustic Renaissance for Audio (ARA) proposal web pages:
http://www.ibmpcug.co.uk/-meridianara/*
ANCHOR SURPLUS Ltd
The Cattle Market Depot
Nottingham NG2 3GY. UK
Telephone: +44 (0115) 986 4902/
+44 (0115) 986 4041 24hr answerphone
Fax: +44 (0115) 986 4667

FRANKLIN/WAVETEK 3600
3 phase Power Line Disturbance Monitor
50-800V 40-800Hz 1 .. 2 .. or 3 phases .. 3 Inputs .. LED Readout with Printer
Cased As New Condition £795

DRUCK DP107
Leak rate indicator LCD Display of
Differential Pressure (0-3000.0 pa) Leak Pressure (0-3000.0 pa).
and pressure (0-10.000 psig)
Complete and Cased with Manual in As New Condition £150
Also . . Limited Qty (Only available with the DP107)
Cased Adaptor Kit (incl Pump) £45

COLE T1085 Power Line Monitor
Monitors & Records Mains Voltage and Frequency
Detects & Records Spikes and Transients with internal printer
Cased with manual £95

Signal Generators
A Small selection of the Sig' Gens we have available
HP 8640A (40KHz-55Mhz) AM-FM-CW. £650
Marconi TF2018 Synthesised (80KHz-520Mhz) AM-FM-CW £995
Marconi TF2018A Synthesised (80KHz-520Mhz) AM-FM-CW £1095
Marconi TF2022 Synthesised (10KHz-1000Mhz) AM-FM-CW £1695
(Also . . Versions of 2022 available March . . Please Phone)
Audio . . IF . . RF . . Pulse . . Function . . Waveform . . You Name it . . we SHOULD Have It

TESTO 451 Digital Instant Action Anemometer + Thermometer
with 9540 Dual Action Probe (only 0.5" diameter)
Multi Function Large LCD Readout . . Hand Held . . Very Modern
0.4m/s to 60m/s 80ft/min to 9999ft/min -30°C to 140°C 22°F to 280°F
Supplied in As New Condition with Telescopic Extension and Booklet
3 Only Available £425

ETA 3000 Solid State Anemometers
0-3000ft/min . . Solid State Sensor (Only 0.5" diameter) . . 3 Extensions
Supplied Cased in As New Condition . . Only £75

DATA ACQUISITION 7050 Instrumentation Cassette Recorders
4 Trackincl 3 x "Vibration" Amplifiers & 1 x "FM" Amplifier . . Remote or Local operation
LCD Readout . . internal Filters . . Voice TalkOver . . Shuttle facility . . Logic Control
Mains/Battery Operation . . Cased . . Only £425

LO-KATA NAVTAX 2 Navigation & Message System . . Incl Printer and Supply . . £195
GENERAL RADIO 1602-B UHF Admittance Meter . . 40-1500Mhz. Complete . . Boxed . . £125
Please Phone for stock information

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm
NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME
All Prices are Ex VAT & Carriage
All items are Fully Tested with Verified Calibration
and carry our Unique 30 Day Un-Conditional Warranty

March 1996 ELECTRONICS WORLD+WIRELESS WORLD
Non-slewing audio power amplifier

Advancing his 'non-slewing' technique, which enabled an instrumentation amplifier capable of ±1000V/µs, Giovanni Stochino now applies the principles to audio power amplification.

In a recent article, some high slew rate voltage feedback amplifier architectures were presented and discussed. A virtually non-slewing 50Ω power amplifier configuration was finally proposed, where high speed is accompanied with low input offset voltage and noise, as well as with low total harmonic distortion in the audio frequency range.

In this article I show how the same basic principles, embodied in Fig. 9, with appropriate adaptations, can be applied to the design of high performance audio power amplifiers.

Non-slewing amplifier performance

In non-slewing architectures, as explained in the previous article, all main slewing mechanisms are virtually eliminated. Therefore, when the input signal is within the common mode input voltage range, the current at the output of both input and intermediate gain stages, is always controlled by the differential input voltage \(V_d = V_i - V_2 \).

Figure 1 allows us to compare the performance of a non-slewing amplifier, nsa, with a similar yet conventional and slewing architecture, or csa. For clarity, only the input and intermediate stages are detailed, while the output stage is shown in the form of an ideal voltage follower.

Biasing currents are the same in both nsa and csa configurations. The results of Spice simulation for an input stimulus consisting of a 10kHz square wave with a superposed high frequency sinusoidal voltage of 500kHz are shown in Fig. 2.

It is apparent that the non-slewing architecture has no visible transient intermodulation distortion, while the conventional configuration shows clear signs of the presence of intermodulation distortion due to slewing times \(T_f \) and \(T_r \) - both of about 7µs.

In Fig. 3, transfer curve \(h_{v1} \), which is the intermediate stage output current, versus \(V_{v1} \) is shown for both \(f_0 = 0 \) and \(f_0 = 40 \).

Three regions of operation are identified:

I - input and intermediate stage in class-A operation;

II - input stage in class-AB, intermediate stage in class-A operation;

III - input and intermediate stage in class-AB operation.

Transconductance \(g_m = I_b / (V_i - V_2) \) in these regions is approximately as follows:

\[
g_m(I) = 2 / (R_e + 2VT/q) \quad (1)
\]

where \(V_T = kT/q \) is the thermal voltage of around 25mV at ambient temperature, and, \(g_m(II) = 2 / (2R_e + R) \) \(g_m(III) = 1 / (2R_e + R) \) \((2) \) \((3) \)

Maximum positive and negative current \(I_{b\text{max}} \) at node B is defined by the maximum input voltage \(V_{\text{max}} = V_{EB0} - V_{\text{be(on)}} \) that should never be exceeded, according to the following relationship:

\[
I_{b\text{max}} = (V_{\text{max}} - 2V_{\text{be(on)}}) / (2R_e + R)
= (V_{EB0} - V_{\text{be(on)}}) / (2R_e + R) \quad (4)
\]

Here, voltage \(V_{EB0} \) is the rated base-emitter reverse voltage of input transistors. If, for instance, \(V_{EB0} = 6V \), \(R_e = 50Ω \) and \(R = 2000Ω \), equation (4) yields 18mA. This value, added to \(I_b \), is enough to sustain a rate of change - still linear - of ±160V/µs across a capacitance of 25pF.

Performance of the 'non-slewing' amplifier.

Test conditions: ambient temperature=20°C; \(V_{cc} = V_{ee} = 55V \) regulated.

<table>
<thead>
<tr>
<th>Test conditions:</th>
<th>ambient temperature=20°C; (V_{cc} = V_{ee} = 55V) regulated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain=30dB</td>
<td>Vout (Vpp)</td>
</tr>
<tr>
<td>Output power 20Hz-20kHz, 110W/8Ω; 180W/4Ω</td>
<td>8Ω load</td>
</tr>
<tr>
<td>Small signal -3dB bandwidth, 800kHz (at node F before output inductor)</td>
<td>8Ω load</td>
</tr>
<tr>
<td>Input offset voltage, 4mV</td>
<td>1kHz</td>
</tr>
<tr>
<td>Maximum output voltage rate of change, ±170V/µs (at node F)</td>
<td>20kHz</td>
</tr>
<tr>
<td>Overload recovery time (up to 300% input overload) ≤120ns</td>
<td>1kHz</td>
</tr>
<tr>
<td>Distortion, see Table 1.</td>
<td>20kHz</td>
</tr>
</tbody>
</table>

Table 1. THD+noise of circuit in Fig. 4, bandwidth 80kHz.

<table>
<thead>
<tr>
<th>Vout (Vpp)</th>
<th>thd+noise(%)</th>
<th>thd+noise(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.004</td>
<td>0.016</td>
</tr>
<tr>
<td>20</td>
<td>0.003</td>
<td>0.020</td>
</tr>
<tr>
<td>40</td>
<td>0.003</td>
<td>0.030</td>
</tr>
<tr>
<td>60</td>
<td>0.003</td>
<td>0.040</td>
</tr>
<tr>
<td>80</td>
<td>0.004</td>
<td>0.045</td>
</tr>
</tbody>
</table>

thd+noise instrumentation=0.002%
of 150pF at node B, which is a realistic value in an audio power amplifier.

It is worth noting again that this maximum rate of change is not to be confused with the non-linear slew rate limitation due to input and/or intermediate stage overdrive phenomenon in CSA architectures.

The remaining problem in this type of NSA configurations, as well as in all other high slew rate class-AB architectures, is associated with the large full scale non-linearity due to class-AB operation, as is apparent from Fig. 3. This can leave a residue—although rather low—of transient intermodulation products, even when overall feedback is applied to the amplifier. Additionally, this limits large signal linearity at high frequency where loop gain is reduced for reasons of loop stability.

An effective way to further limit the already low transient intermodulation distortion in non-slewing audio power amplifier architectures, is to set the bias current of input and intermediate stages so that class-A operation is retained with actual music programs at the maximum expected power and frequency. Considering that the peak current needed to sustain full swing at node B is equal to $2\pi V_{cc}C_0$, where C_0 includes also the base-collector capacitances of transistors connected to node B, the previous reasoning leads us to set $I_b < 1 mA$ for $f=20 kHz$, when $V_{cc}=30 V$ and $C_0=150 pF$. As suggested by Self2, a safety...
Fig. 4. Detailed circuit diagram of a viable non-slewng audio power amplifier.

Fig. 5. Basic circuit diagram of a new implementation of a high performance high slew rate audio power amplifier.
margin of about two is recommended. This also takes into account the current contribution needed to drive the output stage and to make up for component tolerances.

In principle, this solution promises very good THD and transient intermodulation distortion performance with normal audio programs. At the same time, it is capable of assuring the very low - if any - transient intermodulation distortion offered by non-slewling architectures, should unexpectedly fast and/or large input transients occur, as maintained by Duncan.

Non-slewling, high power audio amplifier architecture

Figure 4 shows the complete circuit diagram of a possible implementation of a non-slewling audio power amplifier, designed bearing in mind the above considerations. If compared with the 5012 power amplifier of Fig. 9, discussed in my previous article, it contains some minor changes.

Firstly, to cross coupling resistance R is reduced to 200Ω to improve full range linearity of the input stage and increase its maximum available output current. Current shifting component I2 has been increased accordingly to 8mA, while I1 has been kept at 2mA.

To reduce power consumption of current source transistors Tr16 and Tr21, zener diodes D1 and D2 have been added. Furthermore, the output stage is built around a double pair of high-power complementary mosfets. These are the IRF 640 and IRF 9640, from International Rectifier.

Each power mosfet can dissipate 125W of power and provide more than 20A peak current. Therefore, the amplifier can safely drive very low impedance loads, provided the output mosfets are adequately heat-sinked.

Transistors Tr11-16, which serve as low output resistance push-pull drivers, are capable of providing the high peak currents needed to drive the high and non linear input capacitances of power mosfets. This can amount to about 800pF worst case each. Peak output current limitation is set to about 40A by zener diodes D3 and D4, but a 3-4A fuse has to be inserted at the amplifier output for safe continuous operation.

Due to the high gate-source voltage needed to drive mosfets into full conduction, maximum output voltage swing is limited to about 12V from the supply rails. This results in reduced amplifier efficiency. If needed, better efficiency can be obtained by operating power mosfets with separate supply rails of ±45V.

Output stage bias current is set by adjustable shunt regulator, IC1, and by trimmer RV1. This component has to be set to its maximum before applying power to the amplifier and adjusting bias current of Tr23-26. A suitable value for total mosfet bias current was found to be about 20mA. Unless otherwise stated, resistors are 300mW, 1% metal film types.

Measured performance of the amplifier prototype, which is in good agreement with simulation data, is shown on the first page of this article.

Further developments.

In the last few months I have investigated whether better results can be attained in terms of both maximum rate of change and THD in high-slew rate audio power amplifiers configurations.

Figure 5 illustrates the further evolution of the basic power amplifier circuit structure depicted in Fig. 4, which I am currently working on. In comparison with Fig. 4, where the intermediate stage current gain is low (1 to 2), Fig. 5’s topology features an intermediate stage with high low frequency current gain, equaling R3/R4 for Rb/Re<1.25.

With component values shown in the figure, this gain amounts to 45. The expected advantages are increased low frequency open loop gain - and hence lower THD for the same closed loop gain - and potentially higher speed, since the current available at the intermediate stage output is larger than the corresponding current in Fig. 4’s architecture.

From Fig. 5 you will find that,

$$I_{ab}(V_{d}=0)=I_{a1}(V_{d}=0)=0,$$

therefore bias current I2 is equal to,

$$I_{2} = \frac{V_{B1}-V_{B(0)}}{R_{e}} = 9mA.$$

Available peak current is defined by V_{al} and V_{al} peak value, i.e., $V_{al(pk)}$, via the relationship

$$I_{al(pk)} = \frac{V_{al(pk)}-V_{al(0)}}{R_e}.$$

In the interests of reliability, this peak current value has been limited to about 60mA, by means of the diode clamping networks at the collector of input transistors. These limit $V_{al(pk)}$ to about 2.8V. With this high peak current value it is now possible to sustain slew-rates of ±400V/µs across a 150pF total capacitance at the input node of the output stage. I cannot provide measurement results yet, however, Spice simulations confirm the above theoretical predictions.

For the moment, I can report the simulation results shown in Fig. 6, which demonstrates the frequency response - magnitude and phase - the square-wave response and the square-sine wave response. They prove the stability and clean response of the amplifier - even with a severe 8Ω/0.5pF load impedance. In addition, they show the absence of any visible transient intermodulation distortion.

References

ZENITH 900 X MAGNIFICATION MICROSCOPE. Zoom, takes 50p's and 20p coin. DC operated, price just £7.99 ref BAR27.

GOT AN EXPENSIVE BIKE? You need one of our bottle alarms, 260 character 2 line, 83x19mm £3.99 ref SM2020A.

Gyroscopes Remember these? Well we have found a company that uses some of the old stock to make some of these very strange items. £13.99 ref EP51.

STereo Microscopes Back in stock. Russian, for educational use etc. £6 ref EP70.

Microphone Strippers Small cased tape strips ideal for looting stuff, good for monkeying around in a car, and lots of other stuff. Price just 50p. Ref BAR22.

Solar Power Lab Special you get TWO 2W 6V solar cells, ALES, wire, switch, plus flexi-tyre or motor. Super value at £3.99 each.

Rgbcga/egaitt Colour monitors 12" in good condition, boxed complete with manual and power supply. £42.50 ref WAD03.

Plug in acorn PSU 15V AC £2.99 Ref MAG01P1.

Power supply fully tested, comes with mains and clips 115V 220V £12.99 ref MAG41P1.

Archimedes Mesis PCB £4.50. unsold, selectables mains input. 145x100x45mm £39.95 Ref MAG7P2.

Universal speed controller Kit designed by us for the Archimedes for 12v motor control. Complete with PCB and wiring. A real neat project may be £9.70. Ref MAG57.

Phone cable and computer communications Pack contains 100ft of 20awg wire, the drivers, with RS232 interfaces and all connectors etc. Ideal low cost method of communication between PC's over an long area utilizing the serial interface. £25.95 Ref WA36.

Viewdata systems made by Phillips, complete with internal modem, keyboard, power pack, amscial, menu driven, all in one box. £129.95 Ref MAG52.

Wireless Video Bug Kit Transmits video and audio in ir, or video. Sensitive, for cordless phones etc. Pack of 2 just £5 ref EP78.

RED EYE SECURITY PROTECTOR 1,000 watt outdoor pir £50.00. Sale price just £29.95 Ref SB15.

Solar Panel Base 100tx 6v 100mA panels, 100 diodes, complete with instructions £3.99 ref MAG56P1.

Solar power supply 300 watt ups system Top of the range UPS system. Provides backup power for short periods of time, a valuable safety blanket against mains power failures and cuts new homes. UK made, complete with front panel and full instruction manual. £129.95. Last item. A bargain at this price.

Solar Path lights Low voltage path lights by the sunburbs! £15 each. Includes solar panel, batteries and charge controller. £24.95 ref MAG52P1.

Big brother PSU Cased PSU, 6v 2A output, 2cm1.5m lead, input 16v. Made in UK, £32.99. Ref MAG51P1.

Energy bank kit 100tx 6v 100mA panels, 100 diodes. Provides up to 5 mins running time in the event of a power failure. £39.95 Ref EF78. 500 pellets £4.50 ref EF80.

Fibre optic cable and computer communications Pack contains 100 metres of fibre optic cable, the drivers, with RS232 interfaces and all connectors etc. Ideal low cost method of communication between PC's over an long area utilizing the serial interface. £25.95 Ref WA36.

MINIFLAM MICRO FANS 12v to space price £2. Ref SA31. 10A 240v, £8.99 Ref SA32.

Complete PC 300 WATT UPS SYSTEM. Top range UPS system. Provides backup power for short periods of time, a valuable safety blanket against mains power failures and cuts new homes. UK made, complete with front panel and full instruction manual. £129.95. Last item. A bargain at this price.

MINISPEC LASER PROJECTOR, BRAND NEW MODEL NOW IN STOCK, supplied in fully built form (looks like a nice piece of kit). £299.95 Ref EF31.£42.99 includes 12.6vdc 40 watt, 50-200mhz, 50 ohm in/out FM/AM. £69.95 Ref RF2.

12.6vdc 90 watt, 1.5-30mhz 75 ohm in/out FM/AM. £79.95 Ref RF1.

NEW HIGH POWER RF TRANSMITTERS

GPS NOGAS AND OVENBLES Brand new gas appliances, perf for camper vans, etc. 3 burner hob. SALE PRICE £34.99 + £7.99 P&P. £42.99 ex-stock. £39.99 in stock.

FIXED micro value providing up to 50% more output. Absolute bargain for parts alone £9.95 ref BAR33.

VIEWDATA Complete system comprising 1200/75 modem, auto answer system, voice mail, mains lead, warranty, menu driven, autodialler etc. SALE PRICE JUST £2.99 Ref SA28.

Computer disc clearout We are left with a lot of software to clear at £5 ref SA31. Condition unknown.

NIGHTSIGHTS Model TZS4 with infra red illuminator, views up to 50mm in total darkness! £5.99 ref EF138.

GOT AN EXPENSIVE BIKE? You need one of our bottle alarms, 260 character 2 line, 83x19mm £3.99 ref SM2020A.

Plasma screens 222x310mm, no data hence just £4.99 ref EP66.

Plasma projector, 1500lumens, 2.800 rpm, reversable, Tx7" UK made, new, Aluminium, current list £299.95, now only £99.95 Ref EF01.

STANDARD LEAD (extends it by 750mm), fitted in less than 10 seconds, reset autoest button, 10A rating. £9 each. Ref MM5.

Computer disc clearout We are left with a lot of software to clear at £5 ref SA31. Condition unknown.

NIGHTSIGHTS Model TZS4 with infra red illuminator, views up to 50mm in total darkness! £5.99 ref EF138.

GOT AN EXPENSIVE BIKE? You need one of our bottle alarms, 260 character 2 line, 83x19mm £3.99 ref SM2020A.

Plasma screens 222x310mm, no data hence just £4.99 ref EP66.

Plasma projector, 1500lumens, 2.800 rpm, reversable, Tx7" UK made, new, Aluminium, current list £299.95, now only £99.95 Ref EF01.

STANDARD LEAD (extends it by 750mm), fitted in less than 10 seconds, reset autoest button, 10A rating. £9 each. Ref MM5.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine! Effective, cheap, X-ray safety systems, can be useful for experimental purposes. Not a toy or for minor! £11 Ref: F91M

PREMIUM KIT 3 input mono mixer, sep bass and treble controls plus individual level controls. 12V input, sens 100mA, £15 Ref: RS03

METAL DETECTOR KIT Range 15-20m compete with case, 9v. £8 Ref: T22

SOUND EFFECT GENERATOR Kit produces sounds ranging from bird chirps to screams. Complete with speaker, add sound effects to your projects for £10 Ref: 1040

GUITAR PICKUP KIT £14 includes tone controls, small enough to fit in any guitar, based on TL082 IC, 9-12vdc £12 Ref: T1026

EZ CHARGER KIT Uses argon laser but easier and less costly to build yet far more efficient. WORLDS SMALLEST TESLA COIL/LIGHTENING £10/set Ref: FGRA1.

INFRARED RAY REMOTE CONTROLLERS Can make any toy, motor etc into permanent remote control device. E20 Ref: F1028.

MOTORBIKE/CYCLE TREMBLER ALARM KIT Adjustable shock waves. Blow holes in metal, produce 'cold' steam, atomize amazing gift, conversation piece, magic trick or science project. £6/4 Ref: RCR1

PORTABLE X RAY MACHINE PLANS Produces 100m of visible green light. High coherence and spectral similar to Argon laser but easier and less costly to build yet far more efficient. This particular deign was developed at the Atomic Science Division of MEDNET Ltd.

VOICE SCRAMBLER PLANS Simple basic solid state circuit turns speech into indistinguishable noise that cannot be understood by anyone matching or using the circuit. This unique design makes it impossible to be used to encrypt radio or studio conversations. An exellent idea for an earpiece. £35 Ref: FST3/3DG.

UNIVERSAL TV JOKER PLANS Little hand held device utilises specatular and unusual effects when rubbed together! Believed to cause rain! E3 a pair Ref: EF29.

HIGH FREQUENCY AND HOSTILE PREMISES USES SPEC SATELLITE TECHNOLOGY TO GATHER DISTANT SOUNDS TO TOUCH OF YOUR HAND! £5/set Ref: F/EMA1.

WEBSITE AVAILABLE, 45P STAMP OR FREE ON REQUEST WITH ORDER.

SOME OF OUR PRODUCTS MAY BE UNLICENSABLE OF THE UK

ELECTRONICS WORLD+WIRELESS
WE WANT TO BUY!!
IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE.
WE PAY TOP PRICES AND COLLECT.
R. HENSON LTD.
21 Lodge Lane, N.Finchley, London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE 0181-445-2713/0749
FAX 0181-445-5702

WANTED
Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory & Warehouse Clearance.
Confidentiality Assured.
TELFORD ELECTRONICS
Phone: 01952 605451
Fax: 01952 677978

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC's.
Langrex Supplies Limited
1 Mayo Road, Croydon
Surrey CR0 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

WANTED
TOP PRICES PAID
For all your Test Equipment, Receivers, Transmitters etc. Factory Clearance, Prompt Service and Payment.
HTB ELEKTRONIK
Alter Apeler Weg 5
27619 Schiffdorf, Germany
Tel: 0049 4706 7044
Fax: 0049 4706 7049

WANTED
Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity Prompt service and cash.
M & B RADIO
86 Bishoptgate Street
Leeds LS1 4BB
Tel: 0113 2435649
Fax: 0113 2426881

ELECTRONICS VALVES & SEMICONDUCTORS
Phone for a most courteous quotation
We are one of the largest stockists of valves etc. in the U.K.

COLOMOR ELECTRONICS LTD
170 Goldhawk Road, London W12 8HJ
England.
Tel: 0181 743 0899
Fax: 0181 749 3934

VALVES, and CRTs AVAILABLE
ONE MILLION VALVES stocked for Audio, Receiving, Transmitting & RF Heating. Rare brands such as Mullard & GEC available. Also MAGNETRONS, KLYSTRONs, CRTs and SOCKETS. Large stocks of Russian & Sovtek items. Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED
Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3). Valves must be UK manufacture to achieve prices mentioned. Also various valve-era equipment e.g. Garrard 301, (up to) £90.
Ask for a free copy of our wanted List.

BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ.
Tel: 01403 784961 Fax: 01403 783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER £50 plus VAT

FOR SALE
Hewlett Packard HP54120T 20G1-1, Digital Storage Oscilloscope. The unit comprises a HP54120A mainframe and a HP54121A 4 channel input. The unit is in excellent condition and is complete with comprehensive manual. Offers are invited.
KFS DISTRIBUTORS LTD
Tel/Fax 0121-440 2900

KL Systems
Microcontroller based electronic control systems. Specialising in the application of Zilog Z8 technology. Software, hardware and consultancy. Z8 development system available for £100.
Tel: 01642 490620
or see Internet for further details.
http://www.wp.com/klsystems

SURPLUS SALE
THIS MONTH'S SALE INCLUDES:-
Spectrum Analysers, Oscilloscopes, Signal Generators, Voltmeters, Power Units, Frequency Counters, Receivers, Transmitters, Ex PMR Equipment, Photographic & Video Equipment, Components, & Miscellaneous items etc.
ALL EQUIPMENT IS SOLD AS SEEN.
ALL PRICES EXCLUDE V.A.T.
NO MINIMUM ORDER.
RING TODAY FOR THIS MONTH'S CATALOGUE.

WANTED
SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote for complete factory clearance.
B. BAMBER ELECTRONICS
5 STATION ROAD, LITTLEPORT, CAMBS.
Phone: ELY (01353) 860185
Fax: ELY (01353) 863245
Eight year EW index

Hard copy or disk

Includes over 600 circuit idea references

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1987 to 1995—volumes 94 to 101 inclusive—and is available now. It contains almost 2000 references to articles, circuit ideas and applications—including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

Even though the disk-based index has been expanded significantly from five years to eight, its price is still only £20 inclusive. Please specify whether you need 51/4in, 3.5in DD or 5.25in HD format.

Existing users can obtain an upgrade for £15 by quoting their serial number.

Even though the disk-based index has been expanded significantly from five years to eight, its price is still only £20 inclusive. Please specify whether you need 51/4in, 3.5in DD or 5.25in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number.

Ordering details

The $W index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide.

For enquiries about photocopies, etc., please send an sae to SoftCopy Ltd at the address below.

Send your order to SoftCopy Ltd., 1 Vineries Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail at 100556.1126@compuserve.com. Please make cheques payable to SoftCopy Ltd—not EW or Reed Business Publishing.

Please allow up to 28 days for delivery.
SPECTRUM ANALYSERS

- HP141T1 2.5GHz system (85528, 8554B) £1250
- HP8557A 900MHz (fitted in 182C mainframe) £1500
- HP3580A 5Hz-50kHz audio frequency spectrum analyser £750 to £1250
- HP3582A audio frequency fit analyser dual-channel £2000
- HP8568A high-specification 1.5GHz spectrum analyser £7500
- MARCONI 2386 100Hz-26.5GHz (in 1Hz steps!) £15000
- TEKTRONIX 492 21GHz portable spectrum analyser, with options 12 & 3, and complete with waveguide mixer set (and diplexer) to cover 18-40GHz £7000

HEWLETT PACKARD

- DATRON 1665 digital multimeter all ranges plus IEEE £500
- IDACOM PT402 protocol analyser (Hewlett Packard E3910B with E3936A) £2000
- JJ INSTRUMENTS CR600 2-channel pen recorder £250
- KIKUSUI 8520 frequency response analyser with sweep generator 4600 £500
- PHILIPS PM5167 1mHz-10MHz function generator £275
- PHILIPS PM8272 X-Y & Y-I dual-channel pen recorder £350
- RACAL-DANA 1992 frequency counter 1.3GHz IEEE option £700
- RACAL 9008 automatic modulation meter £350
- RACAL-DANA 9000 milli-voltmeter £400
- SYSTRON DINNER 1300 synthesized signal generator 100kHz-1GHz 695B £1350
- TEKTRONIX P6303 o'scope probes NEW 250MHz X1/X10 £250 ea
- TEKTRONIX 1503 tdr metallic-cable tester with opts 03/04 £1000
- TEKTRONIX 2465 option CTS oscilloscope £2000
- WAYNE KERR 3220 20A bias unit (for 3245 inductance analyser) £1250
- WAVEKET 23 synthesized function generator 0.1Hz-12MHz £1250
- WAVEKET 1067 opt 522 1-500MHz sweep generator £500
- WAYNE KERR 3220 20A bias unit (for 3245 inductance analyser) £1250

MARCONI INSTRUMENTS

- DATRON 1665 digital multimeter all ranges plus IEEE £500
- IDACOM PT402 protocol analyser (Hewlett Packard E3910B with E3936A) £2000
- JJ INSTRUMENTS CR600 2-channel pen recorder £250
- KIKUSUI 8520 frequency response analyser with sweep generator 4600 £500
- PHILIPS PM5167 1mHz-10MHz function generator £275
- PHILIPS PM8272 X-Y & Y-I dual-channel pen recorder £350
- RACAL-DANA 1992 frequency counter 1.3GHz IEEE option £700
- RACAL 9008 automatic modulation meter £350
- RACAL-DANA 9000 milli-voltmeter £400
- SYSTRON DINNER 1300 synthesized signal generator 100kHz-1GHz 695B £1350
- TEKTRONIX P6303 o'scope probes NEW 250MHz X1/X10 £250 ea
- TEKTRONIX 1503 tdr metallic-cable tester with opts 03/04 £1000
- TEKTRONIX 2465 option CTS oscilloscope £2000
- TEKTRONIX P6201 FET PROBE £350
- WANDER & GOLTERRMANN WM00 level tracer £500
- WAVEKET 23 synthesized function generator 0.1Hz-12MHz £1250
- WAVEKET 1067 opt 522 1-500MHz sweep generator £500
- WAYNE KERR 3220 20A bias unit (for 3245 inductance analyser) £1250

铥tele electronics exclusively professional T&M©

36 Eastcote Lane South Harrow Middlesex HA2 0BD England Tel (+44) 0181-422 3592 Fax (+44) 0181-423 4000

ISO9002 ACCREDITED STOCKIST - MEASUREMENT & TEST EQUIPMENT

SPECIAL OFFER THIS MONTH ONLY ON HEWLETT PACKARD DIGITAL TRANSMISSION TESTERS, PROTOCOL ANALYSERS

Examples: HP37724A SDH/PDH portable test sets-Condition as new, price £5000 (were listing at ca £20K!) - also 37772A optical interfaces available for STM-1, £1500 (list over 6K).

"SPECIAL OFFER THIS MONTH ONLY" ** HEWLETT PACKARD 8673M ** synthesized signal generators 2-18GHz (Similar model to 8673B but coverage as above) Only available at £6,000. (Will be listing at £7,500)

64000-SERIES MDS:

- 64700A, MAINFRAMES WITH:
 - 64787B, 64604A, 64783A, 64172B, 64746J, 64744A/C/E, 64780A.

SEND FOR COMPLETE LISTING AND QUOTATION

ISO9002 ACCREDITED STOCKIST - MEASUREMENT & TEST EQUIPMENT
THE WORLD'S MOST POWERFUL, PORTABLE PROGRAMMERS

Compare the Dataman S4 with any other programmer and you'll see why it's the world's undisputed number one. S4 is capable of programming 8 and 16-bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, BOOT-BLOCK FLASH, PICs, 8751 Microcontrollers and more. S4 also emulates ROM and RAM as standard! S4 is the only truly hand-held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48
Our new Dataman-48 programmer adds Pinsmart® technology to provide true no-adaptor programming right up to 48-pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere. As with S4, you get free software upgrades and technical support for life, so now you don't have to keep paying just to keep programming.

The current device library contains over 1500 of the most popular logic and memory devices including GALs, PALs, CEPALs, RAMs, 8 and 16-bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGA, PICs and many other Micro-Controllers. We even include a 44-pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP, SDIP as well as memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

The Dataman Challenge
Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming toolbox, we will refund your money in full.

Dataman Programmers Ltd,
Station Road, Maiden Newton,
Dorset DT2 0AE, UK
Telephone +44/0 1300 320719
Fax +44/0 1300 321012
BBS +44/0 1300 321095 (24hr)
Modem V.34/V.FC/V.32bis
Home page: http://www.dataman.com
FTP: ftp.dataman.com
Email: sales@dataman.com