Lockable video sync design

New power amp concept

MathCad 6 reviewed

Video compression techniques

Notes on organ tones

High power valve audio

Fractional-\( n \) synthesiser

Radio-code clock modules – 25% exclusive EW
At last! The complete PC-Based PLD Training System

THE PAL TRAINER

Until now, introducing students and engineers to the world of Programmable Logic Devices has been fraught with problems. Not only has the necessary hardware to be laboriously assembled in bits and pieces, but suitable software and - equally important - supporting documentation has been, if anything, harder to source.

With the launch of THE PAL TRAINER system from Flight Electronics International, the entire problem has been neatly solved in one comprehensive hardware/software/documentation package...

...providing everything that the engineer and student needs for a thorough introduction to PLD's at a very realistic price.

COMPLETE & COMPREHENSIVE

One of the main advantages of THE PAL TRAINER is its completeness. The board and accessory kit consists of:

- The MPLDT-10 main unit - a sturdy metal-cased PCB containing both a GAL programmer and a test unit. There is also a separate demo area for use with the demonstration section of the manual.
- A PCPET interface card, which plugs into a free PC expansion slot, and connects to the main unit via a supplied API-37 cable. This allows rapid programming of the PLD, and greater flexibility than a serial link can deliver.
- A 360Kb system diskette containing the board driver files.
- An external power line for use with the experiment section.
- Various connection lines and block jumpers.
- The comprehensive PAL TRAINER User's Manual. This has been written in precise, easy-to-understand English, and takes the student right from unpackaging and setting up the system, through a short demonstration program which runs without the need to do into PALASM and then, in a gentle step-by-step sequence, through 23 separate experiments.

The complete PALASM software package, whose separate manual also contains a number of example programs.

SIMPLE, FAST, FRIENDLY

The design parameters of THE PAL TRAINER were that it should:

- run on IBM XT, AT or compatibles - with no need for ANY other hardware.
- provide a complete training course, from initial logic design, to PC simulation, device programming & testing.
- be enjoyable, readily-understandable, but fully applicable to 'real-world' situations.
- include a top programming language - in this case AMD's PALASM Version 4, widely regarded as the PLD standard. Version 4, incidentally, can be linked to other schematic packages such as OrCad.

LIKE TO SEE THE PAL TRAINER IN ACTION?

Nothing beats an actual hands-on experience of the system's completeness, ease of use, and flexibility. Just call 01703 227721 and order today! - We operate a 'no strings' 30 days 'no risk' refund.

USING THE SYSTEM

The two main parts of the PAL TRAINER are the programmer and the applications sections. Using the programmer section, up to 3 GAL devices are placed in ZIF sockets, and programmed from the PC using the supplied software. This lets you choose a particular PAL to emulate, loads a JEDEC file into memory (either generated from the PAL TRAINER's own software or any other appropriate software package), downloads the JEDEC file to the GAL, and even lets you 'view' the GAL once it has been programmed.

CIRCLE NO. 101 ON REPLY CARD
Contents

102 VIDEO COMPRESSION TECHNIQUES
John Matthews outlines the techniques being used to cram more image information into less space and bandwidth, including MPEG, JPEG and H261.

110 HIGH POWER VALVE AUDIO
A KT88-based push-pull power amplifier forms part of Morgan Jones' discussion of high-power valve audio.

114 LOCKING ON TO VIDEO SYNC
Michael Cox has been designing with a highly integrated solution to sync pulse generation and video-signal genlocking, namely the SAA1101.

119 MODELLING CABLE
Analysing loudspeaker cables using Spice, Ben Duncan discovered that cable format can have an affect on audio quality.

124 NOTES ON FREE PHASING
Ian Hickman discusses his new solution on how to achieve a simple, cheap and highly stable oscillator for free-phasing electronic organ notes.

130 FRACTIONAL-N SYNTHESIS
Cosmo Little reveals the benefits of a little-known frequency synthesis technique that is cheaper than direct synthesis – and requires much less power.

136 DESIGNING CASCADE RC OSCILLATORS
Cascade RC oscillators are simple, stable, and offer very fast start up. David Griffiths explains how this configuration benefits from modern op-amp technology.

140 AUDIO POWER WITH A NEW LOOP
In Marcel van de Gevel's high-performance power amplifier, quiescent current is stabilised via feedback, using a non-linear common mode loop.

168 MATHCAD GETS A PLUS
Allen Brown looks at the latest release of Mathcad and its DSP analysis option

Regulars

91 COMMENT
Sound reasons for digital tv?

94 NEWS
Inter-satellite communication, polysilicon shortage, Boat-Show, 400Gbit/s fibre, Brain drain

96 RESEARCH NOTES
£32 million for holographic storage, Computing record that is rewriting atomic science, Laser makes better steel, Lasers take on a chilling role, Chaos benefits.

146 CIRCUIT IDEAS
Hf-to-vhf converter, Flasher for dogs, Frequency comparator with hysteresis, Control software flow through pc's serial port, Simple power flasher, Frequency-dependant negative conductance, Returning local-oscillator crystals, linear square and triangle generator, Telephone line monitor, Edge detector/doubler, Low-battery monitor shuts down gracefully.

156 LETTERS
EMC, valve doubts, linear modulation, optical links, cm fields and Foster-Seeley.

159 NEW PRODUCTS
Pick of the month – classified for convenience.

164 APPLICATIONS
Load-dump testing, Surge protection and Uncrackable electronic locks.

Special offer
25% discount on PC interfacing Radio-Code receivers
Read Radio-Code time transmissions into your PC, and control with atomic time precision, page 129.

February 1996 ELECTRONICS WORLD
Embedded C

Assembly Simulation

Integrated PCB & Schematic Design System for Windows

Quickroute 3.5 is a powerful, easy-to-use integrated software tool for designing and developing printed circuit boards. It helps you to

- Design PCB layout with ease
- Create and modify components
- Perform design rule checking
- Generate Bill of Materials

Quickroute requires a CD with the software and a PC running Windows. Visit our website for more details.

Further information from:

Quickroute Systems Ltd., 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, U.K.
Tel/Fax 0161 449 7101

CIRCLE NO. 106 ON REPLY CARD

Prices and specifications subject to change without notice. All trade marks are acknowledged & respected.
Sound reasons for digital tv?

Unveiling the Government's Broadcasting Bill at the end of last year, Heritage Secretary Virginia Bottomley proudly proclaimed that "the rest of the world is watching," because Britain "will be the first major national market to go digital," and "we must look forward to a golden future."

Will this perhaps be a future in which Ms Bottomley's Press Office learns to use new fangled devices like the telephone and fax machine? My invitation to Ms B's briefing arrived by Christmas post - a day after the event. Others in the specialist press never heard anything.

Perhaps it was intentional. We might have spoiled Ms B's day by asking whether the British public will pay money to install the equipment they will need to pay more money to view the new digital services?

When Britain's two satellite services launched around five years ago, both Sky and BSBD made the mistake of assuming that people would go out and buy a receiver, and then pay for a dish to be installed. BSBD also assumed that viewers would pay a premium of several hundred pounds for MAC instead of PAL.

Rupert Murdoch quickly woke up to reality, branded the brown goods trade "unable to sell a toaster" and employed hit squads to knock on doors, and install Sky systems on free trials. By the time BSBD had stopped snoring, and started to organise one-stop installation, the station was collapsing into merger.

For at least a year, David Einstein of Sky has been talking about Sky's plans to transmit more channels, using digital technology. But there are clear signs that his station is now getting cold feet. Even if Sky could afford to give every viewer a free digital receiver - at a starting cost of several hundred pounds - the company would also have to re-employ the hit squads. They would then go up ladders and try to loosen corroded bolts to replace existing LNBs with Universal models that can receive Astra's new high frequency digital transmissions.

The BBC wants to lead the UK - and Europe, and the world - into digital terrestrial television, starting in 1997. At a recent briefing Director General John Birt compared the transition from analogue to digital tv, with the switch from 405 line black and white to 625 line colour. DTTV offers wide screen pictures and digital sound, he revealed to us. Perhaps someone inside the BBC should tell Boss Birt that his existing analogue tv transmissions already carry Nicam digital stereo sound to 87% of the viewing population, and the other 13% is hoping they will one day get it too.

Birt also seems blissfully ignorant of the debate on wide screen television which has been running since long before the BSBD fiasco, and Channel 4's recent decision to cut back on PAL Plus transmission. The British public has been offered wide screen sets for many years and steadfastly refuses to buy them. Indeed Birt admitted that although he has seen a widescreen set, he does not actually own one.

The parallel with the 405/625 line transition is fascinating. It took twenty years, not the fifteen Birt claims, and offered a completely new and dramatic upgrade - colour - at a time when there was very little electronic gadgetry in the shops. Today, consumers are sick to death of new gadgetry in the shops. Today, consumers are sick to death of new gadgetry in the shops.

Perhaps one of Grade's staff could ask him how this will give the specialist press what they want? Or, as the other 13% of the audience puts it, "all the rest of the world is watching, we must look forward to a golden future."

...we must look forward to a golden future

change-over reference point, the BBC suggests a 15 year gate on analogue services. An extraordinary policy paper, submitted to the Heritage Department by Keith Boyfield and Brian Sturges, suggests switch-off by 2006, just ten years away. As modern homes are full of tv sets and VCRs that can last ten years, this bright idea would succeed mainly in killing sales of all existing analogue equipment. Ms Bottomley has settled for a review when half of Britain's households can get digital tv. If this means 50% transmission coverage it is a daft idea. If it means 10 million homes fully kitted out with digital tvs and vcrs, it compares with what happened over 405 shutdown, and makes sense. It's another of those questions the specialist press would have asked Ms B if her staff had learned to use a phone or fax machine.

There is, of course, a hidden agenda in all this. As broadcasters move from analogue to digital transmission, they release frequencies which the government can then sell. Anyone who can rush consumers into buying digital equipment will definitely be in the running for a big thank-you from the Treasury - and probably a nice little knighthood to go with it.

Barry Fox

Electronics World + Wireless World is published monthly. By post, current issue £2.25, back issues (if available) £2.50. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel: 082584 REED BP G. Cheques should be made payable to Reed Business Publishing Group.

NEWSTRADE DISTRIBUTION
David G. Sanders
0181 652 8171

ISSN 0959-8332
Back issues
Available at £2.50
**UPDATE**

**Brains forced overseas**

A lack of vision at the UK Medical Research Council has driven overseas a multi-disciplinary group working on the brain.

The MRC refused to renew the position of the group’s computer scientists, jeopardising its future.

Late last year, the group moved to the specially established Institute of Neuro-informatics in Zurich, despite having secured long-term funding and repeatedly expressing its wish to remain in the UK.

Group leader Kevan Martin says he feels no bitterness towards the MRC but questions its decision making.

“Its vision is to the floor rather than the horizon,” said Martin. “The MRC unit is directly supported by government; its whole purpose is to support high risk, long term research, and that is exactly what we are doing.”

The MRC refused to comment.

The group is developing a hybrid digital-analogue vlsi architecture to model the neocortex – the bulk of the circuitry that makes up the brain.

“The neocortex is a rather fantastic general purpose processor, adaptable to many functions,” said Martin.

**Wired for Sea – electronics at the Boat Show**

Sailing – that simple, centuries-old communion with wind and tide – is now one of the most high-tech sports in the world, and getting ever higher.

Nowhere is this more apparent than in round-the-world yacht racing, which communications companies seem to regard as an appropriate metaphor for their activities, as well as a proving-ground for their technologies. BT, having provided race communications for the Whitbread races, is now sponsoring one of its own, and took one of the largest stands at this year’s Boat Show to proclaim the fact.

The BT Global Challenge involves 14 identical 67ft yachts racing the ‘wrong way’ – i.e against prevailing winds and currents – around the world. Two of the boats are sponsored by other electronics companies, Motorola and Toshiba.

Unlike traditional alternatives, this system keeps the four key elements entirely separate. The benefits: flexible information displays instead of fixed-role instruments, plus choice in the way you put together your boat information system.

Unluckily for BT, the fact that the hulls are made of steel prevents a repeat of the digitally-compressed tv transmissions which were tried during the last Whitbread. These used Inmarsat A, which needs a much larger antenna – too big to mount away from the deck. This time the fleet will stay in touch via C-Sat, which provides e-mail and Internet, via a conical aerial no bigger than a vacuum flask, and hf sub radio through Portishead.

Leisure sailors meanwhile are becoming increasingly reliant on electronics. Arguably the most significant launch product at this year’s Boat Show was Admiralty charts on CDrom. ARCS – the Admiralty Raster Chart Service – as it is called, provides straightforward digital reproductions of the familiar paper charts, for use with pc-based navigating systems.

Two forms of display are possible: a ‘life-size’ close-up of a portion of the chart or a low-resolution overview of the whole thing. As with the paper charts, different scales with differing amounts of detail are available.

Regular updating is available, also on CDroms, issued weekly, but with cumulative information so that just one set of data need be patched in, perhaps just prior to the summer cruise. Charts cost £30 each; update CDroms £10. One chart occupies about 1Mb of hard-disk space.

ARCS is already supported by PC Maritime’s Navmaster Windows-based system, alongside its existing vector-based Livechart cartography.

Elsewhere at the show, integration was this year’s great leap forward. Surprisingly, it is only 21 years since the first autopilot was launched. Since then GPS has arrived and wind speed/direction, compass bearing and depth sounder have all been digitised. The result is – or can be – a proliferation of displays and complex harness of wires around the boat. The solution is an integrated system using a single cable with multifunction displays, which is what Autohelm has come up with in its ST80, the latest development of its SeaTalk System. Navico meanwhile has enhanced its own, similar Corus system with an inboard autopilot, Oceanpilot, capable of translating all this information into intelligent coursekeeping.

And if you should fall overboard, make sure you have your PLB7 with you. This tiny device by Sea-Marshall is an electronic beacon, transmitting on the Search and Rescue frequency, which will help your own boat, or a rescue aircraft to find you quickly.

"Understand its workings and you have achieved something fundamental."

The unit’s achievements to date include collaborative work with the California Institute of Technology to create a silicon neuron that resembles closely the biological neuron cell.

And the unit has also constructed analogue vlsi devices that incorporate multiple neurons.

The MRC had wanted the group to pursue a more biological slant for the work. This meant there would be no funding for the analogue VLSI work.

Roy Rubenstein, *Electronics Weekly*
This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate Hi-Fi system. This kit is your way to get 1K performance at bargain basement prices. Unique design features such as fully FET stabilised power supplies and the world's most advanced circuit designs by the renowned John Linsley Hood, the very person who helped to bring Hi-Fi to the masses, even in the sixties we were using easily assembled kits. Hart Audio Kits and factory assembled units use the unique combination of components and ease of construction.

**ALPS “Blue Velvet” PRECISION AUDIO CONTROLS.**

Now you can throw out those noisy ill-matched carbon pots and knobs and replace with the world's very best ALPS "Blue Velvet" range components only used exclusively in the very top flight of World class amplifiers. The improvement in sound quality is simply incredible giving better tonal balance between channels and rock solid image stability. Motorised versions have 5v DC motor. These are the serious audiophile. Not only does it give beautiful easy-to-make joints but it effects joints easy but eliminates the need for board cleaning after assembly. Containing 240 pages and over 200 line illustrations this new book represents great value for money. £16.95

**“CHIRA” SINGLE ENDED CLASS “A” HEADPHONE AMPLIFIER.**

This unit provides a high quality headphone support for "trendy slen- der" use or to supplement those high power amplifiers that do not have a headphone facility. Easily installed with special wire links through the unit drives its power from our new Andante Ultra High Quality stereo to line output stage. It features the wide frequency response, low distortion and stability that only those components used with designs from the renowned John Linsley Hood. The terminated termination resistors and PCB mounted sockets prevent unwanted noise and on-board diagnostics provide visual feedback to the user of the board integrity. Voltage and balance controls are ALPS “Blue Velvet” components. Very sturdy yet, built by begin- ners, line all components fit directly on the single printed circuit board. The kit has very detailed instructions, and even comes with a complementary roll of Hart audigרופer silver solder. It can also be supplied factory assembled and tested. Setting for less than the total cost of all their components, if they were bought separately, this unit represents incredible value for money and makes an excellent gift.£23.10 K1100 Complete Kit. £29.00 K1100A Complete Kit with selected special components.

**TECHNICAL BOOKSHELF.**

NEW Another Classic by John Linsley Hood. "AUDIO ELECTRONICS." Following the enormous ongoing success of his "Art of Linear Electronics" the latest offering is the all-new edition of "Audio Electronics," now entirely rewritten by the master himself. Underlying audio techniques and equipment is a world of electronics that determines the quality of sound. For those involved in designing, adapting or using digital or analogue audio equipment understanding electronics is an essential ingredient in the control over the reproduced sound. The subjects covered include tape recording, tuners, power output stages, digital audio, test instruments and loudspeaker crossover systems, John's lifetime of experience and personal inno-vation in this field allow him to apply the gift of being so familiar with his subject that he can write clearly about it and make it both interesting and comprehensible to the reader. Containing 240 pages and over 200 line illustrations this new book represents great value for money. £16.95

**“THE ART OF LINEAR ELECTRONICS.”**

The definitive linear electronics and audio book by John Linsley Hood. The 200-page book will give you an unparalleled insight into the workings of all types of audio circuits. Learn how to read circuit diagrams and understand amplifiers and how they are designed to give the best sound. The author's bias towards active and passive components are examined and there are separate sections covering power supplies and noise. £14.75 A SIMPLE CLASS A AMPLIFIER" J.L.Linsley Hood M.I.E.E. 1969. Covering the days when audio was young and valves were king!

**“SOLDERING.”**

The excellence performance of modern cassette recorders depends totally on the quality of the R/P head. Even the smallest amount of wear can impair the frequency response and distortion levels. Our newly developed Gold Plated Camden Super Audiograde Silver Solder has been specially formulated for use. Another point that we believe that there are no valid quantities enables us to offer you the amazing prices of only £1.80 each. £2.50 to 50 each. No waiting! All books are normally in stock! SPECIAL OFFER. All book orders over £15 will receive a free John Linsley Hood monograph entitled "Digital versus Analogue, Black or Silver?" £3.95

**SOLDERING.**

GHC 80 Replacement Stereo Cassette Head.

The price of modern components makes the right soldering equipment essential for good results. Everything we offer we actually use in our own workshop. See our list for the full range. £45. 845-0342 ANTEX (42s) Gilded type. This is the ideal Multi-purpose type as the bit is designed to totally surround the element giving the best tape transfer. The soldering design also means that although it is small and handy enough for modern components its heating capacity is better than larger types of conventional construction. Excellent value. £9.93 845-0521 Gilded type. This has provision for the classic damping sponge for bit warming. £3.96

**HART SUPER AUDIGRADE SILVER SOLDER.**

Hart Super Audigroade Silver Solder has been specially formulated for the serious audiophile. Not only does it give beautiful easy-to-melt solder but it does not form air pockets at the surface of the component. If you are interested in providing the potential of thermal damage to components or the need for strong andgapless joints, then this solder is the perfect choice. Easy but eliminates the need for board cleaning after assembly.

£45. 846-0051 Brass 25g in Hart Mini Tube. £3.90 £45. 846-0079 100g, Standard Silver, 25g. £12.20 £45. 846-0083 100g, Standard Silver, 25g. £26.40

**QUALITY AUDIO KITS.**

Hart Audio Kits and factory assembled units use the unique combination of circuit designs by the renowned John Linsley Hood, the very person who helped to bring Hi-Fi to the masses, even in the sixties we were using easily assembled kits. The improvement in sound quality is simply incredible giving better tonal balance between channels and rock solid image stability. Motorised versions have 5v DC motor. These are the serious audiophile. Not only does it give beautiful easy-to-make joints but it effects joints easy but eliminates the need for board cleaning after assembly. £45. 846-0051 Brass 25g in Hart Mini Tube. £3.90 £45. 846-0079 100g, Standard Silver, 25g. £12.20 £45. 846-0083 100g, Standard Silver, 25g. £26.40

**SPECIAL PRECISION Tri-Purpose Test Cassette TC1D.**

Are you sure your tape recorder is set up to give its best? Our latest tri-purpose test cassette gives you the most important test parameters without test equipment. Ideal when fitting new heads. A professional quality, digitally mastered test tape at a price anyone can afford. Test Cassette TC1D. Our price only. £5.99.

**“THE HART PRINTED CIRCUIT BOARD CONSTRUCTION DESIGN.”**
**CMOS gates switch in 15ps**

Toshiba has developed a 0.15μm gate c-mos structure based on a single gate that has a delay of only 1.5 ps. This is claimed to be comparable to speeds normally achieved using a 0.1 μm c-mos process. Use of a single gate structure was introduced by Toshiba's ULSI Research Laboratory to tackle the cost problem of mass producing the conventional c-mos dual gate structure of N-type and P-type polysilicon for the NMOS and PMOS c-mos structure.

---

**Satellites communicate for the first time**

For the first time, satellites have communicated with each other without the intervention of a ground station. The inaugural message was transmitted between Virginia and Hawaii via two Milstar military communication satellites.

Motorola's satellite mobile phone system Iridium is based on military satellite technology. Iridium satellites are in such low orbits that they can only 'see' a small part of the earth at any one time. To avoid the need for a large number of ground stations, Iridium messages will be relayed between satellites to a satellite with a view of a ground station.

---

**Semiconductor makers could face polysilicon shortage**

U.S market research firm Dataquest is predicting a shortage of polysilicon as semiconductor demand continues to grow and production capacity lags demand.

The shortage is predicted to hit semiconductor manufacturers in mid to late 1996 and could last as long as 10 months. But new polycrystalline market capacity is reckoned to come online in 1997, which will let it catch up with demand.

"Silicon companies will have high market pricing power throughout the rest of this decade, and particularly in 1996 and 1997," said Clark Fuhs, principal analyst for Dataquest. "For this reason we believe the silicon industry, which has been a historically lower-margin industrial business, will migrate to a business model that more closely resembles the other segments of the semiconductor ecosystem."

Dataquest also predicts a shortage of 200nm wafers as companies prepare new fabs that use the larger format size. The 200nm wafer shortage will begin in 1996 and will continue for much of the rest of the decade, peaking in 1997 and then again in 1999.

The firm estimates that 1995 demand for 200mm wafers worldwide is 1.280m wafers a month. This demand will almost double next year to reach 2.206m wafers and the industry will require 5.213m wafers a month by 1997. However, the industry will only be able to supply 1.956m wafers next year and 3.894m wafers a month by the end of the decade. Dataquest points out that there is a mismatch of supply and demand. This has created a shortage of 100 and 125mm wafer sizes, which should soon be solved.

And it predicts the most serious long term shortages will be in the supply of 150mm wafers.

---

**Researchers achieve 400Gbit/s down a 100km fibre**

Japanese researchers have transmitted digital data at a 400Gbit/s down 100km of optical fibre for the first time. Telecoms developer Nippon Telegraph and Telephone (NTT) has achieved this data throughput by multiplexing four light signals of different wavelengths each carrying a 100Gbit/s data stream. As part of the experiment NTT demonstrated in the laboratory a phase-locked loop timing extraction circuit capable of working at 6.3GHz and a 200Mbit/s optical time division demultiplexer.

The optical receiver must synchronise the incoming data stream and a timing extraction circuit is used to derive the clock signal from the data. NTT used a prescaled PLL, which relies on the nonlinearity of a semiconductor laser amplifier to extract a 6.3GHz clock signal which is scaled up to the original 100Gbit/s signal.

In the receiver the optical time division demultiplexer splits the 100Gbit/s signal into 16 separate 6.3Gbit/s streams.

---

**Pace could loose its set-top lead to Pioneer**

Japanese consumer electronics company Pioneer, is poised to snatch the title of 'leading digital set-top maker in Europe' from under Pace Micro Technology's nose. Pioneer plans to mass produce boxes in Europe in early 1997 and does not feel that Pace poses a threat on the European market.

"Pace has been successful in the Asian area and Australia, but its success in Europe has been limited," said Stuart Liddle, business development manager. However, Pace is not phased by Pioneer's claims, although its current market share of 95 per cent may soon be affected by it.

"We have seen Pioneer's announcements, but we can't comment," said one Pace spokesman. Pioneer plans to ramp up production to up to 2 million units per year by 1998, with prices close £400. Its manufacturing of set-top boxes in Europe could involve the UK.

"It is very likely our manufacturing will be in Belgium but as far as the UK is concerned, at the moment it is still up in the air," said Liddle.

---

**BRT to cost Racal £30m pa**

Racal is faced with spending hundreds of millions of pounds to modernise British Rail Telecommunications' (BRT) network. Racal is to pay £132.75m acquiring BRT, which needs around £30m a year for the next three years to keep its existing PDH network up to scratch.

"BRT requires £30m per annum for the next three years, mainly for supporting network resilience and serviceability," said Rupert Hunte, strategic business development director for Racal Network Services, which is to incorporate BRT.

Svetlana Josifovska, Electronics Weekly
SMALL SELECTION ONLY LISTED - EXPORT TRADE AND COUNTY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK.

HP New Colour Spectrum Analysers
- TEK 7L18 - 1.5-60GHz - £1500.
- TEK 7L5 + L3 - Opt 25 Tracking Gen - £900.
- TEK 496P 1KHz-1.8GHz - £4k.
- TEK 492P - 50KHz- 21 GHz Opt 1+2+3 - £5k.
- TEK 492 - 50KHz - 18GHz Opt 1+2 - £4k-E4.2k.

HP8560A Frequency Counter
- 100Hz-1500MHz ANZ - £300.
- HP3582A .02Hz to 25.6KHz - £2k.
- HP3580A 5Hz - 50KHz ANZ - £750-£1000.

HP8553B RF 1KHz to 110Mds - £1200.
- HP141T Mainframe - £350.

Marconi TF2370 as above but late type- £850.
- Marconi TF2370 -30Hz-110Mc/s 750HM Output (2 BNC Sockets+ Resistor for 500HM MOD with HP8901A Modulation Meter AM - FM - also 8901B.

HP3779C Primary Multiplex Analyser.
- HP4275A Multi Frequency L.C.R. Meter.
- HP6131C Digital Voltage Source+ - 100V 1/2 Amp.
- HP6034A System Power Supply 0-60V 0 -10A -200W- £500.
- HP6260B Power Unit 0-10V 0-100 Amps.
- HP59401A Bus System Analyser.
- HP3770B Telephone Line Analyser.
- HP5316B Universal Counter A+B.
- ADRET 3310A FX Synthesizer 300Hz-60Mc/s- £600.
- Marconi TF2330 - or TF2330A wave analysers- 0100-0150.
- Marconi distortion meter type TF2331- £150. TF2331A- £200.
- Marconi TF1245 Circuit Magnification meter + 1246 & 1247 Oscillators -0100-0300.
- 8746 - 8650. From £1000.
- displays used in this set-up- 8411a tested to £400 as new with manual - probe kit in wooden carrying box.

HP New Colour Spectrum Analysers
- SMALL SELECTION ONLY LISTED - EXPORT TRADE AND COUNTY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR ETC.
Holographic storage gets £32 million fillip

The next generation of data storage systems are likely to be holography-based if a $32 million programme and some of the biggest names in US electronics succeed in their aims.

Holography, where data storage uses lasers to store information as “pages” of electronic patterns within the volume of special optical materials, has looked like an attractive technology for some years. A million or more data bits can be placed on each page and thousands of pages can be stored in material no larger than a small coin. In this way holographic systems offer the possibility of compact devices holding many trillions of bytes of information. Many commercial applications are envisaged, though one of the first users could be the military, looking for a system to help provide its soldiers and command centres with rapid access to the large amounts of information and visual images they expect to need to be successful in the next decade.

However, only recently have some of the essential components and technologies – such as those used in microelectronics and in the way holograms are read from holographic systems – become available and affordable.

Now a joint university, industry and government consortium has begun to develop the five-year, holographic data-storage system (HDDS) programme.

The aim is to develop key components and integrate them into separate write-once and rewritable systems that can store more than a trillion bits or more and a data-throughput rate of at least a billion bits a second.

At the same time, a second programme – photo-refractive holographic storage systems (PRA), with many of the same participants, will work to develop optically-sensitive materials optimised for storing holograms.

The initial goals of the HDDS project are to develop several key components for the system, including a high-capacity, high-bandwidth spatial light modulator used for data output; and a high-power red-light, semiconductor laser. The HDDS researchers will also investigate optical systems architecture, such as multiplexing schemes and access modes, data encoding/decoding methods, signal processing techniques, and the requirements of target applications.

Organisations involved in the programmes include Stanford University, Carnegie-Mellon, IBM, Rockwell and GTE and several others.

The programme’s ultimate goal is to integrate all the components into separately optimised systems that will demonstrate write-once and rewritable holographic data storage.

Potential applications for holographic data storage systems include satellite communications, airborne reconnaissance, high-speed digital libraries, rugged storage for tactical vehicles, and image processing for medical, video and military purposes.

Professor Lamerius Hesselink, Electrical Engineering, Stanford University, Stanford, California 94305-2245, USA.

Computing record that is rewriting atomic science

What do you suppose would be the result of setting a computer running continuously for two years to chew over a single problem, using 448 processors, each of which has about the same power as today’s fastest PCs?

The answer is a glueball, and despite its rather unattractive name, scientists are delighted.

The point of the research was to calculate the properties of this elusive elementary particle already predicted by theory. In fact the properties were found to match those of a previously unidentified particle detected in several experiments carried out over the last 12 years. So two problems were solved at once and it only took four hundred million billion years. So two problems were solved at once – and it only took four hundred million billion arithmetic operations.

The arithmetic was carried out on GF11 – a massively parallel computer designed and built specifically for these type of calculations at the IBM Watson Research Centre by Weingarten in collaboration.

The IBM result resolves a long-standing puzzle in particle physics. Although glueballs are predicted to exist by quantum chromo dynamics (QCD) – the fundamental theory of nuclear interactions – none had ever before been positively identified in an experiment. It is now clear that glueballs are frequently created in particle accelerators, but have gone unrecognised, because the properties predicted for glueballs by QCD had not been found with sufficient accuracy.

The new QCD calculation provides the first accurate numerical values for the mass of the lightest glueball and for the rate at which it decays into several different combinations of more stable particles. Close agreement between these numbers and the observed properties of a particle named f(1710) make its identification as a glueball practically certain.

So the glueball is now with us for ever.

Over the years we have been used to evermore exotic labels emanating from the minds of atomic scientists to identify their various building blocks. What a pity that this massive calculation – the largest single numerical feat in the history of computing – and the first instance of a particle’s “discovery” by means of a computer, will also be responsible for marking the existence of an exotic particle that sounds more like it has been dissolved out of an atomic scientist’s ear.
The NEW full colour Semiconductor catalogue

The first edition of this new catalogue is now available from Farnell Components, with over 11,000 Semiconductor and Optoelectronic products from 110 leading Manufacturers.

CALL NOW TO RECEIVE YOUR FREE COPY. OR SIMPLY RETURN THE COMPLETED COUPON

Tel: 0113 263 6311

Farnell Components
Canal Road
Leeds LS12 2TU
TEL: 0113 263 6311
FAX: 0113 263 3411
http://www.farnell.co.uk

PLEASE SEND ME MY FREE COPY OF THE NEW SEMICONDUCTOR CATALOGUE

Name: ___________________________ Position: ___________________________
Company: ___________________________ Address: ___________________________
Tel: ___________________________ Type of business: ___________________________

Do you have an account with Farnell Components? Yes [ ] No [ ] If yes account no. ___________________________

Send to: Clare Verity (Marcoms) at the address shown or fax on: 0113 263 3411
Lasers make better steel...

Successful testing of a laser-based sensor, used to track the chemical conversion of iron and carbon into steel, has demonstrated the massive potential of a commercial device, promising huge savings for steelmakers.

The sensor package, developed at Sandia National Laboratories, in Albuquerque, contains two miniature video cameras, filters for controlling both the wavelength and the intensity of the light reaching the cameras, laser diodes, coherent fibre optics for guiding images, single fibre optics for guiding laser light, and circuitry for controlling the filters. All the components are inserted into a compact package near the tip of an oxygen lance that is lowered into the furnace to control the steelmaking.

Sensors monitor temperature at the combustion zone and the bath surface where a blast of oxygen pushes aside thick, foamy slag. The lance instrument package also collects real-time information on the bath height.

By implementing fast, real-time sensors in the steelmaking process, researchers hope to reduce the time for each 'heat', cut oxygen consumption, and improve the efficiency and reliability of the process from heat to heat.

The team is testing several infrared laser methods to measure the temperature, water content, ratio of carbon dioxide to carbon monoxide — indicating how much carbon remains — and the presence of particles above the melt.

Carbon content is normally analysed later, before final metallurgy adjustments, and the final desired composition will vary for automotive sheet metal, steel plate, and other products.

Steel mills currently measure temperatures with single-use, platinum-alloy thermocouples, racking up about $2000 per day for temperature checks.

...and take on chilling role

Two per cent efficiency for a process used to cool a solid might not seem anything to get steamed up about. But when that figure is shown to be 10,000 times better than that so far achieved for the much easier problem of cooling a gas, then the extent of the breakthrough made in optical refrigeration — using lasers to cool instead of heat — becomes much clearer.

For the first time, scientists are glimpsing the possibilities of constructing a solid-state optical cryo-cooler that could be used in cooling ultrafast computer circuits or for removing heat from electronics in outer space. Researchers are talking optimistically about 'optical refrigerators' being used in satellites to cool infrared cameras or in superconducting relays for cellular telephone calls, within only a few years.

The work is being carried out at the Los Alamos Laboratories, and the latest news is being seen as a major step forward toward the goal of creating a "Los Alamos solid-state optical refrigerator," or Lassor, which would cool electronic devices and scientific instruments to at least liquid nitrogen temperature, 77° above absolute zero — and eventually lower.

When light hits a solid object it usually deposits energy or heat. But under some circumstances, light can absorb energy from the microscopic thermal vibrations in the solid, so decreasing the object's temperature.

If an object excited by radiation at one frequency, can be made to emit radiation at higher frequencies, which carry more energy, the object cools.

In previous experiments, heating has always far exceeded cooling. But by using a tunable laser and modern fibre-optic materials, the researchers have managed to suppress the usual heating and make optical cooling dramatically apparent.

In effect the researchers have discovered how to use laser light to excite an object to special quantum states in which it can trap thermal vibrations but can't create them.

The experiments are actually, the first demonstration of a new continuous-solid-state cooling process since the French watchmaker-turned-physicist Jean-Charles-Athanase Peltier discovered thermoelectric cooling in 1834.

In their experiments, the Los Alamos scientists shined a beam of infrared light at a 6mm-long sliver of ultra-pure glass impregnated with ions of the ytterbium.

Ytterbium ions radiate over only a single band of frequencies,
ULTIboard's interactive strenght has always been the major selection criterion of professional Printed Circuit Board designers. Now that every ULTIboard Designer system will be supplied with a SPECCTRA SP4 Autorouter, ULTIboard designers now get the best of both worlds. All ULTIboard Designer Users with valid update subscription got a MAINTENANCE UPGRADE with the SPECCTRA SP4 (4 signal layers + power/ground layers) Shape based Autorouter. This shows that ULTImate Technology is the PCB-Design Tool vendor that really cares for their customers!

THE ULTIMATE SPECIAL OFFER

ULTIboard Entry Designer* £ 1295 (excl. VAT) will now be supplied with SPECCTRA Shape Based Autorouter

*free Upgrade with EMC-EXPERT mid 1996 (list price at release £ 1875)
Chaotic approach to better electronics

To impose order on chaos – just takes a little more chaos. At least that’s the conclusion of three US researchers whose work is forcing scientists to take a new look at the operation and interaction of both natural and artificial non-linear systems. Ultimately it could lead to methods for improving performance of electronic systems by exploiting variations in components.

William Ditto, at the Georgia Institute of Technology and colleagues John Lindner of The College of Wooster and Yuri Braiman of Emory University used computer simulations to study a variety of coupled non-linear systems, including a series of chaotic pendula and a system with a hundred identical oscillators. The systems exhibited chaotic behaviour over both time and space (spatio-temporal chaos), and the activity of each individual element could affect the behaviour of others.

To see what would happen if they increased the disorder and variability of the chaotic systems, the researchers made each pendulum a different length, and programmed each oscillator to respond in a slightly different way.

They expected to see even more disorder and even more turbulent behaviour. But what they got was organised behaviour patterns coming out of the systems. It seems that the diversity or disorder provided a mechanism by which the systems could organise themselves.

How the process works to control chaos isn’t fully understood yet, though it looks as if disorder may help move groups of chaotic elements into similar modes of behaviour. Neighbouring elements then begin to lock into the same mode, and “a local domino effect” spreads that behaviour. The result is an organised system of individual elements that repeats its behaviour in a complex but regular way.

The work looks to have direct relevance to electronics – Josephson junctions for instance. A small dc voltage across such junctions, formed by separating two superconductors by a thin insulator, causes an ac current to flow. Because the frequency of the ac current is very sensitive to any ambient magnetic field, such devices (called squids) can be used to measure extremely small magnetic fields. “Our figures of the spatio-temporal evolution of the velocities of arrays of coupled pendula can also represent the evolution of the currents across arrays of coupled Josephson junctions,” Lindner told EW+WW.

More generally, the work has implications for any system consisting of arrays of identical or near-identical elements, such as vlsi circuits and ccd arrays.

It demonstrates that if the elements are coupled and are non-linear, then the behaviour of arrays of identical elements may be qualitatively different from the behaviour of arrays of slightly disordered elements.

“In fact, small amounts of disorder can literally chaos chaos to order,” says Lindner. The work may turn out to be related to stochastic resonance, a phenomenon in which adding noise to a system actually improves its ability to receive weak signals. Stochastic resonance is already finding applications in electronic systems, and Lindner believes engineers may one day use disorder to enhance performance of electronic systems.

“For certain non-linear systems, maybe you can not only get away with greater variability in your components, but maybe that’s what you want,” he explains. “A clever engineer may be able to exploit this basic phenomenon to lead to better devices. Surprising as that may sound, having a little inhomogeneity in a system may provide better performance if the elements are nonlinear.”

John Lindner is Associate Professor of Physics, The College of Wooster, Wooster, OH 44691, USA. jlindner@chaos.wooster.edu
As easy to use as a calculator but as powerful as a computer.

A powerful set of basic functions, statements and operators - over 230 in all - many larger computers don't have at least of basic instructions in this complete.

Advanced statistics functions enabling users to control 15 independent variables.

Recursive subprograms and user defined functions.

An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data.

A keyboard that can be easily customised for your specific application.

HP-1L Interface pre-installed to create a system that can print, plot, store, retrieve and display information. Control or read instruments or link to other computers.

Spectrum analyser.

Complete kit of HP71B, Bar-Code Reader, and power supply.

**SPECIAL OFFER**

Buy 2 Kits For £59.00

Other products at give-away prices

**M & B RADIO (LEEDS)**

The North's Leading Used Test Equipment Dealer

**SCAN BAR CODES FOR £29.50**

**HEWLETT PACKARD HP71B BARCODE READER**

**The Universal Programmer that stands-alone.**

With everything you need. Don't buy your next programmer until you see the 'Eclipse'.

- Windows and DOS user interface
- Unparalleled in speed & sophistication ideal for PIC and volume production
- 96 to 256 pin drivers
- Programs LEDs, LEDS, LEDs, PPGs, PROMS, EPROMs, EPPROMs, FLASH & Memory
- Universal DIP, PLCC, PGA and OPF modules - no more socket adaptors
- Stand-alone or remote operation

Europe's largest programmer that stands-alone.

call today on +44 (0)1170 332148 or fax +44 (0)1170 371503 for further information

All trade marks are acknowledged and respected

Circle No. 115 on Reply Card

---

**INTERCONNECTIONS LTD**

Unit 51, Inshops, Wellington Centre, Aldershot, Hants GU11 5DB

Tel: (01252) 341900 Fax: (01293) 822766

Circle No. 114 on Reply Card

---

**BARCODE READER**

The Universal Programmer that stands-alone.

- Automatically recognises and decodes all major bar-code standards.

---

**M & B RADIO (LEEDS)**

The North's Leading Used Test Equipment Dealer

---

**SCAN BAR CODES FOR £29.50**

**HEWLETT PACKARD HP71B BARCODE READER**

**The Universal Programmer that stands-alone.**

With everything you need. Don't buy your next programmer until you see the 'Eclipse'.

- Windows and DOS user interface
- Unparalleled in speed & sophistication ideal for PIC and volume production
- 96 to 256 pin drivers
- Programs LEDs, LEDS, LEDs, PPGs, PROMS, EPROMs, EPPROMs, FLASH & Memory
- Universal DIP, PLCC, PGA and OPF modules - no more socket adaptors
- Stand-alone or remote operation

Europe's largest programmer that stands-alone.

call today on +44 (0)1170 332148 or fax +44 (0)1170 371503 for further information

All trade marks are acknowledged and respected

Circle No. 115 on Reply Card

---

**INTERCONNECTIONS LTD**

Unit 51, Inshops, Wellington Centre, Aldershot, Hants GU11 5DB

Tel: (01252) 341900 Fax: (01293) 822766

Circle No. 114 on Reply Card

---

**BARCODE READER**

The Universal Programmer that stands-alone.

- Automatically recognises and decodes all major bar-code standards.

---

**M & B RADIO (LEEDS)**

The North's Leading Used Test Equipment Dealer

---

**SCAN BAR CODES FOR £29.50**

**HEWLETT PACKARD HP71B BARCODE READER**

**The Universal Programmer that stands-alone.**

With everything you need. Don't buy your next programmer until you see the 'Eclipse'.

- Windows and DOS user interface
- Unparalleled in speed & sophistication ideal for PIC and volume production
- 96 to 256 pin drivers
- Programs LEDs, LEDS, LEDs, PPGs, PROMS, EPROMs, EPPROMs, FLASH & Memory
- Universal DIP, PLCC, PGA and OPF modules - no more socket adaptors
- Stand-alone or remote operation

Europe's largest programmer that stands-alone.

call today on +44 (0)1170 332148 or fax +44 (0)1170 371503 for further information

All trade marks are acknowledged and respected

Circle No. 115 on Reply Card

---

**INTERCONNECTIONS LTD**

Unit 51, Inshops, Wellington Centre, Aldershot, Hants GU11 5DB

Tel: (01252) 341900 Fax: (01293) 822766

Circle No. 114 on Reply Card

---

**BARCODE READER**

The Universal Programmer that stands-alone.

- Automatically recognises and decodes all major bar-code standards.
Video compression techniques

In recent years, advances in video compression techniques have been at the forefront of the multimedia revolution. The variety of video applications which are becoming available was clearly evident at this year’s Telecom 95 show in Geneva, ranging from PC based conferencing systems to high-end video on demand products.

Multimedia is a general term covering the exchange of video, audio and data between people. New applications and products appear almost daily, and there are standards in the multimedia world to ensure that equipment and services from one manufacturer will operate successfully with similar equipment from other companies.

A number of standards are now firmly established, including JPEG, MPEG1, MPEG2 and H.320. Most video-conferencing systems over ISDN now conform to the ITU-T H.320 standard, although there are proprietary systems.

MPEG1 is used for audio/visual storage on cd. JPEG is used for still image transmission, while MPEG-2 is aimed at higher end broadcast systems. Apart from JPEG, these standards define the rules governing the compression of video and audio for storage or transmission.

This article looks at the video aspects of these standards. These new standards and compression algorithms have been developed to reduce the bandwidth required for video transmission. In addition, emphasis has been placed on defining methods which can be practically implemented. This development has been coupled with progress in the hardware world, where highly integrated single-chip solutions for the algorithms have been brought to the market.

While the video standards have some common features — in particular the fact that they all use discrete cosine transform — they are distinctly different and are geared towards different applications. For example, JPEG could be used for motion video applications, but it would never achieve the same real-time performance as H.261. This is because it does not have inter-frame and motion compensation capability.

Also, new standards will emerge, encompassing even more applications. For example, H.263 is a video standard with many similarities to H.261 (the video standard for H.320) which will enable good quality video conferencing over the ordinary telephone line. With MPEG-4, there will be new functions, coupled with improved compression ratios and picture quality.

In this article I outline the video standards already developed and summarise their differences and unique positions. In addition, I also review the up and coming standards.

Video compression fundamentals

Current standards — JPEG, MPEG and H.261 — have a number of things in common. The most important of these is that they all use the discrete cosine transform, dct, in their algorithms. They each perform quantisation on the resulting dct coefficients, and implement run-length coding on those quantised coefficients, Fig. 1.

So what is dct? It is a mathematical transform which translates digital video data from the spatial domain into the frequency domain. Typically, a coding algorithm will divide picture data into blocks of 8-by-8 pixels, where a pixel is a picture element with a value between 0 and 256. It then performs the dct on each block. For each block of 8 by 8 pixels, the dct gives an 8-by-8 block of frequency components.

The rationale behind the dct is as follows: In
Second generation video coding techniques

Block-based coding methods have disadvantages – in particular blockiness in pictures and the inability to derive information on specific objects in the picture. But is there an alternative?

Second generation video coding techniques have been the subject of much research in the nineties, and new techniques such as segmentation, model-based coding and object-based coding are under intense investigation.

Segmentation is a technique in which the image is described in terms of contours and texture. Contours are abrupt changes in the gray levels of the image, and texture can be thought of as the roughness of the image – or the shade transition across the image. So a segmentation-based scheme will attempt to describe an image as textured regions surrounded by contours.

Model-based coding techniques have been greatly influenced by progress in the fields of computer vision and computer graphics. The underlying motivation in model-based coding is that an image is the projection of an illuminated 3-d object onto a 2-d plane. In object-based coding an image is subdivided into objects and each object is described in terms of its shape and motion.

In an object-based coding scheme, a source model provides an abstract means of describing the type of object in the picture. This source model defines the parameter which will be used to identify objects during image analysis. For example, an object might be rigid or flexible. The source model will also describe motion of objects – i.e. fixed direction or arbitrary direction. So a picture is analysed and objects are identified. Each object is then described in terms of shape motion and colour, see illustration.

Of course, certain parts of the picture will not be classified as objects as they will not conform to the source model. These areas are classified as model failure regions, and might be encoded using a more traditional coding scheme. Among the objectives in an object-based codec is to have a higher picture quality at comparable or lower bit-rates than block-based codecs. These objectives are helped by a number of factors.

The process of analysing an image to identify objects is an exhaustive one, but once the objects have been identified, it does not take a lot of information to describe them. Furthermore the only motion vectors which are transmitted are those relating to objects.

Schemes are usually designed so that objects are bigger than the blocks, which would exist in corresponding block-based coding methods, so there is potential for saving on motion vectors. Thirdly, when an object has been defined and is moving from frame to frame, very little update information may be required for that frame. So even though three parameters are necessary in object-based schemes, as against two – motion and colour – for block-based schemes, it is still feasible to operate such a scheme on a similar bandwidth.

A further feature of an object-based scheme is that it should be able to classify the objects, so optionally only the most important objects need be transmitted in a low bit-rate channel. Editing would also be feasible in such a scheme.

At present, most hardware research in object-based coding techniques is carried out using digital signal processors or similar devices. There is still a lot of work to be done both in the areas of algorithm definition and in the implementation of those algorithms in hardware. However, it is an area which is attracting much research interest, and this level of interest has been considerably enhanced due to the interactive features required in MPEG-4.

**Fig. 1. DCT-based video coding scheme.** The discrete cosine transform (DCT) is at the heart of the coding schemes used in MPEG, JPEG and H.261. This figure shows how an 8 by 8 block of data is extracted from a field of video data. Note the presence of significant low frequencies in the 8 by-8 block of transform coefficients, with most of the higher frequencies going to zero after quantisation.
the spatial domain, picture information is spread thinly over a large number of pixels. In the frequency domain, however, much of the picture information will be contained in the lower frequency components. As a result, it may be possible to discard some of the higher frequency components, without sacrificing too much picture quality.

Performing the dct on the video data typically concentrates much of the picture information into the lower frequency components. The dct itself does not compress data. An 8-by-8 block of pixel data will provide an 8-by-8 block of frequency components. The compression process starts with quantisation and run length encoding.

Quantisation is a process where each of the dct coefficients is divided by an integer and rounded towards zero. In a typical picture, many of the higher frequency components will have low values, so their output after quantisation will be zero. The quantisation integer is user definable, or is adaptable, its value being determined by a control loop. In most cases, users can control how much of the high frequency components they wish to neglect. This is the start of the compression process.

The quantised coefficients are then zig-zag scanned and run length coding, or rlc, is performed. Output of the rlc process will be the values of each non-zero components, preceded by the number of zero valued coefficients before that component.

In most algorithms, further compression is achieved by the use of variable length coding, or vlc. Here commonly occurring strings from the run-length coding process are assigned short code words, while less common strings are assigned longer code words. At this point, framing of the data can occur, so compressed data is now ready for transmission or storage.

In motion video, further techniques are used to remove redundancy from the data. The first of these techniques is prediction. Instead of coding and transmitting data for full frames, frame differencing is used. The encoder will code the difference between the current frame and a prediction of what that current frame should be.

The easiest method would be to simply subtract the last frame from the current frame and use the difference. However this method does not work well, because it doesn't take into account the error build up in the transmission channel. So each encoder has an inbuilt model of the decoder in a feedback path. It is therefore a decoded version of the last encoded frame which is used for prediction purposes.

To further eliminate redundancy, motion estimation and compensation is used. The predicted frame is refined to take into account the motion which is estimated to have occurred between it and the current frame. This has the effect of making the predicted frame as similar as possible to the new incoming frame, so the frame difference will be minimised even further.

Most standards do not specify how to do motion estimation and compensation, so a trade off can be made between complexity and performance.

Still image coding – JPEG

Standard ISO10918, more commonly referred to as JPEG, defines the techniques to be used in the coding of still pictures.

JPEG is the most simple of all the standards under discussion. Because it caters for stills, there is no requirement for frame prediction or motion compensation, so it does not need a feedback loop. The forward process consists of dct, quantisation, zig-zag scan, and run-length and variable-length coding.

However, a number of different options in the JPEG standard, allow users to tailor their systems for different levels of compression and picture quality. Both lossless and lossy coding techniques are referred to.

In lossless coding, the picture can be rebuilt exactly as it was prior to coding. Lossless coding techniques in JPEG are not based on the dct, but are ‘prediction’ based. Lossless coding is very limited in the amount of compression that can be achieved.
which it can achieve however. Imaging for medical purposes is an example of a situation where lossless coding is required.

Lossy coding techniques are based on the dct. Among the options available are sequential coding, progressive coding and hierarchical coding.

Sequential coding is the simple dct process already discussed. Progressive coding, as the name implies, allows a progressive build up of picture quality. In this mode, the quantised coefficients are sent in stages. Initially the lower frequency components are stored or transmitted, followed by the higher frequency components.

Another method is to selectively increase the resolution of the coefficients, so that the most significant bits are first processed, followed by the least-significant bits.

In hierarchical coding, resolution of the picture gradually builds up. The advantage of progressive and hierarchical schemes for JPEG is that they allow the user to select a variable quality level for a still picture. This is important, for example, if a JPEG picture is being transmitted from one location to another.

If a slow transmission channel was used, then sending a very high resolution picture could take a long time. As a result, it might be desirable to send lower quality video. In a 'browse' type application, the receiver could then select specific stills and request those in greater detail.

Video conferencing and H.261
The most relevant standard today for the video compression part of a conferencing system is the ITU-T standard H.261. Most commercially available systems available today use techniques outlined in H.261. The standard details the syntax for the coded bit stream and specifies how the decoder works.

Implicit in specifying the syntax and decoder will be certain features of the encoder. Typically, since the video and audio must share the channel, there will be some trade-off between audio and video quality – especially at low bit rates. Normally in a single ISDN channel, 16kb/s would be required for audio, so 48kb/s would be left for video.

Video-conferencing systems based on pcs typically operate at lower bit rates, usually 64kb/s. Bigger stand-alone systems usually operate at between 128 and 384kb/s, and they benefit from the higher resolution of CIF data.

As with JPEG and MPEG, H.261 is a dct based standard. Because it caters for motion video, frame prediction is used with motion compensation in the encoding process.

A reasonably simple motion estimation and compensation scheme is used. The current frame data is divided into 16-by-16 pixel "macro-blocks", each of which is compared to other 16-by-16 blocks in the last decoded frame, to a displacement of plus or minus 15 pixels in each dimension.

A calculation, such as the sum of the absolute differences between each corresponding pixel in the 16-by-16 macroblocks is made. The nearby 16-by-16 block which gives the minimum overall difference is used to determine the best match. Motion vectors are then calculated based on this match, and these must be sent to the decoder.

The predicted frame is adjusted using the motion vectors, and frame differencing then takes place. In practice the predicted frame will be stored in memory, so the compensation can occur by modifying the memory addresses. Finding the motion vectors, however, is a lengthy and computational process.

The variable length codes, produced by the encoder, are fed into the output buffer of the system. This buffer has a variable input rate, but also has a fixed output rate determined by the bandwidth of the transmission channel. The amount of information entering the buffer must be controlled so that the buffer does not overflow. If the buffer overflows picture information is lost, and corruption occurs.

Buffer control schemes can range from being very simple to extremely complex. In simple terms, control is achieved by monitoring the buffer fullness, and adjusting parameters such as the quantisation values to maintain a steady input rate into the buffer. The system also decides whether or not to use frame prediction and motion compensation, and could also decide to drop the frame rate by skipping some frames.

Problems generally occur when there is sudden movement in the picture being encoded. Sudden or rapid movement is almost always a problem for a number of reasons. Firstly, the buffer level increases and can overflow. This happens because there is a larger frame difference due to the high degree of motion between scenes, leading to more quantised coefficients.

More generally the motion compensation can only deal with a limited amount of motion. The effect the viewer sees is a smearing on the screen where the movement is occurring, and jerkiness in the picture is often noticed – especially when frames have been dropped. These are probably two of the most annoying features in a system.

Another annoying feature is poor lip to speech sync, where lip movement and audio output do not exactly coincide. This is caused by different delays for the audio and video data through the system.

MPEG-1 and video CD
MPEG-1 is an internationally accepted standard for the compression of digital audio and video. The actual standard is an ISO-IEC stan-

However many encoder options are left to the user to implement. Examples of such options are the ways in which motion estimation and compensation are performed. Figure 2 shows a typical H.261 encoder.

A motion compensation algorithm in the H.261 standard operates on YCrCb digital data. There are two resolutions specified for the source data, namely CIF and QCIF, as detailed in the Table. An H.261 compatible decoder must be able to decode a bit stream which had QCIF as its origin, but CIF is optional. Most systems accommodate both resolutions. A system which encodes CIF data to a single ISDN B channel will compress video by approximately 60:1.

H.320 and H.261 are geared towards ISDN, so transmission of coded audio/visual data is normally at a multiple of 64kb/s – the bandwidth of one ISDN channel.
dard and the term MPEG (Moving Picture Experts Group) comes from the group who started work on the standard. There are three parts to the standard: audio, video and system. MPEG-1 was originally developed to provide a standard for the storage of audio and video on digital storage media. The standard is optimised for operation at about 1.5Mbit/s. This is significant because it is the data rate for an uncompressed CD and it is also suitable for digital audio tape.

Typically the audio takes about 192kbits/s of this bandwidth, and some bandwidth is also for digital audio tape.

This is significant because it is the data rate is optimised for operation at about 1.5Mbits/s. Video on digital storage media. The standard and the term MPEG (Moving Picture Experts Group) comes from the group who started work on the standard. There are three parts to the standard: audio, video and system. MPEG-1 was originally developed to provide a standard for the storage of audio and video on digital storage media. The standard is optimised for operation at about 1.5Mbit/s. This is significant because it is the data rate for an uncompressed CD and it is also suitable for digital audio tape.

Typically the audio takes about 192kbits/s of this bandwidth, and some bandwidth is also needed for the system data stream. As a result, there will be approximately 1.15Mbit/s available for video.

Certain requirements in accessing stored video and audio have played a large part in the development of this standard. Access to the stored material is important and facilities have been built in for random access, fast forward and reverse, and reverse playback. The synchronisation of audio and video is also very important and error robustness is also inbuilt into the system.

Unlike video conferencing standards, MPEG tends to be quality controlled rather than bit rate controlled. Certain parameters are specified which give a certain quality level, rather than, say, setting the system to operate at a particular bit-rate such as the bandwidth of an ISDN channel.

There are significant differences between the encoding process used for MPEG1 and those used for H.261. In H.261 for example, there are two types of frames, namely intra and inter but in MPEG-1, there are three types. The intra frame in MPEG, called the I frame, is similar to the intra frame in other standards, and it is encoded without reference to other frames. One difference exists however: in an H.261 system it is desirable to avoid any intra coding. In MPEG however, intra coded frames are needed because they provide the points at which random access in the picture can take place in the decoded video.

The inter frame in MPEG is like the one in H.261. Basically a prediction is made of the

<table>
<thead>
<tr>
<th>Table 1. Video resolutions for PAL originated signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
</tr>
<tr>
<td>CCIR-601</td>
</tr>
<tr>
<td>CIF</td>
</tr>
<tr>
<td>QCIF</td>
</tr>
<tr>
<td>SUB QCIF</td>
</tr>
</tbody>
</table>

When people think of colour, the usually think of red, green and blue. These are the primary colours and any other desired colour can be obtained by adding the required amounts of these primary colours together. Since the advent of television however we have made use of the fact that the eye is much less sensitive to changes in colour than it is to changes in brightness. So television signals are transmitted as a black and white signal plus two colour difference signals providing information on how much the eye sees red, green and blue exists in a picture. The combination of these signals is known as the YUV colour space. Since the total amount of red, green and blue add up to the picture brightness, then the translation between YUV and gamma corrected RGB (referred to as R'G'B') can be calculated using the following matrix.

\[
\begin{bmatrix}
Y & 0.299 & 0.587 & 0.114 \\
U & 0.587 & -0.299 & 0.515 \\
V & 0.114 & -0.587 & -0.515
\end{bmatrix}
\]

Note that even if the signals are transmitted in the YUV space, it will be necessary to be able to convert back to rgb for display on a video monitor.

Another important colour space is YCrCb. This colour space was developed as part of the CCIR Recommendation 601. This recommendation defines the "encoding parameter of digital television for studios", and is a world wide standard for digital component video. Basically, YCrCb represent the same colour space as YUV, but the individual components in YCrCb are scaled and offset versions of the components in the YUV space.

CCIR-601 video specifies a 4:2:2 sampling format, and this means that there are only half the number of samples for each of Cr and Cb per line of video as there are Y samples. So it is taking advantage of the fact that the eye is less sensitive to colour. In a line of digital video sampled at 27MHz there will be 720 luminance samples and 360 each of the colour difference samples.

When generating of CIF and QCIF, even further redundancy is built into the colour difference sampling. The format is no longer 4:2:2, but is now 4:1:1. This means that there is one Cr sample and one Cb sample for every four Y samples in the picture.

There is a number of choices for the hardware designer who is required to produce CIF or QCIF. There are chip sets available to resample video. The GEC Plessey VP520 is a dedicated CCIR-601 to CIF/QCIF converter and it can also convert back from QCIF/CIF to CCIR-601. Other devices for decimating video are manufactured by Philips, Chios & Technologies, Brooktree, Raytheon and Harris - and others.
the complexity of the system and the quality stream affects the random access capability, created affects both the ability to random frames. The way these bidirectional frames are interpolated from earlier and later I and P frames. The way these bidirectional frames are created affects both the ability to random access the video and the quality of that video.

The distance between I frames in a video stream affects the random access capability, while the distance between P frames affects the complexity of the system and the quality of the video. Another interesting thing about MPEG-1 is that frames are not always sent in the order that they are created, so the decoder will need memory to enable the decoder to construct bidirectional frames. See Fig. 3 for an idea of how this happens.

Coding for broadcast systems
MPEG-1 was optimised for CD-ROM at bit rates of about 1.5Mbps. The international cooperation to develop MPEG worked well, so follow-on work involved addressing broadcast television sample rates using the CCIR 601 recommendation. MPEG-2 was the result.

Hardware options for image compression
It could be said that design engineers are now spoilt for choice when it comes to the design of video circuitry. New chip sets are constantly entering the marketplace, catering for all of the established standards.

These chip sets are also becoming increasingly more highly integrated. So let us say you have just started working on video, and you wish to design a JPEG, MPEG or H.261 circuit. Whose chips will you look at?

The diagram below shows some of the options your proposed system might comprise. Your first problem is digitising the video. It may need to be preprocessed or scaled. It is then coded and stored or transmitted. After the video has been decoded you may have to do some post processing, ie convert from CIF to CCIR and reconvert the signal to analog PAL for display on a monitor.

Alternatively you may wish to display the video on the pc, so the video signal must be merged with the rest of the graphics going to the screen. I will look briefly at some of the options available for these tasks since an exhaustive survey is beyond the scope of the article.

For digitising PAL signals and converting to CCIR-601, Philips, Brooktree or Raytheon should be considered, with each company having a range of encoders suited to different applications. Devices which are becoming more common in the market now are those which will accept video from an MPEG/JPEG decoder and will merge that video with the normal pc graphics for display on the monitor. The Auravision VxP501 was mentioned, it was designed with interfaces for Zoran and C-Cube MPEG and MPEG devices. Other companies which are strong in this area are Brooktree, Pixel Semiconductors, MCT, Trident and Philips.

For MPEG-2 encoding both IBM and C-Cube announced devices this year.

One option for codec development is that of digital-signal processing Texas Instruments released their CB0 this year. The CB0 contains four parallel processing signal processors with a risc master processor, an integrated video controller and claims 2 BOPs performance. If a composite PAL signal is required at the output of the system, again Philips, Brooktree and Raytheon should be considered, with each company having a range of encoders suited to different applications. Devices which are becoming more common in the market now are those which will accept video from an MPEG/JPEG decoder and will merge that video with the normal pc graphics for display on the monitor. The Auravision VxP501 was mentioned, it was designed with interfaces for Zoran and C-Cube MPEG and MPEG devices. Other companies which are strong in this area are Brooktree, Pixel Semiconductors, MCT, Trident and Philips.

Another interesting thing about MPEG-1 is that frames are not always sent in the order that they are created, so the decoder will need memory to enable the decoder to construct bidirectional frames. See Fig. 3 for an idea of how this happens.

Coding for broadcast systems
MPEG-1 was optimised for CD-ROM at bit rates of about 1.5Mbps. The international cooperation to develop MPEG worked well, so follow-on work involved addressing broadcast television sample rates using the CCIR 601 recommendation. MPEG-2 was the result.

Hardware options for image compression
It could be said that design engineers are now spoilt for choice when it comes to the design of video circuitry. New chip sets are constantly entering the marketplace, catering for all of the established standards.

These chip sets are also becoming increasingly more highly integrated. So let us say you have just started working on video, and you wish to design a JPEG, MPEG or H.261 circuit. Whose chips will you look at?

The diagram below shows some of the options your proposed system might comprise. Your first problem is digitising the video. It may need to be preprocessed or scaled. It is then coded and stored or transmitted. After the video has been decoded you may have to do some post processing, ie convert from CIF to CCIR and reconvert the signal to analog PAL for display on a monitor. In a stand-alone system, however, the output may be a PAL signal for display on a composite monitor.

Conce...
resolution with a bit rate for the encoded data up to 4Mbit/s, while main level studio tv applications will require CCIR 601 resolution. Most decoder chips will be capable of operating at main profile, but higher profiles could include features such as spatial scalability. The syntax in MPEG-2 can be divided into two main categories. There is a scalable syntax and a non-scalable syntax.

The non-scalable syntax is structured as a super-set of MPEG-1, but there are extra tools for handling interlaced video. This is required for studio applications, because PAL and NTSC video sources are interlaced, i.e., two fields are interleaved to form a frame. Typically MPEG-1 and H.261 use CIF resolution. This is obtained by dropping one field per frame and and further dividing the remaining field. This lowering of video resolution causes a subsequent loss in video quality, so while its acceptable for pc conferencing systems, it is not suitable for studio broadcast.

When handling interlaced video, MPEG-2 allows a frame to be selectively treated as a single picture. Alternatively it allows the two fields to be coded individually. It there is a lot of motion in a picture, it is generally better to code them individually. MPEG-2 incorporates all the functions available in MPEG-1, such as random access, fast forward and reverse and reverse playback. All MPEG-2 decoders will in fact be able to decode an MPEG-1 bit stream. The scalable syntax in MPEG-2 will find applications in transmission media which do not have constant bit rate. Asynchronous transfer mode, or ATM, is one such application.

There are three types of scalability in MPEG-2, namely signal-to-noise ratio, spatial and temporal. Each of these scalable extensions uses the concept of a base layer and an enhancement layer. The lower base layer is used for a basic video quality, and the higher enhancement layer is used to improve the quality already available from the lower layer. This is useful in applications such as transfer of video over an ATM network, or in general over a channel with a variable bit rate.

An error-robust channel can be used to transmit the base layer video. However, the enhancement layer could be transmitted over a channel which was not so error robust, or was likely to be congested. Since it is for enhancement only, it does not affect the basic video quality if corrupted, or if it fails to reach the decoder.

In temporal scalability, the base layer provides a basic temporal resolution (frames per second), and the higher layer is coded with temporal predictions for further enhancements. The enhancement layer for spatial scalability provides a coded difference signal based on an interpolated prediction of the lower layer. In the case of signal-to-noise ratio scalability, error information produced in the encoding process might be used.

**Video over the phone**

In March 1995, the ITU-T accepted a new standard known as H.263. The title of this standard is 'Video coding for narrow telecommunications channels at <64kbit/s'. The H.263 standard is geared toward use over the normal telephone line. It will be possible to implement it with a range of options up to and including use of a V.34 modem at 28.8 kbit/s. The umbrella standard for full audio-visual transmission in this way will be H.234.

It is expected that chips and products for H.263 will be available sometime next year. These products will probably be for the video phone market, or for pc users who need real time video communications but do not have access to ISDN.

H.263 is similar to, but more complex than, H.261. Much of the work which was done to develop the standard had its origins in the H.261 development. As with H.261, H.263 uses block based methods for compressing and coding video signals.

The discrete cosine transform is used to derive frequency content information from the original spatial information. Quantisation, differential coding between frames, run length and variable length coding techniques then allow compression and coding. As with H.261, motion estimation and compensation can be used in the differential (Inter) coding process.

There are differences between H.261 and H.263 which allow H.263 to operate more effectively at low bit rates. Firstly the picture format for H.263 is QCIF at 176 by 144 elements or sub-QCIF at 128 by 96. Secondly the syntax is different, and improved variable length codes are used. The motion compensation is also different, with H.263 allowing half-pixel accuracy.

A significant difference between the two standards is the use of 'PB' frames in H.263. The idea comes from the use of P and B frames in MPEG. Basically, a PB frame consists of two pictures coded as one.

The P frame is similar to the normal inter coded frame in H.261. The B frame is however derived using bidirectional prediction from the two adjacent P frames, fitting in between these two frames. Experimental work showed that without significant gain in bit rate, a much better picture quality was obtained using these PB frames.

When H.263 products actually arrive to the marketplace, it is possible that there will be a requirement for at least the decoder to be backward compatible with H.261. This may not present too much of a problem however, as H.261 can be seen to be a sub-set of this new standard.

**The future – MPEG-4**

The standards already described all use block based coding. In such coding, the image is decomposed into blocks which are encoded independently of each other. There are several problems and limitations attached to this approach. One is 'blockiness' in the picture. Another is the fact that objects in the picture are not defined, so a limited number of functions can be added to the system.

Work has already begun on a new standard, MPEG4, which will support new ways for communicating, accessing and manipulating audio-visual data. With an increasing trend towards wireless communications, and a demand for more interactive communication, many new requirements are arising in audio visual communications which are not catered for by existing standards.

One desirable feature in the new standard will be that of content based accessibility and manipulation. A user should be able to access and manipulate video based on its content. This may only be possible if new schemes are developed for the coding of that video.

Over the past few years, much research has been carried out using advanced coding techniques, such as object based coding, and it is possible that some of these techniques may be used in MPEG-4.

Because the development of this new standard is at such an early stage, no specific method for doing this has been decided. However a desirable coding scheme will be one which can identify objects in a picture and can track the movement of those objects.

It is hoped that MPEG-4 will enable many new uses for multimedia, such as the retrieval of information from on-line libraries. One can imagine being able to browse through a movie picture, clicking on an object in the picture—perhaps a book in a library or an item on a shelf—and being able to download more information on that item.

We are however still a long way away from this scenario—the MPEG-4 standard is not expected to be ratified until 1998.
THINK COMPONENTS - THINK CRICKLEWOOD

- TELEVISION & VIDEO SPARES
- RESISTORS & CAPACITORS
- HI-FI GADGETS & SPEAKERS
- TRANSISTORS & I.C.'s
- AUDIOPHILE CAPACITORS
- IN CAR AUDIO
- COMPUTER BOARDS
- TOOLS & TEST EQUIPMENT
- PLUGS SOCKETS & LEADS

PLEASE SEND ME A COPY OF THE 1995 CRICKLEWOOD CATALOGUE.

Name: 
Address: 

CIRCLE NO. 716 ON REPLY CARD

B.W.W.

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway, London NW3 3ET. Tel: 0181-450 0995 Fax: 0181-208 1441

---

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE.

Telford Electronics, Old Officers Mess, Hoo Farm, Humbers Lane, Horton, Telford TF6 6DJ
Tel: 01952 605451 Fax: 01952 677978

CIRCLE NO. 117 ON REPLY CARD

---

KENDOW

TEST & MEASURING INSTRUMENTS
A SUPERB RANGE OF OVER 100 QUALITY INSTRUMENTS.
Available from B.K. ELECTRONICS

---

FM-AM Signal Generators • Colour Pattern Generators • Video Signal Analyser • Video Timing Analyser • Video Noise Meter
- Distortion Meters • Waveform Monitors
- Oscilloscopes • Audio Generators • Wow and Flutter Meters • Electronic Voltmeters
- Digital Multimeters • Function Generators
- Frequency Counters • Bus Analysers
- Resistance Attenuator • Discriminators • Fully Programmable Digital Storage Oscilloscopes
- Regulated P.C. Power Supplies

A free, 50 page colour brochure, including price list, is available on request. Please make your request on company headed notepaper, by post or by fax, to:

B.K. ELECTRONICS
Unit 1 Comet Way, SOUTHEND-ON-SEA, Essex, SS2 6TQ
Tel: 01702-587572 Fax: 01702-420243

---

TELFORD ELECTRONICS

---

AN EXTENSIVE RANGE OF TEST EQUIPMENT IS AVAILABLE. PLEASE SEND FOR OUR NEW CATALOGUE.

---

February 1996 ELECTRONICS WORLD+WIRELESS WORLD

---

109
While the amplifier discussed last month was a good design, it has to be admitted that 10W is not a great deal of power, and more may be required. The traditional way of doing this was to use a more powerful valve such as the EL34, or even the KT88. Another method is to use Class AB; using these techniques, we can obtain 50W from a pair of EL34 or KT66s, or 100W from a pair of KT88s. After this, we resort to transmitter valves at enormous cost.

The traditional method has disadvantages:

- Higher powered valves are invariably disproportionately more expensive.
- They use high supply voltages, which makes the smoothing capacitors expensive, and the HT supply a major safety hazard.
- Higher powered valves tend to need higher impedance anode loads, which makes the design of a good transformer difficult.
- Transmitter valves have savage drive requirements, and often need a power valve as a driver.

Fortunately, there are several ways out of this dilemma,

- Lie about output power. In the late 1960s and early 1970s, some quite unpleasant audio amplifiers were made using transistors. Compared to the valve behemoths, these transistor amplifiers were very small and light, but they didn’t actually sound any better. In fact, most sounded a lot worse so something was needed to make them sell. The one thing that early transistor amplifiers could do was to provide plenty of power, and as a result the power rating war started.

To make a truly powerful amplifier, a large power supply is needed, but this is expensive. Classical music generally has peaks of only a short duration, and few hi-fi enthusiasts listened to anything else. Amplifiers were designed that could manage higher output powers, but only for a very short time. This allowed power ratings to be increased further, and the ‘music power’ rating was born.

Music power works like this. Measure the maximum current output at 10% distortion or the onset of clipping, with bursts of 1kHz driving one channel only into a resistive load. By this means, it is perfectly possible to convert a 20W amplifier with a poor power supply into a 30W model. If output is doubled to account for two channels, you can achieve a 100W amplifier. At least four fallacies were used in the previous argument.

- Build more efficient loudspeakers. This is an excellent solution, since inefficient loudspeakers frequently suffer from power compression. This is an effect whereby resistance of the voice coil rises due to temperature. As a result sensitivity is reduced until the coil cools down.

- Drive the loudspeakers more effectively. If drive units are driven by dedicated amplifiers preceded by an active crossover, many benefits result (Colloms, 1985). For the purposes of this discussion, it is sufficient to say that a two way loudspeaker system, driven actively by 10W amplifiers, will go surprisingly loud.

- Parallel output valves. This solution provides many advantages. If multiple pairs of paralleled output valves are used, HT voltage can be kept within safe bounds. This is the case even at 320V if many pairs of EL84 are used.

With each additional pair of valves, the transformer primary impedance falls, as does the turns ratio. This makes it easier to design a good quality component. Statistically, total anode current per side is better balanced as the number of valves is increased. Deliberate selection will improve this still further.

Driving higher power output stages
Whether they are composed of paralleled devices or not, higher powered output stages

In this extract from his book Valve Amplifiers, Morgan Jones discusses ways of designing valve audio amplifiers capable of delivering more than the usual 10W.
always require more driver circuitry. When the Williamson was investigated—EW+WW December 1995—it was found that it had a dedicated driver stage. However, the large total number of stages made stability a problem. Clearly, a better approach is needed. As before, listing the requirements will help solve the problem.

- A low output impedance to drive the increased input capacitance of the output valves—a cathode follower may be needed.
- Capability for providing a large output voltage with low distortion. This invariably demands some form of a differential pair.
- Wide bandwidth and high gain are also desirable. This is because it would be preferable to use just one set of coupling capacitors, ensuring if stability. A cascode would be ideal, although a carefully designed pair of dc coupled differential pairs could be even better.

Putting these requirements together results in a cascode differential pair with direct coupled cathode followers. This design is sometimes known as the Hedge circuit after its original inventor, although the original Hedge circuit did not include cathode followers (Hedge, 1956), Fig. 1.

The differential pair is not the ideal phase splitter, so extra care will be taken over this in order to obtain a good result. Anode load resistors should be matched, and generously rated to avoid drift. The constant-current sink should be made to have as high an output resistance as possible. Also stray capacitance to ground from the cathode should be minimised to maintain a high impedance at high frequencies. Matching valves would be useful if possible.

Each pair of valves requires a separate heater supply. Sad, but true. Cathode followers need around 200V superimposed on their heaters. The upper pair of the cascode needs around 100V, and the lower pair 0V. Flirting with this rule will generate problems related to heater cathode insulation breakdown. Emission from the heater to the cathode will be summed with the intentional cathode current. You have been warned.

The place to slug the dominant pole is at the upper anodes. Theoretically, a capacitor between the anodes does the job. In practice however, individual capacitors are necessary to ensure gain roll-off.

Putting these requirements together results in a cascode differential pair with direct coupled cathode followers. This design is sometimes known as the Hedge circuit after its original inventor, although the original Hedge circuit did not include cathode followers (Hedge, 1956), Fig. 1.

The differential pair is not the ideal phase splitter, so extra care will be taken over this in order to obtain a good result. Anode load resistors should be matched, and generously rated to avoid drift. The constant-current sink should be made to have as high an output resistance as possible. Also stray capacitance to ground from the cathode should be minimised to maintain a high impedance at high frequencies. Matching valves would be useful if possible.

Each pair of valves requires a separate heater supply. Sad, but true. Cathode followers need around 200V superimposed on their heaters. The upper pair of the cascode needs around 100V, and the lower pair 0V. Flirting with this rule will generate problems related to heater cathode insulation breakdown. Emission from the heater to the cathode will be summed with the intentional cathode current. You have been warned.

The place to slug the dominant pole is at the upper anodes. Theoretically, a capacitor between the anodes does the job. In practice however, individual capacitors are necessary to ensure gain roll-off.
As mentioned before, the only really satisfactory valve for use as the lower valve in a cascode is the 88CC. Any other type will waste ht.

Cathode voltage on the lower valves is usually quite low, typically around 2.5V. This is insufficient to allow a constant current sink to operate linearly. For this reason, the tail of the sink is usually connected to a subsidiary negative supply.

Feedback from the output can be applied to a grid, which makes calculations of the feedback network much easier.

Power amps – a balanced alternative
All of the amplifier designs discussed so far accepted an unbalanced input signal presented to the phase splitter. This generates a balanced signal to drive the push-pull output stage. If the pre-amplifier output is already balanced, there would not be a need for a phase splitter. Transmission of the signal from the pre-amplifier to the power amplifier in balanced form would give a great advantage in rejection of induced noise.

The only possible contender for a balanced input stage is the differential pair. But since the input signal is applied to both grids, we need to find a means of implementing global negative feedback. The solution is to add a small resistor in series with each cathode and the constant current source, and inject a balanced feedback signal to each cathode, Fig. 2.

Valve Amplifiers is priced at £25. Please add postage at £2.50 UK, £5 Europe or £7.50 worldwide. Send your request with a cheque or postal order made payable to Reed Business Publishing Group Ltd, to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM1 5AS. If ordering by credit card, please quote card type, number and expiry date together with card-holder address. Post your order, fax on 0181 652 8956 or e-mail it to jackie.lowe@rbp.co.uk.
Reference books to buy

For Audio Engineers

Audio Engineer's Reference Book

- Comprehensive - over 600 pages
- Written by leading authorities from the audio world
- Easy to read, compiled for maximum accessibility
- Concise and authoritative
- Covers topics from noise measurement to studio installation

Subjects include:
- Recording, microphones and loudspeakers
- Digital audio techniques
- Basic audio principles
- Acoustics and psychoacoustics
- Audio and television studios and their facilities
- Radio and telephony

Invaluable reference work for anyone involved with audio - from broadcast consultant to serious enthusiast. Audio Engineer's Reference Book is written by an international team of experts and edited by Michael Talbot-Smith - previously a trainer of audio engineers at BBC Wood Norton and now a freelance audio consultant and technical writer.

Please supply me ________ copies of the Audio Engineer's Reference Book,
(ISBN 0 7506 0386 0)

Fully-inclusive price - UK £62.50, Europe £66, Worldwide £78. Please add vat at local rate where applicable.

Please supply me ________ copies of the TV & Video Engineer's Reference Book,
(ISBN 0 7506 1953 8)

Fully-inclusive price - UK £42.50, Europe £48.00, Worldwide £58.00. Please add vat at local rate where applicable.

For TV & Video Engineers

TV & Video Engineer's Reference Book

- Over sixty chapters on the latest techniques in video and television
- Up to date reference on EMC requirements, DBS and HDTV
- Easy-to-use reference, eminently suitable for students
- Topics range from materials and construction to medical and defence applications of television.

Subjects include:
- Fundamentals of colour TV
- TV studios
- High definition TV
- Satellite broadcasting
- Distribution of broadband signals
- TV receiver servicing
- Video and audio recording and playback
- Teletext

The TV & Video Engineer's Reference Book will be of immense value to anyone involved with modern TV & video techniques - in particular broadcast engineers. The new format makes it an excellent reference for students. Edited by KG Jackson and GB Townsend from contributions written by acknowledged international experts.

Remittance enclosed £

Please debit my credit card as follows:

Credit Card No. ____________________________
Exp date ____________________________
NAME (Please print) ____________________________
ADDRESS ____________________________
POST CODE ____________________________
DATE ________ TEL ____________________________

SIGNATURE

VAT RATES
6% Belgium, 25% Denmark, 5.5% France, 7% Germany, 4% Greece, 4% Italy, 3% Luxembourg, 6% Netherlands, 5% Portugal, 3% Spain.

FOR COMPANIES REGISTERED FOR VAT, PLEASE SUPPLY YOUR REGISTRATION NUMBER BELOW (customers outside the EEC should leave this part blank)

VAT NO. ____________________________

If in the UK please allow 28 days for delivery. All prices are correct at time of going to press but may be subject to change. Please delete as appropriate. I do/do not wish to receive further details about books, journals and information services.

Business purchase: Please send me the book listed with an invoice. I will arrange for my company to pay the accompanying invoice within 30 days. I will attach my business card/letterhead and have signed the form below. Guarantee: If you are not completely satisfied, books may be returned within 30 days in a resalable condition for a full refund.

Credit card orders accepted by 'phone. Call 0181 652 3614
Michael Cox has been designing with a highly integrated solution to sync pulse generation and video genlocking - the SAA1101.

Table 1. Operating modes of the SAA1101 are selectable via three logic levels.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>PAL B/G</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>SECAM</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>PAL M</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>PAL N</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>NTSC</td>
</tr>
</tbody>
</table>

In any video system in which two or more picture sources are to be combined - say, for mixing or special effects - the scanning generators of the picture sources have to be synchronous. This means that the scanning lines must start and finish together both across and down the screen.

If the system is a composite colour one, then the subcarriers in PAL or NTSC must have the same frequency and phase, to within a degree or two. In addition, in a PAL system, the positive and negative line alternation sequences have to be identical.

In older systems, a central sync pulse generator was used, giving timing signals to all sources. More recently, each source carries its own timing generator, which needs to be referenced to other sources in the system. This process is known as genlock.

The design described here produces multi-standard line, field and composite sync pulses, all genlockable to an external composite-video reference.

The SAA1101 sync generator

At the heart of the sync generator board is a relatively new chip known as the SAA1101, Fig. 1. It is a 28-pin device, available in 0.6in spacing dl, or in small-outline sm package.

As Table 1 shows, by taking pins X, Y and Z to OV or to 5V, the device can operate in 524 or 624 line sequential mode for non-standard use, by taking a pin (NORM) to +5V.

It can be set to maintain the frequency relationship between subcarrier and horizontal frequencies, or not. This allows the subcarrier and horizontal oscillators to be locked separately which speeds up the genlock process.

Genlocking

There is a wide requirement for a genlocking synchronisation generator. Any source, be it camera, video-disc player or test signal generator, may need to be lockable to an external reference signal.

A broadcast synchronisation generator in a studio may need to lock to an external source such as an outside broadcast. The locking pro...
cess must therefore cause minimal disturbance to viewers.

 Normally, horizontal and subcarrier frequencies need to lock almost instantly, while two lines per field are dropped or added until coincidence of the vertical sync block is achieved. This method is rarely used now because of the almost universal use of frame synchronisers at studio inputs.

In a piece of equipment that is fed a reference signal all the time, it is acceptable to \( \text{reset the vertical counter to achieve rapid field coincidence, Table 2. This philosophy is adopted in this design.} \)

**Design details**

The starting point for the design is the type of reference signal that is to lock up the synchronisation generator. In this case, it has to be a colour composite signal. In practice, it is usually colour, black, which is 300mV sync, with colour burst but no video.

Refer to main circuit p117. Video input goes to a sync separator IC, the familiar LM1881. Note that it is driven by an emitter follower since it has a sync tip restorer that needs to be driven by a low impedance source.

The device also filters if the input, for whatever reason has low level sync, and a high level of burst. It slices the burst as if it is sync and causes chaos downstream of the separator. Hence a simple low pass filter has to be fitted to roll off the chroma before the separator.

Driving impedance requirements dictate that the filter is placed at the emitter follower input, and \( R_S / C_S \) form the filter. The separator produces a mixed sync output, and a clamp pulse output suitable for colour burst gating.

Vertical output is not so useful as its leading edge corresponds to the first serration in the chroma output. The device produces a broad pulse train. This comes too late to reset the field counter in the SAA1101 synchronisation generator chip.

Schmitt buffer \( U_2 \), a 74HC14, inverts the sync signal to drive the ECS input pin of the SAA1101. Another section of \( U_2 \) integrates the sync to provide a field pulse whose leading edge occurs during the first broad pulse. Differentiating then produces a pulse of around 2ms width. These pulses also feed the field reset pin, RR, of the SAA1101.

**Internal counters**

There are two sets of counters in the SAA1101. The first divides the 5MHz clock to horizontal (15.625kHz for PAL) and vertical (50Hz for PAL) pulse trains. The second divides from subcarrier (4.43361875MHz) to \( F_h \). This is then compared with the \( F_h \) derived to give OV on the H -Error test point. Smoothing of the error signal is carried out by a CR network on the PH pin itself, and by a damping network on the error amplifier feedback loop. Variable inductor \( L_s \) is set for correct frequency working, and then finely adjusted to give 0V on the H-Error test point.

**Chroma recovery**

In years gone by, various TV receiver chips were available that would serve as subcarrier oscillators, phase-locked loops and identification recovery circuits. Sadly, it is now difficult to find such chips where subcarrier and PAL identification are available to the outside world.

As a result, we have to revert to first principles. The input reference signal is buffered by an emitter follower and drives a very simple band-pass filter, \( L_i/C_{10} \). This removes most traces of luminance. Chroma output is then amplified by an NES92, \( U_8 \), and limited by two schottky diodes, \( D_{63} \), Fig. 3. We are not interested in the chroma during the active line, but a constant amplitude burst is useful.

The limited chroma signal is now demodulated by an MC1496P, \( U_6 \). Its carrier is derived from the oscillator, \( U_{4A} \), and a recovery amplifier, \( U_{4A} \), delivers the chroma signal to error amp.

![Fig. 3. Limited chroma. In this design, chroma in the active line is not so important, but a constant-amplitude burst is useful.](image1)

![Fig. 4. Chroma, demodulated using U axis carrier.](image2)

![Fig. 5. PAL switch recovery basics.](image3)

![Fig. 6. Recovered PAL switch signal.](image4)
baseband demodulated chroma to a sample gate, \( U_7 \), Fig. 4. Note that the recovery amplifier and error amplifiers are all sections of a quad BiFet op-amp, in this case, a TL084.

The only reason for this choice is that they are cheap, they are reasonably easy to come by – and they work. The sample gate is an MC4053.

Output from the demodulator consists of alternate positive and negative burst pulses, together with any active chroma during line time. The gate is turned on during burst time, and storage capacitor, \( C_{12} \), has a 7.8Hz square wave on it, Fig. 5.

Fig. 9. Prototype sync generator and genlock locking input.

Error amplifier, \( U_{BD} \), amplifies this further, and drives the varicap that pulls the subcarrier crystal oscillator into lock with the external reference.

As there is a large amplitude square wave at the chroma-error test point \( TP_4 \), Fig. 6, this is differentiated, sliced by \( U_{AC} \), and used to steer the sync generator chip into coincidence with the PAL identification sequence of the reference input.

Subcarrier oscillator output is buffered by a section of another schmitt buffer, and then filtered by an LC circuit to give a subcarrier output. Buffer output is also used to drive the chroma demodulator. In this way, the output subcarrier phase is related to that of the reference input.

Pulling the LC filter circuit either side of resonance provides a simple means of varying Master phase over a range of 180° or so. A similar adjustment to \( L_1 \), (input chroma filter) although not highly recommended, will allow further adjustment.

Output stages

My application required negative going pulses at nominal ttl level. As the SAA1101 outputs are all positive going, a schmitt inverting buffer such as the 74HC14 is ideal.

Because the lowest possible clock frequency for the SAA1101 is 2.5MHz, waveforms derived from it can only be in multiples of 400ns. The CCIR specification for mixed sync width is 4.7μs, whereas the SAA1101 gives 4.8μs. As sync is the most critical component – and the most easily measured – it is good practice to try to get it into the middle of the allowed range.

The diode/CR network between the mixed sync output of the SAA1101 and the output buffer delays the leading edge of sync by about 100ns, while doing nothing to the trailing edge. The result is a centre tolerance sync output of 4.7μs.

As already mentioned, the 74HC14 makes a good subcarrier driver. By using capacitor taphes on the resonant circuit, subcarrier output is several volts into low impedance.

Testing the prototype

It is necessary to check the functioning of the locking circuits. Check first that the two oscillators on the chip are running, and at roughly the right frequencies. It helps to have a dual-trace oscilloscope of at least 20MHz bandwidth, and a vectorscope with external subcarrier reference input.

Keep one trace of the 'scope on the locking input, and look at the H error test point with the other. Adjust \( L_5 \) until the oscillator comes into lock, and then set it finely to give 0V at the test point.

Move to sync output, and set 'scope to A-B. It will be necessary to invert channel 2. The object is to cancel the sync on the locking signal with that from the synchronisation generator.

The H phasing control should be adjusted to bring the two sync signals into time coincidence when one sync cancels the other, Fig. 7.

Due to differences in rise times between the signals, small 'ears' may be seen at the edges, but when these are symmetrical, coincidence can be assumed.

Return 'scope to normal two channel working. Next, check the 'Demod Chroma' test point. It should bear some resemblance to the waveform shown, Fig. 4.

Move to the 'Chroma Error' test point, where a square wave at 7.8kHz should be seen. Set \( V_{C1} \) to make waveform symmetrical about 0V. Connect the subcarrier output to the vectorscope reference input. Look at the sync generator locking signal through the vectorscope channel input.

It helps if colour bars are used for the locking signal, as phase relationships can be seen clearly on the vector display. Check that

Components for the whole sync generator and genlock circuit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3, C5, C6</td>
<td>10nF, ceramic</td>
</tr>
<tr>
<td>R3</td>
<td>2.2k</td>
</tr>
<tr>
<td>R9, R10, R11, R12, R13, R14</td>
<td>1%1/4W metal film, (MR25)</td>
</tr>
<tr>
<td>C17</td>
<td>10nF, ceramic</td>
</tr>
<tr>
<td>C4</td>
<td>100nF, ceramic</td>
</tr>
<tr>
<td>C28</td>
<td>470nF, poly, 0.2in pitch</td>
</tr>
<tr>
<td>L4</td>
<td>15pH, axial</td>
</tr>
<tr>
<td>C26, C27</td>
<td>47pF, 16V radial</td>
</tr>
<tr>
<td>R54</td>
<td>10k</td>
</tr>
<tr>
<td>R55</td>
<td>10k</td>
</tr>
<tr>
<td>R40, R5, R6</td>
<td>10k</td>
</tr>
<tr>
<td>R18, R19, R32, R33</td>
<td>22k</td>
</tr>
<tr>
<td>C10, C15</td>
<td>10pF, 25V radial</td>
</tr>
<tr>
<td>U3</td>
<td>560k</td>
</tr>
<tr>
<td>R39, R37, R48</td>
<td>1k2</td>
</tr>
<tr>
<td>VC1, VC2</td>
<td>10019</td>
</tr>
<tr>
<td>R36, R43</td>
<td>74HC14, various</td>
</tr>
<tr>
<td>R38</td>
<td>74HC14, various</td>
</tr>
<tr>
<td>R4, R10, R25, R34, R35</td>
<td>220R</td>
</tr>
<tr>
<td>R24, R7, R27, R32, R33</td>
<td>470k</td>
</tr>
<tr>
<td>R23, R25</td>
<td>22k</td>
</tr>
<tr>
<td>R18, R19, R22, R46, R60</td>
<td>470R</td>
</tr>
<tr>
<td>C1, C3, C4, C6</td>
<td>220pF, ceramic</td>
</tr>
<tr>
<td>C7, C8, C4</td>
<td>470R</td>
</tr>
<tr>
<td>R9, R13, R14, R26, R29-31, R45, R53, R59</td>
<td>10k</td>
</tr>
<tr>
<td>C11</td>
<td>560k</td>
</tr>
<tr>
<td>R2</td>
<td>6k8</td>
</tr>
<tr>
<td>C2</td>
<td>470k</td>
</tr>
<tr>
<td>R8, R12, R14, R15, R16</td>
<td>100k</td>
</tr>
<tr>
<td>C5, C9, C30, C31</td>
<td>1k2</td>
</tr>
<tr>
<td>R2</td>
<td>220R</td>
</tr>
<tr>
<td>C29</td>
<td>1k2</td>
</tr>
<tr>
<td>U4a</td>
<td>4x7</td>
</tr>
<tr>
<td>D9, D2, D5, D3, D4</td>
<td>5-650F, Murata ceramic</td>
</tr>
<tr>
<td>L5</td>
<td>15pF, ceramic, 0.2in pitch</td>
</tr>
<tr>
<td>U4b</td>
<td>470k</td>
</tr>
<tr>
<td>D8</td>
<td>10μH, axial</td>
</tr>
<tr>
<td>U7</td>
<td>1NF, ceramic</td>
</tr>
<tr>
<td>C11</td>
<td>10μF, 25V radial</td>
</tr>
<tr>
<td>D7</td>
<td>680R</td>
</tr>
<tr>
<td>L4</td>
<td>16μH, Toko, 7mm variable</td>
</tr>
<tr>
<td>R38, R39</td>
<td>3k</td>
</tr>
<tr>
<td>C21, C13, C14</td>
<td>470pF, poly, 0.2in pitch</td>
</tr>
<tr>
<td>C22, C23</td>
<td>470pF, ceramic</td>
</tr>
<tr>
<td>D8, D9, D10, D11</td>
<td>470pF, ceramic</td>
</tr>
<tr>
<td>C20, C26, C27</td>
<td>470pF, ceramic</td>
</tr>
<tr>
<td>D7, D8</td>
<td>220μF, ceramic</td>
</tr>
<tr>
<td>C25</td>
<td>10μH, axial</td>
</tr>
<tr>
<td>C16</td>
<td>47μH, Toko, 7mm variable, (MR25)</td>
</tr>
<tr>
<td>X1</td>
<td>30pF, ceramic</td>
</tr>
<tr>
<td>X2</td>
<td>30pF, ceramic</td>
</tr>
<tr>
<td>X3</td>
<td>30μF, ceramic</td>
</tr>
<tr>
<td>X4</td>
<td>30μF, ceramic</td>
</tr>
<tr>
<td>X5</td>
<td>30μF, ceramic</td>
</tr>
<tr>
<td>X6</td>
<td>30μF, ceramic</td>
</tr>
<tr>
<td>X7</td>
<td>30μF, ceramic</td>
</tr>
</tbody>
</table>

All resistors are 1% 1/4W metal film, (MR25)
Main circuit of the multi-standard sync generator and genlock. Composite, line and field signal outputs on the right are synchronised with reference composite video, applied at the left-hand side of the drawing.
adjusting the core of $L_3$ rotates the vectorscope display, Fig. 8.

If a PAL coder is available, use the sync generator to provide all its service signals, and then try to cancel the output waveform with the locking input using the 'scope in A-B mode. If it proves impossible to cancel the burst part of the signal after adjusting the subcarrier phase, the PAL identification sequence is wrong.

It is worth switching the coder on and off a few times to check whether there is a random PAL sequence, or that it is always wrong. A random sequence suggest that the 7.8kHz recovery circuit, $U_{BC}$, is not operating correctly, and needs some attention.

Implementation

The prototype board was a double-sided board, 3.1in by 5.5in, with a double-row 10-pin 0.156in pitch edge connector.

This defined the size and connections to the replacement. From Fig. 9 you will see that there is adequate space for all the circuitry, on a single pcb, without having to resort to surface mount components.

Lack of a negative rail in the wiring to the sync generator dictated the use of a Newport NME0505S dc-to-dc converter to provide a few milliamps at -5V for the op-amps and NME0505S dc-to-dc converter to provide a sync generator dictated the use of a Newport NME0505S dc-to-dc converter to provide a few milliamps at -5V for the op-amps and transistor tails, $U_9$ on the main circuit p117.

The complete circuit diagram of the sync generator card is shown on page 117.

Developing the generator

For use in a broadcast videotape editing environment, it may be necessary to pay attention to the phase of subcarrier with respect to the leading edge of sync on line 1 of field 1. When this relationship is within ±20°, sideways motion on cuts is reduced to a minimum. To achieve this, it is necessary to have a further phase comparison circuit to sample subcarrier phase as stated, and to apply a correction to the H error amplifier.

In some cases, a high degree of subcarrier stability in the free running, i.e. non-genlocked mode may be needed. Most crystals bought off the shelf are cut (AT) with a temperature coefficient that is approximately zero at 25°C.

If the board is in an environment that gets appreciably hotter, then the temperature coefficient gets larger, and the crystal drifts ever further off frequency. Temperature compensated crystal oscillators, tcxo, are available, but usually on extended delivery.

The other solution is to use or make a crystal oven. The crystal has then to be specified to work at 50°C or 75°C, and will be cut to give approximately zero temperature coefficient at that temperature. It will be power hungry – perhaps requiring several watts – and will take some time to reach a stable temperature.

Other outputs available from the SAA1101, not used here, are:
- clamp pulse (sync tip)
- 7.8kHz square wave.
- white measurement pulse.

In summary, the SAA1101 is a significant improvement on its two-chip predecessor, but it is not a real one-chip synchronisation generator. However, it is unlikely that a true one-chip solution would offer the same design flexibility.

Further reading.

Specifications of the world television systems can be found in a CCIR document, published by the International Telecommunications Union (ITU) in Geneva.

Details of the NTSC system can be found in SMPTE Standard 170M, obtainable from, Society of Motion Picture and Television Engineers, 595W. Hartsdale Avenue, White Plains, NY 10606.

Details of the UK PAL I system can be found in "Specification of Television Standards for 625 line System I Transmission in UK", published 1992 by the Radio Communications Agency.

Full details of the SAA1101 chip will be found in the "Desk Top Video Handbook", published by Philips Semiconductors.
Modelling cable

Ben Duncan demonstrates how the behaviour of audio loudspeaker cables can be simulated with increasing realism at audio frequencies.

Most circuit simulators include a transmission line part. The more sophisticated ones offer several. But for cable lengths below a few hundred metres at 200kHz, and pro-rata greater lengths at lower frequencies, cables do not behave like transmission lines. Traditionally, performance has instead been modeled by a lumped network.

Lumped modelling

Figure 1 shows the simplest plausible R-L-C lumped model, applied in three separate test circuits. Left and right elements are arranged symmetrically. This is done to approximate the fact that substantial cable capacitance is normally experienced without some series resistance, esr, and inductance of the order of 1μH/m. These parasitics are similar to those found in a real conductor.

Also, for simplicity, the model is a ‘half section’ where parasitic values in the return side (lower) have been ‘folded-around’ into the send side. Overall, the sum of $R_s$ is the total measured values of the send and return resistances in a real cable. This was a 2m length of 2.5mm² two core PVC insulated flex, as is commonly used for connecting medium to high power amplifiers to full range and bass speakers. But the inductance is defined differently, as the send and return inductances at least partly cancel. Effective series inductance, ESL, is the same as transformer leakage inductance, and the total 2μH is split either side of the capacitance, which is simply the measured value.

In this test setup, the sine source’s output impedance is set at 1μΩ, so it can drive the three loads with negligible interaction. On the right, these are a 5.6Ω resistor, which is the resistive portion of a nominal 8Ω speaker; then a 15in drive unit. In this macro, voice coil resistance is external – so it could be stepped. The third load is a macro of a typical two way speaker with passive crossover.

Figure 2 is a magnified view of the frequency response at each end. The top plot confirms that the response at the source is flat. Below, the other largely flat response is into the resistive load. At hf, it shows how the cable acts as a low pass filter, coming in above 10kHz. This kind of response is often seen in catalogues for shielded cables. The response across the speaker models is more wild, and is a reflection of each speaker’s impedance modulus.

With the 2m of cable, the broadest variation is quite subtle at 0.13dB. If the same cable was ten times longer and/or if two cabinets were wired in parallel, or if the resistance was higher.

Fig. 2. Effects predicted by the lumped model as seen on a ±0.1dB scale. On the right, the 8Ω resistance and two-way speaker cause hf roll off, incisive enough to be obvious even on a larger decibel scale. The loudspeaker frequency responses are just evident.

You can see that the 15in bass driver resonates at 33Hz, and the two way speaker’s bass driver is doing the same at 73Hz. At 4kHz, the hf/hf crossover point is clear from the abrupt phase, followed by a steep inductive rise. Above, the cable’s low pass filtration cuts in.

February 1996 ELECTRONICS WORLD
Fig. 3. Impulse response of the simple lumped cable model driving the three test loads does not tell us much more.

Fig. 4. Simulation permits differential measurements across lengths of cable that would be difficult or impossible in realspace. Here, the shark fins indicate the leading-edge energy in the pulse that appears across the cable - not the speaker.

Fig. 5. The test condition is as Fig. 4, but the signal is a sine wave burst, stopping at 2ms where it is at 0V. Due to phase shift in the cables, the signal at the speaker end at this instant has not reached 0V.

The lower graph shows the ensuing losses and damping behaviour across the cable with a log (transient dB) scale. The voltage scale represents current. While smaller than the large signal level (the ‘barn door’), these errors are in a sense infinite, relative to the zero volt stimulus.

the response variation would be much more prominent. Modelling can come into its own to demonstrate this. This plot highlights the fact that the penalty for inadequately low resistance - and inductance - cabling is not just power loss but also the superimposition of a spurious frequency response deviations.

For Fig. 3, the sine source is changed for a +10V pulse with a 1μs risetime, top left waveform, and transient analysis selected. The signal at the load end (offset slightly for clarity) is surprisingly well damped into the two-way speaker model, lower panel. This is because the speaker being modelled has a Zobel network across its input, which helps to make the loading appear resistive at high frequencies. Comparison with the 5.6Ω load resistor’s response supports this. The 15in bass speaker has no Zobel network. As a result it is dominantly inductive at the 1μs rise time period (reciprocal of 1 MHz), and there is accordingly a small parasitic oscillation, confirmed by smaller timesteps.

Differential testing
In Fig. 4, the test signal is identical, but the measurement condition is now differential across the cable. As a result you can see a representation of the current drawn, both into the load and into the cable capacitance, and also the signal that is abstracted by the cable before it reaches the speaker.

Differential testing is physically difficult to perform meaningfully with unshielded, speaker cables of any length. There is a risk of measuring contamination. Looping back the cable-under-test for short, noise free sensing connections also requires great care to avoid altering the cable’s behaviour. In this simulation, the incoming signal is shown again in the top panel, as a timing reference. Now you can see that the error signal across the cable is practically the same for the 8Ω resistor and the two way speaker connections. The error for the bass speaker is much smaller as the inductance draws so little current on a pulse. As before, the oscillation tells us some of the parasitic elements are resonant.

In Fig. 5, the test condition is the same except that a two cycle sine wave burst has been substituted (upper panel). In the lower panel, the time scale is a magnified portion. A log scale has been selected so the behaviour can be seen over a 100dB range (five decades). Looking at the ‘barn door’ centred on 1.15ms, this is the usual appearance of a half sine wave in logarithmic form.

In the upper panel, 2ms is a zero volt point where the test signal ceases. In the lower panel, the same signal at the speaker ends is not at zero volts due to phase shift. The different behaviours of the currents in each cable can be clearly seen. With the resistive load, the current damps immediately below the 1μV level. The bass driver’s current quickly damps to the level represented by 1mV, after which it decays slowly. With the two-way speaker, the current oscillates before settling to the same 1mV pedestal, after nearly 1ms.

Deeper modelling
The lumped model so far is but a crude first order approximation. It corroborates with little of what critical music listeners hear when different speaker cables are tried. Practical speaker cables are known for flexibility. In the real world, copper soon oxidises, or forms other complex (‘fractal’) molecules on its surface, for example chlorides. Copper oxide is a definite semiconductor. As a result each strand has a longitudinal diodic connection with its neighbour. Below the oxide threshold, the oxide, which can be just a few atoms thick, forms a high value capacitor.

Occasionally and randomly, strands are shorted along the cable length, due to handling, bending and twisting. The only place where the strands are positively ohmically connected is the soldered connectors, and then only if the wire is soldered or properly cramped. In MicroCAP IV, a series of diodes called ‘Oxide’ were written into the diode library. They have forward thresholds in the tens of millivolt region, and breakdown voltages that are higher but on the same order.

Speaker wires have series inductance and yet must carry substantial peak current, commonly up to 5 or 10A and in some designs, over 100A. Music comprises many sine waves stopping and starting, but series inductance seeks to counter this. Worse, above 3kHz, where transient accuracy is most needed, skin effect intrudes.

This is easy to visualise as highly local eddy current loops within the conductor which subtract from current flow in the interior. In turn, this forces the longitudinal, active current flow increasingly into the outside ‘skin’ of the wire. The outcome is an additional series impedance that rises at +3dB/octave. This may be viewed as ‘the square root of an inductor’. In the green plot in Fig. 6, it is modelled using an L-C ladder network. A Laplace function source may be used instead, but only in ac analysis, where Laplaces’ violation of causality is not a problem.

Cable insulation acts as a capacitor dielectric. Most affordable cables employ PVC insulation, which is highly polar and suffers high dielectric absorption. For this reason, PVC is not
Fig. 6. Two special 'Skin' macros were constructed using L-R ladder networks. Each represents the longitudinal, sectional inductance between strands or bundles of strands, in a stranded conductor. Distances are on the order of 0.3mm section x 1m long. Here their Z versus frequency is compared to a pure 5nH inductor which slopes at +6dB/octave, exactly twice the rate of skin effect. With ordinary copper, skin effect can be seen coming in below 1kHz, and being swamped by 'real' inductance above 70kHz. With Jenving's patented Supra ply, sectional skin effect is reduced and its onset is displaced over a decade up in frequency.

Fig. 7. The RC networks on the right are modeling dielectric absorption in a 0.3mm length of the PVC. On the left, a sine source is connected via a time switch. The point following the switch is shorted after this time. As a result source impedance is zero. In the lower circuit, the stimulus and main capacitor are identical. Only the components simulating dielectric absorption are omitted.

Fig. 8. Effects of dielectric absorption are clear immediately after the burst sinewave signal ceases (upper panel, arrowed). In the centre panel, voltage across the capacitance of an ideal cable falls to 0V within 20ps and at a uniform exponential rate. However, the discharge of voltage across a PVC dielectric has a dual slope and it takes at least 1ms, or 50 times longer, to come close to 0V. The lowermost panel employs a log scale to show how it has only decayed to 33pV in this time.

The RC networks on the right are modeling dielectric absorption in a 0.3mm length of the PVC. On the left, a sine source is connected via a time switch. The point following the switch is shorted after this time. As a result source impedance is zero. In the lower circuit, the stimulus and main capacitor are identical. Only the components simulating dielectric absorption are omitted.

used by capacitor makers. In Fig. 7, PVC's dielectric absorption is modelled by hanging nested RC networks from the 'explicit' capacitance, which is a 70pF. Each 1m section has three of these distributed symmetrically. Figure 8 compares the behaviour of PVC and a perfect dielectric.

Self-similar meshing

Figure 9 is an end-on view of wire which shows how a stranded (or solid) conductor can be divided into annuli of equal dc resistivity. Below, the four annuli are transformed into arbitrary, equal longitudinal sections, where coming down the Y axis represents depth-towards-centre. Each annulus is simply in parallel at dc, but at hf, they are divided by skin effect. The circuit fragment in Fig. 10 shows the beginnings of a higher order cable model. It serves to remind us that analog electronics is ultimately fractal (self-similar) as elements are repeatedly nested within each explicit R, L and C element. At the top left are the test source and control components. The top line is the outside of the conductor, and the first cable section begins with the 1uH inductance on the right of 'V'. (this initial section omits skin effect for simplicity). Thereafter 'Lsect' is the series or longitudinal sub-inductance, beginning at the wire's surface. The circuitry below is deeper into the wire, with the skin effect component, as in Fig. 6, between each layer. In series is the inter-strand capacitance 'Sc' and the oxide diodicity (various oxide
but more quickly damped. Surprisingly large. It is about as large as with the speaker load (Fig. 11), driven into a pure 5.6Ω. Peak signal across the cable, green, is increased capacitance, while Lsect is cut by tenfold.

In the lenving cable, simple patented techniques prevent diodicity. One extra PVC capacitor covers between strands, so each mesh section is simplified. The Skin -4 macro is comprised a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the output impedance of a typical power amplifier with high, global negative feedback. The control speaker is grounded at the same instant.

No "leakage" can be found in the cable model. Between the test signal (1AC) and the cable onset is a network through which the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished. It comprises a small series resistor and a damped inductor, which simulates the cable's input is grounded after the pulse has finished.

Fig. 11. Signal residue after the sinewave burst has stopped. The purple plot shows how signal across a speaker fed hypothetically without any cable immediately falls to 0V. The speaker at the end of the cable sections is not so favoured, blue. Initial error is about 1/50th of the historic peak input signal. This is partly due to finite damping at the amplifier output, red. The green plot looks across the cable to show its dominant contribution. Clearly, with ordinary cable, the amplifier is losing its grip on controlling the speaker's transient terminal voltage.

Fig. 15. Model of Jenving's Supra Ply cable correctly predicts an approximately 20dB lower peak perturbation (-54dB arrowed, lower, where the decay angle changes). The upper plot shows that after 3.0ms, amplifier output error is of the same order or likely dominant.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.

In a full-section model, Lsect would be unchanged in effective value, while Lsect is cut by tenfold.
diodes 1a, 1b, 1c). Some diodes are 'wild-tied' to other layers, representing a real speaker cable, twisted and crushed after treatment by humans.

Each layer has its own longitudinal sub-inductance, onto the neighbouring section. The shunt resistors ensure the敷帽 capacitance is distributed about. Since the dielectric absorption and leakage is very much higher, but this has no ill effect on transmitting current pulses into speakers, it only concerns poorly designed power amplifiers. 

Figure 13 shows how – excepting the sharp 'inductor spiking' for a few microseconds after 3.00ms, which is a problem for the amplifier's negative feedback – the Jenving construction is 'smears less'. That is, it allows a given, typical loudspeaker load to damp much more quickly and tidily. Events in the 0-30ms period after a given musical attack, can be highly audible, being in the 'early arrival' window before mask-

References
1. B.Duncan, Mixed Mode Modelling, EW+WW, Sept '93.
2. P.E.Davis, Effects of cable, loudspeaker and amplifier interactions, J AES, June '91.
5. G. Nalty, 'Complex cables defy physics', EW+WW, Jan '94.
Notes on free phasing

Needing a combination of simplicity, cheapness and very high stability, oscillators for free-phasing electronic organ notes make an interesting design challenge. Ian Hickman discusses his new solution to the problem.

Practical analogue circuit design is fraught with snags, compromises and difficulties. These are well illustrated by the subject of this article – keyed tone generators – such as might be used in the two tone alarm generator of an hf radio telephone or a hundred other applications.

One such application is tone sources in an electronic organ. There are two main varieties of electronic organ, namely divider organs, and free phase organs. Divider types use a digital ‘top octave generator’ to produce the twelve semitones of the equal tempered scale. All the intervals are, if not exact, at least very close, and of course ‘set in concrete’.

Each semitone output is applied to a binary divider such as the seven stage CD4024 to provide the lower octaves. Advantages of this approach include cheapness and simplicity. It also produces an organ which is always in tune, but there are a number of snags as well.

With all twelve semitones of seven or more octaves available all the time, each individual note has to be pressed when the corresponding key is pressed, or else blocked, by its own keying circuit. It is difficult to obtain sufficient attenuation when notes are not supposed to be sounding, leading to a residual background noise aptly described by the term ‘beehive’. Also, square waves contain no even harmonics, so some combining of different octave outputs for each note is necessary if a convincing variety of pipe-like sounds is to be achieved, adding to the complexity. This is especially so where open diapasons are concerned.

However, for anyone wanting at least anything like the richness of sound provided by a real pipe organ, a major snag is the use of dividers to provide the various octave pitches. For example, if while sounding middle C an octave coupler is activated, then C – the C one octave above – will also start to sound. But since C was obtained by dividing C' by two in the first place, the two notes are locked together and the octave is too perfect. In fact, all you have done is to change the harmonic content of C: if you didn’t hear the...
two notes starting to sound at different times, you would never know that there were supposed to be two separate notes sounding. For this reason more than any other there is still a lively interest in 'free phase' designs, despite the availability of palliatives such as phase modulated delay lines which try to 'unlock' the various octaves.

An oscillator for free phase designs

A true free phase organ needs a separate oscillator for each note of the rank — or for half that number using an ingenious scheme for sharing one oscillator for each adjacent pair of semitones. This is on the premise that normal music does not require both to sound at once. For example, a flute stop would have 61 generators. The usual arrangement is C₃, — two octaves below middle C — to C13 three octaves above.

On an 'eight-foot rank' — so called because eight foot is the length of the lowest pitch open flue pipe of the five octaves middle C sounds at that pitch. On the other hand on a four-foot rank, middle C would sound the note C', and on a 16 foot rank, the note C. To simulate the richness of a pipe organ, several ranks of generators are needed, corresponding to the different stops on a real organ. Clearly, economy is a prime consideration in choosing an oscillator design, but equally important is stability. With 61 individual independent generators per rank, retuning would otherwise be an endless chore.

Oscillator options

In the past, many electronic organ builders have used LC oscillators, the inductor using a gapped laminated core. This type of oscillator has the advantage of not needing a separate keying circuit; it performs its own keying function by switching the supply to the maintaining transistor.

Output is taken from a point in the circuit where there is no change in dc level between the on and off states. This avoids keying thumps, while the smooth build-up and decay of the amplitude avoids the slightest suggestion of 'key clicks'. (These clicks plague many other designs of keyed oscillators and keying circuits). Many such ranks are still in use, but the size and cost of using LC oscillators provides a strong incentive to seek alternative designs.

I decided to design a cheap simple keyed oscillator needing no separate keying circuit. Instead it only requires a single-pole normally-open switch for each key contact. Some published designs require, at each key, one changeover contact plus two normally open contacts. A single-pole normally-open contact is preferred to a normally closed option since the worst that dust can then do is to prevent a note from sounding when played. A normally closed contact can cause a note to be 'stuck on'.

One of the simplest possible oscillators consists of a Wien bridge and an op-amp, Fig. 1. Attenuation from the op-amp output to its non-inverting input via R₁, R₂, C₁, and C₂ is infinite at 0Hz and infinite frequency, and a minimum of a factor of three at the frequency given by $f = \frac{1}{2\pi \sqrt{R_1 C_1}}$, if $R_1 = R_2 = R$ and $C_1 = C_2 = C$. This forms the narrow band positive feedback path.

If attenuation in the broadband negative feedback branch via $R_3$ and $R_4$ is less than 3:1 the circuit will not oscillate. But if it is equal to (or due to the finite gain of the op-amp, slightly greater than) 3:1, then the circuit will oscillate. With no special amplitude stabilising measures, amplitude of the oscillation will build up until limited by the output hitting the supply rails. This causes little distortion if the positive feedback signal at the non-inverting input barely exceeds the negative feedback at the inverting input, Fig. 2.

To make a practical organ tone generator, some means of tuning is required, and this is by no means straightforward. Varying any one of $R_1$, $R_2$, $C_1$ or $C_2$ will change the frequency, but will also change the attenuation in the positive feedback path. Depending on which way the attenuation changes, this can cause oscillation to stop. Alternatively it results in limiting so hard that the signal verges on a square-wave.

A two-gang resistor will do the job, but this...
is hardly practicable on a one-per-note basis. Fortunately, as is so often the case in analogue circuit design where only a small parameter change is required, a little ingenuity can provide the solution, Fig. 3.

If reactance of the capacitor at the operating frequency is ten times the track resistance of the potentiometer, the voltage at B will be only 0.5% smaller than at A. Since these voltages are in quadrature, the voltage across the resistor will be a tenth of that across the capacitor. However, as the wiper of the pot is moved from A towards B, additional phase lag is introduced onto the signal fed to the op-amp’s non-inverting terminal.

To compensate for this, maintaining zero phase shift from the op-amp’s output to its non-inverting input, the frequency must fall. Due to the low Q of the RC network (its Q = 1/3), a small change in phase shift causes a much larger compensating change in frequency than would be the case with an LC circuit.

At the operating frequency, the reactance of \( C_1 \) equals \( R_1 \). So in Fig. 3, track resistance of the potentiometer should not exceed 10k\( \Omega \). This provides almost three semitones tuning range, while a 4.7k\( \Omega \) pot provides over one semitone.

A stable, tuneable oscillator

From my records I found that I developed this circuit in 1982, but I know that it has been independently derived by others. It has a further advantage in that the wiper of the potentiometer feeds an op-amp input, ie a high impedance. Except in the case of wire-wound types, the resistance from one end of a potentiometer to the wiper plus that from the wiper to the other end, exceeds the end-to-end track resistance, due to wiper contact resistance.

Contact resistance is relatively less stable than the track resistance, so tuning by making part of \( R_1 \) or \( R_2 \) a potentiometer would be impracticable on stability grounds, quite apart from the incidental change in loop gain. As it is, \( C_1 \), \( C_2 \) can be polystyrene types, available in E12 values at 1% or more cheaply 2.5% selection tolerance. Resistors should all be metal film types. Using polystyrene capacitors and metal-film resistors, long term stability of the oscillators should be adequate to ensure that only occasional tuning is necessary.

Over the temperature range 20°C to 60°C, the breadboard circuit exhibited a temperature coefficient of −0.02\( \text{voc} \), using polycarbonate capacitors. Frequency shift with change of ambient temperature can be expected to be — for all practical purposes — the same for all notes, provided of course that the capacitors used all have the same type of dielectric.

Designing a keyed oscillator

Having arrived at a stable, tuneable oscillator, it remained to add a keying facility, which can be achieved by altering the ratio of \( R_3 \) and \( R_4 \). This has to be effected by the key contact, but the latter cannot be used to modify the component values directly, if — as is likely — it is required to add octave and suboctave couplers. These, when activated, sound the note an octave above, and/or an octave below each note played.

Richness of sound is increased and, because of the inevitable slight departure from exact octaves when using individual generators, creates a desirable chorus effect just as in a pipe organ. As a result, key switches should simply key a dc control signal, instructing the generator to sound when the corresponding key is depressed. The circuit itself will be controlled by an electronic switch. Cross switches are cheap and readily available and, like the LM324 op-amp, come four to a pack, for example the CD4016.

Figure 4a) shows such a keyed oscillator while Fig. 4b), upper trace, shows the output waveform, which is basically sinusoidal. Being so, it is suitable for use directly as the tone bus (Diapasons).
basis of stops of the flute family. Figure 4b), lower trace, shows the starting and ending transients. These are clean and smooth. Having no associated dc level shifts, they give complete freedom from key clicks or thumps respectively.

The note sounds when \( R_S \) is grounded via \( S_1 \), one section of a CD4016. In view of the supply voltage rating of this device, the circuit is just too much or too little to allow it to pass clicks or thumps. The ear is much less sensitive to the end of a note than it is to its beginning.

For other types of sound, some second harmonic is essential, for example open diapasons. Being a quarter of a wavelength long, stopped diapason pipes are an exception, but even these, if of large square cross section tend to show some second harmonic.

Figure 6a) shows an interesting shaper circuit, originally published in an American magazine, and modified here with suitable component values for the available drive voltage. Figure 6b) shows the output voltage, lower trace, compared with the input sine-wave, upper trace.

Experimentation with the relative values of the four resistors enables a wide variety of waveshapes, and hence of harmonic contents, to be achieved. However, when even harmonics are introduced, the circuit reduces the area under positive-going half cycles more than under the negative-going ones. This means that it introduces a small dc component which results in an offset at the keyed output relative to ground when sounding.

The result is a slight tendency to produce keying thump, mitigated somewhat by the fact that the driving sine-wave builds up and dies away gradually. This effect is found in nearly all schemes for introducing second harmonic, and the thump can be largely suppressed by passing the output through a high pass filter. The filter need not be provided on a one-per-note basis, but on the other hand one per rank cannot be effective over the whole keyboard.

Figure 6b) type tone generator outputs can therefore be combined on an octave basis, passed through an appropriate high-pass filter and the five filter outputs combined for feeding to further voicing and tone-forming filters. If passed through a high-pass circuit providing attenuation of the fundamental relative to the harmonics, a sound like a really fiery reed stop results.

By these means, three different stop types can be derived from a single rank of generators, but of course in no way does this make it equivalent to three independent ranks. Drawing two of the three stops together simply changes the harmonic content of a note. It therefore contributes nothing to the chorus effect, whereas with two different speaking stops drawn on a pipe organ, two different pipes sound for each note.

Nevertheless, it is convenient to have three different tone colours available, even if drawing them in different combinations merely provides further different tone colours. In particular, one output can be voiced as a very loud stop and another as a quiet one. If the loud one was drawn, the quiet one would not be heard anyway – even on a real pipe organ.

Cutting cost and complexity

However simple the tone generator, the requirement for one per note per rank means a lot of circuitry is needed.

The scheme of reference 1 sharing a generator between two adjacent semitones is therefore very attractive, but that used a relaxation oscillator. Changing the pitch of a Wien bridge oscillator is not so simple however, as pulling the frequency of a relaxation oscillator. This is because, as noted earlier, while changing either \( R_1 \) or \( R_2 \) alone will change the frequency, it will also change the required ratio of \( R_3 \) and \( R_4 \).

What is needed is a way of simultaneously changing both \( R_1 \) and \( R_2 \), using – for economy – just a single pole switch, such as a single section of a CD4016. Here again, as the parameter change required is a small percentage, one equal tempered semitone represents a 5.9% change in frequency – a little ingenuity can supply the answer, Fig. 7.

While the two additional resistors connected to switch \( S_2 \) will marginally increase the frequency of oscillation when \( S_2 \) is open, values can be found which will cause a further increase of exactly a semitone in pitch when it is closed. This occurs without changing the positive feedback level. As a result the degree of clipping is unchanged – compare the two semitone outputs in Fig. 8a) – leaving the harmonic content virtually unchanged, Fig. 8b).

In 8b), the semitone frequency separation of the two fundamentals is only just visible. However the separation becomes two semitones or about 12% at the second harmonic, and so on in proportion to the order of the harmonic. The starting and ending transients of the upper semitone are also unchanged, due to circuit arrangement maintaining the same
degree of clipping for both semitones.

For experimentation purposes the actual frequencies were regarded as unimportant, and the semitone shift being the essence of the exercise. But the two notes – in the region of 1700Hz – correspond roughly to A” and A” flat. There is a small effect on the accuracy of the semitone change, depending on the setting of the tuning potentiometer. This amounts to a few cents more or less than a semitone with the tuning potentiometer at one extreme end of its range or the other, where one cent represents one hundredth of a semitone.

The two diodes in Fig. 7 are arranged so that either of the two adjacent semitone keys will close S1. This causes the note to sound, but only when the key for the upper note is pressed will S2 be closed, giving the higher of the two pitches. If both keys are pressed at once, the upper semitone sounds. In some shared note schemes accidentally pressing both keys together causes a totally different, unrelated note to sound.

With the optional capacitor (2nF) absent, the pitch will revert to the lower semitone immediately the upper semitone key is released. Consequently, this causes the tail of the note to be at the lower semitone frequency. Strangely, this results in but the barest trace of key click on the sine-wave output, presumably because of the rapid decay of the tone, Fig. 4b. However, the decay of the square-wave output is much slower, due to the limiting action of the diodes, and this is clearly visible in Fig. 5c).

On the square-wave output, the pitch change during the ending transient of the upper semitone gives a much more obtrusive key click. The 2nF capacitor suppresses this by delaying the return to the lower pitch when the key is released. The optional resistor (33k) is necessary to control the capacitor charging current, otherwise a key click appears at the beginning of the upper semitone square-wave output.

Unfortunately, while the optional components suppress any key click on either semitone on the square-wave output, they create a very audible key click on release of the upper semitone sine-wave output. This is caused by charge injection in the switch circuit S2, from the control input to that section of the CD4016.

With the capacitor delaying the opening of the switch, it now occurs when the sine-wave has all but died away. As the switch is connected directly to the op-amp’s non-inverting input, it shock excites the oscillator into ringing – visible on the upper trace (upper semitone) in Fig. 8c). By comparison, the lower semitone sine-wave output is of course unaffected, lower trace.

Further enhancements
Charge injection in electronic switches is a well known phenomenon, and in later designs of switch ICs it has been greatly reduced, but these would be too expensive in the numbers required for this application.

Clearly there is scope for further development here. For example, the capacitor at the control input of S2 could be grounded not directly, but via another section of the CD4016. This additional section would be switched on when square-wave was selected, but not for sine-wave. All additional switch sections would have their control inputs connected together and controlled by the stop switches, being on for clarinet (square-wave) type stops but off for flutes (sine waves).

Having concentrated on the basic one-per-note, or one-per pair of notes tone generator, a word on controlling the generators from the keyboard will not go amiss. For a very simple organ of just one rank, key switches can control S1 for each note directly, and S2 – if using the shared generator scheme – via diodes as in Fig. 7a.

If it is desired to incorporate octave and sub-octave couplers, this can be achieved by adding diodes and resistors. However the complexity increases alarmingly, especially with the shared generator scheme. It increases further if it is desired to have two or more ranks of generators with the option of sounding these at different pitches. As a result, for all but the least ambitious designs some other scheme is called for.

A microcontroller can be used to scan the keyboard and set or clear latches controlling S1, and S2 if used, in accordance with the stops drawn. But a simpler approach is to employ one of the variations on the multiplex scheme, which has been described many times in the literature, for example Refs 3 and 4.

References

Fig. 8a) Two sine-wave outputs, a semitone apart.

b) As a consequence, amplitude and harmonic content of the circuit’s sine-wave output is virtually the same for both semitones. (10dB/div vertical, 2kHz/div horizontal, span 0-20kHz.)

c) Delaying the removal of the semitone pitch change control signal to avoid chirp on end transient of the square-wave output when sounding the upper tone causes a hiccup in the ending transient of the upper tone sine-wave output, audible as a slight key click.

Fig. 4b) As a consequence, amplitude and harmonic content of the circuit’s sine-wave output is virtually the same for both semitones. (10dB/div vertical, 2kHz/div horizontal, span 0-20kHz.)
Receive radio-code time signals on your PC

Plugging this radio-code receiver into your PC’s COM port and running the DOS and Windows software supplied gives you access to the atomic-clock referenced 60kHz time signal transmitted from Rugby. This signal is accurate to a second in a million years and corrected automatically for summer/winter time.

Based on a highly-tuned and reliable receiver module with antenna, the system automatically updates the PC’s clock at switch on and at any other desired time. Under Windows, an icon is available signalling to the operator that the receiver is receiving the Rugby signal, and indicating the current time and date.

Applications include:

- research and development
- synchronising encryption-key changes
- broadcast transmission sync
- timing video monitoring in security systems
- controlling public and distributed clocks
- distributed timing for remote communications
- access control
- production monitoring
- linking remote networks
- data security

Time data received by the PC is via standard RS232 and well documented, allowing you to use atomic-clock referenced timing and date stamping in your own applications. Sending the ASCII letter o for example returns a 15-character string representing hours, minutes, seconds, day of week, day of month, month, year and summer-time and receiver status.

Normally, the receiver module together with DOS and Windows software costs £69.50, or £99.50 for a version with in-built liquid-crystal display for time and date display. Until 15 March 1996, Galleon is offering these two products to EW readers at special 25% discount prices of £52.13 and £74.63 respectively.

All prices quoted are inclusive of VAT, but excluding £2 postage.

Use this coupon to order your Atomic Radio Clock

Please send me

[ ] receiver module(s) at the discount price of £69.50* each. 
[ ] receiver module(s) with built-in LCD display for time and date display at the discount price of £99.50* each.

*Both versions are VAT inclusive and come complete with DOS and Windows software

Postage

£2.00

Total amount

£

Name

Company (if any)

Address

Phone number/fax

Make cheques payable to Galleon Systems Ltd

Or, please debit my Visa or Access card.

Card Type [ ] Access [ ] Visa

Card Expiry date

Card No

Please mail this coupon to Galleon Systems Ltd together with payment. Alternatively fax credit card details with order on 0121 608 4477 or telephone on 0121 359 0981. Address orders and all correspondence relating to this order to Galleon Systems Ltd, Aston Science Park, Love Lane, Birmingham B7 4BJ.

*Overseas readers can also obtain this discount but details vary according to country.

Please ring, write or fax Galleon Systems.

The desk-top version of the radio-code PC clock features two alarms and an integral display showing hours/minutes/seconds/day, date and daylight savings indication.

Access to atomic time accuracy via your PC

February 1996 ELECTRONICS WORLD
Cosmo Little reveals the benefits of a little-known frequency synthesis technique that is cheaper than direct synthesis – and requires much less power.

A fractional-\(N\) synthesiser is essentially a single-loop digital synthesiser where the loop divider has been modified to divide by an integer plus a fraction – instead of by an integer alone. In this way, extended frequency resolution is obtained.

Because division by a fraction is not possible, the divider approximates to the required fractional division ratio over a period of time.

In this first article I review the operation of the single loop digital synthesiser, and will consider the basic type of fractional-\(N\) synthesiser. In the second article, we will conclude the review of fractional-\(N\) techniques, and will look at practical implementations of the method. Both articles will be illustrated by MathCad simulations which will be made available to readers as the original MathCad documents. This will enable readers to experiment with the design of fractional-\(N\) synthesisers to suit specific applications.

**Benefits of fractional-\(N\)**

The fractional-\(N\) synthesiser is believed to have been invented by Hewlett Packard in the early eighties. It was used in a number of synthesisers – including the 3325A, which achieved micro-hertz resolution with only one phase-lock loop.

The same concept has been used in other instruments, such as the Marconi 2022 signal generator, and can be used as the high-resolution loop in a multi-loop synthesiser which increases the possible frequency range into the gigahertz region.

Modern digital large-scale integration chips have generated considerable interest in the direct digital synthesiser, which has largely eclipsed the fractional-\(N\) technique. Nevertheless, fractional-\(N\) has many advantages, and is worth serious consideration by any designer faced with the task of producing a medium performance frequency synthesiser with small frequency resolution.

Fractional-\(N\) can be implemented much more cheaply than a direct digital synthesiser, or dds. It also uses much less power as it does not require fast logic or a fast video d-to-a

**Figure 1.** In the basic digital loop, a voltage-controlled oscillator running the output frequency is divided by integer \(N\).
convertor for the signal reconstruction.

This article reviews the different evolutions of the fractional-N synthesiser from the most basic idea of not constant division ratios in a digital phase-lock loop, PLL, to the development of the two accumulator fractional-N loop with its division by a choice of four different integers and analogue correction.

Performance of the fractional-N loop is well suited to simulation on a general purpose maths package, as its performance limitations can be investigated independently of performance limitations caused by the hardware implementation. In this article, analyses are supported by MathCad documents.

Initially, I will review the basic digital loop from a performance point of view, and discuss the basic trade-offs between resolution, reference frequency suppression, phase noise, and tuning time. These relationships are not derived formally, as this has been done many times in existing literature.

Basic digital pll

Figure 1 is a block diagram of a single loop synthesiser. This will no doubt be fairly familiar to most readers. A voltage-controlled oscillato running at the desired output frequency, f₀, is divided by an integer, N.

Phase of the output frequency from the divider is then compared with the phase of a reference frequency, and the phase error is converted to a voltage error by the phase detector. This voltage error is processed by the loop filter, which is usually an integrator and zero, with one or more higher frequency poles.

Output from the loop filter is now used to correct the vco frequency to hold the phase error at the phase detector to near zero. This loop can be formally analysed to predict such behaviour as loop stability, phase margin, and closed loop transfer function – which describes how closely the phase fluctuations of the vco follow the reference – behaviour of the loop to phase errors added to the vco signal, ie suppression of phase noise of the vco, and many other performance characteristics. I do not analyse the digital loop in detail here, but I have included references to the details. This is a summary of the most important performance trade-offs.

Frequency resolution. This equals the reference frequency, output frequency is {\text{f}}_{\text{ref}}/N.

Natural loop frequency. This is defined as the -3dB point of the closed loop gain. It is an important parameter that affects several other performance measures. For generality it is best considered as a fraction of {\text{f}}_{\text{ref}}.

Note that the digital loop is actually a sampled data system. Phase comparisons are only available at the rate of the reference frequency. As a result, in theory, the loop frequency cannot be higher than {\text{f}}_{\text{ref}}/2.

In practice, the loop frequency will need to be {\text{f}}_{\text{ref}}/10, or even lower. The main reason for this will be to suppress leakage of unwanted high frequency signals from the phase detector. These occur at multiples of the reference frequency, and will phase modulate the vco, producing spurious sidebands.

Some phase detectors are better than others in this respect. The sample and hold detector is generally considered to have the lowest reference frequency feedthrough. However, the digital phase/frequency comparator is still used in a great number of single chip synthesisers. The choice of phase detector becomes important for another reason concerned with the fractional-N mechanism, so I will return to the discussion of phase detectors later.

Designing the loop

The natural loop frequency – and damping factor – may be calculated from the component values used in the type 2, second-order loop filter. The circuit and equations are given in Fig. 2. Real implementations, however, always have additional poles, and the simplest way to find the natural loop frequency, and also the phase and gain margins, is to plot the closed loop gain and phase. This is easy with tools such as MathCad.

The op-amp is modelled as an amplifier with finite gain and one low frequency pole. Component values in Fig. 2 for the fifth-order loop are entered. The loop divider (N), phase detector constant (Kp), and vco gain constant (KV) are also entered. The document then plots graphs of closed loop gain and phase, forward gain, reduction of vco phase noise, and loop filter response. This enables estimates of natural loop frequency, loop stability, reference frequency suppression, and vco phase noise to be made.

The natural loop frequency affects a number of performance tradeoffs of the digital loop. Those that are most important to synthesiser designers are phase noise, spurious sidebands, and tuning time.

Phase noise of the vco can be divided into two regions, frequency offsets well within the loop natural frequency, and frequency offsets well outside it. At frequencies well within the loop frequency, the vco is controlled by the reference frequency phase. Any phase fluctuation of the reference will appear on the vco output, multiplied by the loop division factor, N. In terms of sideband level, the increase in level from the reference to the vco will be 20xlog(N).

For example, if the reference has 100Hz sidebands at a level of -80dBc (80dB below the carrier) due to phase modulation, and N is 1000, then the 100Hz sidebands will appear on the vco at a level of -20dBc.

Exactly the same calculation applies to noise sidebands. In the example a reference phase noise level of -80dBc/Hz will be transferred to the vco at a level of -20dBc/Hz. If N is very large, the vco may well end up with worse phase noise than if it was free running.

This is in fact the case in an early version of a low-cost signal generator made by a famous manufacturer. As far as I can remember, the vco used was free running in the loop, but the reference frequency oscillators (RFO) was well within the desired frequency. What happened was that the phase noise of the RFO made the vco to be more phase noise than if it was free running. This in fact was the case in an early version of a low-cost signal generator made by a famous manufacturer. As far as I can remember, the vco used was free running in the loop, but the reference frequency oscillators (RFO) was well within the desired frequency. What happened was that the phase noise of the RFO made the vco to be more phase noise than if it was free running.

This in fact was the case in an early version of a low-cost signal generator made by a famous manufacturer. As far as I can remember, the vco used was free running in the loop, but the reference frequency oscillators (RFO) was well within the desired frequency. What happened was that the phase noise of the RFO made the vco to be more phase noise than if it was free running.
This made measurement of SINAD near impossible. The manufacturer soon replaced this signal generator with a version that used a fractional-N loop to avoid this problem.

**Calculating phase noise**

This digression all helps to illustrate the problems with digital loops with high loop division factors.

Note that reference noise must include divider noise and phase detector noise. If this is not done, it is possible to make a large error in the calculation of phase noise within the loop bandwidth. Reference oscillator phase noise will be reduced by the reference divider chain by the same factor $20 \times \log(R)$, where $R$ is the total divider ratio.

For example, a crystal oscillator at 10MHz may have phase noise of $-100$dBc/Hz at a 100Hz offset. If this was then divided down to 100Hz, you might assume that the phase noise at the divider output would be $-200$dBc/Hz from the above formula. But this would be incorrect, as the divider noise floor is unlikely to be below $-160$dBc/Hz. For examples of divider and phase detector noise, see reference 1, p86.

Outside the loop bandwidth the vco is considered as if it were open. The vco is considered to have non linear operation of the phase detector, with the loop initially slipping cycles during acquisition.

Phase detectors of the digital phase/frequency counter comparator type will always acquire lock. Even if there is a large initial frequency difference, they always provide an output to pull the vco in the correct direction. They are almost always used in commercial single-chip digital synthesizers, although often an alternative phase detector is provided for use once the lock has been acquired.

Tuning time is always inversely proportional to the loop natural frequency. Some approximate formulae are given in Fig. 1. **Multi-loop synthesizers** To summarise, a single-loop synthesizer is simple and economical, but has serious performance problems when fine frequency resolution is required.

Many transceiver applications have fixed channel spacings of 12.5 or 25kHz, and in these cases it is possible to design single loop synthesizers with vco frequencies up to $200$MHz with adequate performance. The same applies to domestic radios where a channel spacing of 9kHz is used, in Europe, on the amplitude modulation broadcast bands, and a channel spacing of 100kHz on the fm broadcast band. But what about a general coverage short wave receiver?

In this case the receiver will probably use up-conversion to a first intermediate frequency of 45MHz, with a vco range of 45 to 75MHz. At least 50Hz resolution is required for ssb reception. A single-loop synthesizer would be terrible, as you can appreciate from the formulae provided.

The traditional solution is multi-loop synthesizers — synthesizers with mixers in the loop. These can be incredibly complicated. A circuit of an early Yaesu amateur transceiver is typical of Japanese transceiver design in the eighties. It uses four internal vcos — not including the output frequency resolver single-chip programmable divider/phase detectors, five mixers, six fixed divider chips, and a mass of loop filters, low-pass, and tuned filters to try and control all the unwanted mixer products. To be fair to the Yaesu designers, current amateur transceivers use much simpler schemes, usually based on a direct digital synthesizer — ddss — as a part of a dual loop.

Direct-digital synthesis is a method of directly generating a sine wave output by accumulation of phase, table look up of the sine function, and reconstruction of the output with a d-to-a converter. Analysis of the ddss would be another article, but it is not the universal solution to synthesizer design that some manufacturers of the chips might claim.

Due to the fast logic required — clock rates of at least four times the output frequency are required — and the fast d-to-a converter, prices of the chips are very high, around £20 to £40 for the ddss chip, and about the same for the d-to-a converter. Spectral purity is a problem, especially if the output frequency is multiplied in a digital loop.

**Fractional-N in practice**

Figure 1 provides some insight into how the fractional-N technique works.

If the loop divider is changed at the end of each reference cycle, ie when the $N$ counter overflows and reloads from its latch, the average value of $N$ taken over many reference cycles may be made a non-integer value.

Frequency of the vco is still be given by $f_{vco}=Nf_{ref}$, but now $N$ is no longer integer, giving us fractional frequency resolution.

As an example, if $N$ is 100, and $f_{ref}$ is 1kHz, output frequency will be 100kHz. If, every 10 reference cycles, $N$ is changed to 101 for 1 reference cycle, the long term average of the loop divider will be $(9\times 100+101)/10=100.1$ and output frequency will be 100.1kHz.

You may already have noticed the weakness of this idea. Assuming that a very-low loop natural frequency is used, the loop can be considered as if it were open. The vco is considered to be on exactly the correct frequency, ie 100.1kHz. Now, after the first reference cycle we will...
Phase lock loop comparison frequencies $f_{lock}=\frac{f_0}{N}$, integer part of loop divider $N=10$.

Fractional part of loop divider $N=1$. Accumulator modulo $M_{lock}=2^N$.

Correction DAC modulo $M_{DAC}=2^N$.

$$f_{lock} = \frac{f_0}{N} \times M_{lock}$$

The next statement forms the vector of values in the accumulator.

Special vector function definition that returns 1 if next entry in vector is less than current entry. Serves to mark overflow.

Corrected DAC value $DAC = \text{mod}(DAC - 1, M_{DAC})$.

The frequency sweep is $-100 < f < 100$ Hz.

Calculated values:

- $f_{lock} = 5.333 \times 10^3$ Hz
- $f_{mod} = 7.95775 \times 10^3$ Hz
- $f_{po} = 0.01592$ Hz

Performance graphs:
- Module of closed loop gain
- Phase of closed loop gain
- Transfer function (output vs. reference)
- VCO phase noise reduction by loop
- Loop filter response
have divided by 100. The time required for the counter pulse to overflow, and deliver the output pulse to the phase detector, will be \(100\times t/100100 = 999\mu s\). The reference pulse or edge has a period of 1000\(\mu s\). As a result, the first reference cycle has resulted in a time error of 1\(\mu s\) at the phase detector, the divider output appearing earlier. This corresponds to a phase error of 6.28\(\times 10^{-6}\) rad.

The next reference cycle produces another incremental error of 1\(\mu s\), giving a total error of 2\(\mu s\). Errors build up until the tenth reference cycle, at which point a divide by 101 is carried out. Incremental error due to this division will be –9\(\mu s\), the divider pulse appearing later.

The total error is now zero. The error waveform is a sawtooth, with a peak-to-peak amplitude of just less than 1\(f_{\text{ref}}\). In the example above, the range was from 0 to 9\(\mu s\). In a real loop this would produce a net input to the loop integrator, and the phase of the vco would shift to ensure that the error waveform had no dc component.

The error waveform is a sawtooth with a period of 100ms – 10 reference cycles – or a fundamental frequency of 100Hz. This is equal to the gain in resolution of the loop. In order to filter out the error voltage, which would otherwise phase modulate the vco, it is necessary to reduce the loop bandwidth. As a result little is gained over using a loop with a reference frequency of 100Hz in the first place.

Both cases are not quite the same, as in the fractional loop phase comparisons are still at a 1kHz rate. Also, the error voltage to be filtered out does not depend on the characteristics of the phase detector, as it does with reference frequency feed through.

Amplitude of the time error waveform is equal to the reciprocal of the vco frequency, and is proportional to 1/N. However, the loop will multiply the error voltage by its forward transfer function, which at low frequencies is equal to \(N\). As a result the vco spurious sideband level will tend to be independent of \(N\).

Cancellation of the error voltage

In order to make the fractional loop work properly, initially, some means of controlling the loop divider is needed to generate any required frequency increment. Secondly some means of cancelling out the error voltage in the loop is necessary.

Control of the divisor can be arranged by using an accumulator, with a phase increment added into it at the end of each reference cycle. When the accumulator overflows, the loop divisor is changed from \(N\) to \(N+1\). Either a decimal or a binary modulus may be used. The value of the phase increment is called the fractional divider, or \(M\). Output frequency is now \((N+M)\times f_{\text{ref}}\).

This relationship can be verified by trying a few examples. If \(M\) is set to 1 less than the modulus, the accumulator will overflow on every reference cycle except 1. The loop will divide by \(N+1\) for \((\text{modulus} - 1)\) cycles and then by \(N\) for 1 cycle.

Another situation that is of interest is when \(M\) is not a factor of the modulus. For example \(M=7\) and modulus is equal to 100. Now the accumulator will overflow on the fifteenth reference cycle, but will not contain zero. The time error waveform will be the sum of two sawtooths, one with a period of about fifteen reference cycles, and the other with a period of 100 reference cycles. The lowest frequency component will be \(f_{\text{ref}}/\text{modulus}\). If \(M\) is a factor of \(\text{modulus}\), the lowest frequency will be \(f_{\text{ref}}\times M/\text{modulus}\).

Cancellation of the error voltage from the phase detector can be achieved easily since the contents of the accumulator can be considered as a binary – or decimal – integer exactly following the error waveform. Parallel output of the accumulator is fed to a d-to-a converter, its voltage is scaled appropriately, and it is added to the output from the phase detector. This exactly cancels the error voltage.

Now all the elements for the fractional-\(N\) synthesiser exist. Figure 3 gives a block diagram of one type of practical implementation based on discrete logic. Other implementations will be considered later.

Simulating analogue correction

Rather than analyse this circuit in detail in the text, it is easier to introduce the first of the two MathCad documents shown. This is a simulation of a fractional-\(N\) loop with analogue correction.
It is not possible to simulate a program loop with MathCad. Instead, the simulation must be made in a linear manner, proceeding from the start to the end of the document. The length of the simulation is set by the range variable T, which must be a power of 2 so that the Fourier transform will work. The accumulator modulus is set to 256, and the length of the simulation to eight complete cycles (2048).

Various vectors are generated, such as the vector of the accumulator contents and the vector of the loop divider. Most of these are illustrated by graphs. The effect of using a d-to-a converter to generate the correction voltage with a modulus less than that of the accumulator may be simulated. This is quite likely to be the case in a practical implementation of the synthesiser, when the accumulator modulus may be much greater than 256.

As the adjustment of the correction voltage is very important for the elimination of spurious sidebands, it would be useful if there was a method of automatically balancing the error voltage to zero. This is in theory possible if we consider that the polarity of the error voltage will change if the correction is changed from too large to too small. As it stands the error voltage will always be balanced about OV to give the requirement that the input to the loop integrator has a mean of zero.

However if you synchronously rectify the ac error voltage using the most-significant bit of the accumulator, and then filter the resulting waveform, you get a dc value proportional to the unbalance of the correction. This may be used in a long time-constant feedback loop to correct the magnitude of the correction voltage. This idea is shown in Fig. 3, and is simulated in the last part of the document.

This concludes the discussion of the fractional-N loop operation. In a further article I will examine an important modification of the single accumulator fractional-N loop which goes a long way to reducing spurious outputs - even without analogue correction.

---

**References**

4. Alain Blanchard, 'Phase Locked Loops. Application to coherent receiver design'.
Designing cascade RC oscillators

Cascade RC oscillators are simple, stable, and offer very fast start up. David Griffiths explains how this long-established circuit configuration benefits from modern op-amp technology.

The new breed of dual op-amps with rail-to-rail output swing allows a very simple implementation of the RC cascade oscillator.

In addition to the timing elements shown in Fig. 1, the cascade oscillator needs little more than three resistors and a single eight-pin IC, provided a stable supply voltage is available. Sadly, distortion performance is only around the 2-3% level - mainly third harmonic. However, those concerned with sensor instrumentation at fixed frequencies should welcome the following:

- Excellent stability of output amplitude, which is also highly predictable and has a very low temperature coefficient.
- Very stable timing relation, with ageing and temperature, between sine and square wave outputs, which is a boon in phase sensitive detection schemes.
- Almost instant start and settling characteristic, which allows burst operation of sensors to minimise battery power consumption.

The RC cascade alternative

The above principles were expounded in *Wireless World* by L. Nelson-Jones. He concentrated not on the common high-pass CR cascade, but on the less well known low-pass RC scheme. As a recap, Nelson-Jones’ introduction went along the following lines.

Figure 2 shows the more common cascade CR phase-advance oscillator. If the inverting gain of the amplifier exactly equals the attenuation of the cascade when it is giving 180° phase shift, then oscillations at that frequency will be sustained by this arrangement.

This still leaves the awkward problem of precisely controlling the gain to maintain stable oscillation amplitude. This could entail thermistor control, but then ambient temperature changes have a big effect on the amplitude, and it is difficult to avoid prolonged amplitude ringing at switch-on.

In my opinion, a Wien bridge oscillator with thermistor gain control beats this approach hands-down - especially if the amplification is arranged as virtual earth amplifiers giving ultra-low distortion as in the elegant scheme due to John Linsley Hood.

Alternatively, gain control in Fig. 2 can be exercised with oscillation amplitude sensing or rectification. The ensuing voltage is then applied to vary the channel resistance of a fet used in the feedback path controlling amplifier gain. In my experience, this approach always seems to give more amplitude temperature coefficient than initially expected, as well as increasing distortion.

The necessary 180° phase shift in the cascade can be equally well achieved via phase retardation generated by interchanging the positions of R and C to give Fig. 1. Again, the same less than ideal schemes could be used to try to control the gain at the critical value to maintain oscillation amplitude stability. However, Nelson-Jones’ insight was that, if you primarily want amplitude stability and can bear some distortion, then it is much better to run the maintaining amplifier as near as possible as an ideal limiter.

Cascade transfer characteristics

Assuming that the maintaining amplifier is not clipping and has infinite input impedance combined with zero output impedance, the analysis is as shown in the equations panel. This gives mesh equations for both types of cascade.

In the phase retard case, if the cascade is driven at angular frequency $\omega$ at amplitude $V_1$, then the output amplitude $V_2$ is related by,

$$V_2 = V_1 \left(1 - 5\alpha^2 - j(\alpha^2 - 6\alpha)\right)$$

where $\alpha = \omega RC$ and $j = \sqrt{-1}$. When $\alpha = \sqrt{6}$, the imaginary term is zero and $V_2 = -29V_1$, showing the phase shift is 180°. Angular oscillation frequency is therefore $\omega = \omega/RC$. That is, the phase retard RC cascade oscillator will ideally oscillate at a frequency $f’$ given by,

$$f = \frac{\sqrt{6}}{2\pi RC}$$

As an aside, in the case of the phase advance cascade, the expression for the frequency at which the imaginary term is zero has the $\sqrt{6}$ on the bottom line. Despite this six-fold difference in frequency for the two configurations using the same R and C values, attenuation...
tion at the 180° phase shift condition is again -29, as expected from symmetry considerations.

Substituting 2x, 3x, 4x and 5x into equation (1) allows the attenuation to be calculated for the second, third, fourth and fifth harmonics. This yields attenuation factors of 148.1, 443.6, 1004 and 1916 respectively, and shows a misprint for the third harmonic figure in the original article. This gives an attenuation of 5.1, 15.3, 34.6 and 66.1 respectively compared to the attenuation of the fundamental at which oscillation can occur. These figures agree with those calculated by Nelson-Jones.

The ideal case

It is now appropriate to consider the ideal case where a limiting amplifier of Fig. 1 is given infinite gain and behaves as an ideal limiter with its output voltage only at one or other of two levels. The phase-retard RC cascade is as a result driven with a square wave and the question arises as to the waveform that emerges from it. Using the harmonic attenuation factors calculated above and expressing the driving waveform as a Fourier series of harmonically related sinusoids, the output waveform can be calculated as follows.

Orthogonality of sines and cosines when integrated over a complete cycle means that a square wave of amplitude 'A' can be represented by the Fourier series,

\[
\frac{4}{\pi} A \left[ \sin \theta + \frac{1}{3} \sin 3\theta + \frac{1}{5} \sin 5\theta + … \right]
\]

This means that if the amplifier in Fig. 1 were ideally limiting between 0V and +5V supply voltage, then the amplitude of the fundamental harmonic contained in the square wave is 4\times5/\pi=6.37V. The fact that it should be greater than the swing permitted by the available power-supply voltage is intriguing.

An unforeseen time constant in an amplifying chain can knock the corners off fast rising edges. Knowing this, you might imagine that the corners just get progressively rounded off as the limited waveform progresses down the cascade. However, this does not happen like this because the repetition rate of the square wave is fast compared to the cascade time constants.

At the first capacitor down the chain you can see only a spiky sequence of exponential rises and falls, without any 'flat bits' left from the square wave. The waveform on the second capacitor is remarkably close to being triangular. As a result, it is initially surprising that an oscilloscope shows a presentable sine wave at the end of the cascade.

The Fourier series shows that in the ideal case the third harmonic is the lowest distortion component that would be present and would have a third of the magnitude of the fundamental harmonic. We have already established that this third harmonic is subject to 15.3 times more attenuation in the cascade than the fundamental. As a result the third harmonic at the output only contributes 1 part in 45.9 to the signal, i.e. a distortion level of 2.18%. Calculation gives a fifth harmonic level of 0.3%, with relatively negligible amounts of higher harmonics.

Implementing the design

Because of the attenuation in the cascade and the need for it to be lightly loaded, a buffer amplifier is needed as well as the limiter. These could both be driven in parallel by the

RC Cascade oscillator performance

Measurements on a number of units oscillating at about 400Hz and using the LMC660 and AD822 op-amps have shown an ac amplitude temperature coefficient around the 10-20ppm/°C level. This occurred over excursions of 25°C above and below ambient temperature, in addition to that imposed by the tempco of the supply voltage. As a result, for many measurement situations, there is no need to use ratiometric techniques to compensate for drifts in the carrier amplitude. This allows you to base an adequately stable calibration on simply measuring the output voltage from a sensor. As might be expected from the toggled nature of the driving waveform and passive shaping, the circuit start-up and settling are very rapid indeed. At switch-on, the uncharged timing capacitors hold the output of IC1 low, ensuring that the limiter output goes high. After a delay of about one and a half oscillation periods, output of IC1 is high enough to toggle the limiter and the oscillation cycle starts. Observations on an analogue oscilloscope suggest that after two further cycles the amplitude has settled to within 1% of its final value. This gives a total start-up time of around three cycles.

At frequencies up to about 1kHz, this circuit shows remarkably good constancy of phase relation between the sine and square wave outputs without having to use a comparator for IC2. As a result a space saving dual op-amp can be used. An AD822AN based oscillator, again running at about 400Hz, was carefully examined in this respect. It showed less than 0.2° shift change between the sine and square waves for a 30°C rise in circuit temperature above ambient. Similarly good long-term stability can be expected, making this oscillator useful for applications with phase sensitive detection.

Since expected distortion is not good, examination of this aspect has been limited to using a passive Tee to filter out the fundamental and check that amplitude of the residue is consistent with the theoretical predictions.
cascade output, but it seems better to drive the limiter from the buffer amplifier. This increases the overdrive to speed up the transitions, Fig. 3.

A single supply voltage rather than dual is shown because positive line regulators or references tend to have better constancy of output than their negative line counterparts. This is important in maintaining the ac amplitude stability which is a prime feature of this oscillator.

Op-amp IC2 performs the limiting function and must have an output which can swing to 0V with a large capacitor to provide a low impedance reference voltage. But the resistance of R1 in parallel with R2 can provide a low impedance reference voltage.

As we have already calculated that the amplitude of the fundamental component driving the cascade is 6.37V, and know that it is attenuated by a factor of 29 in the network, the buffer amplifier is presented with a signal of 0.22Vpk-pk. With R1 at 100kΩ and R2 at 15kΩ, gain of the IC1 stage is 14.3, giving a sinewave output of 3.2Vpk-pk.

Because of the gain of the IC1 stage and the comparatively high resistor values used, care needs to be taken to reduce unintentional capacitive coupling from the square wave to the input of IC1. If this is not done, the sinewave output will be adorned with spikes where the limiter toggles. A sensible layout, with a grounded pcb trace to guard this feed back voltage, is all that is needed.

If output from the cascade is 0.22Vpk-pk, then the junction of R2 and R3 must be going up and down by the same amount. This would seem at first sight to be a hopeless reference voltage for the limiter. However, when output of the cascade is in mid-exursion it must ideally be at +2.5V, since it is fed by a 1:1 squarewave of amplitude 5V. Under these conditions, no current will flow in R1 since the junction of R2 and R3 is already at +2.5V by virtue of the current flowing through these resistors from the supply line. This is exactly the correct condition to toggle the limiter.

Op-amp criteria

Since load on IC2 is greater than 100kΩ, it is likely that any op-amp with rail-to-rail output capability will limit its output within some 10mV of 0V and +5V under these conditions. As a result, it would be satisfactory in this respect. However, IC2 also needs to come out of saturation quickly from either limit and to slew rapidly in either direction at the same rate.

The new (dual) AD822AN seems a good choice in these respects, but the older (quad) LMC660C has worked well in a production run. As for the +5V regulator, there is much to be said for the LP2950ACZ-5.0. Housed in a TO-92 package, this inexpensive low-drop out type offers 20ppm/°C typical temperature coefficient. It is however essential to remember to decouple its output as detailed in the data sheet.

Considerations for higher frequencies

With performance at frequencies where the propagation delay in IC2 becomes significant compared to the cycle time, it should be noted that this delay is equivalent to a phase lag. As a result the cascade does not need to produce a full 180° phase shift to satisfy the Barkhausen criterion for oscillation that there be 360° phase change round the complete feedback loop. This means oscillations will always occur at frequencies somewhat less than that predicted by equation (2).

Accordingly, attenuation of the fundamental through the cascade will necessarily be somewhat less than the value of 29 implied by

\[
\tan^{-1}(\omega) = \frac{6}{\omega RC}
\]

indicating 180° phase shift when, 

\[
\omega = \frac{\sqrt{6}}{RC}
\]
equation (1) and give more output swing from the buffer amplifier than might otherwise be expected.

With an AD822AN at frequencies up to about 500Hz, discrepancies from the ideal due to circuit delays are not large. At 400Hz the sinewave output amplitude is about 5% larger than given by simple theory with about a 5° phase shift between the sine and square waves. However, as noted earlier, the temperature coefficient of the amplitude and phase shift is still admirably low.

With timing element $R$ at 30kΩ and $C$ at 1nF, oscillation occurs at about 10kHz. However, the phase shift between sine and square waves is now such that in a phase sensitive detection scheme you would have to use a separate comparator to generate a good switching reference from the sinewave.

Time delay around the oscillation loop produces an equivalent phase shift such that oscillation occurs at only 75% of the frequency given by equation (2) and the reduced attenuation through the cascade gives some 75% greater output than at low frequency, requiring that $R$ be reduced to about 68kΩ. While these figures are consistent with the (awkward) equations, it is much easier to do a bit of trial and error under these conditions rather than try to calculate the degree of trimming needed.

With this degree of non-ideality, you might expect the amplitude temperature coefficient of the output to be very poor. But while it is worse than at low frequencies it is still acceptable for many applications. Output of a trial unit with an AD822AN increased by just 1% for a temperature rise of 30°C above ambient, ie about 0.03%/°C. At 25kHz this only increased to about 0.06%/°C.

Because of the dc coupling in the amplitude maintaining and stabilising loop, operation down to very low frequency is possible. With timing element $R$ at 10MQ and $C$ at 2.2pF, the resulting oscillation period of 60s is probably near the practical limit, as electrolytic capacitors can not be used because of their leakage currents.

Start-up and oscillation at this frequency, Fig. 4, was captured with a logging dvm and can be seen to be as described for audio frequency operation. Sinewave amplitude and frequency were well within the limits set by the 1% resistor tolerances and the precision of measuring and selecting equi-value timing capacitors. This is no surprise since the op-amps behave close to the ideal under these conditions.

If the oscillator output must be symmetrical about 0V, this is easily achieved by using dual ±5V supplies, albeit with a reduction in the amplitude temperature coefficient, as discussed earlier. Increased swing now required from the limiter takes longer with the slew rate of a given op-amp. This somewhat increases delay around the maintaining loop and, as a result, the errors arising from this mechanism.

Acknowledgements to the directors of Chelsea instruments for their permission to publish this work.

References

Data Acquisition for your PC

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional plug-in data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.

Call for your Guide on 'Virtual Instrumentation'.
In Marcel van de Gevel’s high-performance power amplifier, quiescent current is stabilised via feedback, using a non-linear common-mode loop.

In a conventional class (A)B amplifier, quiescent current through the output devices depends on temperature differences between the output devices and a temperature sensor. The temperature sensor is usually mounted on a heat sink.

Due to thermal resistance from the output devices to the heat sink, and thermal capacitance of the heat sink, there are large differences in temperature after a sudden change in power dissipation. Hence, quiescent current of an audio amplifier changes every time the music volume changes. Non-optimal quiescent current causes extra distortion known as transient crossover distortion.

Designers of operational amplifiers sometimes use a different technique for class (A)B biasing known as non-linear common-mode loop, or class-AB control loop. However, circuits described in reference 2, and in many other articles, are not suitable for a discrete amplifier. This is because they use IC techniques like emitter-area scaled transistors.

With a different kind of non-linear network, however, it becomes possible to use non-linear common-mode loops in an almost wholly discrete audio power amplifier. With this technique, thermal problems like thermal runaway and transient crossover distortion can be avoided as can quiescent current adjustment.

Further, the technique can be applied to common-emitter or mixed common-emitter/common collector output stages, or their mos equivalents.

**Designing the output stage**

A simplified schematic of the output stage is depicted in Fig. 1. Voltage source \( V_i \) produces about 10V above the output voltage, so that the gate of \( T_{13} \) can swing above the positive supply rail.

The circuit may seem rather asymmetrical, having a source follower for the positive side of the signal and a common source stage for the negative side. However, both mosfets are current driven. Under current drive, source followers and common source stages behave almost identically, Fig. 2.

---

**Fig. 1. Simplified output stage of a power amplifier incorporating a non-linear common-mode loop. The circuit may look asymmetrical, but the source follower and common-source stages behave similarly when current driven.**
The class-AB control loop - a non-linear common-mode loop - consists of a non-linear network around $T_{21,22}$ and $T_{24,25}$, a current mirror with two outputs $T_{19,18}$ and output mosfets $T_{12,13}$.

When current through $T_{13}$ or $T_{12}$ becomes too small, the current through $T_{21}$ or $T_{24}$ increases respectively. Gates of both mosfets are charged by the current mirror until both currents are again large enough. When the currents through both mosfets become large simultaneously, currents through $T_{21}$ and $T_{24}$ become small.

Now, the bias currents of the previous stage are larger than the currents through the current mirror and the gates of both mosfets are discharged until the smallest current becomes small enough. When currents through the mosfets are of the same order of magnitude, they both have an influence on the non-linear network and a smooth transition from one output device to the other is realised.

Quiescent current is about 100mA. When the current through one output device is large, current through the other device is still about 45mA, indicating that my amplifier is clearly not a non-switching type.

The influence of the class-AB control loop on the difference between the drain currents of $T_{12,13}$, and thus on output current, is kept as small as possible by always driving both mosfets equally. When the current through one mosfet is at its minimum, and the normal differential-mode loop tries to discharge its gate further, the common-mode loop responds by increasing the currents through the current mirror.

Components $C_{cmp1,4}$ and $R_{cmp1,2}$ improve stability of the non-linear common-mode loop.

**Amplifier circuitry**

One channel of the amplifier is shown in Fig. 3, and the protection circuit and power supply in Fig. 4. I built a stereo amplifier, consisting of two channels with a common protection circuit and power supply. Output mosfets of both channels are mounted with electrical insulation on a 1KW heat sink.

In the protection circuit, $T_{37}$ has its own star-shaped heat sink, 60K/W or less. The other transistors do not require heat sinking. A modified bootstrap network comprising $R_{35}$, $D_{14,15}$ and $C_{15}$ corresponds to $V_l$ in Fig. 1. In order to keep the current controlled during clipping, recovery from clipping, slewing, switch-on and switch-off, the gates are always discharged when currents through the current mirror are small. For this reason, $R_{12,14}$, $D_9$ and $R_{33}$ and $R_{24}$ have been incorporated into the circuit.

An anti-saturation circuit comprising $T_{14}$ and $D_{8,9}$ prevents saturation of the current mirror. Without this circuit, a 5A spike current flows through $T_{13}$ and $T_{12}$ for a few microseconds during recovery from clipping.

The normal differential-mode feedback loop consists of the differential pair $T_{23,2}$, phase splitter $T_{6}$, common base stages $T_{10,11}$, output mosfets $T_{12,13}$ and the feedback network comprising $R_{4,4}$ and $C_{5}$.

**Major poles in the loop**

Without frequency compensation, the normal feedback loop has three major poles, ie poles that have an important influence on high-frequency behaviour. Circuits that have several major poles, sometimes referred to as dominant poles, however, can cause confusion as ‘dominant pole’ is often used to describe the very lowest pole.

Capacitances between the bases and emitters of $T_{23}$ and $T_{4}$ contribute two major poles. In the output stage, the high-frequency transfer is mainly determined by the gate to drain capacitance - the third major pole. This capacitance acts as a Miller capacitor, causing open-loop output impedance to drop to a few ohms. It also makes the high-frequency transfer of the last stage less sensitive to the widely varying conductance factor of the output mosfets.

In theory, the three major poles could be moved into their desired positions - for example, three equal negative real poles or third-order Butterworth positions - with two compensation networks. Unfortunately, simulations with a pole-zero extraction program and a root locus program show that the influence of all the non-major poles and zeros together is too large. As a result, a less subtle approach is necessary.

Heavy pole-zero compensation in the second stage comprising $L_9$, $R_{13}$ and $C_7$ reduces the number of major poles to two. This is a much smoother way than the voltage to current transfer of a PSpice power mosfet. Designers of low-power mos circuitry know that mosfets do not switch abruptly from an ‘off-state’ to the quadratic, strong inversion, region.

At low gate-source voltages, mosfets are in the so-called weak inversion or sub-threshold region, where gate-source voltage to drain current transfer is exponential. As gate-source voltage rises, the mosfet’s transfer gradually changes from exponential to quadratic. The range where the transfer is neither exponential nor quadratic is known as the moderate inversion region.

For example, measurements of a BUZ71A power mosfet show that the mosfet is in weak inversion below 1mA up to about 10mA. The mosfet is in moderate inversion from about ten to a few hundred milliamps. PSpice simulation of an IRF240 mosfet using a PSpice library file shows no weak or moderate inversion regions at all, which is physically impossible. Unfortunately, there is BUZ71A model in this library.
achieved by covering the pole of the first stage and lowering the bandwidth. Capacitor \( C_5 \) generates a zero in the feedback network which pulls the root locus well into the left half plane. In the closed-loop response the two major poles almost end up on the negative real axis.

Output filter \( L_2, R_{47} \) and \( C_{13} \) decreases the influence of strange load impedances and suppresses spurious high-frequency signals picked up by the loudspeaker leads. The input filter formed using \( R_{1,2} \) and \( C_{1,3,4} \) suppresses high-frequency signals and prevents slew-rate limiting when the amplifier is subjected to unrealistic test signals like square waves. The response of this filter is approximately a second-order Butterworth one, with a cut-off frequency around 140kHz.

Experimentation has shown that the amplifier is stable with an 8Ω load, a loudspeaker load and an unrealistic but often used 8Ω/2µF test load.

The circuit around the TL071 is a dc bias servo loop, which gives a second-order Butterworth high-pass response with \( C_2 \) and \( R_3 \) – at least when output impedance of the preamplifier is zero. Damping of the response increases when output impedance is not zero.

**Protection network**

The circuit around \( T_{19,20} \) is a simple protection network. When output current is greater than about 10A, this thyristor-like structure triggers and turns off the output stage. It remains turned off until the amplifier is switched off for around thirty seconds and then switched back on again.

The collector of \( T_2 \) connects to another protection circuit, Fig. 4, which responds if current through \( T_2 \) is less than a quarter or greater than three quarters of the tail current. This will only occur if the amplifier is clipping or if the amplifier has broken down, otherwise feedback keeps the signal levels small.

Transistors \( T_{27-32} \) comprise a dual current window comparator – dual, because both channels of a stereo amplifier have one common protection circuit. If current through \( T_2 \) has a too large or small a value for longer than about 20ms, \( C_{15,16} \) discharge, the output relay switches off and three...

---

Fig. 3. Entire schematic of one channel of the non-linear common-mode loop power amplifier.
colour led $D_{36}$ turns red. This process protects the loudspeakers and provides a warning. When the amplifier clips, the three-colour led emits yellow/orange light for about a second. If it clips severely for prolonged periods, the output relay turns off and the led turns red. This is done because the harmonics generated by the clipping amplifier are not good for the tweeters. A few seconds after the volume of the signal is reduced, the output relay turns on again and the led turns green.

As usual, protection circuitry prevents switch-on and switch-off plops from reaching the loudspeaker. The time needed to charge $C_{15,16}$ determines the switch-on delay with $R_{68}$ and $C_{14}$ the switch-off delay.

**Measurement results**

Total harmonic distortion at 10kHz and 16W into 8Ω – about 80% of maximum power – was measured to be about 0.006%, dropping to 0.0025% at 10W. The -3 dB points of the frequency response were about 1.1Hz and 143kHz.

A simplified Quad/Baxandall-like subtractive test showed that the distortion on a real music signal was much smaller than 0.1%. With these methods, the desired signal can be attenuated without attenuating noise and distortion. With about 60dB suppression of the signal, the residue still sounded like music rather than distortion so the distortion level must be well below –60dB or 0.1%.

**References**

5. D. Self, private communication, 1995
If you have followed our series on the use of the C programming language, then you will recognise its value to the practising engineer. The book is a storehouse of information that will be of lasting value to anyone involved in the design of filters, A-to-D conversion, convolution, Fourier and many other applications, with not a soldering iron in sight.

To complement the published series, Howard Hutchings has written additional chapters on D-to-A and A-to-D conversion, waveform synthesis and audio special effects, including echo and reverberation. An appendix provides a 'getting started' introduction to the running of the many programs scattered throughout the book. This is a practical guide to real-time programming. The programs having been tested and proved. It is a distillation of the teaching of computer-assisted engineering at Humberside Polytechnic, at which Dr Hutchings is a senior lecturer.

Credit card orders accepted by phone. Call 0181 652 3614.
SuperFILTER synthesizes Active, Passive and Digital FIR/IIR filters and ports to SpiceAge for Windows™ for a complete analysis.

SuperFILTER Version 3 for Windows provides the following features.

1. Choice of specifying parameters for desired response includes gain & phase coordinates, graphical (mouse tracing response), poles and zeroes in S and Z planes and Laplace transfer function coordinates.
2. No order limits of cascaded filters - applies to digital, active and passive types.
3. Types available include Butterworth, Chebyshev, Elliptic, Bessel, Realpole, Gaussian, Linear phase, Inverse Chebyshev, Digital Hilbert FIR, Differentiator, Raised cosine, Squared root raised cosine of LPF, HPF, BPF, APF, Notch filters.
4. Minimum specification of suitable op amps for achieving active filter performance.
6. Analysis of effect of register characteristics on digital filters and D to A converters.
7. Analysis of inductor losses for passive filters.
9. Supports behavioural modelling within SpiceAge for Windows synthesizing more than 150 topologies.
10. Graphic display of the realized versus the ideal filter with best fit options taken from a comprehensive (and user controllable) library of preferred component values.

"This is a stunning program that will save and save again."

For further details and demonstration disk, contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 0181-906 0155, FAX 0181-906 0969, CompuServe 100550, 2455.
Do you have an original circuit idea for publication? We are giving £100 cash for the month’s top design. Additional authors will receive £25 cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

**Hf-to-vhf converter**

This converter, added to a multimode amateur 2m transceiver, forms an economical method of receiving hf signals.

Design is conventional in form. A single-transistor local oscillator and frequency tripler provides the 140MHz to the mixer; almost any small-signal vhf bipolar transistor could be used here, but the BFX44 worked well in the original circuit. Correct adjustment of $L_1$ and the 10-40pF trimmer to resonate at 140MHz is crucial.

Again, almost any dual-gate mosfet will work in place of the BRF84 as the mixer. Since the receiver used has a narrow-band front end, mixer output needed no tuning and was successful in spite of much 7MHz activity in the evenings. If necessary, either an 8MHz low-pass filter or a 4-6MHz tuned circuit should be suitable.

Peter Parker (VK1PK)  
Garran, ACT  
Australia

---

**YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!**

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.

Covering the frequency range 400kHz to over 1GHz with a logarithmic display range of 70dB ± 1.5dB, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.

Recognising the importance of good design, TTI will be giving away one of these excellent Instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our £100 monthly star author’s fee, together with £25 for all other ideas published.

Our judging criteria are ingenuity and originality in the use of modern components – with simplicity particularly valued.
LOW COST PCs - SPECIAL BUY AT 286

Mitsubishi M2896 - $63.02U 8" DS slimline NEW
8" Shugart 810 8" SS HH Brand New
5½" Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE
3½" Mitsubishi MF355C-D 1,4 Meg. Non laptop
3½" Panasonic JU363/4 720K or equivalent RFE

All are IBM-PC compatible (if 3½" supported on your PC).
These products (stated) are BRAND NEW or removed from often brand new equip-
ment and are fully tested, aligned and shipped to you with a 10 day warranty.

Many options available - call for details.

LOW COST 486DX-33 SYSTEM
Limited quantity of only 30 systems, each with small desktop size.
Fully featured with standard 3½" and 5¼" drives on most models. University level
intelligent 120 Mb IDE drive with single 1.44 Mb 3½" floppy disk drive.

The TELEBOX is an attractive fully cased mains powered unit, con-

video systems. For complete compatibility - even for monitors with-

Many features: Etched glass. 700,000 cycles. Fully tested & guaranteed.

KME 198151009 high definition monitors with 0.28" dot
pitch. Superbly made UK manufacture. PIL all solid state colour monitors,

Note: Don't forget to mail in your CAI to receive a further discount.

A superb buy at only £195.00

Over 1000 racks - 19" 22" & 24" wide
3 to 4 U high. Available from stock!!
Call with your requirements.

PLUS, ATOMOS and ARCHIMEDES and APPLE. Many features: Etched
glass. 700,000 cycles. Fully tested & guaranteed.

KME 198151009 high definition monitors with 0.28" dot
pitch. Superbly made UK manufacture. PIL all solid state colour monitors,

Note: Don't forget to mail in your CAI to receive a further discount.

A superb buy at only £195.00

Over 1000 racks - 19" 22" & 24" wide
3 to 4 U high. Available from stock!!
Call with your requirements.

PLUS, ATOMOS and ARCHIMEDES and APPLE. Many features: Etched
glass. 700,000 cycles. Fully tested & guaranteed.

KME 198151009 high definition monitors with 0.28" dot
pitch. Superbly made UK manufacture. PIL all solid state colour monitors,
CIRCUIT IDEAS

Flasher for dogs

This circuit uses a single, momentary contact, push button to turn an led flasher on and off. IC1a and IC1b with R1 form a bistable. Capacitor C1 charges, via R2, to the opposite logical state of the input of IC1a. When the switch is closed, C1 forces IC1a to change state. Positive feedback through the two gates then stores the new state.

Oscillation of IC1a and IC1b, when the switch is closed, is prevented by keeping resistor R1 significantly lower in value than resistor R2.

IC1a forms a gated oscillator and is the only reason for using two input nand Schmitts in the circuit. D1 and R4 make the oscillator low output period shorter than the high period.

IC1a corrects the polarity of the output and the two transistors act as a buffer. Transistor Tr2 will drive up to a couple of dozen leds providing the battery will stand it. Transistor Tr1 can be omitted if only one led or two leds are used, but R5 may need to be reduced.

Quiescent current was under one microamp in the prototype. To maintain this, and allow IC1a to operate correctly, C2 must be a low leakage type.

The original design was powered by two AAA cells and drives six leds on a collar so that I can locate my errant dog during night-time woodland walkies!

Steve Bush
Epsom

Frequency comparator with hysteresis

A phase-locked loop IC, the PC74HCT4046, forms the core of the comparator and provides hysteresis.

Potentiometer VR1 sets the voltage on the IC's voltage-controlled oscillator, C1 and R1 being the timing components. VCO output goes to one input of the phase/frequency comparator and input f2 to the other. Output of the comparator goes to the circuit output via a low-pass filter and by way of the feedback resistor Rf to the bottom of R1.

When the input is at a lower frequency than the vco output FH, the comparator output is low; when it exceeds the vco output, the reverse applies and the voltage at the junction of R1 and R2 increases, decreasing the current through R1, since the voltage at pin 11 equals that at pin 9.

This decreasing current lowers the vco frequency FL, so that FH-FL is the hysteresis.

\[ FL/FH = 1 - \frac{Vc2}{VCO(1+Rf/Rv)} \]

where Vc2 is a function of R2 and Rf.

W Dijkstra
Waalre
The Netherlands

Frequency comparator provides hysteresis adjustable by resistor values.
Control software flow through pc's serial port

Many pc application programs use special defined keys (for example, Alt+R) to select different procedures. In the manufacturing environment, sometimes it is inconvenient to access the keyboard directly. For instance, an application program may define 'push any key to repeat test'. It makes more sense to use just a regular push button rather than a keyboard. The diagram below shows how to use the pc's serial port to connect eight push buttons. Pushing any one of those buttons will lead the program to a specified application procedure.

This power-less approach is controlled via a C program – right.

Yongping Xia
Torrance
USA

```c
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#define MCR 4 /* modem control register */
#define MSR 6 /* modem status register */

void app_1(void) /* your 1st application */
{
    printf("button 1 is pushed");
}

void app_2(void) /* your 2nd application */
{
    printf("button 2 is pushed");
}

void app_3(void) /* your 3rd application */
{
    printf("button 3 is pushed");
}

void app_4(void) /* your 4th application */
{
    printf("button 4 is pushed");
}

void app_5(void) /* your 5th application */
{
    printf("button 5 is pushed");
}

void app_6(void) /* your 6th application */
{
    printf("button 6 is pushed");
}

void app_7(void) /* your 7th application */
{
    printf("button 7 is pushed");
}

void app_8(void) /* your 8th application */
{
    printf("button 8 is pushed");
}

void main(void)
{
    int base_address1=0x3f8; /* COM1 address */
    int base_address2=0x2f8; /* COM2 address */

    int datal, data2;
    do{
        clrscr();
        if (kbhit())
            exit(0);
        delay(100);
        if (kbhit())
            exit(0);
    }
    while(!kbhit());

    while(!kbhit())
    {
        clrscr();
        outportb(base_address2+MCR, 0x01);
        /* set COM2's DTR high and RTS low */
        delay(1);
        if (dtagl=data2)
            switch(data2){
                case 0x08: app_1();
                break;
                case 0x02: app_2();
                break;
                case 0x01: app_3();
                break;
                case 0x04: app_4();
                break;
            }

        outportb(base_address2+MCR, 0x02);
        /* set COM2's DTR low and RTS high */
        delay(1);
        if (dtagl=data2)
            switch(data2){
                case 0x08: app_5();
                break;
                case 0x02: app_6();
                break;
                case 0x01: app_7();
                break;
                case 0x04: app_8();
                break;
            }
        delay(200);
    }
}
```

Simple power flasher

For a simple task, a simple circuit.

This is a flasher circuit for a mains-powered lamp.

Initially, the capacitor is discharged and starts to charge through the 3.3kΩ resistor, triggering the scr. The lamp therefore comes on and stays on while current from the capacitor sustains the scr. As the capacitor discharges, the lamp goes off.

Using a 60W bulb, frequency is around 1.1Hz at nominal mains voltage and temperature, decreasing slightly with a 25W lamp; duty cycle ratio is 1:1. Capacitance largely determines frequency and it may be found that a different gate resistor is needed for other scrs.

D Di Mario
Milan
Italy

Using current conveyors instead of op-amps in this fdnc increases its bandwidth and improves stability with reactive loads.

Frequency-dependent negative conductance

Current conveyors do not suffer from the bandwidth restriction with feedback seen in common op-amps, so that this fdnc is able to work at much higher frequencies. Further benefits of using cc amplifiers include stability with inductive and capacitive loads. Input impedance is \(-a/\beta\), where \(B = R_1R_2R_3C_1C_2\).

K L Sunil Kumar
Visakhapatnam
India

Very simple circuit to flash a 60W lamp at about 1Hz.
BROADCAST MONITOR RECEIVER 2
150kHz-30MHz

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.

The modifications include four additional circuit boards providing *Rechargeable memory and clock back-up *Balanced Audio line output *Reduced AM distortion *Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements.

The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD: 200Hz-6kHz at 90% modulation = 44dB, 0.6% (originally =20dB, 1%).

*Advanced Active Aerial 4kHz-30MHz *PPM10 in-vision PPM and chart recorder *Twin Twin PPM Rack and Box Units *Stabilizer frequency shifters for for howl reduction *10 Outlet Distribution Amplifier 4 *Stereo Variable Emphasis Limiter 3 *Stereo Disc Amplifiers *Peak Deviation Meter *PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN —50/+6dB drives and movements *Broadcast Stereo Coders.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh
Surrey GU6 7BG
Telephone: 01483 275997 Fax: 276447

£34.00

If you have never lost a file, never ran out of disk space or love re-installing software, don't read any further.

Backer® is a high performance back-up system designed specifically for the home user. For less than the price of most PC games, you can store up to 1.5Gbytes of data on a single VHS video tape, the equivalent of 3 CD-ROMs. Backer® utilises your existing video recorder to transfer data from your hard disk at up to 9Mb/bytes per minute, faster than many of the significantly more expensive tape streamers.

FEATURES

- Free up extra disk space by archiving less frequently used files
- Protect important files by keeping back-up copies
- Transfer data between PCs, copy hundreds of Megabytes quickly and easily
- Runs under Windows® in the background, allowing you to continue working with other applications
- Uses low cost standard video tapes
- Comprises of an expansion card and easy-to-use software
- State of the art sophisticated error correction ensures reliable operation.
- Back-up selected files or the whole hard disk

Order now by ringing 01806 74330 quoting your Access, Visa or Switch number. Alternatively send a cheque or postal order for £42.45 (*£39.95 inc. VAT & P&P £2.50) along with details of which magazine you saw this advertisement and the specification of your PC to: Danmere Technologies Ltd., Whitehall, 75 School Lane, Hartford, Northwich, Cheshire CW8 1PF.

Reliability - "Backer passes this test with flying colours. "Backer's top transfer rate of 9Mbytes per minute turns rings around the 1.8Mb per minute that most tape streamers can manage."

"Frightfully good stuff" PC Format - December '95

"Extraordinarily good value product." PC Home - December '95

"A must for the data conscious." NEW Windows® 95 version Also AntiVirus compatible with Windows 3.1 and 2.1.©

Backer is a high performance back-up system designed specifically for the home user. For less than the price of most PC games, you can store up to 1.5Gbytes of data on a single VHS video tape, the equivalent of 3 CD-ROMs. Backer® utilises your existing video recorder to transfer data from your hard disk at up to 9Mb/bytes per minute, faster than many of the significantly more expensive tape streamers.

Order now by ringing 01806 74330 quoting your Access, Visa or Switch number. Alternatively send a cheque or postal order for £42.45 (*£39.95 inc. VAT & P&P £2.50) along with details of which magazine you saw this advertisement and the specification of your PC to: Danmere Technologies Ltd., Whitehall, 75 School Lane, Hartford, Northwich, Cheshire CW8 1PF.

Reliability - "Backer passes this test with flying colours. "Backer's top transfer rate of 9Mbytes per minute turns rings around the 1.8Mb per minute that most tape streamers can manage."

"Frightfully good stuff" PC Format - December '95

"Extraordinarily good value product." PC Home - December '95

"A must for the data conscious." NEW Windows® 95 version Also AntiVirus compatible with Windows 3.1 and 2.1.©
Retuning local-oscillator crystals

In a receiver using a crystal-tuned local oscillator, changing channel frequency requires the crystal to be fine tuned to produce the same IF. This circuit assists in the process.

A reference frequency of 10.7MHz, generated by a simple crystal oscillator, is coupled capacitively to the mixer by simply putting the end of its output coaxial cable, near the filter. If an unmodulated signal is now injected at the receiver input, a nominal 10.7MHz IF is produced which beats with the 10.7MHz reference oscillator output, the beat being heard at the receiver output. Adjusting the local oscillator for zero beat gives the correct IF frequency. Use the circuit for either single or double conversion superhets.

Glyn Roberts
Walsall
West Midlands

Linear square and triangle generator

Constant-current charging and discharging linearises the triangular output from a 555-based function generator.

When the timer output is at \( V_{cc} \), the timing capacitor charges through the p-n-p transistor current mirror. As the ramp reaches \( 2V_{cc}/3 \), the 555 output goes to ground and, since the capacitor voltage is now higher, the capacitor discharges through the n-p-n current mirror until the ramp reaches \( V_{cc}/3 \). Charging current is adjusted by \( R \). Output frequency is variable up to 2.1MHz.

Lee Szymanski
Stamford
Lincolnshire

Telephone line monitor

Exploiting the tendency exhibited by some n-p-n transistors to oscillate when connected in reverse, this circuit uses one to monitor a telephone line and give warning of untoward activity. In normal operation, the circuit has no effect on telephone calls, taking abuse such as reverse voltages, spikes and wrong connections in its stride.

Normal conditions show as a rapidly flashing green led, which stops flashing when a call is made or received. A high-pitched sound shows that reverse polarity is applied on the line side and the connection of another telephone in parallel or a short circuit on the line side sound fades and the led stops flashing. Disconnection or a blown fuse gives a low-frequency tone for nearly two minutes.

Conversation triggers the led every few minutes and ringing or dialling causes it to flash at a different frequency. Normally, the speaker is virtually out of circuit to provide privacy.

D Di Mario
Milan
Italy

Telephone monitor gives an indication of fault conditions or unusual activity on the line.
Back issues of Electronics World are £2.50 in the UK and £3.00 elsewhere*. Price includes postage. Please complete the coupon and send with correct payment to: 
Electronics World, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Note that all issues are subject to availability and please allow 28 days for delivery.

<table>
<thead>
<tr>
<th>Issue (Month/Year)</th>
<th>Quantity</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name ______________________
Address ____________________
Post Code ________________

Method of payment (please circle):
Access/Mastercard
Visa
Cheque PO
Cheques made payable to Reed Business Publishing
Credit card No ________ Expiry Date ________

Name ______________________
Address ____________________
Post Code ________________

Signed ________________
Edge detector/doubler

In a similar manner to that of the circuit by Mike McGlinchy (Aug. 1994 Circuit Ideas), this circuit responds to both transitions of square input, but this one is self-clocked and a little simpler, although it does have one extra IC. Delay $R_D C_D$ gives control of output pulse width $t_\omega$, and may be split between sections a and b of the 74HC86 to equalise propagation delay, allowing smaller components or increase pulse width.

It is essential to use CMOS logic because of the source-current limitation to $R_3$ when positive-going and the logic zero threshold when negative-going. Values in the table are for a 10V supply.

John A Haase
Colorado State University

Low-battery monitor shuts down gracefully

After detecting a low-battery condition, this circuit allows a definite time for emergency housekeeping tasks before shutting down a controlling processor, rather than waiting until battery voltage decreases further. Current drawn while quiescent is a few microamps, so that discharged cells are protected. Accurate voltage monitoring, achieved by the close tolerance of a comparator threshold, allows the battery-low warning to be positioned exactly on the knee of the NiCad discharge characteristic.

Low-dropout linear regulator $IC_1$ supplies 250mA to the output power line, dropping only 350mV at 200mA; $IC_2$ is a dual comparator/±1% voltage reference. If the fraction of the battery voltage at the junction of $R_1$ and $R_2$ falls below the internal 1.182V reference voltage, $OUT_B$ goes high, serving as a warning and also charging $C_1$ through $R_3$. When the voltage at pin 3 rises to the reference voltage, $OUT_A$ shuts $IC_1$ down. To obtain ±25mV of hysteresis, make $R_4$ 49.9kΩ and $R_5$ 2.4MΩ.

If, for example, $R_3$ is 1MΩ, $C_3$ is calculated by $V_{th} = V_{OUT_B}(1-e^{-\frac{t}{\tau}})$, where $V_{OUT_B}$ is 4.9V and $t$ is $R_3 C_1$. For a 1s delay, $t$ is 3.6s and $C_1$ is 3.6pF. Alternatively, a standard 3.9pF gives a delay of around 1s; use a low-leakage type. During shutdown, $C_1$ becomes charged and needs about 6s to discharge when operation resumes.

Craig Falkenham and Larry Suppan
Maxim Integrated Products Ltd
Theale
Berkshire

On detecting low battery voltage, this very frugal circuit issues a warning signal and shuts a power line down after a precise time interval, rather than after the usual, somewhat indefinite time taken for the battery voltage to decrease even further.
ANCHOR SURPLUS Ltd
The Cattle Market Depot
Nottingham NG2 3GY. UK

Tele: +44 (0115) 986 4902/
+44 (0115) 986 4041 24hr answerphone
Fax: +44 (0115) 986 4667

EATON 2075 NOISE GAIN ANALYSER + 7618E NOISE GENERATOR
10Mhz to 1800Mhz without External equipment, with 7618E to 18Ghz
Max Input to +20dbm. Noise Measurement 0-30db ± 0.05db
Gain Measurements -20db tp >50db ± 0.2db with 0.01db resolution
Frequency range of 2075 10Mhz to 1800Mhz (tunes to 1900Mhz) ±0.5Mhz
Resolution to 0.1Mhz. Noise <7db +0.002db/Mhz. Input VSWR <1.5:1
EMC Specs to MIL-STD 461, CE03, RE02, CISPR/II, VDE
EMS Specs to CS01, CS02, CS06, RS03
Supplied with Case and “Topics in Noise” Manual

£3250

HIOL 8830 Memory Hi-Corder
Large LCD Display (640 x 2000 Pixels) with Electro Luminescent Backlight
Cont Real Time, Memory Record, Hi-Speed X and Cont XY Record Modes
Trigger facility adjustable in 1% steps. Samples at 500 kps to 125K word Memory
Floating Analog Inputs at 100Mohms ins at 500V DC. 128K RAM
Channel Specs: 4 Analog or 3 Analog + 8 Logic or 16 Logic or 1 Analog
+ 24 Logic or 32 Logic Channels. 0.01% X Accuracy.
Supplied Including Leads and Manuals. Mint Condition

£1750

RF Equipment
SAYROSA 252 Automatic Modulation Meters. 0-100Khz 0-100% to 2Ghz £195
RACAL DANA 9009 Modulation Meters 0-100Khz 0-100% to 2Ghz £195
MARCONI TF2603 RF Milli Voltmeters to 1.5Ghz ... 1mV to 3V fsd. Only £60
RACAL DANA 9301 True RMS RF Milli Voltmeters ... 1mV to 3V fsd. Only £135
RACAL DANA 9302 True RMS RF Milli Voltmeters as 9301 above. Only £160
FARNELL TM8 True RMS Sampling RF Voltmeter ... 1mV to 3V to 1GHz £225
RACAL DANA 9915 Digital Counters ... 10Hz-520Mhz ... 8 Digit LED. Only £75
RACAL DANA 9921 Digital Counters ... 10Hz-3Ghz ... 9 Digit LED. Only £375
MARCONI TF 2018 Signal generators 80Khz-520Mhz ... AM/FM/CW. Only £995
MARCONI TF2018A Signal Generators £1150
MARCONI TF 2022 Signal Generators 10Khz-1Ghz. AM/FM/CW. Only £1695
WAVETEK 1080 Sweep Generators with 1905 Display. 1Mhz-1000Mhz 0-70db ref in 0.1db steps. Only £645
KIKUSUI PLZ700 Digital Electronic Loads 4-60V @ 0-140A (700W) £375
KIKUSUI PLZ2150 Digital Electronic Loads 4-60V @ 0-30A (150W) £250
HEME 1000 LCD Clip-on AC/DC Ammeters £75
Edgcumbe 30A Analog AC Ammeter/Voltmeter £45
Huntron Trackers £125

TEK Oscilloscope Specials
TEK 2210 Digital Storage Oscilloscopes ... 50Mhz Analog Bandwidth ... 20Ms/s digital sample rate. With 19" rack mounts. LAST ONE. Only £550
TEK 2245 150Mhz Oscilloscope 4 channels with Cursors etc. MINT Condition ... ONE ONLY ... £845

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm
NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME
All Prices are Ex VAT & Carriage
All items are Fully Tested with Verified Calibration and carry our Unique 30 Day Un-Conditional Warranty
Reflections on optical links

In his article 'Reflections on Optoelectronics' in the November issue, Ian Hickman says that increasing the gain of the photodiode amplifier by 40 dB extends the range of the optical link by a factor of 100, for example from 2m to 200m. I don't agree with this assertion.

Assume, for the moment, in terms of linear units rather than decibels and consider Fig. 12(a) of the article. Amplifier A1 has a voltage gain of 100, so if we transfer the oscilloscope probe from the output of A1 to the output of A2 and we want to observe the same signal amplitude, than the current produced by the photodiode has to be reduced by a factor of 100. Current produced by the photodiode is proportional to the incident light power, which therefore has to be reduced by the same factor.

A ratio of 1:100 in incident light power corresponds to a ratio of 10:1 in distance, so Fig. 12(c) displays the simulated output of A2 at a range of 20m rather than 200m.

If we want to argue in terms of the sometimes deceiving decibel, we have to point out that the photodiode is a non linear transducer which can be thought as made up by an electrically linear receiving antenna followed by a quadratic detector.

The antenna establishes a linear relation between the alternating electric field associated to incident light and the voltage produced; the detector establishes a linear relation between the dc current produced by it and the mean square of the alternative voltage produced by the antenna.

In fact, as the incident light power is proportional to the square of the relevant alternative electric field, we can verify the linearity of the relation between the dc current produced by the photodiode and the incident light power.

So a 20 dB loss in the incident light power (relevant to a 10:1 distance ratio) causes a 40dB loss in the signal current, just recovered by amplifier A2.

To recover the signal loss due to a 100:1 ratio in distance, the amplifier A2 should have to gain 80dB, unfortunately at a range of 200m the output signal of A2 would appear as totally buried by noise since the signal to noise ratio was just enough at a range of 20m, as displayed by Fig. 12(c).

Carlo Carli
Ferrara
Italy

Clarified linear modulation

In his letter of Dec 1995 concerning my article 'Modulating Linearly'—July 1995 — Mr West makes the point that "intermodulation products are usually generated at the power amplifier final stage".

I entirely agree, indeed, the second paragraph of the article runs "In an hf sub transmitter, it is likely to be the transmitter power amplifier output stage that is principally responsible for...intermodulation products." It goes on to point out that as clean a test signal as possible is desirable for test and measurement purposes.

Nevertheless, it is true that hf sub power amplifiers only produce the amount of intermodulation products commonly observed, because they are permitted to do so by current regulations 25dB below either tone for R3E, J2E and H3E without privacy device, 35dB with privacy device and for A3E, B8E, R7B, B7B and B7W, per CCIR Recommendation 326. There is no incentive for manufacturers to produce 'cleaner' power amplifiers, bearing in mind that this would involve extra costs.

However, if this were necessary, the required techniques are already at hand. The Polar Loop technique 12 was intended to permit the use of sub with 5KHz channel spacing at vhf, should this standard ever be introduced. Power amplifier intermodulation products of 55dB below either tone were demonstrated, and the principle

But EMC testing is not required

In Letters, Dec. '95, Chris Bore makes an interesting point regarding emc emissions. He appears, however, to be misinformed on the emc directive requirements. Equipment does not have to be tested — contrary to what many test houses would have you believe.

Conformance can be shown by submitting a Technical Construction (TCP) to notified body, or you can self-certify if you are confident that it meets the standards.

Secondly, common sense shows that 2W is not sensible limit for input power. The point of emc is to stop interference to radio communications. A device radiating more than a few tens of milliwatts on a broadcast or communications band would clearly see interference.

However, it is still reasonable to assume that devices using sufficiently low power could not emit over the test limits — digital watches, for example. The same would apply to items using low clock speeds and slow logic, as radiated emissions are only measured above 30MHz for most products. If you can show calculations to justify this, you could use the TCF route or self-certify on this basis — there would be no need for a change in the regulations.

Still on the subject of emc, I've found a very cheap way of assessing emissions. From a ham radio shop, for less than £300, you can get a scanning paragage receiver covering 1MHz to 1GHz with a signal强度 meter. This is obviously not very accurate, but it does tell you everything needed for development work — ie are there emissions, if so where, and if I make a change does the level go up or down? If you cannot 'hear' your product on this, it is reasonable to assume it won't interfere with anyone else's.

Mike Harrison
Loughton
Essex

EMC critique deserved

Chris Bore's letter regarding emc and low power circuits has already received some comment in another trade journal, namely Electronics Weekly.

Criticism of his thesis has given examples such as oscillators or a photographic flash gun which could produce interference at spot frequencies. And one way of checking an IR remote control is to listen for interference it can induce into an am radio at zero range.

However, his main point deserves sympathetic consideration for any low power item whose only interference output (if any) would be white or pink noise. After all, the measurement band is up to 1GHz.

As Mr Bore said, let someone competent do the calculations, and come up with some useful figures, including an allowance for power delivered to load. The 2W must be power available to cause interference and represent device inefficiency.

R J Higgins
Edgbaston
Birmingham

Arguments on EMC partly right

I think that Chris Bore's arguments are sound when cw or quasi-cw if signals are being generated from conventional power supplies. Forty years ago, a young graduate showed, to his joy, how to generate short pulses of 10kV and 200kA using a modest 1kW for less than one minute from the mains. It soon became necessary to measure these pulses, and in a short time conducted interference pulses of 1000V and 100A (100W) were easily but inadvertently produced. Pulsed power has moved into everyday use — for example high power lasers, and electric traction. As the rise time approaches Ins or less, the possibility of radiating an appreciable part of the pulse power from leads only a few centimetres long becomes likely in bad designs. Swiched mode power supplies are using ever faster and shorter pulses and have internal pulse powers exceeding their average input and output powers.

I must admit to having enjoyed this subject, especially the challenge of separating a 1012W source from a diagram is no bigger than an 1800W. But now that emc regulations have moved into the third of the 'Three Cultures', I am thankful at not having to justify it in terms of the European regulations.

E. Thornton
Gloucester

Reference
would be directly applicable at hf. The same sort of reduction in odd order intermodulation levels could be achieved by the related Cartesian Loop system, which I believe was also developed at Bath University. These techniques require the resolution of a sample of the transmitter output into its real and imaginary components at intermediate frequency in order to close the loop. This naturally requires a fair amount of kit, so in the absence of mandatory regulations requiring that sort of performance, it is not surprising that extensive use has not been made of these schemes.

In the mid-eighties, I developed a simpler arrangement, which was applied to a 150W broadband hf power amplifier module. The latter was designed to be multicoupled up to 60kW PEP. This also reduced the third order intermodulation products to 60dB or more below PEP. Even with this degree of transmitter output stage linearity, it remains true that the main use for an ultralinear modulator is in test and measurement. For any out of band intermodulation products produced by the modulator these schemes.

The “concertina” phase splitter concept works adequately at low frequencies but falls over in the higher ranges: the splitter anode presents a much higher drive impedance than that of the cathode mirror. While signal levels look the same at low frequencies, the Miller effect present with high gain, high capacitance audio power pentodes knocks off the sharp signal edges in the top half of the circuit. It is much better to use a double triode virtual earth phase split circuit which produces a symmetrical output in every respect. But it is all academic really. Who but a complete booby suffering from terminal nostalgia would seriously consider valves for anything? Which is probably the reason that Mr Jones didn't consider dynamic output impedance... But then it takes one to know one.

Frank Ogden
Consulting Editor

Fields and health
In his response to Roger Coghill’s letter – EW+WW May, 1995 – your correspondent Colin Davidson offers to ensure that the IEE will give the widest possible publicity to any evidence concerning relationships between low-level, low-frequency electromagnetic fields and health – EW+WW Dec, 1995. There is indeed, abundant evidence of the existence of a direct relationship between all forms of electromagnetic field and living tissue. The demonstration of this relationship relies on concepts of coherent polyphase computation rather than on crude measures of field strength. It is principally governed by a bilinear modulo-four arithmetic as an expression of phase conjugate quadrature rather than by decimal mathematics. The IEE would be well advised to study the subject of bioelectronics with close attention, since the ultimate expression of these effects is that of heuristic

**THE MICROLEASE JANUARY SALE**

OSCILLOSCOPES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gould 1420 2MHz DSO</td>
<td>£250</td>
</tr>
<tr>
<td>Gould 1431 2MHz DSO</td>
<td>£375</td>
</tr>
<tr>
<td>Gould 1604-103 2MHz 4CH DSO</td>
<td>£2000</td>
</tr>
<tr>
<td>HP 54101A 1GHz DSO</td>
<td>£2750</td>
</tr>
<tr>
<td>HP 54100D 1GHz 4CH DSO</td>
<td>£4500</td>
</tr>
<tr>
<td>Phillips PM 3340 2GHz DSO</td>
<td>£4500</td>
</tr>
<tr>
<td>Phillips PM 93 Soprometer</td>
<td>£400</td>
</tr>
<tr>
<td>Tektronix 2205 20MHz Oscilloscope</td>
<td>£200</td>
</tr>
<tr>
<td>Tektronix 2445B 100MHz 4CH</td>
<td>£2750</td>
</tr>
</tbody>
</table>

*CWe have a wide range of Tektronix 7 series units available. Please enquire for further details.

COUNTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 5328B 100MHz Counter</td>
<td>£400</td>
</tr>
<tr>
<td>Philips PM 6672 120MHz Counter</td>
<td>£300</td>
</tr>
<tr>
<td>Racal 1992 1.3GHz Counter Timer</td>
<td>£800</td>
</tr>
<tr>
<td>Racal 9900 200MHz Counter Timer</td>
<td>£1000</td>
</tr>
<tr>
<td>Racal 9988 1.1GHz Counter Timer</td>
<td>£200</td>
</tr>
</tbody>
</table>

MULTIMETERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVO M2042 4.75 Digit DMM</td>
<td>£200</td>
</tr>
<tr>
<td>Datron 1017</td>
<td>£125</td>
</tr>
<tr>
<td>Fluke 8010A 3.5 Digit DMM</td>
<td>£125</td>
</tr>
<tr>
<td>Fluke 8040A 4.5 Digit DMM</td>
<td>£100</td>
</tr>
<tr>
<td>Fluke 8050A 4.5 Digit DMM</td>
<td>£275</td>
</tr>
<tr>
<td>Fluke 3438A 3.5 Digit DMM</td>
<td>£150</td>
</tr>
<tr>
<td>Keithley 179 4.5 Digit DMM</td>
<td>£100</td>
</tr>
</tbody>
</table>

POWER SURPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>California 1011T AC Variable Power Source</td>
<td>£1850</td>
</tr>
<tr>
<td>California 1591TC AC Variable Power Source</td>
<td>£2600</td>
</tr>
<tr>
<td>Farrelle 3650 50V 50A Power Supply</td>
<td>£850</td>
</tr>
<tr>
<td>HP 6033A 200V 30A Power Supply</td>
<td>£1500</td>
</tr>
<tr>
<td>HP 6040A 60V 10A Power Supply</td>
<td>£2080</td>
</tr>
<tr>
<td>HP 6634A 100V 20A Power Supply</td>
<td>£2950</td>
</tr>
<tr>
<td>Lambda 425FM 40V 1A Power Supply</td>
<td>£1150</td>
</tr>
<tr>
<td>Merlin Gerin PSC500 Uninterruptable Power Supply</td>
<td>£200</td>
</tr>
<tr>
<td>Merlin Gerin SX1000 Uninterruptable Power Supply</td>
<td>£495</td>
</tr>
<tr>
<td>Merlin Gerin SX3660 Uninterruptable Power Supply</td>
<td>£600</td>
</tr>
</tbody>
</table>

TELECOMS/DATACOMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firebird 2000 Data Error Analyser</td>
<td>£1750</td>
</tr>
<tr>
<td>HP 4951B Protocol Analyser</td>
<td>£850</td>
</tr>
<tr>
<td>HP 4951C Protocol Analyser</td>
<td>£1000</td>
</tr>
<tr>
<td>HP 4952A Protocol Analyser</td>
<td>£2250</td>
</tr>
<tr>
<td>HP 4971A LAN Analyser</td>
<td>£1650</td>
</tr>
<tr>
<td>Marconi 387 Datacomms Analyser</td>
<td>£500</td>
</tr>
</tbody>
</table>

This is a small selection of what’s available, please contact us for more information.

CALL: 0181 4 200 211 FAX: 0181 4 200 299

MICROLEASE plc, FORBES HOUSE, WHITEFRIARS ROAD, TUDOR ROAD, HAWORTH, MIDDLESEX HA3 5SS

February 1996 ELECTRONICS WORLD=WIRELESS WORLD
electromagnetic resonance as the driving force of evolution.

The Institution should therefore contact the Department of Health or Sir John Maddo, editor of Nature, to whom much relevant information has already been supplied.

BEP Clement
Clement Neuronic Systems

Sallen & Key misread?

Before accusing me of departing from the truth, or at least of drawing wrong conclusions, Mr. Skirrow Letters, December 30, would have done well to read my November letter more carefully, even to repeat my simple experiment. The distortion figures I tabulated were measured with no capacitors at all in circuit. I did not try the 5532 op-amp, but anyone interested could easily do so. It just seemed odd to me that after all these years the 5,6 circuit continues to appear in data-sheets without a health warning.

I also wrote to one of the American op-amp manufacturers, and have since heard that the explanation is thought to be the variation of input bias current common with modern-op level input. I have also heard from one or two interested readers who have detected audible distortion in S&K circuit.

Mr. Skirrow criticizes my use of 10k resistors, saying that 3k3 would be optimal, but why not? No doubt 3k3 would reduce distortion, because of the very effect I reported, and probably make it negligible for many applications. But why put up with this constraint — and the cost of larger capacitors — when a better circuit is available?

The replacement Rausch 1kHz circuit referred to in my previous letter is shown here, nominal Q=1.47, and Fg gain unity. It adds no second harmonic second (2fppm) and uses capacitors easily available in poly-type.

A. D. Ryder
Bolton
Lancashire

Foster-Seeley related?

Your recent articles on valve amplifiers and Richard Brice's article on the Foster-Seeley discriminator. Dec 95, have awakened interest and nostalgia. I built a Williamson amplifier while still a student at university, and a valve fm tuner a few years later. Though at the time I was grasping their essential operating principles, my main memories were of not really understanding the operation of the fm discriminator.

Time may not have finally solved the latter problem.

Richard Brice's equivalent circuit for the loosely coupled IF transformer bears a remarkable resemblance to a disastrously designed pulse transformer in which the leakage inductance L(1-k) greatly exceeds the primary inductance Lk.

I found it academically interesting to try to explain the 90° phase shift discussed in his article without resorting to more rigorous analysis. Clearly, when closely (perfectly) coupled the leakage inductance is zero and AB in his figure represents the primary inductance and the identical reflected secondary inductance of the perfect transformer. Input and output voltages will be in phase.

When loosely coupled, AB (-kL) represents the low valued coupling inductance of the intermediate-frequency transformer, the voltage across which drives the right-hand side of the equivalent circuit. This latter consists of a series resonant combination of capacitance C and inductance L(1-k) whose overall series impedance is zero.

There is however a less term, the right-hand parallel resistance R, which I would transform into the time-honoured series equivalent series resistance R, in series with L and C.

Voltage generator AB therefore sees to its right-hand side a pure resistance R, and a current will flow in phase with Vgs. This means that the current through L and C at resonance is in phase with Vgs. I assume that r, though small, is larger than jkr, and does not significantly load the coupled inductance. The voltage across L (or C) will be 90° out of phase with the current through them so there will be another 90° phase shift between points A and C.

Coupling inductance kl, is in series with the primary inductance L on the left-hand side of their voltages will therefore be in phase. Hence, providing the coupling inductance is not appreciably loaded, Vo, and Vgs will be 90° out of phase.

Nostalgically, after about 10 years, the transistor arrived and the mono Williamson was replaced by a capacitive pair of Totby and Dindal. The phase-locked loop took over the FM discriminator after a further couple of decades.

E. Thornton
Gloascote
The proms work on 5V and give both more board space and increased memory up to 256Mb, with access times of 1.0S0 to 600l, with accuracy at 30dB of ±0.75dB. Rating is 2W at 25°C and 0.5dB to 60dB, with accuracy at 30dB.

Travelling-wave-tube amplifier. Thorn Microwave Devices announces the PTX7439 amplifier, which uses a 9-10.5GHz (other frequencies to order) travelling-wave tube matched to an encapsulated, switched-mode power supply. The amplifier is designed for battery-powered and airborne use, offering an efficiency of 30% minimum at a power output of 450Wm. Built-in circuitry allows monitoring of correct operation. Thorn Microwave Devices Ltd., Tel. 01376 550220; fax, 01376 552145.


t     

PASSIVE

Connectors and cabling

Printer connectors. Fujitsu's FCN-2/SR series of parallel PC-to-printer connectors conform to IEEE P1284-C standards, European CE Mark and the CG standard and are a direct replacement for Centronics connectors. They are protected against emi and erosion. There are right-angled sockets for pcb mounting and plugs come with light plastic shells or pvc or zero-halogen jacket. Each pair is individually shielded by the foil and the whole braided overall with a pvc or zero-halogen jacket. EMAXX 300 shows a −55dB performance at 300MHz, while EMAXX 400 gives the same attenuation at 400MHz. The cables are smaller than comparable types. Montrose/CDT, Tel. 01734 810799; fax, 01734 810844.

Comms cable. Montrose/CDT has a new line of pairs-in-metal-foil cable designed to comply with new crosstalk standards. Each pair is individually shielded by the foil and the whole braided overall with a pvc or zero-halogen jacket. G650 shows a −55dB performance at 300MHz, while EMAXX 400 gives the same attenuation at 400MHz. The cables are smaller than comparable types. Montrose/CDT, Tel. 01734 810799; fax, 01734 810844.

Filters

Relay fillers. Solid-state filters contribute enough 150-400Hz noise to come between the domestic EN50081-2 and the industrial EN50081-2 standards. Relay maker Crydom has introduced relays with filters to suppress this noise in single and three-phase applications, simply being connected across incoming line or phases. One filter suffices for several relays at currents over 15A. Noise reduction at 50A is from 70dB to 35dB at 150kHz and to
Hardware
PC card cover. Molex's Snapper is a one-piece, stainless-steel cover for PCMCIA PC cards that needs no epoxy or tape to fit the card to the frame. It is usable with Types I and II cards in such applications as modems needing shielding. No heat or pressure is needed; a small barb press closes and secures the cover, which is complete with 68-circuit standard interface connector, grounding clips and I/O connectors, also available with solder tails. A range of cable assemblies and V0 connectors is available and other kits for different PC cards. Molex Electronics Ltd. Tel., 01420 477070; fax, 01420 477070.

Shielded touch screens. Lucas Durallith resistive touch screens provide electrostatic and magnetic interference shielding. They comply fully with EMC legislation, now mandatory, and will protect the screen and other components against discharge from an external object—a finger—charged to several kilovolts. The emi shielding not only protects the screen but reduces emissions. Anders Electronics plc. Tel., 0171 3867171; fax, 0171 3872951.

Embedded PC chassis. IMS announces the MBPC-641 Microbox chassis of about the size of a shoe box to contain an embedded industrial PC controller safely and in a small space. It has a four-slot PC/AT bus backplane, a 65W power supply with fans and a number of connectors for I/O. There is a range of Options. IMS Limited. Tel., 0208 2655896/496 with solid-state disks to fit the chassis, with three slots spare. Integrated Microsystems Ltd. Tel., 01703 771433; fax, 01703 740301.

Test and measurement
Surge testing. A surge generator from Horiba, the THOR-A is suitable for very surge testing by replicating large surges of the type caused by power surges, lightning and some other sources. Outputs are selectable from 0.5kV to 4kV at up to 16A and an oscilloscope connection is provided. The unit is controlled by a microprocessor to give easy operation and a library of test routines. Seaward Electronics Ltd. Tel., 0191 586 3511; fax, 0191 586 0227.

Non-contact profile measurement. UBM offers the UB2000 non-contact measurement system, which can be used with a Microfoc optical sensor to replace the stylus in a profilometer, so reducing the risk of damage and increasing repeatability of measurement. No modifications are necessary and the system works exactly as before. Microfoc automatically controls lens position to maintain focus on the object's surface and a second system monitors lens position, which is a replica of the surface profile. Two ranges are produced: ±50μm and ±50μm, the laser power being selected to match. Advanced Products and Technologies Ltd. Tel., 01865 724853; fax, 01865 725801.

Laser fault finder. ME301 by the Spanish company Mother Electronics is a visual fault locator using a laser to find several types of fault in optical fibre. The red laser beam indicates a point of high loss in the fibre caused by tight bends or crimps, bad connections, poor splices or breaks, and will identify fibres. Output is selected for cw, low-power cw and a 2Hz pulsed signal, the selection being controlled by the user. A timer can be selected to allow five minutes of operation. Mother Electronics sa. Tel., 0034 1 462 25 62; fax, 0034 1 465 53 82.

Gas monitoring. The cost of area gas monitoring for health and building applications is reduced by CBiSS's Intelligent Sampling System Mk 2, which collects samples up to four gases in eight areas. Since that is equivalent to 32 monitoring points, the cost is brought down to £140 per point. Gas comes in through ptfe or nylon tube to the central analyser, which allows alarms and data logging to be carried out centrally with the use of additional modules. Auto-zero and calibration are incorporated and detector faults are shown and their results ignored. Windows software for data acquisition is supplied. A wide range of sensors is available. CBiSS Ltd. Tel., 0151 3431543; fax, 0151 3431847.

Analogue/digital mm. From Di-log, the DL-295 digital multimeter, which measures voltage, current, resistance, frequency, temperature to 100kHz and temperature in the −40°C to 137°C. In addition to the 3.75-digit readout, there is also a 43-segment analogue bar-graph display with a 'zoom' facility for precise readings. Other facilities are a comparison function between reference and measured values, lowest and highest readings over time and a hold facility. Di-log Ltd. Tel., 01707 375550; fax, 01707 393277.

Function generators. Yokogawa FG200/300 are synthesised function generators with touch-screen control. The FG200 series has sweep and modulation on two independent channels at 0.000001Hz-15MHz and up to ±10V, the FG300 types also providing arbitrary sweep and waveform definition. All waveform parameters can be set independently for the two channels. An extra on the FG300 instruments is a floppy drive for waveform output or input. Martron Instruments Ltd. Tel., 01494 459020; fax, 01494 535002.

PC-to-storage-oscilloscope module. Converting a PC into a 22kHz digital storage oscilloscope, the Allison O-Scopes takes the form of a module to connect to the printer port and software. Features include a spectrum analyser mode and the normal facilities offered by the PC for saving traces and printing can be used. Allison envisages the O-Scopes being used in audio, data logging, car electronics and the like. Allison Technology Corp. Tel., 001 800 980 9805; fax, 001 713 777 4747.

Am/fm signal generator. The Tradewind 6097 25kHz frequency generator offers both amplitude and frequency modulation at a cost of £159. Its features include a level meter, an on-screen, square, triangular, ramp and pulse waveforms, a polarity switch, variable dc offset, and variable duty ratio on ramps and pulses. There is an internal 400Hz modulation oscillator, with provision for an external source. Tandem Systems Ltd. Tel., 01344 567121; fax, 01423 576119.

Literature
Test gear. TTI has a new catalogue of other people's instruments—a range of equipment from the world's makers, including oscilloscopes, power supplies, audio analysers, video test equipment and mains analysers. Manufacturers include Tektronix, Stanford and Hitachi-Thurber Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480 450409.

Power components. A new 150-page catalogue is produced by Pico, containing details of surface-mounted and plug-in transformers and inductors, dc-to-dc converters and power supplies. The transformer section has a wide selection of audio and ultra-miniature components. Ginsbury (UK) Ltd. Tel., 01634 299093; fax, 01634 299094.

Panel meters: Europa Components has produced a 20-page catalogue of Crompton Greaves DIN standard panel meters, which meet the DIN75411 sheet 1/DVE0411 pt1, proving that not only are specification and technical requirements, being of moving-iron and moving-coil types, conforming to all manner of other specifications, all contained in glass-filled polycarbonate cases with a black bezel. Europa Components & Equipment plc. Tel., 0181-953 2379; fax, 0181-207 6664.

Modems and GPS. Rockwell offers a 50-page handbook and guide to its range of modems and Global Positioning System devices, boards and evaluation products. It contains a

EMC filters for 3-phase. FN 258 is a filter for three-phase industrial frequency inverters with a universal voltage rating of 480V by Schaffner, meeting EN 13120 and the American UL 1283. The filters are in nine variants for currents from 1A to 160A and, since its temperature rating is 10°C higher than usual, it can be used in most conditions without derating. Two-stage filtering provides for output cables up to 75m in length. Schaffner EMC Ltd. Tel., 01244 770070; fax, 01244 792959.

40dBV at 250kHz at 30A. Crydom Europe. Tel., 0181 763 0560; fax, 0181 763 0499.
glossary of terms in the telecoms, datacomms and navigation fields, Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Telecomms. A short catalogue from Stanford Telecom gives details of products in the areas of demodulation and spread-spectrum asics and boards, frequency synthesiser boards and subsystems, forward error correction at up to 45Mb/s and digital communications. BFI BBECSA Electronics Ltd. Tel., 01622 882467; fax, 01622 882469.

Computer-based instruments. National has a catalogue of software and hardware to form instrumentation and industrial automation based on the use of computers. In over 600 pages, the catalogue is in six sections: software, data acquisition, GPIB, VXI/MXI, industrial sections: software, data acquisition, and hardware to form instrumentation National has a catalogue of software Computer-based instruments. Electronics Ltd. Tel., 01622 882467; fax, 01622 882469.

Three books on VMEbus. Three reference books and an 'edited highlights' from a market report on the

Slotted opto-sensor. Omron believes its EESX 1101 range of transmissive, slotted opto-sensors to be the smallest available. The whole thing is only 4.3 by 4 by 5mm and led and phototransistor each fit into a width of 1.15mm, leaving a 2mm wide slot. A fresnel lens focuses the led output on the detector to give a high current. Devices are of two kinds: a standard phototransistor or a photo-ic output for improved switching speed, the latter having an amplifier and regulator, with a Schmitt. Omron Electronics Ltd. Tel., 0181 450 4646; fax, 0181 450 8087.

NEW PRODUCTS CLASSIFIED

Please quote “Electronics World” when seeking further information

Three-phase harmonic analyser. Fluke's 41B Power Harmonics Analyser is a hand-held instrument measuring true rms voltage and current, frequency and power factor and displaying three-phase power. Display is as a waveform, as a bar graph showing the level of harmonics present or as a numeric value, data being downloaded if required. IHA, Tel. (anti fax), 0729 79737.

Suitable for use when a constant output voltage is needed without on/off control. Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932 246622.

Lower-cost switchers. Calex says its new 100W switched mode power supplies, while retaining all the advantages possessed by that type of design, now costs about the same as an unregulated transformer type. Its output is 24V, 5A and is proof against shorts; ripple less than 50µV/µ; regulation less than 1% overall, and mains buffering greater than 20ms at 5A. The supply conforms to the relevant interference, emission and safety standards. Calex Electronics Ltd. Tel., 01525 733178; fax, 01525 851319.

Lamp transformers. Meant to drive the cold-cathode fluorescent lamps used in flat-panel displays, transformers by Coiltronics come in power ratings of 2.5, 4, 6 and 14W in a variety of mounting styles. They are usable with floating or tied-secondary designs and give up to 30mA at 40-80kHz. Output is sinusoidal and environs accordingly low. Micerelectronics Technology Ltd. Tel., 01844 278781, fax, 01844 278746. DC-to-DC converters. Melcher’s IMR family of converters offers ranges of 3, 6 and 15W and is for use in reasonable environments. Single or double outputs are 5V, 12V or 15Vdc.

February 1996 ELECTRONICS WORLD 161
and input range is ±1. The smallest unit comes in a 24-pin DIL package, the other two being in 21-pin square modules, both types having standard pin-outs. Open and short circuit protection is provided and I/O isolation is 500Vac. Meicher Ltd. Tel., 01425 474762; fax, 01425 474766.

Switches and relays
Solenoid, BLxP's new P6D Series 66 is a low-cost device suited to uses in which a high force/stroke ratio is required, but where there isn't much space. It measures 30 by 16 by 14mm, has a 3W continuous rating and pulls a load of 0.1kgf at 10mm stroke, 1.1kgf at 1mm. Collets are for 5, 6, 12, 24 and 48V and the solenoids are available in just four versions. BLxP Components Ltd. Tel., 01638 656161; fax, 01638 650718.

Television components
Character generator. From Philips, the PC-A5C-126 is a character on-screen display generator, which allows the display of up to 256 high-resolution characters from a font containing 256 custom characters. On a 12 by 18 dot-matrix area, the device displays Japanese and Chinese writing systems and adjacent data can be combined vertically and horizontally to make icons and semi-graphics. It is programmable to suit all common television scan formats. Philips Semiconductors (Eindhoven). Tel., 031 30 722091; fax, 030 30 724825.

Transducers and sensors
Bending actuator. For large displacements at low voltages, Philips offers the CMA (ceramic multilayer actuator), which is a piezoceramic strip with electrodes to cause it to bend under applied voltage and actuate external equipment such as valves. Since the piezo layers are very thin the devices can cope with 10V to 60V produce electric field strengths up to 3kV/mm; conventional types of actuator would need up to 1kV to give the same field strength. Speed is higher and the device is smaller than is usual, requiring only voltage drive and therefore much less power. Philips Components. Tel., 030 30 722790; fax, 030 30 724947.

Linear actuator. Electro-Thrust is a linear actuator combining the simplicity of a pneumatic type with the precision of a mechanical cylinder. It is programmable, repeatable to within ±0.13mm and comes in stroke lengths in the 50-1000mm range. Velocity can be controlled to speeds up to 1250mm/s at thrusts of up to 7200N. The actuators are available in frame sizes of 30 to 100mm in nine metric ISO mounting styles. The range of leadcrown pitches and drive ratios makes for easy matching to an application, as do the four rod end choices. Parker Hannifin plc, Dipalian Division. Tel., 01202 699000; fax, 01202 695750.

Vision systems
Stereo vision. Sundance has a dual digital video interface module, the SMT316, to provide stereo vision in embedded systems. It provides a digital data-capture node for TMS320C4X/TIM-based systems and can be used as the interface to digital cameras. The two interfaces give a peak acquisition bandwidth of 60MHz and linking them gives a single 16-bit interface. Independent control of each channel is provided and there are 10 general-purpose, programmable i/o lines. The interface can be used with Pulnix, Dalsa and EEV cameras. Sundance Multiprocessor Technology Ltd. Tel., 01494 431203; fax, 01494 726363.

COMPUTER

Computer board-level products
Platinum motherboards. Cosworth, from Apricot, is an ISA/PCI motherboard for the full Pentium Pro family, the relevant sockets, clock and bus speeds provided up to 66MHz being provided. There is on-board memory of up to 1GBbyte in 3.3V dimms and a Cirrus Logic A150 512 misses or 5124x4 or 544 chip socketed with graphics. Dual-mode PCI IDE ports with two sockets are provided for hard disks and large CD-ROM drives. Apricot Computers Ltd. Tel., 0121 717 7171; fax, 0121 717 3692.

Data acquisition
Plug-and-play. A new multi-function data acquisition board from National, the 1Msamples/AT-MIO-IE-1 is a plug-and-play ISA-compatible and uses the company's E Series architecture to eliminate jumpers, switches or potentiometers. There are 16 single-ended inputs, 16 pseudo-differential inputs with a shared common up to eight 12-bit full differential inputs; two analogue outputs have 12-bit resolution, eight digital I/O lines and four 24-hour timer/channels. National Instruments UK. Tel., 01635 572400; fax, 01635 522514.

Data communications
Wireless lan chipset. Harris introduces a four-member chipset, Prism, for 2.4GHz direct sequence, or 28-pin rom socket and adaptors are available for picc sockets, the connection to the PC parallel port being by a single cable. Two versions have memory of 1Mb and 4Mb. Nexus Electronics Ltd. Tel., 01223 575100; fax, 01223 576619.

Device drivers. A Windows tool from IAR, DriveWay-51, is launched as the "fastest way to generate device drivers for the 8051 family". It is produced in association with the Israeli company A/ SYSs and allows integration of on-chip peripherals into designs, automatically producing documented and tested driver C source code for each 8051 peripheral. Test functions and documentation are generated automatically, as is an on-line data sheet on the chip's peripherals, modes, registers and pins. You will need 5Mb of hard disk space and 4Mb of memory. IAR Systems Ltd. Tel., 0171 2434334; fax, 0171 2945341.

Computer peripherals
RS-485 as GPIB. National's GPIB, 485C7-4 is an external box that makes a computer with an RS-485 port behave as a full-function IEEE 488.2 controller, an RS-485 device appearing as a GPIB device, the system being effective over a distance of up to 400ft. National also announces the PCI-GPIB, a plug-in GPIB instrument control board for computers with PCI bus running Windows 95. It handles data transfer rates to 1.5Mb/byte and implements the HSB485 GPIB protocol for programmed I/O transfers at 3.7Mb/byte or more. With this board, a computer is able to monitor and control several thousand pieces of equipment. National Instruments UK. Tel., 01635 572400; fax, 01635 523154.

Software
Waveform generator. Thrufly Thandar introduces a Windows-based package, WaveForm DSP, to support application generation on the Model TG1010 function generator, which is a 10MHz digital direct synthesizer. The package creates, analyses and edits waveforms, which have been drawn by mouse and smoothed with curve-fitting algorithms. It switches easily from the time to the frequency domain, both possessing editing, drawing and library features. Thrufly Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480 450409.

Computer security
Data protection. Jetcio, Inc., of Finland, produces the JetCrypt data protection system for PC compatibles, which is said to provide the most secure storage and yet offer easy access control to the encrypted data on disk, where it behaves transparently to an authorised user from any application program. The hardware is an add-on board and the software contains Control Panel for MS-DOS and Windows. Encryption is by means of the Russian Federal standard GOST 38147-89, which is, apparently, well known as an uncrackable algorithm, being 10G times more uncrackable than the American standard. And it isn't any good trying to guess a password, because they have thought of that, too, and made it possible to get it even by looking over someone's shoulder. Jetcio Inc. Tel., 00358-31-316-5215; fax, 00358-31-316-5061; e-mail jetcio@aol.com.
Finally an upgradeable PCB CAD system to suit any budget...

BoardCapture - Schematic Capture
- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

Board Maker
BoardMaker1 - Entry level
- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

£95

BoardMaker2 - Advanced level
- All the features of BoardMaker1 plus
- Full netlist support - OrCad, Schema, Tango, CadStar
- Full Design Rule Checking - mechanical & electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator - Database ASCII, BOM
- Thermal power plane support with full DRC

£395

BoardRouter - Gridless autorouter
- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

£200

Output drivers - Included as standard
- Printers - 9 & 24 pin Dot matrix, HP Laserjet and PostScript
- Plotters - HP, Graphtec, Roland & Houston
- Operation - All Gerber 3000 and 4000

£395

Microelectric Training and Development Systems
PIC and 51 Series

From only £595

Systems comprise of the following:
In-Circuit Emulator, Integrated windowed Full Function Editor, Assembler, Simulator, Down-loader, programmers calculator and tools. Plus leads, power supply, logic probe etc. contained in a custom-case.

Training systems contain a full set of modules and a complete set of coursework (to BTEC/GNVQ Level 3). TEC Funding Available to offset purchase costs.

Development systems include programmers and full speed in-circuit emulators.

Please call or fax for a full datapack

Kanda Systems, Lisbourne House, Pontrhydygroes, Dyfed SY25 6DX.
Telephone: 01974 282670. Fax: 01974 282356

C-PORT
The way forward in embedded development systems!

No more EPROM programming or emulation during software development.

Compiled C code can be uploaded directly into FLASH EPROM from a PC again & again & again & ......

C-PORT based systems can accept in-field software upgrades from floppy - no EPROM changing.

So whether you're new to embedded micro-systems or an experienced hand, you'll find C-PORT unbeatable.

Features include:
- 80C552 µP
- C Compiler
- 60k FLASH program space
- 59k SRAM data space
- 256 Bytes EEPROM
- I2C Bus
- RTC
- 24 additional I/O lines
- RS232
- 1k additional space.

Clinical Engineering
Tel: +44 (0)151 706 4202 Fax: +44 (0)151 706 5803
Load dump generators for EMC testing

Automotive generators that cope with the new ISO 7637 standard and the more stringent EMC test requirements in a modern car are the subject of Schaffner application note INS0002. Entitled Discussion on load-dump generator designs and suitability for automotive EMC testing, the note describes how NSG500x EMC test generators are of use in evaluating automotive EMC.

Transient and burst generators typically need to generate very fast rise times and short pulse widths. A typical transient generator is shown in Fig. 1.

Pulse shaping components are typically passive components – capacitors, inductors, resistors – because current solid state technology cannot generally provide the pulse shape control with the rise times and energies involved. As a result of this output resistance $R_i$ is typically specified as a variable value to allow for some control over the energy delivered to the equipment under test – $R_i$ in Fig. 1. This mechanism however provides very limited energy control on the output. If you take the case where $R_i=R_L$ it is clear that half the pulse energy is dissipated internally on the generator rather than the equipment under test, or EUT. In addition pulse amplitude at the EUT would be half the value programmed.

In the case of the load dump generator for the NSG5000, because rise times and pulse width requirements are in the millisecond region, this pulse generator is based entirely on solid state technology. This means pulse shape and energy content, delivered to the EUT, are fully programmable. As a result, test pulses delivered to the load can be much more predictable. This provides the user with test modes previously not possible with traditional passive circuit designs.

Operating modes
The instrument is intended for three basic modes of operation, one of which is current mode output.

This mode of operation could be considered a new departure in terms of the type of pulses and pulse specifications that are presently specified in the ISO 7637 standard. However, outputting a current pulse shape is a much more accurate representation of what actually happens with a load dump from an alternator in a modern automobile.

An in-line sense resistor is used to develop a feedback voltage to control the pulse amplifier, Fig. 2. The value of this resistor is very small so it does not dissipate a significant amount of energy.

In this mode the pulse shape would normally be defined into a short circuit.

Once the EUT internal resistance is low enough to allow the maximum programmed peak current to flow then the pulse shape programmed will be replicated exactly at the output. Voltage developed at the output terminals, i.e., the equipment under test, is determined by load impedance $R_L$.

Maximum output voltage available from the NSG5005 is 200V (so the unit will clamp around this level if no other limiting device is present in the test circuit). A more common situation would be to include a centralised load-dump suppressor in the test harness to the EUT, Fig. 3. Again this also helps to represent the environment that the EUT might meet in the automobile more accurately.

If the EUT load represents a high inductance or capacitance then the current shape may be distorted from that programmed. The note also describes the normal voltage mode output and the voltage mode with external $R_i$ resistance. Maximum performance limits of the NSG5005 being a maximum pulse amplitude of 200V, pulse width of 500ms and a maximum current of 200A.

An appendix describes how pulse shape characteristics depend on the EUT load and how quickly it drains energy from the generator.

Schaffner EMC Ltd. Ashville way, Molly Millar's lane, Wokingham, Berkshire. Tel, 01734 770070, fax, 01734 792 969.
Surge protection solutions

Transient voltage protection products are the subject of a data and applications manual from Protek Devices. Dedicated to engineering solutions for the transient environment, the manual is split into five sections covering TVS diodes, discrete TVS diodes, power TVS assemblies and high power surge suppressor modules. The fifth section covers application notes.

An interesting device designed to protect interfacing equipment from induced lightning or switching transients is detailed in section 4. Called the CX 12LC module, the device is a two stage, hybrid surge protector with a low clamping voltage, high energy handling capabilities and an operating data range up to 100Mbit/s. It is designed for high data rate applications over the operating voltage range of a computer.

Coupling capacitors inserted across the data line must be very low to prevent signal distortion or loss of data on the LAN network. The diagram (left) shows a comparison of two protection products inserted in the data line for transient voltage protection. The bottom line is for the CX 12LC, and the top line is for a more standard device. Due to the drastic change in capacitance of the product, top line, signal distortion, loss of data or even access to the computer may be a problem.

Protek Devices, 2929 Fair Lane, Tempe, Arizona 85282, USA, Tel, 602-431-8101, fax, 602-431-2288.

In a typical data line application, as shown, video and serial data transmission lines are susceptible to lightning strikes and surges from ac power lines. The CX 12LC is designed to protect against such surges.

‘Un-crackable’ electronic lock

Claimed to be the world’s first unpickable electronic lock, the dynamic key alarm micro - DKA1 – from Electronic Research and Design Ltd lends itself to many security applications.

The device is particularly applicable to keyless lock designs relying on radio transmission. Such lock systems have traditionally been unsuitable for high-security applications.

Detailed in its technical data brief, the DKA1 is said to incorporate levels of security that have only recently become technically feasible. The system includes generation III military type encryption techniques based on the manufacturer’s time-based multi-level encryption technology. This is said to be un-crackable – even by the most advanced ‘grabber predictors’.

When originally programmed, a base time seed code is generated. This is different for every key and forms the start-time seed. This seed is then clocked in real time and a proportion of the encryption mechanism is ‘weighted’ by the current time seed variables. These variables are constantly changing. This means that the encryption engine parameters are changing all the time. Together with the third level encryption on encryption coding techniques (multi-level), this combines to make it impossible to calculate/predict consecutive codes. Even with knowledge of the multi-level encryption algorithm, it would still be impossible to decode the current time based multi-level encryption code without the knowledge of the current time seed. This can only be known by that particular key’s run-time file in the decoding to which it was initially synchronised.

Conversely, because the decoder has an identical run-time file and the same moving time seed, it is able to de-encrypt the incoming code and observe any comparison, see diagram.

The brief also details the device’s specifications, alarm features and diagnostics.

Electronic Research and Development, K&K House, Station Approach, Rickmansworth Road, Watford, Herts, WD1 7LU. Tel, 01923 240525, fax 220011.
Electronic Designs Right First Time?

Active and Passive Filter Design - FILTECH -

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.

Prices From:

ANALYSER III: Linear Analogue Circuit Simulator
Prices From: £195.00

LAYAN: Electro-magnetic layout Simulator. Include board parasites in your Analogue simulations.
Prices From: £850.00

PULSAR: Digital Circuit Simulator
Prices From: £195.00

Z-MATCH: Windows based Smith-Chart program for RF Engineers. Prices From: £275.00

FILTECH: Active and Passive Filter Design
Prices From: £275.00

We operate a no penalty upgrade policy. Technical support is FREE FOR LIFE. Special prices for Education.

US$ prices include Post and Packaging. Sterling Prices exclude P&P and VAT.

Number One Systems
Ref: WW, Harding Way, St. Ives, Cambridgehire, PE17 4WR, UK.

Tel: +44 (0) 1480 461778, Fax: +44 (0) 1480 494042

From only £145!

For Full Information Please Write, Phone or Fax.
email: sales@numberone.com

Tel: +44 (0) 1480 461778, Fax: +44 (0) 1480 494042

CIRCLE NO. 113 ON REPLY CARD

New Mini Cameras & Special Offers

New waterproof TV camera for £50.00, includes 2x200fps video only, a high sensitivity of 300 TV lines. Various remote attachments are available to suit your requirements.

Prices From: £100.00

Wide range of CMOS TTL 74HC 74F Linear Transistors kits. Rechargeable batteries, capacitors, tools etc

7 segment common anode led display 12mm Stick of 4 42x1 6mm Nicad batteries 171x16mm die with Special offers, please check for availability.

C 2AH with solder 166

High power charger as above but charges the Cs and Ds in 0.4A11 with solder AA 700mAH AA (HP7) 500mAH £10.99AA 500mAH with solder

LEDs 3mm or 5mm red or green Power interface 4A kit

Electronic Designs Right First Time?

Prices From:

ANALYSER III: Linear Analogue Circuit Simulator
Prices From: £195.00

LAYAN: Electro-magnetic layout Simulator. Include board parasites in your Analogue simulations.
Prices From: £850.00

PULSAR: Digital Circuit Simulator
Prices From: £195.00

Z-MATCH: Windows based Smith-Chart program for RF Engineers. Prices From: £275.00

FILTECH: Active and Passive Filter Design
Prices From: £275.00

We operate a no penalty upgrade policy. Technical support is FREE FOR LIFE. Special prices for Education.

US$ prices include Post and Packaging. Sterling Prices exclude P&P and VAT.

Number One Systems
Ref: WW, Harding Way, St. Ives, Cambridgehire, PE17 4WR, UK.

Tel: +44 (0) 1480 461778, Fax: +44 (0) 1480 494042

CIRCLE NO. 113 ON REPLY CARD

New Mini Cameras & Special Offers

New waterproof TV camera for £50.00, includes 2x200fps video only, a high sensitivity of 300 TV lines. Various remote attachments are available to suit your requirements.

Prices From: £100.00

Wide range of CMOS TTL 74HC 74F Linear Transistors kits. Rechargeable batteries, capacitors, tools etc

7 segment common anode led display 12mm Stick of 4 42x1 6mm Nicad batteries 171x16mm die with Special offers, please check for availability.

C 2AH with solder 166

High power charger as above but charges the Cs and Ds in 0.4A11 with solder AA 700mAH AA (HP7) 500mAH £10.99AA 500mAH with solder

LEDs 3mm or 5mm red or green Power interface 4A kit

Electronic Designs Right First Time?

Prices From:

ANALYSER III: Linear Analogue Circuit Simulator
Prices From: £195.00

LAYAN: Electro-magnetic layout Simulator. Include board parasites in your Analogue simulations.
Prices From: £850.00

PULSAR: Digital Circuit Simulator
Prices From: £195.00

Z-MATCH: Windows based Smith-Chart program for RF Engineers. Prices From: £275.00

FILTECH: Active and Passive Filter Design
Prices From: £275.00

We operate a no penalty upgrade policy. Technical support is FREE FOR LIFE. Special prices for Education.

US$ prices include Post and Packaging. Sterling Prices exclude P&P and VAT.

Number One Systems
Ref: WW, Harding Way, St. Ives, Cambridgehir
Just Take Two Steps to do Your Measurement

Plug in and Measure

TiePieSCOPE

HS508 Complete set for £ 597.00

You can simply plug the new TiePieSCOPE - HS508 into the parallel port of your portable or desktop PC. With the advanced software, you can use this two channel, 8 bits, 50 MHz measuring instrument as a fast digital storage oscilloscope, including a lot more features than a single oscilloscope! Moreover, the TiePieSCOPE - HS508 contains a multiple display voltmeter (up to 5 MHz true RMS), a spectrum analyzer with an harmonic distortion meter and a transient recorder for recording a variety of signals.

The TiePieSCOPE - HS508 is supplied complete with user manual, software, and two probes.

Call now for a free demo diskette and our catalog!!

TiePie engineering (UK)
28 Stephenson Rd, Industrial Est., ST. IVES, CAMBS PE17 4WJ
Tel.: (01480) 460028 - Fax: (01480) 460340

TiePie engineering, The Netherlands
P.O. Box 115, 8900 AC LEEUWARDEN
Battensereed 2, 9023 AR JORWERD
Tel.: (31) 515 415 416 – Fax: (31) 515 418 819
The well known maths software package Mathcad has recently been upgraded to version 6, and renamed Mathcad Plus 6. Version 6 is an enhancement of version 5 with some very interesting developments – not least the ability to execute program loops. In addition, Mathcad is one of the few 32-bit programs that runs under Windows 3.1. It also runs under Windows 95, albeit with a patch program.

The new version retains the basic initial design of using the pc screen as a scratch pad where the user is able to express and solve equations, draw graphs and construct tables. The package makes most of these tasks relatively easy. It is also able to perform analytical operations via the Maple Library. Although this feature was introduced a few version ago, it still remains as a powerful and useful feature of the package.

Newcomers to the software will probably find the immense array of functions and options bewildering. It is not a software package that the new user will learn overnight. It will probably take you several weeks to master it. However there are a number of design features, in addition to the normal help menus, that will help you gain an insight into the package’s potential.

Because of its very general nature, Mathcad can be used by anyone who has a need to manipulate numbers or perform modelling tasks. To add to its appeal, the package can be bought with a variety of 'function packs' that contain functions developed for specific applications. In this review I will be looking at the signal-processing function pack.

QuickSheets for faster learning
One innovation introduced into Mathcad Plus 6 is the concept of the QuickSheet. It is well known that one of the most effective methods of learning is through the use of examples and this is the principle employed in the QuickSheet facility. The user is provided with a table of contents, each entry leads to a further menu and eventually to an example of how a function is used. An example is shown in Fig. 1 illustrating how the derivative function is operated.

Examples, showing how the various functions and operations work within Mathcad, can be viewed. More importantly, many of the examples are easy to follow.

Programming methods
One of the problems with previous versions of this package was its inability to perform programs with conditional loops. In version 6, this deficiency is remedied by the introduction of a set of programming functions. These include 'for', 'while', 'if', 'break' and 'otherwise'. They are evoked from the programming constructs palette and an example of how the program is
**Signal processing function pack**

The makers of *Mathcad* provide many special purpose function packs. One of particular interest to electronics engineers is dedicated to signal processing. Each pack is a collection of special functions compiled into a dynamic linked library (DLL) that is accessed by the software. Although the Signal-Processing Pack comes with a small booklet which lists the functions, when installed a Signal Processing Electronic Book is loaded on the PC. All information regarding the operation of the pack is accessible by entering the 'Electronic Book'. This provides numerous examples of how each function in the pack can be used. Having an electronic book dispenses with the need for yet another paper manual. If you want copies of specific pages from the electronic book, you merely print them as required. The only irritating aspect of the Mathcad's electronics books is the pale blue font which makes them difficult to read.

Sixty four functions in the signal-processing pack fall into the following categories,

- Transforms
- Spectral analysis
- Time series analysis
- Spectral analysis
- Digital filtering.

Fast Fourier transforms and inverse FFTs already form part of the Mathcad package and the signal-processing pack have several spectral analysis functions that complement these. These include cepstrum, for finding harmonics in spectra, costr, sirn and cosine and sine Fourier transforms. There is also a discrete Hartly transform which is similar to the Fourier Transform except it does not use complex maths.

A number of window functions are available for shaping input data before any spectral analysis is performed on it. These are important for resolving small spectral peaks lying in the shallows of much larger ones.

Although many of the functions are useful one has the feeling that they could be easier to use and this is particularly true of the digital filter functions. These operate in a rather strange manner. Normally the user will know what the stop band attenuation is, the pass band ripple and the transition frequency width between the bands. Filter design software should then provide the number of coefficients (number of filter taps) and value of the coefficients.

In the signal-processing pack, the user is expected to provide the number of coefficients. Not only that but once the coefficients have been generated there is no direct, easy method for displaying the transfer function of the filter. The user needs this to determine whether the filter satisfies the specifications. To add to the confusion, the coefficients generated are larger than unity. As a result, they do not lend themselves to easy quantisation for implementing on fixed point DSP chips (see Fig. 7). This makes me wonder whether an engineer was consulted when the signal-processing pack was designed. To make matters worse, there are no functions for designing elliptical filters. This is a nuisance since this type of filter is used frequently for sharp cut-off filters with minimal tap count.

Fig. 7. Mathcad's signal-processing function pack has functions for designing digital filters. However when the coefficients of an infinite impulse response (IIR) filter are displayed, the format is not immediately useful to a digital filter designer.

**Handling non-linear differential equations**

One of the exciting aspects of *Mathcad Plus 6* is the facility for solving nonlinear differential equations numerically. Although *Mathcad* has been a very effective tool for modelling linear processes, most real world problems are nonlinear. Man has a history of trying to impose linearity upon nature which is intrinsically nonlinear.

The principal function for tackling nonlinear differential equations is 'rkfixed'. This function evokes the fourth-order Runge-Kutta algorithm which can be used to solve any order, and even systems, of nonlinear differential equations.

Figure 3 shows how the function models relaxation oscillations in a semiconductor laser. There are other algorithms available in the package and their application depends on the nature of the nonlinear differential equations to solve, and on the accuracy of the required solutions. In general, systems of nonlinear differential equations can be classified as 'smooth', 'slowly varying' and 'stiff'. The function for tackling smooth systems is bulstoer, after Bulirsch-Stoer, and for slowly varying is Rkadapt, a modified version of the Runge-Kutta algorithm. Stiff systems can be solved by using 'stiffb', again after Bulirsch-Stoer, or 'stiff' after Rosenbrock.

Solving nonlinear differential equations can be achieved provided the user has knowledge of the initial conditions. If this information is not available, it may be possible to use the 'sbla' or the 'bwaft' functions which employ 'boundary value' technique.

Given partial knowledge of a

![Figure 3](image)

**Fig. 3.** One of the powerful tools found in the new version is the option of solving nonlinear differential equations. In this example the relaxation oscillations of a semiconductor laser are modelled. As the photon density P increases the electron density N decreases and vice-versa.
the Maple engine from the Canadian company Waterloo. Its performance is usually quite impressive. When the pc is configured for 32-bit disk access, the speed of execution of the 'symbolic calculator' is surprisingly fast. Its popularity in education goes without saying. Judging by the falling standards in mathematical skills by students entering universities, this aspect of the package will be seized on with great enthusiasm.

The software is able to perform a whole array of symbolic processing operations including integration, polynomial expansion, simplification, partial fraction expansions and many other general symbolic algebraic functions. However, sometimes the symbolic expansions do not perform even on simple expressions.

I had to conclude that it mostly provides an answer but not always. Figure 4 illustrated a number of symbolic operations that were successfully performed by Mathcad.

Graphing and plotting

Graphing options offered by Mathcad are not too dissimilar to those offered in general purpose graphics packages. These days, high quality data plotting software is freely available. As a result, the package has a lot in common with most graphics packages – contour plots, polar plots, three dimensional solid modelling with rotation and bar charts.

However, it should be mentioned that producing a surface plot is not as easy as I would like. It is still necessary to construct a matrix beforehand, which is not the most intuitive method of generating a three-dimensional plot.

On the whole, facilities for generating and manipulating three-dimensional plots are rather clumsy. An example of a colour coded parametric plot is shown in Fig. 5. There is also a provision for importing images, however this facility is by no means free of problems as it failed to function properly. Not all bit-mapped images are recognised.

An interesting addition in the new version is the option to generate animation plots. This feature employs the Microsoft multimedia facilities for video clips, .AVI files.

Figure 6 shows how easy it is to create an animation. A function is defined with a variable called FRAME. Once the animation has been evoked a dialogue box appears, on the right of Fig. 6, where the range of FRAME is defined. The user also chooses the number of frames per second. Once the plotting area has been selected, the animation process begins.

Five screen captures from an AVI file produced by MathCad illustrate the package's animation capability.
The frames are then compiled into AVI video, Fig. 6, top left, and played at will. This could be useful for illustrating vibration modes in something like an optical fibre.

The software is quite impressive when solving simultaneous equations using the lsolve function. Solving simultaneous equations boils down to solving the matrix equation,

\[ x = A^{-1}v \]

For example, if this represents 500 simultaneous equations with 500 unknowns, \( v \), and 500 solutions, \( x \), representing 20ms for each unknown, \( v \), and 500 solutions, \( x \), simultaneous equations with 500 unknowns, \( v \), and 500 solutions, \( x \), when running on a 120MHz Pentium, it can have in store. There could be improved 3D plotting. It still remains a very well designed software product that will continue to find appeal amongst many different kinds of users. Whether you want to perform simple calculations or quite involved nonlinear modelling the package is a very approachable product.

The user guide has passed through several iterations and the volume for the new version is an invaluable document for any user – experienced or otherwise. The 694 page guide contains many examples and is very readable. It certainly complements the help file.

My enthusiasm for the signal-processing function pack however is not so forthcoming. Although it has many useful functions, many lack functionality and are basically unwieldy and difficult to use. These days there are many software packages for designing and analysing digital filters. Unfortunately the signal-processing function pack fails far short of most of them.

Availability
Adept Scientific Micro Systems Ltd, 6 Business Centre West, Avenue One, Letchworth SG6 2HB, Tel. 01462-480055, fax 01462-480213. Price – Mathcad Plus 6, £395 excluding VAT, Signal Processing Function Pack, £195 excluding VAT. Educational discounts are available in some cases.
SALE PRICE £9.95 ref SA12. SAVE £120!!!

(0345-326009 try before you buy!) Current retail price is £129, packs that need clearing so we are selling at disc value only! 50 discs to clear at £5 ref SA31. Condition unknown.

ENERGY BANK KIT 1006'x6. 6v 100mA panels, 100 diodes. Basic small built in oven SALE PRICE £79 ref EP73

PC PSU's complete with fly leads, case and fan, pack of two psus £1.2 DISC DRIVES Standard 5.25'' drives but returns so they will Complete with fan etc and 200 watt power supply. £9.95 ref EP67

COMMODORE GAMES CONSOLES Just a few of these left repair so just £4.99 each. BT response 200 machines. REF SA30.

PC CONTROLLED 4 CHANNEL TIMER Control (on/off times etc, full spec supplied, 60-100 flashes a min. £6.99 REF SA15. (probably not licensable!)

AUTO SUN CHARGER 155x 300mm solar panel with diode and 3 +12v 1.5A, -12@.4A. 230/110, cased, BM41012. £5.99 ref AUG6P3.

SWINGFIRE GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 28Ibs breaking strain, less than 1mm overall size. £12.99 ref BAR67.

SURVEILLANCE TELESCOPE Superb Russian zoom telescope, settings cannot compete with this quality. (impossible to use without this on the higher setting) 65mm lens, telescopic range see £414.96 ref BAR90.

RADIATION DETECTOR SYSTEM is designed to be wall mounted and connected into a PC. Ideal for remote monitoring, whole building detection, radiation work and software. £19.95 ref BAR7.

WIRELESS VIDEO BUG KIT Transmits video and audio signals using wireless technology! Not a CCTV camera (built until detected). Supply with Holosonde's. Scans up to 60m. (possibility of using with video systems, behaviour study etc). £49.95 ref BAR27.

SALE PRICE £179.95 full money back guarantee) full details in catalogue. Ref EF78. 500 pellets £4.50 ref EFS6.}

GREAT CHOICE OF AERIALS Suitable for TV, videos, radios, caravans, provides a years protection from thieves. £39.95 ref BAR7.

GLOBAL WARMING SPACE BLANKET 215x 150cm aluminised reflective material. E30.99 Ref EF78. £3.99 direct from the manufacurer for the construction of two way mirrors £1.99 each

MINITUNER RADIO TRANSCEIVERS A pair of walkie talkies with a range up to 2 mile in open country. Units measure 73x36x21mm and are encased in tough polycarbonate. £6.99 Ref SMC101.

RACER L MODEM BONANZA! 1 Real MPS T23 2300bps modem, no hassle; puts the competition to shame, the chatty on/off at this for just £13 ref DEC15.

4.6mm LASER POINTER, BRAND NEW MODEL NOW IN STOCK, superb beam design that looks like a mini laser pen) complete with handy pocket clip (which also acts as the on/off switch.) About 60 metres range. Runs on 2xAAA batteries. £7.99 ref EP26.

TALKING COINBOX STRIPPER COMPLETE WITH COIN SORTING MECHANISMS originally made to revalue £79 each are now made in this country and supplied blank so you can put your own images on a payphone. The units have the looks and mechanics of something you would hope to see in a bank. £7.99 ref BAR63.

BULLETRONIC 300 PORTLAND ROAD, FORDSVILLE, 3N3. (STOT. ESTABLISHED 50 YEARS)

WOLVERHAMPTON BRANCH NOW OPEN AT WORCESTER STREET WHALTON TEL 01922 22039

SPECIAL OFFER TAKE $5 OFF ANY BIKE ORDERED WITH THE GREBON LAZER PRO SERIES

TALKING DIARY CRYSTALS Bargain prices, 16 character 4 line, 62x25mm £5.99 ref SMC1640A

IR LAMP KIT Suitable for the above camera enables the camera to activate a motion sensor alarm built inside. Fits all standard bottle cigarette packet with the lens requiring a hole about 3mm diameter. £9.99 ref SA31.

2,800 rpm, reversable, 7'x7' UK made, new, Aluminium, current list required. 950g weight. £210 ref BAR61. 1 years warranty supplied with two free rolls of colour film, flip up magnifier, 3 element

HYPOTHERMIA SPACE BLANKET 215x 150cm aluminised reflective material. E30.99 Ref EF78. £3.99 direct from the manufacurer for the construction of two way mirrors £1.99 each

SWINGFIRE GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 28Ibs breaking strain, less than 1mm overall size. £12.99 ref BAR67.

SWINGFIRE GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable, 28Ibs breaking strain, less than 1mm overall size. £12.99 ref BAR67.


GREAT CHOICE OF AERIALS Suitable for TV, videos, radios, caravans, provides a years protection from thieves. £39.95 ref BAR7.

GREAT CHOICE OF AERIALS Suitable for TV, videos, radios, caravans, provides a years protection from thieves. £39.95 ref BAR7.

GREAT CHOICE OF AERIALS Suitable for TV, videos, radios, caravans, provides a years protection from thieves. £39.95 ref BAR7.

GREAT CHOICE OF AERIALS Suitable for TV, videos, radios, caravans, provides a years protection from thieves. £39.95 ref BAR7.

GREAT CHOICE OF AERIALS Suitable for TV, videos, radios, caravans, provides a years protection from thieves. £39.95 ref BAR7.

GREAT CHOICE OF AERIALS Suitable for TV, videos, radios, caravans, provides a years protection from thieves. £39.95 ref BAR7.
PORTABLE X RAY MACHINE PLANS Easy to construct plans to build a home X Ray machine. This is an effective device, X-ray sealed assemblies can be used for experimental purposes. Not for oil or for mineral. E59 Ref TVR59.

TYPEWRITER KEYBOARD PLANS The mechanical design of your typewriter keyboard can be a fun and interesting pursuit for your friends by creating models with no known or apparent means of escape. Many different designs, no special skills required to produce prototypes. Motion and design of this strange and amazing phychic phenomenon. E55 Ref FTK55.

ELECTROLYTIC SUPPRESSION PLANS & DATA The designer's data of experiments and plans. Details are given as a way to pursue subjects under your control. Included is a full volumn of information and construction plans that when assembled can produce effective lethallimbs. This material must be used carefully. This is for use only for entertainment at parties only, by the owner. E10 Ref FES10.

GRAVITY GENERATOR PLANS This unique plan demonstrates balanced electric and magnetic fields which are used to generate a gravity effect. This plan is one of the most effective, converting 10% input power into useful output. Not only is this device a workhorse in welding, cutting and heat processing materials but it also is a likely candidate as an effective directed energy beam interferance. Detects low, high and UHF frequencies. £5/set Ref F/GRA1.

DISPLAY GLOBE PLANS Produces up to 750,000 volts of shock waves. Blow holes in metal, produce 'cold' steam, atomize and square waves from 20-20khz, separate level controls for each. £10/set Ref F/BDI.

VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Produces acoustical energy that dogs actually flaps its wings and flies! 50 m range £6 ref EF2.

METAL DETECTOR KIT Range 15-20cm, complete with a 12v supply, a container and 2 12v light bulbs. £39.99 ref NIK39.

MINI FM TRANSMITTER KIT Very high gain preamp, supplied with complete kit. £6.99 ref 7.5V0.

SUBWAVE TRANSMITTER KIT 300-350mhz, complete with 3A 6v transformer also required. £8.99 ref. 7.5V0.

MICROPHONE KIT Produces all 3 together. 24vac. £16 ref 1008.

FUNCTION GENERATOR KIT Produces sinusoidal, saw tooth and square waves from 20-20khz, separate level controls for each. £10/set Ref F/BDI.

ORMON ELECTRONIC INTERVAL TIMERS. "NEW LOW PRICES TO CLEAR!!!" Miniature timer, adjustable from 1 sec to 1 min. 3A 240v, £12/15. HY3012, 12V adjustable from 0-30 secs. £4.99 HY3112, 12V adjustable from 0-1 min. £4.99 HY2401S, 240v adjustable from 0-1 secs. £4.99 HY2421S, 240v adjustable from 0-10 secs. £4.99 HY2431S, 240v adjustable from 0-3 hours. £6.99 HY2451S, 240v adjustable from 0-5 hours. £9.99 HY2460M, 24v adjustable from 0-60 mins. £2.99 HY2460F, 240v adjustable from 0-10 mins. £2.99 HY2461F, 240v adjustable from 0-15 mins. £2.99 HY2465S, 24v adjustable from 0-30 mins. £2.99 HY2455S, 24v adjustable from 0-1 hour. £2.99 HY2450M, 24v adjustable from 0-60 mins. £6.99 HY2450F, 240v adjustable from 0-60 mins. £9.99 DIVINING RODS Expensive technology cannot challenge the fool proof art of water divining, passed down from generation to generation. £8.99 ref 7.5A0. Evidence based on personal experience and people want. Minimum system configuration is 286, VGA, 1.4 Mhz, serial, 4,1,640k, 200 page catalogue now available. 45p stamp or free on request WITH ORDER. 100 PAGE CATALOGUE NOW AVAILABLE. £3.99 Ref MAGBP2.

PORTABLE X RAY MACHINE PLANS Easy to construct plans to build a home X Ray machine. This is an effective device, X-ray sealed assemblies can be used for experimental purposes. Not for oil or for mineral. E59 Ref TVR59.

TYPEWRITER KEYBOARD PLANS The mechanical design of your typewriter keyboard can be a fun and interesting pursuit for your friends by creating models with no known or apparent means of escape. Many different designs, no special skills required to produce prototypes. Motion and design of this strange and amazing phychic phenomenon. E55 Ref FTK55.

ELECTROLYTIC SUPPRESSION PLANS & DATA The designer's data of experiments and plans. Details are given as a way to pursue subjects under your control. Included is a full volumn of information and construction plans that when assembled can produce effective lethallimbs. This material must be used carefully. This is for use only for entertainment at parties only, by the owner. E10 Ref FES10.

GRAVITY GENERATOR PLANS This unique plan demonstrates balanced electric and magnetic fields which are used to generate a gravity effect. This plan is one of the most effective, converting 10% input power into useful output. Not only is this device a workhorse in welding, cutting and heat processing materials but it also is a likely candidate as an effective directed energy beam interferance. Detects low, high and UHF frequencies. £5/set Ref F/GRA1.

DISPLAY GLOBE PLANS Produces up to 750,000 volts of shock waves. Blow holes in metal, produce 'cold' steam, atomize and square waves from 20-20khz, separate level controls for each. £10/set Ref F/BDI.

VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Produces acoustical energy that dogs actually flaps its wings and flies! 50 m range £6 ref EF2.

METAL DETECTOR KIT Range 15-20cm, complete with a 12v supply, a container and 2 12v light bulbs. £39.99 ref NIK39.

MINI FM TRANSMITTER KIT Very high gain preamp, supplied with complete kit. £6.99 ref 7.5V0.

SUBWAVE TRANSMITTER KIT 300-350mhz, complete with 3A 6v transformer also required. £8.99 ref. 7.5V0.

MICROPHONE KIT Produces all 3 together. 24vac. £16 ref 1008.
WE WANT TO BUY!!
IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. HENSON LTD.
21 Lodge Lane, N. Finchley,
London N12 8JG.
5 Mins, from Tally Ho Corner.
TELEPHONE 0181-445-2713/0749
FAX 0181-445-5702

TOP PRICES PAID
For all your valves, tubes, semi conductors and IC’s.
Langrex Supplies Limited
1 Mayo Road
Croydon
Surrey CR0 2QP
TEL: 0181-684 1166
FAX: 0181-684 3056

WANTED
Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.
M & B RADIO
86 Bishophgate Street
Leeds LS1 4BB
Tel: 0113 2435649
Fax: 0113 2426881

ELECTRONICS
VALVES & SEMICONDUCTORS
Phone for a most courteous quotation
We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD
170 Goldhawk Road,
London W12 8HJ
England.
Tel: 0181 743 0899
Fax: 0181 749 3934

VALVES, and CRT’s AVAILABLE
ONE MILLION VALVES stocked for Audio, Receiving, Transmitting & RF Heating. Rare brands such as Mullard & GEC available. Also MAGNETRONs, KLYSTRONS, CRTs and SOCKETS.

VALVES, etc. WANTED
Most types considered but especially KT88 (£48), PX4/PX25 (£50), KT66 (£35), KT77 (£15), EL34 (£10), EL37 (£9), ECC83 (£3).

WANTED
Surplus Electronic Components and Equipment
We also welcome the opportunity to quote for complete factory clearance.

B. BAMBER ELECTRONICS
5 STATION ROAD, LITTLEPORT, CAMBS.
Phone: ELY (01353) 860185
Fax: ELY (01353) 863245

IVISORS STRICLY BY APPOINTMENT.
MINIMUM ORDER £50 plus VAT

KL Systems
Microcontroller based electronic control systems. Specialising in the application of Zilog Z8 technology. Software, hardware and consultancy. Z8 development system available for £100.

SURPLUS SALE
THIS MONTH’S SALE INCLUDES:-
Spectrum Analysers, Oscilloscopes, Signal Generators, Voltmeters, Power Units, Frequency Counters, Receivers, Transmitters, Ex PMR Equipment, Photographic & Video Equipment, Components, & Miscellaneous items etc.

ALL EQUIPMENT IS SOLD AS SEEN.
ALL PRICES EXCLUDE VAT.
NO MINIMUM ORDER.
RING TODAY FOR THIS MONTH’S CATALOGUE.
# Classified Advertisements

**ARTICLES FOR SALE**

**SUPPLIER OF QUALITY USED TEST INSTRUMENTS**

**CONTACT**

**Cooke International**

ELECTRONIC TEST & MEASURING INSTRUMENTS

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 0EB

Tel: (+44)01243 545111/2  Fax: (+44)01243 542457

**INDEX TO ADVERTISERS**

<table>
<thead>
<tr>
<th>Anchor Surplus</th>
<th>155</th>
<th>Halcyon</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK</td>
<td>109</td>
<td>Hart</td>
<td>93</td>
</tr>
<tr>
<td>Bull Electrical</td>
<td>172</td>
<td>Interconnections</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>173</td>
<td>Iosis</td>
<td></td>
</tr>
<tr>
<td>Clinical Engineering</td>
<td>163</td>
<td>Johns Radio</td>
<td></td>
</tr>
<tr>
<td>CMS</td>
<td>151</td>
<td>JPG</td>
<td>90</td>
</tr>
<tr>
<td>Cricklewood</td>
<td>109</td>
<td>Kanda</td>
<td>95</td>
</tr>
<tr>
<td>Crossware</td>
<td>90</td>
<td>Kestral</td>
<td></td>
</tr>
<tr>
<td>Crownhill Associates</td>
<td>123</td>
<td>Keytronics</td>
<td></td>
</tr>
<tr>
<td>Danmere</td>
<td>151</td>
<td>M B Radio</td>
<td>91</td>
</tr>
<tr>
<td>Dataman</td>
<td>OBC</td>
<td>Microlease</td>
<td>101</td>
</tr>
<tr>
<td>Display</td>
<td>147</td>
<td>Milford</td>
<td></td>
</tr>
<tr>
<td>Farnell</td>
<td>97</td>
<td>Number One</td>
<td>101</td>
</tr>
<tr>
<td>Flight</td>
<td>IFC</td>
<td>Pico</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>158</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>167</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
</tbody>
</table>
Eight year EW index
Hard copy or disk
Includes over 600 circuit idea references
Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past eight years.

The computerised index of Electronics World magazine covers the eight years from 1987 to 1995 — volumes 94 to 101 inclusive — and is available now. It contains almost 2000 references to articles, circuit ideas and applications — including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512k ram and a hard disk.

Even though the disk-based index has been expanded significantly from five years to eight, its price is still only £20 inclusive. Please specify whether you need 51/4in, 3.5in DD or 3.5in HD format. Existing users can obtain an upgrade for £15 by quoting their serial number.

Ordering details
The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders.

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide. For enquiries about photocopies, etc, please send an s/a to SoftCopy Ltd at the address below.

Send your order to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 0NU, tel 01242 241455, or e-mail 100556.112@compuserv.com. Please make cheques payable to SoftCopy Ltd — not EW or Reed Business Publishing. Please allow up to 28 days for delivery.

Hard copy Electronics World index
Indexes on paper for volumes 100 and 101 are available at £2 each, excluding postage.

ELECTRONIC UPDATE
Contact Malcolm Wells on 0181-652 3620

New Flight Electronics International Catalogue Set
You now have access to the world's latest:
- Electronics Training Equipment
- Microprocessor Training Equipment
- Test and Measurement Equipment
- PC Cards
via "Flight's" latest catalogue set.

We are specialists in the provision of innovative top quality electronics trainers, breadboards, test and measurement, PC cards and microprocessor evaluation equipment.

Our extensive range covers every need, call today for your free catalogue set.

NEW Feedback T&M Catalogue
The latest edition of the Feedback Test & Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a complete workstation, or a solution to a particular Test & Measurement need the NEW Feedback catalogue will solve your problems, send for a copy NOW!

NEW CATALOGUE
The new 1996 National Instruments Instrumentation Reference and Catalogue is available now. Discover how to develop integrated systems for test and measurement and industrial automation. Includes details of over 500 software and hardware products for PCs and workstations. Includes valuable tutorials on data acquisition and instrument control.

NATIONAL INSTRUMENTS
Tel: 01635 523545

1995 MASTER PRODUCT CATALOGUE NOW OUT!
ISO 9001 Quality guarantee / LK design and manufacture / 36 month no-queue warranty / Telephone hotline support / Competitive pricing on the page / Intelligent solutions / Friendly service /
BRAIN BOXES
Unit 3F Wavertree Boulevard South
Wavertree Technology Park
Liverpool L7 9PF
Tel: 051 229 2560 Fax: 051 252 8446
### TEST EQUIPMENT

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP11511</td>
<td>2.5GHz system (6625B, 6545G) £1250</td>
</tr>
<tr>
<td>HPE3470A</td>
<td>320MHz system 1 £1250</td>
</tr>
<tr>
<td>HP5332A</td>
<td>35MHz-105MHz (81120A 1468L) £1500</td>
</tr>
<tr>
<td>HP3526A</td>
<td>5kHz-500kHz audio frequency spectrum analyser £750 to £1500</td>
</tr>
<tr>
<td>HP3529A</td>
<td>Audio frequency analyser 5kHz-150kHz £2500</td>
</tr>
<tr>
<td>HP9239A</td>
<td>5MHz-1GHz, with tracking generator £7500</td>
</tr>
<tr>
<td>HP5989A</td>
<td>10MHz-1GHz spectrum analyser £500</td>
</tr>
<tr>
<td>HP5999A</td>
<td>High-performance 1.5GHz spectrum analyser £7500</td>
</tr>
<tr>
<td>MARCONI 2088</td>
<td>100MHz-26.5GHz (in 10Hz steps!) £2000</td>
</tr>
<tr>
<td>TEXTRONICA 4990</td>
<td>18GHz spectrum analyser, GPIB programmable £15000</td>
</tr>
<tr>
<td>TEXTRONICA 49.1</td>
<td>1.2GHz, w tracking gen &amp; marithon 7620A £3500</td>
</tr>
<tr>
<td>TEXTRONICA 2517</td>
<td>Portable waveform recorder £850</td>
</tr>
<tr>
<td>TEXTRONICA 2527</td>
<td>Measuring amplifier £350</td>
</tr>
<tr>
<td>TEXTRONICA 2528</td>
<td>Pre-amplifier £350</td>
</tr>
<tr>
<td>TEXTRONICA 2529</td>
<td>Pre-amplifier £350</td>
</tr>
<tr>
<td>TEKTRONIX P6303</td>
<td>Oscilloscope probes £2500</td>
</tr>
<tr>
<td>TEKTRONIX AA501</td>
<td>SG505 distortion analyser (complete with TM503) £500</td>
</tr>
<tr>
<td>JJ INSTRUMENTS CR600</td>
<td>2-channel pen recorder £1000</td>
</tr>
<tr>
<td>CHASE LFR1000</td>
<td>Interference measuring receiver 9kHz-150kHz £750</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2639</td>
<td>Preamplifier £350</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2308</td>
<td>Analogue X-Y pen recorder £750</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2317</td>
<td>Portable level recorder £750</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2511</td>
<td>Vibration meter (field set with 1621 filter) £750</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2619</td>
<td>Preamplifier complete with 1/2&quot; mic £350</td>
</tr>
<tr>
<td>BRUEL &amp; KJAER 2619</td>
<td>Pre-amplifier £350</td>
</tr>
<tr>
<td>CHASL LEF001</td>
<td>Interference measuring receiver 9kHz-150kHz £350</td>
</tr>
<tr>
<td>DATRON CH1 &amp; CH2 &amp; various, digital multimeter &amp; OXK - call from £300</td>
<td></td>
</tr>
<tr>
<td>EIQCOMPUTER</td>
<td>Personal computer for Hewlett Packard £3500</td>
</tr>
<tr>
<td>JUNIUREMETERS</td>
<td>CR600 2-channel pen recorder £350</td>
</tr>
</tbody>
</table>

### SPECIAL OFFER THIS MONTH ONLY ON HEWLETT PACKARD DIGITAL TRANSMISSION TESTERS, PROTOCOL ANALYSERS

**Examples:**

- **HP37724A SDH/PDH portable test sets**: Condition as new, price £5000 (were listing at ca £20K!) — also 37772A optical interfaces available for STM-1, £1500 (list over 6K).

- **4957PC PROTOCOL ANALYSER CARDS**
  - 4972A LAN PROTOCOL ANALYSER £5000 each (LIST>£2K)

- **J2219A? J2170A, NETWORK ADVISOR 8157A OPTICAL ATTENUATORS**
  - 1200-1650nm £1000 each

- **64000-SERIES MDS:**
  - 64700A, MAINFRAMES WITH:

**SEND FOR COMPLETE LISTING AND QUOTATION**
Compare the Dataman S4 with any other programmer and you'll see why it's the world's undisputed number one. S4 is capable of programming 8 and 16-bit EPROMs, EEPROMs, PEROMs, S and 12V FLASH, BOOT-BLOCK FLASH, PICs, 8751 Microcontrollers and more. S4 also emulates ROM and RAM as standard! S4 is the only truly hand held programmer that ships complete with all emulation leads, organiser-style manual, AC charger, spare library ROM, both DOS and Windows terminal software, and arrives fully charged and ready to go! Who else offers you all this plus a three year guarantee?

Customer support is second to none. The very latest programming library is always available free on the Internet, and on our dedicated bulletin boards. Customers NEVER pay for upgrades or technical support.

Dataman-48
Our new Dataman-48 programmer adds Pinsmart® technology to provide true no-adaptor programming right up to 48-pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

As with S4, you get free software upgrades and technical support for life, so now you don't need to keep paying just to keep programming.

Dataman-48 programmer adds Pinsmart® to provide true no-adaptor programming 48-pin DIL devices. Dataman-48 connects straight to your PC's parallel port and works great with laptops. Coming complete with an integral world standard PSU, you can take this one-stop programming solution anywhere!

The current device library contains over 1500 of the most popular logic and memory devices including GALs, PALs, CEPALs, RAMs, and 16-bit EPROMs, EEPROMs, PEROMs, FLASH, BOOT-BLOCK, BIPOLAR, MACH, FPGAs, PICs and many other Micro-Controllers. We even include a 44-pin universal PLCC adaptor.

If you need to program different packaging styles, we stock adaptors for SOP, TSOP, QFP, SDIP as well as memory emulation pods.

Order your Dataman programming solution today via our credit card hotline and receive it tomorrow. For more detailed information on these and other market leading programming products, call now and request your free copy of our new colour brochure.

The Dataman Challenge
Try the Dataman S4 or Dataman-48 without obligation for 30 days. If you do not agree that these are the most effective, most useful, most versatile additions you can make to your programming toolbox, we will refund your money in full.