DESIGN
Single chip voice recorder

SOFTWARE
Orcad SDT and Spice.age reviewed

SCIENCE
Laser radar probes the atmosphere

AUDIO
Linsley Hood on the evolving audio amplifier
The new logic analysers from THURLBY offer performance far beyond their price; systems start from under £1K!

- 32 or 48 data channels, 8K deep
- 100MHz asynchronous operation
- 5ns glitch capture capability
- Multi-level trigger sequencing
- Non-volatile data and setup memories
- Disassembler options for popular µPs

Through the use of the latest technologies these LAs match or exceed the specifications of instruments costing many thousands of pounds. Yet a complete 32 channel system including combination data pod costs only £997 plus vat.

The special high resolution screen provides soft-key access to a vast array of features including: free-format state listings, powerful search & compare, context-sensitive help, serial interface, printer output, and much more.

Contact Thurlby now for full technical details.

Thurlby-Thandar Ltd, Glebe Road, Huntingdon, Cambs. PE18 7DX
Tel: 32250 Fax: (0480) 450409 Telephone: (0480) 63570 or 412451

CIRCLE NO. 101 ON REPLY CARD
CONTENTS

FEATURES

LIGHT IN THE SKY 1957
High powered lasers are finding use in optical radar to reveal secrets of the upper atmosphere.

ANALOGUE ACTION 1061
Our regular round-up of analogue news and circuit design.

REVIEW – ORCAD SDT 1064
Putting a computer behind the drawing board allows the designer to work faster and with fewer errors.

WHO’S WHO IN RISC 1069
The technical and business desktop computer world is ready to believe in Unix V rather than OS/2. The chip makers are lined up on the starting grid, Unix risers revving.

POLYMERIC SENSOR CABLE 1080
Piezo-electric cable develops a voltage proportional to pressure anywhere along its length opening up a variety of interesting applications.

PARALLEL I/O ON THE IBM PC 1089
We offer a method of providing general purpose parallel TTL interface via the standard parallel printer port.

SOLID STATE VOICE RECORDER 1103
Texas Instruments’ will record useful quantities of speech with or without microprocessor control.

MINIATURE HF AERIAL 1109
Imagine a broadband HF receiving and transmitting aerial small enough to stand on a window sill yet with a performance comparable to a standard dipole.

REVIEW – SCIENCE AGE 1113
As an analogue circuit simulator, the PC based package can be used as a serious design tool. It can also provide a useful teaching aid for an analogue circuit techniques.

SOLID STATE AUDIO POWER 1042
John Linsey Hood traces the evolution of the transistor power amplifiers from 1956 to the present day. His account gives invaluable insight into power amp design.

REGULARS

COMMENT 1035
High tech junkies. Leading US chip boss Jerry Sanders says that the Japanese are behaving like a bunch of crack dealers.

RESEARCH NOTES 1037
Is hydrogen a hot superconductor? Micro motors, 8kV transistors, the biological effect of power lines and a canine byte.

UPDATE 1050
Intel’s latest controller runs 66mips. And other news from around the industry.

PIONEERS 1075
Lee de Forest made “a strange device like an incandescent lamp” although his boss told him that he would “never make a telephone engineer”

BOOK REVIEWS 1077

APPLICATIONS 1078
Power Hall devices, filter design the easy way, power factor problems.

LETTERS 1083
Who goes to university. Wien oscillators, units, scratch ed diodes, cold fusion, and nonsense.

NEW PRODUCTS CLASSIFIED 1095
The monthly round-up of new products at-a-glance.

CIRCUIT IDEAS 1098
Constant EMF motor controller, unipolar to bipolar converter, touch sensitive synthesizer, triangular to sine converter, battery saver and more.

RF CONNECTIONS 1119
The latest development in RF design propagation research and broadcast news. Written by Pat Hawker.

In next month’s issue. Voyager’s astonishing pictures of Neptune and its slushy moon Triton mesmerised scientists the world over. The mission has been a triumph of technology. Research Notes writer John Wilson gives his own account of how it was done. We also look inside modern communications satellites.
National Instruments, the IEEE-488 leader, has the widest selection of hardware interfaces and software technologies.

National Instruments UK Corporation. 21 Kingfisher Court, Hambridge Road, Newbury, Berks RG14 5S
Telephone: 0635 523545 Fax: 0635 523154
High tech junkies

"The Japanese semiconductor manufacturers are behaving like a bunch of crack dealers". Not our words but those of outspoken AMD boss, Jerry Sanders, chairman of a billion dollar US chip company.

He made the analogy in discussing the West's increasing dependence on Japanese commodity semiconductor parts such as d-rams and eproms. He reckons that the Japanese ambition is to hook the West's dominant computer companies by feeding them cheap memory parts, destroy the indigenous chip industries through selective dumping, jack the price on chips from the remaining Japanese sources and thus render US and European equipment producers uncompetitive. The end objective is to kill the West's equipment industries through financial warfare.

Naturally the United States won't allow this to happen. It has already acted in the defence of its commercial equipment makers and the associated semiconductor infrastructure by creating joint ventures such as US Memories and Sematech. The US has always safeguarded the military infrastructure through the long established VHSIC programme. It has yet to use its final defensive weapon, trade regulations along the lines of those employed in the auto industry, but it won't hesitate if the day should come.

The dynamic US reaction to a very real Japanese threat is in complete contrast to the European response.

Essentially, there isn't one.

Good Europeans stumble around muttering "1992 will take care of all that". This is actually code for: "Let's waive the anti-trust laws and allow the euro-multinationals to coalesce however they wish. Bigger is more secure even though the euro-consumer has less choice."

And that's what has happened to our very own Plessey company, a victim of a cosy telecomms and defence duopoly. Siemens and GEC.

One may argue that Siemens has some claim to commodity semiconductor manufacture, it makes chips but, on the world scale, it might as well not bother. GEC didn't. The British company has never looked beyond supporting its lucrative defence and telecomms interests. The threats from Japan never entered the calculations.

Here lies the great danger. The US will fight vigorous battles against the Japanese. The Rising Sun knows this and will elect to tackle the Americans as part of a second front. Japan will content itself initially with subjugation of European equipment makers. The removal of the vibrant Plessey Semiconductor operation into the dead hands of Siemens and GEC will make the process a little easier.

The UK's national position is even worse. Innos has been allowed to pass into Italian ownership and Plessey is being fitted for a straight-jacket. We no longer have an independent semiconductor industry.

Should Sanders' worst predictions come true, the UK's equipment industry will have to turn to the Koreans for salvation. Even if the man has spoken a load of rubbish, the reduction in status of the UK's semiconductor manufacture to a screwdriver operation will do little to foster a technology based electronics industry in this country.

Frank Ogden
From £534*

(We are assuming that you already have an IBM™ or compatible).

Thurlby's DS-PC Link package connects a Thurlby Digital Storage Adaptor to an IBM compatible, creating a flexible digital storage oscilloscope of great sophistication with a performance of instruments costing up to ten times as much!

The DS-PC Link comprises disk-based software and an interface cable to link the DSA and PC. It provides a fast, high resolution colour (or monochrome) waveform display, a full set of DSO facilities and special PC features, including disk-based storage, intelligent cursor control and hard copy output.

Prices exclude VAT

Thurlby Electronics manufactures and distributes a wide range of electronic test equipment. Send now for the full data.

Thurlby
Burrel Road, St. Ives, Huntington, Cambs PE17 4LE
Fax: 0480 64832 Tel: 0480 63570

*Prices exclude VAT

Thurlby Electronics manufactures and distributes a wide range of electronic test equipment. Send now for the full data.
Hydrogen: the hottest superconductor?

My comments in previous issues about the increasingly unpractical nature of some of the new high temperature superconductors seems to have been borne out by some intriguing research at the Carnegie Institution Geophysical Laboratory in Washington DC and at the University of California at Berkeley. This time the material under investigation was not some esoteric rare earth/copper oxide complex but the simplest material of all—hydrogen. Normally of course hydrogen, with each atom consisting of only a single proton and single electron, exists as a non-conducting gas. When cooled to around \(-253^\circ C\) it turns into a clear liquid, excellent for propelling space shuttles but, like its gaseous counterpart, also a good electrical insulator. Even solid hydrogen, formed when the liquid variety is further cooled to \(-259^\circ C\), is non-conducting, though physicists have long speculated that it might become conductive under extreme pressure.

The basis for this prediction is the fact that all other elements with a single electron in the valence orbital are in fact metals and all conduct electricity. So could it be that under certain conditions hydrogen too would exhibit metallic properties? Unfortunately, no-one has been able to squeeze it hard enough. Forget your garage air-line calculators. It is unlikely that nitrogen needs about two million atmospheres before there is a remotest possibility of its turning into a metal.

That sort of pressure—roughly the same as that found in the centre of the Earth—has now become possible thanks to a device called a diamond anvil cell in which the solid hydrogen can be squeezed in a tiny cavity between the faces of two carefully-machined diamonds. Because the diamonds are only 0.5mm across and their cavities even smaller, it is now possible to create the sort of pressures at which hydrogen would become metallic. Better still, because of the transparency of diamond, it should be possible actually to see such a change.

In a paper in *Science* (Vol. 244, page 1462), H.K. Mao and R.J. Henly describe an experiment in which they found tentative evidence of transformation to the metallic state. At between two and three million atmospheres pressure the clear ice-like solid hydrogen gradually became more opaque until it looked increasingly like a metal. This colour change is significant because the opacity of familiar metals is due to an electronic configuration that is also responsible for conduction. As to whether the hydrogen in this experiment actually did become electrically conducting wasn’t verified, and until someone devises some Avo probes that will penetrate diamond and survive a few million atmospheres pressure, it won’t be easy.

Theorists at Berkeley have, nevertheless, gone yet another step further and predicted that if the pressure is increased to about four million atmospheres, then hydrogen will become not just conducting but superconducting. In their latest paper (*Nature* Vol. 340 No 6232) T.W. Barbee III, A. Garcia and M.L. Cohen calculate the atomic structure which they expect hydrogen to adopt at four million atmospheres. They go on to compute that such a structure would superconduct with a transition temperature of \(-40^\circ C\) easily the highest of any known substance.

Verifying this prediction won’t of course be any easier than verifying the metallic properties of hydrogen. Nevertheless the models employed by Barbee et al have already successfully predicted the behaviour of silicon under extremely high pressures, so it’s more than just sophisticated guesswork. As to the practical value of superconducting hydrogen, my initial remarks are undoubtedly fair comment. Nevertheless, hydrogen is a much simpler material than other high temperature superconductors and one that should appeal strongly to theoreticians anxious to unravel the complexities of why materials superconduct at all.

Long-life micro-motors

Tiny electric motors, developed at the University of Utah’s Centre for Engineering Design, could one day be used for grinding cholesterol off the inside of furred-up arteries. The devices, called wobble motors, have a diameter of less than half a millimetre and consist of a hair-like rod inside a casing. The name derives from the fact that the armature wobbles slightly as it rolls around inside the casing; this is said to remove the need for lubrication. The units operate up to 120,000 RPM.

The wobble motor, pictured here by a 10 cent coin, avoids the need for complex components by using electrostatic forces instead of conventional electromagnetic principles. Torque is reported to be high enough to operate tiny saws, knives and other tools. Dr Stephen C. Jacobsen, director of the Centre, says that they’ve already made a successful micro-drill with a 0.05mm diameter bit.

Micro-motors are not new in concept; several US and Japanese researchers have in fact already made them smaller still. What’s special about the Utah devices is that they’re claimed to be the first units to operate for sustained periods without wearing out. As well as the possibility of unblocking diseased arteries, Jacobsen foresees his motors being used in scientific instruments, robots, artificial limbs and virtually anywhere where electricity needs transducing into motion. In addition to motors, he’s also working on microscopic actuators, sensors and other electromechanical components.
MAKING ELECTRONICS C.A.D. AFFORDABLE

TINY-PC
PCB CAD, FOR THE PC/XT/AT

- Are you still using tapes and a light box?
- Have you been putting off buying PCB CAD software?
- Have you access to an IBM PC/XT/AT or clone?
- Would you like to be able to produce PCB layouts up to 17" square?
- With up to 8 track layers and 2 silk screen layers?
- Plus drill template and solder resist?
- With up to eight different track widths anywhere in the range .002 to .531?
- With up to 16 different pad sizes from the same range?
- With pad shapes including round, oval, square, with or without hole and edge connector fingers?
- With up to 1500 IC’s per board, from up to 100 different outlines?
- With auto repeat on tracks or other features - ideal for memory planes?
- That can be used for surface mount components?
- With the ability to locate components and pads on grid or to .002" resolution?
- With an optional auto via facility for multilayer boards?
- With the ability to create and save your own symbols?
- That can be used with either cursor keys or mouse?
- That is as good at circuit diagrams as it is at PCB’s?
- Which outputs to dot matrix printer, pen-plottier or photo-plottier (via bureaux)?
- Where you can learn how to use it in around an hour?

SMITH CHART PROGRAM — Z MATCH

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and BBC B, B+ and Master.

Z-MATCH — Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.

Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES, MICROSTRIP, STRIPLIN, and WAVEGUIDES.

The program takes account of TRANSMISSION LINE LOSS, DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY.

Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES

£130 ex VAT for PC/XT/AT etc.
£65.00 ex VAT for BBC B, B+ and Master

All major credit cards accepted

WRITE OR PHONE FOR FULL DETAILS: REF WW

Number One Systems Ltd

EASY-PC
ANALYSER II

For IBM PC/XT/AT and clones inc. Amstrad 1512, 1640, R.M. NIMBUS, and BBC B, B+, and Master.

"ANALYSER II" — Analyses complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop" Can save days breadboarding and thousands of pounds worth of equipment.

£195 ex VAT for PC/XT/AT etc.
£130 ex VAT for BBC B, B+ and Master

Harding Way, St Ives, Huntingdon Cambi, PE17 4WR
Tel: St Ives (0480) 61778 (4 lines)
We provide full after-sales support with free telephone "hotline help" service.
Software updates are free within 6 months of purchase date.

CIRCLE NO. 164 ON REPLY CARD

1038

ELECTRONICS WORLD + WIRELESS WORLD November 1989
Radar atmosphere probe

At Capel Dewi, five miles from Aberystwyth, is an impressive antenna farm consisting of 64 vertically-orientated Yagis. It's not, as you might imagine, a system for communicating with extra-terrestrial intelligence, but the first phase of a new SERC facility known as the Mesospheric, Stratospheric and Tropospheric Radar (MST).

When the complete system comes into operation later this year there will be a further 336 four-element Yagis, all linked by a complex network of power dividers and variable phasing arrangements designed to swing the beam up to 12° from the vertical.

At present, the existing 64-element array, powered by two of the planned five 25kW transmitters, can probe the atmosphere up to about 16km. Returning echoes are received on a special high-performance computer-controlled receiver which estimates upper atmosphere wind velocities from Doppler shifts. When the complete system is up and running, this data will be available from regions of the atmosphere up to 85km high.

The radar system, which operates at a frequency of 46.5MHz, can detect not just wind speed, but everything from small-scale atmospheric phenomena such as turbulence, right up to weather fronts and the jet stream. All this information is vital for the aviation industry, both for hazard avoidance and for route planning to reduce fuel consumption.

Professor Lance Thomas of the University College of Wales, Aberystwyth and Dr Tony Hall and Dr David Llewellyn-Jones of the Rutherford Appleton Laboratory say (SERC Bulletin Vol. 4 No 2) that the new facility is expected to yield valuable research information, particularly when its results are compared with data from lidar atmospheric probes operated by UCW's physics department. Already the new radar has attracted considerable interest from abroad, notably Japan.

SERC's giant VHF radar array, which will probe the Earth's middle atmosphere. Each Yagi stands 5m high.

Health plug: biological effects of power lines

Of all the tantalizing questions that obstinately refuse to go away, the effect of ELF electric and magnetic fields on health is perhaps the most persistent. It's been debated on and off ever since the 1960s, always with inconclusive results. Pylons, like toxic waste, are highly susceptible to the Nimby ("Not in my back yard") principle, but are highly resistant to any attempts to prove them dangerous.

As previously reported in these pages (February 1988, page 173), one of the biggest epidemiological studies, the New York State Power Lines Project, concluded in July 1989 that the health risk to people living under cables was either small or non-existent. Yet the study did acknowledge the existence of clusters of excess leukaemia cases in a few places only.

Common sense would of course tend to rebut any suggestion that 50 or 60Hz fields carry a health risk. In the first place, the amount of energy entering the body is substantially less than that which flows around naturally in nerve and muscles. In the second place there has been no widespread rise in disease since the introduction of electricity for domestic and industrial purposes. Yet laboratory studies have demonstrated changes in the genetic chemical DNA and in the ways other chemicals flow across cell membranes. Unfortunately such studies haven't always produced consistent results, nor is it easy to extrapolate from cell cultures to people.

Almost as if to keep the proverbial pot boiling, the US Office of Technology Assessment (OTA) has now released a study commissioned from Carnegie-Mellon University showing that if overhead power lines are harmful, then domestic wiring and appliances are infinitely worse. This study (Nair, Morgan and Florig - Biological Effects of Power Frequency Electric and Magnetic Fields - OTA) suggests that home is where most exposure occurs. This is partly because of the proximity of domestic wiring and partly a consequence of the time spent near it. So it seems as if any effects of pylons and overhead cables are probably more a result of their architectural impact than their associated electrical and magnetic fields. But where does the OTA study leave the overall question of ELF fields and health?

As before, there doesn't seem to be much real progress. Overall, says the report, the evidence now available is too weak to allow firm conclusions either way. It does, though, call for further detailed studies into the type of exposure. Could it be, for example, that infrequent exposure to high fields for a short time is more significant than longer-term exposure to lower fields? Only animal tests and more epidemiological studies will tell.

Hedging its bets, the OTA study suggests one practical approach that would be to adopt a "prudent avoidance strategy". Translating into English, I think that means don't sit near cables unless it costs money to sit elsewhere.
Research at Philips

Always a good read is the annual review of Philips Research Laboratories (formerly the Mullard Research Laboratories) in Redhill. The most recent (1988) edition contains among other things a fascinating study into the practical limits of infra-red as a means of data communication between computer peripherals. Did you know, for example, that the worst source of interference is the modern RF-driven fluorescent lamp which radiates modulated IR up to frequencies of several hundred kHz? Philips complains that a hazard to the growth of IR equipment is in fact a lack of international standards controlling the radiation of spurious infra-red.

Another paper in the same Annual Review describes the development of a 3kV bipolar photo-transistor – not as you might imagine a laboratory curiosity but a device that could make easy the stabilization of CRT electrode voltages or the driving of electrostatic loudspeakers. Figure 1 illustrates the structure of the transistor which features a ring emitter for high light sensitivity and several concentric p-doped structures called Kao's rings. These can easily be created using planar techniques and, as well as increasing the photosensitivity of the transistor, also guard against breakdown. Typical devices have BV_{ces} of 3kV and BV_{ces} of 4kV.

One of the first practical uses of these photo-transistors has been in an amplifier designed by Philips Central Research Laboratories at Eindhoven in Holland. Figure 2 shows the essential elements of an all-solid state driver circuit for electrostatic loudspeakers. Using a push-pull configuration with four photo-transistors in each half working as opto-couplers, the amplifier can easily deliver 20 watts output at a voltage swing of 8kV! This performance could have been achieved with fewer devices, but eight are used to guard against unequal voltage distribution. Clearly the days are long gone when you could safely stick your fingers inside solid-state equipment!

Canine byte?

At the time of writing, Britain's controversial experiment with electronic tagging of remand prisoners is somewhat in the doldrums. But in a less sophisticated and less publicized way, a new method is being tested of keeping tags, not on people but on dogs.

Earlier this year the Battersea Dogs Home conducted successful experiments in implanting coded chips under the skin of several dogs in its care. Now, following veterinary tests, the Home is to implant all of the 10 000 to 15 000 stray pooches that pass through its doors each year. The idea is to identify each dog uniquely and so be able to keep a check on its subsequent progress. Although the Dogs' Home is extremely fastidious in selecting good homes for its inmates, it has had no means up till now of telling, for example, whether a dog was on its first or second visit.

The implant devices are cylindrical in shape, just over 1cm long and 2mm in diameter. Manufactured by Animalcare Ltd, they're read off by a scanner that displays a ten-character alphanumeric code. It is claimed that 34×10^6 unique and unalterable codes are available, more than enough to cope with Britain's estimated quarter of a million stray dogs.

Clearly there's a significant lobby among animal lovers who'd like to see this sort of electronic tagging used as an obligatory means of registering and identifying all dogs, as is the case with guard dogs in the Irish Republic. I must admit though, bearing in mind the latest experiments to tag remand prisoners, that such technology might well find a use for species other than canines – both sides of the border.

Research Notes are by John Wilson of the BBC World Service science unit.
Affordable, stand alone, PCB fault-diagnosis equipment.

The most economical way yet to improve the speed and efficiency of PCB servicing and manufacturing defects analysis.

- **24 and 40 pin Variants.** Providing a host of features for rapidly testing digital IC's in circuit.
- **Save and Compare.** Data from a known good PCB can be saved enabling a suspect board to be compared in minutes without circuit documentation.
- **Automatic Circuit Compensation.** An IC is tested in the way it is connected. No need to program each test.
- **SearchMode.** To identify unmarked IC's and give an equivalent for replacement.
- **Manufacturing Defects Analysis.** Rapid access to circuit information to locate production faults.
- **Out of Circuit Testing.** ZIF sockets make the units ideal for goods inward inspection and checking a device's functional before soldering.

Phone for your free data and information pack now!

0226 350145

ABI Electronics Ltd, Mason Way, Pilsley Common Industrial Park, Harrowby, South Yorkshire S74 9TG
Tel 0226 350145 Fax 547999 Ext 347993 RTG Fax 0226 350145

CIRCLE NO. 132 ON REPLY CARD
Valve audio amplifiers generally require an output coupling transformer to match the output impedance to that of the loudspeaker load. If a good performance is sought, this component will be expensive and bulky. The savings in cost and bulk which are possible and the improvement in performance, especially at the extreme ends of the audio spectrum, by avoiding the need for this component have remained one of the major benefits of "solid-state" circuitry.

Early transistor audio amplifiers

Understandably, early designs in this field owed a lot to previous valve amplifier practice, with transformer interstage coupling being used to allow a push-pull output configuration. However, the real break-through in this field came with the introduction, in 1956, of the "quasi-complementary" output stage due to H.C. Lin, of which the basic circuit layout is shown in Fig. 1.

At the time, the most easily obtained transistors were germanium diffused-junction p-n-p devices, although some germanium n-p-n transistors were becoming available in low-power versions. The attractive feature of Lin's design was that the circuit provided a push-pull output without the need for a coupling transformer, and with a pair of output transistors which were both of the same type. In addition, it only required one low-power n-p-n device.

The performance of this circuit was excellent by contemporary transistor audio-amplifier standards, in that it had a 30Hz – 15kHz bandwidth and a full-output-power THD figure of less than 1% at 1kHz, which decreased somewhat with decreasing output power. However, germanium transistors have too high a temperature coefficient of leakage current for them to be suitable for domestic use, where thermal runaway could never be completely ruled out.

Sadly, the relative excellence of the Lin circuit, which was designed around germanium transistors, gave misleading encouragement to other engineers, on a world-wide basis, who translated the design into silicon-transistor-based versions when, during the early 1960s, n-p-n silicon planar power transistors became available.

The inherent snag in this approach is that the base voltage/collector current characteristics of germanium and silicon transistors are different, with that of the silicon device being much more abrupt, as shown in Fig. 2.

Moreover, since the permissible thermal dissipations of the output devices were then fairly limited – by comparison with valves – it was necessary to operate the output stages at a fairly low quiescent current, in class AB, or even (with zero quiescent current) in class B. High (notional) levels of negative feedback were then used to lessen the residual distortion which this incurred.

This design philosophy had the unfortunate effect of maximizing the performance penalties, in that the high levels of NFB inevitably contributed to poor overall loop-stability margins, while, at the "crossover" point, the effective gain of the output devices was low or even zero, so that the NFB was ineffective in reducing the distortion at the very point where it would have been useful.

Also, because of the basic asymmetry of the "quasi-complementary" output stage, as shown in Fig. 3, not only was the residual inherent distortion large, but it tended to increase as the output power level was reduced, as shown in Fig. 4.

This meant that a manufacturer's specification which claimed, for example, "better than 0.05% THD at full output power" might be quite irrelevant to the user, who might have to put up with ten times this amount of distortion at his normal listening levels.

Moreover, the residual distortion, especially at low powers, was rich in dissonant harmonics, which were alien to the normal experience of the human ear.

John Linsley Hood traces the evolution of transistor audio power amplifiers from 1956 to the present day. Designs produced up to 1975, covered in this first part, reached a high standard, but still contained residual design mistakes.
car. In addition, the reduced gain at the point at which the signal waveform crossed the zero axis tended to suppress low-level signal components and give the amplifier a "thin" sound, lacking in "warmth" and "richness".

It was hardly surprising, therefore, that these early silicon-transistor quasi-complementary "high-fidelity" designs won few friends among their users. More regretfully in the long term, this unfortunate and temporary lapse of design standards has led to two break-away movements among the 'hi-fi' community: the "all specifications are meaningless, so only believe your ears" fraternity, and the "back to valves" brigade.

Improved output-stage configurations

There were, in the 1960s, three practicable options for improving the performance of audio-output stages: to use fully complementary output devices, which were just becoming commercially available; to use the output devices in class A; or to modify the quasi-complementary arrangement so that it gave greater symmetry in the two halves.

The first of these approaches was adopted, soon after suitable devices became available, by Locanthi and Bailey. The output stages of a 30W per channel design due to Bailey are shown in Fig. 5.

There are two difficulties inherent in this approach, of which the first is that the p-n-p output devices were, at that time - and to some extent even today -
rather more fragile than their nominal n-p-n equivalents, which prompted Bailey to evolve an effective overload protection circuit, also shown in the diagram.

The second problem is that, because of the different majority carriers in the two transistor forms, p-n-p devices tend to have a lower HF transition frequency than equivalent n-p-n ones. The difference in the transition frequencies of the "complementary" output transistors leads to asymmetry of the output stage at higher audio frequencies, with a consequent worsening of crossover and other distortion characteristics.

At that time my own preference provided that the power requirement was relatively modest, was for the use of class A operation, and a circuit for a 10W power amplifier using this philosophy is shown in Fig. 6. This is not a push-pull system, and is therefore intrinsically free from crossover problems. This particular circuit can be visualized either as a simple transistor gain stage with an active collector load, or as an emitter follower with an active emitter load. A difficulty in the use of this layout is that it has a low overall efficiency and is not easily extended in power without the use of a bridge configuration.

The third approach is exemplified by a neat circuit adaptation due to Shaw, in which an added diode is used to lessen the differences between the upper and lower halves of the output pair, as shown in Fig. 7(a). Because the output transistors can then be of identical type (and F), the worsening of THD with increase in frequency can be lessened.

Baxandall, following an analysis of this problem, suggested an elegant circuit improvement, shown in Fig. 7(b), which almost completely eliminates the dissimilarity between the upper and lower halves of the output stage, and allows a low-distortion design to be made with identical output transistor types.

For a subsequent higher-power amplifier design, I followed in the footsteps of Shaw and Baxandall, with the circuit layout shown in Fig. 7(c), in which I had added a small capacitor to the resistor/diode network to simulate the effect of the output transistor base/emitter capacitance.

An alternative arrangement, introduced commercially by the Acoustical Manufacturing Co. in their Quad 30/3 power amplifier, employed a pair of quasi-complementary triplets, of the type shown in Fig. 8. This generates a
Fig. 7. Shaw's improved quasi-complementary design from 1969, which used a diode to improve symmetry, is seen at (a). At (b), Baxandall's variation further improves symmetry, and (c) shows author's use of small capacitor to simulate effect of base/emitter capacitance.

high internal loop gain within each of the compound output emitter-follower groups, which helps to minimize the asymmetry of the output stage "halves" and the residual crossover distortion which this asymmetry introduces.

Other layouts have been proposed to improve symmetry in such quasi-complementary pairs, such as that due to Visch and Stevens, but contemporary high-quality design appears to be exclusively committed to symmetrical layout employing using complementary transistors, which use either the output transistor configuration shown in Fig. 5 or that of a symmetrical compound emitter follower of the type shown in Fig. 9. This has the advantage that the base/emitter junctions of the output devices, which will get hot, are not included in that part of the circuit which determines their forward bias, which offers better output-stage quiescent current stability.

All of these class AB circuit layouts require that the quiescent current in the output stage remains close to some optimum value if the target performance of the design is to be achieved, in spite of changes in the temperature and age of the components. This has been the subject of considerable circuit development, of which some radical approaches are discussed later.

With an eye on their use as output devices, several manufacturers have introduced low-cost, high-specification, monolithic, Darlington-connected output transistors, having the internal structure shown in Fig. 10. However, because the driver transistor is on the same chip as the output device and is heated by it, the use of such output transistors makes output-stage quiescent-current stability more difficult to achieve.

Direct-coupled layouts
All of the earlier "transformerless" transistor power amplifier layouts were designed to operate between the OV rail and some single positive (or negative) supply line, with a DC blocking capacitor to the loudspeaker, using a layout similar to that shown in Fig. 6. This

Fig. 8. Quad 303 quasi-complementary triplets.
meant that the loudspeaker unit was protected from damage in the event of a semiconductor failure, but involved the use of a large-value coupling capacitor if an extended low-frequency response was sought.

However, designers became increasingly convinced that there were advantages in sound quality to be obtained by the use of the so-called direct-coupled layout, of the type shown in Fig. 11, in which the amplifier operated between a pair of symmetrical (+) supply lines, so that there was no longer a need for the output capacitor. This layout added the problems of LS protection - most easily provided by a simple output fuse - and the stability of the nominally 0V output potential.

Various input circuit layouts have been proposed to ensure that no residual DC appeared at the loudspeaker output terminals, but the simplest and most direct solution to this problem is the use of an input long-tailed pair of the kind shown in Fig. 12.

Provided that the emitter currents of both devices are the same, and that they have similar values of current gain, the output offset will be close to zero if the base circuit resistances for both transistors are the same. A high-impedance tail load is desirable to ensure the integrity of signal transfer between the two input halves.

Gain stage circuit designs

The gain stages between the signal-input point and the output devices are normally operated in class A and are configured to provide as wide a bandwidth, as high a gain and as low a phase shift as practicable.

To simplify loop-stability problems,

Fig. 9. Symmetrical compound emitter-follower. Bias is less temperature-dependent.

Fig. 10. Internal structure of n-p-n Darlington transistor.

Fig. 11. Use of symmetrical supplies avoids need for blocking capacitor.

Fig. 12. Long-tailed-pair input circuit ensures that no DC is present at output.

Fig. 13. Current mirror presents high dynamic-impedance load.

Fig. 14. Current-mirror shifted to second stage, as used in ICs by National Semiconductor and by Hitachi in an audio power amplifier.
The gain block is normally restricted to two stages and, to get as high a gain as possible, the collector load for the second stage has as high a dynamic impedance as practicable. This is often a "bootstrapped" load resistor, as employed in the designs of Figs 5 and 6. However, in more recent circuits, a constant-current source load is normally used, since this gives rather better distortion characteristics, especially at low frequencies, though the possible total output voltage swing may be rather less.

The load for this input stage may just be a single resistor, in the first collector circuit, as shown in Fig. 12. Although following the practice in IC op-amps, it is more common to use a current mirror in this position, as shown in Fig. 13.

An interesting development of this idea is to move the current mirror to the position of load for the second gain stage, as shown schematically in Fig. 14. This is an idea which appears to be due to Nippon Electric Co and is employed in several of its IC op-amp designs, such as the LM0061. This has been adapted, more recently, to an amplifier circuit by Hitachi.12

Loop stability and transient intermodulation distortion

If negative feedback is applied around a circuit enclosing a two-stage gain block as well as an output emitter-follower system, it is probable that the total phase shift within the loop will be 180° at some frequency at which the gain is unity, and the amplifier will oscillate.

It is essential, therefore, to ensure stability by causing the open-loop gain to fall as the frequency approaches the upper (or lower) 180° phase-shift points. With most direct-coupled circuits, the LF loop phase shift will not exceed a safe value; stability problems are therefore confined to the HF end of the pass-band.

It was, and is, customary to achieve HF loop stabilization by imposing a single-pole dominant-lag characteristic on the system by connecting a small capacitor between base and collector of the second gain stage (C2 in Figs. 12, 13 and 14), as shown in Fig. 15. This arrangement gives a better THD performance at high frequencies. However, this approach leads to the problem that it imposes a finite speed of response on the second gain stage while C2 charges or discharges through its associated base and collector circuits.

If a composite signal including a step waveform is then applied to the input device, it is possible for the input stage to be driven into overload because no compensating feedback signal has yet had time to arrive from the subsequent amplifying stages. This can lead to a complete loss of signal during the period in which the second gain stage is paralyzed, and caused Ota11 to apply the term "transient intermodulation distortion" to the perceived acoustic effect.

A simpler description suggested by Jung14 is "slewing-induced distortion" (or slew-rate limiting) and this defect in the amplifier performance is clearly visible on an oscilloscope display, with an appropriate composite input signal, as shown in Fig. 15.

This defect is, however, not an inevitable consequence of dominant-lag compensation, since there are ways of avoiding it.15 Of these the simplest is to introduce an RC low-pass network at the beginning of the amplifier to restrict the rate of change of input signal voltage, as shown in Fig. 16.

A better alternative is to include a composite signal within the bandwidth-limiter system, as used, for example by Bailey1 and as illustrated in Fig. 17. Placing C3 in this position avoids the possibility of input-device overload as a consequence of the sluggishness of response of later stages.

Other snags

A typical amplifier might, therefore, have the kind of circuit shown in Fig. 18 (resistors R1 and R2 avoid "latch-up").
Some temperature compensation for the output transistor forward bias can be obtained from a suitable degree of thermal contact between the output devices and Tr8.

The stray capacitances associated with the collector circuit of Tr7 will impose a maximum slewing rate on a positive-going voltage excursion. The collector current of Tr7 must therefore be adequate to keep this slewing rate sufficiently high. With this point in mind, several designers, such as Bongiorno10,11 and Borhely12, have offered fully symmetrical amplifier circuits of the form shown in Fig. 19, so that the maximum practicable rate of change of signal voltage at the gain-stage output is not limited by the final driver-stage constant-current source load.

However, it is more difficult to maintain a stable value of output-stage quiescent current with this type of circuit layout, and this has discouraged its more widespread adoption.

Fig. 19. Driver stage by Bongiorno, which does not suffer from limitation of Fig. 18 circuit.

References
The Oryx Skylab is a revolutionary new concept in electronic temperature controlled soldering stations. A dazzling combination of modern styling and innovative design.

Special features include a roller control for precision setting of the digital readout and a press-to-set switch which returns to iron temperature on release.

Element failures are a thing of the past, thanks to a combined tip/element which may be replaced, quickly and easily, for the same cost as a conventional iron plated tip. 15, 30 and 45 watt elements are available with tip sizes from 0.8 to 4.8mm.

Alternative versions of Skylab offer a calibrated roller control in place of the digital readout and a power supply unit only to feed Oryx low voltage irons.

All just part of a dynamic range of products from the soldering specialists. Full details on request.

GREENWOOD ELECTRONICS
Portman Road, Reading, Berks. RG3 1ME Tel. Reading (0734) 595843
Telex: 848659 Fax: (0734) 505524
Intel's latest 32-bit micro will execute an average of two instructions for every cycle of its 33MHz, an integer performance of 66mips.

The 80960-CA is aimed squarely at the embedded control market, although the device architecture strongly resembles a risc-based general purpose microprocessor. However, unlike the 860 device launched earlier in the year, there are no floating-point architectural features. To compensate, it can execute up to three non-conflicting integer instructions simultaneously. This makes it particularly suited to real-time task handling. It can achieve a complete context-switch on interrupt in less than 800ns.

The new device maintains complete software compatibility with the 16MHz 960-KA version announced last year. However, because the CA version runs at twice the speed and can execute many of its instructions in parallel, Intel says that the new processor can run applications some five times faster without any code changes in the software.

The device incorporates separate 1K caches for data and program loopsing while register scoreboarding permits parallel instruction execution.

Memory handling is of particular interest. The CPU can be programmed to recognize up to 16 key memory segments in the address space. Each can be made to associate the number of wait states required for access and data transfer. Even the bus protocol can automatically adapt itself to the type of memory attached to the sector. This allows widely differing types of memory to be attached directly to the main processor without extra hardware.

The other big player in the 32-bit embedded control market, Hitachi, has opted for cisc type architecture by offering enormous numbers of general-purpose registers as an alternative to cached parallel operation. Hitachi says that the H16 series, which can include familiar items such as I/O peripherals, counters/timers and A-to-D on chip, is optimized for control applications written in high-level languages.

Intel has an optimizing C compiler available for the 960 series. The 960-CA fits Intel's view of the up-market microprocessor business in that applications divide into three specific areas: micro engined minicomputers (860) general business machines (the dos-based 486 chips) and real-time embedded control (960). Although the instruction sets are incompatible between devices, each has been optimized for its area of service. Furthermore, the Intel CHMOS 1µm process used across the board is generally considered to bestow excellent performance.

The company says that around half the 32-bit embedded processor market goes into disk drive products, the rest going into laser printers, communications and military usage. It expects 32-bit volumes to increase from 1.5 million units currently to 21M by 1993.

Upwards but onwards?

Technicians inspect Marcopolo I, the satellite carrying BSB's television transmitter before its successful launch at the end of last August. This has been the only fruitful aspect of the BSB venture to date. The company looks as though it will have to ditch plans to offer its subscribers a flat plate aerial system for use with the satellite. More seriously ITT Semiconductors, supplier of the mac decoder chipset needed for BSB, have yet to deliver devices in any quantity to the set manufacturers.
Low-Cost Star-Quality Autorerouter

From JAV Electronics - PROTEL TRAXSTAR, a grid-based, cost-effective autorerouter with full rip-up and re-route capability. A low cost, powerful option to the established Protel Autotrax, it works on any PC-XT/AT or PS2 or 386 or compatible MS DOS 640K hardware with support for Hercules, CGA, EGA, VGA, Monitors and MS Mouse. With fast operation, high productivity and quality output, Protel's technical support, Traxstar incorporates a user-definable cost structure allowing separate cost structuring for routes, rip-up and smoothing passes. Contact me for full technical information. Reader enquiry no. 118

NEW GENERATION DATA LOGGING

A new hand-held intelligent Data Logger form Rustrak Recorders, the Rustrak Ranger, has 8 storage channels for a wide range of sensors, AC/DC, or digital (pulse) signal combinations, plus 4 channels for programmable mathematical functions using values derived from signal input. Measurement of Real Power for mains monitoring is now made possible and rates such as wind speed, flow etc can be calculated for scientific/environmental data collection. Other features include interchangeable data packs with automatic memory writing allowing data collection to be prolonged indefinitely. Full spec. from me. Reader enquiry no. 119

High Stability at Low Cost

Where time and temperature stability combined with low component cost contribution to the final equipment are rated paramount, VISHAY-MANN have designed a new range of Small Precision Wirewound Resistors for industrial and commercial applications. Designated AX100, AX150, AX205 and AX210, with electrical properties of TCRs 10PPM°C to 3PPM°C, stability of 0.005% per year, accuracy range from 0.1% to 0.5% and a tolerance of ±0.8% to ±1.3% the m.s.f. of 8mm x 4mm for AX100 to 12.7mm x 6.5mm for AX210. For further details of these high precision, low cost resistors contact me. Reader enquiry no. 120

MAN/MACHINE Compatibility

Available now from Perdix Components, the DENSPITRON TOUCH TERMINAL is a uniquely flexible and intelligent solution to the interface between man and machine. The D.T.T. contains an infra-red touch sensitive A.C. plasma display onto which may be configured 130 different keyboard layouts. It also features a 286 processor (128K bytes) of user RAM together with 82786 graphic display processor. Communication to the host is via a RS232 or RS485 serial port and a standard keyboard can be connected to the terminal. I can let you have full details. Reader enquiry no. 121

Toroids - A Practical Proposition

ALMAG have taken the long recognised theoretical advantages of the toroid and have made them a practical proposition. Their Toroidal Output Inductors have now been expanded to no less than 146 types in close steps from 0.3 to 14 amps and in two ranges. WS Commercial Range has 20-70kH±z, switching frequencies and low cost. WH High Performance Range gives higher inductance, switching frequencies to 100kH±z with lower core losses. A 1286 processor (128K bytes) diameter (21mm), lower currents (0.3amps), low flux-leakage, soft saturation and -2:1 inductance swing are common to both. Full specifications from me. Reader enquiry no. 122

Self Latching Electrical Connectors

By using a unique automatic locking system, the range of Coaxial, Triaxial and Multiway Swiss Precision Push-Pull Connectors from W.W.FISCHER Ltd provide positive and precise coupling. The patented metallic semicircular polarization system also eliminates all probability of connector damage. Hermetically sealed and tested to 105 Torr, pressure to 8 atmospheres, I.P.68 rated connectors are available ex-stock. High voltage up to 55 KV AC. Also the range available in stainless steel. Other series include TV Triaxial/Video, Plastic Multiway and Nin Camac. Details of the full range from me. Reader enquiry no. 123

Problem Solver...

...a computer card form Triangle Digital Services intended for building up your products. Invaluable software for the application into PROM the TDS9900 Contol Computer starts to run as soon as power is applied. Attach 64 keyboard, LCD and 1C bus peripherals. There are on card EPROM, 2 serial ports, 35 parallel input-outputs. 32 IOPPM/°C; 16K RAM/PROM, 256 bytes EEPROM. Forth and smaller size - 100mm x72mm. But there is much more to TDS9900 than that, so ask me for the whole story. Reader enquiry no. 124

High Light - Low Power

To achieve high light emission from low input. Selectronic's Low CURRENT LED DISPLAYS utilise GaAs LED chips on transparent GaP substrate. Character heights 0.3 - 0.8 with consistent illumination between displays, categorised for intensity, pin configuration is standard LED. 7 segment and universal -1, typical consumption is 3MW/SEG at 2MA drive. Depending on display size viewing from 2-7 metres with excellent character appearance. Making it particularly suitable for instrumentation, P.O.S. and meters. PCB or socket mounting. IC compatible. TL1, 300UCD/SEG at 2MA. Full information from me. Reader enquiry no. 125

Flexible Connectors for PCB Headers

All requirements for direct/indirect insertable flexible connection to PCB headers are met by Assmann Electronics' MULTIFLEX Insulation Displacement Connectors. The flat cable system uses UL94 approved moulding material to 224 standards and contact is made by displacing the insulation with Beryllium Copper Forked Contacts onto the conductor, giving a gas-tight joint. Mostly ex-stock, UK made and competitively priced. Other Assmann specialties: sockets, header latched and low profile, transition plugs, dip plugs with/without strain relief and cable harness. Ask me for full details. Reader enquiry no. 126

Innovative Surface Mount Products.

Distributed Micro Technology have unique solutions to current connector and PLCC socket problems with (A) MICROMODUL Surface Mount Connectors which integrate with conventional through hole or card edge connectors. 4-20 poles. 1.27mm centre distance and custom made complete assemblies are offered. (B) a surface mount low profile version of conventional PLCC sockets. Visible internal solder tails give access for repair/inspection etc., centre pad vacuum placement, mounting pattern as mating chip, 20, 28, 32, 44, 52, 68, 84 positions. More from me. Reader enquiry no. 127

Fibre Optic Terminations

OPTALL Fibre Optic Connectors from Radiull Microwave Components offer complete and rapid termination systems coupled with ease of assembly; the f-SMA FAST 905 906 Series, using crimp and cleave techniques, allows assembly in about 1' 30". The range is wide, running into 9 basic types and many sub-versions including High Performance 'Optablax' System. The F709 Series is ST compatible and the MP Series is designed for polarization maintaining fibre. Comprehensive termination tooling kits are available and most items are ex-stock or via distribution. Detailed literature available from me. Reader enquiry no. 128

Retaining the Right Contacts

Eliminating the need for batteries to be soldered directly to the PCB. The principle benefit of the SPEARETTE Battery Holder is good, highly reliable contact together with high retention force under the most arduous conditions. Moulded in high strength acetal resin for A/A, AA, 1/2AA AND 2/3AA type batteries, the holder is soldered directly into the board and additional retention can be obtained by using hollow rivets or screws. Suggested as typical applications are computer back-up memory, communications equipment and the like. Ask me for full details. Reader enquiry no. 129
UPDATE

Apollo workstation is cheapest yet

A Unix-based workstation at a price comparable with a top-of the range PC: that's the appeal of the new Apollo DN2500 series. The new machine combines a 68030 processor, a 25MHz floating-point processor and integrated networking to make a workstation suitable for applications in CAD, computer-integrated manufacturing and desk-top publishing. Both types of Unix will run on the 2500, which can be linked both to further Apollo workstations and to systems from other manufacturers via industry standard links. Peripherals can be connected via a built-in SCSI bus. The machine can run without its own disks on a network, or with up to 1.2Gbyte of mass storage with one expansion. Its relatively low price, £3400, is made possible by the use of a single mother-board with multiple asics. Over 2000 applications are available to users of the Apollo family, which extends from the new 3.5Mips machine to a 100Mips-plus personal supercomputer, Apollo Computer, which since May 1989 has been a subsidiary of Hewlett Packard, is at Bramley Road, Bletchley, Milton Keynes MK1 1PT, tel. 0908-366188.

High-voltage thermopile

Researchers at Cardiff University have invented a semiconductor process which can integrate a large number of thermocouples on to a single chip delivering 2.5V.

Conventional thermopiles of the sort which powered the Voyager spacecraft use numbers of discrete semiconductor thermocouples to develop relatively low voltages. High voltage thermopiles depend on brittle wire-like structures. The Cardiff researchers have developed a technique using ion implantation allied to other conventional semiconductor fabrication techniques. Each chip measures 0.5cm×0.5cm and delivers 2μW of power.

Playing the Unix game

What are the chances of the average PC user forsaking MS-DOS and becoming a Unix fan?

Not much you might say, or might have said until now, for things are changing fast. Atari is just one of a number of companies offering the enticing prospect of high resolution (OK, relatively high resolution) graphics workstations for under £2000.

Best known in this country as the maker of the games-orientated ST range, Atari has other reputations elsewhere. In West Germany, for example, the ST is better known and respected as a business rather than a games machine. The company's own exhibition there in August was nearly as big as a mainstream PC exhibition here.

It was at this show that Atari launched its new TT Unix box. Based on the Motorola 68030 processor, with 2Mbytes of memory and a 60Mbyte hard disk, it features graphics that are claimed to be about the same quality as VGA on a PC.

The price is the thing which will attract many. This is expected to be around £1900 when it appears here. Keen types can lash out DM5700 in Germany from October.

Atari is not alone in looking at this market. Several Japanese companies are also announcing low-cost Unix systems. Takaoa will have a non-colour graphics machine out for around £1600 soon, though I don't suppose the UK will be the earliest market served.

UK games players will also be interested in the other major announcement from Atari, the upgraded STE. The two main enhancements are an upgraded 512 colours displayed, from a palette of 4096, and stereo sound production to a claimed CD quality. Together with a maximum of 4Mbytes of memory (is this a games machine?) it provides a dramatic enhancement to graphics presentations.

Reworked Amstrad?

It will be interesting to see if the low prices of the new Unix boxes affects the future of low cost box importer Amstrad. In the short term, the company is trying to get over its hardware problems (see last month) with the expected launch of new 286 and 386-based machines.

These should be more than simple reworking of the 2286 and 2386 machines which had the disk problems. As is the way with numbering systems, the new machines will be known as the 1286 and 1386. Amstrad is also said to have a new PC-compatible system in the style of the dear old PCW on the stocks.

Talking of disk drives, Apple has gone along with market pressure at last and made a 1.44Mbyte floppy standard equipment in the Macintosh SE. Existing users can upgrade their machines for the sum of £425 for all the necessary bits. The move will allow Mac users to read from or write to double density MS-DOS or OS/2 disks as well.

Martin Banks
8051 Project....?

From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professional implementations.

Off-the-shelf hardware includes numerous DACs, ADCs, bus-drivers and decoders, and many other forms of analogue and digital I/O cards, together with power supplies, backplanes, card cages and equipment cases.

Software development couldn't be easier. Our '034 card's text editor enables software development for the 8051/2 in either assembler or MCS-52 BASIC. Programs are simply blown into EPROM or EEPROM on the card itself. When writing in assembler, both source and/or assembled code may be saved in this way.

Cavendish Automation Limited
Oak Park, Barford Road
St. Neots, Huntingdon, Cambs PE19 25J
Telephone 0480-219457
Fax 0480-215300
Telex 32681 CAVCOMG

USE PC COMPILERS FOR AN SBC

For really fast development of stand alone systems, use a Lancer or Hunter target board with Hexatron's PromDOS. This emulates DOS and BIOS calls, gives you silicon discs and even allows you to run non-ROMable compiled code in a ROM environment. Too good to be true? Call us now for a free demonstration. STOP PRESS: We now have a four port multi-standard serial expansion card for the Lancer and Hunter – ring us for details.

THE SDS LANCER

An 8088/V20 target board on a double Eurocard with two serial ports, four parallel ports, six counter-timers, four 32 pin memory sockets, battery backup, RTC, watchdog timer, optional 8087, optional mains PSU and case.

THE SDS HUNTER

An 80188 target board with 256k bytes EPROM, 256k bytes battery backed RAM, 256k bytes D-RAM, two serial ports, three counter-timers, RTC, watchdog timer, optional mains power supply and case.

Sherwood Data Systems Ltd
Unit 6, York Way, Cresssex Estate, High Wycombe. Tel: 0494 464264
New offshore regulations after Piper

The Department of Energy proposes new regulations for communication systems, following the Piper Alpha disaster.

DEn want VHF radios to be fitted as standard to survival craft. At the moment there is a choice between two way 2182 kHz or VHF channel 16, totally waterproof radios, but DEn feel that marine VHF radios are likely to prove more effective in an emergency.

In the future, portable VHF radios, or other devices not dependent on vulnerable power supplies, are to back-up the fixed platform public address (PA) system for emergency purposes.

PA systems are to be supported by visual indication of platform status. DEn feels that safety would be enhanced if there were greater standardisation of alarm signals between different installations.

Lord Cullen's inquiry heard that, during the Piper disaster, there were no alarms or emergency announcements giving instructions to personnel on the installation. Survivors used their own initiative.

Gigabit optical chips

IBM researchers have demonstrated a pair of optical data transfer chips which can exchange data at 10^9 bit/s. The receiver, like the multiple laser transmitter chip, has its output fibres directly coupled to the chip surface. IBM has integrated more than 8000 transistors in the receiver, a 50-fold increase on existing opto-electronic parts. Both devices use GaAs as the substrate material.

The picture shows a portion of the receiver chip. The four large ovals are optical fibres sliced at an angle which allows the light signals to be aimed at the photo-detectors directly beneath them. The detector amplifiers occupy the space in front of the fibres.

ID by neural network

This work on face recognition is an extension of work already done on handwriting recognition.

The spotty area on the screen represents the link between the 'bottom' layer of 128-by-128 neurons and the next layer. It shows the weighting between the bottom neuron layer (input) and the hidden middle layer.

Sponsorship for the neural network aspect of the work is provided by Plessey. Martin Emerson of Southampton University has managed to get his system to recognize that the two images seen here are different.

Integrated engineering degrees

The go-ahead has been given for six pilot schemes for a new integrated engineering degree programme in a joint initiative by the Engineering Council and the DTI.

The new courses are designed to emphasise the interdisciplinary nature of engineering; to make the career more accessible and to allow for wider choice in eventual job opportunities. Contracting universities include Durham, Southampton, Portsmouth Poly, Nottingham and Sheffield.

Big bi-cmos

A 1 Mbit static ram made with bi-cmos process has become a commercial reality says its creator, Toshiba. The result, it says, is a chip which can access any location in 8ns.

The combination of bipolar and cmos technology within big static rams has proved elusive until now. The complexity of the processing has always been associated with poor yields. Toshiba appears to have cracked the problem with a combination of 0.8µm geometry, very low bit line swings and a new but unspecified ECL cmos level converter.

Mixed upasic projection

The mixed analogue/digital asic market in Europe had an estimated value of $361 million in 1988 and is expected to grow at a compound rate of 35 per cent reaching $1600 million in 1993 according to figures contained in the latest Dataquest survey.

It states that West Germany is considered to have the largest market followed by the UK and Ireland. The UK and France lead West Germany in digital asic by contrast.

Lowest noise op-amp

Texas Instruments claims to make the world's quietest op-amp. The TL C2201, intended for amplifying high impedance sensors and transducers, exhibits a noise current of 0.6fA/Hz with an associated noise voltage of 8nV/V/Hz.
Put our test set to the test. Can you find anything it can’t test?

Stabilock 4031: Portable Communication Test Set
In the time it takes to read this, the Stabilock 4031 could test any of the devices pictured above – with one minor exception. Quite a performance given the dramatic evolution in radiocommunications techniques and standards. To meet the challenge, we packed more than 25 years of experience into a single, highly versatile unit. You won’t need an operating manual to use it. Time-saving features include automatic measurement functions and brilliant graphics, with both numeric display and simulated analogue meters. The Stabilock 4031 comes with all test devices integrated, while its modular design and flexible software system can adapt to all testing demands, both present and future. The exceptions are hardly worth mentioning.

Born to set tomorrow’s standards in measurement reliability.

Schlumberger Instruments

CIRCLE NO. 130 ON REPLY CARD
Panasonic VP-5610P
— the little 'scope that goes a long way

Mobility: Measures about 71/2" x 4" x 14" and weighs in at only 11 lb. Operates from line voltages in range 90 to 250V a.c. without switching. Optional d.c. operation from 11 to 28V.

Autoranging: Eliminates need for resetting sweep range and sensitivity for each measurement. Quick and easy to use in the field.

Digital display: Main parameters displayed on CRT.

The VP-5610P gives you many of the most valued features of a bench 'scope. With three independent channels and six traces, microprocessor control, digital readout, a.c. or d.c. operation and optional GP-IB interface it goes a long way to meeting your most exciting lab needs and is perfect for trouble shooting out in the field. It handles dual X-Y operations and offers solid state switching that's virtually impervious to moisture and contact noise. It's competitively priced too.

Just how many features can you pack into a 100MHz scope of this size? To help you find out we would be happy to send you a six page colour leaflet or arrange a demonstration without obligation.

...from
Farnell International

ENTER 30 ON REPLY CARD
A pencil beam of green laser light shoots skyward from an open hatch in the roof of a research building. It races through the troposphere, five, ten miles. The beam slips past piled cumulonimbus storm clouds and surges upwards into the stratosphere. Fifteen, twenty miles through the bone chilling thin air. Thirty, forty, fifty miles. The beam grows fainter but continues its upwards flight, punching through levels of the Earth's atmosphere like a bullet slicing through the layers of an onion.

As the light beam courses through the atmosphere, some of the photons bounce off air molecules, water vapour, and specks of dust. Plunging back to Earth, these photons are collected and analysed, for now they hold important clues about the composition and behaviour of Earth's upper atmosphere.

The laser beam is part of a light detection and ranging (lidar) experiment being conducted at the Georgia Institute of Technology in Atlanta, Georgia. Like radar, lidars operate by emitting a signal and recording the resulting backscatter. Unlike radar, lidars use an intense pulse of laser light instead of radio waves.

Much more economical and reliable than sounding rockets or weather balloons - the traditional tools for studying the atmosphere - lidars can measure wind velocities, detect tenuous dust layers, determine cloud characteristics, and collect the climatological data necessary for generating more accurate weather forecasts.

Portable lidar
When lidars were first pointed at the sky back in the early 1960s, Georgia Tech researcher Gerry Grams was a graduate student at the Massachusetts Institute of Technology in Cambridge, Massachusetts. Recognizing the vast po-
The powerful lasers used in lidar can blind instantly at many miles. Extraordinary precautions have to be taken to ensure that nothing gets into the beam.

EYE SAFE LASERS

In the hands of a skilled ophthalmologist, low-power lasers can repair damaged vision, but the powerful lasers commonly employed in lidars can blind—up to many miles away. Scientists and technicians working near the laser must wear safety glasses, for slivers of the beam might scatter off the optics and ricochet dangerously about the room.

For lidars, this means that extraordinary precautions must be taken to keep people out of the laser beam. The main danger is to pilots and passengers on aircraft. Most lidars incorporate bore-sighted radars as well as rooftop spotters, who constantly scan the sky and shut the system down when an approaching aircraft is sighted.

But in many circumstances, such as lidar is impractical: the military test environment with aircraft and personnel at close range, constantly moving about or an autonomous lidar, continuously monitoring cloud ceiling at an airport. Lidar requires a guarantee that nothing will ever enter the beam. Either that or the development of an eye-safe lidar with good sensitivity.

To be eye-safe, a lidar must avoid wavelengths where the lens of the human eye can focus light onto the retina, for it is this concentration of the light which causes damage. This means going to either shorter wavelengths (ultraviolet) or longer (infrared).

Georgia Tech researchers Ed Patterson and colleagues Gary Gimmestad and Dave Roberts have been developing such a system.

At the heart of the team's recently completed prototype is a methane-filled gas cell. Through an effect known as stimulated Raman scattering, the laser output is shifted to a longer wavelength. Photons in the laser beam bounce off the methane molecules, losing a small amount of their energy. The laser beam remains lower frequency and therefore a longer wavelength.

The methane cell shifts the basic neodymium-YAG laser (whose output at 1.06 μm would be extremely dangerous to the eye) to 1.54 μm—totally eye-safe. "Other gases with different 'Raman Scattering' effects could be used to make the laser safe," says Patterson, "but the beam must also fall within one of the atmosphere's transparent 'windows' or it would be useless absorbed. Methane meets both criteria."

It is a fortunate coincidence that 1.54 μm also turns out to be the wavelength of choice for transmitting over long distances using fibre optics. The special optics and detector Tech's system required were conveniently found within industry. This novel lidar has been field-tested and proven eye-safe. "You could stare directly into the beam and not hurt your eyes," says Patterson.
"The system is very easy to set up and use," says Grams. "In a truck-mounted configuration, the lidar can be operational within an hour or two of arrival at a remote observing site."

Mysterious arctic haze layer

Grams recently modified the portable lidar system for operation in an aircraft. He and his colleagues will use the instrument to investigate the height and concentration of a mysterious arctic haze layer that forms each year during the arctic spring.

Not only is the composition of the layer currently unknown, its origin also remains a mystery: the individual dust particles may have drifted for thousands of miles before becoming trapped in the arctic sky. To learn more, the US National Oceanographic and Atmospheric Administration (NOAA) initiated the Arctic Gas and Aerosol Sampling Program. Participating scientists will explore the height, thickness, and chemical composition of the mysterious layer.

The group expects lidar to detect the exact location of the haze layer, which is not discernible with the naked eye. The system can look up or down to identify the middle of the dust layer and inform the pilot where best to fly. Other onboard instrumentation, including gas and particle samplers, will then be used to identify chemically the material forming the layer and determine its concentration and other physical characteristics.

Monitoring subvisual cirrus

Used on the ground, the portable lidar can monitor the presence of subvisual cirrus. Invisible to the eye, these clouds trap infrared radiation, making a significant contribution to the greenhouse effect with its attendant effect on the Earth's climate.

"Some researchers believe there may be enough subvisual cirrus floating around that the long-term radiation balance of the Earth cannot be properly calculated," says Grams. "We need to determine the extent of these clouds on a global scale, and what cumulative effect they have on the earth's radiation balance."

Subvisual cirrus can also seriously affect the performance of infrared sensors used to detect approaching missiles or hostile aircraft. "Although the clouds usually form a layer only a few hundred feet thick, they often extend laterally for many miles. These clouds absorb infrared radiation so effectively in the horizontal direction, a pilot relying on his sensors might not detect a threat until it is too late. And because the clouds are invisible from above or below, a pilot never knows when he might be approaching such a layer," says Gerry Grams.

To generate necessary guidelines for pilots, models must be developed that accurately predict the conditions in which troublesome clouds form. Lidar systems could prove valuable in exploring these and other important models.

For example, last summer while Grams and graduate student Eric Schmidt were taking measurements of subvisual cirrus over Wright Patterson Air Force Base in Dayton, Ohio, Yellowstone National Park was a raging inferno. Trace after trace of the researchers' data showed not only the sought-after clouds, but also distinct layers of high-altitude smoke drifting from the distant fires.

They expect the wealth of smoke data to test and validate existing models concerning the long-range transport of particles. In addition to the obvious climatological applications, such models are also used to predict how fallout from nuclear tests or accidents may be dispersed around the globe. The importance of such models is self-evident.

Improved weather forecasting

Meteorologists can predict the weather for up to five days with reasonable accuracy. To generate long-range forecasts, however, much more data on global wind profiles is needed. "Because much of the Earth's surface is covered by oceans, such data is not always available," says Ed Patterson, a senior research scientist at Georgia Tech. "Except for a few islands and scattered ships, we receive very little input on the direction or force of winds blowing over the oceans."

To fill this gap, the US National Aeronautics and Space Administration (NASA) envisages the placing of a powerful Doppler lidar in orbit by the mid 1990s. Called the Laser Atmospheric Wind Sounder (LAWS), the satellite will probe Earth's atmosphere, measuring global wind profiles from the ground up. While technology exists to build and orbit the sounder, certain criteria still need to be established.

"Like ground-based lidars, LAWS will operate by measuring aerosol backscatter," says Patterson. "Since much of the LAWS data will be taken over remote regions that are generally free of smog and other aerosols, there is some concern over how much backscatter the instrument is likely to see."

Given information on existing lidar capabilities and anticipated levels of backscatter, NASA will determine appropriate LAWS design parameters. More accurate long-range weather forecasts may be a satellite-launch away.

Lidars generally appear to be faster, cheaper, and more dependable than sounding rockets or weather balloons.
CONQUERING NEW HEIGHTS

Yes its 25MHz for £299

CROTECH 3133

Component Comparator
Variable Hold Off
Triple DC Source
DC – 25 MHz
40ns/div
2mV/div
Low Cost

£299

To scale the heights, just call us for your FREE copy of our catalogue

*(Ex VAT & Delivery)

Crotech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818

CIRCLE NO. 135 ON REPLY CARD

COMMERCIAL QUALITY SCANNING RECEIVER

The IC-7000, advanced technology, continuous coverage communications receiver has 99 programmable memories covering aircraft, marine, FM broadcast amateur, radio, television and weather satellite bands. For simplified operation and quick tuning the IC-7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM-wide, FM-narrow, AM, upper and lower SSB modes with 6 tuning speeds: 0.1, 1, 5, 10, 12.5 and 25kHz. A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto-M switch the IC-7000 automatically memorises frequencies that are in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. Readout is clearly shown on a dual-colour fluorescent display. Options include the RC-12 infra-red remote controller, voice synthesizer and HP-1 headphones.

ICOM (UK) Ltd. Tel: 0227 363859. Telex: 965179 ICOM G
N.B. Authorised Welsh distribution by:
M.R.S. Communications Ltd, Cardiff. Tel: 0222 224167.

Please send information on Icom products & my nearest Icom dealer.

Name/address/postcode: ...

CIRCLE NO. 112 ON REPLY CARD

R.T.T. Systems Ltd., Enterprise House, Central Way, North Feltham Trading Estate, Feltham, Middlesex TW14 0RX
Tel: 01-844 1811

R.T.T. RADIO TELEPHONY TEST SYSTEMS

CIRCLE NO. 118 ON REPLY CARD

1060

ELECTRONIC'S WORLD + WIRELESS WORLD November 1989
Better devices for power rail monitoring

With increasing interaction between microcomputers and analogue systems, the power supplies of both must be monitored to prevent the possibility of erroneous data being processed by the microcomputer.

About five years ago, Texas Instruments introduced two devices to monitor the standard digital and analogue voltage rails. These were the TL7705A, a digital 5V monitor, and the TL7702A positive and negative analogue rail monitor. They soon became virtually standard parts in the hardware designer's tool-kit to monitor power supply integrity and act to protect the microprocessor or computer and memory if power supply problems were detected.

The TL7705A has a preset threshold on the sense input, enabling it to monitor 5V supplies directly and provide voltage power-up and drop-out system resets for a microprocessor or computer. The TL7702A is able to sense either the positive or negative analogue rails, but two are required together with a TL7705A to provide full power supply monitoring for a mixed microcomputer and analogue system.

Many of today's developments in electronics involve creating a single device to do the job previously done by two or more. In keeping with this trend, Texas Instruments has recently introduced a new device, the TL7770-05, which does all that can be done with one TL7705A and two TL7702A. In addition it provides dual over-voltage sensing and dual SCR gate drives for crowbar protection. Furthermore, the chip's defined state of operations begins at just 1V, and so it can provide an early system reset signal during power-up.

Fig. 1. Multiple power rail monitor based on Texas Instruments' TL7770-05.

Big is essential

Plant costs for semiconductor manufacturers are becoming increasingly more expensive as the technology advances, with typical replacement cost estimates being in the region of £100M. To remain competitive, major semiconductor manufacturers must renew their process plant approximately every five years to keep up with technological developments. Rather like the changes we saw in the motor industry some ten years ago, it seems that with such high capital costs, only companies with sufficiently high business turnover will survive; that is, big appears to be essential.

One recent example of the consolidation that is going on in the semiconductor industry is the expansion of Harris Semiconductor, one of four major sectors within the Harris Corporation, through the acquisition of GE Semiconductor, RCA Solid State and Intersil. The new, much bigger, Harris Semiconductor claims to unite and strengthen four broad-based semiconductor suppliers and intends to market products under the brand names of Harris, RCA, GE and Intersil. The company also claims to be the sixth largest US manufacturer of semiconductors, with one of the broadest and most varied product lines.

Current-sensing transistors

Among the stable of products now under the umbrella of Harris Semiconductor are the relatively new current-sensing insulated-gate power BJTs (IGBTs) developed by GE Semiconductor. The device is essentially a mos-fet power-switching device combining the best features of power mosfets and power BJTs, with integral current-sensing.

It displays the extremely high input impedance typical of a mosfet, with low on-state conduction losses typical of a bipolar junction transistor. In performance, the device appears to be like a power mosfet, except for the on-resistance, which is about 10 times lower. Unlike the conventional power mosfet, its on-resistance varies very little over the usable temperature range.

Three current-sensing IGBTs are offered by Harris, types GS1510, GS1525 and GS1550. They have been designed for high-voltage switching applications up to 5kHz where low conduction losses are essential. As in AC and DC motor controllers, power supplies and drivers for solenoids, relays and contactors. All three devices can switch loads of up to 500V, the maximum current handling being the last two digits on the part number; ie the GS1550 is a 50A, 500V device. Costs are around £2.78, £8.10 and £28 per
Fig. 2. Using a pilot resistor for overcurrent protection.

piece for the GS1510, GS1525 and GS1550 respectively.

Fig. 2 shows a typical IGBT switching circuit with over-current protection. A scaled-down copy of the collector current flows out of the P terminal. With a resistor inserted between the P and EK terminals the V_{PEK} voltage is proportional to the collector/load current and may be used to provide current limiting.

Analogue at ECCTD '89

The European Conference on Circuit Theory and Design (ECCTD) for 1989 was held at the University of Sussex from September 5-8. Over 140 papers were presented, written by some 295 international researchers. The IEE which organized the conference, has published the papers in a single soft-cover book (IEE conference publication number 308, ISBN 085296383 1).

Most of the papers are non-analogue in content but several of the others caught my eye, and here I give you a thumbnail sketch of some of them.

Identification of small-transistor models (Vidkjær, pp99-103). This paper deals with the difficult area of trying to identify an appropriate small-signal model for a particular transistor and how to extract small-signal parameters from measurements intended primarily for high-frequency applications. The author outlines a systematic procedure which is intended to keep the effort to an acceptable level. All the experimental work is based on S-parameter measurements.

This paper is not for the timid high-frequency analogue designer. However, a useful technique for identification of small-signal transistor models is presented with test examples.

Further developments from Harris Semiconductor likely to result in useful power devices in the not too distant future are mos-controlled thyristors (MCT), which will behave like thyristors that can be turned both on and off with a mosfet type of input impedance; and power mosfets which can be turned on with 5V input signal levels, rather than the higher values that are needed for today's mosfets (typically 8V).

A novel, fast, high-resolution ADC-structure (F. Viehbock, H. Furst, pp214-217). The fastest way of converting an analogue signal into digital form is with a string of comparators, each set up with an input reference voltage differing by a voltage equivalent to one LSB from its nearest neighbour. This is called a flash converter, for obvious reasons, and the conversion time is controlled mainly by the switching time of just one comparator. The problem with the flash converter is that it requires so many comparators: for n-bits the number needed is 2^n-1.

The A-to-D converter presented in this paper is not as fast as a full flash converter, but it uses many fewer components and the performance, it is claimed, rivals other converter architectures in terms of speed and complexity. Figure 4 shows the basic block structure of the new converter. The analogue input is fed to a set of window amplifiers, each amplifying only a dedicated portion of the input range. Only one of the window amplifiers will be activated by the input, and the output of that amplifier is then fed to a flash converter. The window amplifier is designed so that the output will be zero if the input voltage is just in the bottom of a particular window, and equal to the full-house reference voltage if at the top.

Using four window amplifiers, together with an eight-bit flash converter, ten bits are achieved. To make an eight-bit flash converter into a 10-bit flash converter would require an additional 768 comparators ($2^{10}-2^8$). The authors openly discuss some of the problems with the architecture and propose improvements. It will be interesting to see whether any new converters based on this architecture appear from the semiconductor manufacturers in the next year or so.
FIRST QUALITY SECOND USER EQUIPMENT

TELECOMMUNICATION TRAINING EQUIPMENT

Full range of Training Equipment including:

- ANALOGUE & DIGITAL COMMUNICATION CIRCUIT & SYSTEMS
- FIBRE OPTICS
- MICROWAVE
- TELEPHONY
- RADAR NEW

For more information contact:
LAB-VOLT (UK) LTD.
4A Harding Way, St. Ives Industrial Estate Huntingdon, Cambridgeshire PE17 4WR
Tel: (0480) 300695, Fax: 0480 61654

CIRCLE NO. 139 ON REPLY CARD

November 1989 ELECTRONICS WORLD + WIRELESS WORLD 1063
Drawing with Orcad SDT

Putting a computer behind the drawing board allows the designer to work faster and with less chance of silly errors. Brian Frost puts this popular cad package to the test.

Orcad SDT is one of the newer generation of circuit drawing programs that position themselves between simple drawing packages that manipulate lines and geometrical shapes and the fully integrated suites of software found in workstations. It does not provide new features, but it does provide well-behaved design assistance at a fraction of the cost of a workstation. There is now a huge library of component shapes in existence.

Schematic capture uses the computer to ease the repetitive tasks, leaving you to make the appropriate connections between the component parts that you have chosen. These parts are held within a component library, from which they are fetched by name to the screen, complete with their correct pin numbers and signal names. This immediately avoids the common mistake of making pin-numbering errors when coping a logic part from data book to circuit diagram.

With this component on the screen, it can be dragged around, fixed where desired, have wires added to it or be rotated. Circuit modifications are therefore quickly made and can be printed as many times as required in various drawing sizes.

As an example of this process, consider the diagram shown in Fig. 1. This was created using Orcad SDT and shows a simple crystal oscillator. Out of interest, I timed how long it took me to draw this identical circuit on paper using a ruler but no drawing ink or text stencils. Using this 'conventional' technique it took me 6min 30s to complete the drawing, including the unused logic pins. I then entered it on the computer, taking 1min 30s. Both tasks include the time involved in consulting the data book for information.

As well as the time saving, there is much more flexibility in the computer-based version: before adding more circuitry, the circuit block shown can be dragged across the screen to create the space required in a few seconds. More time-saving is obtained by allowing the computer automatically to annotate the circuit with component reference numbers. This takes only a few seconds and replaces a laborious manual operation and limits errors.
Hardware requirements

Although the resolution of the CGA standard is adequate for representing circuitry on screen, text such as pin numbering is poorly represented, with obvious gaps between the 200 horizontal lines. VGA shows little granularity on sloping lines. Alternatively, EGA shows only slight granularity.

The most basic PC-XT is quite capable of performing all of the tasks listed here. The PC-AT shows a speed improvement of some 4-6 times in the calculation of netlists, with the newer 80386 machines calculating up to 10 times faster.

The appearance of the finished diagram will depend upon choice of printer or plotter. The low cost of 24-pin dot-matrix printers offer an acceptable compromise. Laser printed output provides quality consistent with photography.

Increasing productivity

One of the greatest increases in productivity comes from the fact that most designers have favourite circuit configurations which have been optimized by experience. Designing in this modular way allows such function blocks to be fetched from previously drawn circuitry and placed into the present design without any modifications other than the reconnection of the interfacing signals and power supplies. Even the reannotation of the old components is automatic.

Of course, real circuit diagrams are much more complex than that of Fig. 1 and are usually too large to fit in the space shown. This is a common objection raised against CAD: that a hand-drawn circuit on (say) an A4 sheet can show all the signal flow and circuit simultaneously, whereas smaller prints cannot. Although this appears to be a drawback, it is not a limitation of the computer, since the drawing 'sheet' is usually larger than the screen display, and can be theoretically limitless.

The limitation - if one exists - is that of transferring such a large sheet to paper where only a suitably sized plotter can produce large single sheets. Alternatively, a large diagram is split up into a number of smaller (e.g. A4) size sheets, with the appropriate signals interconnecting them. Partitioned with a bit of planning, this method provides room to add extra circuitry with ease and permits the easy export of such circuit modules onto future drawings that require similar circuitry. A4-sized sheets are ideal for manuals.

Fig. 1 Orcad's time savings are well illustrated with this simple crystal oscillator, which took 6½min to draw by hand with a ruler, and 1½min using Orcad.

Fig. 2 Massive drawings are handled by partitioning in Orcad. This top-level screen shows multiple sheets connected together in a similar way to components with signals passing to and from that sheet being analogous to pins.
SOFTWARE

Once the circuit is drawn, the computer can start work. With one simple command, the entire circuit diagram of many sheets can be annotated with ascending component references with no intervention from you at all. With another simple command, a complete parts list is generated from these references, which shows all parts. their references and names. Another command produces a 'wiring list', or netlist, which describes every part on the diagram, with all its connections to other parts. This information can be accepted in a variety of PCB layout systems, so that connected components can be positioned where required and connections on the final PCB will follow the original circuit.

The drawn circuit may be simulated - a technique particularly valuable for logic circuitry. This involves creating a hypothetical stimulus-signal file for the circuit's inputs and then running the simulation to provide the computer's prediction of the resulting output or component node signals. This can be done before or during the existence of a wired prototype.

Running the drawing program (DRAW) puts you into graphics mode within its graphics editor. A mouse or cursor keys moves a graphics pointer around the screen and selected keyboard character keys initiate drawing actions; pressing the return key brings up a menu showing the options. The program can be menu-driven with the mouse selecting from this menu, but faster operation can be obtained by typing the first letter of the operation on the keyboard. For example, the string input instructs the system to "Pick Wire 10-Ton,, and the start of a wire appears at the cursor.

This wire stays with the cursor you as you move it vertically or horizontally; if you move diagonally, a 90-degree corner is inserted. At any time, a click of the left mouse button freezes the last corner, allowing you to route a wire across a sheet, through available gaps, with no further commands. The last mouse click or a press on the (for end) key terminates the wire at the current position.

The 3rd SDT screen is really a 'window' in the worksheet on which you are drawing, with this limitation made acceptable by an auto-scrolling action which causes the screen to follow the cursor across the drawing if it reaches any of the screen boundaries. It is unnecessary to use separate keys to move around the sheet, as is the case with many competing schematic capture packages. At any time, you can zoom in or out at will to see more detail or more diagram. As you zoom out, text detail is progressively lost, allowing you to identify part shapes and position the cursor. As you zoom in, the maximum possible detail and text that the graphics hardware allows are written at each zoom level.

To fetch any component, you type e. (for get) together with the name of the component in the library; on hitting 'return' instead of the component name, a list of library filenames appears in a menu. Some 10-12 files are supplied with the package, covering over 1000 total library parts. Using the mouse, it is easy to scroll through the available library parts.

Having fetched a part, only its outline appears on the screen at the cursor position and without any text such as pin numbers or names; this shell moves with the cursor until the use of (for place) drops it. This causes the component to be fixed at that position and to be drawn with full pin and text details on the screen. The component outline remains at the cursor, to allow copies of it to be dropped where required with
repeated commands.

Parts are shown in their usual electrical symbols with many parts offered in a choice of styles, for example the American and European styles for an electrolytic capacitor. Most parts have only one function in their package, and these are drawn as simple rectangles with pin numbers and names around the edge.

Parts that have several identical functions within the same package, such as a 7400 quad and gate, are drawn using the conventional and-gate symbol, and pin numbers are those of the first device of the four within the package, i.e. inputs on 1.2 output on 3. This allows the four gates in one package to be used anywhere and to be shown as conventional logic symbols without having to draw wires back to one dle device package each time a gate is used.

Many gates can be displayed using their De Morgan equivalent, for example an or gate with inverting inputs instead of a NAND gate. The general convention is that logic parts do not show their power pins; these are automatically connected together without needing to be wired further, to enhance the readability of the circuit.

With parts placed on the sheet, they are now electrically connected together using either wires or buses. A bus is shown as a wide wire, which expands into one or more of its component wires anywhere along its route. Buses are good value in logic diagrams, particularly in memory and processor circuitry, since they may be manipulated just like a wire despite representing hundreds of connections.

For annotating the wires at the ends of buses, a repeat facility allows the last text or label to be repeated with a defined position and numeric increment. For example, placing the label A0 as the first connection of an address bus allows you to press R repeatedly thereafter, generating a new label advanced by one number and stepping downwards on the screen to create the list A0, A1, A2, A3 ... etc.

Block commands allow everything within a defined box area to be either deleted, moved or dragged to allow parts of the diagram to be entered within available space or to create space for additional circuitry. This is so fast that the drawing can be tidied as you go, so that connections do not have to be redrawn later. Parts may also be repositioned, rotated or mirrored.

While each sheet is a disk file in its own right, a block of circuitry within one sheet may be written to a file to be subsequently read back into another drawing. This allows the user to generate a new diagram either by building it 'from the ground up' using individual components out of the library or by using blocks of circuitry already in existence.

The user can select the size of sheet for the diagram by selecting the American designation A.B.C.D. in theory allowing as much space as is necessary for the required components. While the software is quite capable of handling very large drawings, the problem comes during printing where, unless you have a large plotter, you cannot print your single sheet (although a large drawing can be broken into a number of sheets to be fixed together). A convenient solution is to break your drawing up into circuit modules and use the capability of Orcad to handle a hierarchy of diagrams.

The top sheet of such a hierarchy is shown in Fig. 2. This shows how the separate drawing sheets can be placed within another sheet and shown as a component with connection names that represent the signals passing to and from that sheet, as with component pins. At the top left you will see a box labelled 'Connectors and bus decoding'. The circuitry for this sheet is shown in Fig. 3 but on this top sheet, only the signals that enter or leave it are shown. The hierarchy system can also be used to create additional information about a diagram, for example a timing diagram can be appended to a logic circuit by using a sheet box named TIMED DIAGRAM.

Since Orcad SDT expands any one circuit sheet to include other sheets referenced within it, all of its utility operations operate on the entire drawing, irrespective of the number of sheets involved. The result is that working on a 25-sheet drawing is little different from working with only one sheet.

Since circuit drawing and modifications can involve significant repetition, the software implements a text macro capability. Because all recorded cursor movements are made relative, this allows a manual editing operation on the first of several parts, ending it with the cursor ready at the same starting point on the next part to edit.

Producing results

Having created your circuit diagram, copies can be printed or plotted and a number of utilities is supplied to support the circuit diagram and attendant documentation. The ANNOT utility will move throughout all the sheets that make up your diagram and add component references in ascending order. There is one disadvantage with this: if you add a couple of new components to the drawing after having annotated it, there seems to be no way of using ANNOT again to add these as sequential component references without the risk of changing the existing numbering.

Producing a parts list is easy. The PARTS utility scans the drawing sheets and produces a list of each component type, with quantity used, name and reference. A cross-reference program CROSS produces a list of components against sheets and their inverse. This is useful for locating a component within a drawing of many sheets because, although there is a find command to search for text whilst editing, it only operates within one worksheet and cannot operate globally.

The utility SHEETS is used to produce a list of parts and interconnection data that can be imported into other CAD systems or typesetting packages. This also checks all the interconnections on your diagram, issuing warnings about such things as unconnected wires, buses or components.

A utility called ELR - electrical rules check - uses information about each pin of a part to verify that connections to it conform to the electrical conditions allowed for that pin. For example, two pins connected together, where both of these pins are defined as output pins within the library data, would generate a warning message when running ELR. Note though, that if you choose to ignore these warnings, Orcad assumes that you have a good reason.

Component library

Orcad SDT has an extensive library and, in the latest releases, has a library parts editor which can quickly create new parts instead of using the original, slower, text-based process.

All components are held in library files in a compiled format that enables fast retrieval but with utilities supplied which allow translation to and from ordinary ASCII text files. For example a IMS 4060 device is contained within the library file 4060.BAS.

Reference

Orcad SDT is distributed in the UK by ARS Microsystems Ltd, Doman Rd, Camberley, Surrey GU15 3DF. Telephone 0276 685005. This cost is £505 + vat with a demonstration disk available on request.
PROTEL PCB CAD SYSTEMS

Professional high quality PCB CAD SYSTEMS at a Price you can afford.

PROTEL AUTOTRAX* is an affordable, precision design tool that improves productivity for occasional and expert users alike. It streamlines the PCB layout processes while providing powerful interactive design automation, and generates professionally accurate PCB artwork.

PROTEL TRAXSTAR* is a grid based, costed maze autorouter with full rip-up and re-route capability. The router incorporates a user-definable cost structure and allows separate cost structures for the route, rip-up and smoothing passes. Works with Protel Autotrax files.

PROTEC SCHEMATIC* streamlines drafting operations, improving productivity, design practice and documentation. It forms the front end of a powerful PCB CAD system when used together with Autotrax.

PROTEL EASYTRAX* low cost entry level easy to use precision tool that generates professionally accurate PCB artwork, with support for a wide range of displays, photoplotters, pen plotters, laser and dot matrix printers all as standard. NOT EXPENSIVE OPTIONS.

PROTEL TRAXVIEW* is a new utility program for viewing and editing Gerber files.

*Evaluation Disks Available on request.

J.A.V. Electronics Limited, Unit 12a Heathen Street, Denton, Manchester, M34 3RG
Tel: 061 320 7210 Fax: 061 335 0119
The UK Distributor for the PROTEL CAD Software. Main Dealers for ROLAND Plotters. Dealers for Sage, Brother, OKI, Amstrad & Epson.

CIRCLE NO. 115 ON REPLY CARD

PINEAPPLE SOFTWARE

A brand new program for IBM and compatibles allows complete monitoring of two way data flow down any RS232 serial data line. DATACAP will capture and store data from 110 to 9600 BAUD and display it on screen or print it out in such a way that it's direction as well as it's position in the data stream is indicated.
Applications include diagnosis of both hardware and software faults, and investigation of any problems encountered with handshaking protocols. It is also useful as a teaching aid to demonstrate the ways in which computers communicate.

DATACAP £25.00 p & p free

BBC PCB Software

PCB is a powerful Rom based circuit design program suitable for all BBC computers. A second eprom is optionally available to add a powerful auto track routing facility to the program. This utilises a 'raster-input' input routine and allows any component to be 'picked up' and moved around the board without having to repeatedly component interconnections. The full autoroutes are available even on a standard unexpanded model B.

PCB auto-route is remarkable. No similar software comes near the price. ACGORN User Aug 88.
PWB manual track routing £85.00
PCB autorouting £185.00
PWB & PCB plotter driver £35.00

IBM PCB Software

EASY-PC EASY-PC is a powerful PCB design program combined with a schematic drawing package. Up to 8 board layers plus upper and lower silk screens. Board size up to 17 x 17. Powerful, clean and fast. Features. Suitable for IBM PC/XT/AT & compatibles with 128K RAM -- £39.95 p & p free

MARCONI TRACKERBALLS

We now have an adapter available so let us the trackerball to the Amstrads. It enable to directly replace the Arcmodem mouse.

Bar Trackerball (No software) £49.00
BBC Model with software £59.00
Adapters to drive BBC Model software £8.00
Archimedes Adapter £19.95
IBM model (serial interface) £99.50

EAS PC £17.50
Trackerballs £3.50
Trackerballs also available for other computers. Please phone for details.

MITEYSPICE, SPICEAGE and ECA-2

Three very powerful circuit analysis packages. MITEYSPICE is available for the BBC range of computers, and SpiceAge and ECA-2 for the IBM and compatibles.

(m) (m) (m)

Pineapple Software, Dept WM 39
Brownlea Gardens, Seven Kings, Derrf
Essex, IG9 9NL Telephone 01-599 1476.
Add 15% VAT to all prices

CIRCLE NO. 107 ON REPLY CARD

EPROM PROGRAMMER 100 (1) EPROM and MICRO-CONTROLLER types...

Now Devices compellingly continues... introduced

THE MODEL 18 PROM PROGRAMMER

1 All 1 Milli EPROMS, Greenwich Instruments Emulators, 27C parts and EEPROMs now programmable!
2 Fully supported for future types...
3 Designed, manufactured and supported by MOP in England.
4 Comprehensive User Manual.
5 32 and 40 pin devices require low cost socket adapter.
6 Supports our new EPROM Emulator as 2716 to 2712 EPROM
7 Fully supported power control for all Micros, without speed penalty.
8 Fast interactive algorithms automatically selected as appropriate.
9 Two independent communications protocols built in, used with:
10 built in RS232 port and terminal emulator.
11 Our PROMDRIVER Advanced Features User Interface Package available for all
12 MDS and PC-DOS computers.
13 NEW FAST COMs -- 1 Milli PROMs only programmed in about 30 mins.
14 Quick Pulse software now available for suitable EPROMS -- e.g. 2764s in 10 secs.
15 Limited version also available for CP/M computers.
17 Please enquire about our other products:
18 PROM EMULATOR
19 CROSS ASSEMBLERS
20 PROM ERASER
21 BIPOLAR PROM PROGRAMMER
22 PAL PROGRAMMER
23 ECL PROGRAMMER
24 PAL & PROGRAMMER & PROGRAMMING SERVICE
25 Contact your nearest MOP distributor and we will provide you with a demonstration unit of the EPROM PROGRAMMER.
26 Telephone: 0685 625115
27 Fax: 0685 625115
28 Electronic, Unit 2, Park Road Centre, Malmsbury, Wiltshire, England SN16 8BX.

CIRCLE NO. 104 ON REPLY CARD

\[\text{ELECTRONIC WORLD + WIRELESS WORLD} \quad \text{November 1989}\]
Who's who in risc

The technical and business desktop computer world is ready to believe in Unix V rather than OS/2. The chip makers are lined up on the starting grid, Unix risc engines revving.

By Rupert Baines.

C onventional wisdom has it that there's only room for two processor families in the market-place. When manufacturers launched the first 16-bit devices only Intel's 8086 and Motorola's 68000 made it to security and volume sales. The rival processors from Zilog, Texas Instruments, Fairchild and National Semiconductor all lost out, and those companies have never managed to re-enter that market. It's possible that the risc marketplace will be less bloodthirsty, but it's unlikely - and none of the manufacturers are prepared to risk being the ones left behind. As a result, all of them are spending fortunes on advertising to convince people that theirs is the best device available (the fastest, the cheapest, the most useful or whatever).

Of course, there's no infallible way of predicting the future, but it is possible to make some guesses about the state of the market to come.

Both Intel and Motorola are big enough and rich enough to win through. Intel's 80860 is also a staggeringly good device that's incredibly faster than anything else around. The built-in graphics support has helped it gain its first design win in a flight simulator application - the combination of fast number-crunching and built-in graphics makes this an obvious choice for any application involving animation or pictures.

Motorola have the marketing clout to make sure that their 88000 product succeeds. It doesn't have an obvious niche to grab, unlike the 80860, so it will be fighting it out with the rest of the devices in the processing mainstream with the rest.

The R3000 and the spar are interesting because they are 'open architecture' devices (see panel) and are being manufactured by a number of sources.

The spar and R3000 risc processors are intriguingly different from the other devices. The companies that designed them - MIPS and SUN respectively - are not chip manufacturers: instead they've allowed a number of different companies to produce and sell the chips under licence. They are planning on making their money from the royalty fees and spin-off business (for instance, associated compilers) rather than from the chips themselves.

These open-architecture chips are being produced by different manufacturers, each of which are able to exploit their particular specialisations to enhance the design. For example, the spar processor is available in forms, ranging from the low-power c-mos offerings of LSI Logic and Fujitsu to the very fast, very power-hungry ecl model made by Bipolar Integrated Technology.

There is also a much more interesting benefit: since the manufacturer has the net-list of the device it can easily be modified or customized. Essentially, customers can therefore treat risc chips as the basis for their own personalized processor design.

A company like LSI Logic may be heralding a new trend by offering customers the opportunity of starting with a spar processor and customizing it. The original design could be then modified or altered to suit the particular specifications of an application.

INTEL 80860

This chip, announced in March, has transformed the risc scene. Until then performances were measured in Mips and tens of Mips: a rating of 20 million instructions in a second was as impressive as it sounds. But the 80860 has smashed all previous speed ratings and blown everything else out of the water. It can turn in speeds of up to 150Mips, more than seven times as fast as its nearest competitor! Hyperbole just doesn't do justice to this processor.

The device gets its speed from brilliant design in three different areas. To start with, there's a lot of parallelism inside the chip, with a great deal of activity going on at once; secondly there are the hugely wide data busses capable of carrying four 32-bit registers and two instructions simultaneously. The on-chip bus bandwidth is more than 1Gbyte/s! Finally there is the incredible system clock frequency of 40MHz.

Risc simplifies the design of a proces-
No, some manufacturers have taken advantage of this to make smaller, cheaper chips that need fewer transistors and are easier to make (e.g. the ARM, with only 25,000 transistors). Intel has gone the other way with the 80860, a huge device with more than a million transistors (the same number as its new 80486 cisc device). Since the processor core has been simplified there is plenty of room for other parts that would normally be external components. For instance, there are two large cache memories which take up 40% of the silicon area. There just would be no space for them on a conventional cisc device.

Part of the reason for the processor's stupendous speed is that it runs at an extremely high clock rate: the lab sample device runs at an incredible 50MHz and the first production units stroll in at an impressive 33MHz. All rise devices aim for one instruction per clock cycle, but even without any special features the 860 would be at the front of the field purely by virtue of this. The faster the clock ticks, the more instructions can be forced through the chip. Until now 25MHz has been the maximum, the speed of the very latest chips (including the M88100 and the 80386) so the new device has already benefited from a 100% speed gain. A system clock of 50MHz allows only 20ns for each cycle, which leaves no room for the slightest skew or drift in co-ordinating the separate parts of the processor.

But the fast clock speed is only part of the story, since even a 25MHz version of the 80860 would turn in a frightening 75Mips, which is still triple the speed of a M88100 running off the same clock! The rest of the speed gain comes from the way that the chip has been designed

Intel's 80860 derives its blazing speed from its wide buses, huge cache memory stores, an abundance of pipelines and a lot of concurrency.

to support a vast degree of concurrency, with many different things happening at once. There are three distinct processors that can work independently: the integer rise core processor, a powerful floating point coprocessor and (an unusual addition) a dedicated graphics processor.

The core processor has its own 64-bit-wide code bus, which means that two instructions are fetched from the internal code cache at a time. These are fed into the processor's own pipeline, which is four stages deep with hardware interlocks and delayed branch instructions to reduce the effects of bubbles. The combination of cache, pipeline and double fetch helps make things move quickly!

In common with most rise devices, the 860 has a load/store architecture and so all instructions use operands held in the register files (32 registers, each 32 bits wide). The core processor also connects to the data bus which is a phenomenal 128 bits wide - enough to transfer four registers at once.

The floating point unit has three separate parts: its own processor, an adder and a multiplier. The control unit also has 32 registers, which can be treated as 32, 64 or 128 bits wide depending on the needs of the application. Both the adder and the multiplier have their own three-stage pipeline (for single or double precision operands) and they can run in parallel. The floating point processor has its own separate 64 bit instruction bus to receive its own unique instructions.

The quoted figure of 150Mips at 50MHz requires the processor to run three instructions per cycle. This happens with one integer and two floating point operations being executed at once, so it isn't typical for most applications. For this mode to be sustained the adder will be working on data supplied by the multiplier. At one moment the multiplier generates a term for the next calculation while the adder is completing the current sum - two floating-point instructions at once. Since the core unit will be running its own code too, that gives the total of three. Obviously this rate isn't sustainable for ever; but it does allow for some very useful and very powerful techniques. For example the core could be handling a loop counter while the floating unit does its operation, thus:

\[A = (B \times C) + D. \]

INC in one cycle

This kind of loop is typical of the number-crunching tasks for which the device is intended (e.g. graphics calculations, FFTs, cad etc.). The 33MHz device will complete a 1024-point FFT in just 2ms, quicker than some DSP chips.

The third coprocessor on the chip is an unexpected one, a dedicated graphics controller. It's intended to help designers of workstations and so on. The chip uses 64-bit logic to handle graphics applications in 3D-like colour, with intensity shading, hidden surface removal and flood-fill - all from hardware. This unit has 10 special instructions and its own pipeline. Inevitably this too works concurrently with the other sections of the chip! It's rated at drawing and shading 50,000 triangles a second, which is probably enough for most of us.

MIPS R3000

This processor seems to suffer from an undeservedly low profile. Until Intel dropped its 80860 bombshell, it was the fastest device on the market by a clear margin. It was designed by MIPS of California, which can legitimately claim to have started the commercial rise market. Its earlier product, the R2000, was the first rise chip when it was released in 1985, and MIPS is still the only pure rise company, with no other products or interests. The R3000 is the only second generation processor thus far; it is also the only chip to have demonstrated true scalability (reducing the design from 2µm to 1.2µm to quadruple the speed).

The processor is a 32-bit device, with an on-chip memory management unit which can address 4Gbyte of main memory, a cache controller and a

ELECTRONICS WORLD + WIRELESS WORLD November 1989

1070
"seamless" interface to the R3010 floating point coprocessor. Like Motorola M88000 it has a Harvard architecture, with separate data and address buses for code and data memory spaces (i.e. four external in total). The chip has 32 registers, 30 of which are true general-purpose types. Register R0 is hard-wired to hold zero (useful for quickly clearing registers or for comparisons) and R31 is dedicated for use as a link pointer for procedure calls.

In combination with the R3010, the R3000 gives an impressive 7MFlops (million floating-point operations per second) for single-precision floating-point calculations. With the use of a suitable optimizing compiler both chips can run simultaneously, without having to wait for each other; the seamless interface means that the two can swap data without interrupting their other processing tasks. Almost as if the two were on the same piece of silicon.

MIPS places great emphasis on the importance of the compiler to the ultimate performance of the processor and the system. For a risc chip to get the most from its hardware it is essential that the compiler is designed hand in glove with the processor. Experience shows that as much as a 3× performance gain is realised in a risc system if the compilers are well designed.

Indeed, MIPS involved the operating system programmers in the design process. Consequently the R3000 is well suited to running C (and, in turn, Unix). The company also claims that this work avoids the usual speed/size trade-off that makes risc programs longer than an equivalent piece of code for a cisc processor.

Compilers are available for Fortran 77, Ada, Pascal, PL/1, Cobol (golly, does anyone still use it?) and of course C. There is also a full version of Unix and a real time operating system. This is easily the widest range of software support for any risc chip.

The R3000 is a very fast chip (topped only by the i860), with a well-designed architecture and an excellent software environment. With four years of sales, the device has a mature user base and a good deal of third-party equipment and support.

ACORN ARM

One of the interesting things about risc is that the designs haven’t come from the semiconductor manufacturers but from computer companies (Sun, Hewlett Packard, IBM etc.) and now the British company Acorn has joined in. This device is the British hopeful of the risc world. Designed by Acorn (of BBC Micro fame) for the Archimedes computer it has been available as a component for two years.

The chip has a very simple straightforward design. It is a 32-bit machine, integer only, with a load/store architecture. The register file has 27 registers: 15 are general-purpose and can be used by the program freely, the others are dedicated to particular system functions (status register, interrupt control etc.). It does illustrate the risc philosophy that such a powerful CPU can be so simple — it’s a tiny chip with only 25 000 transistors (about 10% of the number in a 68020 and a lot less than the 1.2 million of an 80486). It is manufactured in a conservative 3µm c-mos technology which, while reliable and cheap, is not very fast. The device was designed by Acorn in Cambridge and is manufactured by VLSI technology of Arizona.

The design does have one twist in it. Every instruction contains a four-bit test field: only if the test is true is that instruction executed. This is a very elegant idea, which makes programs much more efficient. According to Acorn the majority of jumps are skip types (i.e. if condition, then miss next instruction). There are 16 possible tests, including overflow, equal, not equal, greater than and negative. Obviously this reduces the number of jumps necessary in the program, which makes the pipeline more efficient by reducing the number of bubbles.

There is a four-chip set available: the VL86C010 is the processor, there’s a memory-management and cache control unit (VL86C110), a dedicated graphics controller (which includes timing generation, a colour look-up table and three video DACs) and a digital i/o device with timers and the like. The four of these can be put together to make a complete system: just add memory and a program to build your own computer. There is no hardware support for floating point operations.

On a 10MHz clock, the processor gives about 6Mips — which isn’t as impressive as it was three years ago. Despite the head start of being early to market, the chip does not seem to be a success. Few companies want to use it. It would be nice if it were to succeed, but given Acorn’s marketing I don’t hold out much hope.

The latest news is that Acorn has designed a new version. The VL86C020 is a 20MHz device with a creditable 4K cache on chip. This says Acorn, will triple the performance, giving a reasonable 15-20Mips.
RISC

The sparc chip (short for Scalable Processor ARChitecture) was designed for Sun Microsystems by Dr David Patterson, who headed the research team at Stanford University that developed the philosophy. The chip was one of the first RISC processors to be released and is fairly conventional in its design, but with a neat twist that makes it extremely well suited to running C and Unix.

It is a 32-bit device, with 50 integer-only instructions, operating in a single clock cycle on the internal registers (as usual this chip has a load/store architecture) and large pipelines on the external busses.

The device has a separate numeric floating-point coprocessor. The CPU extracts any floating-point instructions from its instruction stream and puts them into a separate queue to be executed by the coprocessor. It is possible to have several FPUs linked and running concurrently if necessary.

It's slightly surprising that this is an integer-based device, in view of Sun's strength in the engineering and workstation markets. Apparently the designers decided to aim for simplicity and stability in their first device. But the next version will be more powerful and will include its own floating point unit.

Weitek, the company which specializes in making very high performance coprocessors for other manufacturers' CPUs, has just announced the release of an add-on for the Sparc. Not only will this improve its performance, but such third-party support is a clear sign of the chip's credibility and success.

The architecture of the Sparc chip has been very cleverly designed to run procedural tasks (like C, Unix or Pascal) efficiently. It has an unusually large number of registers — 192 (in most rise devices, 32 has been adopted as the optimum number) — which are arranged as a succession of partially overlapping 24-register windows (page 868). Each window contains eight 'in', eight 'local' and eight 'out' registers, which overlap slightly: the 'out' locations of one window are shared with the 'in' registers of its successor, and so on. This allows functions to work very quickly indeed.

Merely by switching from window n to window n+1 a new procedure is started, possessing its own local variables (R8-R15), taking parameters and returning values with its calling function (through the out-in registers R0-R7) and able to pass parameters to its own subroutines through R16-R23. The call is quick because parameters need never be physically moved: merely by being kept in the appropriate register they will automatically be passed on. Compare this with the huge amount of Pushing and Popping of parameters and data that would be needed in using a chip with a smaller number of registers.

Unix is simply a large C program (according to Kernighan and Ritchie, of the 20 000-odd lines of code only the bottom 800 were written in machine code). Indeed, a C system is predominately a C program: most of the language consists of function calls accessing ready-written C procedures that have been compiled and stored in the library. This is implemented through a great number of function call and return stages which impose a large overhead — packing and unpacking data, saving and restoring registers, sending parameters, returning values and so on.

Looking through the object code produced by a C compiler could be a revealing experience. If calling a procedure and passing parameters can be made even a little more efficient, the net speed gains will be dramatic. I have heard that this chip has run real world C programs up to five times faster than its rated speed would suggest. Of course this type of claim is difficult to verify, since so much depends on the particular program and the quality of the compiler's optimization. However I would not be surprised if there were some hard truth behind the hype.

'Scalable' in the chip's name refers to an intriguing feature, that it is possible to reduce the chip's size (i.e. to adopt narrower line widths) with little effort or change. This definitely is not the case for risc devices. The advantage is that it extends the life of the architecture, by making it easy to transfer it to newer, faster technologies.

The Sparc is now well supported in the market: Fujitsu manufactures a 10Mips version in 1.5µm c-mos; Cypres, using its own c-mos process, claims 20Mips; and Bipolar, using ECL clocks in an impressive 50Mips.

Motorola 88100

Of all processor manufacturers, Motorola has the most to lose from these new developments. Its processor family, the 68x0 series, has always been successful in the high end of the market, being used in work-stations and super-micros.

However these processor-intensive markets are precisely the area where powerful RISC processors are set to make their biggest impact. It isn't surprising

continued on page 1106
Small in Size, Big on Features, Competitively Priced...

... the new Analog Bargraph DMM's from SOAR.

SOAR’s newest range of feature packed analog Bargraph DMM’s offer exceptional performance which is backed up with enhanced accuracy and custom LSI circuit technology.

The 3200 series comes with a standard 3 year guarantee and all models have an adaptor mode which enables plug in use of Soar’s optional series 9300 adaptors for extended measurement capabilities of AC/DC current, capacitance, temperature and transistor checks.

SOAR Digital Multimeters provide a wide range of capabilities, covering general purpose applications in research and development, production line service and maintenance use. The 3200 series up to the high accuracy 4½ digit DMM’s is complemented with some economic models which include hand held as well as bench type multimeters.

Look at these features:
- 32 segment Analog Bargraph display.
- 3½ digit readout.
- Custom LSI circuit design.
- Accuracy up to 0.35%.
- High speed sampling.
- Auto or manual range selection.
- Data hold.
- Over 2500 hours battery life.
- Diode test.
- Adaptor mode.
- Continuity beeper AND MUCH MORE.

SOAR International
95 Main Street, Broughton Astley, Leics. LE9 6RE.

For further details on full colour test and measurement equipment catalogue contact the sole U.K. distributors.
UNBEATABLE PRICES

GREAT OFFERS ON TRIED AND TESTED USED EQUIPMENT

<table>
<thead>
<tr>
<th>DATA COMMUNICATIONS</th>
<th>TELECOMMUNICATIONS</th>
<th>OSCILLOSCOPES</th>
<th>METERS</th>
<th>RECORDERS</th>
<th>COUNTERS</th>
<th>LOGIC ANALYSERS</th>
<th>PROGRAMMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Research 4600 Protocol Analyser</td>
<td>Hewlett Packard 8970A Noise Figure Meter</td>
<td>Philips PM3055 50MHz 'Smart Scope'</td>
<td>Fluke 8050A 4½ Digit Bench DMM</td>
<td>Solartron 3530A Orion Alpha Data Logger</td>
<td>Marconi 2436 Counter, DC-520MHz</td>
<td>Hewlett Packard 1630D 43-channel, 100kHz</td>
<td></td>
</tr>
<tr>
<td>19.2kbps, X.25</td>
<td>Marconi 2955 Radio Communications Test Set</td>
<td>Tektronix 2445 150MHz, 4-trace scope</td>
<td>Hewlett Packard 3406A RF Voltmeter, 10kHz-12GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard 4951A Protocol Analyser</td>
<td>Marconi 2958 Cellular Radio Test Set</td>
<td>Marconi 893B AF Power Meter, 20Hz-35kHz</td>
<td>Watanabe MC6623-61 6-channel Chart Recorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard 4953A Protocol Analyser</td>
<td>Wandel & Goltermann PF -1 PCM Bit Error Rate Tester</td>
<td>Solartron 7150 6½ Digit Systems DMM</td>
<td>Yokogawa 3033-13 A3 Single-channel Recorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard 4955A Protocol Analyser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marconi 2971 Data Communications Analyser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECTRUM ANALYSERS

<table>
<thead>
<tr>
<th>GENERATORS</th>
<th>SPECTRUM ANALYSERS</th>
<th>TELEMUNICATIONS</th>
<th>TELECOMMUNICATIONS</th>
<th>TELECOMMUNICATIONS</th>
<th>NETWORK/SCALAR ANALYSERS</th>
<th>COUNTERS</th>
<th>LOGIC ANALYSERS</th>
<th>PROGRAMMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adret 742A Signal Generator, 100kHz-2.4GHz</td>
<td>Tektronix TR4131, 10kHz-3.5GHz, 70dB</td>
<td>Hewlett Packard 8970A Noise Figure Meter</td>
<td>Hewlett Packard 4951A Protocol Analyser</td>
<td>Tektronix 1240 72-channel, 100MHz Mainframe</td>
<td>Marconi 6500-001 Amplitude Analyser</td>
<td>Marconi 2436 Counter, DC-520MHz</td>
<td>Hewlett Packard 1630D 43-channel, 100kHz</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard 3325A Synthesiser, 21MHz, sweep, HPB</td>
<td>dynamic range</td>
<td>Marconi 2955 Radio Communications Test Set</td>
<td>Marconi 2558 Cellular Radio Test Set, TACS</td>
<td></td>
<td></td>
<td></td>
<td>Stag PP39 Portable MOS Programmer</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard 8340A Sweeper, 10MHz-26.5GHz</td>
<td></td>
<td>Marconi 2958 Cellular Radio Test Set</td>
<td>Wandel & Goltermann PF -1 PCM Bit Error Rate Tester</td>
<td></td>
<td></td>
<td></td>
<td>Stag PPZ Universal Programming Mainframe</td>
<td></td>
</tr>
<tr>
<td>Marconi 2017 Signal Generator, 10kHz-1024MHz</td>
<td>£ 5,650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stag Zm2000 Universal PROM Module for PPZ</td>
<td></td>
</tr>
<tr>
<td>Marconi 2022 Signal Generator, 1GHz</td>
<td>£ 4,750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stag ZL30 Logic Programmer</td>
<td></td>
</tr>
<tr>
<td>WaveTek 166 Pulse/Function Generator, 50MHz</td>
<td>£ 1,950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiltron 6663A Microwave Sweeper, 2-40GHz</td>
<td>£ 2,250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All prices advertised are exclusive of carriage and VAT.
All equipment sold subject to availability.
Warranty period 12 months on all equipment (except computers MOS – 3 months).

FOR FURTHER INFORMATION

TELEPHONE

LONDON 0753 580000
MANCHESTER 061-973 6251
ABERDEEN 0224 899522

CIRCLE NO. 137 ON REPLY CARD
Although for a long time he did not have a full understanding of how it worked, Lee de Forest invented the triode, or audion as he called it. For nearly half a century it, and its descendants, dominated electronics. De Forest was also one of the earliest inventors of electronic circuits. Justifiably he could claim, therefore, to be one of the founders of electronics. Over 300 patents were filed in his name and many have regarded him as the last of the great individual inventors: but his own hope of a Nobel Prize was never fulfilled.

The name de Forest was of Huguenot origin. Lee’s father, Henry Swift de Forest, was a Congregational minister and principal of a school for negroes in Talladega, Alabama. It was there that Lee grew up, having been born in Iowa at Council Bluffs on August 26, 1873. His mother, Anna Margaret Robbins.

Look here, de Forest— you’ll never make a telephone engineer...

was the daughter of a Congregational minister.

A wealthy ancestor’s endowment of a scholarship at Yale University enabled de Forest to study for a bachelor’s degree in mechanical engineering and he was awarded this in 1896. He followed it with a Ph.D. in 1899 for a study of the reflection of electromagnetic (Hertzian) waves from the ends of parallel wires, possibly the first Ph.D. thesis in America on a topic closely related to radio telegraphy.

By the age of 16, de Forest had announced his intention of becoming an inventor. This ambition had not dimmed by the time he left university and he determined to win fame and fortune as an inventor, with Nikola Tesla as his idol. He has also been quoted as saying that Marconi and Edison were his inspiration.

On leaving Yale, de Forest joined Western Electric in Chicago at $8 a week. But because he was never enthusiastic about working for others it was not long before his interest in radio-telegraphy led him to seek to challenge Marconi, who by then was famous. De Forest wanted his own radio system, independent of Marconi’s patents, and his own company. In fact he was to found several companies over the years but he lacked the business skills which would have enabled any to survive.

At Western Electric his tinkering with radio brought no official acclaim. One day, according to his diary, he was told, “Look here, de Forest. You’re never going to make a telephone engineer. As far as I’m concerned you can go to hell, in your own way. Do as you damn please.”

He took the words literally and worked full time on his own system for the remainder of his fairly short time with the company.

His next employer had built a radio-telegraph receiver which de Forest dismissed as a “non-receiver set”.

In business

With an acquaintance, Smythe, who was also helping to finance him, de Forest filed for a patent in 1900 for a new radio detector which he called a “responder” and which he hoped would evade Marconi’s patents. He then started his first company, bringing in another acquaintance, Freeman. Publicity was gained for their new system, which had a reported range of four miles. Then in 1901 there came the chance to demonstrate his system against Marconi who had contracted to provide ship-to-shore reporting of the America’s Cup Yacht races. De Forest’s trial has been described as a failure. During the races he is said to have tossed Freeman’s transmitter overboard!

Technically the detector remained de
Forest’s big problem. Financially he moved on to bigger things. In 1902 a Wall Street financier helped him start the American de Forest Wireless Telegraph Company, capitalized at $3M. Smythe and Freeman were left behind. Early success was achieved with orders from the Army and the Navy and for a radio link between Costa Rica and Panama. But the company’s grandiose plans led to its downfall. An American network was envisaged; over 90 stations were erected and others planned, but many never sent a message. Shareholders closed the operation in 1907 and sold its assets. De Forest was forced to resign, taking his patents with him. Amongst other things they covered the, as yet unused, triode.

A strange device like an incandescent lamp…

Immediately the De Forest Radio Telephone Company was formed, with a capital of $2000 000. Again the Navy bought some equipment, with mixed success. Stock sales staved off bankruptcy and de Forest’s talent as a showman maintained publicity. Broadcasts from the Eiffel Tower in 1908 and the first opera broadcast (starring Caruso) in January 1910 kept public awareness alive. Despite making some excellent equipment (the US Navy was its best customer), the company became bankrupt in 1911.

In May 1912, de Forest and his associates were charged with fraud over some of the methods used to promote the company. De Forest was exonerated but two of his colleagues were jailed. The significance of the new technology was not widely understood and the words of the government prosecutor have often been quoted, accusing the defendants of selling stock “in a company incorporated for $2 000 000, whose only assets were de Forest’s patents chiefly directed to a strange device like an incandescent lamp which he called an Audion and which device had proven worthless”. That worthless device was the triode.

Towards the triode

The story of the invention of the triode is confused. De Forest’s early attempts to design a new detector were frustrated by court cases for infringement of others’ patents, e.g. those of Reginald Fessenden. Eventually he returned to an observation he had made in 1900 that a gas flame dimmed when sparks were generated by his induction coil. This suggested that a gas flame could be used as a radio wave detector. In fact he found that the effect was caused by sound waves from the spark, not radio waves.

Despite that, he maintained a “firm conviction that in the heated gases surrounding incandescent electrodes there must nevertheless exist a response, in some electrical form, to high-frequency electrical oscillations.” This conviction led to experiments with electrodes in the flame of a Bunsen burner, and with gas inside a glass bulb ionized by a potential between a cathode and an anode. In this way de Forest started to experiment with thermionic diodes, invented by J.A. Fleming in 1904.

De Forest apparently regarded the ionized gas inside the valve as essential. He wanted an incoming signal to trigger the gas from one conducting state to another, in a manner parallel to that achieved in the popular coherer whose resistance changed dramatically in the presence of electromagnetic waves. It was a long time before he accepted the true explanation of how a vacuum diode worked, based on O.W. Richardson’s 1903 explanation of thermionic emission.

So in seeking to cause the trigger effect he wanted in the gas inside the diode, de Forest introduced a third electrode to which he applied the input signal. Although none of the many permutations of shape and size for the third electrode produced a very good detector, he found that the best was an open grid of fine wire. Hence the invention of what we know as the triode. De Forest used the term Audion for both diodes and triodes.

Patent battles

Experts seem to differ as to whether de Forest actually began with Fleming’s diode and then used the gas flame experiments to try to fight off the accusation of infringing Fleming’s patent, or whether de Forest’s account is the truth. De Forest was always sensitive to the possibility of a suit for infringement of Fleming’s patent, which was owned by the Marconi Company. When the suit did come, Marconi won. Some accept de Forest’s explanations of how he made his invention as being the way it was, others see them virtually as disinformation designed to protect himself against this possible suit.

The triode was invented in 1906 and a patent filed in January 1907. De Forest seems to have regarded it as a finished product and did not seek further improvements. He turned his attentions to radio telephony. For years the triode was simply another radio detector, sometimes better, sometimes worse than the more popular crystal or electrolytic detectors.

What transformed the triode into the basis of electronics were the improvements made by industrial laboratories following the discovery of how to use it to amplify and oscillate. These circuit improvements were made independently by several people in 1912 and 1913, de Forest being one of them. The arrival of the amplifier was of great significance to the telephone companies as well as the those involved in radio telegraphy. AT&T bought the repeat rights to the triode for $50 000 in 1913 and later the radio rights as well.

Lee de Forest: one of the last great individual inventors.

The value of the triode as an oscillator was that it could be used to generate continuous electromagnetic waves for radio transmitters. Four men contested the patent rights to the invention, with de Forest eventually winning the legal battles. The longest patent litigation in American radio history was that between de Forest and Edwin Armstrong over the invention of the feedback or regenerative circuit. When Armstrong won the first round in 1917, de Forest sold his patents and any future valve inventions he might make to AT&T for $250 000. From then on he seemed to lose interest in radio, turning instead to talking pictures. The final legal judgement however went to de Forest, with engineers generally feeling that Armstrong had been let down.
Success
Once the triode had found important uses as an amplifier and oscillator, industrial scientists were quick to understand its mode of operation. De Forest's gas was evacuated to produce a high-vacuum device and a filament life of 1000 hours was achieved in 1913. Oxide-coated filaments increased emission and more new circuits were invented such as the push-pull amplifier (E. H. Colpitts, 1912) and the Colpitts and Hartley oscillators. The First World War provided further stimulus for improvements and use. A somewhat similar path was followed in Europe where Robert von Lieben patented first a diode (1906) and then a triode (1910).

In 1911, when de Forest's company was in severe financial difficulty, he took a job with the Federal Telegraph Company in Palo Alto, California. California then became his home.

Above all, de Forest was a prolific inventor, not a businessman nor a scientist. Amongst his other patented inventions were a high-frequency surgical cautery device, several types of microphones and loudspeakers, and stereoscopic and large-picture television. Naturally he received many medals and decorations but the decision not to award him the Nobel Prize is said to have left him heartbroken. He seems to have had the knack of inspiring intense loyalty in some people, but antipathy in others.

For the last two years of his life illness kept him bedridden, almost totally incapacitated, and financially drained. He died on June 30, 1961, at his home in Hollywood, California, in his 88th year and just four years after his last patent was issued. His fourth wife, Marita, survived him. He was one of the last great individual inventors.

References

Next in this series: Grace Hopper - pioneer of computer languages and software.

Tony Atherton is a Principal Lecturer at the IBA Harman Engineering Training College, Seaton, Devon.

MMIC - Monolithic microwave integrated circuits by Yasuo Mitsui (Mitsubishi Electric Corporation). This volume is one of a series of reviews (their subject areas are electronics, computers and communications, manufacturing technology, new materials, and information technology) which seek to overcome the language barrier by presenting an accessible English-language account of some aspect of modern Japanese technology. The author presents a survey of MMIC technology (eight Japanese companies, he says, are active in this field) covering manufacturing processes, circuit design and prospects for the future. His text is extensively illustrated with photographs and diagrams, and there is a 148-item reference list at the end. Gordon and Breach Science Publishers, P.O. Box 197, London WC2E 9PX; Harwood Academic Publishers, P.O. Box 786, Cooper Station, New York NY 10276; 127 pages approx. AS, soft covers, $47, ISBN 2-88124-286-3. This book is also available through the Science and Arts Society, a book club specialising in high-level reference works, at the reduced price of $34; details from Harwood Academic Publishers.

Guide to Commercial Telecommunications Services by Jeffrey Hsu. User's introduction to electronic banking, e-mail, teleconferencing and on-line databases: author describes what's on offer and how to gain access to it, with sample on-screen dialogues for many systems. Among the hundreds of sources mentioned in the book- most of them American- are many in the scientific and technical field, including the Institution of Electrical Engineers' Inspec system, described here as "one of the most comprehensive sources on computers, electronics, information systems and technology, and physics". Prentice Hall, 397 pages, soft covers, $26.05, ISBN 0-13-368879-8.
APPLICATIONS SUMMARY

Filter design the easy way

In Application Note 27A from Linear Technology, the emphasis is on simplifying filter design procedure. It discusses two methods of designing bandpass filters from switched-capacitor building blocks - one using traditional non-identical sections and the second involving identical sections.

Design tables are included, one of which Linear Technology claims enables anyone to design Butterworth bandpass filters.

One of three design examples in the note is this eighth-order bandpass filter for 10.2kHz. Linear Technology, Microcall, Thames Park Road, Thame, Oxfordshire OX9 3XD. Tel. 0844 261939.

Fault finding with an ammeter

A current meter sensitive enough to measure the resistance of a PCB track is an invaluable fault-finding tool. For example, finding a short-circuited decoupling capacitor on a dense logic board is very time consuming by conventional methods, but with a sensitive current meter finding even a partially-shorted capacitor should take no longer than a few seconds - without track cutting.

This application relating to the TL101A ammeter is outlined in a note from Transducer Laboratories. Among other uses suggested for the meter are cable-length determination and cable voltage-drop measurement. Transducer Laboratories, Guildford Road, Farnham, Surrey GU9 9P2. Tel. 0252 733732.

Power Hall device simplifies brushless motors

Design of small brushless motors is simplified by the availability of power Hall-effect ICs. Sprague's UGN5275/7 latching Hall-effect sensors can sink 300mA continuously and besides power-output transistors include a Hall voltage generator, an op-amp, a Schmitt trigger, and a voltage regulator. As a result, little more than one IC is required for commutation.

This circuit is the only one in the device data sheet, but guidelines for application are given. Sprague Semiconductors, Balfour House, Churfild Road, Walton-on-Thames, Surrey KT12 2TD. Tel. 0932 253355.
Power-factor problems in switch-mode PSUs

Most switch-mode power supplies have a poor power factor, and as a result draw inordinately high peak currents from the mains supply. In addition, harmonics produced by the current pulses develop substantial amounts of power-line noise and distortion, and since producing the harmonics takes voltage for a conventional pulse-width-modulated converter. A power factor better than 0.99 is achievable says Ambar. Ambar Cascom, Rabans Close, Aylesbury, Buckinghamshire HP19 3RS. Tel. 0296 434141.

Fax facts for modem designers

Communication standards are fine for users but they can cause problems for designers. For those of you considering new fax implementations, RCS Microsystems has produced an information sheet listing and outlining the relevant standards.

Addresses of standard sources are given, together with a list of fax modem products and application notes. Rockwell, RCS Microsystems, 141 Uxbridge Road, Hampton Hill, Middlesex TW12 1BL. Tel. 01-9792204.

Data on this error-detecting fax modem forms part of a designer’s information pack. Rockwell’s R96EFX is a 9600 bps modem IC that conforms to CCITT recommendations V.29, V.27ter, V.21 Ch.2, T.3 and T.4; it covers the binary signalling requirements of T.30 too. Also in the designer’s pack is data on other fax modem products and the information sheet mentioned here.
In the September 1988 issue of Electronics & Wireless World, Peter Johnson introduced a piezoelectric cable manufactured from conventional piezoceramic materials such as lead zirconate titanate. The article quite correctly pointed out that a thick piezo-polymer was highly desirable from the sensitivity point of view, but was difficult to manufacture because of a stretching stage necessary to render the polymer piezoelectric. However, a thick piezo-polymer has been available for several years under the name Vibetek-20 and is manufactured by a continuous process, resulting in a cost-effective solution to many electromechanical sensor problems.

The material used is polyvinylidene fluoride, or PVdF, and is manufactured as a continuous wire, with an outside diameter of 1.5mm and an active polymer thickness of 0.5mm (Fig. 1). It is mechanically flexible and can be wound around a mandrel as small as 5mm diameter, so that a wide variety of sensor shapes and sizes may be constructed from a continuous length. Vibetek-20 has a high piezoelectric activity and the coaxial geometry results in a high capacitance per unit length as well as offering a measure of self-shielding which is a particularly valuable feature when dealing with very small signals.

Piezoelectricity

The phenomenon of piezoelectricity occurs because of a special arrangement of atoms in the crystal structure of the material. These do not generally occur spontaneously (crystalline quartz is a well-known exception) and certain operations are necessary in order to render materials piezoelectric. For polymers these operations may include stretching the material by about four times at a suitable temperature, and the application of a high electric field. PVdF has been identified as the polymer which offers the highest piezo-activity when these operations have been performed.

It is the stretching stage which makes continuous production of thick piezoelectric polymer difficult. Thin piezoelectric PVdF films (7-40μm) have been available since soon after the discovery of the piezoelectric effect in the material.

Manufacture of Vibetek-20 with its 300μm wall thickness, however, is performed in three stages: an extrusion stage, a stretching and poling stage, and an electroding stage, all of which are continuous. By these means, a continuous piezoelectric coaxial cable can be manufactured in lengths of 0.5km or more.

Properties

Piezoelectric materials are anisotropic and are characterized by tensor quantities: but from the point of view of the sensor designer, and for the special case of a coaxial cable geometry, simplifications can be employed. Figure 1 shows a diagram of the cable with various directions labelled. The application of a stress in a given direction results in a charge or electric field being developed in the radial or 3-direction since this is defined by the electrode geometry. The mechanical input can be along the cable, defined as the 1-direction, or radially or hydrostatically, which means all directions at once. Table 1 shows the longitudinal and hydrostatic voltages coefficients, together with some other important parameters.

Table 1: Mechanical and electrical properties of piezoelectric coaxial cables

<table>
<thead>
<tr>
<th>Property</th>
<th>Vibetek 20</th>
<th>PZTSA</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>220</td>
<td>75</td>
<td>MPa</td>
</tr>
<tr>
<td>Density</td>
<td>2.523</td>
<td>7750</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Specific acoustic impedance</td>
<td>2.7</td>
<td>33</td>
<td>kRayl</td>
</tr>
<tr>
<td>Relative permittivity</td>
<td>12</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>1kHz Cable capacitance</td>
<td>600</td>
<td>-</td>
<td>pF/m</td>
</tr>
<tr>
<td>Piezoelectric coefficient, 23°C</td>
<td>280</td>
<td>11.4</td>
<td>mV.m/N</td>
</tr>
<tr>
<td>longitudinal</td>
<td>130</td>
<td>2.1</td>
<td>mV.m/N</td>
</tr>
</tbody>
</table>

Fig. 1. Dimensions of the Vibetek-20 cable. Stress (for example, a mechanical stress in the so-called 1-direction, along the cable) results in a charge or electric field in the radial direction, the 3-direction.
Applications

The mechanical flexibility of this cable, its high piezo voltage coefficient and its availability in long lengths offer sensor designers a greater freedom in the development of novel devices.

Two broad application areas are acoustics and impact sensing, and in acoustics the material lends itself to the underwater domain because it offers a very good match to the water.

A length of Vibetek-20 can be placed in the sea and will operate as a hydrophone, receiving any acoustic signals present. However, an increased acoustic sensitivity can be achieved by winding the piezo cable in a helix and potting the structure in a suitable container. It is now possible to manufacture extended acoustic sensors greater than one metre in length and with sensitivities exceeding those of conventional ceramic-based devices. A bonus is the fact that the device is extremely shock-resistant. Frequency responses flat to within 1dB up to 5kHz or more are achievable.

In impact sensing, piezoelectric materials can be used on vehicle bumpers, on automatic doors, on missiles and on pressure mats, to name only a few applications. Figure 2 shows the signal generated by the impact of a 60kg steel ball dropped from 2cm on to a plaque of material containing a spiral of Vibetek-20. No amplification has been used: the cable was connected directly to the oscilloscope (input impedance 1MΩ). Hitting the same plaque with a hammer results in signals of several hundred volts, whilst experiments involving a 0.5kg mass striking Vibetek-20 at 500m/s show that the material can generate voltages in excess of 1500V. However, even finger pressure can generate usable signals, as a simple calculation shows.

Assume that we apply a force equivalent to, say, a 200g weight over a length of about 2cm of the cable. This is an area of approximately 10⁻³ m² and the pressure experienced by the cable is therefore about 20kPa.

Although the pressure is not applied hydrostatically, we will take that piezo-coefficient as an approximation. Multipllying this coefficient by 0.5mm, the thickness of the piezoelectric layer in the cable, results in a figure of 65µV/Pa. Using the applied pressure we have obtained, we arrive at an output voltage of 1.3V. In fact, the situation is a little more complicated: the rest of the Vibetek-20 cable over which no pressure is applied acts as a potential divider: the output calculated is a no-load output impedance of the preamplifier has a direct bearing on the frequency response of the system, since the circuit acts as a high pass filter with a corner frequency determined by the RC combination.

Figure 3 shows the signal whose lowest frequency is 1.0Hz and the sensor length is 1.0m. A preamplifier with an input impedance of greater than 270MΩ will be required. On the other hand, if only signals above 10kHz are of interest, the input impedance need be only 27kΩ.

Figure 3b shows a tested circuit which has an input impedance of about 80MΩ. It is necessary to include a parallel bleed resistance to provide a DC path to earth when employing operational amplifiers in the non-inverting mode with capacitive sources. If large voltages are expected, as may be the case under high impact conditions, it is wise to include some back-to-back diodes to protect the input of the preamplifier. PVDF, it is possible to tailor the response by choosing more or less rigid materials in which to embed the cable. For example, the steel ball test described earlier generates a signal of about 50V peak with a rise-time of about 2ms when the sensor cable is embedded in a soft material such as silicone rubber. The same test on a plaque made from a rigid epoxy results in a peak signal of 7V, but with the rise-time decreased to 1.25μs.

Other major applications include vibration monitors, intruder alarms and musical instrument pickups. The material has been used in non-destructive testing, in a breathing monitor and as a "hump" detector in the fruit and vegetable packaging industry.

The self-shielding properties of the cable result in a system resistant to electromagnetic interference.

Sensor design

Sensor design using Vibetek-20 requires a different approach to that employed for conventional piezoceramics. The sensor can be modelled as a voltage source in series with a capacitor which represents the region of the mechanical input, and a further parallel capacitor which represents the remaining unstressed sensor cable. As a result, frequency-independent voltage division occurs and the signal appearing at the end of the sensor cable is attenuated. Thus, in most cases it is important to apply the mechanical input over the whole length of the cable.

The type of bonding or potting material used with the sensor cable is important. Piezo-ceramics are so dense and rigid that the bonding or potting materials have very little effect on the overall response to mechanical inputs. But with

Vibetek is a registered trademark of Foacs Ltd, Unit 4, Cheney Manor Industrial Estate, Swindon, Wiltshire SN2 4BE; tel: 0783/543320.
UNAOHM EP741FMS
FIELD STRENGTH METER/SPECTRUM ANALYZER

Frequency Range: 38 MHz to 1000MHz, continuously adjustable via a geared-down control
Frequency Reading: TV Bands - 4 digit counter with 100dBuV resolution
FM Bands - 3 digit counter with 100dBuV resolution
Reading Accuracy: Reference 0dB ± 1dB
Function: NORMAL: channel only
TV Monitor: ZOOM: 2 to 1 horizontal magnification of picture
Panorama: Panoramic display of the frequency spectrum within the selected band and of tuning marker
Panorama Expansion: Adjustable expansion of a portion of the spectrum around the tuned frequency
Analogue Measurement: 20 to 40dB: Static measurement of received signal - Scale calibrated in dBuV (at top of picture tube) to true value of signal level
DC/AC Voltmeter: 5 to 50V
Measurement Range: 20 to 130dBuV in ten 10dB attenuation steps for all bands - 50 to 130dBuV in nine 10dB steps for FM
Measurement Indication: ANALOGUE: brightness stripe against calibrated scale superimposed on picture tube. The stripe length is proportional to the sync peak of the video signal
Video Output: BNC connector: 1Vpp maximum on 75 Ω
DC Output: +12V/25mA maximum. Power supply source for boosters and converters.
TV Receiver: Tuned in and displays CDR system; TV signals; Other standards upon request
Additional Features: (1) Video input 75 Ω. (2) 12V input for external car battery. (3) Output connector for stereo headphones.
PRICE: £1344.00 nett, excluding V.A.T. and Carriage

UNAOHM EP742
FIELD STRENGTH METER/SPECTRUM ANALYZER
Specification as EP741 + Synthesizer Tuning 19 channels. Programme Storage. (EP741 Satellite Converter can be added as illustrated.)
PRICE: £1498.00 nett, excluding V.A.T. and Carriage

UNAOHM EP815
T.V. SATELLITE CONVERTER

Frequency Range of Input Signal: 95MHz to 1250MHz: Frequency is continuously adjustable through a geared-down control
Frequency Reading: Throughout the frequency meter of the associated field strenght meter
Input Signal Level: From 20 to 100dBuV in two ranges - 70 to 70 and 70 to 100:
Power Source: Available at BNC input connectors as follows: 15V DC/25mA external or 25V DC maximum external
Salus Indication: Continuously overlaid and short circuit conditions of power circuit are all shown by LED lights
Demodulation: FM for PAL, SECAM and MAC systems. Switching to MAC system is provided together with room for an optional MAC decoder
Audio Subcarrier: 5.5MHz to 7.5MHz continuously adjustable. Provision for an automatic frequency control
PRICE: £536.20 nett, excluding V.A.T. and Carriage

UNAOHM EP760
COLOUR TV FIELD STRENGTH METER

Input
Sensitivity: 20 ± 10dBuV in ten 10-dB steps for TV and FM bands - 60 to 130dBuV in eight 10-dB steps for FM
Readout: Digital. Input signal level provided directly in dB.
Frequency Range: 38 MHz to 650MHz
Selection: 56 channel frequency synthesis with bands i-II-IVN - 30 program storage capabilities - manual tuning with sharp-tune control
Readout: Two LCD displays, the first for channel or program; the latter for frequency in MHz with 100kHz resolution for TV bands and 10kHz for FM
Spectrum Analysis
Frequency Range: The entire TV and FM range. It is possible to display a portion of the selected band
Marker: Two markers are available in different colours and with digital frequency reading. In addition to locating frequencies, they are used to define frequency intervals
Video Filter: A selectable video filter is provided to improve measurement accuracy in connection with Unaohm noise generator NG750.
Sync Pulse Display
Display: The entire horizontal blanking time, sync pulse and burst is included, is displayed on the left side of the picture tube
Audio
Mono: TV and FM audio can be heard through a loudspeaker. 0.5W maximum power
Stereo: TV and FM audio can be heard as a pair of speakers (2 equal to or higher than 8Ω)
Video
External video Input/Output: Approx 700p on 75Ω, positive polarity. Pin pair 19-20 of SCART
RGB output: Approx 700p on 75Ω, Pins 7-11-15 of SCART
Teletext decoder: All teletext pages broadcast can be read by means of the front keyboard of the unit.
PRICE: £2465.40 nett, excluding V.A.T. and Carriage

TAYLOR BROS (OLDHAM) LTD.
BISLEY STREET WORKS, LEE STREET,
OLDHAM, ENGLAND. OL8 1EE
TEL. 061-652-3221 TELEX: 669911 FAX: 061 626 1736

CIRC11 NO. 167 ON REPLY CARD
Who goes to university?

Your September editorial, "A nation of hairdressers", contains an estimate of the number of children who should statistically be suitable for university education, an estimate which is consistent with the criterion of an IQ of around 120 or above (on the usual sampling of a gaussian distribution with a standard deviation of 15%).

I do not agree with this; although the cause of IQ is controversial, as to the relative importance of environment and genetics, there does exist a stable statistical distribution. But when I first looked at university numbers (in the 1950s) I assumed that only half those qualified would wish to go to university. The proportion is now greater now, but motivation is vital to success.

I once tried to find a correlation between A-level qualifications on entry and class of degree achieved in a university department (of electronic engineering) and concluded that there were only two safe deductions: that no student entering with less than three C's would be likely to achieve first-class honours and that none with at least one A would be likely to fail. Even these weak correlations are expressed in the form "would be likely to" because human behaviour can be affected by so many things, e.g. health, environment or personal relationships, that it is impossible to predict it precisely: one says that a young person "shows promise" but it remains to be seen whether the promise will be fulfilled.

On the National Curriculum one already hears of "How can we fit it all in?" while politicians add to the pressure by urging the extended teaching of more than one foreign language. I am one of the generation who went through what were then called grammar schools. We had slightly more class hours per week (including Saturday mornings) and much more homework than is usual in comprehensive schools. At what stage one should be taught that achievement comes through work?

You may get a protest from hairdressers! Seriously, though, I have suggested elsewhere that the least able cannot expect to find employment in personal services because the customer would not accept being served by such a person. They cannot become road-sweepers because roads are now swept by machine, so there are few opportunities for the uneducated.

D. A. Bell
Beverley
North Humberside

Wien oscillator amplitude

Recently, I needed to obtain a low-distortion, full-wave-rectified sine wave of accurately controlled amplitude at a frequency of about 50Hz. I used an op-amp Wien oscillator, a precision full-wave rectifier and an amplifier to compare the average value with a DC reference voltage. This produces an amplitude error voltage which controls the oscillator output by varying the bias on a fet in the oscillator gain-setting network. The problem is: how long does the oscillator take to reach a given amplitude?

I inherently sensitive to light, but the manufacturer's usually take care to present sufficient light reaching the junction which causes problems—except in photodiodes, of course! Early diodes had only an external coat of paint and much trouble was caused by pin holes or scratches. Further Mr McLean has faulty diodes or his application is abnormally sensitive in some way.

J. M. Woodgate
Ravleigh
Exe

Units

Colin White, in his September article "Electromagnetic units in chaos", certainly justifies his title, but offers no explicit criticism of the SI units, merely referring to them noncommittally as "our present SI system". There are two objections to this system.

The first is that an attempt to make a current measurement. Using only the equation $\frac{dI}{dt} = 2C \overline{I}_r$, it soon runs into difficulties. This is partly because all currents flow in closed loops and in this simple non-vectorial form the equation gives no idea of how the contributions to the force from the return sections of each loop are to be calculated, and partly because although currents consist of charges in motion the fact that the electrostatic forces between those charges must be subtracted off is not explicitly stated.

However, both these difficulties can be overcome; it was the development of the current balance as the primary device for providing a standard current that prompted the choice of current as the basic electrical unit.

The second, more fundamental objection was stated in my letter of September 1988. The SI system incorporates a dimensional distinction between (E) and (F) and between (B and H); not found in the earlier systems, a distinction which is unphysical. It arose because in the development of the Giorgi units (precursors of the SI units) certain equations from the old electrostatic system which were taken over unchanged included suppressed dimensional factors, in effect introducing a two-tier system of electrical charges and...
associated field vectors, with E and P in different tiers. It was then found that the form of the equation linking E, D, and P which is derived from Gauss's theorem could be simplified by assimilating the dimensions of D to those of P. This "simplification" led directly to the rash of different dimensions afflicting the electromagnetic field vectors in the SI system, which needlessly complicates conversions between the old and the new units.

C. F. Coleman
Grove
Oxfordshire

Open letter to the recording industry

In the 1970s, great advances in high-fidelity sound equipment took place. There was also an appalling standard of pressing quality on most records, albums in particular. We saw the recording industry lose its knuckles severely rapped, which brought about a considerable improvement in quality in an attempt to save the industry’s profits in the face of the increasing popularity of the tape cassette.

Are we now to repeat the fiasco with compact disc? There has again been a huge leap forward in sound reproduction, CD players costing, on average, around £250, with features such as multi-oversampling and bit multiplication. We are promised 100dB or more of signal-to-noise ratio, -95dB harmonic distortion, zero crosstalk, wow and flutter and hum, and superb frequency response.

Why then is it that, after paying for the latest digital (CD) player, we find that not one CD in the charts even nearly approaches the performance of even a standard player? I have found that the typical signal-to-noise on many chart CDs is a little over 60dB (about the same as a good vinyl record). In addition, some have levels of 50Hz hum, again typically ~60dB, that should have been banished from all recordings years ago. The best CD I could find (Paul McCartney, Flowers in the Dirt) provides a mere 75dB signal-to-noise ratio — some 25dB short of the promised magic 100dB.

The current state of CD recording quality makes complete nonsense of the latest state-of-the-art technology fitted to current CD players. CDs are not particularly cheap and I believe the public are being totally misled by the promised improved quality when the quality of recordings is so poor. You people in the recording industry must put some of those huge profits back into refurbishing your recording equipment to a standard to at least match today’s hi-fi systems.

Les Sage
Sage Audio Electronics
Bingley
York

R.I.P. cold fusion?

"Need we say more?" (E&WW Research Notes, p. 847, September 1989). If the UKAEA at Harwell spend £321,000 and conclude that cold fusion is dead, then the judicial authority of British Science has put on its black cap and death must follow — that is the way of Nature — at least in the UK.

The August 10 issue of the local newspaper tells us in Southampton that cold fusion has the "US seal of approval" because a Salt Lake City panel in Utah have "released $4.5 million to set up a national institute to investigate the claims of Professor Fleischmann of Southampton University". This follows the report in the Financial Times some weeks before, advising that General Electric of USA is now taking an active role in cold fusion research initiated by the Utah experiment of Fleischmann and Pons.

The layman might wonder how Harwell’s failure to detect enough neutron emission leads to the no-fusion-in-Utah conclusion when Harwell scientists firmly believe that fusion is occurring in the sun, bearing in mind that experiments in South Dakota have failed to detect enough neutron emission. No neutrinos should, surely, mean no solar fusion, unless we live by double standards.

In science, we have a tendency to believe what we want to believe, especially if we have some special knowledge and it saves us the trouble of learning something new. I am no exception and, if only because my theoretical research assures me that there are no neutrons in the deuterion. I can accept "cold fusion" with no neutrons; see my paper: "The Theoretical Nature of Neutron and Deuteron" in Hadronic Journal, vol. 9, pp. 1290-1306, 1986.

The Harwell experiments summarized in the E&WW Research Notes were numerous that they led to the "Need we say more?" question. But more must be said: a computer result is as good as the skill and imagination of the programmer and his knowledge of how the computer can be made to work and so it is with experiments. If the computer is an analogue computer containing no "neutron" features and the programmer assumes it to be digital and neutron orientated, the programmer is hardly likely to succeed.

The Harwell scientists are not reckoning with the possibility that entry of a deuterion from a light-atom environment into a heavy-atom environment involves a vacuum energy fluctuation of several MeV, enough to trigger the fusion reaction, without needing or producing neutrons. The deuterion has a graviton field and palladium has a supergraviton field. There is a phonon resonance condition which is particularly sustained, in advance of the transition from graviton to supergraviton, which causes the energy fluctuation when a deuterion plus one palladium atom has a combined mass which sums to that of one graviton plus one supergraviton. Another incoming deuterion has to meet up with this short-lived resonant deuteron state for fusion to occur.

Supergraviton resonance on its own can, incidentally, explain "warm superconductivity" when a perovskite molecular group, such as La$_2$CuO$_4$, or Y$_2$CuO$_4$, has a mass that matches a near multiple of the supergraviton mass (102 atomic mass units). This superconductivity feature is described in a published UK Patent Application.

C. F. Coleman
Grove
Oxfordshire

Cold nuclear fusion

I read with interest, but no surprise, that the Harwell team had failed to find any evidence of room temperature fusion. We know already that cold fusion can take place (see Cold Nuclear Fusion, Johann Rafelski and Steven F. Jones, Scientific American, July 1987) though it works better at an optimum temperature of 900°C. It is not unreasonable to suppose that an improvement on this will eventually be found.

We should not forget that the method being pursued by Harwell and sister institutions is at least 40 years old in concept, and that an enormous organization spurning off billions of public money is built on it. The careers of tens of thousands of scientists and of top administrators with considerable political influence are at stake. If this attempt at room temperature fusion had proved a success then at the very least, we would have heard nothing about it. We can only wait to see what reports are issued by other less interested organizations, and urge that original thinking and research continue in spite of the risk of overt or covert opposition.

Keith Wood
West Derby
Liverpool

de Sitter stars and the ether

If a distant binary star system is rotating in a plane which includes the Earth, then astronomers should see the image of the stars oscillating back and forth with an amplitude equal to the subtended star system diameter, but only if the velocity of light...
were constant in all reference frames. W. de Sitter pointed out in 1913 that if these were not so, for distant binaries of moderate angular velocity, light from the receding member of the binary would be slower by $2v$ than the faster component from the approaching member and ultimately the "fast" light would overtake the "slow" light and get to Earth before it; thus an earlier event at the star would register at Earth after a later one (Fig. 1).

Since binary stars were known and such phantom appearances and disappearances had never been reported, this was taken as proof of the constancy of the velocity of light. It has remained a major proof as it does not depend on the interpretation of terrestrial experiments such as Michelson-Morley and any theory of light and ether would have to address it.

J. G. Fox remarked that the Universe contains large quantities of material capable of scattering light and that light from a de Sitter star would be intercepted on its way to Earth, preventing the de Sitter effect from occurring. Clouds of small particles permute space and form a "screen" on which the oscillation of the distant binary is relayed at constant light velocity; light received at Earth would have been forward-scattered from an intervening dust cloud.

Thus, though the effect is unlikely to be observed at optical frequencies, the Rayleigh Law fourth power gain at 21 cm over 500 nm would predict some 10^{13} times less scattering at radio frequencies than in the visible.

Radio waves might get through unaffected.

In neither paper did de Sitter give a formal solution for his star; Relativity was in full swing, the effect had not been seen. The system has to be solved parametrically. Considering one half of the binary for simplicity (Fig. 2), it can be seen that for uniform angular velocity ω in a circle of radius r the displacement y of the star is

$$y = r \sin \omega t,$$

and the arrival time at Earth t_a of light leaving at t, is

$$t_a = \frac{D + (r \cos \omega t - c \cdot rw \sin \omega t)}{c + rw \sin \omega t},$$

where D is the distance of the system. A graph of y versus t_a gives the situation at the Earth. A terrestrial observer will see an array of periodically spaced phantom star images, like ducks in a shooting gallery, proceeding across the aperture of his telescope, appearing at one end from nowhere and disappearing suddenly at the other (Fig. 3).

The behaviour of the phantoms can be exactly described, their lateral velocity being

$$U = \frac{V y}{c v - D w v - V^2},$$

(3)

Under certain circumstances they move faster than $c (\nu = c + rw \cos \omega t, V = rw \omega \sin \omega t)$. The number of phantoms in the field and the source energy enhancement is given by

$$N = \frac{4\omega D}{\pi (c^2 - r w^2)},$$

and there are two types, fast and slow.

For weak radio signals, radiotelescope interferometers are often used and high resolution is obtained by having very long baselines. Such a system, at low resolution, might display the de Sitter phantoms as a periodic signal, a pulse, as the moving phantom array came in and out of phase with the antenna elements whose sampling phase pattern defined the locus of the interferometer. A small rotating binary would seem as large as its binary radius. N times more intense, and pulsing. Focused off-centre, the pulse will be a doublet or pair; there should also be a pseudo-Doppler shift in the apparent wavelength dispersion versus displacement, long waves arriving later. This type of low-resolution behaviour may be of interest in connection with pulsar and other variable sources.

With regard to higher-resolution telescopes it is of interest that the lateral phantom velocities can be greater than c since this is a situation pertaining in the recently discovered fine structure of quasar sources. Radio signal density maps of some quasars obtained with long baseline interferometers have shown discrete objects, now called superluminaries, which are roughly equidistantly spaced and move across the long axis of the quasar field at speeds which can be in excess of c. The object NGC 6251 shows on a VLA radio map at 1410 MHz as a long thin stripe of small spherical point sources, doubled up at intervals which are roughly the same. It is likely that these elements are in motion across the field from other studies of similar systems.

Are these de Sitter phantoms? If the ether exists then the effect should occur and should be sought at long wavelengths. Recent cosmological discoveries may have revealed it already.

References

We will provide our derivation of the phantom equations for anyone interested.
Feedback and fets

Having just read Ivor Brown's letter in the July 1989 issue, I feel that the matter of slew-rate limiting needs a little more ventilation. I quite agree that in the amplifier system he describes, the slew-rate of the early stages has a marked effect on the distortion produced. However, to bring this about, he has had to assume a dead-band effect in the output stage; in other words, for small signals there is no output at all, as in a Class-B stage with zero quiescent current. Since much of the design work done on amplifiers in the last thirty years has been aimed at eliminating such gross crossover discontinuities, I must admit that I am inclined to view the demonstration as tending towards the not very useful.

The sharp spikes seen on the distortion residual of every under-biased Class-B amplifier are a demonstration of this effect. Improving the slew-rate of the early stages will make these spikes more narrow, but will not reduce their amplitude, and this would be considered a faulty or maladjusted amplifier rather than one under-designed for slewing. Increasing the quiescent current reduces the height of the spikes until they merge into the main body of the distortion products, and in fact this is the only reliable way of setting quiescent current. With it correctly set, a well-designed output stage will have only very small slope changes around the crossover point, and the early stages are not called upon to make particularly rapid adjustments to servo-out these errors. Clearly, with poor design slew-rate could be a problem, but then so could almost everything.

To turn to the bipolar hybrid output stage, the driver transistors do indeed operate in Class AB, but I doubt if these relatively fast T15 devices have a bad effect on the crossover behaviour; all that can be said is that the stage as a whole is remarkably linear without any overall feedback. My own view is that the positional mismatch of the not-so-vanishingly mesdots around the crossover region is probably the cause of what crossover perturbations can be seen. I have tried Class-A drivers with AB bipolar output devices, and there seemed to be no benefit to be had.

Finally, it might be valuable if all of us provided more measurements in articles and letters, as otherwise comparison and reasoned discussion are very difficult. In particular, designs are often labelled "low feedback" or "lashings of feedback" without specifying how much. While measuring open-loop gain is not always easy, the results should be highly informative, and perhaps Mr. Brown will reveal the results for his design in his forthcoming article.

Douglas Self
Forest Gate
London, E15

Motion through the ether

It should be obvious that even if E. W. Silvertooth (May, 1989) and those of similar thinking are on to something, most of Relativity is not on its way to the scrap heap, and time spent on its study is not at all wasted. For an analogy consider the designing of some large civil engineering project. Pretty certainly, when it is put up all verticals will be checked with spirit levels or plumb lines (or some high tech equivalent). But hang on, this planet is a spheroid, so the verticals will not be quite parallel. Is spherical geometry used, then, to design the thing? I doubt it. Good old Euclidean is much easier to manage, and any corrections can be calculated simply at the end.

With an absolute reference frame you must account the motion of the planet as it moves around the Sun, the Solar System going round the Galaxy. Or you could do the donkey-work assuming a relative reference frame and at the end look up some standard tables to see what to add and decide whether it is significant. The figure of 378 km/s given in "Motion through the ether" is about 5-40ths of 1% of the 300,000 km/s it is worked from. The reason that I put the fraction in that form is because it compares readily with the roughly 3-40ths of 1% by which the rounded 300,000 km/s is a mystery from first that it should be noted that these fractions are not cumulative with each other, but one will be within the ether.

To explain certain aspects of the Big Bang, some physicists have depicted for us an ether where particles come into existence from "nothing". These "virtual" particles appear in pairs of matter and antimatter, and annihilated again almost instantly. Annihilation creates energy but "appearances" absorb it, and charge is always balance, so normally there is nothing to see. But come extend this idea a little. If you introduce a bias somewhere then some pair-halves will be absorbed leaving their partners loose. What are these to do? Annihilate with the partners of others, which in their turn... In fact the bias will propagate. If large amounts of energy can be shared out, then the propagation will appear and behave as a wave, but set things up right and you will catch particles. Sounds familiar. And it doesn't need excusing as just an intellectual "tool". To be appreciated here is that any particles detected will have actually originated just in front of the detector. Similarly, particles coming off the source will be absorbed almost immediately. Energy passing from source to detector will be literally relayed by default. The speed at which it happens will depend on the speed at which the virtual particles appear or can be stimulated to appear. Maxwell, I think, had something to say about how electric and magnetic waves have to interact. Only a certain critical speed, which we now know by the letter c, of course, will do. If the above is what is actually going on then an electromagnetic wave propagates then a number of thinkings.

One is that no matter how fast original particle comes off a source the resultant wave will propagate at the speed of light, e, as we know it. Imagine that you and two colleagues are in a large hall. The one furthest away from you sneezes violently. Now, anybody with half a bit of knowledge about such things knows that the air in his breathing passages will be moving at supersonic speed. So what difference will the direction in which he is facing make to the time lag between your other colleague hearing the sneeze and your hearing it? Given that the other colleague is not too close to the sneezer, none, of course. The actual air motion will be dissipate in the immediate vicinity of the sneezer, and thereafter the shock wave will propagate at the prevailing speed of sound. Another thing that follows is that there is actually no entity that can be called a photon. Set up a line of dominoes, then push one to topple the others. What thing off your finger reached the last in the line? Could you weigh it?

Of course, few things can make an alternative more unattractive than something generally accepted that seems to work. Particularly when the alternative clearly cannot be too alternative. Relativity gets most effects near enough right, so much of an alternative scheme can look like an exercise in changing labels. The grip of Relativity is such that if an experiment should produce a result at variance with it then the experiment is immediately the suspect party.

G.M. Whiston
Bartley Green
Birmingham

ELF reception

It was interesting to read recent articles on non-parabolic satellite antennas. Readers may like to know of a novel experimental rig being used by a friend of mine - an RF engineer with a consuming interest in ornamental gardens. He has on his estate (he worked for a few weeks as an accountant before turning to engineering) about 350 garden gnomes in a variety of colours, each fitted with a small matching woolly hat sporting a large metal bell. With the aid of a theodolite and a long piece of 26swg constantan wire he has been able to adjust the position of each gnome by up to ±a,2 to constructively combine the diffracted reflections from the bells at a focus in the tunnel of an old galvanized water pipe hanging from the potting shed, inside which he is able to put his feet up in front of the television without fear of interruption from his wife.

Reception of Astra is excellent and he is now returning the gnomes to be ready for transmissions from Olympus, though he suffered a setback when six of the elements were unexpectedly pulled into the lake by a large goldfish and disappeared. He reports that the tolling of ghostly bells can be faintly heard when the water is chatty.

Bob McGregor
Hitchin, Hertfordshire

Has he thought of using the idea to BSB? - ed.
November 1989 ELECTRONICS WORLD + WIRELESS WORLD 1087

Modern Communications

TRAINING SYSTEMS

LJ Technical Systems offer a comprehensive range of modern communications equipment specifically designed for training and education.

Our modular systems cover the basic principles of AM, FM and digital communications and fibre optic technology.

For further information on the LJ range of Telecommunications trainers contact:-

LJ Technical Systems Ltd.

Francis Way, Bowthorpe Industrial Estate
Norwich. NR5 9J A. England

Tel (0603) 748001. Fax (0603) 746340

Additional Ex-stock T & M Kit

VARINAS (Claus Lyh) 0-27V0 20A 100A 15A 75A.

GOULD 05A000 digital synthesizer analyser.

PM534 standard TV signal generator N73G.

PM545 PAL 0.785v colour encoder.

PM612 universal switches 3 x 16.

PM618F multi modulators.

PM619A video monitors.

FLUKE 6806A digital multi-meter.

FLUKE 8015A/B 150Mhz logic analyser.

FLUKE 8017A/8100A TV waveform monitor.

FLUKE 8015A/B 150Mhz logic analyser.

FLUKE 6806A digital multi-meter.

WANTED:

Top quality high level equipment for stock or sell on commission. Please call, post or Fax list all quantity. Signal generators, spectrum analysers etc urgently required for Wakeling customers.

ALL OUR EQUIPMENT IS SOLD IN EXCELLENT, FULLY FUNCTIONAL CONDITION AND GUARANTEED FOR 90 DAYS. MAIL ORDERS AND EXPORT ENQUIRIES WELCOME PLEASE TELEPHONE FOR CARRYAGE QUOTE. ALL INSTRUMENTS ARE AVAILABLE EX-STOCK AS AT COPY DATE. GOOD QUALITY TEST EQUIPMENT ALWAYS WANTED FOR STOCK. PRICES QUOTED ARE SUBJECT TO ADDITIONAL VAT.

CIRCLE NO. 138 ON REPLY CARD

CIRCLE NO. 146 ON REPLY CARD
V-525 Cursor measurement
50 MHz real time oscilloscope

- 2 Channel
- CRT Readout of Key Parameters
- Cursor Measurement of ΔV, Δt and 1/Δt
- 1 mV/div Sensitivity
- Max Sweep 20ns/div
- Alternate Magnification
- DC Offset Function
- Signal Delay Line and TV Sync.

Expect more from Hitachi

HITACHI
In a word, reliability

13 Garrick Industrial Centre,
Irving Way, London NW9 6AQ
Telephone: 01-202 4311. Telex: 27449

THE COMPLETE DESIGN SERVICE

- **CAD** Analogue and digital design, simulations and PCB artwork produced for new or old circuits.

- **CUSTOM SILICON** capability. PALS, Gate Arrays, ASCI’s designed and supplied.

- **ON BOARD MICROPROCESSOR** hardware and software to provide local “intelligence” can also be provided.

We specialise in small low cost projects.

To find out how we can help you phone Chris Barnett on (0604) 713681

Nearly Electronics, 1 Beechcroft Gardens, Northampton NN3 2JP
Contriving parallel I/O on the IBM PC

Mike Hale describes a method of providing a general-purpose TTL interface via the parallel printer port while maintaining access to a printer on the same port.

Unlike many personal computers before it, the standard IBM PC is not equipped with any obvious unallocated general purpose input/output ports. Peripheral equipment, which may only need a few TTL signals to control, must generally be connected to an additional I/O card.

But a parallel printer port is installed as part of the base level PC specification on most machines, providing a standard hardware interface from the smallest 8088-based lap-top to the latest 80386 machines.

The parallel printer interface used on the IBM PC XT/AT sets the standard which all "compatible" manufacturers have to follow. Signals are TTL-level presented on a 25 pin D-type socket.

Apart from this unfortunate choice of connector, it is directly compatible with the "Centronics" standard printer interface.

IBM's design, detailed in the Technical Reference Manual for the PC/AT, uses standard LSTTL devices. Fig. 1 shows a typical PC-compatible interface design. PC compatibles may not use LSTTL, but the interfaces to the PC bus, and 25 way connector, will present similar signals.

To the PC bus. the printer interface appears as three parallel ports mapped in I/O space (Addresses shown in Fig. 1 are for LPT1).

Port 379h: this is the status input port. Not all eight bits are used. The bit allocation and corresponding pin numbers on the connector are

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0-D7</td>
<td>Not used</td>
<td>15</td>
</tr>
<tr>
<td>D3</td>
<td>ERROR</td>
<td>15</td>
</tr>
<tr>
<td>D4</td>
<td>SLCT (on line)</td>
<td>17</td>
</tr>
<tr>
<td>D5</td>
<td>PE</td>
<td>12</td>
</tr>
<tr>
<td>D6</td>
<td>ACK</td>
<td>10</td>
</tr>
<tr>
<td>D7</td>
<td>Busy</td>
<td>11</td>
</tr>
</tbody>
</table>

Bit 7 is inverted from the connector to the bus. Bit 6 can double as an external interrupt (INT0, on LPT1).

Port 37Ah: This port provides the output control signals. Again not all the bits are used.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>STROBE</td>
<td>0</td>
</tr>
<tr>
<td>D1</td>
<td>AUTO FT XT</td>
<td>11</td>
</tr>
<tr>
<td>D2</td>
<td>SLCT IN</td>
<td>17</td>
</tr>
<tr>
<td>D3</td>
<td>INIT</td>
<td>15</td>
</tr>
<tr>
<td>D4</td>
<td>Enable interrupt</td>
<td>15</td>
</tr>
<tr>
<td>D5-D7</td>
<td>Not used</td>
<td>10-11</td>
</tr>
</tbody>
</table>

Bits 0, 1 and 3 are inverted as they appear on the connector. Only the STROBE signal has an output filter. Again, like the data port the outputs can be read-back. The inversion of signals is corrected on a read to the bus.

PC PRINTER PORT CONNECTIONS

Signal allocations for the 25-way connectors are as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Direction</th>
<th>"Centronics"</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Out</td>
<td>STROBE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Out</td>
<td>Data bits 0-7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>In</td>
<td>ACK</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>BUSY</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>In</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>In</td>
<td>SLCT</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>In</td>
<td>AUTO FT XT</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Out</td>
<td>ERROR</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>In</td>
<td>ERROR</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Out</td>
<td>SLCT IN</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td></td>
<td>Common ground</td>
<td></td>
</tr>
</tbody>
</table>

STROBE: negative going pulse, clocks data into printer. Negative-going edge initiates data transfer. Data should be stable on both edges.

Data bits 0-7: full byte-wide parallel data path.

ACK: negative-going pulse indicates that the printer has received strobed data. Pulse width is usually in the order of 10μs.

busy is asserted (high) during data transfer and will remain high when the printer is off-line. It is possible to use this signal as a handshake with polled printer driver software and to ignore acknowledge.

PE: a high indicates paper not detected; ERROR is usually asserted at the same time.

SLCT: active high indicates printer is present. May be just a resistor to the printer +5V power supply.

AUTO FT XT: active low. When asserted the printer will automatically do a line feed following a carriage return.

ERROR: the printer is in an error state if this signal is low. Taking the printer off line manually will also activate ERROR.

SLCT: input, active low, selects the printer. When high, data transfer will not take place. Some printers can be set to force the signal active internally.

INT: the printer is reset if this line is taken low.

The printer is initialized on a cold boot of MS-DOS (ctrl+alt+delete). The Bios will also initialize the printer by sending a software reset escape code. This is valid for Epson and IBM-compatible printers.
In total, twelve output and five input TTL lines available. MS-DOS can support up to three of these ports. The allocation of LPT(n): to any particular hardware port is a function of the BIOS. For the PC/AT the base address of LPT1: is 378H. Some documentation I have seen shows LPT1: to be 3BCH, although I have never encountered this in practice. Port addresses (in hexadecimal notation) are usually

<table>
<thead>
<tr>
<th>DATA</th>
<th>STATUS</th>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPT1: 378</td>
<td>379</td>
<td>37A</td>
</tr>
<tr>
<td>LPT2: 278</td>
<td>279</td>
<td>27A</td>
</tr>
<tr>
<td>LPT3: 3BC</td>
<td>3BD</td>
<td>3BE</td>
</tr>
</tbody>
</table>

If only one LPT(n): port is installed it is fairly simple to search all three possible addresses in software to find it. Since the data port at the base address is a read/write port, the simplest way of searching for the presence of hardware is to read and write complementary bit patterns to each of the possible data port addresses, checking that the write, and subsequent read, data bytes match.

If more than one port is installed, the software may require a dialogue with the user, to determine the correct port. An alternative is to wire, on the additional device, some of the outputs back to the port inputs. On each LPT(n): port found, this wiring can then be tested for. If the search software finds this combination on one port only, the port address has been located. One can see that with a little software ingenuity, the printer port could make quite a usable TTL I/O port.

Expansion

The limited number of inputs can be expanded using multiplexers. For example, with the addition of a single TTL 157 device, eight input and eight output bits can be provided. Fig. 2 shows one connection method. The AUTOFDX signal switches the 157 to select one of two sets of four inputs. These inputs appear in the upper four bits of the status port.

The following software procedure (below) reads a byte from this hardware configuration. The XOR 881H instruction at the end corrects the sense of bits 3 and 7 which are inverted due to the inversion from the connector to the bus of the bus signal.

Signals from the port which would change rapidly in use with the printer are filtered (in the PC) to improve the line driving characteristics. The strobe line is one of these. This must be taken

```
Listing 1: Software to switch LPT1 for parallel I/O use.

; Select phantom I/O
SLPHTM PROC NEAR
MOV DX,0378H ; Data port address for LPT1:
MOV AL,PHDAT ; Get last data output to latch
OUT DX,AL ; Set up data on printer output port
INC DX
INC DX ; DX points to control port
IN AL,DX ; Get current state
MOV CTLST,AL ; Save it
MOV AL,00000100B ; Pattern to select phantom I/O
OUT DX,AL ; Do selection
RET
SLPHTM ENDP

; Deselect the phantom I/O and select the printer
; SLPRN PROC NEAR
MOV DX,0387H ; LPT data port address
MOV AL,PHDAT ; Get last data output to phantom
OUT DX,AL ; Set it up on LPT output
INC DX
INC DX ; DX points to control port
MOV AL,00000100B ; Deselect bit pattern
OUT DX,AL ; Do deselection
MOV AL,CTLST ; Get control state
OUT DX,AL ; Restore printer control
RET
SLPRN ENDP

PHDAT DB0 ; Copy of phantom output latch
CTLST DB0 ; Control register state
```

Fig. 1. LPT(n): interface to PC bus and 25-way connector.
Buffer IC₁ isolates the printer cable load from the "phantom circuit"; its outputs are three-state, high impedance when the printer is deselected. It is not essential.

IC₂ switches four of the status port lines to the printer when selected or to the "nibble mux" (IC₃) when not.

IC₃ is another quad two-input multiplexer, to switch the output printer control signals used by the phantom circuit. When the printer is selected, the STROB and AUTO/TEXT signals are switched to the output connector. In addition the clock to IC₁ is held low, maintaining the data in the latch, and SCTRL is held low; SCTRL is regenerated using a multiplexer in IC₃ to isolate it from the printer cable.

Latch IC₄ is used to hold the phantom output control signals when the printer is selected. Using a transparent latch in place of a D-type helps increase software speed. When SCTRL and STROB are high, the outputs from the printer port appear directly on the eight-bit phantom outputs. These bits can then be toggled by software as fast as if they were a direct parallel port from the PC bus.

IC₅ is a nibble multiplexer to expand four of the five inputs available on the LPT(n): interface to eight. The AUTO/TEXT line is used to select the upper or lower four of eight inputs.

Buffer IC₆ provides eight outputs directly from the LPT output data. The three-state outputs are controlled by one bit from the "phantom" control latch. The data presented on the buffer outputs can be clocked using the same signal which controls the input nibble multiplexer.

The circuit can be used to emulate typical microprocessor control signals. Peripheral chips designed to interface directly to microprocessors could be connected in many cases without any additional control logic.

Control software

It is possible to use the eight I/O lines and drive the printer and phantom I/O alternately as if they were connected to separate ports. The only guaranteed un-crashable way of doing this is to write your own printer driver. Having said that, I have found that provided the output control port is restored to the same state as it was before the phantom port was accessed, the BIOS printer routines are unaffected.

If complex printer drivers such as background spoolers are installed, it may be possible by careful control of the interrupts to use both printer and phantom device simultaneously.

Driving the output (phantom) control port is straightforward. First save the contents of the printer control latch then set up the new phantom output state on the printer data port. A single write to the printer status port (with the

Figure 3 shows a circuit to provide eight input/output lines with seven control signals maintaining a printer connection.

Some printers can be set to ignore the SCTRL signal and be permanently online. This difficulty can be circumvented by gating the STROB signal with SCTRL to force it high when the printer is deselected by the computer. Both methods are used in Figure 3.
appropriate bit pattern) can de-select the printer and set the "phantom output" latch transparent. The printer data port can now be driven directly. When the printer is required, hold the current "phantom" latch data on the printer data port and restore the printer control port to its previous state.

Reading a byte from the phantom input is not quite as simple. The input port has to be selected by writing an appropriate bit pattern to the printer control port, after its current state has been saved. If the strob line is set low when the printer is de-selected, ideally the "phantom output" latch would be undisturbed. However, since in the normal state strob is high, it is possible that should the multiplexer control signal switch the multiplexer before strob becomes low, a glitch will appear on the clock to the latch. Setting the latch inputs (via the printer data port) the same as the current latch state ensures that the latched data outputs will not change should this occur. Conversely, if the strob signal changes before the multiplexer control signal, the strobe to the printer may momentarily be active, causing a random character to be printed. This is less likely, since the strob signal is delayed slightly by the RC combination in the LPT(n) interface.

The safest method for both selection and de-selection is therefore to keep strob high, maintaining a copy of the "phantom" latch data on the printer data port outputs until the multiplexer outputs can be guaranteed to be stable; strob can then be taken low, freezing the "phantom" latch outputs.

Once selected, the procedure RDBYTE can be used to copy a byte from the phantom input port. If a single bit test is required, the routine can be simplified to read only the group of four bits containing the bit in question. The code extract (above, right) shows selection and de-selection for the circuit in Fig. 3.

The routines will not cause problems with the Bios printer routines if the printer control port is in an idle state when the SLPHTM procedure is called. This will be the case if the printer is driven by the application program via MS-DOS or the Bios.

Before leaving phantom I/O and selecting the printer, the variable PHDAT must be updated with the current state of the "phantom" output latch.

Using a circuit such as this, I have developed an interface to the video frame store designed by Don Clarke, published in Electronics & Wireless World in 1987. The software, written in a combination of Forth and machine code, is able to send a 64Kbyte image to the frame store in less than 1.5 seconds and read it back in less than 2. (The PC used was a PC/AT-compatible Dell 200). In the slower, input direction, data transfer is still faster than 256K bit/s.

Figure 4 shows a far simpler interface for an A-to-D converter, using a serial A-to-D chip, an ADC0831 by National Semiconductor, and a single 157 device. The ADC0831 is controlled by two signals, clock and chip select. Data is clocked out of the ADC0831 chip on the negative-going edge while chip select is low. The data out signal is the only output. The output format is a start bit (low) on the first clock followed by eight data bits, MSB first.

The 157 is used to switch an LPT(n): input line to the printer when select is low and the converter when high. Chip select and clock are derived from two bits of the LPT(n): data port. Provided strobe remains high, activity on this port is ignored by the printer. The converter input can be expanded to eight by adding an analogue multiplexer, such as a 4051, with the selection address derived from further LPT(n): data bits.

Possible applications are endless; and once the control software technique is mastered, the LPT(n): ports are usable as a dedicated parallel I/O port.

![Fig. 4. Simple A-to-D converter.](image-url)
This computer card is for building into your products. Put software for the application into PROM and it starts to run as soon as power is applied. Some existing uses:
- Water control
- Agricultural machinery
- PABX telephone exchange
- Diesel engine testing
- Heart rate data collection

1 off £194.95 including manual and non-volatile RAM.

Triangle Digital Services Ltd
100a Wood Street, London E17 3HX
Telephone 01-520 0442 Telex 262284 (quote M0775) Fax 01-509 3263

CIRCLE NO. 167 ON REPLY CARD

Those Engineers Ltd
The UK's leading suppliers of circuit simulation software

<table>
<thead>
<tr>
<th>Product</th>
<th>Functionality</th>
<th>MCM</th>
<th>Recommendation</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECA-2</td>
<td>Analogue circuit simulation. Allows effects of different components to be investigated - more effectively than by bench testing. Very high specification program includes Multi-Cart & World Circuit. Fourier analysis of transient non-linear components characterized by breakpoints or polynomial functions.</td>
<td>PC A5 DOS 586 2.0 or later RAM Mac</td>
<td>Relies to be the most powerful PC-based analogue circuit simulator available. Regularly updated to interfaces to many schematic drawing packages.</td>
<td>£219 (total cost terms for education - ask for ECA-25)</td>
</tr>
<tr>
<td>Pot D</td>
<td>HP & Motion plotter driver for ECA-2 high quality output.</td>
<td>As ECA</td>
<td>Let ECA2 produce your circuit views before you even built the circuit.</td>
<td>£50</td>
</tr>
<tr>
<td>LCA-1</td>
<td>Logic Circuit Analyser. New user program to ECA-2. Produces logic analysis style output traces (up to 8 signal traces) and in corporates delays & reliable test sources.</td>
<td>As ECA</td>
<td>This new program from Those Engineers will encourage thorough investigation of problem areas or in just checking a circuit for emergencies.</td>
<td>£350</td>
</tr>
<tr>
<td>MBEY/SPICE</td>
<td>Analogue circuit simulates various analogous circuitous fourier handling and small circuit AC analysis. Full Memic-Ataxic transistor representation, new transformer model and graphics output up to 20x20 in-Pixels.</td>
<td>BBC 48K, Archimedes 64K, Mac</td>
<td>Established teaching standard, easy special area in it.</td>
<td>£15 (special terms for educational - please ask us)</td>
</tr>
<tr>
<td>SINE-AGE</td>
<td>Analogue circuit simulation or GEM environment. Available in modular hardware covering 1. 1-Frequency response 2. DC-quantum analyses 3. Transistor analyses 4. Fourier analyses</td>
<td>PC XT AT</td>
<td>As MM Industries NET</td>
<td>Licensed GEM supplied at reasonable cost.</td>
</tr>
<tr>
<td>MWA.NET</td>
<td>Smallest analogue circuit analysis with schematic entry of circuits & extensive output options including synthesis of transfer function polynomial Smith chart, Bode, etc.</td>
<td>HP 300 300 300 200</td>
<td>As MWA.NET</td>
<td>Outstanding program for HF designers or control engineers who need to maintain functions. Program is quite exceptional for these uses.</td>
</tr>
<tr>
<td>Program A</td>
<td>Systems design analysis program with 80 real entry of transfer functions.</td>
<td>As MM Industries NET</td>
<td>Use Program A with MWA.NET to develop full design, simulation and circuit analysis.</td>
<td>£150</td>
</tr>
<tr>
<td>CDAS</td>
<td>Single output control system simulator represents nonlinearities and transport delays.</td>
<td>ABC Archimedes</td>
<td>DUPS emul</td>
<td>Ideal for control system engineers.</td>
</tr>
<tr>
<td>PCB/R</td>
<td>Auto-mating printed circuit board drawing program output to a printer (printer extra) or to Epson FX compatible printer very easy to use.</td>
<td>ABC Archimedes</td>
<td>DUPS emul</td>
<td>£220 to £250 (ask for details)</td>
</tr>
<tr>
<td>VTRAX 5 & 6</td>
<td>A multi sheet schematic drawing system with special features for drawing validation may be used for entry of circuits into ECA-2 and LCA-1.</td>
<td>PC XT AT</td>
<td>DUPS emul</td>
<td>£185 (manual)</td>
</tr>
</tbody>
</table>

These Engineers have been providing circuit designers with micro based simulation and job based software since 1980. We now have a broad range of packages covering many applications and turning on mistakes from the BBC Micro to 386 based PCs. The chances are if you want computer based analysis software or a circuit system we have a useful effective CAD package for your needs. When you telephone Those Engineers, you will be speaking to an engineer who will use his duty to advise you - our reputation is built on service and not opportunistic sales. Accessment accepted - please add VAT to above prices.

SMC LTD, SM HOUSE, SCHOOL CLOSE, CHANDLERS FORD INDUSTRIAL ESTATE, EASTLEIGH, HANTS SO5 3BY
Tel: (0703) 255111. Telex: 477351 SM COMM G. Fax: 0703 263507

CIRCLE NO. 143 ON REPLY CARD

CIRCLE NO. 151 ON REPLY CARD

November 1989 ELECTRONICS WORLD + WIRELESS WORLD
RF EQUIPMENT

LOW NOISE GASFET PREAMPLIFIERS
Aligned to your specified frequency in the range 30-1000MHz. Masthead or local use.
TYPE 9006. NF 0.6dB. Gain 10-40dB variable. In the range 30-250MHz...£78
TYPE 9006FM. As above. Band II 88-108MHz...£78
TYPE 9002. Two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V...£102
TYPE 9004. UHF two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Aligned to your specified frequency in the range 250-1000MHz...£102
TYPE 9007. 1-900MHz. NF 2.3dB at 1GHz. Gain 10dB. Power output +18dBm, 65mW...£150
TYPE 9008 Gasfet. 100MHz will drive the Types 9247 and 9051 wideband linear power amplifiers and the Types 9252 and 9105 tuned power amplifiers.

WIDEBAND AMPLIFIERS
Monolithic microwave integrated circuits in a fully packaged microstrip module format. Full-wave shottky diode protected inputs. Temperature compensated bias circuitry. Voltage regulated local or remote operation.
TYPE 9001. 1-900MHz. NF 2.5dB at 1GHz. Gain 10dB. Power output +18dBm, 65mW...£150
TYPE 9106 500mW input, 10mW output £50
TYPE 9105 10mW input, 10mW output £254

PHASE LOCKED LOOP FREQUENCY CONVERTERS
TYPE 9113 Transmitting. Converts your specified input channels in the range 20-1000MHz to your specified output channels in the range 20-1000MHz. 1mV input, 10mW output (+10dBm). AGC controlled. Gain 60dB adjustable -30dB. Will drive transmitting amplifiers directly...
TYPE 9114 Receiving. Low noise Gasfet front-end. NF 0.7dB. Gain 25 dB variable...£356

TMOS WIDEBAND LINEAR POWER AMPLIFIERS
TYPE 9246. 1 watt output 100KHz-175MHz 13dB gain...£108
TYPE 9251. 100mV input, 10mW output £170

RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG.
Tel: 0303 893631. Fax: 0303 893838

CIRCLE NO. 163 ON REPLY CARD

PHASE LOCKED SIGNAL SOURCES
Very high stability phase-locked oscillators operating directly on the signal frequency using a low frequency reference crystal. Phase noise is typically equal to or better than synthesized signal generators. Output will drive the Types 9247 and 9051 wideband linear power amplifiers and the Types 9252 and 9105 tuned power amplifiers.
TYPE 8034. Frequency as specified in the range 20-250MHz. Output 10mW...£120
TYPE 8036. Frequency as specified in the range 250-1000MHz. Output 10mW...£170

UFH LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range of 250-470MHz. 24V + DC supply.
TYPE 9123 250mW input, 5 watts output...£289
TYPE 9124 2-3 watts input, 25 watts output...£335

FM TRANSMITTERS 88-108MHz. 50 watts RF output
TYPE 9086. 24V + DC supply...£945
TYPE 9087. Includes integral mains power supply...£1,110
TYPE 9182FM exciter +75KHz deviation. Output 10mW...£248

TELEVISION LINEAR POWER AMPLIFIERS
Tuned to your specified channels in bands IV or V. 24V + DC supply.
TYPE 9261. 100mW input, 10mW output...£218
TYPE 9252. 10mW input, 500mW output...£254
TYPE 9259. 500mW input, 3 watts output...£290
TYPE 9262 500mW input, 10 watts output...£350
TYPE 9263 2-3 watts input, 15 watts output...£400
TYPE 9266 10 watts input, 50 watts output...£1,585

COMPLETE TELEVISION RETRANSMISSION SYSTEMS AVAILABLE
All prices exclude p&p and VAT.
A-to-D and D-to-A converters

Sample-and-hold amplifier. The AD154 16-bit, 100ksps, 10-bit converter incorporates a 0.0007% maximum gain non-linearity and an acquisition time of 3.5 μs. It allows conversion of analogue input signal bandwidths up to 32 MHz at 15-bit accuracy and up to 1.2 MHz at 14-bit accuracy. Analog Devices, 026 253320.

High-speed c-mos A-to-D converter. The Precision Monolithics ADC91z is the industry’s first low-noise, precisi, 12-bit, high-speed, c-mos analogue-to-digital converter. It has a low-noise comparator that results in low harmonic distortion and high level signal bandwidth. Conversion time is 1.2 μs and access time is 90ns. Bourns Electronics, 0767 692398.

10MHz 12-bit sampling A-to-D converter. The ADS 130 hybrid device features a minimum throughput of 10MHz and converts signals up to the Nyquist frequency. It incorporates an internal sample-and-hold amplifier with a maximum slew rate of 250V/μs and a 56ns maximum. Access anomaly is 7.9ps. Datec, 0266 496085.

Display A-to-D converters. The Teldeyne Semiconductor TSC227/TSC228 are advanced digital-to-camile converters incorporating LCD display drivers. They are for the low power handheld market and low voltage battery operation. The TSC227 has 1993 maximum resolution while the TSC228 provides 1993 kounts frequency. Trinit Monocordial, 0372 765902.

Development and evaluation

ADC evaluation. A sampling A-to-D converter board from Dataf supplies evaluation of the company’s 1.0bit, 18MHz ADS 31J1 converter. The ADC 8311 E, a Micralin c-a to D converter board which incorporates the ADS 31J1 sampling A-to-D converter. It features a guaranteed sampling rate of 10MHz and a 17bit to 8bit resolution. Board height is 53.8mm with a dimension of 53.8x53.8mm. Datec, 0266 496085.

DSP. Ultra Digital Systems has launched a DSP target and prototyping board, based on the TMS20133E. The Eurocard device is designed to run the wide range of DSP programs, and also provides a prototyping platform. The processor is the evolution of the popular and successful TMS2010. The board has fast A-to-D and D-to-A converters, analogue and digital I/O lines, and provisions for input and output Mers. Ultra Digital Systems, 051 709460.

Discreet active devices

Microwave fets. A family of high power microwave GaAs fets have been developed for satellite communications systems, can be used in linear and pulsed applications. The NE454 family delivers to 200W of output power at 2.3 GHz. Two devices, NE454 10B and NE454 20B, are rated for power output of 40dBm (10W) and 35dBm (20W) respectively. NEC Electronics, 0908 693319.

High-mu triode. The Siemens RS 306 high-mu triode is rated at 100kW for continuous working and 0.1 kW for pulse operation. Output power is twice that of the proven RS 201/2741 series of valves, which have ratings ranging from 0.25 to 50W for continuous working and up to 1000W for pulse operation. The gain characteristic is 0.5 Siemens, 0932 752323.

Interfaces

PC development tools. The PROFID - I includes a PC/AT bus prototyping board which includes a microprocessor and a signal and power interface for implementing prototyped cards. A selectable base address is provided, together with busses for data and address, with access to certain control lines. Ext 1 allows cards to be connected to the PC while retaining accessible. Blue Chip Technology, 0244 202222.

Frame grabber. The IMAGEWISE/PCI real-time video digitizer and display board can digitize any NTSC, PAL or SECAM. The board is frame to resolution of 256x256 with 256 grey levels. The board provides computer view digital output and digitized pictures can be also shown on an EGA or VGA monitor. A digitized picture grabbed or software generated can be applied as a zoom or a max-on-a-live video signal. JG Designs & Technology, 0285 651822.

Linear integrated circuits

Operational amplifier. The OP 177 low-noise, high accuracy op-amp supplies the performance of a chopper-stabilized amplifiers without the problems of noise, limited common mode voltage range, and the need for external storage capacitors. Offset voltage is 10mV maximum at room temperature and 20μV maximum over the full military temperature range. Offset voltage is 0.1μV, max. RR Electronics, 0234 702702.

Memory chips

8 Mbit static ram module. The MS810008X-2megabit module, based on eight 128k x 8 devices, offers a choice of access times from 700s to 10ns and typical operating power is 140mW and power consumption is 66mW for the standard module or 88μW for the low-power device. Hybrid 991 258 0890.

Electro optical devices

Phototransistor. The TE/C3100 range of phototransistor detectors from Three Five systems features six devices, en different sensitivity ranges from 0.5 to 10W. 0.1W and an output current range for illumination levels of 5mW/cm. The devices feature an accuracy range of ±06% and 50μamps. Abacus Electronics, 0731 725213.

Optical distribution unit. The L350 multi-interaction -powered unit incorporates a power supply unit and up to ten communication cards for data and optical connection. Led status indicators display the type of interaction in operation and the status of the communication line. All standard interfaces are supported. Bellinter Lee Intec, 012 711 1619.

Opto isolated RS232. Maximum MA250/ 251 forms a RS 232 dual transmitter/receiver pair. When combined with four 4026 optocouplers, four capacitors, a diode and a small pot core transformer it develops a complete high-precision dual-signal RS 232 transmitter. When a higher speed optocouples is used (such as the NE316, a 90% balooned tube), a speed of 115kbps can be achieved. Kudus Theatre, 0343 351010.

oscillators and crystals

Surface-mount crystal. With a maximum height of 3mm and a width of 8mm. The MOS 80000 series of crystals is available in a frequency range of 8 to 60 MHz. The crystal has an adjustment tolerance of ±5ppm at 25°C and ±5ppm temperature tolerance of ±50ppm over the temperature range of -10°C to 70°C. Typical output is 100μW. Total Frequency Control, 0963 743455.

Connectors and cabling

Adapter sockets. Sockets which accept D type, A, B, 10 (10 MHz) and BNC connectors can be used on boards with dip hole, a 0.3m (7.5mm) pitch using the Aries, adapter which the sockets are available from 10 to 22 pins. Aries Electrics. (Europe), 0908 260007.

Optical-fibre underwater cable. This cableless fibres can be deployed in water. It is available for special requirements for operation in tidal flats and coastal waters. Hayden Laboratories, 0753 326 300.

Mass termination Belden cable. Belden model I-MASS-1ER cable offers both round and flat cable under one jacket. It combines the ease of termination of kanopy twist flat cable with the flexibility and ease of cable enhancements of round cable with a O-TER or a PVC jacketed in a normal construction of pre-insulted twisted pairs, with 25μf horizontal spacing of 1.25mm in intervals. Wadsworth Electronics, 011 491 4716.

Displays

LCD graphics modules. The Epion model is a 128 x 64 pixel contrast graphics LCD, compact alternatives to LCDs and CRTs for the portrayal of graphics. The Epion series uses enhanced 16 or 256 levels for use in Electronic brains such as NTN technology. The complete range incorporates the Epion 1130 LCC device. Select models use chopper-stabilized display technology, where each LCD display is driven directly off a fixed direct current voltage. Epion, 0234 702702.

Frequency counter. The GRC-8130G is a four-digit frequency counter which offers a frequency range from DC to 1 MHz. Two channels are provided to cover the range. Resolution remains at 100% for both high and low frequencies. The display board is straightforward and reliable. GRC Electronics, 0703 227721.

Mains monitor. The ONE Graph mains monitor prints out normal mode and confirms the reading. It incorporates output voltage, current and frequency. It also prints out complete AC voltage disturbance information, including time of day, duration and level of disturbance for each deviation from the normal. There is a choice of 1kHz or 6kHz with 0.01kHz readings to 6000V. ONEAC 0235 347213.

Oscilloscopes. Two low-cost dual-channel oscilloscopes are intended for education and training. The Polytec PS228 and the PM0229 has bandwidth of 40MHz and offers delayed baseband facility. A variable hold button, an on-chip mode. For high accuracy measurements, the output of channel A is connected to a frequency counter or similar equipment. Philips Scientific, 0223 358866.

Stereo test set. The Dorrough model 1200 stereo signal test set includes a pair of loudspeaker monitors, which each have peak and average levels in a single range of 90-140dB (±10). The meters indicate voltage and power. Measuring the crosstalk and signal-to-noise ratio over the entire range. From noon to 6pm, from noon to clipping. Pianometric, 0252 721236.

Energy analyser. Ecomponent’s MICROVIP MK2 is designed to analyse single and 3-phase power supplies. It includes a 8-channel enhanced LCD display and an integral printer to provide hard copy readings at any point. There are four channels for use with average power, kW, kWh, kVAR and kVAR hour and mean period. RS Components, 0536 201234.

Scalor network analyser. The SAM 52 performs direct measurements on VSIRs, return loss and insertion loss, with a dynamic range of 96dB and 2.5GHz and 71dB at 1GHz. It has an resolution of 001dB and a measurement accuracy of 0.2dB. Bode & Schwartz, 0185 211377.

Litterature

Optoelectronics and power semiconductors. The Optokap小组 provides data on a range of power switching transistors, fast and extra-fast-recovery rectifiers and TV and Xe in diodes, most of which are plug-in replacement applications. Other devices are optically-coupled, to provide four-channel low input current optocouplers. MCF Electronics, 0374 723345.

Relay manual. The relay manual from Schrack contains all the information about their complete range of relays, sockets, timers and I/O modules. In addition, the manual contains printed circuits, a range of care and bias information and a good quality assessment. Schrack, 0188 1211.
Production equipment
Room ionization. A retro-fittable room ionization system, the NiStat, reduces the problem of electrostatic discharge in sensitive work areas by modulating the area with sequentially balanced quantities of ions, the system provides a balanced charged atmosphere. Dage (GB), 0296 393200.

Soldering iron thermometer. This indicates soldering bit temperatures on a clear 12.7mm liquid crystal display. This thermometer indicates temperatures up to 500°C with a resolution and accuracy of 1°C CET. 0903 202151.

Flux controller. A programmable flux controller for wave soldering machines, the series 4500 from Electronics Control's Design, features the large menu based microprocessor designed to cope with close tolerances between the specific gravity of flux and thickness, and is accurate to ±0.001. Low detection limit in ±0.75 and high detection limit in ±1.00. Hollis Europe. 0632 439233.

Cable cutter. Bench mounted cable cutter, the model HCl0, has two hardened tool steel guillotine-style blades which shear most wire and cables up to 25.4mm in diameter, dependent on construction, and solid copper conductors up to 150mm2 can be easily cut. A protective guard side is provided. Rush Wire Stoppers, 0285 131347.

Dip-soldering unit. Solidomatic has introduced a unit for use in soldering ceramic lead frames and other electronic, electrical or small mechanical components. The unit consists of a rectangular base with both, inset, a stainless-steel fluxer and a rectangular solder pot, with a motor and impeller system which produces a flowing solder wave. Solidomatic Equipment. 01 689 0574.

Power supplies
DC-DC converters. With a minimum efficiency of 70%, the TM3000 series from Computer Products Power Conversion maintains full output power to an ambient temperature range of 0°C to +55°C. The models operate from a 24VDC or 48VDC line with ±1% input voltage range. Load stabilization is ±1% and line regulation ±0.1%. Computer Products Power Conversion, 0224 738338. Bench power supplies. Units from Flight Electronics offer fully floating outputs and all output voltages are isolated. The units have meters, led or LCD displays. Outputs range from ±1 to ±100V and from ±1 to ±5A. The units are available. Flight Electronics, 0703 277300.

Switching regulators. The 5T series of DC-DC switching regulators provides output power up to 360 watts of regulated DC power for less than 5% loss. Operating from a DC input of between 10 and 50V, these modules have an adjustable output from 4.5 to 39V at up to 20A. Negative outputs of up to 5A are also catered for. Line and load regulation is less than 1%, ripple and noise typically 150mV pp-kp, XP 0734 576211.

40W SMPs. The 2PS-40.40 switch mode power supply is a 40W 600V output unit suitable for small systems. It has approvals to international safety and emission standards of VDE 0860, VDE 0871/6 and IEC 335. The unit provides outputs of 5V, 2.5A at ±12V, 2.0A and ±12V, 0.1A, 120V Europe (Ireland), 0306 767380.

Production test equipment
Wafer measurement system. The ADE wafer measurement system offers an increase in resolution down to 10nm and a repeatibility of 15nm, enabling the model 8300 Microscan to be used to check wafers ranging from 3in to 8in for up to 51 sort parameters. It directly supports the proposed SEMI flammable detection specifications, Interstate Scientific Ltd, 0908 766633.

Programmers
Emulation and programming for 8752. The 8052 family MIXC/25/20S7 in-circuit emulator from AIB Microsystems offers...
WANTED

J & M Computers specialize in all redundant Electronic Equipment, working or not, i.e.

- Computer equipment and peripherals
- Components (resistors to I.C’s)
- Test equipment
- Modems
- Printer circuit cards
- Redundant stocks
- End of job lots
- Cable
- Factory clearances

If you have redundant equipment now or in the future, would you contact us. We would be pleased to price and collect it at our own expense.

J. & M. Computers
Eight Acres, Maldon Road, Wickham
Bishops, Witham, Essex.
Telephone: Maldon (0621) 892701
Fax: (0621) 891414

LOGIC ANALYSERS

TA3000 from £3745* TA2500 £4595
- Up to 112 channels 100MHz Timing; 20MHz State
- State/Timing Cross triggering and Correlation
- RS232, IEEE 488 and Cartronics interfaces.
- Multi-level conditional triggering.

TA20CD £2495 TA10CD £1595
- 32 channels 100MHz sampling rate.
- 5ns glitch capture; glitch triggering
- 4 level sequencer with event count and delay.
- RS232, IEEE 488 and Cartronics interfaces.

Options from £195
Disassemblers for 68000, 68368/88, 8C186/188, 80286, 286, 8085, 6502, 6800, 6809, 64180, 8331/51, 8048/49, 63/68XX, RS232, IEEE 483.
PC Data transfer software.

For details of the full range contact

thandar ELECTRONICS LIMITED
2 Giebe Road, Huntington, Cambridgeshire PE18 7DX
Telephone (0480) 41245 Fax (0480) 411403 Telex 32250 Test 6
Constant-EMF cassette motor controller

Recently the capstan motor of my hi-fi cassette player started to produce unacceptable wow and flutter. Since the player is no longer made, and parts are not available, I first dosed the brushes with cleaning fluid in an unsuccessful attempt to cure the problem. Replacing the unit's rather crude motor regulator with the one shown however did restore correct operation. Constant EMF is provided by the circuit. Since back EMF of a motor is directly related to shaft speed, constant EMF implies constant rotation speed.

Resistor R must have the same value as the DC resistance of the motor, which must be measured with the motor stationary. My unit measured 221Ω and when running at correct speed, the motor takes about 50mA, dropping 1.1V across its DC resistance and producing 4.4V as back EMF. Terminal voltage is 5.5V. Voltage dropped across the 221Ω resistor is the same as that across the motor's coil. Owing to the virtual earth at the op-amp's input, the same voltage is dropped across RA. Current through the resistor flows through R1, which has the same value as RA, so the voltage at the bottom of R1 must be the same as the voltage applied to the motor. Since this voltage can be controlled by the 10-turn potentiometer, there is direct control of motor EMF regardless, within reason, of torque required to pull the tape.

K.N. Rauniar
Umist
Manchester

Unipolar-to-bipolar pulse converter

Usually, pulse generators produce unipolar pulses of either positive or negative polarity but it is sometimes useful to have alternate positive and negative-going pulses. Such pulses are needed, for example, when driving a liquid-crystal display. This circuit converts a unipolar pulse train into a symmetrical bipolar train. Input pulses determine the pulse width and repetition frequency. They trigger an edge-triggered bistable IC whose two outputs feed separate AND gates. The other AND gate inputs are fed by the input pulse train. As a result, alternate unipolar pulses are produced for feeding the op-amp.

K.N. Rauniar
Umist
Manchester

Tuneable loudness control

In Liao's circuit in the June issue there were two small errors in the equations. Corrected, the equations read:

\[
A = (R_y/2)R_3 - 1/4\pi^2C_1C_2
\]

\[
V,V = 20\log[nR_4(A^2+B^2)^{-1}+C^2(D^2)^{-1}]
\]
Touch-sensitive synthesizer

In a touch sensitive synthesizer, amplitude of the envelope is proportional to how hard the key is pressed. In this circuit this quantity can be represented as a digital quantity or an analogue one applied to point A.

A c-mos-compatible input pulse is required to trigger the unit and its length determines the sustain time. Four potentiometers set attack, decay, sustain, and release levels; using component values shown, maximum output is +5V.

Edward Barrow
Powyys
Wales

Triangle-to-sine wave converter

Having no reactive components, this simple and inexpensive triangle-to-sine wave converter is frequency-independent. With source and gate tied together, low-power mosfets have both a smooth characteristic and the proper nonlinearity for the feedback path of the op-amp.

Triangular waveforms are composed of odd multiples of fundamental sinusoidal frequencies. A low-pass filter removes the higher-order components to yield sinusoidal waveform at the fundamental frequency, but if constant output amplitude and phase relationships over a wide frequency range are required, the filter must be returned for optimum response each time the input frequency is changed.

An unconventional solution to this problem uses an op-amp with mosfets in its feedback path. Feedback is usually via a diode, but the op-amp accentuates the diode’s breakpoints and produces an undesirable linear output.

While several types of mosfets are acceptable, a P-channel BSS110 works well in this circuit. Two parallel connected mosfets with opposite polarity in the feedback path of IC1 promote shaping on both the positive and negative portions of the input waveform.

Note that only one fet at a time is forward biased; the reverse-biased fet behaves like a large resistance in parallel with it.

Input current V_{IN}/R_2 is adjusted to allow a level of current that pushes the fets just into their nonlinear knee.

Because V_C is equal to V_{DS}, output response is determined by the active fet’s VA characteristic. To achieve a sinusoidal output, the amplitude of the input voltage waveform must be adjusted to provide the proper amount of drive to the wave-shaper circuit.

Accuracy is determined by the adjustment of R_4 and the symmetry of the input waveform about 0V. Average error of output signal, compared with an ideal sinusoid, is under 2% over a complete cycle.

Frantisek Micheley
Brno, Czechoslovakia

Battery-saving relay control

Most relays stay on with coil currents below half of the rated value, i.e. at a quarter of the rated power. This circuit provides a voltage surge to turn the relay on and after that a lower holding voltage.

A minimum delay of $3C(R_4+R_5)$ – about 5s with the components shown – must be allowed between power on and relay switch on; the same delay must be allowed between relay operations.

Jean-Claude Baumeister
Chantaine
France
Sampling audio mixer

This circuit uses a different approach to mixing audio signals. Instead of taking the usual continuous sum of all the signals, it samples each signal at approximately 40kHz in a sequential order. The bonus of this is a better signal-to-noise ratio since only one of the mixing resistors is switched on at any one time.

Because it is not a continuous sum, the volume of each input can be set with greater independence of the other two inputs. Each counter output runs at about 40kHz.

When mixed, the signals feed a second-order low-pass filter with a 3dB point of approximately 10kHz to filter out the sampling frequency. The system can be expanded for up to ten inputs by moving the reset input to the next unused output of the decade counter. The clock should run at \(N \times 40kHz \) where \(N \) is the number of channels to be mixed.

Darren Yates
French’s Forest
New South Wales

Symmetrical power amplifier

I have built and tested several versions of a symmetrical power amplifier; one is included above.

Cross-over voltage is controlled by the emitter-base turn on of the feedback sensors. \(T_{r3} \). The buffer provides adequate linearity for very low supply voltages of 2.5V and drives a 3Ω speaker or filament lamp. For higher supply voltages the quiescent current in the output pair rises rapidly so cross-over voltage is reduced further by high current cross section diodes from a 2A bridge rectifier. (\(I_{a}=17mA \) at 6V supply).

Without the diode bridge connected the “buffer” gives slightly greater than unity voltage gain because of the 100kΩ lever to the feedback sensor node.

P.J. Ratcliffe
Stevenage
Hertfordshire
Precise minute counter

When timing a precise number of minutes, the required count is set up on complemented-output BCB thumbwheel switches. Two outputs are available, one which goes high for the duration of the count (output A) and one which goes high at the end of the count (output B).

Push switches start and reset the count.

S A Young
Bradford

Binary switch encoder

In my application, data from this binary push-button encoder was latched by other circuits but you could add an independent latch controlled either by the falling edge at pin 3 of the 4011 or the rising edge at pin 1.

F. Miners
University of Exeter
THE ORIGINAL SURPLUS WONDERLAND!

FLOPPY DISK DRIVES BARGAINS GALORE!

NEW 5¼ inch from £29.95

Massive purchases of standard 5¼" drives enables us to offer these popular drives at low prices. All drives are in perfect working order (unless stated) are removed from often brand new equipment and are fully tested and aligned and shipped to you in a factory sealed box. A selection of drive types and numbers are shown and we accept the standard 34 way connector.

TANDON T100-2A IBM compatible £29.95

TANDON T100-2A compatible £29.95

CANON, ETC etc D half height, State 40 or 80 £75.00

TEAC FD-85F-40. 80 S half height. BRAND NEW £69.00

TEAC FD-85F-80 £90.00

TEAC FD-85F-100 £95.00

Never before seen for sale is this 3½" drive. Standard size believed to be by Canon. Brand new and packaged - mini condition 40 plunged drive, SS run from either of 12v or 24v. Includes power connector...

12v £65 or 4 x £34.50 (B) £217.50

Shugart 800/801 SS refurbished & tested £125.00

Shugart 851 double sided refuribished & tested £150.00

Inclucting from HRC hard or soft sectors BRAND NEW £250.00

SPECIAL OFFERS!

Dual 5½" drives with video interface. This means you can use this case with built in power supply! Only £499.00 (F)

End of line purchase scoop Brand new NEC D222/4 8½ mag of big hard disk storage! Full CP/C computer and industry standard SM interface. All new drives (these access times leaves the good old ST506 interface standing. In mint condition and comes complete with power supply, power cord and mains lead. This is over $1000 new price only....

£195.00 each or 2 for £395.00 (B) £755.00

Shugart 422/423 40 tracks. 2mm thickness £55.00

MAINS SUPPRESSORS & FILTERS

The "Filterman" from Cotran is a British made high current mains spike suppressor and RF filter in one, capable of handling up to 50amps peak. Switches to provide or remove for your equipment plug and a flying lead terminates in a quality high current plug. The switch is a large two position switch with an internal fuse plus one in the plug. Two LED indicators, one for power on and the other if the internal fuse fails. Dimensions 3" x 3½" x 7/8". Normal dropouts protection in any power surge. Our price only.....

£15.95 each or 2 for £29.50 (B) £59.00

(Continued on next page)

COOLING FANS

In Sceptre fully 340 and 430 for £10.95 (A)

AC 24v £8.50

120mm £8.95

110mm £9.95

60mm £9.50

Fan is stated.

RECHARGEABLE BATTERIES

Maintenance free heavy duty. Type A300.

12v £15

24v £35

£25 for a 24v A300.

SPECIAL INTEREST

Racal-Redac real time colour drafting PCB layout system. Includes furniture and huge monitor. Ready to go £3695.00

DEC DEC 2060 with all the latest DOS and full software and manuals.

Brand new condition £2950.00

Other DEC's £2850.00

Tektronix 5950 Waveform Monitor £950.00

Tektronix 5910 scope £750.00

Wayne Kerr RA300 audio real time freq. analyser. £1200.00

Tektronix T2050 spectrum analyser £1200.00

Tektronix R410 NTSC TV test signal standard £875.00

Sony K700 1960 video design box £1500.00

Tektronix T2035 £1500.00

ADDS 2000 VDU terminals - brand new £225.00

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST EQUIPMENT YEARLY ALWAYS AVAILABLE CALL NOW

POWER SUPPLIES

All PSUs 220-240v ac input and are BRAND NEW unless stated. Many types ranging from 3v to 10kv always in stock. By £60/100 5v @ 1A £15.00 5v @ 5A £45.00 12v @ 5A £45.00

12v @ 15A £55.00

85 volt with 12v @ 5A £34.50 24v @ 2A £105.00

CONCACT 130, 110 watt hi-grade VDE spec switch mode £85.00

40a, BD309 £165.00

Booaiile 13000. Switch mode, ideal for drives & systems. 5v @ 1A £12.50 12v @ 0.5A £5.50 85 volt £29.50 (B) £39.50

Switch mode, ideal for drives & systems. 5v @ 5A £24.50 24v @ 2A £65.00

Elbox 2400 £49.50

IBM KEYBOARD DEAL

A replacement or backup keyboard, switchable for IBM PC, XT, Improved 1521 with IBM compatible, extra 88 key 101 key keyboard, with 545 keyboard layout. Made by NCR for the English & US markets. Includes 3 fonts. This is a top quality brand new 86 based switchable keyboard which has a complete template for user strogans on the function keys. Attractive beige, grey and cream finish, with the usual retraceable keys for perfect typing. IBM type key layout. Ideal for the standard 5 pin DIN plug. A beautiful clean piece of manufacturer.
Voice recording and playback has become an increasingly commonplace feature of electronic systems such as telephone-answering machines, domestic 'talking message pads', security and entry-phone systems, advertising and educational toys. All have one thing in common - the need to record a relatively short spoken message, store it and play it back when required.

Older systems based on miniature tape recorders are being supplanted by all-electronic systems where the speech is converted to digital signals, stored in solid-state memory, then played back through a D-to-A converter and loudspeaker. Now all the required functions have been incorporated into a single chip which can be used in either simple devices or in extensive microprocessor systems. The Texas Instruments TMS3477 is such a device.

Any voice can be recorded - there is no need for advanced synthetic speech - and system development is rapid, since hardware and software requirements are low.

Requirements
Three fundamental criteria have been met. Firstly, the system should provide good quality reproduction, preferably with facilities to choose a sampling rate - and therefore quality - appropriate to the application. TI based it devices on continuously variable slope delta modulation (CVSD) techniques, combined with the ability to select 16kHz, 32kHz or 64kHz clocks.

Secondly, performance-versus-cost considerations demand a speaker output from a 10-bit D-to-A converter with a typical 64kHz over-sampling clock and the device needs some means of suppressing the resultant over-sampling carrier noise.

Finally, consideration must be given to the way in which such a device connects with the memory IC's - standard d-rams for maximum cost-effectiveness - which will store the digitally-encoded message. The best method is a direct pin-to-pin connection, enhanced in this case by incorporating memory refresh counters on the chip.

Operation
In its simplest form, the recorder consists of a TMS3477 chip, microphone, speaker, keypad and d-ram. Four basic commands from the keypad mimic fundamental tape-recorder functions of record, playback, pause, and stop. Furthermore, because all the required commands, processing algorithms and memory-handling facilities are already

The speech chip incorporates a flexible bus for microprocessor interface but it can be used without a micro providing up to two minutes of recorded speech.
DESIGN

To play the recording back, \(m \) is set and the TMS3477 starts reading from the lowest address. It stops when it reaches either the stop address or d-ram end-of-memory address.

The encoded bit stream from memory is passed through the 10-bit D-to-A and out through the \text{SPKR} pin 3. High quality is achieved by adapting the step voltage waveform using a 64kHz (typical) oversampling clock. and \text{PAUSE} works during both recording and playback. Operation restarts when the relevant command is issued. Operation recommences at the memory address stored at pause. The \text{STOP} command, on the other hand, resets all other functions to begin a new recording or to playback from the start.

There are some useful variations on this basic operating procedure. First, it is possible to store the two different recordings in external memory with fixed or variable lengths to allow, for example, an answering machine to be provided with a short recorded message and longer recording of incoming calls.

A cyclical recording mode can be set on chip, there is no need for masking, which makes for rapid product development without the constraints of volume production.

When \text{REC} is activated, the encoded bit stream is stored in internal d-rams via the \text{DATA} pin. Analogue signals come in through the \text{MIC} pin. At each sampling period, the input is compared with the 10-bit D-to-A output level which, in turn, is produced by an estimate integrator and syllabic integrator, based on data from the previous sampling period.

Comparator output data are directed to external d-rams. Because there is a refresh counter on-chip, no external parts are required to send the data stream to external TMS4164, TMS4256 or TMS4C1024 d-rams. (The type of memory is selected using the mode selection pins).

Each recorded bit is addressed by the TMS3477 address counter and when the recording ends—either because the \text{STOP} command has been sent or because end-of-memory has been detected—the corresponding stop address is latched into the stop-address register.

The TMS3477 uses a CVSD (continuously variable slope detection) conversion technique for digitising speech.

The speech processor chip includes a refresh counter for direct interface to standard d-ram products. 2MBytes provides around 30s of message recording at 64kHz sample rate.
The analogue signals into and out of the processor chip require filtering with conventional low pass circuits to remove alias responses.

to make sure the latest speech data are always recorded in external d-ram. There is also a speech monitor facility which plays back the encoded data in real time whilst recording.

Designers can change the speed of the data sampling clock to provide the best trade-off between storage capacity and recording quality. The built-in oscillator can be varied between 250kHz and 492kHz (164kHz is the lower limit for the TMS3477A) and should be fine-tuned using a variable resistance. Data sampling frequency is determined by the oscillator frequency and the base data sampling clock

\[F_{\text{DS}} = \frac{F_{\text{CPU}} \times F_{\text{HR}}}{320} \]

\(F_{\text{HR}} \) is pin-selectable as 16, 32 or 64kHz, hence the most faithful recording is achievable at 492 x 64/320, or 98.4kHz. Yet at 64kHz, two 1MB d-rams will only hold a 32s message.

A data-compression mode has also been included when the contents of the 10-bit D-to-A register are left-shifted by two bits, providing an eight-bit compressed value. It is not recommended to use this mode during recording - the facility is intended for emphasizing small signals during playback.

Implementation

Suitable external voice memories are TMS4164, TMS4256 or TMS4C1024; a maximum of two devices can be included. For phrase selection, a toggle switch is used. PH2 (up) connects CAS 1 signal to IC1 and IC2, whilst in the down position (PH1), CAS 1 signal is connected to IC1 and IC2. When the one-phrase/two d-ram configuration is selected by the mode-select key, DSW2 (1) switch is turned off, allowing selection of phrase 1 or phrase 2 by means of the toggle switch. With one-phrase/two d-rams selected, the toggle switch must be set to PH1 (down) to turn the DSW2 (1) switch.

Keyboard

The TMS3477 is designed for simple keyboard interfacing through direct connections to pins 8, 9, 10 and 11. Each command is transferred by switching the relevant pin to a low stable level for at least 32ms.

More complex interfacing to a microprocessor is possible through these pins when the CPU interface mode is selected by programming pin AP5 at power-on. Pins 8 and 9 are then assigned as command ports, with command patterns transferred to the TMS3477 by means of a high-level strobe on pin 10.

<table>
<thead>
<tr>
<th>TERMINAL INPUT</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 8 (CPU)</td>
<td>PIN 9 (CPU)</td>
</tr>
<tr>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

The 16kHz signal available from pin 11 is active when a low level is present and signifies that the TMS3477 is recording, playing back or in a paused state. The microprocessor should be in a wait state at this time, resuming operation only when the stop command is issued.

The CPU interface mode allows complex "tape recorder" applications to be built up, including multiprocessor architectures.
that the company has released its own entry into the rise wars, in the shape of the M88000 series. The M88100 CPU and 8200 cache and memory controller make up a very powerful chip set, which should do well in the battle for the market place.

Most rise processor designers have taken steps to improve the amount of data that they can get in or out of the chip at a time, since this is a major bottleneck for processing speed. In the 88100 they have gone to great lengths by using a full Harvard architecture, where data memory and program memory have their own address and data buses making four separate buses in all. Each has its own pipe-line and a large, fact cache memory which operates concurrently with the other three. This design allows the chip to have a lot of information being shifted to and from main memory at a time.

Inside the processor the design again encourages concurrency; there is an integer processor) and there are three separate data buses inside the chip (for data flowing from two source registers and into one target register). There are 32 registers (as in the R3000 R0 is hard-wired to 00) which employ sophisticated score-boarding techniques, to allow several operations to go on at once; under ideal circumstances the CPU could be holding as many as 11 different instructions, all at various stages of execution and accessing different registers.

This all adds up, so that a M88100 running at 20MHz delivers a reasonable 17Mips or 7Mflops. Whilst it isn’t the single fastest or most powerful rise device, it does respectably well against some stiff competition and offers some very elegant features. With the technological and marketing might of Motorola behind it this chip isn’t going to fail but just how well it will do is an open question.

- See also Two approaches to risc: MC88100, EWW, July 1988 pp637-642.

In Motorola’s M88000 rise family, the 88100 CPU talks to the rest of the world through the P-Bus Harvard architecture.

On-chip floating processor (which operates simultaneously with the main

The Am29000 is a conventional rise design that turns in a respectable 17Mips. Like the others, it is a 32-bit machine with a load/store architecture, with on-chip pipeline and cache. It has a modified version of the Harvard architecture, which uses three buses to communicate with the outside world (bidirectional data, incoming instructions and a shared outgoing address bus). The address bus is pipelined and so data and program can be accessed simultaneously. This arrangement supposedly alleviates the von Neumann bottleneck without the complexity of a large pin count or the expense of a full four-bus Harvard architecture. It is an integer-only device — its associated floating-point coprocessor is the Am29027.

Internally, the 29000 is slightly unusual in having a very large number of useful registers. The designer has a tricky decision to make in how many to include; if there are lots, then the processor will be more flexible and will need fewer memory accesses. On the other hand there will be a bigger decoding overhead (which introduces delays), increased fan-out on all the internal gates and more circuitry to implement the registers. Some research seems to show that about 28 registers is the optimum and most designers seem to agree (Intel, MIPS and Motorola all have 32 registers; Acorn has 27). AMD has decided power and flexibility outweigh the other factors — it has included a whopping 192 registers. Any of these can be used for arithmetic or logical operations, or as a data pointer. They are organised into 12 pages of 16, to support task-swapping and procedural calls. In contrast to the spare these pages are totally separate (non-overlapping). For fast applications (multi-tasking, real time control etc.) it is possible to switch to a new page, with fresh registers and new pointers, in only 17 cycles — about 600ns.

The 29000 can address gigabytes of virtual memory per process, with up to 256 processes available (this is another feature to help multi-tasking applications). This is helped by having a lookaside buffer to translate virtual to physical addresses. There is an on-chip cache, but with only 64 words it is unusually small.

This is currently the only rise chip that has a full development support system. There’s a source level debugger (for AMD’s C compiler), a target resident monitor, in-circuit emulators and an architectural simulator.

For any serious user this is a vital set of tools and it is perhaps the biggest plus that this chip has to offer.

Performance is an acceptable 12 VAX Mips (reputable manufacturers normalise their chip’s speed ratings by giving them in terms of equivalent VAX 11/780 instructions). AMD promises to have a 50Mips version next year and expect the price to fall to under $1/Mips. The number of registers (with fast page-swapping), the ability to have several processes running and the support makes this chip better suited to high-end embedded code applications than the number crunching tasks that are usually considered rise’s domain. AMD cites applications such as laser printer controls, ISDN switching nodes and robot controllers.

- See also Second-generation Rise processor, the AMD approach, EWW July 1988, pp889-901.
ANNOUNCING THE FIRST FULLY FEATURED SIGNAL ACQUISITION
AND FFT ANALYSER PACKAGE FOR UNDER £1,000
INCLUDES ALL THE BITS (2 X 14 ACTUALLY) THAT THE OTHERS LEAVE OUT

- Runs with your PC or Macintosh
- Complete two channel system, synchronous 100 KHz sampling & 40 KHz spectrum
- 14 bit ADC! 85 dB dynamic range.
- Anti alias filters
- Frequency and time domain zoom.
- FFT up to 16384 lines, with or without weighting, log or linear scaling, exp or linear averaging.
- Smart, fully featured trigger enables transient analysis, time averaging etc.
- Hard copy output with full annotation and custom legends.
- Archive results, either manually or automatically.

Laplace Instruments Ltd
PO Box 14, Bramhall, Stockport SK7 2QS. Tel: 061 440 9579

Complete system, including stand alone signal capture unit, application software, manuals and cables for only £960.
This is the best value for money, professional system in the UK.

Send off for your FREE demonstration disc using the form below, or ring 061 440 9579

Please send by return:
- Information on PC Acquisition.
- Free Demo disk.
- Details of FFT training courses.
- Complete system (Enclose cheque for £960 + VAT to Laplace Instruments Ltd).
- Details of your computer: IBM or Macintosh.
- IBM compatible PC or AT. Make & model:
- Name: Telephone No:
- Organisation: Post code;
- Address:

Post to: Laplace Instruments Ltd, PO Box 14, Bramhall, Stockport SK7 2QS

CIRCLE NO. 111 ON REPLY CARD
SMALL SELECTION ONLY LISTED — EXPORT TRADE AND QUANTITY DISCOUNTS
RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Cossor Oscilloscopes CDU150/CT531/3 £150 only. Solid state general purpose bandwidth DC to 35MHz/2-35MV/Cm — Dual Channel — delayed time base — illuminated graticule — Beam finder — Calibrator — power 200V — 250 volts AC — protection cover containing polarized viewer and camera adaptor plate — probe (1) — mains lead. Tested in fair condition with operating instructions. FEW AVAILABLE — NO PROTECTIVE COVER BUT MAINS LEAD + 1 PROBE — £125 — TESTED — Manual £15 extra.

Don 10 Telephone Cable — ½ mile canvas containers or wooden drum new from £20.

Army Whip Aerials screw type F sections and bases large qty available P.O.R. Test Equipment we hold a large stock of modern and old equipment — RF and AF Signal Generators — Spectrum Analysers — Counters — Power Supplies — Scopes — Chart Recorders all speeds single to multiphen — XY Plotters A4-A3.

Racial Modern Encryption Equipment — Racial Modern Morse Readers and Senders — Clark Air Operated Heavy Duty Masts — P.O.R. All items are bought direct from H M Government being surplus equipment; price is ex-works. S.A.E. for enquiries. Phone for appointment for demonstration of any items, also availability or price change V.A.T. and carriage extra.

JOHNS RADIO, WHITEHALL WORKS,
84 WHITEHALL ROAD EAST, BIRKENSHAW,
BRADFORD BD11 2ER. TEL. NO. (0274) 684007. FAX: 651180

WANTED: REBUILT TEST EQUIPMENT — VALVES — PLUGS — SOCKETS — SYNCHROS
ETC. RECEIVING AND transmitting EQUIPMENT — GENERAL ELECTRONIC EQUIPMENT

REPRINTS
IF YOU ARE INTERESTED IN A PARTICULAR ARTICLE SPECIAL FEATURE OR ADVERTISEMENT IN OUR JOURNAL WHY NOT TAKE ADVANTAGE OF OUR REPRINT SERVICE. REPRINTS CAN BE OBTAINED AT A REASONABLE COST, TO YOUR OWN INDIVIDUAL SPECIFICATIONS PROVIDING AN ATTRACTIVE AND VALUABLE ADDITION TO YOUR OWN PROMOTIONAL MATERIAL. FOR EXAMPLE, A TWO PAGE ARTICLE CAN BE REPRODUCED AS A FOUR PAGE FOLDER WITH ADDITIONAL WORDING ON THE FRONT PAGE AS AN INTRODUCTION.

FOR FURTHER DETAILS CONTACT:
CLARE HAMPTON ON 01-661 8672

R.S.T. LANGREX R.S.T. SUPPLIES LTD
One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klstrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thyatrons, transistors, transmitting tubes, triodes, vidicons.

All from major UK & USA manufacturers.

Obsolete items a speciality. Special quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available.

LANGREX SUPPLIES LTD
1 Mayo Road, Croydon, Surrey CR0 2QP.
Tel: 01-684 1166
Telex: 946708
Fax: 01-684 3056
The cross-field antenna in practice

Can the CFA really work? Bypassing the complex theory of the controversial March article*, C. Bryan Wells has produced practical versions which suggest that it does.

Mainly because James Clerk Maxwell is my scientist hero of days gone by I carefully read the March article and became almost hooked when I came across the words quoted here from the final paragraph. For some time I had been thinking along the lines that an antenna is really a coupling device — coupling electromagnetic energy to space — and that there ought to be ways of achieving this process as alternatives to monopoles, dipoles and loops. Was this one of those appealing concepts with seemingly great initial promise whose claimed potential is never realized in practice? Indeed, could it possibly be a hoax?

There seemed to be only one thing to do — to see if the cross-field antenna (CFA) could be made to work. The first step was to extract as much information as possible from the diagrams and photograph on page 218 by scaling to the one dimension quoted — 70cm overall height (see Fig.1). The following dimensions are estimates: E, cylinder height; D plate overall diameters, and the diameter of the feeder access holes in the D plates (because of the obscuring effect of the eight supporting and insulating rings in the middle of the “barrel”).

I started by making a half-size version, winding aluminium foil around powdered milk drums and cutting off the tin plate ends to form the D plates and then forming seven annular support members from polystyrene packing material. The 50% power split and phasing were arranged as in Fig.2. Perched on an easterly-facing window ledge, this unit yielded a number of successful contacts with British, Irish and European stations on 7MHz, at 100W.

Since then I have engineered a second half-size version, this time using coffee tins, and a further version properly fabricated from aluminium to the dimensions in Fig.1. This full size CFA

Fig. 1. Barrel shaped cross-field antenna. Dimensions are estimated by the author from the photograph and Fig.1 of the article by Kabbary, Hateley and Stewart (March issue).

Fig. 2. Feed arrangements, showing a quadrature feed for the E and D plates. In practice, a balanced E- network was used to give a 90° shift while eliminating the need for a second quarter-wave phasing section.
The important features of these antennas are (i) that they are extremely small, excellent receivers, powerful, efficient radiators and (ii) that their physical size is independent of the radiated wavelength— an unprecedented concept in antenna theory and design.*

whips, helicals etc., I have not been able to produce results which compare with those I have obtained with the CFA. It is also possible that I have not achieved the optimum in phasing, power split and matching.

I cannot claim that the CFA is as efficient as a full-size wire dipole, although it is only very slightly down on a 40m twin lead dipole, also up in the roof space, which I have used as a reference.

How does it work?

If I have come to believe that the CFA concept has some real merit, I ought to be able to put together a practical explanation of how it works, without recourse to rigorous mathematical analysis. I start with two simple propositions:

- An antenna is a means of coupling electromagnetic energy to space and usually comprises widely distributed inductance and capacitance. Most, but not all, antenna ideas involve resonant half-wave elements in some way.
- Half-wave resonance can be produced in very small antenna designs (small compared to a wavelength) usually by using lumped constant inductors and or capacitors.

If the CFA concept is in fact a new and reasonably effective way of achieving "space coupling" then it might be considered as a "lumped constant" version of a device analogous to our normally understood antennas.

The power carried by an electromagnetic wave is proportional to the product of the electric field E and the magnetic field H. If some way can be found of augmenting either E or H then this will result in a greater overall field intensity.

In the original CFA article it is emphasized, and the authors claim to have demonstrated, that "the H field may at any time be the combination of two separately induced fields from independent types of sources, i.e. charge motion and capacitor displacement current".

If the "displacement current field" in a normal system has been under-used or not really used at all until now, then the CFA is a means of exploiting it and thereby augmenting E×H.

The device is relatively small and so its coupling to space in comparison to normal, well distributed, antenna is less efficient; but the higher field intensity compensates to some degree. Just to what degree compensation can be achieved is, I suppose, the underlying purpose of the experiments.

The CFA in action

Perhaps the most important problem is the question of the required phase relationships between the 50% power split to D plates and E cylinders. After trying 180° (on 7.065 MHz.), with an extra electrical half wave to one of the elements, I found greater success in terms of transmit reports and reception with a 90°, quarter-wavelength addition. I eventually replaced this additional quarter-wave line with a balanced L network at one side of the origin of the two power-splitting quarter-wave lines, with no apparent change in performance. Using a twin variable capacitor in this network gave the possibility of fine adjustment. As previously stated, this arrangement follows the preferred amateur radio method of splitting power between two phased verticals and achieving quadrature phasing. (The network values were calculated after making approximate measurements of plate and cylinder impedance using a noise bridge).

It seems that, whatever phasing method is used, it becomes difficult to maintain the 50 – 50 power split between plates and cylinders. RF voltage measurements are extremely difficult to make with balanced lines for this purpose. However, splitting the power in co-ax, and then feeding the quarter-wave lines through baluns with RF...
voltmeters placed immediately before the baluns can also be misleading. Any slight difference in the standing wave on the quarter-wave feeders in the un-matched, or poorly matched system, shows up as RF voltage differences, which may, or may not mean an asymmetric power distribution, the only answer so far to these problems is as shown in the attached diagram. Split the power in co-ax between two matching units, feed the quarter-wave lines through baluns, tune both matching units for best reception and finally trim for a flat line to the transceiver. Do not worry too much about the accuracy of the power split or the exact phasing relationship.

Using two matching units has also facilitated excursions onto the 80m and 20m amateur bands. This has raised another puzzle; whereas on 40m the results from the CFA come close to the normal wire antennas at distance of 500 miles plus, particularly in darkness hours with the possibility of lower angle propagation, the experience on 20m does not show anything like such dramatic improvement. However, on 80 the CFA results are always close to the wire antennas and during darkness pretty nearly equal. The only explanation that I can produce for this experience is the question of compromise. The CFA is obviously a compact antenna, with the associated limitations. Most, if not all, amateur radio antennas on both 40 and 80 are compromises so far as height is concerned. In the trade-off between the compact CFA and the “low-height relatively low-frequency” wire antennas the CFA does not fare too badly. At 20m, where many amateurs can erect beams and dipoles at a height of half a wavelength, the CFA suffers in comparison. I have to add the note here that band conditions on 20m, 15m and 10m have been relatively poor with a lot of short-term variation during the experimental period and that has made comparison difficult. I must mention that the experiments on 20m and 80m have been made with the feed arrangements as shown for 40m and all band change adjustments being made with the matching units.

It has occurred to us that the employment of delay lines especially designed for that purpose might be another approach to phasing experiments, if they can be obtained at reasonable cost, although having to provide separate lines of this kind for all nine amateur HF bands does seem a little bit uneconomic. So far as the CFA’s element spacing and phasing arrangements are concerned it is difficult to find any critical adjustment points that affect receiving performance. This leads me to suspect that the feed and phasing arrangements I have used are not ideal.

The CFA shares a roof space with a UHF television antenna, also vertically polarized, and an outdoor television antenna is only about 1m above it. So far no television interference has been apparent. This seems to confirm one of the qualities claimed for the CFA, that it does not easily couple to conventional antennas in its vicinity.

Earthing the main antennas gives an improvement, small but detectable by ear, in reception using the CFA.
20MHz FOR £288?

and we’ll give you a 3½ digit multimeter as part of a very special offer from Electronics & Wireless World

- 20MHz dual channel operation
- Trigger hold-off facilities
- 1mV/div Y1 and Y2 sensitivity
- 100ns/div to 2s/div sweep rate
- Risetime less than 17.5ns
- 8cm × 10cm display area
- Display accuracy better than ±3%
- 1kHz internal calibrator
- X/Y operation using Y channels
- Special video signal trigger modes
- Two × 10 probe kits
- Three year guarantee

We have assured ourselves at Electronics & Wireless World that this oscilloscope has an exceptionally high build quality and meets completely its stringent technical specification. Our judgement is backed with a three year guarantee. At £288 (inclusive of delivery & packaging but exclusive of VAT) the instrument is an absolute bargain. The inclusion of a high quality 3½ digit multimeter in the price makes this a very special offer.

To place your order, please send in a cheque for £331.20 (which includes VAT) to the address shown on the coupon. Alternatively complete the coupon with your credit card details or phone in your credit or charge card order on 01.6613130 (24 hours).

OS-7020 OSCILLOSCOPE ORDER FORM

Please send me the special offer from Electronics & Wireless World

☐ I enclose a cheque/PO to the value of £___________ made payable to Reed Business Publishing Ltd

☐ Please debit my credit account

Expiry date

☐ Access ☐ Barclaycard/Visa ☐ American Express ☐ Diners Club

Name. Mr. Mrs. Miss (Initials must be supplied)

Address

Amount due £___________

Signature

Please return to: Electronics & Wireless World, Room L301, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

The OS-7020 oscilloscope comes from the electronics giant Goldstar, a world class manufacturer of both professional and consumer electronics.

* Contact Electronics World for overseas delivery charges
Analogue emulation with Spice.age

Stephen Franks reviews Spice.age, an easy-to-use PC-compatible circuit analysis package for design and education

Spice.age is an analogue circuit simulator and consists of four modules: for frequency response, DC quiescent analysis, transient analysis and Fourier analysis. While the user need only buy those modules that are of interest, they form a seamless program when used together.

The software is intended for teaching in university or technical college; it is ideal for use as part of a course in electronics. It can also be used by circuit designers to check designs before reaching for the soldering iron, although it is a little slow for the more complex circuits.

The software runs under Digital Research's GEM - a graphical "front-end" designed to do all the hard work involved in driving the screen and printer, and accepting commands from the user. This has the advantage that anyone familiar with GEM will be immediately comfortable with the package, and provides the confidence that, as new printers and plotters become available, drivers will be written to allow them to be used.

Installation

Installation is a three-stage process: registration, GEM installation and Spice age installation. This entire process is clearly described in the manual, and takes very little time.

Registration involves embedding the name of the user into the software; until this is done, the software cannot be used. The name typed in must agree with that given to the manufacturer, who provides three numeric keys which must also be typed in. If the numeric keys match the name, the software is unlocked, and installation can proceed.

This is one of the better copy protection schemes available, since it allows the software to be copied to make back-ups but allows immediate identification of pirate copies.

Once registration is complete, GEM must be installed - that is, assuming that the user does not already have a copy. The documentation for this part of the process is much less comprehensive; the full GEM documentation is not included, and although on-screen help is provided, it is not always clear what to do next. For anyone reasonably familiar with installing software, however, this section will not present any problems.

Finally, Spice.age itself is installed, using the self-install program provided, which does all the work of creating sub-directories and copying the files into the right places.

![Fig. 1. A simple passive band-pass filter circuit, as entered into Spice.age.](image-url)
Software

Entering the circuit

The circuit is entered by assigning numbers to each node in the circuit, and typing in a list of components with the nodes to which they connect. A very helpful feature is the ability to assign “help” text to items in the library of components. When a library item is specified, the help text appears at the bottom, giving the nodes that need to be connected, along with other useful information.

Although there are limits to both the number of nodes and the number of components, these are high enough not to restrict normal use.

Circuits can be stored on disk, and entire circuits can be stored as a single library item, to be built in to more complex circuits later. The basic components available include the normal resistors and capacitors and a diode (modelled on the exponential diode equation well-known to all students). There are also components such as a square-law conductor and a voltage-controlled current source, intended for use in modelling more complex devices.

The library items provided with the software include a general-purpose transistor (in both p-n-p and n-p-n form), a 741 op-amp, a 1:2 transformer, and a field-effect transistor. Also provided are a couple of c-mos logic elements.

Circuit analysis

The frequency analysis module produces the usual gain and phase-response curves. To produce accurate curves, the circuit is first analysed for quiescent (DC) conditions before calculating the small-signal results. Strangely, the DC conditions cannot be viewed unless the second module is purchased; surely these two modules could be combined? The small-signal analysis assumes that all signals are reasonably small, and quite happily indicates 100V output signal from a 10V power supply. It is of course normal practice to assume that signals are reasonably small, but it is especially easy to forget this when all the calculations are done for you. The graphs produced are self-scaling, and each axis can be log or linear, with the dB reference, if used, defined in any of six different ways. The result is a clean-looking graph, which is delightfully easy to produce.

As described earlier, the quiescent conditions of the circuit are analysed. A table shows the voltage at every node in the circuit.

Transient analysis produces an oscilloscope-like graph showing the response of the circuit to a variety of stimuli: impulse, sine, step, triangle, ramp, square and pulse train. It is possible to pre-charge reactive components to quiescent conditions, and to have more than one voltage (or current) generator. The stimulus always starts at time 0, but the graph can start at any time before or after this. Up to four nodes in the circuit can be shown on the same graph.

Fourier analysis is performed on the data generated by the last transient analysis, which is a little confusing at first. However, once grasped it is easy to set up and use and, like the other modules, produces clear, uncluttered text-book graphs.

Using the software

Spice.age was written by a senior lecturer at a technical college – and it shows! It is easy to see many different ways that Spice.age could be used to teach: apart from allowing students to test their designs, it could be used to demonstrate modelling of semiconductors (the library contains the Moll-Ebers model), and it is possible to set up excellent examples of the effects of selecting the wrong samples for Fourier transforms. For more advanced students, it could also be used to teach computer modell-
ing: for example, it can be made to show the effect of selecting unsuitable sampling rates.

Although the software does function very well, there are a few aspects that could be improved. There is no provision for examining the effects of component tolerances: such a provision would make the software able to cope with even more teaching situations. The only other problem with the package is the speed of calculation. On a fast machine (a 20MHz 80386 with coprocessor), it is possible to change some aspect of the circuit and re-analyse to see the result. On slower machines the time taken to analyse a moderately complex circuit (such as an active filter) is a disincentive to experiment. While there is a minimum amount of arithmetic implicit in the nature of the software, it may be possible to improve the speed by careful optimization and if so this would be time well spent.

The software is very robust; it is not possible to select an option that does not make sense and the software coped perfectly with everything thrown at it. Standard of finish was considerably better than a lot of educational software; unlike those provided in much software (including much more expensive packages), the error messages were sensible and gave sufficient information to put right whatever was wrong.

There has been great attention to detail in the design of the software, mainly spent on making it easy to use as possible. For example, when entering the value of components, almost any form is accepted: 1K2, 12001, 1.2K, 1.2E3 are all accepted as the same value. This care has been extended to all parts of the software, making it very flexible while still reasonably easy to use.

Printing and plotting
The output side of the software is a little peculiar. Normal practice with GEM-based software is to have a "Print" option in the "File" pull-down menu, this often asks for further information before starting to print. Once the information is gathered, an application will normally automatically run GEM's output program, which handles the output and returns to the original application.

Spice.age on the other hand, requires the user to do all this manually. The "Presentation" pull-down menu contains a "metafile" option, which may be either selected or deselected. While it is selected, a copy of every graph generated will be sent to disk as a file, the user being prompted for a name every time. Once all output is generated, the user must quit Spice.age, start the output program, and give it the name(s) of the files to print. To continue with Spice.age, Output must be terminated, and Spice.age started up again.

This is rather tedious and not at all intuitive, which is what the GEM environment is all about. It requires the user to handle the temporary files used, to delete them after use, and to ensure that they are not overwritten until printed out. This is especially unsuitable to a teaching situation, where it is likely that several students will use the machine in succession.

GEM ensures that all output devices are used to their best resolution, completely independently of the screen. Drivers are supplied with the software for all popular dot-matrix printers (but no plotters) and further drivers for both printers and plotters are available for £15 each. Currently all output is monochrome, although colour may be supported in future releases.

Final output is identical to the screen, but at the best resolution of the printer. There is no facility to add titles or other annotations, but all relevant information is automatically included.

Fig. 3. Impedance versus frequency for the same filter.

Fig. 4. The transient response of the circuit to a 1 V impulse. Note the peak in excess of 175kV – try seeing that on an oscilloscope!
SOFTWARE

Support
A help-line number is operational from 2.00pm to 4.00pm. Since the software has not generated any genuine problems, questions had to be devised to assess the service. The responses were uniformly good: simple questions were answered immediately, and one more complex query was referred to the author of the software. In this case, a return call was promptly made with the answer.

It is common to underestimate the importance of a service such as this, but a good help-line can save a great deal of time. This service appears perfectly adequate, even to the extent of trying to anticipate problems, and giving helpful information regarding a minor bug in the GEM environment; it would appear that when installing GEM on a dual-floppy computer, a "disk full" message can be generated. The cure is simple enough, but given that educational establishments are likely to have such machines, it would be even more helpful to include a note with the software, describing the bug together with the cure!

Manual
The manual manages to be simultaneously very good and very bad. For those meeting the software for the first time, the manual provides a clear introduction, including taking the user through a few examples provided on disk. Once the basics are learned, however, the manual is much less useful: despite an apparently comprehensive index, it proved very difficult to find information as the need arose. It is in single-sided A4 format, which makes providing copies for the students easy — and the licensing arrangements allow for limited copying. This is a very sensible move, as it keeps the cost of the software low (at least for multi-user sites).

This piece of software does just what it sets out to do: that is, to provide an aid to teaching electronics. It relies heavily on the lecturer to build it into any given course, but can be used at many different levels. The ease of use of the software is such that it should not distract from what is being learned. It contains many idiosyncrasies, but these are balanced by many minor but useful features that make it, overall, a very worthwhile teaching aid.

Price is £70 per module, or £245 for all four modules. For educational establishments, an eight-user licence is available for £499, and provides eight user disks, one master manual and permission to make eight copies of the manual. Further copies are then £35 each, which includes the user disk and permission to make a further copy of the manual. Ready-made manuals are available for £15, but a site may not have more manuals than the number of licensed users.

SPICE·AGE
Non-Linear Analogue Circuit Simulator £245 complete
or £70 per Module
Those Engineers have a reputation for supplying the best value-for-money in microcomputer-based circuit simulation software. Just look at what the new fully-integrated SPICE Advanced Graphics Environment (AGE) package offers in ease-of-use, performance, and facilities:

SPICE·AGE performs four types of analysis simply, speedily, and accurately:

- Module 1 - Frequency response
- Module 2 - DC quiescent analysis
- Module 3 - Transient analysis
- Module 4 - Fourier analysis

1 Frequency response
SPICE·AGE provides a clever hidden bonus. Its first solves for circuit quiescence and only when the operating point is established does it release the correct small-signal results. This essential concept is featured in all Those Engineers' software. Numerical and graphical (log & in) impedance, gain and phase results can be generated. A 'probe node' feature allows the output nodes to be changed. Output may be either dB or volts; the zero dB reference can be defined in six different ways.

2 DC Quiescent analysis
SPICE·AGE analyses DC voltages in any network and is useful, for example, for setting transistor bias. Non-linear components such as transistors and diodes are catered for. (The disk library of network models contains many commonly-used components — see below.) This type of analysis is ideal for confirming bias conditions and establishing clipping margin prior to performing a transient analysis. Tabular results are given for each node; the reference node is user-selectable.

NEW: HANNING WINDOW: RESULTS LOGFILES

3 Transient analysis
The transient response arising from a wide range of inputs can be examined. 7 types of dc excitation are offered (impulse, sine wave, step, triangle, ramp, square, and pulse train); the parameters of each are user-definable. Reactive components may be pre-charged to steady-state conditions. Up to 13 voltage generators and current generators may be connected. Sweep time is adjustable. Up to 4 probe nodes are allowed, and simultaneous plots permit easy comparison of results.

4 Fourier analyses
SPICE·AGE performs Fourier transforms on transient analysis data. This allows users to examine transient analysis waveforms for the most prevalent frequency components (amplitude is plotted against frequency). Functions as a simple spectrum analyser for snapshot of transients. Automatically interpolates from transient analysis data and handles up to 512 data values. Allows examination of waveform through different windows. Powerful analytical function is extremely easy to use.

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.

A good range of properly supported and proven programs is available and our expert staff are at your service.

Telephone: Charles Clarke on 01-435 2771 for a demonstration disk.

Those Engineers LTD
106a Fortune Green Road
West Hampstead
London NW6 1DA
Tel: 01-435 2771 Fax: 01-435 3757

CIRCLE NO. 150 ON REPLY CARD
ELECTRONICS WORLD + WIRELESS WORLD November 1989
BOARDSMAKER - the price performance leader

If you are looking for the solution to your PCB layout and schematic drawing problems - BOARDMAKER has all the answers. One integrated package provides a powerful...

Some of BOARDSMAKER's power features:

- Easy to learn and use
- Full WYSIWYG display
- Ultra-fast zoom, pan and re-draw
- Interactive placement and routing
- Auto via-hole placement
- Auto line optimisation
- Handled multi layer boards - 10 available layers including 3D screen views
- Comprehensive surface mount support
- Screen driven for CGA, EGA and VGA displays
- Extensive user definable symbols and layout macro facilities
- Sensible user interface - use a mouse or keys to access the menu
- Manual includes user guide and full command reference

Standard outputs included in the package:

- Dot matrix printer - 9 and 24 pin Epson or compatible
- Laser printer - HP Laserjet II emulation
- Printer - Epson or IBM compatible laser

Tsion provide a full after sales support and software update service.

Required an IBM PC/XT/AT or 100% compatible inc. Amstrad 1512 & 1640

BOARDSMAKER costs only £195 + VAT

Write or phone today for your FREE demonstration disc

Corporate, education and dealers - ring for details.

Tsion (UK) Ltd, Cambridge Research Laboratories, B6A Huntington Road, Cambridge
CB3 0DF Tel: 0223 277777 (4 lines) Fax: 0223 701644

CIRCLE NO. 159 ON REPLY CARD

R.F.
ACCESSORIES
FILTERS, ATTENUATORS,
COUPLERS ETC.

CONNECTORS
AND CABLES
CABLE ASSEMBLIES AND
TEST LEADS MADE TO
ORDER

Coaxial or Multiway.
RF, video, audio and data
Double braid and tough PTFE coaxial cables.
Customers already include several universities and
technics, government
departments, broadcasters and
BT - Cellnet.

WAVEBAND
ELECTRONICS
3 Lon Howell, Denbigh,
Clwyd LL16 4AN.
Tel: 0745 571 2777.

CIRCLE NO. 155 ON REPLY CARD

Our very simple offer
to craftsmen

Better tools
to work with

- Antex TCS 240 V 50W and
TCS 24 V 50 W.
- Temperature Controlled Soldering
Irons for electronic and electrical applications - especially field
maintenance and repair.
- Temperature range 200° to
450° C. Analogue proportional
control ± 1%. Max. temperature
achieved within 60 seconds.
PLUS
- Antex M-12W, CS-17 W, and
XS-25W. Available in 240 or
24 volt.
- Tools specially designed for fine
precision soldering.
Ideal for all electronics craftsmen and hobbyists.
For full information on the comprehensive Antex range of
soldering irons, power supply
units and accessories, please
clip the coupon.

WAVEBAND
ELECTRONICS
3 Lon Howell, Denbigh,
Clwyd LL16 4AN.
Tel: 0745 571 2777.

CIRCLE NO. 155 ON REPLY CARD

November 1989 ELECTRONICS WORLD + WIRELESS WORLD

1117
WE HAVE THE WIDEST CHOICE OF LED MULTIPLEXORS IN THE COUNTRY!

<table>
<thead>
<tr>
<th>Product</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 5500</td>
<td>Red</td>
<td>5 mm, 1000 V, 20 mA, 0.8 W</td>
</tr>
<tr>
<td>LED 5501</td>
<td>Green</td>
<td>5 mm, 1000 V, 20 mA, 0.8 W</td>
</tr>
<tr>
<td>LED 5502</td>
<td>Blue</td>
<td>5 mm, 1000 V, 20 mA, 0.8 W</td>
</tr>
</tbody>
</table>

These are just a few examples of our extensive LED multiplexor range. See our catalogue for complete list.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner

Telephone: 01-445 2713/0749

Toroidal Transformers
As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices.

Toroidal Price List

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price Per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-49</td>
<td>$10.00</td>
</tr>
<tr>
<td>50-249</td>
<td>$9.50</td>
</tr>
<tr>
<td>250-499</td>
<td>$9.00</td>
</tr>
<tr>
<td>500-999</td>
<td>$8.50</td>
</tr>
<tr>
<td>1000-1999</td>
<td>$8.00</td>
</tr>
<tr>
<td>2000-4999</td>
<td>$7.50</td>
</tr>
<tr>
<td>5000-9999</td>
<td>$7.00</td>
</tr>
</tbody>
</table>

These prices are for single primary with two equal secondaries with B colour coded fly leads.

Available from stock in the following voltages: 0-6, 0-12, 0-24, 0-48, 0-96, 0-144, 0-192, 0-288, 0-360, 0-432, 0-576, 0-720, 0-864, 0-1080, 0-1440, 0-1800, 0-2160, 0-2520, 0-3024, 0-3628, 0-4332, 0-5136, 0-6144, 0-7372, 0-8744, 0-10464, 0-12576, 0-15096, 0-18144, 0-21792, 0-26144, 0-31376, 0-37648, 0-45152, 0-54192, 0-64256, 0-76416, 0-91744, 104864, 129840, 159888, 199824, 249808, 309840, 389808, 489808, 609840, 759808, 919808, 1149808, 1439808, 1789808, 2189808, 2739808, 3319808, 4039808, 4859808, 5829808, 7039808, 8439808, 10179808, 12579808, 15989808, 19989808.

Primary 240 volt.

Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts.
Tel: 0279 724425 Fax: 0279 724379

Electronics World + Wireless World November 1989

Stewart of Reading

With 48 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES:

- Microphone transformers (all types)
- Microphone Splitters/Combiner transformers
- Input and Output transformers
- Direct Injection transformers for Guitars
- Multi Secondary output transformers
- Bridging transformers
- Line transformers
- Line transformers to B.T. Isolating Test Specification
- Tapped Impulse matching transformers
- Gramophone Pickup transformers
- Audio Mixing Desk transformers (all types)
- Miniature transformers
- Microminiature transformers for PCB mounting

Expert toroidal transformers
- Low level linear and other transformers for Valve Amplifiers up to 500 watts
- Inductive Loop transformers
- Smoothing Chokes
- Filer, Inductors, Amplifiers to 100 volt line transformers
- From a few watts up to 1,000 watts
- 100 volt line transformers to speakers
- Speaker matching transformers (all powers)
- Loud Mult-speaker transformers up to 300 watts or more.

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch time is considerably reduced.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS

Export is a specialty and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc.

Send for our questionnaire which, when completed, enables us to post quotations by return.
Heating the sky mirrors

The letter from Tony Hopwood ("Radio Mirror" E&WW, September 1989, page 877) shows how ionospheric hot spots can be produced by high-power terrestrial transmitters. His observations appear to be novel in recording the presence of hot spots due to microwave satellite up-link transmitters. However, ionospheric heating and its potential use for extended-range VHF scatter communications and long-range "monitoring" has been recognized and investigated for well over a decade. Under the heading "Artificial radio aurora" in WW, February 1975, page 86, I wrote:

"In his 1966 inaugural address as president of the IEE, J.A. Ratcliffe noted that when the long-wave broadcasting station at Droitwich is switched on the temperature of the electrons at a height of about 100km increased by about 45°C. This technique of using radio transmitters to heat up the electrons in the ionosphere is being investigated in the United States and the USSR as a means of producing artificial radio aurora to permit scatter communication on frequencies up to UHF over distances of some hundreds of miles. Details of this work, on behalf of the US Department of Defense, have recently been given in two American amateur journals with a view to further participation by amateurs. Much of the basic research has been done by the Institute for Telecommunications Sciences (ITS) and the Stanford Research Institute and has already shown that this propagation mode could be of interest to amateurs. For example, on May 11, 1972, K7PX1 in Phoenix was heard via ARA in Socorro, New Mexico. In these tests, very high-power HF transmissions (typically about 5MHz) are beamed upwards with an ERP of the order of 5 megawatts, raising the temperature of the electron gas, forcing it to expand along the magnetic field and so permitting scattering from the field-aligned irregularities.

"The tests have shown that the effect on forward-scatter signals is almost coincident with the switching on and off of the 'heater' transmitter both in the E-layer and the F-layer. High-power transmitters suitable for this work currently exist at Platteville, Colorado and at Arrecibo, Puerto Rico and also in the USSR at Gorki."

Since then it has also been shown that it is possible to generate ELF waves in an artificially-heated ionosphere by the non-linear "mixing" process that was recognized in the 1930s as the Luxembourg Effect.

A paper by Min-Chang Lee and J.A. Fejer of the University of California, "Theory of short-scale field-aligned density striations due to ionospheric heating," Radio Science vol. 13, no. 5, 1978), noting that powerful radio transmissions from the ground produce a variety of modification effects in the ionosphere in addition to simple heating by ohmic dissipation reported: "One of the unexpected effects of ionospheric heating experiments was the generation of short-scale field-aligned striations."

Since we may safely assume the interest of military and sigint organizations in the practical applications of artificial radio aurora (ARA) it is not surprising that little has been published on the final outcome of the American experiments.

Much nearer to Earth, the possibility that large aircraft can, in specific atmospheric conditions, produce temperature inversions in the troposphere capable of sustaining VHF/UHF communications over ranges of about 450km has been attracting the attention of Australian radio amateurs. In 1985, stations in Melbourne and Sydney investigating communication by weak forward scatter were surprised occasionally to hear relatively strong signals from Ian Cowan, VK1BG near Canberra, roughly midway between them. Observations showed that the signals, lasting from just a few minutes to tens of minutes, coincided with the flight of large aircraft between Melbourne and Sydney.

Some of the Australians believe this can be entirely explained as a form of bistatic radar with signals scattered from the metal surfaces of the aircraft. But others are convinced that in some circumstances the large amount of heat discharged from the engines produces a temporary temperature inversion, with the geometric shape of its wake resembling a two-dimensional copy of an inversion produced in nature.

Brian Measure, GO4HKS believes that this form of aircraft-enhanced propagation is due to aircraft exhaust trails (condensation trails or contrails): "In the tropical stratosphere, where the lowest temperatures are to be found, persistent contrails are formed by the aircraft exhaust gases. These gases contain sublimation nuclei, so causing supersaturation with respect to ice with radio signals possibly bouncing off the resultant ice particles formed in the contrail." This would account for the varying length of the openings depending on the creation of contrails in low-level or high-level saturation conditions with contrails either a short plume or of a long persistent nature. It would be interesting to know if such conditions show up on Australian radars or if there is always a Doppler shift of the order to be expected if the scattering is entirely from the aircraft surfaces.

An example from the American experiments in the early 1970s showing F-region scatter reception of signals on 20.5MHz over an Arkansas/California path at a time when this was above the MUF. Signal enhancement appears about 20 seconds after the "heater" on 5.2MHz is turned on, with the signal again fading into noise some 20 seconds after the high-power transmitter is turned off. (Scattering characteristics of artificial radio aurora, by Victor Frank, WB6KAP, Ham Radio, November 1974).
The problems with HF packet

The teleprinter began to replace morse for line communications during the 1920s, and attempts were soon being made, for example at the US Navy Research Laboratories, to adapt the machine for use on radio circuits. Difficulties were quickly revealed and it was another 20 years before radio-teleprinters could be used by navies on an operational basis over HF circuits, and then only with difficulty. HF signals vary in strength by 20-40dB, sometimes by 80dB; multipath propagation can result in time differences of from 1 to 3 milliseconds; clear channels are frequently not available. Unprotected HF circuits using teleprinters have typical character error rates, even on good paths, of 1.10^-2 compared with the 1.10^-6 often demanded for digital data.

All radio teleprinters are based on the Murray five-unit baudot code. CCIR Recommendation 476 established the Dutch TOR (Teleprinter-over-Radio) protocol - a single-channel synchronous system using a seven-unit error-detecting code with a modulation rate of 100 baud and a throughput of 50 baud if no repeats are requested, reducing in practice to perhaps 20-30 baud in poor but usable path conditions.

CCIR 476 provides the same 32 character set (capital letters only) as the No 2 Baudot code plus six special signals. A small number of character errors may be printed, but a notable feature of SITOR and other members of the TOR family, including the amateur radio AMTOR established in the late 1970s by Peter Martinez, G3PLX, is its very acceptable performance on weak signals in poor radio conditions, often approaching the best that can be achieved on hand-sent morse by experienced operators. It can be received in a bandwidth of about 300Hz.

However, the fixed-rate transmission, with a maximum efficiency of 50% and the possibility of some uncorrected errors, makes it less than ideal for modern digital systems linking computers for which the standard ASCII code with its 128 character set (plus error detection) is needed. The emergence of "packet" systems for telecommunications circuits soon led to experiments to determine their possible application to single-channel HF/VHF/UHF radio.

Information is sent in packets of varying length, typically up to about 60

Antenna computers vindicated

It has sometimes been suggested that antenna engineering can be divided into two different eras - before and after computers. Nevertheless much of the work now carried out with the aid of computers is based on earlier work where only human intelligence and painstaking mathematical analyses were the order of the day. And it is only recently that there has been less need to remind ourselves that with computers as well as humans "garbage in results in garbage out".

Much of the current attraction of computers in antenna engineering stems directly from the development a decade ago of the Numerical Electro-magnetic Code (NEC) with software based on the sophisticated mathematical "method of moments" procedure originally formulated, although not as a computer program, by R.P. Harrington in 1968. It is already clear that NEC has opened a new era in antenna analysis and design that is quickly overtaking the costly, time-consuming and not always reliable use of model antenna ranges, permitting the paper design of practical antenna systems, determining and modifying the directivity, gain, input impedance and radiation patterns.

The original NEC software required the use of a mainframe computer and was thus of limited appeal to field engineers. However, about 1982 the US Naval Postgraduate School in California wrote a simpler Mininec program for use with readily available personal computers. This team, and others including D.M. Pozar, have since further developed and amended such software which covers "thin-wire" antennas where only axially-directed currents flow on the conductors.

Dr Brian Austin (University of Liverpool) has recently pointed out ("Validation of microcomputer antenna codes", IEEE Conference Publication No 301, ICAP89) that validation of Mininec and similar software is vital if any degree of confidence is to be generated in this form of computer modelling procedure. This can be done either by experimental validation using full-scale or carefully-controlled scale-model measurements or by comparing computer-generated results with published literature not based on computer codes.

Dr Austin has adopted both methods, although he has concentrated on comparing computer and non-computer analyses of a series of basic antennas including inductively-loaded short monopoles, capacitive end-loaded wires, simple forms of the Yagi-Uda antenna with wire elements, linear travelling-wave antennas, the corner reflector and also the interaction of antennas with metal supporting masts. His general conclusion is that "Mininec can be used with confidence to model a variety of antenna configurations, given

![Fig.1. Effect of reflector-to-radiator spacing according to Lawson (solid line), Mininec (rings), Viezbieck (plus signs, +) and Pozar (crosses, x).](image1)

![Fig.2. Input impedance of the Yagi-Uda array, by Lawson (solid line), Mininec (dots and dashes) and Pozar (broken line).](image2)
characters at a time, with a selection of signalling rates up to 9600 baud or more. A number of stations can theoretically use a single channel in time-multiplex. The receiver will not accept for display any packet in which even a single error is detected. The penalty is that many more repeats are likely to be demanded than with TOR unless the path is of a quality most unusual for HF and by no means always available on VHF or UHF.

Although significant numbers of radio amateurs, and an increasing number of professional users, are now using the AX.25 packet protocol on HF, there is a growing body of opinion that radical changes will be needed if the system is to be widely used on HF. Douglas Lockhart, VE7APU, a pioneer of packet radio in 1978, has written: "When I developed it, it was intended for VHF/ UHF/microwave. It is being used on HF but requires a 99.9% reliability of the bits getting through to be useful, because you have to have a whole set of bits coming through in order to receive them perfectly."

Paul Rinaldo, W4RL, editor of QST, believes the time has come for a re-think of the AX.25 protocol, taking into account multipath, intersymbol distortion, group delay, interference error bursts, excessive retries, etc. Admittedly, ASCII codes overcome problems caused by the corruption of machine characters (carriage returns, line feed etc.) experienced with five-unit teletype codes. The Admiralty Research Establishment has successfully developed a special slow-speed modem using ASCII with frequency and time diversity combined with an intelligent detection and decoding algorithm. This is claimed to provide reliable HF communication under conditions that would previously have required a fall-back to morse. It uses ten 100-baud tones in a 3kHz band to provide a data rate of just 10 bit/second. But such a modem is a long way from the type of HF packet networks now coming into use on a variety of professional and military networks as well as by radio amateurs. For amateurs at least, AMTOR with baudot teleprinter code rather than packet with ASCII seems the logical choice for HF for those no longer satisfied with morse.

RF Connections are by Pat Hawker

its constraints in terms of the number of wires and segments available."

One aspect of his investigation of Yagi antennas should be of particular interest, to both professionals and radio amateurs. For many years one of the standard references used when building high-gain, long-boom VHF/UHF Yagi arrays has been a 20-page, 1976 publication of the US Department of Commerce and National Bureau of Standards (NBS Technical Note 688, "Yagi Antenna Design" by Peter P Viezbicke), based on experimental measurements made on a 400MHz antenna while optimizing designs. Viezbicke attempted to show (a) the effect of radiator spacing on the gain of a dipole, (b) the effect of different equal-length directors, their spacing and number on realizable gain; (c) the effect of different diameters and lengths of directors on realizable gain; (d) the effect of the size of a supporting boom on the optimum length of parasitic elements; (e) the effect of spacing and stacking of antennas on gain; and (f) measured radiation patterns of different Yagi configurations.

This monumental work has deservedly influenced antenna design during the past decade and has much improved the results achieved with such long-boom, multi-element antennas. But I recall that after I had published a short summary of the NBS study, Les Moxon, G6XN and formerly of Admiralty Research, although reluctant to criticize another author's work, was moved to suggest that Peter Viezbicke has failed to ask himself the two basic questions that should always be considered when presenting such findings: (1) do the results make sense?, and (2) are they consistent with previous work, and if not, why not?"

He was particularly concerned about two of the basic findings derived from the 400MHz antennas: "For a dipole with simple single-rod-type reflector, Viezbicke puts the optimum gain as only 2.6dBi (i.e. 4.7dBi) with an increase of only 0.75dBi to 3.35dBi with a considerably more elaborate trigonal reflector. Then with the addition of just one director (using the trigonal reflector), wham, the gain shoots up to 7.1dBi. The third element thus appears to be capable of providing an extra 3.75dB of forward gain".

Les Moxon pointed out that if Viezbicke's findings could be substantiated they would provide an overwhelmingly strong argument in favour of using three-element rather than two-element HF Yagi arrays. He added, however: "Real life just isn't like this. Curves in the ARRL Antenna Book and elsewhere based on the classic 1937 paper by Dr George Brown show gains in excess of 5dBi for a dipole plus reflector, and I have repeated the calculations myself many times, obtaining figures in the region of 5.2 to 5.4dBi depending on the particular source of data on mutual impedance. In practical designs, he suggested, it seems possible to achieve about 5dBi (7.1dBi) forward gain from just two elements but only roughly 6dBi from three elements.

In his ICAP paper, Dr Austin compares his computer results using Mininec and Pozar computer codes with Peter Viezbicke's data and also with that of J.L. Lawson ("Yagi Antenna Design", ARRL, 1986). Figure 1 shows the effect of reflector-to-radiator spacing on array gain and underlines how closely the computer results agree with classic theory yet differ significantly from those obtained by Viezbicke on the antenna range. A startling validation of microcomputer antenna codes!

Fig. 3. Front-to-back radio of the Yagi-Uda array: Lawson (solid line), Mininec (broken line) and Pozar (dots and dashes).
Helix antennas for user-friendly FM

For much of the past decade the BBC has been seeking to increase the use by listeners of its VHF/FM services by making reception easier with user-friendly FM sets. Indeed, the introduction of RDS is one aspect of this policy, although imposing a significant cost penalty on listeners. Some years ago the BBC tried, with little noticeable success, to increase the popularity of FM listening by designing and offering to industry a portable receiver with push-button tuning and an active ferrite-rod antenna (with pre-amplifier) in place of the awkward, and sometimes dangerous, telescopic rod. This design had little impact on an industry in which British production had sunk almost out of sight.

With the proposed ending of duplication of programmes on VHF and medium- and long-wave stations, the BBC has been renewing its efforts by taking another look at user-friendly antennas for portable FM receivers. Using a large TEM cell of the type now used for checking the immunity of receivers to local RF fields, BBC Research has assessed the characteristics and practicality of five different types of antennas suitable for use with portable FM receivers.

R.D.C. Thoday (IEE Conference Publication No 301 (ICAP89), Part 1, pages 502-6) compares the characteristics of (1) the quarter-wave whip, (2), the short whip, (3) the ferrite antenna, (4) the frame antenna, and (5) the normal-mode helix antenna. His results are summarized in the table. He concludes that the helix is "a very strong contender as the ideal antenna for the portable receiver".

He shows that reasonably good reception can be achieved in a domestic environment using a compact helix which can be compact, robust and does not need to be accurately tuned. While the quarter-wave whip provides the most sensitive antenna for this application, the convenience of the helix, particularly in its more flexible forms, makes it more suitable. The addition of metal foil to form a ground plane on the inside walls of the receiver cabinet is recommended, to improve the performance of both the whip or helix antenna.

The short normal-mode helix, comprising roughly a half-wavelength of wire wound on a suitable former and resonating as a quarter-wave antenna, is widely used for hand-held transceivers, in amateur practice often termed the "rubber duck" antenna.

BBC Research has also investigated the attenuation of VHF signals within a domestic (building) environment relative to the RF field at the standard height of 10 metres outside the building. It was found that the building loss is of the order of 13.6dB with a standard deviation of 7.5dB for vertically polarized Band II signals and 16.7dB (standard deviation 6.7dB) for horizontally polarized signals.

VERSATOLOW:
A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2 1972 for a minimum wind speed at 50 mph in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

Suitable for mounting equipment in the fields of communications, security surveillance, marine survey, defence range-finding and nuclear and aero navigation.

Airport approach lighting and further details available on request.

STORMCHEM ENGINEERING LIMITED
Portsmouth Dockside, Southsea, Hampshire.
Telephone: Brownhills (0543) 542311.
Fax: 0543 361050.

M & B RADIO (LEEDS)
THE NORTH'S LEADING USED TEST-EQUIPMENT DEALER

ELECTROVALU:

THERE IS SOMETHING IN THIS FOR EVERYBODY

no matter how far you are into electronics
and it's absolutely FREE!

PRICES PLUS VAT

ALL PRICES PLUS VAT AND CARRIAGE
86 Bishopsgate Street, Leeds LS1 4BB.
Tel: 0532 435649. Fax: (0532) 426881

CIRCLE NO. 144 ON REPLY CARD

CIRCLE NO. 147 ON REPLY CARD

COMPUTER APPRECIATION,
The Penny Theatre, 30/31 Northgate,
Canterbury, Kent, CT1 1BL.
Tel: (0227) 470512

HEWLETT PACKARD MODEL 550A LASER TRANSDUCER.
With Piezoelectric tuning for precise control of wavelength in measuring applications. With var out mirrors and accessories. £250.00

KRATOS MS30 DOUBLE BEAM MASS SPECTROMETER. Approximately 8 years old in negative ion, 1184 ppb & fast atom bombardment (FAB). With gas & direct introduction sample probe & with gas chromatograph inlet system. Output spectra are available via a HEWLETT PACKARD storage display & a UV RECORDER. An on-line data GENERATOR. £4,000 computer system, which includes a graphics printer & 2 Tektronix 4014 terminals, output. The various sections of the instrument may be available separately. A new high flux magnet was fitted shortly before the instrument was decommissioned. P.O.A.

SPECTRA PHYSICS MODEL 164A 30mW HELIUM NEON LASER with power supply. A powerful Helium Neon laser ideally suited for holography £350.00.

LUMINAR SYSTEM 2000 RUBY LASER with Q-switch. Temperature controlled KDP+ frequency doubling output monitor 0.3 Joule per pulse Q-switched output: 6 ppm Suitable for holography involving moving objects. A low power He/Ne laser for mirror alignment and all manual is included. Current new price £1,500.00. £350.00.

ITT PERFEKTOR TELEPHONE MACHINE. With 32 key memory screen with slow scrolling keyboard etc. together with operators and service manuals. £99.50.

BIOMATION Model 810D LOGICAL ANALYSER. Combines with any oscilloscope to provide 8 channel logic analysis. Size and colour to match Tektronix 400 series portables. £75.00.

DIGITAL O. BUS, box, power supply, and 8 x dual slot backplane, all brand new. Needs easy modification (14 wirewrap connections) to update. £75.00.

TEKTRONIX Model 4001 intelligent graphics display with BASIC in ROM and RCA tape cartridge drive. Good lookup and useful for maintenance purposes. £99.50.

COMPUTER APPRECIATION IS FOR SALE

The successful business established in 1973 is for sale due to the present proprietor moving overseas. The stock in hand, trading name & knowhow are all available for a lot less than you’d imagine.
The salary package includes Technician U-matics, TBCs, Vision and Sound Mixers, three tube colour cameras and CCUs.

The Services Sound and Vision Corporation, Chatford Grove, Narcot Lane, Chalfont St Peter, Gerrards Cross, Bucks SL9 8TN

VIDEO ENGINEER/TECHNICIAN (MOBILE)
Ref: 82/89

We have an immediate vacancy for a qualified Video Engineer/Technician to work in the Portsmouth and West Sussex areas. Experience must include maintenance and repair of high band U-matics, TBCs, Vision and Sound Mixers, three tube colour cameras and CCUs.

The salary package includes the provision of a company vehicle and an excellent pension and life assurance scheme.

For further information and an application form please contact: Mrs. A.R. Sive, Assistant Personnel Manager Telephone: 02407 4461 Ext: 407

Wanted urgently Practical people for the Third World.

Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance.

You could make this priceless contribution by working with VSO.

Current requests include:

- Studio Electronics Engineer
- Refrigeration/Radio/TV Engineers
- Hospital Electronics Engineers
- Electrical Engineers for instruction/installation
- Lecturers in Power and Communication
- Electronics Instructors
- Maintenance and repair Technician
- VSO

For more details, please complete and return:

Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.

Conditions of work: Pay based on local rates. Posts are for a minimum of 2 years. You should be without dependants. Many employers will grant leave on absence.

I'm interested. I have the following training/experience:

Name
Address

EWW/989

Helping the Third World help itself.

B-Sweep

Micro-controlled frequency sweep generator with response plotting, all from one compact unit plugged into your BBC B, B+ or Master

MELFORD DESIGNS LTD
5 Buck-nalls Drive, Bricket Wood, St. Albans, Herts. AL2 3KJ
Telephone: Garston (0923) 872008
Fax: 0923 679184
WANTED ENGINEERING STAFF

Communique a go-ahead company involved in the design, development and production of VHF/UHF communications equipment and accessories are looking for engineers for the following jobs:-

1. TRAINEE SERVICE ENGINEER:
 The applicant should either have practical knowledge in RF communications or have qualifications in the field of electronics with/without practical knowledge.
 Salary Neg. depending on experience.

2. SERVICE ENGINEER:
 The applicant should have at least 2 years experience in the service of VHF/UHF communications equipment down to component level. The successful applicant will be servicing land mobile, marine and amateur radio products.
 Salary: £13,000 - £15,000.

3. ANALOG RF DESIGN/DEVELOPMENT ENGINEER:
 The applicant should have experience in RF product design with an understanding of mechanical assembly.
 Salary: According to experience.

C.V.'s for the attention of Mr. Farr Communique (UK) Limited, Communications House, Purley Avenue, London NW2 1SB.
Tel: 01-450 9755.
Fax: 01-450 6826

TO ADVERTISE YOUR VACANCIES PLEASE CALL CHRIS TERO ON 01-661 8640

CAPITAL RADIO
95.8 FM 1548 AM
CAPITAL RADIO ENGINEERING DEPARTMENT

MAINTENANCE ENGINEER
Capital Radio's Engineering Department has a vacancy for a suitably qualified maintenance engineer. Applicants should have a good working knowledge of microprocessor-based systems, particularly when applied to machine control in a broadcast environment. A working knowledge of the C programming language would be an advantage. In addition, applicants should have had previous experience of broadcast systems or be able to demonstrate an understanding of the operations of the components of a broadcast chain.

Applicants should be in possession of a full current UK driving licence and may be expected to work on a shift rota which includes weekends. Starting salary will be not less than £14,766 for a suitably qualified candidate.

Applications, in writing, should be addressed to Sue Davies, Head of Personnel, Capital Radio plc., Euston Tower, London NW1 3DR and should arrive not later than 4th September, 1989.

RF DES ENGS

Extremely Competitive Salaries
Circuit and System design using leading edge radio architectures.
If you would like to hear about outstanding UK and European opportunities to work in satcoms, C: I radar, mobile radio and personal comms, call Inginieur on:
0926 817612
INGINEUR LTD (Agv), Pendicke Street, Southam, Warks CV33 0PN.

TO ADVERTISE YOUR VACANCIES PLEASE CALL CHRIS TERO ON 01-661 8640

TRAINING

Short Course Programme
All dates are start dates. All fees exclusive of VAT.

Communications
- Introduction to X.25 Protocol - 2 days, 18 Sept, £365
- Digital Communications 1 - 1 week, 27 Nov, £650
- Digital Communications 2 - 2 weeks, 27 Nov, £1200

Television
- Video Distortion Measurements - 1 day, 18 Oct, 28 Nov, £255
- Television Principles - 1 week, 4 Sept, 6 Nov, £650
- TV Principles & Measurements - 2 weeks, 4 Sept, 6 Nov, £1200

Transmission
- TV Signals & Measurements (Video & RF) - 3 weeks, 6 Nov, £1800
- Radio & TV Transmission - 2 weeks, 25 Sept, £1200
- Radio Transmission (MF & VHF) - 2 weeks, 4 Sept, 23 Oct, 11 Dec, £1200

Satellite Television
- Introduction to Satellite TV & MAC systems
 20 min video (non-Technical) £48
 DID2 MAC Packet, Distance Learning & 23 min video, £522

Engineering Publications Service
For details call Stuart Webber on 0297-22051
Harman Engineering Training College (WW2)
Fore St Seaton Devon EX12 2NS Fax 0297-24419
ARTICLES FOR SALE

SUMMER SALE

OSCILLOSCOPES & GENERAL TEST EQUIPMENT
All items supplied in tested and working condition. Calibration verified at no extra cost.

Tek 475 200MHz – D. Beam – DT. Base £495
Tek 475A 250MHz
Tek 7603 Cw 7A16, 7A18, 7B26, 7B5A p/ins £999
Hp 1222A 15MHz Dual Beam £165
Gould OS1100-S1 30MHz Dual Beam £155
Philips PM3218 35MHz £323
Philips PM3217 50MHz £324
Cosor CU150 35MHz £149
Se Labs SM111 18MHz £145

SPECIAL

Marconi TF2015 Signal Generators
10MHz – 520MHz Am-Fm £300
Also
Telequipment CT17 curve tracer – mint £350
Marconi TF2008 Sig Gen’s 10MHz – 510MHz Am-Fm £400
Marconi TF2002/25 Sig Gen’s 10Khz – 72MHz Am-Fm £80
Marconi TF 2603 RF Millivolt 10 I 5Ghz £99
Accessory kits available.

Racal Dana 9915SM TXO 8 digit DFM 510MHz LED £225
Advance DMM3 mains Batt Digital Multimeters incl. case/probes £45
Megger Insulation testers 250V, 500V, V8, 9A £35 – £50

Many, Many more items in stock and arriving daily at our threeacre deposit in Nottingham. We are open to callers 9am – 6pm weekdays – 8am – 4pm Saturday.

Penty of FREE PARKING

Anchor Surplus Ltd., The Cattle Market Dept., off London Road, Nottingham NG2 3Y
telephone: (0602) 864041 or Fax: (0602) 864667
Rob Taylor (Technical Manager)
ALL PRICES EXCLUDE VAT & CARRIAGE

HAVING DIFFICULTY OBTAINING AN OBSOLETE VALVE/MAGNETRON/KLYSTRON?
(or transistor, i.e., CRT, traw wave tube etc)

• Rare & Obsolete types a speciality!
• All popular types stocked at competitive prices
• Special offers for wholesale quantities
• Official orders from CVy depots, military, p.c.s. overseas etc. welcome
• Phone/Fax/Telex for up-to-date prices on your requirements

E.V. BILLINGTON VALVES
Good quality – Low price – Reserve a specialty
39 Hillsborough Road, Horsham, Sussex RH13 5LS, UK
Telephone: 0403 210272, Fax: 0403 40214. Telex: 87271
Office hours Mon-Fri 9am-5.30pm. Callers welcome by appointment only.

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

- Semiconductors, all types. Integrated circuits, transistors, diodes, rectifiers, thyristors, etc. Resistors, C.F. M/F, W/W, etc. Capacitors.
- Silver Mica, Polystyrene, C320, C326, Disc ceramics, plate ceramics, etc.
- Electrolytic capacitors, speakers, connecting wire, cables, screened wire, screws, nuts, chokes, transformers, etc. All at Knock Out Prices.

Come and pay us a visit ALADDIN’S CAVE.

Telephone: 445 0749/445 2713
R Henson Ltd.
21 Lodge Lane, North Finchley, London N12.

Cooke International

DO YOU WANT SCOPES, GENERATORS, POWER SUPPLIES, POWER METERS, DVM’S, OSCILLATORS, ATTENUATORS, TEST EQUIPMENT.

Contact: Cooke International, Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB. Tel: 0243 545111. Fax: 0243 542457

Wide range of items available. Send for lists.

We buy and sell top quality test and measurement equipment

PAFFE ELECTRONICS
36 Eastcote Lane, S. Harrow, Middle HA2 8DH
Telephone: 01-422 3593, Fax: 01-422 4069

Please contact us for our latest stock lists of top-quality re-calibrated test equipment. Good equipment also wanted for stock and waiting customers for ‘high-end’ equipment.

Stock examples: Tek 2213 60MHz o’scopes £395. HP5599A £600. HP3582A audio analyser £395.

For up-to-date and measurement equip

MANUFACTURERS SURPLUS STOCKS

Electronic components, test gear, radiotelephones, computers, photographic and video equipment. All at knock-out prices.

Export and trade enquiries welcomed.

Catalogues available from: B. Bamber Electronics, 5 Station Road, Littleport, Cambs CB6 1QE
Telephone: Ely (0353) 860185

8048/41 Cross-Assembler for MS/DOS Computers

- Suitable for all IBM PCXT ATs or clones.
- Completely compatible with the Intel 8048 Assembler.
- Comes complete with a 40 page User manual and Mnemonic Card.
- Supplied with either 5.25 or 3.5 inch disc – please state which.

The XA-48 Assembler source code for all members of the 8048/41 family:

8048 8748 8035 8049 8749 8039
8050 8750 8040 8020 8021 8022
8041 8741 8041A 8741A 8042 8742

The XA-48 Cross-Assembler is available from:

MAPLE Technology Ltd., Park Road Centre, Maidstone, Kent TN16 3BY
Telephone: (0666) 825141

Only £49.90 + VAT (including postage)
GOLLEDGE ELECTRONICS

QUARTZ CRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support, telephone advice, prototype quantities, production schedules. Golledge Electronics, Merritt, Somerset TA16 5NS. Tel: 0490 73718.

H.P. 1740A 100MHz D Beam Oscilloscope. 8099Y, Hi Tek 450 MHz precision digital multimeters (1311), Marconi P1411 Multipliers (1124), 275V Watts Meters, 150 F.C. units - Kads (535) HP. 765A, Lecroy pulse generator (1275), Phillips PAS55 E1X2 modulator (1st NZM), 8-23MHz, 30W, 30KV modulation. £119. Marcon 112200 VXI 196 Maxcom H12/54, £500. Prices exukd. VAT @ 10%. G.E. Electronics, 141 Ipswich (0255 477)

G.W.M. RADIO LTD., 404/2 PORTLAND ROAD, WORTHING, SUSSEX. Tel: 0903 34897

Receivers. Free all FM/MW wave handbook £1.85. Elytophone FTS61 £11 plus carriage. Instrument for tuning and monitoring (suitably fitted) for receiver. FTS61 30mA, 145V, 1-75W, 70V. £11.85, plus 15% VAT. Battery £3.50. £1.50 for a 450V Lead-Acid battery and £3.50 for a 960V Lead-Acid battery. UK £6 for FTS61, $4 for FTS61 £6, $9 for FTS61 £9. 10% off for trade. Outlander A10, £9.50. Smith Black MP4-300 and Hat, 3.30. Elytophones made at British Radio. Orders for 10 or more give a 5% discount. 4.40. Show special. 5-50, a. £25. 100mA, 1200V, only £25. £50, 600V, 1mA, for £50. £100, 100mA, 1200V, only £100. £120, 1mA, only £120. £200, 1mA, only £200. £300, 1mA, only £300. Integrated FTS63, £30. £55. 4. Integrated Elytophone £80. £90. £110. £150. £200. £250. £300. £400. £500. £600. £700. £800. £900. £1000. £1100. £1200. £1300. £1400. £1500. £1600. £1700. £1800. £1900. £2000. £2500. £3000. £4000. £5000. £6000. £7000. £8000. £9000. £10000. £11000. £12000. £13000. £14000. £15000. £16000. £17000. £18000. £19000. £20000. £25000. £30000. £40000. £50000. £60000. £70000. £80000. £90000. £100000. £110000. £120000. £130000. £140000. £150000. £160000. £170000. £180000. £190000. £200000. £250000. £300000. £400000. £500000. £600000. £700000. £800000. £900000. £1000000.

UNIQUE HIGH SPEED COMPUTER CONTROL SYSTEM

Are You Efficient? Do You Progress Jobs? Do You Carry Stock? Do You Have Answers for your Customers at your Fingertips?

We can offer you a totally tailored computer package which will revolutionise your business.

For information and prices, contact Martin at Dardsoft 25 The Auto Centre, Erica Road, Milton Keynes. Tel: (9008) 310226

SATELLITE TV BOOKS

WORLD SATELLITE ALMANAC

Useful for the satellite enthusiast and TV watcher. £10.50 post free. E27

CLASSIFIED ADVERTISEMENTS

TO ADVERTISE IN THE CLASSIFIED SECTION PLEASE CONTACT CHRIS TEREO ON: 01-661 8640

WANTED: VALVES TRANSISTORS ICs respectively types KT86, KT88, P4X, P4A5. Also plugs, sockets, and complete factory clearance. If possible, send written list for offer by return. Billington Valves, phone: 0403 210729 Fax: 0403 40214. See adjoining advert

RECLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Electronics & Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £6 PER LINE. Average six words per line. Minimum £48 (prepayable).
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus £15.
- Cheques, etc., payable to "Reed Business Publications" and cross "& Co." 15% VAT to be added.

NAME: ...
ADDRESS: ..

REMITTANCE VALUE ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS

November 1989 ELECTRONICS WORLD + WIRELESS WORLD

1127
720K 3.5 INCH DRIVES £39.50 + VAT

Excellent Japanese made high reliability, low component, cast chassis drive. Surface mount design. These drives have been removed from almost new systems being upgraded. They are in as new condition, boxed and carried a full six months (money back) guarantee. 80 track double sided 1 Mbyte formatted.

£39.50 each (carr. £3) £35 ten or more. Quantities of 25 or more POA.

Cr accol to fit drive in a 5 25 slot eg IBM pc £34.99 (carr. £1.00 or free with drive) Power and data connectors to suit £3.95p (carr. free) Box ten 3.5 discs £9.95 (carr. £1.50)

BONDWELL 286 AT COMPUTER

Fully IBM compatible 486 micro with 32MB running at 66 MHz. Complete with one MEGABYTE of RAM, 101 keyboard, 1.2 Mbyte 5 25 floppy drive. Hercules video card, centronics and serial ports, real time clock, 5 expansion units, MS DOS 3.2 and GW Basic. High quality construction by one of the best small dedicated PC cases with power supply all assembled and tested. Lowest ever price in the UK £475.00 (carr. 30)

EPSON 12 TTL MONO MONITOR (GREEN)

High resolution, IBM and Hercules compatible. TTL. Supplied complete with leads to direct connection to above or any other PC. £48.50 (carr. £5.50)

RACAL V22 MODEM MPS122

Microprocessor based modem providing full duplex communication at 1200, 600 and 300 baud to the CCITT V22 standard. Features include:

- "Can be used on standard "phone line (PSTN) and private (PDC)" Auto answer but requires telephone to dial "1200, 600 and 300 baud. Very high quality construction" BT approved "Self and loop tests (V54)" Comprehensive manual included. Unboxed card with front panel £24.95 seven cards in rack £195 (carr. one £3.50; seven £15)

HAND DISC DRIVES

CDC Wren 80 Mbyte ST 506/32MB MFM £39.95 (carr. £5) Roline 26 Mbyte ST 506 MFM £39.50 (carr £4) CDC Wrench 26 Mbyte standard NLZ interface £99.00 (carr. £3.50)

5.25 FLOPPY DISC DRIVES

Shugart SA-455 5 25 (360K IBM) 40 track double-sided £34.95 (carr. £3.50) Parmacom 5 25 (T50 IBM) 80 track double-sided £34.95 (carr. £3.50) Bondwell 5 25 1 Mbyte IBM AT style drive £49.95 (carr. £3.50)

POWERS SUPPLY

Farrell V1900 casd 180 Watt PSU +5V @ 2A, +12V at 2A, -12V at 2A, +24V at 5A and -5V at 1A £26.95 (carr. £3.50)

DAISYWHEEL PRINTERS

 Olivetti: 25 CPS. daisy printers complete WITH DUAL BIN SHEETFEDERS and RS232 interface. Emulates IBM, Qume and Olivetti. Supplied with ribbon and typewheel £175.00 (carr. £10.00) Triumph Adler Royal 20CP 132 column, variable pitch, all the features that you would expect from a quality printer. Six month guarantee, ribbon and typewheel included. RS232 interface only. £99.50 (carr £6.50) HURRY STOCKS COMING TO AN END

FACIT ULTRA FAST DOT MATRIX PRINTERS

Prints at up to a maximum of 500 CPS. Made to a very high standard for continuous use. Compact slimline desktop model (only 26 inches wide). Ideal for Universities, large mailing lists, central printer in department or any other serious application £349.00 (carr. £25)

HITACHI COLOUR MONITORS

CM1473/ME 14” MULTI/SYNC suits all standards. Latest technology high spec. monitor £325 (carr £12.50) CM1474* as above but fixed on the VGA standard frequency £275 (carr. £10)

VGA card provides standard plus super high resolution mode £129.50 (carr. £6.50)

CM 1475 £295 a full six months guarantee, ribbon and typewheel included. RS232 interface only. £50.50 (carr. £3.50) Circuit for DIY conversion provided. CM1470 £235 15” suit Olivetti or convert to EGA £85.00 (carr. £5)

TRANSDATA Model 307 ACOUSTIC MODEM

V24 interface, 300 baud, originate mode, etc. Fits modern or old style phones £9.95 (carr. £3.00)

STC Scribe KEYBOARDS

Keyboards as supplied with Scribe wordprocessors. These are serial but no data is available. £5.95 (carr. £3)

SOUND EQUIPMENT all second-hand

STUDIO LOUDSPEAKERS

EX-BBC 5 25” bass plus 2 HF units £99.50 pair (carr £30) EX-BBC LS3-1 as above but in smaller cabinets £89.50 pair (carr £20) EX-BBC LS3-4 compact corner cabinet with one 8” bass plus HF £79.50 (carr. £17.50)

EX-BBC RAB-1 mono monitor approx 14” high smart kick cabinets 8” bass plus HF £49.50 (carr. £10)

EDC RADIO MICS

Cygnus hand held system complete with mic., receiver, case and cables. £199 (carr. £15)

VAT and carriage must be added to all items.

Everything new unless stated otherwise.

Matmos Ltd. Unit 11, The Enterprise Park, Lewes Road, Lindfield, West Sussex RH16 2LX

Telephone: (04447) 2091 or 3830 Fax: (04447) 4258

CIRCLE NO. 114 ON REPLY CARD

AppointmentsVacant Advertisements appear on pages

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J & M Computers</td>
<td>1097</td>
</tr>
<tr>
<td>Johns Radio</td>
<td>1108</td>
</tr>
<tr>
<td>L D Technical Systems</td>
<td>1087</td>
</tr>
<tr>
<td>Lab-Volt (Supplies)</td>
<td>1063 OBC</td>
</tr>
<tr>
<td>Langrex Supplies</td>
<td>1077</td>
</tr>
<tr>
<td>Laplace Instruments</td>
<td>107</td>
</tr>
<tr>
<td>Level Electronics</td>
<td>1097</td>
</tr>
<tr>
<td>M & B Radio (Leeds)</td>
<td>1123</td>
</tr>
<tr>
<td>M Q P Electronics</td>
<td>1068</td>
</tr>
<tr>
<td>Matmos</td>
<td>1128</td>
</tr>
<tr>
<td>Natel Electronics</td>
<td>1088</td>
</tr>
<tr>
<td>National Instruments</td>
<td>1034</td>
</tr>
<tr>
<td>Number One Systems</td>
<td>1038</td>
</tr>
<tr>
<td>Pineapple Software</td>
<td>1068</td>
</tr>
<tr>
<td>R Henson</td>
<td>1118</td>
</tr>
<tr>
<td>Raeder Electronics Co</td>
<td>107</td>
</tr>
<tr>
<td>Ruffle Electronics</td>
<td>1087</td>
</tr>
<tr>
<td>Research Communications</td>
<td>1094</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTT Systems</td>
<td>1060</td>
</tr>
<tr>
<td>Schlumberger Instruments</td>
<td>1055</td>
</tr>
<tr>
<td>Sherwood Data Systems</td>
<td>1053</td>
</tr>
<tr>
<td>Solex International</td>
<td>1073</td>
</tr>
<tr>
<td>South Midlands Communications</td>
<td>1093</td>
</tr>
<tr>
<td>Sowter Transformers</td>
<td>1118</td>
</tr>
<tr>
<td>Stewart of Reading</td>
<td>1118</td>
</tr>
<tr>
<td>Strumec Engineering</td>
<td>1123</td>
</tr>
<tr>
<td>Taylor Bros. (Oldham)</td>
<td>1082/1BC</td>
</tr>
<tr>
<td>Thandar Electronics</td>
<td>1097</td>
</tr>
<tr>
<td>Those Engineers</td>
<td>1093/1116</td>
</tr>
<tr>
<td>Thuriby Electronics</td>
<td>1036/1PC</td>
</tr>
<tr>
<td>Triangle Digital Services</td>
<td>1083</td>
</tr>
<tr>
<td>Tsien</td>
<td>1117</td>
</tr>
<tr>
<td>Waveband Electronics</td>
<td>1117</td>
</tr>
</tbody>
</table>

OVERSEAS ADVERTISEMENT AGENTS

- France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008
- United States of America: Jay Ferriman, Reed Business Ltd., 205 East 42nd Street, New York, NY 10017 - Telephone (212) 687 2060 - Telex 23217

Printed in Great Britain by: I. T. Henon (Print) Ltd. Crystal Factory, Bramsteer Road, Witham, Essex CM8 3QO, and typeset by Graphix Typesetting. 181 191 Gardth Road, Morden, Surrey SM4 4LL, for the proprietors. Reed Business Publishing Ltd. Quadrant House. The Quadrant, Sutton, Surrey SM2 5AS. © Reed Business Publishing Ltd 1989. Electronics and Wireless World can be obtained from the following: MINTRELLE and NEW ZEALAND Garden & Gatt Ltd. INDL. A. H. Wheeler & Co. CANADA: The Wiln Dawson Subscription Services Ltd. Garden & Gatt Ltd. SOUTH AFRICA: Central News Agency Ltd. William Dawson & Sons S.A. Ltd. UNITED STATES: Worldwide Media Services Inc., 115 East 23rd Street, NEW YORK, N.Y. 10010 USA. Electronic & Wireless World at $5.00 (£2.50)

INDEX TO ADVERTISERS

- ABI Electronics: 1041
- Airlink Transformers: 1118
- Antex Electronics: 1117
- Audio Electronics: 1036
- Betronix UK: 1108
- Carston Electronics: 1063
- Candevian Automation: 1053
- Colby’s Column: 1051
- Computer Appreciation: 1123
- Crotech Instruments: 1060
- Display Electronics: 1102
- Electrovalue: 1123
- Farnell International: 1056
- Greenwood Electronics: 1049
- Hitachi Denki (UK): 1088
- I R Group: 1074
- ICOM UK: 1068
- J A V Electronics: 1068

INDEX TO ADVERTISERS

- ABI Electronics: 1041
- Airlink Transformers: 1118
- Antex Electronics: 1117
- Audio Electronics: 1036
- Betronix UK: 1108
- Carston Electronics: 1063
- Candevian Automation: 1053
- Colby’s Column: 1051
- Computer Appreciation: 1123
- Crotech Instruments: 1060
- Display Electronics: 1102
- Electrovalue: 1123
- Farnell International: 1056
- Greenwood Electronics: 1049
- Hitachi Denki (UK): 1088
- I R Group: 1074
- ICOM UK: 1068
- J A V Electronics: 1068
Telecommunications Training
from fundamentals to state-of-the-art technology

Lab-Volt offers a comprehensive range of telecommunications training equipment that covers basic electronics, analogue and digital communications circuits and systems, fibre optics, and microwave and radar technologies.

Our equipment is:
- modular and easy to upgrade
- industry relevant
- engineered for educational purposes.

Lab-Volt closely relates its telecommunications training equipment to operational systems found in industry, with educational enhancements such as fault insertion switches in many of the modules, labelled and easily-accessible test points, short-circuit protection, silk-screened component identification, and full signal compatibility for system-level modules. We supply student and instructor manuals that are written specifically for the equipment; they provide practical hands-on technical training with step-by-step exercises, laboratory experiments, and troubleshooting activities.

For more information about our telecommunications training equipment, please contact:

Lab-Volt (U.K.) Ltd.
4A Harding Way
Industrial Estate
St. Ives
Cambridgeshire
PE17 4WR
Or Call: 0480 300695
19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR
PRICES FROM £214.13 (excluding VAT & carriage)
Prices
CCIR/3 £214.13
CCIR/3-1 £273.67

19" RACK MOUNT VHFI/UHF TELEVISION DEMODULATOR
PRICE AT ONLY £198.45 (excluding VAT & carriage)

WALLMOUNT DOUBLE SIDEBAND TELEVISION MODULATOR
PRICES FROM ONLY £109.76 (excluding VAT & carriage)

19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR

CCIR/3 SPECIFICATION
- Power Requirement: 240V 8 Watt (available other voltages)
- Video Input: 1V Pk/Pk 75 Ohm
- Audio Input: 8V 4k1 Ohm
- FM Sound Sub-Carrier: 6MHz (available 5.5MHz)
- Modulation: Negative
- IF Vision: 38 MHz
- IF Sound: 32 MHz (available 33.4 MHz)
- Sound Pre-Emphasis: 5us
- Ripple on IF Saw Filter: -6dB
- Output (any channel 42.86MHz): ±6dBmV (2mV) 75 Ohm
- Vision to Sound Power Ratio: 10 to 1
- Intermodulation: Equal or less than 60dB
- Spurious Harmonic Output: -40dB
- Other Options Available: I.F. Loop/Stereo Sound/Higher Power Output

CCIR/3-1
- Specification as above but output level 60dBmV 1000mV Intermodulation 54dB
- Available for PAL System I or BG

DEMODULATOR SPECIFICATION
- Frequency Range: 45-290MHz, 470-860MHz
- A.F.C. Control: +/− 1.8 MHz
- Video Output: 75 Ohm
- Audio Output: 0.75V 600 Ohm unbalanced
- Audio Monitor Output: 4 Ohms
- Tunable by internal preset

MODULATOR SPECIFICATION
- Power Requirement: 240V
- Video Input: 1V Pk/Pk 75 Ohms
- Audio Input: 1V rms 30K Ohms Adjustable to 1.2
- Modulation: to 6dBmV (2mV) 470-860MHz
- Audio Sub-Carrier: 6MHz or 5.5MHz
- Frequency Stability: ±35 Deg. temperature change 150kHz
- Sound Pre-Emphasis: 5us
- Double Sideband Modulator unwanted sideband can be suppressed using TCFL4 Combiner/Lever

CHANNEL COMBiner/FILTER/LeVeller
- to combine outputs of modulators

TCFL2
- 2 Channel Filter/Comb. Leveler Insertion loss 3.5dB

TCFL4
- 4 Channel Filter/Comb. Leveler Insertion loss 3.5dB

TSBO
- Enables up to 4x TCFL4 or TCFL2 to be combined.