New theory produces miniature HF TX aerial

Developing an industrial imaging system

Low temperature GaAs

IBM PC: Communications Hard disks Interconnect
Lab-Volt offers a comprehensive range of telecommunications training equipment that covers basic electronics, analogue and digital communications circuits and systems, fibre optics, and microwave and radar technologies.

Our equipment is:
- modular and easy to upgrade
- industry relevant
- engineered for educational purposes.

Lab-Volt closely relates its telecommunications training equipment to operational systems found in industry, with educational enhancements such as fault insertion switches in many of the modules, labelled and easily-accessible test points, short-circuit protection, silk-screened component identification, and full signal compatibility for system-level modules. We supply student and instructor manuals that are written specifically for the equipment; they provide practical hands-on technical training with step-by-step exercises, laboratory experiments, and troubleshooting activities.

For more information about our telecommunications training equipment, please contact:

Lab-Volt (U.K.) Ltd.
4A Harding Way
Industrial Estate
St. Ives
Cambridgeshire
PE17 4WR
Telephone: 0480 300695
January 26, 1989

AN OPEN LETTER FROM THE EDITOR

In the January issue of Electronics & Wireless World, my first as editor of our magazine, I wrote of changes in our magazine. They are starting to happen.

I intend that Electronics & Wireless World will cater fully for the new methods of design engineering by regularly reporting on industrial computer systems, software and the working environment. We also have in hand reviews of engineering software. We have made a start by considering the PC for datacomms and interface applications.

I also plan increased coverage of technology and research science. We bring you the definitive account of Wafer Scale Integration written by its British founding father, Ivor Catt. Future topics will include an alternative view of electromagnetics and a fundamental rethink of plasma science.

Our readers have always looked to us in the past for the broader view denied to controlled circulation journals. We won't disappoint them. In a word our philosophy adds up to entertainment.

Our bimonthly Industry Insight supplements which focus on established industry sectors have met with enthusiasm from both the industry and readers. We now intend to target areas of strategic development with in depth coverage on an alternate, bimonthly basis. We will also look at the personnel demands of new business through a series of regular employment features.

We have reported on the electronics industry since 1911. I look forward to combining our best traditions with the fullest acknowledgement of the changing world.

Yours sincerely,

Frank Ogden
Editor
PUTTING AX25 TO WORK
242
The concept of an automatic adaptive network with minimal spectrum requirement looks attractive for both military and commercial applications.

DATACOMMS – NEW USERS START HERE
247
Plugging a computer into a telephone socket provides access to a subculture of great diversity.
Tony Dennis

LOCAL AREA NETWORK TECHNOLOGIES
250
We provide a summary of local area network technologies currently being taken on board the OSI standardisation bandwagon.
Andrew Hardie

WAFER-SCALE COMPUTING – THE KERNEL LOGIC MACHINE
254
A new form of computer architecture which promises a revolution in data processing.
Ivor Calt

A/AB MOSFET POWER AMPLIFIER
261
Pure audio design, purist components.
John Linsley-Hood

DATA ACQUISITION USING THE IBM PC
266
The price of IBM clones has fallen to a level which allows the entire machine to be treated as a system component.

SHANNON, CODING AND SPREAD SPECTRUM
274
Second part of this short series on advanced communications.
L C Walters

RDS DECODER
284
The first practical receiver design for radiotext broadcasts.
Simon J Parnell

HARD DISK DEVELOPMENTS
288
PC makers are engaged in a quiet revolution to strengthen a traditionally weak link in the system.
Manek Dubash

MICROWAVE DISTRIBUTION SYSTEMS
294
Low-cost millimetre wave technology.
J N Slater

THE DESPERATE RACE FOR PEOPLE
305
It pays employers to consider workforce retraining; it pays employees to reconsider their existing career path.
Dom Pancucci

ON THE HOUSE
310
Round-up of Parliamentary news affecting the electronics industry
Chris Pounder

1988 INDEX
322
Index to Volume 94

APPLICATIONS 271
CIRCUIT IDEAS 280
COMMENT 211
LETTERS 299
NEW PRODUCT CLASSIFIED 292
TV & RADIO BROADCAST 316
RADIO COMMUNICATIONS 314
RESEARCH NOTES 212
UPDATE 214, 223
To be the best UNIVERSAL PROGRAMMER, you've got to set some pretty high standards.

Stag's System 3000 gives you standard features found in no other Universal Programmer.

Single Programming Station
The System 3000 is designed to program PROMs, PLDs and Microcomputers in every known technology. The technology includes NMOS, CMOS, ECL, Fuse Link, AIM, DEAP and Isoplanar-Z. Surface mount devices can be programmed on an optional SMD chip-station.

Built-in CRT
The System 3000 incorporates its own CRT display and keyboard allowing it to be used as a powerful stand-alone programmer. On-screen menus and prompts allow device selection and all system operation functions to be easily executed.

The System 3000 also gives you full screen editing of both memory and logic data including test vectors. Light pen operation and custom 2-packs for life cycle testing and other specialized functions set the System 3000 apart from any other Universal Programmer.

Instant Update Using a Memory Card
A unique feature of the System 3000 is that all device libraries and programming algorithms are contained on a Memory Card that can be changed instantly by the user as new devices become available. Data access is considerably faster than a floppy disk-based system's and there is less chance of data corruption due to magnetic fields or mishandling.

Interface Flexibility
Four separate user interface ports, including two RS232Cs, an IEEE488 and a Handler Port, give the System 3000 unrivalled flexibility for communicating with peripheral equipment. Industry standard data files are accepted by the System 3000 and it supports all popular I/O formats for both Logic and Memory devices.

Stand-Alone or Computer Operation
All stand-alone functions are operational under remote control using either a mainframe or a personal computer.

Approved by Chip Manufacturers
Semiconductor manufacturers' approval of our programming algorithms assures the user of the highest yield and device reliability.

Call us today for more information or a demonstration and find how easy Universal Programming can be.

Stag Electronic Designs Limited
Tewin Court, Welwyn Garden City,
Hertfordshire AL7 1AU. UK.
Tel. (0707) 332148 Tlx: 8953451
A Cordless Euphoria

The current euphoria over CT2 cordless telephones and telepoints (where these phones may be used to make calls away from one’s home base) indicates that a revolution in personal communications is just around the corner. There is a danger, however, that the revolution may not turn out as the marketers are predicting, leaving the marketplace (and the airwaves) in a state of confusion.

Telepoints are to be established as rapidly as possible, before a common air interface (CAI) is established and agreed. Initially, handsets will employ proprietary communications protocols and will work with only a single operator’s base station network. Thus these early purchasers may find their CT2 phones are incompatible - read useless - if in future they change allegiance to another operator’s network of telepoints.

It is assumed that nowhere promised that the cost of phoning from a telepoint will be little more than a normal payphone call, though how such charges will fund the cost of providing the base stations is not stated. Telepoint users with CT2 handsets will not be able receive incoming calls and the initial provision of telepoints will not meet user expectations, leading to frustration all round.

The target end-user price for a home system is £200-300, which means that manufacture may well be shifted to the Far East on cost grounds; indeed talks are already in progress. Costing the same as a video recorder, this price will look pretty poor value to private customers. On the other hand businessmen will always rate convenience over price: they will continue to buy telephones which are already on sale at prices scarcely more than this.

On all counts, the vision of a CT2 and telepoint revolution starts to cloud. Even for cordless telephones for the home, the cost of CT2 is too high (compared with existing offerings), and the specifications do not match the proposed pan-European digital CT3 cordless telephone.

Meanwhile, cellular radio manufacturers are not going to allow a potential market to slip through their fingers. They will exploit the shortcomings of the telepoint concept and target a new ‘bottom edge’ market with cheaper phones. The only problem is that this will put even more pressure on the spectrum available to cellphone users, which is already operating at capacity in metropolitan areas. Final score: Users 0, Industry 0.
Chip repair by laser

The use of a 20W argon ion laser to repair a fully packaged c-mos prototype chip is reported by a team at University College London and at King's College London (Electronics Letters Vol.23 No 24). Prior to this work such experiments have only been undertaken on partially fabricated circuits at strategic points during manufacture.

The chip to be repaired in this instance was an application-specific VLSI prototype that contained a superfluous aluminium link. This link, the result of a design error, prevented the operation of the chip's clock and hence made it impossible to trouble-shoot the remainder of the circuit. Normally it would have been necessary to fabricate a new chip before proceeding with the functional checking procedure, so each error discovered would have meant a re-design.

To remove the spurious aluminium link the protective plastic packaging was first removed using an unfocussed laser beam of around 2mm diameter, with the chip immersed in 98% sulphuric acid. In the presence of the laser beam, the acid slowly etched away the plastic, exposing the active surface of the chip. Then the chip was removed from the acid and the laser focussed through a microscope objective lens to produce a 10μm spot of blue/green light on the aluminium link to be removed.

In the presence of this high-intensity laser illumination the aluminium loses its protective layer and reacts readily with oxygen in the silicon dioxide of the chip's surface. The London group found moreover that the reaction automatically stops when all the aluminium has been oxidized.

When the chip had been washed and examined, micro-cracks were found across the width of the oxide left behind by the aluminium. As yet it's not known whether these cracks or the oxidation itself leads to the electrical open circuiting of the link. Either way an effective open circuit had been achieved and the chip's clock mechanism made to function.

Research is now in progress to optimize the process and to develop a complementary technique for depositing links where they've inadvertently been omitted during the design stage. When both techniques have been perfected they should find wide application, not only in prototyping, but in deliberate procedures such as gate array interconnection or the development of wafer-scale ics.

Aluminium link before (left) and after (right) laser treatment: note the oxidation and micro-cracking.

Safer in-circuit IC testing

In establishing the validity or safety of test procedures it is often necessary to stress components in ways that would not be encountered during normal operation. This is especially true when components are tested in situ on a printed circuit board. By means of a so-called 'bed of nails' spring-loaded multi-contact test probe it is easy to test a digital IC in every possible input and output configuration. The only problem is that an applied logic level which is safe for the device under test may be damaging to another chip connected to it elsewhere on the board.

In the absence of manufacturers' data on the effects of backdriving, as it is called, ICL have sponsored a number of different studies on a variety of IC families, mostly TTL. Their latest one [ICL Technical Journal Vol.6 No 21, undertaken jointly with Loughborough University of Technology, investigated the effects of backdriving surface-mounted high-speed devices. Accelerated life tests were conducted on 74LS245, 74F245, and 74AS245 chips (bi-directional transceivers from low power Schottky, fast TTL and advanced Schottky families respectively).

The principal aim of the study was to discover if permanent damage was likely to be caused by localized heating when a logic '0' or logic '1' level was fed back into the output pins of a particular chip. Obviously in certain configurations the heat generated is likely to be intense, especially as in the cases illustrated on the left.

The localized temperatures of the critical junctions were measured in an ingenious way making use of closely associated diodes. Although these diodes are primarily designed to prevent reverse bias or device saturation they make ideal temperature sensors because their forward voltage is linearly proportional to junction temperature.

Obviously, in the case of the configuration shown here, it is not possible to apply a continuous backdrive without burning out the lower transistor. The tests therefore employed 4.5V pulses of 20ms spaced by 2s, i.e. a 100:1 duty cycle.

95 devices were subject to 25 such pulses and later compared to 95 control devices in a 2000 hour accelerated life test at 125°C.

The failure rate in the backdriven group was shown, if anything, to be marginally lower than in the non-backdriven group. ICL conclude therefore that even small surface-mounted TTL packages can be safely tested in-circuit as long as the mark/space ratio of the testing pulses is kept at a suitable value around 100:1. Of the three logic families they found that the fast (74F245) devices heated up most and hence took longer to cool after a test pulse.
RESEARCH NOTES

Sun on the boil

Solar activity is likely to reach an all-time high sometime late this year. According to Kenneth Schatten, a research astrophysicist at the NASA Goddard Space Flight Centre, solar cycle No. 22 will probably be the most active in terms of sunspots and flares since the time of Galileo nearly 400 years ago.

Schatten and his co-workers who've been monitoring the latest of the 11-year cycles of solar activity, say that since it began in September 1986, this cycle has so far exceeded cycle 19, the most active previously recorded.

Although sunspots and flares are only observable using special viewing devices (DON'T use a telescope even with a dark filter - it probably won't be opaque to harmful UV), they can nevertheless have a dramatic effect on satellites, on HF communications and even on the weather.

Most radio enthusiasts are all too familiar with the ways in which enhanced solar activity can temporarily destroy the ability of the ionosphere to refract HF signals. The result can often be a complete radio blackout for several hours or days at a time. Even at VHF, line-of-sight transmissions may be affected by the considerable increase in solar noise emission at these frequencies.

Enhanced solar activity may be a nuisance for radio enthusiasts but it can be of critical importance to the operators of military surveillance satellites. Such satellites, which operate in the lowest possible orbits in order to get a clear view of the Earth's surface, are particularly vulnerable to the effects of the Sun's radiation on the atmosphere. When this exceeds its baseline value, it causes the atmosphere to expand and hence extend to a greater height above the ground. As a result, a satellite that was previously orbiting in a 900 km, vacuum is now subject to a dangerous amount of atmosphere drag that could cause it to re-enter. Satellite operators, when they can, therefore have to boost their craft into a higher orbit until such time as the Sun's activity subsides. (During solar cycle 21 it was expected flares that caused Skylab to re-enter the atmosphere prematurely over Western Australia.)

For most of us, however, falling satellites are likely to present no great hazard. The more we're likely to see on a dark night is a more than usually spectacular aurora.

Good vibrations

"Anti-sound" is now a recognised technique for creating a bit of a hush in certain industrial environments. The idea is to pick up the sound emitted by a piece of machinery, invert the phase and then use a loudspeaker to create an equal and opposite sound. If the compressions and rarefactions in the air cancel each other out, then theoretically at least there should be silence.

The fact that anti-sound techniques get more efficient as the frequency is lowered has led the Japanese Kajima Corporation to develop a system to counteract some of the world's most powerful infrasonic vibrations, namely earthquakes.

Kajima's anti-quake system works on much the same principle as anti-sound. The only real difference is the output device is not some mega-loudspeaker but a system of massive weights on wheels, running on tracks along the top of a building. These weights, of a ton or more, can be moved back and forth rapidly by hydraulic actuators driven by computers linked to vibration sensors elsewhere in the building. The idea is that, if an earthquake should set the building wobbling, the sensors will pick up the motion and instruct the system to set the huge roof-top weights vibrating in the opposite phase.

The company, which plans to install an anti-quake system in an 11-storey building in Tokyo early this year claims that it should reduce the severity of a magnitude-4 earthquake by up to 75%. Similar reductions are also expected in movements induced by the buffeting effects of high winds.

In answer to the obvious question of what happens if the system gets out of control, Kajima admit that a small error of system timing could indeed turn a minor quake into a major disaster by amplifying the vibrations! For that reason they've built into the software a fail-safe program that will kill the power if things get out of hand.

Research Notes is written by John Wilson at the BBC World Service's science unit.

R.I.P. fifth and sixth forces

Evidence has previously been presented in these pages (June, 1986) for the existence of the so-called fifth and sixth forces in Nature. Hitherto every interaction had been ascribed to one of four well known forces: the electromagnetic force, the weak nuclear force, the strong nuclear force and gravity.

Belief in the existence of further elusive natural forces emerged when certain experiments showed what appeared to be anomalies in highly sensitive measurements of gravity. In 1986, Ephraim Fischbach of Purdue University analysed some old experimental results and concluded that there must be a fifth force, intermediate in nature and operating over a range of between 10 and 1000 metres. Such a force appeared in the the calculations as a sort of negative form of gravity.

Later experiments down a drill hole in Greenland pack ice, up a TV tower in North Carolina and down a mine in Australia seemed to add weight to the evidence for a fifth force and also suggest the existence of a sixth force. This latter appeared to boost gravitational attraction by up to 4% over a range of 500 to 1700 metres.

Now it seems that the fifth and sixth force theories are being debunked by some of the very scientists who invented them. In a new analysis presented at a meeting of the American Geophysical Union, a team from the Los Alamos Laboratory, the Scripps Institute of Oceanography and AT&T Bell Laboratories in New Jersey claim that the Greenland experiment was flawed because it failed to take into account variations in the density of the rock beneath the ice. They add that, in their opinion, there is still no convincing evidence for any more than four natural forces.

AT&T workers now plan to repeat some of the gravity measurements within the homogeneous environment of the sea, which should circumvent the present objections and settle once and for all the question of whether or not there are more than four forces in Nature. If there are, then it will change our understanding of what went on in those first few microseconds of time in which all the processes of physics emerged from a single primordial force. If, on the other hand, the fifth and sixth forces don't exist, then physicists will have a much harder time in their search for a grand unified theory, a mathematical process that will elegantly link together everything from the behaviour of an electron to the immensity of gravitational attraction across whole galaxies.
High temperature IR optics

By reducing the bulk resistivity of germanium used in the manufacture of infra red optical systems, the temperature at which the optics may be successfully used has been extended to the 50 to 100°C range.

According to the manufacturer Pilkington normal germanium becomes IR opaque at elevated temperatures because, being a semiconductor, the number of free carriers increases rapidly with temperature. The electrons hanging about the lattice interfere with transmission. Introducing a dopant to the germanium reduces the resistivity, sweeping up the free carriers.

Transatlantic optical cable

The world's first transatlantic optical fibre cable, capable of carrying 40 000 simultaneous telephone conversations has now been placed in service.

The result of a joint venture between BT, AT&T and France Telecom, the TAT-8 cable will transmit data, voice and video.

The main cable consists of six strands of fibre; two pairs carry the traffic with the third pair provided for back-up. It uses repeaters placed at 55km intervals along the ocean floor. The cable is actually buried one metre under the sea bed at depths of up to 3200ft. It relies purely on its steel armour at greater depths; it will resist biting sharks at depths down to 8500ft below sea level.

There are many interesting facts and figures associated with the cable. Each fibre pair has a data rate of 280Mbit/s. The power line to the 129 repeaters runs at 15kW with a corresponding line current of 1.6A, the operating wavelength is 1.3µm and the branching unit for the England/France junction is located some 400km from the European coast in 7000ft of water. The British branch comes ashore at Widemouth Bay, North Cornwall (pictured in E&W, April 1988, p.406).

Millimetric transistor

An HEMT device specified for use up to 60GHz is now offered by Toshiba. Designed for satellite communications systems, the JS8903-AS high electron mobility GaAsFet has a gate length of 0.25µm and a gate width reduced from 100 to 120µm. The effect is to reduce capacitance and increase inductance making the device easier to match at high frequencies. The transistor returns a claimed noise performance of 1.2dB at 1GHz with an associated gain of 8.5dB.

An HEMT is a lattice matched heterojunction formed between GaAs and AlGaAs semiconductors. Electrons move from the donor AlGaAs forming a thin two-dimensional electron gas at the heterojunction interface. The spatial separation of the conduction electrons from their parent donor impurities produces their high mobility. Normally a thin layer of AlGAs adjacent to the heterojunction interface is left undoped to separate further the ionized centres.

VLSI chip plant

NEC plans to spend $282 million on a new 4Mbyte dram wafer fab in Higashi, Hiroshima. The plant is designed to turn round 30 000 6in wafers per month with sub-micron process geometry. 1Mbyte static rams will also feature in the product portfolio. It expects first production in 1990.

Balloon amateur fined £2500

A radio amateur who worked for the Ministry of Defence admitted breaching into police frequencies and helping another radio ham interfere with United States Navy signals.

Michael Holland, of Pollards Hill North, Norbury, was also said at Croydon Magistrates’ Court to have attached a radio transmitter to a balloon.

Holland, a 24-year-old electronics engineer, pleaded guilty to seven charges under the Wireless Telegraphy Act.

Mr Jonathan Davies, prosecuting, said that Holland, who had worked for a weapons research establishment, was the subject of a massive investigation mounted by the police and the MoD which had cost £48 000.

He had used frequencies of an extremely sensitive nature, including some that were not published. He had frequencies for many police stations. He had also failed to give and acknowledge a call sign, and had not logged his conversations.

Holland also admitted attaching a transmitter to a helium balloon, obtaining and giving information, and aiding and abetting a member of his radio group to interfere with United States Navy signals.

Many of the frequencies had now had to be changed, said the prosecution. When spoken to in the course of the investigation, Holland said “I have tuned around”.

Miss Debra Gold, defending, said that Holland did have a licence for using his radio equipment. He was an amateur radio enthusiast, in fact his social life revolved around short wave radio.

“He had no ulterior motives, and failed to see the harm his actions could have caused”, she said.

He started off keeping to all the rules, but became lax as time went by. He was in a group of about five people who communicated with each other through the airwaves.

They did not use a call sign amongst themselves, which they should have done, and they failed to log conversations.

Regarding the balloon attached to the transmitter, this was for “meteorological research.” This idea was to monitor atmospheric temperature changes for the group’s own interest.

The information received and given was purely of social interest. They did listen to police calls and discussed them amongst themselves.

continued on page 223
I.R. Group works for you by bringing together a wide range of services under one banner. Instrument Rental, Ex-rental Sales, New Equipment Sales and Leasing.

It's the future of instrument supply, and it's available to you today.

I.R. Group – the complete instrument supply company. Call us today for our new catalogues on:

HOTLINE
0753 580000

Dorcan House, Meadfield Road, Langley, Slough, Berkshire SL3 8AL
Maxwell’s equations and the Crossed-field Antenna

Reversing the form of Maxwell’s equations has led to the realisation and development of a revolutionary new antenna system.

F.M. KABBARY, M.C. HATELY and B.G. STEWART

All electrical and communications engineers are in some way acquainted with Heaviside’s differential form of the third and fourth Maxwell equations, viz

\[\nabla \times E = - \frac{\partial D}{\partial t} \]
(1)

\[\nabla \times H = J + \frac{\partial D'}{\partial t} \]
(2)

In these equations \(\nabla \times \) is the derivative with respect to time. \(E \) represents the electric field strength, \(H \) magnetic field strength, \(J \) current density, \(B \) magnetic flux density = \(\mu H \), and \(D \) electric displacement = \(\epsilon E \). \(D' \) is called the displacement current. Equation (1) is Faraday’s Law, while equation (2) is credited to Maxwell for adding \(D' \) to Ampere’s Law. \(\nabla \times H = J \), to maintain charge conservation or charge continuity and thus obtain \(J + D' \) as the true or total current.

Unfortunately, the understanding of these equations still poses many conceptual difficulties for many people which inevitably lead to shortcomings in the basic understanding of their engineering applications. One reason for this lack of insight is perhaps the inability to appreciate the physical meaning of the vector operations curl, div and grad. Many texts and research papers often detail the mathematical intricacies of these vector operations but few detail in simple practical terms their physical interpretation.

In addition to the above, it is often not realised that contained in equations (1) and (2) is the following extremely valuable information: (a) a time-varying magnetic field creates an electric field (or back EMF) and, importantly, (b) a current or a time-varying electric field or both will create a magnetic field.

The essence of Maxwell’s equations, conveyed through points (a) and (b), is that fundamentally they are reaction or field-production equations. The physical, mathematical and engineering importance of the field-production nature may be more readily relayed and understood if the forms of equations (1) and (2) are reversed:

\[B' = - \nabla \times E \]
(3)

\[J + D' = \nabla \times H \]
(4)

The reversal leads not only to a greater understanding of Maxwell’s equations (which is hidden in the non-reversed form) but to a greater appreciation of the nature of time-varying electromagnetics and their associated engineering applications.

One significant engineering application, only fully realised through the reversed form of Maxwell’s equations, has been the recent development of revolutionary antenna systems called crossed-field-antennas (CFA) which synthesize directly the Poynting vector \(S = E \times H \) from separately stimulated \(E \) and \(H \) fields. A fundamental feature of these antennas is that the physical size of the structure is small and also independent of the radiated wavelength, a truly remarkable concept in relation to present antenna theory and design techniques.

Fig.1. Circular capacitor plates showing the surrounding magnetic fields when applied with a sinusoidal voltage \(V \).

which is interpreted as a time varying magnetic flux, \(B' \), creating an electric field \(E \) such that the negative of the curl of the induced \(E \) field distribution is equal to the source \(B' \). The directive arrow is present in the relationship to indicate that the left-hand-side causes or creates the right-hand-side. The negative sign is the manifestation of Lenz’s law. In fact the application of the reversed form of Faraday’s law is fully deployed in transformer theory, where a time-varying magnetic flux creates, i.e. induces, a back EMF. Note that the \(E \) field in the reversed form of Faraday’s Law is the induced \(E \) field from \(B' \) and is not in any way related to the independent electric field created from free charge through Gauss’s Law.

Consider now equation (2). In magneto-statics, it has always been accepted that current produces a magnetic field through the phenomenon called Ampere’s Law. To get across the importance of this statement in a more meaningful physical and mathematical form, Ampere’s law should be expressed as

\[J = \nabla \times H \]
(5)

i.e. \(J \) creates a magnetic field \(H \), such that
the curl of \(\mathbf{H} \) is equal to the source \(\mathbf{J} \). It is also known \(\text{(though often ignored)} \) that a magnetic field may be related to either a current as above, or a time-varying electric field\(^1\). The latter source of magnetic field is sometimes referred to as the Maxwell Law\(^2\), and may be expressed in the more informative reversed form as

\[
\mathbf{D}' = \nabla \times \mathbf{H}
\]

i.e. displacement current \(\mathbf{D}' \) \(\text{(a time-varying D field)} \) creates a magnetic field \(\mathbf{H} \) such that the curl of the \(\mathbf{H} \) field distribution is equal to the source \(\mathbf{D}' \). We see now the importance of reversing equation (2) to give equation (4), i.e. \(\mathbf{J} + \mathbf{D}' = \nabla \times \mathbf{H} \) which should now be interpreted as \(\mathbf{J} \) or \(\mathbf{D}' \) or both can create a magnetic field \(\mathbf{H} \) such that the curl of the \(\mathbf{H} \) field distribution is equal to the source \(\mathbf{J} + \mathbf{D}' \). The plus sign can, and should, be interpreted as analogous to the digital-logic OR symbol.

Unfortunately, many people fail to realise that an \(\mathbf{H} \) field may at any time be the combination of two separately induced fields from independent types of sources, i.e. charge motion and displacement current.

THE MAGNETIC FIELD ASSOCIATED WITH A SIMPLE CAPACITOR

To illustrate the importance of the reversed form of Maxwell's 4th equation and, in particular, the feature of \(\mathbf{D}' \) creating an independent magnetic field from \(\mathbf{J} \), consider the practical illustration of circular capacitor plates. Consider circular capacitor plates (Fig. 1) with an applied sinusoidal voltage \(V \). Free charges flowing into and out of the capacitor, and also within the capacitor plates themselves, are a source of \(\mathbf{J} \). Also, due to the build up of free charge in the capacitor, \(\mathbf{E} \) lines and therefore \(\mathbf{D} \) lines exist between the capacitor plates. The waveforms of \(V, \mathbf{J} \) and \(\mathbf{D} \) are shown in Fig. 2. Note that \(\mathbf{D} \) follows \(V \), while \(\mathbf{J} \) is 90° phase-advanced from \(V \). Faraday \(\mathbf{D} \) lines vary in strength due to sinusoidal charge variation on the plates. \(\mathbf{D}' \) will create a sinusoidal magnetic field through \(\mathbf{D}' = \nabla \times \mathbf{H}' \). Since \(\mathbf{H}' \) is in time-phase with \(\mathbf{D}' \) then \(\mathbf{H}' \) is 90° phase-advanced from \(\mathbf{D} \). Also, since \(\mathbf{J} \) flowing into and out of the plates is sinusoidal then \(\mathbf{J} = \nabla \times \mathbf{H} \) produces a sinusoidal magnetic field \(\mathbf{H} \), which is in-phase with \(\mathbf{J} \). It is easy to show that in the vicinity surrounding the capacitor gap the magnetic field lines from \(\mathbf{J} \) into and out of the plates and the magnetic field lines from \(\mathbf{D}' \) will be concentric circles surrounding the gap and in-phase.

Now, \(\mathbf{J} \) flowing within the plates themselves will create a magnetic field \(\mathbf{H} \). Applying the rules of Biot-Savart to the geometry of the plates, many components of magnetic field produced from individual \(\mathbf{J} \) contributions within the plates will cancel, resulting in reduced-strength circular field lines surrounding the plates. We should expect the created field \(\mathbf{H} \) to be in phase with \(\mathbf{H}' \), but taking into account the geometry and the current motion within the plates, then \(\mathbf{H} \) is directed in the opposite direction to \(\mathbf{H}' \). This is equivalent to a 180° phase change between \(\mathbf{H} \) and \(\mathbf{H}' \). The waveforms of \(\mathbf{H}, \mathbf{H}' \), and \(\mathbf{H}_o \) surrounding the capacitor gap are given in Fig. 2.

A simple experiment may be carried out to verify that \(\mathbf{H}_o \) does exist surrounding circular capacitor plates. The main equipment required is an RF signal source capable of supplying a frequency range of 10 MHz - 100 MHz with an output voltage up to 20 V and an output current up to 10A, and secondly a triggered, dual-beam oscilloscope.

EXPERIMENTAL SET-UP

As shown in Fig. 3, two circular, flat-plate conductors (made from wire mesh) of radius 25 cm were positioned as a capacitor with an air gap of approximately 21 cm. The capacitor was placed on top of a large conducting ground sheet. The top plate was then connected to a signal coax. cable terminated by two 100Ω resistors parallelled between the live inner-core and the outer sheath. The entire volume surrounding the capacitor gap was then Faraday shielded using a second large conducting sheet such that no \(\mathbf{H} \) contributions from the connecting coax. cable could extend into the region around the capacitor gap. The Faraday shield is also connected to the outer-sheath of the coax. The magnetic fields within and surrounding the capacitor were measured using a circular, balanced, Faraday-screened coax. loop of radius 6 cm (Fig. 4), which was connected and matched to one of the inputs of the oscilloscope, thus eliminating standing wave problems on the leads. To provide a reference phase signal for the measured magnetic fields from the Faraday loop, a small resistor, 47Ω, was placed in the live coax. lead at the signal source, and the voltage monitored across the resistor using the second input to the oscilloscope. This signal also gives phase information of \(\mathbf{H}_o \).

RESULTS

A pk-pk voltage of 15 V was chosen, at a frequency of 40 MHz (\(\lambda = 7.5 \text{m} \)). The voltage across the plates was approximately 8V. Positioning the Faraday loop in the middle between the plates, the measured voltage and phase from the loop as a function of distance \(r \) from the centre of the plates is shown in Fig. 5. Referenced to \(\mathbf{H}_o \) (taking into account path length, etc.) then between the plates \(\mathbf{H}_o \) is strongest even though mutual effects will always exist between the loop and the plates. Moving outwards, \(\mathbf{H}_o \) decreases and \(\mathbf{H}_o \) takes over, hence the 180° phase change. The cross-over takes place near the edge of the plates. Outside the capacitor plates the magnetic field is therefore due mainly to \(\mathbf{D}' \) between the plates.
This simple experiment provides proof not only that the Maxwell law $\mathbf{D}' = \nabla \times \mathbf{H}_p$ is functioning between the capacitor plates, but that \mathbf{D}' is an additional and significant source of magnetic field surrounding circular capacitor plates at high frequency. Though some textbooks comment on the existence of \mathbf{D}' within capacitor plates, the authors fail to realise that it creates its own magnetic field which can extend well outside the capacitor plates.

CROSSED-FIELD-ANTENNAS

From the experimental verification of \mathbf{D}' within large circular capacitor plates, producing a surrounding magnetic field distribution, a revolutionary engineering design of antennas has now been developed in which the Poynting vector $\mathbf{S} = \mathbf{E} \times \mathbf{H}$ is directly synthesized by separate \mathbf{E} and \mathbf{H} field stimuli within a very small volume. These antennas are called crossed-field antennas (CFAs). Success with the CFA systems can be said to be a direct consequence of the perception of reversing in particular the 4th Maxwell equation to gain a full understanding of the physical reaction or field production nature. A brief description of the operation of one particular CFA design, the “barrel-shaped CFA”, (Fig.6) is given below (see also photograph Fig.7).

“Large” circular capacitor plates when supplied with high voltage will produce strong circular magnetic fields around the plates through $\mathbf{D}' = \nabla \times \mathbf{H}$. In the antenna these capacitor plates are referred to as the D-plates. Two large cylindrical plates of short length but the same radius as the capacitor plates are positioned one above and one below the D-plates. When the cylinders are driven by an RF power source they produce high-frequency \mathbf{E} lines (due to voltage difference between the plates). These cylindrical plates are therefore called the E-plates. (Note that they are analogous to the arms of a dipole antenna but much smaller in length than in any practical dipole; sometimes $< \lambda/200$.) The power from the transmitter is split roughly in half between the E-plates and the D-plates. Through suitable design considerations and delay arrangements between the E and D plate voltages, a toroidal volume surrounding the D-plates is crossed-stressed with in-phase \mathbf{E} and \mathbf{H} field components such that \mathbf{E} / \mathbf{H} matches space impedance. Radiation is then produced through $\mathbf{S} = \mathbf{E} \times \mathbf{H}$ and power flows out to space as vertically polarized radio waves of intense power density.

The important features of these antennas are (i) that they are extremely small, excellent receivers, powerful, efficient radiators, and (ii) that their physical size is independent of the radiated wavelength — an unprecedented concept in antenna theory and design. All textbooks on antenna theory suggest that radiation is initiated solely by conduction current flow \mathbf{J}. In the CFA, the radiation is not produced from fields related to \mathbf{J} but from space electric fields created from voltage build up. In addition, though the CFA is small, it is not restricted to the limitations of narrow bandwidth: a critical feature of all other inductively or capacitively shortened antennas; the measured operating bandwidth on transmitting and receiving in most CFA systems is greater than 30%. In fact there also appears to be no restriction in the physical size of CFAs and they can be made as small as desired.

REFERENCES

Easy to operate – Yet easy to afford

FAKERSCOPE 3000 – DATA MONITOR & EMULATOR

A high contrast, 840 character LCD, permanent user status messages and qwerty keyboard contribute to the user friendliness of the Fakerscope 3000. It includes 10 non-volatile set up files, is fully compatible with asynchronous, synchronous and bit synchronous systems and can monitor up to 72kbps for synchronous protocols. Each instrument supports SNA and X.25 decoding at levels 2 and 3. The Fakerscope 3000 can be supplied with up to 64kbyte of capture RAM and costs from £1495.00.

MINISCOPE – RS232 BREAKOUT BOX & ASYNCHRONOUS DATA MONITOR

Menu driven and easy to operate, the Miniscope includes 8kbyte of capture RAM and a 32 character LCD for data display. Data on Tx and Rx is shown in its correct relationship and the control characters displayed as symbols. The Miniscope is powered by re-chargeable batteries, includes a mains adaptor and costs only £295.00.

CABLEFAKER–LINE POWERED RS 232 BREAKOUT BOX

Featuring a custom LCD which uses easily recognisable mnemonics for the signal states, the Cablefaker offers a complete RS 232 breakout and patch facility, yet costs only £74.95.

FAKERSCOPE 500 – ASYNCHRONOUS V.24 DATA MONITOR & EMULATOR

Easily operated by soft keys, with user prompts displayed on an 80 character LCD, the Fakerscope includes an RS 232 breakout box, plus a data monitor and message generator. The message generator can output both canned and pre-programmed data, while output flow control can be Xon/Xoff or level control. Each Fakerscope 500 includes 8kbyte of capture RAM. Data can be reviewed on the LCD or a separate terminal and is displayed in ASCII, HEX or baudot. The Fakerscope 500 costs only £495.00.

FAKERSCOPE 2500 – DATA MONITOR & EMULATOR

The Fakerscope 2500 has asynchronous and bisynchronous message generator and capture facilities of up to 72kbps. It is compatible with HDLC and SDLC formats, is fitted with a qwerty keyboard and will decode at levels 2 and 3, for both X.25 and SNA. In addition, it includes 8kbyte of non-volatile capture RAM, a buffer search and trigger facility and a bit error rate tester. It costs only £987.00.

Please send me more information about:

- Fakerscope 3000
- Fakerscope 2500
- Fakerscope 500
- Miniscope
- Cablefaker

Or for immediate attention ring 0908 322177

Componedex Ltd
21 Alston Drive
Bradwell Abbey
Milton Keynes
MK13 9HA

Tel: 0908 322177
Tlx: 827570 COMPON G
Fax: 0908 320 350

ACCESSIBLE SOLUTIONS TO COMMUNICATIONS PROBLEMS

ENTER 49 ON REPLY CARD
The names of Nyquist and Bode go together like peaches and cream and are often paired in textbooks dealing with the theory of stability in linear networks. Unlike some other paired names (such as Thévenin and Norton, for example, who lived in different continents and at different times) Nyquist and Bode knew each other and worked in the same company laboratories on the same types of problem.

The laboratories were those of Bell Telephone in America and the pair's best known contributions, on amplifier stabilization, were the mathematical completion of the breakthrough begun in 1927 by their colleague Harry Black with his invention of the negative-feedback amplifier, described last month.

But both Nyquist and Bode did far more than their epic work on stability criteria and the mathematical design of feedback amplifiers. They worked through a period which might well be regarded as the classical period of network analysis and synthesis in telecommunications design and they worked with other giants of the period: George Campbell, John Carson, R. V. L. Hartley, E. H. Colpitts, Claude Shannon, and many more.

HARRY NYQUIST

Harry Nyquist was born at Nilsby in Sweden, a hundred years ago on 7 February 1888; his family name was originally Nyqvist. When he died in 1978, at the age of 87, he was survived in Sweden by two sisters and a brother, the brother still living at Nilsby.

Emigration to the United States beckoned and at the age of eighteen he settled in Minnesota, west of the Great Lakes, where he worked for a time as a school teacher. He entered university education late, graduating from the University of North Dakota at the age of 26 with a degree in electrical engineering. He followed that with a Master's degree the next year and transferred to Yale University, where he received his Ph.D. in 1917.

The American Telegraph & Telephone Co. (AT&T) offered him a position at their Engineering Headquarters in 1917, some seven or eight years before the Bell Telephone Labs were formed. There he stayed until his transfer to Bell Labs in 1934.

In all, he spent 37 years in the Bell System until his retirement in 1954 and received 138 American patents, averaging nearly one every three months and gaining a reputation for providing inventions almost to order. "Harry, why don't you invent this?" his colleagues are said to have asked when they faced a problem, whereupon Nyquist (at least according to legend) would do just that over the next few days, weeks or months. At least one former Bell colleague has suggested that those 138 patents only "suggest his contributions to the field of communications."

Those contributions include the first quantitative description of thermal (Johnson) noise, signal-transmission studies which helped lay the foundations for information theory and data communications, the invention of vestigial-sideband transmission and the famous Nyquist stability criterion, which has been used outside electronics as well. Wall--to describe the way in which someone drives a car, for example.

Nyquist's first major contribution to transmission techniques was a series of theoretical studies of the behaviour of analogue and digital signals in transmission systems, beginning in 1924. This appears to have been part of a whole series of work at AT&T which stemmed from the 1915 invention of the wave filter by George Campbell. Campbell's filter gave an inexpensive method of separating signals of different frequencies on a wire line to allow dual use for telegraph and telephone communications.

Digital signals were used in telegraph systems and, in the 1920s, AT&T did considerable work on developing start-stop teleprinters, multiplex telegraphs and carrier telegraph systems. Previously, in telegraphy, distortion measurements had been very elementary but, with this new and more critical work, distortion began to acquire greater importance. Nyquist and others carried out theoretical studies and laboratory experiments and designed distortion-measuring instruments for use by maintenance engineers. Nyquist also provided definitions for three types of distortion.

4kT. It was also in 1928 that the Physical Review published, on consecutive pages, papers by John B. Johnson and Nyquist on thermal or Johnson noise. Noise has been described as "the ubiquitous, unwanted, insistent, unwelcome gate-crasher" of electronic systems. Walter Schottky of the German Siemens and Halske firm published the classic paper on noise in 1918, suggesting two fundamental types of noise which he named thermal and shot noise. Of the two, Schottky suggested that shot noise would be the more troublesome.

In 1926, Johnson published an important paper on noise. Studying his data later, he discovered evidence of a type of noise which was proportional to the amplification of the valves and which masked the shot noise. This was the experimental discovery of thermal noise, now also known as Johnson noise, made in 1926. Subsequent experimental work led to Johnson's 1928 paper. Meanwhile, Nyquist, working alongside Johnson, analysed thermal noise mathematically using thermodynamic principles and produced the famous formula of 4kT watts per unit of bandwidth, where k is Boltzmann's constant and T is the absolute temperature. Years later, Johnson himself described Nyquist's work as "based essentially on the thermodynamics of a telephone line, and covering almost all one needs to know about thermal noise."

The next major contributions did not come until the 1940s (S. O. Rice).

Stability criteria. Nyquist and Bode are however, best known for their work on stability criteria. Harry Black's 1927 invention of the negative-feedback amplifier solved the enormous problem of how to reduce the distortion within an amplifier almost to the point of elimination. As we saw last month, Black more or less ignored stability and assumed the amplifiers would not oscillate or "sing."

Black's success raised other problems for, despite his desires, the amplifiers did have a tendency to become unstable and oscillate. As mathematical physicists, Nyquist and Bode were two of the men chiefly responsible for the derivation of the mathematical theory that enabled the systematic design of stable feedback amplifiers to take place. This success took time; for some years, whilst the potential was recognised, a really good design proved very hard to achieve. A few even regarded it as verging on being a pipe dream, hence the comment that Black's invention
Hendrik Bode, the inventor of the traveling wave tube and the author of the Nyquist diagram, left a lasting impact on the field of electrical engineering. His work on feedback and amplifier design was instrumental in the development of modern electronics. Bode was one of the pioneers of electronic circuit theory, and his contributions continue to influence the design of electronic systems today. His legacy is a testament to the importance of continuous learning and innovation in the field of technology.
The Dowty Line Up

A range of Thermal Linescan Recorders from 8½ inches to 19½ inches

Dowty Thermal Linescan Recorders are rugged, reliable and fume free. All recorders incorporate a full width thermal print head – ranging from 8½ inches to 19½ inches – enabling high definition grey scale recording on paper or film for applications as diverse as military sonar and medical imaging.

3000 Series Recorders

A range of 12 inch single and dual channel analogue or digital instruments with variable sweep and delay times, triggers and input levels. This popular Series can be bench mounted or 19 inch rack mounted in any orientation.

195 Series Thermaline Wide Print Recorder

Produces a linescan image 19½ inches wide with a high resolution of 200 pixels to the inch. Interfaces available or planned include digital TTL, IEEE 488, RS422/232, and analogue, with single or multi-input channels. Customised interfaces can be produced for special applications.

85 Series Thermaline Video Graphic Recorder

Produces a hard copy image 8½ inches wide from a video signal at the touch of a button thanks to a built-in freeze frame facility. All common video formats can be accommodated. A high speed linescan version of this recorder is also available.

They keep going when the going gets tough

8051 Project....?

From simple minimum chip solutions through to complex turnkey multiprocessor systems, Cavendish Automation has the hardware and tools to allow you or us to design rapid and professional implementations.

Off-the-shelf hardware includes numerous DACs, ADCs, bus-drivers and decoders, and many other forms of analogue and digital I/O cards, together with power supplies, backplanes, card cages and equipment cases.

Software development couldn’t be easier. Our 7034 card’s text editor enables software development for the 8051/2 in either assembler or MCS-52 BASIC. Programs are simply blown into EPROM or EEPROM on the card itself. When writing in assembler, both source and/or assembled code may be saved in this way.

For further information contact

Cavendish Automation

Enter 39 on reply card
European flat-screen tv nearing production

MARTIN ECCLES

Colour liquid-crystal TVs that are much flatter, thinner and more robust than CRT based sets should be in production this year. General Electric is already producing flat screens for cockpit applications but Philips and Japanese companies including Matsushita, Toshiba and Sharp are working on liquid crystal displays for domestic TV.

The only non-Japanese company competing for the flat-screen TV market is Philips. Together with Varner, Philips is already producing small liquid-crystal screens for seat-back entertainment experiments in planes and by the end of this year the company hopes to be manufacturing 6in flat-screen televisions for domestic use.

In display terms, domestic TV is one of the most stringent applications. Television pictures contain fast moving images and TV displays require high resolution, high contrast and high brightness. To obtain fast switching of all picture elements, especially those at the centre of the display, the Philips liquid-crystal display uses an 'active matrix': there is one transistor switching each picture element.

Subjectively, the picture from the prototype display compares with that obtained from a good domestic video recorder. One of the main problems with liquid-crystal TV displays has been response speed: on the selected programme material that we viewed, some of which contained fast-moving images, there was no detectable image blurring at all. Viewing the display close up, the most noticeable effect is diagonal striping caused by the one-and-a-half dot staggering of the RGB elements. These diagonals disappear at about 1m.

Unlike front-lit liquid-crystal displays the back-lit active matrix appears at least as bright as a CRT. In fact within reason its brightness is only limited by the intensity of the backlighting, but unlike a CRT the active-matrix display does not lose intensity as it ages (Philips says that a life of 10 000 hours is feasible for the new display).

Liquid-crystal displays do not like DC. Asymmetrical LCD drive (field inversion) would solve this problem, but it would also cause an unacceptable 25Hz flicker. Instead, the active matrix uses inversion on alternate lines. As a result, flicker is reduced to about 1/30th of the total amplitude which is less than that produced by a conventional CRT.

You might think that power consumption of such a liquid-crystal would be lower than that of an equivalent CRT, even taking into account backlighting requirements, but the current 6in active-matrix takes about 10W as opposed to about 6W for the same size CRT.

Connection of the matrix is currently much more difficult than plugging in a CRT: each line and row in the matrix needs a driver and a connection. Future displays will have multiplexers and drivers built in but until then, connecting the flexible PCB material leading from the matrix edges must be quite a labour-intensive task.

Although there is no theoretical limit to the display size, there are currently technological limits. According to Dr Alan Knapp, leader of Philips Information Display group at Redhill, there is no particular

Two criticisms of this prototype display are its dullness and its diagonal lines. In practice, dullness is certainly not a problem and the diagonal lines disappear at about 1m.

Flat-screen full-colour televisions should be available this year – this prototype was made by Philips researchers at Redhill.

Colour pixels in the prototype display, and probably in the final product, are staggered by one-and-a-half dots to give a better picture. The polarizer absorbs about 50% of light and there are other losses, hence the need for backlighting.

continued on page 226
The framework on the right houses the actual detector elements, as well as the local oscillator and associated microwave electronics and the IF stages. Control electronics, the microprocessor, and the synthesiser generating the reference frequency associated microwave electronics installed in a rack next to the telescope receiver cabin, and move about with the dish. The receiver system will be used to make observations of star-forming regions with very-high-frequency resolution (e.g. 1 part in 10^7).

Clouds of gas and dust which are collapsing under the force of gravity to form new stars, contain small amounts of trace gases such as CO and isolated carbon atoms. These emit radiation at certain well-defined frequencies. By comparing the frequency of the radiation we observe with that expected we can tell how fast the gas clouds are moving away from or towards us. Thus we can study the kinematics of the gas clouds and learn more about the star formation process.

Dr Rachel Padman

Electron energy-loss spectroscopy

Surface physics is a sub-discipline of solid state physics and is concerned with effects which occur at solid surfaces. All of the interesting gas/solid, liquid/solid, chemical reactions necessarily occur at a surface—a seemingly obvious statement, but the ability to do proper studies of surface phenomena has only been possible since the late 1960s and is still a rapidly growing area of fundamental technological interest.

In order to prepare atomically clean surfaces, all experiments must be performed inside an ultra-high vacuum chamber (pressure 10^-10) so that background gases do not contaminate the surface being studied. Cavendish's Surface Physics Group is particularly interested in studying the adsorption of monolayer films of simple molecules (C, O, CO) on a surface and studying their interaction with the surface.

Eventual understanding of the mechanisms of molecular-surface interactions will help in improving catalysts, in understanding oxidation processes and in the fabrication of semiconductor devices (VLSI technology involves growing layers of material on a substrate surface by the reaction of gases at the surface).

Erik Jensen

At one of Britain's largest university physics departments — Cambridge — major research work is carried out at three locations. These include the Mullard Radio Astronomy Observatory and the Microelectronics Research Laboratory, but the most significant site for electronics engineers is probably the Cavendish laboratory, having been established more than a century ago under the direction of professors Maxwell, Rayleigh, Thomson, Rutherford and Bragg.

In this month's research profile, which is devoted to the more electronics-oriented aspects of Cavendish Laboratory's work, it is interesting to note that 'cold electronics' are as evident at Cambridge as they are at Oxford (see our Research Profile of last month and Dr Gregg's article in this issue).

Martin Eccles

UPDATE

460-490GHz radio-astronomical receiver (above) being assembled and tested. When completed it will be installed in the 15m diameter James Clerk Maxwell telescope on top of the 4260m high Mauna Kea, Hawaii.

Although the detectors themselves are mounted in a waveguide (about 0.5mm diameter) most of the signal processing at the observing frequency is done using quasi-optical components. The signal propagates at a nearly parallel beam, and is collimated and focussed using optical components such as mirrors and lenses.

Close up of the 460-490GHz receiver. The gold-coloured vacuum vessel (above) houses two InSb homodyne detectors for two polarizations of the incoming signal. They are cooled to 0.2K above absolute zero using liquid-helium refrigerant.

Although the detectors themselves are mounted in a waveguide (about 0.5mm diameter) most of the signal processing at the observing frequency is done using quasi-optical components. The signal propagates at a nearly parallel beam, and is collimated and focussed using optical components such as mirrors and lenses.

The local oscillator (just seen underneath the plate supporting the vacuum vessel) consists of a Gunn-diode oscillator for 1150GHz or 1230GHz, which is then frequency quadrupled and radiated from a small horn. This is focussed by a lens and mirror, and a small amount of power is injected into the path by a 20% reflection off the 99% transmitting mylar beam-splitter and combiner.

The plane input mirror is used to align the direction of the beam into the receiver with that arriving from the telescope. An image of the window in the side of the Dewar vessel can just be seen.
Superconducting receivers. The Radio Astronomy group at the Cavendish Laboratory is developing, in collaboration with the Materials Science Department, superconducting receivers for use on the James Clerk Maxwell Telescope in Hawaii (right).

Shown above is a prototype 100GHz receiver. The receiver is based on an extraordinary device that consists of two superconducting niobium films separated by a dielectric layer only a few tens of angstroms thick.

Photon assisted tunnelling of quasiparticles—entities which are very similar to electrons—across the barrier allows the detection of millimetre and submillimetre-wave radiation with a sensitivity approaching the quantum limit.

When used as a mixer, the device displays a number of curious quantum phenomena including classically forbidden conversion gain and quantum reactances.

Dr. S. Withington
problem to be overcome before the 6in screen goes into production – it is just a question of getting all the processes right to give the necessary yield. “Display sizes will go up,” says Knapp, “but only gradually.”

Earlier thin-film transistors used to switch liquid-crystal picture elements in this way were leaky and required an extra capacitor across the liquid-crystal display.

Specifications of prototype 6in flat TV

Pixel size	468 x 288mm
Aperture	0.26 x 0.318mm
LC effect	68%
Contrast	twisted nematic
Viewing angle	>50.1 (max)
Horizontal	80°
Vertical	35°
Response times	19ms (10% to 90%) 11ms (90% to 10%)
Vertical resolution	half PAL (288 lines)
Horizontal resolution	>2.4MHz
Drive voltages	row 18V column 3V pk-pk white, 10V pk-pk black

Beyond CT-2

Quite apart from CT2, another CHF personal communication system is being proposed in government circles. Known as Short Range Radio (SRR) it is envisaged that handsets should be made to a pan-European system, using much of the digital technology of CT2. For a modest licence fee anyone would be able to communicate with anyone else over short distances: users would just key in the number of the person they wished to communicate with and would be connected automatically if the wanted set was within range and switched on. The system is intended to combine the accessibility of citizen’s band radio with selective calling and privacy of conversation.

The UK Department of Trade and Industry has indicated that it hopes to introduce SRR in 1992, but will allow hand-portable sets only – not the mobiles or base stations described in the CEPT proposals. This is fascinating, since it would appear to limit the use of SRR to extremely short ranges. Certainly, for businessmen SRR would make a nice on-site paging system while enthusiasts might find it excellent for hikers’ groups and marshals at sports events. Beyond this it seems fit for very little.

Although the specification provides for community repeaters these will not be permitted in Britain. Taken together with the ban on base stations and mobiles this will reduce the utility of SRR to virtually nil.

In the Government’s original proposals for Open Channel radio, it was specifically stated that these frequencies would provide ideal low cost communication for small businesses, veterinary surgeons, farmers and the like. This dream was not realised, yet SRR could provide precisely this kind of facility. At least one industry source lays the insistence for a minimal SRR system at the door of the vested financial interests of the private mobile lobby.

IBM small, fast

In a paper presented to the International Electron Device meeting at San Francisco, a group of IBM scientists have published results on engineering IC test samples which demonstrate a clock rate of 300MHz.

Built using an experimental cmos process with 0.25μm geometry it holds out the prospect of producing commercial 256Mbit DRAMs or processor chips with a million gates. This compares with a current tally of around 100,000.

The test chips were made in bulk silicon technology and advanced processing – some elements have a thickness of just 20 atom layers in places.

Silicon potato chips

You can now put electronic tomatoes, sugar beet and potatoes on your shopping list although they are unlikely to catch on as a high tech gourmet delight. They cost more than their weight in Beluga caviar – around £2,000 each.

Designed by the Scottish Centre of Agricultural Engineering, the skins of these artificial vegetables have a texture and density similar to the real thing but exhibit piezo-electric effect. When the skin’s output signal is coupled into a small internal trans-mitter, it becomes possible to analyse scientifically the brutality of the mechanical handling involved in gathering the crop. (Source: Daily Telegraph)

MCA on a chip

Helping along the new accord between IBM and clonemakers producing machines with the IBM proprietary micro channel architecture, the Californian chip design company PLX Technology has produced an MCA bus interface chip.

The MCA240 24-pin device built from CMOS PLAs provides all the protocol logic, drivers and input buffers needed to perform the micro channel interface function. It replaces up to 15 discrete logic packages which are normally required for the interface task.

Floppy control

Intel has brought out a single-chip floppy drive controller which is said to integrate all the system level functions.

The 82077, which supports 2.5in drives of up to 4Mbyte capacity, includes an analogue phase locked loop, data separator, a fifo for data transfer and support for the per-pendicular recording mode which will feature in the next generation of drives.
MAKING ELECTRONICS C.A.D. AFFORDABLE

- Are you still using tapes and a light box?
- Have you been putting off buying PCB CAD software?
- Have you access to an IBM PC/XT/AT or clone inc Amstrad 1640 & 1512 or Archimedes with P.C. Emulator?
- Would you like to be able to produce PCB layouts up to 17" square?
- With up to 6 track layers and 2 silk screen layers?
- Plug drill template and solder resist?
- With up to eight different track widths anywhere in the range .002 to .531 ?
- With up to 16 different pad sizes from the same range?
- With pad shapes including round, oval, square, with or without hole and edge connector fingers?
- With up to 1500 IC's per board, from up to 100 different outlines?
- With auto repeat on tracks or other features - ideal for memory planes?
- That can be used for surface mount components?
- With the ability to locate components and pads on grid or to .002" resolution?
- With an optional auto via facility for multilayer boards?
- With the ability to create and save your own symbols?
- That can be used with either cursor keys or mouse?
- That is as good at circuit diagrams as it is at PCB's?
- That outputs to Dot Matrix Printer, or, with extra drivers can drive a pen plotter or photoplotter.
- Where you can learn how to use it in around an hour?

- That only costs £275.00 + VAT.

SMITH CHART PROGRAM – Z MATCH

For IBM, PC/XT/AT and clones inc. Amstrad 1512 and 1640 and BBC B, B+ and Master.

Z-MATCH – Takes the drudgery out of R.F. matching problems. Includes many more features than the standard Smith Chart.

Provides solutions to problems such as TRANSMISSION LINE MATCHING for AERIALS and RF AMPLIFIERS with TRANSMISSION LINE, TRANSFORMER and STUB MATCHING methods using COAXIAL LINES MICROSTRIP, STRIPLINE and WAVEGUIDES.

The program takes account of TRANSMISSION LINE LOSS, DIELECTRIC CONSTANT, VELOCITY FACTOR and FREQUENCY.

Z-MATCH is supplied with a COMPREHENSIVE USER MANUAL which contains a range of WORKED EXAMPLES

£130 for PC/XT/AT etc.
£65.00 for BBC B, B+ and Master

All prices Ex-VAT

WRITE OR PHONE FOR FULL DETAILS: REF WW

Number One Systems Ltd

CIRCUIT ANALYSIS BY COMPUTER – ANALYSER II

For IBM PC/XT/AT and clones inc. Amstrad 1512, 1640, R.M. NIMBUS, and BBC B, B+, and Master.

“ANALYSER II” — Analyzes complex circuits for GAIN, PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY over a very wide frequency range.

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV, F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop". Can save days breadboarding and thousands of pounds worth of equipment.

£195 for PC/XT/AT etc.
£130 for BBC B, B+ and Master

Harding Way, St. Ives, Huntingdon Cambs, PE17 4WR
Tel: St. Ives (0480) 61778
We provide full after-sales support with free telephone 'hotline help' service.
Software updates are free within 6 months of purchase date.
The basic elements for solid-state image acquisition have been available commercially since the mid 1970s. The charge-coupled device (CCD) was invented by Fairchild Semiconductor Corporation and was quickly taken up in the consumer market, where the first major application was the autofocus systems for 35mm SLR cameras. This was achieved by a line-scan array (a single line of photosites or pixels) of a few hundred pixels in length, used to work out the distance to the object and focus the camera. Later, a much higher growth in the consumer market came with the advent of the video camcorder, which is made up of an area array (a matrix of rows and columns of pixels) which gives a TV picture in real time.

An important application is office equipment, where CCDs are used in fax machines, photocopiers and today in document scanners for PCs.

The applications described require very little image processing of the video information coming from the charge-coupled device and therefore use low-cost equipment. The other field in which CCDs found early application was the industrial/professional market, where they became a small part of major systems in equipment such as television, cheque readers and even satellites. Here, there is a requirement for very high-level processing of the video image coming from the charge coupled device. However, the systems themselves are highly expensive pieces of equipment and so the cost of this processing power did not inhibit sales.

CCDs have been used in industrial inspection for some time, but the slow adoption of solid-state imaging has been due to the high cost of processing the video stream.

HARDWARE

The hardware required for an industrial CCD imaging system consists of the image acquisition front end, made up of a CCD camera and the driver electronics, and an intelligent board including a microcontroller or a computer.

CCD cameras use two kinds of technology: an area-scan system to give a live TV picture; or a line-scan CCD array where the picture is made up by integrating the video against time.

Historically, systems have been made in the main with area-scan CCD cameras. There is a misconception that, because you cannot display the information readily on a TV-type monitor and this information can be readily understood by the human eye and brain it is therefore easier to process in an electronic system. The main fallacy with this argument concerns the amount of information presented. For example, 1024 by 1024 area picture would give you a million bits of information. If these were updated at a video frame rate of 50 frames per second, the downstream processing would have to handle 25 million bits of information (due to standard video being interlacing transfer) a second. This amount of information is obviously beyond the capabilities of anything but supercomputers. The other major problem with using an area-scan camera is that, if the object is moving, the laws of probability state that the object will not be moving at the video frame rate. This means that the information in the top right-hand corner of the picture is out of sync, relative to the position of the object, with the information at the bottom left-hand corner of the picture. This gives the effect known as smear or a major drawback where dimensional analysis of an object is required. If the object to be viewed is stationary relative to the camera or if the system works on a step and repeat basis, then an area camera is the only possible option.

The problem of smearing can be overcome by using strobe lights or a mechanical shutter arrangement, which also has the effect of allowing time for the information to be processed during the period in which the CCD camera is not collecting information.

The most elegant solution is to use a line-scan array. In this method, a single line of pixels clocks out its information, which is fed to a frame store. The picture is then built up against time as the object moves under the camera or the camera moves over the object. An added advantage of line-scan is that resolution can be much higher than that of area-scan techniques.

With current technology a 1024 by 1024 pixel-area chip is the best that can be economically manufactured. However, line-scan arrays of six thousand pixels in length are commercially available from companies such as Fairchild Weston in California. By selecting enough clock periods, a picture made up of six thousand pixels read six thousand times can easily be built up, given sufficient computer memory. Because the amount of information processing needed at one time is much smaller, much less computing power can be used (the processor can be working on one line as the next line is collected). It is also very easy to vary the clock speed on a line-scan CCD array and to tailor this to the speed of movement of the object to be viewed. This overcomes the problems of smearing described earlier and, although it is harder to visualize the information from a line-scan CCD, as far as the computer is concerned it is much easier to process this information than from an area-scan camera (see Fig. 1).

Another major component of any electronic inspection system is the lighting and optics. This is the area in which most mistakes are made when systems are designed. The key requirements are to get an even field of light across the object, since the processing electronics are not able to differentiate between effects caused by unevenness of the light source and those due to the shape of the object. To overcome the problems of lens distortion the system must allow for programming to overcome these anomalies.

The system described in this article uses an IBM PC-compatible plug-in board manufactured by Sentel Messtechnik in Germany for the processing of the video stream from the CCD camera. In line-scan applications the analogue video signal produced by the camera is converted by a controller board into a standard video signal. This signal and some other digital signals are fed into the plug-in board (CCVM) inputs via a number
of cables, where the analogue video signal is initially digitized to an 8-bit resolution, resulting in 256 grey levels (see Fig.2). The grey-level value of each pixel is located at a certain address in the image memory of the board, which can be directly accessed by the user. The board has a colour look-up table which allows false colours to be allocated to the various half-tone levels, which can be programmed by the user as required. This means that the image output can be manipulated by either reverse-video imaging, emphasizing a certain half tone or image area, false-colour representation or binary representation, if required. Individual half-tone levels in this colour look up table can be masked or labelled, allowing co-ordinate systems, crosswires, image windows or graphics to be integrated. A monitor may also be attached.

The board includes 256Kbytes of onboard RAM, for the storage of the video image, as standard. By using other RAM modules, the image memory may be expanded to 1 mega-byte, which is sufficient for complete images of a maximum of 512 by 512 pixels each. A memory of this size cannot be simultaneously handled under the MS-DOS operating system, so the image memory of the CCUM has been divided into a number of segments, each of 32K bytes, through which the image memory can be viewed. Access to the entire image memory is provided by moving this window, allowing operations to be handled in real-time. Several CCUM boards can simultaneously operate in a single PC by programming the respective ports to activate the memory of each board.

PROGRAMMING

Programming the CCUM takes place via registers, but the image memory can also be directly accessed. For this purpose, a structure of type "row" is defined, which contains for every image line the address of the first pixel in this line in the image memory and the respective page number. The CCUM board is normally programmed via a software library, which is included in the cost of the board. This library uses a high-level language and an easy-to-use software interface, allowing the user to operate the CCUM as required in the specific application. The design of the CCUM allows user programming to customize the system to various needs; a total of 10 registers are available to the user, sorted according to the subjects with indications being included as to whether the register is read or written.

The universal counters of the CCUM allow special applications and can be used, for example, to display simultaneously several camera images onto the monitor. Another example is, when operating a line-scan camera, two of the registers are used in conjunction with the line-scan controller board to detect an edge or the width of an object via the hardware. Other registers available on the CCUM board control the A-to-D converter, the status register which gives information on the current status of the board, the camera modes register, which selects which camera is being used in multiple camera applications and the image memory segment register, which allows the user to state the image window he would like to access. The aim of the hardware for the CCUM board is to give a cost-effective flexible interface with the IBM PC/AT standard bus.

SOFTWARE

Any system which includes a complex camera-interface board should be assisted by hardware-oriented basic software products. Programmes of this type allow the programmer to use the CCUM as a "black box" to solve his specific problem, without the necessity of detailed hardware knowledge; although he must have a flexible software interface so that long training periods to learn a new programming language or the rewriting of already existing software is unnecessary. The basic software for the CCUM board, CCUM.LIB, has been written in Microsoft C and is also available as the source code which allows the user a very flexible software interface. Programmes written in Microsoft C, Microsoft Pascal, fortran, to name just a few, can be linked with the CCUM.LIB without any difficulty. Various other software products are based on Microsoft standard and will thus be compatible. Apart from the CCUM.LIB a number of geometrical measurement, edge-detection and outline-recognition packages are available as standard with this board. These are also created using Microsoft compilers and are thus suited for adaption. Example programs are available from Optimim Vision (Tel: 0730 64016).

Using CCUM, an IBM PC/AT compatible, a Fairchild Weston CCD camera and relevant application software, an industrial inspection system can be created for less than £10,000. This system works in real time, giving high-resolution industrial imaging with both static and fairly high-speed moving objects. For example, there are applications where people wish to study the surface of roads and rail tracks, while moving at up to 100 kilometres per hour, using CCD line-scan technology. Such a cost-effective system brings the world of industrial vision out of the realms of high cost and into the reach of small innovative companies and engineering groups.
NOW YOU CAN THE TRANS

The most powerful micropro

- State of the art technology!
 With major computer companies "designing-in" the Transputer, it is imperative that today's technology does not remain a mystery.
 In short, the Transputer Training System gives you a unique low-cost method of obtaining practical experience - fast!

- Saves your time
 Unpack, plug in and start learning. Everything you need including self-teach manuals in one package.

- Saves your money
 The complete system costs just £995.00 + VAT and uses any IBM Compatible PC with 640K RAM and hard disk as the host computer.

- Now with 1/2 price course option
 Attend our special 3 day course for just £200 extra if ordered with the system. Normal price of course is £400.

The unique Transputer Training System has been designed specifically for education and is therefore ideal for use in colleges and universities. The excellent self-teach manuals, included with the package, mean that it can also be used by engineers to rapidly evaluate the transputer and utilise its amazing power in real time applications.

The system is supplied with everything you need including:
- Interface card - takes a "short slot" in the PC and provides link in/out and control lines.
- Cable - links the interface card to the Transputer Module.
- Transputer Module - complete T414 based subsystem, supplied in its own sturdy case.
- Power supply - independant power to transputer if required.
- Development Software - folding editor, OCCAM compiler, downloader, terminal emulator and utilities, hosted on the PC.
- Example programs - no less than 28 fully worked examples.
- On Screen Tutorials - learn how to use the system 'on-screen'.
- Hardware Manual - full circuit diagrams, timing diagrams and circuit descriptions.
- TDS User Guide - self contained tutorial guide to using the development software.
- Introduction to OCCAM - a complete self-teach course in OCCAM.
- OCCAM Programming Manual - the definitive guide to OCCAM.
- T414 Engineering Data - full specifications for the Transputer.
- C012 Engineering Data - full specifications for the Link Adapter.

The Transputer Module houses a 15 MHz T414 with 256K RAM and is external to the PC, so that the hardware is fully accessible. The module includes a wealth of test points, 14 status LEDs, 16 I/O lines, EVENT input, independant power supply, prototyping area and four 15 way D connectors, which allow access to the 10 M bits/sec links and control signals.

Full hardware and software support is provided for multi-transputer applications. Simply plug additional Transputer Modules into the spare link connectors using the cables supplied. In this way networks of any configuration using any number of transputers may be realised! Each module can run one or more concurrent processes and has access to its own local 1/4 Mb RAM and I/O system.

The I/O connector links directly to our Applications Board, which enables the Transputer to control DC motor speed, temperature, analog input/output, and much more!
LEARN ABOUT
PUTER...

 cessor in the world using concurrent processing.

How can I give a whole class hands-on experience of the transputer with a budget of just a few thousand pounds?

If you are equipped with IBM compatible PCs with 640K RAM and access to a hard disk, then the answer is to use the Flight Electronics Ltd Transputer Training System.

Sounds interesting — how many workstations will that give me?

As many as you have PCs. The development software is hosted on the PC and may be run on all the PCs in your department, provided that you have bought a site licence. The development software does not require a transputer to be present.

What happens when I want to run a program on a transputer?

Simply take the program via a network or a floppy disk, to one of the PCs fitted with the Transputer Training Hardware. The program can then be downloaded and run on the transputer board which is mounted in its own case outside of the PC.

Alternatively, fit each PC with the low cost interface card, then plug the available transputer boards into the PCs as required. Its as easy as plugging in an RS232 lead, there is no need to switch off the computer.

What language does the system use?

OCCAM 1, through the 'TDS' environment with folding editor.

Isn't that a bit old hat?

Experts agree that OCCAM 1 is quicker to learn than OCCAM 2, and enables students to rapidly grasp all of the essential principles of parallel processing and its implementation on the Inmos transputer.

OCCAM 1 is a subset of OCCAM 2 so students who choose to study OCCAM further will not have to re-learn the language.

Of course, OCCAM 2 requires a transputer board to be fitted to each PC workstation, making a class set prohibitively expensive.

Surely the whole point is to connect transputers together?

Parallel programs can be run and tested on one transputer, the internal architecture of the transputer looks after the time slicing between processes. The same program may then be re-configured to run on more than one transputer. Each transputer board has four 15 way 'D' connectors which carry the 'links' and bus signals. Using simple ribbon cables, the boards can be connected together to form systems with any number of transputers and with any topology.

That's OK for the software, but I need to teach real time control.

No problem. Each transputer board is fitted with three eight bit ports, one is dedicated to a row of on-board LEDs and the other two are accessible via a 40 way header which also carries the EVENT input and +5V.

We can supply an Applications Board which has interactive closed loop DC motor and temperature control systems which provide 'instant' applications for parallel control algorithms. The Applications Board also provides other facilities including A/D and D/A conversion.

If you already have peripheral units based on the 4mm standard then the ports can be brought out on 4mm sockets using the optional adapter.

If you wish to experiment with custom built I/O circuits then use our Universal Interface Board that plugs straight into the I/O connector.

Most transputer systems are pretty sparse on hardware data aren't they?

Not this one. The hardware manual gives complete circuit diagrams and a chapter is devoted to explaining the function of each chip. 15 test points and 6 LED indicators are mounted on the board to allow easy access to the most important signals.

All very well, but surely it will take months for me to write a course to go with the system?

No. A full 'ready to use' self teach course plus two screen based tutorials and a wealth of example programs are included with the package.

Do you offer training so that I can learn about the system quickly?

Yes. A three day intensive hands-on course is available in Southampton, and you can save £200 if you order the course with the system.

Can I see the system before I decide to buy?

Yes, we will be pleased to demonstrate the system anywhere in the UK. Under some circumstances we can also lend you a system for 30 days for you to evaluate in your own time.

To place your order, or for further information, call our sales department on 0703 227721.

FLIGHT ELECTRONICS LTD.

Flight House, Ascupart St, Southampton, SO1 1LU.

Telex: 477389 FLIGHT G Fax: 0703 330039

Call 0703 227721 today for a free full colour catalogue.

AVAILABLE NOW FROM STOCK!
Cold electronics

Now that small 10K refrigerators are readily available, research into how cooled semiconductors operate is more than just a passing interest.

J. F. GREGG and I. D. MORRIS

Solid state physicists researching into the magnetic properties of materials use liquid helium, 4He, as a standard laboratory refrigerant for obtaining the low temperatures which are frequently necessary for investigating the physics of magnetic systems. Liquid helium boils at 4.2 kelvin (about -269°C). Some idea of the relative "coldness" of this liquid may be gained from Fig. 1, which shows various temperatures on the absolute (kelvin) temperature scale.

Low-temperature physics research frequently encounters technical problems which are solved by recourse to "cold" electronic instrumentation which itself operates at liquid helium temperatures. In this article we discuss the advantages of cooling electronic circuits and describe some of the possible applications of "cold" electronics to physics research and to other wider fields.

Descriptions of cryogenic (from the Greek "kryos" meaning "frost") circuits and the operation of semiconductor devices at low temperatures have been outlined in the technical literature since about 1964. However, the advantages of cold electronics have become rather more marked and its applications have proliferated with the recent advent of gallium arsenide (GaAs) devices. For reasons which we shall discuss below, the physics of this material makes it very suitable for low temperature working.

In the low-temperature laboratory environment there are two main incentives for cooling electronics. The first arises from the requirement with some physics instrumentation that it should be sited close to the sample of material under investigation. In practice, given the difficulty of maintaining large temperature differences over short distances, this often means that the instrumentation must be held at the same temperature as the sample. For example, in the case of self-oscillating magnetic resonance spectrometers such as those popularized by P. N. H. Robinson of this laboratory, the resonant circuit and the oscillator must be within a fraction of a wavelength of one another: at UHF and low microwave frequencies, this corresponds to a maximum separation of a few centimetres. Proximity of instrumentation to the experiment has the additional advantage that it minimizes the opportunities for stray pickup and RF interference.

The second and rather more important benefit which arises from cryogenic electronics derives from the physics of electrical noise and fluctuations. Broadly speaking, noise is any signal which is unwanted by the observer. Leaving aside electrical interference from such sources as domestic fridges or local radio stations which must be eliminated by careful design and electrical screening, and ignoring the irritating crackling and popping types of electrical noise which are characteristic of faulty components, there are three kinds of fundamental electronic noise which are describable in terms of basic physical processes. These are respectively known as Johnson noise, shot noise and flicker noise, Fig. 2.

Noise spectra of two different types of GaAs mesfet measured at room temperature, 77K and 4.2K. Diagram (a) is for an NE720 from NEC, while Figure (b) shows the data for an AT8110 marketed by Avantek. The 77K and 4.2K results coincide so closely in places that only the 77K points are marked. This strongly suggests that, despite the fact that the devices are in different refrigerants, the effective electron temperatures in their respective channels are very similar.

ELECTRONICS & WIRELESS WORLD March 1989
Lossy passive components (like resistors) will exhibit Johnson noise coloured with a certain amount of flicker noise, the latter dominating at very low frequencies. Johnson noise power has a linear temperature dependence, so, for example, if a resistor is cooled to half its temperature, its noise power is halved. One of the advantages of cooling to liquid helium temperatures is immediately clear — a resistor operating at 4.2 kelvin delivers roughly 100 times less noise power than at room temperature (300K). Of course, the low-frequency noise character will still be dominated by the flicker noise, but this too may reduce with cooling, albeit in a rather less predictable way.

However, the major sources of noise in most circuits are the active devices and the mechanisms which cause this noise are a bit more complex. For example, in a FET, there will be a Johnson noise component from the channel, shot noise originating from the gate leakage current, flicker noise from the contact metallization strips and carrier recombination fluctuations in the bulk semiconductor, to name but a few. Fortunately, one or two of these noise sources usually dominate and, in general, the noise performance of semiconductor devices improves at low temperatures. We should stress at this juncture that this improvement is only significant for large temperature drops such as may be obtained using liquid nitrogen (77 kelvin) or liquid helium.

As you can see from Fig. 1, the sort of atmospheric temperature fluctuations which one experiences in the course of a year represent very small percentage temperature changes on the absolute (kelvin) temperature scale, so that, for example, immersing the front end of a radio receiver in iced water would afford a barely perceptible improvement in its noise performance since the absolute temperature change is...
only a factor of order 273/300), and might well have rather more spectacular and undesirable electrical consequences!

The main problem encountered in designing cryogenic circuits is that manufacturers don't build their devices for low temperature operation and one relies for suitable active components on the lucky accident that the materials and device structures which have been developed to meet some specialized room temperature needs just happen also to function at low temperatures. Most semiconductors just don't work when cold because the electrical carriers in the conduction band "freeze" out when the material is cooled. Fig. 3, leaving the material looking like a perfect insulator. Silicon is a case in point, and at liquid helium temperatures there is insufficient thermal energy to ionize electrons from the donor impurities into the conduction band.

There are three major factors determining how a particular semiconductor device will behave at low temperatures. The first is the method by which the charge carriers in the semiconductor are produced, and therefore the concentration of carriers at any particular temperature. The other factors are the mobility of the generated carriers as a function of temperature and the carrier lifetime.

The nature of the packaging of the device and the connections between the device and the outside world may also affect the performance quite considerably. Unfortunately, a particular construction technique which is ideal for room temperature operation may prove to be the opposite at liquid helium temperatures. For example, ceramic packaging is robust, reliable and inexpensive to manufacture. However, the thermal conductivity of such packages can reduce by an order of magnitude or more on cooling from room temperature to 10 kelvin, with the result that the semiconductor temperature is considerably higher than that of the

A spectrum analyser displaying the noise spectrum (between 20kHz and 350MHz) of a UHF amplifier constructed using GaAs mesfets. In the first photograph, the amplifier is operating at ambient temperature, while in the second it has been cooled by immersion in liquid nitrogen.

Cold front end of a Robinson magnetic resonance spectrometer constructed using three mesfets and chip-packaged metal-film resistors and capacitors. These are mounted on the circular printed circuit board which is visible to the right of the photograph. The sample under investigation is inside the NMR coil on the left of the picture. This coil, together with its air spaced tuning capacitor forms the tank circuit of the Robinson oscillator whose RF amplitude is monitored by ambient temperature electronics. The spectrometer fits inside a cryostat of diameter 3.5 cms which sits between the pole faces of an iron-cored electromagnet capable of delivering magnetic fields between zero and 1.2 Tesla with a homogeneity of 1 part in 10^5 over a volume of 1 cubic centimetre. When the oscillator frequency coincides with the precession frequency (Larmor frequency) of the magnetic spin species under study, the spins absorb energy and the RF amplitude of the oscillator decreases. Our thanks to James Lord for allowing us to photograph his spectrometer.
devices at 77K would be preferable to using them at 4K. In fact, as it is discussed later, it is probable that the active regions of devices such as GaAs mesfets do not get colder than 50K even when the package is immersed in liquid helium.

Devices fabricated from InP are also very attractive. This material offers a mobility which is by a factor of ten greater than that of GaAs. Once again, these devices are not yet available in any form apparently owing to difficulty in obtaining material which is of sufficient quality to serve as the semi-insulating base for the devices, and to the problem of making ohmic contacts onto the material. Moreover, methods of making Schottky barriers to the material (a critical consideration for high-frequency devices such as mesfets) have yet to be perfected. However, assuming that these problems can be overcome, InAs and InP devices promise even better cryogenic operation than GaAs.

The higher mobility of electrons in GaAs and other III-V devices at low temperature comes from the reduced thermal scattering of the carriers. This improvement occurs mainly in cooling to liquid nitrogen temperatures; scattering at lower temperatures is dominated by impurity scattering. This non-thermal scattering can be reduced by removing the impurities (i.e. the donors responsible for the carriers!). Clever design of the device can separate the carriers from their donors, so that the carriers operate in regions of pure semiconductor, where mobility can be much improved. These devices (hems or high electron-mobility transistors) have been developed for use at room temperature, but promise to be even more attractive as cryogenic devices.

One other consideration which is of importance to microwave GaAs devices is the high-field behaviour of the carrier velocity.

Most short gate GaAs mesfets operate with a considerable proportion of the channel in the velocity saturated regime. Any increase in the saturation velocity of the carriers will not have a direct effect on the device performance, but the nature of the relaxation of carriers to that equilibrium high-field velocity is important. If the relaxation is reduced, carriers in the very short channel will overshoot their equilibrium velocity, shortening their transit times, and producing a much improved high-speed performance of the device. Hence, a long majority carrier lifetime in the channel is very desirable. Hence, increased carrier lifetimes from cooling produces more performance improvement.

The minority carrier recombination time in III-V materials is strongly affected by lowering the temperature. There can be a reduction of a factor of 100 (InSb, n-type, room temperature to 4.2K) in recombination rate for minority carriers, but the rate for majority carriers varies less; in some materials it may even increase slightly. Hence, again, the properties of minority carrier devices such as bipolar transistors will be strongly affected by cooling, but this variation will not appreciably alter the characteristics of majority carrier devices such as fets.

From the foregoing discussion it would seem that GaAs fets should be ideal candidates for cryogenic operation (providing that the channel is n-doped, to provide the all important impurity band for the carriers). These devices are available commercially, in the form of mesfets designed for GHz frequency operation. They are not cheap (about £10 to £20 per copy), but we have shown that the right brands do operate very pleasantly down to the lowest temperatures available, with significantly lower noise than at room temperature. However, there are a number of catches.

Firstly, these devices are optimized for operation in the gigahertz frequency regime, and their performance at frequencies of a few megahertz and below is dogged by large amounts of flicker noise. Particularly in circuit applications (such as Robinson...
The ideal current generator in the JFET output equivalent circuit. The consequence is that, despite any increase in the mutual conductance, the maximum available gain of the device is almost always reduced on cooling, and this in turn tends to moderate the improvement in the noise figure.

The change in the device characteristics also changes the small-signal scattering parameters of the mesfets, but as we have found it well worthwhile to evaluate low temperature s-parameters for the various device types which we have studied. The low temperature characteristics and hence s-parameters are highly reproducible between individual devices of the same type and such variations as do occur may be accurately predicted from room temperature measurements of I_{DS} and V_{DS} for the particular devices. Fig. 5.

The final catch concerns the power dissipation of GaAs mesfets. A typical specimen may require $I_{DS} \sim 10mA$ at $V_{DS} \sim 3V$ to operate satisfactorily and this corresponds to a power dissipation of 30mW. At room temperature this figure is tolerable, but at 4.2K it is sufficient to evaporate liquid helium at a rate of about 3cm3 of liquid per hour. Given that a typical experiment would use a crystal of a few lifetimes capacity and that more than one mesfet would typically be used, this feature can set a decisive upper limit to the duration of an experiment. In addition, this power dissipation, coupled with the indifferent thermal conductivity of the ceramic package when cold, implies that the FET channel operates at a temperature of around 90K even when the FET is immersed in liquid helium. This is corroborated by the observation that the device characteristics and noise measurements taken at 77K agree closely with the corresponding data measured at 4K. Fig. 6.

This higher temperature operation of the FET is however not wholly undesirable since, as mentioned above, GaAs offers optimum performance under these warmer conditions.

On applying power to a mesfet the thermal time constants are of the order of microseconds or less, and we have used this to effect a dramatic reduction in overall power dissipation into the refrigerator in some pulsed experiments in which the electronics need only be switched on when signal is present.

The photograph gives some indication of the kind of noise performance improvement which may be achieved by cooling a GaAs mesfet UHF amplifier in liquid nitrogen. The circuit was constructed on a double sided printed circuit board using standard mounted (metal film) resistors and capacitors. A similar construction style is evident in the cold front end of a Robinson magnetic resonance spectrometer for use between 30 and 300MHz. The unit shown comprises a PCB with active devices, the coil (containing the sample) and the tuning capacitor, and the whole assembly fits inside a cryostat of 3.5 cm diameter which in turn is inserted between the polefaces of a 1.2 Tesla torqued electromagnet.

In conclusion, we feel that the advantages of “cold” electronics, which have served us so usefully in the furtherance of fundamental physics research, will come to be more broadly recognised, particularly when alternative methods of generating low temperatures become more widely available. Already, this is becoming more realistic with the advent of small closed-cycle refrigerators capable of providing “temperatures of around 10K from a 13A mains plug.”

The authors are with Clarendon Laboratory at Oxford.

![Image of noise performance improvement](image-url)
UK Distributor for the complete ILP Audio Range

- Bipolar Modules
 15 watts to 180 watts
- Mosfet Modules
 60 watts to 180 watts
- Power Supplies
- Pre-amplifier Modules
- 100 volt line Transformers
- Power Slave Amplifiers

UK Distributor for Toroidal Transformers

- Standard range available from stock
 15VA to 625VA
- Design and manufacture up to 3KVA with fast prototype service

Write or phone for prices and data.

Jaytee Electronic Services
143 Reculver Road, Betting, Herne Bay, Kent CT6 6PL
Telephone: (0227) 375254 Fax: 0227 365104

RELIABLE POWER CONVERSION
FOR ALL MARINE, INDUSTRIAL AND MOBILE APPLICATIONS

High Quality – Low Cost

Atlas Inverters
The Atlas range of maintenance free inverters provide exceptionally high efficiency at ratings up to 3000VA (peak power 6000VA) and full protection against the rigours of everyday use. An optional Automatic Economy Switch switches the inverter on and off according to load demand.

Skylla Battery Chargers
Our five Skylla fully automatic chargers use the VDL-system patented by Victron-Energie which charges 50% faster than most other types of unit. With charging currents up to 75A, the Skylla range charges both sealed and vented batteries fully up to 100% and adjusts automatically to float charge, ensuring the longest possible battery life. Also ideal for winter maintenance of marine batteries.

Ask about the Atlas Combi combined inverter and fully automatic 25A charger. Ideal for small vessels, service vans, mobile homes etc.

Pico Uninterruptible Power Supply
The Pico gives ultra-reliable protection against damage to electronic equipment caused by power cuts and fluctuations in the mains supply. At £495 plus VAT, the Pico is a breakthrough in low cost uninterruptible power supplies.

Supports 3 PCs for up to 20 mins.

March 1989 ELECTRONICS & WIRELESS WORLD
Microcontroller program development on a PC

chipFORTH is a high level language for microcontroller program development. It combines the FORTH language with a PC based compiler and an interactive development environment. This allows the design, test and documentation of code in about one quarter of the time taken by other high level languages or one tenth that of assembler.

C. L. STEPHENS

As more functions are integrated on to the chip of a microprocessor the cost and engineering advantages of selecting the right micro for the job over "using the one we always used" become significant. This can only be done cost-effectively if the engineer can isolate himself from the machine code details of the new processor by using a high level language and, at the same time, keep the cost of his development tools low.

With the aid of a grant from the Department of Trade and Industry's "Support for Innovation" scheme, Computer Solutions has developed a new way of working called chipFORTH which provides interactive development on the smallest eight bit microprocessors and microcontrollers without the need for an In Circuit Emulator (ICE). The hardware required for development (a PC and sometimes a low cost ROM emulator) is independent of the project's target micro leaving the engineer free to choose the best micro for the job without having to budget for a new ICE.

Microprocessors are becoming highly integrated and sophisticated. They regularly include 16-bit operations, 64K address space, on-chip ram ranging between 128 and 512 bytes, and up to 16K bytes of on-chip rom, timers, a serial port, extra I/O lines and A/D converters. The applications themselves are also becoming more complicated, and it is becoming common to find an on-chip rom with 16K bytes of applications code. Users now favour high level programming languages. chipFORTH is based on FORTH and is ideally suited for I/O-intensive operations such as control, instrumentation and communications.

THE ENVIRONMENT

The development language requires an IBM-PC or compatible to act as the development system. A serial line connects the PC to the serial port of the single-chip micro. The code is compiled on the PC and passed down the serial line to the target system for storage. Interactive high-level debugging facilities are provided which require less than 256 bytes of eprom space on the target system. The PC appears to the engineer to be a VDU and keyboard attached to a full disc development system running on the CPU of the target.

Of course, this is not the real case. The PC is performing the compiling and interpreting functions, but all time and I/O critical actions are occurring on the target board. With this configuration it is possible to use high level commands to execute individual high-level or assembler modules, change variables and access I/O. New definitions (or modules) are added incrementally by the chipFORTH compiler. New high level code can either be loaded in from disc or quickly produced on-line at a keyboard.

Any target system serial output is displayed on the PC screen, while the keyboard can be used to provide test input to the target board. When more complex protocols (such as computer-to-computer links) are required, the software can be enhanced to carry out these tests, because all of the PC/target software is written in FORTH.

Alternatively, in the event that the application board does not provide a serial port then another hardware aid (called comROM, cost £195) is available. This device provides a processor-independent serial link to any computer board via an eprom socket.

THE CONSTRAINTS

Inevitably there are time critical parts of a program which cannot tolerate any overhead. To cope with this chipFORTH includes a full assembler for creating machine code (as opposed to high level) modules. These modules can be executed and tested using the same interactive facilities that are used in the testing of modules written in high level code. The package also contains sample
application programs which show the engineer how to drive chip-specific hardware such as I/O ports, high-speed interrupts, A/D converters and pulse width modulated output. These provide valuable models on which other programs can be based.

Rom and ram locations are not restricted. For example, when testing hardware for the first time development can take place using only on-chip ram. To demonstrate further this flexibility it is worth noting that on the 8051 it is possible to operate either in single-chip mode or with any combination of separate or overlapping 64K program and data areas.

DEVELOPMENT HARDWARE REQUIREMENTS

The majority of applications require only a PC, but some also need a low-cost (£200) rom emulator. This is needed when the target board cannot be partially populated with ram, or when it has separate date and code spaces or when the micro is being used in single chip mode.

chipFORTH is available for the following generic family ranges: the Intel 8086 and 8088 series (including the 8031 and other derivatives such as Philips 80552), the Motorola 68HC11 and 68011/6803 as well as the Hitachi 6310 family. It has also been implemented on the Motorola 6809, Intel 8080 and Zilog Z80, while a version running on the Hitachi 64180 (also the Zilog Z180) includes the ability to use its memory management system to develop programs as large as 512Kbytes.

USING chipFORTH - A PRACTICAL EXAMPLE

The Problem. A device is to be designed that will read an A/D converter attached to a thermocouple, linearize the value and generate an analogue output that corresponds to the temperature in degrees Celsius. In addition flexible facilities to calibrate the system and to compare the temperature to upper and lower alarm limits generating relay outputs are required. This unit is to go into high volume production with a number of different options being supported.

The Hardware. The 8051 chip was selected as it is low cost and has sufficient on chip ram for the designs requirements. An on-chip uart will be used to link to a stand alone programmer for calibration and test purposes and one of the on-chip timers will be used to generate baud rates while the other functions as a general millisecond timer for the application. The on chip eeprom version of the processor is too expensive for production purposes and while the volume is expected to be high this will be made up of a number of thermocouple types resulting in different versions which makes a masked rom version uneconomical. Because of these considerations the program will be held in low cost off-chip eeprom. The product requires that calibration data be held in the system even when power is lost and this is done using an eeprom. The A/D resolution required is better than can be obtained on chip with any of the single chip microprocessors currently available. An A/D converter will be memory mapped into address C000 hex for the converter and C002 for the control and status register. A DMA converter is memory mapped to address C004.

THE DEVELOPMENT ENVIRONMENT

Rather than use an expensive In Circuit Emulator (ICE typical price £3000) we use a low cost ram emulator (fastROM which costs £195). This can be filled with code in less than one second and so no perceptible break in the interactive environment is noticed. A serial link is available for the PC to communicate with the board and so the standard chipFORTH configuration will operate with out any modifications.

COMPONENT TESTS

The first thing to do when the application board is developed is to set about testing the hardware. The basic computer side of the system is simple (chip, eeprom, crystal and RS232 connector) so after performing initial continuity and safety checks the next step is to try executing a program on the system. As this system uses a standard chipFORTH configuration it is straightforward to plug the eeprom into the socket and use this as the

WHEN VALUE COUNTS

50 MHz TEK 2210/2225

- ANALOGUE AND DIGITAL OPERATION.
- 500 μV SENSITIVITY.
- 20 MS/s SAMPLE RATE PER CHANNEL.
- 4K RECORD LENGTH PER CHANNEL.
- 3 YEAR WARRANTY.

COUNT ON TEKTRONIX

FROM

£750

Educational discount available on all products

For further information call Tekconnect free on 0800 525504.

Tektronix Ltd, Fourth Avenue, Gooch Park, Marlow, Bucks SL7 1YD.
Prices subject to change without notice.
system test environment rather than write special machine code routines. This is especially true if we are only just starting to learn how to use a new processor.

ok C002 @ .0 (displays on the PC the contents of the A/D status register from the 8031) @ is a chipFORTH word that reads a value from a memory location.

ok 1 C002! (a chipFORTH word that stores a value (1) into a location - the control register - this is assumed to perform a conversion).

ok C000@ .3B (so we have requested a conversion, assumed that the manual input time will be enough for it to have been completed and then read back a value).

Now we can change the voltage on the A/D and see what the value is by repeating the last two steps. A more useful thing to do is to write in a program to do this:

; A/D C002! BEGIN C002@ UNTIL C000@ :

; starts a definition - A/D is its name. We initiate a conversion and then wait in the BEGIN UNTIL structure until its status is non-zero, indicating completion, at which point we read the converter and leave its value on the stack for later use. Now we can build a second word for testing or to aid in calibration:

; A/D BEGIN A/D . CR 400 MS AGAIN:

This loops printing the contents of the A/D on a new line (CR) every 400 (hex) milliseconds (MS); we could have gone into decimal mode but 400 hex is close enough to one second for our purpose. This word will not get used for anything other than tests but a minor variant of A/D will clearly be of use in the application.

Now let us test the D/A just to check that we have wired up the high and low bytes the right way round:

ok 0 C004! (check volts) ok FFFF C004! (check volts) ok FF C004! (check volts)

So we can now write:

; D/A C004!: and use the input to provide test data for the output:

; TEST BEGIN A/D D/A AGAIN;

Clearly we can now go on to check each of the relay outputs in the same way and also the eeprom.

WRITING THE APPLICATION

The application can now be written, probably using some of the words developed during the tests. For this project the top level program is

; GO BEGIN A/D NORMALISE ?LIMITS D/A AGAIN;

We already have an A/D and D/A word, the normalization will depend on the type of thermocouple in use and may include switching in cold junction drift compensation. The word ?LIMITS will check whether the temperature is above the high or below the low limit (set up elsewhere), setting the relay outputs if necessary. Each word can be tested in isolation on the target system as was done for A/D before soak testing of the application takes place. The application is now running from a rom socket with on-chip ram used for variable and stack so it is only necessary to reorganize startup code to begin executing the word GO on power up and to burn a rom.

The example is a greatly simplified description of a recent application programmed in chipFORTH. In reality the normalization includes complex zero adjustments, converter gain changes, filtering and relay dead-banding. The resulting product is the Protech Sapphire Signal Processing Unit shown. Using another 8031-based hand held controller also programmed in chipFORTH, it is possible to perform either complex factory calibration procedures or on-site adjustments of the Sapphire unit with prompting from the micro to ensure operational simplicity. The flexibility of the high level chipFORTH code proved especially valuable when it was decided to modify and extend the calibration to take advantage of more effective procedures.

chipFORTH allows the development of code on single chip computers.
GREAT OFFERS ON TRIED AND TESTED USED EQUIPMENT

ATLANTIC RESEARCH
- **40A Data Analyser**
 - £1950

CAE GROUP
- **DATA-TEST II** Portable Communications Tester
 - £650

FLUKE
- **6010A** Frequency Synthesiser, 0.1Hz to 110KHz
 - £1500

GOULD
- **6320** Plotter, 10 pen, A3, IEEE
 - £600

MARCONI
- **2017** Synthesised Signal Generator, 10KHz to 1024MHz
 - £5750
- **2370** Spectrum Analyser, 30Hz-110MHz, 1Hz resolution, 100dB dynamic range, X-Y output, digital storage of spectral information.
 - £4500
- **2371** Spectrum Analyser, 30Hz-200MHz
 - £5000
- **2430** Frequency Counter, 10Hz-80MHz
 - £200
- **2431** Frequency Counter, 10Hz-200MHz
 - £295
- **2432** Frequency Counter, 10Hz-520MHz
 - £400
- **2437** Universal Counter Timer, DC to 100MHz
 - £475
- **2438** Universal Counter Timer, DC to 520MHz
 - £650
- **2610** True RMS Voltmeter
 - £850
- **6059A** Signal Source, 12-18GHz
 - £1200
- **6158A** Signal Source, 8-12GHz
 - £950
- **6159** Signal Source, 12-18GHz
 - £1500
- **6460** TFT Power Meter
 - £950
- **6428** Power Sensor, 26.5-40GHz
 - £100

PHILIPS
- **3219** 50MHz Analogue Storage Scope, Will operate from DC power source 21-30V DC, dual timebase
 - £1500
- **3267** 100MHz Scope
 - £950

HEWLETT PACKARD
- **3581C** Selective Voltmeter
 - £950
- **3582A** Spectrum Analyser
 - £4950
- **6033A** Power Supply
 - £750
- **6940B** Multiprogrammer
 - £650
- **8016A** Word Generator
 - £1250
- **8672A** Signal Generator, 2-18GHz
 - £16500

RACAL
- **9081** AM/FM Generator, 520MHz
 - £1250
- **9702** Spectrum Analyser, 0.1 to 1000MHz
 - £4250
- **9921** 9 Digit Frequency Counter, 10Hz to 3GHz
 - £700

TEFTRONIX
- **2430** 2 Channel, 150MHz realtime
 - £3500
- **2435** 4 Channel, 150MHz realtime
 - £1750
- **4112** Computer Display Terminal, monochrome
 - £2650
- **4611** Hardy Copy Unit
 - £800
- **4646** 100MHz Dual Trace Analogue Storage Scope
 - £1500
- **4664** 100MHz Dual Trace Analogue Storage Scope offering very high writing speed
 - £1750

PHILIPS
- **7L12** 110KHz to 1GHz Spectrum Analyser
 - £2950
- **7L18** 1.5 to 18GHz Spectrum Analyser
 - £6000
- **FG504** 40MHz Function Generator
 - £1500

WILTRON
- **6663A** 2 to 40GHz Sweep Generator
 - £17500

FOR FURTHER INFORMATION
- **LONDON** 0753 580000
- **MANCHESTER** 061-973 6251
- **ABERDEEN** 0224 899522

(All prices advertised are exclusive of carriage and V.A.T.)
Putting AX25 to work

While the idea of sending data over radio is not new, the concept of an automatic adaptive network with minimal spectrum requirement looks particularly attractive for both military and commercial applications.

The transmission of digital data over a radio link is not a new idea. Commercial exploitation of packet radio or AX25 has many new facets. Much of the experimental work on the protocol and transmission techniques has been carried out by radio amateurs, who in many cases are professional engineers. We present the latest developments.

Packet radio originated in the USA and is based upon the well known X25 protocol. This derivation has become known as AX25 (Amateur X25). The use of the word amateur should not be taken to mean that the AX25 protocol is in anyway "amateurish"; it has been developed by well respected professional software engineers who just happen to be amateurs. An American amateur, Eric Scace, takes most of the credit for writing the original CCITT X25 protocol and is now a leading light in AX25.

THE UK AX25 PACKET NETWORK

Until approximately 1985, the terms "packet radio" and "AX25" were largely unknown in the UK, but following several technical articles outlining the uses and benefits of AX25, combined with the availability of reasonably priced equipment, interest grew.

The AX25 packet network provides users with a unique set of benefits, the most important of which is error free exchange of data over HF radio.

The error free nature hinges on the initiating station getting an acknowledgement back from the distant station, and the error checking bits contained in each packet. The error checking is accomplished by the sending station calculating a certain number based upon the data being sent and a simple algorithm. This number is transmitted along with the data.

At the receiving end the number is recalculated using the same algorithm based upon the data received and if this number is the same as the number contained in the received packet of data, then an acknowledgement is sent to the originating station.

If the data has become corrupted, the received calculated number will not match the number contained in the packet. The receiving station will then transmit a reject message to the sending station causing the sender to retransmit that packet.

Due to the frequency time sharing nature of AX25, it is possible for several data links to operate on the same frequency without causing each other undue interference. This happens because each station automatically checks the frequency for other traffic before transmitting, thereby reducing the possibility of collisions. Simple low power FM transceivers are quite adequate for any
packet radio on VHF: station B acts as an unattended relay point, making communication possible between A and C.

As there are no acknowledgements between adjacent digipeaters that the message has been successfully received, it is likely that at some point in the chain the message would become lost due to interference or a collision of packets caused by two or more transmitters operating at once. The initiating station would therefore have to try several times before getting a successful acknowledgement back from the distant receiving station.

In having to re-transmit the packet, the data throughput and consequently overall baud rate is dramatically reduced compared to a simple digipeating system.

In the early days of packet this simple digipeater worked fairly well, with many stations leaving their equipment turned on 24 hours a day to provide a digipeater network. Due to the rapidly increasing popularity of packet radio, it soon became impractical to digipeat through more than two or three stations. This was due to the frequency becoming overloaded through sheer volume of traffic. A more sophisticated network had to be devised to handle the increased traffic flow.

An answer to the problem was provided by an American software house called Software 2000. It produced a program, held in eprom, which was compatible with the most popular types of TNC. It called this piece of software NETROM.

There are at the time of writing several

March 1989 ELECTRONICS & WIRELESS WORLD
More complex packet networks are possible through the use of automatic message routing.

other programs which offer similar facilities to NETROM; some of these other programs offer extra commands for the end user.

Instead of relying upon a digipeater network operating upon a single frequency, it enables cross links from one frequency to another, and to have inter-node acknowledgements. Referring to Fig.2, this means that the initiating station A has only to receive an acknowledgement from local node B. Local node B then takes over responsibility for getting the message passed successfully to the next node in the chain en route to the final destination. Local node B would usually pass the data via RS232 to another node physically co-sited but on a different frequency. This leaves the network input frequency clear for incoming traffic. Node C would usually operate at a higher data rate and form part of the backbone of the network. Packet node D would receive the data off the backbone network and acknowledge successful receipt to node C, before passing the data to node E via a local RS232 link. Node E would then downlink to the destination station F using a different frequency.

A feature of the network software is its ability to route the message automatically to the next node on a different frequency. It also maintains a list of other active nodes on the network and a record of which node is next in the chain en route to a more distant node. Using the auto routing ability of the network, it is possible for a station to uplink to a local node, then connect to distant node before downlinking to the required distant station. All the routing between nodes on various frequencies and hands is taken care of automatically.

As the routing table is periodically updated by the program, it automatically incorporates new nodes and bypasses any nodes which are no longer active. For the UK network to communicate with other countries some network nodes have an HF port connected to a suitable radio for use on frequencies below 30MHz.

Another more innovative method of providing worldwide linking is via satellite. At present the University of Surrey is running a data communications experiment (known as the DCE), which involves the use of an orbiting satellite that has in effect a special type of TNC. This satellite can store up to 50k of data which can upload from the Surrey earth station and then down load at some distant earth station. Obviously this system cannot work in real time, but still provides a useful means of passing traffic.

APPLICATIONS

A packet radio network can be used in any situation where data has to be passed error-free between two points. An example might be the directing of an ambulance to the scene of an emergency, where any mistake in the passing of the exact location could waste valuable minutes. Some motorizing organizations are already using a form of packet radio to pass information to their mobiles.

The US military have been quick to exploit the tactical advantages of a packet network. The adaptive nature of such a radio network allows for an individual station to go off air yet the system still remains functional. Also the relatively short duration of the data transmissions makes interception and jamming more difficult.

It also has other advantages over an open loop data transmission system. Some public utilities, such as the water authorities, have many fixed data links operating in the UHF band. If a packet type network were to be used, then it becomes possible to accommodate a larger data flow on each frequency in use, thereby releasing frequencies for other uses. The only penalty is the initial cost. It requires transceivers, TNCs and interfaces at each site.
RF MODULES AND SYSTEMS

LOW NOISE GASFET PREAMPLIFIERS
- Aligned to your specified frequency in the range 30-1000MHz. Masthead or local use.
- TYPE 9006: NF 0.6dB. Gain 10-40dB variable. In the range 30-250MHz. £78 + £3 p&p
- TYPE 9006FM: As above. Band II 88-108MHz. £78 + £3 p&p
- TYPE 9002: Two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V. £102 + £3 p&p
- TYPE 9004: UHF two stage Gasfet preamplifier. NF 0.7dB. Gain 25dB adjustable. High Q filter. Aligned to your specified frequency in the range 250-1000MHz. £102 + £3 p&p
- TYPE 9010: Masthead weatherproof unit for above amplifiers. £12 + £3 p&p

PHASE LOCKED LOOP FREQUENCY CONVERTERS
- TYPE 9113: Transmitter. Converts your specified input channels in the range 20-1000MHz to your specified output channels in the range 20-1000MHz. 1mW input, 10mW output (+ 10dBm). AGC controlled. Gain 60dB adjustable. -30dB. Will drive transmitting amplifiers directly. £356 + £6 p&p
- TYPE 9114: Receiving. Low noise Gasfet front-end. NF 0.7dB. Gain 25dB variable. £356 + £6 p&p

PHASE LOCKED SIGNAL SOURCES
- TYPE 8034: Frequency as specified in the range 20-250MHz. Output 10mW. £120 + £3 p&p
- TYPE 8036: Frequency as specified in the range 250-1000MHz. Output 10mW. £170 + £3 p&p
- TYPE 9182: FM or FSK modulation. 20-1000MHz. Output 10mW. £248 + £3 p&p

Please add 15% VAT on total.
Full technical specifications available on request.

FM TRANSMITTERS
- 88-100MHz: 50 watts RF output. £945 + £30 p&p
- TYPE 9086: 24V + DC supply. £110 + £40 p&p
- TYPE 9182 FM Exciter: ±75KHz deviation. Output 10mW. £248 + £3 p&p

TELEVISION LINEAR POWER AMPLIFIERS
- Tuned to your specified channels in bands IV or V. 24V + DC supply. £218 + £10 p&p
- TYPE 9252: 10mW input. 500mW output. £254 + £10 p&p
- TYPE 9259: 5mW input. 3 watts output. £290 + £10 p&p
- TYPE 9263: 2.3 watts input. 15 watts output. £400 + £12 p&p

TMOS RF LINEAR POWER AMPLIFIERS
- Tuned to your specified frequency in the range 20-250MHz, or your specified channels in bands I or III. 24V + DC supply. £230 + £10 p&p
- TYPE 9105: 10mW input. 1 watt output. £284 + £12 p&p
- TYPE 9106: 500mW input. 10 watts output. £327 + £12 p&p
- TYPE 9155: 1 watt input, 30 watts output. £448 + £15 p&p

TMOS WIDEBAND LINEAR POWER AMPLIFIERS
- TYPE 9246: 1 watt output 100KHz-175MHz. 13dB gain. £108 + £4 p&p
- TYPE 9247: 1 watt output 1-50MHz. 13dB gain. £108 + £4 p&p
- TYPE 9248: 4 watts output 20-200MHz. 13dB gain. £108 + £4 p&p
- TYPE 9174: 4 watts output 1-50MHz. 26dB gain. £254 + £6 p&p
- TYPE 9175: 4 watts output 20-200MHz. 26dB gain. £254 + £6 p&p
- TYPE 9173: 30 watts output 1-50MHz. 10dB gain. £308 + £10 p&p
- TYPE 9174: 20 watts output 20-200MHz. 10dB gain. £308 + £10 p&p
- TYPE 9271: 40 watts output 1-50MHz. 10dB gain. £416 + £20 p&p
- TYPE 9172: 40 watts output 20-200MHz. 10dB gain. £416 + £20 p&p
- TYPE 9235: Mains power supply unit for any of the above amplifiers. £164 + £12 p&p

RESEARCH COMMUNICATIONS LTD
Unit 1, Aerodrome Industrial Complex, Aerodrome Road, Hawkinge, Folkestone, Kent CT18 7AG.
Tel: 0303 893631. Fax: 0303 893838

CONQUERING NEW HEIGHTS

CROTECH 3133

- ★ Component Comparator
- ★ Variable Hold Off
- ★ Triple DC Source
- ★ DC – 25 MHz
- ★ 40ns/div
- ★ 2mV/div
- ★ Low Cost

Yes its 25MHz for £319

To scale the heights, just call us for your FREE copy of our catalogue

(Ex VAT & Delivery)

Crotech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818

March 1989 ELECTRONICS & WIRELESS WORLD 245
PROFESSIONAL QUALITY PATCHING AND SWITCHING EQUIPMENT

FOR DIGITAL AND ANALOGUE SYSTEMS.

"NORMAL THROUGH" PATCHING AND SWITCHING EQUIPMENT FOR THE FOLLOWING INTERFACE TYPES:

V11, V24, V35, X21, X27, G703, RS232, RS422, RS449 VF AND COAXIAL.

NATO, MIL STANDARD AND BABT APPROVED SYSTEMS.

DISTRIBUTED MATRIX SYSTEMS FOR UP TO 4000 USER PORTS.

FULL CATALOGUES AVAILABLE ON REQUEST.

THE SWITCHING SPECIALISTS... FESHON SYSTEMS

PINDEN, DARTFORD, KENT DA2 8DX.

TEL: 04-747 8111 (SIX LINES) FAX: 04-747 8142 TELEX: 96395 (FESHON G)

COMMERCIAL QUALITY SCANNING RECEIVER

The IC-R7000, advanced technology, continuous coverage communications receiver has 99 programmable memories covering aircraft, marine, FM broadcast, amateur radio, television and weather satellite bands. For simplified operation and rapid tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto-M switch the IC-R7000 automatically memorises frequencies that are in use whilst it is in the scan mode, this allows you to recall frequencies that were in use. Readout is clearly shown on a dual-colour fluorescent display. Options include the ORC-12 infra-red remote controller, voice synthesiser and HP1 headphones.

Please send information on Icom products & my nearest Icom dealer.

Name/address/postcode: ..

Status: ..

Post to: Icom (UK) Ltd. Dept WW, FREEPOST, Herne Bay, Kent CT6 8GR

INTELLIGENT MEASUREMENT AND CONTROL

C400 SERIES

* MCS-52 base with full floating point and trig functions
* Four 12 bit A to D converter
* One 12 bit D to A converter
* Battery backed real time clock
* 32K Battery backed RAM
* 16K Eprom and on board Eprom programmer
* Six by eight bit digital ports
* RS232 and networked RS485 interface
* Serial printer port
* Direct drive to a LCD/Vacuum fluorescent display and user defined keypad or VDU
* Automatically calibrates to any dumb terminal

WARRICK INDUSTRIAL ELECTRONICS LTD

UNIT 19, RIGBY CLOSE, HEATHCOTE INDUSTRIAL ESTATE, WARRICK CV34 6TH

NATIONAL (0926) 334311 N/NORTH WEST (0565 87) 3540
The popular image of computer datacomms stems from films like War Games depicting seventeen year old hackers biliously accessing Pentagon computers and accidentally starting World War III. The reality is much less romantic. Nevertheless, if the Pentagon was foolish enough to attach its computer systems to the other end of a telephone line then an ordinary PC plus a modem is all that the hacker would need to break in.

Recent technological changes have made it far easier for the average Harry Hacker to get started in datacomms. For example, telephone handsets are no longer hard wired into junction boxes. British Telecom now installs its standard square junction boxes into which the public can plug not only phones but modems too. Armed with no more than a modem, a micro, suitable communications software and a list of illicit telephone numbers anyone can get arrested for looking into Prince Philip's private electronic mailbox.

Not all on-line systems are private - there are in fact services which actually welcome access from the general public. The best known of these are electronic mail (often abbreviated to email) services, such as Telecom Gold, along with information services such as Prestel. Email services are growing more sophisticated and can now be used for sending faxes as well as telexes. Prestel is slightly unusual in that it provides information not in a plain text format but in the form of pages which carry colour and graphics - although only of a very basic level. Strictly speaking Prestel comes under the category of a videotex service and as such requires special software.

More of this later.

Information is also widely held in on-line databases, examples of which are Fintel (financial information) and Profile (which carries the text of newspapers and other learned journals). However, amateurs weren't slow to get in on the act, and soon were using their own micros to act as 'hosts' for public messages. Such a service is now described as a bulletin board although most boards now carry out a range of services including distributing free or 'public domain' software. Boards have now evolved way beyond simple messaging systems.

BAUD RATE

In order to go 'on-line', however, a modem is a must. A modem is the physical device that has the job of taking digital output from a computer and transforming it into audio tone which travel easily down standard telephone lines. All that is happening is that the signal is modulated and then demodulated by a compatible device at the receiving end. (Hence the name is an abbreviation of MOdulator/DEModulator). In the early days the method of operation employed by modems was known as Frequency Shift Keying (FSK) whereby each modulation represented one bit of data. With this type of modem its speed was expressed in numbers of modulations (measured by baud rate). Hence a 300 baud modem roughly translated into 300 bits per second (b/s).

The next move was to play games with the available bandwidth of the telephone line. When BT engineers were designing what eventually became Prestel, they came up with a modem which could receive at 1200 baud to give something approximating to an acceptable screen refresh time (ie 1200 b/s). This didn't leave much room for sending any information back but they just managed to squeeze 75 baud out of the remaining bandwidth. In fact 75 baud was fast enough for keying in at the speed of a competent typist. Thus the split baud rate 1200/75 modem was born.

As always a race to improve modems...
developed and speed was the obvious target. An ordinary telephone line had sufficient bandwidth to cope with two 600 baud channels - one for receiving and one for sending. The next solution was to make each modulation carry two bits of information instead of one. This became known as DPSK (Differential Phase Shift Keying). Likewise 2400 b/s modems are still using 600 baud but getting four bits with QAM (quadrature amplitude modulation). Further improvements followed with more bits being squashed into each modulation. It is currently possible to purchase modems which will carry 14 400 bits per second in both directions. Hence high speed modems are designated in terms of their bit per second rate while low speed modems are still measured by baud rate. Sadly this distinction has resulted in a great deal of confusion.

Clever technology is no good just on its own. The user must have some hope of being able to connect the modem to another bought from a different manufacturer. Naturally in Europe a body was formed to draw up relevant specifications and this is known as the CCITT (International Tele- graph and Telephone Consultative Committee). Thus 300 baud became the CCITT's V21 standard and 1200/75 baud modems conformed to V23. Over in North America, modem manufacturers were following rival standards set by the Bell telephone company. Fortunately the Americans have subsequently decided to fall into line and now follow CCITT standards for 2400 b/s and above. Luckily the Bell and CCITT for 1200 b/s are virtually identical too.

MODEMS

Obviously modems can be equipped with all kinds of bells and whistles so it would be best to outline some of their more useful features here. To save the user from having to plug a handset into the back of the modem and plug in a number, most modems will now do the dialling automatically - hence they are 'autodial'. For those who want to set up their own remotely accessible system, a modem can be made to automatically answer incoming calls. This is called 'auto-answering'. Then rather than requiring the user to physically open up the modem's casing and mess around with jumpers and dip switches, manufacturers found life was much easier if the modem altered its own configuration through software commands. The company which set the standard in this area was Hayes Microcomputer Products based in Norcross, Georgia. The Hayes command set (which starts with the letters AT standing for attention) has now become a facto standard and virtually all modems sold in this country for dial-up use are referred to as Hayes compatible.

The only other feature of a modem possibly worth worrying about is error correction. This has become almost indispensable with the rise of data throughput speeds. Error correction deals with the problems caused by line noise ('corrupting' data is it is being transmitted. The usual method is to check blocks of data and ask the originating modem to re-send any which have become corrupted. The MNF series of protocols invented by Microcom are rapidly establishing themselves as an industry standard but watch out also for the CCITT's V42 standard which includes both MNF and a rival protocol LAP M.

The easiest way to go on-line with a micro is to run a program which allows it to pretend to be a popular terminal such as a DEC VT52. This is known as terminal emul- ation. But what is the point of using a micro as a 'dumb' terminal when it is quite capable of handling more intelligent tasks such as file transfer? It didn't take very long for budding hackers to write their own communications software and in the process introduced a file transfer protocol known as Xmodem. The attraction of Xmodem is that it permits file transfer between totally incompatible systems even if the actual file contains machine code.

The good news is twofold. Firstly suitable communications software exists for virtually every kind of microcomputer in existence even the Sinclair ZX-81! Secondly such programs can be obtained for little or no cost. The authors of many terminal pro- grams have placed their work 'in the public domain' which means anyone can distribute it as long as no charge is made. There is a second category known as 'shareware'. Shareware originated in the USA where the idea is that the program can be freely copied. If, however, the user feels the program is worth something then the idea is to send off a registration fee to obtain a manual plus future program upgrades, etc.

Shareware is especially popular in the world of IBM PCs and compatibles. There are a number of extremely good communications packages available as shareware. Good examples are Procomm and PC-Talk. This kind of program is available from commercial companies like Shareware Marketing or from the PC Users' Group. In general, the user groups associated with individual machines or operating systems will be an excellent source of software. Commercially produced packages

BOARD

<table>
<thead>
<tr>
<th>BOARD</th>
<th>STCODE</th>
<th>NUMBER</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PSYCHOBBLE</td>
<td>0534</td>
<td>52086</td>
</tr>
<tr>
<td>2</td>
<td>JETSET</td>
<td>0481</td>
<td>712597</td>
</tr>
<tr>
<td>3</td>
<td>MASTER CONTROL</td>
<td>0534</td>
<td>58929</td>
</tr>
<tr>
<td>4</td>
<td>HAWKS CASTLE</td>
<td>0344</td>
<td>411621</td>
</tr>
<tr>
<td>5</td>
<td>ICTHUS</td>
<td>0734</td>
<td>486487</td>
</tr>
<tr>
<td>6</td>
<td>THE VILLAGE</td>
<td>01</td>
<td>4642536</td>
</tr>
<tr>
<td>7</td>
<td>DATA CONNEXION</td>
<td>01</td>
<td>4785464</td>
</tr>
<tr>
<td>8</td>
<td>SM10 WAREHOUSE</td>
<td>01</td>
<td>3765349</td>
</tr>
<tr>
<td>9</td>
<td>BODY MATTERS</td>
<td>01</td>
<td>6037581</td>
</tr>
<tr>
<td>10</td>
<td>CHARITY HOUSE</td>
<td>01</td>
<td>6737294</td>
</tr>
<tr>
<td>11</td>
<td>CRYSTAL TOWER</td>
<td>01</td>
<td>8662813</td>
</tr>
<tr>
<td>12</td>
<td>CO-OP BOARD</td>
<td>01</td>
<td>3166488</td>
</tr>
<tr>
<td>13</td>
<td>PARADIGM OPUS</td>
<td>01</td>
<td>2518255</td>
</tr>
<tr>
<td>14</td>
<td>TBBS ROVERSE</td>
<td>01</td>
<td>5429467</td>
</tr>
<tr>
<td>15</td>
<td>FD SIG B</td>
<td>01</td>
<td>8462433</td>
</tr>
<tr>
<td>16</td>
<td>DEC CATT HOUSE</td>
<td>01</td>
<td>2003030</td>
</tr>
<tr>
<td>17</td>
<td>CENTRAL OPUS</td>
<td>021</td>
<td>7111451</td>
</tr>
<tr>
<td>18</td>
<td>ACADEMICS</td>
<td>021</td>
<td>7059677</td>
</tr>
<tr>
<td>19</td>
<td>TUG III</td>
<td>021</td>
<td>4441484</td>
</tr>
<tr>
<td>20</td>
<td>STARGATE OPUS</td>
<td>0476</td>
<td>74616</td>
</tr>
<tr>
<td>21</td>
<td>MACTEL HQ</td>
<td>0602</td>
<td>817696</td>
</tr>
<tr>
<td>22</td>
<td>C-4-CHRIST</td>
<td>091</td>
<td>28094</td>
</tr>
<tr>
<td>23</td>
<td>WELLAND VALLEY</td>
<td>0853</td>
<td>66594</td>
</tr>
<tr>
<td>24</td>
<td>THE GAS LAMP</td>
<td>0736</td>
<td>585311</td>
</tr>
<tr>
<td>25</td>
<td>ACCESS PIDO</td>
<td>0905</td>
<td>52536</td>
</tr>
<tr>
<td>26</td>
<td>MACTEL GREENBOX</td>
<td>0602</td>
<td>455444</td>
</tr>
<tr>
<td>27</td>
<td>POACHER OPUS</td>
<td>0476</td>
<td>62450</td>
</tr>
<tr>
<td>28</td>
<td>CORBY TOWN OPUS</td>
<td>0536</td>
<td>205113</td>
</tr>
<tr>
<td>29</td>
<td>NEPTUNE BBS</td>
<td>0274</td>
<td>573481</td>
</tr>
<tr>
<td>30</td>
<td>LEEDS UNIVERSITY</td>
<td>0532</td>
<td>445276</td>
</tr>
<tr>
<td>31</td>
<td>DEEP THOUGHT</td>
<td>0477</td>
<td>270199</td>
</tr>
<tr>
<td>32</td>
<td>MICS</td>
<td>061</td>
<td>7737739</td>
</tr>
<tr>
<td>33</td>
<td>ULTIMATE SOURCE</td>
<td>061</td>
<td>6789580</td>
</tr>
<tr>
<td>34</td>
<td>TEE PEO OPUS</td>
<td>061</td>
<td>4946938</td>
</tr>
<tr>
<td>35</td>
<td>ARGUS PROJECT</td>
<td>091</td>
<td>4900327</td>
</tr>
<tr>
<td>36</td>
<td>WEST END</td>
<td>041</td>
<td>3715159</td>
</tr>
<tr>
<td>37</td>
<td>JOCKS AMAY!</td>
<td>031</td>
<td>2255368</td>
</tr>
<tr>
<td>38</td>
<td>OPUS CLYDE</td>
<td>041</td>
<td>8807863</td>
</tr>
<tr>
<td>39</td>
<td>MACTEL PHONIX</td>
<td>0473</td>
<td>610139</td>
</tr>
<tr>
<td>40</td>
<td>ARTIEL</td>
<td>0342</td>
<td>717800</td>
</tr>
<tr>
<td>41</td>
<td>SENTINEL</td>
<td>0628</td>
<td>781429</td>
</tr>
<tr>
<td>42</td>
<td>GOSPORT APRICOT BBS</td>
<td>0705</td>
<td>524805</td>
</tr>
<tr>
<td>43</td>
<td>BOB'S BIZARRE</td>
<td>0194</td>
<td>279644</td>
</tr>
<tr>
<td>44</td>
<td>DATASOFT</td>
<td>0460</td>
<td>54615</td>
</tr>
<tr>
<td>45</td>
<td>EXCHANGE TBBS</td>
<td>0765</td>
<td>50511</td>
</tr>
<tr>
<td>46</td>
<td>STAINES</td>
<td>0784</td>
<td>65794</td>
</tr>
<tr>
<td>47</td>
<td>SOFTNET B</td>
<td>0895</td>
<td>420164</td>
</tr>
<tr>
<td>48</td>
<td>TRINITY 1</td>
<td>0392</td>
<td>410210</td>
</tr>
<tr>
<td>49</td>
<td>WORLD OF CRYPTO</td>
<td>0458</td>
<td>47608</td>
</tr>
<tr>
<td>50</td>
<td>ABSOLUTE ACCESS</td>
<td>0425</td>
<td>471370</td>
</tr>
</tbody>
</table>

such as PMS' *Dialup* (£50) and Softklone's *Mirror II* are recommended (£70).

There are a number of features which make for an ideal comms package. The first is a viewdata capability which provides access to Prestel and its section specifically aimed at computer users - Micronet. Sadly software of US origin often lacks viewdata compatibility as the system isn't widely used over there. Incidentally French software will be compatible with Teletel, which is similar to, but still incompatible with, Prestel. Those which can boast viewdata emulation also need to have a 'Mailbox' editor. This feature enables text messages to be prepared offline for subsequent transmission to Prestel's electronic mail system, Mailbox.

Apart from Prestel emulation, a communications package should also include support for text based systems. This is quite simple and basically involves emulating a standard TTY (teletype) terminal. Some programs just support DEC VT52 emulation which for all intents and purposes is the same. Originally it was necessary to instruct comms software to recognise a particular kind of modem. Nowadays virtually all modems will recognise Hayes commands so there is no need. As a by-product of this, most packages contain a dialling directory.

The next feature to look for in a comms package is support for what are known as 'auto-logins.' It is general practice with on-line systems that before providing any one with access, a recognised user name or identity number along with a password has to be supplied by the caller. This process is known as 'logging on'. As these have to be keyed in exactly, it soon becomes a boring, repetitive process. Thus most packages allow the user to store identity numbers and passwords against an entry in the dialling directory. As soon as the software detects that a connection has been made, this log-on string is then uploaded automatically.

The drawback with low-cost modems is that they tend to be difficult to operate, making life difficult for the beginner. For example, ex-GPO modems have been on sale for as little as £30. On the other hand, they were built like tanks and about as easy to handle. The next cheapest option is called an 'acoustic coupler'. These tend to suffer from data corruption caused by line noise more than the directly connected type of modem. Single standard modems start at around £70 but the best advice is to consider one which supports both V21 and V23. An example would be the Pace Linnet for around £130. Those with enough money should consider Amstrad M2400 which for £199 plus VAT provides four speeds including 2400 bps. There is another good way of obtaining a modem cheaply. Paying Micronet's annual subscription of £79.95 brings it with a free GEC Datasat (V23 only) modem.

CABLE TANGLE

One of the greatest datacoms dangers comes from attempting to use a cable not specifically designed for modem connections. [Not for nothing did Spitting Image come out with the RS232 cable song!]. The required interface between the computer and the modem is always a serial port conforming to the RS232C or RS423 standards. This is frequently used for printers but the pin connections are not the same. For a modem configuration, pins 2 and 3 must not be connected. The best advice is therefore to obtain the cable from whoever supplied the modem, or buy a card modem which fits inside the computer's casing and therefore needs no cable.

Occasionally there are problems when trying to use a modem on a switchboard extension line. The normal method of signalling a number to the telephone exchange is called pulse dialling. This system has been supplanted by the more efficient DTMF tone dialling method as used by PABXs. However, not all modems support tone as well as pulse dialling so it is a point worth checking. Luckily, domestic subscribers who happen to be connected to System X exchanges can use tone dialling from the comfort of their homes.

Armed with comms software and a working modem, the next move is to find a system on which to test them. With Prestel it is quite simple. Dial 618 (or 01 618 1111). Then use fourteen number 4s when asked for an identity number. This will provide access to some demonstration pages supplied by Micronet. There are ways of doing something similar with Telecom Gold. It is at this point that some knowledge of modem speeds/standards becomes important. On-line services will have a number of ports supporting all the popular communications speeds. However, the telephone number may vary according to supported speed. Hence Telecom Gold's 300 baud/V21 port is 01 583 3000 whereas for V23 it is 01 583 1275.

Certain systems are sensitive to data protocol settings a really annoying trait. Put simply some still use a 'parity' bit whereas others have ceased this outdated practice. Thus for Prestel and Telecom Gold, users should select (with an option buried somewhere in the comms program) even parity along with seven data bits when calling these systems. For bulletin boards, however, select eight data bits along with no parity. It should be easy to tell if the setting is wrong. The screen will fill with a jumble of characters with the result that only the occasional word will be legible.

BULLETIN BOARDS

The best means of learning about datacoms is to call a bulletin board. The majority make no charge for accessing the service. The cost of the telephone call is the only expense. A firm word of warning here. Bulletin boards are addictive and operators often expect the telephone to be on and stay connected for half an hour at a time. The result is a quarterly bill of around £400, which is not uncommon. Software which displays the time spent on the current call is soon appreciated too! Another wise move is to call local boards.

To go with this article is a list of boards supplied by Stephen Adams. He is the sysop (system operator) for the Sinclair London board. Stephen has broken down his list by geographical areas so that all readers should be able to find a board moderately close to where they live. Not all boards operate 24 hours a day like those included here, some are only run in the evenings and at weekends. Most boards can now support a range of data speeds but those which support 1200/75 only are almost undoubtedly view-data only. Virtually every bulletin board (or BBS for short) carries a list of other systems which the caller can download. The UK is blessed with a substantial number - Stephen Adams' list is condensed from approximately 400 boards. Those unable to access his board [01 249 3231] can write to him at the address given below for a list.

To generalise somewhat, most bulletin boards tend to have one theme. This might be a type of micro - Sinclair, Acorn, Amstrad, etc - or it could be an operating system. CP/M, for example, is still relatively popular. Boards frequently offer sections for special interest groups such as radio amateurs or even hackers. Then there are boards which have been effectively turned into adventure games. Into this category fall the wonderfully named Mega Anchovy but sadly this type of board is somewhat ephemeral.

Out of all the on-line electronic mail services, Telecom Gold is by far the most popular. It carries a host of individually tailored services; MicruLink is aimed at computer users. Other electronic mail providers include One to One, and Mercury. Another email service worth a mention is CIX (CompuLink Information Exchange) which is virtually a commercial bulletin board service but features 'conferences' on topics of virtually every hue and shade.

Experience has shown that most enquiring minds want to try their hand at hacking. Hugo Cornwall's Hackers' Handbook is required reading. It mentions such obscurities as PSS and JANET. These are data networks which can be accessed from an ordinary telephone line. Packet SwitchStream (PSS) is BT's public data network. It connects to all the major on-line database and electronic mail suppliers. It is necessary to have a password known as a NII (network user identity) to use PSS. This can nearly always be obtained from the information provider and is much cheaper than joining individually. The Joint Academic Network (JANET) is intended as a network for universities to share computer resources. Students have a habit of using it for other purposes, however.

Useful address:
List of BBS - Stephen Adams, 1 Leeswin Road, London N16 7NL.
Local area network technologies

We provide a summary of local area network technologies currently being incorporated into standards, particularly the Government Open Systems Interconnection Profile (GOSIP). Proprietary technologies outside the OSI standardisation sphere are not included; their importance will decline over the coming years as European procurements initiatives push the market down the OSI route.

ANDREW HARDIE

At the moment you cannot buy a lan system (i.e. hardware and software) that fully implements an OSI functional profile but you can buy the lower-level technology on which such future lan systems will be based. This article considers the only hardware of that available technology and makes no attempt to cover the large and complex subject of the software.

The physical transmission medium used in lans is either copper-based, using twisted pair or coaxial cable, or optical fibre based. Some individual lan technologies can support more than one type of media, usually depending on different speed options.

Two different data transmission techniques are used on the physical media: baseband and broadband. Baseband is the familiar voltage level signalling technique like TTL levels or RS-232 in which each bit value is signalled by a particular voltage level (or current in the case of a 20mA loop). Broadband employs the use of radio frequency modems to encode the bit values as frequencies. Use of multiple frequencies allows different signals to be multiplexed down a single cable.

TOPOLOGY

Topology refers to the way in which the transmission media are interconnected to form a complete system. There are three main types of network topology: star, bus and ring. In the star configuration, every node on the system has an individual connection to a central point where the routing is controlled. The obvious example of this is a telephone exchange. Star topology has not proved popular in lans.

In the bus configuration, every node on the system is connected via a tap of some sort to a single network cable. Obviously, this introduces the problem of deciding when each node should send or receive, this being the task of the access protocol which usually operates on the basis of time division - i.e., only one node sends at a time, determined by the protocol. Only a broadband system can support more than one node sending at a time by virtue of its frequency subdivision of the media bandwidth.

In a ring configuration, every node is connected to its two neighbours, usually on a one-way basis, i.e., it receives only from its neighbour on one side and transmits only to its neighbour on the other side, and so on until a complete ring is formed. Thus a message from one node to the adjacent node from which it receives must pass round almost the entire ring to reach its destination, passing through every node on its journey. Again, deciding which node speaks when (in originating a message, not in passing one on) is on the basis of time division.

ACCESS METHOD

The three access methods in widespread use, out of those currently defined are CSMA/CD. Token Ring and Token Bus. These three, together with the much less popular Slotted Ring, are defined in the fundamental 8802...
OPEN LEARNING TECHNICIANS & ENGINEERS

Electricity and Electronics ...
Digital, Microprocessors, 8 Bit/16 Bit
Electric Power Machines ...
Controls, Synchros, Servos ...
Hydraulics, Pneumatics ..
Instrumentation and Process Control
Refrigeration, Air Conditioning, Heating
Telecommunications, Telephony, Radar
Mechanical Power Training ...
Robotics ...
Fault Diagnosis, Troubleshooting
Audio Visuals ...

SOLUTIONS!

lab-Volt (U.K.) Ltd.

4A Harding Way, St Ives, Huntingdon, Cambs. PE17 4WR
Tel: 0480 300695 Fax: 0480 61654

A performance logic analyser at an affordable price.

The Componedex logic analyser brings together the computing power of the PC, together with a 100MHz logic analyser, featuring:

- Up to 100MHz int. clk.
- 24 data channels.
- 4 trigger words with logical operators.
- 8 channel data qualification.
- Disk storage of parameters and traces.
- Simple operation via pull down menus.
- PC AT/XT, EGA/VGA system compatible.
- DOS shell for filing and retrieving traces and setups.

CALL FOR A DEMO DISKETTE, you can evaluate the Componedex logic analyser using our free demo software. The Componedex logic analyser costs £1,295 + VAT.

Componedex Ltd.
21 Alton Drive, Bradwell Abbey, Milton Keynes MK13 8HA
Tel: (0996) 32172 Fax: (0996) 320952

March 1989 ELECTRONICS & WIRELESS WORLD
In depth – Datacomms

EMERGING TECHNOLOGIES

Although optical fibres are being included in the standards for CSMA/CD and Token Bus, they are really just physical layer replacements, an alternative to copper-based connections. Only one standardised network technology is specifically for optical fibres, FDDI (Fibre Distributed Data Interface).

This takes the form of a dual ring capable of up to 1000 nodes and a maximum data rate of 100Mbit/s. It doesn't yet form part of the OSI family and the few implementations that exist are large and expensive. If the cost comes down enough it could become the dominant high speed LAN technology. An enhanced FDDI II, able to carry digitised, live speech, is on the way; try that on Ethernet!

The high sleeper — ISDN, the Integrated Services Digital Network, is nothing less than the ultimate replacement of the world analogue telephone system, the largest man-made network in existence. It is an all-digital system offering 64kbit/s point-to-point data transfer channels which can be used for speech, data, high-speed fax, slow-scan video or anything else that can be carried over a 64kbit/s “bit pipe”. Standardisation is well under way and products are starting to emerge following pressure by the European Commission to keep things moving. When operating it will, essentially, provide a gigantic star topology network operating on a local, metropolitan, national and international scale.

At the lan level, the new generation of Integrated Services PBXs will route connections within a site and route data for remote destinations over the external public ISDN. The day of a digital telephone on your desk with a 64kbit/s port on the back offering high speed X.25 links to anywhere on the network must appeal to all those who have used slow speed PABXs. Provided that the standardisation problems of configuring OSI layers over an ISDN can be solved and existing building telephone wiring can be used (much claimed, but not yet conclusively proved) the ability to install a lan in a building without special wiring and the potential for instant wide area connectivity may be enough to offset the relatively low data transfer rate (compared to other lan technologies).

Ironically, the one lan technology you might encounter most often in the future, because it will be in your home, may be one you have probably never heard of. HES, the Home Electronics System, was regarded as a bit of a joke by some members of the standardisation community when it first surfaced about three years ago. It has come a long way since then and the sheer versatility offered by the overall system is impressive. Are you ready? It will work over a twisted pair, coaxial cable, optical fibres, power lines, air home infra-red and radio links.

It is intended to carry everything from slow speed lighting control, security, white goods (the gadgets in your kitchen) and brown goods (the gadgets in every other room), through telephone, voice, hi-fi grade audio switching, and high speed data, to ISDN, fax and video routing. It will link many types of medium in a single installation through gateways and universal interfaces on the attached devices, making them independent of the transmission medium.

Network addressing could be a key issue though, to stop your TV remote control from inadvertently defrosting next door’s freezer! If the low-level stuff is put into silicon chips and the far-East manufacturers start using them then it could all happen.

CONNECTORS USED IN LAN'S

For the copper-based technologies the connectors used with twisted pairs are the 15 way D-type, the MIC Medium Interface Connector and the eight-way modular jack (like the US telephone connector, but eight pole). For coaxial cable, many familiar connectors are used like BNC, N, F and some perhaps less familiar types like TNC and twinax. Optical fibres use either FSMA, the fibre version of the widespread SMA miniatures RF coaxial connector, and Duplex, a special twin fibre connector developed for FDDI.
SALE

<table>
<thead>
<tr>
<th>Item</th>
<th>Range</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS</td>
<td>Large</td>
<td>from 10p</td>
</tr>
<tr>
<td>Resistors</td>
<td>Large</td>
<td>from 1p</td>
</tr>
<tr>
<td>Capacitors</td>
<td>Large</td>
<td>from 5p</td>
</tr>
<tr>
<td>S& T Ant's</td>
<td>Large</td>
<td>from 25p</td>
</tr>
<tr>
<td>Other IC's</td>
<td>Large</td>
<td>from 10p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z8410AB</td>
<td>£1.80</td>
</tr>
<tr>
<td>Z8420AB</td>
<td>95p</td>
</tr>
<tr>
<td>Z8430AB</td>
<td>90p</td>
</tr>
<tr>
<td>Z8440AB</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item (CH3OS)</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z84C20AP</td>
<td>£1.00</td>
</tr>
<tr>
<td>Z84C40AP</td>
<td>£2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Range</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM 4Kx1</td>
<td>30p</td>
<td></td>
</tr>
<tr>
<td>UPO42823C-150L</td>
<td>£2.20</td>
<td></td>
</tr>
<tr>
<td>MM65265PB-15</td>
<td>£3.00</td>
<td></td>
</tr>
<tr>
<td>MAB8031AH12P</td>
<td>90p</td>
<td></td>
</tr>
<tr>
<td>ICL7107CQH</td>
<td>£1.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item (IC's)</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBD 3535</td>
<td>70p</td>
</tr>
<tr>
<td>Tea 1060</td>
<td>70p</td>
</tr>
<tr>
<td>S1240</td>
<td>25p</td>
</tr>
<tr>
<td>2725-15</td>
<td>£3.20</td>
</tr>
<tr>
<td>UPO65370MC</td>
<td>£1.80</td>
</tr>
<tr>
<td>UPD8206GMC</td>
<td>£1.50</td>
</tr>
<tr>
<td>UPD449G15NC</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item (Cable)</th>
<th>Range</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED's, Red, Yellow, Green, Clear, Diffused</td>
<td>10p</td>
<td></td>
</tr>
<tr>
<td>Green LED Display 45mm</td>
<td>£1.66</td>
<td></td>
</tr>
<tr>
<td>Red LED Display 12mm</td>
<td>£0.50</td>
<td></td>
</tr>
<tr>
<td>2x20 LCD Module</td>
<td>£5.00</td>
<td></td>
</tr>
<tr>
<td>5.3 Digit A/D LED</td>
<td>£12.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Twisted Pair (per metre)</td>
<td>25 way 50p</td>
</tr>
<tr>
<td>Flat 50 way (per metre)</td>
<td>1.00</td>
</tr>
<tr>
<td>Flat 40 way (per metre)</td>
<td>80p</td>
</tr>
<tr>
<td>Flat 36 way (per metre)</td>
<td>70p</td>
</tr>
<tr>
<td>Flat 25 way (per metre)</td>
<td>50p</td>
</tr>
<tr>
<td>Flat 16 way (per metre)</td>
<td>35p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Range</th>
<th>Cost (1 off price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large range of Papst Fans including:</td>
<td>45° Dual voltage 120-240</td>
<td>from £7.00 to £12.00</td>
</tr>
<tr>
<td>PSU Power One 15v 1.35A</td>
<td>£20.00</td>
<td></td>
</tr>
<tr>
<td>Rockwell R5310 18</td>
<td>£5.00</td>
<td></td>
</tr>
<tr>
<td>Rockwell R5325 11</td>
<td>£5.00</td>
<td></td>
</tr>
<tr>
<td>Rockwell 10461 13</td>
<td>£5.00</td>
<td></td>
</tr>
<tr>
<td>B-B Sample Hold Amplifier SHC80KP</td>
<td>£10.00</td>
<td></td>
</tr>
<tr>
<td>B-B A/D Converter ADC84K10</td>
<td>£25.00</td>
<td></td>
</tr>
<tr>
<td>B-B Isolation Amplifier 3656BG</td>
<td>£25.00</td>
<td></td>
</tr>
</tbody>
</table>

We also have a range of semiconductor, switches, potentiometers, linear dots, IC sockets and much more.

We also buy component and computer stocks.

For full list send 50p and addressed envelope.

Write to: COMPUTER PLUS
8 Acres, Great Totham Road, Wickham Bishops, Witham, Essex CM8 3NP
Telephone: (0621) 892049

ENTER 42 ON REPLY CARD

March 1989 ELECTRONICS & WIRELESS WORLD

SPICE·AGE Non-Linear Analogue Circuit Simulator £245 complete

Those Engineers have a reputation for supplying the best value-for-money in microcomputer-based circuit simulation software. Just look at what the new fully-integrated SPICE Advanced Graphics Environment (AGE) package offers: In ease of-use, performance, and facilities:

- SPICE·AGE performs four types of analysis simply, speedily, and accurately:
 - Module 1 – Frequency response
 - Module 2 – DC quiescent analysis
 - Module 3 – Transient analysis
 - Module 4 – Fourier analysis

1 Frequency response

SPICE·AGE provides a clever hidden benefit: it first solves for circuit quiescence and only when the operating point is established does it release the correct small-signal results. This essential concept is featured in all Those Engineers software. Numerical and graphical (log & lin) impedance, gain and phase results can be generated. A probe node feature allows the output nodes to be changed. Output may be either dB or volts: the zero dB reference can be defined in six different ways.

Frequency response of a low pass filter circuit

2 DC quiescent analysis

SPICE·AGE analyses DC voltages in any network and is useful, for example, for setting transistor bias. Non-linear components such as transistors and diodes are catered for. (The disk library of network models contains many commonly-used components – see below.) This type of analysis is ideal for confirming bias conditions and establishing clipping margins prior to performing a transient analysis. Tabular results are given for each node: the reference node is user selectable.

DC conditions within model of 741 circuit

3 Transient analysis

The transient response arising from a wide range of inputs can be examined. Various types of excitation are offered (impulse, sine wave, step, triangle, ramp, square, and pulse train). The parameters of each are user definable. Reactive components may be pre-charged to steady-state conditions. Up to 13 voltage generators and current generators may be connected. Sweep time is adjustable. Up to 4 probe nodes are allowed, and simultaneous plots permit easy comparison of results.

Impulse response of low pass filter (transient analysis)

4 Fourier analyses

SPICE·AGE performs Fourier transforms on transient analysis data. This allows users to examine transient analysis results for the most prevalent frequency components (amplitude and phase against frequency). Functions as a simple spectrum analyser for snapshot of transients. Automatically interpolates transient analysis data and handles up to 512 data values. Allows examination of waveform through different windows. Powerful analytical function is extremely easy to use.

Spectrum of rectangular pulse train (Fourier analysis)

If your work involves designing, developing or verifying analogue or digital circuits, you will wonder how you ever managed without Those Engineers circuit Simulation Software.

A good range of properly supported and proven programs is available and our expert staff are at your service.

Those Engineers Ltd

Junction Road, Great Totham. Witham, Essex CM8 3NP

Telephone: (0621) 892049 FAX: (0621) 872500

ENTER 17 ON REPLY CARD

253
The Kernel Logic Machine

Occasionally, a number of technical advances come together to give a quantum leap forward. This occurred recently as a result of three factors – the increased density of components on an integrated circuit, the successful fabrication of fault-tolerant complete integrated circuit wafers at Anamartic Ltd and a new approach to restructuring these wafers called the Kernel Logic Invention. The result is that the latent, explosive power of semiconductor technology can be unleashed – one million computers working together in an array to solve large, complex problems at high speed.

INTRODUCING KERNEL LOGIC

An improved approach to wafer-scale integration became possible back in 1972 because chips of reasonable yield contained, or would soon contain, as many as 10,000 components. Using an external piece of special test circuitry composed of 100 TTL packages, a single row (spiral) of perfect chips could be ‘grown’ into an imperfect wafer each time power was switched on to the machine (see panel). Burroughs Corp. (now Unisys) at Cumbernauld built three-inch working wafers which demonstrated the feasibility of the spiral approach. The same successful team of engineers later moved to Sinclair Research Ltd (renamed Amamartic), where in 1985 they successfully manufactured the first pre-production working wafers intended for the market. A four-inch wafer full of 16Mbit dramas used the spiral algorithm to interconnect the good on memory, bypassing the bad, to a total of 0.5Mbyte on the wafer. However, because of the slump in the market at the time, this product was never brought to market. In 1989, Anamartic will market a solid-state disc made up of a pack of six-inch wafers containing 1Mbit dramas to a total of about 20Mbyte per wafer. Its size could be something like a six-inch cube.

In 1987, 15 years after the spiral algorithm was patented, the number of components in a chip of reasonable yield had risen to one million, an increase of one hundred times beyond the vintage of that invention. The Kernel Logic patent exploits the fact that much more fault-tolerance capability can be designed into today’s dense chip. To understand kernel logic, think in terms of the faults in a wafer. One model suggests that tiny faults exist at random points across the wafer, so that if a wafer with 250 faults is cut up into 500 chips, half of them will contain a fault and so be scrapped. Now consider a tiny section at the south-west corner of each chip, which I call the kernel. If this kernel is small enough, its yield will be very large. It is easy to calculate the size of the kernel required so that 80%, say, of the wafers manufactured will have a perfect kernel in the corner of every chip on the wafer. The other 20% of manufactured wafers – those with chips containing one or more faulty kernels – are scrapped.

When power is switched on to the wafer, the kernel logic spontaneously puts its chip through a test routine, and decides whether the chip is correct. If it is then the kernel logic cuts off communication with the outside and the faulty chip disappears from the system.

Chips adjudged by their several kernels to be perfect are allowed to intercommunicate. This is then a simple procedure whereby control circuitry outside the wafer is informed as to which chips are perfect and which chips have been removed from the two-dimensional array. Perfect chips are instructed to link up into an array structured according to the needs of the external control circuitry. (Workers in artificial intelligence would restructure the machine to match the structure of their data.) Communication into and out of the wafer is by means of signal lines at both ends of every column and also of every row of chips. The structure lends itself naturally to expansion into a Cartesian array of interlinked wafers, resulting in an array of 1000 by 1000 processing nodes, each with its own microprocessor and 1Mbit ram, at a cost of the order of one pound per processing node.

A DIGITAL ANALOGUE OF REALITY

The first signs of the new concept appeared in my own writing 20 years ago (New Scientist, 6 March 1969), later developed in “Computer Worship” (Pitman, 1973, page 129) in which I discuss ‘situation analysis’ and ‘situation manipulation’. A clearer, more developed outline was published in this journal in my January 1984 article ‘Advance into the past’, (see The Nub of Computation, page 59). (The way in which an array processor composed of kernel Logic nodes would tackle problems is more clearly stated in 1984 because at that point the appropriate hardware possibility existed, whereas it did not a decade earlier.) More recently, in the television series “The Mind Machine” on BBC 2 in September last year, the concept is clearly stated, usefully validating the approach.

The first attempt to achieve WSI was at Texas Instruments in the USA in the 1960’s. A wafer was made with an array of ordinary, identical chips with conventional bonding pads. These chips were then probed in the usual way, and a record of which were good and which were faulty was fed into a large computer. The computer designed a unique final layer of metallization which would interconnect the good chips on that particular wafer and avoid the bad. The major problem with this approach, and the reason why it failed, was that it was necessary to assume that this last layer of metallization would have 100% yield.

The other famous debacle in WSI was at Trilogy, Ammdahl, the father of the IBM 360 series of computers, left IBM and succeeded in taking a share of their massive market with his company Ammdahl Corp. He then ventured out to beat IBM’s fastest computers for speed by cramming an IBM look-alike machine into five wafers, where signal lines and therefore signal delays would be less. Ammdahl raised $250 millions on Wall Street in the biggest start-up in history. His wafers used a conventional approach to fault tolerance. A wafer was very complex, and had over one thousand wires bonded to it. The failure of his WSI and of his company in the early 1980’s was the second major blow to the credibility of WSI. It is doubtful if the assertion in the Butcher article (see bibliography) that Trilogy made working wafers is true.

Other companies have approached the use of wafers in ways which would lead to their supplying only a niche market. Wafers have been used as a substitute for the PCB, with flipchips bonded onto them. Laser mending of faults has also been tried, but such expensive doctoring of wafers falls outside the mainstream of attempts to exploit the wafer for its potential low cost and high reliability. The Butcher article discusses other WSI projects at length.

The cost-effective array of a million computers is ideally suited to Europe’s air traffic control problem, weather forecasting, and a host of hitherto impossible tasks.

IVOR CATT

In a kernel logic parallel processing array for air traffic control over Europe new data would update the array in a ripple-through manner every second. Aircraft collision avoidance will...

Parallel work in cognitive science has been done by Kenneth Craik and Phil Johnson-Laird, see bibliography.

The idea that I have nurtured is that future events should be predicted by speeding up the system clock and projecting a data cube into the future. We do not have predictive algorithms. Rather, in the case of airline collision avoidance, for instance, we lift the current data state in our data cube into a second array, running at a faster clock rate. Two aircraft projected into the future (each occupying a larger and larger volume of space into the future to cover all possibilities) then collide, and the collision of the two over-size aircraft is reported back to the current data cube, pointing to a potential hazard in the near future. This forward projection is soon erased, to be replaced by a more recent valid current data cube, which in its turn will be accelerated into the future in search of possible hazards. This approach probably has a different conceptual base from the more conventional approach of calculating all kinds of possible hazards, and it seems to be more comprehensive and easier to effect. (This second data cube could conveniently reside in higher pages in the same 1Mbit ram as the original data cube.)

KERNEL LOGIC ARRAY PROCESSOR HARDWARE

To configure good chips (processors) in a wafer, the external controller can send in an instruction with a physical chip address. The address has two fields, an easting and a northing. This class of instruction has its address decremented each time it passes through a chip so that the address becomes 00 00 when it reaches its destination. A chip that is seven chips in and 13 up has a physical address 1307.

The interrogated chip then sends a reply.

These wires give lower resistance and faster links than is possible with the standard aluminum metallization on a chip. This means that a wafer will contain a set of about 110 vertical wires stitch bonded from top to bottom of the wafer. Each wire is connected to a pad on each chip that it passes over. These wires are then extended across to the two adjacent wafers, the wafer above and the wafer below. Each group of four wires comprises a ground line, a power line, a clock line and a data line. The transmission line represented by the pair of wires, ground and clock, is capable of delivering a 100MHz clock rate. Also, serial data can be clocked into each node at a 100MHz rate. Such data includes 'global' instructions, broadcast to every processing node in parallel.

In practice, the number of wires will probably be reduced to three, and 'W' will be delivered instead through the wafer substrate. Various other deviations are possible in practice. For instance, to improve fault tolerance, the columns of stitch-bonded wires will probably be at an angle of 45° to the rows and columns of chips (nodes). Another possible variation will be for one set of four stitch-bonded wires to serve two columns of chips (processing nodes) rather than one, but discussion of such deviations here obscures the grand design.

Each chip (= node) will have the ability to communicate 100 Mbit serial data locally to its four neighbouring chips to the north, east, south and west. This will be via conventional aluminium surface metallization. In the case of chips on the border of a wafer, however, local east-west inter-chip data lines will be bonding wires connecting the data lines from the right-hand edge of edge chips to the left-hand edge of chips in the next wafer to the right. Similarly, local north-south between-wafer inter-chip data lines will be bonding wires connecting the data lines from the bottom chips of one wafer to the top chips of the next wafer below. In addition to these, the columns of global stitch-bonded wires down a wafer will be extended between wafers, right down through the column of 30 wafers. So a single global wire will have 1000 stitch bonds, and traverse the full height of the 1000-chip machine. That is, it will traverse 30 wafers.

Each node comprises a processor, something like a serial 6502, and one megabit of ram. It also contains four serial output ports and four serial input ports, enabling local data transfer with adjacent nodes to the north, east, south and west. Each local interchip link can support data transfer at a serial bit-rate of 100MHz/6. (The result looks much like a two-dimensional array of transputers interconnected through their serial ports.) The normal operating mode will be for all processing nodes to simultaneously carry out a series of instructions (a program) globally broadcast to all nodes down the vertical stitch-bonded wires. However, the global array controller will sometimes hand control to an individual processing node, whereupon a processor will implement a subroutine stored in its own ram.

The instruction set will include typical classes of microprocessor instructions, with some additions, as follows. First, there will...
Connections between adjacent processing nodes have to be extended between wafers, as shown. In practice, wafers may need to be arranged as an hexagonal or triangular array rather than a rectangular array.

be configuration instructions, which deal with the configuration of a perfect array of processing nodes by bypassing the faulty nodes. There will be local intercommunication instructions, when each node will transfer data to its neighbour to the east, and so on. In many cases, a flag in a node will determine whether that node will carry out a particular global instruction. There will be a new class of conditional (jump or branch) instructions, when a processing node decides whether it will become autonomous for a short time, obeying a subroutine in its own 1 Mbit ram instead of obeying instructions coming down the global stitch-bonded lines.

Practical considerations will have a strong influence on the choice of ram and processor. Since the development time for a state-of-the-art ram is four years, it is necessary, to benefit from the latest increases of ram bit density, to base the kernel logic design on the leading ram manufacturers’ process, whether it be 1 Mbit, 4 Mbit, or whatever, even though the ideal memory size at a processing node is somewhat less, perhaps only 100 kbit. We then aim to take advantage of developments in microprocessor hardware and software and try to get the ram manufacturer to agree to mix a modified state-of-the-art processor into the ram wafer.

STITCH-BONDED CLOCK AND POWER WIRES

Conventional chips use narrow lines of aluminium metallization on their surface to deliver power and clocks to every part of the circuit.

Anamartic retained this approach in their successful wafer-scale engineering using my spiral approach. However, the resistance of such interconnections, already a minor embarrassment in a large, high power chip, became crippling in the case of a wafer, with its longer distances and greater total power (i.e. current!). However, the problem is not severe if, like Anamartic’s, the wafer merely houses dynamic ram. At any one time in an Anamartic wafer, only one ram on the wafer is being read and only two more are being refreshed. The rest of the wafer consumes little power. Our situation is different, because we have processing nodes active at the same time throughout the wafer. Limitation on power delivered would mean limitation in the speed of these processors, which is unacceptable. Processing nodes must all be capable of operating at maximum speed all of the time.

Fortunately, stitch bonding technology is ideal for the purpose. At a cost which is only a fraction of the cost of the processed wafer, parallel columns of aluminium wires can be stitched across the wafer, reducing the effective resistance of the aluminium track beneath. The yield on such stitch bonding is very high, and faults, on the rare occasions when they do occur are to a harmless open circuit to the bonding pad (the aluminium beneath covering for the break) rather than to a short. These wires can be either 0.12 or 0.25 mm in diameter, giving the kind of low resistance needed both for power lines and for high-speed clock lines. Further, the characteristic impedance of the transmission line made up of the pair of lines (clock and OV) that delivers the clock is reasonable and convenient to drive.

A 'chip' or processor node is linked to the outside world in three ways: software-selectable links to adjacent good chips, conventional metallized power and clock lines not shown, and stitch-bonded 0.13 mm wires to enhance power and clock by reducing resistance and increasing speed.

256 ELECTRONICS

ELECTRONICS & WIRELESS WORLD March 1989
The kernel logic machine comprises a two-dimensional array of 1000 by 1000 processors, each with its local 1 Mbit ram. The processor will be something like a 6502 microprocessor. In normal operation, program instructions will be broadcast in parallel from an outside controller to all one million processing nodes, which will obey the instructions in parallel, but operate on different, local data. (This is SIM - single instruction, multiple data.) The instruction set will include the groups of instructions contained in a 6502 or 260, with some additional groups.

One small group of instructions will control the configuration of the perfect 1000 by 1000 array from a larger, imperfect array. This (re)configuration will take place every time the machine is switched on, and gives it a fault-tolerant, self-repair capability.

Another small group of instructions will cause local inter-node communication of data in parallel. For instance, one instruction would cause every node to exchange a particular word of data with the node immediately to the north. This local, ripple-through, intercommunication will be fast, but it will take 20 cycles for a word to traverse 20 processing nodes. (It will be used for the zoom facility mentioned elsewhere.) A 20-bit delay is of course less significant when working serially.

It is possible for the external controller to relinquish control of one group of nodes, or even of all processing nodes, so that each node can contain a subroutine stored in its own 1 Mbit ram. (At any time, the central controller can regain control of all processing nodes.) Generally, when this occurs, the external controller would divide up the one million nodes into no more than four or five groups, and each group will act in concert. The notion of a million processing nodes all implementing different programs at the same time is unthinkable, not because of technical limitations, but because of the impossibility of assembling enough humans (programmers) for enough time to dream up all the different activities for so many computers. Of necessity, groups of processors will act in concert, obeying the same series of programming code, though not necessarily applying it to the same data. When the first kernel logic machine has been delivered and become operational, a significant fraction of all the processors in operation in the world will reside in that one kernel logic machine. It follows that they must operate in groups, and not as individuals.

On initial memory load from the external controller, each 1 Mbit memory is loaded with a number of flags. These can be employed later by the global program to define which sectors should, for the next period of time, run under global control, and which under local control. The "flags" in each memory might be merely the address or 'grid reference' for that processor.

Recapture of control by global instructions could be effected by the equivalent of the 280 DMA, or less preferably by interrupt. Using DMA, local control is relinquished when the marker (flag) in local memory is found, calling for a return to global control.

Programming the kernel logic machine is straightforward because its structure mirrors the structure of the problems to be solved by the machine - weather forecasting, air traffic control, and so forth.

Potential targets need not be thresholded in a kernel logic machine because it will not be overloaded when the number of targets tracked reaches 100 - the overload point for today's early warning systems.

APPLICATIONS OF THE KERNEL LOGIC MACHINE

For the last 20 years I have suggested that something on the lines of the Kernel Logic Machine is ideally suited to a large range of important applications. At last the technology has arrived and made it possible to construct the machine we always wanted. It will lead to enormous cost savings and speed improvements in many applications covered by the general descriptors finite and linear element analysis, finite difference methods, and computational fluid dynamics (CFD). In "Supercomputers and the need for speed", New Scientist, 12 Nov 88, page 50, Dr Edwin Galea, research fellow at Thames Polytechnic, says

"The flow of air, water, burning gases, the Earth's atmosphere, ocean currents and molten metals provide scope for the partnership of computational fluid dynamics and supercomputers."

"Only supercomputers can provide the speed and memory required to perform the detailed calculations for the complex geometries and flows encountered in the design of aeroplanes, automobiles and ships... manufacturers are already approaching the limits of the capabilities of single processors..."

"Only parallel processing - the concurrent use of more than one processor to carry out a single job - offers the prospect of meeting these requirements."

Galea talks in terms of a partnership of a supercomputer with CFD software. The software causes the single-processor IBM Neumann computer to behave like an array processor, but at a heavy cost in loss of speed.

As Galea says, the physical processes involved in flow behaviour occur on a very tiny scale, so CFD divides the flow region into thousands of small computational cells and solves the governing equations in each cell. Generally, applications involve perhaps one million cells. A conventional, single-processor computer is caused by software to compute the next change in each cell one at a time, so that its speed is reduced by a factor of one million - hence the need to start off with a very fast computer. Even then, this massive drop in speed is unacceptable, and the application demands parallel processing, when duplicate hardware is devoted to each cell. The kernel logic machine provides this multiplicity of hardware.

Galea's article estimates the total sales of supercomputers so far to be $1000 million, and says the market is growing. Most supercomputer applications, and the applications which are expensive in computer run time, are CFD. The kernel logic machine will cause an acceleration in the growth of the supercomputer market, because applications which were too slow and expensive to run on a Cray machine or on the small-scale array of a daf or perhaps 100 transputers, will be successfully attempted on a million processor kernel logic machine. This is a very attractive market; the development of computer graphics for a space adventure movie, a task taking one hour on a kernel logic machine which previously absorbed the run time of a $5 million Cray machine for months. Another lucrative application is world-wide modelling in real time for the purpose of weather forecasting. This is only practicable on a kernel logic machine.

Applications for the kernel logic machine include airborne early warning systems, air traffic control Europe, in which one machine in London is linked to a second machine in Milan and a third in Barcelona, etc., TV image enhancement, TV compression for satellite transmission, aerodynamic design of motor cars, aircraft and spacecraft, study of airflow through gas turbine engines, weather simulation and forecasting, prospecting for oil and gas by analysing rock structures.

AIRBORNE EARLY WARNING AND AIR TRAFFIC CONTROL

In modern warfare, enemy aircraft attack by approaching very low and at high speed, so that they appear over the horizon only a short time before they reach their target. The defensive response to this is to have an aircraft flying high up so that it can look over the horizon with its radar, and give early warning of attack. The radar continually scans a cone of space stretching in front of it, starting at top left and ending at bottom right. In each complete scan, it transmits a series of pulses, one in each direction ahead of it. A single scan creates one picture 'frame', but the reflections from 'targets', or enemy aircraft, are weak. By repeated scanning, it builds up a picture of what is in the space. This picture is developed by a process of repeated addition of frames.
known as "burn-through". This process relies on the fact that the noise is random and averages out, whereas the target recurs in successive frames, and grows out of the noise.

The scanning of the space is similar to the scanning of a TV camera, except that at every point in the raster there is a further, depth scan in the third dimension. If a pulse from the transmitter is reflected from a more distant target, the reflection arrives back later, and thus its distance can be determined. A Nimrod or AWACS radar aircraft grows under the weight and volume of the digital signal processing hardware needed, plus the massive power supplies needed to generate the DC power to drive the hardware, plus the generators needed to generate the electric power, plus the fuel needed to supply the generators, plus the cooling equipment needed to cool the hardware.

The conventional approach is for the aircraft's digital signal processing to look for over-large signals being received by the radar dish among the random noise. These larger signals might be reflections of the aircraft's own output bouncing back off the target. However, they might just be noise. The procedure is to sum up repeating larger signals from one region of space, and at some point make the decision that this must represent a target. This target is then tracked through the region of space being monitored. The practical problem is that each target which has been identified and is being tracked consumes more time in the central von Neumann computer, and the total system overloads and fails if more than a handful of targets are detected. We have to ask the enemy to limit the number of aircraft they use in their initial surprise attack.

By contrast, the kernel logic machine commits one processor in its array to one element in the raster of space. Within that processing node, the first page in its 1 Mbit memory is committed to the cube of space nearest to the aircraft. Further pages in memory are committed to further cubes of space, all of them in the same direction from the radar aircraft, but at different distances. This way, space is divided into one thousand million data cubes in a 1000 by 1000 by 1000 array, although in fact the array only contains one million processing nodes. The third dimension is accommodated by stacking up through pages in ram. (The disadvantage is that there is only one set of inter-node communication links, not one set per page of ram, so there is a resulting drop in local inter-node communication data rate proportional to the number of segments ('pages') used in a ram.) Possible targets need not be thresholded into definite or downgraded to random noise in the kernel logic machine, because such a powerful machine will not be overloaded if the number of targets tracked exceeds 100 - the point at which today's early warning tracking systems overload.

Parallel processing in an array makes implementation of the tracking software much more straightforward and fast. Each detected target is a sort of amoeba which moves through the array, carrying its amplitude, velocity and probability with it, io be reinforced from that region of space; or alternatively to diminish down towards zero each time the radar scanner picks up no reflection. Uncertainty over the latest direction and velocity of an amoeba-like possible target results in the amoeba growing into a larger probability volume. However, at the same time, failure of the target (signal) to rise above noise during the last scan (last frame) leads to a reduction of its probability weighting at all points within its amoeba.

Air traffic control Europe would use essentially the same machine, with minor enhancements. Europe will be divided into 1000 by 1000 squares, each of one square. However, since this is inadequate for the London airspace, an enlarged model of

For air traffic control Europe Kernel Array Processor commits one processor to the airspace above each one square mile of earth, one page of ram per 10,000 feet of height. Higher pages are committed to an enlarged data cube.
velocity of all aircraft, to be transferred to an identical machine (in the higher pages of the 1 Mbit ram) which will be accelerated into the future by (in effect) increasing clock rate. Potential hazards between a pair of aircraft will then be flagged up because of actual collision between two of the growing (future tense) annouthe in this accelerated machine, one representing each aircraft that is at risk.

TV IMAGE COMPRESSION

The cost of transmission of TV signals by satellite can be high. We may be able to justify investment at source and at destination in order to reduce the data flow needed to send one TV channel. If we use the standard kernel logic machine, each TV frame is divided into a kernel logic array in parallel down 1000 columns. Since a TV frame has far less than 1000 by 1000 pixels, we would need only one quarter of our standard machine, costing well below $1 million. Also, since the power of the machine is still far greater than is needed for the purpose, we will probably make much faster processing node time share between four or eight pixels, thus reducing the cost of the machine from $3 million for the standard array to $200,000 or so. There are 1000 input channels in parallel, each channel having a serial input rate of 100Mbit/s. This gives a total input data rate of 100,000Mbit/s; well above the bit rate of 7200 of TV pixels. The compressed output is represented down the columns, exiting from the array at the bottom. The compression will involve comparison of the new frame with previous frames, and the most recent 20 frames will be stored in the array. It is possible that the compressed output will travel in parallel down the columns of processors, and then finally exit to the right along the bottom (extra row) of processing nodes, which will have a bit rate capability of 100Mbit/s.

TV IMAGE ENHANCEMENT

If, as seems likely, a reasonable performance TV data compression machine will only cost $200,000 or so by reducing the number of processing nodes and making the survivors time share between four or eight pixels, then the same machine will be attractive for TV image enhancement. We can envisage all sorts of modifications to the video tape being programmed in via such a machine. We could correct for errors in shooting, and also programme in the background to a scene being shot in much more sophisticated ways, developing forward from the blue background.

ANALYSIS OF MEDICAL SCAN IMAGES

X-ray and ultrasound scanning machines are expensive, and so sophisticated processing of the resulting images may be justified. Further, it is likely that if we add more image processing power using the kernel logic array, we will be able to tolerate lower quality in the scanning hardware, and therefore lower price.

WHAT IS CATT'S SPIRAL?

There is only one proven method for generating a perfect array of chips out of an undiced wafer that contains faulty chips among the perfect ones. My approach is to develop a one-dimensional array (spiral) of good chips, adding further chips on to the far end, but all testing being under control of external test circuitry at the beginning, near end of the array. Each prospective additional chip is put through its paces by instructions travelling down the developing array through the chips already passed as good and already included in the array, if the next chip is adjudged faulty, it is disconnected and another chip adjacent to the penultimate one is tested out instead.

In my approach, the distinction between faults in manufacture and faults developing in service is blurred. On switch off, the array connections are destroyed — all links having been volatile — and the array is reconstructed from scratch each time the machine is powered on.

The chip does not test itself. The problem that a mad chip might demonstrate its madness by reporting that it is sane is evaded by having the main testing hardware outside the wafer. But all the same, the fact that powerful test-dedicated circuitry and also chip interconnection logic will consume only a tiny portion of today's chip's real estate is exploited.

I steal up on wafer-scale integration in a somewhat crabwise fashion. If (as is clear) we should start off with all chips, good and bad, cheaply interconnected during chip manufacture, and then open and close these connections by volatile information as a cheaper way to exclude faulty hardware, it becomes inevitable that the major unit will be of maximum size — i.e. a complete wafer.

If I ask a mad man (mad chip) whether he is mad, then surely his answer is useless? The flaw in that remark is that I could ask not the whole chip, but only a small portion of that chip. Now today, it is possible for a portion of the chip to reply to such a question, yet that portion to be so tiny that the possibility of its being faulty can be, for practical purposes, ruled out.

There are three weaknesses in the spiral approach. It is a one-dimensional array so access is limited to one entry point. This is particularly limiting if the array contains many processors, each one needing continual input of raw data and also needing to deliver the results of its data processing.

The second and third weaknesses result from the high resistance of the aluminum wires across the surface of the wafer. This limits the amount of current and therefore power that can be delivered to the wafer. And secondly it limits the clock speed to 30MHz. Both of these are more damaging for an array processor than for an Anamorphic wafer which is quietly storing data in RAM. All three weaknesses are overcome in the kernel logic machine.

BIBLIOGRAPHY AND REFERENCES

Advance into the past. By I. Catt, Wireless World, Jan 1984 p.59

Kernel Logic International patent application PCT/GBP/000077, filed 15 July 1988

Mental Models, by P. Johnson-Laird, CUP.

Supercomputers and the need for speed, E. Galea, New Scientist, 12 Nov 1988, p.50.

The Nature of Explanation, by Kenneth Craik. CUP, 1943.

Ivor Catt's Kernel Consultants, PO Box 99, St. Albans, is currently seeking £5 million financial backing to build the prototype kernel logic machine.
With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE: YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES:

Microphone transformers (all types), Microphone Splitter/Combiner transformers, Input and Output transformers. Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to 5 kT, Isolating Test Specification, Tapped Impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types). Miniature transformers, Microcircuit transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Valve Amplifiers up to 500 watts, High Frequency transformers. Smoothing Chokes, Filter, Inductors, Amplifiers to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers), Column Loud-speakers transformers up to 300 watts or more.

SOWTER TRANSFORMERS

Manufacturers and Designers

The Boat Yard, Culingham Road, Ipswich IP1 2EG.
Suffolk. PO Box 36,
Ipswich IP1 2EL, England.
Phone: 0473 52794 & 0473 219390 – Telex: 987703G

(E) EPROM PROGRAMMER

AT LAST! Over 50 Generic Device Types. . .

<table>
<thead>
<tr>
<th>Type</th>
<th>Equivalent</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-250B10ms</td>
<td>29.871V</td>
<td>£43.74</td>
</tr>
<tr>
<td>1-251B65ms</td>
<td>29.871V</td>
<td>£43.74</td>
</tr>
<tr>
<td>1-251B65ms</td>
<td>29.871V</td>
<td>£43.74</td>
</tr>
<tr>
<td>2-27128</td>
<td>29.871V</td>
<td>£46.84</td>
</tr>
<tr>
<td>3-27512</td>
<td>29.871V</td>
<td>£46.84</td>
</tr>
<tr>
<td>4-27512</td>
<td>29.871V</td>
<td>£46.84</td>
</tr>
<tr>
<td>5-27512</td>
<td>29.871V</td>
<td>£46.84</td>
</tr>
</tbody>
</table>

. . . at a price to suit any budget!

THE MODEL 18 PROM PROGRAMMER

- Types include 27C... parts EPROMs now-programmed!
- Supports our new EPROM Emulator!
- Automatic Data Rate setting 300-192000 baud
- Two independent Communications Protocols built in. Use with any host computer with RS232 port and Terminal Emulator
- our PROMDRIVER Advanced Features User Interface Package available for all MS-DOS, PC-DOS and CP/M-80 computers.
- Fast interactive algorithms automatically selected as appropriate.
- Upgradable for future types.
- Designed, manufactured and supported in the UK.
- Inb. Devices other than 24/28 pin require low cost socket adapter.

NEW PRODUCTS!!

0848-41 Cross-Assembler for MS-DOS
0848-50 PROMDRIVER with RS232 interface
0848-50 PROMDRIVER with RS232 interface

Series includes an AUTORANGE and two HEAVY-DUTY DIGITAL models plus a POCKET SIZE and a SOLID-STATE ANALOGUE model.

A NEW SERIES OF QUALITY HAND-HELD MULTIMETERS

from Armon

retailing between £6 to £40 plus VAT

For details of these and our full range contact:
Class A/AB mosfet power amplifier

A discussion of the effects on performance of capacitors and transistors, and a practical design to illustrate some solutions

J. L. LINSLEY HOOD

The design of audio amplifiers, like that of any other equipment for use in the sound reproduction chain, suffers from the difficulty that, since its purpose is to produce a response from a human sensory organ, the quality of the final result cannot be determined with anything like confidence from engineering measurements alone, nor can anyone be certain that the stage has been reached at which no further worthwhile improvements could be made.

Many attempts have been made to relate engineering specifications to perceived sound quality, but these have been complicated by the fact that the ear, like any other sensory organ, varies from person to person, and from time to time. It is also a very poor instrument for assessing sound quality and its memory of sound characteristics is even worse. Nevertheless, in spite of its apparent insensitivity to some quite major defects in the reproduction of the audio chain - such as significant amounts of second harmonic distortion - it can be exceedingly perceptive of some others, especially if trained to listen for them.

THE EMERGENCE OF THE 'SUBJECTIVISTS'

It is a matter of historical observation, and some considerable regret, that circuit design engineers have, in their enthusiasm to exploit new technology, allowed now and then unsuspected forms of signal distortion to occur because of their reliance on test procedures such as measurements of total harmonic distortion at full output power, which had not shown anything amiss.

This discrepancy between relatively poor observed sound quality and high claimed performance specification was noted by the lay users of the equipment and tended to undermine their confidence in the validity of engineering specifications as a whole, rather than causing them to demand that fuller, and more searching, test measurements should be made.

It also led to the growth of the opinion that specifications, on their own, were meaningless as a measure of performance, and to the emergence of a minor host of self-appointed pundits, together with a number of magazines dedicated to their views, who claimed particular skills in assessing the quality of equipment, by listening to its performance on a suitable range of sound recordings.

This abandonment of instrumental tests in favour of 'subjective' judgments has led to the proliferation of claims, some of which are extremely unlikely on any engineering basis, about the benefits of a host of add-on bits and pieces, and has now led also to the evolution of design procedures based on ideas which are supposed to be good for sound quality, without reference to any instrumental test results.

Since whether or not these design techniques do indeed lead to better sound quality is often judged by the same people who proposed these ideas, this approach tends to be self reinforcing and self sustaining and renders their proponents impervious to any arguments based on physics or engineering principles.

A recent article by Self provided a salutary reminder that it is impossible to make progress in any form of technical development without performance standards which are both measurable and verifiable, against which the effect of design changes can be seen, and against which the validity of design theories or calculations can be tested.

In general, I agree entirely with Self's views, though I entertain a few reservations which I made in a subsequent letter. These arise because I am well aware of the mistakes which have been made in the past, when circuit designers have offered designs which were clearly less good than they should have been - in respect of residual 'crossover distortion' artefacts; or because of promeness to slow-rate limiting; or because of inadequate loop-stability margins when used with adverse LS loads; or because of poor transient response under reactive load conditions; or because of output device protection systems which caused premature 'clipping' on LS systems which had a low impedance at some part of their frequency response; and so on and on - and I lack adequate confidence that contemporary test procedures will reveal all of the faults which may remain.

In particular, I feel that while a great deal of work has been done in reducing the magnitude of steady-state non-linearities, not enough attention has been paid to circuit behaviour under discontinuous or transient signals, where prominent inter-modulation effects may arise. Measurable malfunctions may therefore still lurk in this area.

This concentration on steady-state harmonic distortion figures is probably due, for commercial reasons, to the excessive importance which the layman attaches to the number of zeros behind the decimal point in the quoted THD figure as a criterion of quality.

Steady-state measurements may also tend to minimize the result of sudden changes in signal level upon components which are sensitive to thermal or voltage-dependent effects, such as capacitors and semiconductor devices, and I do not think that we are adequately knowledgeable to be confident that no audibly untoward effects whatever will occur as a consequence of these known shortcomings - particularly when these phenomena can be quite clearly seen with other physical test procedures.

CAPACITORS

Capacitors are the most complex of all the 'passive' components, in respect of their underlying physical behaviour, and differ considerably from the notionally 'pure' capacitance which one might depict with the symbol shown in Fig. 1(a). A broad distinction can be drawn between 'polar' (i.e., electrolytic), and 'non-polar' (i.e., film, mixed or ceramic dielectric) types, in terms of the effective equivalent circuit introduced by the component but, in general, this will be more nearly that of Fig. 1(b).

In this, C is the effective capacitance of the unit which will be somewhat dependent on frequency, temperature, and operating voltage. In series with this element of capacitance is a resistance, Rk, representing the dielectric-loss factor, which is strongly dependent on temperature and operating frequency, and in parallel with C is the leakage resistance Rl - also very temperature dependent.

In all capacitors, there will be a series element of resistance, R, and a series inductance, L, simply due to the mechanical
of equivalent aluminium types. Tantalum
head capacitors are only available in relative-
ly low working voltage forms.

Non-polar dielectric capacitors.

Although these avoid some of the undesir-
able characteristics of the electrolytic types,
they can suffer to a much greater extent from
dielectric hysteresis and other stored
charge effects of the 'electret' type, repre-
sented in Fig. 1(d) by the generator \(E_n \),
and the series capacitor \(C_s \).

The possibility of building into the dielec-
tric layer a semi-permanent polarization,
usually by heating the material above its
first-order transition temperature and then
allowing it to cool while exposed to an
electric field, has been known and exploited
in 'electret' microphone diaphragms for
some years, but it can also be used in normal
use with suitable materials. In general, the
proneness of a dielectric material to this
effect is dependent on its molecular struc-
ture and upon its crystallinity, physical
hardness and rigidity.

Of the commonly used film dielectrics,
such as poly styrene, polycarbonate or
poly sulphone, from which thin films are
made by band casting from a solution, are
both limp and amorphous and are therefore
less likely to retain molecular-scale electro-
mechanical distortions than the more rigid
and highly crystalline types of film such as
those based on polypropylene or polystyrene
which are manufactured by biaxially stretch-
ing a thicker extruded sheet.

However, the molecular (polar) asymme-
ty of the solution-cast materials is typically
greater, with the exception of poly-
 styrene, than that of polypropylene, say,
which makes a clear preference difficult.

A desirable quality in these components is
that they should be compact, and offer a high
capacity/volume ratio. Unfortunately,
both the dielectric constant of the materi-
and and the dielectric loss factor are
dependent on the asymmetry of the polar
groups within the molecule. It is implicit
that the desirable qualities of low dielectric
loss and high capacitance values cannot be
obtained in physically small components.

Stacked film/or foil capacitors, where the
conductor/dielectric combination is assem-
bled like a pack of cards, offer a lower series
inductance (\(L_s \)) than spiral wound forms.
In all of these types, film/or foil components
offer both a lower series resistance (\(R_s \)),
and a higher leakage resistance (\(R_l \)), than
the metallized-film types, but are physically
more bulky.

Ceramic dielectric capacitors. Certain
dielectric capacitors, such as titanium
dioxide, barium titanate, and barium
titanate zirconate, offer dielectric
constants in the range 80-50,000, which
permits the construction of very small,
high-capacitance and low-ESR components.
However, the frequency and temperature
dependence of capacitance and dielectric-
loss values of these capacitors can be very
high, which limits their use to RF applica-
tions where the overriding consideration is
for a low ESR.

Other types. Both mica and air dielectric
components are free of most of the problems
noted above, but are only available in small
capacitance values. Waxed-paper dielectric
components are now, thankfully, seldom
found.

Fig. 1. At (a) is a "pure" capacitance, which is
more nearly represented by the equiva-
 lent circuit at (b). The diode in (c) repre-
sents the unidirectional conductive path in
an electrolytic capacitor, while (d) shows a
generator and resistor to indicate the
stored charge and dielectric hysteresis
exhibited by film dielectrics.

TRANSISTORS

Transistors are the other main source of
non-ideal behaviour in electronic circuitry,
in that they are strongly temperature, cur-
rrent, voltage, and frequency dependent in
nearly all of their characteristics. Bipolar
(NPN/PNP) junction devices are bad in all
these respects, though manufacturing tech-
niques have lessened the effects of some of
these and circuit layouts have been evolved
to reduce the influence of others.

A major residual problem with bipolar
junction devices is that of 'hole storage'
which prevents a clean current switch-off
following a high-current pulse. This can be
minimized by ensuring that the device is
never driven into saturation, but hole-
storage effects are always present. These
defects are at their worst in power-output
stages because of the high peak currents
involved and it is in this position that fets
and mosets offer their greatest advantages.

The moset is a particularly attractive
device to use in this application in that, since
the conduction mechanism is that of an
electrostatically induced charge layer in a
relatively lightly doped substrate, it does not
promote hole-storage effects. It also has a
better HP response, which facilitates the
design of stable negative-feedback systems,
and their greater independence of gain on
output current improves circuit linearity.
When optimally biased, their quiescent
characteristics can also be less temperature-
sensitive.

Power mosets are available in several
forms, as shown in Fig. 2, of which the two
most common are 'U' and 'T', named after the
shape of the active region or the nature of
the current flow, and shown in (b) and
(c).

Various manufacturers have introduced
their own versions of these topologies, to
optimize advantages or lessen disadvantages
but in general the 'T' or 'U' moset types are
faster, but less rugged and less well suited to
complementary polarity than the 'T' moset
forms. They all suffer from a high gate
source capacitance, particularly in the higher
current versions where multiple parallel
channels are employed to lower the impe-
dance of the conducting path, and this factor
must be born in mind in designs employing
them.

They are also prone to gate/source break-
down — causing device failure — if the
permitted gate/source potential is exceeded,
and this also must be guarded against in the
design. This problem exists because, unlike
small signal (RF) mosets, or —mos logic
elements, protective zener diodes cannot be
incorporated within the diffusion structure
without introducing the possibility of trystor-
ation.

The remaining design problem is that of
their excellent HP response, it is possible
that RF oscillation may occur, in the tens or
hundreds of MHz range due to the unwise
layout of external connecting wiring. Some
care should be taken to avoid
parallel paths for gate and source or drain leads, and gate stopper resistors should be employed where necessary, especially in the output stages. These should not be too large because of the presence of the fairly substantial gate source capacitance, which can be at least 1nF in the case of power devices.

AN ALL-MOSFET AUDIO POWER AMPLIFIER

With the various design considerations discussed above in mind, and since small-signal U-mosfet transistors are now available in both P- and N-channel versions at a reasonable price, it seemed to be an interesting exercise to design an audio power amplifier using only mosfets. The objects of the circuit design were to limit the need for capacitors in the signal path, and to adjust the circuit component values so that the capacitors in the negative feedback path, where their imperfections could have a direct influence on the performance of the circuit, could be of a non-polar type.

My original intention was to use mosfets throughout, but these are more expensive than bipolar devices. In places, such as in the constant current sources, where there was little or no signal voltage and no particular advantage seemed to be offered by the use of a mosfet transistor. I have therefore opted for the less expensive bipolar component.

The final circuit layout chosen for the amplifier is shown in Fig. 3 and is of fairly conventional form. A pair of P-channel mosfets, (Tr1/Tr2), is arranged as an input long-tailed pair, fed from a constant-current source. (Tr3/Tr4), driving a single N-channel, small-signal U-mosfet gain stage (Tr5). Since it was intended that the output stages of the amplifier should operate largely in class A, in which the residual harmonic distortion of the circuit would be very low, it was not thought necessary to use a 'current mirror' as the load for Tr5. This use of a current mirror is a conventional technique for increasing both circuit gain and available negative feedback for a given overall loop gain, as a means for cleaning up a less-good performance.

Again, since the output impedance of both Tr6 and Tr7 is very high, and is largely independent of operating voltage within the range employed, I did not consider it necessary to 'bootstrap' these devices to improve their linearity or to lessen the dependence of gate-drain capacitance upon gate-drain potential.

There is always a temptation for circuit designers to 'lily-gild', but experience suggests that more elaborate circuit structures aimed at further reducing already-low THD values also make the problems of loop stability more complex, and may impair the overall transient performance.

In the design of Fig. 3, the 'Zobel' network C15/R15, together with the small capacitor, C16, is all that is needed to provide an adequate gain and phase margin in the feedback loop. C15 is employed in a position which greatly lessens the tendency to slew-rate limiting, in comparison with the more conventional and less satisfactory technique.

Fig. 2. Three forms of the power mosfet.

Fig. 3. Final circuit of the mosfet power amplifier.
in which \(C_{1b} \) would be connected between drain and gate of \(T_2 \) to provide a 'dominant lag' form of HF compensation. This latter approach gives better THD figures at the upper end of the frequency passband, but impairs 'slew-rate' characteristics and transient behaviour.

As I have already said I do not feel that there is any particular virtue in striving for ultra-low THD figures - certainly not below the 0.01% level - at the expense of circuit complexity and cost, or with the possible penalty of impaired or more complex transient response. The design shown, though relatively simple in layout, has an excellent performance in respect of both THD, (better than 0.01% at all power levels, within the frequency range 20-5kHz, and less than 0.03% up to 20kHz) and step-function response which is quite free of ringing and overshoots.

Layout, and power supply. Circuit designers tend to assume that power supply lines will be pure DC, of a known and stable value and devoid of signal residues or mains frequency ripple, and tend to ignore the ill effects which might arise if this is not the case, Though there are well known circuit techniques which improve the degree of supply-line signal rejection, it is more elegant to remove this problem at source by using properly stabilized DC supplies. With modern devices this approach offers no problems and any well designed supply circuitry will suffice.

I would also recommend that both the small-signal and the power output parts of the circuit are fed from separate supplies, to lessen the need for a very low source impedance from them. With the circuit shown, there will be no significant penalty in channel separation from operating both channels from the same low-power and high-power supply lines.

With conventional circuit-design procedures, it is quite easy to design stabilized power supplies with an output impedance which is only a small fraction of an ohm. To the 'subjective-sound' fraternity - among whose current fads is the employment of entirely independent power supplies for each channel, with massive and costly reservoir capacitors (but only in a crude rectifier/capacitor system), and filing cabinet sized mains transformers - I would observe that, to obtain a supply line impedance of 0.1 ohms at 5Hz would require a reservoir capacitor of 0.3F. Four of these would not appear to be a cost-effective (or space saving) alternative to a stabilized PSU.

In the case of the feedback-path DC-blocking capacitor, \(C_2 \), I would prefer that this should be of polycarbonate dielectric type and, if this is of spiral-wound rather than of stacked-foil type, it should itself be bypassed by a smaller stacked-foil component to lessen the impedance of this path.

Operation mode. I noted above that this design was intended to operate 'largely in class-A'. My experience and observation over a number of years suggests that the bulk of domestic listening, even with relatively inefficient loudspeaker units, is at peak output power levels in the range 0.1–3 watts.

For a nominal speaker impedance of 8 \(\Omega \), this could be met with an output stage quiescent current of 0.4 amperes/channel, set by \(R_{an} \). On higher output-power demands, the circuit slides quite gracefully into class-AB operation.

Those quoted in Fig. 3 will allow a maximum output level of about 35-40 watts/channel, with a static thermal dissipation for each output device of some 14 watts, for which adequate heat sinking (3" Cwatt for each device) should be provided. For higher power class-A operation, a higher quiescent current should be chosen, with more massive output device and power supply heat sinking. Beyond \(I_i \), values of 1A, it would probably be helpful to parallel the output devices, together with their associated emitter and gate-stopper resistors.

Overload protection. I would prefer this to be provided by a simple re-entrant style of current limit in the power supply itself, which could be combined with some electronic sensing circuitry to shut down the PSU in the event of an unacceptable large DC offset appearing at the output terminals. The Hitachi output mosfets appear to be sufficiently rugged for simple gate-protection zener diodes to prevent device breakdown.

References
3. Hart Electronic Kits Ltd., of Penyffan Mill, Oswestry, Shropshire. ST10 9AF, can supply all the components needed for this design.
Communications
test equipment

Farnell Instruments Limited manufacture a wide range of test and measuring instruments for use with mobile radios, pocket pagers and other communications equipment. Instruments include synthesized signal generators, transmitter test sets, communications test sets, power meters, automatic modulation meters, frequency meters, etc.

Field portable units, bench or rack mounting models and complete systems are available. The latter are for manual use or microcomputer control via GPIB bus. Various software packages for standard measurement routines and self-test diagnostics are available. These allow non-technical staff to test complex communications equipment.

Designed and manufactured in Britain, a short form listing of Farnell communications test equipment follows. Further information is available on request.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>MODEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSG520H</td>
<td>100kHz to 520MHz portable synthesized signal generator</td>
<td>SGIB-B</td>
<td>GPIB (IEEE488) Interface bus for SSG520/TTS520 combination</td>
</tr>
<tr>
<td>PSG520</td>
<td>10MHz to 520MHz portable synthesized signal generator</td>
<td>SWIB</td>
<td>GPIB (IEEE488) 32 channel switching unit</td>
</tr>
<tr>
<td>PSG1000</td>
<td>10kHz to 1GHz portable synthesized signal generator</td>
<td>F952</td>
<td>Power supply programming module for use with SWIB</td>
</tr>
<tr>
<td>SSG520</td>
<td>10MHz to 520MHz synthesized signal generator</td>
<td>DB1</td>
<td>GPIB (IEEE488) interface — non dedicated</td>
</tr>
<tr>
<td>SSG1000</td>
<td>10Hz to 1GHz synthesized signal generator</td>
<td>DB2</td>
<td>GPIB (IEEE488) interface with A/D converter and digital panel meter non dedicated</td>
</tr>
<tr>
<td>SSG2000</td>
<td>10Hz to 2GHz synthesized signal generator</td>
<td>TM8</td>
<td>Autoranging r.f. millivoltmeter 10kHz to 1GHz</td>
</tr>
<tr>
<td>LA520</td>
<td>1.5MHz to 520MHz linear amplifier</td>
<td>AMM (B)</td>
<td>Automatic modulation meter 1.5MHz to 2GHz</td>
</tr>
<tr>
<td>TTS520</td>
<td>10MHz to 520MHz transmitter test set</td>
<td>TM10</td>
<td>Directional r.f. power meter 25MHz to 1GHz</td>
</tr>
<tr>
<td>PTS1000</td>
<td>1.5MHz to 1GHz portable transmitter test set</td>
<td>2081</td>
<td>RF power meter</td>
</tr>
<tr>
<td>CTS20</td>
<td>100kHz to 520MHz communications test set</td>
<td>FM600(B)</td>
<td>Digital frequency meter 20Hz to 600MHz</td>
</tr>
<tr>
<td>352C</td>
<td>Spectrum Analyser 300kHz to 1GHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most models NATO codified

Send for further details of the complete range of Farnell test and measuring instruments.

FARNEILL INSTRUMENTS LIMITED
SANDBECK WAY WETHERBY WEST YORKSHIRE LS22 4DH
TELEPHONE 0937 61961 TELEX 557294

ENTER 56 ON REPLY CARD
DATA ACQUISITION USING THE IBM PC

This article discusses how the IBM PC XT or PC AT can be used for data acquisition; no consideration is given to the source of data and throughout the discussion an 8-bit A/D convertor (ADC) is assumed to provide the digital data. The article covers all aspects of the transfer of data from ADC to, in the first instance, computer memory and subsequently, for logging purposes, to an ASCII file.

The PC XT and PC AT buses are widely used and have achieved industry-wide acceptance. The PC XT bus is an 8-bit data bus implemented in a 62-pin edge connector. The PC AT bus adds 16-bit data operation, via a second, 36-pin, edge connector, and also includes additional interrupt lines and DMA channels. One feature to appreciate about the buses, a consequence of the operation of the Intel 8086 and 8088 microprocessors, is the way in which they treat I/O (input/output) and memory devices as distinct devices; memory and I/O devices can occupy the same address space without any contention. The potential conflict is avoided by having separate read and write lines for the two types of devices. Most add-on cards for PCs are I/O-mapped but it is possible to memory-map add-on cards – provided the card’s memory is mapped above the host’s memory.

The main bus signals – full details are given in the IBM or equivalent technical reference – are outlined below; the details given apply to the PC AT bus but the only signals that are not common to the PC XT bus are the eight additional data lines and some of the interrupt lines. Each signal is specified as an 1, 0 or I/O signal to indicate an Input, Output or Input/Output signal. The construct [0..n] indicates an n+1 wide signal bus.

- **SA[0..19] (I/O)** – address lines for memory and I/O devices. The 20 address lines can access up to 1Mbyte of address space. Note that I/O address space only extends to 64K.
- **CLK (0)** System Clock. Frequency is dependent on computer. The frequency of this signal should not be considered definitive as the signal is really intended for synchronising purposes.

- **RESET DRV (0)** – used to reset external logic during power-up time. This is an active high signal.
- **SD [0..15] (I/O)** – system data lines. SD0 is the least significant.
- **IRQ1..15** – interrupt request lines. They are prioritised with the highest priority signal first, in the following order: 9, 10, 11, 12, 14, 15, 3, 4, 5, 6, 7.

To generate an interrupt, the IRQ line is raised from low to high. The line must be reset when the interrupt is serviced.

- **IOR (I/O)** – instructs an I/O device that the microprocessor is ready to accept its data; i.e. the device must drive the data lines.
- **IOW (I/O)** – instructs an I/O device to read data off the data bus.
Hardware Design of Interface Circuitry

As with any bus, the interface circuitry always depends on the particular application; there is no unique way of interfacing to the bus. However there are two main factors that have to be considered in all circumstances:

1. Loading – each bus output can only drive up to two LS TTL loads. It is therefore advisable to buffer all inputs to the I/F (interface) card. This also serves to protect the host in the event of a fault on the I/F card. In addition, some bus inputs have current-sinking thresholds which have to be observed. It is always advisable to refer to the Technical Reference of the particular computer you are using.

2. Contention – certain input lines are shared by many boards – data lines being the most obvious example – and the designer must ensure that not more than one bus component activates these lines at any one time. Also, certain lines must not be activated for longer than a pre-determined period and these criteria have to be rigidly observed.

In our example, the I/F card is I/O-mapped as the ADC is a single address device. Because the ADC produces an 8-bit data output, and to ensure that the card can be used on a PC XT or a PC AT computer, 8-bit data operation is employed. Also there is an I/O address space - 300 to 31F Hex – especially reserved for prototype cards and our I/F card is mapped into this space.

The interface circuitry is shown in Fig. 1. The circuit includes an ADC and a D/A converter (DAC). A brief description of the circuit is given below.

IC1, IC2 serve to buffer the system address and data lines. IC4 is an address decoder, and its output, IO-DEC, signals an I/O operation at an address between 300 Hex and 31F Hex. IO-DEC is used, via DBE, to enable IC5; and this ensures that IC5 is only enabled when the card is addressed; this prevents contention with other cards on the bus. IC5 is used to subdivide the address range 300 to 30F into eight 2-byte segments to provide separate enable for the ADC, DAC and any other device on the card.

The output of the ADC is latched into IC6 by the End-Of-Convert (EOC) signal available from some ADCs; if this signal is not available the sample clock can be suitably delayed to provide such a signal. IC10 is mapped at address 304 Hex. The EOC, or a similar signal will be used to signal to the host, either directly or indirectly, that data is available – this is discussed below.

The DAC, which is included for the sake of completeness, is mapped at the address 302 Hex. The DAC is not discussed further in this article and exact details of its operation cycle are left to the prospective user.

The signal EN1 is used to enable a device mapped at address 304 Hex; the use of this signal is discussed in the next section.
There are two main methods of signalling to the host that data is available:

a) Polling.
b) Interrupts.

Polling is a simple concept to understand and it is illustrated graphically below in Fig. 2.

In our example, the EOC signal sets a status register (which can be a D-type flip-flop) to indicate that a sample is present. The program loop running on the host includes a routine which reads the status of the register. If this status register is set — i.e., a data sample is present — then the routine calls an acquisition routine to read and store the data sample.

The main advantage of using polling — simplicity — is thus immediately apparent: programs can be written in a high level language and are easy to write and debug. The main disadvantage of using polling is that the host is not directly informed of the presence of data; if the host has to perform a lengthy task in its loop, then data can be easily lost. However when the tasks in the loop are short, polling is a highly convenient, and also a very fast, method of getting the data into computer memory.

The hardware and software to support polling are not discussed here as elements in the discussion of interrupts more than adequately cover these aspects.

Interrupts, as the name suggests, involve directly signalling to the host that a peripheral — ADC in this case — requires servicing. Hardware interrupts in the IBM PC XT and PC AT are initially handled by the interrupt controller chips — Intel 8255As. The PC AT has two of these chips and the PC XT has one. The interrupt controller translates the hardware interrupt into, effectively, an INT n instruction, where n is the interrupt number associated with the hardware interrupt. The processor then responds by invoking a special subroutine — an interrupt service routine. The address of this service routine is stored in computer memory and is known as the interrupt vector address. As it is required to invoke the user’s service routine when the interrupt is detected, the vector address has to be altered to point to the user’s own routine. This is known as redirecting the interrupt and will be discussed later.

Clearly, as in the case of polling, a scheme using interrupts requires supporting hardware and software. Before discussing these aspects, it is worth outlining the advantages and disadvantages of using interrupts.

The advantages are:

a) Accuracy — response of the host occurs immediately after the event.
b) Versatility — the host can service a number of peripheral devices because, unlike polling, it does not have to constantly interrogate each peripheral. Furthermore, the host can undertake lengthy tasks, especially if they are not time critical, without jeopardising peripheral servicing.

The disadvantages are:

a) Increased complexity — programs using interrupts are more difficult to write and debug.
b) Servicing overheads — responding to an interrupt has an inherent time overhead. It is instructive to examine exactly what this entails. When the host detects an interrupt, it completes its current instruction, saves its status registers and instruction pointer on the stack, calls the appropriate service routine — which must ensure that all the general-purpose registers are saved on entry and restored on exit, and finally restores its status registers and instruction pointer when the interrupt has been serviced. There is thus a minimum amount of time that must be expended in servicing any interrupt. These considerations ultimately limit the rate at which interrupts can be generated and faithfully serviced — in our case, it limits the acquisition rate.

It is not possible to exactly determine the maximum throughput of a program using interrupts as it depends on processor clock speed, processor type, complexity of service routine and bus performance. However, a ballpark figure can be obtained by counting the total number of clock cycles in the interrupt service routine instructions, adding to this total the number of interrupt entry cycles (number of cycles required by the INT instruction) and then multiplying the total number of cycles by the time per cycle. It is then usual to allow a 20 per cent margin to allow for bus limitations.
HANDLING INTERRUPTS

A circuit for generating a hardware interrupt is shown in Fig.3. The interrupt is generated on IRQ2—lowest priority interrupt. The EOC signal sets the interrupt and the IRQ2 Enable signal is used to reset it. IRQ2 Enable acts as an interrupt enable/disable when it is set low/high: the interrupt is reset by disabling and then enabling it. IRQ2 Enable is activated by writing to the LSB at I/O address 300 H (i.e. the ENI signal is used to enable the latch 1C1). Note also that RESET DRW resets the interrupt during computer power-up.

The software routine to support the use of interrupts is generally written in assembly language, although some high-level language compilers can support interrupt routines—e.g. Microsoft C compiler Ver. 5.1. The code for supporting IRQ2 is shown in Listing 1. It assumes a working knowledge of 8086 assembly language programming, the Microsoft macro-assembler and DOS 21H type interrupts, and an appreciation of some of the features of interrupt controllers. The code can be divided into two logical sections: a section dealing with the housekeeping tasks—the tasks involve, in the first instance, preparing the system to handle the interrupt and, ultimately, restoring the system parameters to their original state before the program is exited—and a section

Listings:

Listing 1: code for supporting IRQ2, in 8086 assembly language.

```asm
SEGMENT public
 ASSUME cs:code,ds:data
 start: mov ax,data ;load data segment address into ds
 cli

 //redirect irq? interrupt vector to point to int service routine
 mov al,int_vectno ;get old vector address
 mov ah,15h
 int 21h
 set byte contains old vector address
 mov ax,es ;store old vector address
 mov bx,old_segment,ax

 //enable interrupt controller to respond to irq?
 in al,mask_address ;seach for vector number
 jmp 5+1

 ;enable hardware interrupt
 mov ax,0 ;enable interrupt controller
 mov ds,enable_address
 out dx,ax
 cli

 //insert some procedure, such as keyboard check, which enables loop
 (to be exited)
 jmp loop

 //then enabling it. IRQ2 Enable is activated
```

Listing 2: this short routine stores the acquired data in a file.

```asm
MOV ah,3CH ;create file
lea ds,fileName
MOV cx,00H
INT 21H

;the next two lines should be included in main program data segment
_MENU
DB 0,0CH
file_hand DW 0

;the following code can be included as a routine after the data has
;been acquired, the original interrupt parameters restored and before
;the main program is exited.

;create file
MOV ah,3CH
lea ds, fileName
MOV cx,00H
INT 21H

;open test file
lea ds, filename
MOV ax,1
MOV bx,jump
INT 21H

;add EOF code to end of acquired data
MOV BYTE PTR acquired_data[index],EOF
INC index

;write to file
MOV bx, file_hand
MOV cx,index
lea ds, acquired_data
MOV ah,40H
INT 21H

;close file
MOV bx, file_hand
MOV ax,3Eh
INT 21H

;end of code
```

List 3: interrupt code.
CONTROL SYSTEMS

This single-Eurocard's got almost everything you need to develop and implement a simple control system, with expansion potential over the popular STEbus. On-board is a powerful 8-bit microcomputer with on-chip BASIC interpreter, memory sockets, I/O and EPROM programming facilities. All you need to start developing a target system is a working knowledge of BASIC and a VDU. Here's what you get:

- 8052 µC WITH 8K BASIC, 256BYTES RAM
- UART, THREE COUNTER-TIMERS, INTERRUPTS
- FOUR 28-PIN MEMORY SOCKETS
- TWO RS232C CHANNELS
- EPROM PROGRAMMER
- STEBUS SYSTEM EXPANSION INTERFACE

The BASIC is designed for process control applications: entering a program into RAM, debugging, testing and blowing into EPROM can be achieved in minutes. The complete board costs just £212! Phone for a catalogue detailing this board, 50+ STEbus expansion options, and other 8052 board variants:

Arcom Control Systems Ltd
Unit 8 Clifton Road, Cambridge CB1 4WH Tel: (0223) 411200; Fax: (0223) 410457 Tlx: 94016424 ARCS G; Easylink: 19014905 ENTER 57 ON REPLY CARD

dealing with the interrupt service routine – which is the procedure int_service.

The initial housekeeping tasks are:

a) Redirecting the IRQ7 vector to point to the int_service routine – i.e. modify the interrupt vector address associated with IRQ7 to point to the int_service routine. This is achieved by reading and storing the original vector address. The original segment and offset addresses are stored in old_segment and old_offset respectively.

b) Enabling the interrupt controller to respond to the IRQ7 interrupt. The master controller, which handles IRQ8 to IRQ15, is I/O-mapped at address 20-3F. The contents of the register at address 211hex determine which of the interrupts is enabled. The contents of this register are modified to ensure that the controller responds to IRQ7.

c) Enabling the hardware which actually generates the interrupt. This is achieved in our example by writing 0 to I/O address 304 Hex.

To restore the system parameters, the above steps are reversed: the I/F card hardware is disabled from generating the interrupt, the interrupt controller is disabled from responding to IRQ7 and the original vector address is restored.

INTERRUPT SERVICE ROUTINE

The main tasks in the service routine are:

a) Reset the hardware generating the interrupt – by writing 1 to 304 Hex.

b) Read the next sample and store it. The data is stored in a memory area with the start address 'acquired_data'; the variable 'index' is used to scan this memory area. The size of the memory area is set at 2000 bytes but this parameter can be easily changed.

c) Clear the interrupt controller. This is necessary as it allows the controller to respond to subsequent interrupts. The controller is cleared by writing an End-Of-Interrupt – EOI – code to its control register. Note also that the processor is prevented from responding to further interrupts – via the CLI instruction – before the controller is cleared; this is to prevent the processor responding to another interrupt before the service routine is executed.

d) Enable the hardware interrupt.

FILE STORAGE OF ACQUIRED DATA

Listing 2 is a short routine which stores the data, in computer memory, into a file. The number of bytes is indicated by index. Before the data is stored, an End-Of-File (EOF) code is tagged onto the data. This EOF code can be any byte which is not generated by the ADC. It is intended that this section of code is inserted before the 'exit' label in listing 1 and the two data declarations are inserted in the main data segment. It is left to the user to determine the EOF code, as it depends on the range of codes produced by the ADC.
Dual-conversion f.m. receiver

Two applications for the MC3363 narrow-band VHF FM receiver are presented in the device data sheet. This one is a 49MHz synthesized receiver which, together with the MC145166/7 frequency synthesizer, does all the work from r.f. input to demodulated output with just two i.c.s. Motorola. Macro Marketing, Burnham Lane, Slough, Berkshire SL1 6LN. 06286 4422.

Intelligent modem

Primarily, the FX429 1200-baud modem is intended for Band III trunked radio systems, but it also has more general-purpose applications.

Publication 1/429/2 from Consumer Microcircuits describes how the full-duplex device operates in sufficient detail to allow design of both Band III and general-purpose radio or line-data modems. Consumer Microcircuits, Wheaton Road Industrial Estate East, Witham, Essex CM8 3TD.
Designing for low input-bias current

In bipolar analogue systems, input bias current can be reduced by lowering collector current, but in terms of noise, slew rate and bandwidth, low collector currents can have adverse effects.

Darlington input configurations, as shown, solve some problems but cause others: voltage gain suffers, and so does offset voltage. Application note 3 from Micro Linear, 'Design Techniques for Low Input Bias Current', describes these solutions in a little more detail, and it discusses input bias current cancellation. Micro Linear, Ambar Cascom Ltd, Rahans Close, Aylesbury, Buckinghamshire HP19 3ES. 0296 434 141

Electronic lock

It is possible to select any one of $3^{10} - 2$ security codes on the TEA5500 coded locking circuit, and each combination is directly selectable in hardware, despite the fact that the device has only ten code-select input pins. Such a large number of combinations is possible through the use of three logic states on the code-select pins - logic high, logic low and open circuit.

These two diagrams, from the device data sheet, show how the 5500 acts either as a code sender or receiver.

In coding mode, the coder completes three coding runs then stops automatically after every power up. In decoding mode, the data input is temporarily closed and one of the outputs is activated when the code is recognized. Philips Components, Mullard House, Torrington Place, London WC1 7HD. 01 380 6633.

Electronic lock

It is possible to select any one of $3^{10} - 2$ security codes on the TEA5500 coded locking circuit, and each combination is directly selectable in hardware, despite the fact that the device has only ten code-select input pins. Such a large number of combinations is possible through the use of three logic states on the code-select pins - logic high, logic low and open circuit.

These two diagrams, from the device data sheet, show how the 5500 acts either as a code sender or receiver.

In coding mode, the coder completes three coding runs then stops automatically after every power up. In decoding mode, the data input is temporarily closed and one of the outputs is activated when the code is recognized. Philips Components, Mullard House, Torrington Place, London WC1 7HD. 01 380 6633.

Electronic lock

It is possible to select any one of $3^{10} - 2$ security codes on the TEA5500 coded locking circuit, and each combination is directly selectable in hardware, despite the fact that the device has only ten code-select input pins. Such a large number of combinations is possible through the use of three logic states on the code-select pins - logic high, logic low and open circuit.

These two diagrams, from the device data sheet, show how the 5500 acts either as a code sender or receiver.

In coding mode, the coder completes three coding runs then stops automatically after every power up. In decoding mode, the data input is temporarily closed and one of the outputs is activated when the code is recognized. Philips Components, Mullard House, Torrington Place, London WC1 7HD. 01 380 6633.

Electronic lock

It is possible to select any one of $3^{10} - 2$ security codes on the TEA5500 coded locking circuit, and each combination is directly selectable in hardware, despite the fact that the device has only ten code-select input pins. Such a large number of combinations is possible through the use of three logic states on the code-select pins - logic high, logic low and open circuit.

These two diagrams, from the device data sheet, show how the 5500 acts either as a code sender or receiver.

In coding mode, the coder completes three coding runs then stops automatically after every power up. In decoding mode, the data input is temporarily closed and one of the outputs is activated when the code is recognized. Philips Components, Mullard House, Torrington Place, London WC1 7HD. 01 380 6633.
UNAOMH EP741FMS

FIELD STRENGTH METER/SPECTRUM ANALYZER

Frequency
- Continuously adjustable via a geared-down vernier as follows:
 - RF: 38 MHz
 - Band I: 46 to 106 MHz
 - FM Band: 88 to 108 MHz
 - Band II: 106 to 290 MHz
 - Band H: 290 to 460 MHz
 - Band U: 460 to 860 MHz

Reading
- RF: 38 MHz
- Band I: 46 to 106 MHz
- FM Band: 88 to 108 MHz
- Band II: 106 to 290 MHz
- Band H: 290 to 460 MHz
- Band U: 460 to 860 MHz

Sensitivity
- 5 digit counter with 10 kHz resolution

Accuracy
- +/- 1 dB

Features
- 10 dB steps
- Nine 10 dB attenuation steps for RF

Price: £378.00

UNAOMH FSM987 T.V. FIELD STRENGTH METER

INPUT
- Sensitivity: from 20 dBm to 110 dBm [-40 dBm to 50 dBm] or 10 V to 0.3 V in eight 10 dB steps

Reading
- dB reading proportional to peak value for video signals proportional to mean value for AM or FM sound signals. For both signals scale calibrated to rms value and expressed in dBm. Two more scales are available: video from 0 to 100, and ohm from 0 to 2000 ohm. Battery status is also provided.

Accuracy
- +/- 3 dB for Bands I & III
- +/- 6 dB for Bands H & IV/VI

Impedance
- 75 ohm unbalanced, DC component blocked up to 100 V.

FREQUENCY
- 46 to 860 MHz as follows:
 - Band I: 46 to 108 MHz
 - Band II: 108 to 208 MHz
 - Band H: 208 to 460 MHz
 - Band IV: 460 to 860 MHz

Reading
- 4 digit LCD readout, 100 KHz resolution

Price: £378.00 exc. VAT and carriage

UNAOMH EH 1000 TELETEXT AND VIDEO ANALYZER

Function
- Eye Pattern: display of RF and video frequency teletext signals by means of eye pattern diagrams both in linear representation and lissajous figures [0 and X]. Line selection: display of video signals and line by line selection. Measurement of modulation depth, teletext monitoring of teletext pages.

RF Input
- Freq range: 45 to 860 MHz
- Frequency synthesis: 99 channel recall facility, 50KHz resolution, 3 channel digital memory level 40 to 120 dBm
- Attenuator continuously adjustable. Reading accuracy: reference Xtal +/- 1 dB.

Video Frequency
- Minimum Votlage: 1 Vpp. Impedance: 75 ohm or 10K ohm in case of a through signal. Connector type: BNC

Teletext Clock Input
- Voltage: 1 Vpp/75 ohm.

Teletext Clock Input

Oscilloscope
- Vertical Channels: Sensitivity: 0.5 to 2 Vppm. Frequency Response: DC to 10 MHz. Rise time: pre & overshoot < 2%.

Price: £1670.20 exc. VAT and carriage

TAYLOR BROS (OLDHAM) LTD.

BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.

TEL: 061-603 3231 TELEX: 669911 FAX: 061-636 1736

ENTER 23 ON REPLY CARD
In last month's article, we saw that it is always possible in theory to effect, for a given communication performance, a linear exchange of bandwidth for signal-to-noise ratio. I also showed that for input signal-to-noise ratios less than a threshold level, r_1, say (I suggested $r_1=1/4$ or -6dB as a practical criterion), this linear exchange is close to the maximum attainable; but that for higher signal/noise ratios a logarithmic exchange could be envisaged. I discussed a somewhat simplistic model to demonstrate how the linear exchange might be implemented, but pointed out that this model was of little practical use in general.

We now consider more realistic implementations. In all cases I shall implicitly assume a radio communication system, though most of the properties discussed could apply to carrier-borne or base-band line communications and sometimes also to other systems such as radar or sonar.

REduNDANCY

All bandwidth expansion involves redundancy in some sense. That is to say the bandwidth is expanded by sending more "data" than is required for the desired information transfer. However, while for error correction/detection the transmitted data and the information are closely functionally related, this is not necessarily the case when one seeks only a linear exchange of bandwidth for signal-to-noise ratio.

It is possible to expand the bandwidth of a signal in a variety of ways. For example, one may intermittently change the carrier frequency. This results in a so-called frequency-hopping system (briefly discussed last month) for which the "instantaneous" bandwidth is much less than the total bandwidth used. This technique is well known: its major properties are fairly obvious and so is the general nature of its implementation, even though the details of such implementation may involve some subtlety. For these reasons I shall not discuss it further here — except to comment that in general terms it should theoretically permit the previously described linear exchange in respect of jamming provided that the jammer is unable to anticipate the movement of the carrier. It does not, however (contrary to some assertions), readily provide low detectability, and indeed it is often easier to detect the presence of frequency-hopping transmissions (and even to locate their source) than to detect many conventional signals. On the other hand, in the absence of information encryption, it is appreciably more difficult to intercept and extract the information from frequency-hopped transmissions.

Bandwidth may also be expanded by decreasing the duty-cycle: that is to say, by transmitting discontinuously. For example, a binary communication signal could be transmitted in short pulses for bursts of...
such pulses with substantial intervals (perhaps irregular) between them. Such systems are sometimes called time-hopping systems, and again the signals are fairly readily detectable (though less so than frequency hoppers) but can permit the linear exchange provided the jammer is unable to predict the time domain of the transmitted signal.

The third type of spreading is direct sequence spread spectrum (DSSS) which is the chief topic of this article.

DSSS

Conventional radio systems employ a single frequency carrier, or in other words, a very narrow-band carrier on to which the information is impressed. Thus, a characteristic of such systems is that the information bandwidth is very much greater than that of the unmodulated carrier. Consequently, the total bandwidth occupied is determined primarily by the information bandwidth, though it will also depend to some extent on the type of modulation employed.

In contrast, DSSS systems employ a carrier whose bandwidth is much greater than that of the information to be conveyed. It is argued above that this applies to both the bandwidth expansion techniques such as frequency hopping, but there is a very real sense in which it is a more fundamental feature of DSSS.

There are many ways in which a wide-band carrier can be generated, but by far the most common and convenient is to phase-modulate a conventional narrow-band carrier (i.e. sinusoidal) carrier with a wide-band signal. Almost always, the latter is a binary (or quaternary) signal, usually derived using some sort of logic clock. It can be represented (in the binary case) as a sequence of 1s and −1s (or 0s), i.e. as a binary code or a combination of such codes.

As for other spectrum-spreading techniques, for success in countering jamming (or, for DSSS, in achieving low detectability) it is highly desirable (though, in the jamming case, often less essential than is sometimes thought) that the jammer or interceptor be unable to predict the wide-band carrier waveform. For this reason, the codes chosen are almost always some form of pseudo-random sequence. Ideally they would be derived from a truly random source such as thermal noise, but since their use demands the availability of replicas at the receivers, pseudo-noise two-level codes are much more convenient. When used for DSSS they are termed "spreading codes".

Since we are here concerned only with principles. I shall henceforth restrict discussion to implementations which employ as a carrier a sinusoid which is phase-shift keyed (i.e. phase reversed) by a binary pseudo-random sequence. (The possibility of extension to more complicated constructions, such as quasi-phase modulation is fairly apparent but implementations can involve some quite complex features.)

Binary Code

The choice of binary code is of considerable importance in DSSS systems, primarily because of the reception techniques normally employed. In general, one seeks good auto-correlation properties. That is, that the result of multiplying the code (represented as 1s and −1s) by a delayed version of itself, and then adding linearly a predetermined number of subsequent resulting binary digits should be of very small magnitude for all delays other than zero (i.e. of course, the sum will equal the number of digits summed). Here we need consider delays only in terms of whole numbers of code bits or clock periods. (For DSSS systems these periods are often called "chips".) This restriction simplifies the reasoning and the description and does not in any significant manner invalidate conclusions, even for delays involving fractions of chips.

The general question of code generation and determination of auto-correlation and cross-correlation properties is highly complicated and involves advanced mathematics of some profundity. It is still the subject of much research by mathematicians. For the present work we shall merely note that one type of code which is quite popular in many applications is known as a maximum length or m-sequence. Although such sequences have some drawbacks, their auto-correlation properties (when the summation is over the whole code length) are excellent. For the purposes of this article we shall henceforth assume the use of an m-sequence as a spreading code, though many practical systems use rather different codes.

M-Sequences

If a clocked binary shift register has its input provided by a logical combination of the contents of its last and some intermediate stages it is called a feedback shift register. If it has n stages, then during any clock (or chip) period it will contain n binary digits, (the "fill"), which may be deemed to represent an n-bit binary number. Since there are two possible values for each bit, there are 2^n possible fills for the register. However, if the feedback logic is linear, (e.g. obtained using only exclusive OR gates) then one of the m-sequences (such as "all 0s") will be self-generating and will result in a completely static or unchanging fill. Consequently, only 2^n−1 binary fills are possible if a dynamic situation is to be achieved.

In general, such a register will produce a limited number of fills forming a subset of the whole set; but it is possible to select the intermediate stages and the feedback logic in such a way that every one of the possible fills occurs at some time; and since the feedback is assumed linear, the whole sequence must then repeat. As a result, such a sequence (taken, for example as the succession of hits from the last stage of the clock feedback circuitry) is a maximum length or m-sequence, and for an n-stage register is 2^n−1 chips long.

In general there is more than one combination of feedback stages and logic which will achieve this for any given n. Giving rise to more than one m-sequence of a given length. For these, although the fill cycles through all possible values but one, the order in which it does so differs for the different m-sequences. Note that one of the fills will be the "all ones" set of n 1s and that the next digit feedback from the feedback logic must be a zero. If it were not, then the fill would not change on that or any succeeding clock cycle, and so we would have a static situation instead of a dynamic one. Moreover, each fill can occur only once in an m-sequence cycle so any m-sequence of length 2^n−1 chips will contain no sequence of 1s longer than n and only one sequence of 1s, and there is no other sequence of length n. Thus the number of possible m-sequences is also very small, but as n (and hence the sequence length) increases it becomes possible to generate more and more different m-sequences from a given length of register. Thus for n=5 there are just 6 different sequences of length 15 chips. For n=7 there are 18 sequences of length 127; for n=11 there are 176 of length 2047; and for n=19 there are 27,594 of length 524,287. It should be noted that it is quite easy to generate m-sequences of enormous length. Thus, a 64-stage register, even if clocked every microsecond, could be connected to produce an m-sequence which would not repeat for nearly 600,000 years! All m-sequences have the property that their autocorrelation function, computed over one complete cycle of 2^n−1 chips is −1 for all integral chip delays other than zero (or a multiple of the sequence length) where, of course it is 2^n−1. Clearly, however, this admirable property can hardly be exploited for very long codes. For example, the n=64 case cited above would involve a delay of 600,000 years before one could even transmit the complete code, let alone perform
correlations; and not even our most maligned communication services would contemplate that!

Shift registers were originally used (and still are) to generate suitable spreading code sequences, but the ubiquitous microprocessor is resulting in increasing use of code generation by software, at least for the lower clock rates.

CARRIER BANDWIDTH

If a sine wave of frequency f_0 is phase switched by a binary sequence with a clock (i.e. chip) period τ, then the resulting broad band “carrier” waveform will have a power spectrum of the form

$$G(t)=P \sin(\pi f_0 t) \sin(\pi f_1 t)$$

where P is a factor defining the total power. This spectrum has its energy primarily concentrated in the range $-1/\tau$ to $1/\tau$. (Over 90% of the energy lies in this range.) In other words we may assess the RF carrier bandwidth as 2τ.

For simplicity we shall assume that all the information to be conveyed is expressed in binary form as a sequence of 1s and −1s. However, since for DSSS the information bandwidth is much less than the carrier bandwidth, each information bit has a duration which is many times that of a spreading code chip, i.e. many clock periods. It is usually desirable and convenient to ensure that each information bit is an integral number of chips long and starts and finishes on a clock edge. However, this is not essential. It is also usually (though not always) desirable and convenient to employ the same type of modulation for information as for generation of the wide-band carrier. In the case of phase reversal modulation (PSK), this is equivalent to modulating the original sinusoid with the algebraic product of the spreading code and the information sequence, each expressed as 1s and −1s. Alternatively, it is equivalent to modulation of the sinusoid by the output of an exclusive-or gate led by the spreading code and the information, both expressed in terms of 1 and 0. This is perhaps the simplest type of information modulation and will be assumed in the following paragraphs though other techniques have also been employed in practice.

DETECTION OF SIGNAL

Almost all DSSS systems rely heavily on correlation processes for detection and receipt of signal. Correlation is discussed briefly below, but may be shown to be equivalent to true matched filtering. Indeed, some DSSS systems actually employ so-called matched filters for this purpose but they are usually not true matched filters in so far as they respond to an appropriate input pattern whenever it occurs. In contrast, a true matched filter will respond to this pattern only if it also occurs at a precisely defined epoch.

CORRELATION

The finite period auto-correlation function $R_c(t)$ of a waveform $F(t)$ is defined as the average value over the period T of the product of $F(t)$ and a delayed version of itself, $F(t-T)$ where T is the delay. Thus

$$R_c(t)=\frac{1}{T} \int_{T}^{T+T} F(t) F(t-T) dt$$

In general, it will be a function of the “starting point” T_0. However, in some circumstances it may be independent of T_0, and one such case arises when $F(t)$ is an in-

sequence. T is the sequence duration or repetition period, and τ is an integral multiple of the chip period. As indicated in the section on m-sequences, we then have (for sequences taking the values +1 and −1):

$$R_c(t)=\begin{cases} 1 & \text{if } |m| < T \text{ where } m \text{ is an integer} \\ 0 & \text{otherwise} \end{cases}$$

In general, of course, the product of a waveform with a delayed (or non-delayed) version of itself will be a third waveform whose statistics differ from those of the original. If the two waveforms are noise-like or randomized, then the product will also be noise-like and even after low-pass filtering (equivalent to the integration process of equation 19) the output will remain noise-like even for $\tau=0$. In other words, if $N(t)$ is a noise waveform,

$$N^2(t)=C^2(t)+1=\text{DC only}$$

Thus $R_c(t)$ is pure DC for a binary waveform but $R_{c}(\tau)$ is primarily a non-DC function for $\tau \neq 0$.

The correlation process is illustrated in Fig. 1 in which time is represented on the horizontal axis. waveform (a) represents a binary reference waveform, $C(t)$. Waveform (b) is the same waveform in perfect synchronism with (a) corresponding to $\tau=0$, i.e. it is also $C(t)$. Waveform (c) is their product $C(t)C(t)=-1, i.e. \text{pure DC}$

Waveform (d) is said to correlate perfectly with (a). Note that if either (a) or (b), but not both, is inverted, the product becomes -1, i.e. DC of opposite polarity. This is an important property. Waveform (d) is the reference waveform (a) but shifted in time to give $C(t+\tau)$ and waveform (e) is the product of (a) and (d) which has only a small DC component and some AC components containing quite high frequencies. In this case, the correlation (at the shift τ) is said to be small. (Note that it is irrelevant whether one considers delayed or advanced waveforms since, reversion to equation 19, the integrand $P(t)R_c(t)$ is identical to $P(t)C(t)$, i.e. $P(t)$ has been written for $P(t)-\tau$). If $F(t)$ is such that $R_{c}(T)$ is independent of the “start” time T_0, then from equation (19) there is no difference between that equation and the similar equation using F_{t_0}.

If we now imagine that (a) is a transmitted waveform but that binary information is impressed by reversing its polarity if the information bit is a −1, and if, at the receiver, we produce the synchronous waveform (b) but with no such reversals, then the product of the two will alternate between $+1$ (positive DC) and -1 (negative DC) in precise agreement with the information bit stream.

If the input waveform is translated to radio frequencies by a linear modulation process, the same principles will apply, although depending on the modulation/correlation implementations some further demodulation may be required.

FUNDAMENTAL FEATURES

We may summarize the essence of an archetypal DSSS system as follows. With $C(t)$ (taking values +1 and −1) representing the
binary spreading code and $I(t)$ (also taking the values $+1$ and -1) representing the binary information sequence.

At the transmitter, the transmitted signal is given by

$$I(t) \times C(t) \times \sin(\omega t) = \cos(\omega t - \pi t/2) \times I(t) \times C(t)$$

($I(t)$: Wideband carrier) [Wideband (WB) PSK]

Figures 2 and 3 show a transmitter and receiver according to the above functions. As indicated by the dotted lines, it is often that by no means phases possible to use in the transmitter, a sinusoidal initial carrier ($\sin(\omega t)$) whose frequency is related to the spreading logic clock rate. (For example, the clock could be derived by counting down from the frequency $\omega t/2\pi$.)

We now have the problem of generating $C(t)$ at the receiver and getting it in synchronism with the received signal. We also have the problem of providing a narrow band local oscillator, $\sin(\omega t)$, in phase synchronism with the output from the despreader. These two functions are here considered separately because they are often performed separately, though conceptually they might be combined and in some cases have been. Here, as elsewhere, I shall merely indicate a possible technique for solving each problem. You should not infer that they are the only possible techniques or even necessarily the best for any particular implementation. They are, however, well-tried techniques in common use.

CODE ACQUISITION

It is clear that if the spreading code $C(t)$ is defined in terms of a particular algorithm or of a particular set of shift register feedback connections and combining logic, then $C(t)$ can be reproduced at the receiver. It is also apparent that provided this receiver code is in perfect synchronism with the received signal, the system will work well regardless of the auto-correlation properties of the code. (We here ignore some subtleties related to intelligent jamming.) However, in general the receiver code will not be synchronized with the incoming signal ab initio and it is in the process of obtaining such synchronism (or "code acquisition") that the auto-correlation properties are particularly significant.

Note that the accuracy required for synchronism is within a small fraction of a chip period, so that for typical clock rates of say 10 MHz this implies accuracy of the order of 100 nanoseconds. For immediate purposes we shall consider a base-band system only and ignore complications due to translations to higher frequencies.

In principle, of course, one could envisage a huge bank of correlators, each fed by the received signal and by a delayed version of the locally-generated code, the delays being slightly different for each correlator. If there were sufficient correlators to cover all conceivable code sequences (within the acceptable small fraction of a chip error), then the correlator giving the largest low frequency output power within the information bandwidth would be that for which the local code and the received signal were most nearly synchronized.

In practice, the cost and complexity of such a system would normally be prohibitive, though some systems do incorporate partial parallelism of this sort. Consequently, code acquisition is normally attained by means of a serial search procedure.

In passing, it is important to realize that DSSS systems are expected to work at very low signal-to-noise ratios (i.e., much less than unity or 0 dB) so that the idea of detecting the received signal directly and extracting the modulation (including the spreading code) is a mere pipe-dream. Indeed, it is only by the correlation process that the signal can be extracted.

The idea of sequential searching immediately imposes constraints. Since the synchronizing precision required is within a small part of a chip period, the search must either be quantized into similarly small steps of local code delay or must progress continuously at a correspondingly low rate. In the quantized case, the search must be halted after each step for a sufficient time (the integration period T) to allow adequate assessment of the degree of correlation; and the more powerful the system (i.e., the lower the signal/noise ratio to be handled), the longer this time must be. In the continuous case, the "sweep" must be sufficiently slow that it does not, over the correlation or integration time T, result in a significant displacement or drift of more than the permissible fraction of a chip period. Thus the search is slow, and in the absence of any other timing information must be expected sometimes to need to proceed through almost the entire length of the code.

For long codes, the corresponding time to acquire code lock can be prohibitively long; times of hours, days, months, years, centuries or millennia can easily emerge from the relevant arithmetic and indeed many practical systems do allow minutes or even, in exceptional cases, a small number of hours to attain lock. Nevertheless, for most purposes, it is necessary to acquire lock in a time much less than an hour and often much less than a minute.

As a result, various subterfuges are employed to achieve more acceptable synchronization times. Most of these result in some theoretical degradation of performance, but two are especially simple to appreciate and are of some importance in practice.

Firstly, if both transmitter and receiver contain very high precision (e.g., atomic) clocks and have previously been synchronized, for example by the use of transfer standards, then the only timing error between the received and local codes at the receiver will be due to propagation delay (and equipment delays which can be measured and allowed for). If this propagation delay is also accurately known then no code acquisition system is required in theory. However, even if it is not known precisely, for "adio" systems it will not normally exceed a few milliseconds; and if the approximate separation of transmitter and receiver is known, the actual uncertainty in delay may be much less. Only a very limited search is
sufficient for code lock in such cases. Secondly, systems such as the US GPS (Navstar) satellite system can also provide highly accurate time references to both transmitter and receiver, thus reducing the need for atomic clocks. Navstar itself employs DSSS as an interference-resistant means of communicating its information.

If no high precision timing is available, then one may employ short codes so that the amount of searching required is limited to this shorter code length. However, short codes have some potential disadvantages in respect of both intelligent jamming and low detectability; and so they are often combined with long codes in such a way that the short code is used primarily to achieve code lock which is then "transferred" to the long code, a relatively simple process since the two codes can be driven by the same clock. The chief weakness of such schemes in respect of jamming is then restricted to the initial code acquisition period and is usually far less serious than is sometimes believed. Nevertheless, all schemes to expedite code acquisition introduce some potential degradation of overall performance, though its exploitation by a jammer may be much less easy than a superficial examination would suggest.

We shall henceforth ignore these complications and merely consider how one might implement an acquisition system involving sequential search, and for simplicity we shall assume that the local code is advanced in steps of some suitably small fraction of a chip period. At each code phase position the code phase is held for the selected integration (or correlation) period, here assumed to be the m-sequence repetition period (T), and the correlation factor is evaluated essentially by assessing the bandwidth of the resulting output. For example, if the correlation is performed at base band, then, when synchronized, the output will be dominated by a large narrow-band component centred on zero frequency, i.e. a low frequency component. If, on the other hand, correlation is performed at IF or at RF then the synchronized output will be dominated by a narrow-band component centred on that IF or RF. Unless the received and local codes are in synchronism or very close to it, the output will be like wide-band noise of low power density so that if it is followed by a narrow-band filter and rectifier (or low-pass filter in the base-band case) the output will be small. Hence we may terminate the search when such output attains an adequate magnitude. This also gives rise to a scheme for maintaining code synchronism when once achieved. The circuit which performs this function is called the code lock loop and is sometimes switched into the system only when synchronism has been detected. Figure 4 depicts a signal acquisition system.

CODE LOCK LOOP

There are many variants on the basic theme for code lock loops but we shall here describe only one of them, commonly known as the "early-late gate" or "delay lock" loop. In this, three slightly time or phase shifted versions of the local code are produced, the phase shift or relative delay being the same between successive pairs. If the codes, in order of increasing delay, are designated C0, Cx, and Cy (for early, prompt and late) and if each is led to a correlator for which the other input is the received signal, then when Cy is in synchronism with the received signal, the "prompt" channel will have maximum despread output (used for information extraction) while the "early" and "late" channels will both have despread outputs of magnitude rather smaller than the prompt channel but virtually equal to each other. Thus the difference between these two outputs will be nominally zero. But if the codes Cx, Cy and C0 "drift" with respect to the incoming signal then one of them will be nearer synchronism than the other and its output will therefore be greater. The difference between the two outputs will then be non-zero and, in the base-band case, the polarity of this (DC) difference will depend on which is the larger and hence on the "direction" of the drift. It can therefore be used to control the phase of the local code (usually by controlling the clock frequency) so as to maintain synchronism in the prompt channel.

Figure 5 shows a code lock loop based on these principles but does not explicitly show the circuit outlined in Fig. 4 for detecting synchronism in the prompt channel and switching in the loop itself.

In passing, it may be noted that the code lock loop does not have to be switched in after synchronism despite the advantages of doing. If it is left permanently in circuit it can actually acquire lock prior to maintaining it.

SIGNAL EXTRACTION

In the implementation of Fig. 4, once code synchronism is achieved the output from the central prompt channel will be a narrow-band (i.e. sinusoidal carrier, phase-reversal modulated by the information waveform (f)). This output is represented by (f)sinwt.

To extract (f) we must employ a coherent demodulation technique which requires generation of a reference signal sinwt as
indicated in Fig. 3. This is achieved by feeding the signal output into a square-law device; and because \(I(t) \) is a binary waveform and \(F(t) = 1 \), its output will be

\[
F(t) \sin \omega t = \frac{1}{2} + \frac{1}{2} \cos 2\omega t
\]

If a narrow band filter, centred on \(\omega t \) is now applied, a relatively pure signal of the form \(\cos 2\omega t \) is available which can be further fed into a frequency halving circuit to produce \(2\sin t \). Small phase errors arising from the filtering etc. can be measured and allowed for.

Figure 6 shows a signal extraction system based on this principle. Note the inherent uncertainty arising from frequency halving. That is to say we produce either \(+ \sin t \) or \(- \sin t \) but we do not know which. Thus use of this output for coherent demodulation produces either \(I(t) \) or \(- I(t) \).

Various techniques can be used to resolve the ambiguity. For example, a predetermined code sequence can be incorporated within the information sequence \(I(t) \). If this appears inverted at the receiver output then that output can be inverted to correct the "polarity". This approach demands reasonably stable propagation delay between transmitter and receiver, and so a rather more popular technique is to employ differential encoding of the information delay between transmitter and receiver, and so a rather more popular technique is to employ differential encoding of the information. In one implementation of this, the phase of the carrier is reversed whenever the data bit is \(+1\). The information is then extracted by comparing the received bit phase or polarity with that of its immediate predecessor. Thus, even if the reference sine wave in the receiver is inverted, the information will still be correctly received apart from one or two bits at the beginning of reception. Allowance can easily be made for this.

Differential encoding tends to double error rates because if one bit is incorrectly decoded the following one will probably be also. In other words errors will tend to occur in pairs. However, if the error rate is sufficiently low (and despreading it should be), differential encoding is a very useful technique.

EFFECT OF NOISE AND JAMMING

For simplicity and ease of understanding we have so far considered noise-free signals at the receiver. Since a major aim of DSSS is to counter high levels of interference we shall conclude with a brief discussion of what happens when the signal is deeply immersed in noise of some sort. We must note, however, that all the processes described above, with the exception of the code-lock detection and coherent detection regeneration circuitry, are linear, so that noise and interference can be viewed as entirely linearly additive features. (This also applies if, as is usual, the received frequencies are heterodyned down to some lower intermediate frequency.)

Reference to Fig. 3, if the input signal contains additive noise or jamming which is uncorrelated with the signal, that component will also, in the correlator, be multiplied by the local code \(C(t) \). If the noise bandwidth is wide, this will make it even wider. If it is small (e.g. a sinusoid), it will be spread to give the same sort of spectrum as the original DSSS signal. On the other hand, all the energy in the true DSSS signal will have been translated into the narrow bandwidth of the information. The ensuing filter will therefore pass almost all the signal energy but reject all but a small fraction of the noise energy. Of this small amount, on average half will be in "phase" with \(\sin t \) and half in quadrature, and this last half will be further rejected after coherent demodulation and filtering. Hence noise and interference rejection of a high order is achieved.

The first, and major, noise reduction also applies to the signals used for regeneration of the carrier sinus (Fig. 5). To reduce noise further in this circuit, a very narrow band filter at the double frequency may be employed since this filter does not even have to accommodate the information bandwidth. In practice one might use a fairly narrow-band filter followed by an injection-locked oscillator to achieve the desired very narrow band filtering. This oscillator could be at the double frequency or at the desired output frequency \(\omega 2\pi \), thus performing filtering and frequency halving simultaneously.

Note the importance of performing correlation before coherent demodulation. If one were to attempt the two processes in reverse order, the nonlinear "square-law" device would result in the translation of a substantial amount of noise from the entire RF bandwidth into the narrow bandwidth of the filter whose output is used to determine the required phase of the local oscillator. In consequence this oscillator would be subject to much greater phase jitter, resulting in degraded performance.

Most of the description above is related to analogue implementations. This is quite deliberate since in many instances these are the only feasible techniques at the present state of technology. However, in many other instances a primarily digital implementation is possible. In fact, implementation is heavily constrained by system parameters and current technology, so it is not useful in an article of this kind to pursue the matter further. Suffice it to say that entirely digital implementations would in many cases demand extremely high clock rates.

Before concluding, I should mention one other property of spread-spectrum which I have so far ignored. If the chip period is fairly small compared with likely differential propagation delays, then DSSS provides significant protection against multi-path propagation and fading. The inherent redundancy would in any case give some protection of this type; but if the receiver locks on to the shortest delay path signal (which can be arranged by choice of code search "direction") then other replicas, delayed by more than say a half-chip period, will be rejected in the same way as other interference.

Indeed, with further complexity it is possible to conceive receiving systems with parallel reception which accept several differently-delayed versions of the signal, to correct for the delays (which are easily assessed from the relative code delays in the various channels) and then to combine the outputs coherently (with appropriate weighting for signal-to-noise ratio) to provide maximum use of all the received energy. One such system was in fact implemented in the late 1950s, but whether the complexity is justified by the performance gain is a matter of debate.

Finally, I should mention the possibility of systems in which many transmissions exist simultaneously within the same (widened) bandwidth. Since all but the signal to which the receiver is locked can be considered as interference and will therefore be rejected, such "multiplexing" is possible and does not demand any sort of "co-operation" between the transmitters in respect of timing (cf. time division multiplexing, TDM) or frequency allocation (cf. frequency division multiplexing, FDM). It therefore offers attractive features for some applications. However, to ensure that each receiver locks onto its intended signal, it is necessary that each transmitter has its own distinctive spreading code. This gives rise to the description "code division multiplex" or CDM for such schemes.

When CDM is employed, it is essential that there is little risk of the receiver locking on to the "wrong" code, even if the signal level associated with that code is much greater than that of the desired signal. To ensure this, the cross-correlation properties of the set of codes employed is of great importance; and again, highly advanced mathematics is involved in deriving such sets. Again, also, this continues to provide an area of research for mathematicians. In a future article I shall mention a type of CDM system which received much attention in the 1960s and early 1970s.

In the next article the writer will consider error-correction and detection systems.

Reference

March 1989 \ ELECTRONICS & WIRELESS WORLD \ 279
Eprom copier

Both 2746 and 27128 eproms can be copied quickly and easily using only a handful of standard ICs.

Two 393 counters are clocked by a 555 timer that can be set for two different timings – fast for erase checking/verifying and slow (10 to 50ms set by the potentiometer) for programming. All reading and programming is done while the clock is high, leaving the low period for address and data changes.

Sequencing of the check, program and verify phases is controlled by address lines A14, A15, which are the two most significant outputs of the counter. When both lines are low, i.e. on the first time through the count, pins one and ten of IC3 and A14 provide signals for disabling the buffer and setting the 555 to its fast mode. Comparator IC8 compares output of the copy with the disabled master; if they are not the same, output of IC8 goes high, taking the D input of IC10 high to stop the count and light the error led. If all locations are FF, the count continues until A14 goes high.

During the programming cycle, IC8 pins one and ten together with A14 enable the master rom, enable the buffer and select the slow clock. When A14 is high and A15 is low, programming pulses from the 555 pass to the rom via IC9, pin 5 and IC5, pin 6.

Verification is achieved in the same way as blank checking but with the master enabled.

To change from 2764 to 27128, clock input to IC3 is taken from A0 rather than A7 and A7 and A13 are swapped. A facility for overriding the erase-checking phase is included for occasions when an attempt at programming a rom was unsuccessful and a second cycle is needed. An oscilloscope is needed to set the programming pulses.

D. Pinch and J. Wike
South Wales Radiotherapy and Oncology Service, Velindre Hospital Cardiff

Z80 accelerator

In Z80 systems with no dynamic ram, the processor wastes time producing refresh cycles. This is also true for systems using a separate dynamic-ram controller.

Provided that the processor is running at 4MHz or slower a cycle can be gained by applying an 8MHz clock during refresh. This accelerator, which gives speed gains of up to 25%, requires the use of an 8MHz Z80 but all other existing components remain the same.

Note that the two seemingly redundant OR gates are to introduce delays. A two-to-one-line data selector is unsuitable for this application.

N. W. Wright
Bandley Chipware
Appleby, Cumbria
Accurate lamp timer

Mains-derived pulses determine delays of between 0 to 49.5s in this accurate lamp timer. Two ten-way switches set the time — a fine control for 0-4.5s and a coarse control for 0-45s. Manual start and stop buttons turn the lamp on and off.

In my prototype, the opto-coupled triac was rated at 24W and the bulb at 60W — hence the second triac. Exercise great care in construction, following the regulations regarding equipment connected to the mains.

S.J. Churchman
Richmond
North Yorkshire

March 1989 ELECTRONICS & WIRELESS WORLD
Economical 16bit converter

Two eight-bit data converters and a switchable-gain amplifier could be used to make an economical 16bit a-to-d converter suitable for audio use.

Input is buffered, sampled, then fed to a differential amplifier with programmable gain. During the first clock cycle, gain of this amplifier is one so the original signal is converted directly to digital form and stored to the latch as the eight most-significant conversion bits.

These bits feed a d-to-a converter, output of which is compared with the sampled original signal in the second clock cycle. After being amplified by 255, the difference signal is fed to the d-to-a converter to produce the eight least-significant bits.

For an a-to-d converter with 10µs conversion time and a d-to-a converter with 1µs settling time, a sampling frequency of,

\[f_s = \frac{1}{(12 + 12)\mu s} = 40kHz \]

is fast enough for audio purposes. For the programmable amplifier, input buffer and sampler, I suggest an NE5534. Data conversion could be carried out by a ZN427 and ZN428.

Logic tester

Power consumption of this tester is about 10mA. Potentiometers allow the thresholds to be set to suit a variety of logic technologies.

Igor Sinovic
Split, Yugoslavia

NEXT MONTH

Decoding satellite TV transmissions

When the film companies demanded a fool-proof system of programme encryption from Rupert Murdoch’s Sky Channel with a £25 million forfeit as the price for breaking the code, they put every self respecting hacker under starter’s orders. Reach for the sky with Electronics & Wireless World.

A designer’s guide to RS232

Spitting Image knew what it was doing when it wrote the RS232 song in praise of the total confusion surrounding the subject. If you don’t find the subject a system designer’s joke, read the article and gain confidence to laugh with all the rest of them.

The enigmatic ball bearing

Would you believe that ball bearings can be made to rotate by passing a large current between the inner and outer sections of the ball race? We didn’t either until Bulgarian dissident Dr Stefan Marinov demonstrated the effect. It wasn’t a marginal one either. Whatever its origin, it possessed enough speed and torque to remove the skin from the editor’s thumb.

Object oriented programming

Conventional programming languages provide an applications framework which accepts data into the holes within the frame. Customising the application depends on filling the holes in a specific way. OOPs integrates the supporting structure into the data to form a series of communicating objects which combine to form the application.
KBFS—1
THE BEST THERE IS?
A very high bandwidth video framstore

- 35MHz sample rate, 14.5MHz bandwidth. Real time capture and display. 8 bit greyscale.
- User definable image size: 2048 x 625; 1300 x 1024; 1024 x 875 etc.
- Asynchronous input and output data rates allows slow scan inputs with video outputs.
- Arithmetic and logical functions between live and stored image.
- Input and output lookup tables.
- Pseudo colour outputs.
- Proven fast DR11W interfaces to Unibus, Q-bus, VME etc.
- Cameras, Monitors and printers available.
- British designed and built.
- Custom versions available.

Please contact either Dave Griggs or Dan Ogilvie at:
OGGITRONICS LTD
Poole House, 37 High Street, Maldon, Essex, England CM9 7PF.
Telephone: (0621) 50378 or 54993

REAL TIME VIDEO PROCESSORS

- 800 pixel x 576 line image capture and processing – 7MHz bandwidth.
- Real time recursive or incremental averaging and subtraction over 256 frames.
- Real time histogram equalisation and image normalising.
- Arithmetic and logical functions between live and stored processed or unprocessed images.
- 16-bit processing store – no truncation or rounding errors.
- Separate buffer store for display and transparent computer interfacing.
- British designed and built. Full technical support.
- Custom versions available.

Please contact either Dave Griggs or Dan Ogilvie at:
OGGITRONICS LTD
Poole House, 37 High Street, Maldon, Essex, England CM9 7PF.
Telephone: (0621) 50378 or 54993

TEST SUITE

Automate any process quickly and easily using TEST SUITE. This new program generation environment uses Microsoft Windows to give the programmer the best possible tools for producing test software. The suite allows the basic program structure to be generated from simple menu selections, then the details are filled in by learning operations either from current interactions with the IEEE 488 bus or from device windows. A complete program can be produced very quickly.

- Multi-tasking windows environment
- IEEE 488 control
- Highly structured language
- Compile TEST code in QuickBASIC to produce stand alone executable files
- Automate laboratory experiments in minutes not hours.
- IEEE 488 monitor window
- 24 months free software maintenance
- System requirements; 640K RAM, hard disc, CGA (prefer EGA)

Please contact either Dave Griggs or Dan Ogilvie at:
OGGITRONICS LTD
Poole House, 37 High Street, Maldon, Essex, England CM9 7PF.
Telephone: (0621) 50378 or 54993

ENTER 16 ON REPLY CARD

March 1989 ELECTRONICS & WIRELESS WORLD
Decoding RDS

Following his examination of the RDS signal in last month's article, the author goes on to describe a practical implementation of the non-executive functions

SIMON J. PARNALL

DISPLAY FEATURES

In deciding upon the RDS features to support in this design it was necessary to eliminate any feature that required the unit to interface with the tuning control system of the set, simply because a generalized design could not be produced which would interface with a wide range of commercial receivers.

Instead, features which may be displayed have been selected, the only possible exception being the provision of uncommitted open-drain outputs for the TP and TA flags. These could be used for executive control (e.g. raising the volume, stopping a cassette) but are intended to be used for external lamps or leds.

The RDS features supported are as follows:
- PS - programme service name
- PTY - programme type
- RT - radiotext
- CT - clock time (date not supported)
- TP - travel programme
- TA - travel announcement

Having decided on the above features, the choice of a suitable display had to be made. A dot matrix LCD module offering lower-case letters was selected. Lower case letters are particularly important when displaying the PS names of BBC local radio stations because the names are often condensed by omitting vowels, and legibility decreases dramatically if upper-case letters are used to display the result.

The EBU has defined the meanings of the PTY (programme type) codes. These may be expressed in as few as eight characters, but 16 characters provide room to express the codes without any unfortunate abbreviations. “Serious Classics” for example. However, radiotext requires up to 64 characters. A display offering this amount of space would be large and costly, therefore I decided to use a smaller display and introduce a scrolling action, bringing the radiotext message, character by character, through the available window at a readable rate.

Three basic display modes were chosen, all fitting on to a 16-character display module: Mode 0 (PS and time); Mode 1 (programme type); and Mode 2 (scrolling radiotext).

Radiotext messages are formatted by the BBC as two lines of 32 characters, 64 in total. Text is often centred on these two lines by the introduction of leading and trailing spaces. It was important that the text should be legible on the scrolling 16 character display; therefore it was decided that the unit should condense multiple spaces, reducing such intervals to one to aid intelligibility.

Clock time information, although transmitted every minute (only by the BBC at present in the UK), may not be accurately decoded every time. The decoder must therefore maintain its own internal clock and lock this to CT information when decoded.

RDS DEVICES

Hybrid devices incorporating the 57kHz bandpass filter, synchronous demodulator, bi-phase symbol decoder and differential decoder are now available to OEM's. One such device, made by Blaupunkt GmbH of West Germany, is used in this design. It Recovery of the raw data is dealt with by a hybrid module (left); implementing an RDS receiver is largely a matter of software. In a commercial receiver, the same microcomputer could control the synthesizer.

Fig.7 (right). Circuit diagram of the complete unit. Suitable LCDs are Sharp LM16155 and Hitachi LM020L or LM020L: this last includes a LED back light. Specialized components and completed modules are available—for details, see text footnotes.

A

utotuning is obviously the single most important benefit that listeners will be able to derive from RDS. The ability to drive from A to B without having to re-tune, without even being aware that the set is re-tuning for you, is a highly significant gain for the motorist.

Aware of this fact, car radio manufacturers are actively developing the LSI necessary to pack the autotuning features into the standard DIN/ISO case. An RDS decoder interfaces with, and controls, the synthesized tuner in such a set. It may well be that the only RDS display feature incorporated in such a set is the PS (programme service) name.

In this article I should like to ignore the car radio market and describe instead the type of decoder which might well be built into a hi-fi tuner, concentrating on the display aspects of RDS. The design I shall describe could, of course, be used in the car but does not have any of the executive functions that an RDS car receiver would have. Its only interface with a receiver, unless power is derived from the latter, need be a feed of stereo multiplex, derived after the IF stage and before the stereo decoder.
The microcomputer is reset by Tr, and its associated timing components. The reset pin of the processor is used to supply power to the on-chip eprom during operation. To ensure that the supply voltage of this pin is within tolerances, R1, the supply resistor, must be of a low value. The 47Ω resistor specified meets this condition.

DISPLAY

At least three physically and electrically equivalent LCD modules may be used in this particular unit. One of the Hitachi devices specified has the added benefit of a led backlight facility. If this device is used the backlight may be disconnected (to reduce power consumption) by removing L1. Viewing angle is optimized as usual by R5.

INTERRUPTS

Two external interrupt mechanisms are provided on the MC68701: a maskable, level sensitive interrupt (no) and a non-maskable, edge-triggered interrupt (sw). The RDS hybrid bit-decoder produces a 50% duty cycle bit-rate clock with a rising edge at the centre of each bit cell. Use of the no pin would have necessitated an external flip-flop circuit to prevent multiple triggers at each clock period. The sw pin required only one inverter, and the availability of a spare NOR gate from the display interface permitted the incorporation of a switching facility, controlled from Port 1. This is used to enable/disable sw triggers.

Individual bits of Port 1 may be assigned as either inputs or outputs. Bit 0 is the RDS bit-stream input. Bit 1 is an output, used to disable sw triggers. Bits 2 and 3 are used, as inputs, to set the display mode. A single-pole changeover push-button is connected to these lines as shown in the circuit diagram. Bit 4, an input, selects an automatic display feature when grounded. Bit 5, also assigned as an input, is currently unused.

SIGNAL INPUT

The unit requires a feed of stereo multiplex. This is the signal presented to the stereo decoder within a receiver. It contains baseband audio, pilot-tone, stereo-subcarrier, and now RDS. All receivers incorporate a low-pass filter to remove signal components above 33kHz. Ideally the signal should be extracted before the filter.

Any DC component in the input signal is removed by C4 before this is presented to the load. R2, Transistor Tr1 gives a gain of about 14dB. Potentiometer R3 should be adjusted to obtain an overall multiplex envelope of 1V pk-pk at the collector of this transistor, measured at TP1. This corresponds to the peak deviation of ±75kHz specified for FM broadcasting in Europe.

Fig.8. Spectrum of the multiplex signal.

Fig.9. Decoding RDS groups: this one is type 2A.
This adjustment is most easily made by setting pilot tone level to 81mV, as shown in the above table. Pilot tone is of constant amplitude, and easily recognised on an oscilloscope. I recommend Radio 3 as a source for making this adjustment. The wide dynamic range in classical music offers periods of near-silence when pilot tone dominates the audio signal.

When the input level is correctly set the bit-decoder should have no difficulty with RHS signals at the minimum level specified by the EBU (an injection of 1.0 kHz).

SOFTWARE

The software is divided into three parts, each operating at a distinct 'priority'. These priorities are, respectively, interrupt, fork and loop.

The interrupt handler is invoked by each falling clock edge. As mentioned previously the length of time taken for the consequent servicing may be as little as 66µs, or as much as 852µs. Variations in interrupt service time are a function of the degree of completion of the accumulated block and group. Maximal time is taken when the received bit results in completion of a block and completion of a group. This happens when successive blocks yield syndromes A, B, C/C', and D. The interrupt handler signals this event by setting a flag, indicating that the group buffer contains the four consecutive group data words. This is known as the fork flag.

The loop code checks the state of the fork flag whenever it waits for completion of display activity or for the timer. If set, the fork flag indicates that the processor should service a received group. This is performed by the fork code and must be accomplished within 22ms (one block period), as at the end of this period a new Block 1 would be expected to overwite that held within the buffer.

The fork service code inspects Block 2 of the group to determine which group type is present. Our decoder responds to a subset of the possible group types, using those which offer the better features overall. Other groups are ignored. Types 0A and 0B have already been described and shown (Fig. 4, 5). The other supported types are shown in Fig. 9, 10, 11.

A software handler for each of the supported group types uses the group data buffer to update the internal database for the PS, PTY, TA, RT and CT features. Additionally, when received, the TP and TA bits are written directly to the corresponding physical lines (Port 1), ensuring that these lines reflect a change in state as quickly as possible.

The loop code, as its name suggests, repeats continually until it is interrupted, or voluntarily passes control to the fork code. As such it may be described as a background task. The loop operates on a 0.65s cycle, waiting for the internal timer to indicate the elapse of this period before repeating. A count of 0.65s cycles is maintained in the variable TIME_COUNT. Twenty 'ticks' constitute one second. When TIME_COUNT reaches 21, the count is reset to zero and the hours, minutes and second variables maintained in memory are accordingly increased. Thus the unit is not reliant upon the minute-by-minute reception of type 4A groups for accurate timekeeping, but has its own 'flywheel'. This maintains an accuracy of about ±1.10s per day. When successfully decoded, a type 4A group updates the time variables and resets the 'flywheel' to zero, synchronizing internal timekeeping and preventing double increments.

DISPLAY MODE

At the start of each loop cycle the display mode control button is sampled, de-bounced (using a purity test) and compared with the last value read. A positive edge calls for the display mode to be incremented.

The display mode is held in memory as two nibbles:

1. MODE | 10LW

MODE is the actual display mode (i.e. 0, 1 or 2). 10LW represents the number of 0.1s intervals left in this display mode, and is set to 15 every time the display mode is increased. If MODE were 1 and LW were 6 (0.6s remaining in Mode 1), then after a button press MODE would become 2 and LW would become 15 (1.5s remaining in Mode 2). On subsequent cycles at 0.1s intervals when MODE is even, the LW value is decremented. When this reaches zero MODE itself is reset to zero. This facility holds each higher display mode for 1.5s before returning to the basic mode. If the button is pressed again during this period the next display mode is engaged and so on. This mechanism could support as many as 16 modes, but at present only three are used.

The display cycle rate is halved when MODE 2 (radiotext display) is selected, resulting in a 5Hz character rate — about right for scrolled text. As mentioned earlier, multiple spaces are condensed to one for intelligibility, rendering the complete time to display a message as a variable. As each character is written MODE is held at 13, holding the timeout period (now double because of the reduced rate) until the last character is written.

If the automatic display option is selected, by holding P14 to ground, the display mode is automatically incremented at 20s past each minute, or whenever 10s reaches 1. Normally the display will show PS and time at 20s past the minute's edge PTY will be shown, and 1.4s later the radiotext message will scroll across the display. Three seconds after completion the display will return to PS and time.

SYNCHRONIZATION CONTROL

One important aspect of the operation of this device is the use of a confidence count to monitor block synchronization. The unit does not make use of the bit-slip detection and correction system described earlier because of the complexity and increase in memory requirements. Instead, a confidence count monitors the number of valid and invalid syndromes detected. The first valid syndrome detected sets the count to 42, subsequent valid results increment this number by 4 to a maximum of 60. An invalid syndrome decrements the count by 1. Re-synchronization (i.e. a bit-hit syndrome check) is performed when the figure drops below 11. When the figure drops below 10, the input signal is assumed to have disappeared, and the RHS programme-related features stored in memory are re-initialized to their default state.

The author would like to thank the BBC's Director of Engineering for his permission to publish this article.

Specialized components and completed modules are available for the decoder design. For details send a stamped, addressed envelope to the BBC for the same source, or to Motorola 5-format hex listing.

Simon Farrell is a senior design engineer with the Photocopy. Photocopy, which joined after graduating from Imperial College, London, in 1986. He has been involved with RHS since 1986, mainly in designing the BBC's implementation of the system, and has written much of the software for the central RHS computer at Broadcasting House.
A storage sub-system traditionally meant Winchesters. Magnetically-coated hard disks are still the first choice of the vast majority of systems builders although other technologies are catching up. In particular, optical technology could become the developer's preference of the 1990s. Naturally, hard disk manufacturers disagree but there is a considerable body of disinterested opinion which concurs.

A look at the development of hard disk sub-systems over the lifetime of the PC standard suggests there is still plenty of life left in magnetic storage. When IBM's PC/XT erupted onto the computing scene five or six years ago, its full height, 10Mb Winchester had an access time of around 80ms. Phenomenal though it seemed at the time, probably few imagined how quickly that 10Mb could be gobbled up and how slow such a device would seem when servicing today's enormous applications. At the high end of today's market, you subsequently find hard disks with capacities of up to 330Mb, and average track-to-track access times of well under 20ms. Although access time is a common rule of thumb method for assessing hard disk performance, it is not the only one nor is it necessarily the most meaningful. It only describes how quickly the read/write heads move on average from one track to the next. The data transfer rate is often more helpful when evaluating disk sub-system performance as a whole, as it takes into account the design of the controller and the drive's electronics.

Controllers convert the operating system's instructions into specific head movements and have a strong influence on end users' perception of computer performance. For example, many of today's high-performance controllers include large quantities of cache memory that boost the disk's performance out of recognition. One 80386-based PC controller has an internal hardware cache of 3Mb that, when tested, returns track-to-track access times of half a millisecond and data transfer rates of tens of megabytes per second. The consequence for the user is almost instant response — as long as the data required is already in the cache.

Controllers also determine the number of sectors per track that can be supported, and the type of drive. Here too developments have overtaken expectations with the PC industry spawning a wider range of formats and drive types than was at first envisaged. This development has had serious repercussions for the type of interface employed to integrate computer and hard disk systems.

THE INTERFACE

Between the computer and hard disk sub-system of most PCs can be found the ST506 interface, which Seagate derived in 1980 from its floppy disk controller. In a modified form, it became the IEEE 415 specification and was used first in the PC/XT. The technology in the ST506 reflects the state of hard disk technology at the time. For instance, manufacturing accuracy of contemporary hard disks was relatively low. Flying heights of hard disk read/write heads were over 12 microns, motor speed variations were high at between one and four percent, and stepper motors — used to position the heads above the tracks — were relatively inaccurate.

The ST506 was designed with the relatively low data densities that flow from such technological constraints. The drawbacks are not confined to relatively poor performance. The original design didn't include checking and error correction, which meant that error rates had to be kept to an absolute minimum.

More prevalent these days is the Enhanced Small Device Interface (ESDI) which is becoming a stamp of respectability for PCs at the mid to high end of the power spectrum. It was created by a consortium of 22 manufacturers out of a desire for better hard disk performance. It followed improvements in the manufacturing tolerances of the drives themselves. Particular improvements include tighter motor speed tolerances — commonly around one percent; flying heights of 10 microns or less; and more coercive media — now 600-700 oersted as against 300-350 oersted in 1980. ESDI also supports formats of up to 34 sectors per track and a maximum formatted capacity of 340Mb. The upshot is

MANEK DUBASH

The ESDI standard puts a degree of intelligence into the disk interface. This leaves the system host CPU free to get on with other jobs.
that the interface can offer double the data throughput of ST506, up to its maximum of 102Mbit/s.

And finally, due to the proximity of the data recovery circuitry to the read/write head, mounted within the drive itself. ESDI is less prone to externally-generated errors, while at the same time being more fault-tolerant due to more sophisticated error correction.

ESDI, like other computing standards, has been implemented by various manufacturers in ways that suit them. Western Digital's ESDI copies the drive tables off the disk into shadow ram, where they can be altered to cater for new types of drive as they emerge. WD also builds drive tables into its controllers' rom bios and adds value by including utilities such as a formatting program.

Part of ESDI's higher performance stems from its ability to delegate. Unlike the ST506, it possesses some independence from the main system. This permits a limited degree of multi-tasking, so that the host can carry on processing while the controller is accessing the disk. Another advantage stems from its so-called common command set.

one it shares with the more powerful standard SCSI (Small Computer System Interface). With a single command, the host computer can initiate formatting, leaving the controller to deal with the technicalities.

the number of sectors, tracks and so on. The host can be oblivious to the drive's physical nature.

Miniscribe, a leading hard disk maker, anticipates that the standard interface for the more powerful PCs of the future will be SCSI, which can also handle data transfer rates of up to 120Mbit/s. Like ESDI, it is media independent but it also allows up to seven devices to be daisychained off the back of any single SCSI control device. Huge amounts of data then become accessible to a single PC through the SCSI conduit.

SCSI's flexibility results from its data transfer method. It talks not in terms of heads and cylinders but in blocks of data. These could originate from any storage device, whether optical, tape or even those as yet unthought of. It delivers its best performance when mounted with blocks of data. Miniscribe predicts that SCSI will eventually supplant the ST506 altogether.

On top of improvements in controller technology, refinements in media technology - the magnetic film itself - mean that more data can now be packed into a smaller area of the disk. One consequence is the widespread adoption of Run Length Limited (RLL) encoding, patented, and introduced in 1986, by IBM. Standard controllers use a data storage method known as Modified Frequency Modulation (NFM). But by packing 30 percent more data per unit area RLL controllers can turn a 20Mbyte drive into a 30Mbyte drive. RLL is more prevalent on 200Mbyte drives and upward but is infiltrating the lower, commodity end of the market as costs fall.

In recent months controller manufacturer Perstor has launched a further enhancement called Advanced RLL (ARLL). Perstor's claims for ARLL include an expansion of hard disk capacity by at least 80 percent.

A BETTER FILM

There is a trade-off against greater capacity: simply swapping a standard controller for an RLL equivalent is likely to produce unpredictable results. While a modern, high-quality platter can provide a reliable basis for a high-density storage device with a high data throughput, not every disk is capable of storing data reliably at such densities. RLL controllers require a high coercivity of 600-700 oersted, motor tolerances of less than one percent and a highly accurate head positioning mechanism. Not all drives are capable of meeting such standards. One RLL user I know found this out the hard way.

The quality of the hard disk platter is crucial. Modern manufacturing methods mean fewer and smaller surface imperfections. With a flatter platter, read/write heads can fly closer to its surface, with distances between the two components of between eight and 12 microns being typical. Tolerances of this magnitude have been compared to flying a Boeing 747 at one inch above the ground; a human hair is four times as thick.

Rotating at 3600 rev/min, the platter's ferric oxide coating is being driven to ever higher packing densities. The lower the altitude at which the read/write head flies, the more tightly defined the domain from which data is read. That enables manufacturers to reduce the distance between each data fragment as well as between each track.

Higher densities can be attained through thinner but more coercive coatings. Ferric oxide coatings as thin as 300 nanometers of an inch have served up to now but the material is reaching the limits of its performance. The response has been to abandon iron and coat the disk with a film of magnetic cobalt 1.5 millimeters of an inch thick. The aluminium blanks are plated with nickel, polished and then either sputtered or plated with cobalt. Protection is provided by a finishing layer of carbon.

Being thinner, the magnetic field is more concentrated, making it better suited to low-flying, narrow-gapped heads. Not only is cobalt harder and more wear-resistant than ferric oxide but it has a higher coercivity, enabling it to carry a stronger magnetic field. As an added bonus, thin film cobalt reduces the number of defects caused by air bubbles and impurities, leading to fewer bad sectors and adding further to capacity.

Read/write heads have changed to meet the demands. Conventional heads are built up of ferrite wound with a coil of wire. To reduce their size, instead of physically winding wire round the head, the spiral winding is laid down in a series of etched depositions. Using thin film - on a block of titanium carbide. Thin film heads are less susceptible to external electro-magnetic noise but are twice as expensive to make. Despite their improved performance, such heads are found mainly in high capacity drives, typically of 100Mbytes or more. The major thin film head manufacturer is IBM.

But the next five years could see 170Mbyte or larger drives in ordinary personal computers as more applications involve networking.
As a designer or specifier of interconnection technology, you need to keep right up to date in a rapidly changing environment.

And there's one exhibition that helps you do just that. Internepcon '89.

Here you can see and compare the very latest interconnection techniques, from connectors and enclosures to printed circuits and SMT. Then solve your interconnection problems on the spot with help from some of the industry's leading experts.

Either way, you'll see the most advanced interconnection techniques within the wider context of electronic manufacturing today. Because Internepcon also features over 300 suppliers of electronic design, assembly and test equipment PLUS a host of special features dedicated to electronic design and assembly, subcontract services, hybrid technology and much more.

Internepcon. The complete electronics manufacturing event. For FREE TICKETS, Show Preview, and a complete programme of the Joint Societies Technical Conference running alongside, ring 0792 792 792 or return the coupon.
COLOUR MONITORS

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)

MONOCROME

MOTOROLA M16000-100 S CRT black & white compact: chassis monitor measuring only 11.9. Cost $295 ideal for TV or comm.- 15" and 17w.; 15" and 17w.; 17" with InFocus15" monitor. All units are new & fully tested with 90 day guarantee. £195.00

20" & 22" AV Specials

Superbly made, UK manufacture. PLD tube all solid state fully tested, complete with video and sound inputs. Affiliated with PANASONIC 20" unit. Ideal for all applications including Schools, Shops, Discos. etc. Supplied in EXCELLENT like used condition with 90 day guarantee. £150.00 (£135.00 C.O.D.)
Passive components

Filters. A new series of LT circuit filters is rated at up to 530VDC/35VAC, 40MHz within the temperature range 0°C to 125°C. Of hermatically sealed coaxial construction, the filters are specified over the frequency range 30kHz to 1GHz and have 85/121 FOV, a flat response. Beck Electronics (UK) Ltd 0456 856262

Flat electrolytics. The FLK series of flat aluminum electrolytic capacitors from ECC Electronics features a maximum operating temperature of 85°C and high capacitance values: 22μF for 12VDC capacitors and 330μF for 250VDC. Capacitors in the range feature ripple currents as high as 6A. ECC Electronics (UK) Ltd 0456 36113

Low profile electrolytics. LPF capacitors are designed to provide snap in a choice of 2mm and 2.5mm versions. Each lamp can be supplied individually or in up to 500 per reel. Norbain Technology (0734 764411)

Membrane with leds. A membrane switch panel features surface-mounted highly transparent diodes implanted within the membrane are silkscreened. The resulting panel is made up of two layers bonded together using a PCB-based membrane. Diamond Hill Controls Ltd 0663 459219

Instrumentation

2 Examples of oscilloscopes. The HS5414A and the HP5411D digital oscilloscopes, increase the maximum sampling rate of the oscilloscope from one to two gigasamples per second. The additional sampling speed has increased the single-shot bandwidth of the 5411D from 250MHz to 500MHz, ensuring that glitches as narrow as 500 picoseconds can be captured. Bandwidth filters provide 6.7 and 16.5 bandwidths. Hewlett-Packard Ltd 089972020

20MHz oscilloscopes. Two 20MHz oscilloscopes incorporate many features normally found only on instruments with bandwidths up to 50MHz at £2,795 for the 00722 and £3,353 for the 00725. Features include safe mode, hold and averaging facilities. Both instruments are also fitted with cursor traces. T.I. Instruments 0573 826131

Acoustic-intensity vector analyser. VC4010 uses wideband methods of determining the sound pressure level of a noise source in factory areas, auditoria or auditoria. The system allows the plotting of the flow or distribution of energy in an area from a machine. Howden International (UK) Ltd 0925 766900

Datacomms analysers. Model TE5030 is a data communications analyser that carries out error performance measurements from 500kHz to 2MHz. The instrument stores and data faults. The
General microprocessors

30036X chip set. An 8036XSX computer chip set enables manufacturers to build an 80386SX computer with a laptop of nine devices, plus microprocessors and memory. The G2 chip set supports the current 80386SX processing speeds of 16 megahertz at new lowest watt. In addition, the chip set contains a full Hardware Extendible Memory System (HEMS) 40 capacity and features HEM Mode interfacing and Shadow ram for fast memory access. 2 Gb 65536 4096804.

Enhanced controller chip. An enhanced version of the 82C55B, the 82C55C features an enlarged ram area and a 25 bit timer. Designated 82C55C the controller permits clock speed rates of up to 16MHz from capacity 16Kbytes and the new part is pin and functionally compatible with the existing device. Matra Harris Semicon, Ltd 0344 495757

Multi-processor CPU 9-68000 V2. A low cost VME O.S. processor system that provides every processor comprises a choice of 86000 or 68000 CPU. 512 Kbytes dual bank dual 82C54ram. 8 Byte libraries area. Bayr. Ver Electron Ltd 01702 244000.

Interfaces

Analog interface chip. The TLC 2020 is a dual interface circuit which is designed to provide a single chip. Tek Electronics 0223 212133.

Language support for Z80, KAYA or C. A language developer tool for the Z80 microprocessor is now available for the Z80 293. It offers a standard C compiler and a language processor. The four input options are complete, no files, or files, or complete, with or without code. Hewlett Packard Ltd 0895 707200.

Software

ASCII design software. Mips has launched a design software package which offers high level user interfaces for its own ASIC processors. The four input options are complete, no files, or files, or complete, with or without code. Hewlett Packard Ltd 0895 707200.

Printers and controllers

Electrostatic plotter. The Hewlett-Packard 7610 microcomputer electrostatic plotter is capable of producing an A4 resolution in seconds using the Interna_igraph package. It has the feature of being able to produce a solid fill area at the same speed as the rest of the plot. Morgan 01 245 6844.

Graphic plotter. The Plotmate XY 500 graphic planners at 300m/s has automatic selection of 10 pens provided as standard. It has full implementation of HP-GL with features such as Bezier curve fitting and complex polygon fills. The XY-500 retains all the features with added AutoCAD commands. Liner Graphics Ltd 0686 292929.

Production equipment

Bench top soldering. The Modulis bench top soldering machine has been designed to provide fast and efficient PCB soldering for boards up to 200 x 255mm in size. It is used to solder only a few boards at a time at a cycle duration of approximately 90 seconds. It can process hundreds of boards in a few hours. Capa Ltd 0202 304551.

Monolithic pin driver. The EL2021 is a pin driver circuit that is designed specifically to include all the functions necessary to drive programmed voltages into difficult loads. Primarily, it is a programmable slew rate circuit which can be set to up to 100 Volts per microsecond. Microelectronics Technology Ltd 08446687.

Surface-mount assembly tool. Benchtop surface-mount assembly unit emits small amounts of solder paste and adhesives for attaching surface-mounted devices into the unit is an adjustable vacuum pickup pencil for easy handling of components. Field-deployed tool is controlled by selecting air pressure, pulse time and dispensing tip size.

Power supplies

DC to DC PSU modules. With a footprint of only 2 x 3 lines the DC510, DC5201 and DC5201D features a 0W 1W and 1.5W at 12V and 15V respectively, from a low profile supply of 5V Maximum current for all models is 1000mA. The modules are flow solderable and can operate over a temperature range from -20 to +85 °C. FR Electronics 0202 899299.

DC to DC converter. The LTC2026 is a DC/DC converter for a 4 and 9 volt input, and to 20V and 20mW. The LTC2026 converts a single input supply to a single output. Uses bipolar switch converter with maximum efficiency. Linear Technology (UK) Limited 0932 765688.

DC-DC converters. Measuring only 2 x 2 x 0.5 inches, the LTC3000 is a 12V input, 15V output, 150W, 5V DC-DC converter. A power density of up to 133W/in3. The converter features 12 volt input, a wide range from -19V to +12V, and 12 volt output, with three families of single, dual and output voltage configurations. 15/20W. Amplicon Electronics Ltd 0203 608331.

PC interface controller. The 70K1 is an inexpensive RS232/IEEE 488 interface that converts a PC to an IEEE 488 controller without sacrificing any PC's. The converter is a stand-alone, plug-in board. The 70K1 has 64x 80 bits interface and a complete range of commands. 12,24,24-pin sockets, 5 volt, single supply. 1256 0296 0296.

Vision imaging systems. A high-resolution imaging system for the process control and inspection. Camera can be connected to a PC or other computer. The camera is a complete system that provides 1280 x 960 resolution. A complete system. 0700 220901.

Memory chips

256K eprom. The Samsung 256K eprom (KM261CS) is designed to provide access to up to 16,000 words of EPROM and over 10 years of data retention. A feature that includes up to 1500 million access times to low power fast write cycle times and enhanced write protection. Dram Electronics 012266 6026.

Cmos eprom family. A family of cmos based eprom modules, organized as 16 x
One example of a microwave distribution system that has been the subject of many reports in the technical press anticipates the use of a low-power microwave transmitter mounted on a lamp post at the end of the street to carry one or more channels of video to receiving dishes mounted on the roofs of the houses in that street. Although this might be possible, we shall see that this scenario is rather too simplistic to be practicable in many cases, but it does at least serve to illustrate the basic principles of MVDS systems.

The popular theory which, as we shall see later is quite wrong, says that, because microwaves only travel by line of sight, the signals will be restricted to within a short distance of the transmitter, providing a truly local service without any chance of interference to viewers in nearby communities. Thus, the same frequencies can be used in adjacent areas, giving rise to the possibility of almost unlimited numbers of local stations. Since the frequencies used are in the microwave bands of 2GHz and above, there should be no trouble in finding a few hundred megahertz to carry dozens of different television channels, and there should also be plenty of room for the wider-bandwidth, higher-definition television channels of the future.

This type of system, which would appear to provide broadcasters with everything they have ever wanted, also has great appeal to the operators of cable distribution networks. It is well known that the most difficult and expensive part of a cable distribution network is the so-called 'last mile'.

The costs of digging up the road and making individual connections to all the houses in a street are colossal in a country like this where we insist on cables being buried. Imagine, then, a cable system which terminates at the local MVDS lamp-post: the multiplicity of cable channels could then be transmitted by microwave from the lamp-post, to be received on small dishes provided by the cable operator.

MVDS is sometimes called 'wireless cable', and is commonly said that it will prove the saviour of the cable television industry. Although I would not like to decry that view, I think that there is far more to the subject than is usually envisaged. The same technology that allows signals originating from a cable distribution network to be radiated from a lamp-post at the end of the street could also provide many different neighbourhood radio and television broadcast stations, offering a choice of programmes previously unheard of except on the major cable networks of the United States.

Governments and broadcasters are constantly being bombarded with requests for more truly local broadcasting. This demand for community or neighbourhood broadcasting has so far proved difficult to satisfy even in radio broadcasting, and seems totally impossible for television where we already have over 3500 transmitters sharing just forty-four channels in the relatively tiny slice of the UHF spectrum that has been allocated for broadcasting.

As with so many new developments, this one started in the United States, and since 1974 something like 200 MVDS (Multipoint Distribution Service) transmitters have been built.

MDS - MULTIPLEX DISTRIBUTION SERVICES

It is important to note that these MDS transmitters are not multichannel, and are effectively low-power television transmitters which operate in the microwave bands. The Federal Communications Commission has defined MDS as 'A common-carrier service intended to provide one-way radio transmission (usually in an omnidirectional pattern)

- **MVDS**: Microwave Video Distribution System
- **MDS**: MultiPoint Distribution System
- **MDMS**: Metropolitan Distribution System
- **MMDS**: Multichannel Microwave Distribution System
- **MVDS**: MultiChannel MultiPoint Distribution System
- **MMVS**: Millimetre Wave MultiChannel MultiPoint Video Distribution Service

The FCC allocated only two channels to provide services throughout the whole of the United States, and only one channel was allocated to any licensee in any given metropolitan area. The service originally being called a Metropolitan Distribution Service. The channel allocations for MDS are

- **Channel 1**: 2150-2156MHz 6MHz wide
- **Channel 2**: 2156-2162MHz 6MHz wide
- **Channel 2A**: 2156-2160MHz 4MHz wide

The second channel can only be used at its full 6MHz bandwidth in some areas of the USA, other areas being restricted to 4MHz.

The FCC originally expected MDS services to be used for the transmission of high-speed computer data, facsimile, and message transmissions as well as for television, and although all these uses have occurred, it is the transmission of television programmes, generally for payment, which has put MDS on the map. This ties in well with what has been found in a different field, that of Specialised Satellite Services. A similarly wide range of service applications was foreseen by the British Government when it advertised six new licences for SSS earlier this year, but once again the vast majority of applicants wanted to use the satellites primarily for some form of video distribution.

During the late 1970s, MDS proved a great success in the United State, first of all being used to carry recently released films to hotels and apartment blocks, and later to serve individual homes. Several large towns in the USA had a single-channel MDS service and millions of households could receive a service of this type by the early 1980s. There were some financial problems caused when pirate down-converter units came on to the market at low cost, depriving the MDS operators of much revenue, but it was the steady growth of multi-channel cable systems in the USA that really caused a significant drop in the number of subscribers to MDS services in the early 1980s. Viewers...
who had previously been happy to pay for an extra programme service via MDS frequently decided to change over to cable services which could give them far larger numbers of programmes to choose from at little extra cost.

These problems for the MDS operators led to the FCC being lobbied for more channels so that multichannel services could be introduced, the aim being to enable the MDS industry to provide real competition for the cable operators.

MMDS — MULTI-CHANNEL MICROWAVE DISTRIBUTION SERVICE

By June of 1983 the FCC allocated twelve, 6MHz-wide channels at just above 2.5GHz, slightly higher frequencies than those used for the existing MDS services. This then allowed multichannel microwave distribution systems to be set up, and almost 17,000 applications for licences were received by the FCC. This caused many problems and delays and it was not until 1987 that some of the major conurbations in the USA could actually make use of MMDS services. The first company to get into multichannel microwave distribution with full FCC approval was Microband in New York, and its system is designed to compete head-on with the cable companies, offering similar numbers of channels at less cost.

The American MMDS transmitting stations, some of which consist of little more than a microwave module mounted on a lamp-post, radiate standard NTSC amplitude-modulated, vestigial-sideband television signals in standard 6MHz bandwidth channels. The transmissions are normally divided into 'high-power', which means from 10 to 100 watts, and can provide a service area of up to about 35km radius, and 'low-power', from one to ten watts, which might typically cover a radius of three to four kilometres.

The normal technique, especially for the higher-power systems, is to use an individual solid-state transmitter for each programme channel, and then to combine the 2.5 GHz outputs before feeding the combined signal to one or two broadband transmitting antennas. See Fig. 1.

Each transmitter is modulated using a separate AM modulator, rather like those used for standard cable systems, accepting composite video and audio at its input, and giving a combined audio and video output signal. On the high-power systems, it is usually possible to adjust the modulation depth of the video, and the deviation of the audio, and metering and carrier-level adjustments are also sometimes included. Since the equipment is, in many cases, intended to work at the end of a cable system, and since historically MMDS and cable systems have been seen as complementary, the output frequencies of the modulators are usually chosen to be at standard cable television frequencies, usually in Bands I or III. The channel frequency is usually generated by a crystal oscillator forming part of the modulator, although it is obviously possible to use a synthesized oscillator if it is felt that there might be a need to change frequencies.

The output signal from each modulator is then fed to an up-converter, which is phase-locked to the master oscillator, and then to a 2.5GHz amplifier stage before being fed to the combining unit. The up-converter frequently consists of a balanced-diode mixer with a passive output filter and a high-stability local oscillator.

An incidental advantage of using the standard cable channel frequencies before up-conversion is that, when the signals are down-converted in the viewers home, they will automatically be on the normal cable channel frequencies, which can simplify matters for the cable operator, who can use his normal cable receivers without modifica-
This compatibility can also help the operator who wishes to change over from an MMDS system to a cable system after an initial period of using MMDS before his cable system is fully developed and installed. This technique of using MMDS to provide 'wireless-cable' services to customers more quickly than could be achieved by laying cables, is often known as cable 'pull-through', and is being considered by several UK companies as a temporary measure.

Low-power MMDS installations generally have a simpler arrangement of equipment, since it is now possible to buy a single, low-cost solid-state common- up converter and power amplifier, which can feed the transmitting aerial directly.

Transmitting aerials for MMDS can be either dishes of around 50cm diameter or slot aerials or dipole. Gains of around 16-18dB are common. In AM systems, MMDS systems, much use is made of slot arrays with either omnidirectional or cardioid horizontal radiation patterns. Gains of around 10-13dB are common for the omnidirectional arrays, with perhaps another 3dB being available from the cardioid designs. Remember, though, that the American MDS systems are rather like straight transmitting stations aiming to cover as large an area as possible, whereas some MVDS stations will be intending to cover relatively compact communities which will allow for the use of higher-gain directional aerials.

RECEIVING EQUIPMENT

Low-cost receiving equipment for the 2.5 GHz MVDS transmissions is readily available in the United States, and generally consists of the dish, a low-noise block converter preceded by a 2.5Ghz band-pass filter, and a set-top box or 'indoor unit'. This provides the power supply for the converter and allows for channel selection and for the connection of the MVDS signals to the receiver as well as those from the normal VHF or UHF antennas. The indoor unit will also contain the circuitry required to decode the pictures in systems where some form of scrambling is used. See Fig.2.

Fifty-centimetre dishes are reasonably easy to mount and, with a beamwidth of around fifteen degrees, their installation should not pose many problems. In the United States, modified versions of perforated dish aerials are also used, as well as designs which are Yagi based. See Fig.3.

SIGNAL STRENGTH REQUIREMENTS

In UHF terrestrial broadcasting transmission, we usually calculate the field strength required to provide pictures with a particular signal-to-noise ratio with a given type of receiving aerial, but when using microwaves it has become traditional to use link-budget calculations, since these work well when considering the point-to-point links which microwaves have usually been used to provide. For this reason, then, link-budget calculations are usually used for MMDS services, although we must of course remember that other factors as well as the strength of the signal will have to be considered, including the need for protection against possible co-channel interference from other nearby transmitters using the same frequency. Microwave signal strengths will also vary with weather conditions and, since the signals travel virtually by line-of-sight, there may be many unserved locations within any nominally served area; ghosting may also cause problems in some areas. The normal technique used to overcome the variations in signal strength is to increase power.

Let us now look at a typical link budget for a 2.5GHz MVDS system so that we can gain some idea of the figures involved, first considering how good a picture we require. Broadcasters use the CCIR five-point grading to subjectively assess pictures.

<table>
<thead>
<tr>
<th>quality</th>
<th>grade</th>
<th>impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>5</td>
<td>perceptible but not annoying</td>
</tr>
<tr>
<td>fair</td>
<td>4</td>
<td>slightly annoying</td>
</tr>
<tr>
<td>poor</td>
<td>3</td>
<td>annoying</td>
</tr>
<tr>
<td>bad</td>
<td>2</td>
<td>very annoying</td>
</tr>
</tbody>
</table>

To give some idea of what this means, a normal domestic VHS video recorder gives pictures of around grade 3. For a broadcast system we, of course, wish to provide rather better picture, so for the purpose of our calculations, assume that we are going to attempt to provide pictures of at least grade 4, let us say grade 4.5. This corresponds to an unweighted video signal-to-noise ratio of around 40dB, though this is a figure for this illustration.

The signal-to-noise ratio of the chain between the transmitter and the receiver corresponds to the following link budget.

- transmitter EIRP
- path loss
- + receiver antenna gain
- - receiver noise
- + random noise floor
- = signal-to-noise ratio

Assume a 10W transmitter for the example, which it is convenient to regard as a power of 10dBw. There will be some loss in the transmitter feeder, say 4dB, and the antenna will have a gain of say 15dB, giving a net EIRP of 10-4+15=21dBW.

The path loss can be obtained from the formula

$$ \text{path loss} (\text{dB}) = 103.3 + 20 \log D,$$

where D is the length of the path in miles.

Assume a path length of 10 miles,
then path loss = 103.3 + 20log 10
= 103.3 + 20
= 123.3 dB

A typical 50cm receiving dish might have a gain of 15dB, and we shall assume that the noise figure of the receiver is 3dB.

To find the random noise floor, use the equation

$$ \text{noise} = \text{Boltzmann's Constant} + 10 \log 10^3 + 10 \log \text{temperature in K}.$$

Boltzmann's Constant = \(-228.6 \text{dBW} (\text{K} \text{.} \text{Hz}) \text{e}^\text{10log} 1.38 \times 10^{23} \)

therefore,

$$ \text{noise} = -228.6 + 10 \log 5.5 \times 10^6 + 10 \log 290 (\text{ambient temp} = 17^\circ \text{C}) = -228.6 + 67.4 + 24.6 = -136.6 \text{dBW}$$

The signal-to-noise ratio is then

$$ 21 - 123.3 + 15 - 3 + 136.6 = 46.3 \text{dB}$$

This is better than we need, but is only the figure for the link; any noise in the incoming signals, whether these are from a satellite feed or a videotape machine, will reduce the overall signal-to-noise ratio.

FREQUENCY SHARING

Since radio waves at 2.5GHz are unaffected by sporadic-E and only very rarely subject to tropospheric ducting, there is very little chance of co-channel or adjacent-channel interference occurring, especially since the transmitter powers are usually kept fairly low, and alternate polarizations are used to give discrimination between wanted and unwanted signals.

Frequency sharing in parts of Europe which want to adopt 2.5GHz MVDS is likely to be very much more difficult, since towns using MVDS may well be only a few kilometres apart. The number of available frequency channels is likely to be fairly restricted, and if a large number of programmes is to be provided a carefully worked out frequency plan will be necessary. The Irish Government is currently planning to make The Republic of Ireland the first country in Europe to have a country-wide MVDS service, and their plan is to provide 11 television channels to virtually the whole of the population within a period of five years.

MVDS FOR THE UK?

At the end of 1987 the DTI and the Home Office commissioned management consultants Touche Ross to investigate the use of microwaves for broadcasting in the UK. The Touche Ross report turned out to be very optimistic regarding MVDS systems, and
said that a national microwave transmission system could be providing services as early as 1991 if the British Government so decided.

Without giving any more than a cursory look at the possibility of introducing more up-to-date television systems such as MAC, the authors of the report make the calculations of the required spectrum space on the assumption that the 'obvious standard' to use is amplitude-modulated PAL system I with a bandwidth of 8MHz.

On this basis they calculate that about 400MHz would be required for a 12-channel nationwide service, and that a 30-channel service could take about 1GHz. It was not part of the Touche Ross brief to see whether spectrum space could be made available, but this would obviously be vitally important in determining whether a practical service could be established. The report looked at three possibilities for microwave broadcasting frequency bands: their so-called 'low-frequency' band between 1000 and 6000 MHz, the 'medium-frequency' band from 6 to 20 GHz and the 'high-frequency' band from 20 to 70 GHz.

1GHz to 6GHz - mature technology, expensive equipment
6GHz to 20GHz - technology still developing
20GHz to 80GHz - technology immature, some years before domestic equipment could be made available

These divisions seemed rather strange to those of us who know a little about propagation conditions in the various bands, but it turned out that the authors had chosen this divide to make sense in terms of equipment costings. Because MVDS and medium-power C-band satellite reception equipment is readily available in some parts of the world at reasonable cost, the report considered that if MVDS were to be allocated a band somewhere within the range of 1 to 4GHz there would be an excellent chance of a mass market developing very quickly.

2.5GHz MVDS equipment is to be used in Ireland in the very near future, and so it might appear that 2.5GHz would be the ideal band for our use. Unfortunately for the backers of that scenario, until very recently there seemed very little chance of the UK frequency allocation being granted around this part of the spectrum, since it is currently very well used. The UK broadcasters are now using around 12 channels for ENG vision links in the 2.5GHz area, and soundvision links also make daily use of frequencies around 1.5GHz and 5.5GHz and 7GHz, so broadcasters are not going to be lobbying heavily for these frequencies to be used for MVDS.

The IBA Engineering Division has recently taken an interest in MVDS at 12 GHz, and their engineers believe that it would make a great deal of sense to use the 12GHz band for MVDS purposes, since this could allow the maximum of viewers who, they hope, will be buying satellite receiving equipment to use the same equipment for MVDS - a truly low-cost solution.

If this idea were to be adopted, frequencies in the DBS Band 11.7 to 12.5 GHz might well be available for MVDS use. When the WARC plan for satellite broadcasting was drawn up in 1977 it was by no means certain that receiver manufacturers would be able to build receivers capable of covering the whole of the broadcast band, since low-noise GaAs fet amplifiers were still in the research laboratories and it was felt that the only way to obtain sufficient gain would be to restrict the bandwidth. For this reason the five channels for each individual country in Europe are all positioned in just one half of the band. The UK was allocated five channels in the lower part of the band, which means that there is a strong possibility that the upper part of the band could be used for MVDS without causing interference to other satellite operators, since the MVDS signals would be radiated from relatively low transmitting masts with designed to concentrate the energy in the terrestrial service area. In other words, it is most unlikely that anyone with a dish pointing up in the air at a satellite would pick up interference from an MVDS transmitter. In addition, in the MVDS 1GHz to 6GHz satellite receiver technology has progressed faster than originally anticipated, and modern GaAs fet amplifiers now comfortably cover the whole of the 11.7-12.5GHz band which makes the idea of a dual-purpose satellite/MVDS receiver operating at 12GHz a practical proposition. Figure 4 shows how this frequency sharing could work.

THE POTENTIAL FOR IMPROVED PICTURES FROM MVDS

All existing and planned MVDS systems use ordinary NTSC or PAL amplitude-modulated, vestigial-sideband transmissions, using the same standards as are used on terrestrial UHF and VHF systems. If the 12GHz system suggestion were to be taken up, however, as well as the advantages that I have indicated, there would be the potential for the adoption of a better, more modern broadcasting system that has already been adopted for direct broadcasting from satellite - the MAC system, using frequency modulation.

UK DBS Characteristics

- Multiplexed Analog + Digital Channels
- MAC frequency modulation
- 20dB power needed for the same s/n compared with AM
- 27 MHz wide frequency channels
- Multi-channel digital sound/data system
- Built-in conditional access/encryption
- Built-in future enhancements/wide screen/EDTV

Comparison of SN ratios for AM and FM MVDS signals

For a video SN ratio of 45dB (weighted luminance) in each case

AM VS B 5.5 MHz bandwidth

- C/N = peak sync. carrier/noise in 5.5MHz + 46dB
- Carrier to noise density = 46 + 10 log (5.5 x 10^9) = 119.9dBHz
- FM 27 MHz bandwidth
- C/N + carrier/noise in 27MHz = 44.30 = 1dB
- Carrier to noise density = 14 + 10 log (27 x 10^9) = 88.3dBHz

Therefore difference in carrier power = 112.9 - 88.3 = 24.6dB

An FM MVDS system of the type being described would also gain from having the advantage that the co-channel protection ratio would be around 30dB, rather than the 45dB which is needed for the AM-VSB systems, and this would mean that transmitters using the same frequencies could be more closely spaced, allowing better coverage with a given number of channels. FM systems are also less sensitive to interference from transmitters on adjacent channels, which again allows us to re-use frequency channels more often.

Terrestrial AM UHF transmissions use polarization discrimination at transmitting and receiving aerials to achieve better use of the band, and it should similarly prove possible to use polarization at 12GHz on our MVDS systems.

By siting the various MVDS transmitters at appropriate distances apart and using a combination of different groups of frequencies, polarization discrimination and carefully-shaped transmitting aerial radiation patterns, IBA engineers believe that a nationwide service of ten new television channels could be provided within a bandwidth of 400MHz, or this could be increased to twelve channels if 480MHz could be found.

As Fig 4 shows, it has been assumed that four separate groups of ten frequencies would be used over and over again in a carefully laid out lattice pattern of transmitter areas. This is something of an oversimplification, because the topography of the land is tremendously varied, so that real-life service areas will be far from circular in many cases. We also have the problem that 12GHz signals are deeply attenuated by anything that obstructs their path, including both buildings and trees. This means that in any nominally served built-up area there will be many potential viewers who will have difficulty in receiving a clear line-of-sight transmission, and it is this so-called "urban clutter" that may make life difficult. Even with 2.5GHz systems, clutter is known to be a problem, and these will be accentuated at 12GHz.

One advantage of 12GHz systems is that fairly high gains can be achieved with small parabolic receiving aerials, which allows us to think realistically of viewers being able to use saucer-sized dishes on roofs above their houses, this periscope-like antenna arrangement providing viewers with a wide-screen television picture the roof clutter to the local transmitter. A corresponding disadvantage of this idea is that it may conflict with planning regulations.

THE MAC SYSTEM FOR MVDS

I mentioned earlier that it would make sense to use MAC for MVDS because viewers will already be equipped with MAC satellite receivers, or that BSB's earnest hope! Using MAC would also bring to MVDS all the advantages and enhancements that MAC is bringing to satellite services, so providing better quality pictures with the option of wide-screen viewing and higher definition in the future.
If MVDS services use MAC they will be able to compete effectively against satellite and cable services which will soon be offering the higher definition wide screen pictures that will become the norm in the next few years. An MVDS system using PAL with AM-VSB would be condemned to obsolescence from the day of its opening, and would be a retrograde step as far as the development of the radio and television industry in this country is concerned. The recent report of the Home Affairs Committee recognised this, and recommended to Government that it should consider the development of MVDS in the 12GHz band as part of an integrated programme distribution service.

INTERACTIVE MVDS?

Although it is generally accepted that MVDS systems are essentially one-way, I would like to speculate on the possibility of households having their own miniature microwave transmitters which could squint signals back to the MVDS transmission point, which must obviously be within line of sight. I have been looking at the simple microwave burglar alarms that are now on the market for just a few pounds.

These consist of a solid-state microwave oscillator mounted in a cheap metal horn which radiates signals at around 10GHz. They are currently very crude devices, but are cheap and effective, and I reckon that with just a little bit of research effort a device suitable for allowing domestic users to talk back to their MVDS transmission points could be developed. I would not, however, like to solve the potential interference problems that a street of terraced houses each transmitting its own microwave signals could cause!

Broadcasters and cable protagonists have been living through interesting times this last year or so, and you may remember that to cause somebody to live in interesting times was an old Chinese curse: things haven’t been so different for those with an interest in the future of broadcasting.

The Archer Z80 SBC

The SDS ARCHER – The Z80 based single board computer chosen by professionals and OEM users.
- Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM & battery backed RAM.
- OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.

The Bowman 68000 SBC

The SDS BOWMAN – The 68000 based single board computer for advanced high speed applications.
- Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counters-timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.
- Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd

Unit 6, York Way, Cressex Industrial Estate, High Wycombe, Bucks HP12 3PY. Tel: (0494) 464264
Coulomb action

What is so fascinating is that the test configuration has the ability to overcome the familiar problem of the relativist who insists that there must be a way of synchronizing clocks at the test locations before the flight time of a signal can be measured between those locations.

The remarkable fact is that the onset of the precursor signal sets the clock running at the receiving location and the subsequent arrival of the dominant electromagnetic pulse gives the second time check, the time difference in relation to the length of transmission line being such that superluminal speeds are recorded. This result clearly shows that the precursor signal travels very much faster than light speed.

The telegraph equation concerns the travel of an electrical signal along a transmission line that is essentially resistive and capacitive. No inductance is assumed. When a step signal is applied at one end there is a definite delay before any measurable signal arrives. Then there is progressive signal build-up. Obviously, one cannot just measure the speed of propagation by initiating the time measure from the moment the build-up is seen. If that is all that is measured in the Obolensky test it cannot be trusted as an indication of superluminal speed.

The point is that the dominant electromagnetic signal arrives after the onset of the precursor signal and we know the dominant signal has travelled at light speed as determined by the inductive restraints.

The precursor signal has travelled in a way governed by non-electromagnetic action.

Nothing in our text books establishes that the signal speed is limited by light speed. It is inferred, because we suppose that charge does not travel faster than light speed, but we know that the charges carrying current in wires do not travel at anything like the speed of light, yet their electromagnetic action causes current to exhibit that speed of light. There are two actions in the field set up by the electric charge: one is the action at the electromagnetic wave velocity and the other is the direct Coulomb action. The latter is assumed by many to be subject to the same propagation delay via what are known as retarded potential effects. But there are those who question this theory.

(II) The Coulomb action does propagate at faster-than-light speed, the Obolensky effect is justified because it is a weak signal that could arise from direct electrostatic induction progressively propagated along the transmission line with no speed of light limitation.

H. Aspden
Visiting Senior Research Fellow
Dept of Electrical Engineering
University of Southampton

Switches, sparks and arcs

I am troubled that, having observed my Causality Triangle Experiment employing switch-closing wave structure, our "joint" paper advanced your unsupported opinion that the observed effects were due to switch-open wave structure. Oscillographic evidence shows why the observed effects are due only to switch closing. The oscillograph correlates the instantaneous current and causative voltage measurements to eliminate conjecture about switch-opening inductive flash-back.

The spark modes involving inductive flash-back have been investigated with a view to writing a paper in support of Webber's "two-fluid" electric current. Both positive-going "huge spikes" and negative-going coherent surges can be shown to coexist in a unique energy resonance. This impulse cohering energy resonance appears to reduce total entropy. It may also model natural lightning, since the current surges appear to display lightning's 50 microsecond spark structure. To introduce this contact-opening spark/arc mode into my Causality Triangle Experiment requires eliminating the two 68,000 ohm current limiting resistors. They are simply replaced with an inductor having the same DC resistance. I made a 115,000 ohm inductor by winding 10 miles of #12g magnet wire on a standard 3m spool. This 10 miles of ordered space is simply added to the wire connecting the opposed reflectors. It is noteworthy that this added line impedance has only a negligible effect on the so-called "huge spikes" of current. In addition, this arrangement becomes so sensitive to stray AC fields that no external battery is required to effectively replicate the superluminal causality effects that I demonstrated publicly in 1982.

In addition to clarifying the difference between contact sparking and contact arcing, this modality provides an easily measured example of negentropy as well as clear evidence that causality links are connected by instantaneous action-at-a-distance, spin angular momentum change.

I have completed numerous experiments and employed entirely different modalities; in every case, the superluminal cause or pilot wave is seen to precede the material effect by one picoradian. This demonstrates the "last shall be first", time-reversed sequence, widely reported in optical phase-conjugate resonance. The consistent observation of "two-fluid" spin current components demonstrates the existence of spin waves. The magnetizing vector, which globally connects cause and effect independently of time, can be studied by simply correlating the instantaneous cause and effect currents in both the real and complex domains.

I have established that differential current measurement can isolate the evanescent common-mode subliminal current signals. By also modifying the relay magnetizing method and grounding both reflectors, artefacts introduced by stray magnetic and AC field gradients can be eliminated. The apparent anisotropy with respect to charge polarity and direction, can be largely removed without changing the observed superluminal signals.

Alexis Cuy Obolensky
President Bromron Inc.
NY. USA

Catastrophe and creation

Ludvik Kostro's article in the March issue reported that "it (the ether) not only conditions the behaviour of inert masses, but is also conditioned, as regards its state, by them".

Einstein was clearly talking about action, and thus about the energetic states of mass and space which I see as capacitive and inductive energy stores respectively, representing order and chaos, then let us accept that order must embody a plan and that mass is a plan of ordered Limiting Sub Masses within a random field of LSI's.

For Einstein's statement to be fulfilled, there must be an iterative equation between the energetic states of mass and space, i.e. between mv (momentum) and 1/2mv² (kinetic energy), from which we may deduce that v² = 2, the combined approach velocity of the two energies during the interaction in which space "winds up" mass and vice versa. The v² of KE is due to the planar full frontal which mass provides to the energy during the interaction.

Now, v² whether the interaction is vast and cosmologic or tiny and local: if mass is fixed relative to the viewer the energy appears to move at twice the speed of light because the viewer is linked to the mass: this might be likened to the speed of the current outside the wire as it is guided by the wire. To understand this, one much invoke Catastrophe Theory and say that, with adequate excitation, bonds can be broken and the plan destroyed: we are talking about the
plan of the electron which jumps out of the wire as a cloud of LSm's, commencing the act of radiation through the field while leaving an instantaneous hole. Catastrophe is an instantaneous change from order to chaos because there is no half-way state, but a domino catastrophe might take time because of propagation delay.

In Obolensky's experiments, it seems to me that what the sensor coils are detecting is the inverse of catastrophe (i.e., creation) when the electrons reform in the holes in the wire; this action occurs at all points along the wire more or less simultaneously, hence the enormous spikes. The length of wire does not add distance to the path.

James A. Maclarg
Wooler
Northumberland

Difference or absolute?
The article contains several clues to its own downfall. Consider the case where the transmission line length is 56ft and the antenna base line (capacitor plate spacing) is 10ft. The common value of c is about 1ft per nanosecond.

The circuit is broken at one of the mercury vapour relays and the charge starts to build up on the capacitor plates. This sends out a wavefront through air in all directions at very close to c. 56ns later, much spread out, this reaches the points where the screens of the coaxial cables enter the oscilloscope: these inputs are only a few inches apart and about equal distances from the relay that opened. So a small signal starts to build up on both traces simultaneously. This signal builds up slowly as it is joined by other bits of the wavefront which intersected the coaxial screen further away from the oscilloscope and then came in at a speed rather less than c.

Meanwhile, the main high-level signals from the pick-up coils are coming down the inside of the coaxial cable at about two thirds of c (as is usual for coax.). The cable nearest the relay which opened delivers its signal 8ns after opening (56ft at c). The other cable delivers its signal 10 or 11ns later than this, as expected through having to travel an extra 10ft between the capacitor plates, through air.

The result is exactly as observed, without the need for any faster-than-light travel: a gently rising signal on both traces starting 56ns after the start, followed by a large pulse on one trace 28ns later, and a large pulse on the other trace 10-11ns later. The only observation which holds any water is the transmission between the capacitor plates at exactly the speed expected: the speed of light in air. What the authors call transmission at twice the speed of light is due to the difference between the transmission through air (at c) and the transmission through coaxial cable (at 3/5c).

Tim Bierman
Hendon
London NW14

The writer of the following letter made roughly the same points as the above, but presented these calculations.

Time taken to travel a distance equal to the coaxial line length but in air

\[t = \frac{1}{c} \]

For the example of 74.5ft for \(t = 22.708m \),

\[t = 75.692ns \]

Time taken to travel a distance of 74.5ft in a coaxial line with a relative permeability of 2.2

\[t = 112.269ns \]

Difference in arrival times at the oscilloscope

\[112.269 - 75.692ns = 36.577ns \]

If the calculations are made for the other line lengths quoted in the article it works out just as well.

By applying the same calculations to the experiment where the extra line length is added, an extra insight into the results is obtained.

Propagation time for short length of 74.5ft (22.708m)

in air 75.692ns

in coaxial cable 112.269ns

difference 36.577ns

Propagation time of one metre longer cable (23.708m)

in air 79.027ns

in coaxial cable 117.215ns

difference 38.188ns

Apparent extra time to travel 1 metre

\[38.188 - 36.577ns = 1.611ns \]

Apparent speed of light (distance/time)

\[\frac{1m}{1.611ns} \]

This result is the same as that in the article and is brought about by the manipulation of mathematical quantities which are DIFFERENCES and not ABSOLUTE values. If the authors had considered the arrival times with the initiation of the relay as the reference, then it should have been apparent that the event followed the initiation at the speed of light.

Neville Carrick
Andover
Hampshire

Unbalanced currents

Might one suggest that the authors repeat the experiment using open-wired balanced line, or using a balanced-to-unbalanced transformer at the launch end? Many an amateur operator can tell tales of 'hot' gear with unbalanced currents travelling on the screen of a coaxial cable - caus-
ing feeder radiation, if the sparks weren't enough!
The coil used at the launch end will include such an unbalanced current, travelling at a velocity close to C (in free space, the line supported above ground, somewhat similar to a Gobau line with a severely mismatched launcher). The TEM wave in the coax, however, will travel at a substantially lower velocity, due to the dielectric material in the transmission line. Taking a velocity factor of 0.75 for the coax, the time delay will be approximately 1.57 \mu s/m, with some phase shift due to the reactive nature of this signal's coupling to the oscilloscope input. The stretching of the pulse into a ramp as displayed on the oscilloscope can also be postulated as due to the capacitative nature of the coax cable.

As to the anisotropy of the velocities with regard to direction, I'll leave that to A. E. Emerson et al for the explanation.

Dave Hicks GO1ZY
Aldershot
Hampshire

References
1. Gobau, Proceedings of the IRE, 39, 619-624 (1951)
3. Haitcalk, G. A. QST June 1971

Common-mode

One very basic aspect of the experiment which is not mentioned at all in the article, and which the experimenters perhaps neglected to take into account, is the huge common-mode voltage change which occurs at the same time that the mysterious low-level signals are being generated.

At the moment that a relay is energized, the voltage of the small section of antenna wire through the current probe next to the relay changes by 250V. This change is capacitively coupled to the current probe and travels as a common-mode signal along the associated transmission line. The outer conductor acts as signal path, and the return path is diffusely spread in the space around it, approximately as in a surface-wave transmission line. (See e.g., C. Goubau, "Designing Surface-Wave Transmission Lines". Electronics, vol. 27, pp. 180-184, April 1954.) The dielectric medium is primarily air, and hence the signal travels at a velocity of about 300 000 km/s. It arrives at the outer case of the oscilloscope in some way. Through minimal asymmetries in the oscilloscope construction or mismatches in component properties, this common-mode signal of perhaps several hundred volts can easily cause effects corresponding to an apparent differential signal of several mA. Since the potential of the oscilloscope as a whole with respect to the space around it is being changed, it is no surprise that the apparent signal appears on both input terminals. The described effect corresponds to a common-mode rejection ratio of about 80 \% — a figure of which no oscilloscope manufacturer needs to be ashamed.

The velocity of about twice the normal speed of light, which the authors deduce for the low-amplitude signal along the transmission line, also has an alternative explanation based on the common-mode hypothesis. Pappas and Obolensky determine this velocity from the difference in arrival times of the low-level signal and the first high-level spike. In my hypothesis, Pappas and Obolensky determine this velocity from the difference in arrival times of the low-level signal and the first high-level spike. In my hypothesis, the low-level signal travels about 300 000 km/s (0.2 m/s) m/s on the outside of the coaxial cable as described above. The high-level spike is the real signal generated by the current probe, which propagates as a differential-mode signal between the inner and outer conductors of the transmission line at a velocity of about 200 000 km/s (0.2 m/s). The velocity C1 as reported in the article.

If the length of the transmission line in meters is set to L, then the travelling time of the low-level signal is (L/0.3) ns and the travelling time of the high-level signal is (L/0.2) ns. The time difference is therefore (L/0.3)/(L/0.2) ns, or 0.6 ns, or apparently twice the speed of light in a vacuum.

The base wire also may be seen as a surface-wave transmission line with a diffuse return path consisting of the ground and the space between the capacitor plates. It is not unreasonable to suppose that the parameters of this "return path" will play a role in the measured velocity. Changes in temperature and/or humidity of the air as well as the distance and orientation with respect to the ground change these parameters to some extent, and may therefore account for the minimal velocity changes.

I can think of several experiments to provide evidence for or against my alternative theory. If Pappas and Obolensky are interested, I would be happy to discuss such experiments with them.

F. Heutink
Eindhoven
The Netherlands

Now that we have dealt with this previously-induced signal leaving the oscilloscope, let us deal with the signals entering it when the above relay is operated as above. The reason for dealing with these outgoing and incoming signals separately is because they overlap (time-wise) hence the trace is composite.

We repeat the above sequence for the incoming signal to the oscilloscope. When one of the two relays is excited with 12V AC at 60Hz and the other non-excited relay is closed, pulses of DC from the 250V DC battery charge the large capacitor plates.

Now forget, for the moment, any signal coming from the surreptitiously-charged oscilloscope plates and travelling along the coaxial cables. The DC charge on the large capacitor plates begins to flow along the coaxial cables, taking L/C seconds to reach the oscilloscope. After the above L/C second pause, the trace on the oscilloscope starts to rise, and steadily increases in positive direction. When the non-excited relay is opened, a mighty surge occurs as the large capacitor plates discharge, setting up oscillations. This causes the massive spike on...
Strays

Typically, for polythene or PTFE insulated lines, the velocity is only about two thirds that of light. Thus for, example, it would take 150ns rather than 100ns for a signal to traverse 30m (100ft approx) of normal 50 ohm coax cable, a difference of 50ns. If you do these calculations for the various cable lengths mentioned, the time difference obtained is very close to the 'time lapse' values given in Table 1.

Next, it should be realised that, when an oscilloscope is triggered from the signal that is being displayed, the resultant trace contains absolutely no information about the time the signal originated or when it arrived at the input socket.

Thirdly, coax. cables are not perfect; signals can leak in or out of them. Finally, circuit strays are often very important. For instance, when one is trying to measure signals of a few tens of millivolts in the presence of an unscreened circuit switching two or three hundred volts. For example, it would take only 80μB of stray coupling to produce a 25mV signal at the oscilloscope.

Figure 1 is an equivalent circuit showing one of the coaxial lines together with what I think are the important strays. For convenience it is the one going to the end of the base wire with the energized relay. This can be simplified into Fig. 2 where v1 is the voltage induced in the current transformer and C2 is the total effective stray capacitance from the end of the coaxial line to the equivalent earthed voltage source v0 that would produce the same effect as the base wire and its various strays.

Although the actual waveform of v0 may be found a little difficult to visualize, it should be quite apparent that rapid changes equal to half the supply voltage will occur. These couple via C2 to a 'wire over a plane' air-insulated transmission line formed by the outer of the coaxial line and the earth, and propagate towards the oscilloscope at a speed close to that of c. Some of the energy in this wave will leak into the coaxial line and travel down it at about 0.66c.

Suppose the transit time for the 'wire over a plane' line is T. Then the transit time for the coaxial line will be about 1.5T. Suppose also, for the moment, that C2 is large and that v0 is a fast voltage step starting at t = 0. For time t < T nothing will be seen at the oscilloscope. At t = T the wave will arrive at the oscilloscope and with it the signal that leaked into the very last bit of the coaxial cable. As t increases the signal that leaked into earlier bits of the cable will also arrive at the oscilloscope and the existing signal until at t = 1.5T all the cable will be contributing to the signal. Thus, assuming that the oscilloscope triggers as soon as the signal becomes non zero, the signal will appear to ramp linearly from zero over a period of 0.5T and then remain constant. Of course C2 is not large and v0 is not a simple voltage step, so the signal seen will not be a simple ramp but must always start as one. Further, at t = 1.5T the signal from the current transformer will reach the end of the coaxial line and add its (large) contribution to the signal seen at the oscilloscope.

Judging from the photograph, for most of their length the two coaxial cables are separated by a distance no greater than their height above the ground. Thus a similar but somewhat smaller leakage will occur into the second cable giving rise to a ramp type signal on the other channel of the oscilloscope. As the distances from the energized relay to the cables as they approach the oscilloscope are virtually identical, the 'ramps' will start together. Closer to the base wire the distances to the two cables are by no means identical so the later parts of the 'ramp' waveforms will diverge.

The impulses from the relay also propagate along the base wire to the other current transformer and are coupled by its C2 into a 'wire over a plane' transmission line formed by the second coaxial line. A similar leakage effect then occurs with this one but this time the second cable has the greater 'ramp' signal. Reflections back and forth along the base wire will produce further sets of 'ramps' of various polarity and amplitude with a periodicity dependent on the length of the base wire. The summation of all these signals is what is seen on the oscilloscope. The first three waveform pictures in their article show this effect quite well.

A. H. Winterflood
London, N10
MOBILE RADIO TEST SETS

SCHLUMBERGER 4021 Stoplock transceiver test sets, comprises: AM/FM/FM signal gen, mod meter, frequency counter, RF power meter, AF generator. AF mV meter, distortion meter £1,250

MARCONI INSTRUMENTS

TF 1152A RF power meter 25-250MHz £75
TF 1249/1249-Q meter and oscillograph £850
TF 2021-B1/21 UHF AM/FM signal generator with synthesizer £750
TF 2162 RF attenuator 0.1-110dB £120
TF 2202 modulation meter AM/FM to 1GHz £250
TF 2300A as above with deviation to 1.5KHz £350
TF 2302B modulation meter as above £450
TF 2356 level oscillator 20MHz £400
TF 2701 power meter 0.3-30V DC £150
TF 2900 millivolter AM 1mV-300V £75
TF 2900-B video voltmeter 1mV-300V £175
TF 2904 electronic multiplexer £150
TF 2906-SQG multiple meter £40
TF 2828A/2829 digital simulatemeter £750
TF 2833 digital multimeter £1,100
TF 2920-SB clamping & sync meter £250
TF 2860 RF power meter £350
TF 2860-A500 power meter/oscilloscope £1,100
TF 2993A audio power meter 1mV-10V DC £75
TF 2993S/5 AM/FM signal generator 3Hz-2.02GHz £250
TF 2921/A XY display £1,100
TF 2930/15 AM/FM gen, 10-30GHz £1,100
500V 50muV RF load with power meter £100
2200C noise receiver, many filters available £550
2301/2992A noise receiver & filters £750
TF 2390 10GHz spectrum analyser £3,500
TF 2160 audio oscillograph £400
TF 2390/2992B FM gen. 10-40.7GHz £125
600A/6666 sweep 2.4-12 GHz £175
2123 function generator 200kHz £275
893/4-10 kHz signal generator £350
392/A synthesised signal generator 80kHz-100MHz £2,250
2018 synthesised signal generator (kHz-500kHz) £2,250
600A/6666 sweep 2.4-12 GHz £175
TF 1133A 1-0 universal LCR bridge £250
TF 2951/7 FM signal generator 10-100MHz £250
TF 2912 FM signal generator 400-500MHz £198

THE NEW ANTEX GUIDE TO TEMPERATURE CONTROLLED SOLDERING

- New Temperature-Control Products Launched
- "How to choose the Right iron section.	
- Full Technical specifications of the whole Antex range.

Enter 25 ON REPLY CARD

Versatower: A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2, 1972 for a minimum wind speed of 140kph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design, quality and reliability. Suitable for mounting equipment in the fields of: Communications Weather surveillance - CCTV Meteorology Environmental monitoring Agriculture all-weather Defence range-finding Marine and aviation navigation Kodak are using Antex approach lighting Further details available on request

STRUMECH ENGINEERING LIMITED
Portland House, Copper Side, Brownhills Walsall West Midlands WS3 6EX, Telephone: Brownhills (024) 452321.

TF 1152A RF power meter 25-250MHz £75
TF 1249/1249-Q meter and oscillograph £850
TF 2021-B1/21 UHF AM/FM signal generator with synthesizer £750
TF 2162 RF attenuator 0.1-110dB £120
TF 2202 modulation meter AM/FM to 1GHz £250
TF 2300A as above with deviation to 1.5KHz £350
TF 2302B modulation meter as above £450
TF 2356 level oscillator 20MHz £400
TF 2701 power meter 0.3-30V DC £150
TF 2900 millivolter AM 1mV-300V £75
TF 2900-B video voltmeter 1mV-300V £175
TF 2904 electronic multiplexer £150
TF 2906-SQG multiple meter £40
TF 2828A/2829 digital simulatemeter £750
TF 2833 digital multimeter £1,100
TF 2920-SB clamping & sync meter £250
TF 2860 RF power meter £350
TF 2860-A500 power meter/oscilloscope £1,100
TF 2993A audio power meter 1mV-10V DC £75
TF 2993S/5 AM/FM signal generator 3Hz-2.02GHz £250
TF 2921/A XY display £1,100
TF 2930/15 AM/FM gen, 10-30GHz £1,100
500V 50muV RF load with power meter £100
2200C noise receiver, many filters available £550
2301/2992A noise receiver & filters £750
TF 2390 10GHz spectrum analyser £3,500
TF 2160 audio oscillograph £400
TF 2390/2992B FM gen. 10-40.7GHz £125
600A/6666 sweep 2.4-12 GHz £175
2123 function generator 200kHz £275
893/4-10 kHz signal generator £350
392/A synthesised signal generator 80kHz-100MHz £2,250
2018 synthesised signal generator (kHz-500kHz) £2,250
600A/6666 sweep 2.4-12 GHz £175
TF 1133A 1-0 universal LCR bridge £250
TF 2951/7 FM signal generator 10-100MHz £250
TF 2912 FM signal generator 400-500MHz £198

ELECTRONICS

2 Westbridge Industrial Estate, Taunton, Devon PL19 8DE Tel: (0822) 613565 Fax: (0822) 617538 Telex: 931210955 AEG

Enter 25 ON REPLY CARD

March 1989 ELECTRONICS & WIRELESS WORLD 303
low-cost PC based logic analysis - from Thurlby

Now you can use your IBM-PC or compatible computer as the basis of a sophisticated logic analyser system.

LA-PC Link is an interface package which links your computer with the low-cost Thurlby LA-160 logic analyser to provide facilities normally associated with only the most expensive analysers.

- Sophisticated data state listings
 Up to 32 words per screen in multiple data formats. Scrolling by line, page or word, plus random page access. Rapid screen compare facility. Full repetitive word search.
- High resolution timing diagrams
 Sixteen channels of 64, 256 or 1024 samples per screen. Instantaneous pan and zoom. Moveable channel positions. Dual cursors with automatic time difference measurement.
- 16 or 32 channels, clock rates to 20MHz
 Operates with all versions of the LA-160 with or without LE-32.
- Comprehensive data annotation
 Each data and control input can be allocated a user-defined label. Data files are date/time stamped and can be fully annotated.
- Full disk storage facilities
 Data files can be saved to disk and recalled for comparison. Data includes the analyser's set-up conditions and all annotation.
- Versatile printing facilities
 State listings and timing diagrams with annotation can be printed.
- Colour or mono display; keyboard or mouse control
 Colour, monochrome or text only modes suit any display adaptor. Parts of the programme can be controlled by a mouse if required.
- Terminal mode for uP disassemblers
 Acts as a terminal for use with Thurlby uP disassembler ROMs.

If you already have an LA-160 logic analyser the LA-PC Link interface package costs just £125. If you don't, an LA-160 with LA-PC Link costs from £520.

Oasis Instruments

OASIS VIRTUAL INSTRUMENT SYSTEM

NEW VERSION – NEW INTERFACES – HIGH SPEED OPTION

The OASIS Virtual Instrument System (VIS) emulates conventional OSCILLOSCOPE, CHART RECORDER, PROCESS MONITOR, MULTI-CHANNEL DVM, X/Y PLOTTER and DATA LOGGER in one easy to use package. Also Spectrum analysis.

HARDWARE

VIS includes a precision 16 channel A-D converter, with programmable ranges and read rates of 50k R/s at 8 bit, 25k at 12 bit (100k and 60k with high speed option). This simply installed unit has proven long term stability and reliability.

SOFTWARE

The Menu-driven acquisition, analysis and display programs combine on-screen set up of measurement parameters, SPREADSHEET data manipulation and a range of display formats, with ZOOM and ON-SCREEN MEASUREMENTS. Total data mobility from measured information to memory, disk, screen and HARDCOPY output, including screen dumps. All programs are fully annotated.

The OASIS VIS carries full documentation to allow the beginner or professional programmer to create new interface applications or personalised instrument emulations.

PRICE

The price of the complete system is less than any one of the instruments it replaces. Prices exclude VAT, P&P (£8). High speed option add £160.

The Virtual Instrument System is supplied complete – no further components are required – just plug in to your laboratory computer. Digital to Analogue and industrial interface options – POA

The Street, Old Costessey, Norwich NR8 5DF
Tel: 0603 747887

Design Consultancy

ENTER 65 ON REPLY CARD

ENTER 68 ON REPLY CARD
A desperate race for people

DOM PANCUCCI

Peopale are the key to success in information technology. All the hardware available cannot compensate for a lack of skilled engineers to develop systems that meet the precise needs of the user.

Information itself is the cornerstone of successful business: training the right number of professionals to make a structured use of IT is an industrial responsibility.

The problem is that industry as a whole has not fully assumed its role as prime IT trainer. A traditional over-reliance on recruitment of graduates and poaching from rivals has left many companies without the drive to train within the ranks. And it is mid-career training which will be an essential part of industry's attempts to ensure enough skilled IT people come through.

Government statistics show the IT skills situation is already desperate. Around 30,000 unfilled vacancies exist at any one time, compounded by a reluctance among technology graduates to enter industry. Falling numbers of young people into the 1990s, the rapid pace of technological development and demands from an increasing range of companies for IT recruits are all factors adding to the problem.

Last December the House of Commons Trade and Industry Committee released its first report on information technology. Although the published findings contained only two paragraphs on the training issue, the committee's position was clear. "The best solution to the worsening IT skills shortage is increased in-service training," says the report. "Companies need to invest more in training. Time and again our witnesses referred to the need for professional management retraining on a sustained basis."

The committee heard testimony that the UK's training record is inferior to its international rivals. The present training gap is blamed on cutbacks during the recession earlier this decade and high staff turnover deterring investment. But UK companies still fall below the minimum level of spending on training. "Best practice is for four to five per cent of payroll costs being spent on growing management competence while the UK average is only one per cent," says the report.

Evidence was provided by the Secretary of State for Industry that companies are now putting more cash into training, but the committee wants more proof that the "revolution in attitude" has taken place.

Two recommendations were made by the committee about IT training:

- that Government compile and publish comparative figures and trends in the UK and competing countries for expenditure (in terms of both money and time) by industry in training both in IT skills and in management generally;

- that investment in training should be disclosed in company accounts.

The report was broadly welcomed by both trade bodies and companies, such as the Electronic Engineering Association and Hewlett Packard. But one of the committee's witnesses complained that the training recommendations did not go far enough. "We would have liked to have seen the disclosure of training costs recommended to a standard formula: say, training as a percentage of turnover," said Tim Webb, national officer for the Manufacturing, Science and Finance Union. "It would also have been helpful for more to have been said about employee rights to re-training, as a part of the contract of employment."

Webb and MSF have campaigned for over a year to get companies to sign a model agreement which guarantees in-service training, so far without much success. Other unions have tried less publicly than MSF to get ink on similar agreements, with similar results.

Reluctance by companies to pledge themselves to training, betrays a common fear over commitment to an investment always seen as disposable in hard times. The spread of IT throughout the economy could change this. Sectors such as retailing and financial services are pitching for IT and communications specialists with competitive salaries. Companies will be forced into training just to survive.

Responsive, not reactive

Companies often fail to plan for manpower needs during technology cycles and so suffer a skills crisis, according to a leading training company.

"Lots of companies are not geared to forward planning and then technology moves faster than the minds of people planners," said Howard Wright, general manager of BOC Training Services in west London. "When a company buys a system, say an IBM or Amadahi box, it should last about five years. During that time future training should be planned, but often the technology is here before we know it and training becomes reactive."

BOC can train between 1,500 and 2,000 people a year, with extra provision on a client's site. Communications, networks and data processing are all areas covered in the courses. Particular emphasis is given to local area networks, operating systems, structured programming methodology and systems analysis. This indicates where future skill demands will lie.

Evidence that IT has spread throughout the economy is contained in BOC's client base. One hundred people at Trent Water Board were trained in AS, an uncommon computer language. British Gas in Croydon ran two computer groups, mixing experienced staff with graduates through BOC.

Rothmans, Sainsbury's and Eagle Star go to BOC, alongside high-tech companies such as Apricot and Ferranti.

Most of the people tutored by BOC are experienced technical staff who need to be reskilled to meet the fresh IT demands on their employers. Wright believes that encouraging signs are coming through that industry and commerce are grooming personnel specialists to plan IT training more coherently.

ICL Training's ClassNet networked classrooms, provide an ideal learning environment for students – demonstrations by the lecturer appear simultaneously on the screen on the student's terminal. There is a strong emphasis on hands-on training.
R.A.E.D.E.K. ELECTRONICS
BANNERLY ROAD, GARRETTTS GREEN, BIRMINGHAM B33 0SL, ENGLAND
Tel 021-784 8655 Fax 021-789 7128 Telex No 333500 CROSAL G

Electron Tubes
- CRT's
- IGNITRONS
- KLYSTRONS
- MAGNETRONS
- PLANAR TRIODES
- RECEIVING
- RECTIFIERS
- SPARK GAPS
- TETRODES
- THYRATRONS
- TRANSMITTING
- TRAVELLING WAVE
- TRIODES
- SOCKETS & ACCESSORIES

R.F. Power Transistors
- MOTOROLA
- GENERAL ELECTRIC
- R.C.A.
- JOHNSON-THOMSON
- CSF
- REGENCY
- WILSON
- T.R.W.
- MSC
- ACRION
- TOSHIBA
- NEC
- MITSUBISHI
- PHILIPS
- AMPEREX
- MULLARD

R.F/H.F. Induction Heating
Equipment and Ancillary Spares
- NEW AND SECONDHAND GENERATORS
- RF CERAMIC CAPACITORS
- SOLID STATE CONV
- WORK COILS
- H.F. TRANSFORMERS
- CARBON FREE HOSE
- WATER FLOW SWITCHES
- CARBON RESISTORS
- OSCILLATOR VALVES

Audio Electronics
- DID YOU KNOW?
- AUDIO ELECTRONICS ARE DISTRIBUTORS FOR
 - TEST INSTRUMENTS
 - HAMEG: METEX: BLACKSTAR: GW: HITACHI
 - CROTECH: TEST LAB: THURLBY: ALTAL
 - THANDAR: Scopes, Generators, PSU's,
 Counters, DMM's, MM's, Pattern Gen, etc.
 - AUDIO PRODUCTS
 - SOUND LAB: SEAS: MCKENZIE: PHONIC
 - ALTAL: ADASTRA: Microphones, Mixers,
 Speakers etc.
 - SECURITY
 - Control Panels, PIR's, Sirens, Doorphones,
 Intercoms, CCTV etc.
 - TV-VIDEO
 - Distribution Amplifiers, Cables, Dubbing Kits,
 Enhancers, Aerials etc.
 - SUPPLIERS TO
 - TRADE • RETAIL • EXPORT • EDUCATION

Open 6 Days A Week - Callers Welcome

Electronic Joystick Controls
Our wide range of Joysticks, backed by 25 years' experience, volume production and a proven reliability allows us to offer versions for almost any application. Delivery of standard samples or small quantities is just a few days and large scheduled orders can be phased in within a week or two. No exorbitant low volume surcharges, no 8-12 week lead time - just what you want when you want it - at very competitive prices.

- **POTENTIOMETER**
- 1, 2 or 3 AXGS
- **CONTACTLESS**
- PWM Solenoid Drivers
- **MICROSWITCH**
- Specials
- **HEAVY DUTY**
- 1 PC to 10,000 per annum

Write or phone for details to:
FLIGHT LINK CONTROL
Unit 12, The Maltings, Turk Street, Alton,
Hants GU34 1DL
Tel: [0420] 87241/4
Fax: [0420] 84203
Telex: 858628 TELBURG

Audio Electronics
- TELEPHONE 01-724 3564
- 301 EDGWARE ROAD, LONDON W2 1BN
- SALES 01-258 1831 FAX: 01-724 0322

Instrument Catalogue
Rel T6 UK Send
SAE 44 with
£1.50 STAMP

ENTER 69 ON REPLY CARD
MEMORIES

MICROPROCESSORS
NEC - INTEL - MOTOROLA - AMD
8085 - 68000 - 280A - 80186 - 80486

SEMICONDUCTOR
Sensors
Ferrite Cores
Optoelectronics
Semiconductors
Thermistors
Integrated Circuits
Potentiometers
LEDs
Connectors
Suppression Switches.

Lowest prices worldwide for memories, digital, linear IC’s.

Send for complete components catalogue
UK - £1.50. Export - £2.50

PVS ELECTRONIC COMPONENTS
M3 4BQ
244 Deansgate Court
Deansgate Manchester
Phone: 061-832 6334 Fax: 061-836 9321

CONNECTORS AND CABLES
CABLE ASSEMBLIES AND TEST LEADS MADE TO ORDER
Coaxial or multiwire. RF, video, audio and data
RF test leads using high quality coaxial, double braid and tough PTFE cables available.
Price guide: BNC 1.0m lead only £3.50. Using high quality RG58, £6.20 using double braid PTFE.

WAVEBAND ELECTRONICS
3 Lon Howell, Denbigh, Clwyd LL16 4AN.
Tel: 074 571 2777.

PINEAPPLE SOFTWARE
BBC PC/ST SOFTWARE
PBL is a powerful RAM based printed circuit board design program suitable for all BBC computers. A second edition is now available. Atari based version coming.

IBM PC SOFTWARE
EASY PC easy PC is a powerful BBC Micro software package and a schematic drawing package. Up to 8 boards may be selected from a library of CMOS, TTL, 90-2716 and 2732. Powerful text and graphics features. Suitable for PCB wiring and panel designs.

ROLAND PLOTTERS
Now 1000 series plotters available. AutoAid 3D with AutoAid printer, 3rd party drivers and AutoAid plotting software. All models are available in 100 - 4000 x 4000 dot video and 80 x 80 dot graphics

MITEYE SPICE, PC AGE AND ECA - 2
Three very powerful circuit analysis packages. Miteye is available for the BBC range of computers, and Scares, Age and ECA-2 for the IBM and Commodore range. Miteye is a powerful new product for use with text and graphics as an aid to learning and analysis as well as being a full functional performance analysis.

MITEYE (for BBC and Commodore)
MITEYE (for IBM and Commodore)
Spice Age (IBM PC/XT/AT STX66)
ECA-2 (IBM PC XT/AT 666k Ram)
ECA-1 (Logic Analyser for IBM's)

March 1989 - ELECTRONICS & WIRELESS WORLD

307
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1714</td>
<td></td>
<td>24.50</td>
</tr>
<tr>
<td>A2296</td>
<td></td>
<td>11.50</td>
</tr>
<tr>
<td>A2411</td>
<td></td>
<td>13.50</td>
</tr>
<tr>
<td>A2793</td>
<td></td>
<td>14.50</td>
</tr>
<tr>
<td>A2991</td>
<td></td>
<td>16.50</td>
</tr>
<tr>
<td>A3600</td>
<td></td>
<td>19.50</td>
</tr>
<tr>
<td>A3342</td>
<td></td>
<td>32.95</td>
</tr>
<tr>
<td>A8848</td>
<td></td>
<td>35.95</td>
</tr>
<tr>
<td>A9123</td>
<td></td>
<td>39.00</td>
</tr>
<tr>
<td>A9224</td>
<td></td>
<td>39.00</td>
</tr>
<tr>
<td>A0136</td>
<td></td>
<td>40.00</td>
</tr>
<tr>
<td>A3072</td>
<td></td>
<td>42.50</td>
</tr>
<tr>
<td>A0789</td>
<td></td>
<td>56.50</td>
</tr>
<tr>
<td>A0792</td>
<td></td>
<td>58.50</td>
</tr>
<tr>
<td>A0794</td>
<td></td>
<td>61.50</td>
</tr>
<tr>
<td>A0795</td>
<td></td>
<td>64.50</td>
</tr>
<tr>
<td>A0796</td>
<td></td>
<td>65.50</td>
</tr>
<tr>
<td>A0799</td>
<td></td>
<td>67.50</td>
</tr>
<tr>
<td>A0800</td>
<td></td>
<td>68.50</td>
</tr>
<tr>
<td>A0801</td>
<td></td>
<td>70.50</td>
</tr>
<tr>
<td>A0802</td>
<td></td>
<td>72.50</td>
</tr>
<tr>
<td>A0803</td>
<td></td>
<td>74.50</td>
</tr>
<tr>
<td>A0804</td>
<td></td>
<td>76.50</td>
</tr>
<tr>
<td>A0805</td>
<td></td>
<td>78.50</td>
</tr>
<tr>
<td>A0806</td>
<td></td>
<td>80.00</td>
</tr>
<tr>
<td>A0807</td>
<td></td>
<td>82.00</td>
</tr>
<tr>
<td>A0808</td>
<td></td>
<td>84.00</td>
</tr>
<tr>
<td>A0809</td>
<td></td>
<td>86.00</td>
</tr>
<tr>
<td>A0810</td>
<td></td>
<td>88.00</td>
</tr>
<tr>
<td>A0811</td>
<td></td>
<td>90.00</td>
</tr>
<tr>
<td>A0812</td>
<td></td>
<td>92.00</td>
</tr>
<tr>
<td>A0813</td>
<td></td>
<td>94.00</td>
</tr>
<tr>
<td>A0814</td>
<td></td>
<td>96.00</td>
</tr>
<tr>
<td>A0815</td>
<td></td>
<td>98.00</td>
</tr>
<tr>
<td>A0816</td>
<td></td>
<td>100.00</td>
</tr>
<tr>
<td>A0817</td>
<td></td>
<td>102.00</td>
</tr>
<tr>
<td>A0818</td>
<td></td>
<td>104.00</td>
</tr>
<tr>
<td>A0819</td>
<td></td>
<td>106.00</td>
</tr>
<tr>
<td>A0820</td>
<td></td>
<td>108.00</td>
</tr>
<tr>
<td>A0821</td>
<td></td>
<td>110.00</td>
</tr>
<tr>
<td>A0822</td>
<td></td>
<td>112.00</td>
</tr>
<tr>
<td>A0823</td>
<td></td>
<td>114.00</td>
</tr>
<tr>
<td>A0824</td>
<td></td>
<td>116.00</td>
</tr>
<tr>
<td>A0825</td>
<td></td>
<td>118.00</td>
</tr>
<tr>
<td>A0826</td>
<td></td>
<td>120.00</td>
</tr>
<tr>
<td>A0827</td>
<td></td>
<td>122.00</td>
</tr>
<tr>
<td>A0828</td>
<td></td>
<td>124.00</td>
</tr>
<tr>
<td>A0829</td>
<td></td>
<td>126.00</td>
</tr>
<tr>
<td>A0830</td>
<td></td>
<td>128.00</td>
</tr>
<tr>
<td>A0831</td>
<td></td>
<td>130.00</td>
</tr>
<tr>
<td>A0832</td>
<td></td>
<td>132.00</td>
</tr>
<tr>
<td>A0833</td>
<td></td>
<td>134.00</td>
</tr>
<tr>
<td>A0834</td>
<td></td>
<td>136.00</td>
</tr>
<tr>
<td>A0835</td>
<td></td>
<td>138.00</td>
</tr>
<tr>
<td>A0836</td>
<td></td>
<td>140.00</td>
</tr>
<tr>
<td>A0837</td>
<td></td>
<td>142.00</td>
</tr>
<tr>
<td>A0838</td>
<td></td>
<td>144.00</td>
</tr>
<tr>
<td>A0839</td>
<td></td>
<td>146.00</td>
</tr>
<tr>
<td>A0840</td>
<td></td>
<td>148.00</td>
</tr>
<tr>
<td>A0841</td>
<td></td>
<td>150.00</td>
</tr>
<tr>
<td>A0842</td>
<td></td>
<td>152.00</td>
</tr>
<tr>
<td>A0843</td>
<td></td>
<td>154.00</td>
</tr>
<tr>
<td>A0844</td>
<td></td>
<td>156.00</td>
</tr>
<tr>
<td>A0845</td>
<td></td>
<td>158.00</td>
</tr>
<tr>
<td>A0846</td>
<td></td>
<td>160.00</td>
</tr>
<tr>
<td>A0847</td>
<td></td>
<td>162.00</td>
</tr>
<tr>
<td>A0848</td>
<td></td>
<td>164.00</td>
</tr>
<tr>
<td>A0849</td>
<td></td>
<td>166.00</td>
</tr>
<tr>
<td>A0850</td>
<td></td>
<td>168.00</td>
</tr>
<tr>
<td>A0851</td>
<td></td>
<td>170.00</td>
</tr>
<tr>
<td>A0852</td>
<td></td>
<td>172.00</td>
</tr>
<tr>
<td>A0853</td>
<td></td>
<td>174.00</td>
</tr>
<tr>
<td>A0854</td>
<td></td>
<td>176.00</td>
</tr>
<tr>
<td>A0855</td>
<td></td>
<td>178.00</td>
</tr>
<tr>
<td>A0856</td>
<td></td>
<td>180.00</td>
</tr>
<tr>
<td>A0857</td>
<td></td>
<td>182.00</td>
</tr>
<tr>
<td>A0858</td>
<td></td>
<td>184.00</td>
</tr>
<tr>
<td>A0859</td>
<td></td>
<td>186.00</td>
</tr>
<tr>
<td>A0860</td>
<td></td>
<td>188.00</td>
</tr>
<tr>
<td>A0861</td>
<td></td>
<td>190.00</td>
</tr>
<tr>
<td>A0862</td>
<td></td>
<td>192.00</td>
</tr>
<tr>
<td>A0863</td>
<td></td>
<td>194.00</td>
</tr>
<tr>
<td>A0864</td>
<td></td>
<td>196.00</td>
</tr>
<tr>
<td>A0865</td>
<td></td>
<td>198.00</td>
</tr>
<tr>
<td>A0866</td>
<td></td>
<td>200.00</td>
</tr>
<tr>
<td>A0867</td>
<td></td>
<td>202.00</td>
</tr>
<tr>
<td>A0868</td>
<td></td>
<td>204.00</td>
</tr>
<tr>
<td>A0869</td>
<td></td>
<td>206.00</td>
</tr>
<tr>
<td>A0870</td>
<td></td>
<td>208.00</td>
</tr>
<tr>
<td>A0871</td>
<td></td>
<td>210.00</td>
</tr>
<tr>
<td>A0872</td>
<td></td>
<td>212.00</td>
</tr>
<tr>
<td>A0873</td>
<td></td>
<td>214.00</td>
</tr>
<tr>
<td>A0874</td>
<td></td>
<td>216.00</td>
</tr>
<tr>
<td>A0875</td>
<td></td>
<td>218.00</td>
</tr>
<tr>
<td>A0876</td>
<td></td>
<td>220.00</td>
</tr>
<tr>
<td>A0877</td>
<td></td>
<td>222.00</td>
</tr>
<tr>
<td>A0878</td>
<td></td>
<td>224.00</td>
</tr>
<tr>
<td>A0879</td>
<td></td>
<td>226.00</td>
</tr>
<tr>
<td>A0880</td>
<td></td>
<td>228.00</td>
</tr>
<tr>
<td>A0881</td>
<td></td>
<td>230.00</td>
</tr>
<tr>
<td>A0882</td>
<td></td>
<td>232.00</td>
</tr>
<tr>
<td>A0883</td>
<td></td>
<td>234.00</td>
</tr>
<tr>
<td>A0884</td>
<td></td>
<td>236.00</td>
</tr>
<tr>
<td>A0885</td>
<td></td>
<td>238.00</td>
</tr>
<tr>
<td>A0886</td>
<td></td>
<td>240.00</td>
</tr>
<tr>
<td>A0887</td>
<td></td>
<td>242.00</td>
</tr>
<tr>
<td>A0888</td>
<td></td>
<td>244.00</td>
</tr>
<tr>
<td>A0889</td>
<td></td>
<td>246.00</td>
</tr>
<tr>
<td>A0890</td>
<td></td>
<td>248.00</td>
</tr>
<tr>
<td>A0891</td>
<td></td>
<td>250.00</td>
</tr>
</tbody>
</table>

Note: The prices listed are subject to change. For the most up-to-date information, please contact us directly.
Alvey management criticised – again

The Public Accounts Committee, a parliamentary watchdog MP which monitors how well Government spends the taxpayers' money, has heavily criticised the management of the Alvey Programme. In a report published in December the Committee says* that effectiveness of the Alvey Programme may have been hindered by an initial lack of technical and clerical support staff, and that the absence of information as to actual costs of projects until the fourth year of the Programme made sound financial planning impossible. In addition, the Committee pointed to an unsatisfactory “hands-off” management style.

The first (and last!) Alvey Programme was established in 1983 with three primary objectives: to rectify a serious and deteriorating balance of trade in IT products (then a deficit of £386 million), to improve collaboration between academic institutions and industry, and to target R&D spending into areas where a return on investment in R&D was likely. To realise these objectives, the Government were to supply £200 million and industry a further £150 million.

“Nearly 50% of the Alvey contribution came from just five firms.”

According to the Report, the only objective actually realised was the bringing together of academia and industry. This was despite “severe delays” resulting from the Alvey Directorate's narrow view that its role was to concentrate on contractual relationships between participants. In short, the Committee complained that too little was done by the Directorate to assist potential collaborators in exploring possible research topics before the contractual stage.

As a result, the Report states that Alvey became dominated by the large electronics firms who regularly contract with Government (i.e. those companies that were in a position to be ‘in the know’). Thus, the top five participating firms in the Programme accounted for nearly 50% of the total of the 428 ‘participations’, and the small firms, who were expected to exploit quickly the results of the research land to justify Alvey in an economic series, were absent from many projects.

The Committee was not convinced that the other objectives of the Programme were met. It withheld judgement on the technical merits of the research, and its subsequent exploitation, until the Government's final report on Alvey due in 1990, although readers will be aware of Rob Morland's optimistic report in January's issue of Electronics & Wireless World, while in an appendix, the Committee noted that the latest trade figures put the current IT trade deficit at £942 million.

In conclusion, the carefully phrased Report highlights several shortcomings of the management of the Alvey Programme. It also recognises that new ground had to be broken, and that some of the errors made were the cost of climbing up the inevitable learning curve. However, the Committee leaves the impression that if these lessons are not applied to ESPRIT and other EEC collaborative projects, the next report will not be so measured or restrained.

* 51st Report from the Committee of Public Accounts. The Alvey Programme of Advanced Information Technology, HC 477, £5.10, published by HMSO.

Moulded-on plug — no shocks, no surprises

Impoverished readers of Electronics and Wireless World have no fear; Eric Forth, Minister of State responsible for technology and consumer affairs, has decided not to force industry to fit moulded-on plugs on the electronics equipment or domestic appliances you buy.

The issue arose on the floor of the House before Christmas, when concerned MPs suggested that the time was right for the UK to fall in with the rest of Europe and ensure that all electronic and domestic equipment was sold with moulded-on plugs. This would help the old and disabled, who have difficulties in fitting plugs, to use their electrical appliances in a safe manner. Safety was very important, MPs added, because the UK is one of the few countries that allows an unqualified electrician to practice.

The Minister dismissed such concerns. The Government was against compulsion and regulation in principle, and felt that making moulded-on plugs compulsory would “give rise to problems, perhaps among people on low incomes”. In addition, the Minister pointed out, between 5% and 10% of the population still use round pin plugs and the proposed change would discriminate against them.

In fact, the Minister's argument makes the safety argument more pressing. People on low incomes are likely to purchase second hand equipment and moulded plugs should begin to identify outdated equipment; if 5% to 10% of the population do have the old round pin plugs, Government statistics show that between 3 to 6 million people use wiring daily that is at least 25 years old.
City technology colleges

City Technology Colleges (CTCs), one of the Government's brightest hopes in the educational field, are in trouble. Despite the technological bias in their curriculum, and their popularity with parents, CTCs have failed to succeed in the way the Government had originally hoped. The reason is simple: CTCs are proving deeply unpopular with local education authorities of all political persuasions, with the result that private sponsors are wary of making donations.

Supporters of CTCs point to the fact that much private money (over £31 million pledged so far) is already involved, and that any public funding (currently about £86 million) is additional money that the Government has found for the CTC initiative. Consequently, the Government argues that the financial impact of CTCs on education authorities is minimal, and that private sponsorship brings in new money, that CTCs improve parental choice, and that the institution itself should help alleviate future technological skill shortages. Given all these advantages, the Government naturally thinks that it is on to a winner.

However CTCs are independent of local education authorities. Thus, in an era of falling school rolls, where rationalisation of schools and facilities is inevitable, the establishment by Government of an extra school in a locality can fundamentally affect an authority's long-term educational strategy. In addition, a CTC offering improved salaries and conditions, public funding for its commitment, supportive parents and modern equipment, will attract the scarce skilled technical teachers away from the authority. In short, many authorities believe that the CTCs exacerbate existing problems, and in one case, a conservative authority (Trafford near Manchester), used these arguments to refuse to convert an old grammar school into a CTC.

Several opposition MPs have been quick to speak of bias. Max Madden, a Labour Bradford MP, contrasted the Government's intention to spend £6.8 million on a selective CTC in Bradford, with the cutting of £200,000 from the budget of Bradford's Technical College by the controversial Conservative Council. Paddy Ashdown, for the Democrats, has complained that the limit of £16 million spent by the Government on three CTCs compares badly with the total £6.8 million available to all 845 schools in the same catchment areas as the CTCs. As a result, CTC sponsoring has become a political act. Many private sponsors are worried that good intentions could easily be misunderstood by the local community. Several large companies, for example IBM, BP and ICI, have preferred to keep their hands in their pockets, and work instead through existing education authorities.

Civil Servants and tape recorders

Nigel Lawson's problems with faulty tape recorders and a dozen journalists misreporting statements which were not 'misspoken' have worried MPs. They are concerned, as always, about whether that Western Economies "should not be seduced by the wonders of high tech", as most of the jobs of the future will be "so much low-tech and no-tech" (i.e. labour-intensive services). Thus industry, the Government argues, has an important role in providing the basic training (schools, YTS etc.), and this leaves employers working within a free market environment to make business decisions to determine the advanced training needs of their staff. This policy objective allowed the Government to tell MPs that "it is primarily the responsibility of employers to meet their skill needs".

An exchange between two MPs from the high-tech town of Bristol. Dawn Primarolo (Lab) and Robert Haywood (Con), brought the different views into sharp focus. Primarolo commented that in Bristol there is a shortage of highly trained staff, and complained that the Government's training program tells people "how to clean and empty shelves", and not much else. Haywood, by contrast, defended the Government position, saying that it was the responsibility of management to train more and that "industry has the skills necessary to afford such training".

Thus technical training is part of the free market approach. The opposition parties say that this is nonsense, and public support for technical training is a worthy investment in the future wealth of the nation. In reply, the Government maintains that it has created the climate in which business can succeed and part of the price of that success is for planning for the future market place. This in turn means private investment to train their staff in the skills for the future. Roughly translated, the employers get the bill.

Notes on the House is written by Chris Pounder.

Technical training – who pays

Producing trained electronics engineers is expensive and the employer should foot a large part of the bill. That, coupled with the instinct to minimise the burden on the taxpayer, is the essence of Government policy towards technical training. As a result of recent statements, the Parliamentary pace has increased and the issue of who pays has become part of a much wider political debate.

This was obvious from the debates surrounding the Queen's Speech, when Gordon Brown, a member of the shadow cabinet, referred to an "investment gap" in training and R&D. He said that if the UK spent the same percentage of national income as did the French, it would have spent £4,000 more per worker on training and research. In Germany that sum would have been £6,000, in Italy £7,000, and in Japan the figure would be an additional £20,000 per worker. Brown said that the "gap" has put UK high-technology industries at a serious disadvantage, and that "we end the 1980's with a training and skills position that is well below our competitors."

Concern at the skills shortage is not limited to one side of the House. In the debates, Kenneth Warren (the conservative MP who is also chair of the Select (all party) Committee investigating the information technology industry), noted that a CBI survey in 1987 shows 15% of firms experiencing a shortage of skilled staff and, despite the obvious financial incentives, one quarter of engineering courses are not taken up. By 1992, Warren remarked, the Japanese will have seven times as many qualified engineering graduates as the UK.

The Government's policy derives from its primary concern that re-training should maximise the number of jobs. Chancellor Nigel Lawson said in Washington in 1984 that the French, Americans, and British are "living in a system of education and training that Western Economies "should not be seduced by the wonders of high tech", as most of the jobs of the future will be "so much low-tech and no-tech" (i.e. labour-intensive services). Thus industry, the Government argues, has an important role in providing the basic training (schools, YTS etc.), and this leaves employers working within a free market environment to make business decisions to determine the advanced training needs of their staff. This policy objective allowed the Government to tell MPs that "it is primarily the responsibility of employers to meet their skill needs".

An exchange between two MPs from the high-tech town of Bristol. Dawn Primarolo (Lab) and Robert Haywood (Con), brought the different views into sharp focus. Primarolo commented that in Bristol there is a shortage of highly trained staff, and complained that the Government's training program tells people "how to clean and empty shelves", and not much else. Haywood, by contrast, defended the Government position, saying that it was the responsibility of management to train more and that "industry has the skills necessary to afford such training".

Thus technical training is part of the free market approach. The opposition parties say that this is nonsense, and public support for technical training is a worthy investment in the future wealth of the nation. In reply, the Government maintains that it has created the climate in which business can succeed and part of the price of that success is for planning for the future market place. This in turn means private investment to train their staff in the skills for the future. Roughly translated, the employers get the bill.

Notes on the House is written by Chris Pounder.

Technical training – who pays

Producing trained electronics engineers is expensive and the employer should foot a large part of the bill. That, coupled with the instinct to minimise the burden on the taxpayer, is the essence of Government policy towards technical training. As a result of recent statements, the Parliamentary pace has increased and the issue of who pays has become part of a much wider political debate.

This was obvious from the debates surrounding the Queen's Speech, when Gordon Brown, a member of the shadow cabinet, referred to an "investment gap" in training and R&D. He said that if the UK spent the same percentage of national income as did the French, it would have spent £4,000 more per worker on training and research. In Germany that sum would have been £6,000, in Italy £7,000, and in Japan the figure would be an additional £20,000 per worker. Brown said that the "gap" has put UK high-technology industries at a serious disadvantage, and that "we end the 1980's with a training and skills position that is well below our competitors."

Concern at the skills shortage is not limited to one side of the House. In the debates, Kenneth Warren (the conservative MP who is also chair of the Select (all party) Committee investigating the information technology industry), noted that a CBI survey in 1987 shows 15% of firms experiencing a shortage of skilled staff and, despite the obvious financial incentives, one quarter of engineering courses are not taken up. By 1992, Warren remarked, the Japanese will have seven times as many qualified engineering graduates as the UK.

The Government's policy derives from its primary concern that re-training should maximise the number of jobs. Chancellor Nigel Lawson said in Washington in 1984 that the French, Americans, and British are "living in a system of education and training that Western Economies "should not be seduced by the wonders of high tech", as most of the jobs of the future will be "so much low-tech and no-tech" (i.e. labour-intensive services). Thus industry, the Government argues, has an important role in providing the basic training (schools, YTS etc.), and this leaves employers working within a free market environment to make business decisions to determine the advanced training needs of their staff. This policy objective allowed the Government to tell MPs that "it is primarily the responsibility of employers to meet their skill needs".

An exchange between two MPs from the high-tech town of Bristol. Dawn Primarolo (Lab) and Robert Haywood (Con), brought the different views into sharp focus. Primarolo commented that in Bristol there is a shortage of highly trained staff, and complained that the Government's training program tells people "how to clean and empty shelves", and not much else. Haywood, by contrast, defended the Government position, saying that it was the responsibility of management to train more and that "industry has the skills necessary to afford such training".

Thus technical training is part of the free market approach. The opposition parties say that this is nonsense, and public support for technical training is a worthy investment in the future wealth of the nation. In reply, the Government maintains that it has created the climate in which business can succeed and part of the price of that success is for planning for the future market place. This in turn means private investment to train their staff in the skills for the future. Roughly translated, the employers get the bill.

Notes on the House is written by Chris Pounder.
BC8 Computer & Econet Referall Centre

MODEMS

W34000 V21/23 (Hayes Complable. Intelgent. Auto Dial Auto Answer) £149 (b)
W34000 V21/23 Professional As W34000 and with Bell standards and battery backup for memory £245 (b)
W35000 V22 Proffessional As W35000 V21/23 but with 2000 baud full duplex £585 (a)
W35000 biss Professional As V22 and 2400 baud full duplex £595 (a)
W35002 Professional As W35000 but with only 1200 250 (b)
W3402 V22 Professional As W34000 but with only 2400/2400 £450 (b)

DATA Cable for W5 series/Pc or XT £10 (a)

PACET Linkage Nightrail M21 V23 Manual £75 (b)

(over limited to current stocks)

PLEASE WRITE OR CALL FOR CURRENT PRICES

DISC DRIVES

3M FLOPPY DISCS

FLIPPOCINI DRIVEHEAD CLEANING KIT

FLOPPICILI Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives £14.00 (d)

DRIVE ACCESSORIES

EXT SERIAL/PARALLEL CONVERTERS

USB WAVERS

UVIT Eater with bi-directional serial and parallel, in out and bi-directional serial and parallel, built-in safety interlock to avoid accidental exposure to the harmless UV rays. A device that can be used in environments that require a high degree of safety £219 (b)

SERIAL MINI PATCH BOX

SERIAL MINI TEST BOX

CONNECTOR SYSTEMS

RIBBON CABLE

DIL HEADERS

ATTESTION

attains in the double page advertisement are subject to change without notice.
ALL PRICES EXCLUDE VAT
Please carry price list and VAT codes as indicated on page 150.

312 ELECTRONICS & WIRELESS WORLD March 1989
<table>
<thead>
<tr>
<th>74 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>Цена</td>
<td>Количество</td>
</tr>
<tr>
<td>IC</td>
<td>Цена</td>
<td>Количество</td>
</tr>
<tr>
<td>LINEAR ICs</td>
<td></td>
<td></td>
<td>COMPUTER COMPONENTS</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>Цена</td>
<td>Количество</td>
</tr>
<tr>
<td>IC</td>
<td>Цена</td>
<td>Количество</td>
</tr>
</tbody>
</table>

Special offer to E&W readers only 10% off on all TTLs and CMOS

Please note:
- All prices are subject to change without notice.
- Only current price-grade components quoted.
- We also stock a wide range of Transistors, Diodes, Triacs, Bridge Rectifiers, and more.
- Please phone for details.

Technomatic LTD

Mail Orders To: Techno House, 468 Church Lane, London NW9 8TQ

Shops At: Techno House, 468 Church Lane, London NW9 8TQ

Tel: 01-205 9558, Fax: 01-205 0190, Telex: 922300

305 Edgeware Road, London W2

March 1989 ELECTRONICS & WIRELESS WORLD

Please add 50p p&p & 15% VAT

(Export no VAT, p&p at Cost)

Orders from Government Depots & Colleges etc. welcome.

Detailed Price List on request.

Stock items are normally by return of post.

ENTER 55 ON REPLY CARD
Cellular growth problems

The extremely rapid expansion of UK cellular radio since the introduction of the Cellnet and Vodafone services in 1984, brought about in part by aggressive and sometimes misleading marketing by the competing retailers, has resulted in a substantial volume of complaints from users that they are not receiving the quality of service they had been led to expect. According to a survey by the Cellular Phone Users' Association, a pressure group campaigning for improved service and lower charges, problems can be experienced on up to 75% of calls, increasing costs to users by hundreds of thousands of pounds a year.

Both Cellnet and Vodafone are seeking to improve their services by setting up additional base stations, particularly in urban areas, and by providing extra channels to overcome congestion. I note, for example, that Vodafone has recently installed base-station antennas on the roof of the IBA building in Knightsbridge. Cellnet has some 400 active cells with a scheduled 50% annual increase. Nevertheless, the Users' Association believes that with increasing congestion the quality of service is likely to get worse before it improves.

For at least two years, business users have been complaining of what they regard as excessive costs involving the initial equipment, installation charges, standing charges and connection fees, in addition to the charges for both completed calls and the calls wasted when contact is lost.

Eavesdroppers

A few users of UHF/FM mobile radiophones, both network and cellular, have become concerned at the growing availability of "scanning receivers”, some covering frequencies up to over 1000MHz, that make it possible for "radio freaks" to intercept private calls. In South London, in a series of prosecutions, a group of five enthusiasts have been fined over £7000, plus £10 000-worth of equipment forfeited, for breaches of the Wirelless Telegraphy Acts.

According to a report in New Statesman and Society "The case against the South London five began late in 1987 when radio monitors working for the DTI overheard group members exchanging details of 'interesting' frequencies by radio. For ten months thereafter, relays of DTI inspectors monitored and transcribed every word the five and their friends spoke on the air. . . Twenty officials had spied on the five and their friends, sometimes rising before 5 a.m. to do so. Finally, in July 1988, 25 police and DTI officers arrested the five in a co-ordinated series of heavy-handed raids." It appears that in this case, the over-zealous enthusiasts were monitoring the mobile networks of Government agencies, including MI-5, and were initially suspected of being "spies" or subversives. In this connection, one cannot help feeling that few of the half-million users of "cordless" telephones are made aware of the risk of their calls being overheard by local radio listeners— not only those with receivers covering 1.6 to 1.8MHz but also, due to "image" reception, on ordinary broadcast sets.

European EMC Directive

The DTI continues to express reservations about the draft of the proposed European Community Directive on Electromagnetic Compatibility (EMC) and has been lobbying for further changes after the UK abstained from voting last October on the Directive as presented at the International Market Council meeting. On present timescales the Directive is due to come into force on 1 January 1992, with a transitional period in the event of non-compliance of the necessary standards at the date of its implementation but with a deadline limited to 31 December 1992.

A point of some interest to the radio communications industry and to radio amateurs in particular is the interpretation of the latest form of Article 2, Paragraph 3 and Article 10 Paragraph 5: Radio Equipment.

Article 2 Paragraph 1 states that the EC Directive will apply "to apparatus liable to cause electromagnetic disturbance or the performance of which is liable to be affected by such disturbance— a comprehensive description covering virtually all radio and electronic equipment. Paragraph 3, however, states: "Radio equipment used by radio amateurs within the meaning of Article 1, definition 53, of the Radio Regulations in the International Telecommunications Convention, is excluded from the scope of this Directive, unless apparatus is available commercially."

This would seem to have the intention of excluding all home-built amateur transmitters, but apparently this is not the interpretation put on it by the DTI. They interpret it to imply that the Directive will apply "to all transmitters and receivers placed on the market and brought into service, including commercially available amateur apparatus. The only exception to this coverage is home-built amateur apparatus (though our interpretation is that the component part of the kit-built equipment would need to comply if on offer commercially). In addition most transmitters, but not receivers, will need to be type-tested by an independent accredited test-house. Only amateur transmitter apparatus which is commercially available will fall outside this requirement."

I hesitate to interpret the DTI's "interpretation" but, on the face of it, the notes provided by J.C. Ketchell of DTI's Radio Investigation Service suggest that virtually any home-built transmitter would need to be submitted for type-testing by an accredited test-house. This would inevitably be a costly process that would make it uneconomic to design and build a one-off experimental transmitter. This, surely, is not the intention of the EC Directive.

The 8th International Zurich Symposium & Technical Exhibition on EMC is being held at Zurich, March 7 to 9. With three parallel streams the preliminary programme lists no less than 120 papers, two tutorial lectures (on March 6) and six Open Meetings of URSI Commission E (also on March 6).

Morse at sea

The decision of the International Maritime Organization to endorse the recommendations of WARC-Mob 87 ("Radio Communications", E&IW, January 1988, page 93) and formally mandate the push-button satellite Global Maritime Distress and Safety System (GMDSS), gradually phasing out the hand-morse distress service has been widely hailed as marking the beginning of the end of manual morse for maritime communications. Over the past few years, HTI have been closing most of their 500KHz coast stations, some after almost 80 years of service.

Even the Royal Navy, in which, since the adoption of RTTY, morse has continued to be used as the main fallback procedure for HF communications, has been publicising its "low-speed diversity modem" developed during the 1980s at the Admiralty Research Establishment at Portsdown in conjunction with Redifon. According to an article "Farewell to Morse...?" in DTE Spotlight, June 1988, published by Defence Technology Enterprises Ltd, the technology of this patented modem is available for licensing through DITE.

This system is designed to achieve reliable HF communications under adverse propagation conditions and in the presence of co-channel interference, using seven-unit ASCII code with low data rates, frequency and time diversity in conjunction with an intelligent detection and decoding algorithm. The system was described at the 1985 "HF Communication Systems and Techniques" conference (IEEE Conference Publication No 245 "Comparison of 100Kps modem with man-road morse") But the parallel signals occupy a full 3KHz bandwidth compared with a few tens of hertz for manual morse at an equivalent transmission speed. The objective is to eliminate the need to train morse operators, accepting increased complexity.

Radio Communications is written by Pat Hawker.
Component Source

USA Mil Spec
Transformers, Power Supplies, Fans, Connectors, Capacitors, Semiconductors.

UK Mil Spec
RF Power, JANTX, Diodes, Resistors, Lamps, crystals, Electron Tubes, Relays, Circuit Breakers, Fuses.

COMPONENT SOURCE – THE ONE STOP SOURCE FOR ALL MIL SPEC ELECTRONICS

5 Brougham Road, Worthing, West Sussex BN11 2NP.
Telephone:
National – Worthing (0903) 208560
International – 44 903 208560
Telex: 878500 Source G. Fax: (0903) 211705

ADVANCED ACTIVE AERIAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional intermodulation performances: SOIP +90dBm, TOIP +55dBm. For the first time this permits full use of an active system around the VHF and UHF broadcast bands where products found are only those radiated from transmitter sites.
- General purpose professional reception 4kHz – 30MHz.
- 10dB gain, field strength in volts/metre to 50 Ohms.
- Preselector and attenuators allow full dynamic range to be realised on practical receivers and spectrum analysers.
- Noise – 150dBm in 1Hz. Clipping 16 volts/metre. Also 50 volts/metre version.

SURREY ELECTRONICS LTD.,
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
Tel: 0483 275997

IMAGE PROCESSING

PLUG-IN CARD FOR IBM PC (OR AMSTRADS)

- Capture pictures from video camera or VTR.
- Comprehensive image processing software.
- Measurement
- Histogram.
- Contrast stretching
- Add/subtract pictures.
- Save pictures to disk.
- Simultaneous storage of five pictures.
- Picture resolution 256x256
- 64 grey levels per pixel.
- PLUG-IN CARD AND SOFTWARE £850.00 + VAT.

For full specification consult the IMAGE PROCESSING SPECIALISTS

ELTIME VISION SYSTEMS
10/14 HALL ROAD, HEYBRIDGE, MALDON, ESSEX CM9 7LA.
Telephone: 0621 595000 Tel: 995548

Enter 19 on Reply Card
Synchronizing the digits

Russian broadcast engineers are calling for co-ordinated efforts by broadcasting organizations and equipment manufacturers in many countries to establish a unified reference synchronizing signal for use in future digital television studio complexes. V.A. Khlehorodov (Gosteleradio) in a paper "Signals for centralized synchronization in digital television" (IORITY's Radio and Television 1988/4) points out that following the adoption of CCIR Recommendation 601 as a universal component digital standard and the introduction of digital videotape recorders using this 12:4:4 standard, broadcasters are now approaching the stage where digital television complexes are being planned.

Already, a variety of synchronizing signals have been used or proposed but Khlehorodov argues that the choice of a unified reference signal should be made on the basis of broad-based and comprehensive technical and economic research.

The SMPTE experimental digital studio assembled in San Francisco in 1981 was synchronized by means of conventional "analogue" signals but SMPTE has since proposed a universal "component reference signal (CRS)" suitable not only for digital but also for analogue-component working, with one luminance and two chrominance signals. This is seen by Khlehorodov as "not without shortcomings".

Analogue synchronizing signals were used in the first operational digital television studio, initially located in Rennes, France, and since relocated in Paris. For the experimental ITVA digital studio at Thames Television, a 4:2:2 video signal is fed directly to the video sources or to a special SPC which can be locked to the 4:2:2 signals. Khlehorodov considers that this method would be uneconomical for major studio complexes partly because of the expensive transmission links that would be needed to transmit a full 4:2:2 digital stream over the distances involved.

The Russians have proposed to CCIR (Doc. 11 USSR) CCIR. June, 1987 a "centralized digital synchronizing (CDS)" signal based on a 3.375MHz clock signal although needing two variants, one for 625/50 and the other for 525/60 systems. This is based on the premise that the clock frequency should be lower than the 27MHz clock frequency of the parallel video interfaces in order to facilitate distribution; it should also occupy the greater part of the line period to provide high phase stability of the generated clock frequencies of 6.75, 13.5, 27 and 243MHz. The applicability of the signal in analogue TV complexes hinges on the need to limit its bandwidth to 5 or 6MHz. It is claimed that an important advantage of the CDS signal for the timing of video sources is the simple realization of digital delay circuits in the decoder or coder: one IC with 64K memory can provide a delay of almost one field period.

It is admitted that a possible drawback is the need for two variants for 625/50 and 525/60 systems with consequent small differences between the respective coders and decoders, but it is pointed out that this does not rule out the possible use of a rather different concept based on a 2.25MHz clock which would overcome this problem.

MASCAM digital audio

Television Broadcast (April 1988, E&W, page 409) drew attention to the digital stereo sound-in-sync system for broadcast television proposed by Russian engineers at the A.S. Popov research institute. This system reduced high-quality digital audio channels to 192Kbit/s by making use of the Zwicker critical bands of hearing described in "Das Ohr als Nachrichtenempfänger" (The ear as a receiver of information) by E. Zwicker and R. Feldtkeller, published by S. Hirzel-Verlag (Stuttgart, 1967). Zwicker showed that there exist 24 audio sub-bands within which the most powerful component conceals (masks) adjacent, less powerful components, including noise, making them imperceptible to the ear. These Zwicker critical bands also serve as the basis of MASCAM (Masking-pattern adapted sub-band coding and multiplexing) developed at the German broadcast research institute, IRT, and used in conjunction with the OFDM transmission system developed by CCET (France) for the European Broadcast Union's demonstration of advanced digital techniques for UHF satellite sound broadcasting, at the World Radio Broadcasting Conference in Geneva last September.

MASCAM reduces a high-quality audio channel, sampled at 32kHz, to 112kbit/s plus an additional 24kbit/s for the transmission of the associated scale factors. Each complete stereo channel, including error protection, is assembled as a 256kbit/s multiplexed digital stream. In practice a number of such stereo channels would be further multiplexed for the CCET digital modulation system for transmission via a satellite operating in the 1 to 3GHz range.

RDS pros and cons

The BBC will shortly extend the services provided by the VHF/FM RDS system to include an experimental traffic information service based on five local stations: Bedfordshire: Ken; WN (West Midlands): GLR (Greater London Radio); and Essex Radio. If the trials prove successful the system will be adopted throughout the BBC local radio network. Any car radio equipped with an RDS decoder, with its "traffic service" activated, will automatically receive any traffic announcements made on the local stations regardless of which BBC FM station is being listened to (see also page 284).

However, it was evident at a recent EEE colloquium "The RDS system - its implementation and use" that it is likely to be many years before the full potential of the RDS system is taken up by listeners rather than those with top-of-the-range car radios. BBC speakers stressed that they would like to see RDS decoders incorporated in most types of domestic and portable receivers, initially in high-quality tuners. Undoubtedly a major problem for battery powered portable receivers would be the extra power consumption of integrated decoders, amounting to some 25 to 35mA continuously throughout the period that RDS is in use.

Similarly, although RDS has been adopted by 24 of the 46 existing IRD companies and has already been implemented on 36 transmitters, there are still no dynamic data links between the studios and the encoders at the transmitter sites. This limits the service to PI (programme identification), PS (programme service name), AF (alternative frequency lists) and, shortly ON (other network). It would also be possible to transmit CT (clock time) but the motor industry is opposed to implementation on the grounds that most cars are already equipped with a clock. The IBA is anxious that the motor industry should voluntarily specify RDS radios as standard equipment.

Theo Kamalski of Philips at Eindhoven considered RDS from the viewpoint of the receiver manufacturers. While he stressed that "RDS has the potential to become very successful," he drew attention to several problems arising from the EBU specification, which he urged should be amended in some respects. The main practical problem is the occasional switching of receivers to an unwanted transmission due to multiple use of frequencies by broadcasters and inadequate specification for adjacent programmes. He noted there have also been some startup problems due to incompletely equipped networks, incorrect AF lists and wrong PI codes. He considers that the highest priority should be given to the problem of adjacent programme specification which the car radio manufacturer cannot be expected to solve alone.

RDS was introduced by TDF throughout France in the autumn of 1987 including a radiopaging facility "Operator" with a capacity for 300,000 subscribers. Some 300 encoders were delivered by the Swedish firm Telit Scandinavien. The pager provides selective calling and displays the telephone number to be called. In practice there is the problem that pagers subscribers expect the system to work regardless of location and tend not to recognise that the lowest level of RDS data modulation presents severe reception problems inside modern buildings.

Radio Broadcast is written by Pat Hawker.
EASYTRAX is Powerful Affordable
Easy to use software for laying out single and multi layer circuit boards.

Complete with Printer Output including HP Laser plus a range of plotters including Photo plotter, also includes a large component Library. Works on most MsDos Computers and supports a wide range of Monitors.

J.A.V. ELECTRONICS LTD, Unit 12A, Heaton Street, Denton, Manchester M34 3RG.
Tel: 061-320 7210. Fax: 061-335 0119.
UK Distributor for PROTEL. Advance System Centre for AMSTRAD. Main dealer for ROLAND also dealer for Brother, Oki, Microline & Epson. **Plus VAT**

ENTER 7 ON REPLY CARD

FORTH INSTRUMENTATION

COMPUTER

TDS 9090

A powerful control computer based on the new Hitachi 6303Y and high level language Forth. 100mm x 72mm
30K bytes RAM, 16K dictionary RAM PROM. 256 bytes EEPROM. 16K. Forth. You can attach 64 key keyboard,
LCD and I/C bus peripherals. Built in are interrupts, multitasking, time of day clock, watchdog timer. full
screen editor and symbolic assembler. 32 parallel and two serial ports. Single power supply and low power 3mA
operational mode.

1 off £194.95 including manual and non-volatile RAM.

FORTH INSTRUMENTATION

Triangle Digital Services Ltd
100a Wood Street, London E17 3HX
Telephone 01-520 0442. Telex: 262224 (quote MOT75). Fax 01-509 3263

ENTER 67 ON REPLY CARD

M & B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST-EQUIPMENT DEALER

FOR VALVES

Edicron Limited has over thirty years experience of supplying electronic components and exporting to some 40 countries worldwide, offers:

- High quality products
- The best prices
- Rapid delivery
- Technical backup
- Comprehensive stocks
- No minimum quantities

To find out more about what Edicron can offer you – or for details of any of the products shown below – phone, fax, telex or write to us today.

Redundant stocks also purchased.

Edicron Limited
9, Bethune Road, London NW10 6NJ
Tel: 01 961 2020
Telex: 265531 EDICRN G Fax: 01 961 2285 GRP 3

ENTER 79 ON REPLY CARD

SPECTRUM ANALYSERS

HP3504A 15MHz to 3GHz – New £00
HP3554B 1 to 100MHz 1GHz Frame £00
HP3554B 1 to 100MHz 1GHz Frame £00
HP3558A Dual Channel Digital Signal £00
Analyzer £00
HP3565A Digital Signal Analyzer £00
POA

\[\text{For details contact Edicron Limited} \]

GENERAL TEST EQUIPMENT

Brophy 171 Oscilloscope Calibrator £175
Brophy 196 Oscilloscope Calibrator £250
Wandel Goffenberga SMPC Nutor Love £175
RadioMeter 5021 Static Generators £150
Systems scope for Vero Series Scopes £125
Teach-a-scope 529 Video Waveform Monitor £200
Teach-a-scope 3220 Defecton Meter £00
Teach-a-scope 3260 Power Meter £195
Teach-a-scope 3220 Y Displays £175
Teach-a-scope 1314L CR3 Bridge £150
Teach-a-scope 74012 A & B Oscilloscope £175
Teach-a-scope 74013 B Q Meter £150
Rheometer LCD Bridge £95
RheoMeter RMA Communications Receivers 500KHz 30MHz

SPECIAL OFFER ITEMS

Ex Military RF Survey Loads 0-250MHz to 0-100 watts N Type Connector – quantity available £00
Ex Military Electronic UHF 1GHz with probes £00
Brand new 329B 10inch 25MHz 0-5GHz £00
Brand new 3324A 100MHz 0-5GHz £00
POA

Edicron Limited
9, Bethune Road, London NW10 6NJ
Tel: 01 961 2020
Telex: 265531 EDICRN G Fax: 01 961 2285 GRP 3

ENTER 79 ON REPLY CARD

AUDIO EQUIPMENT

Hayes 4515 Tape Recorders Priced £0
Univ 4000IC Cartridge Recorders £0
Univ 4000DC Cartridge Recorders £0

1000MHz 150 MHz 100 MHz 500 MHz 200 MHz 100 MHz

March 1989 ELECTRONICS & WIRELESS WORLD

317
Test Engineers

Racal Defence Radar & Displays Limited is at the forefront of defence electronics, and requires high-calibre test engineers to maintain its market position into the 1990's. The main site is located at Chessington, Surrey, within easy reach of London and the southern home counties.

As a member of our production test team, you will gain a broad knowledge of our existing product and help to launch a new range of products, whilst working with the most sophisticated "state-of-the-art" test equipment. Your work will involve the diagnosis of complex faults or component level, and at the higher levels you will be involved in raising software programmes and overseeing projects from the development laboratories into production.

You should have a working knowledge of analogue and digital circuitry, with software knowledge an advantage. Applications from candidates with experience of the testing and diagnostics of complex electronic systems, or a relevant Forces background will be particularly welcome.

Trainees without experience, but qualified to a minimum of Technician Certificate in Electronics, or Radar Maintenance Certificate will also be considered.

We offer an excellent benefits package, including 5 weeks holiday, contributory Pension and Life Assurance Scheme, subsidised Restaurant and Sports and Social Club.

Interested? Please write to Mary Mackay, Personnel Officer, at the address below, giving career history and current salary, or phone for an application form. Racal Defence Radar & Displays Ltd., 9 Davis Road, Chessington, Surrey KT9 1TB.

Telephone: 01-397 5281 Ext. 2418.
The completed application form (with CV) must reach the Civilian Personnel Section not later than 6 April 1989. Candidates may be expected to undergo a written test and interview.

Applicants who meet these requirements are invited to request an application form and further information from the

Civilian Personnel Section,
Headquarters AFCENT, Post Box 270,
6440 AG Brunssum, The Netherlands.
Wanted urgently Practical people for the Third World.

Many people want to help the Third World. But relatively few can offer the kind of help wanted most: the handing on of skills and professions which lead to self-reliance.

You could make this priceless contribution by working with VSO.

Current requests include:

- **Electronics Instructors:** Ultra-sound Technician
- **Studio Electronic Engineer:** Refrigeration/Radio/TV Engineers
- **Hospital Electronics Engineers:** Electrical Engineers for instruction/installation
- **Lecturers in Power and Communication:** Maintenance and repair Technician

For more details, please complete and return to: Enquiries Unit, VSO, 317 Putney Bridge Road, London, SW15 2PN. Tel. 01-780 1331.

Conditions of work:
- Pay based on local rates
- Posts are for a minimum of 2 years
- You should be without dependants
- Many employers will grant leave of absence.

I'm interested. I have the following training/experience:

Name

Address

ARTICLES FOR SALE

HAVING DIFFICULTY OBTAINING AN OBSCURE VALVE/TRANSISTOR/IC?

(2 magnetron, Klystron, CRT, iraw wave tube etc)

We specialise in obscure types and stock all popular types at competitive prices! All good quality brands, guaranteed by us. Special prices for orders over £50. Official orders from gvt, military, PLCs, overseas etc welcome.

PHONE/FAX/TELEX FOR UP TO DATE PRICES ON YOUR REQUIREMENTS

Visa-Barclaycard telephone orders welcome.

WE WISH TO PURCHASE VALVES (esp EL34 KT66 KT88 PX4 PX25)

TRANSISTORS, I.CS, PLUGS, SOCKETS, CONNECTORS

If possible send written list for order by return.

BILLINGTON VALVES

Good quality - Low prices - Rarities a specialty
30 Highlands Road, Sousse, RH13 6LS, UK.

Callers welcome but by appointment only.

Phone: 0403 210729. Fax: 0403 40214. Telex: 67271
Office hours Mon-Fri 8am-6.30pm (+24 hr answering service)

RIVERSIDE HEALTH AUTHORITY

Charing Cross Hospital (Fulham)

ELECTRONICS TECHNICIAN (MPT IV)

For the Communication Aids Centre in the Speech Therapy Department at Charing Cross Hospital.

The work includes the maintenance and development of communication aids. Suitable applicant will have practical skills in electronics and home computing experience would be an asset. An ONC or equivalent qualification is essential.

Salary: £8,030 - £9,992 per annum inc. London Weighting.

We have excellent leisure facilities, creche and subsidised canteen.

For further information please contact the Communication Aids Centre on 01-846 1051/8

For applicant’s pack phone 01-400 5500 (24 hour answering service)

When replying to classified advertisements readers are recommended to take steps to protect their interest before sending money.

THE SERVICES SOUND AND VISION CORPORATION

is a large, well-established organisation with a heavy involvement in the electronic engineering industry. We are currently seeking applicants with at least two years’ detailed practical experience in the repair and servicing of AVA, video or television equipment and have vacancies in the following areas:

- **OMAN** - AVA TECHNICIAN (Mobile)
- **WILTSHIRE/DORSET** - VIDEO TECHNICIAN (Mobile)
- **NORTH YORKSHIRE** - VIDEO TECHNICIAN/ENGINEER (Mobile or Static)
- **BUCKINGHAMSHIRE** - TELEVISION TECHNICIAN
- **CHALFONT GROVE** - VIDEO ENGINEER/TECHNICIAN

Corporation vehicle provided for posts with mobile duties.

For an application form and further details, please contact: Mrs. Anna Slive, Assistant Personnel Manager

The Services Sound & Vision Corporation

PO Box 903, Gerrards Cross, Bucks SL9 8TN

Telephone: 02647 - 4461 Extension 221

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

- SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc.
- RESISTORS, C. F. M. F. W. W. etc., CAPACITORS
- SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
- ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIPE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKEs, TRANSFORMERS, etc.

ALL AT KNOCKOUT PRICES

Come and pay us a visit! ALADDIN’S CAVE.

TELEPHONE: 445 0749/445 2713

G. HENSON LTD
21 Lodge Lane, North Finchley, London N12.

(5 minutes from Tally’s Corner)

B-Sweep

Micro-controlled frequency sweep generator with response plotting, all from one compact unit plugged into your BBC B, B+ or Master

MELFORD DESIGNS LTD

5 Bucknalls Drive, Bricket Wood, St. Albans, Herts. AL2 3JU

Telephone: Garston (0933) 673008
Fax: 0923 871814
G. W. M. RADIO LTD
40/42 Portland Road, Worthing, Sussex.
Tel: 0903 34897

Microwave equipment TF 2300B
modulation meter am/fm 4-12000mhz
£275. TF modulation meter am/fm 5-5
1000mhz £175. TF 1964 am/fm
signal generator 68-185lhz plus
450-470mhz checked £70 TF 2015
and TF 2171 sig gen and
syncronizer 15-220mhz am/fm
solid state £570 TF 2016 and TF 2173
sig gen and synchronizer 15mhz to
120mhz am/fm solid state £575.
Racial 850 Calibrators suitable for setting up
radio telephone equipment £24. All
prices include P&P and VAT.

SERVICE

TURN YOUR SURPLUS

WANTED

ICs, transistors etc into cash.
Immediate settlement. Also welcome
the opportunity to quote for complete factory clearance
Contact

COLES, HARDING & CO
103 South Brink, Wisbech, Cambs.
Tel: 0945 584188 Fax: 0945 588844

MICROWAVE COUNTERS—IMMUNE CONDITION!

HP Model 5488 10Hz-260Hz. GR8. High
stability crystal oven and 10GHz
extender frequency coverage options. Complete with
full handbook, schematics. 3088 bargain of
£1950. Also HP-5322A 100GHz
microprocessor counter. (2.45)
Turner AMM-400. Mod Meter £1.5 2GHz
(suitable to 4GHz) List price £920 Bargain of
£490. Supertop portable unit only 1 year old.
HP Model Microwave Power Meter £155
these low cost general purpose units receive £490

FOR MORE INFORMATION
CALL: CHRISE TERO ON
661-3033

CLASSIFIED ADVERTISEMENTS

USE THIS FORM FOR YOUR SALES AND WANTS

Please insert the advertisement indicated on form below

To "Electronics & Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £6 per line. Average six words per line. Minimum £48 (prepayable).
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus £15.
- Cheques, etc., payable to "Reed Business Publishing" and cross "& Co." 15% VAT to be added.

NAME..

ADDRESS ..

REMITTANCE VALUE ENCLOSED

Please write in block letters. Classification Number of insertions

March 1989 ELECTRONICS & WIRELESS WORLD 321
Wagner, Debussy and electromagnetism (letters), July 681, Sep. 862, Dec. 1188

Wafilmations, see - Sequence-division multiplex
War and peace, bus proposals (II), Aug. 811
WARC-Mob. '87 Jan. 93

Waves, see - Switch-mode power supplies, How to combat, Oct. 106
Wave motion, see Making waves
Waveform templates, letter July 684
Weather satellites, Europe's New, Jan. 58

Weightless candle-flame, May 453
What is the IEEE869 bus? Aug. 890
What shall we bet about these batteries? Oct. 978
Wiener-Khintchine theorem, Apr. 356
Will your DMM cost more to keep than it does to buy?, Feb. 148
Wires plus switches equal digital circuits, Aug. 769; letters, Nov. 1069

Word-processing in the brain, June 623, letter Oct. 963
Words and pictures (comment), Feb. 107; letter Apr. 334

Workstations, Engineering (II), Dec. 122
World-scale mobile data communications (II), Apr. 400

Writing for E&WW: notes for potential authors, July 696

Wu, and chaukopers, Dec. 1165
X-ray fluorography, Oct. 953

X-ray lithography for semiconductors, Nov. 1138
XECCE, see Electronic message handling
Year of the viper, The (III), Dec. 1226; see also Dec. 1209

280 bootstrapping and communications interface (CI), Apr. 344

100W r.f. power generator (CI), Dec. 1195

29000, see Second-generation riser processor 36 nanoseconds, see Thirty six nanoseconds faster

4GHz synthesized local oscillator design, Mar. 251
5V rail for telephone circuits (CI), Jan. 64
660W uninterruptible power supply, Oct. 58
6800, see also Upgrading from 6800 to 68020

6881

8038, see Designing 68030 into VME
786 rule, see Seven-per-cent rule, The
818 switch-reading and interrupt tips, (CI), Mar. 241

881 riser processor, see MCM81100 riser.
INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 318-321

PAGE
Antex Electronics Ltd. 303
Arcon Control Systems 270
Arcon Electronics 250
Audio Electronics 306
Cahners Exhibitions 230
Cahners Exibitions - Loose Insert 230
Cavendish Automation Ltd 222
Component Ltd 219
Componentex Ltd 251
Component Source 315
Crotech Instruments Ltd 241
Dataman Designs 251
Datamap 203
Design Consultancy 304
Display Electronics Ltd 251
Downy Marianne 222
E.A. Swater 260
Edicron 317
Etite Ltd 315

PAGE
Farnell Instruments Ltd 285
Fashion Systems 246
Flight 306
Flight Electronics Ltd 230 231
Henrys 251
IR Group 215
IR Group 241
ICOM (UK) Ltd 246

PAGE
M & B Radio (Leeds) Ltd 317
M A Instruments 263
MGP Electronics 260
Matmos Ltd 328
Number One Systems Ltd 227
Ogittronics Ltd 283
P M Components Ltd 308 309
Pinnacle Software Ltd 307
PVS Electronic Components Ltd 307
Raelek Electronics Co 306
Raffe Electronics 303
Research Communications 245
Sherwood Data Systems Ltd 298
Sotex International 307
Stag 210

STOP PRESS
Hitachi CD Rom drive, 550 Megabyte, with IBM PC cont. card and cable, £199
Hitachi very high res. professional colour monitors. Selection from 12 to 20 inch. Details, price, on application.

Modem
Plessey 2400 BAud V22/V22 bits. Compact 1200-2400 baud featuring auto-call, auto-answer and auto-bit rate recognition. With manual and connection details for high speed Prestel for BBC, including software for IBM PC. Originally priced over £700. £119.50 or £99.50 for 5 or more (carriage £3.50)

N.E.C. Colour Monitor
High resolution 12 colour display model JC-1203. Fully IBM compatible and compatible with almost any computers. Modern style case. Packed with all connectors and manual. £119.50 (carriage £5.00)

Keyboard
High quality sculptured keyboard. 133 key £6.95 (carriage £2.50)

Cases
Cases for 3" drives. Single £2.99, double £3.99 (carriage £1.00)

Used Equipment
Computer
Amstrad 6128 Monochrome £150.00 (carriage £5.00)

Tape Recorder
Teac A3300S Reel-to-Reel Tape Recorder

Virtually unused professional model. Up to 10.5" NAB spools. With separate noise reduction unit. £250.00 (carriage £5.00)

Studio Monitors
Pair BBC Model LSS 1 Large, high quality speakers comprising 15" bass unit plus HF units £150.00 (carriage £20.00)

Pair Altec 15 400W dual concentric monitors in cabinets £350.00 (carriage £50.00)

Power Amplifier Dreadnought 500 Stereo 19" rack studio quality amp. 500 watt RMS £350.00

OVERSEAS ADVERTISEMENT AGENTS
France and Belgium: Pierre Mousard, 16-20 Place de la Madeleine, Paris 75008.
United States of America: Jay Feinberg, Read Business Ltd, 205 East 42nd Street, New York, NY 10017 - Telephone (212) 867 2080 - Telex 23827.

328 ELECTRONICS & WIRELESS WORLD March 1989
WALLMOUNT DOUBLE SIDEBAND TELEVISION MODULATOR

PRICES FROM ONLY £109.76 (excluding VAT & carriage)

19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR

PRICES FROM £214.13 (excluding VAT & carriage)

Prices

CCIR/5-1	1 Modulator	£109.76
CCIR/5-2	2 Modulators	£167.99
CCIR/5-3	3 Modulators	£237.59
CCIR/5-4	4 Modulators	£307.19
CCIR/5-5	5 Modulators	£376.79

19" RACK MOUNT VHF/UHF TELEVISION DEMODULATOR

PRICE AT ONLY £198.45 (excluding VAT & carriage)

CCIR/3 SPECIFICATION

- **Power Requirement**: 240V 8 Watt (available other voltages)
- **Video Input**: IV -9.2V 75 Ohm
- **Audio Input**: 2.5 Vrms 600 Ohm
- **Modulation**: Negative
- **IF Video**: 38.5kHz
- **IF Source**: 32.5kHz (available 33.4kHz)
- **Ripple on IF Video Filter**: 6dB
- **Output (any channel)**: 4.6dBmV (2mV) 75 Ohm
- **Vision to Sound Power Ratio**: 10 to
- **Intermodulation**: Equal or less than 60dB
- **Spurious Harmonic Output**: 40dB (80dB if fitted with TCFL4 filter or combined via TCFL4 Combiner/Leveller)

Other Options Available

- I.F. Loop/Stereo Sound/Higher Power Output

CCIR/3-1 SPECIFICATION

- Specification as above but output level 60dBmV 1000mV Intermodulation 54dB

CCIR/3 MODULATOR SPECIFICATION

- **Power Requirement**: 240V
- **Video Input**: IV 75 Ohms
- **Audio Input**: IV rms 30K Adjustable 4 to 1.2
- **Vision to Sound Power Ratio**: 10 to
- **Output**: 6dBmV (2mV) 470-860MHz
- **Modulation**: Negative
- **Audio Sub-Carrier**: 6.5MHz or 5.5MHz
- **Frequency Stability**: ±25 for temperature change 100-150kHz
- **Intermodulation**: Less than 50dB
- **Sound Pre-Emphasis**: 50us

Options

- Channel selection via remote switching
- Crystal Controlled Tuner
- Stereo Sound

CH/NEL COMBINER/FILTER/LEVELLER

To combine outputs of modulators
- **TCFL4**: 3 Channel Filter/Combined/Leveller
- **TCFL5**: 4 Channel Filter/Combined/Leveller

TCFL2 Enables up to 4xTCFL4 or TCFL2 to be combined

CH/NEL COMBINER/FILTER/LEVELLER

- **TCFL4**: 3 Channel Filter/Combined/Leveller
- **TCFL5**: 4 Channel Filter/Combined/Leveller

CHANNEL COMBINER/FILTER/LEVELLER

- **TCFL4**: 3 Channel Filter/Combined/Leveller
- **TCFL5**: 4 Channel Filter/Combined/Leveller

TAYLOR BROS (OLDHAM) LTD.

BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND

TEL: 061-626 3221

TELEX: 659911

FAX: 061-626 1736
"OK, I'm curious. What is it?"

S3 is an Electronic Engineer's Tool-kit. Since 1978, Softy 1 and Softy 2 have been used to develop millions of pounds' worth of new products. S3 is Softy 3.

S3 could be the only programmer you will ever need. S3 could also be the only development system you will ever need. S3 is a set-of-tools for designing, modifying and manufacturing products which contain Micro-processors, EPROMs, EEPROMs, RAMS, EPLDs — programmable memory

Prototype your new product will work exactly like the real thing, except that you can set breakpoints, examine variables and stack, debug the code and so forth. Logic Analyzers, Storage Scopes, lots of instruments these days have RS232 or IEEE interfaces, and can be controlled in another task-window, to provide insight into what's going on. S3 fits in well, needing only a single RS232 port for complete remote control.

In short, if you value your time, isn't it time you bought yourself some proper equipment?

"I wonder — would I use it much?"

S3 is a small computer which uses PROMS for storage like other computers use disks. A PROM in the front panel socket can be loaded as a working program or as data. S3 can make this data-memory externally available, taking the place of any 25 or 27 series PROM in your prototype. If the Flying Write Lead is connected to the microprocessor's write-line, it can emulate RAM too, by providing the WRITE input missing from PROMS. This is a real advantage over simple ROM-emulators, because variables and stack can be inspected and the target system can feedback data. Memory is permanent, in effect.

"I wouldn't dream of parting with it"

because in standby mode only a tenth of a milliamp is drawn from the battery. S3 is ready for work next morning or next month — even if you're not.

You could possibly put together a set-of-tools equivalent to S3, from several other products on the market and you might even get them to work together. But you could waste a lot of time and spend a lot of money doing it. S3 is a solution, ready-made, here-and-now and cheap enough for engineers to have one each.

"Why should I spend hard-earned cash?"

Presumably to help you make some more cash, a little easier.

"What's it like as a programmer?"

S3, as it comes, will program any 24/28 pin EPROM/EEPROM that goes in the socket. Of course, the manufacturers, bless their little hearts, are always bringing out PROMS which use new programming methods. But not-to-

"I'll bet you sell thousands of these" worry, upgrading is usually a simple matter of installing the latest software which takes only a few seconds. We supply up grades at nominal cost in a PROM — or you can get 'em FREE by calling our Bulletin Board.

"It's a bit of a risk. Does it work?"

Yes. Do be careful; other makers go on about performance, yield, dire-consequences and peace-of-mind to frighten you into buying their big, expensive Prommers. Why not buy one of these on approval and compare it with S3? The "It beats the socks off the two ****s we've got"

PROM makers supply free data-sheets which set-out the way to program their devices. You can check voltages and signals with an oscilloscope. Speed comparisons — theirs, not ours — prove S3 to be faster. 14 sec to Program an Intel 27C256, 3 sec to Load or Verify. Compare features, price, performance, decide which Prommer you like best and send the other one.

"What are the odds I will like it?"

Better than 100 to 1. We know that because our products have a 28 day money-back trial period and we get less than 1 in 100 back.

"Best bit of kit we've bought this year"