V.K. Zworykin: catalyst of television

Oscillators using unity-gain op-amps

Harmonics — the French connection

Relativity: a critique

Commercial signal generators

Semiconductor analysis using glow-discharge spectrometry
BEFORE BUYING YOUR NEXT SIGNAL GENERATOR

...compare the price, performance and facilities of the new Farnell PSG1000 with the competition.

1 GHz without doubling

1 volt to 0.05 µV

AM/FM/PM and pulse mod. option

AF synthesizer for all tone calls

DC coupled AM and FM

SINAD facility

10 Hz resolution, 100 memories, IEEE 488 and HPII, sweep, AC line or 12 VDC operation, 50 W reverse power protection, portable: 145 x 330 x 405 mm, 8.5 kg.

Colour brochure from:
FARNELL INTERNATIONAL · WETHERBY · LS22 4DH · UK · INT. TEL. +44 937 61961 · TELEX 55478 FARINT G · FAX +44 937 66487

AVAILABLE THROUGH A WORLD-WIDE NETWORK OF AGENTS

contact us at TELECOM 87, THE FIFTH WORLD TELECOMMUNICATION EXHIBITION, GENEVA, SWITZERLAND, 20-27 OCTOBER, 1987
The world's largest in-building optical-fibre installation is now up and running in Shearson Lehman Bros' New York dealer room. Using 3000 miles of Pilkington p.c.s200 fibre, the system feeds 500 dealer desks from 12,700 video modules (as shown) and 5000 data modules, requiring a grant total of 60,000 connectors. The £3 million project was managed by Pilkington Communication Systems Ltd of Rhyl.

PROGRESS IN SIGNAL GENERATORS

978
A look at the state of signal-generator design, which is now largely digital in concept
by S.J. Gledhill

RADIO FREQUENCIES — A NEW GENERATION

984
Some representative instruments from the major manufacturers
by David Scobie

THE ELECTRONIC CAR — MYTH OR REALITY?

990
If it is to be a reality, companies in this field need to invest now
by Paul Bastock

CAPACITORS FOR SUPPRESSING RADIO FREQUIENCIES

991
Choosing the most appropriate type of capacitor for r.f.i. suppression
by R. Hanson

ANALYSIS OF SOLIDS BY GLOW-DISCHARGE MASS SPECTROMETRY

997
G.d.m.s. offers the semiconductor industry a method of bulk analysis with uniform sensitivity and no-standards operation
by P.M. Webb and N.E. Sanderson

A SERIES OF REMARKS ON FOURIER

1000
Waveform analysis and the Governor of Lower Egypt
by Joules Watt

SINGLE-CHIP DATA ACQUISITION SUBSYSTEM

1013
This highly integrated device offers better performance than board-level systems and cuts the work-load of the controlling c.p.u.
by Charles Yager and Harlon O'Hara

PIONEERS — 10

1019
Vladimir Kosma Zworykin: the catalyst of television
by W.A. Atherton

RELATIVITY — A CRITIQUE

1026
A scrutiny of a typical relativist's exposition of the "twins effect"
by Stephen Grieve

CD — THE 600 BYTE ROM

1046
Error correction by interpolation works well enough on audio Compact Discs. But to exploit CD's potential for data storage, more precision is needed
by J.R. Watkinson

TEN FASTER OP-AMP OSCILLATORS

1053
Connecting op-amps for unity gain increases oscillator frequency
by M.T. Abuelma'atti and N.A. Humood

COMMENT 977
CIRCUIT IDEAS 1007
RESEARCH NOTES 1009
LETTERS 1030
SATELLITE SYSTEMS 1031
TELECOMM TOPICS 1035
APPLICATION NOTES 1037
NEW PRODUCTS 1057
RADIO BROADCAST 1063
TELEVISION BROADCAST 1066
RADIO COMMUNICATIONS 1067
UPDATE 1071
This is just a sample of our huge inventory – contact us with your requirements.

OSCILLOSCOPES

Hewlett Packard
- 180 TR 100MHz Scope Mainframe (Mint) £1500
- PM3265 100MHz Storage Scope £3950
- PM3305P 35MHz Digital Storage, 1 only £2140
- PM3540 Logic Anal/Scope £1500

Tektronix
- 465B/DM44 100MHz Scope/DMM £1650
- 4658 100MHz Scope £1450
- 4754/DMM 200MHz Scope/DMM £1950
- 485 350MHz Scope £3000
- 608 Monitor £995
- 634 opt 1,2,3 Display Monitor £500
- 5223 Scope M/F(Mint) 7104 1GHz Scope M/F £16000
- 7603 100MHz M/F £1500
- 7704A 200MHz Mainframe £2500
- 7B34 Fast Storage Scope M/F £6900
- R7603 100 MHz Rock MINT M/F £1950
- 7904 500 MHz Scope M/F £4250
- A large selection of 7000 series plug-ins available at up to 60% saving on list. Please call for quotations.

ANALYSERS

Hewlett Packard
- 141T Display Mainframe £1950
- 3580A Spectrum Analyzer £3000
- 3582A Spectrum Analyzer £7500
- 4193A Impedance Analyzer £4750
- 8552B IF Section £1850
- 8552B RF Section, 110MHz £2250

Marconi
- TF 2300A Mod Meter £495
- TF 2370 110MHz Spectrum Analyzer £7500
- TF 2371 200MHz Spectrum Analyzer £6500

Tektronix
- 714 Spectrum Analyzer P/In £8750
- 308 Data Analyzer £700

SIGNAL SOURCES

Hewlett Packard
- 4204A Digital Oscillator £375
- 80078 Pulse Generator £950
- 801A-001 Pulse Generator 20MHz £695
- 8601A Sweep Generator £1750
- 86408/001/002 Signal Generator £3950
- 1024MHz £3950
- 8624A Sweep Gen. Plug-in 1.2-4.8GHz £3500

Marconi
- 201-1 AM/FM Signal Generator £750
- TF 2002B AM/FM Signal Generator £995
- 85A Microcomputer £600
- 86A Microcomputer £1100
- 110 (45710BU) 'The Portable' £1500
- 1508 Touchscreen £500
- 2673A Thermal Printer £650
- 6940B Multiprogrammer £950
- 7470A opt 002 A4/3/4 £600
- 7470A opt 001 A4/3/4 £1050
- 6-pen plotter £395
- 7910 H opt 015 Disk Drive £950
- 82913A 12 inch Monitor £450
- 8293BA HPIL Interface £500
- 82939A Serial Interface £100
- 82940A GPIO Interface £250
- 9111A Graphics Tablet £975
- 9121D Single-sided Disc Drive £875
- 9121D Dual Double-sided Disc Drive £950
- 9123X 15MB & 270KB Drive £950

HEWLETT PACKARD COMPUTERS

- 9845A Desk Top Computer £1650
- 9816A Personal Computer £2250
- 9825A opt 001-002 Desk Top Computer £700
- 98256A 256K RAM board, series 200 £275
- 9915A Computer £750

GENERAL PURPOSE T & M

Farnell
- SSG 520 + TTS 520 Transmission Test Set £3500

Fluke
- 7220A Comms. Freq. Counter £350

Hewlett Packard
- 4282A-001 Digital High Capacitance Meter £750
- 436A Power Meter £1200
- 4303C True RMS Voltmeter £600
- 3465A 4' 2 Digit D.M.M. £795
- 3465A 4' 2 Digit D.M.M. £995
- 5381A 80 MHz Counter £150
- 5380B + 5305B 1300 MHz Counter £350
- 5381A 80 MHz Counter £225
- 8447A Amplifier £400
- 8447D Amplifier £500

Marconi
- TF1245A Q meter £750
- TF 1246 Oscillator £500
- TF 1313 A LCR Bridge £1350
- TF 2173 Synchrosetor £250
- TF 2603 RF Millivoltmeter £395
- TF 2604 Voltmeter £395
- TF 2702 Inductor £550
- TF 2905B TV Pulse Generator £650
- TF 2915 Data Monitor £1200
- TF 2950/5 Mobile Radio T.S. £995

Philips
- PM5580IF Modulator £3000
- PM5581 RF Converter £1000
- PM5582 RF Converter £1000

Tektronix
- 520A Vectorscope (NTSC) £3750
- 521A PAL Vectorscope £3950
- S1 Sampling Head £1100
- S3A Sampling Head £1500
- 141C opt 037 TV Signal Generator £4950
- A6901 Isolation Monitor £275
- 4041 System Controller £4500
- P4651 A Probe £375
- PM102 Personality Module £375
- PM10B Personality Module £500

SEND NOW FOR OUR LATEST BROCHURE

Electronic Brokers
140-146 Camden Street, London NW1 9PB
Fax: 01-267 7363. Telex: 298694. Tel: 01-267 7070

All prices are exclusive of VAT and correct at time of going to press • Carriage and packing charges extra • A copy of our trading conditions is available on request

Electronic Brokers
ENTER 61 ON REPLY CARD
Multiplexed analogue confusion

This time next year, direct TV broadcasting by satellite will be almost with us. After years of false starts and second thoughts by the broadcasters, British viewers will find their choice of channels nearly doubled overnight.

Receivers will come at a cost which promises to fall comfortably on the right side of the traditional £400 cut-off level for family spending on consumer durables.

All the major details of the new service appear to have been sorted out by the IBA and its contractor. Nevertheless, the television industry now finds itself in the middle of yet another standards battle.

For just as BSB is readying its new service, the European Astra satellite will appear on the scene with a further 16 d.b.s. channels. Among them will be at least another three in the English language, plus a clutch of all-day music and sport channels with appeal for British viewers.

Unfortunately, it looks as though consumers who want both services will need two sets of equipment; still more, perhaps, if they want to sample Europe’s other d.b.s. offerings. To receive Astra they will need a larger dish, a more elaborate mount for it and a separate front-end for the lower frequency band.

Indoors, satellite decoder units represent yet another battleground. Britain may opt for the IBA’s D-MAC, but France and West Germany’s d.b.s. groups are wedded to the cut-down D2-MAC format because it will fit their existing cable networks.

Multi-standard decoder chips which will cope with this diversity are on the way. But compatibility problems will undoubtedly return with renewed vigour when high-definition TV arrives.

Marketing people say that when the consumer is confused, he keeps his cash to himself: as evidence they can cite examples such as the quadraphonic sound fiasco of a decade ago. And when BSB and Astra’s UK partners British Telecom each begin spending millions of pounds promoting mutually incompatible satellite transmissions, there should be plenty of opportunity for confusion.

Among engineers it tends to be an occupational disease to want to keep the thing in the lab just that bit longer; and in the present case the advertising interests which will pay for satellite TV just couldn’t wait. But signal formats for satellite and cable broadcasting have evolved so rapidly that it’s fair to wonder what we might have had in a couple of years more if they had been allowed to develop further. It’s true that Shoenberg, Blumlein and the others produced their 405-line standard in a matter of weeks, but they did not have EBU and CCIR committee meetings to worry about.

Unfortunately, it looks as though consumers who want both services will need two sets of equipment; still more, perhaps, if they want to sample Europe’s other d.b.s. offerings. To receive Astra they will need a larger dish, a more elaborate mount for it and a separate front-end for the lower frequency band.

Indoors, satellite decoder units represent yet another battleground. Britain may opt for the IBA’s D-MAC, but France and West Germany’s d.b.s. groups are wedded to the cut-down D2-MAC format because it will fit their existing cable networks.

Multi-standard decoder chips which will cope with this diversity are on the way. But compatibility problems will undoubtedly return with renewed vigour when high-definition TV arrives.

Marketing people say that when the consumer is confused, he keeps his cash to himself: as evidence they can cite examples such as the quadraphonic sound fiasco of a decade ago. And when BSB and Astra’s UK partners British Telecom each begin spending millions of pounds promoting mutually incompatible satellite transmissions, there should be plenty of opportunity for confusion.

Among engineers it tends to be an occupational disease to want to keep the thing in the lab just that bit longer; and in the present case the advertising interests which will pay for satellite TV just couldn’t wait. But signal formats for satellite and cable broadcasting have evolved so rapidly that it’s fair to wonder what we might have had in a couple of years more if they had been allowed to develop further. It’s true that Shoenberg, Blumlein and the others produced their 405-line standard in a matter of weeks, but they did not have EBU and CCIR committee meetings to worry about.

Incidentally, readers who remember the colour TV standards battles of the 1960s may recall the popular parlour game of reverse-engineering the acronyms. So, for example, we had Never Twice the Same Colour, a System Essentially Contrary to the American Method and, of course, Peace At Last. What are we bid for their MAC successors?
Progress in signal generators

The current state of signal generator design which, in common with most measuring equipment, takes full advantage of digital technique.

S.J. GLEDHILL

To appreciate the modern signal generator it is instructive first to review the evolution of signal generators.

FUNDAMENTAL-OSCILLATOR SIGNAL GENERATORS

The earliest signal generators were of the fundamental-oscillator type as shown in Fig. 1. A single r.f. oscillator was used and the frequency was changed by changing the capacitance or inductance of the tuned circuit. In the 1960s, transistorized instruments appeared for the first time: mechanical tuning was still retained, but the instruments became more sophisticated and less clumsy. Electronic tuning has subsequently largely replaced unreliable mechanical methods.

1. Block diagram of a fundamental oscillator signal generator.

2. Block diagram of a heterodyne oscillator signal generator.

HETERODYNE-OSCILLATOR SIGNAL GENERATOR

The problem with a fundamental oscillator is that it is difficult to cover a wide frequency range, particularly at the low-frequency end. Incorporating many different oscillators into the design is possible, but this is expensive and, furthermore, the associated band switching is cumbersome.

A solution is to mix or combine two signals together. This technique is used in the heterodyne-oscillator type of signal generator, a simplified block diagram of which is shown in Fig. 2. A variable frequency oscillator \(F_2\) is mixed with a fixed frequency oscillator \(F_1\). The output signal is either the sum or difference of the two oscillator frequencies, the difference frequency \(F_2 - F_1\) always being used. Wider

Level control on very early instruments was not automatic. The operator had to reset the carrier level whenever the frequency was changed by an appreciable amount, a level control and meter being provided for this purpose. More recent instruments include automatic level control: a detector is used to derive control voltage, which adjusts the oscillator level or the gain of a variable-gain amplifier, to maintain a level output.

Frequency stability is poor and the signal generator can drift out of the pass-band of the receiver whilst a measurement is performed. Fundamental-oscillator signal generators do have their advantages however: there are no non-harmonically related spurious signals such as those experienced in other signal generator types.
tuning ranges are thus possible and hand switching is reduced by using this type of design.

Although heterodyne oscillators can cover a wide frequency range, they can often also suffer from poor frequency stability. The output signal is not absolutely pure, since it is produced from two other signals which will be present to some degree at the output together with intermodulation products, even if filtering is used.

MULTIPLIED AND DIVIDED OSCILLATOR SIGNAL GENERATOR

To give a signal generator a wider frequency coverage the multiplier and divider concept was developed. The descriptions are largely self-explanatory.

With a multiplied-oscillator signal generator, only one low-frequency variable oscillator is used, so the cost and complexity is reduced. Cascaded tuned multipliers are used to provide the higher frequency ranges and a switch is used to select the required frequency range. A variable-frequency band-pass filter may be tuned in synchronism with the frequency of the r.f. oscillator to select the required frequency. Frequency stability is generally poorer at the higher frequencies, since the effect of drift in the variable frequency oscillator is multiplied. A further limitation is that the output signal contains many unwanted submultiple frequency components.

Figure 3 illustrates the principle of the divided-oscillator signal generator. This technique superseded the multiplied oscillator type when high-speed dividers became widely available. Like the multiplied oscillator type there is only one variable-frequency oscillator, so cost and complexity is reduced. Signal purity can also generally be better because fairly simple filtering can be used to remove unwanted high-frequency components.

DIGITALLY-CONTROLLED SIGNAL GENERATORS

A solution to the drift problem is to digitally lock the r.f. oscillator to a stable crystal reference using a synchronizer. The inherent frequency stability of a crystal oscillator is thus imparted to the r.f. signal.

A variable-ratio divider synchronizer operates by dividing the signal generator output frequency down to the frequency of the crystal oscillator. The two frequencies are compared and, as the frequency of the signal generator drifts, a correction voltage is applied to the voltage-controlled oscillator in the signal generator.

Another method of synchronizing is to use a frequency counter to determine the current output frequency of the oscillator and to compare this with the required frequency, again a correction voltage being used to correct the tuned frequency.

Synchronizers were introduced in the early days of digital technology, but were soon to be superseded by fully synthesized signal generators. For stringent applications, where low sideband noise and spectral purity are critical, a fundamental cavity oscillator and synchronizer still provides the purest possible signal with no non-harmonically related signals. Such a generator is shown in Fig.4. The mechanical oscillator tuning is controlled by an electric motor, so the tuned frequency can be entered from the keyboard or through remote control. This provides the best instrument for testing receiver spurious responses in a programmable system or to provide a stable low noise signal.

SYNTHESIZED SIGNAL GENERATORS

Most current signal generators now use one of several synthesizer techniques. Frequency drift is reduced and the frequency of tuning is set digitally to give precise rapid tuning. There are no moving parts, so size, weight, and cost is reduced.

The heart of the majority of synthesizers is a phase-locked loop, working on the principle shown in Fig.5. Frequency F_{out} is divided by the variable divider to give a frequency of F_{in}/N. This frequency is compared with F_r by the phase-sensitive detector and a correction voltage is applied to the voltage-controlled oscillator via a low-pass filter. Locking of the phase-locked loop is achieved when $F_{out}/N = F_r$. This method is known as direct synthesis, but with a limitation.

Unlike fundamental frequency oscillators, which have no spurious frequency components and a low level of noise, synthesizers generally have a number of spurious frequency components and noise is normally higher, although recent design advances have improved matters. A further limitation of a synthesizer is that the tuning changes in steps equal to F_{ref} which can be a major problem for receiver testing.

The indirect synthesizer detailed in Fig.6 can be made more versatile by including what is known as a sum loop in the correction loop, further benefits including a wider frequency coverage and superior frequency resolution. This is an adaptation of the heterodyne method described earlier. Figure 6 illustrates a simplified example, in which two indirect-synthesis loops are both referred to the crystal oscillator: the mixer in the output loop allows the two frequencies to be added. In practice three or more loops may be added together and programmable dividers also incorporated. On £978 is shown an example of a recent synthesized r.f. signal generator which covers to 1000MHz.

Synthesizer design is a classic example of compromise since there are two conflicting requirements. Good sideband noise performance is achieved by making the control-loop bandwidth wide, but resolution suffers.

High resolution can only be achieved if the control-loop bandwidth is narrow. A solution is the fractional-N method of synthesis which is used in many modern signal generators. A wide-bandwidth control loop is used, but to achieve high resolution the divider is rapidly switched between two integer division ratios.

By switching the dividers with different mark-space ratios, a range of frequencies between the two that would only be attainable without switching is obtained: sidebands at the switching frequency are removed by cancellation methods. Figure 8 shows a signal generator using the fractional-N synthesis method.

SIGNAL GENERATOR SPECIFICATIONS

R.f. signal generators are available from many different manufacturers, covering similar frequency bands but with a bewildering variety of specifications. Inevitably, the quality of the specification of an instrument will generally affect the purchase price and the complexity of the instrument. It is therefore important to select the right instrument with the right specification for a particular application. The main specification points are reviewed.

Frequency range. A typical r.f. signal generator will cover from 10kHz to 500MHz or 1GHz. Inevitably the user will select an instrument to cover the appropriate h.f., v.h.f., or u.h.f. bands in question. An instrument covering to only 500MHz may be less expensive than one covering to 1GHz, but with increasing use of the 800-960 MHz band for mobile communications it may be unwise to restrict future applications.

The low-frequency range is important, since if frequencies down to at least 450kHz may need to be covered. Certain radio receivers operate at low as 10kHz, so this aspect may also have to be considered.

Frequency resolution. A resolution of 100Hz is typical at v.h.f. and u.h.f. frequencies for an inexpensive synthesized instrument, but this can be a limitation when measuring the bandwidth of a highly selective circuit. 10Hz resolution is common on most mid-range signal generators; higher resolution is achievable but this inevitably leads to a high price, so it is wise to consider carefully what is adequate. 100Hz resolution is often more than adequate for routine production and maintenance tests on receivers, whereas higher resolution may only be necessary for research or development use.
Frequency accuracy and stability. As we have seen, most modern signal generators are either synthesized or locked to a reference crystal oscillator. Key specification points of the crystal oscillator are: Temperature stability, warm up and ageing rate.

Short-term stability and noise are very important when evaluating the performance of single sideband (s.s.b.) radio receivers. Audio signals in the receiver are generated by setting the signal generator to a frequency offset from the tuned frequency, an offset of 1kHz thus generating a 1kHz signal from the receiver. Any short term instability and noise in the signal generator will be apparent in the audio output and may invalidate a measurement.

Modulation. Most r.f. signal generators include amplitude modulation and frequency modulation as standard. Low-cost instruments may have just one modulation frequency, generally 1kHz. Mid-priced instruments may have five or six modulation frequencies, ranging from 300Hz to 6kHz, so that the extremes of the voice-frequency band can be evaluated. More sophisticated and expensive instruments include modulation oscillators with a much wider range of internal modulation frequencies. External modulation inputs are generally provided in all types of signal generator so it may be preferable to use an external audio oscillator rather than selecting a more expensive instrument with a wide-ranging oscillator built in.

Mixed a.m. and f.m. may also be required, especially in research and development laboratories, for the measurement of such parameters as the f.m. rejection of an a.m. radio. Phase modulation may also be required and signal generators increasingly offer this facility. Pulse modulation is also available for certain applications such as testing microwave radar systems at the i.f. (intermediate frequency) stages.

Modern radio receivers employ digital modulation techniques to a greater or lesser extent; military radios, for example, use digital techniques for encryption and data. To test such a digitally modulated receiver a digital test signal is applied to the external modulation input of the signal generator. A restricted modulation bandwidth may distort the pulse waveforms.

Modulation accuracy also needs to be considered, since errors in the measurement of the signal-to-noise ratio of a radio receiver can be considered if accuracy is poor. Modulation inaccuracy of the order of +5% is typical and this is generally acceptable. Some lower-quality signal generators have an inaccuracy of up to ±20%, which can give errors of up to ±2dB when measuring signal-to-noise ratio.

Output level range. Maximum and minimum output levels both need to be considered. Most signal generators will be used to measure the sensitivity of radio receivers, so a minimum output level of at least -127dBm (0.2 microvolts e.m.f.) is commonly available.

The maximum output level may be important for certain applications such as measuring receiver blocking or measuring mixer intermodulation intercept points. For routine production and maintenance maximum levels of +6dBm or +13dBm will generally be adequate.

Output-level accuracy. Level accuracy is most important, especially since the sensitivity of a radio receiver will be specified according to the indicated output level of the signal generator. A typical specification is 1dB total level accuracy. Unfortunately, level accuracy can be misleading, so it is important to read the manufacturer's specification carefully. For example, the quoted level accuracy may only apply at one frequency, and frequency response uncertainty may also have to be added to obtain the total level uncertainty.

Another potential pitfall is that some manufacturers incorporate exclusion clauses such that the accuracy only applies over certain level and frequency ranges. Finally, it is also important to study the output impedance specification, since a poor v.s.w.r. can lead to errors when measuring receiver sensitivity.

5. Block diagram of a simple indirect synthesis signal-generator oscillator using a phase-locked loop.

6. A sum loop adds together two indirect synthesis loops to provide a wide frequency range and superior resolution.
then used to measure the output from the discriminator. Since the output of the discriminator is noise, the measurement bandwidth has to be specified. Some manufacturers specify the noise over a band from 300Hz to 3kHz or from 50Hz to 15kHz, the former being applicable to communication receiver measurements, the latter to broadcast receiver measurements. Another method of measuring the noise is to pass it through a psophometric filter, which has a frequency response tailored to simulate the sensitivity of the human ear to noise. A typical specification would thus refer to a CCITT telephone psophometric weighted filter.

Specifications differ between different types of signal generator but spurious f.m. figures of less than 10Hz are readily achievable on most modern signal generators, whilst 1Hz is available on expensive instruments.

Single-sideband phase noise. This is a very important parameter, to be considered if the signal generator is to be used for adjacent-channel rejection measurements. This test measures the ability of a radio receiver to reject a high-power signal in the adjacent channel. To carry out a measurement, two signal generators are used: one at the tuned frequency of the receiver and one set to a frequency one channel spacing above or below the receiver frequency, as shown in Fig. 9. The level of the off-channel signal generator is increased until the signal-to-noise performance of the receiver is degraded by a specified amount, usually from 12dB to 9dB. The single-sideband phase-noise specification is critical because unwanted noise sidebands give rise to erroneous results, as illustrated diagrammatically in Fig. 10. Only higher-quality signal generators have specifications sufficiently good to allow sideband noise measurements to be made. Measurements are generally only carried out during development, and not as a routine test, so it is not always necessary to have excellent sideband noise performance. A typical, modern high-quality signal generator has a sideband noise specification of between −135dBc/Hz and −145dBc/Hz at

Gould OS300 versus Douglas DC3

<table>
<thead>
<tr>
<th>Gould OS300</th>
<th>Douglas DC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven worldwide</td>
<td>Proven worldwide</td>
</tr>
<tr>
<td>Inexpensive</td>
<td>Inexpensive</td>
</tr>
<tr>
<td>Rugged construction</td>
<td>Rugged construction</td>
</tr>
<tr>
<td>Go anywhere</td>
<td>Go anywhere</td>
</tr>
<tr>
<td>Piece of cake to fly</td>
<td>Piece of cake to fly</td>
</tr>
<tr>
<td>NATO approved</td>
<td>NATO approved</td>
</tr>
<tr>
<td>Two year guarantee</td>
<td>Two year guarantee</td>
</tr>
<tr>
<td>U.K. design and manufacture</td>
<td>U.K. design and manufacture</td>
</tr>
<tr>
<td>Modern spec*</td>
<td>Modern spec*</td>
</tr>
<tr>
<td>Available off-the-shelf</td>
<td>Available off-the-shelf</td>
</tr>
</tbody>
</table>

High-flying technology you can trust.

Much as we admire the Dakota's traditional hard-working virtues, sadly its last sp. ac. up-set was in 1945. The Gould OS300, on the other hand, offers 1980's features - dual-trace with true 20MHz operation, continuously variable amplifier sensitivity to eliminate loss of bandwidth over the 2mV to 5V/cm, X-Y operation, P43 phosphor and quick heat cathode for rapid set-up and bright displays.

The Gould OS300

dual-trace 20MHz scope

For £342 + VAT.

Gould Electronics Ltd, Instrument Systems, Roebuck Road, Ilford, Essex, IG6 3UE.

Telephone 01-500 1000. Telex: 263785.

HIGH-FLYING TECHNOLOGY YOU CAN TRUST.

ENTER 11 ON REPLY CARD
MARCONI INSTRUMENTS

- **TF2036 AM/FM Signal generator 10-100MHz**
 - Price: £950
- **TF2015 AM/FM Signal generator 130-165MHz**
 - Price: £325
- **TF2005 S-9800**
 - Price: £950
- **TF2008 Banker's and sync mixer**
 - Price: £265
- **TF2012A AM/FM Signal generator 1.5-220MHz**
 - Price: £1195
- **TF2017 AM/FM signal generator 0.01-1024MHz**
 - Price: £8000

RALFE - ELECTRONICS

- **TF2020 2113 Audio frequency spectrometer**
 - Price: £200
- **TF2009 2209 Precision sound level meter**
 - Price: £100
- **TF2016 TF2162 MF Attenuator 0-111db in 0.1db steps**
 - Price: £450
- **TF2007 TF2910/4 non-linear distortion analyser**
 - Price: £750
- **TF2011 FM Signal generator 130-180MHz**
 - Price: £200
- **TF2006 AM/FM Signal generator 10-1000MHz**
 - Price: £395
- **TF2111 BFO with 2305 £600**
 - Price: £250
- **TF2112 Level recorder**
 - Price: £195
- **TF2110 Random noise generator**
 - Price: £250
- **TF2114 125kHz Crystal Oscillator**
 - Price: £95
- **TF2113 2651D Logic analyser**
 - Price: £220

HEWLETT PACKARD

- **8607B Pulse generator**
 - Price: £500
- **406P Voltmeter 100V-1000V 4 1/2 DIG**
 - Price: £225
- **3788A Calibrator**
 - Price: £175
- **480A Vector impedance meter**
 - Price: £750
- **11620B Transistor fixture for 8745A**
 - Price: £450
- **160X Logic analysers**
 - Price: £2200
- **5300A 6 digit measuring system with 50MHz counter**
 - Price: £110
- **3200A Function generator. Rack mount version**
 - Price: £100
- **5110B Driver with synthesizers 5105A and 5106B covering from 0.01Hz-500kHz extremely accurate**
 - Price: £100

CONVENTIONAL PRINTED CIRCUITS

- **EUROCONTROL**
 - Price: £8500
- **IBM**
 - Price: £3100
- **TCL**
 - Price: £2500
- **Slee Electro Products**
 - Price: £3250

COMPUTER AIDED DESIGN

- **Computer Aided Design December Issue**

The December issue of Electronics & Wireless World, on sale 19 November, reviews Computer Aided Design.

C.A.D. plays an ever increasing role in the design of circuits and systems. P.C.B. design can be improved dramatically by the use of a computer. Most large scale integrated circuits are too complex to be designed without one.

Electronics & Wireless World explains the processes involved and describes some of the available systems.

TO ADVERTISE WITHIN THIS FEATURE

CONTACT

MARTIN PERRY on 01 661 3130

or JAMES SHERRETTING on 01 661 8640

ENTR 57 ON REPLY CARD

SIBLE ELECTRO PRODUCTS COMPLETE THE CIRCUIT.

ENTER 41 ON REPLY CARD

ENTR 57 ON REPLY CARD
a 20kHz offset from the carrier, permitting the measurement of adjacent channel rejection to better than 70dB.

Overload protection. When testing transceivers it is important to be aware of the fact that the same antenna connection is used for transmitting as well as for receiving and that it is very easy accidentally to turn the transmitter on while it is still connected to the signal generator. Many signal generators have been destroyed by an accident such as this - it only takes a momentary loss of concentration. Modern signal generators now incorporate reverse power protection to eliminate the problem.

SIGNAL GENERATOR FACILITIES

Microprocessors have had a dual impact on signal generator design. Ease of use is increased due to digital setting of parameter values, and specifications have been improved due to software correction and control of parameters.

To be able to enter the frequency of tuning directly would have been an expensive luxury 10 years ago. This has now become commonplace and is taken for granted. The user now demands additional facilities to improve ease of use, the two main ones being incremental control and storage of control settings.

Incremental controls are generally available to increment or decrement any parameter by an amount entered on the keyboard. Holding a key down will increment the parameter continuously, - invaluable for tuning rapidly across a band or for changing output level when determining receiver sensitivity. A 'total shift' display which indicates the total increment is especially useful when measuring bandwidths.

Storage of complete front-panel control settings can be a great time-saver. Not only can the frequencies of a multi-channel receiver be recalled by simple key-strokes but complete settings, including incremental values, can be recalled as well.

Software is used to correct for frequency response variations and to linearize frequency modulation. A further useful facility which is becoming increasingly popular is a software-controlled clock, which can indicate elapsed time. This may be used to monitor instrument reliability or to schedule re-calibration only when absolutely necessary.

CONCLUSION

Signal generators have changed dramatically in recent years. Very high performance and extreme precision are available, but at the other end of the market low-cost, high-performance instruments are readily available. Perhaps the most dramatic illustration of the current state-of-the-art is that ten years ago a synthesizer was found in only a few development laboratories. Modern synthesizers are now so affordable that they become universally used for service and maintenance as well as for more demanding applications.

S.J. Giedhill is with Marconi Instruments at St. Albans

8. Compact low-cost signal generators are possible using fractional-N synthesis. Coverage of this instrument is 10kHz to 1GHz with 100Hz resolution.

9. Two signal generators used to test FM adjacent channel selectivity.

10. Sideband noise on a noisy signal generator introduces noise into an out-of-band channel measurement.
Radio frequencies — a new generation

Radio frequency signal generators have taken on new roles. As well as testing radio performance they are now used for testing a variety of equipment from optical-fibre networks to satellite systems.

Signal generators, for any frequency, are part of a test chain. They inject a signal into a component or system that can then be measured for power or purity at various stages along a transmit/receive system. As the complexity of the medium increases, by using high frequencies or further distances, so the quality of the test equipment must increase. It should be noted that the test equipment should be a degree of magnitude better than the system under test in order to obtain meaningful measurements. So r.f. signal generators, as the first link in the test chain, have had to be synthesized generators, like the one above, offer low noise high frequency stability and remote control and monitoring.

Improved over recent years to include microwave frequencies and achieve even lower distortion figures to test equipment which is itself of very high quality.

Perhaps the biggest change in recent years is due to the microprocessor and to digital electronics generally. It is now possible to synthesize signals of high speed and high purity without the delicate tuned analogue circuits of previous generations. It has also led to remote and automatic testing and, like much other test equipment, the signal generator can be controlled from a computer and can communicate its status and operations back to the remote controller. Because it is the essential front end of a test system, it can be incorporated into that system and becomes just one part of, say, a spectrum analyser or an r.f. 'test set'. This has the advantage that the signal generator and the measuring instrument are combined and the receiving instrument is automatically set up to 'expect' a signal that its own generator is sending. Alternatively a generator can be rack-mounted and integrated into a complete test set-up. However, it should be noted that the test chain is only as strong as the weakest link, so it is unnecessary to use a high-performance generator if the rest of the equipment is not up to its standard.

A typical test set-up is shown in Fig.1, where an optical-fibre cable is being tested and compared with a known, adjustable, level of attenuation. A similar technique is used to test a single component or a whole system.

SYNTHESIZED R.F. GENERATORS

The performance requirements of modern radar and communications systems call for high-frequency signals with particularly good spectral purity. Hewlett Packard produce two synthesized signal generators with...
INSTRUMEX, the newly formed subsidiary of Instrument Rentals, offers the widest available selection of second-user equipment in Europe. Through its direct access to over $150 million worth of stock, it is able to buy and sell more equipment than other “market leaders”. The items shown above are a very small example of what we carry, why not phone now for a quotation?

European Distribution Centre:

Dorcan House
Meadfield Road
Langley, Berks
England SL3 8AL

Regional Offices:

Munich : 089-2021021
Paris : 1-69285829
Aberdeen : 0224-899522
Manchester : 061-973-6251
especially low noise characteristics: the HP8662A operates up to 1.280GHz, while the HP8663A covers an additional octave up to 2.56GHz. Phase noise (or s.s.b. phase noise) is a measurement of the short-term stability of a frequency source. It is important because it can affect the performance of receivers, particularly where the desired signal is of lower strength but close to another source. The selectivity of a receiver can be reduced because of phase impurities in local oscillators. HP, therefore, have designed their generators especially with low phase noise, so that they can be used to measure the phase noise in communications systems.

The block diagram (Fig.2) shows three main sections: reference, phase-locked loops and output sections. The reference section synthesizes many different frequencies from a high-stability 10MHz quartz oscillator. Phase-locked loops use these reference frequencies to generate output frequencies of 320 to 640MHz in 0.1Hz steps. The output section modulates and amplifies the output signal and translates this to the required output frequency.

The reference section not only produces the frequencies that are used to derive the output waveforms, but also several local-oscillator frequencies for internal use by the p.i.l. and output sections. All these are directly derived from the quartz oscillator, so the long-term stability of the instrument depends on this internal reference which is specified at 5×10^{-10} per day after a ten-day warm-up. This represents a maximum drift of 0.25Hz/day. The reference frequency can be adjusted mechanically within a range of 20Hz to allow close calibration against a standard. For even greater stability, an external reference, such as a caesium or rubidium clock, can be used to give a stability of 1×10^{-11}. Short-term stability or phase noise is kept to a minimum by the use of monolithic crystal filters in the reference multiplier chain. The mechanical mounting of these crystals is critical because any vibration can be translated into spurious noise microphonically. Typically, cooling fans in the instrument can cause offset sidebands, so the filters are mounted in special shock absorbers.

There are seven p.i.l.s in the loop section. Indirect-synthesis techniques are used contrasting with the direct synthesis of the reference section, which derives signal by mixing, multiplying or dividing.)

One of the high-frequency loops, the ‘reference sum loop’ tunes over a 310 to 620MHz frequency range, improves the resolution from 20MHz to 10MHz steps and provides 60dB of spectral filtering, reducing the spurious sideband levels from -40dBc to -100dBc (dBc - dB rel. to carrier). The ‘output sum loop’ is virtually identical and sums the 310 to 620MHz output from the reference sum loop with a 10 to 20MHz signal from the low-frequency loops, which output has a resolution of 0.1Hz which provides the output sum loop with 0.1Hz steps. Frequency modulation of the signal can be added to the waveform at this stage. Both high-frequency loops use a special
voltage-controlled oscillator, a switched-reactance oscillator consisting of five inductors switched in and out by pin diodes. This reduces the bandwidth needed for the varactor tuning diode and again helps to reduce noise. The signal from the output loop is directed to the output section by way of any modulators (a.m., f.m., p.m., p.c.m., or b.p.s.k.) used for the final signal.

The output stage translates this signal from the p.i.l. section into the desired output frequency by frequency doubling, dividing and mixing. Phase noise is increased in the multiplying stages and reduced in the dividing stages, but is kept to a minimum by careful design of the a.g.c. circuits and the input levels to the heterodyne band mixer. Noise is better than -90dBc anywhere in the spectrum and is typically better than -148dBc.

Hewlett Packard produce a wide range of signal generators and much of this information was taken from their application note on phase noise measurement.

LOW-COST GENERATOR FROM ROHDE & SCHWARTZ

The latest signal generator from Rohde & Schwartz is the SMX, which at £4,300 incorporates GPIB remote control and r.f. overload protection to 30W and a memory capacity for up to 50 front-panel set-ups. The frequency range is 100kHz to 1GHz and so covers all frequency bands from l.f. to u.h.f., with a resolution varying between <10Hz and <100Hz. Output level can be set with high accuracy from -157dBm to +13dBm with a total error level of <±1.5dB down to -127dBm. Non-interrupting levels of settings over a range of 10dB can be used for squelch hysteresis measurements or testing a.l.c. characteristics with a level setting time of 10ms.

The instrument features versatile modulation capabilities; a.m. or f.m. separately or combined in multi-tone modulation; the a.m. mode also allows external pulse modulation. A modulation source is fitted as an additionalist might call a "sig. gen." They are probably nearest to what a traditionalist might call a "sig. gen." They are intended as signal sources for testing v.h.f./u.h.f. receivers. Frequency increment settings allow random or sequential testing of a wide range of tv channels, irrespective of standards and including cable tv "S" channels. They can also be used for testing domestic radio receivers and as a video modulator or signal source for testing video equipment. With a frequency range of 0.1MHz to 0.102GHz, the PM5390 has a resolution of 1kHz up to 1GHz and of 10kHz above that. It takes 80 minutes after switch-on to settle in, after which its setting error is <1 x10^-6. Harmonic impurity is typically -35dB and non-harmonic -45dB. S.s.b. phase noise is -100dBc/Hz at 20kHz from the carrier. It offers a wide range of modulations, including a.m., f.m., video and sound carrier. There is an input for external a.m. or f.m. and for an external video source or sound carrier. Easy-to-use front panel controls can select frequency, increment, sweep time, level and change in level. Each of these selections has its own display. The instrument has a built-in GPIB and can be controlled remotely.

SWEEPER FROM MARCONI INSTRUMENTS

A programmable sweep generator with applications in scalar network analysis, active measurement and ATE testing, the 6311, has been introduced by Marconi Instruments. It offers an extended frequency range of 10MHz to 20GHz in a single sweep. Features of the generator include high signal purity coupled with low harmonics, high power level accuracy, fast sweep and low residual f.m. It also provides a frequency accuracy of ±3MHz typically in c.w. mode, ±20MHz over any swept width is provided for precision swept measurements by digital control circuitry. The instrument can be calibrated in 15 minutes using only a power meter and counter connected on the internal GPIB. In conjunction with the 6500 automatic amplitude analyser and an autotester, the 6311 forms part of a complete scalar network analyser system. Uses of the 6500/521 system are for microwave component and system manufacturers for testing cables, connectors, amplifiers, pin switches etc., and test applications in radar, telecommunications and satellites.

The high-purity signal coverage required for scalar analysis has been incorporated in the design of the 6311 to guard against serious errors in filter measurement caused by harmonics and subharmonics. Between 2 and 20GHz, harmonics and subharmonics are -40dBc and -60dBc respectively. Coverage of 10MHz to 2GHz is provided with low harmonics of ~30dBc with spurious signals below ~40dBc.

Digital control of the 6311 is of use in active-device measurement, since the power level accuracy of ±0.5dB over 10MHz to 2GHz and ±0.4dB for 2 to 20GHz is necessary for the effective testing of the devices. Microwave transistor and mixer manufacturers require accurate input-level measurements on amplifiers to compare gain compression, and mixer sensitivity for local oscillator drives with conversion loss.

For a.t.e. testing, where speed of switching signals is important, the instrument has a fast sweep of 15ms across its full range. This meets the requirements for t.w.t. testing, radar system performance and military sub-system test racks.

The 6311 can also be used in calibration laboratories with such features as precision power resolution of 0.01dB, low harmonics and low spurious signals, rapid calibration and stable output power and frequency. The instrument incorporates a 68000 processor with programming facilities, either from the front panel or through the GPIB. The sweep generator has internal and external GPIB links and includes comprehensive commands for operation over the system bus. Manual operation of the 6311 is simplified by a 'soft-key' operation, from instructions on the instruments' back-lit I.c.d. Up to 20 sets of start-up modes can be stored in the non-volatile memory and quickly reviewed and selected.

GENERATORS FOR RADIO AND TV TESTING

Two synthesized generators from Philips are intended especially for radio and tv testing and are probably nearest to what a traditionalist might call a "sig. gen." They are intended as signal sources for testing v.h.f/u.h.f. receivers. Frequency increment settings allow random or sequential testing of a wide range of tv channels, irrespective of standards and including cable tv "S" channels. They can also be used for testing domestic radio receivers and as a video modulator or signal source for testing video equipment. With a frequency range of 0.1MHz to 0.102GHz, the PM5390 has a resolution of 1kHz up to 1GHz and of 10kHz above that. It takes 80 minutes after switch-on to settle in, after which its setting error is <1 x10^-6. Harmonic impurity is typically -35dB and non-harmonic -45dB. S.s.b. phase noise is -100dBc/Hz at 20kHz from the carrier. It offers a wide range of modulations, including a.m., f.m., video and sound carrier. There is an input for external a.m. or f.m. and for an external video source or sound carrier. Easy-to-use front panel controls can select frequency, increment, sweep time, level and change in level. Each of these selections has its own display. The instrument has a built-in GPIB and can be controlled remotely.

The PM5326 is especially suitable for radio and tv development laboratories and those involved in sensitivity and selectively measurements. For service workshops and educational purposes it has four wobbulators (sweep generators) for i.f. alignment and f.m. receivers. The 5326 offers a frequency range of 0.1 to 125MHz in nine
achieve excellent performance without significant integrity, are produced by Scitec Electronics Inc. and distributed by Lyons Instruments. The modular design enables even unusual requirements to be met. The VDS-G's design makes use of new techniques and devices to meet customers' specific requirements. All output frequency-determining elements are contained in the r.f. module and tubular filter. Similarly, the signal processing module circuitry determines user requirements, such as step size, frequency control word and the like.

Typical performance specifications include bandwidth of 20% standard, up to the 500MHz available, and step size of 500kHz, 1MHz, 5MHz or 10MHz. Switching speed is less than 1ms, spurious signals typically less than –70dBc and the s.s.b. phase noise floor –146dBc/Hz. The instrument is controlled through binary-coded decimal signals.

RACAL-DANA INSTRUMENTS

Racal-Dana manufactures a comprehensive range of synthesized signal generators offering a broad spectrum of performance and capability. Indeed the company pioneered the synthesized signal generator concept. Their range combines stability, resolution, accuracy, and programmability of synthesizers as well as the low noise offered by more conventional analogue generators.

These generators are designed for a wide range of general and systems applications associated with radio communications testing, including selectivity and sensitivity testing of ultra-sensitive r.f. receivers. The Racal-Dana products are particularly suited to these applications because of their calibrated output-level characteristics, low v.s.w.r. and automatic levelling circuits. In addition, the overall design has been engineered to reduce leakage and r.f.i. to extremely low levels, typically less than 0.5μV. The generators cover a wide range of functions which allow their use for signal-to-noise ratio measurements, as drive sources for mixers and bridges and for many other applications including automatic test systems. Frequency selection, spin-wheel tuning, and a choice of internal reference oscillators make the Racal-Dana synthesized signal generators a cost-effective solution to measurement and stimulus requirements in the h.f., v.h.f. and u.h.f. bands. Probably the best known of the Racal-Dana signal generators is the 9087, the highlights of which are: 10kHz to 1.3GHz with 1Hz resolution; exceptional spectral purity; internal and external modulation a.m., f.m., phase, pulse and f.s.k. with simultaneous combinations; ±19dB dynamic range with 0.1dB resolution; level accuracy better than ±1dB; full GPIB control; and self-check and diagnostic routines.

Because of their low noise performance, the 9087 and its sister model the 3101, a low noise frequency-agile synthesizer, are ideal for use as local oscillators in satellite communications and for testing of v.h.t/u.h.f. receivers. High switching speed also enables

MICROWAVE FREQUENCY SYNTHESIZER

Frequency synthesizers covering up to 500MHz bandwidth at frequencies between 0.5GHz and 4GHz, with high spectral integrity, are produced by Scitec Electronics Inc. and distributed by Lyons Instruments. The modular design enables even unusual requirements to be met. The VDS-G's design makes use of new techniques and devices to achieve excellent performance without significant integrity, are produced by Scitec Electronics Inc. and distributed by Lyons Instruments. The modular design enables even unusual requirements to be met. The VDS-G's design makes use of new techniques and devices to meet customers' specific requirements. All output frequency-determining elements are contained in the r.f. module and tubular filter. Similarly, the signal processing module circuitry determines user requirements, such as step size, frequency control word and the like.

Typical performance specifications include bandwidth of 20% standard, up to the 500MHz available, and step size of 500kHz, 1MHz, 5MHz or 10MHz. Switching speed is less than 1ms, spurious signals typically less than –70dBc and the s.s.b. phase noise floor –146dBc/Hz. The instrument is controlled through binary-coded decimal signals.

RACAL-DANA INSTRUMENTS

Racal-Dana manufactures a comprehensive range of synthesized signal generators offering a broad spectrum of performance and capability. Indeed the company pioneered the synthesized signal generator concept. Their range combines stability, resolution, accuracy, and programmability of synthesizers as well as the low noise offered by more conventional analogue generators.

These generators are designed for a wide range of general and systems applications associated with radio communications testing, including selectivity and sensitivity testing of ultra-sensitive r.f. receivers. The Racal-Dana products are particularly suited to these applications because of their calibrated output-level characteristics, low v.s.w.r. and automatic levelling circuits. In addition, the overall design has been engineered to reduce leakage and r.f.i. to extremely low levels, typically less than 0.5μV. The generators cover a wide range of functions which allow their use for signal-to-noise ratio measurements, as drive sources for mixers and bridges and for many other applications including automatic test systems. Frequency selection, spin-wheel tuning, and a choice of internal reference oscillators make the Racal-Dana synthesized signal generators a cost-effective solution to measurement and stimulus requirements in the h.f., v.h.f. and u.h.f. bands. Probably the best known of the Racal-Dana signal generators is the 9087, the highlights of which are: 10kHz to 1.3GHz with 1Hz resolution; exceptional spectral purity; internal and external modulation a.m., f.m., phase, pulse and f.s.k. with simultaneous combinations; ±19dB dynamic range with 0.1dB resolution; level accuracy better than ±1dB; full GPIB control; and self-check and diagnostic routines.

Because of their low noise performance, the 9087 and its sister model the 3101, a low noise frequency-agile synthesizer, are ideal for use as local oscillators in satellite communications and for testing of v.h.t/u.h.f. receivers. High switching speed also enables

TAYLOR MODULATORS

VESTIGIAL SIDEBAND TELEVISION MODULATOR C.C.I.R/3

CRYSTAL CONTROLLED OSCILLATOR
19" RACK MOUNTING, 1u HIGH, 205mm DEEP

<table>
<thead>
<tr>
<th>C.C.I.R/3 SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirement</td>
</tr>
<tr>
<td>Audio Input</td>
</tr>
<tr>
<td>F.M. Sound Sub-Carrier</td>
</tr>
<tr>
<td>L.F. Sound</td>
</tr>
<tr>
<td>L.F. Vision</td>
</tr>
<tr>
<td>L.F. Noise</td>
</tr>
<tr>
<td>Sound Pre Emphasis</td>
</tr>
<tr>
<td>Ripple or L.F. Saw Filter</td>
</tr>
<tr>
<td>Output Imp. Channel 47(860MKHz)</td>
</tr>
<tr>
<td>Vision to Sound Power Ratio</td>
</tr>
<tr>
<td>Intermodulation</td>
</tr>
<tr>
<td>Spurious Harmonic Output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.C.I.R/3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification as above but output level 60dBmV 500mW</td>
</tr>
</tbody>
</table>

CHANNEL COMBINER/FILTER/LEVELLER

TCFL2	2 Channel Filter/Combiner/Leveller	Insertion Loss: 3 dB
TCFL4	4 Channel Filter/Combiner/Leveller	Insertion Loss: 5 dB
TSU4	Enables up to 4 x TCFL2 or TCFL4 to be combined	

TAYLOR BROS (OLDHAM) LTD
BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
TELEPHONE: 061 652 3221 TELEX: 669911

ENTER 24 ON REPLY CARD
their use for frequency-hopping radio testing.

As well as manufacturing signal generators, Racal-Dana also distributes equipment including products manufactured by Adret Electronique. Among the range of signal generators offered by Adret manufacture is the 742A, a 2.4 GHz high-spectral-purity instrument. Launched as a high-performance generator available at a modest price, its excellent pulse modulation capability makes it ideal for certain radar applications.

PORTABLE GENERATOR FOR MOBILE TESTING

New from Farnell Instruments is the PSG1000 synthesized signal generator, a compact, lightweight, fully portable instrument for use in the frequency range 10kHz to 1GHz. The unit is designed to operate from an external 12V d.c. supply or any standard a.c. mains supply and its small size and light weight make it eminently suitable for field or bench use. Full +2dBm (1V) output is available from 1kHz to 1GHz and an integral modulation synthesizer (10Hz to 1kHz) is provided. The instrument can also sweep carrier frequency/level and modulation frequency/level between set limits. The generator has a microprocessor control and can achieve the entire frequency range of the PSG1000 by direct r.f. synthesis with a resolution of 10Hz up to 128MHz and 100Hz from 128MHz to 1GHz.

Controls are of the sealed tactile membrane type. This results in increased reliability, prevents the ingress of dust or moisture and reduces r.f. leakage.

The front panel includes high-visibility led displays of output frequency, output level, modulation rate and modulation level. An automatic sine facility is included which provides a quick, simple and unambiguous method of measuring receiver sensitivity. A.m., f.m. and p.m. inputs are available and other features include facilities for external modulation, external reference frequency, reverse power protection to 30dB in the upper range. The frequencies are in seven overlapping bands with a vernier adjuster which can set the frequency to within 5%. Output levels are also in switched bands with vernier adjustment and the claimed frequency flatness is ±0.2dB up to 100kHz and ±1% to 2MHz. A sweep facility is provided. The instrument has also triangle waves and pulse trains ("square waves") and a t.t.l. output with a fan-out of 20 standard t.t.l. loads. The instrument is marketed in the UK by Altek Products.

SMX generator from Rohde & Schwartz covers frequencies from I.f. to u.h.f. and offers highly accurate output levels.

The entire range of the SSG1000 is covered without using doublers or multipliers with a frequency resolution of 10Hz: the SSG2000 achieves 2GHz by means of an internal active doubler system. Three manual methods of data entry and data updating are provided and the instruments are programmable via the standard IEEE488 or Hewlett Packard Interface loop. This is a low-cost serial twisted pair link that can communicate to a controller, which can be as small as a Hewlett Packard hand-held programmable calculator.

FUNCTION GENERATOR UP TO 2MHZ

An audio-style function generator has a frequency range of 0.1Hz up to 2MHz and so can be used for some r.f. applications. The Black Star Jupiter 2000 offers sinewave distortion of less than 1% at frequencies below 200kHz, with all harmonics below −30dB in the upper range. The frequencies are in seven overlapping bands with a vernier adjuster which can set the frequency to within 5%. Output levels are also in switched bands with vernier adjustment and the claimed frequency flatness is ±0.2dB up to 100kHz and ±1% to 2MHz. A sweep facility is provided. The instrument has also triangle waves and pulse trains ("square waves") and a t.t.l. output with a fan-out of 20 standard t.t.l. loads. The instrument is marketed in the UK by Altek Products.

RADIO FREQUENCY TEST SETS

Wandel and Goltermann make a range of level generators, but these are designed to work with their level meters and make up test sets. They are tuned externally through the meter, though some of them can have their output levels and frequencies set by front panel keypads or be controlled through a GPIB. They make a whole series of test sets that do incorporate r.f. signal generators. Typically there is a spectrum and network analysis system that covers a frequency range of 100Hz to 180MHz and includes a sweep generator of a high specification. There is also a range of distortion measurement sets for cable, radio links and satellite systems. The RK-100 white noise measuring set up can cope with up to 10,800 channels in a frequency range of 6kHz to 100MHz.

PULSE MODULATION AND 2.1GHz FROM FLUKE

The latest signal generator from Fluke has a frequency range from 0.1MHz to 2.1GHz. In addition, the 6062A incorporates a pulse modulator which uses GaAs switch technology to achieve rise/fall times of 15ns and on/off ratios of 80dB. The 6062A is designed for L-band testing in avionics communications and navigation.

Specific applications include secondary-surveillance radar, i.f., microwave links, global positioning systems and satellite communications.

The 6062A adds extended frequency to Fluke’s family of low-cost signal generators and complements the performance of their general purpose 6060B and the low noise 6061A models, both of which operate to 1.05GHz. Its output level is adjustable over the range of +16 to −137dBm to 1050MHz, and +13 to −137dBm to 2100MHz. Absolute accuracy is ±1.5dB. Amplitude can be displayed in volts, dBm, dB µV, or relative to any specific reference. The 6062A increases the modulation capabilities of the 6060 line with f.m. deviations to 400kHz. The pulse modulation on the 6062A has the high on/off ratio (80dB minimum) that is needed for radar simulations. Fast rise and fall times permit quality pulses of less than 50ns duration. The low-noise capabilities of the 6061A are incorporated in the 6062A. Residual f.m. is guaranteed to be less than 6Hz (0.3 to 3kHz) and less than 4Hz in the frequency range of 245 to 512MHz. Non-harmonic spurious products are less than −60dBc to 1050 MHz, −54dBc to 2100 MHz; typical s.s.b. phase noise is −123dBc at 20kHz offset from a 500MHz carrier frequency. Other standard features on the 6062A include: a.m., f.m. and phase modulation; a.c./d.c. coupled a.m.; full talk-listen IEEE 488 interface; 400 kHz f.m. deviation on 1050 to 2100 MHz range; relative frequency and amplitude nodes; step programming; a 50 location non-volatile memory; 25W reverse power protection; sub-harmonic external reference; Low microphonics due to robust construction; and self-diagnostics.
The electronic car — myth or reality?

BY PAUL BASTOCK

Until about twenty years ago, the average car contained only one capacitor, fitted across the contact breaker points to reduce arcing. Today, the figure has grown to around 100 capacitors per vehicle, due mainly to the meteoric growth in the number and complexity of in-car entertainment systems. At present, about 30% of new cars are equipped with some form of audio equipment, predicted to rise to approximately 70 per cent by the start of the next decade. There is every reason to suppose that the number of capacitors in these units will increase as more and more features are incorporated. Already, push-button radio tuning is accomplished by electronics rather than a mechanically-variable inductive tuner.

But this market is a rather static one; in-car entertainment is the biggest user of capacitors at the moment, but this isn't where expansion will take place. Driver surveys commissioned by the car industry have revealed, not surprisingly, that the average car owner regards electronics as something of a gimmick. This hasn't been helped by the introduction of voice synthesisers and difficult-to-read liquid crystal displays on some up-market cars. Electronics is chiefly of interest to the driver if it brings improved performance, better fuel economy or increased reliability; it interests the manufacturer if it achieves these goals profitably. However, the appeal of gadgets to the potential car buyer must not be forgotten. In the US, strict emission control requirements have provided an impetus to the development of engine management systems which until recently has been lacking in Europe*.

Greatest growth for components will not be in-car entertainment, as this EX-E panel hints.

ELECTRONIC INROADS

One of the first areas to move away from mechanical and electromechanical operation into electronics was electronic ignition. This apparently simple function gave manufacturers and designers their first taste of the problems involved in installing electronic units in the electrically noisy, hot and vibratory environment of a typical engine compartment. Capacitor discharge units dominated this application at first, but failures due to the extreme stresses imposed on the output capacitor, both in terms of voltage and current handling, gave electronic ignition an undeserved reputation for unreliability. Now, most such units use inductive energy storage, coupled with a Hall-effect magnetic field sensor to give feedback control for spark optimization.

Fuel-injected cars also require electronic control systems, ranging from simple program controlled open-loop networks to more complicated feedback systems. Some manufacturers have used electronic fuel management successfully on cars using carburettors. Currently, some 60% of new cars have some form of electronic engine management. Indications are that by 1992, all vehicles sold in the EEC will have some form of electronic engine management, particularly as EEC pollution regulations favour electronic control rather than catalytic systems.

Some analysts include automatic transmission systems under the heading of engine management. The traditional automatic gearbox uses a complex series of pressure-sensitive valves to determine when to change gear, but there is a new breed of transmission units which employ power fets under the control of a microprocessor for improved reliability. The next decade should see about 40% of cars with this variety of automatic transmission.

Safety and security. The principal use for electronics in safety is in the control unit for anti-lock braking (ABS), which many car makers are offering as an, albeit rather expensive, option. This is another field in which electromechanical systems are being supplanted by electronic control. It is feasible to implement a self-adjusting servo-actuated suspension system; indeed this is already being done, but the extremely high cost of the sensors will limit this aid to road-holding to very expensive vehicles, unless there is a major technology breakthrough in the near future.

More likely to expand is the area of electronic security. Indeed, electronic lock encoding and security marking of stereo equipment is present-day rather than future technology, even for medium-priced cars.

Comfort and convenience. Electronic 'C & C' systems are almost unknown, but prestige cars are beginning to use various means of electronic driver environment control. Some particular models feature a microprocessor unit which governs the operation of the air-conditioning, a task formerly entrusted to relays and bimetallic sensors. The driver's seat position and shape can also be controlled by an electronic system via electric or hydraulic actuators. Inevitably, this category of equipment will remain a fitment for only the most expensive vehicles. The best predictions currently available indicate that around 25% of new cars will have some electronic comfort control by 1990.

*See Microprocessor-controlled engine management, by Pat Jordan, EWW September 1987.
Dashboard instrumentation. Despite a number of widely differing high-tech dashboard layouts seen on cars in the last couple of years, driver reaction has not on the whole been favourable, so the market has yet to find a direction when it comes to digital or liquid crystal information displays. Possibly a quarter of all cars will have an electronic dashboard within the next few years, but this is a very debatable figure.

THE MARKET FOR CAPACITORS

Assuming that all the trends mentioned are accurate, the average car in 1990 should have some 50 capacitors fitted by the factory. With an estimate of 10 million new cars on the roads in Europe by then, this makes for a very large volume of capacitor production to very exacting quality standards. None of the above arguments takes into account the growing use of plastic polycarbonate panels, which will inevitably degrade the screening between different electronic units within the car, so these figures might even represent an underestimate, assuming that decoupling remains cheaper than using screened cable. A modern car uses up to 5 km of wiring, so screening is certainly an expensive option.

Problems for component suppliers. Few applications require such a large volume of production as does the automotive industry. A typical production line will consume many thousands of electronic units per week, even in medium-volume manufacture; mass-market cars are made at even higher rates. It is this sheer volume which has tended to exclude the small component manufacturer for very high reliability, one-per-car units like ABS control boxes. There is room for the small supplier, but generally they must be capable of producing components in huge numbers. For a car manufacturer, price is all-important, with assured quality a very close second. Most car producers will expect a product specifically tailored to their own need, with SPC (Statistical Process Control) figures supplied well in advance of a firm order. It can easily take two years to develop a component exactly to the buyer's requirements, and there is no guarantee that any other manufacturer will be interested in the same component as his rival. But having designed the component and assuming that failure levels of a few parts per million can be achieved, the component supplier is usually rewarded with a four-year contract with production quantities scarcely dreamed of in other fields.

Space for electronics. Although the number of electronic functions is increasing, the size of the car into which units must be fitted isn't changing appreciably. Already there is strong competition for the prime spots, such as under the dashboard where temperature ranges are restricted, so units are being sited under wings, in the boot, anywhere in fact but in the electrically noisy and hot area under the bonnet. The tendency to overheat is exacerbated by present-day drag reduction programmes, which reduce the volume of air flowing into the engine compartment. This places a premium on small size, so surface mounting of devices has caught on in the automotive sector much faster than in some other industries. This is good news for multilayer ceramic capacitor makers, since today's plastics-film capacitors are difficult to surface-mount without the risk of thermal damage to the dielectric. Surface mounting brings other advantages, of course, chiefly that of reduced r.f. pickup brought about by minimal lead length and therefore minimal inductance.

THE FUTURE

The automotive market represents one of the few areas in which really high-volume electronics production is likely to continue to expand. The workhorse at the moment is the eight-bit microprocessor, though the newer microcontrollers with their on-chip ram and multiple i/o ports are ideal for this type of process control and are rapidly gaining ground. Sixteen-bit processors will probably not be used in the near future as eight-bit accuracy is sufficient for all present needs in a car.

Mechanical and electromechanical units will continue to be replaced by electronics, with closed-loop control and its attendant advantages in the majority of applications. This will mean an enormous market for low-cost, reliable sensors of every type, provided that they can be made cheaper than and at least as reliable as their electromechanical counterparts. All kinds of passive components, with particular emphasis on capacitors and resistor arrays in surface mountable form, will be needed in vast quantities. Almost every control box will have at least one power mosfet to do the mundane but necessary job of switching the solenoid valves and electrical actuators. Companies prepared to invest the large sums needed to make components in millions at high reliability will benefit immensely from this expanding industry.

Paul Bastock works at the newly acquired AVX plant in Paignton, Devon.

Capacitors for suppressing r.f. interference

How to choose the best capacitor type for use across the a.c. mains supply.

R. HANSON

There is a growing need to fit interference suppression filters to electronic and electrical equipment, either to prevent the equipment malfunctioning due to noise on the mains or to prevent noise generated by the equipment going back into the mains supply. The last-mentioned requirement is governed by EEC directives and regulations in many countries.

Interference filters consist of one or more capacitors used either alone or in conjunction with chokes in series with the supply leads. These assemblies can consist of individual components on a printed board or an encapsulated assembly in a box. These filters care a present safety hazard, the prime cause of which is the capacitors. Properly made chokes are an insignificant hazard, To make economical and physically small capacitors the dielectric within them is stressed at potential levels of 40 V/μm, which equates to 400 kV/cm — sufficient to make one's hair stand on end. No other electrical or electronic components are stressed at such levels.

It is because r.f. capacitors are stressed so highly and operated from low impedance sources that they are a safety hazard. The numerous regulations around the world covering their use and operation testify to numerous capacitor failures. The failures have led to equipment fires and the possibility of electrical shocks to operators.

DESIGN OF X AND Y CAPACITORS

There is no way that millions of capacitors can be made without having some failures in the field, albeit only one or two per million. Having accepted that failures are going to occur the capacitor designer must design the capacitors to be intrinsically safe in that if short circuits do occur in the capacitor during use they should clear themselves — in other words the capacitor self-heals. In the event of the capacitor permanently going short circuit the component should preferably be made of fire retardant materials which do not sustain burning.

This doesn't mean that the capacitor will not burn, only that the burning will extinguish when the prime cause of ignition is removed by the circuit protection device. It is unfortunate that many of the capacitor designs on the market are not intrinsically
safe. In the United Kingdom, unlike other countries, capacitors for r.f.i. suppression do not have to be approved, and only need to comply with the regulations (BS2135).

There are two basic classes of suppression capacitors, namely X and Y. The last type is for use where failure of the capacitor could lead to danger of an electric shock, and as a consequence is made to much higher standards than X capacitors and designed to withstand much higher test voltages. Class X capacitors are normally in the capacitance range of 0.01 to 1µF and go straight across the mains to filter symmetrical interference. Class Y capacitors are normally in the capacitance range 1 to 4.7nF and go between live and neutral and earth and neutral to filter asymmetrical interference. Because Y capacitors are connected from the mains lead to earth they are limited to 4.7nF for most domestic equipment to prevent more than 0.5mA flowing to earth. (If the equipment is permanently connected to the mains the 0.5mA limit does not apply.)

Class X capacitors are mostly wound capacitors using either paper, polyester, polycarbonate or polypropylene as the dielectric. Class Y capacitors may be either wound units using the previously mentioned dielectrics or ceramic capacitors.

Most countries have their own specifica-
tions and regulations relating to X and Y capacitors to maintain safety standards but sometimes they are used as import controls. Specifications do not always keep in touch with the times and are sometimes written around a previous generation of capacitors, for instance the German specification VDE0565/1 for X capacitors.

Originally published in 1967 before metal-
lized capacitors came to the forefront for suppression purposes, the specification was very good but 10 years later when metallized capacitors were used across the mains some types of approved capacitors failed disastrously. This was because on the 240V.a.c. mains, there are present transient voltage spikes many hundreds of volts greater than the peak a.c. voltage of 240V/2. Some lesser makes of early metallized capacitors had a very low tolerance to transients and as a consequence the VDE specification was withdrawn and replaced by another, VDE0565/1, published in 1979. This required 1kV a.c. to be applied to class X2 and Y capacitors for 0.1 second every hour of the endurance test at the rated temperature. These tests were also called up in IEC specification384-14, published in 1981.

The problem of designing intrinsically safe X and Y capacitors depends on economics and physical constraints of size as well as the parameters of the design materials. As stated, given that millions of capacitors are in use and some are left on continuously 24 hours a day (tv sets which leave the filaments warm for instant picture, even some electric kettles), some capacitors are going to short. Short-circuit failures in metallized capacitors are reduced because even if voltage transients cause the capacitor to short the component clears itself.

This clearing or self-healing depends on metallized electrodes, burnt away around the short-circuit area enabling the capacitor to function normally. The self-healing is a complex physical and chemical process which even today is not fully understood, but will be described later. The metallized plastics paper capacitors are the only types that have this self-healing function, other types such as ceramic capacitors cannot recover.
While ceramic capacitors have a major disadvantage their basic construction does make them flame retardant; but providing selected materials and additives are used metalized plastics and paper capacitors can also be made flame retardant.

The two main problems encountered with capacitors for use at 240V a.c. on the mains are:

- Ionization within the capacitor
- Inability to clear faults.

IONIZATION IN VOIDS

All capacitors contain voids and these are a cause of ionization within the capacitor. The void which contains air has a lower dielectric constant than surrounding dielectric and is therefore subject to a higher voltage stress. Additionally the air in the void has a lower breakdown voltage than the surrounding dielectric. The minimum breakdown voltage for air under ideal conditions is approximately 3400V and as the peak voltage of the 240V a.c. mains exceeds this, ionization which occurs in all mains capacitor once started can rapidly degrade the dielectric and in this in turn can cause the onset of ionization to start at a lower voltage than that which was first required. This is positive feedback, which leads to the dielectric breaking down and a short circuited capacitor.

The way to eliminate ionization within a capacitor is to:

- Make the air gaps very large
- Make the air gaps very small
- Reduce the voltage on the capacitor below the minimum to start ionization.

Obviously the first choice is possible, but makes for unacceptably large capacitors. The second is also possible and while all wound capacitors contain air voids due to irregularities of the winding materials, these can be eliminated by vacuum impregnation of the capacitor with an oil. This was the traditional method but the requirement to have oil-tight seals and cases made the capacitors expensive and bulky. The modern version of oil impregnation is to use epoxy resin which is then cured to a solid. By impregnating the capacitor in a suitable mould the resin can be made to encase the capacitor element and no additional case is needed and this method becomes economical. The method is not a complete answer to all types of capacitors - only capacitors using paper dielectrics are sufficiently porous to impregnate properly.

Plastic films, because they have smoother surfaces which are more difficult to wet and inherently non-porous, cannot be satisfactorily impregnated to avoid ionization. Because of shrinkage of the resin when it cures, even paper dielectric capacitors contain some small voids which cause some ionization, but if metalized paper is used the ionization burns away the dielectric at these potential fault sites and in practice the fault sites are isolated. That is, the ionization within a metalized paper capacitor, providing it is below a specific level, does not increase with time but reduces.

The third method of preventing ionization is to reduce the peak voltage below the critical voltage of 3400V. This is done in practice by winding the capacitor as two elements in series such that there is only 120V a.c. across each capacitor element. This method is done on several commercial designs and is very effective.

CLEARING ABILITY

The clearing ability of metalized capacitors, that is their ability of self-heal and to clear short circuits due to transient voltage or dielectric faults, is a complex physico-chemical process. While the number of clearings or self-healing operations occurring during the life of a properly designed capacitor is minimal they do occur in service. The clearing ability depends on electrostatic field, metal electrode thickness, and dielectric film. The metal electrodes almost universally used for metalized film capacitors are aluminium evaporated on to the dielectric films. About 30nm thick in a high vacuum.

The films commonly used in mains capacitors are polyester, polypropylene, polycarbonate and paper. These dielectric films all have different clearing abilities which are also dependent on the metal film used. When a clearing occurs in a capacitor, the energy discharged through the short circuit causes the electrodes around the fault site to be evaporated away. This evaporated metal can still cause short circuits or low resistance paths unless it is oxidized to an insulating film. The only places that the oxygen can come from are either the entrapped air in the winding and to prevent ionization this should be negligible, or from the dielectric itself. It has been found that those dielectrics which contain a high proportion of oxygen in their molecules do in fact have superior clearing ability to dielectrics which have little oxygen.

Another important criterion is to have a high hydrogen to carbon ratio as this prevents carbonization which can in turn lead to low resistance paths in capacitors and additional clearing discharges. The temperatures reached during self healing are in the order of 600K and at these temperatures the aluminium electrodes are easily evaporated and can react with oxygen in the film to form an oxidizing oxide.

The empirical formulae for the commonly used capacitor dielectrics are:

- Paper (cellulose) \(\text{C}_6\text{H}_10\text{O}_5 \)
- Polyester (polyethylene terephthalate) \(\text{C}_10\text{H}_8\text{O}_4 \)
- Polypropylene \(\text{C}_3\text{H}_6 \)
- Polycarbonate \(\text{C}_10\text{H}_8\text{O}_4 \)
- Polystyrene \(\text{C}_8\text{H}_8\text{O}_3 \)

Paper has the highest oxygen content followed by polyester, and experience confirms that paper has the best clearing properties, followed by polyester.

 styrene has a low hydrogen to carbon ratio, no molecular oxygen, and as a consequence is not used as a metalized dielectric. Polypropylene has a high hydrogen to carbon ratio but no oxygen. It clears moderately well but the lack of molecular oxygen creates other problems. When plastic films are metalized with aluminium, the aluminium evaporates on to the dielectric in the same way as a paper capacitor. The absence of oxygen within polypropylene prevents adhesion between the metalizing and the film and metalizing is easily rubbed off. To improve the adhesion to acceptable standards polypropylene films have to be pretreated prior to metalizing.

This pre-treatment consists of subjecting the film to a corona discharge, which physically abrades the surface and oxidizes the outer layers of film. While this process allows the aluminium metalizing to bond to the polypropylene, the excellent electrical properties of polypropylene are degraded only slightly.

The material requirements of an intrinsically safe capacitor or at least a very safe capacitor can now be defined:

- Metalized paper dielectric
- Epoxy resin vacuum impregnation
- Flame retardant epoxy resin.

As well as meeting these material requirements the capacitor manufacturer must exercise rigorous quality control steps at each stage of production. There are differences between each manufacturer's own techniques. A significant improvement in reliability can be achieved by pre-clearing the metalized dilectric at a voltage in excess of what is seen by the dielectric in practice i.e. typically three times rated voltage. This pre-clearing is done by the better manufacturers before the film is wound into capacitors and effectively isolates all weak spots due to inclusions or holes. The pre-clearing eliminates or reduces to very low orders clearings which occur in the wound capacitor and this aids reliability as major clearings in a finished capacitor can damage adjacent layers which in turn causes other clearings to occur.

Another major problem of all metalized capacitors is the method of making contact to the metalizing. This is done by spraying metal from either a flame spray gun or an arc spray gun. Some manufacturers spray one layer of metal while others spray at least twice and sometimes three separate spray
994

Many countries specify a maximum leakage capacitance stability. As previously stated, this can vary by as much as 20% tolerance on capacitance, and tolerance on the mains voltage. A safe capacitance value is 4700pF. This capacitance value will give a certain performance of r.f.i. suppression and at room temperature there will be little difference between the performance of any of the plastics, paper or ceramic capacitors.

Over the working temperature range of -40 to +100°C plastics and paper capacitors have a capacitance temperature coefficient of ±2% compared to the semi-stable ceramics. Polyester and paper lose a few percent of their capacitance at 1MHz, their capacitance stability and has a capacitance stability of ±2%. Polypropylene has the best frequency stability and is different for each capacitor manufacturer and the capacitance may increase or decrease by as much as 20% from 1V a.c. to 250V a.c. and this should be taken into account when selecting capacitors for use as Y capacitors.

By far the major cause of variation of capacitance is temperature with ceramic capacitors. Again, these variations are widespread and differ from one capacitor to another. The main parameters for designing intrinsically safe capacitors or at least the safest possible capacitors can now be defined. They should be:

- stable; or at least the changes should be predictable and small with variation in temperature.
- stable with changes of applied voltage.
- predominant fail-safe i.e. as open circuits. This requires good clearing properties.

These capacitors cover both X and Y applications and the r.f.i. suppression capabilities of Y capacitors do not have to be compromised against their safety requirements. These capacitors have a capacitance temperature coefficient of ±2%, and they are stable with changes of applied voltage. These specifications were re-examined and rewritten to assess the effects of capacitors over their full working temperature range and to recognise that semi-stable ceramic dielectrics can have capacitance variations with voltage and frequency.

Metalized paper capacitors have been available in various forms since the early 1900s. The modern form using metalized electrodes deposited by vacuum evaporation originated in Germany in the late 1930s while the aluminium metalized paper capacitor became available in the 1960s. The designs can meet all the current specifications but it is probable that these specifications were re-examined and rewritten to assess the effects of capacitors over their full working temperature range and to recognise that semi-stable ceramic dielectrics can have capacitance variations with voltage and frequency.

Metalized paper capacitors have been kept simple. Many are designed for use across the mains at 50Hz, with a variation of capacitance at -40 or +100°C. Alternatively they will allow the earth leakage current to exceed 0.5mA. It must be stressed that there are many ceramic formulations and it is conceivable that some types marketed may be able to maintain a reasonable r.f.i. performance over the temperature while at the same time keeping the earth leakage current within the allowed limits.

The thermal variation of capacitance is different for each capacitor manufacturer and the capacitance may increase or decrease by as much as 20% from 1V a.c. to 250V a.c. and this should be taken into account when selecting capacitors for use as Y capacitors.

The performance of the other commonly used dielectrics such as polypropylene, polyester, paper are a model of stability compared to the semi-stable ceramics. Polypropylene has the best frequency stability and has a capacitance stability of ±2% over the temperature of -40 to +65°C. While polyester and paper lose a few percent of their capacitance at 1MHz, their capacitance stability over the temperature range can vary by as much as 10%. These dielectrics are in a different class to ceramics where stability is concerned.

Where Y capacitors are concerned one essential requirement for intrinsic safety is capacitance stability. As previously stated, many countries specify a maximum leakage current to earth of 0.5mA at 240V a.c. This corresponds to a capacitance of 6600pF. To allow for ±20% tolerance on capacitance, and tolerance on the mains voltage, a safe capacitance value is 4700pF. This capacitance value will give a certain performance of r.f.i. suppression and at room temperature there will be little difference between the performance of any of the plastics, paper or ceramic capacitors.
WHATEVER YOUR EQUIPMENT NEEDS ARE,
DO PLEASE CALL US!

FOR LATEST STOCK
INFORMATION RING 01 943 4477
FIELD ELECTRIC LTD.
3 Shenley Road, Borehamwood, Herts WD6 1AA. 01-953 6009
We would like the opportunity to tender for surplus equipment.

Official Orders/Overseas Enquiries Welcome/Order by phone or post. Open 6 days, hall Tuesday. Please ring for C/P details not shown. Postal rates apply. U.K. mainland only. All test equipment carries warranty. All prices incl. 15% VAT & c/p unless stated.

SPECIAL OFFER
TTL 7’ Green Phosphor Monitor Chassis. 22MHz bandwidth 12V DC input new and boxed. Complete with data, circuit diagram compatible to BBC, IBM computers, diagram supplied for connection to BBC, 75Ω comp video circuit supplied. £19.95 inc c/p.

Card No 1 1 x Z80A DMA, 1 x Z80A CPU, 1 x DB255 AC-5 in holders. 1 x 5MHz Xtal, 8 x MB8264, 15 + 53, 1 x SN74198N various chips new ex-equip. £15.95.

Card No 2 1 x WD 19336-01 in holder + 16 various chips, new ex-equip. £15.00.

8” Winchester, 20MB hard disk drive, c/with manual taken out of ex-equip. £85.00. Accepts multitrace sampling and spectrum analyser plug in. 8” Winchester, 10MB Hard Disk Drive, new and boxed, manual etc £19.95. Toshiba 1/2 height 40 track drive £420. Cables have connector 50 way 520mm cable £420.

Connector 50 way £420. Cables have connector 50 way £420. Cables have connector 50 way £420.

SATELLITE TV EQUIPMENT

SYSTEMS
1. Telecom Satellite. (French TV & Radio). 90cm fixed dish, LNB, SR1000 RX... £310.00
2. Eutelsat F1. (French, German, Italian, English). 1.3m fixed dish, LNB, SR1000 RX... £375.00
3. Tracking System (Basic). 1.6m dish, feedhorn, Motor Drive, LNS, SR 1000 RX... £485.00
4. Full I.R. Remote control System. 1.6m dish, Motor, Polorotor, LNB, SR4500 RX/DRIVE... £885.00
5. GORIZONT (Russian). 1.3m dish, feedhorn, LNB, SR1000 RX... £475.00
6. INTERNATIONAL BAND System. 2.7m dish, AZ+EL Motor drive, LNB, RX, I.F. Active Filter, P.T.F.E... £2200.00

EQUIPMENT
‘C’ Band LNA + BDC. 10.9 - 11.7 GHz LNB’s, 1.9, 2.0, 2.1, 2.2, 2.3 dB. £1000.00

Telecom + DBS
Motor Drives, Tracker 2, SP3000, 12, 18 & 36” Arms. £1000.00

Receivers. Echosphere. 1000, 3000, 4500, Luxor Mk 2. £1000.00

Dishes. 90cm, 1.3m 1.6m, 1.8m, 2.0m, 2.7m. £1000.00

Spectrum Analyzers for TVRO use. Luly.... £1540.00

Transcoder. SECAM to PAL video... £1050.00

F’ Connector Crimp tool and 100 connectors... £390.00

Line amplifiers, line switches (50dB isolation. D.C. Path to be specified) Line splitters, N or F Connectors... £1000.00

Polorotor problems. The grey Taiwan product with white plastic cover. Modification for low loss... £10.00 p+p.

TRAINING

Engineering Courses in all aspects of Satellite Reception covers both theory and practice of L, S, C, Ku bands LNA, BDC, LNB operation. Feedhorns, Polorotors, Receivers, Motor Drives. Dish Theory and operation, Test Equip involves ‘Hands On’ experience with dishes from 90cm to 2.7m, C & Ku Band systems, Practical experience with Luly & Avcom Spectrum Analyzers, Sat Sig Strength Meter. Setting up receivers from basic Vario-cup through remote control to on Screen Graphics with built in drive controller and programing of system. Practical tests of LNB Noise figure, Polorotor Loss, Dish efficiency, etc. This two day course is limited to 6 students and runs twice a month depending on weather... £1000.00

The course will shortly be extended to an optional third day to include theory and operation of Remote Weather sensing Primary data satellite reception high resolution. Giving Visible, I.R. Water Vapour pictures from any predetermined point within satellite viewing area. 2.7m dish, L band operation... £50.00

Not to be confused with METEOSAT secondary user, PRIMARY user data is under the receive station software control.

MICROWAVE PRODUCTS

Mainly intended for the professional user.

Data Communications LNB’s in the band 9-13 Ghz input. External Oscillator required for low phase noise applications.

External multipliers for 4Ghz input of low phase noise source, output with SMA to feed above LNB.

Low noise amplifiers to customers requirements 1-14 Ghz.

Microwave filters for specified frequencies

Noise sources

Orthomode Transducers

Microwave splitters & amplifiers

Items are manufactured to specific customer requirements hence no data or specifications are available, telephone your requirements for price & delivery.

Available shortly... 10.3Ghz amateur TV band Low noise downconverters... £178.00

METER SAT PRIMARY USER IMAGE DATA SYSTEM. £5000.00

Noise figure, Polorotor Loss, Dish efficiency, etc. Not to be confused with METEOSAT secondary user, PRIMARY user data is under the receive station software control.

Manufacturers of Microwave Dishes, Feed Horns and Specialised Electronics
Suppliers of Satellite Systems and Closed Circuit TV Equipment

CROFTON, PICKERING, NORTH YORKSHIRE YO11 8HL
TEL: LASTINGHAM (07515) 598

996 ELECTRONICS & WIRELESS WORLD
Analysis of solids by glow-discharge mass spectrometry

G.d.m.s. offers the semiconductor industry a method of bulk analysis with uniform sensitivity and no-standards operation

P.M. WEBB, N.E. SANDERSON.

Glow discharge mass spectrometry (g.d.m.s.) has stimulated considerable interest in the ultra-high purity material and semiconductor industries in recent years. The technique has been seen as a natural successor to spark source mass spectrometry (s.s.m.s.) for the bulk analysis of solids due to the considerable benefits imparted by the glow discharge source. The features of particular note are good, uniform sensitivity across the periodic table and an inherent lack of matrix effects, resulting in an excellent capability for no-standards analysis. This feature is of key importance in the semiconductor industry, where there is a lack of well characterized, multi-element standards available to the analyst.

In this article, the significance of g.d.m.s. to the semiconductor industry will be discussed, with reference to the only commercial instrument capable of attaining the required sensitivities for semiconductor materials characterization, the VG 9000 from the Elemental Analysis Division of VG Isotopes.

Fig.1. The major components of the system: from left to right, glow discharge source, analyser and detector.

Fig.2. Section through the glow discharge source.

PRINCIPAL COMPONENTS OF A GDMS SYSTEM

The system can be considered to consist of four major components, the glow discharge source, a mass analyser, detector system and control computer as shown in Fig 1. The source produces a stream of ions which are subsequently separated on the basis of their mass to charge ratio by a double focusing mass spectrometer. Electronic detection of the ions is by a Faraday/Daly dual detector system.

Operation of the instrument is accomplished by a powerful PC-based system which also serves to acquire data and perform the data reduction and formatting.

The glow discharge source. The sample serves as a cathode in a low pressure (0.5m bar) argon plasma in a small tantalum discharge cell (the anode). The sample is inserted into the cell and several hundred volts potential applied between the sample (cathode) and the cell (anode) causing the...
breakdown of the argon gas to form a plasma. Argon ions impact upon the surface of the sample, resulting in the generation of sputtered neutral species of the sample atoms. Any positive ions produced are attracted back to the sample surface, whilst the neutral atoms diffuse into the central column of the plasma where they are subsequently ionized by collision with metastable argon atoms or electron impact. (Fig.2)

The reaction with metastable argon atoms is termed Penning exchange, and leads to a uniform ionization sensitivity (within a factor of 3) over the periodic table; hence true multi-elemental analysis is attained even in the absence of calibration standards. The separation of the sputtering and ionization process has considerable benefits over direct ionization at the sample surface (e.g. secondary-ion mass spectrometry or laser-ionization mass spectrometry), giving a response almost totally independent of the matrix. Hence, the combined effect provides for a powerful no-standards analysis.

The mass analyser. The output from the glow discharge source consists mainly of singly charged analyte ions, with some background of doubly charged ions and singly charged molecular species. These potentially interfering ions range from a few parts per billion to around 100 parts per million in concentration relative to the matrix.

To ensure that none of these potentially interfering ions cause problems, the mass analyser of the VG 9000 is double focussing. It consists of a combination of magnetic and electrostatic analysers producing high resolution. Without this geometry, certain determinations would be background limited by the presence of one or more interfering ions. Figures 3 and 4 illustrate the analyser’s ability to separate these species from the singly charged ion of analytical interest.

Thus, the molecular species, whilst they are obviously present, do not hamper the correct identification and determination of trace impurities. However, without a double-focussing geometry analyser, a glow discharge source coupled to a low resolving-power (e.g. quadrupole mass filter analyser) would be subject to background limitations at levels of a few p.p.m. and lower.

The detection system. The instrument uses a unique Faraday/Daly dual-detection system, having a combined linear dynamic range of more than 10 orders of magnitude. Since the Daly detector has a background of 1 count per second, p.p.b. concentration measurements are obtained in short integration times simply by direct ratio of the ion-beam intensity to the matrix. Typically, the Faraday is used to monitor the major components above 1000 p.p.m. whilst the Daly measures minor and trace components down to sub-p.p.b. concentration levels. Switching between the detectors is under computer control, enabling all measurements to be ratioed to the matrix signal in a single analytical cycle.

SAMPLE PREPARATION AND ANALYTICAL CONDITIONS

The g.d.m.s. source will accept conducting and semiconducting samples directly, with provision for accepting pelletized non-conductors or powders. Surface contamination can be removed by a combination of chemical etching prior to loading the sample and pre-sputtering in the discharge cell. The rapid analysis and real-time data display enable the operator to track or profile compositional changes from the surface to the bulk of the material, as successive layers of material are sputtering away. In the normal bulk analysis mode of operation, this erosion rate is of the order of 1µm/min, but adjustment of the source pressure enables this to be controlled down to around 0.1 µm/min for quantitative depth profiling studies.

G.D.M.S. IN THE SEMICONDUCTOR INDUSTRY

Impurities in semiconductor materials can be classified into two categories, those deliberately introduced, as in the case of dopants such as boron or phosphorus, and those arising from impure raw materials or contamination from processing chemicals and equipment.

When studying the profile of a deliberately introduced dopant, it is essential to be able accurately to monitor the concentration of single elements (usually in the 1-40+ p.p.m. range). However, in the analysis for inadvertent contamination it is essential not only to maintain accuracy but also to do this across the entire periodic table. This comprehensive elemental coverage is a major advantage of g.d.m.s. over other techniques such as s.i.m.s., where not only is coverage much reduced but the sensitivity from element to element may vary by as much as three orders of magnitude. The other major technique for bulk analysis, spark source mass spectrometry (s.s.m.s.), is much slower in operation than g.d.m.s., shows less precision and provides inferior detection limits.

The capability of g.d.m.s. can be illustrated by a study of trace level determinations of transition elements in cadmium telluride, silicon and depth-profiling of gallium arsenide.

Cadmium Telluride

Cadmium telluride is used extensively in the electronics industry, either directly as a gamma-ray detector or as a raw material in the production of cadmium mercury telluride (CMT) which is used as an infra-red detector. In both these roles, the trace element composition is vital to the performance of the device and the transition element concentration is of particular importance.

The elements Fe, Ni and Cu have been difficult to determine by traditional techniques such as s.s.m.s. The reason for this is the high-level of doubly charged matrix ions (~10 - 20%) produced in s.s.m.s. Thus the Cu^{2+} and Te^{2+} peaks swamp the Fe, Ni and Cu peaks, making analysis difficult or im-

DATA ANALYSIS DISPLAY
Nickel 58
Abundance = 67.66%
PSD = 1 500 E-16 Amps

Multiplier
200 ms/channel
18 counts

65Cu 0.03 p.p.m
40Ar 0.015 p.p.m

DATA ANALYSIS DISPLAY
Copper 65
Abundance = 30.91%
PSD = 6 592 E-16 Amps

Multiplier
200 ms/channel
8 counts

65Cu 0.03 p.p.m
40Ar 0.015 p.p.m

0 03 p.p.m
65Cu
58Ni
116Cd 2+
Ar OH2
40Ar 12C
1H
200 ms/channel
(1 scans I
200 ms/channel
(1 scans I

998 ELECTRONICS & WIRELESS WORLD
possible. A similar difficulty is seen with s.i.m.s., so that the effective limit of detection with this technique for these elements will be around the p.p.m. level.

Determination of trace levels of transition elements in cadmium telluride by g.d.m.s. is made practical due to the ionization process employed, which produces very low levels of doubly charged ions (typically <100 p.p.m. of the singly charged level) in combination with uniform element-relative sensitivity factors and small matrix effects.

Table 1 illustrates the results of g.d.m.s. in the determination of transition elements in the cadmium telluride sample as well as the concentration of the major components. Element identification confirmation is illustrated by isotope ratio checks for Ni and Cu. In general, detection limits of around 10 p.p.b. are obtained, based on 10 seconds integration time per peak.

<table>
<thead>
<tr>
<th>Element</th>
<th>Isotope concentration</th>
<th>Element concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Cu</td>
<td>0.037</td>
<td>0.004</td>
</tr>
<tr>
<td>Mn</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Fe</td>
<td>0.150</td>
<td>0.164</td>
</tr>
<tr>
<td>Cr</td>
<td>0.020</td>
<td>0.03</td>
</tr>
<tr>
<td>Co</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Cu</td>
<td>0.007</td>
<td>0.025</td>
</tr>
<tr>
<td>Fe</td>
<td>0.029</td>
<td>0.042</td>
</tr>
<tr>
<td>Zn</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td>Zn</td>
<td>0.010</td>
<td>0.056</td>
</tr>
</tbody>
</table>

Figures 3 and 4 illustrate the value of the excellent resolution obtained by the high-performance mass spectrometer. The element ions of 58Ni and 65Cu are clearly resolved from adjacent doubly charged species, oxides and other molecular species. In all cases it can be seen that the doubly charged species are less than 1 p.p.m. in concentration, thereby enabling precise identification and measurement of the transition metal isotopes at a nominal 4000 resolving power.

IRON AND OTHER TRANSITION METALS IN A SILICON MATRIX

In the analysis of a silicon matrix, a similar problem arises, as is shown with cadmium telluride, whereby transition elements can be overlapped by neighbouring species. In this case the problem is caused by the high relative concentration of the dimers (species formed by the union of two like atoms) of silicon 28, 29 and 30 at the same nominal mass as 56Fe, 58Ni and 65Cu, making analysis difficult by s.s.m.s and s.i.m.s.

In the analysis of silicon by g.d.m.s. the silicon dimers are at a level as low as 1 p.p.m. and when a resolution of 6000 is used it is more than adequate to resolve these dimers from the associated isotopes of interest.

Figure 5 shows 56Fe at the 6 p.p.b.a. level after normalization, clearly resolved from the 28Si-29Si dimer at the same nominal mass; this was produced using an integration time of approximately 15 minutes. Similar detection limits of a few p.p.b.a. parts per billion (atomic) have been achieved for other transition elements namely Cr, Mn, Co, Ni and Zn.

DEPTH PROFILING ANALYSIS

The controlled precise sputtering of the g.d.m.s. source enables both surface and bulk analysis of silicon. Table 2 shows the results of the analysis of another silicon sample where column 1 indicates the surface composition immediately after introduction and column 2 the bulk of the material after a period of sputter etching. This ability to determine trace composition at certain depth resoultion in the sample is of considerable interest and recent advances in the technique herald its increasing importance in depth profiling studies.

CONCLUSIONS

Glow-discharge mass spectrometry possesses several unique properties and shows considerable benefits over other techniques for the analysis of semiconductor materials. These major benefits are:

* Full element coverage with approximately equal sensitivity for metals and non-metals
* Freedom from spectral interferences allowing determinations at trace levels which are impossible with other techniques
* Excellent limits of detection (p.p.b.)
* Minimum matrix effects
* Good semiquantitative analysis without the need for standards
* Quantitative depth profiling

This comprehensive range of attributes should see g.d.m.s. becoming more widespread in both manufacturing processes and QA laboratories and it can be expected that further new applications will arise.

All concentration parts per million:
Run I was acquired immediately after starting the discharge and is representative of the surface.
Run II was acquired after a sputter-etch period and is representative of the bulk of the sample.

The bulk analysis determinations described above have been carried out using the standard pin sample configuration (15mm x 2mm diameter) and a pressure of around 0.5 to 1 torr of argon in the discharge cell. This results in an erosion rate of around 1 µm per minute.

Using an alternative cell geometry, flat samples, for example semiconductor wafers around 10-25mm diameter, can be run directly. By reducing the argon pressure in the discharge cell the erosion rate can be controlled to below 0.1 µm per minute. This enables the analysis of thin surface films for impurity determinations and depth profiling analysis.

A sample of GaAs was doped with silicon in two epilayers:
(a) at 1 ppm for a depth of 2.1 µm;
(b) at 10 ppm for a further 2.1 µm; and
(c) at 20 ppm approximately in the substrate. The results in Fig. 6 show excellent agreement between the VG 9000 and the quoted values.

TABLE 2

Analysis of high purity silicon

<table>
<thead>
<tr>
<th>Element (isotope used)</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>10.11</td>
<td>0.022</td>
</tr>
<tr>
<td>Mg</td>
<td>24.25</td>
<td>0.056</td>
</tr>
<tr>
<td>Al</td>
<td>27</td>
<td>0.125</td>
</tr>
<tr>
<td>V</td>
<td>51</td>
<td>0.009</td>
</tr>
<tr>
<td>Cr</td>
<td>52.53</td>
<td>0.008</td>
</tr>
<tr>
<td>Mn</td>
<td>55</td>
<td>0.016</td>
</tr>
<tr>
<td>Fe</td>
<td>56.57</td>
<td>0.010</td>
</tr>
<tr>
<td>Co</td>
<td>59</td>
<td>0.009</td>
</tr>
<tr>
<td>Ni</td>
<td>60</td>
<td>0.35</td>
</tr>
<tr>
<td>Cu</td>
<td>63.65</td>
<td>0.007</td>
</tr>
<tr>
<td>Zn</td>
<td>65.66</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Fig. 6. Analysis of silicon surface films on GaAs substrate.

Fig. 5. Showing 56Fe at the 6 p.p.b.a. level after normalization and the 28Si-29Si dimer at the same nominal mass.

The authors are with VC Elemental - a division of VG Isotopes, Ltd.
"It all started with the French Connection," I said.

Once again my discussion group buzzed a little and conjectured about the cryptic beginnings that seemed to grow more and more common in our revisionary topic sessions. By this time I had drawn Fig. 1 on the board. "You might remember that the elementary trigonometric functions have three constants or parameters in their expressions which set the vertical height, the rapidity of oscillation and the position along the axis." Then I asked if Fig. 1 was a sine wave or a cosine wave. The replies varied: some people thought it was a sine wave; others said, "Cosine, because the peak starts nearer the origin." One bright student suggested that, because neither the peak (which would be a plot of cosine) nor the rising zero crossing (which would characterize sine) was at the origin, the plot was neither a sine nor a cosine wave. "On the other hand," he said as an afterthought, "it might be a mixture of both."

Later, I appreciated this last suggestion, because it is nearest to our purpose here. Figure 1 does show a combination of a sine and a cosine wave. If you consider,

\[v = V \sin(\omega t + \phi) \]

\(t \) is the independent variable of the function, and \(v \) the dependent variable. The \(V \), \(\omega \) and \(\phi \) parameters respectively fix the vertical scale, the rapidity with which the graph oscillates as \(t \) increases, and whereabouts the sine curve starts relative to the origin.

If the symbols stand for familiar quantities in our subject, we know that \(v \) relates to an instantaneous value, usually a voltage. For current, \(i \) and \(I \) appear in place of the Vs. \(t \) indicates time ticking by. \(V \) gives the peak value or amplitude and \(\omega \) is the angular frequency, with \(\phi \) indicating the phase angle relative to the sine wave origin.

SINE AND COSINE ARE 'ORTHOGONAL'

You might remember that at about the end of "O" to the start of "A" level maths studies, trig. expansions of compound angles turned up, much to the bane of young students. Here they are:

\[\sin(A + B) = \sin A \cos B + \cos A \sin B \]
\[\cos(A + B) = \cos A \cos B - \sin A \sin B \]

Use the first relation to expand equation (1),

\[v = V(\sin(\omega t + \phi)) \]

The sine and cosine of the phase angle \(\phi \) must have a right-angled triangle interpretation. This means that from the triangle in Fig. 2 we can write,

\[v = V_1 \sin(\omega t) + V_2 \cos(\omega t) \]

where \(V_1 \) and \(V_2 \) are new amplitudes, both smaller than \(V \), the original. So the single wave in Fig. 1 obviously contains a sine wave and a cosine wave, called its sin and cos components.

Everything about sine compared to cosine has a right angle about it — the sides of the triangle from which they arise — the phase angle between them, which is 90° or \(\pi/2 \) radians — and even the fact that combining them gives the tangent \(t = \sin \phi / \cos \phi \) which as a trig. function measures how much 'up' for so much 'along'; in other words the slope or gradient.

We are dangerously near \(j \) and the work Euler did at this point, a topic we have discussed. In fact, \(j \) entering on the scene gives yet another orthogonality relationship. Orthogonal means 'at right angles to . . .'

FOURIER

Where does the French Connection arise? As you might have guessed, through the work of J. B. Fourier, (see box). Fourier analysis' came into being from his work. In it, he showed not only that the general sinusoidal waveform had a sine and cos component, but all periodic waveforms of any shape also had a whole series of sine and cosine components making them up. Making up a complex waveshape (as certain electronic organ designs still do) from the basic sin and cos components naturally receives the term Fourier synthesis. Current ways of synthesizing complex wave shapes include using a look-up table in a rom, repeating the cycle at the fundamental rate you require and using a d-to-a converter. Although this clouds the basic Fourier series components, programming the original table contains the relevant information.

Figure 1. A typical 'sine' wave starting at an arbitrary point, or phase relative to 0 as shown, has a true sine and cosine component.

Figure 2. A right angled triangle gives the ordinary definition of the sine and cosine of an angle we all meet with at school.

\[\sin \phi = \frac{a}{\sqrt{a^2+b^2}} \text{ and } \cos \phi = \frac{b}{\sqrt{a^2+b^2}} \]

so that,

\[\phi = \tan^{-1} \frac{a}{b} \text{ or } \tan^{-1} \frac{V_2}{V_1} \]

\(\phi \) is the angle of the vector \(V \). (the \(\sqrt{a^2+b^2} \) cancelling out).

(b) shows the results of equation (4) and gives us explicitly the sine and cosine components mentioned in the caption to Fig. 1.
Fig. 3. Any repeating function yields sine and cosine components when Fourier analysed. The period is the shortest interval over which \(f(t) \) varies through a complete cycle, shown as \(2\pi \) here.

Fig. 4. If you carry out a Fourier analysis on a segment of a non-periodic function, then the piece is 'reproduced' ad-infinitum. In other words, the analysis makes the function periodic with the interval of the piece as the period.

INFINITE SERIES AGAIN

When \(j \) was on the agenda\(^1\), I remember discussing Colin Maclaurin's series, which 'expanded' a function about the origin, (the point where the independent variable equals zero), so that it could be represented by an infinite series of terms added together. Perhaps you remember sine and cosine themselves had an infinite series, obtained by that technique. The main difficulty with infinite series methods is that you have to keep an eye on them to see that the series converges to a finite sum. Fourier used the same method to expand functions\(^2\), but went further, ending up with an infinite series containing sines and cosines of all harmonic frequencies. Earlier, Daniel Bernoulli had attempted using a similar series in work on how a string vibrates, but was unhappy about the rigour. Also Leonhard Euler had written a more limited version of such series, but again mistrusted the rigour. Fourier acknowledged Euler's contribution, increased the rigour of the derivations and ended up with integrals, including the ones we still call 'Fourier integrals'. All modern work commemorates his remarkable contributions to mathematical theory under the titles Fourier series and Fourier transform methods.

Fig. 5. Equations (6) can be hard to visualize. This attempt shows that whatever \(n \) is, all the component waves in the cosine and sine harmonic series start at 0. They then go on to repeat the same pattern every \(2\pi \).

PERIODIC UPS AND DOWNS

A closer look shows us that such series arise from a special class of functions – the periodic functions. Imagine you are moving along with the independent variable \(t \) in the function \(y = f(t) \), say, and you look at what \(y \) is doing. Your observations might show that \(y \) has moved back to, or jumped back to its starting value at some stage in the journey, then went on to repeat the same pattern again.

If \(y \) keeps doing this, your function is periodic. \(\sin \theta \) and \(\cos \theta \) typically show periodicity. In fact, they are the archetypes of periodic variations and, as you probably know, the physicists' name for such oscillation is Simple Harmonic Motion. But we term periodic any other function which repeats itself at intervals. From this reasoning, if any arbitrary function \(f(t) \) repeats itself every \(2\pi \) like that shown in Fig. 3 then, \(f(t) = f(t + 2\pi) \) (5)

The constant \(2\pi \) is the period.

If any other function, not necessarily periodic, has a piece chopped out of it whose width is \(2\pi \), then we can do a Fourier analysis on this segment as if it is repeated indefinitely each way – that is, as if it is periodic, as Fig. 4 shows.

I have made the tacit assumption in talking about oscillations and in using \(t \) as a variable, that \(y \) is a function of time. But we do not limit Fourier analysis to time variables only: space variables arise in some applications.

Fourier must have asked himself something like, "Can any periodic motion, however complicated, be made up of the sum of simple motions of the sine and cosine types?" This question asks that, since

\[
\cos \frac{n\pi}{\tau} (t + 2\pi) = \cos \frac{n\pi}{\tau} t \\
\sin \frac{n\pi}{\tau} (t + 2\pi) = \sin \frac{n\pi}{\tau} t
\]

for all \(n = 0, 1, 2, 3 \) etc. as illustrated in Fig 5, could a periodic function be expanded as,

\[
f(t) = a_0 + a_1 \cos \frac{n\pi}{\tau} t + a_2 \cos \frac{2n\pi}{\tau} t + \ldots + a_n \cos \frac{n\pi}{\tau} t + \ldots \]

\[
b_1 \sin \frac{n\pi}{\tau} t + b_2 \sin \frac{2n\pi}{\tau} t + \ldots + b_n \sin \frac{n\pi}{\tau} t + (7)
\]

... which is the usual daunting series expression quoted early in the "Fourier" chapters of textbooks.

ELECTRONICS & WIRELESS WORLD
Of course, as in all these series methods we immediately have to face the awkward question, "What are all those a_0, a_1, a_2, . . . b_1, . . . b_n, . . . numbers?" In this instance, as Fourier established, we must use certain integrals to find these coefficients. If you are rusty on evaluating the trigonometrical integrals, a quick glance into a book will remind you that integrating sin and cos over complete periods produces a zero result, because there is as much positive area (above the axis) as negative (below the axis) in the summation.

\[\int_{0}^{\Theta + 2\pi} \cos n\theta d\theta = 0, \text{ with the proviso for this one that} \]
\[n=0 \text{ and } \int_{0}^{\Theta + 2\pi} \sin n\theta d\theta = 0 \quad (8) \]

In the limit, the \(\Theta \) is an arbitrary start and \(2\pi \) is the angular period.

The arguments of the sines and cosines I wrote earlier, for example in equations (7), vary with \(t \). Yet they are angles and I have switched to angles in equations (8). You can see the equivalence of this from \(u2r \) being the fraction of the period that \(0 \) to \(t \) represents and \(\Theta/2\pi \) indicating the same fraction of the period, written as an angle. Figure 6 shows that these two fractions describe the same point \(P \) and so are equal.

\[\frac{t}{\Theta} = \frac{\Theta}{2\pi} \quad \Theta = \frac{\pi t}{\tau} \text{ radians} \quad (9) \]

We need one or two more integrals that look even more off-putting but you should find them fairly straightforward when you get down to it:

\[\int_{0}^{\Theta + 2\pi} \cos \Theta \cos n\theta d\theta = 0 \quad m=n \]
\[\int_{0}^{\Theta + 2\pi} \sin \Theta \cos n\theta d\theta = \pi \text{ when } n=m, \text{ but not } 0 \]
\[\int_{0}^{\Theta + 2\pi} \cos^{2} n\theta d\theta = \pi \text{ when } n=m, \text{ but not } 0 \]
\[\int_{0}^{\Theta + 2\pi} \cos \Theta \cos n\theta d\theta = \pi \text{ when } m=n \]
\[\int_{0}^{\Theta + 2\pi} \sin \Theta \sin n\theta d\theta = 0 \]
\[\int_{0}^{\Theta + 2\pi} \sin^{2} n\theta d\theta = \pi \text{ when } m=n \text{ but not } 0 \quad (10) \]

With these, we can go back and integrate term by term throughout the series, hopefully getting the as as/ and the bs/.

First, simply integrate right through the series with the limits set as before from end to end of the period, \(\Theta \) to \(\Theta + 2\pi \),

\[\int_{0}^{\Theta + 2\pi} f(t) \cos n\theta d\theta = a_n \]
\[\int_{0}^{\Theta + 2\pi} f(t) \sin n\theta d\theta = b_n \quad (11) \]

We have assumed \(f(t) \) can be integrated. In other words, we do not expect the range of \(f(t) \) to go roaring off to infinity, or oscillate infinitely within the domain \(2\pi \), so endangering the existence of the integral. Engineering waveform functions certainly do not produce any funny business like that, so we have no worries.

By the first two integrals above, all the cosine and sine integrations on the right vanish away. This leaves only the first term, which is,

\[a_0 = \frac{1}{\pi} \int_{0}^{\Theta + 2\pi} f(t) \cos n\theta d\theta \quad (12) \]

This gives us \(a_0 \), often called the 'constant' term, or the d.c. term (if the function is an electronic waveform).

We also want the \(a_n \) and \(b_n \), for all the values of \(n \) as it steps 1, 2, 3, . . . For the \(a_n \), multiply right through the series by \(\cos n\theta \) and integrate everything again,

\[\int_{0}^{\Theta + 2\pi} f(t) \cos n\theta d\theta = a_n \pi \]

so we have found the \(a_n \).

In the same way, multiplying right through the series with \(\sin n\theta \) and integrating again, we obtain \(b_n \). You will find only the \(\sin^{2} n\theta \) integration survives to contribute something,

\[b_n = \frac{1}{\pi} \int_{0}^{\Theta + 2\pi} f(t) \sin n\theta d\theta \quad (15) \]

Some of the conditions for the existence of a Fourier series arose from the work of Peter Dirichlet. In a famous theorem he proved, "If a bounded function has at most a finite number of maxima and minima and a finite number of points of discontinuity, without infinite jumps, then the Fourier series of \(f(t) \) converges onto \(f(t) \) where it is continuous and on to the average of the right and left handed limits of \(f(t) \) at each discontinuity."

What Dirichlet said means that waves such as those in Fig. 7 have a Fourier series and at each discontinuity the value tends to \(1/2(f(t^+) + f(t^-)) \). Although none of the physically real waveforms with which we have to deal do awkward things, there are relatively simple-looking functions that behave in ways Dirichlet would not have liked, for example,

\[y = \sin \frac{1}{t^2} \quad (16) \]

However small the interval 0 to \(t \), say at the origin, \(y \) oscillates infinitely, see Fig. 8, and there is no Fourier series.

WE STAY NEAR THE ORIGIN

Most often, instead of the general start, the interval over which the cycle of calculation takes place is 0 to \(2\pi \), or \(-\pi \) to \(\pi \), so that we take \(\Theta \) either as \(0 \) or as \(-\pi \). In other words, we stay around or near to the origin.

We calculated \(a_0 \) separately, but in the cosine part of the series, which gives the \(a_n \), \(a_0 \) turns up automatically by putting \(n = 0 \) into the integrated result. You might find an occasional problem in doing this - if a denominator went to zero, for example, then the separate calculation for \(a_0 \) would need doing.

What we have assumed is that a periodic function \(f(t) \) has a Fourier series. All we can say is if \(f(t) \) has a Fourier expansion, then we find the coefficients \(a_n \) and \(b_n \) as above.

R.F.I.

As an example, suppose you had a half-wave rectifier performing in some application. The radio across the room might produce a buzzing mains hum on the long-wave band every time you had your rectifier system on. "Ah-ha!, you say, "the jerky diode current turning on and off in the rectification, produces harmonics." This is a typical Fourier situation and we can find the harmonics.

Figure 9 illustrates the usual half-wave rectifier current waveform. Dirichlet would...
be happy with it; there is only one maximum and one discontinuity (the cusp at the origin) in
the domain $-\pi$ to π.

The piecewise function is 0 from $-\pi$ to 0 and $\sin wt$ from 0 to π. Therefore to find the a_ns,
we write

$$
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nwt \, dt = \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \cos nwt \, dt + \frac{1}{\pi} \int_{0}^{\pi} \sin wt \cos nwt \, dt
$$

(17)

The first integral on the right contributes nothing, the second gives

$$
a_n = \frac{1}{\pi} \left[-\frac{1}{2} \left(\frac{1}{1-n} \cos (\pi n) + \frac{1}{1+n} \cos (\pi n) \right) \right]
$$

As you can see, we have no result possible for $n = 1$, and we must do the integral directly.
This shows $a_1 = 0$. Now let n run 0, not 1, but 2, 3, 4, 5, and so on, are alright, therefore $a_0 = 21/\pi$, $a_2 = 0$, already found, $a_3 = -23/3\pi$, $a_4 = 0$, $a_5 = -23/15\pi$, $a_6 = 0$ and so on.

If you go through the calculation for the b_ns, only one survives and that is b_1. All the rest
go to 0.

Therefore the final expansion of the half-wave rectifier waveform into its fourier series is at our disposal,

$$
i = \frac{1}{\pi} \left(\frac{1}{2} \sin wt + \frac{2}{3} \cos 2wt + \frac{4}{15} \cos 4wt \right)
$$

$$+ \frac{\cos 6wt}{35} + \ldots
$$

(19)

The first term is your d.c. component. The second term shows you have a considerable amount of the fundamental a.c. wave present. Then, in the bracket, appear all the harmonics with their amplitudes, that give rise to the radio-frequency interference.

Synthesizing back, term by term, shows how the Fourier components build up the original function. Figure 10 shows that even with only three terms, we get a good approximation to the original half wave, and that not a great deal of energy actually goes into the higher harmonics - which is some relief.

THE GIBBS PHENOMENON

On the other hand, the departure from the original waveform is worst near the discontinuities. We see overshooting at these positions. Radio engineers call such transients 'ringing', from their decaying oscillatory nature. Figure 7 shows them. If we take more terms of the Fourier series, the rate of oscillation increases and the amplitude of the overshoot declines somewhat, but even with an infinite number of terms, the overshoot still holds up at some 9% of the jump.

We call this seeming imperfection in the Fourier synthesis of a function, the Gibbs phenomenon. In engineering practice, the energy in the smaller spikes vanishes away and we therefore lose interest in them. But mathematically the stubborn refusal of these spikes to disappear in the limit caused a flurry of interest.

ONLY A START

Of course, I have only scratched the surface of such a large subject. Yet many more detailed textbooks are vague and even misleading, so that the beginner becomes rapidly confused. However, we have pointed out some of the more intriguing little facts about Fourier, so if you are in the middle of a struggle with learning it all, or about to start, (or even if you are an old hand, but never really got to grips with it!) then go...
Fig. 10. The spectrum of a number of oscillations, including those harmonically related by Fourier series, is a frequency axis plot of the amplitudes, as shown for the first few harmonics of the half wave rectifier in (a). Adding only three terms of the series already gives a good approximation to the half wave pulses, as in (b).

ahead with perhaps a little more confidence. I will leave you with a little thought. Suppose you had a periodic function like the half-wave rectifier output, but instead of starting the period at $-\pi$ through 0 to $+\pi$, you found the negative start at say, -2π or -3π, but the half sine or whatever still started at 0 and finished at π? Or further, suppose you saw the half wave at 0 to π, but however far you looked along the axis - both ways - you never found another one. In other words, you only had pulse, at 0 to π. Would this have a Fourier series? (The first good explanation might enable me to talk the Editor into producing a book token. But you must be just starting as a student - no cheating from Ph.D mathematicians please!)

References

INSTRUMENTS BLUE BOOK

The search for the appropriate instrument to specify for a particular application can be a frustrating business. Gathering together data sheets on anything up to a dozen possible instruments eats into an engineer's time and store of patience.

In an effort to ease the problem, and also to emphasize the direction in which the company is committed to progress, Electronic Brokers has published its Blue Book - a most unusually comprehensive catalogue of test and measurement equipment.

It is easy to use, consisting of separate sections for each of sixteen types of instrument, each section containing a general introduction to the equipment, a list of types offered and a catalogue page for each type, which includes the price. Full technical information is provided on the instruments from twenty-one manufacturers, including makers of computers and peripherals, and each section contains a comparative guide to characteristics.

The Blue Book is obtainable free from Electronic Brokers, 140-146 Camden Street, London NW1 9PB, in response to requests on company headed paper.
As you'd expect from a company with BICC-VERO's reputation we're supporting fully the increasingly recognized STEbus architecture.

We offer you STEbus backplanes, terminators, extenders, and prototyping boards with interface, all complying fully with IEEE Standard P1000, Draft 3.2. And — better still — our comprehensive range of STEbus support products includes all the additional hardware, fully compatible with STEbus, you need to build your STEbus system. The range includes:

- **Power supplies**: Single or multi-output plug-in modules, or open frame switchers, up to 500W.
- **Prototyping boards**: A wide range of general purpose boards, plus PTH microboard and Speedwire with STEbus interface.
- **Cardframes**: Choose from the well-known industry standards, KM6 or KM7.
- **Racks and enclosures**: Of all types, to suit your STE application.
- **Connectors**: An extensive selection of two-part IEC 603-2 (DIN 41612) connectors, including pressfit.

Contact us now for more information on our STEbus hardware support products.

For immediate action, phone: 0703 260211 (South) or 0744 24000 (North).

Or write to:

BICC-VERO Electronics Limited, Flanders Road, Hedge End, SOUTHAMPTON, SO3 3LG. Tel: 0703 266300 Fax: 0703 264159. Telex: 477984.
Masterclass OSCILLOSCOPES

For those who compare

With the phenomenal success of the HM205, with its Component Tester feature, pioneered by Homey, we now take pleasure in introducing the HM205-2. This improved version contains all the previous features, but has increased capabilities in the following areas:

- Increased sampling rate of 5MHz giving a digital timebase range of 30µs/cm to 51.2µs/cm, with automatic refresh every sweep.
- Dual joining facility as a front panel push button, combines the waveform samples to form a solid continuous trace.
- Memory of 1024 x 8 bits per channel provides high resolution capture of complex signals, for as long as required.

20 MHz analogue bandwidth for full general purpose applications, providing any signal size, large or small.

A digital timebase of 51.2µs/cm division makes it possible to see a solid picture of a signal from kilohertz right down to 0.5 Hertz.

Maximum sensitivity of 2mV per division means even the smallest signals can now be seen, triggered and stored for careful examination.

because at £527 it deserves the prize of the year!

74-78 Collingdon Street, Luton, Bedfordshire, LU1 1RX Telephone (0582) 413174 Telex 825484

ENTER 40 ON REPLY CARD

Our HM205-2 must be an award winner...

E PROM PROGRAMMER

AT LAST !

Over 50 Generic Device Types

- THE MOP ELECTRONICS MODEL 18 PROM PROGRAMMER
 - Automatic Data Rate setting 300 - 19200 Baud
 - Two independent Communications Protocols built in
 - Terminal Mode Protocol
 - Use any host computer with RS232 port and Terminal Emulator
 - Host Computer Protocol
 - Use our PROMDRIVER Advanced Features User Interface Package available for all MS-DOS, PC-DOS, and CPM-BD computers.
 - No personality modules to install, no switches to set
 - Fast interactive algorithms automatically selected as appropriate
 - Upgradable for future developments
 - Designed, Manufactured, and Supported in the UK.
 - Comprehensive 60 page User Manual.
 - n.b. Cables other than 2428 pin require low cost socket adapter.

at a price to suit any budget!

the mop electronics model 18 e prom programmer

RING COLIN, 01-885 5522

Unit 4, Hotspur Estate, West Road, Tottenham, London N17 0XJ.

ENTER 54 ON REPLY CARD

pective ELECTRONICS, 22, RINGSBURY CLOSE, PURTON, SWINDON SN5 8DE.

TELEPHONE 0795 705055

ENTER 58 ON REPLY CARD

OUR ELECTRICAL WORLD

All prices plus VAT and carriage
FSK data receiver

Digital communications and telemetry are popular uses of the American 49.82 to 49.9MHz band for low-power devices operating up to about 30m. A simple yet effective FSK receiver for this band can be made from an LM3361 narrow-band FM i.f. amplifier/detector.

Incoming carrier centred at 49.86MHz is converted to two intermediate frequencies of 10.7MHz and 455kHz. Both i.f.s include readily available ceramic filters to increase selectivity while reducing coil count. Baseband data is recovered using quadrature detection and an integrator/Schmitt-trigger filter demodulates output. The squelch circuit also functions as a status indicator; when signal is present, its open-collector output switches high.

Consumption of the 3361 is 4mA at 5V – the entire circuit consumes about 10mA. With components shown, typical detector conversion gain is 150mV for each kilohertz of carrier shift. Frequency shift of 3.3kHz results in 500mV pk-pk detected output at pin 9. Increasing the Q-setting resistor at pin eight gives higher gain.

Many transmitters have a 16.62MHz master oscillator tripled to 49.85MHz. Modulation is carried out by pulling the 16.62MHz fundamental crystal; pulling of more than 1kHz is possible, which gives 3kHz when tripled. By comparison, a 49.86MHz third-overtone crystal could only be pulled by a few hundred hertz because crystal Q increases as the square of the harmonic order.

Significant baseband filtering is illustrated in the first (lower) oscillogram. Twice-i.f product of the quadrature detection

Squelch (a) output (pin 14) 100V input, 1kHz baud

Integrator (b) input 5V/div

Integrator (c) output 500ns/div

Schmitt (d) trigger output

Pin 9 (a) 500µs/div

Integrator (b) input 500µs/div

Integrator (c) output 500µs/div

Schmitt (d) trigger output 500µs/div
tor, evident in the top trace, is removed by RC filtering at pin nine. Weak-signal performance is shown in the second oscillogram. Input of slightly less than 570nV results in about 10% jitter at 1kbaud. At 500nV, the occasional bit is lost and at 300nV the squelch line goes low, although data is still visible at the output. On and off times of the squelch switch are 3 and 1ms respectively. Despite the squelch on time, data at pin nine appears almost immediately, as shown in the top oscillogram. Correction of the d.c. output shift occurs within 1 or 2ms.

Bandwidth limitations of the 455kHz filter, integrator, transmitted signal and L4 limit the data rate to 1.2kbaud. Long strings of ones and zeros are not a problem since the circuit is d.c. coupled. When testing the circuit note that r.f. generators with f.m. input, like the Boonton 103/1020, cannot produce f.s.k. because their f.m. input is a.c. coupled.

A relatively short whip antenna of 460 to 610mm, is matched to r.f. amplifier Tr1 by an 'L' network of 4-6pF and 50-100Ω in series. It is a common misconception that a short 49MHz whip exhibits just a few ohms. While this may be true, impedance measured from the base of the whip to ground is 50 to 200Ω in series with a capacitive reactance of about 4-6pF. High driving-point resistance is a result of a lossy ground, not the whip.

To tune the circuit, connect a carrier of <2µV modulated by alternating ones and zeros and adjust the quadrature coil while observing integrator output. Tune L4 for symmetrical trapezoidal waveform at the integrator output. With crystal tolerances of 0.005%, no other adjustments are necessary. Receiver sensitivity can be peaked by adjusting L1.

Mitchell Lee
National Semiconductor
Santa Clara

Frequency control in Wien-bridge oscillators

Adding an op-amp inverter to the conventional Wien bridge oscillator provides frequency control.

For a normal Wien bridge oscillator, the condition for oscillation is \(R_1C_1R_2C_2 = 1 \). By adding an inverter it is possible to change current through one of the bridge resistors. If inverter gain is \(1/a \) then the left part of the expression, the condition for oscillation, is multiplied by factor \(a \).

In this oscillator, \(R_1 = R_2 = R, \ C_1 = C_2 = C \) and the condition for oscillation is

\[
aR^2C^2 = \frac{1}{RC} \Rightarrow \frac{1}{RCV^2a} \]

Frantisek Michele
Brno, Czechoslovakia
RESEARCH NOTES

Optical fibres: bandwidth breakthrough

Researchers at West Germany’s Standard Elektrik Lorenz AG have constructed an optical-fibre system that will transmit data at a rate of 540 bits for 90km without any intermediate amplification. Until now, such distances could only be achieved at much lower data rates because of dispersion within the fibre. The problem is the difficulty of constructing a fibre in which the wavelength of minimum dispersion coincides with the wavelengths for minimum attenuation. It is therefore usually something of a trade-off between distance and bandwidth.

What the West Germans have done is to adopt a special doping profile to increase the wavelength of minimum dispersion to a point at which it is almost coincides with the wavelength of minimum attenuation. These figures are now respectively 1525mm and 1550nm.

The result of this research is a system with a single optimum wavelength and a distance/bandwidth product about an order of magnitude better than anything in commercial operation.

Atomic bonding for reliability

Mitsubishi’s quarterly publication Advance Vol. 38, 1987, contains details of a new technique for welding together dissimilar materials without the need for heat or high pressures. This development is significant in view of the number of solid-state device failures that can be attributed to defective bonds.

Conventional welding, whether arc, resistance or beam, depends on extremely high temperatures to induce localized melting. This in turn can create thermal stresses or even destroy semiconductor materials. High processing temperatures can also cause chemical effects and molecular migration, leading to chip diseases such as the once-dreaded ‘purple plague’.

Diffusion welding is a more recent technique in which heat is partially traded for pressure. Nevertheless it still requires many materials to be heated to temperatures at which thermal degradation occurs.

Mitsubishi’s atomic joining process gets round the problem by reference to the fundamental physics of bonding. If one imagines a typical solid material such as a metal, each atom is closely and tightly joined to the next by means of chemical bonds made up of clouds of electrons. In any solid these bonds are by definition strong, otherwise the material would liquefy or vaporize. In theory, therefore, all that is necessary to create a strong bond between two lumps of solid material is to create two adjoining surfaces that closely replicate the original atomic structure.

The problems in practice are firstly the need to polish the surface to a mirror-like finish and then the need to avoid any chemical contamination. Even the oxygen in the atmosphere can bind with the free chemical bonds at the surfaces and deactivate them. If it were not so, any fracture could be repaired merely by pressing the broken pieces together.

To achieve atomic bonding, Mitsubishi first polish the surfaces under atmospheric conditions. Then, in an ultra-high vacuum, better than 10^-9Pa, the surfaces are bombarded with argon ions that perform a sort of atomic-scale sandblasting function. These ions are themselves too big to embed themselves in the atomic lattice, but carry away any contaminants from the free chemical bonds. If two surfaces that have been treated in this way are pressed together, then they unite instantly with a bond strength as great as that of the bulk material.

The secret of the whole process is partly the initial polishing process, which can remove surface atoms down to an accuracy of about 10^-7m. Then, if the bond is to be as strong as the parent material, the vacuum must be of an extremely high quality. Mitsubishi use a combination of sputter-ion and titanium-evaporation pumps which act as sacrificial surfaces to absorb gases left behind by conventional pumps.

Although the process may seem more suited to the laboratory than to chip production it does open up possibilities denied to conventional welding. Amorphous materials such as ceramics can easily be atomically joined to metals. Heat-sensitive semiconductors can also be joined reliably to each other and to various substrates. Moreover, as Mitsubishi point out, the whole process would be very much simpler and more economic if it were carried out on board a space station where the necessary vacuum comes free.

Plastics hold the record

ERA Technology has developed a novel technique to ascertain the thermal history of samples of most common plastics. Given a few milligrams of polyethylene, polypropylene, nylon, p.t.f.e. for example, they can reveal the maximum temperature to which it has been subjected during service.

The technique depends on the fact that all these plastics consist of long-chain polymer molecules that take up different configurations when held at a constant temperature. When cooled down, the plastic holds a memory of the maximum temperature reached.

ERA has now solved the problem of how to decode the information locked away in the molecular structure using a differential scanning calorimeter. This is simply a device which plots temperature rise against heat input. When a sample of plastic reaches the maximum temperature it attained in service it exhibits a phenomenon analogous to latent heat of fusion; there is a non-linear relationship between heat input and temperature rise.

This technique of retrospective temperature measurement is likely to have numerous applications in practice. It is possible, for example, to dispense with sensors during product testing and development; it is merely necessary to cut up a moulding or a bearing or an insulator afterwards and test samples taken from different areas. In the case of a component that has failed, the technique can establish the maximum temperature of the material at the very point of fracture.

Although ERA’s thermal analysis procedure requires a sample to be taken from a component, this can be obviated in some cases by building a sacrificial element into the original component design. This element could be made of a plastic specifically chosen for its maximum sensitivity over the temperature range of interest.

The test has already been applied to ascertain the maximum temperature reached by high-voltage power cables. It also has possible interesting applications in forensic science or industrial espionage. In the case of a fire, it should be possible to determine from a sample of cable whether it was the cause or the result of the fire. In the first case a sample of the plastic degradation will show a temperature gradient from the inside out; in the latter case it will be the other way round.

As for discovering other people’s secrets, it should be possible to find out the temperature at which a sample of a special plastic has been subjected during manufacture. This can often be the clue to its particular properties.

ERA are, needless to say, not too keen on this last possibility, but they are interested in hearing from anyone with a legitimate application for this technique.

New superconductivity puzzle

An unexpected and unplanned property of the new ceramic superconductors is reported by a group of physicists from the University of Wellington, New Zealand and from the Department of Scientific and Industrial Research in the same country, but with the assistance of the Kaiser from the West German Max-Planck Institute of solid state physics at Stuttgart (Nature Vol. 328 No 6127). What A. Mawdsley and his colleagues have done is to measure the thermoelectric power of several samples of superconducting ceramic oxides of the yttrium-barium-copper-oxide type. Thermoelectric power is a measure of...
the voltage generated when there are differences of temperature between one part of an electrical conductor and another, except that the thermoelectric power of superconductors is expected to be zero (as confirmed by the New Zealand experiments).

The surprise that now emerges from the measurement of several samples of yttrium-barium-copper-oxide, all of which became superconducting between 91 and 93 degrees above absolute zero, is that the thermoelectric power seems to increase dramatically as samples are cooled to the temperature of the transition to superconductivity, before plunging to zero at the onset of the superconducting stage.

The thermoelectric power of a material arises from differences in the way electrons are distributed between the various energy states accessible to them at different temperatures. The New Zealand authors say that measurements like theirs, apparently the first of their kind to have been carried out with the new super-conducting materials, should throw light on the whole, however, in the boundaries between high-temperature superconductors and the more familiar ceramic superconductors. But they confess that they had expected the thermoelectric power of their materials to decline steadily towards zero as their materials were cooled to the superconducting point.

Superconductivity: the temperature keeps rising

One of the best attested hints of superconductivity near room temperature (at minus 43 degrees Celsius) is reported in Nature Vol. 328 No. 6129 by Professor C.W. Chu from the University of Houston and a group of his colleagues there and the Lockheed Palo Alto Laboratory and the National Magnet Laboratory at MIT. In an accompanying editorial note, Dr David Caplin from Imperial College, London, says that the report from Chu and his colleagues may be best explained if the high conductivity of the specimens resides only in the boundaries between grains.

The material used in the experiments at Houston contains the rare earth element europium, and is chemically similar to the more familiar ceramic superconductors of the yttrium-barium-copper-oxide type, but with the replacement of yttrium by europium. Chu and his colleagues describe how the electrical resistance of one of the samples decreased at least 10,000-fold as it was heated and cooled a number of times.

Caplin says in his comment on Chu's research that reports of "possible, if transient, superconductivity" at these higher temperatures "should not be pushed aside", but that the successful search for room-temperature superconductors may require that people should replicate on a "macroscopic scale the molecular structure of grain boundaries".

Groundplanes and interference

ERA Technology Ltd has undertaken a detailed study of the effect of p.c.b. ground-planes on the susceptibility of microprocessor circuitry to electromagnetic fields. The purpose of this research was to discover what could be achieved without the cost penalty associated with filters, screened cables and metal enclosures. As ERA point out in their report (87-0096R1) they describe how a metal version it requires no gap at the lower temperature of 4.2 K, the ceramic SQUID exhibits a novel and unexpected property. Unlike the metal version it requires no gap to intercept the external field.

The implications of this finding is that, unlike a bulk metallic superconductor which is impervious to magnetic fields, the ceramic material can be penetrated to a significant extent, even at high frequencies.

As yet the Birmingham team has no fully developed theory to explain the behaviour of the novel ceramic r.f. SQUID. They think, however, that in some way the ceramic has built-in magnetic 'weak links' that disappear as the temperature is raised. At the moment they are testing out other SQUID geometries in order both to optimize performance and also to elucidate precisely what is happening at the molecular level.

Success for deep-frozen squid

A team from the department of physics at Birmingham University has developed what is probably the first practical application for the recently discovered yttrium-barium-copper-oxide high-temperature superconductors. It is a sensitive magneto-meter called an r.f. SQUID (superconducting Quantum Interference Device).

Conventional r.f. SQUIDS consist of a metal ring made superconducting at liquid helium temperatures. This ring which has a gap analogous to the gap in a tape head, is coupled to a tuned LC circuit and fed from a constant current r.f. source of around 20MHz. At particular r.f. currents the voltage across the LC circuit becomes critically dependent on changes in the magnetic flux entering the SQUID's gap. This is due to changes in the hysteretic losses in the ring.

As a sensitive detector of magnetic fields there is nothing to beat a SQUID; it can pick up the fields due to the tiny electric currents that flow in the human brain. It also offers immense possibilities for navigation, especially in the tiny magnetic fields of space and for military applications such as submarine detection. The only snag is the need to cool the metal of the SQUID ring to within a few degrees of absolute zero. At least that was the case until the Birmingham group made a ceramic SQUID.

In their recent paper (Nature Vol.328. No. 6125) they describe how a SQUID ring made of a material with the composition Y_{1.2}Ba_{2}Cu_{x} that works, albeit with reduced efficiency at temperatures up to 45 K. At the lower temperature of 4.2 K, the ceramic SQUID exhibits a novel and unexpected property. Unlike the metal version it requires no gap to intercept the external field.
TELESCOPIC MASTS

- Pneumatic
- Hydraulic Ram Operated
- Winch Operated

Hilomast Ltd.
THE STREET - HEYBRIDGE - MALDON
ESSEX - CM9 7NB - ENGLAND
Tel: (0621) 56480 Telex: 995855

TWIN TWIN PPM

Comprising two PPM9 boards, featuring inherent stability with low under microprocessor control, the unit gives simultaneous monitoring of A/B on red/green and M/S on white/yellow pointers. Together these provide complete information about stereo signals, in contrast to the ambiguous readings of phase meters. Manufactured under licence from the BBC.

SURREY ELECTRONICS LTD
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG.
Tel: 0483 275997

QUALITY QUARTZ CRYSTALS QUICKLY

Our frequency ranges are:

- M.P.U. Crystals
- M.P.U. Oscillators

10kHz 50kHz 100kHz 500kHz 1MHz 10MHz 250MHz 360MHz

Professional Crystals

We also supply quartz crystal filters, oscillators of all types and communication antennae.

Webster Electronics
ILMINSTER, SOMERSET TA19 9QA, ENGLAND
TEL: (0460) 57166 TELEX: 46571 FRONCY G
FAX: 10460157865

TEST METERS

Realistically priced for your workbench

SWEEP FUNCTION GENERATOR
Range 0.2 Hz to 2 MHz. Sine, square, triangle, rectangular, pulse, ramp, saw-tooth, and slewed sine wave can be generated. Variable duty cycle. Push button range and function selection switches.

ONLY £86.91

10MHz MULTIFUNCTION COUNTER/TIMER
10Hz to 100MHz with 8-digit LED display, frequency counter, period counter with a range down to 400ns, and a totalise event counter mode. 10MHz crystal oven time base.

ONLY £104.30

1GHz MULTIFUNCTION COUNTER/TIMER
10Hz to 1GHz with 8-digit LED display, freq. counter, period. counter, period with a range down to 400ns, and a totalise event counter mode. 10MHz and 3.90625MHz crystal oven time base.

ONLY £130.39

AL DIOOCCILATOR 20Hz to 30kHz
Low distortion sine & square wave outputs. Synchronisation input. Output frequency displayed on 4-digit 1 E 1 display. Output 2.5V r.m.s. into 600Ω with continuous and fixed-step output attenuator.

ONLY £139.08

4 1/2 DIGIT DIGITAL MULTIMETER
Reads DC volts from 10µV to 1000V, AC volts 10µV to 750V, DC and AC current 10mA to 10A and resistance 10mΩ to 20MΩ. Basic DC accuracy ±0.05% (+2 digits). Continuity and diode test ranges. Similar specification (100µA, min. current) hand-held type also available Y181 ONLY £65.82.

MPS MAPLIN PROFESSIONAL SUPPLIES
P.O. Box 777, Rayleigh, Essex. SS6 8LU.
Telephone 0702 552961. Telex 995695. Fax 0702 553935.

WEBSTER ELECTRONICS

All prices are net trade exclusive of VAT. Lower prices are available for quantities of 1+ and more per item. All meters 240V mains operated in attractive heavy duty boxes with 10 day stand guarantee. Y181

ENTER 13 ON REPLY CARD

ENTER 46 ON REPLY CARD

ENTER 9 ON REPLY CARD
PIÑENAPPLE SOFTWARE

Programs for the BBC model 'B', B+, Master and Master Compact with disc drive

DIAGRAM II

Diagram II is a completely new version of Pinapple's popular Diagram drawing software. The new version has a whole host of additional features which make it into the most powerful and yet quick to use drawing program available for the BBC micro. The new features mean that Diagram II can now be used for all types of drawings, not just circuit diagrams. Scale drawings are possible and the facilities for producing circles and rubber banded lines together with the paint drawing routines make any type of drawing possible. This advert has been produced completely using Diagram II.

Summary of Diagram II features:
1. Works on all model BBC computers and makes use of Shadow memory if poss.
2. Rapid line drawing routines with automatic joins for circuit diagrams.
3. Rubber band line and circle drawing modes.
4. Makes use of the Acorn GXR rom to produce ellipses, arcs, sectors, chords and flood filling.
5. Paint drawing mode allows very fine detail to be added.
6. Defined areas of screen may be moved, copied, deleted or saved to disc.
7. On-screen cursor position indication allows scale drawings to be made.
8. Keyboard keys may be defined to print User defined characters allowing new character sets to be used.
9. Wordprocessor files may be loaded and formatted into defined areas.
10. Up to 880 UDC's if shadow memory available, 381 without shadow.
11. Compatible with Marconi Trackerball and most makes of 'mouse'.
12. All Diagram Utilities are included.
13. Complete scrollable print routines allow any area of the diagram to be printed either horizontally or through 90 deg. in scales that may be varied in 1 step allowing up to 18 mode 0 screens to be printed on an A4 sheet (if with readable text).
14. Smooth scrolling over the whole area of the diagram.

Diagram II consists of a set of disc files and a 16k Eprom. The disc is formatted 40T side 0 14. Smooth scrolling over the whole area of the diagram
12. All 'Diagram Utilities' are included
11. Compatible with Marconi Trackerball and most makes of 'mouse'
10. Up to 880 UDC's if shadow memory available, 381 without shadow
9. Wordprocessor files may be loaded and formatted into defined areas.
8. Keyboard keys may be defined to print User defined characters allowing new character sets to be used.
7. Wordprocessor files may be loaded and formatted into defined areas.
6. Defined areas of screen may be moved, copied, deleted or saved to disc.
5. On-screen cursor position indication allows scale drawings to be made.
4. Paint drawing mode allows very fine detail to be added.
3. Rapid line drawing routines with automatic joins for circuit diagrams.
2. Works on all model BBC computers and makes use of Shadow memory if poss.
1. Diagram II

PCB

PCB

Pineapple's new PCB drafting aid produces complex double sided PCB's very rapidly using any model BBC micro and any FX compatible dot-matrix printer. The program is supplied or Eprom and uses a mode 1 screen to display the two sides of the board in red and blue either separately or superimposed. Component layout screens are also produced for a silk-screen mask.

The print routines allow a separate printout of each side of the board in an expanded definition high contrast 1.1 or 2.1 scale. The print time is typically about 5 minutes, for a 1 print of a 7" x 5" board. This program has too many superb features to adequately describe here, so please write or phone for more details and sample printouts.

Price £85.00 + VAT

PCB PLOTTER DRIVER

A new addition to the PCB software is the PCB plotter driver program. This enables files produced by PCB to be used in conjunction with most types of plotter to produce plotted output rather than the normal dot-matrix printer output. The program is suitable for use with most makes of plotter including Hewlett Packard, Hitachi and Potmate. The program can also be configured to work with other plotters by entering suitable plotter instructions.

All the features of the printer driver are included, such as the automatic re-sizing of drawings between rounded corners. Mirror Image plots are also available.

Price £35.00 + VAT

ADFS UTILITIES ROM

ADFS is an invaluable utility for all ADFS users. It adds over 30 new commands to the ADFS filing system as well as providing an extensive Menu facility with over 35 sub commands covering areas such as repeated disk conversion, saving and loading Rom images, auto booting of floppy, and many more.

Copying of DRS discs onto ADFS discs can be made in one pass with automatic creation of the required directories on the ADFS disc. All functions are fully compatible with Winchester drives, including ADRKUP which allows backing up of Winchester onto multiple floppy discs.

New commands are as follows:
*ADU *BACKUP *CATALL *CHANGE *DFSADF *DIRALL
*LOCK *MENU *PURGE *PWRBRK *UNLOCK
*VERIFY *VFORMAT

Price £29.00 + VAT

MITEYSPLACE

Powerfull AC & DC circuit analyser package with Graphics output. Send for more details - £119.00 + VAT

ENTER 28 ON REPLY CARD

CMOS

for universal application.
Advantages: Low losses, broad voltage range, high resistance to interference, wide temperature range from -40 to +85°C.
Low-power Schottky TTL-compatible.
These ICs are fully compatible with and equivalent to international types.

Please ask us for detailed specifications.

Agents: Edicron Ltd
1-7 Wesley Avenue London NW10 7BZ

ENTER 28 ON REPLY CARD

ENTER 47 ON REPLY CARD

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner

Telephone: 01-445 2713/0749

ENTER 48 ON REPLY CARD

ENTER 47 ON REPLY CARD
Single-chip data acquisition subsystem

This highly-integrated device offers better performance than board-level systems and cuts the workload of the controlling c.p.u. to manageable proportions.

CHARLES YAGER AND HARLAN OHARA

Until now, designing a data acquisition subsystem has called for a design engineer experienced in both analogue and digital circuitry. Usually the task begins with the selection of the a-to-d converter; however, with 12 to 13 bit a-to-d converters, little system support is provided other than the converter itself. A myriad of both analogue and digital components still needs to be added to complete the interface.

Designing the analogue section of a data acquisition system requires several ICs and in many cases a number of precision discrete components. A typical analogue section consists of an input multiplexer, a sample-and-hold amplifier, a programmable-gain instrumentation amplifier and a voltage reference, in addition to the converter. While several 12 to 13 bit a-to-d converters offer some combinations of the above capabilities, none offers them all. This leaves the designer with the formidable task of matching the right analogue components with the converter and the thorny task of achieving a low noise layout.

Once the analogue components of the system have been matched, stability must be considered. Generally, the current crop of converters requires external trimming for both bipolar offset and full-scale error. While external trimming does improve the offset, recalibration is needed periodically during the life of the system. Schemes have been devised for self-calibrating bipolar offset and full-scale error, but they come at the cost of special calibration software and additional board space for the extra circuitry. Even the addition of gain and offset auto-calibration circuitry cannot improve linearity specifications, which are inherent in the converter and subject to temperature and time variations.

Currently, 12 to 13 bit a-to-d converters provide little digital capability other than a double-buffered generic microprocessor interface. With this low level of digital capability at high sampling rates, a considerable load is placed on the microprocessor, exhausting it with the I/O task and effectively rendering it useless for application processing. Additional digital logic can be designed into the subsystem to offload the microprocessor; however, again, this requires extra circuitry.

TWO-IN-ONE CHIP

These design problems have found a solution in a single, integrated component that uses a systems-oriented approach to data acquisi-
Algorithmic a-to-d conversion is one of many successive approximation techniques. One popular technique uses a d.a.c to feed back the approximated signal. The difference between the approximated signal and the original signal is used to convert the next bit. This solution requires more circuitry since each bit in the d.a.c requires two resistors, and the resistor values need to be matched to within the accuracy of the number of bits of the a-to-d converter.

The algorithmic converter only uses a 2x amplifier (using input and feedback capacitors to realize the gain of 2) and a sample-and-hold amplifier. The algorithm employed is basically binary division where the input voltage is divided by the reference voltage \(V_{\text{ref}}/V_{\text{ref}}\).

Conversion begins by multiplying the input signal by two. The reference is then subtracted from this signal and the difference is compared to OV. If it is greater, the m.s.b. is 1 and the difference is stored in the sample-and-hold circuit if the difference is less than OV, the m.s.b. is 0 and the reference voltage is added back to the difference and stored in the sample-and-hold circuit. During the second and subsequent times around the loop, the sample-and-hold voltage is multiplied by two and the reference is subtracted from it. The algorithm is a slightly modified for negative input voltages.

Algorithmic converter algorithm

1. If \(V_{\text{in}}(\times 2) - V_{\text{ref}} > 0\) then m.s.b. = 1
 \(V_{\text{in}}(\times 2) - V_{\text{ref}} \rightarrow \text{s/h}\)
 else m.s.b. = 0
 \(V_{\text{in}}(\times 2) \rightarrow \text{s/h}\)

2. If \((\text{s/h}(\times 2) - V_{\text{ref}} > 0)\) then next bit = 1
 \((\text{s/h}(\times 2) - V_{\text{ref}}) \rightarrow \text{s/h}\)
 else next bit = 0
 \((\text{s/h}(\times 2) \rightarrow \text{s/h}\)

Step 2 until done.

Step 3. Repeat

Choosing an algorithmic converter for the 13 bit a-to-d was a critical part of the ML2200's design. There are several advantages to using an algorithmic converter (see box):

- It uses relatively little die area, therefore allowing room for other functions
- It is easily made fully differential, removing the effects of power supply coupling
- Linearity of the converter depends on only two parameters: the gain error in the loop and the offset error in the loop. The offset error is eliminated by the autozeroing circuits in the sample-and-hold and 2x operational amplifiers: this is done at the beginning of each conversion. The 2x gain of the loop is precisely controlled by the self-calibration circuitry.

Once the offsets have been nullled, the algorithmic converter is calibrated by measuring the 2x gain of the loop and adjusting it. Gain can be measured by converting the internal voltage reference. The result, in the ideal case, is all 1s. If the loop gain is slightly less than 2, the resulting l.s.b. of the conversion will be 0. If the resulting conversion is all 1s, the gain may be too great and is reduced until the threshold of the l.s.b. is reached.

Adjusting the gain of the loop is done by tuning the binary-weighted trim capacitor array for each of the 2c input capacitors. This must be used differentially so that it can either increase or decrease the 2c value by being connected as positive or negative feedback.

Calibrating the a-to-d converter is a simple matter of programming. Once the ML2200 has been powered up, the c.p.u. sets the m.s.b. bit in the control register and the device goes into its self-calibration mode. Since calibration takes 2ms to perform, the ML2200 generates an interrupt when it is complete, allowing the c.p.u. to execute...
other tasks while calibration is executing.
Self-calibration should always be executed on power-up before the chip is placed in the run mode. Re-executing self-calibration can be done at any time.

ON-CHIP DIAGNOSTICS

The d.a.p.'s built-in diagnostics provide a way for the system to ensure that the chip is fully operational and meeting specification.

To test the digital paths within the chip a digital loopback is provided, guaranteeing that the internal data paths and registers are fully functional. The analogue section provides several diagnostic features testing linearity, bipolar offset, full-scale error and common mode rejection ratio. To ensure that the self-calibration circuitry is functional, the user can read the calibration code result. This code informs the system that the calibration circuitry was able to adjust the linearity to within ±1/2 LSB at 13 bits.

DIGITAL SECTION

The digital section of the ML2200 was designed with three basic goals in mind: to offload the microprocessor, provide a high-performance standard peripheral interface requiring no external support circuitry, and offer a highly-programmable solution for maximum flexibility.

To accomplish these goals a programmable processor is integrated into the nucleus of the chip, autonomously controlling the entire operation of the d.a.p. The on-chip processor contains eight instruction ram locations, or operations. Upon system power-up, the microprocessor loads the ML2200's instruction ram with a particular system configuration. The microprocessor can dynamically change the instruction ram to adapt the ML2200 to changing environments or system configurations.

Once the d.a.p. has been initialized, it can run autonomously without c.p.u. intervention. As conversions are completed, data is buffered in the on-chip data ram. Up to eight conversions can be buffered before the chip notifies the c.p.u. through an interrupt or d.m.a. request, that the buffer is full. The double-buffered architecture allows eight more conversions to be taken while the previous series of conversions is being read.

On-chip limit alarms provide even more opportunity to off-load the c.p.u. These can generate interrupts based on two programmable voltage levels as well as in-range and out-of-range detection. Interrupts can also be generated if the a-to-d converter goes into overrange or underrange. Having the ML2200 automatically scan for a-to-d saturation or programmable voltage levels frees the microprocessor from having to scan each converted data word for these conditions.

Programmable timing control is achieved using the on-chip 16 bit timer: this can be used for a variety of data acquisition functions. In one of its modes it acts as a programmable sampling clock, generating precise sampling rates independent of microprocessor control. Programmable sample-and-hold acquisition times are another feature of the 16 bit timer – this feature is handy when input channels coming from a high-impedance source require longer acquisition times.

The 16 bit timer can receive its clocking source from either the internal clock, running at 4MHz, or an external input pin (TCK). Therefore, if the internal clock cannot provide an exact enough frequency, or if the timer must be synchronized from an external source, the TCK pin is available. This pin can also be used as an event counter, counting n events before triggering a conversion.

C.P.U. OFFLOADING

The combination of autonomous operation, eight word double buffering, level alarms, and the 16 bit timer dramatically reduces c.p.u. loading, freeing the microprocessor for other tasks.

As an example, consider a design using a single-chip microprocessor for the c.p.u. of a data acquisition system. Typical performance of a standard single chip microprocessor is about 6.6 million instructions per second (mips). Conventional a-to-d converters provide only double buffering; therefore an interrupt would be generated for each sample. Since the ML2200 contains an eight-word double-buffered data ram, the interrupt frequency is reduced by a factor of eight.

A typical interrupt service routine would take 9-15 instructions, not including the time taken to read the data and store it, which is equal in both cases. Assuming an
alarm feature is incorporated, another 3-5 instructions would be required with a conventional a-to-d. The ML2200 handles this automatically. Thus, using a 40kHz sampling rate, a conventional converter would take between 0.43 and 0.58 mips (40kHz x 9-15 instructions), which is 80% of the c.p.u.'s bandwidth. The ML2200 requires 0.045-0.075 mips (Fig.2).

Considering the amount of c.p.u. bandwidth consumed by i/o for a conventional a-to-d converter, it is plain to see that no capacity remains for application processing.

C.P.U. INTERFACE

As the frequency of peripheral interrupts increases, so does the value of a high-performance bus interface. Adding wait states to i/o cycles wastes c.p.u. time and slows overall throughput. Micro Linear's d.a.p. provides an 8MHz no-wait-state interface, which maintains system performance and eliminates the need for wait state glue logic.

Other ways to enhance system performance via the microprocessor interface include a variety of high-performance i/o methods. The three standard types of i/o, from the lowest to highest performers, are polling, interrupts and d.m.a. The ML2200 offers all three.

Polling is by far the most inefficient i/o method, consuming the most c.p.u. bandwidth; however it also requires the least amount of logic. Interrupts provide the next level of performance, because the c.p.u. is relieved of polling on-chip registers, but the c.p.u. still needs to do a fair amount of processing for each interrupt request.

One of the tasks involved in interrupt processing is determining the source of each interrupt request. Since the d.a.p. contains seven internal interrupt requests, the c.p.u. would have to read the interrupt status register and execute a routine to resolve which interrupt was being requested. However, the routine would have to be executed every time an interrupt occurs. By far the highest frequency of interrupt request comes from the data.

For this reason, the d.a.p. has two interrupt request i/o pins: one for data (data buffer ready - or) and another for the less frequent interrupt requests (st). If the system cannot afford two separate interrupts, the data buffer ready request can be mapped into the st pin.

Direct memory access provides the highest performance i/o. When the ML2200 is placed in d.m.a. mode, the wr pin serves as the d.m.a. request while the st pin serves as the interrupt request. The wr pin is activated when the data ram is full and remains active until the data buffer is empty, thus allowing burst-mode d.m.a. (back-to-back cycles).

The peripheral interface on the ML2200 is no different from any other microprocessor peripheral such as a u.a.r.t. or a floppy disc controller. The only external component required is a crystal, which can be substituted for a 11.059 MHz-compatible clock input.

Saving external logic is the main reason for including an address latch enable (ale pin). The ML2200 has the ability to operate on multiplexed or non-multiplexed buses with no additional glue logic. When the d.a.p. is used with multiplexed buses, ale removes the need for an external latch. Address information is latched on the address pins on the falling edge of ale. For non-multiplexed buses, ale is simply tied high.

Another cost-reducing feature of the ML2200 is its power consumption, which is about a quarter of a watt or less than one eighth of the power of equivalent discrete solutions. In addition, the chip can be placed in a power-down mode, by pulling the pl pin low, which consumes less than 1mW. All register contents are retained, even without a clock input. Restoring the power fully restores and operation of the chip without the need to reinitialize it.

PROGRAMMABLE PROCESSOR

In the d.a.p.'s programmable processor is a sequencer that sequentially executes instructions from the on-chip instruction ram. There are eight programmable instruction ram locations where each is an operation (Fig. 3). On initialization the microprocessor loads the instruction ram with the desired operations by writing to the on-chip instruction ram registers.

After the ML2200 has been initialized, it is placed in run mode where the sequencer cycles through the instruction ram, decoding and executing the operations. Each operation stores converted data in the corresponding data ram location.

The eight instruction ram locations are 16 bits wide and are broken up into seven different fields:

LAST: indicates that this is the last operation.

ALRMEN: arm the limit alarm for this operation.

TRIGGR: start conversion criteria-

- immediate execute (full speed mode)

- pause and wait for microprocessor to initiate start

- start on next timer timeout

- preset timer and wait for timeout

- wait for external sync signal

- preset timer by sync signal and wait for timeout

CHAN: channel to be converted.

BITS: number of bits to convert - 8 bits (7 bits plus sign) or 13 bits (12 bits plus sign).

GAIN: gain select: 1, 2, 4, 8.

REF: reference to be used - internal Vref (2.5V) or external channels 0 to 3.

The rate at which the sequencer cycles through the instruction ram is a multiple of the channel sampling rate. If a channel is sampled only once per cycle, then the cycle frequency is also the sampling frequency. However, the same channel can be sampled more than once per cycle, which is impo-
tant when channels have different bandwidth requirements.

When the sequencer is free-running at its maximum speed (immediate execute), several signals can gate or inhibit the sequencer from executing the next operation, which effectively lowers the sampling rate even though the conversion time remains the same.

One of these is the external sync pin. This feature allows the d.a.p. to synchronize conversions to an external event. The pin can be programmed to be an output or input. When sync is an output, the ML2200 becomes the master and a positive going pulse is activated just before the beginning of each operation. As a slave, the ML2200 waits for the sync input before executing the next operation.

MULTI-CHIP SYNCHRONIZATION

Several ML2200s can be synchronized by tying their sync pins together (Fig. 4). In this wiring scheme, all the devices should be running off the same clock and the same reset pin. The reset signal initializes this synchronization.

Two types of synchronization can be accomplished. Several ML2200s can be triggered to sample at the same time, or they can be sequentially triggered to sample. The first method calls for the sync pin (in the instruction word) to be set to 'wait for external sync signal'. Sequential sampling requires the instruction set 'preset timer by sync signal and 'wait for timeout'.

One application of sequentially-synchronized sampling is higher-order sampling of the same signal, thus achieving sampling rates higher than 40kHz. The internal 16-bit timers are individually programmed to delay the appropriate amount. For example, if four ML2200s are used, the second chip should delay taking a sample from the master sync pulse for a quarter of 25μs; the third chip should delay half of 25μs, and the fourth chip should delay three quarters of 25μs. In this example a sampling rate of 160kHz is achieved.

Charles Yager is technical marketing manager for Micro Linear's data acquisition products. He spent eight years at Intel in d.s.p. and datacom developments including the 2920 d.s.p. program. He holds a BSEE from Arizona State University and an MSEE from the University of Santa Clara.

Harlan Ohara is the project leader for the ML2200. Before joining Micro Linear he worked at Intel designing memories and telecommunication devices. Harlan holds a BSEE and an MSEE from the University of Washington.

Micro Linear Corporation is at 2092 Concourse Drive, San Jose, California 95131. tel. (408) 262-5200. The company, founded in 1983, produces a variety of standard and custom devices in c-mos and bipolar technologies. It also offers c.a.d. packages for the IBM P.C. for designing semi-custom linear i.c.s.

Telecommunications converges on Geneva

Telecom 87, the fifth in a series of four yearly world telecommunications exhibitions, will be held in Geneva, Switzerland from 20 to 27 October. In parallel with it will be the World Telecommunications Forum.

These events are organised by the International Telecommunications Union (ITU), the specialised agency of the United Nations for the planning, coordination, regulation and standardisation of telecommunications worldwide. As such, they have the support of its more than 160 member countries. Consequently, major vendors, especially those wishing to do business with Governments and PTTs, feel an obligation to give very full support. In addition, the conference attracts both very high level speakers and delegates.

Under the theme “Communications Age: Networks and Services for a World of Nations”, Telecom 87 will bring together some 750 exhibitors from nearly 40 countries from all parts of the world who will display on some 80,000 square metres of indoor and outdoor space, state of the art equipment and technology. The previous exhibition, held four years ago in 1983, attracted around 200,000 visitors and delegates.

As telecommunications is a growth industry, it is to be expected that at least this number will converge on Geneva where they will also get a glimpse of the future in telecommunications through demonstrations of prototype equipment yet to come to the market - such as those related to ISDN and the X.400 message. The Forum is attended by policy makers, engineers, scientists, regulators, industry leaders, bankers, researchers, users and, indeed, all those with an interest in the telecommunications sector as it becomes one of the main focal points of consideration in the move towards the Communications Age and greater independence.

It consists of five separate symposia concentrating on specific issues: executive telecommunications policy; technical; legal; the harmonisation of global telecommunications systems; economic financial, the role of telecommunications in the infrastructure and its impact on economic growth; and on regional network development and cooperation.

France and the USA, each with over 5,000 sq. metres, have the biggest presences at the exhibition, closely followed by Japan (4,600) and the UK with 4,500 sq. metres. They provide the opportunity for the display of national themes so as to promote technological competence and so obtain a marketing edge for their products. Vast sums of money are spent both by individual companies and by national bodies because this opportunity only occurs once every four years.

This is a vitally important time because, even though equipment must be compatible, each manufacturer is striving to ensure that it will be his system that is adopted. Thus, as purchasing decisions in telecommunications require a long-term strategic overview, the planners and decision makers in attending Telecom 87 and The Forum are looking to identify the long-term trends and winners so as to avoid costly mistakes.

Books

Proficient C by Augie Hansen. Microsoft Press, Penguin Books. 494 pages. paper covers, £19.50. Extensive handbook for the intermediate or advanced programmer working in a DOS environment. Sections deal with DOS and program development, using standard libraries and interfaces, file utilities, the ANSI device driver and screen routines. Attractively presented. The many example programs are also available on two disc, as source code or as executable programs.

Private Mobile Radio - a system planner by John Davies. 48 A4 pages ring-bound, soft covers. Available direct from the author, price £8.50 inclusive (Europe £9.50, Overseas £11), at 26 Walnut Close, Ppenwortham, Preston, Lancashire. Do-it-yourself kit for prospective users, to be used in conjunction with the author's Private Mobile Radio: a practical guide (Heinemann). Contents include a questionnaire designed to establish basic system requirements, a preliminary specification for discussion with equipment suppliers, draft form of tender, guidance notes and so on.

CD ROM 2: Optical Publishing, edited by Suzanne Ropiequet with John Einberger and Bill Zoelelck. Microsoft Press. Penguin Books. 358 pages, soft covers. £19.95. Handbook for paperless publishers, describing all aspects of working in the new medium in an accessible and generally non-technical way. Sections cover the CD rom itself, text preparation and indexing methods, working with images and sound, disc production and data protection. Two case studies are included: one is of a medical data retrieval system, the other a bibliographical index of publications in the US Library of Congress. The book is a companion to CD ROM: the new Papyrus, which was published last year.
IMAGE-10
HIGH PERFORMANCE SINGLE BOARD GRAPHICS COMPUTER

High performance? they all say that.
Ah yes, but... Image-10 has three 16 bit processors working concurrently for dazzling speed and Image-10 has a resolution of 768 by 576 pixels for intricate detail and Image-10 has 256 on-screen colours giving photographic quality.

In fact Image-10 has all of the refinements asked of graphics intensive applications. Like hardware windows, hardware drawing, hardware zoom and pan, hardware character generation and hardware block moves. The only thing the cpu has to do is to run your applications.

Board Price £1295
Image-10 includes:
- 68010 cpu
- 82786 gdc
- Floppy disc controller
- Dual RS232
- Centronics

- Battery backed clock
- 512K dram
- 64K sram
- Winchester disc controller
- Mouse
- transputer ports
- Stereo sound generator
- 256K eprom

SOFTWARE
DEVELOPMENT
SYSTEMS
Versatile, low cost, development systems based on Micro Concepts' single board computer, Microbox 3. A choice of powerful disc operating systems is available including Os-9/68K, TRIPOS, and CP/M-68K
Features include:
- 68000 microprocessor, 8MHz clock.
- 512K dynamic ram, 64K static ram, 128K eprom
- On-board graphics controller offers: 80 column, 24 row, 16 colour text. 640 by 480, 4 colour graphics. 320 by 480, 16 colour graphics.
- Floppy disc controller.
- Winchester disc controller.
- Dual serial RS232 ports.
- Centronics printer port.
- Up to 48 lines of parallel input/output.
- Battery backed clock/calendar.
- I/O expansion capability.
- Double eurocard board format.

Hardware prices:
- Fully built and tested Microbox 3 single board computer £650
- System with dual 1M byte floppy disc drives £1195
- System with 20M byte Winchester and single floppy drive £1895

UNIVERSAL CROSS ASSEMBLERS for all MSDOS OS-9 FLEX computers
Supports the following devices:
1802 809 8049
6502 8022 8080
6803 8039 8751
6806 80C48 6303
8021 8051 6802
80C35 8749 68HC05
8048 68000 8020
8050 6301 8035
8748 6801 8040
Z80 6805 80C49
1805 68HC11 8085
6800 8031 Z8
6804 80C39

Extensive directives support modular, conditional and structured programming. Powerful Macro Pre-processor, xref generator and output conversion utilities provided.

COMPLETE SUITE £295
Includes full 'C' source codes not 68000

MICROPROCESSOR CONTROLLED EPROM EEPROM and SINGLE CHIP MICRO PROGRAMMER
Programs the following devices:
- 2508 2516 2532
- 2564 27(C)16 27(C)32
- 2732A 27(C)64 2764A
- 27(C)128 27128A 27(C)256
- 571256 27(C)512 27513
- 2758 27011 2816A
- 2817A 2864A 28256
- 48202 52B13 52B23
- 52B33 68732 68674
- 68766 8741 8742
- 8744 8748 8749
- 8748H 8749H 8751
- 8755 9761 CY7C282
- CY7C292 52B33
- AT-ROM PC-ROM XT-ROM

Price £295

All prices shown exclusive of VAT and carriage

Micro Concepts
2 St. Stephens Road, Cheltenham, Gloucestershire GL51 5AA
Telephone (0242) 510525

ENTER 20 ON REPLY CARD
Pioneers

W A. ATHERTON

Bugs scurry in panic when a stone is lifted. Technical historians do a fair impression of the same thing when anyone asks who invented television. Nevertheless, when Vladimir Zworykin died in New York on July 29, 1982, one day short of his 93rd birthday, he was acknowledged internationally as the great pioneer of electronic television.

His obituary in The Times credited his work on television as "the basis for virtually all the later technical advances in the science".

However, Zworykin himself disclaimed the title Father of Television on the grounds that television had many fathers: no single person could be so regarded, he maintained, because a great many inventions had led to modern television.

He was best known for his invention of the iconoscope, the first practical electronic television camera tube. Shortly before that invention he had developed a television picture tube which he called a kinescope. Together these two developments made good-quality television a reality in the 1930s.

IN RUSSIA

Zworykin spent his formative years in Czarist Russia. He was born on July 30, 1889 in Murom, a small town on the Oka river which lies to the south-east of Moscow. His father was a shipowner who ran a passenger service along the river.

Later he recalled that he was eight years old when he first became aware of electrical engineering, after seeing his father press a button and receive a response from elsewhere in the ship.

After leaving school he entered the Institute of Technology at St Petersburg (now Leningrad) from where he graduated with a degree in electrical engineering in 1912. Whilst there he was a student of Professor Boris Rosing, probably the first man to achieve television.

It was Rosing who did so much to inspire Zworykin with an interest in electronics and television. Rosing in Russia and A.A. Campbell Swinton in Britain both foresaw the possibilities of electronic television as early as the first decade of this century, well before better known names such as Baird.

In 1908, and again in 1911, Campbell Swinton published his ideas for electronic television for which he specified cathode-ray tubes at both the camera and the receiver, both using electromagnetic scanning. The details bear close comparison with Zworykin's later successful tubes.

Though Campbell Swinton had the right ideas he was unable to transform them into reality. But in Russia, Rosing, with more limited aims, met with some success. At the camera he used the spinning mirror-drum technique to achieve horizontal and vertical scanning together with a photoelectric cell. The result was displayed on a cold-cathode Braun tube (c.r.t.) using magnetic coils to achieve scanning.

Zworykin recalled that during his time with Rosing (1910-1912) they constructed a cathode-ray picture tube and achieved "stationary geometrical figures, very fuzzy, like a triangle and some kind of distorted circle and so on but with very, very intense light".

Though Rosing did not achieve moving pictures (selenium cells have a slow response time) he did inspire Zworykin. "He started me to dream about television so when I succeeded to reach the United States which was in 1919, I started to look for a place where I could work in television," said Zworykin.

SOMETHING MORE USEFUL

Zworykin's arrival in the USA was not his first foreign travel. After graduating from St Petersburg he moved to Paris where he did X-ray research at the College de France under Paul Langevin. The outbreak of World War I brought him back to Russia and into the army signal corps.

After the war he travelled around the world and settled in the USA. He became an American citizen in 1924. With help from Russian friends he gained a position at Westinghouse where, apart from a brief interlude, he stayed until joining RCA in 1929.

In 1923 he applied for his first patent covering a complete electronic television system. This application was amended considerably over the years. Another was filed in 1925 and that covered an essential part of the camera tube, a part which was to be important in the future iconoscope.

In the next two years he actually built an electronic television system using a converted oscillograph tube for the receiver and a specially-made tube for the camera. This, the first electronic television camera tube, is still held by RCA.

A demonstration was given to the Westinghouse management. The date is uncertain but it was probably early in 1925. The stationary picture was poor and Zworykin was advised to work on "something more useful". Meanwhile the University of Pittsburgh awarded him a doctorate in 1926.

AT RCA

After a tour of Europe in which he visited Germany, Hungary, Belgium, France and

Britain. Zworykin moved to RCA in 1929 as director of an electronics research group. By this time several other pioneers had made names for themselves in television.

John Logie Baird had achieved many firsts with mechanically-scanned television including a transatlantic transmission. In America C.P. Jenkins had actually begun what were to be short-lived broadcasts. Others in France, Germany and the USA were hard at work on television.

When Zworykin returned to the USA in September 1928 he had ideas for a much improved cathode-ray picture tube. Work began almost immediately. Shortly afterwards he was able to convince David Sarnoff, the Executive Vice-President of RCA, that a workable television system could be produced in two years. Sarnoff gave the go-ahead and the funds.

Sarnoff later called Zworykin a great salesman. "He told me it would cost $100,000 to develop television, but RCA spent $50 million before we ever got a penny back."

Zworykin's picture tube was called a kinescope. It had a hard vacuum, an indirectly-heated cathode and a grid for beam current modulation. Electrostatic focusing gave a sharp spot and this has been claimed as the application of electron optics to a television picture tube. It was the basis of all future picture tubes. This kinescope was announced in November 1929, by which time work was in progress or completed on a radio transmitter and six receivers.

THE STORAGE PRINCIPLE

It was time to return, once again, to the redesign of the camera tube. The first of the new tubes had a double-sided target and 12-line pictures were obtained. It proved the novel principle of temporarily storing the charge generated by the received light. This storage principle, used in the iconoscope and in every television camera tube since, solved the biggest problem of all, Zworykin called it "my principal contribution to television".

Previous workers had scanned the image part by part to a single photocell. Each picture element was seen by the photocell only momentarily. Consequently little charge was generated per picture element and very, very intense illumination of the subject was needed to produce a usable signal.

Instead Zworykin projected the image on to a mosaic of photocells laid on a sheet of mica. The mica had a conducting plate on the back. Each photocell, insulated from its neighbours, became a capacitor.

Each cell continuously received light from only one part of the subject and so continuously generated and stored charge. A video signal was induced into the conducting plate when the scanning electron beam discharged the capacitors in sequence.

The idea of a mosaic of photocells was crucial. It was not in the original 1923 patent application but was in the 1925 version (as "globules" of photosensitive material) even though storage was not mentioned. The 1929 tubes achieved this mosaic by having rivets pinned into holes in a screen.

In June 1931 Zworykin and his team turned to single-sided insulated targets and made the mosaics by ruling or by evaporating the photosensitive material. It was these tubes that Zworykin called iconoscopes. An RCA chemist developed an easier method of producing the mosaics. After other improvements the iconoscope was announced on 26 June, 1933.

Meanwhile, at EMI in Britain, J.D. McGee and W.F. Tedham independently invented a similar camera tube based on Campbell Swinton's 1911 suggestions. Much to their annoyance some of their patent applications were rejected on the grounds that RCA had already filed for patent protection. (EMI were receiving information about RCA patents through a patent exchange agreement.)

The EMI group constructed their first tube, contrary to the instructions of their management, in autumn 1932. Zworykin's first single-sided mosaic dates from June 1931 and his globules (mosaic) from the 1925 patent. Zworykin clearly had priority.

LATER WORK

Zworykin's group continued to improve the iconoscope and it was RCA that produced subsequent tubes: the image iconoscope, the orthicon, the image orthicon and the vidicon.

Zworykin's own interests developed wide-

NEXt in this series of pioneers of electrical communication will be Edwin Armstrong — the man who invented the superhet and made f.m. radio work.
UK’s LARGEST IN-STOCK RANGE OF INSTRUMENTS
FOR TRADE, EDUCATION AND INDUSTRY -
ALL STOCKS ON DISPLAY FOR CALLERS

DIGITAL MULTIMETERS
- Digital unless stated - with continuity buzzer
- On Request - Push Button 5 - 5/8" deep
- 6 bit accuracy Carries Case (26x3)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2050</td>
<td>2½ digit range plus 10A AC/DC 20 meg buzz</td>
<td>£37.00</td>
</tr>
<tr>
<td>K1050</td>
<td>2½ digit range plus 10A AC/DC 20 meg buzz</td>
<td>£25.00</td>
</tr>
<tr>
<td>M4630</td>
<td>1½ digit range plus 10A AC/DC 250 meg buzz</td>
<td>£77.00</td>
</tr>
</tbody>
</table>

OSCILLOSCOPES (*with probes)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T203/2</td>
<td>20MHz 2-channel scope</td>
<td>£315.00</td>
</tr>
<tr>
<td>T204/2</td>
<td>40MHz 2-channel scope</td>
<td>£350.00</td>
</tr>
</tbody>
</table>

COUNTERS & TIMERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET600</td>
<td>Digital LC meter</td>
<td>£99.00</td>
</tr>
<tr>
<td>MET100</td>
<td>Digital LC meter</td>
<td>£114.00</td>
</tr>
<tr>
<td>MET500</td>
<td>Digital LC meter</td>
<td>£150.00</td>
</tr>
</tbody>
</table>

POCKET SIZE INSTRUMENTS (*with case - case £3.91 - (Digitals 3½ digit)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10262</td>
<td>10 digit range meter</td>
<td>£85.00</td>
</tr>
<tr>
<td>10296</td>
<td>10 digit range meter</td>
<td>£80.00</td>
</tr>
</tbody>
</table>

DC POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>243/24</td>
<td>0-30V 0-3Amps DC</td>
<td>£32.00</td>
</tr>
</tbody>
</table>

DIGITAL/ANALOGUE

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>47320</td>
<td>AC input</td>
<td>£32.00</td>
</tr>
</tbody>
</table>

MEASURING INSTRUMENTS SECURITY COMMUNICATIONS PUBLIC ADDRESS TRANS AUDIO/TV/VIDEO/COMPUTER ACCESSORIES SEE CATALOGUE

CATALOGUES TRADE, EDUCATION, INDUSTRY FREE ON WRITTEN REQUEST ON OFFICIAL LETTERHEAD

PHONE OR POST CALL IN

PRICES EXCLUDE VAT

RETAIL, MAIL ORDER SEND SAE (min 12” x 9”) WITH £1.00 STAMP UK. EXPORT £2.00

PLAY, TRADE, EDUCATION EXPORT AND ACCOUNT ENQUIRIES 01-256 1831. TELEX 298102 (TRANS G)

AUDIO ELECTRONICS 301 EDGWARE ROAD, LONDON W2 1BN 01-724 3564

ALSO AT HENRY’S 404 EDGWARE RD, W2 01-724 0323

ENTER 33 ON REPLY CARD
A powerful control computer based on the new Hitachi 6303Y and high level language Forth. 100mm x 72mm. 30K bytes RAM, 16K dictionary RAM/PROM, 256 bytes EEPROM, 16K Forth. You can attach 64 key keyboard, LCD and 1C bus peripherals. Built in are interrupts, multitasking, time of day clock, watchdog timer, full screen editor and symbolic assembler. 32 parallel and two serial ports. Single power supply and low power 3mA operational mode.

1 off £194.95 including manual and non-volatile RAM.

Triangle Digital Services Ltd
100a Wood Street, London E17 3HX
Telephone 01-520-0442
Telex 262284 (quote M0775)
ENTER 25 ON REPLY CARD
Towards the intelligent radio

RDS — the v.h.f. Radio Data System and its implementation in the UK.

SIMON SHUTE

Radio receivers have been with us now for getting on for seventy years, and the technological developments which have led to the present variety of models, ranging from the wrist-watch and credit-card sized miniatures, through the vast range of 'portables', to the sophisticated hi-fi tuners and communications-type receivers, are well known to the readers of a magazine such as this one.

The fact remains, however, that most present-day receivers would be instantly recognizable to our great-grandfathers, who would find the tuning knob and scale quite familiar, albeit lacking the evocative inscriptions Allouis, Hilversum, and Droitwich!

We take radio broadcasting very much for granted, the overwhelming majority of the UK population tuning in at some time in any given week, but there is nevertheless a massive lack of understanding of such matters as waveband, frequency and modulation system among most members of the public. Most people seem to find their chosen station by trial and error, and are understandably reluctant to risk disturbing the tuning to find another one.

Contrast this with television. A television receiver is invariably equipped with some kind of preset tuning, in many cases gives a visual indication of the selected station and in no case that I have ever seen mentions Megahertz anywhere on it! As a result, viewers are entirely adept at dipping into the offerings of all four channels without giving it a thought — or at least not a technical one.

As more and more radio stations come on the air, and as the emphasis is increasingly on v.h.f./f.m. where the potential is so much greater, it can only get more difficult for the listener to find the signal of his choice. There are several separate but related problems:

- with many transmitters required to provide a national service, inevitably with overlapping service areas, how to identify the best signal;
- with many stations playing similar music, how to tell which station has been selected;
- for the mobile listener, how to benefit from the increasing number of 'filler' transmitters which are being built to fill in the remaining holes in the national v.h.f./f.m. services;
- for mobile listeners, how to find the local station serving the area he is passing through to get the benefit of the local information services;
- starting with a desire to listen to a particular station, how to find it without resorting to tables of frequencies.

It has been evident to engineers for many years that there was at least a potential solution to these problems, certainly on the v.h.f./f.m. band. Subcarriers of various kinds have been used for some time alongside the audio signals, and have provided several different applications. The idea that such a subscriber could carry coded information to identify the transmitter from which it emanated is not new, but no serious attempt had been made at drawing up the framework of international standards which would be an essential prerequisite for the receiver industry, which must look at a supra-national market for its products to be viable, until the European Broadcasting Union addressed the task in the mid-1970s.

The v.h.f. Radio Data System which will be described in this article is the product of the international working group which was set up by the EBU and in which the BBC was an active participant. The development and experimental period spanned the years 1974-1982, and several countries participated in the work. The objective was to develop a system which would be rugged enough to provide a viable service under all practical reception conditions, but would be compatible with the millions of receivers which already existed in the hands of the public to the extent of not generating any audible interference. Experimental transmissions over the last decade have proved the viability of the chosen system, which was formerly endorsed by the EBU in 1984, and which was adopted as a recommendation by the CCIR in 1986. The internationally agreed designation for the system is RDS.

DATA SUBCARRIER

The frequency chosen for the data subcarrier is 57 kHz — exactly three times the frequency of the transmitted stereo pilot-tone, and synchronized to it in quadrature to its third harmonic for stereo broadcasts. In the case of monaural broadcasts, the data subcarrier 'free runs' but with the same tolerance on its frequency as for stereo (± 6 Hz).

This fixed relationship to the pilot tone is an important contribution to compatibility, minimizing the audibility of any beats being generated under multipath reception conditions or in receivers which are not properly aligned. The subscriber is modulated by shaped biphase-coded symbols which represent the 0s and 1s of the raw data-stream. The modulation system used is two-phase phase-shift keying with a phase deviation of ± 90°, giving rise to a null at the sub-carrier frequency itself, with all the energy concen-
trated in an upper and a lower sideband, separated from the centre frequency by the data rate. It is this spectrum-shaping arrangement which ensures compatibility with the ARI system which itself uses tones around 57 kHz. Figure 1 shows the broadband spectrum of the resulting composite signal including RDS, and Figure 2 shows the detail of the spectral components around 57 kHz.

Another important decision to be taken was the level at which the data subcarrier was to be injected. Clearly, an error-free level is the level at which the data subcarrier is injected at a fairly high level. Equally, a high level of injection is bound to interfere with the audio channel under the spectral components around 57 kHz.

The chosen level of interference with the audio channel is not available for audio, thus making it more likely that the data signal will be annoyingly long. By allocating a so called Other Networks (ON) feature, the solution lies in transmitting alongside each station's signal, information about frequencies on which other services, referenced by their PI codes, can be found. ON gives the receiver a sequence of related PI codes and associated frequencies for each of the other services available in the service area of the transmitter in question.

RDS AS A TUNING AID

The original primary objective of RDS was to open the way to the development of 'intelligent' receivers, which would help the user find his way around the broadcast spectrum. The way in which the capacity of the RDS data stream is allocated is heavily influenced by this requirement. In order to understand the make-up of the various group types it is necessary to be aware of the nature of the information which is to be transmitted, which in turn is determined by the requirements of the proposed intelligent receiver.

The basic requirement is to give the receiver the ability to display the name of the station to which it is tuned and, after discussions between broadcasters and the receiver industry, it was agreed that eight alphanumeric characters would be used. These are the so-called Other Networks (ON) feature.

The specified features are as follows.

Clock time and date (CT). A binary coded representation of time and date using Coordinated Universal Time (UTC) and calendar date. A local offset is appended to allow the RDS receiver to generate an appropriate display of local time.

Programme type (PTY). By allocating a different code to each of the various types of
programme – news, drama, pop-music etc. – it would be possible for a receiver to display the programme type, or even to search for a particular type among the available broadcasts.

Decoder identification (DI). A code could indicate which of various kinds of signal processing was in use so that the receiver could switch in the appropriate decoder, for example noise reduction.

Music/speech switch (MS). Broadcasters are well aware that it is impossible to satisfy the requirements of all listening conditions with a single speech/music balance. By identifying which is being broadcast, it would be possible for a receiver to switch between two volume settings which could be independently set by the user.

Programme identification number (PIN). By giving each programme a unique code, the receiver could be pre-programmed by the user to respond to it. An obvious application would be for unattended recording, but this would have copyright implications in most cases.

Radiotext (RT). Perhaps the most obvious of all, the datastream could be used to transmit text messages to the receiver for display. Newsflashes, sports results, titles of music are among the possible applications. The RDS specification gives a format for a 64-character display.

Transparent data channel (TDC). The RDS specification anticipates the requirements to download generalized data (e.g. computer software) via the RDS channel.

Traffic information: RDS and ARI. ARI (Autofahrer Rundfunk Information) is in use in a number of European countries and provides a simple way of signalling broadcast traffic flashes to suitably equipped receivers. Although RDS as a system can coexist with ARI – the signals do not interfere with each other – it is recognised that the availability of the RDS datastream will make the ARI signalling tones redundant. An RDS receiver would be able to extract the necessary switching information from the digital stream with no additional circuitry, thus saving the cost of a ARI demodulator. Codes have therefore been allocated in the RDS system which allow the precise emulation of the ARI functions:

- traffic-programme identification (TP) is an on/off switching signal to indicate to the receiver that this is a programme which carries announcements for motorists.
- traffic-announcement identification (TA) is also an on/off switching signal, but which indicates that a traffic announcement is actually on the air, thus allowing automatic switching away from another radio station or cassette listening.

It will be clear that as the RDS signal is digital, each of these codes represents no more than a single bit in the bitstream. It is thus possible to repeat the codes frequently in order to give the required rapid response. Countries which use the ARI system are planning that the tone signalling arrangements will ultimately be phased out as RDS receivers become the norm.

RDS GROUP STRUCTURES

Now that the various specified RDS applications have been described, the actual arrangement of the codes within the various different group types can be understood.

A group comprises 104 bits, made up of four 16-bit words, each with its own 10-bit checkword. As the bit rate of the signal is 1187.5 bit/s, it will be apparent that a little over eleven blocks are transmitted each second. Every block starts with the 16-bit PI (Programme Identification) code so that the repetition rate of this important part of the RDS signal is guaranteed to be sufficiently high to ensure satisfactory operation of automatic receivers. The second 16-bit word contains five bits which define the group type, and thus point to the nature of the contents of the other bits in this word, and the other two words in the group. The five bits describe an A and a B version of each of sixteen group types. Of these 32 possibilities, only about half have been defined, leaving considerable scope for the development of new applications in a compatible way. The essential difference between the two main group types is that the B version includes a repeat of the PI code in the third word of the group. This clearly raises the repetition rate, but reduces the rate at which other RDS information can be transmitted.

By way of example, Fig. 4 shows the make up of a type OA group. After the PI code, the first four bits of the second word define this group as a Type 0 group, and the fifth Bn as the ‘A’ version of it. The microprocessor in the receiver will therefore ‘know’ what the meaning of the following bits is. It can be seen from the diagram that the next bit is the TP (Traffic Programme) code, and the next five, the PTY code. The TA (Traffic Announcement) flag is then followed by the MS (music/speech) switch. The last two bits of this word are used to set up a four-bit sequence, so that the 4-bit Decoder Identification code, and the eight character PS (Programme Service Name) can be spread over four consecutive OIA groups as shown. The fourth 16-bit word contains the ASCII characters for this PS code, and the third, two coded ‘Alternative Frequencies’. The way in which these AF codes are used is given in full in the published specifications, but essentially a look-up table is specified to convert between the eight bit binary numbers and the actual frequencies in use.

It can be seen from the above example that not all the various RDS features are accommodated in a single group. It is therefore necessary to transmit a mixture of group types to suit the applications in use by a particular broadcaster. By adjusting the repetition frequency of the different group types, the appropriate data capacity can be allocated to the various functions. For example, the group type containing the Clock Time code (CT) only needs to repeated once each minute.

IMPLEMENTATION OF RDS BY BBC

Once the specification for the RDS system had been finalized and agreed, there then existed a ‘chicken and egg’ situation. Receiver manufacturers were not keen to undertake expensive development work on receivers for a service which did not exist, and broadcasters were reluctant to spend large sums on starting a service which there were no receivers purchasable by the public.

To unlock this position, the BBC was involved in informal talks with a wide range of manufacturers through 1984 and 1985, and through these contacts, a level of confidence was built up which allowed the BBC to start detailed planning for a service. As the details of the plan began to emerge, the receiver industry demonstrated a corresponding increase in confidence, and by March 1986, the BBC felt able to give the formal go ahead to the first phase of the implementation programme in the certain knowledge that there would be at least some receivers available at or around the announced start date of October 1987. The plan. In determining the precise details
of implementation, it was necessary to balance a number of factors. The RDS specification provides for a wide range of features, many of which would require a considerable continuing input to render a viable service. Similarly, receiver manufacturers were feeling their way, and looked for a package of features which would get the service off the ground, without involving an excessive amount of development.

It was also becoming clear that the first RDS receivers were going to be car radios. Accordingly, the BBC planned to implement a set of features which would optimize the benefits obtainable from an automatically tuned car radio. In fact, these are the same features which would be required by an intelligent receiver, and so are in no way dedicated to in-car application. Additionally it was decided to implement the Clock Time and Date feature, since this could be done at little additional capital cost, and involved no continuous operating expenditure.

The RDS codes involved in automatic tuning are PI, AP and ON and of course PS is also included to give a positive read-out of the station name. In the case of the BBC networks, the information for these codes is generated centrally, and fed to the RDS encoders at transmitters by data links. In this way, the codes can be changed dynamically, which is necessary when, for example, the v.h.f. and m.f. services are 'split'.

CT is derived at each encoder site from a clock circuit which derives its reference from the low-frequency 'MSF' transmissions from Rugby.

Phased implementation. It became clear early in the planning period that it would not be practicable to muster the necessary resources to equip the whole of the BBC's network simultaneously. However, the nature of RDS is such that it is vital for all the services receivable in a particular area to be coded, otherwise the intelligent receiver will have 'blind spots'. Having made the decision to spread the implementation geographically, rather than by service, it followed that the logical first phase was to cover England. In England, the pattern of broadcasting is less complex, with four national networks almost universally available, and the local radio chain forming an effective 'fifth network'.

Now that this first phase is virtually complete, planning effort is being devoted to solving the complexities of coding the various regional and 'opt-out' services which are broadcast in the national regions (Scotland, Wales, Northern Ireland) with a view to completing the installation programme in a single second phase through 1988/9.

Travel information and RDS. The possibility of providing an AR1-type travel information service using the RDS equivalent codes has been mentioned earlier, and the BBC has been conscious of considerable interest by the car radio industry in this feature. From the BBC's point of view of course, the car radio audience is a minority, albeit an important one, and it would not wish to commit itself to providing a service which did not measure up to the normal yardsticks of a public-service broadcasting organization. The use of the ARI system in West Germany has been studied, and of course an important difference is the way in which all radio broadcasting is regionalized. This allows stations to broadcast traffic flashes which are at least partially localized.

In the case of BBC Radio, the obvious channel to use as the primary channel for traffic flashes is local radio, and it is along these lines that preliminary planning is taking place. It is planned to conduct a limited experiment next year whereby a group of local radio stations will be equipped to radiate the TA and TP codes, which will also be linked into the BBC network services, so that a listener to, say Radio 3, could choose to have the programme interrupted by traffic flashes from the local stations in the area he was passing through. There are various technical and editorial problems to be solved, but if successful, there is no reason why the service should not be extended nationwide in due course.

Acknowledgement. The author acknowledges the contribution of colleagues in BBC Engineering Division and in BBC Radio to the work described in this article, and wishes to thank the Director of Engineering for permission to publish it.

References

Mr Shute is General Manager, Engineering, BBC Radio.

Relativity a critique

A typical relativist's exposition of the twins effect is scrutinized with a greater attentiveness than could normally be expected of either a confirmed relativist or the ordinary intelligent lay reader

STEPHEN GRIEVE

In his book Space and Time in the Modern Universe, Paul Davies gives a detailed exposition aimed at showing the layman that the twins 'paradox' is not in fact paradoxical. As an authority on special relativity, Professor Davies is surely as recognizable as most are (at the very least, for the purposes of such an exposition), and does give an impression of total confidence in knowing exactly what he is saying and why he is saying it. Or at least, this would probably be the impression for most or all lay readers, even though specialists confident in his qualifications would in general probably feel little if any need to read the exposition at all. Nevertheless, there are certain criticisms that one could at least seem justified in putting to him, or to a similar authority: and in such a connection, perhaps merely to seem justified is to be so, if only educationally.

In the situation described, twin A leaves twin B on Earth, travels to a star 10 light years distant, and promptly returns. His relative speed throughout is a uniform 0.9 c. For A, then, 21.1 (i.e. 11.1+10 signal-lag) years after his departure. Since in this 21.1 years B sees 4.84 years A time elapse, A's clock appears to B to be working 4.36 times slower than his own; 2.3 of this being 'due to the relativistic time-dilation effect'. Now, on pp.42-3, Davies states: 'To determine what A sees of B and B's clock during the outward journey, note that the observations must always be perfectly symmetric between two inertial observers according to the principles of special relativity, which enable us to regard equally the situation that it is really A at rest, and B receding at 0.9c. Consequently, A will see events on Earth running 4.36 times too slow (again 2.3 due to relativistic time
dilation). Because A reaches his destination after 4.84 years on his clock... should he look back at Earth at the moment of arrival, he will observe events occurring only 4.84/4.36 = 1.1 years after his departure.

This is a very interesting passage. One can agree (see presently) that there is symmetry in the sense that each observer sees a reduction by a factor of 4.36 in the other's clock rate: but this symmetry is of a secondary nature; being in respect of the extent to which different amounts of observed time evince reduction - A, as indicated, seeing 1.1 years Earth time elapse in 4.84 years space-time ship and B seeing 4.84 years ship time elapse in 21.1 years Earth time. The layman at least could be forgiven, were he wrong, for remarking that a principle of perfect symmetry - and so special relativity, essentially - should require that each observer, during the periods of uniform relative motion, sees the same reduced-amount of time elapsing for the other. Even could no other criticism be made, one could feel justified in suggesting that Davies has a case to answer. He could be accused of keeping mentally separate the idea of perfect symmetry he asserts and the manifest asymmetry he describes. However, he would perhaps be unlikely to feel that his position was seriously threatened. He himself finally acknowledges that an asymmetry is involved, as of course he must if he is to have an asymmetric outcome and not have a paradox. He ascribes this outcome to the fact that it is only A who undergoes acceleration and velocity reversal. The question of whether he is right to do so, which is not quite a straightforward one, will be treated of after further asymmetric aspects of his exposition have been pointed to- aspects upon which this question would seem to have no bearing.

According to Davies, as noted, A on arriving at the star sees 1.1 Earth years having elapsed. Considering 4.84/4.36, one can say that he indisputably does involve the formula \(t = (1 - \frac{v^2}{c^2}) t' + k \) in obtaining this apparent period; and thus he gives the impression of obtaining it by doing so. However, (as will be seen forthwith) 1.1 years can be expected solely, merely, on account of being the difference between A's transit time and that of light, under an implicit assumption on Davies's part that real values for these times are those according to B, 11.1 and 10 years respectively, rather than to A. While 4.84/4.36 = 1.1 may be seen simply as the division of a given period by a given reduction factor, it is surely far from irrelevant to note that 4.84/4.36 is itself derived by application of \(V(1 - \frac{v^2}{c^2}) \), i.e. to 11.1 years B time. Taking account of this (and choosing to express 1.1 as 11.1-10), one may say that 4.84/4.36 = 1.1 expresses:

\[
11.1 \sqrt{1 - \frac{v^2}{c^2}} = 11.1 + 10 \left(\frac{11.1 \sqrt{1 - \frac{v^2}{c^2}}}{11.1 - 10} \right)
\]

(1)

This is a relation of 11.1 + 10 to 11.1 - 10; which, simplified, and substituting t for 11.1 and k for 10, is:

\[
t(1 - \frac{v^2}{c^2}) = 1 - k
\]

(2)

Now, it is a quite general truism that any pair of quantities x+y, x-y are related thus:

\[
\frac{x^2}{x+y} = x-y
\]

where z (since \(x^2 = x^2 - z^2 \)) becomes

\[
x = \frac{x^2 - z^2}{x}
\]

whence in the case of \(t+k \), \(t-k = 1 - \frac{k^2}{t^2} \), which in turn must of course equal \(1 - \frac{v^2}{c^2} \), since \(v \) varies as \(1/t \). One may say that Davies's implicit application of \(V(1 - \frac{v^2}{c^2}) \) to A's transit time is no effective application of this factor as such, being effectively merely part of an application of \(1 - \frac{v^2}{c^2} \) to 11.1^2, as (1) and (2) imply.

Even if the asymmetry of transit times is ignored, Davies can still be seen to treat A and B in qualitatively different ways. If A is really granted his relativistic right to say that 4.84 years is indeed 'B's travelling time', and exercises it, and agrees that the relative speed is 0.9c, then he must assume that light's transit time is 0.9 x 4.84 = 4.36 years. Were Davies to treat A as he treats B, he would have A seeing B's completion of the outward phase after 4.84/4.36 = 9.2 years A time, 4.84/2.11 = 2.1 years B time. The apparent-re retardation factor 4.36 would still apply, in this case resulting from 9.2/2.11. So: (4.84 + 4.36)/4.36 = 2.1 years, as would correspond to (11.1 + 10)/4.36 = 4.84 years in the case of what B sees: but of course, Davies divides just 4.84 by 4.36.

Were Davies's treatment of what A should see thus similar to his treatment of what B should see, he would of course then be faced with two different amounts of Earth time elapsing on Earth during the outward phase of the experiment. Clearly, one may say that of these values, 11.1 and 2.1 years, only the former need be seriously considered, seeing that the latter is ultimately derived from it; but to deny thus the reality of the latter is to deny A his relativistic right to say that it is B who recedes at 0.9 c, and so is implicitly to deny the relativity postulate. What also would be incompatible with Davies's treatment of A in the manner in question, of course, is that for A's observation of B's clock rate to be uniform for 9.2 years, he would like B to be (for 21.1 years, i.e.) to have remained unaccelerated for this period. This alone would violate the definition of the experiment, as also would what would make it seem otherwise the same, namely appropriate acceleration of the Earth and the star (ignoring the rest of the universe) so as to achieve velocity reversal relative to A. This serves to confirm the importance of the question of who undergoes acceleration(s): an importance, however, then, associated with an apparent implicit denial of the relativity postulate.

By now, anyway, one can readily appreciate that the 1.1 years A sees having elapsed on Earth cannot be derived through treating A in the same manner as B: so it is reasonable to assume that this value will not be obtainable in any way other than that conveyed in equation (1) above, and that equation is indeed the only true expanded version of 4.84/4.36 = 1.1. In other words, 1.1 years really does represent 11.1-10 years, so that A's observation depends entirely on periods occurring in B's reference frame: 11.1-10 years, moreover, necessarily considered as a natural concomitant (in the situation described) of B's observed period of 11.1-10 years. Regarding 21.1/4.84 = 4.36 = 4.84/1.1 in the light of these considerations, one may say that the secondary 4.36 symmetry actually depends upon the primary asymmetric Davies allows.

One further asymmetric feature to note is a simple qualitative difference between A and B as regards the way in which the \(V(1 - \frac{v^2}{c^2}) \) clock-slowing contributes to the factor 4.36- which without it would be greater for A (i.e. 11.1/1.1) and smaller for B (i.e. 21.1/11.1). And of course - the very obviousness of which perhaps has tended to help it evade subtle scrutiny - only A is affected by this real retardation, in the situation described, as described, by Davies. The impartial reader may now feel that Davies does have some explaining to do, regardless of whether he is right to ascribe the asymmetric outcome to A's changing reference frames through acceleration; that whilst he is describing an effect predicted by special relativity, he is not doing so in such a way as could be said to illustrate Einstein's (special) relativity, for stating: 'acceleration is absolute in special relativity' (p.44): thus conveying to the lay reader the impression that acceleration is indeed in special relativity, when it is not. But invoking general relativity could not have vindicated him, if one may judge from David Bohm's corresponding discussion in his own The Special Theory of Relativity, 2 Bohm (who in contrast to Davies stresses asymmetry throughout) says: 'The conclusions of (special relativity) evidently cannot be applied symmetrically in the frames of both observers, since one of them is accelerated and the other is not', and goes on to say: '...the different degree of "aging" (sic) of the two twins is fully compatible with the principle of relativity, when the theory is generalized sufficiently to apply to accelerated frames of reference' (pp.166-7). His speciousness, such as it is, can be said to depend upon an ambiguity of the word accelerated; which can mean either: "having been accelerated not so much as moving so fast, having been accelerated" (in this case, i.e., faster than zero speed). The first meaning, at least, affords apparent justification for invoking general relativity; but only the second can apply to the whole experiment considered, since Bohm too specifies negligible acceleration periods. He cannot be especially using the first meaning, since he...
states that special relativity holds for the Earth observer: as it could not do, were the slower-aging effect confined to the acceleration periods (as anyway, of course, would be out of the question). So, he is definitely using the second meaning: but this cannot justify invoking general relativity, since the 'accelerated' spacecraft is in uniform motion, so if he is saying that general relativity has to be applied, even in this case, then he must imply that special relativity may never be symmetrically (and so never properly) applied: since the spacecraft, its uniform transit speed attained, could not be different from one that happened to be passing Earth at the same speed. How could it 'remember' then if it was the accelerated frame?—Unless the absolute difference arising during acceleration were retained during uniform motion as: as, then, Bohm implies, and as indeed Davies does. Both authors are compelled by special relativity's internal logic to say that there will be differential aging due to relative motion

per se: but to get an asymmetric result, they are also compelled to assume simultaneously with the uniform case an apparent kinematic difference between the twins, namely the traveller's acceleration(s). But if they say that it is due to acceleration per se, they make relative motion per se, and thus special relativity even for the Earth observer, redundant. A solution to their problem is not hard to see, but for them as relativists may be so unwelcome as to be very difficult to accept. The only imaginable way in which this can be so appears in the idea of absolute motion, upon an assumed frames non-equivalent: as suggests the implication that Davies is effectively giving: 'The abrupt reversal of A's velocity means that although the clock rates are equally slowed and speeded by a factor of 4.36 for both A and B, A sees the speeded-up period occur for half his journey, whereas B sees this period occur for only the last 1.1 out of the total 22.2 years' trip. Hence their clocks must get out of step. But since they must get out of step in any event, owing to relative motion, the observational circumstances determined by the velocity reversal must be regarded as incidental, if inevitable: they would get out of step even could B observe the speeded-up period for half the 22.2 years. The 1.1 year period is of course the inevitable natural compensation for the 21.1 year slowed-down period of B's observing the outward journey, ensuring that the clocks get out of step to no other extent. By stressing as he does the importance of what is seen by A and B, here, Davies tends to see the impression—to the lay reader at least—that the illusory Doppler portion of observed retardation conflicts with the natural result and this.

The implication that Davies is effectively not a relativist at all, in his exposition, and that the correctness of his description actually depends on his not being one, may tend to seem incredible to much of a non-specialist readership in spite of the conversations he might, then, rely on silence in the face of them, so as to imply that they are beneath authoritative refutation. However, he surely can be said to have an educational duty to show clearly, if he can, that they are ill-founded and that he can indeed properly be called a relativist, in the sense of one who rigorously applies the relativity principle; for even if he does not imply absolute motion, it is clear that the impression of his doing so could be given to all his readers of his exposition, especially the forewarned. No relativist, as such, would wish this impression to be given: if Davies cannot be seen successfully to defend his own position, perhaps other authorities will feel constrained to show that they themselves are relativists. But if it is the case not only that he implies absolute motion, but also that his exposition is essentially such as would be given by any similar professional and that paradox can be avoided in no other way, then one will be justified in saying that there have never really been any true relativists. Their dealing with real effects predicted by special relativity would surely not be sufficient reason for retaining the title 'relativist', if the idea of absolute motion were reinstated and so the relativity postulate abandoned.

There seems no good reason for regarding this abandonment as incompatible with the experimental evidence to the prediction of which it leads. It is possible to make the right prediction for the wrong reason. In the event, the idea that this evidence as such confirms special relativity as such is demonstrably muddled-headed. The latter entails a symmetry of counterbalancing asymmetries; and Earth clocks and masses have not been observed from the reference frames of high-velocity particles in the experiments in question. To take the evidence from only Earth's reference frame as confirming special relativity as such is implicitly to adopt the argument:

(i) if both the required asymmetries are the case, then that for this reference frame is so;

(ii) the asymmetry for this reference frame (as the evidence shows) is the case;

(iii) therefore, both asymmetries are the case—which is a straightforward instance of that quite basic error in logic, 'the fallacy of affirming the consequent':

If absolute motion is the case, no other situation would seem improbable than that the Earth has such a low absolute speed compared with light as to be virtually at absolute rest by this comparison, which of course is the one that matters where $V/\sqrt{1-V^2/c^2}$ is concerned: which situation coincides, for terrestrial observers, with the relativist idea that any inertial observer's claim to be at rest is as good as that of any other moving uniformly relative to him. Considering the enormous and contrived energy expenditure required to accelerate even moderately sizable bodies to significant fractions of c. It would hardly be surprising if in the case of planets such speeds were virtually or altogether impossible in the universe. In immediate response to this, it might be said that such speeds, and of whole galaxies relative to each other, are very common—i.e., where these galaxies are greatly separated even by cosmological standards. But if the implication of absolute motion is unavoidable, then the idea of a 'motion' of the universe, he says: 'The abrupt reversal of A's... This differential ageing, being an absolute effect, must be causally associated with the only other perceptible absolute difference between A and B, namely the former's being accelerated. (iii) Regarding (i) and (ii), it could tend to seem that the differential ageing is being ascribed to two different causes in a way implying that (i) and (ii) cannot both be right: but given that both are right, such contradiction cannot be the case. The 'different causes', then, must be regarded as aspects of one causation. The only imaginable way in which this can be so appears in that, quite simply, A's acceleration is the cause of his motion relative to B i.e., merely, acceleration has its effect through the relative motion it creates; an effect that persists after it has ceased and the motion is uniform. But this effect is an absolute one. One should, then, see no option but to say that an absolute effect is being had by uniform relative motion. (iii) Of course, therefore, here, cannot validly be regarded as merely relative of A to B, in the orthodox Einsteinian sense: there is about it, however elusive, something corresponding to the idea of absolute motion.
at least, will be essentially an illusion.

Changes that would have to be made may or may not be thought self-evident. For one thing, the speed of light would have to be conceived of as absolute in itself (i.e. relative to whatever elusive ‘medium-less’, ‘medium’ is used to express, that anything could approach any resting entity at faster than c).

What is also surely a valid option is the naïve inference by one from whom light rays are receding in opposite directions, that they are at 2c relative to each other. It is possible to imagine that that is the situation; whereas if one says that their relative speed must rather be c, according to the formula

$$u + v = \sqrt{1 - \frac{v}{c^2}}$$

one is implying that the value for c obtained by the observer in question is illusory (i.e., that though it is measured as c in each direction, it is really 0.5c), while relativists would also hold that the value c obtained in any reference frame is not illusory.

So, regarding what may or may not be illusory, there is the question of the dependance of apparent spatial separation of two entities upon the relative speed of their recession or approach. Davies (ibid., p.44, italics his) says: ‘. . . . this distance must appear to A to be only 0.9x 4.84 = 4.36 light years, rather than 10 light years as measured by B. The spatial distance, therefore, has shrunk’

First he stresses appearance as though to suggest that the shrinkage is an illusion, then he definitely implies that it is real. One may suspect that in this he is unconsciously taking advantage of the fact that the word observation is neutral in this respect. Or, since observation is regarded as the only possible access to physical reality, and all inertial frames are regarded as equivalent, the relativistic requirement here is that which may seem to be an illusion must nevertheless be real.

For such spatial variance to be real, however, space per se must consist in nothing but the separation of entities: may not be validly imagined as devoid of them, as would imply its absoluteness: must have an objective reality in its own right – which denial relativists may explicitly convey. One

*The writer uses this expression rather than just ‘medium’ on the account of the likely necessity of some more subtle idea than that of ether, as such.

*For instance, it could perhaps betoken a very gradually increasing charge-to-mass ratio of electrons.

*The writer has found nothing in other relativist exposition of this question. But from this viewpoint, the argument of G. Bohm concerning the space contraction is not to be held against Einstein's views on this matter. However: if a body is shortening as it undergoes acceleration, one would seem justified in saying that the space in which the body moves is not in itself affected, body’s consisting of fundamental particles plus ill-defined interstices/bondings may mean that the effect on the body as a whole, unlike that on the particles themselves, will be less than according to V(1 - v^2/c^2).

might ask how what is unreal can be really variable – which question, however, a relativist could simply reject, saying that what is variable in the sense conveyed is spatial separation, as distinct from the space-as-such to the idea of which it has given rise. But then the question arises of whether one can talk of spatial separation without implying space as such. What can spatial mean, if there is no real space? – It can only be referring to an illusory feature of what is really a temporal separation only: so, if space as such is unreal, then so is spatial separation, as such, as termed. This might be compatible with mysticism, but clearly is incompatible with observational physics – for the relativist to expect of which there is not one must expect, from length contraction of moving bodies*.

It is true that to a disembodied consciousness in a space devoid of entities, the idea of space could not arise. In the case of reasoning, though, one may say that spatial separation of entities betokens space per se. Acknowledging the reality of space, however, does not in itself help one in trying to imagine kinematic relation thereto.

And still, a real question of medium-nature: if there is no such nature associated with space, or space-time, then light must be regarded as, in the words of George Gamow: ‘vibrations taking place within the lumps of a certain physical entity (i.e., electromagnetic field) flying freely through the empty space’.*

*The writer has not discovered what response to expect of which the relativist would make of the physical entity may be not only travel at c but also vibrate when VP(1 - v^2/c^2) indicates zero frequency. To note that zero frequency would mean zero quantum energy would be no explanation. Perhaps it might involve an assertion that light has ‘zero rest mass’, and so is not subject to relativistic mass increase, and that this effect is of course linked to clock-slowing . . . again no explanation, even were it not evasive. Anyhow, this idea of zero rest mass derives from the idea that the rest mass of an entity corresponds entirely to the kinetic energy of its internal motions (as tends to imply an indefinite series of sub-particles), the zero value being associated with a total externalization of such motion. But if all the motion is externalized in the sense conveyed, the entity is left with no sub-entities: one may then ask how it can still be a travelling entity? The limitation of such disappears, if one acknowledges that its wave-aspect cannot but imply some medium-nature. Clearly, no material entity travels when a wave travels: the only such (at any rate physical) entity involved being the medium. So light, qua entity may be regarded as a transient form of resting matter, continuously created and then decreased at successive points in, and from, whatever medium-aspect is the case.

And one may ask how the idea of absolute motion is meaningless is bound up with the assumption (in relativists perhaps an unconscious wish) that there is no possibility of detecting it. Still, if it is undetectable, assumption is essential to describing potentially real instances of clock-slowing without paradox, then the idea of it surely must be somehow meaningful in spite of unpredictability (or the fault is in the mind). But is it undetectable? Clearly, if realized, Davies’s experiment would itself afford indirect detection. Moreover, if the Earth and the star (or far more likely, a pair of relatively slow spacecraft) happened to have significant absolute speed in A’s or the opposite absolute direction, then A’s absolute speed would be greater or less than the observed relative speed (this itself different from the real relative speed, owing to the absolute effect on B): so that the journey would take either less or more ship time than the predicted 4.84 years. Regret as one may that the situation would be thus complicated, such result would surely put the concept of zero rest mass beyond reasonable doubt the reality of absolute motion, whether or not they were a basis for accurate indirect measurement. These aside, though; if it is true to say that Davies’s experiment as described would afford evidence of an absolute difference between inertial reference frames, then (considering that acceleration is of only secondary relevance) so does all the existing evidence that has been seen as corroborating special relativity.

References

Stephen Grieve was born in 1947 and took a degree in botany at the University of Hull.
Newton's Principia

I am astonished that T. Theoharlis and M. Psimopoulos (August letters) should have interpreted my piece on Newton's Principia (February issue) as some kind of belittlement of that great work. The item was written to draw attention to and celebrate this scientific masterpiece, as any balanced reading of it will show. Einstein's relativity was mentioned once, and in parenthesis, purely as a matter of historical perspective.

In quoting Bertrand Russell's remark that force is "a mathematical fiction, not a physical entity" (from his Principles of Mathematics) I was certainly not trying to make any point about relativity, but rather a point about reality.

Before Newton defined force in the way he did, I imagine most people used the term, and understood its meaning, in much the same way as we do today in common parlance: the force of an explosion, the force of a blow, the force in a mechanical press, etc. These common-or-garden phrases, and the ideas behind them, represent our direct experience of energy as it manifests itself in the real world.

The world is as it is, and no amount of human analysis, definition, or verbal or mathematical description will make any difference to it. As soon as we invent a precise scientific definition like that for force we are producing an abstraction, for force cannot exist in isolation from the real phenomena of the world - just as voltage cannot exist in isolation from real electrical energy, temperature in isolation from real heat, or speed in isolation from something or other real moving about. These physical quantities are all abstractions, products of the mind, or a priori concepts. In that very abstraction lies their usefulness.

If, as your correspondents suggest, a champion boxer hit somebody (a relativist) in the face with a considerable force (say 1000 newtons), but a 'pure' force independent of any specific physical phenomenon, as in its scientific definition, if that were possible, the victim would not feel anything because there would be no energy delivered, just a "mathematical fiction".

Oscillator amplitude stabilization

In the July issue, R. Shankar invites comments from readers to his proposed method of obtaining a ripple-free, rectified output from a sinewave oscillator, for use in the amplitude control circuit. A quadrature signal of the same amplitude is derived, the two signals are squared and then added. Since sin²x + cos²x = 1, the output will be d.c. proportional to the square of the peak amplitude. This technique is not new; it is described in Burr-Brown's "Applications of Operational Amplifiers" from 1972. I tried the idea a few years ago and found that in spite of its apparent elegance, it is not a very practical method. As pointed out by Mr Shankar, squaring circuits are expensive and, for a low distortion, they also require careful offset and gain trimming, in order to completely balance out all a.c. components.

There is another principle, however, which may be put into practice without too many problems. What is required is a voltage which represents the waveform amplitude, which has no a.c. component in the steady state, yet still tracks the sinewave envelope during transient states with a minimum of delay. These conflicting requirements rule out the use of a straightforward rectifier. A sample-and-hold circuit, however, with a sinewave supplied to its input, will store the peak value of the waveform if its control terminal is driven by narrow pulses derived from the zero-crossing of a cosine (quadrature) waveform.

A fast-acting and accurate control loop is established as follows. The staircase envelope supplied by the sample-and-hold circuit is subtracted from a d.c. reference. The difference (the error voltage) is fed through a circuit which provides both the integral of the error voltage and the error voltage itself, the sum of these controlling the loop gain in the feedback oscillator. By properly choosing integration time and gain constants, the amplitude can be made to settle within a few cycles of oscillation. With a well-designed amplifier, the distortion obtainable depends solely on the linearity of the gain control element, and figures below -90 dB (0.003%) are not unrealistic.

The principle described here was first put into commercial use in the Radford Low Distortion Oscillator (type LDO3) which I designed in 1972. This instrument was based on the parallel-T resonator while subsequent versions have employed the more modern state-variable filter structure, still with a sample-and-hold control loop.

Jens Langvad
Solrod Strand
Denmark.

Flow diagrams

The article by David Sweeney on flow diagrams in your August issue rather underlines the drawbacks of using flowcharts instead of promoting their use. Flowcharts do not lend themselves to structured programming and, although his examples may be more flexible than usual, they are just as poorly structured.

Mr Sweeney tries to show that his method clarifies decision nesting (Fig.1.). In doing so, he compares his example to a Pascal fragment which he has listed without indentation. There is no way of working out which BEGIN goes with which END just by looking at it, so the nesting is indeed hidden. However, this fragment may be written out with normal indenting and, surprise, surprise) decision nesting becomes quite clear again.

Mr Sweeney mentions escape routes and gives a really poor example as an illustration (Fig.4.). I have rewritten this example in pseudocode, which shows up two points: (a) there is a logical error in his example - if Z is 20 then control passes to a test for Z>50; and (b), written out in this form, there is no need for an escape route at all. The use of an escape route as indicated is suspiciously like the basic habit of sprinkling GOTOs around instead of trying to structure the code.

I would contend that pseudocode techniques may be of more benefit to well structured programs than Mr Sweeney's altered flowcharted method. As a final comparison, I give a pseudocode version of the CIRGEN algorithm used in Fig.5 of the article, which was itself shown against the original type of flow chart. I wonder which readers would prefer.

I too started off learning computing with flow charts - the pseudocode came later. These days, I use pseudocode for all my programming projects in both high and low-level languages. Coupled with top-down design techniques, readable programs that work can be produced. How many people could adopt Mr Sweeney's method and say the same?

Example PASCAL fragment, rewritten with normal indentation:

```
IF B > 27 THEN
BEGIN
   IF I < 50 THEN
      CALCVAPIL(Q)
      ELSE
      BEGIN
         B := B + 1
         C := I + B5
         X := B + 7
         CALCVFACT(X)
      END;
      ELSE
      BEGIN
         B := B + 1
         C := I + B5
         X := B + 7
      END:
      END:
```

IF B > 27 THEN
BEGIN
 IF I < 50 THEN
 CALCVAPIL(Q)
 ELSE
 BEGIN
 B := B + 1
 C := I + B5
 X := B + 7
 CALCVFACT(X)
 END;
 ELSE
 BEGIN
 B := B + 1
 C := I + B5
 X := B + 7
 END:
 END:
```

Fig.4. rewritten in pseudocode:

```
BEGIN
 set A to B*2
 IF Z = 20 THEN
 IF Z < 50 THEN
 set C to Z7
 ENDIF
 ELSE
 set A to A+9
 ENDIF
 END;
```

END

The above is exactly equivalent to the flow diagram, logical error included.

Stewart Ross
Inverness
Sputnik’s 30th anniversary

October 4 this year is the 30th anniversary of the launching of the first artificial satellite of the Earth—Sputnik-1. The Soviet Union sent this small, spherical device into orbit at 1930 hours GMT on 4 October 1957. It was launched by a powerful, 27.5-m high rocket, with a lift-off thrust of 4.9 MN, from a missile test range a few miles north of the small town of Tyuratam in Kazakhstan. This town (about 63°E and 45°N) is just east of the Aral Sea and lies near the Syr Daria river flowing into that Sea. Nowadays a new town built to the north of Tyuratam is one of the permanent launching centres for the Russian space programme.

Our planet’s first artificial satellite was an aluminium alloy sphere, only 580mm in diameter and weighing 83.6 kg. Much of this weight was made up by batteries for powering the two radio transmitters carried in the spacecraft. Projecting from the metal sphere were four whip antennas, with lengths ranging from 2.4 to 2.9 metres. The satellite was propelled into a low elliptical orbit with an apogee of 942 km, a perigee of 228 km and an inclination (to the equatorial plane) of 65°. It was spinning at a rate of about 7 revolutions per minute. The orbital period was approximately 90 minutes, and so, with the rotation of the Earth, its radio signals were soon heard all over the world.

These signals were on frequencies of 20.005 MHz and 40.002 MHz and were keyed to a US military weather satellite. Among other things it is designed to detect where rain is falling over land. With visible and infra-red imaging from meteorological satellites this is not normally possible because the rain-clouds themselves block the e.m. emissions at such wavelengths coming from below them. But the parts of the clouds not producing rain can be penetrated by the longer wavelengths in the microwave region. (In meteorology this normally means a range of frequencies at e.h.f. between about 20 GHz and 200 GHz.) The underlying rain structure thus observed may prove useful for forecasting hurricanes and typhoons. Operated by the US Air Force, the new metsat is also being used to measure wind speeds over the sea, moisture content in the ground and mountain snow packs, and the extent and thickness of ice coverage. Information obtained is being shared with international civilian weather agencies.

The microwave imaging sensor shown here being adjusted at Hughes Aircraft is now orbiting the Earth at an altitude of 850 km in a US military weather satellite. Among other things it is designed to detect where rain is falling over land. With visible and infra-red imaging from meteorological satellites this is not normally possible because the rain-clouds themselves block the e.m. emissions at such wavelengths coming from below them. But the parts of the clouds not producing rain can be penetrated by the longer wavelengths in the microwave region. (In meteorology this normally means a range of frequencies at e.h.f. between about 20 GHz and 200 GHz.) The underlying rain structure thus observed may prove useful for forecasting hurricanes and typhoons. Operated by the US Air Force, the new metsat is also being used to measure wind speeds over the sea, moisture content in the ground and mountain snow packs, and the extent and thickness of ice coverage. Information obtained is being shared with international civilian weather agencies.

by the undersigned) on the observations made, in the December 1957 issue, pp. 574-578. In the UK these included measurements by the DSIR (now SERC), BBC, Post Office (now BT), RAE, RRE (now RSRE) and the Cambridge and Manchester universities’ radio astronomy observatories. Using mainly Doppler and interferometric techniques, the observers were able to derive measurements of Sputnik’s range, height and velocity and to calculate its track in terms of orbital period and inclination and the altitudes of its apogee and perigee.

When the radio transmissions ceased after 21 days, measurements were continued by means of radar. The spacecraft went on orbiting for 92 days. Atmospheric drag in the upper atmosphere reduced its orbital velocity and as a result it descended into denser air and burnt up on 4 January 1958.

The decision to launch Sputnik-1 on 4 October 1957 was determined by several events—a combination of a natural phenomenon, human ambitions and historical circumstances. First of all, it took place in the International Geophysical Year actually 18 months from July 1957 to December 1958) when many countries collaborated in studying the effects of a peak of solar activity on the Earth. The IGY planning committee had already passed a resolution recommending the use of artificial satellites for this research if they could be launched. So Sputnik was to some extent a response to a scientific initiative. In fact the satellite provided measurements of temperature in the thermosphere and exosphere, while its radio signals allowed ground observers to measure electron densities in the ionosphere.

But probably more influential in fixing this date was technological rivalry with the USA. The Russian team of experts, led by the aircraft and rocket engineer Sergei Korolev, were well aware that the Americans, under Wernher von Braun, were planning to launch a scientific satellite in September 1957. In the event von Braun’s plan was turned down by the US authorities. Had it been accepted the USA might well have been the first country to go into space. As things turned out America became No. 2, when its Explorer-1 satellite was sent into orbit on 31 January 1958.

Another important stimulus was national prestige, and this has several strands to it. October 4 1957 was the 40th anniversary of the Bolshevik revolution in Russia and thus an appropriate time to draw the world’s attention to the scientific and technological achievements of the regime that came out of it. Secondly, 1957 was the centenary of the birth of Russia’s greatly revered space theorist, Konstantin Tsiolkovsky (1857-1935). Korolev had visited him shortly before he died. And thirdly, Nikita Krushchev, then First Secretary of the Communist Party of the Soviet Union, badly needed to generate some national, hence personal, prestige to boost his declining position in the Politburo of that time. He had some powerful opponents. So it was Krushchev who was responsible for providing the necessary human and technical resources for the satellite project and giving approval for the launch.

Finally, the time at which Sputnik arrived can be seen as the result of a complicated interaction between engineering progress and historical accident. Here an important factor was the career and character of the project leader himself, Sergei Korolev (1906-1966). As well as being an aeronautical engineer, Korolev was privately a life-long enthusiast for rocketry and space flight. To begin with there was no official outlet in the USSR for this interest and Korolev pursued it through a small, private group of like-minded scientists and engineers who had got together to study rocket propulsion. Later this group was taken up and given government support and encouragement, and the work was then transferred to the state.
Anglo-Japanese X-ray astronomy

The largest X-ray sensor to be carried in a satellite has just started a five-year programme of celestial observations. Called a large-area counter in Astro-C, it is the result of a collaborative research project in X-ray astronomy by British and Japanese scientists. In the UK, Leicester University and the SERC's Rutherford Appleton Laboratory built the detector proper, which has a sensitive area of 0.5 m², and its analogue signal-processing electronics. In Japan the Institute of Space and Astronautical Science (ISAS) and Nagoya University provided the advanced, digital data-processing unit and the interfaces between the detector payload and the satellite. The UK work was funded by the British National Space Centre.

Astro-C also carries two other astronomical instruments, an all-sky X-ray monitor from Osaka University, Japan, and a gamma-ray burst detector from Los Alamos, USA.

Second User Sales means First Rate deals...

when you buy our re-furbished, re-calibrated instruments from the world’s leading manufacturers.

<table>
<thead>
<tr>
<th>MICROPROCESSOR DEVELOPMENT SYSTEMS</th>
<th>Manuf. Price £</th>
<th>Our Price £</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD AM2940B</td>
<td>1,900</td>
<td></td>
</tr>
<tr>
<td>EXDRD160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M68000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M68030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS68090</td>
<td>4,410</td>
<td></td>
</tr>
<tr>
<td>MOTO32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDRD160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDRD160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDRD160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M68030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS68090</td>
<td>5,200</td>
<td></td>
</tr>
<tr>
<td>MOTO32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDRD160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDRD160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXDRD160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M68030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS68090</td>
<td>5,750</td>
<td></td>
</tr>
</tbody>
</table>

| GPT |  |  |
| GPTE |  |  |

For up-to-date list and prices contact Chris Griffin.

For TechniRent SECOND USER SALES Park House, Downmill Road, Bracknell, Berks.

0344 411011

1032 ELECTRONICS & WIRELESS WORLD
SOLDERING STATION 1456

THE ALL BRITISH SOLDERING EQUIPMENT MANUFACTURERS

- adjustable temperature in handle
- electronic thermostat control — no moving parts
- spike and potential free
- simple plug in 4.75mm tips
- full supporting tip range
- low voltage power pack 24v 50v AC

FOR FULL DETAILS on all ADCOLA equipment contact Sales Department...

ADCOLA PRODUCTS LIMITED Gauden Road London SW4 6LH
Telephone Sales (01) 622 0291 Telex 21851 Adcola G
Sales Offices also at Bristol · Bournemouth · Preston · Glasgow

ENTER 6 ON REPLY CARD
At Last!: A 16 Bit Microprocessor For Engineering Students

- Easy I/O Interconnection via 4m sockets or 0.1" PCB pins
- Large open-plan board layout with full system mimic allowing students to see the microcomputer architecture
- Trouble-shooting accommodated with on-board switched faults and system test points labelled for easy identification

Professional on-board software facilities include: Symbolic Assembler, On-Screen Editor, Unified File System, accessing: Floppy Disk, RS232 and Centronics Interfaces, De-Bugger with Program Trace, Break Point Insertion and Single Step Facilities

Send for full details

CHAS 68000

VALVES

<table>
<thead>
<tr>
<th>VALVES</th>
<th>SPECIAL QUALITY</th>
<th>Prices are correct at time of press but may fluctuate. Please phone for latest quotation. VAT incl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A102</td>
<td>1.60 0.80</td>
<td>RFC84 0.85  RFC87 0.85  RFC86 0.85  RFC86 0.85  RFC84 0.85  RFC83 0.85  RFC82 0.85  RFC81 0.85  RFC80 0.85  RFC79 0.85  RFC78 0.85  RFC77 0.85  RFC76 0.85  RFC75 0.85  RFC74 0.85  RFC73 0.85  RFC72 0.85  RFC71 0.85  RFC70 0.85  RFC69 0.85  RFC68 0.85  RFC67 0.85  RFC66 0.85  RFC65 0.85  RFC64 0.85  RFC63 0.85  RFC62 0.85  RFC61 0.85  RFC60 0.85  RFC59 0.85  RFC58 0.85  RFC57 0.85  RFC56 0.85  RFC55 0.85</td>
</tr>
<tr>
<td>A103</td>
<td>1.50 0.65</td>
<td>RFC84 0.65  RFC87 0.65  RFC86 0.65  RFC86 0.65  RFC84 0.65  RFC83 0.65  RFC82 0.65  RFC81 0.65  RFC80 0.65  RFC79 0.65  RFC78 0.65  RFC77 0.65  RFC76 0.65  RFC75 0.65  RFC74 0.65  RFC73 0.65  RFC72 0.65  RFC71 0.65  RFC70 0.65  RFC69 0.65  RFC68 0.65  RFC67 0.65  RFC66 0.65  RFC65 0.65  RFC64 0.65  RFC63 0.65  RFC62 0.65  RFC61 0.65  RFC60 0.65  RFC59 0.65  RFC58 0.65  RFC57 0.65  RFC56 0.65  RFC55 0.65  RFC54 0.65</td>
</tr>
<tr>
<td>A104</td>
<td>0.80 0.30</td>
<td>RFC84 0.30  RFC87 0.30  RFC86 0.30  RFC86 0.30  RFC84 0.30  RFC83 0.30  RFC82 0.30  RFC81 0.30  RFC80 0.30  RFC79 0.30  RFC78 0.30  RFC77 0.30  RFC76 0.30  RFC75 0.30  RFC74 0.30  RFC73 0.30  RFC72 0.30  RFC71 0.30  RFC70 0.30  RFC69 0.30  RFC68 0.30  RFC67 0.30  RFC66 0.30  RFC65 0.30  RFC64 0.30  RFC63 0.30  RFC62 0.30  RFC61 0.30  RFC60 0.30  RFC59 0.30  RFC58 0.30  RFC57 0.30  RFC56 0.30  RFC55 0.30  RFC54 0.30</td>
</tr>
<tr>
<td>A105</td>
<td>0.75 0.00</td>
<td>RFC84 0.00  RFC87 0.00  RFC86 0.00  RFC86 0.00  RFC84 0.00  RFC83 0.00  RFC82 0.00  RFC81 0.00  RFC80 0.00  RFC79 0.00  RFC78 0.00  RFC77 0.00  RFC76 0.00  RFC75 0.00  RFC74 0.00  RFC73 0.00  RFC72 0.00  RFC71 0.00  RFC70 0.00  RFC69 0.00  RFC68 0.00  RFC67 0.00  RFC66 0.00  RFC65 0.00  RFC64 0.00  RFC63 0.00  RFC62 0.00  RFC61 0.00  RFC60 0.00  RFC59 0.00  RFC58 0.00  RFC57 0.00  RFC56 0.00  RFC55 0.00  RFC54 0.00</td>
</tr>
</tbody>
</table>

Prices are correct at time of press but may fluctuate. Please phone for latest quotation. VAT incl.
Radiopaging by satellite

British Telecom Mobile Communications is to start trials of a radiopaging service by satellite at the end of the year. Claimed to be a world-first, it allows drivers of long-distance lorries to be contacted immediately by their companies while they are on the road. This will be of particular value to road haulage firms operating on routes across Europe, the Middle East and Africa. It will provide an international extension to the existing radiopaging service operated in the UK by BTMC.

Earlier this year BTMC announced that it would provide a transatlantic paging service through a joint operation with a transatlantic paging service announced that it would provide an international extension to the existing radiopaging service in the UK by BTMC. Earlier this year BTMC announced that it would provide a transatlantic paging service through company, Metrocast.

Customers taking part in the trials will make their satellite paging calls in exactly the same way as an inland paging call. Short messages of up to 90 characters can be sent with the characteristic bleep-tones.

A new submarine cable with optical fibres is planned to be brought into service by early 1989. Initially it will operate at 140Mbit/s with two fibre pairs to provide a 4,000 circuit capacity.

Cellular anti-dumping action by EEC

The European Economic Community (EEC) has initiated an anti-dumping proceeding against Japanese and Canadian cellular car-telephone manufacturers, following a complaint brought before it by Motorola Ltd. The complaint is that they are selling cellular car telephone and transportable units in the UK at lower prices than they sell such products in their home markets.

Companies named in the complaint include JRC, Kokusai, Matsushita, Mitsubishi and NEC, all of Japan, and Novaltel Communications of Canada.

In its complaint, Motorola said that dumping by these manufacturers is severely injuring the European cellular car-telephone industry during its early growth stage. Although it recently reported strong demand for its new cellphones manufactured and sold in the UK, Motorola said that the underlying price structure of the industry has been driven down to levels where it will be difficult or impossible to achieve a reasonable rate of return on its investment due to this dumping.

According to Motorola, Japanese and Canadian producers have sold cellular car telephones in the UK at dumping margins (the difference between home market and export market price) of as much as 200 per cent or more. If its complaint is upheld by the EEC, special dumping duties will be imposed on cellular car telephones brought into the EEC by manufacturers currently dumping products. When Motorola successfully pursued a similar anti-dumping proceeding in the US in 1984-85 the result was anti-dumping duties of 58 to 108 per cent imposed on Japanese exports to the US.

Ferranti voice messaging for Sweden

Swedish Telecom Radio has purchased a Ferranti VM Director voice messaging system for use on the Nordic Mobile Telephone Network. It will provide voice messaging for users of both the long established NMT 450 system and new NMT 900. It will be sited with the Ericsson AXE 10 exchange at Sundsvall where the NMT 900 trial was carried out.

Ferranti claims that its success with Swedish Telecom follows on from the experience that it has gained in providing equipment to the UK cellular telephone networks.

Voice and data switch for the smaller user

Ericsson has staged the European launch of a small version of its MD110 digital PBX, which is claimed to make integrated voice and data communications economic for the small business. Known as the MD110/20, it is cost-efficient for just 48 extensions whereas previously digital voice/data PBXs have only been economic for users needing over 100 lines. Consequently, the new switch is expected to open a significant market for the company among small businesses as well as to national organisations, where it will allow them to connect even the smallest branch offices into a single network.

As well as providing advanced telephone facilities, such as automatic call-back, the MD110/20 can simultaneously carry point-to-point digital data communications and local area networks. It transmits all traffic via standard telephone wiring, thus eliminating the need for dedicated data networks for office automation systems. It also makes a new LAN-type voice networking practice economic for high-rise buildings. The MD110/20 is small enough to serve individual floors with the PBXs on each floor being linked to form a single exchange using channels on an optical backbone. This mirrors current LAN practice, and means that all of an organisation’s LAN and PBX networks can be economically carried on a single cabling system, relieving congested ductwork.

BT managed communications services

British Telecom International has put on a System 400 integrated communications system from System Designers Ltd. BTI will use it for its Primex facilities managed service. This provides a secure, 24-hour availability network configured to meet the needs of large users. It gives these customers a private, international packet-switched network for integrating facsimile, teleprinter, telex and data transmissions. These networks incorporate a new technique which automatically converts tele messages to fax format as well as providing the CCITT X. 400 MHS (message handling service) recommendations.

BTI’s first Primex customers, who will be using it as a stand-alone system for internal communications only, are Japanese business houses Matsushita and Marubeni. It was announced several months ago that these two companies had entered into contracts worth £4m with BTI for the provision of these services between Tokyo, London and New York.

The integrated communications market is assuming an ever greater importance for business with the markets for such systems expected to grow to around £1000 million per annum by 1990.

According to SDL, System 400 is the only fully integrated, fault-tolerant system currently available which is capable of handling...
the message volumes required by the PTTs, the very large multinational companies, and the international banks. It is a family of products which enables different makes of computer and different communications methods to be linked on a worldwide basis.

In terms of pure volumes of communications, store and forward messaging switches carry the heaviest traffic with many thousands of messages being transmitted every day within some organizations. SDL believes that the message switching module build into System 400 is likely to be one of the most widely used in the growing markets.

Largest ever opto order

In the largest ever order placed in Europe for optical fibre cables, BICC has won a contract worth £6.5 million from British Telecom. The order to supply over 41,300km of optical fibre cable for BT's junction network linking the main trunk and local exchanges.

All the optical fibres for the cable will be manufactured at the Optical Fibres factory at Deeside, a joint venture between BICC and Corning and the largest optical fibre manufacturer outside the USA.

BICC will supply both its proprietary ribbon product as well as the more traditional loose tube cable. Both products are specified for operation at both the second and third "windows" of silica glass where optical fibres achieve their highest transmission capacity and optimum transparency, respectively.

Secure voice and data network for RAF

British Telecom is to supply the Royal Air Force with a secure voice and data network and HoneyWell Bull has been awarded a £7.5 million contract for the message handling sub-system. The network, to be known as Uniter, will consist of 90 PBXs serving 14,000 extensions serving more than 50 user sites in the UK.

BT will act as sub-contractors to the Defence Systems division of GEC Telecommunications under the contract, believed to be worth in excess of £100 million, for the network which is to be designed, installed and commissioned by BT between now and 1990. The switching equipment to be supplied is a military variant of the BTX digital PBX, with a number of added special facilities, as well as hardening against electromagnetic pulse (EMI).

British Telecom's director of customer marketing, Nick Kane, said that "This is one of our largest defence contracts yet and a milestone in the development of British Telecom's strategy as a supplier of large integrated networks."

The message handling sub-system contract involves the supply of 40 DPS6 minicomputers, 500 terminals and a range of applications software. While Honeywell Bull will build the minis itself it will obtain the application software from System Designers Scientific, who will bring to the project experience in message switching and communications systems; and the terminals will come from Lynwood Scientific Developments, both companies acting under sub-contracts from Honeywell.

Inmarsat simulator for Finland

Finland's Rauma Nautical College has ordered a Racial Marine System (SC9050) satellite communications simulator. It is a procedural and protocol trainer designed to make students familiar with the Inmarsat maritime satellite system. Developed in conjunction with Inmarsat, it has full compatibility with the Inmarsat satellite system and incorporates several features which have still to become operational in the real system.

The simulator consists of a number of student 'ship station' positions with both telex and voice communication facilities together with an instructor's position with hard copy recording facilities for later evaluation and appraisal. The advantage of the SC9050 is claimed to be its low cost and flexibility, ideal for nautical colleges and training schools. If an operational ship earth station were used, only one student at a time could be trained and excessive charges would be incurred. This simulator is a development of the first generation system installed and operating in Leith Nautical College in Scotland.

Increased System Y capacity

With the recently completed expansion to its Scunthorpe factory, Thorn Ericsson now has a capacity to manufacture 700,000 lines of AXE 10 equipment per annum. AXE 10 is often referred to as 'System Y', because it is the public telephone switching system adopted by British Telecom as the alternative to System X.

When Sir George Jefferson, BT's chairman, recently opened the £14 million extensions to the Scunthorpe factory he said that "British Telecom's procurement policy is to support British excellence and efficiency whenever we can. In simple terms, that means that we always look at the benefits of buying British as part of our procurement decisions - and Thorn Ericsson's Scunthorpe manufacturing operation is clearly seen as a benefit to British Telecom. It certainly proves that our critics were wrong in suggesting that our digital exchange purchasing policy would drive orders and jobs out of Britain."

He went on to say that "Competition does produce benefits for all concerned, and I believe that System X is today a more effective and attractively-priced product on world markets as a result of our decision to place orders on a continuing basis, with the manufacturer of an alternative system here in the UK."

"So, like our customers, British Telecom now has a choice. Inevitably, orders for each system will vary from time to time, according to such factors as, for instance, the competitiveness of the tenders, the capacity of the respective manufacturers and the amount of work they already have in hand."

Plessey launches signalling systems

Plessey has launched two signalling systems for use in telephone switching systems. One links a PBX to ISDN while the other gives an organization the opportunity to provide transparency of voice features across its network without having to resort to digital trunks.

The former, DASS II (Digital Access Signalling System), allows the PBX to take full advantage of all the power of the public network. Current digital PBX's, such as the Plessey ISDX, share many of the characteristics of System X as used in the public ISDN - digital switching, an integration of voice and data switching, many added-value features and great flexibility.

The signalling protocol employs the DPNSS (Digital Private Network Signalling System) hardware together with appropriate firmware to terminate the 2Mbit/s link from the ISDN. This provides up to 30 64kbit/s information 'B' channels which may be employed for speech or modemless data transmission. Control information relating to all the channels in the ISDN/network link is aggregated into a common signal channel.

APNSS (Analogue Private Network Signalling System) was developed from DPNSS. It provides a number of networking solutions to the end-user. Applications will vary from organizations with growth in mind and requiring APNSS as an interim solution, to businesses such as banks, insurance companies or travel agents requiring transparency to be extended to their sub-branches but are unable to justify the expense of a digital link.

Telecomms Topics was written by Adrian Morant
900MHz gain-controlled amplifier

Transistors in this 900MHz amplifier with voltage-controlled gain are all from one i.c. Plessey's SL2364/5 arrays consist of two long-tail pairs whose tail transistors are internally current-mirrored to similar transistors. Typical $f_t$ of the bipolar devices is 5GHz.

Collector load in the amplifier is a 14mm length of 7551 stripline resonated with a 1-6pF capacitor. A small loop of stiff wire grounded at one end and located a few millimetres above the stripline forms the transformer secondary winding. Graphs for gain and third-order intercept versus voltage bias are shown. At full gain, noise is 9dB.

Other circuits in the SL2364/5 application note are a 150-300MHz frequency doubler, a 100-300MHz frequency tripler and a single-balanced mixer. These circuits have neither coil winding details nor explanatory text.

Mixer design using admittance parameters

Using small-signal admittance parameters simplifies transistor mixer design. Note AN238 from Motorola details the technique and presents three design examples including this mixer for converting 30MHz r.f. to 5MHz i.f. using a 35MHz local oscillator.

Both local oscillator and r.f. signals are base injected. For the 2N2221A working at 2mA collector current and 10V collector-emitter voltage,

$$Y_{1e} = (6.25 + j9.5) \text{mmhos (30MHz)}$$

$$Y_{2e} = (0.027 + j0.28) \text{mmhos (5MHz).}$$

Consequently, design criteria for the input network are,

$$\frac{1}{V_{1e}} = (1600\Omega + 50.5pF)$$

and for the output network,

$$\frac{1}{V_{2e}} = (3700\Omega + 0.9pF).$$

Full equations for obtaining component values are included in the note. Characteristics of two further mixer circuits, both for 250MHz conversion to 50MHz output, are also given.
**APPLICATIONS SUMMARY**

**Low-power frequency synthesizer**

Features from both the 4750 frequency synthesizer and 4751 universal divider are included in one bus-programmable frequency synthesizer designated TDD1742. Designed for low-power v.h.f./u.h.f. synthesis, it is suitable for portable and mobile radio applications. It has a high-gain phase comparator with sample-and-hold capacitor and phase-modulation circuits.

Frequency range of this application circuit from Mullard’s TDD1742 development.

At power up, pin 25 being high determines that the device will operate in memory mode, i.e. programming data is read from rom. For operation directly from a microcontroller, pin 25 is held high and programming data is strobed into the device externally. With the phase modulator off, supply current is less than 1.5mA; minimum supply voltage is 7V.

**175MHz video amplifier/driver**

A differential preamplifier, variable-gain stage and class-A output stage within the TP1900 convert 750 video input at 714mV (RS170) to c.r.t. cathode drive. For a 55V swing into 200Ω and 6pF, output rise time is 2.5ns so the device is suitable for high-resolution monitors; gain is variable from 0-85V/V.

Here the device is shown connected for 0.5V common-mode input, and output from a 5.4V buffered zener reference feeds gain and offset potentiometers. Blanking input sets output to 2V below the black-level, which is set using the offset control. This circuit is from the preliminary data sheet for the Teledyne TP1900.
Available from Dean Microsystems is the VMETRO VME Bus Analyser. Ideal for solving VME Bus problems and an ideal tool for the system integrator, it combines all the important features of an expensive Logic Analyser dedicated to the VME Bus in one simple to use menu driven VME Module.

DEAN MICROSYSTEMS LIMITED
7 HORSESHOE PARK, PANGBOURNE, BERKSHIRE RG8 7JW. Tel. 07357 5155 Telex 846396

ENTER 18 ON REPLY CARD

KESTREL ELECTRONIC COMPONENTS LTD.
- All items guaranteed to manufacturers spec.
- Many other items available.

'Exclusive of V.A.T. and Post and Package'

KESTREL ELECTRONIC COMPONENTS LTD.
- All items guaranteed to manufacturers spec.
- Many other items available.

'Exclusive of V.A.T. and Post and Package'

IEEE 488.2 SYSTEMS
NEW . . . Controller using APRICOT XEN 386 or Xen!
The best controller yet?
IBM or Compatible Computers
Advanced IEEE 488.2 controller using Turbo Pascal or
QuickBASIC makes it both powerful and easy to use.
Acorn 'B' or Master Computers
Believed to be the best IEEE 488.2 controller for these
computers. Available as a complete controller or as a
software package to update your Acorn interface.

All controllers use IEEE 488.2 Commands
making programming easy and effective while offering
unbeatable value for money.
Consultancy work undertaken. Specialising in IEEE 488
and Ethernet Systems.

Dealers welcome.
M A INSTRUMENTS LIMITED
Moordene, Axtown Lane, Yelverton, Devon PL20 6BU.
Tel: (0822) 853585

ENTER 31 ON REPLY CARD

ICOM Communications

ICOM introduces the IC-R7000, advanced technology, continuous coverage communications receiver. With 99 programmable memories the IC-R7000 covers aircraft, marine, FM broadcast, Amateur radio, television and weather satellite bands. For simplified operation and quick tuning the IC-R7000 features direct keyboard entry. Precise frequencies can be selected by pushing the digit keys in sequence of the frequency or by turning the main tuning knob. FM wide/FM narrow/AM upper and lower SSB modes with 6 tuning speeds. A sophisticated scanning system provides instant access to the most used frequencies. By depressing the Auto-M switch the IC-R7000 automatically memorises frequencies that are in use whilst it is in the scan mode. This allows you to recall frequencies that were in use. Readout is clearly shown on a dual-colour fluorescent display. Options include the RCI-12 infra-red remote controller, voice synthesizer and HP-1 headphones.

Please rush me details of the IC-R7000 and my nearest ICOM dealer.

Name
Address

Post to: ICOM (UK) LIMITED, Dept W W, FREEPOST, Herne Bay, Kent CT6 8BR (no stamp). Tel: 0227 363659.

ENTER 27 ON REPLY CARD

Enter 45 on Reply Card

Enter 18 on Reply Card

Enter 31 on Reply Card
Noise resistance in mains signalling

Research into noise-resistant mains signalling reveals new methods of producing signals with tightly controlled bandwidths which reduce interference between data transmissions.

N.A. YOUNG

Fig. 1. Spectrum of an up-converted m sequence (left) and Fig. 2. K-sequence spectrum.

At the MATES 1982 conference two papers were presented describing a system for low-voltage mains signalling. This article describes further research done on that mains-borne system, the expertise gained in signal processing and the improvements to the system that resulted, both in communications performance and in spectral control.

Although the techniques developed are primarily applicable to mains signalling and similar noisy environments they have wider uses, and interest has been shown from people in many different areas of signal processing. The two areas of research described in this article are reduction of the spread-spectrum bandwidth and improvements in communication performance.

Over the four or more years since the system was first proposed, extensive research has been done at THORN EMI, supported by field trials, into various aspects of communication over the electricity mains. A 19-month 1000-house trial has recently finished, using the spread-spectrum signalling technique referred to at the 1982 conference. During that time further investigation was carried out into some of the fundamental theory of communicating in a noisy environment, in particular under the limitation of restricted bandwidth. Much of the work was done first on a computer, using a simulator and other programs, and then validated in the field.

Early in the 1000-house trial the BISMA*
control-manufacturers body recommended that the spread-spectrum bandwidth for ESI use should be restricted to 40-90kHz instead of the current 50-150kHz, with negligible signal outside these limits. This paper describes research done into meeting that specification and the new sequences and signal-processing techniques that resulted. A further, separate improvement in performance was also achieved using the same basic tools – the computer simulation and other programs – and it is also described briefly here. The spectral content of the transmitted signals is shown to be very sharply defined, and the communications performance of the system is shown to be improved also in spite of the reduction in bandwidth.

PRESENT COMMUNICATION SYSTEM

Understanding of the techniques and results described below requires some knowledge of the current communication methods. A very brief outline is therefore given here, the system described being that actually used in the 1000-house trial.

Spread-spectrum transmission is used for two reasons: firstly because it results in a low spectral power density, thus reducing interference; and secondly because mains characteristics change significantly with time due to electrical interference and notches in the frequency response caused by loading. Spreading the spectrum reduces the probability that the chosen frequency of operation can suddenly become completely unavailable for a significant length of time.

The current mains-borne system uses the direct-sequence baseband method of spreading the spectrum. Binary sequences used are derived from m-sequences, up converted so that the nominal 3dB bandwidth is 50-150kHz, see Fig.1.

Two 1024-chip sequences are used, one for data zero and the other for data one, and the appropriate one is transmitted in response to the controlling data line. They are stored in read-only memory and are clocked out at about 200kHz to give a data rate of 200kHz. The rom output is filtered to reduce out-of-band noise (which changes the rectangular shape of the sequence to a considerable extent) and fed into a power amplifier, then onto the mains through a capacitor and transformer.

Reception and decoding of the data is quite complex, using a fast hardware correlator followed by substantial software processing. Before the correlator, the incoming signal is filtered to reduce out-of-band noise and then hand clipped since the correlator works in binary data. It is then correlated in eight positions at once with both reference sequences (data one and data zero) and the results are analysed and compared to determine which data bit has been transmitted.

The magnitudes of the correlations are also used to determine whether genuine data

New sequence improves data communications

The K sequence, developed as part of the noise-resilient mains signalling project, reduces interference between adjacent transmissions by reducing out-of-band noise.

There are a number of possible variations on the basic K sequence which is named after Ian Kimber, the THORN EMI scientist who invented it. Notches or other differences can be introduced in the pass band for special purposes; indeed the spectrum can be tailored to practically any extent, depending on the system requirements.

Usually a fairly straightforward shape is needed, with a flat pass band and negligible noise outside, cutting off sharply at the edges. Generation of this basic sequence is described below, using as an example the mains-borne system with 1024-chip sequence, a clock rate of 200kHz and a bandwidth of 40-90kHz.

A fairly even flat-topped spectrum in the pass band is desired since otherwise the advantages of the spread-spectrum technique are reduced as single frequency or f.s.k. transmission is approached. Thus the sequence has to contain frequencies from all the way across the band, each with an individual bandwidth large enough to ensure that there are no significant gaps in the spectrum. On the other hand the bandwidths must not be too great as the cut-off obtained becomes less sharp as they increase.

Thus the best compromise is to set the individual bandwidths to a value that is the same as the distance from one of the component frequencies to the next. Choosing the nearest power of two for the number of frequencies since gives an exact number of chips for each one.

Assume that there are N frequencies in a 1024-chip sequence. Each sequence period is 5ms so each frequency lasts for 5/N ms. This makes bandwidth roughly N/5kHz, which is the actual distance to the first null since the spectrum of a single frequency transmitted once is a sinc function. Distance between frequencies is (90-40)/N kHz so the two can be equated to give 50/N=N/5 or N=250. This results in N=16 so there must be 16 component frequencies in the sequence, each 64 chips long.

Generation of the sequence is quite simple. The frequencies are selected in an arbitrary order – 16 frequencies gives over 2x10¹⁵ possible sequences, though they will not all have good cross-correlation functions with each other. For each frequency a sine wave is calculated and sampled at the clock frequency to give a set of 64 chips of 5/16ms total duration.

At the boundary between frequencies the phase is kept constant to reduce discontinuities as far as possible. On each sample the sine wave is quantized to one bit, i.e., set to either one or zero depending on whether the waveform is positive or negative.

This gives the K sequence. It is fairly easy to show that its spectrum (G(f)) is given by

\[ G(f) = \sum_{p=-\infty}^{p=\infty} F(f-pf_s) \sin(\frac{\pi f}{N}) \frac{\sin(\pi f/T)}{\sin(\pi f/2)} e^{-\frac{j\pi f}{2}} e^{-\frac{j\pi f}{N}} \]

which is the characteristic sinc function where F(f) is the basic flat-topped spectrum desired, f, is the sampling frequency and T=1/f. Factor

\[ e^{-\frac{j\pi f}{2}} \]

is a phase factor whose modulus is always 1.

This spectrum is shown in Fig.2, though since it is plotted as a power spectrum the envelope is actually \( \text{sinc}^2(\chi) \). Note both the reflections of the main lobe about the sampling frequency and the quantization noise between the lobes. Both of these need to be removed by the next stage of processing.

DIGITAL FILTERING

Sequences and waveforms generated are held in the computer to a precision of eight samples per chip in time and to the limit of its resolution (32 bits) in amplitude, so that there is plenty of scope for processing. Also, all necessary operations can be performed in the frequency domain, which makes processing the spectrum very much easier. Thus the digital filtering, like the sequence generation, is done off line on the computer, and the problems of causality do not arise.

The easiest way of achieving the sharp cut off required is simply to set the spectrum to zero outside the required band and transform back to the time domain. This however produces an analogue waveform that cannot be transmitted in the same way as before, and so quantization is necessary if it is to be stored in memory.

Choice of the number of bits N is dictated by the trade off between the amount of cut off required and the available bits of memory. The numbers resulting from the quantization are normalized to \( 2^N \) so that they can be stored in memory. It can be shown that the signal-to-quantization noise ratio achieved by this method is \( 6\log_2(N) \) (over the whole band, i.e., up to half the sampling frequency).

To move the side lobes far enough away so that the analogue front-end filters can remove them it is only necessary to sample at a high enough frequency. Since all the processing is done at eight samples per chip, the sampling frequency of the transmitted waveform can be up to 1600kHz. This does not mean altering the chip rate or the data rate, but simply transmitting to a greater precision in time.
or pure noise is being received. On receiving noise, the receiver goes into search mode, that is, it searches for the best position on the correlation function to lock onto and analyse.

For the correlation process to be effective the auto-correlation function of each sequence must have no significant peaks (‘noise’) anywhere away from the central one that the system could lock onto since this would degrade performance. Also the cross-correlation function with noise and with the other sequence must have no significant peaks at all to avoid data errors.

M sequences are known to have the best available auto and cross-correlation functions with each other and with random noise, and the derivative that is presently used is almost as good. The complete auto-correlation function of this derivative is almost completely ‘clean’ — the reason for the small amount of ‘noise’ that exists is a chip has been added to the m sequence to make its length a power of two.

In designing a new sequence for the system care must be taken to ensure that the correlation characteristics are equal -satisfactory.

REDUCTION OF SPREAD-SPECTRUM BANDWIDTH

When mains-borne communication was first proposed the only bandwidth consideration was that of efficiency. Compliance with existing legislation was not seen as a problem. However, early on in the trial, BISMA produced an interim document (BMSAI) proposing division of the spectrum into bands, of which the relevant one for this purpose is 40-90kHz. There is a limit on the power that may be transmitted outside this band, and the restrictions imposed are very stringent.

In the current system there is far too much signal outside these limits to satisfy the proposed regulations, and so some modification would be required if the system were to be ahead and comply with the standard.

The analogue filters presently on the transmitter output are insufficient for this purpose, though it would be possible to use much higher-order filters to produce the desired effect. However, such filters would be expensive and elaborate, would require much physical space and would introduce unacceptable phase shift into the pass band. Thus any effective methods needs to be basically digital, leaving at most a very small amount of interference for the analogue filters to cope with.

To achieve the aim of drastically reducing unwanted noise two procedures were used: firstly the generation of a suitable digital sequence with roughly the right frequency characteristics, and secondly digital filtering of the sequence to achieve the sharp cut off required. As a result of this processing a somewhat more complex transmission method is required since digital filtering turns the binary sequence into an analogue waveform. However, the reception and correlation process is still the same, which means that the only change is that the system has to store and transmit this waveform instead of the original sequence.

THE K SEQUENCE

The ‘suitable sequence’ mentioned above is one which fulfills two criteria: it must possess a satisfactory auto-correlation function with no spurious peaks, and it must be substantially unaffected by the digital filtering as far as correlation is concerned. Additionally the digital filtering process must not produce too uneven a waveform as this would reduce signal-to-noise ratio on reception.

A sequence fulfilling these qualifications is the so-called K sequence, the generation of which is described fully in the panel and whose spectrum is shown in Fig. 2. Note that well over half of the energy is in the main 40-90kHz lobe, which means that subsequent digital filtering has only a small effect on the time-domain distribution of the sequence.

This represents the limit of the spectrum tailoring available using binary sequences and a 200kHz clock, so the sharp frequency cut off desired required a different approach — hence the digital filtering.

The important and unusual feature of the K sequence is that its spectrum can be very tightly controlled. Because of the sharp edges of the spectrum a very large ‘brickwall’ cut off can be applied by a filter without altering the basic shape of the sequence.

Since the filter is digital no phase shift is introduced in the pass band, so the resulting analogue waveform follows the outline of the original sequence; in particular the zero crossings are still the same, which is important for correlation purposes.

Additionally, if the waveform is normalized after filtering so that the highest peak is at the original magnitude of the binary sequence, less than half the energy is removed from the sequence which is an important consideration for transmission. Since it is then practically unaffected by the output filters, the transmitted power is comparable with that of the binary sequence used in the trial, which is severely altered by these filters.

DIGITAL FILTERING

Digital filtering, done off line, introduces the sharp cut off required into the spectrum. It consists of two parts: firstly a ‘brickwall’ filter in the frequency domain, and secondly, back in the time domain, a requantization to as many levels of output as desired and a resampling at a higher clock frequency. The second stage is required to enable the analogue result to be digitally stored and transmitted. These two processes are explained in detail in the panel and the results are described below.

An essentially analogue waveform (actually multi-level quantized) is produced which follows the original binary sequence shape but has rounded edges. Its spectrum consists of the main lobe of the original sequence, sharply defined to an extent that depends on the number of quantization bits (roughly 6dB cut off per bit).

There is a side lobe further up, which is a reflection of the main lobe about the new clock frequency. This is inevitable in a digital system but can be moved far enough away so that the ordinary analogue output filters can remove it on transmission.
Figures 3 and 4 show the original \( K \) sequence and a six-bit quantized version in the time and frequency domains respectively. Note the side lobe at just below 800kHz (the new sampling frequency), and the fact that the spectrum is clean between the two lobes. Theoretically, there is no limit to the cut off that can be achieved by this method—the limitations are likely to be the output amplifiers and other analogue devices.

This multi-level waveform's autocorrelation function is also essentially that of the original sequence, the only difference being that it changes shape gradually as the sequences drift past each other (as they do in a real system because of unsynchronized clocks). This produces no problems, and indeed is used in one method of analysing the incoming data described below.

The autocorrelation function is slightly different from that of an \( m \) sequence or its derivative, but just as good for locking on to. In many respects it is better because at one stage of the clock drift cycle the auto-correlation function of the filtered \( m \) sequence becomes very small.

**TRANSMISSION OF THE FILTERED \( K \) SEQUENCE**

The original 1024-chip binary sequence was held in ROM and clocked out at approximately 200kHz, producing the spectrum shown in Fig. 1 with 50-100kHz 3dB bandwidth. Only three bits of each byte were used, one for each sequence (data one and data zero) and one for an end-of-sequence marker which is required by the hardware.

To be reasonably simple and compatible with the existing system the same basic method is used, but some alterations are required. Considerably more memory is needed and using byte-wide read-only memory limits quantization to six bits, though more could easily be used by placing two ROMs in parallel.

The two signals are held in two separate areas of memory, and the most-significant address line is switched as required. Six bits are used for the transmitted signal, one is the most-significant bit of the other waveform, which is used for correlation, and the eighth bit functions as the end-of-sequence marker. If desired this marker could be produced using hardware.

ROM clocking is at four times the previous rate, i.e. approximately 800kHz. This speed is necessary to achieve the desired spectrum, and does not alter the effective chip rate of 200kHz—there are simply four cycles per chip instead of one.

Six bits representing the signal to be transmitted are latched into a d-to-a converter and the resulting analogue signal feeds an output amplifier, which of course is a linear device and therefore maintains the shape of the waveform.

Since the output filters have negligible effect on the main lobe, what appears on the mains is the exact spectrum required, with the side lobe down by more than 50dB. Any other noise can only come from the amplifier or the main itself. This system was implemented in hardware, which involved minor changes to the existing mains-borne equipment. For a continuous transmission of one sequence the results are identical to the theory as far as can be measured, except for an insignificant quantity of extra noise introduced by the power amplifier at around 1MHz.

Transmitting different sequences spreads out the spectrum somewhat, the spreading becoming noticeable at about -30dB. This is due to edge effects which appear when the line spectrum of a continuous transmission changes to the continuous spectrum of a pulse transmission. It is a relatively small effect, extending for only a few tens of kilohertz before being lost in the general noise, though it does not depend on the amount of quantization. If necessary, further filtering of the sequences could be performed on the computer to reduce or eliminate this, at the expense of a slight degradation in performance.

The system has also been tested in the field to a limited extent. It had been feared that a degradation in performance might have resulted from the bandwidth reduction; in fact this new system actually communicated noticeably better than the current system.

This improvement is due to the fact that the \( K \) sequence conforms to the sampling theorem by having all but a negligible proportion of its energy at less than the Nyquist frequency of 100kHz. This is not true of \( m \) sequences, which are in very.
common use in communications at the moment, though not generally in environments with such a high degree of phase distortion. Even so, it is possible that problems could result from this fact, which does not appear to have been recognized in the literature. The effect is more pronounced in the up-converted version, which has almost half its energy above 100kHz, causing the correlation function to become very small at certain points on the clock drift cycle; using K sequences removes the problem and therefore improves communications performance.

**IMPROVEMENTS IN PERFORMANCE**

The computer model of the mains-borne communications module used extensively in the reduced-bandwidth work is a detailed simulation of the system. It is a continuous hardware model using the clock rate as the basic unit of time, and it is interruptible after each cycle so that the system parameters can be changed or examined.

These features of the model simplify assessment of the effects of changes made to the software and hardware of the front end, and so the simulation was also used for work on improving the communications performance of the system.

Various methods of improvement were considered, including an analogue correlator and low-level error correction, some of which can potentially yield a several decibel increase in s-to-n ratio. One method is described below.

The method of processing the results obtained from the fast correlator is important, and changes here can alter the performance of the receiver considerably. Our current system simply adds together the squares of the values of the eight results from the correlator, separately for each reference sequence (data one and data zero), producing two numbers that are compared to determine which data bit has been received. Instead of this, a matched filter can be used for the eight correlation results, which makes it possible to take the transmitted signal characteristics into account.

Using a matched filter gives an improvement of 10dB over the current method, if desired, the channel characteristics could also be allowed for, and thus the effects of any known distortion could be minimized, resulting in a further improvement in performance.

**CONCLUSIONS**

A new method of generating and transmitting spread-spectrum signals has been devised and implemented. Bandwidth can be tightly controlled, and the main lobe can be placed wherever it is wanted. There is no theoretical limit to the sharpness of the cut off that can be obtained by this method, at least with one sequence continuously transmitted.

As implemented, the system comes close to complying with the BISMA specification. If required, further improvements could be made using the same basic techniques. The new signalling system works at least as well as the present one; however, it has been field tested to only a limited extent, and more trials are needed to be certain of its performance.

System performance has been enhanced by a new method of analysing the correlation results which can improve s-to-n ratio by up to 10dB. Being general in nature, the techniques are revised and the results obtained from the research on spread-spectrum communication are applicable to areas other than mains-borne signalling. In particular the methods of generating signals with tightly-controlled bandwidths should be of interest wherever spectral efficiency is an issue.

**References**


**Further reading**

Eyre, B.E., 1987, ‘Results of a comprehensive field trial of a UK customer telemetry system using mains-borne signalling’, Proceedings, Fifth International Conference on ‘Metering apparatus and tariffs for electricity supply’, IEE.

N. A. Young is with THORN EMI Central Research Laboratories UK

---

**ORDER FORM**

- Please send me Electronics & Wireless World for one year at the special price of £19.50
- Please send me Electronics & Wireless World for three years at the special price of £53.00
  - Inclusive of postage and packing
  - Enclose a cheque/PO to the value of £
  - Made payable to Reed Business Publishing Limited.

Please debit my credit account:

- Access
- Barclaycard/Visa
- Diners Club
- American Express

Signed

Name

Job Title

Address

- Please return to Electronics & Wireless World, Room 316, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
By storing digital audio in a highly durable medium convenient for mass duplication, the Compact Disc has overcome the major drawback of analogue audio recording. Its tremendous success as a consumer product has brought down the cost of the player and made it attractive as a computer peripheral.

The Compact Disc is an optical disc which cannot be recorded by the user, since it is designed for mass duplication of pre-recorded music. It has many advantages as a storage medium. No contact is made between the disc and the laser pickup; and as there is no wear mechanism, life is indefinite. The principle of reading through the thickness of the disc reduces the effect of surface contamination. Random access to any part of the disc is easy because it is only necessary to move the pickup radially to reach any part of the recording.

CD's main advantage in a data storage application, however, is its capacity in relation to cost. Digital audio requires about one megabit per second per audio channel. Since CD can hold at least one hour of stereo, the capacity is staggering — about 600 megabytes. This is the equivalent of about five reels of half-inch computer tape, or some 200,000 pages of text. A CD player costs about the same as the floppy disc drive in a home computer, but has about 1500 times the capacity.

Publishing houses are therefore exploiting the use of Compact Disc as a read-only memory — hence the name CD-rom. Technical databases are already being made available for commercial, financial and medical use. Several years' issues of all the major journals in a given discipline can be carried on a single disc, making optical disc publishing a reality. For companies, the cost of a suitable computer and CD-rom drive is trivial, and the cost of the discs is reasonable considering the storage space which is released. For the consumer, encyclopaedias are a natural application.

ADAPTATION FOR DATA

Compared to the heads used in magnetic disc drives, the laser pickup of a CD player is much heavier. Access speeds will therefore be slower than for hard discs, although similar to the speed of floppy disc drives. The track spacing of only 1.6 micrometres means that the destination track has to be approached slowly.

### ERROR CORRECTION

Two basic error mechanisms are at work in CD. Small random irregularities in the ends of the bumps where the disc is stamped can cause one 14-channel bit pattern to become another, corrupting eight data bits. Fingerprints on the disc surface can make the track less distinct and large debris can obscure it, causing errors of many bits known as burst errors.

All error correction techniques work by adding to the data extra bits which have been calculated from the data. These extra bits convey no more information than is already contained in the data, and so they are said to be redundant. The addition of redundancy produces a data block which always has some special characteristic irrespective of the actual data content. This characteristic is called a code word. If on replay the data block does not have the special characteristic, it is not a code word and there has been an error.

The redundancy added to the data is calculated mathematically from that data. For simplicity of hardware implementation, the mathematics used is modulo-2, where there are no borrows or carries between different powers. In modulo-2 addition and subtraction, the sum of any two bits is their exclusive OR. Theorem 1 shows how this property enables the generation of an error detecting and correcting code.

**Theorem 1.** If two bit patterns are related by the equation

\[ a + b = c \]

then the sum of any of the three patterns is always the same.

**Equation 1.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 2.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 3.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 4.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 5.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 6.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 7.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 8.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 9.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 10.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 11.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 12.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 13.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 14.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 15.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 16.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 17.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 18.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 19.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 20.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 21.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 22.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 23.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 24.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 25.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 26.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 27.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 28.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 29.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 30.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 31.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 32.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 33.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 34.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 35.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 36.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 37.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 38.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 39.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]

**Equation 40.**

\[ a = \text{a primitive element} \]

\[ a + b = c \]
Compact Disc uses bytes, so that the field has the Galois Field is a function only of the element fields is used exclusively. The size of correction systems, the principle of finite fields can all be obtained by raising the so called primitive element to successively higher powers. Whether two elements are added, subtracted, multiplied or one raised to the power of the other, the result can only be another element, which makes life very easy for the hardware designer.

In the Reed-Solomon codes used in the Compact Disc and in many other error correction systems, the principle of finite element fields is used exclusively. The size of the Galois Field is a function only of the number of states (known as elements) can all be obtained by raising the so called primitive element to successively higher powers. Whether two elements are added, subtracted, multiplied or one raised to the power of the other, the result can only be another element, which makes life very easy for the hardware designer.

For the purpose of this explanation, a much smaller field, GF(8), will be used, because it keeps the examples to manageable size. The data symbols will be of three bits because $2^3$ is eight. The principles of the Reed-Solomon codes remain the same whatever the size of the field. The number of symbols in a code word cannot exceed one less than the appropriate power of two, so in the examples there will be seven three-bit symbols.

The correcting power of a Reed-Solomon code is determined by the number of symbols in the code word that are allocated to redundancy. In Fig.1, two symbols are redundant, leaving five data symbols. The two redundant symbols P and Q are calculated so that the two checks shown will succeed if they are made on an error-free replay. The P check is simply a modulo-2 sum of all the symbols, and so if one symbol is wrong, the P check equation will give a non-zero syndrome $S_P$ which will be the error pattern. The P check cannot, however, decide where the error was.

The Q check is subtly different because it multiplies each code word symbol by a different power of the primitive element. If one symbol is wrong, the syndrome of the Q check, $S_Q$, will be $S_Q$ which has been raised to a different power depending on the error position. If for example the middle symbol was wrong, the $S_Q$ syndrome would be the error pattern multiplied by the primitive element raised to the fourth power. It is only necessary to multiply $S_Q$ by ascending powers of the primitive element until the result is the same as $S_Q$, and the power needed gives the position of the error. In this manner, the Reed-Solomon codes can determine the nature of the error and its position. Adding $S_Q$ achieves the correction.

Effectively the system has solved two simultaneous equations to find the two solutions, which are the position and nature of the error.

There is an alternative mechanism which illustrates the power of the Reed-Solomon codes. If the position of an error symbol is already known by some separate means, then only one equation need be solved to find what the error is. Thus if the positions of two errors in the code word are known, then two redundant symbols are enough to correct them.

For example, if the fifth and sixth symbols are known to be wrong, the syndrome $S_5$ will be the modulo-2 sum of both errors, whereas the syndrome $S_5$ will be the sum of the errors multiplied by the fifth and sixth powers of the primitive element. Solving these two equations will now give the two error terms known as correctors, which can be added to

---

**Fig.2.** The convolutional cross interleave of a normal Compact Disc. A random error near a burst error can be corrected by the interleaved code word, leaving the burst to be corrected after de-interleaving.

---

**Table:**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1$</td>
<td>Syndrome of the P check</td>
</tr>
<tr>
<td>$S_2$</td>
<td>Syndrome of the Q check</td>
</tr>
<tr>
<td>$S_Q$</td>
<td>Syndrome of the Q check, when one symbol is wrong</td>
</tr>
<tr>
<td>$S_P$</td>
<td>Syndrome of the P check</td>
</tr>
<tr>
<td>$P$</td>
<td>Redundant symbol</td>
</tr>
<tr>
<td>$Q$</td>
<td>Redundant symbol</td>
</tr>
</tbody>
</table>

---

**Diagram:**

- Unequal delays from 0 to 108 blocks
- Calculate four bytes Q redundancy from 24 data bytes
- Delay even symbol 1 block
- Calculate four bytes P redundancy from 28 data bytes
- Reorder incoming samples to separate odd and even
- Delay every other symbol 1 block
- Invert redundancy (gives non-zero in with zero data)

---

**Reorder:**

- Calculate four bytes Q redundancy from 24 data bytes
- Delay even symbol 1 block
- Calculate four bytes P redundancy from 28 data bytes
- Invert redundancy (gives non-zero in with zero data)

---

**Delay:**

- Unequal delays from 0 to 108 blocks
- Calculate four bytes Q redundancy from 24 data bytes
- Delay even symbol 1 block
- Calculate four bytes P redundancy from 28 data bytes
- Reorder incoming samples to separate odd and even
- Delay every other symbol 1 block
- Invert redundancy (gives non-zero in with zero data)
the offending symbols. The significance of this method will become clear when inter-leaving is discussed.

If four redundancy symbols are used in each code word, then four simultaneous equations can be solved, with some difficulty, to locate and correct two erroneous symbols. But the complexity is considerable and there is some danger of miscorrection if the error is greater than two symbols.

**INTERLEAVING**

Using Reed-Solomon codes over GF(256) it is possible to correct errors of byte size, but much larger burst errors may occur because of contamination. The solution to these bursts is to use inter-leaving. Data is formed into code words, but these code words are not recorded one after the other on the track: they are woven together so that a large error causes slight damage to many code words instead of severe damage to one. In the convolutional interleave of Compact Disc, sequential sample bytes are formed into code words which become the columns of a rectangular array, which is then sheared by subjecting each row to a different delay. The data bytes are again read out in columns, when they will have been interleaved. If a burst error occurs, when the data is deinterleaved on replay there will be separate single symbol errors in several different code words, which can easily be corrected.

The problem with this simple system is that the occurrence of a random error near a burst can still result in excessive errors in one code word after de-interleave. The solution adopted is to use the so-called cross interleave technique. In this approach, code words are formed on input data columns as before, but further code words are also formed on columns after interleave. A random error near a burst error is corrected by the interleaved code word, leaving the burst to be corrected after deinterleaving.

There is a further and powerful consequence of using cross interleave. If a burst error occurs, the interleaved code will be overwhelmed and powerless to correct it, but it serves the purpose of detecting the error by declaring every sample in the code word to be bad by attaching a flag bit to them. After de-interleave, the burst error will have been converted to single errors in many code words, but with the significant advantage that the position of the error is already known. As before, if the position is known, twice as many errors can be corrected and so the de-interleaved code is made more powerful.

Figure 2 shows the interleaving arrangement used on the Compact Disc. Prior to interleaving, four bytes of redundancy Q are included in each code word; and after interleaving, another four bytes of redundancy P are included in the resultant diagonal code words. On replay, the four P check symbols will be used to correct random single byte errors with high reliability since all four equations must agree on the correction. The probability of making a miscorrection is very slight here. The presence of random errors is thus prevented from reducing the efficiency of the interleave.

In the case of a burst error, the P code is overwhelmed and attaches error flags to every symbol in the code word, such that after de-interleave the four Q redundancy bytes can correct up to four errors. The way in which the two code words assist each other using the geometry of the interleave is what makes the cross-interleaved Reed Solomon code so powerful.

Under extreme circumstances the error correction system will be unable to correct properly. Suppose that after de-interleave, five or more error flags appeared in one code column of the array, whereas Q redundancy is diagonal, as shown in Fig.6.
The correction system would have to declare all of the flagged symbols uncorrectable, and the only course of action available in a CD player is to use concealment. But in CD-rom this approach cannot be used. Further error correction is necessary, which implies that more redundancy is needed.

**CD-ROM BLOCK STRUCTURE**

The sync block structure of the CD track is shown in Fig. 3. This is maintained in CD-rom so that the mastering equipment and playback processing can be identical. Following the sync pattern, there is a single byte of subcode, then a total of 24 data bytes and eight redundancy bytes. The subcode bytes in a CD build up into a subcode block after 98 such sync blocks. This apparently strange number was chosen so that with the standard sampling rate of 44.1kHz the subcode block rate would be 75Hz. The subcode contains flags which assist the player to find the beginning of a particular recording. In CD-rom, the same subcode structure must be retained and so the data corresponding to the audio samples for one subcode block is made into one codeword block for error correction and addressing purposes.

One block contains 98 x 24 = 2352 bytes. The structure of this block is shown in Fig. 4 in a way which relates to the original audio application of stereo samples of 16 bit word length. At the beginning is a sync field, which is all ones except for the first and last bytes which are zero. The next four bytes specify the time along the track from the beginning in minutes and subcode blocks (1-15) and the mode.

The track timing would normally be the same as the track timing carried in the Q subcode, but repeating it in the data field means that the player does not need to communicate subcode to the computer. A further convenience is that computer tapes generated for disc cutting have a time reference, since Q subcode is put on by the disc cutter.

Next there follow 2048 bytes (2K) of user data, which is a convenient size in computer terms. The remaining 288 bytes are occupied by additional redundancy and eight bytes reserved for future use.

It is now possible to deduce the actual user data capacity of CD-rom. Playing time is restricted to one hour, which brings a reduction in the raw random error rate by virtue of longer recorded wavelengths than for the audio disc (for which the maximum is 75 minutes). Since the subcode block rate is 75Hz, it is easy to obtain the user data rate as 2K x 75 bytes per second, or 150Kbytes/s.

The overall capacity of the disc is then given by multiplying this rate by the playing time:

\[ 60 \times 60 \times 130 \text{ Kbyte} = 540 \text{ Mbyte}. \]

**EXTRA ERROR CORRECTION**

The additional error correction needed by CD-rom also uses Reed-Solomon coding over GF(236) which means that the symbols are byte size. Figure 5 shows how the data corresponding to the subcode period is arranged. The 16-bit words from the CD are split into high byte and low byte and formed into two separate arrays which are identical in size and structure.

Each array is 43 columns wide. The first 24 rows contain the four-byte header, the 2Kbytes of user data and four-byte cyclic redundancy check character calculated over the header and user data. This serves as a final error detection stage after all the correction processes, to give a reliable indication that the corrected data is error free.

Each column of the array is then made into a P code word by the addition of two bytes of Reed-Solomon redundancy. The P redundancy occupies another two rows of the array.

To give a cross interleaved structure, Q code words are then generated on diagonals through the array. Figure 6 shows how these diagonals wrap around the array to form what is known as a block completed interleave. As one diagonal begins in each row of the data and P redundancy, there are 26 diagonal code words. The two bytes of Reed-Solomon redundancy for each code word occupy the first 26 positions of the last two rows of the array.

2048 + 4+ 4+ 8+ 172+104 = 2340 data hdr e.d.c. res P q total

The action of the system is as follows. When the disc is played, random errors are corrected before de-interleave and burst errors are detected. The error flags accompany the data through the de-interleave process to act as flags for correction by erasure. Up to four erasure corrections can be made by the standard CD player chip set, but if this number is exceeded the player declares them uncorrectable and in an audio application would use concealment. In CD-rom, however, the second layer of error correction operates on the residual errors. Each of the additional codes can locate and correct single errors, but erasure correction can double this power if the uncorrectable flags from the CD player are used. These are not always available, however. The block completed cross interleave of the additional correction system has as its input errors which are random, since the interleave of the CD player broke up all the largest burst errors on the disc track. In some systems the additional error correction is performed in software, and this allows an interactive process to be used where P and Q codewords are used alternately to maximize the probability of correction. Finally the c.r.c.c. is tested, and if this is satisfactory, the data is assumed error-free.

**SOFTWARE**

The CD-rom standard specifies only how user data shall be stored reliably on disc and so each individual organisation is free to use any directory structure under any convenient operating system. This is not necessarily a good thing, because it means that there is no such item as a standard CD-rom.

A given disc will be accessible only by the software it was designed to work with. The penalty of premature software standardization is that applications of CD-rom which are still emerging might conflict with it.

One solution which has been proposed is for CD-roms to contain several versions of retrieval software as well as the actual data. Each disc would carry a standard boot block, which would allow a computer to read the appropriate control software from the CD-rom itself.

Since the capacity of CD-rom is so large, the performance of retrieval software is crucial. Data on the disc must be indexed such that keyword searches can be undertaken in the shortest possible time. In a relational database on a magnetic disc, the location of the physical address of the required data will need a path through a decision will result in a seek to the next linked file. But CD-rom seeks quite slowly, and retrieval software based on magnetic discs would be clumsy. The high capacity of CD-rom can be used to enable fewer layers of decisions to be made, out of more possibilities.

An extensively-indexed database might require so much storage for the index as for the actual data. There is, of course, a tradeoff, as the index size can be reduced if slower access is acceptable.
1050

TECHNOLINE VIEWDATA SYSTEM. TEL: 01-450 9764
<table>
<thead>
<tr>
<th>74 SERIES</th>
<th>74S SERIES</th>
<th>74LS SERIES</th>
<th>74G SERIES</th>
<th>74A SERIES</th>
<th>74P SERIES</th>
<th>74Q SERIES</th>
<th>74H SERIES</th>
<th>74T SERIES</th>
<th>74W SERIES</th>
<th>74S SERIES</th>
<th>74LS SERIES</th>
<th>74G SERIES</th>
<th>74A SERIES</th>
<th>74P SERIES</th>
<th>74Q SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>7401</td>
<td>7402</td>
<td>7403</td>
<td>7404</td>
<td>7405</td>
<td>7406</td>
<td>7407</td>
<td>7408</td>
<td>7409</td>
<td>7410</td>
<td>7411</td>
<td>7412</td>
<td>7413</td>
<td>7414</td>
<td>7415</td>
</tr>
<tr>
<td>7416</td>
<td>7417</td>
<td>7418</td>
<td>7419</td>
<td>7420</td>
<td>7421</td>
<td>7422</td>
<td>7423</td>
<td>7424</td>
<td>7425</td>
<td>7426</td>
<td>7427</td>
<td>7428</td>
<td>7429</td>
<td>7430</td>
<td>7431</td>
</tr>
<tr>
<td>7432</td>
<td>7433</td>
<td>7434</td>
<td>7435</td>
<td>7436</td>
<td>7437</td>
<td>7438</td>
<td>7439</td>
<td>7440</td>
<td>7441</td>
<td>7442</td>
<td>7443</td>
<td>7444</td>
<td>7445</td>
<td>7446</td>
<td>7447</td>
</tr>
<tr>
<td>7448</td>
<td>7449</td>
<td>7450</td>
<td>7451</td>
<td>7452</td>
<td>7453</td>
<td>7454</td>
<td>7455</td>
<td>7456</td>
<td>7457</td>
<td>7458</td>
<td>7459</td>
<td>7460</td>
<td>7461</td>
<td>7462</td>
<td>7463</td>
</tr>
<tr>
<td>7464</td>
<td>7465</td>
<td>7466</td>
<td>7467</td>
<td>7468</td>
<td>7469</td>
<td>7470</td>
<td>7471</td>
<td>7472</td>
<td>7473</td>
<td>7474</td>
<td>7475</td>
<td>7476</td>
<td>7477</td>
<td>7478</td>
<td>7479</td>
</tr>
<tr>
<td>LINEAR ICs</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COMPUTER COMPONENTS</td>
<td></td>
</tr>
</tbody>
</table>

**Please note:**

All prices are subject to change without notice.

Only current prime grade components in stock.

We also stock a large range of Transistors, Diodes, Capacitors, Bridge Rectifiers, Thyristors and Zeners. Please contact for details.
ANALOGUE METERS
LEVELL AC MICROVATOMETERS TM3A/B £159/179
16 ranges 15uA/500Vfs, accuracy 1% + 1%fs + 1uV,
-20dB + 6dB scale, ±3dB 1Hz 3MHz, 150uA/fs output,
TM3A: 83mm scale, TM3B: 1.23mm scale and LF filter.

LEVELL TRANSISTOR TESTER TM12 £199
Transistor, diode and zener kalling to 5.5mA at 2V 150V,
Breakdown to 100V at 10mA 100uA, 1mA. Gain at
1uA-100mA. Vans and Vhe at 1mA-100mA.

LEVELL INSULATION TESTER TM14 £210
Log scale covers 6 decades 10MO 1Gf at 250V, 500V,
750V, 1kV, 1M1G at 25V 100V 100k-1Gf at
2 5V 10k-1Gf at 1V Current 100uA-100A.

BENCH POWER SUPPLIES

LEVSELL MULTIPURPOSE TM11 £179
28 linear ranges ±3uV±300V and ±10A, ±300mA plus 2
log ranges for nulling. Output ±300mA at ±3.

LEVELL MULTIPLIER TM1 £355
150pA/500mVfs dc, ±1% + 1%fs ±3dB 300mHz.

LEVEL LEVSELL DECADE BOXES
C410 - 10pF to 111, 110pF, acc 0.1%/2%. £49
R601410 - 4 decs 10 or 100 steps, acc 1%, ±2.5W £49
R601610 - 6 decs 10 or 100 steps, acc 1%, 2.5W £63
R8015 - 6 decades 12 steps, acc 0.3%, 2.5W £75
R701 - 7 decades 12 steps, acc 1%, 2.5W £82

LEVEL DECADE BOXES

TORoidal & E.I. Transformers
As manufacturers we are able to offer a
range of quality toroidal and laminated
transformers at highly competitive prices

Toroidal Mail Order Price List
prices inclusive of VAT & Postage

50A 7.95, 30A 9.18, 20A 11.47, 10A 13.76, 5A 16.05, 3A 18.34, 1.5A 20.63, 1A 22.92, 0.5A 25.21, 0.25A 27.50, 0.125A 29.79, 0.0625A 32.08, 0.03125A 34.37.

Also available 1k2, 1k5, 2k, 2k5, 3k, Prices on request.

Toroidal Mail Order Price List
prices inclusive of VAT & Postage

50A 7.95, 30A 9.18, 20A 11.47, 10A 13.76, 5A 16.05, 3A 18.34, 1.5A 20.63, 1A 22.92, 0.5A 25.21, 0.25A 27.50, 0.125A 29.79, 0.0625A 32.08, 0.03125A 34.37.

Also available 1k2, 1k5, 2k, 2k5, 3k, Prices on request.

ELECTRONICS & WIRELESS WORLD

1052
Ten faster op-amp oscillators
Connecting op-amps for unity gain increases oscillator frequency by minimizing gain-bandwidth product restrictions.

MUHAMMAD TAHER ABUELMA'ATTI AND NOURIA ABDULLAH HUMOOD

In 1985, Senani* proposed a new sinusoidal oscillator based on unity-gain op-amp configurations. Compared with oscillators using op-amps as finite or infinite-gain voltage-controlled voltage sources, this new approach produces circuits that work at much higher frequencies. Consider the five configurations of Fig. 1. Assuming ideal unity-gain amplifiers, routine analysis yields the characteristic equations of the circuits which are, respectively,

\[ Y_1 Y_6 (Y_2 + Y_4 + Y_6) + Y_2 Y_3 (Y_5 + Y_6) = 0 , \]
\[ Y_3 (Y_1 + Y_2 + Y_5 + Y_6) + Y_2 Y_5 (Y_4 + Y_6) = 0 , \]
\[ Y_1 Y_6 (Y_2 + Y_4 + Y_6) + Y_2 Y_3 Y_6 = 0 , \]
\[ Y_1 Y_6 (Y_2 + Y_4 + Y_6) + Y_2 Y_3 Y_6 = 0 , \]
\[ Y_1 Y_6 (Y_2 + Y_4 + Y_6) + Y_2 Y_3 Y_6 = 0 . \]

By performing all possible permutations of these five configurations, two oscillator circuits result from each configuration, Fig. 2. Oscillation conditions and frequency equations for each circuit are summarized in Table 1. Sensitivity is calculated using

\[ S = \frac{\Delta \omega}{\Delta Y} \]

where \( \omega_0 \) is the oscillation-frequency parameter and \( Y \) is the element of variation. From Table 2 it is clear that the ten oscillators have low sensitivity characteristics.

Results are presented for only four of the oscillator circuits, Figs 3-6, but all ten designs have been built and tested using μA741 op-amps. Good quality oscillations have been successfully produced and sustained at up to approximately 295kHz.

Each of the ten new active-RC oscillators shown uses two op-amps connected for unity gain, three capacitors and three resistors. Connecting the op-amps for unity gain minimizes the effects of gain-bandwidth product, so higher oscillation frequencies are easily obtained. All ten circuits have low sensitivity characteristics.

Muhammad Abuelma'atti and Nouria Humood are with the Department of Electrical Engineering and Computer Science at the University of Bahrain.

Table 1. Frequency and condition of oscillation for circuits of Fig. 2.

<table>
<thead>
<tr>
<th>Circuit Oscillation</th>
<th>Fig. 2 frequency ( \omega_0 )</th>
<th>Condition of oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>( C_2G_3G_5 )</td>
<td>( G_2G_3C_5G_4 = (G_2 + G_3 + G_4)(C_1G_5G_3 + C_2G_5C_6) )</td>
</tr>
<tr>
<td>b</td>
<td>( G_1G_6(C_2 + C_1 + C_3) )</td>
<td>( C_6C_6C_6C_4 = (C_1 + C_3 + C_4)(G_1G_6C_5C_2 + C_1G_6C_3) )</td>
</tr>
<tr>
<td>c</td>
<td>( C_4G_4 )</td>
<td>( G_4C_4C_4 = (G_1G_6C_3C_2 + G_3C_6C_3) )</td>
</tr>
<tr>
<td>d</td>
<td>( G_2G_3 )</td>
<td>( C_2C_2G_5 )</td>
</tr>
<tr>
<td>e</td>
<td>( G_4C_4 )</td>
<td>( C_4C_4G_4 )</td>
</tr>
<tr>
<td>f</td>
<td>( C_3C_5 )</td>
<td>( C_3C_3G_4 )</td>
</tr>
<tr>
<td>g</td>
<td>( C_1G_2 )</td>
<td>( C_1G_2C_2 )</td>
</tr>
<tr>
<td>h</td>
<td>( C_1G_2 )</td>
<td>( C_1G_2C_2 )</td>
</tr>
<tr>
<td>i</td>
<td>( C_1C_3 )</td>
<td>( C_1C_3G_4 )</td>
</tr>
<tr>
<td>j</td>
<td>( C_1G_2 )</td>
<td>( C_1G_2C_2 )</td>
</tr>
</tbody>
</table>

Table 2. Sensitivity equations for the ten oscillators.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>b</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>c</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>d</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>e</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>f</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>g</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>h</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>i</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
<tr>
<td>j</td>
<td>( S_{C_1}^{(0)} = -S_{C_2}^{(0)} - \frac{1}{2} S_{C_2}^{(0)} - \frac{1}{2} S_{C_1}^{(0)} )</td>
</tr>
</tbody>
</table>

Fig. 2. These ten new oscillators derived from the configurations of Fig. 1 each have two op-amps connected for unity gain, three resistors and three capacitors.
We sell a wide range of 'second user' computer equipment, microcomputers, computer terminals, peripherals and development systems.

We also sell test equipment – all fully guaranteed.

We buy good quality under utilised equipment.

Has access to in excess of £100m. worth of Second User General Purpose Test Equipment, P.C's, Instrument Controls, Dataloggers, MDS Systems and Audio Visual Equipment. Our latest catalogue indicates price and specification of our more readily available items.

Without reference to this Catalogue, can you really be sure that you have secured the best possible deal?

A new product catalogue containing the most comprehensive range of passive and electromechanical components yet offered by CIRKIT. Major franchises featured are ALPS, ARROW, BULGIN, COMPONENTS, COOPER WELDER, FKI KEYSWITCH, VARLEY, HARWIN, IVO, RICO and TOKO. WAYCOM To complement the tools and components available, an entire range of test equipment from THANDAR, HAMEG and HUNG CHANG is included. Service products from MULTICORE SOLDERS and ELECTROLUBE complete the line up.

If you want to get your product information into the right hands fast, call Martin Perry on 01-661 3130.

CIRKIT
A new product catalogue containing the most comprehensive range of passive and electromechanical components yet offered by CIRKIT. Major franchises featured are ALPS, ARROW, BULGIN, COMPONENTS, COOPER WELDER, FKI KEYSWITCH, VARLEY, HARWIN, IVO, RICO and TOKO. WAYCOM To complement the tools and components available, an entire range of test equipment from THANDAR, HAMEG and HUNG CHANG is included. Service products from MULTICORE SOLDERS and ELECTROLUBE complete the line up.

COUNTER TIMERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFM200A</td>
<td>£75.50 + VAT</td>
<td>20Hz – 200MHz in 2 ranges, 4 gate times, 10mV sensitivity, 8-digit LED display. Battery/mains operation.</td>
</tr>
<tr>
<td>TF200</td>
<td>£175 + VAT</td>
<td>10Hz – 200MHz in 2 ranges, 5 gate times, frequency, period, period average, totalize. 10mV sensitivity, 8-digit 0.5&quot; LCD. 200 hour battery life.</td>
</tr>
<tr>
<td>TF600</td>
<td>£135.50 + VAT</td>
<td>5Hz – 600MHz in 3 ranges, 3 gate times, 10mV sensitivity, 8-digit 0.5&quot; LED display. Battery/mains, complete with adapter/charger.</td>
</tr>
<tr>
<td>TF1000</td>
<td>£495 + VAT</td>
<td>DC – 100MHz on both channels, 6 gate times, frequency, period, period average, time Interval, time interval average, frequency ratio and totalize, 20mV sensitivity, HF filter, attenuator, trigger controls, trigger hold-off. 8-digit 0.6&quot; LED display. Mains operation.</td>
</tr>
<tr>
<td>TF1100</td>
<td>£595 + VAT</td>
<td>As for TF1000 but with 70MHz to 1GHz prescaler (frequency only). 10mV sensitivity.</td>
</tr>
<tr>
<td>TP600</td>
<td>£45 + VAT</td>
<td>10 prescaler, 40MHz – 600MHz, 10mV sensitivity.</td>
</tr>
<tr>
<td>TP1000</td>
<td>£75 + VAT</td>
<td>10 prescaler, 100MHz – 1GHz, 10mV sensitivity.</td>
</tr>
</tbody>
</table>
THE MEASUREMENT EXHIBITION & CONFERENCE, WEMBLEY, LONDON, OCTOBER 20-21-22 1987

THE EXHIBITION
Test+Transducer Instrumentation offers you the very latest from over 250 suppliers. It’s the complete event for sensors and instrumentation for measurement, control, electronic and environmental test, data acquisition, recording and analysis. And it’s all in Wembley’s magnificent new exhibition hall.

CONFERENCE HIGHLIGHTS
- FET silicon sensors, batch manufactured using techniques developed for the electronic industry.
- Application of optical fibres in automobiles.
- Imaging processing as a practical measurement tool.
- OutT, a unique digital temperature measurement system.
- Chemical Sensors
- Humidity
- Pressure & Vacuum
- Force & Mass
- Data Acquisition Data Processing
- Optical Sensors
- Flow & Level Measurement
- Strain & Displacement
- Temperature

The Conference is chaired by Reg. C. Debnam, C.Eng., M.I.Mech.E.

HIGHLIGHTS
- Imaging processing as a practical measurement tool.
- Optical Sensors
- Flow & Level Measurement
- Strain & Displacement
- Temperature

The Conference is chaired by Reg. C. Debnam, C.Eng., M.I.Mech.E.

TRIDENT INTERNATIONAL EXHIBITIONS LTD, 21 PLYMOUTH ROAD, TAVISTOCK, DEVON PL19 8AU, ENGLAND. TEL: 0822 4671. FAX: 0822 4818

ENTER 51 ON REPLY CARD

The Archer Z80 SBC
The SDS ARCHER – The Z80 based single board computer chosen by professionals and OEM users.
- Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM & battery backed RAM.
- OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.

ENTER 22 ON REPLY CARD

The Bowman 68000 SBC
The SDS BOWMAN – The 68000 based single board computer for advanced high speed applications.
- Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counters-timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.
- Extended width versions with on board power supply and case.

ENTER 23 ON REPLY CARD

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067
Adaptor for 32-pin eproms

Any eprom programmer which can program a 24-pin 2701 'paged' 1Mbit eprom can also be used for 32-pin devices if the stack adaptor is used. The adaptor plugs directly into the 24-pin socket and no modification is necessary. Adaptors can be fitted in adjacent sockets for gang programming and will cope with 2Mbit devices when they become available. Stack Ltd, Unit 8 Wedgewood Road, Bicester, Oxon OX6 7UL. Tel: 0969 240404.

Programmable random logic

A Signetics device offers the capability of performing more than two-level logic functions without incurring i/o buffer delays. The PL15501 programmable macro logic unit is field programmable and has 24 dedicated inputs. The user can embed logical operations or macro structures relating to the input/output pins. Such functions are independent of any i/o buffers and can therefore be performed at much higher speeds than with conventional logic.

The organization of the internal matrix of fused-logic gates allows the direct interconnection of any number of logic nodes. Several such nodes can be combined to form a macro. The speed of the device reflects the complexity of the function: a single logic function has a short path through the matrix and can therefore be very fast. Additional levels will add one gate-delay per level but still do not suffer from the delays normally caused by i/o buffers. The device is programmed by routing the circuits with blown fuses. The built-in test circuitry allows the device to be thoroughly tested prior to programming. Available from a number of Signetics/Mullard distributors including Celdis, 37 Lovelock Road, Reading, Berks RG3 1ED. Tel: 0734 585171.

Fuselinks for p.c.b. mounting

A range of subminiature fuselinks (Beswick series TDC 483) resemble resistors in appearance, having an insulated ceramic body and axial leads, and comply with international standards. The fast-acting fuses, type f, are available in values ranging from 63mA to 15A. Up to 10A they have an operating voltage of up to 125V and 10A, 32V. Available from RR Electronics Ltd, St Martins Way, Cambridge Road, Bedford, MK42 6LF.

Programmable i/o for PC

A plug-in card for the IBM PC or compatibles has 48 channels, which may be configured as input or output or any combination of the two. It may be used for reading parallel data lines, such as binary-coded decimal, reading sequences of switches and for driving digital outputs. All signals are at t.t.l. levels. Pull-up resistors can be fitted to the card and there is a choice of ribbon cable connector or screw terminals. The board plugs straight into the PC and is suitable for such compatible computers as Amstrad, Olivetti and many others. Blue Chip Ltd, 222 Dukes Road, Biggleswade, Beds. Tel: 0344 775115.

Ever thought of thick film?

Thick-film hybrid circuits have been confined to military and high-speed communications markets. However, Radamec Microsystems, who manufacture such circuits, thinks that it is time that they were used in more everyday applications. Combining their facilities with special testing, they can offer a very quick turnround for prototype boards.

The circuits are produced by successive printing and furnace baking of conductors, insulating layers and resistors. The resistors can be very precisely trimmed and, as they share a common alumina substrate, they offer similar ageing and thermal tracking characteristics. A large number of resistors can be included in a circuit, so the thick film is especially suitable for complex circuits. Components are added using pick-and-place machinery and vapour-phase soldering. The system can produce very compact circuits which can be further reduced in size by the direct wire bonding of i.c. chips to the circuit.

Many of the same or analogous techniques can be used in the production of conventional p.c. boards.

The company has developed a system for combining surface-mounted and through-hole components on to either or both sides of p.c. boards. Radamec is also offering its manufacturing facilities to start-up companies or existing companies with new projects, as a 'technology transfer' scheme which includes everything from design and personnel training to production, assembly and delivery. Radamec Microsystems Ltd, 222 Dukes Road, Crowthorne, Berks RG11 6DS. Tel: 0344 775115.

Integrated l.c.ds

Legend Custom Displays have the same initials as their products—l.c.ds. They are offering a complete display service and stress that a display should be an integrated part of the product design, not an afterthought. So they are not only providing characters for a specific application but also the colours, connectors, filters, back-lights and all the other parts needed to add a display to a product. For example, they can provide heat-sealed flexible connectors, or silicone elastomer connectors to be used with switches which can overlay a display to provide an interactive system, and they can add non-reflective coatings and electroluminescent back-lighting. Related electronics, including l.c.ds designed specifically for a display, are provided in the package as well as various assembly methods, including surface-mounted components and flexible p.c. boards. LCD have a design team to offer solutions to any display problem. Legend Custom Displays Ltd, 4 Aricwright Road, Reading, Berks RG2 8JU. Tel: 0734 878377.
New products

Harmonic distortion meter

A new fast-Fourier transformation analyser from Hakuto has a built-in distortion measurement function which complies with the methods of testing proposed by new IEC regulations. The proposed regulations, IEC publication 555-2, require that all domestic appliances are tested to ensure that they do not cause harmonic distortion to the mains supply.

The AD3522 analyser can automatically measure t.h.d. and power and display them as graphs or figures. The displayed data can be printed by an optional hard copy unit. A built-in condition monitor allows the test criteria to be set up, stored and recalled as required for automatic analysis. The instrument offers all the major functions expected in an analyser and is easy to use. The unit may be run from batteries to make it portable.

Acoustic inputs enable the checking of noise levels, to ensure that industrial noise is not a public hazard. Hakuto International (UK) Ltd, 33 Eleanor Cross Road, Waltham Cross, Herts EN9 7LF.

Low-cost transputer module

A module incorporating the Innos T414-15 transputer may be used as a stand-alone development system or in conjunction with a suitable host computer; a PC for example. A PC interface card is available, which enables the running of all transputer development software that is currently available. An assembler and compilers for Occam 2, C, Pascal and Fortran can be supplied.

Costing £650, the TM2 comprises a 95 by 74mm four-layer p.c.b., on which are mounted a transputer (capable of up to 7.5Mips and 1Mbyte of d-ram which is made up from 1Mbit (256 x 4) c-mos rams. A link is provided which configures the memory interface for three or four-cycle operation (user selectable) so that systems may be optimized for cost or performance. The link inputs are static-protected against up to 2000V with Schottky diodes and the outputs are terminated for 100Ω to match twisted-pair cables.

The TM2 is compatible with Concurrent Techniques' first transputer module the TM1 and, like it, can be supplied with either 15MHz or 20MHz T414 transputers or the T800 floating-point transputer. The latter which includes an on-chip maths coprocessor will deliver up to 2.25Mflops/s. The TM2 can also be used as the basis for a powerful, compact parallel processing system: up to eight TM2s can be mounted on a single Eurocard, giving up to 8Mbytes and 80mips. Applications for the TM2 include robotics, image processing, p.c.b. auto-routing, finite element analysis, object recognition, and high-speed distributed databases. Concurrent Techniques, 30 Baldslow Road, Hastings, East Sussex, TN34 2EY. Tel: 0424 714790.

Hard-disc controller on a chip

What is claimed to be the first single-chip disc controller that supports the Enhanced Small Devices Interface (ESDI) standard is available from Advanced Micro Devices. The Am9590 is highly integrated and includes buffer memory for two sectors, direct memory access and a 16-bit microprocessor.

The disc read/write rate is 15Mbit/s which is sufficient to meet the ESDI standard and the device can be programmed to support any combination of up to four hard or floppy disc drives. It supports a number of double-density floppy disc formats and includes Reed-Solomon error detection and correction algorithms. Most disc operations can be carried out by the Am9590 without any intervention by the host computer processor. The controller may be used with the Am9592 disc data separator which codes and decodes data between the disc and the system. Advance Micro Devices (UK) Ltd, Goldsworth Road, Woking, Surrey GU21 1JT. Tel: 0483 62 2212.

80-channel logic analyser

The latest logic analyser from Gould, the K450B, can monitor and capture data across 80 data channels at up to 100MHz with 10ns resolution. It can also be configured to cover half that speed, i.e. 40 channels at 200MHz with 5ns resolution. glitch capture in any configuration is 5ns and there is a maximum delay of 1ns between any of the channels.

The instrument is designed to be especially useful in analysing and timing the signals associated with 32-bit processors and is provided with disassemblers for the 68020 and 80386 processors. Similar techniques can be used to analyse VME bus or Multibus signals, and for complex application-specific i.c.s. The instrument itself makes much use of asics, including what amounts to a complete 16-channel logic analyser on an e.c.l chip, containing 50000 logic gates.

Extensive front-panel controls include an auto-race button; the K450B will search through the active incoming signals and automatically display them in an optimized format. It has a built in disc drive and can record and date-stamp data records. Set-ups can be retained on the disc and automatically loaded.

Communications links for external control include GPIB and RS232 interfaces. The instrument can communicate with and be controlled from a personal computer, even remotely through a modem, and can be programmed to set off an alarm signal if continuously monitoring circuits or systems. Gould cites some digital telephone exchanges which are remotely monitored in this way; the instrument automatically calls a remote control centre if a fault is detected.

The K450B is also designed to be easy to use and its operation will be familiar to those already using Gould instruments. Gould Electronics Ltd, Instrument Systems, Roebuck Road, Hainault, Ilford, Essex IG6 3UE. Tel: 01 500 1000.
New products

40-channel logic analyser

A compact 40-channel logic analyser has been designed and made by LJ Electronics in Norwich. The instrument includes a 36-bit word trigger which makes it suitable for use with 8 or 16-bit processors, and includes on-board disassemblers for 6502, 65C02 and 280 processors. It operates at 10MHz when sampling data on rising or falling edges, and 5MHz if both clock edges are used. It contains enough internal memory to record 512 events on each of four banks. The 4-line by 16-character display is backed up by an RS232 output, a printer output and a waveform output for displaying on an oscilloscope. It can compare blocks of data and supply data reports on channel levels.

At a price of £800, it is claimed to offer as standard many advanced features: included are test probes, a buffer pod and an i.e. test clip. LJ Electronics Ltd, Francis Way, Borethorpe Industrial Estate, Norwich NR5 9JA. Tel: 0603 748001.

Light source for optical-fibre testing

Lightweight, handheld optical light sources and power meters from Megger have been designed specifically to test optical-fibre networks. The source projects a measurable amount of light into the fibre which is detected by the appropriate power meter.

Together the instruments can be used to investigate attenuation caused by connectors, splices or the cable itself in any optical network such as telecommunications, computer installations, industrial process controls and labs. The instruments are suitable for cables up to 1mm diameter. Choice will depend on the cable used and the wavelength required: the OLS 510 light source and UTP 520 power meter are optimized for 850nm, the OLS 610 light source and UTP 620 power source are for 1300 and 1550nm. Electronic Brokers Limited, 140 Camden Street, London, NW1 3FB. Tel: 01 267 7070.

Low-cost 5MHz oscilloscope

Following closely on the heels of the HM205-1 is the Hameg 505-2 digital storage oscilloscope. This has an increased bandwidth of 5MHz, compared with the 100kHz of its predecessor and also adds dot joining for a smoother display. It has a 1024 by 256 dot display and a 20MHz component test socket for real-time analysis. A led blinks each time a trigger signal is received, to indicate operation of the instrument. An add-on option which can be retrofitted to other oscilloscopes is an output to an x-y plotter. Two high-impedance probes and a two-year warranty are included in the price of £757. Hameg Ltd are in Luton, Tel: 0582 413174 and the instrument is also available from Paxton Instruments Ltd, 2 Letchworth Business Centre, Avenue 1, Letchworth, Herts SG6 2JB. Tel: 0462 685618.

Measuring digital jitter

The effect of jitter on digital transmission networks can be determined by the PJM-4jitter meter from Plymouth-based Wandel & Goltermann. Complex networks need to keep jitter to a minimum as signals may not be transferred correctly. The new instrument meets CCITT B.121 requirements and in some respects exceeds them. Its synchronization characteristics and low intrinsic jitter result from the use of clock recovery circuits, phase demodulator and weighting filters.

Bit rates can be selected from a wide range and irrespective of the rate, jitter measurements can be made on all types of clock and data signals up to 155MHz. Error recognition is possible for a number of coding systems. Front-panel or remote, automatic operation is possible through an IEC 625 (GPIB) interface.

Wandel & Goltermann Ltd., 412 Greenford Road, Greenford, Middlesex UB6 9AH. Tel: 01 575 3020.

Signal processing on a computer

A library of signal analysis functions is available for use on Hewlett Packard Series 200 and 300 computers. The SignalCalc programs are written in Basic and include time and frequency analysis of signals from on-site psu's, production measurements and research experiments. This enhanced version of SignalCalc includes better graphics and a 'calibrate' command for d.c. shift and scaling. Hilbert transforms are used for extended analysis. Fast Fourier transforms are possible with 300dB dynamic range and two-dimensional transforms for arrays of unlimited size. The program can typically complete a 1024-point transform in less than 100ms. With an add-on to-a-d converter, the computers can capture data from a variety of sources, process it and produce a graphical output. It can be used for noise and vibration analysis, structural dynamics, seismic analysis, radar systems, network analysis and synthesis, biomedical and neurological studies, speech and acoustic research, image processing and performance testing of a-to-d and d-to-a converters. SignalCalc is produced in the US by the Data Physics Corp. and is available in the UK from Protek, 10 Grosvenor Place, London SW 1X 7RH. Tel: 01-245 6844.

Ammeter for power cables

A new clamp-on ammeter from TMK uses large, individual, rotary range scales to provide reading of alternating current, voltage and resistance. The jaws of the clamp are specially shaped to provide access to cables in awkward places. The pointer may be locked into position to record a reading taken under difficult circumstances. Five current ranges measure up to 30A, three voltage ranges to 600V and resistance measurement can be up to 5kΩ, with a 200Ω midrange. The meter is supplied with test probes, battery and a case. Harris Electronics (London), 138 Grays Inn Road, London WC1X 8AX. Tel: 01-837 7937.

Low-cost 5MHz oscilloscope

Following closely on the heels of the HM205-1 is the Hameg 505-2 digital storage oscilloscope. This has an increased bandwidth of 5MHz, compared with the 100kHz of its predecessor and also adds dot joining for a smoother display. It has a 1024 by 256 dot display and a 20MHz component test socket for real-time analysis. A led blinks each time a trigger signal is received, to indicate operation of the instrument. An add-on option which can be retrofitted to other oscilloscopes is an output to an x-y plotter. Two high-impedance probes and a two-year warranty are included in the price of £757. Hameg Ltd are in Luton, Tel: 0582 413174 and the instrument is also available from Paxton Instruments Ltd, 2 Letchworth Business Centre, Avenue 1, Letchworth, Herts SG6 2JB. Tel: 0462 685618.

Measuring digital jitter

The effect of jitter on digital transmission networks can be determined by the PJM-4jitter meter from Plymouth-based Wandel & Goltermann. Complex networks need to keep jitter to a minimum as signals may not be transferred correctly. The new instrument meets CCITT B.121 requirements and in some respects exceeds them. Its synchronization characteristics and low intrinsic jitter result from the use of clock recovery circuits, phase demodulator and weighting filters.

Bit rates can be selected from a wide range and irrespective of the rate, jitter measurements can be made on all types of clock and data signals up to 155MHz. Error recognition is possible for a number of coding systems. Front-panel or remote, automatic operation is possible through an IEC 625 (GPIB) interface.

Wandel & Goltermann Ltd., 412 Greenford Road, Greenford, Middlesex UB6 9AH. Tel: 01 575 3020.
ANALYSER I and II compute the A.C. FREQUENCY RESPONSE of linear and MASTER, AMSTRAD CPC and SPECTRUM 48K TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated - up to INDUCTORS, TRANSFORMERS, BIPOLAR and FIELD EFFECT CIRCUITS containing any combination of RESISTORS, CAPACITORS, evaluated.

IMPEDANCE and GROUP DELAY (except Spectrum version) are calculated (analogue) circuits. GAIN and PHASE INPUT IMPEDANCE, OUTPUT HARDING WAY, SOMERSHAM ROAD, ST IVES, HUNTINGDON, CAMBS. PE17 4WR. TELEPHONE: ST IVES (0480) 61778

FOR ILLUSTRATED LEAFLETS AND ORDERING INFORMATION PLEASE CONTACT REF: WW

FULL AFTER SALES SERVICE WITH TELEPHONE QUERY HOT LINE AND FREE UPDATE SERVICE.

1165

Operation

SE LABS SE III Dual Trace 18MVP AC or (dema, DC

TELEQUIPMENT D83 Dual Trace 50601/ Delay Sweep

TEKTRONIX 465 Dual Trace 100MHz Delay Sweet/

HP 17154 Dual Trace 200MHz Delay Sweep

TEKTRONIX 46513 Dual Trace 100MHz Delay Sweet,

1060

ELECTRONICS (ge WIRELESS WORLD

VERNER (MARCONI TF2103) OSCILLATOR 10Hz 1MHz Sow

MARCONI TF995Ar5 15_220MHz Narrow Deviation

MARCONI T I 10668 AM, FM 10MHz -470MHz/

£500

Synchronter

MARCONI TF2006 FM 4-500MHz 17

MARCONI MOBILE RADIO TEST SET TF2950

TELEQUIPMENT 554A Stogie Trace 10614t Sold State

TELEQUIPMENT D43 Dual Trace 15MHz-0

HP 1804 Dual Trace 50MHz/ Delay Sweep

TEKTRONIX 577 Curve lacer

£1200

5000A

HP

SOLARIRON

£1200

HP

MARCONI

MARCONI

£500

EDEYSTONE 730:4 480MHz 30614, with manual ONLY /110 each

RACAL RAI 7 500MHz-30MHz with manual

FARRELL L FM2 OSCILLATOR 111/ IMIM Sine 'Square OKI (M6 151

500YA

£15 ea, h p&p /5

£125

UNIVERSAL BRIDGE TF2700 Battery Operated

LOW COST ELECTRONICS C.A.D.

£2.500

£550

£500

£1200

£2.500

£1000

£2.500

£500

£500

£125

£90

£450

£600

£199

£219

£129

£1285

£583

£195

£175

£1445

£395

£125

£100

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25

£25
STE card runs PC programs three times faster

Programs developed on an IBM-PC can be downloaded to the Celeste 188 card and then be run three times faster, according to Control Universal. The p.c.b. uses the 10MHz 80188 processor and up to 256Kbytes of no-wait-state memory. It also includes programmable interrupt controllers, allowing vectored interrupts from up to eight STE bus attention-request lines and 11 on-board sources, which can be assigned levels of priority by the software to provide flexibility in complex real-time control applications. STE-bus arbiter and system control functions are provided, along with high-programmed master/slave configurations. All is included on a single-height Eurocard. Software is available for applications development on a PC. A machine-code monitor is used for debugging. Terminal and downloading facilities are provided, along with high-programmed master/slave configurations. All is included on a single-height Eurocard. Software is available for applications development on a PC. A machine-code monitor is used for debugging.

Network adaptor for VME

A VME-bus module from Amplicon is designed to interface between the VME bus and an Ethernet local-area network and includes 128byte ram to act as an Ethernet buffer. The Ethernet controller performs the link level protocol at 10Mbit/s. Interrupts from this controller can generate an interrupt or a service request on the VME bus. The network controller includes network access, memory management, error reporting, packet handling and processor interface functions. The module includes a serial interface adaptor, which is a Manchester protocol coder/decoder compatible with Ethernet and with the IEEE-802.3 specification. The serial adaptor includes a noise filter, can quickly latch on to an incoming signal and collision detection/conversion. It also acts as an interface between the network controller and the external cable. The module is built on a six-layer p.c.b. with internal power and ground planes to minimize noise and increase reliability. Amplicon Electronics Ltd, Richmond Road, Brighton, E. Sussex BN2 3RL. Tel: 0273 608331.

OS-9 on a 68020 VME card

An OS-9 development and target system is the intended application of the Plessey PME68-23 VME processor card, which is based on the 68020 processor. A typical development system consists of only two boards. PME68-23 can support a terminal, printer and floppy-disc drive. A second card, PME-SCSI-1 can provide a hard-disc interface. The OS-9/68K 'Professional' operating system can be resident on the card in rom. Additional software support includes file management, a set of utilities, screen editor, 'C' compiler and a number of high-level languages.

Once the operating code has been compiled, the 68-23 board can form the basis of a target system, since the on-board rom and 4Mbyte dram can remove the need for any external memory of storage. A number of elements can be configured to suit a specific requirement by Dean Microsystems Ltd, 7 Horseshoe Park, Pangbourne, Berks RG8 7JW. Tel: 0703 5155.

Battery-backed STE-bus memory

The SM256 is an eight-bit memory card for the STE bus. It has eight sockets to take any mixture of ram, eprom or eprom up to a maximum of 256Kbytes. The battery back-up can be directed to support specific sockets. Battery supply is switched in automatically when the supply voltage drops or on detection of a system-reset signal. Flexible memory addressing allows the memory to be mapped anywhere within the 1 Mbyte STE bus address space and individual sockets can be switched out of the memory map to avoid clashes with other memory devices. Jumpers on the board allow the selection of access times to suit the memory chips in use. The board is manufactured by DSP Design and is available through Dean Microsystems Ltd, 7 Horseshoe Park, Pangbourne, Berks RG8 7JW. Tel: 07357 5155.
KENWOOD Oscilloscopes

bandwidths from 20MHz to 150MHz
prices from £319 to £1695 (+ vat)

Trio oscilloscopes are back with a new name, new models, higher specifications and lower prices.

Take the Kenwood CS-1065 illustrated here; a 60MHz, dual-timebase, three-channel oscilloscope costing only £795. It's part of an extensive range from one of Japan's most experienced producers.

Thurlby hold every model in stock for immediate delivery. Contact us now for a copy of the full-range brochure listing technical specifications and prices.

Thurlby Electronics Ltd. Tel: (0480) 63570
New Road, St Ives, Cambridgeshire. PE17 4BG England.

The world's most advanced low-cost bench multimeter!

Thurlby 1905a £349 + VAT

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1μV, 1mΩ, 1nA,
- Full ac and current functions as standard

A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St Ives, Cambs. PE17 4BG
Tel: (0480) 63570

CONQUERING NEW HEIGHTS

Component Comparator
- Variable Hold Off
- Triple DC Source
- DC - 25 MHz
- 40ns/div
- 2mV/div
- Low Cost £319

To scale the heights, just call us for your FREE copy of our catalogue
*(Ex VAT & Delivery)

Crotech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818
Czech bits in Japan transmission

Czechoslovak Radio gained its first experience of a live intercontinental digital-stereo transmission back in November 1985, when a concert given by the Czechoslovak Radio symphony orchestra was relayed to FM Tokyo via the Indian Ocean Intelsat V satellite and the German Raisting earth station, using a Sony 1610 p.c.m. processor with 16-bit linear quantization, 44.1 kHz sampling rate and television o.b. link. Since then experimental transmissions have been made from CD records and the successive introduction of digital techniques is planned for six main areas of broadcast audio: sound recording; live transmission; transmission from CD records and digital audio tape recordings; sound signal processing; preservation of sound recordings; and restoration of historical recordings.

It is recognized that analogue and digital audio techniques will co-exist for a long period as mutually overlapping systems. This is seen as being partly for economic reasons but also because there remain problems still to be solved in parts of the electroacoustic chain and the standardization of different systems. Nevertheless it is felt that progressive ‘digitalization’ already offers significant improvements in audio and calls for further development of those parts of the system that remain analogue, while eliminating the weakest part of the analogue chain by recording in digits. Czechoslovak Radio intends to digitize fully its sound library with the aid of F1/701 processors and Beta video recorders on the grounds not only of technical quality and elimination of ageing but also on grounds of space and economy.

On display at the BKSTS conference and exhibition at Brighton was the “Computer Enhanced Digital Audio Restoration (CEDAR)” system developed by the National Sound Archive in collaboration with Cambridge Electronic Designs. This system is designed to eliminate thumps, bangs and scratch noise and can deal with disc, cylinder, acetates and film recordings using software designed for IBM or compatible computer systems. Although developed for use at the National Sound Archive in Kensington, the system is likely to be marketed next year.

Sony Broadcast are planning to market professional digital audio tape equipment throughout Europe this autumn. First equipment will be the PCM-2500 rack-mounted machine with analogue sampling frequencies of 44.1 and 48 kHz, while the digital input can also sample at 32 kHz. A professional portable digital audio tape recorder, type PCM-2000, is due to be launched early next year.

The combination of digital audio with video segments on the five-inch CDV disc developed by Philips and Sony was a major feature of the 1987 International Summer Electronic Show at Chicago alongside digital audio tape players and Super-VHS video cassette recorders. The 5-in CDV discs combine 20 minutes of digital sound with a 5-minute video clip. The recording industry sees CDV as a means of marketing the video promotion clips that have become an important part of album sales and artist promotion. Industry sees it as an attempt to relaunch the video market, but mainly to boost sales of compact discs.

Voltage transients in the home

An August “The Cook Report” (ITV) had the energetic Roger Cook enquiring into the series of fires and damaged domestic electrical and electronic appliances suffered by two unfortunate householders in Gloucestershire and Somerset. Although there were heavy hints that the cause could be secret military research into high-powered radar or simulated nuclear e.m.p. tests, the report was aimed at the public that both of the affected houses were at the end of overhead electricity distribution routes and that there was some evidence of transient overvoltages, with the problems arising when a number of such voltage spikes occurred in rapid succession. One of the victims had even been taken into police custody on one occasion, apparently on the suspicion that he was somehow generating the voltage spikes himself!

Perhaps the most surprising aspect of such incidents is their rarity. Many years ago a Mullard investigation showed that, for example, at Dudley during a period of six weeks a voltage transient detector recorded many brief overvoltages including seven of 40 to 70 per cent above normal and one of over 100 per cent. At Chelmsford, in a period of some 12 weeks, the number of overvoltages remained to four of 40 to 70 per cent and eight of 70 to 100 per cent above normal.

Transient overvoltages, often lasting only a few microseconds, capable of destroying unprotected solidstate devices and power-supply units, tend to arise mainly from switching operations and lightning strikes and near strikes. Switching into or out of inductive loads can be dealt with by more effective suppression, but lightning discharges with their steep wavefronts of electromagnetic pulses remain a problem that will not go away.

Because of the greater use of overhead, three-phase supply lines, overvoltage transients tend to be more severe in rural areas and are of too brief duration to show up on the usual meters used to check complaints of incorrect supply voltage.

The Electricity Council Research Centre at Capenhurst has recently set up an improved automatic-direction-finding system to record the number and location of lightning strikes, which each year cost the electricity supply industry millions of pounds yet have remained a largely unquantified phenomenon. The damage caused by lightning (and conceivably by nuclear e.m.p. simulation tests) on consumers and on communications and broadcasting equipment, antenna masts and so on, similarly remains largely unqualified. Good protection of equipment against direct or indirect strikes on masts and towers is costly and there is a dearth of reliable statistics about the cost-effectiveness of existing protection techniques. Few organizations have any means of recording strikes that do not result in immediate equipment damage and thus lack knowledge of the extent to which existing protection is effective.

The ECRC have recently refurbished and modified their network of four automatic d/f radio receiving stations set up some years ago to locate lightning discharges in the UK, but found to be unreliable in operation due largely to inaccurate bearings resulting from polarization errors (‘night effect’). The new techniques have been designed to minimize these errors by using at each unattended d/f station three vertical loops at relative angles of 120°, instead of the usual orthogonal crossed loops plus a sense antenna, and also a horizontal loop from which the horizontally polarized component of lightning e.m.p. (the main cause of polarization errors) can be derived and nullled out from the computer location as recorded at the Capenhurst centre.

ECRC believe this modified system should achieve a mean bearing error on lightning spherics of only ±0° and should be capable of automatically recording and locating the position of lightning strikes throughout the country to within 3 to 10km. The detector system now operates at e.l.f. (2 kHz) rather than 10 kHz since the amount of horizontally-polarized component of lightning e.m.p. is significantly less at this extremely low frequency.

Radio Broadcast was written by PATHAWKER
P. M. COMPONENTS LTD
SELECTRON HOUSE, SPRINGHEAD ENTERPRISE PARK
SPRINGHEAD RD, GRAVESEND, KENT DA11 8HD
TELEX 966371 TOS-PM

Semiconductors

<table>
<thead>
<tr>
<th>Bean</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1013</td>
<td>0.25</td>
<td>B0107A</td>
</tr>
<tr>
<td>1276</td>
<td>0.43</td>
<td>B0107B</td>
</tr>
<tr>
<td>2287</td>
<td>0.72</td>
<td>B01105</td>
</tr>
<tr>
<td>2287</td>
<td>0.72</td>
<td>B01221</td>
</tr>
<tr>
<td>2287</td>
<td>0.72</td>
<td>B01214</td>
</tr>
<tr>
<td>2287</td>
<td>0.72</td>
<td>B01145</td>
</tr>
<tr>
<td>2287</td>
<td>0.72</td>
<td>B01124</td>
</tr>
<tr>
<td>2287</td>
<td>0.72</td>
<td>B01121</td>
</tr>
</tbody>
</table>

Integrated Circuits

<table>
<thead>
<tr>
<th>Bean</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A702</td>
<td>3.50</td>
<td>A7145M</td>
</tr>
</tbody>
</table>

VIDE0 SPARES & HEADS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X145545</td>
<td>For Ferguson/VE 35.50</td>
</tr>
<tr>
<td>3X145545</td>
<td>For National Panasonic 29.50</td>
</tr>
<tr>
<td>2X145545</td>
<td>For Hitachi 29.50</td>
</tr>
<tr>
<td>3X145545</td>
<td>For Sony 35.50</td>
</tr>
<tr>
<td>3X145545</td>
<td>For Sharp 35.50</td>
</tr>
<tr>
<td>3X145545</td>
<td>For Panasonic 35.50</td>
</tr>
<tr>
<td>5X145545</td>
<td>For National Industries 35.50</td>
</tr>
<tr>
<td>5X145545</td>
<td>For Asmund/Solden 35.50</td>
</tr>
<tr>
<td>5X145545</td>
<td>For Fisher/Fuller 35.50</td>
</tr>
<tr>
<td>5X145545</td>
<td>For JVC/Sony 35.50</td>
</tr>
<tr>
<td>5X145545</td>
<td>For Sony SSB95 49.50</td>
</tr>
</tbody>
</table>

PHONE 0474 60521 4 LINES

VIDE0 B17 KITS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A702</td>
<td>3.50</td>
</tr>
</tbody>
</table>

CATHODE RAY TUBES

A select section from our stock.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>142017</td>
<td>A1257</td>
</tr>
<tr>
<td>142017</td>
<td>A1258</td>
</tr>
<tr>
<td>142017</td>
<td>A1259</td>
</tr>
<tr>
<td>142017</td>
<td>A1260</td>
</tr>
<tr>
<td>142017</td>
<td>A1261</td>
</tr>
</tbody>
</table>

Note: please ask for details.
### Selection from our stock of branded valves

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFD94A</td>
<td>1.95</td>
</tr>
<tr>
<td>EFD94B</td>
<td>1.95</td>
</tr>
<tr>
<td>EFD94C</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94D</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94E</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94F</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94G</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94H</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94I</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94J</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94K</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94L</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94M</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94N</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94O</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94P</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94Q</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94R</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94S</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94T</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94U</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94V</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94W</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94X</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94Y</td>
<td>2.00</td>
</tr>
<tr>
<td>EFD94Z</td>
<td>2.00</td>
</tr>
</tbody>
</table>

**TELEX 966371 TOS—PM**

**PHONE 0474 605214 LINES**
Paying for TV

For broadcasters and the broadcast equipment industry, the decade since the publication in March 1977 of the 522-page Annan Committee report on the future of broadcasting will surely go down in history as the age of confusion. The go-stop-go on direct broadcasting from satellites, the fervent espousal by the government of cable TV, but its refusal to provide tax incentives or any form of public funding, have delayed change. On the other hand the government moved with almost undue haste to implement the recommendations of the interim and final reports of the Merriman committee to banish UK television broadcasting from v.h.f. Bands 1 and 3.

This hasty decision is now being challenged by the new CSPI (new part of US consultants Booz Allen & Hamilton International) 214-page report on “Subscription Television” (HMSO, £9.50) which stresses (page 162) that “the terrestrial channels are a very valuable national resource, providing much the cheapest method of access for UK households to television programming.”

This down-to-earth report, prepared by Dr Charles Jonscher, casts a refreshingly impartial and cool look at the 1986 Peacock Committee’s belief that the UK television licence fee should be phased out in favour of a partially or premium television licence fee should be phased out in favour of a partially or premium television licence fee.

But hanging over the report there remains the uncertainty about the extent to which the demand for more choice and premium television will be met by expansion, however slow, of cable, satellite and video libraries. Market research consultants, business plans, etc. are still coming up with widely differing estimates of possible growth rates and much will depend, for example, on the retail cost of satellite receivers. However, the CSPI report must surely mark the demise of government hopes of replacing the licence-fee by subscription charges, though it could result in renewed pressure for the BBC to accept advertising.

Present technology, it is shown, could handle payment per channel or per programme and could be made compatible with various payment mechanisms, including the use of “smart cards” bought from High Street shops. But even in the long term when there might be many subscribers the administrative costs would be of the order of £5 to £8 per annual subscription compared with the present £3 or so cost of licence-fee collection.

The CSPI report puts forward three main options for providing premium television that are not mutually exclusive:

1. night-time down-loading to domestic video cassette recorders of scrambled feature films on BBC2 and/or Channel 4;

2. rescheduling BBC2 to provide a subscription service for part of the time;

3. setting up additional terrestrial television networks (both d.b.s. and satellite-to-cable) with several possible views (both v.h.f. and u.h.f. channels available). CSPI believe there could be new local or regional subscription services without affecting the four existing BBC/IBA channels.

Teaching e.m.c.

In the June Television Broadcast I noted Professor Mike Darnell’s appeal for more academic interest in the problems of electro-magnetic compatibility (e.m.c.) and its importance in the problems of electro-magnetic compatibility (e.m.c.). He has suggested that the importance of e.m.c. is still not fully appreciated in the academic sphere and is not recognized as a true academic discipline, and that no specialist e.m.c. engineers are being produced with a higher educational system.

On other occasions I have suggested that it is perhaps even more important that all electronic engineering training should include the teaching of more awareness of the problems posed by e.m.c., f.i.i., etc., and that this field of expertise should not be left entirely to specialist engineers. It seems particularly important that the many engineers concerned with digital electronics should be more aware of the fact that high-speed pulses rushing around such products as personal computers can and do pollute the nearby radio spectrum, and similarly that in the coming era of universal hand-held transceivers for cordless telephones, cellular radio and radio paging, all domestic electronics will need to be reasonably immune to local r.f. fields.

It was therefore interesting to listen from Peter Jackson (Head of Electronics Group) and David Lauder (Senior Lecturer) that The Hatfield Polytechnic has already identified the need for more widely-based e.m.c. teaching. An introduction to e.m.c. has been included as part of the revised syllabus for their B.Eng/B.Eng(Hons) degree courses in electrical and electronic engineering currently submitted for re-validation. The introduction to e.m.c. forms part of a proposed “advanced digital techniques” course to be taken by all their electrical and electronic engineering degree students in their third year.

The Hatfield Polytechnic also runs courses for graduate engineers in industry. A two-week “digital systems design” course includes an introduction to e.m.c. In addition, a new one-week course on e.m.c. and reliability will be approximately 50 per cent devoted to e.m.c.

It is much to be hoped that other centres of higher engineering education will follow Hatfield’s path.

Television Broadcast was written by PAT HAWKER.

1066 ELECTRONICS & WIRELESS WORLD
Using the E-layer

At the URSI national colloquium, R. Fricker (BBC) showed how the microcomputer program used by the BBC for predicting the field strength and coverage of its h.f. transmitters has been further refined by taking into account propagation via the E-layer over distances up to 2000 km at times when the E-layer largely prevents signals from reaching the F-layers.

Manual field-strength prediction studies were started by the BBC some 20 years ago; later this was extended using a programmable calculator and eight years ago further extended and transferred to a microcomputer program, based in part on the US "minimum" program, but with added refinements. Since then, the predictions have been extensively compared with listener reports, from BBC relay bases on the h.f. single-sideband feeds, and with observations on the reception of other broadcasters' transmitters at BBC monitoring stations. The method that has evolved is claimed to be "reasonably accurate in predicting the propagation, and gives a good estimate of field strength". The method had helped to show what actually happens on h.f. signal paths, can be used for distances up to 30,000 km and has provided explanations for some unexpected results where these have deviated from the predictions.

It has shown, for example, that some signals during summer daylight that are cut off from the F-layer by the lower E-layer can still provide an effective service at distances up to about 2000 km by E-mode reflection, a mode not previously considered in the computer program. It was realised that this mode, taken in conjunction with lowering the minimum angle of vertical-radiation-pattern elevation to 0.5°, has the effect of adding an extra h.f. broadcasting band for several hours of summer daylight for target coverage areas up to about 2000 km distant. It had been known for more than 20 years that predictions based solely on F-layer propagation gave frequencies that seemed too low at this season of the year. Incorporation of the E-mode into the BBC computer program has removed one of the last known discrepancies between predictions and observations.

The possibility of propagating signals at frequencies between about 20 MHz and (occasionally) up to 150 MHz during the unstable Sporadic-E season has long been known and utilised by radio amateurs. But there has been considerable speculation, since the release of frequencies around 50 MHz to some (now all) British amateurs since 1985, about the fact that transatlantic contacts have been made each year at around the height of the Sporadic-E season in June/July despite this being during a minimum period of the eleven-year sunspot cycle. The distances seem too great to be accounted for by single-hop SpE unless enhanced by some form of chor- dal hop or entrainment, and the chances of "double-hop SpE" seem unlikely. It has been appreciated for some twenty years that the thin sheets of intense ionization of Sporadic-E differ from the normal ionospheric layers in being composed of patches of metallic atoms, mainly magnesium, silicon and iron ions that are possibly the remains of burnt-up meteorites swept together by wind shears in the upper atmosphere.

A possible explanation for the summer transatlantic openings on 50 MHz may have emerged from the extensive investigation of Sporadic-E propagation that has been carried out over several years at the University College of Wales — Aberystwyth.

Easier h.f.?

The 4th National Colloquium of the International Union of Radio Science (URSI), held at Sheffield University, provided a good opportunity to learn about current research projects at British universities, the Rutherford-Appleton Laboratory, British Antarctic Survey and industry. URSI interest tends to focus on radio propagation, including some pretty esoteric aspects of ionospheric and tropospheric anomalies, but is also concerned with scientific and communications satellites, maximum interference, antenna design and terrestrial communications systems.

In this last category, Dr J.N. Hopkinson of Plessey (Roke Manor) described field trials of a new adaptive h.f. telegraph/data link designed to be as simple to operate as a car radio telegraphy system. Indicative of the recent revival of interest in h.f. communications. He pointed out that while the development of communications satellites has revolutionized the quality and reliability of long-distance radio communications, such systems still represent a significant cost to users. For example, the fitting of an Inmarsat satellite terminal to every merchant ship is still a long way off. H.f. is being looked at afresh, particularly for applications where the infra-structure of satellite and cable systems is impracticable or economically or vulnerable to disruption.

In the congested h.f. spectrum, the successful operation of a 24-hour h.f. link has demanded considerable operator skill and experience as well as dash of the "black art". On the other hand, the equipment is relatively inexpensive and, if used properly, can provide an effective service at low data rates. An experimental link, aimed at using low-cost computing power to eliminate the need for skilled operators, has been tested for about eight months between Roke Manor and Caswell, near Northampton, a path length of about 132 km, sufficient to eliminate reception of ground-wave signals but very vulnerable to the diurnal changes in ionospheric propagation. A 60-watt marine transceiver is used with a 50-meter-high broadband biconical monopole antenna with computing power provided by an IBM XT computer.

Some 80 spot frequencies between about 2 and 25 MHz are programmed into the system, weighted towards the lower frequencies. Each hour a full band scan is made automatically; then on one of a number of predicted calling frequencies the station is offered a menu of five channels that have been shown to be open; the working frequency is then chosen automatically and changed on the basis of lowest error rate. The program incorporates fall-back frequencies in the event of contact being lost.

The link was operated 24 hours per day on five days per week and has generated some illuminating comparisons between predicted m.u.f. channels and the measured available channels. In general it is clear that lower and much higher frequencies than those predicted are often open for traffic, in part because the link can safely use channels near the actual m.u.f. rather than the o.w.f. (optimum working frequency), usually regarded as 85 per cent. of the m.u.f., and can also take full advantage of the many days on which predictions still prove conservative.

With a character error rate of less than one in a million, the average daily throughput achieved some 32,800 characters per hour, with better than 36 Kch/h for 49.1 per cent of the time (maximum rate 53 Kch/h). It fell to less than 12Kch/h for only 11.8 per cent of time. Transmission rate adapts to channel conditions and comprises 75, 150 or 300 baud with various degrees of error correction.

Radio Communications was compiled by PAT HAWKER.
**SUPER DEAL? NO - SUPER STEAL**

**VT52 VDU and RS232 interface**

**Ml 8E PDP 3 Bootstrap option**

**KL8 JA PDP 8 async i/o**

**RT11 ver 38 documentation kit**

**PDP11/40 Cpu. 124k MMU**

**PDP11/05 Cpu Ram. i/o etc**

**20 mA loop**

**LA36 Decwraer EIA or**

**D0200 Dilog - multi RK controller £495.00**

**DLV11-J4 x EIA interlace**

**Ball-MB 3.5" Box. PSU. LTC £3,750.00**

**TU10 9 track 800 BPI Mag tape drive. dual**

**memory & MMU 15 line RS232 interface**

**POP 1140 System comprising of CPU, 124k**

**and FREE daisy wheel and dust cover**

**ORDER NOW or contact sales office for more**

**information. Optional extras**

**RS232 DMA**

**20,000 FEET OF ELECTRONIC AND COMPUTER GOODS**

**ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!**

**TELETYPE ASR33 DATA I/O TERMINALS**

Industry standard, combined ASR110 baud printer, keyboard and 8 lines of printer tape punch and reader. Standard RS232 serial interface. Ideal as cheap hard copy unit for CNC and NC machines. TESTED and in good condition. Only £250.00. Stand £10.00. CARR & INS £15.00.

**EX NEWS SERVICE PRINTERS**

Compact ultra reliable quality built unit made by the USA EXTEL Corporation. Often seen in major Hotels printing up to the minute News and Financial information. The unit operates on 5 UNIT BAUDOT from a Current loop. or as TTI serial interface. May be connected to your micro as a low cost printer or via a simple interface and filter for any communications requirement to enable printing of worldwide NEWS. TELEX and RTTY services. Supplied TESTED in second hand condition complete with DATA, 50 and 75 baud stats and large paper roll.

**50 Column ONLY £49.95**

**Spine paper roll for AE11 £4.50**

**TYPE AF11 72 Col. £65.00**

**TYPE AH11 80 Col. ASC/BAUDOT £185.00**

**Carriage and Insurance £7.50**

**GE TERIMPRIER**

A massive purchase of these desk top printer terminals enables us to offer you these high quality units at a SUPER LOW PRICE against their original cost of over £1,000 each. Unit comprises of full QWERTY electronic keyboard and printer mech with print face similar to correspondence quality typewriter variable forms tractor unit enables full width - up to 135.120 column paper, upper - lower case, standard RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon, adjustable baud rates, quiet operation plus many other features. Guaranteed working. GE10 120bps £175.00. GE120 120bps £195.00. Untested GE30 £65.00. Optional floor stand £15.00. CARR & INS £15.00.

**SEMICONDUCTOR ‘GRAB BAGS’**

Mixed Sems amazing value contents include transistors, diodes, relays, IC's, triacs, dices, bridge rect. etc, etc. All devices guaranteed brand name full spec, each individually boxed or marked, full markings. Full spec with manufacturer's markings. Guaranteed.

**50 0-5 150 105+ £15**

**TTL 74 Series “mostly TTL” grab bags at a price which**

**guaranteed at least 3 times what you pay. Unbeatable value and**

**have sufficient stocks of any one item to include in our ads we are packing all these**

**best possible bargains. we have thousands of ICs. Transistors. Relays. Caps. PCBs.**

**DIABLO/OUME command compatability ana tun con ro via CPM WORDSTAR**

**electronics offer full**

**giving superb**

**highest spec the TEC**

**ERS - PRINTERS - PRINTERS - PRINTERS**

---

**FRONT COVER: 10kIs £11.25 + pp £2.25**

**20kIs £19.50 + pp £4.75**

---

**MAG TAPE DRIVES**

Many EX STOCK computer tape drives and spares by PERTEC, PIPER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DE1 Cartridge tape drives ONLY £450.00 each.

**CALL FOR DETAILS**

**COMPUTER/SYSTEM CABINET & PSU**

All in one quality computer cabinet with integral switch mode PSU, mains filtering, and twin fan cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a massive +5V DC at 17 amps, +15V DC at 1 amp and +5V DC at 5 amps. The full unit is enclosed with removable top lid, filtering, trip switch, power and run lids mounted on all front panel, rear cable entries, etc. Units are in good but used condition - supplied for 240v operation complete with full circuit and tech man. Give your system that professional finish for only £49.55 + carr. 19wide 16 deep 10.5" high. Useable area 16 w 10.5 h 11.5 d. Also available less psu, with fans etc. Internal dim. 19 w, 16 d, 10.5 h. £19.95. Carriage £8.75.

**66% DISCOUNT ON ELECTRONIC COMPONENTS EQUIPMENT**

Due to our massive bulk purchasing programme, which enables us to bring you the best possible bargains, we have thousands of ICS. Transistors, Relays. Caps. PCBS. Sub-assemblies. Switches etc. surplus to OUR requirements. Because we have sufficient stocks of any one item to include in our line, we are packing all these items into one BARGAIN OF A LIFE TIME.Genius and remarkable savings. Guaranteed to be worth at least 3 times what you pay. Unbeatable value and savings are one of the most considerably useful saving tips we will ever have. See sav by weight

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5kI 5.4</td>
<td>£1.25</td>
</tr>
<tr>
<td>10kI 11.2</td>
<td>£2.25</td>
</tr>
<tr>
<td>5kI 9.00</td>
<td>£1.80</td>
</tr>
<tr>
<td>1kI 4.50</td>
<td>£0.85</td>
</tr>
</tbody>
</table>

**1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSMITTERS, TEST EQUIPMENT, CABLE, CONNECTORS, SOFTWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS, POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.**

---

**COOLING FANS**

Keep your two years COOL, and RELIABLE with our range of COOLING FANS. COMPLETE RANGE of 10-100M FANS at only £12.95 each. Excellent replacement for old fans. For use in cabinets, boxes, metal cabs. Suitable for CPU's. IDEAL FOR IT departments to keep their systems COOL and RELIABLE. Give us a call today. ORDER ONLINE NOW. or contact sales office for more details.

**MIXED COMPONENTS for SPARE PARTS**

**ONLY £6.50**

2000's of other fans for £60.00. ORDER TODAY. or on the internet.

**COOLING FANS**

Keep your two years COOL, and RELIABLE with our range of COOLING FANS. COMPLETE RANGE of 10-100M FANS at only £12.95 each. Excellent replacement for old fans. For use in cabinets, boxes, metal cabs. Suitable for CPU's. IDEAL FOR IT departments to keep their systems COOL and RELIABLE. Give us a call today. ORDER ONLINE NOW. or contact sales office for more details.
LOOK WHAT HAPPENED TO THE NICE CLEAN PWM SIGNAL WHEN THE LOAD WAS CONNECTED

If we had prototyped this chopper circuit, we might have found out what was wrong after a few buckets of hot solder. As it was, the pliers never touched our own. Skillful engineering was avoided with a breadboarded simulation run on an IBM PC compatible. ECA 2 costs just £875 + VAT.

Try a little Monte Carlo spread with your chips. Are you wondering why your filters are a little off today? ECA 2 can run a Monte Carlo tolerance simulation (random component variations within the tolerance bands) and compare statistics. ECA 2 will also show worst cases for both gain and phase.

Worried about the weather? The sun may not shine out of ECA 2 but it does allow you to check dissipations and the effects of temperature changes.

Whether you work with DC servo or microwave circuits, ECA 2 can almost certainly help. But just to make sure you are in a position to benefit from what we believe is the most powerful circuit simulator available for IBM PCs, we shall be pleased to send you a demonstration disk with an example of your own circuit (small please).

You are in a position to benefit from what we believe is the most powerful circuit simulator available for IBM PCs, whether you work with DC servo or microwave circuits. ECA 2 can almost certainly help. But just to make sure you are in a position to benefit from what we believe is the most powerful circuit simulator available for IBM PCs, we shall be pleased to send you a demonstration disk with an example of your own circuit (small please).
The problems with experts

Expert systems are computer data bases based on human knowledge. There are obstacles to the effective introduction of such systems, which are the lack of access to the building tools and the lack of information about the ones that do exist. To overcome the problems, the National Computing Centre has produced a package of software, advice and information called "Expert System Resource Pack."

The pack provides users with the resources to make the right strategic and decisions on the approach to such systems, product selection, choice of application, and investment and resource planning. It provides versions of five expert-system building tools. These are Crystal, Expert Edge, Savoir, SuperExpert and Xi Plus. Also included are 26 case studies of UK organizations, a disc-based software directory of expert-system products and suppliers and special discounts on training or consultancy. The package costs £1250 and contains all that is needed to build and use a small expert system to help the writer make an objective appraisal of current technology and its applications, without the commitment of heavy investment in one specific development tool.

Digital radio messages for gasmen

We reported some years ago on the experimental communications system being developed by the British Gas Research Station in Newcastle-upon-Tyne. This now has come to fruition and is to undergo trials in the North Thames region of British Gas. Because of the overcrowded airwaves and the time taken to communicate with service vans, British Gas decided on a digital system. The development plan resulted in the Gascord 1200 system, which uses data transmission to enhance the capacity of each radio channel. It also provides automatic management of large, single-frequency radio networks and the facility to transmit and receive data in text form. This has cut the time of a typical call from 45 seconds for a verbal communication to just eight seconds for a data transmission. Transmission rate is 1200 bit/s and can combine speech and data communications between base and mobile van and between vans. It uses up to six base stations from up to four operator positions. Each van is fitted with a hand-held portable computer and radio modem and messages received or to be transmitted can be stored in memory. Special error-correction techniques have been employed to ensure a high degree of reliability. The system automatically chooses the best base station to communicate with a particular mobile. It is controlled from a central computer but there is also a front-end processor to provide the error correction.

Mobiles can be selectively called by the base station. When a vehicle is being contacted, there is a visible and/or audible indication which tells the mobile operator to call base. Calls from the vehicle are queued in order of arrival, though there is a queue-jumping system in cases of emergency. The operator calls the base by pressing an emergency key or indicates the current state of play by one of ten other status keys, one of which is a request for speech contact. Protocol built into the system automatically acknowledges the receipt of calls. If a call is not acknowledged, it is automatically retransmitted, but will be aborted if the second attempt is unsuccessful. The trial area includes some of the busiest parts of central London. The theory is that if it works in one of the most heavily congested areas for radio communications in the country, it should work anywhere.

Avo independent again

A company management buyout worth £23M has enabled Avo to take itself away from Thorn EMI. Avo International is now the name of a parent holding company for the international group of seven companies with manu-
facturing and marketing facilities in the UK, US, France and Germany. Avo's headquarters remain in Dover but the British branch will now be known as Megger Instruments, even though they will continue to make Avo multimeters as well as the Megger products. Measurement Ltd (formerly Thorn EMI Measurement and once Systron Donner) will retain a distributor of test, measurement and other equipment. Biddle Instruments in Pennsylvania makes high-voltage insulation testers, and Electron Technology in New Jersey makes electronic glassware. There are also two distributors in France and Tel, a manufacturer of linear power supplies in Germany. The group, under the leadership of its managing director Bill Goldfinch, feels it is in a strong position to maintain its share of the test and measurement market.

**Welding in strong magnetic fields**

It is impossible to use arc welding equipment near a strong magnetic field; it deflects the flame. Or did it until Cambridge Magnetics came up with an idea. Put a coil around the work and neutralize the magnetic field with an equal and opposite one. The idea was developed by Syscon and their first success story was during field trials of the Zeromag, as it is called. Some highly magnetic pipes needed welding for use in the North Sea. Attempts to demagnetize them had failed and they were impossible to weld. Along came the prototype and the pipes were jointed within minutes. Syscon live in Cambridge Science Park.

**Static still a problem**

Random electrostatic charges are damaging electronics components and are still a cause for concern within the electronics industry. This is the message inherent in a new research project to be carried out by ERA Technology. They are looking into electrostatic discharge equipment and will identify the types that are most effective. The equipment will then be used to develop a test system to see which pins on microcomponents are most susceptible to discharge. The initial stages will require a complete re-examination of the test procedures.

**Thermal images eliminate hot spots**

A thermal-imaging technique has been developed at the Georgia Institute of Technology in Atlanta to help pinpoint the over-heated trouble spots in VLSI circuits. The system uses a modified infra-red camera directed by a computer. By identifying the hot spots, it may be possible to avoid them by changing the positions of component parts of the circuit or modifying the substrate. One example of the work carried out was the modification of some chips for Schlumberger. Some of their oil exploration equipment was already subjected to high temperatures, but the hot spots were identified and the circuits modified. The work has been carried out under the direction of Professor William Black.

**IEEIE accredits training programmes**

The IEEIE has been granted 'authorised body status by the Engineering Council and can accredit industrial training programmes for Technicians and Engineering Technicians. The authorization is additional to that already granted to the Institution for accrediting academic courses. Already over 100 schemes have received official approval and have been registered by the IEEIE and any company wishing to seek accreditation should contact the IEEIE, Savoy Hill House, Savoy Hill, London WC2R OIBS.

**Daresbury research laboratory is 25**

The nuclear physics laboratory at Daresbury is celebrating its 25th birthday. In 1962 Professor Alec Merrison was given approval by the then Ministry of Science to build a laboratory equipped with 4GeV electron synchrotron, called NINA. It took five years to build NINA and the first experimental data was produced during 1968. From then until 1977, when NINA was closed down, experiments added much to our knowledge of particle physics and the fundamental particles which together make up matter. During the same period it became apparent that NINA could also be used as a source of synchrotron light for studying atoms, molecules and the 'larger' particles. Eventually a new electron storage ring was specifically designed to continue these experiments, unhampered by the demands of the fundamental particle physicists. This was the synchrotron radiation source (SRS) which came into use in 1981. The SRS produces intense beams of ultra-violet light and X-rays and these have been invaluable for studies in biology, chemistry and materials as well as physics. Recent improvements to the quality of the ultra-violet and X-ray beams have been achieved and the first users are now beginning to take data.

The Nuclear Structure Facility (NSF) is a 70m tower dominating the site and is used to produce beams of ions for research into the basic structure and reaction of nuclei. Some recent discoveries were the superdeformed nuclei and the detection of zirconium 80. The total energy suppression shield array (TESSA) has led towards the production of the world's largest gamma ray detector. Other activities at the Daresbury laboratories include scientific computing, electronics research and the high-quality engineering facilities needed to support the research programmes.

A new project has been instituted to develop ways of using the transistor-based supercomputers and a team has started work on the development of software for the project.
Frequency Calibration Dependent on the 200kHz Droitwich Transmission?

Upgrade to a traceable MSF off-air Standard before the change to 198kHz.

The Radiocode Clocks Model RFS1000 represents a significant advance in off-air Frequency Standard design and offers important advantages over conventional instruments based on broadcast transmissions.

- Traceable to NPL
- No Scheduled Frequency Changes
- Instant and Automatic Operation
- 24-hour Transmission
- Self-Contained, Battery-Powered, Portable Unit
- High Noise Immunity
- Long Range
- Real Time Synchronisation

The RFS1000 costs only £485 + £10 carriage, VAT extra.

Available from: Thoroughbred Direct Sales Ltd.
25 St Margaret’s Green, Ipswich, Suffolk IP4 2BN.
Tel: (0473) 225951

HAPPY MEMORIES (WW), FREEPOST, Kington, Herefordshire HR5 3BR.
Tel: (054 422) 618

Table: Happy Memories

<table>
<thead>
<tr>
<th>Part type</th>
<th>Off</th>
<th>25–99</th>
<th>100 up</th>
</tr>
</thead>
<tbody>
<tr>
<td>4164 150ns Not Texas</td>
<td>1.05</td>
<td>.95</td>
<td>.90</td>
</tr>
<tr>
<td>41256 150ns</td>
<td>2.59</td>
<td>2.45</td>
<td>2.35</td>
</tr>
<tr>
<td>1256 120ns</td>
<td>2.75</td>
<td>2.55</td>
<td>2.40</td>
</tr>
<tr>
<td>41464 120ns</td>
<td>3.45</td>
<td>3.20</td>
<td>2.95</td>
</tr>
<tr>
<td>2114 200ns Low Power</td>
<td>1.75</td>
<td>1.60</td>
<td>1.55</td>
</tr>
<tr>
<td>6116 150ns Low Power</td>
<td>1.40</td>
<td>1.25</td>
<td>1.20</td>
</tr>
<tr>
<td>6264 150ns Low Power</td>
<td>2.75</td>
<td>2.55</td>
<td>2.40</td>
</tr>
<tr>
<td>62256 120ns Low Power</td>
<td>10.95</td>
<td>10.25</td>
<td>9.65</td>
</tr>
<tr>
<td>2716 450ns 5 volt</td>
<td>3.20</td>
<td>Call</td>
<td>Cal</td>
</tr>
<tr>
<td>2732 450ns</td>
<td>3.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2732A 250ns</td>
<td>3.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2764 250ns Suit BBC</td>
<td>2.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2712B 250ns Suit BBC</td>
<td>3.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27256 250ns</td>
<td>4.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27512 250ns</td>
<td>8.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low profile IC sockets: Pins

10 14 16 18 20 24 28 40

Please ask for quote on higher quantities or items not shown.

Data free on memories purchased, enquire cost for other.

Write or phone for list of other items including our 74LS series and a DISCOUNT ORDER FORM.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by phone or mail welcome.

Non-Military Government & Educational orders welcome for minimum invoice value of £15 net.

HAPPY MEMORIES (WW), FREEPOST, Kington, Herefordshire HR5 3BR.
Tel: (054 422) 618

Enter 62 on reply card.
Philips Communications and Security, leaders in professional audio communications, is seeking a young professional audio engineer to join its project team to provide project and product support to the field sales staff. He/she will be involved in first line systems design and production of quotations as well as giving general advice on application possibilities and obtaining Dept. Trade and Industry approvals.

It is likely that the successful candidates will have a minimum of HNC in Telecoms. with substantial experience in communications and/or professional audio with a working knowledge of general software requirements for radio paging. A clean driving licence is essential (a company car is not provided).

Please apply to Ann Macnab, Personnel Manager, Philips Communications & Security, Cromwell Road, Cambridge CB1 3HE. Tel: 0223 245191.

Pro-Audio Service Engineers

Our client, a leading supplier of professional audio equipment to the broadcast and sound recording industry seeks experienced service engineers to work with professional tape machines and microphones. This will involve occasional visits to customers sites. Tape machine experience and a knowledge of the industry are essential. RF/Radio Amateur/Live recording experience useful. An excellent benefit package applies. Interested?

Contact:
Mike Jones
Professional and Technical Appointments
(0256) 470704

Hardware/Software/Systems

£9,000 – £25,000

As a leading recruitment consultancy we have a wide selection of opportunities for high calibre Design, Development, Systems and supporting staff throughout the UK. If you have experience in any of the following then you should be talking to us for your next career move.

ARTIFICIAL INTELLIGENCE * IMAGE PROCESSING * ANALOGUE DESIGN MICRO HARDWARE & SOFTWARE * GUIDED WEAPONS * C * PASCAL ADA * RF & MICROWAVE * ELECTRO-OPTICS * SIMULATION * C1

REAL TIME PROGRAMMING * SYSTEMS ENGINEERING * ACOUSTICS SONAR * RADAR * SATELLITES * AVIONICS * CONTROL * ANTENNA VLSIDESIGN

Opportunities exist with National, international and consultancy companies offering excellent salaries and career advancement. To be considered for these and other requirements contact John Spencer or Stephen Mowley or forward a detailed CV in complete confidence quoting Ref. WW/66.

STS Recruitment, 85 High Street, Winchester, Hants SO23 9AP. Tel: (0962) 69478 (24 hrs).
THE UK's No. 1 ELECTRONICS AGENCY

ELECTRONICS ENGINEERS if you are looking for a job in DESIGN, FIELD SERVICE, TECHNICAL SALES or SOFTWARE ENGINEERING.

Telephone NOW for one of our FREE Jobs lists or send a full cv to the address below.

Vacancies throughout the UK to £18000 pa.

Capital Appointments Ltd., FREEPOST London N17 OBR.

Please send me your list for ..................................... Engineers
Name.................................................................(WW)
Address..............................................................................
..........................................................................................
Post Code.................................................................01-808 3050 – 24 HOURS

UNIVERSITY OF BIRMINGHAM
Department of Sport and Exercise Sciences

Electronics bias

A TECHNICIAN

is required to play a major role in providing technical expertise in the development of new teaching courses and research programmes. The duties will involve development and construction of electronic equipment, and some use of computing skills plus assisting in the exercise physiology laboratory measuring human subjects using a variety of sophisticated research apparatus. Applicants should be qualified in Applied Biology or Electronics and have previous laboratory experience. Ref: 9460, Salary £7,696-9,086 pa.

Please write or telephone for application forms to:
Personnel Office, Birmingham University, PO Box 363, Birmingham B15 2TT.
Tel: 021-472 1301, ext 2452

An Equal Opportunities Employer

ELECTRONICS & WIRELESS WORLD
Are you looking for a secure shore-based job which offers a rewarding career in the forefront of modern telecommunications technology? then consider Avionics Bench Engineer Hereford. Training involves a 32-week residential course, plus 6 weeks extra if you cannot touch type. After which you will be appointed RADIO OFFICER and undertake a variety of specialist duties covering the whole of the spectrum from DC to light. We offer you: Job Security - Good Career Prospects - Opportunities for Overseas Service - Attractive Salaries... and much more. To be eligible you must hold or hope to obtain an HNC, or an equivalent qualification in Telecommunications subject with an ability to read morse at 20wpm. Write or telephone for an application form to:-

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
SOFTWARE ENGINEERING
DIGITAL & ANALOGUE ELECTRONICS
COMMUNICATION ENGINEERING
MATHEMATICS
LECTURER II/SENIOR LECTURERS
(Open to all)

Anyone with PMQ, MPT or 2 years relevant radio operating experience is also eligible. Anyone with PMQ, MPT or 2 years relevant radio operating experience is also eligible. Any

Applications are invited for lecturing posts in the Engineering disciplines above.

Candidates should have recent industrial/research/consultancy experience.

The Department – a leader in Information Technology and one of the largest engineering departments in the country – currently comprises 45 academic and 30 support staff.

The academic programme includes a large postgraduate course in Information Technology, courses leading to Enhanced (B.Eng.) and Extended (M.Eng.) Degrees, Technician Engineer qualifications and postgraduate studies by research. Department research and consultancy interests extend to many branches of Electrical and Electronic Engineering, Software Engineering and Knowledge Based Systems.

Application forms and further details are available from the Personnel Department, South Bank Polytechnic, Borough Road, London SE1 0AA. Telephone: 01-928 3512 (answering service 9.00am to 6.00pm). Please quote Ref: ACAD. Closing date: 30th September, 1987

An Equal Opportunities Employer

South Bank Polytechnic
Teaching for tomorrow
in the heart of London

-------------------

ELECTRONICS TECHNICIAN

A vacancy exists in the Department of Physics, University of Leeds, for an Electronics Technician to work with the Polymer Research Group.

Duties will include the development, construction, modification and operation of equipment in addition to fault diagnosis, testing, calibration and maintenance. Candidates should have an HNC or equivalent qualification with experience in analogue and digital electronics. Experience of valve equipment, BBC computers and peripherals, would be an advantage but not essential. The post is externally funded and will initially be for one year, possibly extending to three years. Salary, according to age, qualifications and experience in the range £8,800 to £10,840.

CV with details and two referees to be sent to:
The Contracts Officer, University of Leeds Industrial Services Ltd, 175 Woodhouse Lane, Leeds LS2 3AR, marked “Confidential”.

-------------------

TO MANUFACTURERS, WHOLESALERS,
BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND
ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS,
DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W,
CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC
CERAMICS, PLATE CERAMICS, etc.

ELECTROLYTIC CAPACITORS, SPEAKERS, CONNECTING WIRE, CABLES,
SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.

ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN’S CAVE

PHONE: 445 0749/445 2713

R. HENSON LTD.
21 Lodge Lane, North Finchley, London, N.12
(5 minutes from Tally Ho Corner)

(1613)

-------

BILLINGTON VALVES

25 Highams Road, Rochester, Kent ME1 1RE
Tel: (0246) 4906, 4907, 4908. Telex: 805820 BILLINT 1

Valves and Transmitters - Rarities we love

Speciality! Stock new and second hand Valves and Transmitters from both big and small engineering companies. We stock a wide range of valves and transmitters including: Angletrons, Diaphragm, Flexible, Membrane and Float type. We have the largest range of valves and transmitters anywhere.

We stock all types of valves and transmitters and are happy to offer advice on selection and application. We are pleased to offer a full calibration service on any type of valve.

We will buy Valves and Transmitters. Contact us on 01474 254252 (8am-5pm Mon-Fri) or write to: Billington Valves, 25 Highams Road, Rochester, Kent ME1 1RE

-------------------

CONNECTORS

ZERO INSERTION FORCE
NEW DESIGN - LOW COST - HIGH QUALITY
Details SAE: JASP INTERNATIONAL

14 Tudor Close, Wokingham, Berks RG12 1LR (trade welcome).
Tel: 0734 782084, Tlx: 849021
**FOR SALE**

AM LOW BAND MOBILE RADIO SYSTEM

Comprising: 64 No GEC 666, 25 No GEC 666, 24 No. GEC 655, 1 No TAIT 162, 1 No MORTONAE MFSAM, 3 No PYLE W15AM, 12 No PYLE AM10, 4 No Wfer 2180, 1 No MARCONI RC 661, 3 No GEC RU50 Portables and Charger, 2 No PORT 219A Portables and Charger, 3 No PYLE F15/F7B Base, 10 No LoL, 5 No PYLE AM10, 1 No PLYE F30 BASE, 1 No GEC RU50 BASE, 2 No LoL.

**SERVICES**

**CIRCOLEC**

THE COMPLETE ELECTRONIC SERVICE


Quality workmanship by professionals at economic prices.

Please telephone 01-644 5686 for advice or further details.

**TAMWORTH MANOR**

302-310 COMMSCSIDE EAST, MITCHAM

(13E9)

**DESIGN SERVICE**

Design Development and CAD PCB Design/Artwork. Analogue and digital design and development to production. Microcontroller development facilities. 4 bit H400 and 8 bit 6305 one time programmable. 6805 & 6809 NMOS & CMOS. Emulators for 6305 and 6805 microcontrollers for sale.

MED, 20 Greenock Road, Streatham, London SW16 5XG.

Tel: 01-679 7109

**WANTED**

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash.

M & B RADIO

86 Bishopsgate Street

Leeds LS1 4BB

0532 459649

**ARTICLES FOR SALE**

**TEST EQUIPMENT**

**GOOD USED EQUIPMENT ALWAYS AVAILABLE**

Subharmonic 1172 frequency response analyser

£1,250.00

Advance DS100A 40MHz Oil trace scope

£275.00

Advance DS100A 15MHz Oil trace scope

£150.00

Tektronix 7603 100MHz with plug-ins

£750.00

Considerably more on offer. Contact COXIE INTERNATIONAL.

**BUYING OR DISPOSING contact**

COXIE INTERNATIONAL

Unit 4, Forthbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO2 7OE.

Tel: 0243 651117

**ARTICLES WANTED**

**IC amps £6 ea 10 drawer cabinets containing Prismatic. bin 'cuter microscope £195 60 W 60 W Centrrtuge.**

**P.C.B.'s DESIGNED. Artwork capacity available for single/double sided, P.T.H and multi-layer P.C.B.'s, also silk screens, solder masks etc. For C.A.D./Photoplot, artwork & photography, contact Mr. Williams, 49 Wisbech. Lincoln. 0911 SPT Tel:07 2996371 32152.**

**WHEN REPLYING TO CLASSIFIED ADVERTISEMENTS, READERS ARE RECOMMENDED TO TAKE STEPS TO PROTECT THEIR INTEREST BEFORE SENDING MONEY.**

**CLASSIFIED ADVERTISEMENTS**

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Electronics & Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £5.50 PER LINE. Average six words per line. Minimum £45 (payable)
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus £12.
- Cheques, etc., payable to "Reed Business Publishing" and cross "& Co." 15% VAT to be added.

**NAME**

__________________________

**ADDRESS**

__________________________

**REMITTANCE VALUE**

__________________________

**ENCLOSED**

**PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS**

1077
**MATMOS LTD.** 1 Church Street, Cuckfield, West Sussex RH17 5JZ.

Tel: (0444) 414484/454377

**COMPUTER APPRECIATION**, 111 Northgate, Canterbury, Kent CT1 1BH

Tel: (0227) 470512. Telex: 966134 COMPAG P

DATA GENERAL ECLIPSE CS/40 SYSTEM comprising: ECLIPSE processor with 512bytes MOS memory, 5 line terminal MUX type 005-2659, 2 Data base cartridge drive and system 9007-4 DATA.

DATA GENERAL NOVA 1200 SYSTEM comprising: processor with 64kbytes core memory, magnetic tape drive Model 6021-2, 9 track 800 bpi, Phoenix 14 cartridge drive model 6050, Sybols optical mark reader and a 360mb removable. £1,250.00

DATA GENERAL NOVA 1200 SYSTEM comprising: processor with 64kbytes core memory, model 5006-16 line terminal MUX, Model 6050-0 cartridge drive.

microNOVA SYSTEM comprising 3 track: with 8 slot backplane, box & PSU, 12mbyte 14 Winchester disc drive... £75.00

AS ABOVE, but with addition of cartridge tape backup... £55.00

microNOVA SYSTEM, all unused, comprising desktop mounted: Model E8711 -N processor Winchester disc drive Model E684-82 power supply. Model 6621-6 monitor. £238.00

microNOVA SYSTEM, all unused, comprising: processor with 32kbytes core memory, minicomputer type 014 model 6620 processor with 8kbytes core memory, no controller, keyboard, 12mbyte floppy disc drive, green screen monitor, 14 Winchester disc drive... £1,250.00

microNOVA SYSTEM comprising 3 track: with 8 slot backplane, box & PSU, 12mbyte 14 Winchester disc drive... £75.00

DATA GENERAL D614 DASH TPR printer. Serial interface 3000/300B.

DATA GENERAL D702 DASH TER TERMINAL. All baud rates to 19200 £150.00

DATA GENERAL DASHER 100 terminal.

PLESEY Model T24 V22 V2 bis model, Compact, automatic modem featuring the latest technology and the highest possible data rate over the ordinary phone system. Offer: both V2 & V2 bis compatibility, 1200/2400 Baud operation with auto bit rate recognition, operation on any standard 8 line PBX, 2400 Baud. £225.00

VICTOR Speedpac IBM PC ACCELERATOR. Half-wide 82586 accelerator card for IBM PC and XT compatible systems. 2mbyte cache memory and 7.2mhtz 82586 processor. Offer: AT/Personal System 2 performance for a fraction of the cost. Runs up to 7.5 times faster... £199.00

**REPLY CARD**

**INDEX TO ADVERTISERS**

**Appointments Vacant Advertisements appear on pages 1074-1077**

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adole Products</td>
<td>Farnell Instruments Ltd</td>
<td>Kestrel Electronic Comp</td>
</tr>
<tr>
<td>Air Link Transformers</td>
<td>Field Electric Ltd</td>
<td>Langrex Supplies</td>
</tr>
<tr>
<td>BAF Box Ltd</td>
<td>Fluke (GB) Ltd</td>
<td>Level Electronics</td>
</tr>
<tr>
<td>BICC - Verto Electrical</td>
<td>Gould Electronics</td>
<td>L D Electronics</td>
</tr>
<tr>
<td>Cambridge Kits</td>
<td>Hagom Oscilloscopes</td>
<td>MA Instruments</td>
</tr>
<tr>
<td>Cambridge Electronics</td>
<td>Happy Memories</td>
<td>Maplin Electronic Supplies</td>
</tr>
<tr>
<td>CircKit Distribution</td>
<td>Harrison Electronics</td>
<td>MBS Technirent</td>
</tr>
<tr>
<td>Colomor (Electronics) Ltd</td>
<td>Hart Electronic Kits</td>
<td>MIP Electronics</td>
</tr>
<tr>
<td>Computer Applicators</td>
<td>Henry's Audio Electronics</td>
<td>North East Satellite Systems</td>
</tr>
<tr>
<td>Crotech Instruments</td>
<td>Henson, R, Ltd</td>
<td>Number One Systems</td>
</tr>
<tr>
<td>Dean Micsystems</td>
<td>Hilomost Ltd</td>
<td>Orients Communications</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>ICON (UK) Ltd</td>
<td>ORBITZ Components</td>
</tr>
<tr>
<td>Electronic Brokers</td>
<td>Innes Gmbh</td>
<td>Quaithard</td>
</tr>
<tr>
<td>Electric Source Time</td>
<td>Instrument Rentals</td>
<td>Pineapple Software</td>
</tr>
<tr>
<td>Electrunik Export-Import</td>
<td>Johns Radio</td>
<td>POA</td>
</tr>
<tr>
<td>EMS Mfg, Ltd</td>
<td></td>
<td>Spectra Physics</td>
</tr>
<tr>
<td>Engineering Solutions</td>
<td></td>
<td>170 HIGH OUTPUT ARGON ION LASER, 20 Watt output fast (including approx 2W UV output) with tube newly refurbished... POA</td>
</tr>
<tr>
<td>ENTER 50 ON REPLY CARD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STOP PRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PANASONIC LATEST MODEL</strong></td>
</tr>
<tr>
<td><strong>AUSTRALIA and NEW ZEALAND</strong></td>
</tr>
<tr>
<td>Gordon &amp; Gotch Ltd.</td>
</tr>
<tr>
<td>INDIA: A. H. Wheeler &amp; Co.</td>
</tr>
<tr>
<td>CANADA: The Wm, Dawson Subscription Service Ltd., Gordon &amp; Gotch Ltd.</td>
</tr>
</tbody>
</table>

**OVERSEAS ADVERTISING AGENTS**


**ELECTRONICS & WIRELESS WORLD**
<table>
<thead>
<tr>
<th>Equipment</th>
<th>STG £</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIO TEST EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>LEADER LFM 3615 Wow/Flutter Meter</td>
<td>650</td>
</tr>
<tr>
<td>LEADER LAV 191 Audio Tester</td>
<td>275</td>
</tr>
<tr>
<td>COMMUNICATIONS EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>SPECTRUM D101 Datascope</td>
<td>3500</td>
</tr>
<tr>
<td>TEKLEX CHAMELEON TT06 Protocol Analyser</td>
<td>15000</td>
</tr>
<tr>
<td>DIGITAL VOLTMETERS</td>
<td></td>
</tr>
<tr>
<td>DANA 5900 6½ Digit Multimeter</td>
<td>800</td>
</tr>
<tr>
<td>FLUKE 8025 6½ Digit + IEEE 488</td>
<td>1250</td>
</tr>
<tr>
<td>FLUKE 8050A 4½ Digit Multimeter</td>
<td>250</td>
</tr>
<tr>
<td>HEWLETT PACKARD 3468 6½ Digit with HPIL</td>
<td>400</td>
</tr>
<tr>
<td>DIGITAL THERMOMETERS</td>
<td></td>
</tr>
<tr>
<td>FLUKE 2176A</td>
<td>500</td>
</tr>
<tr>
<td>DIGITRON</td>
<td>100</td>
</tr>
<tr>
<td>LOGIC ANALYSERS</td>
<td></td>
</tr>
<tr>
<td>FLUKE 9010A + 280 Pod</td>
<td>3500</td>
</tr>
<tr>
<td>HP 1610A 32 Channel</td>
<td>1500</td>
</tr>
<tr>
<td>TEKTRONIX 1240 N16 + 3 D2 Cards</td>
<td>8000</td>
</tr>
<tr>
<td>FREQUENCY COUNTERS</td>
<td></td>
</tr>
<tr>
<td>FLUKE 1920A 9½ Digit 500MHz</td>
<td>900</td>
</tr>
<tr>
<td>HP 5315A + Opt 3 DC 10CMHz</td>
<td>900</td>
</tr>
<tr>
<td>MAINS ANALYSERS &amp; TEST EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>AVO RM215L/2 Insulation Tester</td>
<td>450</td>
</tr>
<tr>
<td>ASSOCIATED RESEARCH Hipot Tester</td>
<td>900</td>
</tr>
<tr>
<td>DRAGETZ 626 Mains Analysyer</td>
<td>3250</td>
</tr>
<tr>
<td>826 PA 6001 +1 Plug In</td>
<td>750</td>
</tr>
<tr>
<td>826 6002 - A1 Plug In</td>
<td>750</td>
</tr>
<tr>
<td>826 6003 - 1 Plug In</td>
<td>1500</td>
</tr>
<tr>
<td>ELGAR 1001B Variable Voltage &amp; Frequency Source</td>
<td>1350</td>
</tr>
<tr>
<td>GOULD GS 2552 Power Conditioner</td>
<td>500</td>
</tr>
<tr>
<td>ROD L (Inc) M100 AV-S-S Hipot Tester</td>
<td>1500</td>
</tr>
<tr>
<td>ROD L 25 AMP Ground Tester</td>
<td>1250</td>
</tr>
<tr>
<td>SHAFFNER NSG</td>
<td>900</td>
</tr>
<tr>
<td>OSCILLOSCOPES</td>
<td></td>
</tr>
<tr>
<td>BWD 540 100MHz Delay T/B</td>
<td>500</td>
</tr>
<tr>
<td>HP 1741A 100MHz Analog Storage Delay T/B</td>
<td>2400</td>
</tr>
<tr>
<td>TEKTRONIX 468 Digital Storage Oscilloscope</td>
<td>4500</td>
</tr>
<tr>
<td>TEKTRONIX 475A DM44 250MHz Delay T/B</td>
<td>2500</td>
</tr>
<tr>
<td>TEKTRONIX 2215 60MHz Delay T/B</td>
<td>700</td>
</tr>
<tr>
<td>TEKTRONIX 2236 100MHz DVM Frequency Control Delay T/B</td>
<td>1500</td>
</tr>
<tr>
<td>TEKTRONIX 2337 100MHz Ruggedised DVM + Delay T/B</td>
<td>2500</td>
</tr>
<tr>
<td>TRIO 0013030 100Khz Oscilloscope</td>
<td>125</td>
</tr>
<tr>
<td>TRIO CS2100 100MHz Delay T/B</td>
<td>1500</td>
</tr>
<tr>
<td>POWER SUPPLIES</td>
<td></td>
</tr>
<tr>
<td>BEHA 30v 3A Single PS</td>
<td>60</td>
</tr>
<tr>
<td>DELTA ELECTRONICS SM 6020 60v 20A VAR</td>
<td>900</td>
</tr>
<tr>
<td>LAMBDa 5v 50A Fixed</td>
<td>700</td>
</tr>
<tr>
<td>RACAL DANA K9232 DUAL PS</td>
<td>175</td>
</tr>
<tr>
<td>SORENSON 60v 10A Var.</td>
<td>525</td>
</tr>
<tr>
<td>WEIR 423-460 60v 3A Variable</td>
<td>175</td>
</tr>
<tr>
<td>WEIR 413-430 30v 1A Variable</td>
<td>175</td>
</tr>
<tr>
<td>PROM PROGRAMMERS</td>
<td></td>
</tr>
<tr>
<td>DATA IO 29A c/w Unipack</td>
<td>100</td>
</tr>
<tr>
<td>FLUKE 8025A 6½ Digit + IEEE 488</td>
<td>1250</td>
</tr>
<tr>
<td>UNIPACK 2</td>
<td>1250</td>
</tr>
<tr>
<td>DATA IO 16 Gang Programmer</td>
<td>1000</td>
</tr>
<tr>
<td>GP INDUSTRIAL UV141 UV Eraser</td>
<td>75</td>
</tr>
<tr>
<td>RS 301 – 791 UV Eraser</td>
<td>100</td>
</tr>
<tr>
<td>RFI TEST EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>SCHWARZBECK NSLK 8127 Artificial Mains Network</td>
<td>1250</td>
</tr>
<tr>
<td>SCHWARZBECK FMLK 1518 Low Frequency Receiver</td>
<td>7000</td>
</tr>
<tr>
<td>SCHWARZBECK VUME 1520A VHF UHF RF1 Receiver</td>
<td>8250</td>
</tr>
<tr>
<td>SCHWARZBECK FMZL 1514 Field Intensity Accessories</td>
<td>2500</td>
</tr>
<tr>
<td>SEMI CONDUCTOR TEST EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>MASTECH SEMICONDUCTOR TESTER 2610R3</td>
<td>3000</td>
</tr>
<tr>
<td>TEKTRONIX 576 Curve Tracer</td>
<td>7500</td>
</tr>
<tr>
<td>3H CORP Linear IC Tester 3H202</td>
<td>1150</td>
</tr>
<tr>
<td>SPECTRUM ANALYSERS</td>
<td></td>
</tr>
<tr>
<td>TAKEDA TKEN TR4132</td>
<td>2500</td>
</tr>
<tr>
<td>μ PROCESSOR DEVELOPMENT SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>TEKTRONIX 8002A + Z80 Emulator</td>
<td>1500</td>
</tr>
<tr>
<td>TEKTRONIX 4024 VDU</td>
<td>450</td>
</tr>
<tr>
<td>INTEL ISBC 661 Chassis + 8085 Eval. Kit</td>
<td>800</td>
</tr>
<tr>
<td>NEC 80C42 Evaluation kit</td>
<td>400</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
</tr>
<tr>
<td>FEEDBACK EW6 Power Meter</td>
<td>250</td>
</tr>
<tr>
<td>FLUKE Y800 Current Gun 200A</td>
<td>160</td>
</tr>
<tr>
<td>FLUKE 80K40 HV Probe</td>
<td>50</td>
</tr>
<tr>
<td>PW BELL 815 Gausmeter</td>
<td>1200</td>
</tr>
<tr>
<td>GENRAD 1864 Megohmometer</td>
<td>1200</td>
</tr>
<tr>
<td>GOSSEN Light Meters</td>
<td>50</td>
</tr>
<tr>
<td>LEVEll TM14 Insulation Testor</td>
<td>175</td>
</tr>
<tr>
<td>P.S. PH Meter 610-540</td>
<td>50</td>
</tr>
<tr>
<td>SAUNDERS 100HF Crystal Impedance Meter</td>
<td>650</td>
</tr>
<tr>
<td>SHACKMAN 700 Polaroid Camera</td>
<td>300</td>
</tr>
</tbody>
</table>

**Prices are subject to availability and are exclusive of VAT**

SECOND TEST LTD. 25 CHANCERY LANE DUBLIN 8
Tel: Dublin 775166 · Telex 91446 · Fax 781136
Electronic Brokers introduce the essential guide for users, specifiers and purchasers of test and measurement equipment – The Blue Book. More than just a catalogue, the 256 page Blue Book includes technical and applications information in addition to comprehensive guides and product specifications.

There are 16 sections from oscilloscopes to analysers, signal sources, multimeters, communications and television test equipment... plus much more. And as you would expect from the leading distributor in the industry all the leading major manufacturers are included.

The Blue Book will be an invaluable source of information for you – Secure your FREE personal hard back copy today by sending off the coupon with a business card or letterhead.

Electronic Brokers Ltd, 140/146 Camden Street, London NW1 9PB
Fax: 01-267 7363. Telex: 298694. Tel: 01-267 7070.