Trends in oscilloscopes

C64 slow-scan tv • PC DOS filing system
Putting the quality back into a.m. radio
Pressure transducers • Novel Q meter
Today's headliners from Electronic Brokers

10% OFF MARCONI INSTRUMENTS

Special offers on Selected Models for orders received by 30th September 1986

2440 Microwave Counter
- Wide frequency coverage: 10 Hz to 20 GHz
- Fast acquisition time: only 200 ms typical
- High-stability oven-controlled crystal oscillator

£3285

HM 050 60 MHz Oscilloscope
- Dual trace and sweep delay
- Maximum sensitivity 1mV
- In-built component tester
- X modulation and
- Y operation

£515

HM 203-5 20 MHz
- Standard Oscilloscope

£285

HM 204-2 20 MHz
- Multifunction Oscilloscope

£365

HM 208 Digital Storage Oscilloscope
- Real time or digital storage to 20 MHz
- Low frequency event storage – max sensitivity 1mV
- Special background memory useable with main memory
- Chart plotter output at variable readout speeds

£1300

HM 208 Digital Storage 'scope with IEEE

£1550

For the full stories, also latest news on Grundig, Thandar and Thurlby, contact:

Electronic Brokers
140/146 Camden Street, London NW1 9PB
Tel: 01-267 7070. Telex: 298694. Fax: 01-267 7363

BIG DISCOUNTS ON PHILIPS COUNTER/TIMERS UNTIL 30th SEPTEMBER 1986

PM6670/01 HIGH RESOLUTION WITH EXTRA FUNCTIONS
- High accuracy frequency measurements
- High resolution counting
- Burst frequency average, phase and RPM
- Time interval, single and average
- High trigger accuracy
- Excellent 10mV sensitivity

Summer saver price £590

PM6670/01 ENHANCED FEATURES UNIT
- Frequency 0.1 Hz to 120 MHz
- LED trigger indicators
- Trigger level outputs
- Burst frequency average
- Arming, ext. reset/start
- Gate open monitor

Summer saver price £660

PM6672/01 HIGHER FREQUENCY TIMER
- Frequency 0.1 Hz to 1 GHz
- Period, pulse width
- Single and average time interval
- Count, phase, RPM, ratio
- High accuracy frequency measurements
- Res. to 1ppm, sensitivity to 10mV

Summer saver price £845

HAMEG OSCILLOSCOPES

2304 FM/AM Modulation Meter to 1 GHz
- £1080

2019A AM/FM Signal Generator to 1040 MHz
- £4077

2019B AM/FM Signal Generator to 520 MHz
- £3870

FLUKE DIGITAL MULTIMETERS

10% OFF FLUKE DIGITAL MULTIMETERS

2305 Modulation Meter
- 2 GHz frequency range
- Exceptionally fast auto-tuning, with low noise
- Modulation analysis, including frequency and power

£4734

2022 AM/FM Signal Generator
- Wide frequency coverage: 10 KHz to 1000 MHz
- Simple push button operation, large LCD display.
- Comprehensive modulation: AM/FM/PM

£2655

2034 FM/AM Modulation Meter to 1 GHz
- £675

2610 True RMS Voltmeter to 25 MHz
- £1080

2019A AM/FM Signal Generator to 1040 MHz
- £4077

2019B AM/FM Signal Generator to 520 MHz
- £3870

HF 77 Multifunction Hand-Held DMM
- 3½ digit LCD with analogue bar graph
- Auto/manual ranging capability
- DC accuracy 0.3%
- Touch and hold facility

£110

HF 75 Full-featured analogue/digital meter

£88

HF 73 Hand-held DMM with simplicity and value

£72

HF 77 Hand-held DMM
- 3½ digit LCD with Bar graph
- Min/Max and relative mode operation
- Touch and hold facility and auto ranging
- DC accuracy 0.1%

£216

JF 25 Sealed and ruggedized hand-held DMM

£193

For the full stories, also latest news on Grundig, Thandar and Thurlby, contact:

Electronic Brokers
140/146 Camden Street, London NW1 9PB
Tel: 01-267 7070. Telex: 298694. Fax: 01-267 7363
FEATURES

Putting the quality back into a.m. radio by J.L. Linley Hood
Unusual design attempts to match the much sought-after sound of the pre- and post-war five-valve radio.

Mains communication without tears
How to interface data communication systems with the mains supply and expand into a cost-effective paging system.

Microcontroller integrates peripherals by Mike Catherwood
More features of the limited-issue chip controller chip for teaching and evaluation.

Slow-scan tv in software by G. Cameroni and G. Morellato
Direct transmission and reception of pictures by radio using only a Commodore 64 computer.

Ringing the changes on bells by 'Joules Watt'
Think you know all about the decibel, eh?

Novel Q meter by McKenny Egerton, Jr
Alternative to the conventional Q meter is significantly easier to design and needs only a frequency counter.

Integrated pressure sensors in acoustics by Gary Morton
How to choose signal-conditioned transducers for a variety of acoustic applications.

Designing with dynamic memory by Alan Clements
Large memory arrays can be produced economically with dynamic ram provided care is taken over timing requirements, refreshing and the supply rail. Part 3 concludes the series.

IBM's PC filing system
Description of PC DOS complements our 1985 series on floppy discs.

Oscilloscope update
Speed and accuracy improve slightly since our last survey but oscilloscopes are much better at displaying difficult waveforms.

Component integration in oscilloscopes by J. Helferich and E. Kruisdijk
Custom ICs reduce oscilloscope manufacturing time and costs but also improve reliability.

Electronic ignition for single-cylinder engines by John Robins
Capacitor discharge unit replaces magneto ignition to give new life to garden machinery.

REGULARS

News commentary
MSP cutback
Amateur g.s.o. satellite? Wireless World goes professional

Communications commentary
Narrow-band speech
Modems
Parapsychology
Antennas and planning GCHRQ again

Feedback
Synchrodyne
Shoot that postulate
Temperature distortion
Capacitor distortion
Long-wave frequency changes

Circuit ideas
Hall-effect a.c. detector
Mains synchronized sawtooth
Current-limited power supply
Dip oscillator for urinations
Stereo phase display

Special offer
See subscription offer envelope

New products
HF receivers
Audio capacitors
Weather map receiver
Industrial Pascal Lin emancipator

Appointments
75
New logo and spine are just part of a new direction for this journal – see page 6

Next month
32
Whether your application demands a 1 8° Hybrid Stepper Motor or one of our 7.5° or 15° Permanent Magnet Stepper Motors, we’ll demonstrate how responsive a European manufacturer can be, providing standard variations if necessary and arranging delivery times which compare well.

We offer a choice of phase resistances and electronic controllers, and guarantee long life expectancy and high reliability.

For a complete literature pack, telephone Carol Pearce on Farnborough (0252) 513211, or complete the coupon below. Your first step in the right direction.

Crouzet Limited
108 Hawley Lane, Farnborough, Hampshire, GU14 8HY.
Telephone (0252) 513211. Telex 856126

SWITCHES MOTORS TIMERS PNEUMATICS

Three steps ahead.

CIRCUIT 76 FOR FURTHER DETAILS

SOWTER AUDIO FREQUENCY TRANSFORMERS

You name it! We make it!

For the past 45 years we have concentrated on the design and manufacture of high grade audio transformers during which period our total sold exceeds half a million. We continually take full advantage of all the improvements in magnetic and insulating materials and in measuring techniques utilising the most up to date instrumentation.

We have a very large range of original designs made for clients all over the world but naturally there are certain types of Sowter Transformers which are in constant demand. These have taken into account the tendency towards small size without sacrificing of performance, particularly for PBX mounting, and a few of these are listed below. They can be supplied with or without mumetal shielding cans. Performance requirements can be modified on request (using our readily available questionaire) and generally without alteration in price.

We specialise in LOW COST AND QUICK DELIVERY which means a few days only or ex-stock.

CIRCUIT 76 FOR FURTHER DETAILS

LINDSEY HOOOD 350 SERIES AMPLIFIER KITS

Superb, LINDSEY designed integrated amplifier kits derived from Lindsey’s articles in HiFi News.

Ultra easy assembly and set-up with sound quality to please the most discerning listener. Ideal basis for any domestic sound system if quality matters to you. Buy the complete kit and take full advantage of this.

For a complete literature pack, telephone Carol Pearce on Ipswich (0473) 52794 or Telex 858612 SOWTER.

Please send your stepper motor information pack

Name
Position
Company
Address
Telephone

CIRCUIT 76 FOR FURTHER DETAILS
ELECTROMAIL—A BRAND NEW WAY TO BUY RS PRODUCTS.

- Over 12,000 products from a single source.
- The quality range – proven by industry.
- Excellent stock availability.
- 24 hour ordering.
- 688 page catalogue.

Write or phone today for your copy of the new Electromail catalogue. It's an invaluable technical reference packed with photographs and detailed descriptions of the complete product range.

Send £2.50 or, if phoning, quote your Access/Visa number.

The Electromail service is only available to UK customers.

ELECTROMAIL
Dept. 200, PO Box 33, Corby, Northants. NN17 9EL
TELEPHONE: 0536 204555

ORDER YOUR CATALOGUE TODAY!

CIRCLE 30 FOR FURTHER DETAILS
PROFESSIONAL PC BASED PCB DESIGN PACKAGES

VUTRAX-4

The modular PCB design system allowing input by schematic capture, standard net list or manual, on-screen generation. Combined with advanced features like auto-placement, auto-routing, design rule checking and true SURFACE MOUNT capabilites, make VUTRAX-4 the most comprehensive package for PCB design on personal computers.

Technical Summary
- Up to 32" by 32" board size
- Up to 16 layers
- 0.01" or 0.205mm resolution
- Track size from 0.001" to 0.952".
- Pad sizes and shapes are practically unlimited
- 500 16 pin IC capacity
- Supports wide of graphics options
- Camera ready artwork on dot matrix printers and pen plotters
- Supports Gerber photoplotters
- Silk screen, solder resist and drilling chart capabilities
- Runs on Apricot, Sirius, Olivetti, IBM PC/XT/AT and Future FX/20/30

Software from £1,400 to £9,800
Demo System £70.00

Note: All prices exclude VAT & Delivery

CONQUIN SOFTWARE LTD.
Freepost, Morden, Surrey SM4 1BR
Phone: 01-640 9130

CIRCLE 82 FOR FURTHER DETAILS

Happy Memories

Part type	1 off	25-99	100 up
4164 150ns Not Texas | .95 | .85 | .80 |
4165 150ns Texas | 2.25 | 2.15 | 2.05 |
2114 200ns Low Power | 1.75 | 1.60 | 1.55 |
6116 150ns | 1.40 | 1.25 | 1.20 |
6264 150ns Low Power | 2.50 | 2.45 | 2.20 |
2714 450ns 5 volt | 2.75 | 2.60 | 2.45 |
2732 450ns Intel type | 2.60 | 2.40 | 2.25 |
2764 250ns Suit BBC | 2.05 | 1.90 | 1.75 |
2712 250ns Suit BBC | 2.30 | 2.20 | 2.10 |
27256 250ns | 3.70 | 3.45 | 3.30 |

Low profile IC sockets: Pins | 14 | 16 | 18 | 20 | 24 | 28 | 40 |
Pencil | 5 | 9 | 10 | 11 | 12 | 15 | 17 | 24 |

Please ask for quote on higher quantities or items not shown.

All memory products Japanese or American manufacture.

Write or phone for list of other items including our 74LS series with DIY discounts starting at a mix of just 25 pieces.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by phone or mail welcome.

Non-Military Government & Educational orders welcome for minimum invoice value of £15 net.

HAPPY MEMORIES (WW),
Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (0542) 618

CIRCLE 39 FOR FURTHER DETAILS

STEWART OF READING

Phone: 0734 68041
110 WYKEHAM ROAD, READING, BERKS RG6 1PL

Callers welcome 9am to 5.30pm. MON.-FRI. (UNTIL 8pm. THURS)

CIRCLE 61 FOR FURTHER DETAILS

ELECTRONICS & WIRELESS WORLD OCTOBER 1986

www.americanradiohistory.com
You can’t close your eyes to our Summer

T&M SALE

HUNDREDS OF EXCITING SUMMER SALE OFFERS FROM ELECTRONIC BROKERS, THE LARGEST STOCKHOLDER OF SECOND USER TEST & MEASUREMENT EQUIPMENT IN EUROPE

SOME EXAMPLES FROM OUR HUGE SALE LIST

HEWLETT PACKARD 6940B MULTIPROGRAMMER
Data acquisition and control system for controllers or computers. Front panel control, GPIO or HPIB. Various I/O cards also available. 12 months warranty.

MLP £2146
SALE PRICE £950

HEWLETT PACKARD 3437A
High speed 3½ digit system voltmeter 12 months warranty.

MLP £2760
SALE PRICE £1250

TEKTRONIX 7904 500MHz SCOPE MAINFRAME
Able to accept up to 4 plug ins. CRT readout. We stock a large selection of plug ins. 12 months warranty.

SAVE £3500 +
SALE PRICE £5500

MARCONI INSTRUMENTS TF 2006
AM/FM Signal Generator 10MHz-1000MHz 6 months warranty.

SALE PRICE £1500

MARCONI INSTRUMENTS TF 2603 R.F. MILLIVOLT METER
1mV to 3V R.M.S. in 8 ranges. 50KHz-1500MHz. 12 months warranty.

SALE PRICE £495

WAVETEK 1080 1GHz SWEEP GENERATOR
Sweep from 1MHz to 1GHz CW, ΔF, and full sweep modes. Digital readout. 1% display linearity. 12 months warranty.

MLP £3883
SALE PRICE £1750

To: Electronic Brokers Ltd., 140-146 Camden Street, London NW1 9PB
□ Please send me your Summer Test & Measurement Sale brochure by return.

NAME:
COMPANY:
ADDRESS:
POSTCODE:
TEL:

www.americanradiohistory.com
FIELD ELECTRIC LTD.

3 Shenley Road, Borehamwood, Herts WD6 1AA. 01-953 6069

Official Orders/Overseas Enquiries Welcome/Telephone Orders Accepted

Open 5 days. 9am-5pm. Please ring for C/P details not shown. All test equipment carries warranty. All prices incl. 15% VAT unless stated.

POWER SUPPLIES ALL 240VAC INPUT

- P.C. Capri P.S. 24V 2.5A £125.00
- P.C. Capri P.S. 24V 2.5A £120.00
- P.C. Capri P.S. 24V 2.5A £119.00
- P.C. Capri P.S. 24V 2.5A £109.00
- P.C. Capri P.S. 24V 2.5A £119.00

- Gold Switch Mode P.S. £90.00

- Transformer ALL 240VAC £108.00

SPECIAL OFFERS

- New Manufacturers Supplied. Electronic Test protection equipment. C/P £5.75 each. C/P £2.75 each.
- Digikey announces range. Detects dielectric with small test input. C/P £5.00 each. S.A.T. for alternative.
- NEW. C/P £2.75 each. S.A.T. for alternative.
- NEW. C/P £2.75 each. S.A.T. for alternative.
- NEW. C/P £2.75 each. S.A.T. for alternative.

CIRCLE 15 FOR FURTHER DETAILS

TARGET ELECTRONICS

16 Cherry Lane, Bristol BS1 3NG. Telephone: 0272 421196

Tel: 0272 421196 0117 438 1541 0117 438 1541

SPECIAL OFFERS

- Transformer ALL 240VAC £108.00

CIRCLE 43 FOR FURTHER DETAILS

173MHz FM TELEMETRY RADIO LINK

- Range dependent on environment. Typically greater than 100 metres
- Modular, Wall Mounting Transmitter + Receiver
- Direct Baseband Inputs + Outputs
- Approved to MPT1309
- Each Module 8x104x45mm + requires only 30mA DC at 7.2V

ADENMORE LTD

27 Longshot Estate, Bracknell, Berks. RG12 1RL Tel: 0344 52023

CIRCLE 40 FOR FURTHER DETAILS
Amateur g.s.o. satellites?

A future project for amateur communications satellites should include the long-term objective of having a chain of geostationary satellites in orbit according to Amsat-UK. It may be possible to use spare capacity on government or commercial satellites or fly amateur-built transponders on such satellites. A 30GHz-up and 20GHz-down link has been offered by NASA to qualified groups of experimenters on the proposed Advanced Communications Technology Satellite (ACTS) to be launched in 1988. But such links are not normally within the amateurs' province and would require gateways. Amsat's technical group points out in a recent discussion paper that microwave experience gained by these experiments would be of great value when it came to building their own geostationary satellite.

NASA is still considering the proposal that ACTS could carry an amateur-built transponder at more familiar frequencies. Some other satellites are also possible carrier vehicles.

Two more satellites in elliptical orbits are planned, PIII-C and D. The main transponders for these are already planned but the UK group could perhaps add digital or microwave transponders, beacons or imaging systems. These elliptical orbit precess and make the sub-satellite point at apogee change daily. Another orbit, the Molinya, with an inclination of 64.3° would produce a geosynchronous orbit and the two sub-satellite points at apogee would remain the same, on opposite sides of the globe. Stations near the points would see the satellite at near overhead for several hours, each time the satellite comes round. Such a satellite would provide a means of mobile communications, a mode of operation not possible with other orbits. With this in mind, the Science and Engineering Research Council is funding a study of such a mission. Called T-Sat, the study is being undertaken by several universities and a number of research establishments and due to be published this October. T-Sat is likely to introduce new engineering technologies and support an L-band mobile communication package. Only the feasibility study has been funded so far and although some of the planning is under way, it is unlikely to be launched before 1991.

MSF to close on h.f.

The MSF time and frequency standards service is to be withdrawn from the 2.5, 5 and 10MHz bands. The withdrawal of the short-wave service is partly due to the popularity of the m.f. service according to the National Physics Laboratory; by comparison the h.f. service is little used. The introduction and availability of standard services in other countries removes the need to provide an international service, they say. The 60kHz standard time and frequency service will continue unchanged.

Transmissions began in 1950 with a one-hour daily broadcast on 60kHz. The s.w. frequencies were added in 1955 and were used extensively for some years by aircraft pilots, amateur radio users and astronomers. In 1966 the m.f. service was extended to 24-hours and later the codes that give full year, month, day, hour and minute were provided. The service proved valuable to a wide range of users who operate close time schedule systems.
R68K PERSONAL ROBOT

Mobile robot with optional arm controller includes 68000 processor, up to 128K rom, 16K ram, 16Ch. ADC, SPO256. Uses: Security, Education, Industrial, Promotional, Home.

Built-in software makes it the most really useful personal robot, future extensions include improved speech recognition and vision.

Robot (inc. Controller) £795
Arm. £595
Controller £195

S.M.C. 16

A series of international size cards which together form a very powerful microcomputer, memory expandable to 16MB.

DESCRIPTION

KIT BUILT BOARD
CPU.16 (10Mhz 68000, 4x28 pin skts for ram/rom) 83.95 99.95 18.95
RAM 16 (1 MEGABYTE ram) 175.00 199.95 19.95
I/O.16 (2 serial, 4 para) 69.95 85.95 18.95
PRO.16 (prototype board for your own circuits) N/A N/A 18.95

OTHER BOARDS PLANNED

Z80H mod upgrade any Z80 computer (except Sinclair) to 8Mhz 25.95
The possibility of sending intelligible "speech" over data links at less than 100 bits per second by providing control signals derived from a digital vocoder to a voice synthesizer is already opening the way to new communications systems. Narrow-band systems with speech requiring no more spectrum space than a conventional radio-teleprinter circuit could clearly have a dramatic effect on overcrowded portions of the radio spectrum. The disadvantage, at least with current experimental systems, is that the speech is seldom an individually-recognizable reconstruction of the original. Further development is also needed to overcome the necessity to speak in a 'disconnected' manner more suitable for talking to computers than humans. Apart from spectrum conversation, on-line encipherment is relatively simple, making the technology attractive for military and other secure communications.

Work by the GTE Corporation in the USA has shown that by using artificial-intelligence waveform-recognition matching techniques combined with words stored in a matching dictionary it becomes possible to transmit "speech" via meteor trails.

By sending data in high-speed bursts during the fleeting existence of the many random short-lived (typically 0.2 seconds) ionized trails it has been possible for some 25 years or so to maintain tett links over distances of about 800 miles on frequencies of the order of 50MHz on a virtually "continuous" basis, although in fact there may be gaps up to about 2 minutes between usable trails. High-speed bursts enable the throughput to average that of a conventional tett link.

The GTE work at Westboro, Mass., is the first reported success in adapting a meteor-scatter "burst" link to speech transmission, though snatches of speech have been reported by amateurs on the longer-lasting trails that occur primarily during the meteor-shower periods.

Now modfets

Just as basic gallium arsenide devices such as the mesfet have opened up improved possibilities for 12GHz d.b.s. reception, so a new class of group III devices, the "modulation-doped GaAs/AlGaAs heterojunction field-effect transistor" or modfet, as a form of high electron mobility transistor (h.e.m.t.), seems set to improve dramatically the outlook for millimetric communications. Experimental devices are being reported that offer even lower noise performance at ever-higher frequencies: for example, at room temperatures, under 1dB noise figure up to about 10GHz, under 2dB up to 20GHz, under 3dB well above 30GHz at 300K, and with cooled devices promising to be comparable to the masers which first opened the way to satellite communications in the 1960s but soon tended to be discarded not only on account of high cost but also narrow bandwidth.

A modfet amplifier can have a noise figure of 0.4dB with 14dB gain at 10GHz at 77K and a noise temperature of 3.5K at 3.3GHz with the device cooled to 15K. It has been claimed that these devices are inherently superior to all other fet technologies in terms of achieving higher speeds of operation, lower power dissipation and lower noise. With the concept of modulation doping, which combines features of both mos and mesfet devices, it becomes possible to realise more fully the potential of gallium arsenide in a fet structure. Current work in Europe and the USA on h.e.m.t. devices looks like providing a further improvement not only in microwave and millimetric amplifiers but also as super-high-speed logic.

Cordless outlaws

The Department of Trade & Industry has warned dealers that it will soon be unlawful to manufacture, import, sell or possess unapproved cordless telephones. The maximum penalty for breaches of the Order to be made under the terms of the Telecommunications Act will be a fine of £2000 and the Court can order forfeiture of the equipment.

DTI point out that "A cordless telephone is a radio apparatus which it is unlawful to install or use unless it is of a design approved for connection to the public telecommunications system and marked as such. However, it has not been unlawful to sell such telephones, and they have caused interference to other radio users."

No new legislation is required for such an Order but it has to be laid before Parliament. DTI state this is being done this summer. It is expected to come into force about the beginning of November. It is believed that DTI are also preparing a similar Order relating to unapproved CB amplitude-modulated transceivers.

Parapsychology

Many eminent scientists and engineers have expressed their firm belief in equal or strongly disbelieve in forms of extrasensory perception in such manifestations as telepathy, clairvoyance, spiritualism, levitation, and telepathy or correctly guessing the next or next-but-one card in the pack. Michael Faraday, Sir William Crookes, Sir Oliver Lodge, to name but a few. Indeed for at least 130 years scholars and scientists have carried out serious research and become convinced that they have demonstrated the existence of a 'psychic force' or a supernatural realm inhabited by intelligent and superior beings. Current projects aimed at receiving extraterrestrial intelligence derive at least some of their support from the hereditary belief that electricity and magnetism were occult forces.

But it must have surprised some readers to find in the usually staid Proc IEE (June 1986) a very long tutorial review and critical appraisal of parapsychology research since the 1850s in an invited paper by Professor Ray Hyman.

He is firmly on the fence in neither accepting nor rejecting the basic premises of his subject, but shows how both proponents and critics have deviated greatly from the standards of fair-play and rationality that he believes should characterise the best scientific arguments. However, he supports the view that the British mathematician S.G. Goal, who in 1940 produced seemingly incontrovertible evidence in support of the 'displacement effect' in card-guessing games (made popular for psychic research by J.B. Rhine in 1934), was guilty of faking or at least 'massaging' his data.

Hyman's main regret seems to be that each generation's best research efforts tend to be cast aside by subsequent generations of parapsychologists, to be replaced by entirely new 'best cases'. He suggests that not only does the evidence so far for psi lack replicability but, unlike that of other sciences, it is non-accumulative. He believes they need to get their own house in order before their experimental evidence is ready to be placed in scientific comm. It argued the 'phenomenon'
PIÑEAPPLE SOFTWARE

Programs for the BBC models 'B' with disc drive with FREE updating service on all software

DIAGRAM
Still the only drawing program available for the BBC micro which gives you the ability to draw really large diagrams and scroll them smoothly around the screen stopping to edit them if required. Pineapple's unique method of storing the diagram information on disc means that the size of diagrams is limited only by the free space on disc, and not the amount of computer memory you have available. (A blank 80 track disc will allow up to 30 model 0 screens of diagram).

The superb print routines supplied with the program enable large areas of the diagram to be printed in a single print run in a number of different sizes and rotated through 90 deg. if required. Full use can also be made of printers which have a wide than normal carriage available.

Please state 40 or 80 track disc. Whether standard BBC or Master version is required.

PRICE £25.00 + VAT

DIAGRAM UTILITIES
A suite of six utility programs which add additional features to the Diagram drawing program. The utilities include the saving and loading of areas of diagram to and from disc. The ability to display the whole of your large diagram on the screen at one time (in either 4 or 8 line screen format). The addition of borders and screen indents to diagrams and the ability to shift a whole diagram in any direction.

PRICE £10.00 + VAT

MARCONI TRACKER BALL
This high quality device comes with its own Icon Artmaster drawing program and utilities to enable it to be used in place of keyboard keys, joysticks, or with your own programs.

PRICE £80.00 + VAT p&p £1.75

PRICE INCLUDING 'DIAGRAM' SOFTWARE £79.00 + VAT p&p £1.75

TRACKER BALL FOR MASTER series
The Pointer ROM is supplied instead of the Icon Artmaster disc and enables the Tracker ball to work directly with the Master series computers. (e.g. to use with TimPaint etc.). Prices are the same as for the standard tracker ball.

PRICE £12.50 + VAT

POINTER
The Pointer ROM is available separately for people already owning tracker balls. and comes with instructions for use with the Master computer.

PRICE £12.50 + VAT

PCB
This new release from Pineapple is a printed circuit board draughting aid which is aimed at producing complex double sided PCB's very rapidly using a standard BBC micro and any fx compatible dot-matrix printer.

The program is supplied on EPROM and will run with any 32k BBC micro (including Master series). A disc containing a sample PCB layout is supplied to demonstrate the programs features.

By using an EPROM for the program code the maximum amount of RAM is available for storing component description and ASCII identification files etc. (Up to 500 components and 500 ASCII component descriptions may be stored for a given layout). There is no limit to the number of tracks for a given PCB, although the maximum size of board is restricted to 8*5.9. Using a mode 1 screen, tracks on the top side of the board are shown in red, while those on the underside are blue. Each side of the board may be shown individually or superimposed. A component placement screen allows component outlines to be drawn for silk screen purposes and component numbers entered on this screen may be displayed during track routing to aid identification of roundels.

The print routines allow separate printouts of each side of the PCB in a very accurate expanded definition 1:1 scale, enabling direct contact printing to be used on reel covered copper clad board.

This program has too many superb features to describe adequately. Please write or phone for more information and sample printouts.

PRICE £85.00 + VAT

CONVERTER LEADS
Converter leads to enable the Trackerball to run Trackerball software and the mouse to run Trackerball software (inc. Diagram). Please state which variant you require when ordering.

PRICE £8.00 + VAT

BASIC COMPILER
Use our Basic Compiler to produce direct 6500 machine code programs and ROMs for your own Basic programs. Speed increases of up to 25 times are achieved.

PRICE £25.00 + VAT

ALL ORDERS SENT BY RETURN OF POST

39 Brownlea Gardens, Seven Kings, Ilford, Essex 1G3 9NL. Tel: 01-599 1476

CIRCLE 34 FOR FURTHER DETAILS

Multi-Function Calibrator 9822

IEEE-488

- 50 ppm ACCURACY (20 ppm optional)
- IEEE-488 INTERFACE
- SELF-TEST FEATURE
- AUTOCAL

- 0—1000V AC/DC VOLTAGE
- 0—10 AMPs AC/DC CURRENT
- 10 ohm—10M ohm RESISTANCE
- BI-POLAR OUTPUT

- 5 ppm RESOLUTION
- 6 AC WAVEFORMS
- 25% OVER RANGE ON DC
- ZERO OFFSET MODE

Note: Time Electronics Ltd are approved to the following quality standards:
MOD STD 05-24, NATO STD 05-26 AQAP4, MOD Reg No. 1HET01
Complete product range of portable and programmable calibration equipment on show at ITME STAND No. 1051

TIME ELECTRONICS
Botany Ind. Est., Tonbridge, Kent, England
DIRECT SALES (0732) 355993 Telex: 95481

CIRCLE 46 FOR FURTHER DETAILS

ELECTRONICS & WIRELESS WORLD OCTOBER 1986

www.americanradiohistory.com
RFI and planning

A 1985 joint circular from the Department of the Environment (TT 1885) and the Welsh Office (42/85) relating to Telecommunications Development included, as Annex A on policy, advice to local authorities on dealing with planning applications to erect masts. Amongst its recommendations were:

(6) Application for permission for the mast or antennas used by amateur radio operators, radio-taxi firms and many other private and commercial operators to be less susceptible to fewer potential planning problems in terms of size and visual impact over a wide area. Such applicants will generally have less scope for raising alternative sites or for sharing sites, and masts will often need to be located on the premises.

(7) All users of radio equipment, whether amateur or professional, are required by the terms of wireless telegraphy legislation to avoid creating undue interference with other radio users, including domestic television sets and equipment that must be designed to minimise it. In most situations, therefore, questions of radio interference are of no relevance to the determination of planning applications for the mast or antennas needed to operate the transmitter. Other controls should be assumed to deal with any radio interference problems. But in some cases significant interference to a neighbour may be unavoidable and unnecessary for various technical reasons. The Secretaries of State take the view that where there is firm evidence that significant and irremedial radio interference with other electrical equipment of any kind is a probability, or a certainty, or is already happening, as a consequence of any development that is a material consideration in the determination of an application. Planning authorities should not, however, attempt to explore, seek out or anticipate potential problems or radio interference, or be influenced in their approach by the evidence that significant radio interference will arise, or will probably arise, and that no practical remedy is available, or will there be any justification for taking it into account in reaching a decision. Significant interference would be any

which materially impaired the normal use, effectiveness, or enjoyment of electrical apparatus or premises on a regular or continuing basis.

The Policy statement also makes it clear that except in the most exceptional circumstances, planning authorities should not take into account “health and safety factors” concerning the radiated power output as these are subject to international standards.

It is also pointed out that many of the smallest antenna systems, including citizens' band antenna systems and also others which are very small in scale, are normally covered by the principle of “de minimis” or not considered sufficiently substantial in relation to the size of the building to have any material effect on the external appearance. Most conventional television antennae, unless their masts and poles are treated in this way and the local authorities are recommended to continue this approach. There is however evidence that some planning applications from radio amateurs are refused or delayed by fears of radio-frequency interference.

GCHQ

The appearance of a new book “GCHQ – the secret wireless war 1900-46” by Nigel West (pen-name of Rupert T. Scorer), following in the wake of “The Puzzle Palace” and the many revelations of signals intelligence in The New Statesman tempts one to misquote Dr Samuel Johnson “It is like a dog's walking on his hind legs. It is not done well, but you are surprised to find it done at all.”

It is not many years since the linking by a retired diplomat of Cheltenham when codebreaking was regarded as a front-page news sensation. Later the IBA found it prudent to have an interview outside the gates of GCHQ removed from a programme.

Yet it can be argued that excessive secrecy breeds inefficiency and sometimes conceals corruption. For many years, successive governments refused to acknowledge even the existence in peacetime of the Special (secret) Intelligence Service and the intelligence-gathering activities of GCHQ with its many radio intercept facilities – though the communications and computer industries had little doubt as to the purposes for which so much equipment was acquired. When The Times printed a story about the planned erection of a large satellite terminal near Bude, Cornwall the official Foreign & Commonwealth Office line was that this was required for its diplomatic and wireless service, a cover it has often used for the GCHQ staff manning listening posts in overseas embassies.

In his book Nigel West outlines the story first of Room 40, then of the Government Code & Cipher School (later GCHQ) and its move to its wartime home in and around Bletchley, known as “BP” or more formally as Station X.

Since GC&CS was not funded by the Secret Vote (although it answered to “C”, the head of SIS), Nigel West has been able to unearth details of its between-the-wars “establishment” salaries etc. from the Public Records Office. He has apparently relied largely on the multitude of books on the Enigma/Ultra/Pearl operations that have appeared since the original Polish and French books such as Gustave Bertrand's “Enigma” so appeared in the early 1970s. Bertrand played a major role in sight in the 1960s and 1950s, yet his book has never been translated or published in the UK despite this country's debt to his work in collaboration with the Poles. Nigel West has attempted, with only partial success, to flesh this out with an account of the special intercept service (Radio Security Service set up as part of M15, but later under SIS control as M18c) with its “voluntary interceptors”, largely recruited from pre-war radio amateurs by Lord Sandhurst, drawing on the research of Paul Wright, G3SEM who inspired a BBC East tv programme The Secret Listeners and the surviving papers held by the present Lord Sandhurst.

As in his previous books on M15 and M16, Nigel West presents a mass of detail that reads most convincingly – except for those parts of the story of which the reader may have personal knowledge or can recognise the source. It is then that large numbers of minor and some major errors are apparent. Perhaps this book was written in a hurry, was poorly proof-read, depends too much on fallible memories, or on the need not to upset the D-Notice Committee. It could also be argued that the author is unduly prejudiced in favour of the Security Service, MI5 and GCHQ, while against the wartime SIS(M16) which is presented as a grossly inefficient organization; its disasters emphasised, its successes (and there were some) largely ignored. But the book may well succeed in enlightening the general public on the importance of signals intelligence and the emergence of its supremacy in wartime intelligence-gathering, even though “humint” or the old-fashioned human spy remains important, as recent events have underlined.

In brief

Although the DTI raised fees for most of the licences issued under the Wireless Telegraphy Acts during July, the charges for amateur radio and CB licences remain unchanged.

The FCC has issued a Notice of Proposed Rule Making that will allow some CB licenses more operating privileges including the use of s.s.b. phone at up to 200 watts power between 28,300 and 28,500kHz, plus access to the 220MHz and 1.25GHz bands. This follows requests by the ARRL who have become concerned that there are now 10,000 less novice licences than three years ago, with about as many dropping out of the hobby as upgrading to the higher grades of licence. Novices are currently restricted to Morse operation on segments of some h.f. bands, after taking a 5 words per minute Morse test and simple technical examination.

It seems likely that the next edition of the Highway Code will contain a specific recommendation that drivers should not use handheld microphones whilst in motion.

PAT HAWKER
HEAT TRANSFER

I was very interested to read the article on heat transfer in the August 1986 issue. Whilst Dr Smith covered the subject from the viewpoint of a failure, my interest is in the subject lies in reducing temperature-generated distortion (i.e. d.c.) in audio amplifiers. Temperature-generated distortion occurs when the gain or base-emitter voltage of a transistor varies as a result of instantaneous changes in its junction temperature. When a transistor is heating up due to a large audio signal, its instantaneous heat dissipation is equal to the instantaneous product of current times voltage. The variation in power dissipation causes the junction temperature of the transistor to rise and fall in relation to its ability to dissipate the heat generated.

I was surprised to note from Dr Smith's article that a TO220 transistor has a much lower thermal resistance from junction to case than a TO202. This is an area that I had been intending to research and check through a manufacturer's catalogue, yet the thermal resistance of different transistors reduced as the power rating increased. One exception was a transistor which had a much higher P, and this had a thermal resistance about 10 times those of similar power rating. As a practical test, I replaced a pair of TO208 transistors rated at 12.5 watts with a pair of TO220s rated over 50 watts in part of an audio amplifier circuit in which the power consumption was 60 milliwatts per device. The difference in sound quality due to lower temperature generated distortion was easily audible.

Graham Nalty
Borrowash
Derby

FREQUENCY ALLOCATIONS

Following Mr H.D. Ford's letter (August, 1986), I felt it would be worth explaining the current situation regarding frequency changes to the long-wave broadcast band.

At the World Administrative Radio Conference (WARC) held in Geneva in 1979, it was decided to bring all long-wave broadcast frequencies to multiples of 9 kHz. In effect, this means decreasing all long-wave broadcast frequencies by 2 kHz. The reason for making this change is to help reduce the effect of interference that can result from the harmonics or intermediate frequencies of two or more broadcast signals. Any product formed in the receiver by these processes will, if all the carriers are located at multiples of 9 kHz, fall on a carrier frequency. This causes considerable distortion, which is an objectionable interference than if the product were to fall at any 2 kHz from the carrier as it would with the present situation. Locating carriers at 9 kHz also simplifies the design of receivers that use synthesized local oscillators to cover both the long and medium-wave bands.

All long-wave transmitters in Europe and Africa (Region 4) operating between 200 kHz and 236 kHz are due to change frequency on 1 February 1988. The BBC's Radio 4 long-wave network will change from 200 to 198 kHz on that date. Obviously, this change is going to cause difficulty for some people who use 200 kHz as a frequency standard - a point was considered at the WARC, but since the long-wave signals involved are actually broadcast transmissions, and not specifically intended for time or frequency standards, it was felt that the needs of broadcasting must take precedence. It would, of course, be impossible to keep all the UK to keep using 200 kHz when the rest of the world had changed to 9 kHz multiples.

Henry Price
Engineering Information Department
BBC
London

ELECTROLYTIC CAPACITORS

I would like to join in the great capacitor sound debate as after a great deal of practical work I generally have to agree with most of Mr Self's opinions. From purely static harmonic distortion tests, using an SA1 and SA2 oscillator and distortion meter, I have found that all modern types of polyester, box or humbug type (C280), polypropylene, polycarbonate and Mylar capacitors when connected to the circuit of Fig. 1 do not exhibit any measurable distortion down to my limits of 0.0001% (1 ppm). However, when using some, but not all, types of ceramic disc they can have up to 100ppm distortion irrespective of value, type or manufacturer. All the miniature ceramic multilayer types and many surface mount types also have between 10 and 100ppm distortion. The distortion is always third harmonic, indicating a symmetrical distortion of both halves of the sine wave. It is also interesting to note that virtually all the humbug style capacitors I could find over 10 years old also had this mysterious up to 100ppm third harmonic. The maximum distortion occurring when X = R. A very surprising result perhaps is that electrolytes do not exhibit any distortion when bias or positive bias but show increasing signs of second harmonic with at least 2V d.c. reverse. This was only tried on a small sample of 0.47µF. One point on which I would like to disagree with Mr Self is that old plugs and sockets having distortion. This is also true, those with oxidized, tarnished contacts exhibit third harmonic distortion to zero and 50ppm, dependent upon movement and contact efficiency, the effect improving as the contacts are moved repeatedly, presumably due to cleaning. From a practical point of view, it seems reasonable that any contact will have some resistance and a poor dirty contact will have a resistance which can be partly voltage dependent. This would be symmetrical, therefore giving rise to third harmonic distortion. Also very tarnished contacts fitted into i.e. holders exhibit distortion, as does an oxidized p.c.b. inserted into an edge connector.

One explanation of the old polyester capacitors having relatively high distortion is that over the years moisture has entered via the leads, oxidizing the metal foil and contacts. Scrapping and tinning the leads has no effect.

On the subject of d.c. component, I must again agree with Mr Self in that any signal shape coming from a source such as a cartridge, microphone, tape, tuner, etc. cannot have a d.c. component even though the positive and negative peak values are widely different, the average will still be zero. If signals should somehow receive a net d.c. offset dependent upon wave shape then clearly there would be an overall increase in the low frequency spectrum giving a very muddled sound.

However, I have no objection to the audio signal ever heard of d.c. restoration! This is the technique used by video engineers to restore the d.c. level lost from a picture in the path from transmitter through a tuner and i.f. to the output stage. Most low cost black and white TVs simply have a c. a. coupling trough this, thereby distorting any d.c. present at the source. This explains why the contrast level on a black and white TV often varies with picture content. This is totally unacceptable for a colour TV and so d.c. restoration is used. This consists in its simplest form of a black-level clamp potential formed by R1, R2 and a diode D1 (Fig. 2). The capacitor stores the most negative peak, the whole signal then stands upon this, thereby distorting any artificial d.c. level. It is, in fact, peak rectifying without further smoothing. The capacitor is forced to change its level on the negative cycle due to the low impedance diode but meets a high impedance on the positive cycle.

This circuit when fed with a steady state sine wave does not, as would be expected, clip the negative side, but simply changes its d.c. level. The steady state distortion is then very low as measured after a short period of time. The first few cycles are severely clipped until the d.c. level is correct. Clearly then, if an amplifier has a non-linear input impedance, such as a simple common-emitter stage, a c. shift will occur, dependent upon the music waveform giving rise to an increased I.f. spectrum. It is therefore important to design preamplifiers with a constant...
open loop input impedance, which is fortunately easy with modernics.

The problem comes with power amplifiers. It is widely accepted that the power-amplifier stages often clip on transients: these can be positive or negative and therefore, if a c. coupled, will rise to d.c. changes with a corresponding recovery time. In the seventies it was fashionable to drive an amplifier into clipping with a sinewave for several cycles then remove the drive and measure the recovery time. This, being symmetrical, does not normally give significant d.c. offsets unless the amplifier really is sick, but the same technique should be used with a signal with a larger peak on one half cycle than the other. At the point of clipping since the feedback loop is broken the input impedance remains constant and any amount of asymmetrical clipping occurs.

The complete answer is obviously not to a.c. couple the input or feedback networks to the power amplifier and then any amount of asymmetrical clipping can occur without generating any extra f. components. Limitations do not normally clip and therefore can be a.c. coupled safely, provided their input impedance remains constant over the whole operating range and also that the feedback factor is also constant.

L. Sage
Sage Audio
Bingley
West Yorkshire

SHOOT THAT POSTULATE

A scientific hypothesis or postulate is a peculiar beastie. It seems to be born of a synthesis of experimental data combined with an extremely variable amount of intuitive leaps in the dark; the mix will probably always defy attempts at a precise definition. Once introduced, however, we are on safer ground if we can verify its "truth" by the severe test of comparison with experiment, and although no amount of corroboratory evidence will ever prove it true, it requires only one properly established, repeatable bit of evidence to disprove it. There is no other scientific basis upon which we can say it is wrong. Nor can any flat statement be accepted for a single moment, no matter what the "authority" of the author, without the factual evidence to support it, either for or against.

For more years than I care to admit, and no doubt in common with many others, I have sought such evidence to disprove Einstein's "second postulate", but I must confess failure. I have seen much that corroborates it, but not one single, positive fact to contradict it. I am glad to see that this evidence has now become available, otherwise some of your correspondents (vide, for example, Mr Winter-Hood, Feedback, August, 1986) could not possibly make the totally unequivocal statements that they have done. It is unfortunate that none of them has actually bothered to quote the experimental evidence or any published reference to it, probably because they think that it is better known than it in fact is. I may ask that they remedy the omission and give us chapter and verse?

Alan Watson
Polledura
Malorca

SYNCHRODYNES

I was delighted to read the series of articles by J. L. Linsley Hood on the synchrodyne a.m. receiver earlier this year. They were long overdue.

I have followed with interest the progress of the synchrodyne from the date of its first announcement by D.G. Tucker shortly after World War II. It was (predictably) instantly rejected by the commercial radio manufacturers, wedded as they were to the mass-produced superb, but later rescued from oblivion (again rather typically) by the amateur radio community under the pseudonym of "direct-conversion receiver".

The amateurs, with no commercial axe to grind, came to recognise its special virtues as an efficient receiver of shortwave a.m. signals, needing no expensive or sophisticated components and easily constructed with the minimum of test equipment.

My only reservation about the Linsley Hood circuitry is that it is rather complex and, in view of the practical references to the synchrodyne system in the pages of WW, may cause some readers to conclude that all synchrodyne receivers are necessarily complex.

The word rarity is not misplaced. If we ignore block schematics referred to in passing, readers of WW whose loyalty is exclusive have had to wait (I think) since August 1948 to see a diagram of a practical synchrodyne circuit.

At the outset Cathode Ray was quick to point out, the two broadcast bands (for which the receiver circuitry was designed) are used almost universally for reception of a few powerful stations and the needs of knob-tweiders are hardly worth catering for. So half a dozen preset capacitors and as many switches can, in practice, make all muting circuitry redundant.

The same goes for circuitry designed to extend the receiver's pull-in range, a great help when hand-tuning. Given a switched-station design with an oscillator employing silicon semiconductors and fed from a voltage regulator device, the frequency drift in a domestic environment will be only a small fraction of the normal pull-in range, S, practice, which could be caused by drift just don't occur.

Along such lines a fairly simple synchrodyne is possible, perfectly adequate to demonstrate the system's special advantages of low distortion and ease of construction, and above all its unique feature of post-detection selective control.

Such a design in the pages of WW could well represent an attractive introduction to synchrodyne construction and perhaps act as a stepping-stone to the more ambitious continuous-tuned receivers as exemplified in Mr Linsley Hood's contribution.

D. P. Pitt
Nottingham

ENGINEERING COUNCIL EXAMINATION

During the academic year 1985/6 I gave a course of lectures to two classes for Courses 241 (Fields and Circuits) of the Engineering Council Part 2 Examination. The full course (all 6 papers) is very troublesome for most students and I would like to make some comments based on my experience.

The purpose of the Part 2 Examination is to provide a means for technicians and technician engineers to obtain the academic qualification for professional engineering status. Before a student can take Part 2 he must have passed Part 1 or its equivalent. But it does not mean that a topping up operation is adequate. From the format of the questions on the papers I would say that the real purpose of the examination is to test the roundedness and completeness of a technician's information. He could make heroic efforts collecting and studying course information but will still fail without the actual paper. For example text books, which are the normal source of information, do not usually provide answers to specific examination type questions. A student intending to pass Part 2 must search around the various topics and acquire a proper understanding of the principles. His understanding and overall command of the subject. This is very different from the techniques required to pass Part 1. Essentially, the Part 2 probes for an understanding of fundamental principles and to assess a student's ability to manipulate those ideas. I am not criticizing the examination, but trying to point out the requirements that a student must satisfy for a successful result.

I would consider my only serious problem to be that classes must sit an examination which is set and corrected by another person (which I could perform a considerable time on a number of topics that might not appear on the paper). This happened with one of the classes because only a limited amount of time was available and the full course could not be covered. The papers can surprise lecturers as well as students. I have no criticism of the syllabus, which compares very well with a degree course at a university or technical college.

I never sat the examination and consequently cannot comment from a student's viewpoint. However, I noticed that most students rarely tired of having examination questions explained and answers thrashed out. I used approximately two-thirds of the lecture time doing questions, but I cannot say that this approach improves a student's chances of getting through over any other method.

The full examination consists of six papers. For a student to pass all six papers at the same sitting is a considerable achievement. Under the present rules he must take three or more at the first sitting and I would favour the same number. Failure in any paper brings disappointment and frustration but I would always recommend a second attempt to a serious student.

These are purely personal comments. I would welcome the views of lecturers and students.

Brian McArule
Dundalk
Co Louth

Eire
TRANSFORM YOUR CONVENTIONAL SCOPES WITH THE D.S.P. SCOPE ADAPTOR TYPE 9060

2CH. 20kHz FFT ANALYSER + DIGITAL STORAGE SCOPE

£860 + v.a.t.

4 MODES OF OPERATION

- **2 CH. FFTA.**
 - FULL ANTI-ALIAS FILTERS to provide genuine FFT analysis with no spurious results on all frequency ranges.
 - Frequency ranges from 0-20Hz to 0-20KHz.
 - 100/200 line resolution.
 - Fast update rate - minimum 1Hz.
 - LOG/LIN vertical scale with 40dB range.
 - Switchable averaging and choice of weighting (Hanning/rectangular).

- **2 CH. D.S.O.**
 - 512/1024 points.
 - Sample rate 50KHz.
 - Timebase speeds 1 sec/div to 1 msec/div.
 - Completely flicker-free display at all time base speeds.

- **DUAL MODE**
 - Combines the features of D.S.O. mode and FFT mode to simultaneously display both time and frequency domains of the input signal.

- **BYPASS MODE**
 - The adaptor is internally by-passed so that the host scope works as normal with no loss of facilities.

OTHER FACILITIES

- Full trigger facilities AC/DC, +/- slope, level etc.
- Single shot mode.
- Input 100mV to 10V full scale switchable.
- SCREEN DUMP facility to output direct to dot matrix printer.

NEXT NEW PRODUCT
High performance D.S.O. scope adaptor - To be released soon

DEVELOPED AND MANUFACTURED IN THE U.K.

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
Putting the quality back into a.m. radio

This unusual design attempts to match the sound quality of the post-war five-valve radio designs.

It is perhaps a rather off-hand commercial attitude to a.m. radio, rather than simple nostalgia or an affection for things using valves that has resulted in the relatively high prices paid for late pre-war or immediately post-war "table" radio sets.

The reason for this is that these sets were built at a time when a.m. radio reception was the only kind there was, and considerable efforts were made by their manufacturers to achieve the highest practicable quality in the final output signal, and this is normally vastly better than that given by their contemporary equivalents.

There is, therefore, a temptation to the circuit designer to look at the possibilities in this field, and to see how to use some of the good electronic components now available, to put together a contemporary receiver design which would be at least as good as its valve-operated forerunners.

The circuit construction employed for these classic radio sets was invariably of the superhet form. This technique, as it was then employed, allowed the necessary selectivity to be obtained without undue curtailment of the wanted i.f. sidebands by the use of at least two pairs of band-pass tuned circuits.

These were typically of the form shown in Fig.1(a) where the required inter-circuit coupling is obtained by positioning the coils side by side within the common screening can, so that there is the required degree of mutual inductance.

In the average modern transistor radio, the a.m. i.f. transformers are most commonly of the single-tuned circuit type, which does not give a very good compromise between selectivity and bandwidth, and this appears to be true regardless of whether these circuits are built from discrete transistors, or, more typically nowadays, with some single i.e. that combines the function of local oscillator, frequency changer, i.f. amplifier and demodulator on a single chip.

The fields in which improvement should therefore be sought are in the band-pass characteristics of the i.f. stages to give an optimum compromise between selectivity and bandwidth, in sensitivity, in the distortion introduced by the demodulator stage and in the quality of the subsequent audio amplification.

I.F. transformer design

Starting with the first of these, an immediate problem is that the majority of the small commercial i.f. transformers, designed for use with transistor radios, are of single-coil construction. Those of the type shown in Fig.1(a), though available, are not often used, and are therefore expensive and not very easy to come by. Fortunately, there are a number of alternative methods of achieving a band-pass characteristic, of which I have shown the more practicable structures in Figs 1(b) – 1(e).

Most of the common i.f. coils have taps on their windings, or small secondary coils, to match the desired high dynamic impedance of the tuned circuit to the input impedance of the junction transistor, which would allow the use of the forms shown in Fig.1(c) or (e), and because the size of the coupling capacitor (C1) required for this layout is about 100-1000pF is a lot larger than the likely stray capacitances, and the signal voltages are relatively low, these forms would lend themselves well to circuits in which the coupling capacitor value was altered, by switching, to give a choice of selectivities.

The layout of Fig.1(b) would be particularly well suited to a switched-selectivity i.f. amplifier, since the value of the coupling capacitor could be varied by the order of a hundred times greater than that of the tuning capacitors (C1), (C2) = 0.1µF if C1 is 1000pF, and the r.f. voltage developed across C2 would be proportionately low, since one end would be returned to the chassis line.

For a fixed-selectivity i.f. amplifier, the layout shown in Fig.1(d) is probably the simplest answer. Since it works equally well with a wide range of coils, whether or not these have tapped primaries or secondary windings.

The variety of amplitude response curves which are given by coupled tuned transformers of this type is shown in Fig.2, in which Fig. 2(a) shows the transmission frequency characteristic of an under-coupled pair of tuned circuits (similar to that which would be given by two such tuned circuits in cascade), and 2(c) shows the effect of over-coupling two such tuned circuits. In practice, the coupling factor, k, would be chosen to give a response curve close to that shown in (c) called 'critical coupling' though some excursions on either side of this value could allow bandwidth alteration without too great a degree of departure from the desired flat-topped curve.

A comprehensive analysis of the design of band-pass coupled i.f. transformers is given...
by Sandel* and a summary of the design data for the type of circuit shown in Fig.1(d) is that for critical coupling the coupling factor (k) should be the reciprocal of the mean Q value for the two coils. If these have a Q of 100, a fairly typical value, then the coupling capacitor (C) should be \(C = \frac{1}{k} \), where k = 0.01. If the tuning capacitors, \(C_1 \) and \(C_2 \), are 1000pF, then the coupling capacitor value should be 10pF.

Having tested a number of miniature i.f. coils, the great majority intended for use as a single tuned circuit were found to tune over the range 450-470kHz with a 1000pF capacitor, and under these conditions, had a working Q value of about 100. These coils would therefore be very suitable for this particular application.

Those with an internal tuning capacitor, usually housed in larger cans, are normally of higher quality, and have a higher LC ratio, which leads to the use of a smaller value capacitor and also to a higher working Q value. The circuit layouts of Fig.1(c), or 1(e), would be more appropriate in these cases. Unless the secondary coil or tap ratio can be determined, it is impracticable to calculate the required value of \(C_1 \), but this may easily be determined by experiment and

will usually lie in the range 100-800pF.

Too high a Q value for the i.f. transformer tuned circuits is not very desirable where a series of these are to be operated in cascade; the effect of this is multiplicative in the steepness of attenuation of the skirt of the pass band. For example, with three such band-pass pairs, as might be used in a high quality receiver design, a Q value for each coil of 100 will give a pass band of about 12kHz at -6dB, and 20kHz at -60dB. A Q of 200 at each stage would reduce the useful pass-band from 12 to 6kHz. For this reason I was quite happy to discover that the inexpensive miniature i.f. coils were in the required Q range.

Sensitivity

To give the type of performance needed to match the old-style 'table' radio set, an aerial sensitivity of at least 10\(\mu \)V is needed, for 6dB s/n ratio. Two i.f. gain stages using dual-gate mosfets will easily attain this value at the input to the i.f., assuming a 'detector' (demodulator) signal level of 100mV, and two such i.f. stages will allow an adequate range of gain control by means of a signal-derived a.g.c. voltage, without the need to apply such a control voltage to the frequency changer, which might

Response curves provided by tuned circuits at Fig.1 depending on degree of coupling, Fig.2. I.f. stage using circuit at Fig.1(d), with a.g.c. applied to fet amplifier rather than to frequency changer, Fig.3, and its response, Fig.4. Op-amp demodulator, Fig.5.

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6. Practical circuit based on demodulator of Fig.5.

Fig.2. I.f.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.9.
cause oscillator frequency drift. I have shown a suitable i.f. stage layout in Fig.3. When the coils are correctly aligned, the pass-band is as shown in Fig.4.

Demodulator distortion

The normal diode envelope detector used in the average a.m. receiver does not have a very good performance, with introduced harmonic distortion levels lying anywhere in the range 0.5 to 20%.

However, there is a useful op-amp configuration in which the gain of the op-amp is used to remove the diode dead band and provide a precision full-wave a.c. rectifier, Fig.5.

Its method of operation is as follows. For the positive-going half of an input cycle, the output of IC1 will drive the cathode of D2 negative, until the potential at the junction of D2 and R2 is equal, and opposite to that applied to the input. In this mode, IC1 acts as a unity-gain inverting amplifier, and a negative-going current input is applied to the 'virtual earth' point at the inverting input of IC2.

For a negative-going half cycle applied to the rectifier input, the output of IC1 will be positive, which will drive D1 into conduction, and D2 will be open-circuit. As the inverting input of IC1 also forms a 'virtual earth', there is no potential across R2 and R4, and the current input to IC2 is simply that which flows from the source through R3.

On both halves of the input cycle, therefore, a negative-going current input is applied to the inverting input of IC2, which causes an equal, but opposite current to flow from IC2 output, through R4, to preserve the necessary voltage node at the inverting input. Resistor R4 must have a value equal to half that of R3 so that there will be the required negative-going total current flow to IC2, on the positive-going input half cycle, when current is flowing through both R2 and R3.

I have shown a practical form of this circuit in Fig.6, in which two dual op-amps provide a low distortion demodulator and a.g.c. amplifier.

In this, IC2a is a unity-gain impedance converting buffer stage to provide the desired low impedance drive to the precision rectifier without loading the secondary coil of the i.f. band-pass circuit, and a small forward bias is applied to the diodes D1 and D2, by means of R15 and R40, to assist the circuit to operate in a nearly ideal manner.

It is easy to set this up. With no input to IC2a (TP1 shorted to the 0V line), the output of IC1b should also be zero. As R40 is gradually increased in value, current is fed through D1, which causes the output of IC1a to move negatively until D2 just begins to conduct. When this happens, the output of IC1b starts to go positive, as measured at TP3. The correct setting for R40 is that at the threshold of this output voltage excursion.

Since one is only interested in the l.f. component of the output, the capacitor C36 re-
roduces the h.f. gain of IC1b, to leave only the modulation voltage. It is prudent to ensure that this part of the circuit is well screened from the aerial input, or otherwise there will be a spurious signal at twice the i.f., 900kHz, which is within the medium waveband. Components R21 and C30 also help to remove the 930kHz component from the audio output line.

In practice, the incoming i.f. signal generates a mean positive potential at the output of IC1b that is proportional to the signal strength. This is amplified and inverted by IC2b to give an a.g.c. potential which becomes progressively more negative as the signal strength increases. Variable R22 sets the a.g.c. potential, in the absence of an incoming signal (TP1 shorted to the 0V line), to +4V which is a suitable value for the second gate of the dual-gate mosfets. TP2 can also be used as a source of potential to operate a signal strength or tuning meter, as shown in Fig.7.

This provides an effective and fast-acting a.g.c. system, which holds the audio output substantially constant over a range of input signal strengths from 5μV - 5mV. The inevitable penalty for such a sensitive receiver is that there is a considerable increase in aerial and other noise when the set is tuned between signals.

Oscillator and frequency changer

This is a conventional circuit layout, as shown in Fig.8, in which a single-gate depletion mosfet is used as a source-coupled oscillator, with the drive to the frequency changer being taken from the low impedance source electrode. The inclusion of R41 converts the drive waveform into a rounded square wave, of about 800mV pk-pk amplitude, which gives good conversion efficiency in the frequency changer.

Although r.f. mosfets are somewhat dearer than bipolar junction transistors, their use in the oscillator, frequency changer and i.f. stages is amply justified by the performance advantages which they confer: high mutual conductance, high input impedance, and a relatively high high output impedance, which lessens the extent of damping of the tuned circuits and removes the need for tapped coils.

Also, in the i.f. stages, the very low feedback capacitance of the dual-gate mosfet avoids the problems of r.f. instability. In the frequency changer stage, the mosfet offers a second input electrode, unconnected to the signal gate, for local oscillator injection, and as an oscillator, the mosfet offers a superior performance in terms of output and frequency stability to any other transistor type.

Continued on page 29
We hold the full range of ACOmRn hardware and firmware and a very wide range of other peripherals for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS & PLOTTERS

We hold a wide range of printer attachments (sheet feeders, tractor feeds etc) in stock. Serial, parallel, IEEE and other interfaces are also available. Ribbons are available for all above plotters. Pens with a variety of tips and colours also available. Please phone for details and prices.

PRINTABLEPAPER WITH EXTRA

Plain Fanfold Paper with extra

PRINTERS & PLOTTERS

EPSON

EPSON LX-80

£229 (a)

Optional Tractor Feed (LX80/86)

£20 (c)

Sheet Feeder (LX100/110)

£190 (c)

FX850 (80 col)

£315 (a)

FX1050 (110 col)

£449 (a)

LQ800 (80 col)

£159 (a)

LQ1000 (160 col)

£159 (a)

JUKI

£219 (a)

1600 (daisy wheel)

£249 (a)

NATIONAL PANASONIC

KP1080 (80 col)

£159 (a)

KP1580 (80 col)

£20 (c)

STAR NL10 (Parallel Interface)

£249 (a)

STAR NL10 (Serial Interface)

£279 (a)

PLOTTERS

Epson H341 (A4)

£429 (a)

IntegraJet Printer

£459 (a)

Carlon P100/80 P

£239 (a)

Graphics A3 Plotter

£699 (a)

PRINTER ACCESSORIES

Full Fanfold Paper with extra fine perforation (Clean Edge): 2000 sheets 9.5 x 11 x £1.33 (a), 2000 sheets 14.5 x 11 x £1.50 (b). Labels per 100: Single Roll 3 x 1 x 15 x 0.05, Triple Roll 2 x 15 x 1 x 1.76 x £0.05 (d).

MODEMS

MIRACLE WS 2000 - The world standard BT approved modem covering all standard CCITT and BELL (outside UK only) standards up to 1500 baud. Allows communication with virtually any other modem in the world. Expandable to Auto Dial and Auto Answer with full software control enhancing the considerable features already provided by the modem. Mainly powered. WS 2000 £102 (e), Cable £7 (d), Auto Dial Card £26 (e).

WS 3000 RANGE - The new professional series. All are intelligent and have a Hayes compatible protocol, allowing simply 'Hayes' commands to control many features. Also available with Auto Dial and 16 number memory. Auto answer. Speed. Buffering. Printer port, data security options. All modems are factory upgradeable.

WS3000 V21/23 (V21 & V23 + Bell + £295 (a), WS3000 V22 (as above plus 1200 baud full duplex £495 (a), WS3000 V222 (as above plus 2400 baud full duplex) £640 (b).

BBC Data Cable for WS3000 £7 (d). Data Cables for other modems are available. The WS3000 range has all BT approval.

NEW WS 4000 'SCHOOLS' MODEM - a new low-cost high performance Hayes compatible modem with Auto Answer and Voice as well as Hayes (V24 £19 (a).

A V24 upgrade can be added at £250 and V22 at £620, other options available, please phone for details.

GECS DATALOG 123 - An economically priced DAB8T approved modem covering all CCITT and BELL standards up to 1200, 1200/50ps and 75/1200bps and 1200/1900ps full duplex, full line powered, does not require external power source. It is supplied with 2..."
Mains communication without tears
How to interface with the mains supply for data communication and expand into a cost-effective paging system

A number of articles have been published in the past showing 'simple' methods of communication over the domestic mains. The general circuitry is simple enough for the data formatting prior to transmission, but the bugbear seems to be in the method of interfacing to the mains. One of the methods has been to inject the carrier signal between the neutral and earth. This suffers from one major drawback: when the neutral and earth are bonded together at the electricity supply entry point, the circuitry required for general interfacing tends to include a handful of transistors, regulators and passive components. Most of these components can be replaced by a single LM1893 circuit called a Biline™ carrier current transceiver. This circuit is a special type of f.s.k. modulator/demodulator specifically designed for mains communications.

Fig.1. Basic mains modem interface uses minimal components for complete digital interface.

The circuitry required for general interfacing tends to include a handful of transistors, regulators and passive components. Most of these components can be replaced by a single LM1893 circuit called a Biline™ carrier current transceiver. This circuit is a special type of f.s.k. modulator/demodulator specifically designed for mains communications.

Fig.2. Winding details for coupling transformer. Commercially available components are available - see not on page 25.

Frequency allocation proposed in draft British Standard

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency Range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40 to 90kHz</td>
<td>Reserved for electricity supply authorities</td>
</tr>
<tr>
<td>B</td>
<td>110 to 125kHz</td>
<td>Continuously available channels for occasional transmission</td>
</tr>
<tr>
<td>C</td>
<td>125 to 140kHz</td>
<td>Time-shared or burst mode, not continuous</td>
</tr>
<tr>
<td>D</td>
<td>140 to 150kHz</td>
<td>Fire and security equipment</td>
</tr>
</tbody>
</table>

Power levels: 116dB(μV) quasi-peak into 50 ohms, except band D which is 134dB(μV).

Fig.2. The Toko design can withstand about 2kV; the Vacuumsmelze and home-brew types should withstand about 4kV.

An alternative method of isolation is shown in Fig.3. This idea, originally published by Maplin in their Sept 1985 magazine, is a novel method of isolation. With slight modification, the mains transformer can be used as a dual secondary, a supply for the non-isolated circuit can be accommodated. Protection diode D3 is a transient absorber to prevent damage to the LM1893 by erroneous spikes on the mains and is an essential part of the protection circuitry for designs.

Simple control system

If a one-way control system is required, then Figs 4 and 5 could be a cost effective solution. The transmit circuit, Fig.4, is based around the 74C922 keyboard encoder, MM53200 garage door opener and the LM1893.

Operation is straightforward enough. The user depresses a key which is then decoded by the 74C922. The four-bit output is presented to four of the 12 input data lines on the MM53200. The remaining eight bits of input data are used as a 'house code' so that a number of controllers and
slaves can work on the same system.

During a key depression, the data available pin (12) of the 74C922 goes high. As the output pattern from the MM53200 is of a continuous nature in this configuration, the LM1893 is used to gate the data stream onto the main by controlling its tx/rx pin. The drive for this pin is derived from a pulse stretcher made up from two gates of a CD4093 quad Schmitt circuit. The control input for this gating is obtained from the data available pin of the 74C922.

At the slave end, Fig.5, the LM1893 is used in the receive mode only. Again this can even further reduce the circuitry to around eight components. The data recovered from pin 12 of LM1893 is then passed directly to the MM53200 configured in the receive mode, i.e. pin 15 low. When four consecutive correct code sequences are received from the master, the output line is switched low. This can be used to drive an led or with the addition of a transistor, any other load. The code for both master and slave must be the same, so the eight-bit 'house code' needs to be the set with switches.

These two units form the basic circuitry for simple mains control. With some modification an answerback signal can be sent and received to indicate the required slave has switched successfully – see Fig.6.

When a key is depressed at the master end, the transmission sequence is sent via the LM1893; when released, the master reverts to the receive mode. At the slave end, data received and demodulated by the LM1893 is fed to the MM53200. When transmission from master to slave is finished, a valid output from the data output line triggers the monostable into echoing the selected slave address. At the end of the transmission, FF2 is clocked. This has two functions, one to switch the output load on and the other to toggle the D0 address bit of the MM53200. This allows the n+1 number to turn off the slave by changing the least significant data bit. The FF2

Fig.3. Novel method of isolation using optoisolators.

Fig.4. Basic mains control. Circuit diagram of keyboard encoder, parallel to serial pulse width modulator LM1893 wired for transmit mode only.

Fig.5. Receiver for simple mains control. LM1893 wired for receive mode only driving the MM53200 digital decoder.
circuitry can also be used on the simple set up of Fig. 5.

When the slave address is echoed to the master, the transmitted and received patterns are compared and, if correct, the user receives an audible or visual signal confirming that the correct action has been taken by the slave.

And now for something completely different

Once the basic interface has been mastered, the expansion of the system is endless. On the master unit, for example, if mains connections from the Toko transformer are replaced with an inductive loop then the circuitry forms the basis for a very cost-effective paging system together with a suitable receiver, as shown in Fig. 7 and 8. In this receiver, the signal is picked up by a ferrite rod aerial and fed to an LM3361 narrow band f.m. circuit. This device works to a low voltage with low power consumption. The output tuning is at the carrier frequency of 125kHz, achieved by padding out a 455kHz i.f. coil with a 2200pF capacitor. Recovered data is fed through the internal Schmitt of the LM3361 to provide clean data to the MM53200.

An alternative power supply and interface is shown in Fig. 9. This transformerless circuit is intended for applications that do not have any connections exposed to the outside world. Care in the choice of components is essential to ensure a margin of safety.

The LM1893 as it stands will work to 4800 baud, but if error checking is introduced the effective rate is reduced accordingly. For data transmission in areas where the background noise on the power lines could effect overall performance a digital filter, like that shown in Fig. 10, could be employed. This circuitry is currently being used on a commercial energy management system and has enabled the system to run at 2300 baud, with 144 bit data strings and a retransmission error rate of 0.01% over 1 million transmissions per day.

And finally

These circuits for connection to the mains are intended to re-
Microcontroller chip integrates peripherals

More features of a specially-programmed controller for evaluation and education.

Peripheral functions and memory within the S2 single-chip microcomputer allow the device to be programmed to perform many tasks with very few components.

Last month's article described internal working of the chip and introduced a mask-programmed multi-function version made available only to readers of this journal. This S2 chip includes a monitor which can be driven by a terminal through a serial link, and routines for using the device as a pulse-burst generator, frequency meter and audio communication link using very little extra hardware.

Further routines are included for evaluating the data converter and watchdog timer. This article describes using these and the speech-quality communication link.

Audio communication link

The internal eight-bit A-to-D converter and serial interface are used to digitize an audio signal and transfer the data between two S2 processors through a full-duplex serial link. Audio quality is surprisingly good, considering the limitations. Although this demonstration is of limited practical use because the serial interface is intended for local communications only, it forms a useful tool for illustrating some of the theoretical relationships commonly encountered in data communications.

For example the Nyquist

Further reading
Bilinear Carrier Current Networking Systems, National Semiconductor publication number 570075.

Draft standard for communication and interference limits and measurements for mains signalling equipment, British Standards Institute Draft Spec. No.85/2859.

Survey of mains signalling systems in the UK, ERA Technology, Leatherhead.

Suitable transformers are type ZKB490/228-80-W insulated to 4kV made by Vacuumeschmelze of Hanau D-6450, Germany and imported by Rolfe Industries (see advertisement), and Toko's 707VX-A0242YUK, insulated to 2kV and available from Circit Distribution.

by

Mike Catherwood

Catherwood

Electronics & Wireless World October 1986
LOW COST C.A.D.
ATTENTION ALL ELECTRONICS CIRCUIT DESIGNERS!!
I.B.M. PC (and compatibles): BBC MODEL B, B+ and MASTER: AMSTRAD CPC and SPECTRUM 48K

ANALYSER I and II compute the A.C. FREQUENCY RESPONSE of linear (analogue) circuits. GAIN and PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY (except Spectrum version) are calculated over any frequency range required. The programs are in use regularly for frequencies between 0.1Hz to 1.2GHz. The effects on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated.

Circuits containing any combination of RESISTORS, CAPACITORS, TRANSFORMERS, BIPOLAR and FIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated - up to 60 nodes and 180 components (IBM version).

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE-BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.

STABILITY CRITERIA and OSCILLATOR CIRCUITS can be evaluated by "breaking the loop".

Table output on Analysers I. Full graphical output, increased circuit size and active component library facilities on Analysers II.

Check out your new designs in minutes rather than days.

ANALYSER can greatly reduce or even eliminate the need for breadboard new designs.

Full AFTER SALES SERVICE with TELEPHONE QUERY HOT LINE and FREE update service.

Used by INDUSTRIAL, GOVERNMENT and UNIVERSITY & R&D DEPARTMENTS worldwide. IDEAL FOR TRAINING COURSES. VERY EASY TO USE. Prices from £20 – £195.

For further details and example computation or for details on our New DRAUGHTING program, please write or phone:

Number One Systems Ltd
Dept WW, Crown Street, St Ives, Huntingdon, Cambs. PE17 4EB.
Tel: (0480) 61778

CIRCLE 29 FOR FURTHER DETAILS

DATA GENERAL MINICOMPUTER PARTS AND SYSTEMS

Does your application need those multi-user megabytes but your budget stretch only to a PC? Or is your old DG mini flat on its table and due upgrade? Second printer? Hardware support? As traders in commercial systems, we always have stock of older (and newer) equipment. We also deal in second-hand and surplus micro systems. Large SAE for current catalogue.

Sample stock: Nova 4X 16-slot chassis (valid for MV8700 upgrade) with CPU & memory board - £2000; Eclipse S120 256KBD CPU board - £1200; 5MB 1007 Zebra drive subsystem £2500; Eclipse S190 with 256KBD £1000; Eclipse CS/100 with 128KBD - £900; 10/12.5/20/25MB drive subsystems £800 each; 6125 tape streamer - £3500.

Silicon Glen Ltd
Moray Street, Blackford, Perthshire, Scotland
Callers & Overseas Enquirers welcome or Telephone: 078042 315 or 464
Telex: 295141 TMLINK G quoting MDX 076452315 on first line
Bulletin Board Sales Catalogue (Prestel Standard) on 076482465

CIRCLE 40 FOR FURTHER DETAILS

ADVANCED ACREAL

The aerial consists of an outdoor head unit with a control and power unit and offers exceptional modulation performance. 40dB, 50dB, 60dB and 70dB. £550. £950.

* +50dBm. For the full time this permits full use of an active system around the home and broadcasts bands where products found on only those radiated from transmitter sites.

* General purpose professional reception 4kHz - 30MHz

* 10dBm gain. Field strength in voltm/mtre to 50 Ohms

* Precedence for and attenuation full dynamic range to be realised on practical receivers and spectromanalysers

* Noise - 105dBm in Hz. Clipping 16 volt/metre.

SURREY ELECTRONICS LTD., The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. Tel 0483 275997
criteria may be investigated by varying the low-pass filter cut-off points, or the effect on the signal-to-quantization-noise ratio may be observed by reducing converter accuracy through lowering the reference voltage. Relationships such as the Hartley-Shannon theory, which equates channel capacity to bandwidth and s-to-n ratio, may also be confirmed.

Software samples the a-to-d converter at 7.7kHz and the serial-interface clock is set to operate at 100Kbit/s (for a 4MHz m.c.u. clock). Information is therefore passed at a rate equal to eight times the a-to-d converter sampling rate which is 6Kbit/s. This is lower than the channel capacity of the serial interface and consequently the converter sampling rate is the communications-bandwidth limiting factor.

Two S2 demonstration devices are required for this application, one configured as a master (serial interface clock generator) and the other as a slave, Fig. 1. The serial interface is configured for three-wire (receiver, transmit and clock) full duplex operation.

One byte of data is exchanged between the devices every 13i machine cycles; received data is placed on port A which then drives a low-cost MC1408LS d-to-a converter. Both input and output filters should have a cut-off frequency of less than half that of the a-to-d converter sampling rate, i.e. 3.6kHz for a 4MHz c.p.u. clock.

Switched-capacitor filters are easy to use and form effective low-pass filters. The c-mos MC145414 shown uses switched-capacitors to form a dual fifth-order elliptic filter for low-pass operation. Two uncommitted op-amps are also included in the device.

Band limiting frequency of each filter is directly proportional to the input clock. For example, an input clock of 128kHz results in a bandlimiting frequency of 3.6kHz, halving the clock rate halves the band-limiting frequency.

Each filter is functionally identical except that one provides 18dB of gain within the passband and the other provides unity gain. In Fig. 1, an MC1455P1 timer is used in astable mode to generate a clock signal that can be varied between 70 and 180kHz.

Hardware for the audio communication demonstration was developed by Olivier Piloud at Motorola's Geneva design centre.

A-to-d converter evaluation

This program allows you to directly exercise the analogue-to-digital converter in the MC6805S2 and to accurately evaluate its performance in the intended environment.

Fig. 1. One side of the S2 audio communication link. Lines C4, select the converter channel as in Table 2. Line B3, reads low internally. The d.c. 'Set' potentiometer is set to provide an average of the converter input d.c. signal level of about half way between VRLL and VRHH. For maximum converter accuracy, VRHH is tied to Vcc and VRLL to ground. Adding an expander and compressor would improve s-to-n ratio.

Fig. 2. Analogue-to-digital converter evaluation. Three-bit digital code selects one of four channels or internal calibration voltages. For port B, connections, see text.
Figure 2 shows how a typical test board could be configured. The analogue channel is selected by setting inputs, port lines C0,1 and B0, to states corresponding to a-to-d converter control register bits 0 to 2, as defined in Table 1. After initialization, conversion of the selected analogue input is continuous. The channel selected may, however, be changed without resetting the processor since the program reads the channel code inputs before each conversion. The conversion result placed on port A bits 0 to 7 may either be the value after each conversion (port B1=0) or a value averaged over four conversions (port B1=1).

A data-valid strobe is also generated on port B to indicate when another conversion result has been output. It will rise and remain high during the period that the value on port A is stable.

Auxiliary counter demonstration

The auxiliary or watchdog counter is a ten-bit fixed-modulus counter which may be used in conjunction with some simple software to help ensure reliable processor operation in environments which would otherwise encourage erratic behaviour. For example, should high-energy spikes appear on the power supply the m.c.u. may lose control and start to execute data patterns, causing a catastrophic system runaway.

A program using the auxiliary counter to avoid this regularly resets the auxiliary counter to its maximum value by inverting miscellaneous register bit 5. Provided that this is done more frequently than the auxiliary counter time-out period, then a forced reset will not occur.

So if a program runaway does occur it is probable that the auxiliary counter will not be regularly reset, resulting in the m.c.u. being reset at counter overflow and the user program being restarted.

In this demonstration the program simply increments port B. A hard-wired option enables or disables the watchdog option by manipulating the auxiliary counter reset-mask bit. Therefore by operating two identical demonstration boards in the same adverse environment but with the watchdog enabled in only one, a direct evaluation of watchdog effectiveness can be made. Wiring is shown in Fig. 3.

The auxiliary counter may alternatively be used as fixed-interval polled timer, provided that the auxiliary counter reset-mask bit is set. Even though the instantaneous counter value cannot be read by the processor, this feature may still be very useful in applications requiring long time-outs.

Table 1. Control codes for analogue channel selection.

<table>
<thead>
<tr>
<th>Port</th>
<th>B1</th>
<th>C0</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>AN0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>AN1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>AN2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>AN3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>VRH/2*</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>VRH/4*</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>VRH/2*</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>VRH/4*</td>
</tr>
</tbody>
</table>

*Internal levels for calibration.

Table 2. S2 self-test indications

<table>
<thead>
<tr>
<th>Counter bit Indication</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Bad i/o or INT,</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Bad ram</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Bad rom</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Timer converter</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Bad timer A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Bad timer B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Bad rom or aux.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fault</th>
<th>No fault</th>
</tr>
</thead>
</table>

Selftest and bootstrap loader

Applying a voltage slightly in excess of Vcc+2V to port line C0 during reset causes the device to select an alternative of vector on reset release, Fig. 5.

The new reset vector points to the self-test program area. Within this space, a bootstrap loader program also exists which allows you to copy small amounts of test code from an externaleprom into S2 ram and then execute it. The level of port line C3 immediately after reset is released determines whether the self-test routine or bootstrap loader is executed.

Self-test involves execution of a sequence of subroutines for testing rom, ram, timers, i/o, a-to-d converter and interrupts on a cyclic basis. Many of the routines may be called by the user. Leds display the result of the test, Table 2.

The bootstrap loader program continuously copies data from an externaleprom at address zero onwards into S2 ram at address 40 to 7F until port line C1 is pulled high. It then executes a JSR 40 instruction and runs the loaded program. The most significant rom address lines may then be incremented and the pro-
cess repeated with another user test routine.

Test results may be displayed on any of the spare ports. This test procedure is obviously more flexible, but requires more hardware. Input/output related tests are also difficult to realize properly.

Useful monitor subroutines

Figure 6 of last month's article shows hardware required for communicating with the S2's internal monitor through a serial link at either 300 or 1200 baud. Note that the 300/1200 baud switch is only sensed at reset.

Being in standard 6805 code, subroutines within the monitor and many of those used for the special functions will be useful to software writers. A full assembly-language listing is available.*

Routines include low-level functions, such as writing/reading a character to/from the terminal, and higher-level routines for reading and writing hexadecimal numbers for example.

Error conditions are usually indicated by the C bit being set on return from the subroutine.

Table 3 is a list of the more useful subroutines and a short description of what they do. Any questions about how a particular subroutine works can probably best be answered by inspecting the source code.

In general, the subroutines shown in Table 3 try to preserve the registers that they do not use. Note that most of the routines expect to be able to use locations 5616 to 5B16 in ram. As the interrupt vector jump table resides 50 and 55, ram locations 50 to 5B should not be used.

Locations 40 to 4F are standby and are accessible if the ram is powered through port line D6.

*Assembly-language listings cost £2.50 from the editorial office. Please mark your A4 envelope 'S2'.

Quality radio

continued from page 19

Incidentally, if a single gate mosfet is not available, a dual-gate device, such as the 3N201, can be used with the two gates joined together.

The complete receiver

I have shown the circuit of the complete a.m. receiver in Fig. 9, which includes provision for switching between the l.w. and m.w. bands, (150-300kHz and 550-1600kHz).

Audio stage

I decided on a target performance of 3 watts into a 3 ohm load—a typical 'table radio' output power figure—at not more than 0.05% t.h.d. with good reactive load behaviour, and with all crossover products being substantially less than 0.01%.

The circuit I eventually chose for the audio amplifier, which fully met this specification, is shown in Fig.10, as is also that used for the power supplies.

The final performance of the unit has proved very satisfactory, both in respect of its ability to recover very weak signals at good entertainment quality—completely unseen by my domestic 'trannies'—and in respect of its frequency stability and tonal characteristics.

 fig. 5. Small user programs in eprom can be loaded into the S2 using this configuration. At reset, port line C6 is held high and directly after reset line C1 must be low. User code is executed when line C1 goes high. Resistors R1,2,3 are 4.7kΩ.

Table 3. Useful subroutines within the S2 monitor.

<table>
<thead>
<tr>
<th>Label</th>
<th>Subroutine</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT3HS</td>
<td>Print address</td>
<td>B94</td>
</tr>
<tr>
<td>OUT2MS</td>
<td>Print byte pointed to by GET</td>
<td>B9C</td>
</tr>
<tr>
<td>PUTBYT</td>
<td>Print accumulator in hexadecimal</td>
<td>BAF</td>
</tr>
<tr>
<td>PUTNYB</td>
<td>Print lower 4 bits of A in hexadecimal</td>
<td>BBC</td>
</tr>
<tr>
<td>CRFL</td>
<td>Print carriage-return, line feed</td>
<td>BCE</td>
</tr>
<tr>
<td>PUTS</td>
<td>Print a space</td>
<td>BE7</td>
</tr>
<tr>
<td>GETBYT</td>
<td>Read hexadecimal byte</td>
<td>BF0</td>
</tr>
<tr>
<td>GETNYB</td>
<td>Read hexadecimal nibble</td>
<td>C01</td>
</tr>
<tr>
<td>GETC</td>
<td>Read a char. into accumulator</td>
<td>C1D</td>
</tr>
<tr>
<td>PUTC</td>
<td>Print character in accumulator</td>
<td>C44</td>
</tr>
</tbody>
</table>

In Fig. 8 of the September article, pins 17 and 18 should have been shown wired to 0V; the Vcc supply connects to pin 16 and pin 7.

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
Slow-scan television in software

Direct transmission and reception of pictures by radio or telephone, using only a Commodore 64 computer.

Slow-scan television is a way of transmitting pictures over an audio channel. The method is greatly used these days allowing us to transmit and receive pictures all over the world both by telephone and by radio.

The signal transmitted is frequency modulated. In the line we have 1200 Hz sync pulse 1500 Hz black 2300 Hz white and frequencies from 1500 to 23000 Hz represent levels of grey. A picture is completed in about eight seconds, consisting of 128 lines each 66 ms long. Sync pulses are 5 ms long (horizontal) and 30 ms long (vertical).

Considering the interest shown by our correspondents when we tell them our s.s.t.v transmission was simply directly generated by a Commodore 64 using just software, we are sure our program will please lots of enthusiasts. These notes should fill a large gap in the literature; we often read about the use of computers for communication in tty and c.w. but as far as we know, never has an important magazine published complete programs for using a computer with s.s.t.v. Through this program the user of a C64 will be able to transmit the full character set of the computer in s.s.t.v.

To load the program type the list, verify and save it before the run. On run we open a window on the screen capable of containing eight characters by seven lines. The cursor has full movement in it; transmission can be actuated by pressing the 'left arrow'. After a few seconds for the basic version of the program the loudspeaker will give out the characteristic s.s.t.v sound.

We have also written a version of the program in machine code which allows the text to be transmitted instantaneously.

To stop transmission or modify text hold the key return pressed; during vertical sync (which can be found acoustically as a constant tone about every eight seconds) a routine scans the keyboard and if the return key is found pressed, stops the transmission.

Even if the list is quite long, those who load it will have the satisfaction to have something really complete and which is not, at the moment, on the software market. The program will free s.s.t.v enthusiasts from the restrictions of special pens and flying spot scanners.

We succeeded in writing this program to receive s.s.t.v via a Commodore 64 directly, without any dedicated interface, just connecting the receiver a.f. output to the C64 user port. We combined s.s.t.v rx and machine code tx in the same program so we now have a program which puts s.s.t.v immediately in your hands and eyes. F1 actuates the exchange rx/tx, F7 suppresses interrupts, allowing excellent clear pictures to be received. If you wish do contact us by s.s.t.v.

Program description

1000-1130 load routines in machine code.

1320-1520 load video location from the keyboard.

1550 SYS20224 ($4F00) routine fills all memory locations to be transmitted with black ($FD).

1560-1590 gets characters from the screen.

1580 stores in 20479 ($4FF) the progressive number of the character picked up.

1610-1690 gets eight bytes from rom character and stores them serially from $4000.

1700 SYS20736 routine in machine code finds starting address of s.s.t.v characters, loads in memory bits contained in eight bytes from $4000.

1750-1770 load horizontal sync signal.

1780 load vertical sync.

1790 SYS20480 routine transmits in s.s.t.v., recognizing the memory location content. Every vertical sync verifies if a key is pressed—if positive, transmission is stopped and the program prepares itself to receive new text, otherwise transmission is repeated.

The sequence of operations to access the character rom are

1 - remove interrupt
2 - select character rom
3 - get the desired character
4 - remove character rom
5 - restore interrupt.

The character rom and register are both located from $0000 and $FF00; it is so required to select one of them depending on needs. First interrupt must be suspended by,

in Basic, POK $534, peek (56334) and 254, and in machine code by

LDA #$FE
AND BDC0E
STA CDC0E.

The memory bank containing the character rom is selected by setting to 0 bit 2 in the control port, which is in location $01. Remember, and with 0 set to zero, and with 1 leave unchanged; or with 1 set, or with 0 leave unchanged. This

by Giuseppe Cameroni I2CAB and Giancarla Morellato I2AED

Giuseppe Cameroni and his x1l Giancarla Morellato graduated in commerce and chemistry and both got their amateur radio licences at about the same time, having met via the radio. Software and hardware experts, their knowledge of computing embraces all of the main languages together with the hardware of most personal computers on the market.

Though the receiver's audio output can be directly connected to pin B this circuit will give some input protection. The BC107 or 2N2222 circuit needs a f.gain set high; an op-amp allows a lower gain setting.

Even though it is possible to transmit s.s.t.v pictures simply by placing the tx microphone to the tv monitor loudspeaker, we suggest you connect, using shielded cable, pin 3 in the audio/video connector to the mike input of your transmitter via a potentiometer.

Copies of the complete machine language program containing both transmission and reception in s.s.t.v (RXT SSTV) are available on disc or cassette directly from the authors for £15 (£30,000) (two sheets of instructions are included) at Via Damian Chiesa 26, 27029 Vigevano, Italy. Cost is reduced to £10 by sending a floppy disc. Basic listings that accompany this description are available from the editorial office.

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
is the instruction in Basic:
POKE 1, PEEK (11) AND 251

and in machine code:
LDA #SFB
AND #01
STA #01.

The character rom is now at our disposal. Characters are stored from 0000 eight locations per character depend on their screen code. Each bit of the eight bytes corresponds to a point on the screen which could be put off if zero or on if the bit value 1.

Capital letter A has got a screen value 1, so it is memorized from D008 to D00F and the content of progressive memory locations is 18 3C 66 7E 66 66 66 00, see example:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bits</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>00110100</td>
<td>.......</td>
</tr>
<tr>
<td>30</td>
<td>00111100</td>
<td>.......</td>
</tr>
<tr>
<td>66</td>
<td>01100110</td>
<td>.......</td>
</tr>
<tr>
<td>$7E$</td>
<td>01111110</td>
<td>.......</td>
</tr>
<tr>
<td>66</td>
<td>01100110</td>
<td>.......</td>
</tr>
<tr>
<td>66</td>
<td>01100110</td>
<td>.......</td>
</tr>
<tr>
<td>00</td>
<td>00000000</td>
<td>.......</td>
</tr>
</tbody>
</table>

Obviously capital B with screen code 2 is situated from D010 and $D017$ and so on for all other characters.

Now position the i/o bank with the Basic message
POKE 1, PEEK (11) OR 4

or in machine code,
LDA #SFB
ORA #01
STA #01.

Restore interrupt from Basic
POKE 56334, PEEK (56334) OR 1

In machine code:
LDA #SFB
ORA #0DCE
STA #0DCE.

Location $4FPP$ contains the progressive number of the character drawn on the screen locations; doubling this value and adding it to the base location ($4E00$) in the address table gives the starting location of a certain character. In eight locations starting from 4000 there are bytes obtained from the character rom, and it is necessary to translate these bytes into bits and store them with the memory locations to be transmitted.

We did that by using the instruction mov (rotate left) through which carry is loaded with the left-most bit of the byte considered. This instruction is followed by bcc (branch cause clear) which verifies the state of the bit, following the routine store 00 if the bit is on or $0F$ if the value of the bit is off.

Loading example
Suppose the letter A is in the first position of the screen, the starting location to load the s.s.t.v character is found from the table $4E00$, and is 6200.

From the rom character the letter A means 18 3C 66 etc. which will be arranged this way:

6200 0000 00 00 FD FD 0000 00
6240 0000 00 00 FD FD 0000 00
6280 0000 00 00 FD FD 0000 00
$62C0$ 0000 00 00 FD FD 0000 00
6300 0000 00 00 FD FD 0000 00
6340 0000 00 00 FD FD 0000 00
6380 0000 00 00 FD FD 0000 00

and so on over the character and all the text.

Picture transmission

Every line of video consists of 64 memory locations, the content of which executes the transmission as follows:

$00 = $ white; frequency of 2300Hz is transmitted for the length of a point (0.93 ms)

$01 = $ black; frequency of 1500Hz is transmitted for the length of a point (0.93 ms)

$0F = $ horizontal sync; frequency of 1200Hz is transmitted for 5 ms

$FF = $ vertical sync; frequency of 1200Hz is transmitted for 50 ms

A different memory content is not recognized by the program just now. The content from 00 to $0F$ would be suitable as transmit values for grey in some future expansion of the program.

The frame transmitted consists of seven text lines containing eight characters each. Every character is constituted by a matrix of 8 by 8 points; so the image definition will be:

horizontal: 63 points: 8 by 8-horizon sync
vertical: 128 points: 7 by 8 by 2
tively line is loaded twice = 16 lines of buffer.

I inserted these 16 lines (eight upper and eight lower) to get the picture received easily with a standard monitor.

Direct picture reception

At the beginning we initialize the area of memory concerning the position of colour, actuate a 'clear' in all locations that will contain picture information, qualify the bit map and the multicolour mode; all these operations are necessary to present a memory location as a point with different levels of grey.

It is required to know accurately the frequency presented to the input (user port) of our computer to let it do all the operations concerning the composition of the picture; color a point, actuate horizontal or vertical reset. This sampling of the input frequency must be done continuously in a very short time, by rewriting the SMI (non-maskable interrupt) routine which is normally situated starting at $7F41$ and modify for a new allocation by changing the content of the pointers 0318 (SMI I.s.b) and 0319 (SMI M.s.b).

The c.p.u. of the Commodore 64 has various jobs to carry out which, even if requiring very short time, continuously distract it causing holes in the sampling. To obviate this it is necessary of concentrating the attention of the c.p.u.; this is the function of key F7 which removes and restores video interrupts (bit 4 in location $D011$). Through this, exceptionally clear reception is achieved.

If the audio frequency gain in the receiver is kept high to saturate the input of this program directly presents s.s.t.v pictures on the screen. It is only necessary to connect the a.f. output to the pin B of the C64 (see diagram).

We merged the program for transmission and this one for reception into a single machine-code version. So this way of communication is immediate and completely accessible to the Commodore 64 owners; readers who desire this program (RTX SSTV) do please contact us. The program allows, among other things, the direct reception of pictures transmitted from space during space shuttle flights.

The program is entirely written in machine code and is presented in Basic just for easy loading, we suggest that once you have typed it to save it, verify it and run, when the reception of s.s.t.v pictures is immediately available to you.

NEXT MONTH...

Video digitizer
To enable X-ray pictures to be transmitted between hospitals and important features emphasized while unwanted ones are eliminated, this 'frame grapper' uses high-resolution data converters working at 30MHz. Images can be stored, transmitted over low-bandwidth links and computer-enhanced or modified at will with as possible resolution of 512 by 512 elements, and a 16- from 4906 colour palette.

Mobile radio
We survey techniques and equipment in modern private mobile radio systems, cellular radio has made a vast difference to mobile communications and this feature investigates trends in this area, pmr, cordless telephones and non-voice transmissions.

Turing's computable numbers
Fifty years ago this month, Alan Mathison Turing published his famous paper "On computable numbers, with application to the Entscheidungsproblem", which described in abstract the modern stored-program computer. Tom Iwall assesses the importance of the paper, which possibly influenced von Neumann's work in the USA.

50 Years of BBC tv
Also celebrating its fiftieth birthday, BBC television looks back at engineering developments over the years and attempts to forecast the techniques of the future.

Sunspralls and HF
A detailed investigation of variations in the F2 layer of the ionosphere uses a graphical method known as a Chronogram. This article explains the sometimes mysterious vagaries of ionospheric variations which affect H.F. — still the most common method of maritime communication.

All these and many more in November's issue, on sale Wednesday, October 15. Take a half-price subscription now — the offer won't last for long.

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
ANTEX a world of soldering

Professional Precision for the Amateur Enthusiast.

ANTEX has a worldwide reputation for quality & service & for many years has been one of the best known & most popular names in soldering. Always at the forefront of technology, ANTEX is continually researching new and better ways of achieving more accurate, reliable, and cost-effective soldering. On ANTEX Soldering Irons, the advanced design of the interface between the element & the bit allows more efficient heat transfer to the bit and improved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an XS25 watt iron can be used for tasks where a 40 watt iron would normally have been required.

ANTEX Soldering Irons exhibit exceptionally low leakage currents & hence are suitable for use on Static Sensitive Devices. Sophisticated temperature controlled soldering units have recently been added to the ANTEX range.

Model CS
- 17 Watts. Available for 240, 220, 115, 100, 50, 24 or 12 volts.

Model XS-BP
- 25 Watts. 240 volts, fitted with British Plug.

Model CS-17
- 17 Watts. Available for 240, 220, 115, 100, 50, 24 or 12 volts.

Model XS

Model XS-BP
- 25 Watts. 240 volts, fitted with British Plug.

ST4 Stand
- To suit all irons.

SK5 Soldering Kit
- Contains model CS 240v Iron, an ST4 Stand and solder.

SK6 Soldering Kit
- Contains model XS240s Iron, an ST4 Stand and solder.

SK5-BP and SK6-BP Soldering Kits as above with British Plug.

Model CS-D
- Temperature Controlled Soldering Unit

Model CS-EP
- 17 Watts. 240 volts, fitted with British Plug.

TCSU1
- Very robust temperature controlled Soldering Unit, with a choice of 30 Watt (CSTC) or 40 Watt (XSTC) miniature irons. Range 65°C to 420°C. Accuracy ±5°C. Zero crossing switching. Detachable sponge tray.

TCSU-D
- Elegant Temperature Controlled Soldering Unit with 50 W Iron (OBD) and built around FERRANTI custom-made ULA. Range Ambient to 450°C. Accuracy ±3°C. Zero crossing switching. Detachable sponge tray.

FOR FURTHER DETAILS
CIRCLE 72 FOR FURTHER DETAILS

www.americanradiohistory.com
“The ancient Greeks had pipped us at the post. Star magnitudes differ by 4dB.”

The ancient Greeks had pipped us at the post. Star magnitudes differ by 4dB.

exactely one decibel attenuation. Thus the number of decibels of attenuation in any system where the input power P_1 and output power P_2 is known is

$$A(dB)=10\log_{10}\frac{P_2}{P_1}$$

If the system resistance was to remain constant, then $P_1=I_1^2R$ and $P_2=I_2^2R$ so that

$$A(dB)=10\log_{10}\frac{I_2^2R}{I_1^2R}$$

$$=10\log_{10}\left(\frac{I_2}{I_1}\right)^2+10\log_{10}\frac{R}{R}$$

$$=0$$

$$=20\log_{10}\frac{I_2}{I_1}$$

But if the resistance levels are not the same, then the current ratio (or the voltage ratio) cannot be used to yield a meaningful dB figure. This is an error often seen now, with little thought by the student (and sometimes even by his teacher...).

Power gain or voltage gain?

As an example, consider an operational amplifier used as a voltage follower, whose output impedance is 50 ohms with input impedance 1 meghmoh, then the voltage gain is very nearly unity. Therefore the gain in dB is

$$20\log_{10}\left(\frac{V_o}{V_i}\right)=0\,\text{dB}$$

...and (as some beginning students often ask) what’s the use of no gain? But the power input at the terminals of this amplifier is $V_i^2/10^6$ watts, and the output power is $V_o^2/50$ watts. Therefore the gain is

$$10^6\log_{10}\frac{V_o}{V_i}=43\,\text{dB}$$

So how can an amplifier have no gain and 43 dB gain at the same time? The answer is that the first result is meaningless: decibels compare power levels - not voltages or currents.

One further example might drive the point home. What is the gain of a transformer with a step-up ratio of 25:1? V_o will be 25 times V_i, therefore obviously the gain is

$$20\log_{10}\left(\frac{25}{1}\right)=28\,\text{dB}$$

But we are told that the transformer is 90% efficient, so 100 watts in will deliver 89 out. The other 11 watts warm up the device. This gives a power loss of just over 0.5 dB.

Therefore the use of dB’s with anything other than power levels should be treated with great care.

Rootless wanderings

I have actually seen written somewhere on an advertisement “…the power output is 50 dB…” I wondered if this could mean that the power level was “relative to one wingbeat of a housefly”, in which case there might be very little power available from the amplifier! Decibels can never indicate absolute power levels – only relative levels. Once again the telephone engineers in earlier times chose a standard reference level of one milliwatt in 600 ohms. This way of stating absolute powers is written as so many dBm. But even this notation was viewed with suspicion by August bodies like the IEEE, who stated, that “They did not recognise any letters attached to ‘dB’ as meaningful…”.

Other standards were established relative to this 1 mW level. In 1940, H.A. Chinn and colleagues reported on the standard then adopted by broadcasting groups in the USA regarding the calibration and meaning of what was to be called the ‘volume unit’ (VU). This was referenced to the 1 mW level in 600 ohms. The VU meters subsequently based on the standard became numerous in studios, and much more recently in home entertainment equipment.

None of this relation is actually fundamental, but it has been discovered that most people find the relative level of the VU meter to be a convenient way of expressing the power level in an aural sense.

“How can an amplifier have no gain and 43 dB gain at the same time?”

Thus if $P_1=3$ watts and $P_2=42$ watts then the gain

$G=10\log_{10}\left(\frac{42\text{ watts}}{3\text{ watts}}\right)=11.5\text{dB}$

which can also be written

$G=10\log_{10}\left(\frac{42\text{ watts}}{1\text{ watt}}\right)$

$=10\log_{10}\left(\frac{3\text{ watts}}{1\text{ watt}}\right)$

$=\log_{10}\left(\frac{42\text{ watts}}{1\text{ watt}}\right)$

$=16.2-4.7\text{dB}=11.5\text{dB}$

Weber and Fechner

Rather fortuitously, but with some interest, Ernest Weber (1795-1878) found that the smallest detectable physiological response ΔR is proportional to the fractional change in the stimulus, given by $\Delta L/\log_{10}L$. In his Weber-Fechner Law is well known in the life sciences: $R=\log_{10}L$. This means that a decibel scale of say, sound power appears as a linear scale to the ear. It happens to be one dB change in sound level is just discriminable to the ear. The use of a decibel scale is very convenient when the range of hearing from the smallest sound to the threshold of pain amounts to 10^{10}. This range of 120 dB is referenced to the lower threshold – taken as a sound flux of 10^{-12}W m$^{-2}$ at 1000 Hz.

But the ancient Greeks had pipped us at the post. They knew (by direct observation, presumably) that the light stimulus to our eyes has a logarithmic response relationship. Hiparchus divided the visible starts into six magnitude groups. These had equal subjective divisions from the first magnitude to the dimmest, or sixth magnitude. Later it was found that the ratio of the luminosity of the brightest to the dimmest (a difference of around five magnitudes) was about 200:1. Therefore the ratio of luminosities from one magnitude to the next is $10^{0.4}$ (usually expressed in the ratio of 2.512). We can write the ratio as $10\log_{10}10^{0.4}=4\,\text{dB}$. Therefore stars one magnitude dimmer than a stated one are 4dB down for the astronomers.

36

Electronics & Wireless World, October 1986
There can't be too many serious electronics events that enable you to save valuable time, do a very productive day's work and have the opportunity to enjoy yourself afterwards.

But that's the case with Internepcon - the electronic packaging show. This October, Internepcon in Brighton will play host to approaching 400 suppliers who will be showing products for the construction of electronics apparatus. And of those, nearly 100 companies will be new to the event. Not only that, the Show will boast Britain's largest ever collection of connectors.

Come and talk to top names like: Amp, Molex, Imhof, Schroff, Siemens, A B Elect, ITT Cannon, BICC-Vero, Plessey, Varelco, who will be showing the latest in components, connectors, wire & cable, racks, enclosures, PCBs and a lot more besides.

More than just an exhibition

If you've been to any of the previous 18 Internepcons, (and most of your industry has) you'll be aware that it enjoys a rather special atmosphere. For a start there's a great deal of cross-fertilisation between exhibitors and visitors. And second, it's evolved into more of a club because it's an event that depends upon the participation of both you and your colleagues.

High-powered, back-up Conference

As well as the 1000's of products on show there's also an authoritative Conference alongside to give you practical help. Relevant topics and special insights into the latest equipment and materials in the electronic packaging field will be covered in depth. Topics to be covered will include: Surface Mount Devices & Techniques, Connectors & Interconnection Techniques, CAD/CAM, RFI/Static Protection, Printed Circuits, Hybrid Techniques and Automated Assembly.

COMPONENTS, CONNECTORS, WIRE & CABLE, RACKS, ENCLOSURES, PCB'S ETC... AND IT'S IN BRIGHTON.

Brighton's such a nice place to do business in

Visiting Internepcon in Brighton does have its compensations. Because as well as being able to save yourself literally months of product evaluation time you've got a coastal location that's been delighting visitors for years. It's brimming full of good places to eat, breathtaking sights and exciting nightlife. So take this opportunity to spend a productive day (or why not stay over?) and then unwind in pleasant surroundings.

So make sure you don't miss out at Internepcon in Brighton this October. For you and your colleagues to gain FREE entry to the Show just complete the coupon below or better still ring 01 891 6471.

To: Internepcon the Electronic Packaging Show, Cahners Exhibitions Ltd, 59 London Road, Twickenham TW1 3SZ.

Yes I'm planning a trip to the Show. Please send me FREE tickets plus a Conference Programme.

I am interested in exhibiting:

NAME

POSITION

CIRCULATION

ADDRESS

TELEPHONE

TELEX

POSTCODE

Name and address transmitted: I.W.W.

Metropole Convention Centre CIRCLE 36 FOR FURTHER DETAILS
Integrated pressure sensors in acoustics

Gary Morton of Hi-Tek examines the selection of integrated circuit pressure transducers as acoustic sensors in microphones and other pick-ups and explains their use in acoustics.

Integrated-circuit pressure transducers are ideal as an acoustic sensor in microphones, hydrophones, sound level meters, musical instrument pickups, audiometers, and other sound detection applications. The i.c. transducer, of which a typical example is shown in Fig. 1, has a wide amplitude response (from zero frequency to 50kHz) and a built-in operational amplifier that provides a high-level signal output for audio range (up to 30kHz) pressure variations. Because the transducer diaphragm's natural resonance is outside the audio range (~50kHz), it does not generate audio-range harmonics from input sound waves, which totally eliminates tricky microphone squealing even in heavy feedback situations. The i.c. pressure transducer's high accuracy, which can be further improved by auto-referencing, qualifies it for use in precision audio instruments.

With the pressure port tube in place, the i.c. transducer has a directional acoustic pickup pattern that can be broadened by reducing the length of the tube. If the tube is removed, the pickup pattern is similar to a high quality cardioid microphone. The transducer can be used for musical instrument pickups (Fig. 2) or for close-up directional microphones, but may require tube modification for other types of microphones. It is important to note that the port must be protected by an acoustically compliant material to prevent breath moisture from reaching the transducer circuit in any microphone, wind instrument, or other application where someone could blow into the port.

For stand-off microphones, the additional gain can be obtained by use of reflective sound collectors. A paraboloid reflector for directional pickup can be used, as shown in Fig. 3, or a hyperboloid for wide angle pickup, as shown in Fig. 4. In either case, the pressure port needs to be shortened to accept the wide angles within the acoustic system.

Acoustic transducer selection

For acoustic measurements, the most sensitive gauge pressure transducer is normally selected. The sound pressure waves are usually small, requiring high sensitivity, and the gauge inlet balances out atmospheric pressure. Since sound pressure waves go both positive and negative around the mean atmospheric pressure, a pressure transducer with a ±5 psig is ideal for the following applications. Devices which have a response centred at 15 p.s.i. (atmospheric pressure) can also be used and often have the advantage of not requiring an acoustic block for the gauge inlet.

For microphones and other audio pickups, the transducer only requires excitation voltage V_x and a $1\mu F$ series capacitor to function effectively as a sound sensor, Fig. 5. The sound can be coupled in by any appropriate means as discussed above and by following the

Transducer can be used as it is for musical instruments or close microphones, Fig. 2, but for stand-off mics the port should be shortened to accept the wider angles, Figs 3, 4. Transducer requires only excitation voltage and coupling capacitor to function as a microphone, Fig. 5.
general principles used for all acoustic pickups.

Conventional sound pressure level meters normally use a microphone pickup. The resulting signal is amplified, rectified and used to drive a meter readout. Since the i.c. transducer's signal is already amplified, it eliminates much of the s.p.l. meter circuitry, Fig. 6. But to be accurate, the s.p.l. meter must be precisely coupled with the sound pressure level input. If an accuracy better than 3% of amplitude is required, either restricted temperature range or normal mode auto-referencing should be used.

In underwater sound pickup applications, an absolute pressure transducer is used. In this case, a very simple, hermetic enclosure needs to be used to protect the sensor. Fig. 7 shows an example.

The audiometer and tympanometer combines the capabilities of the i.c. pressure transducer for precise sensing of both audio pressure variations and static pressure. As shown in Fig. 8, this instrument uses an audio generator to teat the response of the human ear. The audiometer function relies on patient response and hence is only required to measure the a.c. amplitude (and frequency, if desired) of the audio signal entering the ear via the ear plug. The tympanometer measures the compliance of the ear drum without patient cooperation by comparing a.c. amplitude with d.c. level shift resulting from back pressure between the ear plug and the ear drum. Both normal mode and common mode auto-referencing can be used to increase measurement accuracy.

Like the audiometer and tympanometer, the sphygmmomanometer makes use of both a.c. and d.c. pressure detection level measurements. It measures the absolute blood pressure levels for the systolic and diastolic points while monitoring the phase of the heartbeat cycle for more accurate location of the "true" systolic point, the point where the apparent heartbeat at the point of measurement undergoes a change in phase.

In brass instruments, the musician's mouth and throat are part of the instrument's air column. As such, the input air pressure is an important determinant of pitch, volume and the tonal quality of the sound. But in the woodwinds, the musician's mouth and throat are not part of the air column, they are part of the reed. And as such the input air pressure is associated with pitch only and not basically with the final quality of the sound. Thus the need of woodwind players for an external method to manipulate the tonal quality of their instruments.

Fig. 9 shows a fundamentally sound system for woodwind instruments - the musician's concept of the perfect microphone. It consists of an i.c. pressure transducer coupled tightly to the instrument's mouthpiece, serving both as a microphone and as a sound pressure meter. If the a.c. signal is modulated by the d.c. signal, the output of the sound system is quite similar to that of an instrument with square-law attack. The woodwind has now already acquired the attack quality of a brass; it's still up to the musician as to how the attack is to be used.

Such a system using microprocessor-controlled modulation gives an instrument of selectable bell size, a tonal quality that varies from "fat" (full and rich) to "crisp" (sharp and clear-edged), and something that no echo chamber could ever achieve - selectable delay. A clarinet, for example, can be given the attack of a trombone with the bell of a sousaphone, and yet retain the clarinet's characteristic playing facility.

Figs. 6, 7, 8, 9

- Fig. 6. Signal-conditioned type LX1801 eliminates much s.p.l. meter circuitry, though auto-referencing circuitry is required for errors of less than 3%.
- Fig. 7. Absolute pressure types are required for underwater use, for example SCX01DN.
- Fig. 8. Instrument determines response of human ear for both dynamic and static pressure using transducer type SCX01DN.
- Fig. 9. Microprocessor-controlled modulation can give an selectable delay and tonal quality to an instrument.
Before you specify your High Resolution Displays, let's get things crystal clear

When it comes to high resolution display technology, BARCO leads the world. Now, the existing range of BARCO displays from Cameron Communications has been enhanced by the new 6000 series. An extremely flexible range of high resolution colour graphic displays for CAD/CAM, image processing, mapping, graphic artwork and other sophisticated applications. Add the optional Touch Screen — Protouch and you have superb vision with the ultimate in user-friendly communication.

A truly remarkable range of products providing a cost effective OEM design solution and supported by BARCO's worldwide service network.

Cameron Communications provide a comprehensive customer support service as well as a customisation facility for your specific requirements.

So, if you need to get things crystal clear, ask Cameron Communications to put you in the picture. Why not start by telephoning for literature.

DISPLAY PRODUCTS DIVISION
Cameron Communications
Kirkhill House, Broom Road East, Newton Mearns, Glasgow G77 5LL, United Kingdom
Phone 041 639 2000 Telex 779469 Fax 041-639 8000

Sales Service and Distribution
Cameron Communications
Communicate House, 50 Suttons Park Avenue, Reading, RG6 1AZ, United Kingdom
Phone 0734 664611 Telex 849256 Fax 0734 67716

A Division of C W Cameron Ltd (Est 1946)
CIRCLE 22 FOR FURTHER DETAILS
Large memory arrays can be produced economically with dynamic RAM provided care is taken over timing requirements, refreshing and the supply rail. Part 3 concludes the series.

The simplified circuit diagram of the dynamic refresh generator on the 68000 board is given in Fig. 20, and its timing diagram in Fig. 21. A refresh clock operating at 7.5kHz signals the need for a burst of refresh cycles every \(\frac{1}{7.5 \times 10^3} = 0.133 \text{ms} \). This design does not carry out all refreshes in one burst - it performs eight cycles every 0.133ms, completing all 128 row refreshes in 0.133 x 16 = 2.128ms. By distributing the refresh operation over 16 bursts of eight cycles, the processor is not held up for any appreciable length of time.

The refresh control circuitry on the board uses the 68000 bus arbitration signals, \textbf{BR} (bus request), \textbf{BG} (bus grant) and \textbf{BGACK} (bus grant acknowledge). When \textbf{BR} is asserted by a device wishing to control the system bus, the 65000 responds by asserting its \textbf{BG} output. The requesting device recognizes \textbf{BG} and then waits until the end of the current bus cycle before asserting \textbf{BGACK} to claim ownership of the bus. Once \textbf{BGACK} has been asserted, the requester may release \textbf{BG} and the old master releases \textbf{BG}. The new master owns the bus until it releases \textbf{BGACK}.

A power-up, \textbf{POR} (power-on-reset from the processor control circuitry) goes low, clearing FF1, setting FF2. Any well-designed circuit should be similarly initialized and placed in a "safe state". In this state, \(\text{Q}_1 \) (i.e. \textbf{BR}) is negated and \(\text{Q}_2 \) (i.e. \textbf{NORM/REF}) is low, signifying normal operation. When the refresh clock, a simple RC oscillator, generates a rising edge, FF1 is set and \(\text{Q}_1 \) asserted. The 68000 detects the bus request and asserts bus grant \(\text{Q}_1 \) and gate \(\text{G}_1 \) detects the condition \(\text{Q}_1 \text{G}_1 = 0, \text{AS} = 1 \), \textbf{DTACK} = 1, which occurs when the 68000 has relinquished the bus and forces input \(\text{D}_2 \) of FF2 low. Note that the other two inputs to norgate \(\text{G}_2 \) (at this time) are both low - one because we will assume \textbf{HALT} is negated and the other because \(\text{Q}_2 \) (\textbf{NORM/REF}) is low after FF2 has been preset.

When \(\text{D}_2 \) is low, FF2 is cleared on the falling edge of the 1MHz clock. Output \(\text{Q}_2 \) is connected to the 68000 bus \textbf{BGACK} input and, while low, stops the processor from regaining control of the bus. At the same time, it forces the output of and-gate \(\text{G}_3 \), low, clearing FF1 and negating \textbf{BR}. Thus FF1 has done its job in this burst of refresh cycles and is once more in its initial state. When FF2 is cleared, its \(\text{Q}_2 \) output goes high; it also the \textbf{NORM/REF} line controlling the address multiplexer to the ram array. When high, \textbf{NORM/REF} selects the address from the refresh column-counter (i.e. \textbf{C1} and \textbf{C2}).

The output \(\text{Q}_2 \) is also fed back to the \(\text{D}_2 \) input of FF2 via or-gate \(\text{G}_3 \), so that once \(\text{Q}_2 \) is high the flip-flop is held in this state and no longer depends on the state of \textbf{BR} from the processor, as \textbf{BG} is automatically cleared following the negation of \textbf{BR}. Flip-flop 2 is now "locked up", \(\text{Q}_2 \) high, and can only be released by the assertion of its \textbf{PRE} (preset) input.

The final role played by \(\text{Q}_2 \) is to gate the 1MHz clock in and gate \(\text{G}_4 \), the output of which is the pulsed \textbf{REFA} needed in the refresh cycle. Because \(\text{Q}_2 \),

The three parts of this article are based on part of a book 'The 68000: software, hardware and interfacing' to be published next spring by PWS Boston, who are represented in the UK by Wadsworth International.

by Alan Clements, Ph.D.
Teesside Polytechnic

Fig. 20. Dynamic refresh generator on the 68000 educational board distributes refresh operation over 16 bursts of eight cycles so that the processor is not held up appreciably. Timing diagram is at Fig. 2, over.

ELECTRONICS & WIRELESS WORLD OCTOBER 1986

www.americanradiohistory.com
Fig. 21. Timing diagram for Fig. 20.

Fig. 22. Structure of TMS4500A dynamic ram controller which produces additional MUX, CAS and RAS signals, and generates refresh control and arbitration signals required by the d-ram.

C1 has produced eight pulses, its \(Q_4 \) output rises and disables and-gate \(G_5 \). This resets FF2, causing \(Q_4 \) (i.e. BGACK) to be negated, freeing the processor by releasing BGACK and \(Q_4 \) (i.e. NORM/REF) to go low, disabling and-gate \(G_4 \) and removing the refresh clock (REFRAS). The system is now in its normal state, with \(BR \), \(BG \) and BGACK all negated. The only change since the start of the cycle is that counter C2 has been advanced by one, so that the next time the refresh clock generates a pulse, the following eight row addresses will be refreshed.

TMS4500A dynamic ram controller

I have always been surprised that the semiconductor manufacturers have done so little to make it easy to interface duals to microprocessors. Some d-ram controller chips have appeared, but most of them perform little more than address multiplexing and the generation of a refresh address. The designer still has to generate the RAS, CAS and multiplexer timing signals. To be fair, it is not easy to design a d-ram controller because the timing requirements of d-ram chips are very stringent if they are to be operated at their limits.

Several controllers have been designed which include all the timing and control functions on one chip, and which can make a d-ram array look almost like a static ram array. One such device is the Texas Instruments TMS4500A. I am going to briefly overview the chip, but I do not intend to wade through the data sheet and applications manual in any detail here. Figure 22 illustrates its structure. A 16-bit address from the microprocessor is applied to \(RA_0 - RA_7 \) and \(CA_0 - CA_7 \), and is latched into the controller by the address latch enable input, ALE. If the CS input is active low when it is latched by ALE, a memory access begins.

The 45000 places the row address on its \(MA_0 - MA_16 \) outputs and waits a negative-going edge at its ACR or its ACW input. These inputs (one for a read cycle and one for a write cycle) are used to multiplex the column address onto \(MA_16 - MA_{19} \) and to assert the CAS output. All timing is performed by a clock input to the 4500. Three of the inputs, TSTW, FSB and \(A_16 \) are used to program the clock frequency, the number of wait states per access (zero or one) and the length of the refresh cycle.

Although a refresh can be forced at any time by strobing the REFREQ pin, it is convenient to operate the 4500 in a hidden refresh mode. The 4500 performs a single refresh automatically at a rate determined by the clock input and its programming pins. If the controller is accessed by the processor when a refresh is due, either the processor or the controller must wait. An internal arbitration mechanism determines which goes first.

The recommended interface between a 4500 and a 68000 microprocessor is shown in Fig. 23. The address on \(A_{17} - A_{26} \) from the 68000 is latched into the 4500 by \(B\$ \). The ACR input is clocked by a delayed version of the \(A\$ \) pulse, providing a suitable CAS to CAS delay. Note that ACW is permanently connected to \(V_{CC} \). Two banks of d-ram are provided; one strobed by LDs and one by UD. A clever feature of this circuit is that the DTACK acknowledge to the 68000 is derived from CAS from the 45000.

[Continued on page 46]
IBM's PC filing system

This description of PC DOS – a version of MS DOS – complements last years series on floppy disc filing systems for microcomputers.

Disc operating systems insulate the user from the way the data is stored on the disc, and allow the manipulation of sets of data (files) simply by referring to their names and common English words such as LIST, COPY and ERASE.

Floppy discs are divided into concentric tracks, each divided into radial slices (sectors). A sector is of a fixed size for a particular system, for example, a PC DOS sector contains 512 bytes of useful data. The sector also contains the track number and sector number for identification, the sector size, and cyclic redundancy checking information, used to check whether data has been read or written correctly. A file may occupy one or a number of sectors, which may be contiguous or scattered over the disc. The user does not have to worry about this, as the DOS keeps a directory of all the files on the disc, and which sectors each occupies.

IBM's PC DOS associates corresponding tracks on opposite sides of the disc to form a cylinder, which allows two tracks to be read from the disc without any movement of the read/write head, with a consequent increase in speed over systems which use the two sides of the disc separately, for example CP/M. A PC DOS disc contains 40 cylinders, consisting of one track on each side of the disc, or one track only if the disc is a single-sided one. Each track is divided into 9,512 byte sectors. (Earlier versions had only eight sectors per track).

The directory

A disc operating system keeps a directory on the disc of all the files together with information about which sectors each occupies. This is analogous to the index of a book which contains the chapter titles and the page number where the start of each chapter is to be found. Usually a chapter in a book occupies a number of consecutive pages, but this is not always the case in a computer disc; sectors occupied by a file may be scattered randomly over the disc. How PC DOS uses the file allocation table (FAT) to overcome this difficulty is shown later.

In PC DOS the directory information (and some other system information) is always found in a fixed place on the first cylinder, and the rest of the disc is available for file data. This file space is divided into clusters, analogous to pages in the book. A cluster consists of two consecutive sectors. (On a single-sided disc a cluster contains only one sector.) The clusters are numbered, starting at cluster number 2, which starts immediately after the directory.

Directory format

The directory occupies seven sectors, starting with sector 6 of the first cylinder (sector 4 on eight sector track discs). Each entry occupies 32 bytes as follows:

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Content</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-07</td>
<td>File name</td>
<td></td>
</tr>
<tr>
<td>08-10</td>
<td>Extension</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Attribute byte:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 = hidden file</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 = system file</td>
<td></td>
</tr>
<tr>
<td>12-21</td>
<td>Not used = 00</td>
<td></td>
</tr>
<tr>
<td>22-23</td>
<td>Time = h x 2048 + min x 32 + sec</td>
<td></td>
</tr>
<tr>
<td>24-25</td>
<td>Date = yr -1980 x 512 + month x 32 + day</td>
<td></td>
</tr>
<tr>
<td>26-27</td>
<td>Number of first cluster occupied</td>
<td></td>
</tr>
<tr>
<td>28-31</td>
<td>File size (bytes)</td>
<td></td>
</tr>
</tbody>
</table>

Each of the seven directory sectors can contain up to 16 file names, thus a disc may contain up to 112 files.

File name and extension

The file name is supplied by the user when the file is written on the disc, for example by using the SAVE command, and consists of up to eight characters padded by spaces, followed optionally by an extension of up to three characters, also padded by spaces. The extension is sometimes used to denote special types of files such as BAS for Basic files, ASM for assembly language source files, and EXE for executable machine code files. A character is represented by a byte of data, according to ASCII.

Attribute byte: Enables the DOS to identify files which must be protected in some way from user interference. Not all of the attribute byte is used. If the first (least significant) bit is set (=1) the file is a hidden file and will not appear if DOS is asked to list the directory. Bit 2 set denotes a system file as distinct from a user file. A system file may also be hidden.

Time and date: These entries contain the date and time at which the file was created in coded form, for reference.

- Frances Stubbs, Ph.D.
Designing with dynamic memory

controller. If ever the 4500 is carrying out a refresh cycle when the 68000 requests a memory access, CAS remains high until the refresh has been completed and the 68000 is held up until the access can take place.

There are two approaches to the design of memory systems using controllers such as the TMS4500A. One is to assume that the circuit of Fig. 23 will work because it is from the manufacturer's application notes. The other is to take the data sheets of the 68000, the 4500 and the d-ram chip and to put them all together to determine whether any parameters are violated.

Problems in dynamic memory design

Although this article has concentrated on timing diagrams, that is not the whole of the story. Dynamic ram is associated with at least two other nasty problems: the current taken is very "bursty" and the current taken by the Vcc pin can rise at a rate of 50mA/ns when the &RS input is asserted. This corresponds to a rate of change of 50 million amps per second. Such a rate of change can cause the Vcc voltage at the terminal of the chip to fall to a point at which erratic operation may occur. The power supply problem is solved by a combination of attention to the circuit layout and to decoupling. The power lines to each ram chip are made as wide as possible to reduce their impedance and a 0.1µF capacitor is connected between ground and Vcc at each chip – or at least at every other chip. This capacitor provides the current surge required by the chip whenever &RS goes low.

Another peculiarity of the dynamic ram follows from the way in which it generates an internal back-bias supply. The back-bias does not stabilize for at least 200µs after the initial application of Vcc. Therefore, d-ram should not be accessed until at least 200µs after the system has been powered up.

Fig. 23. The TMS4500A dynamic ram controller allows the 68000 processor to be connected to d-ram in almost the same way as static ram.
Gould OS300 versus Douglas DC3

<table>
<thead>
<tr>
<th>Gould OS300</th>
<th>DC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven worldwide</td>
<td>Proven worldwide</td>
</tr>
<tr>
<td>Inexpensive</td>
<td>Inexpensive</td>
</tr>
<tr>
<td>Rugged construction</td>
<td>Rugged construction</td>
</tr>
<tr>
<td>Go anywhere</td>
<td>Go anywhere</td>
</tr>
<tr>
<td>Piece of cake to fly</td>
<td>Piece of cake to fly</td>
</tr>
<tr>
<td>NATO approved</td>
<td>NATO approved</td>
</tr>
<tr>
<td>Two year guarantee</td>
<td>Two year guarantee</td>
</tr>
<tr>
<td>U.K. design and manufacture</td>
<td>U.K. design and manufacture</td>
</tr>
<tr>
<td>Modern spec</td>
<td>Modern spec</td>
</tr>
<tr>
<td>Available off-the-shelf</td>
<td>Available off-the-shelf</td>
</tr>
</tbody>
</table>

The Gould OS300 dual-trace 20MHz 'scope

For £342 + VAT.

HIGH-FLYING TECHNOLOGY YOU CAN TRUST.

*Much as we admire the Dakota’s traditional hard-working virtues, sadly its last spec update was in 1945. The Gould OS300, on the other hand, offers 1980’s features - dual-trace with true 20MHZ operation, continuously variable amplifier sensitivity to eliminate loss of bandwidth over the 2mV to 51/cm, X-Y operation, P43 phosphor and quick heat cathode for rapid set-up and brighter displays.

CIRCLE 77 FOR FURTHER DETAILS
Simply Superior.

Meet COM 7000. Technologically superior oscilloscope measuring systems from Kikusui.

With all the waveform measurement data right where you need it.

Right where you’re looking – on the C.R.T. Screen text display of sensitivity settings, timebase speeds, delay times, plus voltage and frequency read out.

With band widths of 60, 100 or 200 MHz, built-in digital storage and G.P.I.B. capability, depending on model.

Simply superior oscilloscopes you have to see.

Ask for data or demonstration.

Telonic Instruments Ltd., Boyn Valley Road, Maidenhead, Berks., SL6 4EG.
Tel: (0628) 73933.
Telex: 849131.
Oscilloscope update

Speed and accuracy improve slightly but oscilloscopes are much better at displaying difficult waveforms.

Over the past few years, oscilloscopes have become a little faster but their ability to display difficult waveforms has improved significantly. Accuracy has not improved greatly either, mainly because of limitations of the CRT.

Instead, there is now a greater emphasis on build-in measurement aids like voltage and frequency meters whose results are displayed on the CRT. Custom ICs and digital logic are not only used in digital storage oscilloscopes.

Some new oscilloscopes even have auto-ranging for both amplitude and timebase. This need not cost the earth either. For example the Grundig MO22 has automatic timebase selection and costs £425, which is not much more than a standard 20MHz instrument.

There are few single-channel oscilloscopes now and features like channel add and invert are standard. And, as expected, digital storage is becoming cheaper - Hameg and Farnell for example have d.s.os for under £1000.

Digital storage oscilloscopes cannot yet replace conventional real-time instruments, but the time will no doubt come. Hewlett Packard has stopped producing real-time oscilloscopes because d.s.os are better value for money. If component costs keep falling, this will soon apply to oscilloscopes in lower price ranges.

As you can see from our table, Scopex has produced a few new instruments, but we believe that the company is working on digital storage. If you are thinking of buying a low-cost digital storage oscilloscope it may be worth waiting to see what the company's next new product is.

Display

Despite the fact that custom LSI circuits are being used in oscilloscopes, the CRT still remains the best display device. The main change in the display over the past few years is the addition of colour.

One method of adding colour is to place a fast LCD filter in front of the CRT, as used by Tektronix. A method more suited to digital-storage oscilloscopes is to use a colour raster-scan CRT, as Hewlett Packard do in some of their new models. Once the waveform is digitized, it is just as easy to make raster-scan video signals from it as it is to turn it back to analogue form, given today's digital control ICs.

And, theoretically at least, raster-scanning allows an unlimited colour range.

Another advantage of the raster-scan method is that it

Storage oscilloscopes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCE</td>
<td>D5125A</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>20</td>
<td>16/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>995</td>
<td>Analogue output</td>
</tr>
<tr>
<td>D5126</td>
<td>D5127</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>20</td>
<td>16/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>995</td>
<td>HPGL serial</td>
</tr>
<tr>
<td>D5127</td>
<td></td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>20</td>
<td>16/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>995</td>
<td>GPIB interface</td>
</tr>
<tr>
<td>GOULD</td>
<td>4050</td>
<td>2</td>
<td>100</td>
<td>8</td>
<td>1</td>
<td>35</td>
<td>10/-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6320</td>
<td>Waveform proc. option</td>
</tr>
<tr>
<td>HAMEG</td>
<td>HM205</td>
<td>2</td>
<td>0.1</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>448</td>
<td>2mV/division vertical</td>
</tr>
<tr>
<td>HAMEG</td>
<td>HM206</td>
<td>2</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>20</td>
<td>10/-</td>
<td>4</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1300</td>
<td>Battery-backed memory</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>HP5180T</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>-16</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24384</td>
<td>High accuracy</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>HP5180U</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>-16</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39971</td>
<td>waveform analyser</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>HP5183T</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td><512</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16675</td>
<td>High accuracy waveform analyser</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>HP5183U</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td><512</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25054</td>
<td>High accuracy waveform analyser</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>HP54100D</td>
<td>2</td>
<td>20</td>
<td>7</td>
<td>-1</td>
<td>1G</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16665</td>
<td>Waveform analyser</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>HP54110D</td>
<td>as HP54100D but colour</td>
<td>2</td>
<td>200</td>
<td>6</td>
<td>-1</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18249</td>
<td>High speed</td>
</tr>
<tr>
<td>HEWLETT PACKARD</td>
<td>HP54200A</td>
<td>as HP54200A but 300MHz analogue bandwidth</td>
<td>2</td>
<td>200</td>
<td>6</td>
<td>-1</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4650</td>
<td>High speed</td>
</tr>
<tr>
<td>HITACHI</td>
<td>VC6020</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>150k</td>
<td>10/-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6778</td>
<td>Analogue bandwidth</td>
</tr>
<tr>
<td>IWATSU</td>
<td>DSU121</td>
<td>2</td>
<td>25G</td>
<td>0.5</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1395</td>
<td>Analysers & roll modes</td>
</tr>
<tr>
<td>IWATSU</td>
<td>DSU121</td>
<td>2</td>
<td>40</td>
<td>8</td>
<td>2.5</td>
<td>100</td>
<td>10</td>
<td></td>
<td>10/-</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4335</td>
<td>100MHz equiv. sampling</td>
</tr>
<tr>
<td>KIKUSUI</td>
<td>DS5150</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>20</td>
<td>100k</td>
<td>2</td>
<td>Opt</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2650</td>
<td>Ext. clock, roll mode</td>
</tr>
<tr>
<td>KIKUSUI</td>
<td>DS5521A</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>100k</td>
<td>2</td>
<td>Opt</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1995</td>
<td>Ext. clock, roll mode</td>
</tr>
<tr>
<td>KIKUSUI</td>
<td>DS5520</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>20</td>
<td>50/400k</td>
<td>100/-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1145</td>
<td>Two a-ds, ref. store</td>
</tr>
<tr>
<td>KIKUSUI</td>
<td>DS55040</td>
<td>2</td>
<td>25</td>
<td>8</td>
<td>2</td>
<td>40</td>
<td>1.25/10</td>
<td>100/-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1595</td>
<td>Two a-ds, ref. store</td>
</tr>
<tr>
<td>KIKUSUI</td>
<td>COM7061</td>
<td>4</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>60</td>
<td>1/8/60</td>
<td>100/-</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3460</td>
<td>Counter/d.v.m. display</td>
</tr>
</tbody>
</table>

ELECTRONICS & WIRELESS WORLD OCTOBER 1986 49

Source: American Radio History
NEED WE SAY MORE?
Get details of all models – NOW from
timebase

DUTCHGATE LTD, Unit 6, 28 Botley Road, Hedge End, Southampton S03 3HE.
☎ Botley (04892) 81487
CIRCLE 62 FOR FURTHER DETAILS

The Archer Z80 SBC
The SDS ARCHER – The Z80 based single board computer chosen by professionals and OEM users.
- Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM & battery backed RAM.
- OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.
from £185 + VAT.

The Bowman 68000 SBC
The SDS BOWMAN – The 68000 based single board computer for advanced high speed applications.
- Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counter-timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.
- Extended width versions with on board power supply and case.
from £295 + VAT.

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067
CIRCLE 25 FOR FURTHER DETAILS
OSCILLOSCOPES

Storage oscilloscopes

<table>
<thead>
<tr>
<th>Model</th>
<th>Chan.</th>
<th>Samp. rate max. MHz</th>
<th>Res. bits</th>
<th>Mem. K-byte</th>
<th>Ana. b.w. MHz</th>
<th>Single shot b.w. MHz</th>
<th>Pre-trig.</th>
<th>Trace exp'n hor./vert.</th>
<th>Stored waveforms</th>
<th>Inter-pol'n</th>
<th>Curs. Averaging</th>
<th>Time/ voltage disp.</th>
<th>GPIB</th>
<th>Pen rec. o/p</th>
<th>RS 232</th>
<th>Price £</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM7101</td>
<td>4</td>
<td>50</td>
<td>8</td>
<td>4</td>
<td>100</td>
<td>2.5/100</td>
<td>100/-</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counter/d.v.m. display</td>
</tr>
<tr>
<td>COM7201</td>
<td>4</td>
<td>50</td>
<td>8</td>
<td>4</td>
<td>200</td>
<td>2.5/100</td>
<td>100/-</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counter/d.v.m. display</td>
</tr>
<tr>
<td>LEADER</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>35</td>
<td></td>
<td>2300</td>
</tr>
<tr>
<td>LeCROY 9400</td>
<td>2</td>
<td>100</td>
<td>8</td>
<td>64</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td>100/-</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8275 Software optics, 2% err. As above but 1% error</td>
</tr>
<tr>
<td>MEGURO</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>160/-</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1399 Roll mode</td>
</tr>
<tr>
<td>NICOLET 110</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>20</td>
<td>0.2</td>
<td>100/-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1395 Gen-purpose portable</td>
</tr>
<tr>
<td>NICOLET 320</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>16</td>
<td>25</td>
<td>2</td>
<td>400/8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6950 Waveform processing; bubble memory option</td>
</tr>
<tr>
<td>NICOLET 370</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>16</td>
<td>0.3</td>
<td>0.2</td>
<td>400/8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9950 Signal averaging; bubble memory option</td>
</tr>
<tr>
<td>NICOLET 2090</td>
<td>2</td>
<td>50</td>
<td>8</td>
<td>4</td>
<td>25</td>
<td>10</td>
<td>64/64</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900 Disc drive option</td>
</tr>
<tr>
<td>PANASONIC</td>
<td>2</td>
<td>100</td>
<td>8</td>
<td>30</td>
<td>100</td>
<td>35</td>
<td>100/10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9785 Waveform transforms</td>
</tr>
<tr>
<td>PHILIPS PM3305P</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>35</td>
<td>0.25</td>
<td>-/40</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3940 Go/no-go testing</td>
</tr>
<tr>
<td>PHILIPS PM3310</td>
<td>2</td>
<td>50</td>
<td>8</td>
<td>1</td>
<td>60</td>
<td>99%</td>
<td>2.5/5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2450</td>
</tr>
<tr>
<td>PHILIPS PM3311</td>
<td>2</td>
<td>125</td>
<td>8</td>
<td>1</td>
<td>60</td>
<td>30</td>
<td>99%</td>
<td>2.5/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4250</td>
</tr>
<tr>
<td>TELKRONIX</td>
<td>2</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>60</td>
<td>2</td>
<td>10/-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2650 Digital, non-storage</td>
</tr>
<tr>
<td>TELKRONIX</td>
<td>2</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>100</td>
<td>2</td>
<td>10/-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3950 Cursors, c.r.t. readout</td>
</tr>
<tr>
<td>TELKRONIX</td>
<td>2</td>
<td>100</td>
<td>8</td>
<td>1</td>
<td>150</td>
<td>10</td>
<td>10/-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7750 Dual acquisition</td>
</tr>
<tr>
<td>TRIO MS1660</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td></td>
<td>2750 Dual timebase</td>
</tr>
<tr>
<td>TRIO MS1665</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td></td>
<td>2350 Module, dual timebase</td>
</tr>
<tr>
<td>AWR TECHNOLOGY</td>
<td>2</td>
<td>0.1</td>
<td>8</td>
<td></td>
<td>150 Adapter for BBC Micro</td>
</tr>
</tbody>
</table>

New facilities

- For c.r.t. and computer servicing, Crotech has produced a 30MHz dual-trace oscilloscope that is, surprisingly, claimed to be the first that can display composite 625-line video signals as pictures. This simple addition removes the need for a video monitor.
- Multi channel monitoring is the speciality of the Data Check 1880 which displays up to fourteen channels in bar-graph form or displays the waveform of one of 28 channels. Using scanning for waveform monitoring removes the need for reconnecting probes. For many applications, the 1880’s price of £5000 makes it less attractive than a few conventional real-time oscilloscopes with input multiplexers.
- Both 488 and BBC computer interfaces are fitted to the Farell 12MHz DTS12T, which is probably the cheapest digital-storage oscilloscope with computer interfacing. Software for bidirectional data transfer is supplied on floppy disc and an f.f.t./waveform analysis rom/disc package is £70. At £1195, the 12T brings computer waveform analysis within the reach of many educational users.

One example of oscilloscopes with built-in measurement devices mentioned earlier is the V1100A. This 100MHz real time instrument gives oscilloscope a wide choice of component sources, which is not the case with l.c.d. filters.

One potential disadvantage is loss of resolution. Using an l.c.d. filter, resolution is that of the monochrome tube whereas with a colour c.r.t., resolution is governed by the number of dots on the tube. In practice, though this is not a problem because the digital oscilloscopes using raster-scan c.r.t.s allow zooming.

Non-storage oscilloscopes

<table>
<thead>
<tr>
<th>Model</th>
<th>Y b.w. MHz</th>
<th>Y sens. mV/div</th>
<th>Chan. Sweep max. ns/div</th>
<th>Sweep dual/ delay</th>
<th>Y delay</th>
<th>TV sync.</th>
<th>Screen size cm</th>
<th>Acc. pot/ kV</th>
<th>Price £</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BECKMAN INDUSTRIAL 9020</td>
<td>20</td>
<td>0.5</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td>10x8</td>
<td>2</td>
<td>319</td>
<td>Variable hold-off</td>
</tr>
<tr>
<td>9060</td>
<td>60</td>
<td>5-0.1</td>
<td>3</td>
<td>20(x10)</td>
<td></td>
<td></td>
<td>15.2</td>
<td>12</td>
<td>1055</td>
<td>Linear focus control</td>
</tr>
<tr>
<td>9100</td>
<td>100</td>
<td>5-0.1</td>
<td>3</td>
<td>50(x10)</td>
<td></td>
<td></td>
<td>15.2</td>
<td>16</td>
<td>1495</td>
<td>Linear focus control</td>
</tr>
<tr>
<td>CROTECH</td>
<td>3337</td>
<td>30</td>
<td>5</td>
<td>2</td>
<td>40</td>
<td></td>
<td>10x8</td>
<td>10</td>
<td>425</td>
<td>Single-shot, XYZ mod. comp. trigger</td>
</tr>
<tr>
<td>3339</td>
<td>30</td>
<td>5</td>
<td>2</td>
<td>40</td>
<td></td>
<td></td>
<td>10x8</td>
<td>10</td>
<td>570</td>
<td>VDU mode, component tester</td>
</tr>
<tr>
<td>3031</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td></td>
<td></td>
<td>10x8</td>
<td>1.5</td>
<td>195</td>
<td>Component tester, auto-triger</td>
</tr>
<tr>
<td>3036</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>40</td>
<td></td>
<td></td>
<td>10x8</td>
<td>1.8</td>
<td>216</td>
<td>Component tester, auto-triger</td>
</tr>
<tr>
<td>DATA CHECK</td>
<td>1880</td>
<td>3</td>
<td>10</td>
<td>1/28</td>
<td>1000</td>
<td></td>
<td>10x8</td>
<td>$7712</td>
<td></td>
<td>Multi-channel monitor; scan mode</td>
</tr>
</tbody>
</table>

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
Let HAMEG commit you to memory

20 MHz
Digital Storage
Oscilloscope
HM208 £1300
(£1550 with IEEE)

Dual Trace, Digital Storage.
2mV — 20V/cm. 14kV CRT
20 MHz Bandwidth
Algebraic Add, Invert X — Y.
4 x 1k Stores. 20 MHz Clock
Roll, Refresh. Pre-Trigger
Memory Hold, Plotter Output
Analogue T/B. 0.2 s/cm —
20 ns/cm. Digital T/B
50 s/cm — 10 us/cm
2 Years Warranty
Prices U.K. list ex. VAT

HAMEG
FOR THOSE WHO COMPARE

74 — 78 Collingdon St.
Luton, Beds. LU1 1RX
Tel: (0582) 413174 Telex: 825484

TEST INSTRUMENTS

A wide range of high performance instruments that put professional test capability on your bench.

COUNTERS — TF600 9Hz to 600MHz, TF200 10Hz to 200MHz, TF040 10Hz to 40MHz, TF0200A 20Hz to 20MHz (hand held model). TF600 prescales to 600MHz, TF1200 prescales to 1000MHz.

MULTIMETERS — TM351 0.1% 3½ digit LCD, TM356 0.25% 3½ digit LCD, TM355 0.05% 3½ digit LCD, TM354 0.75% 3½ digit LCD (hand held model).

OSCILLOSCOPE — SC110A 10MHz, 10mV sensitivity, 40mm CRT with 8mm graticule divisions.

THERMOMETERS — TH301 —50°C to +750°C, 1° resolution, TH332 —40°C to +1100°C, and —40°F to +2000°F, 0.1° and 1° resolution. Both accept any type K thermocouple.

GENERATORS — TG101 0.02Hz to 50kHz Function Generator, TG102 0.02Hz to 2MHz Function Generator, TG103 0.05Hz to 5MHz Pulse Generator, TG507 0.005Hz to 5MHz Sweep Function Generator, TG508 0.005Hz to 5MHz Pulse Function Generator.

LOGIC ANALYSERS — TA2080 8 channel 20MHz, TA2160 16 channel 20MHz.

ACCESSORIES — Bench rack, test leads, carrying cases, mains adaptors, probes, thermocouple probes, microcomputer disassembly options.

For further information contact
Thandar Electronics Ltd. London Road, St Ives, Huntingdon, Cambs PE17 4HJ
Telephone (0480) 64646 Telex: 32250

www.americanradiohistory.com
VALVES

<table>
<thead>
<tr>
<th>VALVE</th>
<th>SHORT</th>
<th>TYPICAL T/R</th>
<th>SUPPLY</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K66</td>
<td>800</td>
<td>0.80</td>
<td>800</td>
<td>24V</td>
</tr>
<tr>
<td>2K67</td>
<td>800</td>
<td>0.80</td>
<td>800</td>
<td>24V</td>
</tr>
<tr>
<td>2K68</td>
<td>800</td>
<td>0.80</td>
<td>800</td>
<td>24V</td>
</tr>
<tr>
<td>2K69</td>
<td>800</td>
<td>0.80</td>
<td>800</td>
<td>24V</td>
</tr>
<tr>
<td>2K70</td>
<td>800</td>
<td>0.80</td>
<td>800</td>
<td>24V</td>
</tr>
</tbody>
</table>

NEW PYE EQUIPMENT & SPARES

- **HARNESS**: 41 pins, 18” long, 22 AWG.
- **MAGNETIC LOOPS**: 3 sets of 12 tutorial loops.
- **CABLE**: 25 pin D-sub.

ZKB 490/228 Isolating Transformer

Recommended by NATIONAL SEMICONDUCTOR for use with their B1-line main carrier system to provide matching & isolation.

- 4k isolation – pcb mounting – encapsulated

Other professional quality components from VACUUMSCHMELZE (VAC) include:

- **STORAGE CHOKES for SMPSs**
- **RFI SUPPRESSION CHOKES**
- **COMMUTATION CHOKES & RECHARGING REACTORS**
- **TRIGGER TRANSFORMERS FOR THYRISTORS & GTOs**
- **CURRENT SENSORS & TRANSFORMERS**
- **TRANSITOR CHOKES for SMPSs**

Contact: ROLFE INDUSTRIES

16 Church Street
Warnham
West Sussex RH12 3QW

Tel: 0403 59799
Telex: 877972
alternating voltage, decibel ratios, frequency, period, time delay and phase shift. All setting conditions and ground-reference information are also displayed on screen. An important advantage of having all this information displayed is that it is automatically included on any screen photographs taken.

Most computer-controlled instruments have a facility to store and recall front panel settings, which allows frequently made measurements to be carried out quickly. Auto-ranging goes a step further.

The facility is not new but nor is it common. There were problems associated with setting for low duty cycle pulses but this, as now being ironed out, so the numbers of auto-ranging oscilloscopes should increase.

With oscilloscopes such as the new Tektronix 2445/2465 family, pressing one button sets signal level, period, duty cycle and trigger requirements. Bandwidth of these instruments ranges from 150-350MHz and besides auto-ranging, they also allow up to 20 stored front-panel settings.

Add-ons

On the premises that dedicated f.f.t. analysers are expensive and can be difficult to use, and that microcomputer add-ons are slow and given spurious results, Data Acquisition has designed an f.f.t. add-on suitable for any two-channel oscilloscope with trigger input.

This two-channel analyser, which also acts as a 50kHz-sampling digital-storage unit, can send information through a serial link to a microcomputer for further analysis or to a printer.

As a fully anti-aliasing analyser, the adaptor’s span is selectable from 0-20Hz or 0-20kHz with 100 or 200-line resolution and up to 256 averages can be taken. Scaling is either linear or logarithmic, with 40dB log span, and Hannning or rectangular weighting is switchable.

Cross-transfer function ability is possible using the oscilloscope’s signal add and invert facilities. The f.f.t./digital-storage adaptor will cost around £800.

For readers with a real-time oscilloscope wanting faster digital storage there’s a two-channel module made by Polar with 10MHz sampling per channel and a 2K-byte memory. An RS232 interface is now available for this unit which allows waveforms to be transferred directly to a computer so a real-time oscilloscope is not essential. The polar DS102 is £375, the RS232 interface is £50 and software for the IBM PC is £25. Resolution of the 102 is eight bits.

Bandwidth of Thrulby’s eight-channel input multiplexer has been increased to 35MHz. Costing £179, the OM358 displays both digital and analogue signals and has a calibrated attenuator. Any channel can be used as the trigger source.

Advanced Bryans Instruments (Trio, Advance), 14 Waters Way, Mitcham, Surrey CR4 4HR, 01-640 5624
Advid Electronics (Unaoeh), 17A Mill Lane, Welwyn, Hertfordshire AL6 9EU, 0438 714159
Antron Electronics Ltd (Polar), Hamilton House, 39 Kings Road, Haslemere, Surrey GU27 2QA, 0428 654541
AWR Technology, 67 Thornbridge Road, Deal, Kent, 0384 367711
Beckman Industrial Ltd, Queensway Industrial Estate, Queensway, Glenrothes, Fife KY7 5PU, 0592 753811
Crotech Instruments Ltd, 2 Stephenson Road, St Ives, Huntingdon, Cambridge PE17 4WJ, 0480 308188
Data Laboratories (Philips), 28 Waters Way, Mitcham, Surrey CR4 4HR, 01-640 5921
Electronic Bros Ltd (Grundig, Philips, Hameg) 140-146 Camden Street, London NW1 9PB, 01-267 7707
Electronic and Computer Workshop (Crotech) 171 Broomfield Road, Chelmsford, Essex CM1 1RY, 0245 262149
Eletroplan Ltd, PO Box 19 (Gould, Tektronix, Leader, Thandar, Orchard Road, Royton, Herts. SG6 5HH, 0763 45145)
Farnell Instruments Ltd, Sandbeck Way, Wetherby, West Yorkshire LS22 4DH, 0937 61901
Fieldtech Heathrow Ltd (Meguro), Huntavila House, 420 Bath Road, Longford, Middx UB7 0LL, 01-897 6446
Flight Electronics (Trio), Flight House, Acapunt Street, Southampton SO1 1LU, 0703 227721
George cook (Hamag Thurlby), 21 Manor Road, Kibersborough, North Yorkshire HG5 8BN, 0423 862641.
Hameg Oscilloscopes Ltd, 74-78 Collingdon Street, Lutton, Bedfordshire LU1 1RX, 0552 413 174
Henry’s Audio Electronics (Hitachi, Hameg, Crotech), 301 Edgware Road, London W2, 01-734 6564
Hewlett Packard, Literature section, Easkdale Road, Wimnerness Triangle, Wokingham, Berkshire RG11 5DX, 0734 696622
Hitachi Denahi (UK) Ltd, 13-14 Garrick Industrial Centre, Gar- rich, Road, London NW9 9AP, 01-202 4511
Lawsytronics Ltd, 139 High Street, Bedington, Kent TN8 5AX, 0732 665191
Le Crox, Elms Court, Bolley, Oxon, OX2 9LP, 0865 727725
Levell Electronics Ltd (Hamag), Moxon Street, Barnet, Hertfordshire EN5 5DD, 01-449 5028
Nicolet Instruments Ltd, Budbrooke Road, Warwick, CV34 5XH, 0926 49411
Pe Yunicum Ltd, (Philips), York Street, Cambridge CB1 2PX, 0222 35966
Radio Supplies, PO Box 27, 39 Whitby Street, Harepool, Cleveland TS5724 BR, 0249 275570
RMR Measurements, 138 Lime Crescent, Cumbernauld G67 3PQ, 0203 87170
Scope, 117 Knowle Road, Mirfield, W.Yorks WF14 9RJ, 0294 40703
Siemens Ltd, Siemens House, Windmill Road, Sunbury-on-Thames, Middx TW16 7HS, 09327 85691
Solartron Schiumber, Victoria Road, Barnsborough, Hants GU147FP, 0252 544433
STC Instrument Services (Watlow), Dewar House, Central Road, Harlow, Essex CM20 2TA, 0279 295522
Tektronix UK Ltd, Forth Avenue, Globe Park, Marlow, Buckinghamshire SL7 1YD, 06824 6000
Tolene Instrument Ltd (Kiku-su), 2 Castle Hill Terrace, Maidenhead, Berks SL6 4JP, 0628 7393
Thandar Electronics Ltd (Leader, Thandar), London Road, St Ives, Huntingdon, Cambs. PE17 4DJ, 0480 63570
Thurley Electronics Ltd (Hitachi, Thurlby), New Road, St Ives, Huntingdon, Cambs. PE17 4EG, 0480 63570
Timebase (Hitachi, Unit 6, 28 Boltley Road, Hedge End, Southampton SO3 3HE, 04892 814866
Watelak (Panasonic), Tag Lane, Hale Hatch, Reading, Berks, 075322 4121

Notes

- Prices include probes
- This two-channel analyser, which also acts as a 50kHz-sampling digital-storage unit, can send information through a serial link to a microcomputer for further analysis or to a printer.
- As a fully anti-aliasing analyser, the adaptor’s span is selectable from 0-20Hz or 0-20kHz with 100 or 200-line resolution and up to 256 averages can be taken. Scaling is either linear or logarithmic, with 40dB log span, and Hannning or rectangular weighting is switchable.
- Cross-transfer function ability is possible using the oscilloscope’s signal add and invert facilities. The f.f.t./digital-storage adaptor will cost around £800.
- For readers with a real-time oscilloscope wanting faster digital storage there’s a two-channel module made by Polar with 10MHz sampling per channel and a 2K-byte memory. An RS232 interface is now available for this unit which allows waveforms to be transferred directly to a computer so a real-time oscilloscope is not essential. The polar DS102 is £375, the RS232 interface is £50 and software for the IBM PC is £25. Resolution of the 102 is eight bits.
- Bandwidth of Thrulby’s eight-channel input multiplexer has been increased to 35MHz. Costing £179, the OM358 displays both digital and analogue signals and has a calibrated attenuator. Any channel can be used as the trigger source.
RADIOCODE CLOCKS LTD
SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PRODUCTS

- MINIATURE RUBIDIUM OSCILLATOR MODULE
 Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

- RUBIDIUM FREQUENCY STANDARD
 High performance, compact and rugged instrument. 2U rack or 1/4 ATR case options.

- INTELLIGENT OFF-AIR FREQUENCY STANDARDS
 Microcomputer controlled instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.

- LOW COST MSF FREQUENCY STANDARD
 Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation.

Off-air frequency standards
Intelligent time systems
Caesium/Rubidium based clocks & oscillators
Master/slave systems

Time code generators/readers
Record/replay systems
Intelligent display systems
Precision ovened oscillators
Time/frequency distribution systems

Radiocode Clocks Ltd*
Unit 18, Parkengue, Kernick Road Industrial Estate, Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007

(*A Circuit Services Associate Co.)

CIRCLE 14 FOR FURTHER DETAILS

Imhof-Express gives you a 24-hour delivery of the most comprehensive range of small diecast boxes available anywhere.

They are ideal for the hobbyist who wants strong metal boxes with good screening properties.

To order you simply phone your Access or Visa card number and the goods will be despatched within 24 hours.

For details on these and all our many other products, ask for our latest catalogue.

Imhof Express
Riverside Way, Uxbridge
Middlesex UB8 2YX
(0895) 72247/9/9 and 72261/2/3/4

CIRCLE 12 FOR FURTHER DETAILS

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
Component integration in oscilloscopes

Custom i.c.s reduce oscilloscope manufacturing time and costs but also improve reliability.

One of the principal design objectives in Philips medium-frequency oscilloscopes was a significantly reduced component count. Primarily to reduce manufacturing time and cost - thereby permitting a low selling price - this would also ensure high reliability and simplify service and troubleshooting.

To achieve this aim, a number of custom i.c.s were specially developed with the expectation that large production volumes for these new instruments would allow the relatively high costs of developing custom i.c.s to be recovered.

A number of the i.c.s are of particular interest and they are the preamplifier, channel switch, display logic/control circuit, peak-to-peak detector and auto-level circuit and the integrated time-base logic circuit. These are all custom i.c.s.

The preamplifier consists of a unity-gain amplifier, a ×10 gain amplifier, a two-quadrant multiplier, a multiplier control circuit and power supply and switching circuits.

Only one of the two amplifiers is active at any time. This separation of the ×1 and ×10 amplifier sections provides a pulse response which is independent of the setting.

Signal delay is also almost constant for the different settings. Input sensitivities are 20mV/div. for the ×1 amplifier, and 2mV/div. for the ×10 amplifier and output is a symmetrical current of 100µA/div.

To provide variable amplification, a two-quadrant multiplier is built in. The multiplier is a new development with eight transistors featuring stable multiplication and a pulse response independent of the multiplication factor over the entire range.

To translate control voltage from the variable potentiometer into a stable multiplication, the preamplifier has a special multiplier control circuit which limits the variable range from 1.1 to 1.25. A switching circuit with TTL-compatible input activates the ×1 or ×10 amplifier.

Switching of the vertical channels and trigger selection in the PM3055 is done by the integrated channel switch, Fig. 1.

This i.c. consists of two current switches to switch channels on and off, two inverters for inversion of channel B if required and two circuits for positioning or levelling the signals (dual timebase). The inverters are used as slope switches in the trigger path.

The display logic and control circuit was developed to control all the vertical channel switches, trigger selectors and timebase selector, Fig. 2.

Fig. 1. Vertical channel and trigger selection i.c.

Settings of the vertical display, trigger source and time-base mode are transmitted to the display/control circuit via the I2C bus from the microprocessor in the front panel. After setting, the control circuit autonomously sends the correct signals to the channel switches, trigger switches and time-base selector in a number of modes including alternate, chop, composite triggering, alternate time-base etc.

In the 3055, the display/control i.c. makes it possible to display from one to eight traces. The i.c. controls A, B, add and trigger-view traces which can be displayed in main, main-intensified, delayed or alternate-time-base modes. This circuit operates in

The authors are with Philips' Enschede facility in The Netherlands.
COMING SOON!
The latest Scopextra from)

SCOPEX
the oscilloscope people

MODES OF OPERATION

<table>
<thead>
<tr>
<th>Frequency analysis mode</th>
<th>Digital Storage mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 frequency ranges from 0-20Hz to 0.10KHz full scale span.</td>
<td>10 timebase speeds 1 sec/div - 1 ms/div</td>
</tr>
<tr>
<td>max resolution 200 lines</td>
<td>dual ch. 512 points, single ch. 1024 points</td>
</tr>
<tr>
<td>update frequency min 2Hz</td>
<td>sample rate 50KHz</td>
</tr>
<tr>
<td>transient analysis facility</td>
<td>completely flicker free display</td>
</tr>
<tr>
<td>log/log vertical range of 40dB</td>
<td>particularly comprehensive triggering facilities as expected from</td>
</tr>
<tr>
<td>screen dump via Centronics port</td>
<td>Scopex</td>
</tr>
<tr>
<td>switched weighting and averaging</td>
<td>single shot mode and display freeze</td>
</tr>
<tr>
<td>full anti-alias filtering</td>
<td>Real time mode</td>
</tr>
</tbody>
</table>

- The Scopextra range from Scopex continues to offer oscilloscopes with a variety of extra benefits. The Scopextra FTA is the latest in this series.
- The facility to save or load wave forms using a tape cassette or disc.
- The ability to print selected waveforms.
- Real time Spectrum Analysis available. DEMO PACK £5.00.

The Scopextra range from Scopex continues to offer oscilloscopes with a variety of extra benefits. The Scopextra FTA is the latest in this series.

Complete the reader service card to receive full specification details immediately on release.

Scopex Electronics Ltd, 65 High Street, Skipton, North Yorkshire BD23 1EF.
Telephone: (0756) 69511

A universal range of high quality probes & accessories, to assist in making a wide variety of oscilloscope measurements
two modes - peak-to-peak levelling and d.c. levelling.

In d.c. model the 16-div. current is separated from 24-div. current. The 16-div. part feeds the multiplier. Controlling the multiplier with the level potentiometer gives a level variable through 16 signal divisions. Residual current is fed directly as a common-mode signal to the output pins.

In the peak-to-peak mode, a part of the signal proportional to the signal's pk-to-pk value is fed to the multiplier, controlled by the level potentiometer.

Residual current is modulated with the mean d.c. value of the signal's two peak values and fed to the output pins. Output current peak-to-peak-dt/dt.z detects/autor-level i.e., Fig. 3, is fed to the trigger amplifier.

Using this principle in peak-to-peak mode gives d.c. rejection on both trigger and trigger-view signals independently of the waveform and signal duty cycle. In this mode, only the level potentiometer influences the position of the trigger view over signal amplitude.

Figure 4 shows the integrated timebase logic i.e. All main and delayed time-base logic for the new medium-frequency oscilloscope family is incorporated in one full-custom chip.

This chip starts and stops the main and delayed time-bases and opens and closes the seven output gates. It also co-operates with the vertical display-selection i.e. in alternating time-base mode.

Communication with the setting processor takes place through a serial bus and reaches the chip through a series-to-parallel converter. Also implemented in this time-base logic is the circuit that counts triggers on the trigger input during the main time-base sweep. This circuit makes the auto-set function possible (Fig. 4) which always endeavours to include at least three periods of the input signal on screen.

The chip has two sections containing the fast circuit and the other handling slower function-selection operations.

The first section is implemented in current-mode logic and the second in integrated Schottky logic, well known from its use in gate arrays, Fig. 5. Design of the fast section posed the greatest problems as it proved to be difficult to simulate analogue circuits running at twice the bandwidth of the oscilloscope.

To ensure that none of the transistors saturates, the input Schmitt trigger and the bistable circuit that starts and stops the sweep are analogue.

Delay between the trigger inputs and the start sweep output is kept as small as possible, which makes the necessary delay line as short as possible. Function selection inputs are t.t.l-compatible.

Intensity signals Z₁ and Z₂ make it possible to drive the c.r.t. with intensified and delayed sweeps, Fig. 6. The delayed time-base comparator is not incorporated on the chip.

Figure 7 shows triggering of main and delayed time-bases.
A Selection from Our Stock of Branched Valves

<table>
<thead>
<tr>
<th>Valves</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1604</td>
<td>4.99</td>
</tr>
<tr>
<td>Q5-103</td>
<td>4.15</td>
</tr>
<tr>
<td>R6T-30</td>
<td>3.06</td>
</tr>
<tr>
<td>D32-A</td>
<td>2.95</td>
</tr>
<tr>
<td>16217</td>
<td>2.90</td>
</tr>
<tr>
<td>20003</td>
<td>2.85</td>
</tr>
<tr>
<td>20004</td>
<td>2.80</td>
</tr>
<tr>
<td>20005</td>
<td>2.75</td>
</tr>
<tr>
<td>20006</td>
<td>2.70</td>
</tr>
<tr>
<td>20007</td>
<td>2.65</td>
</tr>
</tbody>
</table>

Electronics & Wireless World October 1986

Callers Welcome
- Open Mon-Thu 9AM-5:30PM
- Fri 9AM-5:00PM
- 24-hour Answerphone

Access & Barclaycard Phone Orders Welcome
- Please add 15% VAT
- Export Orders Welcome
- Credit Card Orders Welcome
- Please Send Your Enquiries for Special Orders and Large Requirements
Hall-effect current detector

Alternating current flow in cables can be monitored using a linear Hall-effect device. This circuit detects current down to about 150mA.

The potentiometer is adjusted for equal voltages at points A and B with no current being monitored. Direct-current output can easily be fed into a computer for data-logging applications.

A. Smith
Llanelli
Dyfed

AC power supply with limiting

A simple current-limited a.c. power supply is handy for checking transformers and coils before applying full power. This supply can be used on its own or added to a d.c. power-supply unit with multi-tap mains transformer.

Alternating supply voltages from tappings on the main transformer are selected using a two-pole break-before-make switch. A useful selection of voltages is 3,4,5,6,20,22 and 24V.

A separate small mains transformer of say 6V at 100mA powers the circuit. Rectified current of 30mA feeds the TIC226 gate to ensure positive switching.

Voltage proportional to the alternating test current appears across R3 and is available, rectified, across the potentiometer. This potentiometer is set so that Tr3 triggers at the desired r.m.s. current limit of for example 500mA.

As Tr3 conducts, Tr2 latches both transistors on, turning off the led and denying base drive to Tr1; the circuit under test is protected.

Pressing the reset button allows C1 to discharge, bringing the led on momentarily.

At this point the button is released. If the excess load is still present, the led flickers and then remains off.

P.E. Thompson
Antibes
France

Line-synchronized sawtooth generator

Sawtooth waveforms required for phase-control thyristor circuits must have a linear ramp, fast discharge to zero and a minimum dead time. This circuit provides such a sawtooth and operates on a single supply.

Using a reverse-connected transistor gives a very-low VBEoff of 1 to 10mV, although it requires more base drive as β in this configuration drops to 0.1. Dead time, determined by R3/C2, is less than 100μs. A sawtooth repeating at every zero crossing can be obtained by inverting the comparator output, differentiating it then gating the two pulse trains to discharge Tr2.

V.B. Kuber
Nashik
India
Stereo phase and level display

Live recordings have to be right first time, but when mixing multiple microphones by ear it is easy to make a listening error and have one of the microphones out of phase. Only after the recording is made can a fault like this be detected and by then it is too late.

By out of phase I mean that one microphone’s position with respect to another is such that an acoustical phase shift occurs, causing colouration at certain frequencies. If a disc is made from the recording, too many out-of-phase signals cause undesirable needle movements, resulting in wooliness.

With this circuit, any general-purpose d.c.-coupled oscilloscope can be used to display a left-minus-right signal on the horizontal axis and a left-multiplied-by-right signal on the vertical axis. Buffered left and right signals feed two rectifiers providing positive and negative signals for subtraction; rectifier symmetry is balanced using $R_{1,2}$. If the two input signals are identical, the 10kΩ potentiometer can be adjusted for null.

Simultaneously, both channels feed an MC1494 multiplier. Resistor R_3 is adjusted for null output with a left-channel signal only and R_4 nulls output for a right-channel signal only. Because IC3 is a multiplier, output follows a square law. A logarithmic amplifier could be used to linearize this circuit but balancing such an amplifier is difficult so it may not be worthwhile. The V.U. meters are optional.

Don Goodman
Rubin Academy of Music
Tel-Aviv University
Israel

Sensitive dip oscillator for titrations

In fet r.f. oscillators a diode from gate to earth is often included to stabilize output voltage. Popular belief is that this produces a bias voltage by rectification, thus reducing circuit gain.

This cannot be so because the circuit still functions in the same way if the series capacitor in the tuned circuit is omitted and the gate thus connected to earth through. The diode seems to work by clamping voltage across the tuned circuit to the diode’s forward voltage level. Absorption of power from the tuned circuit, such as occurs when a tuned circuit resonant at the oscillator frequency is brought near, causes a reduction in diode current.

By placing a low value resistor in series with the diode, this clamping current may be sensed, amplified and displayed on a meter. In this conventional Clapp oscillator diode current typically develops 10-100mV across the 1kΩ resistor.

The circuit can be applied as a very sensitive dip oscillator or as a metal detector. In analytical chemistry, I have used the circuit for high-frequency titrations. The cell is the inductor, which consists of a few turns of wire round a breaker.

Lionel Sear
Truro Cornwall
“This is certainly a book to recommend to anyone involved in digital technology.”

A PRACTICAL INTRODUCTION TO THE NEW LOGIC SYMBOLS – 2nd Edition

by Ian Kampel, CEng, MIERE

The new logic symbology is a significant advance in the field of digital electronics and a major international achievement. Digital engineers need to learn how to use and interpret this new logic symbology in order to stay at the top of their profession as the new symbols will soon be commonplace.

This updated edition, with additional material, is written by an expert experienced in preparing complex technical works in an accessible fashion, and prepared in collaboration with the International Electrotechnical Commission.

Contents: Introducing the symbols; An international language for digital engineers; Definitions; Composition of the symbol; Input and outputs; Simple combinative elements; Delay elements; Dependency notation; Label sequences; Two-state elements; The common control block; Shift registers and counters; Coders; Signal level converters; Selectors; Memory; Arithmetic elements; Using the symbols; A complex symbol analysed; Different levels of representation; Closely related symbols; Multiple signal paths; The changer symbol.

Hardcover £11.50 approx 176 pp Illustrated 216 x 138 mm 0 408 03101 0 August 1986

* Electronic Technology on the first edition

BASIC Operational Amplifiers – J C C Nelson

This latest book in the Butterworths BASIC Series provides the reader with a sound understanding of the techniques of operational amplifier circuits and their practical limitations. It uses BASIC programs to eliminate the tedious repetitive calculation that has traditionally been an essential part of operational amplifier design. It is ideal reading for undergraduate and diploma students in electronics, computer studies and control systems.

Contents: Section headings: Introduction to BASIC; Introduction to operational amplifier circuits; Frequency response; Offset errors; Waveform generation; Introduction to active filters; Non-linear circuits.

Softcover £9.50 approx 136 pp Illustrated 216 x 138 mm 0 408 01580 2 September 1986

EMS Power Systems

EMS manufactures DC Power Supplies and Battery Chargers both linear and switch mode in a range from 5 VA to 3.2 KVA.

Also a complete range of Standby, UPS and Mains Stabilizer Systems 35 VA to 1 KVA. EMS specialises in the manufacture of customised products and has a full design and development facility.

EMS (Manufacturing) Limited, Chairborough Road, High Wycombe, Bucks HP12 3HH.

Tel: (0494) 448484

TELESCOPIC MASTS

- Pneumatic
- Hydraulic Ram Operated
- Winch Operated

Hilomast Ltd.

THE STREET – HEYBRIDGE – MALDON
ESSEX – CM9 7NB – ENGLAND

Tel: (0621) 56480 Telex: 995855

NEW FROM BUTTERWORTHS

MICROPROCESSOR ENGINEERING

by B Holdsworth, BSc(Eng), MSc, CEng, FIEE

Microprocessor Engineering gives a clear and authoritative account of the hardware and software techniques employed in microcomputer systems. B Holdsworth, author of the successful, Digital Logic Design, has in this, his new book, concentrated on the Intel 8085A but with full reference to other 8-bit microprocessors so that thorough instruction is given on the design and programming of systems using those processors as central elements.

This work will not only prove invaluable as a textbook for undergraduate and postgraduate students of electrical and electronic engineering and computing, but will also be useful to technicians and engineers who are involved with microprocessors but who have no formal training in the field.

Contents: Preface; Arithmetic; Logic; Memory; Small computer architecture; The instruction set; Data transfer; Arithmetic and logic operations; The instruction set 1: Jump, call, return and stack control; Assembly language programming and software aids; Program controlled input/output data transfers; Interrupts; Data conversion; Bibliography; Problems; Index.

Softcover £15.95 approx 304 pp Illustrated 216 x 138 mm 0 408 01461 3 December 1986
Electronic ignition for single-cylinder engines

Capacitor discharge unit replaces magneto ignition to give new life to garden machinery

The initial requirement for a dry battery c.d. ignition system is a d.c. converter to generate a supply of some few hundreds of volts to which an energy storage capacitor could be charged, preparatory to its discharge through the primary of the ignition coil.

To a first approximation, the spark energy will depend on the energy stored in this capacitor, which is $0.5(CV^2)$. This is in joules if C is in farads, and, conventionally, energy figures in the range 30-120mJ have been suggested. A 1μF capacitor charged to 250V with a stored energy of 62mJ would offer two advantages over a higher voltage, lower capacitance system. The first is that the use of a 400V d.c. capacitor offers a sensible safety margin and such capacitors are easier and cheaper to obtain than higher voltage units. The second benefit is that such an operating voltage would be readily obtainable from the primary winding of a small 240V mains transformer. If this could be used as the step-up unit, it would save the difficulty of winding a special unit.

Most conventional d.c. converter circuits employ self-oscillating systems, with the positive feedback required to sustain oscillation derived from additional transformer windings. In his article, Cooper proposes the use of a low power multivibrator to drive the inverter transistor, and this seems an eminently sensible move in that it allows a readily determined operating frequency independent of the transformer output load, and avoids difficulties in start-up if the supply or transformer load conditions are such that the oscillator fails to oscillate.

The basic circuit that I used is a symmetrical, base and emitter-coupled multivibrator of the type shown in Fig. 1. The operating frequency is effectively determined by C_1, C_2, R_5 and R_6 and this delivers an alternating square-wave drive to the bases of T_{R_1} and T_{R_2} via the current limiting resistors R_6 and R_7. These transistors

Fig.1. Simplified d.c. converter using base and emitter-coupled multivibrator actually uses Darlington transistors for the output pair.

Fig.2. To prevent the voltage rating of the storage capacitor from being exceeded control transistor T_{R_1} is added.

If the output voltage exceeds limits set by R_1 and R_2, D_1 conducts to reduce oscillator drive.

by John Robins

John Robins is a pseudonym for a well-known circuit designer now working as a consultant.
Fig. 3. With the intermittent use of a single-cylinder two-stroke engine, a 9V dry battery could last up to several months - less than the cost of fuel.

The case for electronic ignition

The energy of the spark from a magneto depends on the current in the primary coil, which depends greatly on the speed with which the pole pieces pass the fixed coil unit. If one arm is weak or the engine doesn’t turn freely, the spark can be inadequate to start the engine.

Additionally, with the passage of the years, vibration and age can weaken the strength of the magnet, or worn crankshaft bearings can increase the air gap between the magnet and the magneto coil poles, which will reduce the energy of the magneto and make the feeble low-speed spark even weaker.

Finally, and more catastrophically, the ingress of moisture into the coil windings can cause electrical leakage or chemical corrosion of the fine secondary wire.

With a new machine, replacement of the flywheel unit or magneto coil shouldn’t be difficult but in the case of an elderly appliance, the model may be obsolete, or the makers out of business.

A number of electronic ignition systems have been described in the technical press, but these have normally been intended for use with multiple cylinder, relatively high performance motor cars, for which high engine speed was a greater consideration than economy of d.c. supply, so this article takes a fresh look at the circuit possibilities with the specific aims of achieving good d.c. economy and simplicity of construction.

are Darlington types, to reduce the required drive current through T_1 and T_2. I used MJ3001s because they were to hand, but less expensive devices such as the TIP121s would be entirely adequate.

In the collector circuit of the power stage I used a small mains transformer with a centre-tapped low voltage winding. The high voltage 240V a.c. winding is used with a rectifier bridge to supply the energy storage capacitor.

In general, the maximum output current which could be drawn from such a circuit will increase as the operating frequency increases, and some experimentation with two small P.C.B.-mounting transformers of this type, one 1.5VA and one 3VA, showed that both were quite happy up to a few kHz. The standard ‘quiescent’ current of the inverter stage increased with frequency, especially beyond about 3kHz, as the core losses increased.

An operating frequency of about 1kHz was therefore chosen as a reasonable compromise between the two conflicting requirements. This gave a standing quiescent current of 15-20mA in the prototype when operated from a 9V supply, but would provide an adequate high voltage supply to allow operation at 3000 rpm, when the need speed limit.

Secondary voltage control

Under light load conditions, it is probable that the rectified secondary voltage from the step-up transformer could rise to high levels due to the peak rectification of inevitable voltage spikes, and this could cause the working voltage of the energy storage capacitor (C_4 in Fig. 2) to be exceeded.

The oscillator/driver circuit has therefore been elaborated, as shown in the full circuit diagram of Fig. 2, to include a control transistor in the multi-vibrator emitter circuit. This is normally turned on by base current supplied through R_3. However, if the inverter output voltage increases beyond predetermined limits, set by R_1 and R_2, the diode D_1 conducts and progressively ‘switches back’ the oscillator.

This also helps to cut back the quiescent oscillator current once the energy storage capacitor is fully charged. Since it was intended that the unit should operate from a 9V dry battery it was not thought worthwhile to stabilize this supply, though a very low output current regulator in the emitter circuit of T_2 would be all that was needed.

HV capacitor discharge circuit

The output voltage from the inverter step-up transformer is rectified by a bridge-connected group of four 1N4007 diodes and feeds the energy storage capacitor through the limiting resistor, R_1, which serves to restrain the momentum increase in oscillator current when the capacitor is discharged.

Since Cooper observed that failure of capacitor discharge units is almost always due to the failure of the thyristor, I decided to use a generously rated (13A, 600V) component for this, since the difference in cost between this and a less rugged device was very small.

A flywheel (or rotor) magnet would normally operate when the contact breaker points open, and it is very desirable that it should not fire again when the points reclose. This requirement is met by the circuit built around T_1 and T_2, which fires the thyristor cleanly and reliably without the need for a ‘diac’, for which, in any case, the available d.c. supply voltage would be too low.

Contact breaker points

It is normally assumed in the design of capacitor discharge electronic ignition systems that the lower the current which passes through the contact breaker points, the better will be their longevity. Up to a point, this is true, but the points normally operate in an atmosphere of oil vapour from the engine, and it is desirable that enough current should flow through these points to wear off any thin insulating film which may form. This is unfortunately incompatible with the design requirement that the direct current consumption for the unit should be as low as possible. I therefore opted for a 1kΩ resistor for R_3, which is normally turned on by the lead in series with it. If it is suspected that the points may not be closing satisfactorily, the led will verify this point. Also, the 0.47μF capacitor across the points will contribute a small amount of discharge energy (23mJ) to assist in keeping the points oil film free.

The whole unit fits comfortably within a small (114x64x55mm) diecast metal housing, with external leads to the primary of the ignition coil, battery, and contact breaker points.

The relationship between running speed for a single cylinder two-stroke engine and d.c. supply demand, at 9V input, is shown in Fig. 5. For the sort of usage such machines get, one or two hours at a time, a 9V dry battery could well last many months, and cost substantially less than the petrol used to power the appliance.

For the benefit of those whose skills are mechanical rather than electrical, convert the existing magneto-operated c.d. unit as follows. Disconnect the h.t. lead from the magneto to the spark plug, and the internal connection between the magneto high current (primary) winding and the contact breaker. The contact breaker will almost invariably consist of an insulated moving contact and a fixed contact connected to the chassis of the machine.

Identify the insulated point from which the magneto primary winding is to be disconnected, and provide an adequately robust connection from this point to the c.b. input lead of the c.d. unit. Provided that the carburation is satisfactory, the machine should start easily and run freely.

References
423 × 8 = £165*

An electronic solution to your cabling and interfac ing problems.
The 8-way RS423 “Comptons SOFT SWITCH”, developed at the National Physical Laboratory, is now available from:-

THE SOFT OPTION
The Soft Option Ltd.
Osbourne House
Lower Teddington Road
Hampton Wick KT1 4ER
Tel: 01-977 7670

Trade enquiries welcome. * Price excluding VAT and delivery.

CIRCLE 66 FOR FURTHER DETAILS

Fibre-Optics EDUCATOR

For teaching fibre-optics and telecommunications in schools, colleges, universities and technology training centres.

Transmits analogue and digital data over free-space and optical fibres using red light.

Plus many other applications, including numerous measurement experiments.

Designed and Manufactured in the U.K.

For further details contact:
ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre,
Etoe Road, Leyton,
London E10 7BT.
Telephone: 01-539 0136

CIRCLE 64 FOR FURTHER DETAILS

AFFORDABLE ACCURACY
Quality Multimeters from Cirkit

A comprehensive range of Analogue and (Pushbutton or Rotary Switched) Digital Models

ANALOGUE
HM-102BT - 10A DC, Range: 2000V/DC
Buzzer, Battery Test Scale £12.50
19 measuring ranges
HM-102BT - Low end voltage & current ranges, Jack for Audio output voltages: £11.00
20 measuring ranges
HM-1015 - Rugged, Pocket sized meter, for general purpose use: £7.50
16 measuring ranges
Battery, Test Leads and Manual included with each model.

Please add 15% for VAT and 70p for p&p.

DIGITAL
MC-7020
0.1% Accuracy, Standard Model: £39.50
HC-6010
0.25% Accuracy, Standard Model: £23.50
HC-5010
0.25% Accuracy, TR Test Facility: £39.50
DM-105
0.5% Accuracy, Pocketable: £21.50

All models have full functions and ranges and feature 3½ digit 0.5” LCD display – low battery indication – auto zero – auto polarity – ABS plastic casing – DC AC 10amp range (not IP23: 90Ω) – Overload protection on all ranges – battery, spare fuse, test leads and manual.

Full details and specification from:
Cirkit Distribution Ltd
Park Lane, Broxbourne, Herts EN10 7NY
Telephone (0992) 444111 Telex 22478
TRADE ENQUIRIES WELCOME

CIRCLE 62 FOR FURTHER DETAILS

R. WITHERS LTD.
AGENT TO THE STARS!

RWC are main agents/distributors for Yaesu, Icom, Kenwood, M. Modules, Jaybeam, Tonna, Revco, Antennas, Cleartone, Mutek, A&K, Drae, FDK, Welz, Tait and Neve Radiotelephones to name but a few! We are able to supply: Receivers (inc. scanning), Transmitters, and complete communication systems including antennas for all types of location and applications. We specialise in custom systems HF-UHF.

TUNE INTO OUR SPECIALIST SERVICE!

- We manufacture our own range of VHF/UHF beam and Raycom mobile antennas and 13.8V DC PSU’s 3–12A.
- We’re the only company in the UK that produces modular VHF/UHF Raycom power amplifiers (15–50 watts output).
- We supply a large range of specialist RF power transistors/modules imported directly from Japan.
- We supply/repair amateur/business radio systems.
- We check transceivers on our spectrum analyser – £12.50 for a comprehensive report while you wait!
- Only supplier of modified Yaesu FRG 9600 MII (60–950MHz) and Revco RS 2000E (60–179 and 380–520MHz) scanning receivers.
- Probably the UK’s largest seller of used radio equipment.
- We offer the largest selection of radio allied services under one roof. CALL NOW FOR FULL DETAILS.

EXPORT AND TRADE ENQUIRIES INVITED
584 Hagley Road West, Quinton, Birmingham B68 0BS.
Tel: 021-421 8201 (24hrs) Telex: 334303-TXAGWM-G

CIRCLE 61 FOR FURTHER DETAILS
The contents of the image are not legible or legibly transcribed. It appears to contain advertisements for computer-related products and services, including telescopes, computer parts, and software. However, due to the quality and legibility of the text, it is not possible to accurately transcribe the information. Therefore, no natural text representation can be provided.
SUPER DEAL? NO - SUPER STEAL!

THE FABULOUS 250 CPS "TEC STARWRITER"

Made to the very highest specification the TEC STARWRITER
FP1500-25 features a very heavy duty cast chassis and DIABLO type print mechanism giving superb registration and print quality. Microprocessor elements are all brand new!
DIABLO/GUME command compatibility and full control via CPM WORDSTAR. Easy to program features include direct printing switching 10 or 12 pitch, full 361mm paper handling with up to 163 characters per line. Fitted with both single sheet and continuous paper print mode. Standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with 90 day guarantee and FREE decay wheel and dust cover. Order NOW or contact sales on 0531 379 575. Roller Feed £1400. Spare daily use £3.50. Carriage & Ins. 1UK Mainland £10.00

NOW ONLY £499 + VAT

DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer — plotter -dotty or gosse etc! entirely to your own specification. The printer mechanism is supplied ready built, aligned and fully tested but WITHOUT electronics. Many features for metal chassis, phosphor bronze bearings, 132 character optical shaft position encoder. NINIE needle head, 2 x phase 12V stepper motors for carriage and printer control. 10.5" Paper platten etc. etc. Even a manufacturer's print sample to show the unit's capabilities!! Overall dimensions 40 cm x 12 cm x 21 cm.
Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + p+p £45.00

20,000 FEET OF ELECTRONIC AND COMPUTER GOODS

ELECTRONICS & WIRELESS WORLD OCTOBER 1986

29.95 each, 5 for £12.50, 10 for £22.50, 20 for £39.50, 50 for £80.00.

COOLING FANS

1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLES, CONNECTORS, HARDWARE, MODems, TELEPHONES, VARICs, VDU's PRINTERS, POWER SUPPLIES, KEYBOARDS etc. etc. Use our call for a your spare part requirements. Stock changes almost daily.

Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

Ems - Printers - Printers - Printers

Great deal with Ems - Printers - Printers - Printers

Save over £400

a fraction of its original cost.

TELETEYPE ASR33

DATA I/O TERMINALS

Industry standard, combined ASCII 110 baud printer, keyboard and 8 hole paper tape punch and readier. Standard RS232 serial interface ideal as cheap hard copy unit or tape prep for CNC and NC machines. TESTED and in good condition. Only £250.00. Floor stand £10.00. Carr & Ins £15.00.

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA ELECTRON Corporation. Often seen in major hotels printing up to the minute News and Financial information. Runs on both sides and operates on 2 UNIT BAUDOT CODE from a Current loop, RS232 or TTL serial interface. May be connected to your micro as a low cost printer or via a simple interface and filter to an serial communications receiver enabling printing of worldwide NEWS and TELETYPE services.

Supplied TESTED in second hand condition complete with DATA, 50 and 90 character tape and large paper feed.

TYPE AE11

ONLY £49.95

Spares paper roll for AE11 £4.50

TYPE AF112 72 Col

£65.00

TYPE AH112 50 Col

£185.00

Carriage and Insurance £75.00

GE TERMIPRINTER

A massive purchase of this desk top printer renders our editors too offer you these quality 30 or 120 cps printers at a superb one-off cost of only £1000 each. Brand new with standard Rs232 serial interface. Ideal vertical and horizontal lab settings, standard ribbon, adjustable baud rates, over operation plus many other features. Supplied complete with original GE1200 manual and full spec.

Floor stand £120.00. Carr & Ins. £100.

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents include transistors digital signal ICs, triacs, diodes, bridge rectifiers etc! All devices guaranteed to be new full spec with manufacturers markings fully guaranteed.

All prices mentioned above are in £ + £12.30 - £10.00. Plus VAT. We will post to any address in the UK.

Mains Filters

Cure those uneasy hang ups and data glitches caused by mains interferance with professional quality filters. SDSMA match spec with 50 or 130 volts. Mains Filter £49.95. Depot Filter £49.95.

EPROM COPIERS

The amazing SOFTY II The Complete Toolkit! for copying of EPROMS of the 2516, 2716, 2532, 2732 range. Many other functions include integral keyboard cassette interface, standard DIP pull down, and full range of electronic programming.

£150.00 + pp £25.00

"GANG OF EIGHT" intelligent Z80 controlled 8 parallel programmer for single or 2 or all 8 EPROMs up to 27128. Will copy 27128 in only 3 MINUTES! Internal LCD displays and checking routines for IDIOOT proof operation. Only £395.00 + pp £30.00.

"GANG OF EIGHT PLUS" Same spec as above but includes full serial interface for down line loading data from core memory. Complete unit £495.00 + pp £30.00.

Data sheets on request
Z80 CONTROL Z80

CARDMASTER CPU
- 45 MHz 24-CPU
- CPW compatible
- User transparent MULTI-TASKING
- Up to 32K EPROM & 16K RAM
- Watchdog crash protection
- RS232 & RS422 Comms
- 2' Z80 PIO (one uncommitted)
- On board bus buffer
- Power-on reset hardware
- Euro-card construction

NOW FROM £99 + VAT

CUB MICROCONTROLLER
- Z80 CPU
- 4 x Z80 PIO's (64 I/O lines)
- Z80A
- 4K Battery backed RAM (2K sup.)
- 4K EPROM (2K MCX2/2 sup.)
- Powerful monitor (MC6800)
- Eurocard construction

NOW FROM £86 + VAT

STARBURST V1.31
A CROSS ASSEMBLER FOR CP/M80 covers four major families of single chip up's and U.C.'s
- 8048 inc. 8741/2 8748/9/60
- 8051 inc. 8741/2 8751 8744
- 6801 inc. 68001/1/2 68701
- 6805 inc. 68705 63705

Supplied with complete set of demonstration files.

STARBURST V1.31 £95.00 + VAT

Requires Z80 CPU

CMR16 NOW FROM £165.00

Bare PCB's Available
C/M CPU 28.50 25.65
C/M I/O 28.50 25.65
CUB 23.50 21.15
CMR16 41.00 36.00

Manuals on request

GNC ELECTRONICS
Little Lodge, Hopton Road,
Thelnetham, DISS IP2 1JN.
Tel: 0379 698313

RF POWER

U.S. supplier of RF POWER DEVICES.
Prices LOWER than current domestic prices.
Query us for immediate needs.

A quantity source for a complete range of RF POWER devices - From 2-
30MHz, SSB 12.5V 7.28V transistors - 14-30 MHz CB/AMATEUR 27-50
MHz, low band FM - 66 - 89MHz mid band FM - 66 - 89MHz mid band
FM - 125 - 162MHz VHF MARINE RADIO FM - 130 - 175MHz HI-BAND
VHF FM - 108-152MHz VHF AIRCRAFT AM - 225 40MHz UHF 28V -
407 - 512 UHF CATV/MATV CLASS A linear transistors - A SMALL
indication of types are listed below. SEND FOR OUR FREE BROCHURE
AND/OR CONTACT FOR IMMEDIATE QUOTES.

MRF450 MRF453 MRF464 BLY88A BLY90 BLY93A
2N5653 2N4493 2N5109 2N3375 2N5016 385
2N4128 2N5070 2N5591 2N6080 2N4427 2N5090
2N5634 2N6083 2N4431 2N5102 2N5918 2N6084

TIC Semiconductor, Inc.
18 West 21st Street New York, N.Y. 10010 U.S.A.
Tel: (212) - 675 6722 Telex: 284564 TICS UR
CIRCLE 9 FOR FURTHER DETAILS

TEN SCANNERS CATALOGUE

Toroidal & E.I.
Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated
transformers at highly competitive prices.

Toroidal Mail Order Price List
prices inclusive of VAT & Postage
15V 7.55, 30v 9.18, 50V 10.16, 80V 11.36, 120V 12.07, 160V 14.20, 205v 15.21, 300v 17.04, 500v 22.10, 650v 24.66, 750v 28.75, 100V 44.82.
Also available 142, 1x, 2x, 2x, 3x. Prices on request.

Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15, 18-0-
Primary 240 Volt.

Quantity prices and delivery on request

Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth. Herts. Tel: 0279 724425

CIRCLE 3 FOR FURTHER DETAILS

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost full band satellite TV systems.
Complete satellite receiving system from £495 00 + VAT.
Write or telephone for details, or call in at our
factory showroom.

NETWORK SATELLITE SYSTEMS LTD
Units 7-8
Newburn Bridge Industrial Estate
Hartlepool, Cleveland TS25 1UB
Tel: (0429) 274239 or 869366

CIRCLE 17 FOR FURTHER DETAILS

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
Low voltage references

Teledyn Semiconductors say their new bandgap references offer a much wider reverse current range than alternatives currently available. The 1.25V type range is from 15µA to 20mA (TSC04), while the range of the 2.5V device is 20µA to 20mA. These are available in two temperature coefficients, 0.01% per deg C and half that value (50 ppm/deg C). These low voltage references, accurate to 2%, are used for data acquisition converters, multimeters, and battery powered telecommunication circuits.

Enter 200 on reply card.

Industrial Pascal for 68000

Omegasoft Pascal takes the Pascal framework and expands the basic data types, operators, functions and memory allocation. "With the rising cost of writing real-time control software" says Bill Stanley of RCS Microsystems, "the advantage of using a high level language are widely recognised". The compiler generates assembly language for assembly and link to run on the target system. As a true relocation assembler and linking loader is used, only those runtime modules required are linked in, providing a smaller object module than other compilers. Large Pascal programs can be split into conveniently sized modules to speed the development process. Procedures, functions and variables can be referenced between Pascal modules and assembly language modules using Pascal directives.

IBM/AT-compatible mother-board and graphics card

According to Microkey their 286 VLSI is capable of fulfilling many roles in the electronics marketplace, its specialty designed ICs implementing the functions of an IBM/AT but in a much reduced area and part count. In the space saved Microkey implement four serial channels and a parallel printer channel to allow for stand-alone applications. Multi-user environments can be easily implemented. 1Mb ram is standard together with a real-time clock and battery back-up.

Firmware comes from Aware Software of the USA and is compatible with IBM's firmware, allowing most present software and hardware packages to run on the basic card. The processor is an 8MHz 80286 on the standard unit; 6MHz is selectable on the card and a 10MHz version will be available early 1987, and the board has a socket for the 80287 co-processor. Eight standard slots for cards are implemented: six 16-bit slots, two 8-bit.

To complement Microkey's IBM-compatible product, the VLSI Microkey 1000 graphics card implements the following functions: Hercules graphics standard, IBM's EGA, CGA, MDA and is therefore compatible with software designed to run on them. The board has 256K ram screen buffer, a ram-based character generator, virtual device interface and a light pen interface. The 13.5 by 4in board fits any slot in a Microkey 286 VLSI, IBM PC, XT or AT and most compatibles.

Enter 203 on reply card.

HF receiver has i.s.b. mode

Rediffusion new h.f. receiver is a high performance, synthesised, programmable receiver intended for the professional communications market. Based on the company's R505 receiver, it adds independent sideband operation to the list of mode available, c.w., a.m., i.s.b. and u.b. with optional f.a.k. data. High-speed data up to 2400 baud can be received.

Channel, frequency and mode are set through a keypad on the front panel and shown on two liquid crystal displays. Operating parameters for up to 63 channels at a time can be stored in the equipment's memory and brought into operation by selecting channel number and pressing a 'use' button. Frequency is selectable in 10Hz steps in the range 60kHz to 30MHz.

Local, extended or remote control is available, and the receiver can be integrated into a computer-controlled network. The R505 is the latest addition to Rediffusion's Series 2000 range and shares 80% of functional modules with the DU505 transmitter drive unit.

Rediffusion Radio System Ltd

Enter 202 on reply card.

Microprocessor crystals

Long-established in the field of manufacture and supply of professional crystals from 10kHz to 360MHz, Webster Electronics announce that they now offer one of the wider ranges of crystal for microprocessor use, from 1 to 600MHz. Specification provides a setting accuracy of ±30ppm measured at 23°C and with a temperature coefficient of ±20ppm over a working temperature range of -10°C to +60°C.

All crystals are made in Europe by the manufacturing division of a West German company and claimed to be extremely high quality. They are encapsulated in the resistance weld method.

In addition the company factor a range of oscillators, including 14-pin oscillators with t.t.l. output covering the range 250kHz to 70MHz, crystal filters, and communication antennae.

F. Webster (Electronics & Engineering) Ltd.

Enter 204 on reply card.
Now you can use your IBM-PC or compatible computer as the basis of a sophisticated logic analyser system.

LA-PC Link is an interface package which links your computer with the low-cost Thurlby LA-160 logic analyser to provide facilities normally associated with only the most expensive analysers.

- **Sophisticated data state listings**
 - Up to 32 words per screen in multiple data formats.
 - Scrolling by line, page or word, plus random page access.
 - Rapid screen compare facility. Full repetitive word search.
- **High resolution timing diagrams**
 - Sixteen channels of 64, 256 or 1024 samples per screen.
 - Instantaneous pan and zoom. Moveable channel positions.
 - Dual cursors with automatic timing difference measurement.
- **16 or 32 channels, clock rates to 20MHz**
 - Operates with all versions of the LA-160 with or without LE-32.
- **Comprehensive data annotation**
 - Each data and control input can be allocated a user-defined label.
 - Data files are date/time stamped and can be fully annotated.
- **Full disk storage facilities**
 - Data files can be saved to disk and recalled for comparison.
 - Data includes the analyser's set-up conditions and all annotation.
- **Versatile printing facilities**
 - State listings and timing diagrams with annotation can be printed.
 - **Colour or mono display; keyboard or mouse control**
 - Colour, monochrome or text-only modes suit any display adaptor.
 - Parts of the programme can be controlled by a mouse if required.
- **Terminal mode for uP disassemblers**
 - Acts as a terminal for use with Thurlby uP disassembler ROMs.

If you already have an LA-160 logic analyser the LA-PC Link interface package costs just £125. If you don't, an LA-160 with LA-PC Link costs from £520.

The world's most advanced low-cost bench multiimeter!

Thurlby 1905a £349 + VAT

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1 μV, 1mΩ, 1nA.
- Full ac and current functions as standard.

A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative.
- Percentage deviation; running average.
- DBV, dBm general logarithmic calculations.
- Limits comparison; min and max storage.
- 100 reading timed data logging.
- RS232 and IEEE-488 interface options.

Thurlby Electronics Ltd
New Road, St. Ives, Cambs. PE17 4BG
Tel: (0480) 63570

Now Thurlby makes logic analysis affordable! from the new Thurlby LA-160 £395 + vat

- 16 channels, expands to 32.
- Clock rates up to 20MHz.
- State and timing displays.
- Selectable display formats.
- 2K word acquisition memory.
- Non-volatile reference memory.
- Search and compare facilities.
- Hard-copy data print out.

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer's reach.

Contact us now and get the full technical data.

Thurlby Electronics Ltd
New Road, St Ives, Huntingdon, Cambs. PE17 4BG, England. Tel: (0480) 63570
Why sit on the fence?
COME ON DOWN . . .
THE PRICE IS RIGHT!

Type 3132 - Dual Trace
20MHz; 2mV/div calibrated. 40ns/div(max) sweep.
14 trigger functions. Triple DC source +5V, ±12V.
Component comparator.

Type 3036 - Single Trace with 5" CRT
20MHz, 2mV/div calibrated. 40ns/div triggered sweep.
Component tester.

Type 3031 - Single Trace
20MHz, 2mV/div calibrated. 40ns/div triggered sweep.
Component tester. Compact size.

★ THE CHOICE IS YOURS ★
Just 'phone or write for your FREE copy of our catalogue and Price List.

Crotech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818

CIRCLE 38 FOR FURTHER DETAILS
Development boards

Offered as a low-cost rapid development tool for prototype construction is the 85000 series of computer boards centered on an 8085 single-board computer. The potential on-board memory capacity of 68Kbyte can be extended by use of an inhibit line.

Peripheral boards include a communications board, based on Intel's 8256 muart, and a display board for driving Epson character or graphics l.c.d.s. Each of the peripheral boards includes a development section designed for use with the BICC-Vero Speedwire system. Three voltages and a ground plane are available as well as data, address and control buses which are distributed through the development area so that all switches can be added and wired easily. Timing has been optimized to accept a wide variety of ram and rom chips.

Control signals can be altered by shorting jacks and memory size and addressing modes can be selected by a series of 8-way switches. Languages can be installed in roms, and an assembly-language programming service to complete the operation. Automation and Control Technology, Cofoton Road, Barton, Exeter EX2 6QW.

Satellite dish

The 'square' offset receiving and transmitting dish from Sat-Tel is claimed to overcome many of the problems associated with elliptical or circular antennae. It offers equal performance from both polarizations and a very low sidelobe response, and a 1.4m dish gives a similar performance to 1.8m circular.

The same company offers SBR80, a satellite beacon monitoring receiver which can locate a non-transmitting satellite. Beacon signals are typically 40dBW lower than transmission signals. The SBR80 used in conjunction with Sat-Tel's multi-standard broadcast quality receiver, could prove useful in circumstances such as electronic news gathering, where a satellite needs to be accurately located prior to a transmission. Space Communications (Sat-Tel) Ltd, 9 Edgewise Close, Round Spinney, Northampton NN3 4RG.

Portable h.f. receiver

The use of microprocessor and l.s.i. devices in the Yaeasu field portable transceivers enables them to offer full professional facilities but remain physically small and weigh only 5.8kg including NiCd battery pack. The frequency-synthesized circuits produced a 10W (5W on a.m.) transmitter ranging from 2 to 30MHz with reception down to 50kHz. Upper or lower sideband, carrier wave and a.m. transmission and reception are all included. Other facilities include high/low power selection; receiver squelch and noise blanking; a meter for signal strength, transmitter power or battery condition; the receiver has an offset (clarifier) button. A transmitter tune switch can simplify zero beat frequency interference by other transmitters. A wide range of optional extras include a high capacity rechargeable NiCd battery pack, a quick charger, various antennae and antenna tuners, as well as a telephone-style handset and a backpack carrying case. Amcomm-ARE, 373 Ulbridge Road, London W3 9RN. 219 on reply card.

Audio components

Precision components for builders of audio equipment and service engineering are offered by Audiokits. These include IAR Wonder capacitors (imported from the USA), Filmcap reservoir capacitors and Holco precision metal film resistors. Audio Precision Components, 6 Mill Close, Borrowash, Derby DE7 3GU. 220 on reply card.

Weather map receiver

Combining the functions of receiver and printer, the Marinefex TR1 has a microprocessor-based programmable memory. It incorporates all the worldwide radiofax frequencies and can be set to select the time and frequency of the desired from any chosen transmitter. The instrument will turn itself on, select the desired transmitter and frequency, receive the chart and turn itself off. This cycle can be programmed to occur for up to 250 on/off sequences. Ten frequently used services can be accessed by a single push button, all other stations are chosen from prompts given by the display and any other frequency can be keyed into the receiver. The receiver can be tuned in 0.1kHz steps to capture transmitters using odd frequencies. The instrument incorporates a thermal printer to give dry paper recordings of the received chart. CNJ Services, Churchill House, Upcott, Latton, Swindon, Wilts SN6 8DS. 210 on reply card.

Linescan processor

Microprocessor Analyser (MIA) from IPL is a stand-alone vision system module designed to operate with IPL's 5000 series high speed linescan camera. The camera is connected directly to the MIA which is based on the 68000-based microcomputer, which processor handles the camera data and can be programmed according to the specific needs of the customer. The unit allows connection of up to four cameras for complex problems, whilst the VME bus structure allows for further expansion. MIA offers a choice of inputs via keypad, opto-isolated, differential and t.l.-compatible lines. Outputs include relays, analogue, large character display, parallel printer port.

Typical applications are in the automotive and steel industries for non-contact dimension gauging and process control. Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester DT1 1SY. 227 on reply card.
DISPLAYED APPOINTMENTS VACANT: £23 per single col. centimetre (min. 3cm).
LINE advertisements (run on): £5 per line, minimum £40 (prepayable).
BOX NUMBERS: £11 extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: SUSAN PLATTS, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

ELECTRONICS & WIRELESS WORLD OCTOBER 1986

75
Senior Design Engineer
For exciting development of computer graphics products for television use.
Experience in Digital and Analogue design, and an understanding of video technology would be essential. You would be required to manage a small development team, and be able to take products from conception through to production. If you have an active enthusiasm for Computer graphics together with a liking for a small but expanding company you would be ideally suited to this job.
Salary dependent on age and experience up to £15,000.

Design Engineer
For assisting in the design of Computer Graphics products. Experience in at least one of the following fields would be required: Digital Design, Analogue Design, Video Engineering.
You would have the opportunity to participate in many aspects of design, from CAD or schematics and PCB layouts to prototyping. Salary depending on age and experience from £6,000 to £12,000.
Applications in writing please, together with full C.V. to The Technical Director, Spaceward Microsystems Ltd., The Old School, Streatham, Cambridge CB6 3LD.

The Polytechnic of North London
Re-advertisement
RESEARCH ASSISTANCE IN MICROWAVE/OPTOELECTRONICS
Applications are invited for a research assistant in the Department of Electronics and Communications Engineering and Applied Physics. The post is initially for one year but extension is possible subject to satisfactory progress. The work will involve collaboration with industrial or other external organisations.
The work will involve investigations into methods for accomplishing microwave signal delay with applications for radar test systems.
Salary: £7,170-£7,953 (Inclusive of London Allowance)
Application form and further details are available from The Personnel Office, The Polytechnic of North London, Holloway Road, London N7, quoting ref. R10AD.
Telephone: 609 9913 (24 hour answerphone service).
Closing date for the receipt of applications is 14 days from the appearance of this advertisement.
THE POLYTECHNIC OF NORTH LONDON IS AN EQUAL OPPORTUNITIES EMPLOYER AND THEREFORE PARTICULARLY WELCOMES APPLICATIONS FROM WOMEN, ETHNIC MINORITIES AND THE DISABLED.

NORWICH VIDEO PRODUCTION COMPANY
Seeks enthusiastic and experienced person to repair and maintain video equipment, assist on shoots and provide editing, duplication and administrative support. Essential requirements are past job experience in maintaining video/TV systems, genuine video production experience and organisational flair.
Exceptionally nice working environment in a city that offers a very desirable lifestyle. Salary negotiable. Good prospects for advancement.
Full details and CV to: J. McLaren, 5 Curtis Road, Norwich, Norfolk NR6 6RB.

The Polytechnic of North London

Professional Career Opportunities
The Easy Way to look for your new job from the comfort of your own armchair. Our well qualified consultants will carefully match your requirements against appropriate vacancies.

We have many clients seeking Engineers and Technicians at all levels and we are particularly interested in hearing from you if you have experience in the following:

- Real Time Software
- Technical Sales
- Radar Systems
- RF Development
- ATE Programming
- Technical Authorship

Your next step is to complete and return the attached coupon or telephone John Prodger on 0442 212650 during evenings or weekends.

Executive Recruitment Services
THE INTERNATIONAL SPECIALISTS IN RECRUITMENT FOR THE ELECTRONICS, COMPUTING AND OFFENCE INDUSTRIES.
Freepost, Hemei, Hemel Hempstead, Herts. HP1 4BR.

NAME __________________________ (Mr/Miss/Mrs)
ADDRESS ________________________
POST CODE _______________________
TEL NO __________________________
QUALIFICATIONS __________ AGE

☐ NONE ☐ CG/HNC ☐ DEGREE ☐ OTHER
SALARY __________
JOB __________

ELECTRONICS & WIRELESS WORLD OCTOBER 1986
THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge... why not join us in GCHQ?

We are recruiting

RADIO OFFICERS

who after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an RO extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.

The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.

Salaries start at £5,817 at age 19 to £6,920 at age 25 and over during the training and then £7,954 at 19 to £10,162 at 25 and over as a Radio Officer. Incremental rates then follow annually to £13,777 inclusive of shift and week-end working allowances.

or write to:

GCHQ

Tel: 0242 32912/3

The Recruitment Office
Piton Road
CHELtenham
Glos GL52 5AJ

ELECTRONICS TECHNICIAN required for the University of London Observatories (an outstation of the Department at Mill Hill in North London). Duties involve (i) maintenance of the Observatory’s telescopes and associated equipment, (ii) development of improved electronic equipment, (iii) development of electronic control of data acquisition by modern optical detection systems. The appointee would be expected to undertake evening and occasional night work. Qualifications: ONC or City & Guilds or equivalent. Salary in range £6,749-£7,813 + £765 LW, 5 week annual holiday. Further details and application forms from Personnel Officer, (Technical Staff CJ27), University College London, Gower Street, London WC1E 6BT.

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY
Department of Electrical Engineering

ELECTRONICS TECHNICIAN
£8,639 to £9,953 inc.

Required to work in the Microprocessor Teaching Laboratory. The successful applicant will be engaged on the manufacture, repair and servicing of digital electronic apparatus particularly microcomputers and their peripherals.

Candidates must hold a formal qualification such as a CIV and Guides or National Certificate in electronics, and up to date practical experience is essential. Initial salary point to be determined by age and experience.

Excellent terms of service including superannuation scheme.

Applications to include a CV and the names of two referees to be sent to:

Departmental Superintendent,
Department of Electrical Engineering,
Imperial College, Exhibition Road,
London SW7 2BT.

Closing date: 24 September, 1986

Electronic Engineers – What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £6000 - £20,000.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 0892 39388

Please send me a TJB Appointments Registration form.

Name: ..
Address: ..

(85)
Cut out for the Third World?

Voluntary Service Overseas is now receiving detailed requests for offers made during February 1987 departure. Requests include.

Radio and TV Instructor, Bangladesh
Radio and TV Instructor, Indonesia
Electrical Engineer, Sri Lanka
Radio Engineer, Belize
Hospital Engineer, Bangladesh

You will need a professional qualification and relevant work experience.

VSO volunteers should be without dependants and willing to work for payment based on the local rates.

Postings are for two years and most employers should be prepared to leave grant of absence.

For more information, please complete and return.

I'm interested in volunteering. My qualifications / experience are

Name:
Address:

VSO is working overseas
Charity no 313275

VSO also needs builders, engineers, teachers, technical college lecturers, community workers, nurses, doctors, voluntary workers, apprentices, etc.

Post to: Enquiries Unit, Voluntary Service Overseas, 9 Belgrave Square, London SW1X 8PW.

ARTICLES FOR SALE

Radio Engineers, Electronics Lecturer, TV and Electrical Engineers

Production of Electronic Circuits and Repairs of TV, Radio, Telecoms, Computers.

Electronic Design, Production, Lecturing.

Electronic Design and Production.

Telephone and Telecommunication Systems.

Television Repair and Service.

Radio and TV Repair and Service.

Electronic Design and Production.

Electronics Evolution.

Electronics and Computers.

Electronics and Co
ELECTRONICS WANTED

COMPUTER APPRECIATION
For fastest, best CASH offer, phone.

Buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement. Tel: 01-208 0766 Telex: 8814998

USED TEST EQUIPMENT FOR SALE & WANTED
Buyers & Disposal Officers Contact COOKE INTERNATIONAL Unit 4 Fordingbridge Site Main Road Basingstoke RG25 2GQ Tel: 0254 88 5111/2

TOP PRICES PAID
*computers, components.

COMPONENTS 110
TEL IMMEDIATELY

INSTRUMENTATION
READING RG6

ANY
SURPLUS TEST
EQUIPMENT,
EQUIPMENT,
PERIPHERALS

WANTED

TEST equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M & B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
0532 435649

QUALITY USED EQUIPMENT

Hewlett Packard Synthesizer 86060C main frame with eight internal units 86028B IF section 1-350MHz 86531B auxiliary section AM Pulse mode. Fully restored £9,000.00

Hewlett Packard Vector Voltmeter 81404A measures voltage and phase 1-100kHz 1% accuracy £590.00

Hewlett Packard Spectrum Analysers Price and details on application

Marconi PCM Tester/Analyser Kit 1712024 PCM multiple tester 1712026 PCM digital simulator 1720020 PCM digital analyser As new complete £2,950.00

This and other equipment can be inspected at COOKE INTERNATIONAL Unit 4, Fordingbridge Site, Main Road Basingstoke RG25 2GQ Tel: 0254 88 5111/2

BOX NOs

Box number replies should be addressed to:

Box No
c/o Electronics & Wireless World
Classified Dept
Quadrant House
The Quadrant
Sutton, Surrey SM2 5AS

WANTED

Give us a ring.

G-Qeq Electronics
Unit 28, 20 Botley Road,
Hedge End, Southampton.
Tel: 81487

FRUSTRATED ELECTRONICS INVENTORS

Individuals or companies

Contact: Mr G. R. Nicholson
0242 578030

BILLINGTON VALVES

SALES OFFICE OF CATALOGUE OF THERMOCOUPLE VALVES

Now synchronising with other industry leaders, L.A. just signed us up to the industry's latest catalogue. We have huge stocks and supplies of these and extensive stocks of other types of valves.

We will buy valves and manifolds.

Proven and reliable stock. Widely used in industry for over 30 years.

Tel: 0243 611121/2

ELECTROLOOM (BEDS)

Competitive rates for a reliable service including:

PCB & CABLE ASSEMBLIES
FULL CHASSIS WIRING
SUB & FINAL ASSY. WELDED

PLEASE CONTACT:
0525-57890
for immediate attention

TURN YOUR SURPLUS INTO CASH

We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING & CO, 103 South Brink, Wisbech, Cambs: 0945 564188

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

NAME ..
ADDRESS ..

REMITTANCE VALUE ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS
WALLI IS FREE!

WALLI is a powerful high level language (Work-cell Amalgamated Logical Linguistic Instructions) for controlling up to 4 robots and their peripheral equipment simultaneously from single computer (BBC, Apple Ile or IBM PC). WALLI is supplied FREE with any robot.

OSCILLOSCOPES
Hameg, Deytech, Pachuck
Stockists: E.T. Pen, delivery: £20 (plus VAT)

COUNTERS AND TIMERS
220/240V AC mains, 8 digit digital
Counter & 0.1Hz resolution, 5mA sensitivity
100MHzZ ranges £90.00
60MHzZ ranges £60.00
10MHzZ ranges £45.00
1MHzZ ranges £30.00
100kHzZ ranges £15.00
10kHzZ ranges £12.50
1MHzZ ranges £7.50

DISCOUNTS AVAILABLE FOR ALL EDUCATION/TRAINING
TRADE, DEM & EXPORT SUPPLIED

DC POWER SUPPLIES
24V DC input. Stabilised variable output voltages
Water resuting units and caps

NEW LOW PRICES
243/300 0.25W 0.5A 24V £43.26
245/300 0.5W 0.5A 24V £36.26
154/510 0.5A 30W 24V £33.26

£13.00

ELECTRONIC INSULATION TESTERS
Battery operated with case

£98.00

£80.00

AG CLAMPMETERS
With cases and leads.

600V AC mains 0-10A £30.87
4300 Auto-range Digital 300V
£75.00

COMPUTER DISKARDS
5% 40 track D0/40/40/D0 £12.75
5% 36 track D0/36/36/D0 £11.15
(All PC/D0 per order)

PLEASE ADD 15% VAT. (UK ORDERS)

WIDE RANGE GAUGES, SENSORS ETC FOR
ROBOTIC WORK-CELLS
IN OUR FREE BROCHURE.

UK'S WIDEST RANGE OF low cost robotic & FMS equipment.

INSTRUMENTS • COMPONENTS • EQUIPMENT • CATALOGUES

CIRCLE 5 FOR FURTHER DETAILS

DIGITAL MULTIMETERS
3 1/2 digit LCD displays

• 520 15 range, 200mV DC, 2MHz £19.96
• 530B 10m range, 100mV DC £28.00

• 9301 10 range, plus Hz test £22.00
• 9302 10 range, plus Hz test, 20V DC £24.00
• 6601 28 range, 10A AC/DC, 20MHz £33.50
• 5792 20 range AC/DC, memory hold £34.50
• 5569 25 range AC/DC £35.65
• 3100 PPM Hyr. Auto - buzz - hold £36.30
• 5010 31 range 10A AC/DC - buzz Black AC/DC £36.50
• TRMS7 30 range 10A AC/DC - buzz £38.00
• 5010 EC An 9010 - cap - Hz cont & buzz £52.13

OSCILOSCOPES
Hameg, Deytech, Pachuck
Stockists: E.T. Pen, delivery: £20 (plus VAT)

NEPTUNE
48 way Centronics both ends
£8.65

INDEXING TABLE
stepper drive belt length 0.5 - 5.0m

CIRCLE 42 FOR FURTHER DETAILS

Hameg Digital Capacitance Meter 0.1pF - 999.9nF £17.50

CIRCLE 42 FOR FURTHER DETAILS

DIGITAL CAPACITANCE METER
range (DC) 20pF to 999.9nF
Pull button selection (60Hz) £38.00

PROBE/PULSER
TP1. Loque probe 50MHz max. TTL CMOS
TP2. Loque pulser 0.5V/500V

301 Edgware Road, London W2 1BN
01-724 3564

434 Edgware Road, London W2 1ED
01-265 1831

DISCOUNTS SMALL AND LARGE QUANTITY PRICES ON REQUEST

ROBOTS FROM ONLY £4751

MENTOR 1kg at 4.20mm

500g at 500mm with see through perspex cylinders

DC servos

NAIAD
Water hydraulic/DC servos

CIRCUIT 5 FOR FURTHER DETAILS

WALLI IS FREE!

WALLI is a powerful high level language (Work-cell Amalgamated Logical Linguistic Instructions) for controlling up to 4 robots and their peripheral equipment simultaneously from single computer (BBC, Apple Ile or IBM PC). WALLI is supplied FREE with any robot.

EXPANDABLE CONVEYOR SYSTEM

STEPPER DRIVE BELL LENGTH 0.5 - 5.0M

DISCOUNTS SMALL AND LARGE QUANTITY PRICES ON REQUEST

WIDE RANGE GAUGES, SENSORS ETC FOR
ROBOTIC WORK-CELLS
IN OUR FREE BROCHURE.

INDEXING TABLE

STEPPER DRIVE BELL LENGTH 0.5 - 5.0M

MEMOR 1kg at 4.20mm

500g at 500mm with see through perspex cylinders

UK'S WIDEST RANGE OF low cost robotic & FMS equipment.
MATURE, FRIENDLY EPROM PROGRAMMER

GANG-OF-EIGHT
BY DATAMAN

Redesigned to Your Specification
GANG-OF-EIGHT is a successful product, because of its performance and unbeatable price. Since the launch we have taken careful note of comments made by engineers who have called us. This gave us a wish-list of extra features and revisions to work by. The result is an improved G8 which should suit you even better — it is just what you asked for.

25 and 27 Series to 512K
G8 will handle 2516, 2532 and 2564 EPROMS, as well as all 27 series from 2716 to 27512.

FAST and SLOW Programming Method
You can use a FAST, intelligent algorithm to program larger EPROMS, which speeds up the programming operation by a factor of five, at least. G8 will also program the old-fashioned way, with 50ms pulses.

Voltage Selection
There are three different voltages selectable (by switches) and these are each resettable (by potentiometers) over a wide range. The factory-setting is 25 volts, 21 volts and 12.5 volts.

Liquid Crystal Display
G8 shows the EPROM type, the Program-Method and the Program-Voltage and changes the display when you reset the switches. You always know what is happening with G8.

Two Key operation
G8 has only two keys — START and RESET — simple to operate, yet it does all the useful things you need. Before every programming cycle it checks that you have not programmed any of the EPROMS already, reporting any which match the master. Then G8 tells you if any are not blank, so that you can erase them. Only if the EPROMs pass these tests does G8 start programming (but G8 will try to program unerased EPROMS, if you ignore the ERASE message and press START again — something else you asked for).

Checksum Facility
G8 will calculate and display a 6-digit checksum of your master EPROM, when you press START and RESET at the same time. This helps you to identify EPROMS which are unlabelled, and provides a simple check on the integrity of your data.

Tuneful, too
G8 provides audible feedback, to avoid the necessity for constant monitoring — that is, it makes noises so you don’t need to watch it: rising and falling arpeggios as the program starts and finishes; occasional tones to remind you that your EPROMS are ready. Data is audible when uploading and downloading.

Option — Steel Case
G8 normally comes in a plastic case, which is light and durable. However, some of you want your G8 in a steel case, and this option is available now.

Option — Bidirectional
RS232 Serial Interface
G8 was intended as a fast, low-cost production copier, but frequent enquiries made us think again and design a version which could be used for development purposes, capable of uploading and downloading in a variety of serial formats: INTELHEX, MOTOROLA S, TEKHEX, ASCIIHEX and BINARY. Links on your serial cable select the format.

Quick delivery
We know you don’t want to wait, so we keep lots of Gang-of-Eight programmers in stock. If you are in a real hurry telephone us — we will save your time and arrange the fastest delivery possible.

No Risk Trial:
Refund Guaranteed
Without any questions asked, you get your money back if you do not get along with your G8, provided you return the product within 14 days: (we subtract only carriage expenses).

Terms
Cheque with order or credit-card.

Dataman
Lombard House, Cornwall Road, Dorchester, Dorset DT1 1RX England
Telephone: (0305) 68066
Telex: 418442 DATAMN G
If for RS232 option £50.00
add for steel case option £3.50
Total for basic GANG-OF-EIGHT £395.00
postage is free BUT please add VAT in U.K.
2955 Radio Communications Test Set £5,750
- 11 test functions, including full duplex radio test
- Revolutionary design: fast and easy to use
- High clarity CRT shows all settings plus measurements in digital or analog forms
- Tones encode/decode facilities
- Spin-wheel frequency/level control in addition to front panel buttons
- Single and two-port operation.

2305 Modulation Meter 500kHz to 2GHz £5,260
- 500kHz to 2GHz frequency range
- Exceptionally fast auto-tuning, with low noise
- Modulation analysis including frequency and power
- Non-volatile memory to store user settings
- Excellent stereo separation
- Automatic self-calibration, advanced diagnostics.

2382/80 Spectrum Analyser £13,150
- Wide frequency range: 10kHz to 1GHz
- Superb level accuracy ±0.1dB, with auto calibration
- Frequency response better than ±0.4dB
- Fully GPIB programmable capability
- Two selectable markers for levels and frequencies
- Self-calibration for repeatability of measurements.

6960 Option 001 Digital RF Power Meter £1,900
- Simple push-button or systems application
- Unparalleled accuracy, through sensor correction
- Non-volatile storage of frequently-used settings
- Overload capability up to 27dBm
- High AM/FM tolerance
- Built-in GPIB.

2022 AM/FM Signal Generator 10kHz to 1GHz £2,950
- Wide frequency range: 10kHz to 1GHz
- Exceptionally fast auto-tuning, with low noise
- Comprehensive modulation: AM/FM/PhM
- Simple push-button operation, large LCD display
- Non-volatile memory for 100 settings
- The perfect service/maintenance tool.

2440 Microwave Counter 20GHz £3,650
- Wide frequency range: 10Hz to 20GHz
- High sensitivity and resolution
- Fast acquisition time: only 200ms typical
- High-stability oven-controlled crystal oscillator
- Overload capability up to 32dBm
- High AM/FM tolerance
- Built-in GPIB.

Electronic Brokers are now distributors of a full range of Marconi Test Instruments including Signal Generators, Microwave Counters, Power Meters, Modulation Meters, Spectrum Analyzers, Radio Communication Test Sets and other general test and measuring equipment. For further information and a colour brochure please contact our Sales Office.

Electronic Brokers 140-146 Camden Street, London, NW1 9PB
Tel: 01-267 7070 Telex: 298694 Fax: 01-267 7363

All prices exclusive of VAT. Prices correct at time of going to press (UK only). Trading conditions available on request.