3-D graphics
Eprom programmer
Optical fibres

SPECIAL OFFER
Real-time clock with 8K by 8 bit non-volatile memory
THERE’S A PHILIPS INSTRUMENT THAT’S JUST RIGHT FOR YOU AT ELECTRONIC BROKERS

OSCILLOSCOPES

PM3206 COMPACT LOW COST PORTABLE 15MHZ
- Automatic triggering for stable trace
- Easily portable and lightweight
- TV triggering on line and frame
- Dual trace with 5mV sensitivity
- X-Y measurement facility
- External Z modulation.

£295.00

PM3256 FULLY RUGGEDIZED PORTABLE 75MHZ
- Designed for harsh field environments
- Dual timebase with independent triggering
- Alternate display of main and delayed timebases
- Trigger view as third channel display
- Multi sourced triggering and trigger filters
- Tough compact unit with shoulder strap.

£1,550.00

PM3219 STORAGE AND REAL-TIME 50MHZ
- Analogue storage with variable persistence
- Auto erase and auto store facilities
- High 2mV sensitivity across full bandwidth
- Alternate display of main and delayed timebases
- Easy auto mode triggering with level control
- Versatile facilities combined with easy operation.

£2,995.00

PULSE GENERATOR

PM5712 FAST RISE TIMES TO 50MHZ
- Wide amplitude range: 200mV to 10V
- 1Hz to 50MHz frequency range
- Fast rise and fall times
- 4nS to 10nS to 100nS pulse duration and delay
- Variable DC offset: -5V to +2V
- Single, double and T/2 pulse modes.

£995.00

FREQUENCY COUNTERS

PM6667/PM6668 HIGH RESOLUTION COUNTERS
- Built in intelligence for easy operation
- 7 digit high contrast LCD readout
- High stability X-tal oscillator
- Range to 120MHz (6667), to 1GHz (6668)
- High 15mV sensitivity
- Auto triggering on all waveforms

6667/01: £349.00
6668/01: £495.00

DIGITAL MULTIMETERS

PM2519 MULTIFUNCTION MEASURING CENTRE
- Digital display with analogue bar graph
- Fast autoringing with manual option
- Relative measurements for all parameters
- Direct gain with selectable references
- Frequency to 1MHz, true RMS
- IEEE compatibility

PM2519/51: £299.00 (version)

LINE RECORDERS

PM8251A/PM8252A SINGLE AND DUAL PEN RECORDERS
- Wide sensitivity: 1mV to 50V
- 250mm chart with up to 12 speeds
- Fast pen response and accuracy
- Standard remote control facilities
- Dip marker and inverter switch
- Zero suppression -100% to +210%

8251A: £750.00
8252A: £1,050.00

X-Y RECORDERS

PM8043 COST EFFECTIVE A4 FORMAT
- 5 time base speeds from 0.5 to 10s/cm
- Sensitivity 2mV to 1mV in 9 calibrated ranges
- High rigidity lightweight chassis
- High pen speed accelerations
- Switchable low-pass filter
- Interference free recording
- Ergonomically designed front panel lay out.

£1,245.00

GRAPHIC PLOTTER

PM8154 INTELLIGENT X-Y DIN A4
- Up to 6 colour pen capability
- Writing speeds up to 400m/min
- Instruction set simplifies programming
- Electrostatic paper hold down
- Specify V version for IEEE 488/EC 625
- Specify S version for RS232/C/24

8154S: £1,195.00
8154B: £1,195.00

Electronic Brokers Ltd., 140-146 Camden Street, London NW1 9PB.
Tel: 01-267 7070 Telex 298694 Fax No: 01-267 7363

For further information contact our Sales Office. All prices exclusive of carriage and VAT.
Prices correct at time of going to press. A copy of our trading conditions is available on request.

CIRCLE 1 FOR FURTHER DETAILS.
FEATURES

New directions for marine d/f
by J.D. Last
Despite the growth of modern navaids, radio direction finding is still in common use. 18

6800 board-5
by R.F. Coates
To conclude this series, a selection of programming examples. 24

Eprom programmer for the Apple II
by P.B. Unstead and A. Blunden
Expanding the Apple: the second in a series of lab. interfaces. 28

An introduction to 3D graphics
by H.W. Gleaves
Using microcomputer Basic to produce “three dimensional” images in perspective. 36

Fibre Optics ’86
If you think fibre optics is not for you, this event might surprise you. 43

Sensitivity analysis
by J. Lidgey
Generally used for filter analysis, the technique is just as valid in many other branches of electronics. 46

Timing by remote control
by P. Ferris
Self-contained, microprocessor-controlled timer for up to eight appliances, with 100 on-off settings. 51

Measuring tape speed
by M.E. Theaker
A simple and accurate method of ensuring the correct speed of cassette tapes. 55

10bit digital recorder
by T. Loughlin
Using modern data- conversion i.c.s, very low-frequency analogue signals can be recorded on tape with high accuracy. 56

Special Offer
A battery-backed, real-time clock/calendar with a 64Kbit, non-volatile ram at a special price of £35. It will hold data for ten years and keeps track of hundreds of seconds, tenths, seconds, minutes, hours, days, date and year in computer or controller applications. A description appears on p.27.

REGULARS

News
Radio data next year
Digitally assisted television
IBA planning satellite service
Feedback
Von Neumann
Black boxes
XY plotter
Electrolytics and distortion

Communications commentary
Jamming
Arctic communications
Space outlook
Thermionics

Circuit ideas
T.t.l-to-cmos line driver
Development interface
Quad switch as SR latch

New products 60,67
NEW PRODUCTS

- **MINIATURE RUBIDIUM OSCILLATOR MODULE**
 Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

- **RUBIDIUM FREQUENCY STANDARD**
 High performance, compact and rugged instrument. 2U rack or 1/4 ATR case options.

- **INTELLIGENT OFF-AIR FREQUENCY STANDARDS**
 Microcomputer controlled instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.

- **LOW COST MSF FREQUENCY STANDARD**
 Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation.

Radiocode Clocks Ltd*
Unit 19, Parkengue, Kernock Road Industrial Estate, Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007
(*A Circuit Services Associate Co.)

CONTACT MULTIPRO for:
DC TO AC INVERTERS
UNINTERRUPTIBLE PSUS
IEEE PROGRAMMABLE PSUS
MULTIPRO Electronics Ltd.
01-668 2898
26 CHIPSTEAD VALLEY RD, COULSDON
CR3 3RG TWX 926395

CIRCLE 78 FOR FURTHER DETAILS.

Still using Standoffs?

Radical new Minimum Machining Concept Line-Ace system will delight all users of small medium size metal enclosures. Also, accessories to tackle R.F.I., H20, wall-mounting, heatsealing etc. Sizes: Tiny to extended eutocard.

CATALOGUE:
FROM:

FIELD ELECTRIC LTD.
3 Shenley Road, Borehamwood, Herts WD6 1AA. 01-953-6009
Official Orders/Overseas Enquiries Welcome/Telephone Orders
Accepted. Open 5 Days 9am/8pm. Please Ring for C/P details not shown. All prices inc. 15% VAT unless stated.

CIRCLE 48 FOR FURTHER DETAILS.

CIRCLE 51 FOR FURTHER DETAILS.
This is just a small sample of our huge inventory — contact us with your requirements.

OScillographs

- Hewlett Packard 17674A opt. 1001 200MHz Scope £1950
- 18809 opt. 150. 810. 860 Scope System £4950

- Tektronix 2112 150MHz Scope £2350
- 2445 150MHz + 500MHz Scope £2475
- 4656B/DM44 200MHz Scope £2600
- 4656B 200MHz Scope £1650
- 473A 200MHz Scope £3250
- 475 150MHz Scope £2000
- 475A 200MHz Scope £2795
- 495 200MHz Scope £950
- 6345 opt 1.20 Delay Monitor £750
- 7603A 500MHz Mainframe £1950
- 7704A 200MHz Mainframe £650
- 7854 Waveform Processing/ Mainframe £1100
- 7903A 500MHz Mainframe £6850

A large selection of 7000 series plug-ins available at up to 60% discount. Please call for quotations.

Analogue Meters

- Fluke 887Ab Differential Voltmeter £850
- 971D Differential Voltmeter £750
- Marconi TF2603 RF Multimeter £550

Analysers

- Analysers M16B Spectrum Analyser £7250
- Hewlett Packard 3325A Spectra-Tech £6500
- 8115A Logic Analyser £950
- 89303 opt 01 Counter £6825
- 1621 + 8500A Spectrum Analyser £9750
- 3525B Spectrum Analyser £7350

Marconi

- TF 2320A Wave Analyser £950
- TF 2327A Automatic Distortion Meter £650
- TF 2326A Modulation Meter £950
- TF 2603 Data Line Analyser £650

Radionet

- 8916A Automatic Distortion Analyzer £1500
- Tektronix 7A Logic Analyser 16 channel MINT £950
- 7M2 4905 Data Analyser £1750

Tektro

- WM 4905 Meter Set £6000

Marconi Instruments

ATE SYSTEM 80R

- Analogue/Digital Station £890,000
- MINT CONDITION £59,950

SIGNAL SOURCES

- Hewlett Packard 214A Pulse Generator £750
- 47108 Pulse Generator £950
- 47108 opt 01 Counter £550
- 4716A Unit Generator £1100
- 8260A Sweep Generator £7950
- 8260B Sweep Generator £950
- 8314A opt 01 Function Generator £2950
- 3325A Function Generator £1950

Marconi

- TF 2000B AM/FM Signal Generator £950
- TF 2606 AM/FM Signal Generator 1 GHz £1950

Waveform

- 16B 50MHz Pulse/Function Generator £1100
- 16C 50MHz Sweep Generator £650
- 16D 50MHz Sweep Generator 5 MHz £950

TEKTRONIX G.P.T.E.

- ENVELOPE SAVERS-NEW LOW PRICES—SAVE UP TO 50%£
- AM 550 Op. Amp £75
- DC 503 Counter £75
- DC 504 opt 01 Counter £95
- DC 505 Counter £125
- DC 506A Counter £500
- DC 507 Digital Delay £300
- DM 501 opt 02 Digital Multimeter £100
- DM 502A opt 02 Digital Multimeter £100
- FG 501 Function Generator £95
- FG 502 Function Generator £150

FG 504

- 40MHz Function Generator £1250
- PG 501 Pulse Generator £1250
- PG 502 Pulse Generator £1000
- PG 503 Pulse Generator £1500
- PG 505 Counter-Amp Generator £1500
- PG 506 Counter-Amp Generator £900
- PG 508 Ramp Generator £100
- RF 501 Ramp Generator £100
- SC 501/2/3 Scope £350
- SG 502 Signal Generator £350
- SG 504 Signal Generator £1500
- SG 505 Signal Generator £260
- TF 251 Time Marker Generator £1300
- TM 501 Mainframe £320
- TM 503 Mainframe £320
- TM 504 Mainframe £375
- TM 505 Mainframe £190
- TM 515 Mainframe £400

HEWLETT PACKARD COMPUTERS

- 2611A opt. C01..C17..C18 Printer £650
- 34784 opt. C01 Data Acquisition Unit £2950
- 6540B Programmer £1495
- 79101 opt. 015 Disk Drive £2000
- 9803A Printer £350
- 9811A Computer £850
- Also available: 9815A M9225S & 9825A £350
- 9835A 5851A & M9450 £8950
- 9845C-150 £7980
- 9882C 9887I

GENERAL PURPOSE T & M

- Fluke 2000A Current £495
- G.P. Industrial MFL 373 Fault Locator MINT £395
- P9250 EPROM Programmer MINT £450

- Hewlett Packard 34478A High Speed D.M. £1250
- 3456A Systems D.V. M £1500
- 3456B 4 1/2 Digit D.M. £750
- 3468A 5 1/2 Digit D.M. £350
- 8746B Multi-Parameter Test Set £750
- 7475A opt. 017 Plotter £1275

Marconi

- TF 2313A LCR Bridged £1495
- TF 2702 Inductor Analyser £950
- TF 2607A PCM Tester £1300
- TF 2903B TV Pulse Generator £750

Tektronix

- 5320A Vectorscope (NTSC) £3750
- 591A Vectorscope PAL £4250
- 6908A Colour Monitor £1500
- 576 Curve Tracer £450
- 910 Sampling Head £450
- 9601B 40K V.H. Probe (Nwa) £400

Electronic Brokers IS THE SOURCE

All prices are exclusive of VAT and correct at time of going to press. Carriage and packing charges extra. A copy of our trading conditions is available on request.

Electronic Brokers Ltd, 140-146 Camden Street, London NW1 9PB

Telephone: 01-267 7070 • Telex: 298694 • Fax: 01-267 7363

CIRCLE 80 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD MAY 1986

www.americanradiohistory.com
LOW COST C.A.D.

ATTENTION ALL ELECTRONICS CIRCUIT DESIGNERS!!
IBM PC, BBC MODEL B and SPECTRUM 48K

ANALYSER I and II compute the A.C. FREQUENCY RESPONSE of linear (analog) circuits. GAIN and PHASE, INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY (except Spectrum version) are calculated over any frequency range required. The programs are in use regularly for frequencies between 0.1 Hz to 1.2GHz. The effects on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated.

Circuits containing any combination of RESISTORS, CAPACITORS, INDUCTORS, TRANSFORMERS, BIPOLAR and FIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated - up to 60 nodes and 180 components (IBM version).

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE-BAND AMPLIFIERS, TUNED R.C. AMPLIFIERS, AFRAA MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS.

STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop".

Tabular output on Analysys I. Full graphical output, increased circuit size and active component library facilities on Analysys II.

Check out your new designs in minutes rather than days.

ANALYSER can greatly reduce or even eliminate the need to breadboard new designs.

Full AFTER SALES SERVICE with TELEPHONE QUERY HOT LINE and FREE update service.

Used by INDUSTRIAL, GOVERNMENT, and UNIVERSITY R & D DEPARTMENTS worldwide. IDEAL FOR TRAINING COURSES. VERY EASY TO USE. Prices from £20 - £195.

For further details please write or phone quoting Dept W.W.

Number One Systems Ltd

9A Crown Street, St Ives, Huntingdon, Cambs, PE17 4EB.

Telephone: St Ives (0480) 61778

Telex: 32339

CIRCLE 65 FOR FURTHER DETAILS.

USED TEST Equipment & Computer Products

Fully guaranteed
Performance to original specification
Wide range of instruments & computer products

CIRCLE 77 FOR FURTHER DETAILS.

KESTREL ELECTRONIC COMPONENTS LTD.

* All items guaranteed to manufacturers spec.
* Many other items available.
* Exclusive of VAT and Post and Package.

178 Brighton Road, Purley, Surrey CR2 4HA
Tel: 01-668 7522

CIRCLE 79 FOR FURTHER DETAILS.

DRAUGHTING

BBC MODEL B

"DRAWER I" enables quality drawings to be created, and modified, quickly, easily and with the minimum of hardware. Positional input is by standard joystick. All of the major mprogram elements are written in machine code giving exceptional speed of operation.

FEATURES

- Rubber Banding for drawing lines.
- Solid or Dotted lines types.
- Circles, arcs and partial or complete ellipses.
- Vertical or Horizontal Text.
- Pen and Zoom.
- Merging of drawings and library symbols from disc.
- Snap to a user defined grid.
- Absolute or Relative co-ordinate input displayed on screen.
- Output to standard dot matrix printer.
- Price - £45 exc VAT.

MINIMUM HARDWARE REQUIRE

- BBC Model B.
- Single or Dual Disc Drive - 30 or 80 track.
- T.V. or monitor.
- Games Joystick with "Fire button".
- Dot Matrix Printer. Epson 63 series or Epson compatible - BBC default mode preferable.

Applications Carston Electronics Ltd., 99, Waldegrave Road, Teddington, Middlesex TW11 8LL.

Telephone: 01-943 4477

Telex: 32339

CIRCLE 66 FOR FURTHER DETAILS.

Quadrant Picture Library

CARS - BOATS - PLANES

Over a million photographs and transparencies from the turn of the century to the present day; cutaway drawings and illustrations, colour prints of civil and military aircraft; directories from the early 1800s and much more besides for advertising and PR agencies, authors, publishers, TV programmers and solicitors.

Interested? Then write or telephone QPL at Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS (Tel: 01 661 3427/8).

ELECTRONICS & WIRELESS WORLD MAY 1986
MEMORIES

£1.85

2764-25

WITH FREE

07028282 28 PIN
LOW PROFILE SOCKET

DEVICE PRICE DEVICE PRICE
2532-30 4.50 2532-15 4.20
2532-45 4.20 2532-20 1.50
2716-35 3.65 4116-15 1.50
2716-45 2.95 4116-20 1.20
2732-25 5.95 4564-15 4.33
2732-35 5.45 4564-20 2.95
2732-45 4.50 8116 1.99
2764-25 2.95 81256-15 2.95
27128-25 2.50 8264-12 2.45
27256-25 6.15

COMPONENTS

PART NO. 1 + PRICE PART NO. 1 + PRICE
PROCESSORS &
PERIPHERALS
6502 4.60 4000 CMOS
6502A 5.50 4000 0.40
6520 3.25 4001 0.32
6520A 3.85 4006 1.02
6522 4.18 4007 0.40
6522A 7.28 4008 0.79
6532 4.92 4009 0.76
6532A 5.41 4010 0.76
6551 5.90 4011 0.76

HC CMOS
74HC00N 0.38 7FA00PC
74HC02N 0.38 7FA02PC
74HC03N 0.48 7FA04PC
74HC04N 0.38 7FA08PC
74HC08N 0.38 7FA10PC
74HC107N 0.48 7FA11PC
74HC108N 0.48 7FA13PC
74HC110N 0.48 7FA151
74HC112N 0.51

LS ITL
74LS00N 0.25 74LS02N
74LS10N 0.25 74LS04N
74LS20N 0.25 74LS22N
74LS30N 0.25 74LS32N
74LS40N 0.25 74LS42N
74LS08N 0.25 74LS09N
74LS10N 0.25 74LS11N

FAIRCHILD FAST
74F00PC 0.61 7FA02PC
74F04PC 0.61 7FA08PC
74F10PC 0.77 7FA11PC
74F13PC 1.54 7FA151

FERRANTI DATA CONVERTERS
ZN404 0.55 ZN425-8 7.31
ZN425-8 7.31 ZN426E-8 2.00
ZN427-8 5.90 ZN428E-8 11.54
ZN428E-8 11.54 ZN429-8 4.30
ZN429-8 4.30

HONEYWELL

HONEYWELL

PRINTER

PRODUCT CODE DESCRIPTION £
L11 80 col. Parallel I/F 150
L11CQ 80 col. Parallel I/F & NLQ 190
L11/1 80 col. IBM Comp. I/F 150
L12 CQ/1 80 col. IBM Comp. I/F & NLQ 200
L13CQ 132 col. IBM Comp. I/F & NLQ 230
L221 132 col. IBM I/F 290
L38CQ/2 132 col. IBM Comp. I/F & NLQ 290
S11 80 col. Serial I/F 150
S31CQ 32 col. Serial I/F & NLQ 240
RIH1W Black Fabric Ribbon 1.00

SHEET FEEDERS ... THAT WORK!!!

RICOH
RICOH 1300 ORDER Z106
RICOH 1600 ORDER Z107

NEC
SPINWRITER
2000/3500/8800 ORDER Z105

TOSHIBA
TH2100 P1351 ORDER Z115

JUKI
ALL JUKI MODELS ORDER Z111

TELEPHONE:
0379 4131
RING US TODAY!

All prices exclude VAT and carriage and are subject to stock availability.
NEWS COMMENTARY

Radiodata to begin next year

From the autumn of next year, programme-labelling data will be carried by all BBC f.m. radio stations in England. The extra signals will make possible the development of push button radio sets with fully automatic tuning. This, the BBC hopes, will put an end to the increasing difficulty many listeners have in finding the stations they want.

In the initial phase, to begin in September 1987, the new Radio Data Signalling (RDS) transmissions will carry five items of information:

- a programme identification code, very frequently repeated, which uniquely identifies the transmitting station: this helps the receiver to find the service chosen by the user and to select the strongest signal.
- a programme service code, a label of up to eight characters which could be displayed on the receiver (e.g. "BBC YORK") or passed to a voice synthesiser.
- a list of alternative frequencies for the same service: with car radios, for example, this could speed up the retuning process on passing from one transmission area to another. Where networks are split between wavebands, the list could include l.f. and m.f. stations.
- 'other network' information to allow, say, automatic switching to another station when a traffic announcement is to be broadcast.
- clock time and date.

These features are cheap to implement, says the BBC, because they require no editorial input by the broadcaster.

But if RDS is a success with audiences, a range of other services could be added later. These might include a text block of up to 64 characters to carry programme details, phone-in numbers, news-flashes or even advertisements; identification codes for individual programmes; and a telex-like text channel for downloading programme fact-sheets or computer data.

The BBC’s RDS transmissions meet a specification laid down by the European Broadcasting Union after a decade of technical work and international discussion. And this month the system is expected to be adopted as a world standard by the CCIR.

The data stream, at 118.5 bit/s, is carried at 57 kHz with a deviation of 1.2 kHz of the main f.m. carrier. It can co-exist with mono or stereo programmes and with most existing subcarriers offered by broadcasters, although some 67 kHz systems in the USA would need to move to accommodate it. However, the MBS radio-paging system used in Sweden is now being changed to make it compatible with RDS.

Several European broadcasters are working on plans for RDS, although at present only Sweden is running a service — an experimental operation on one channel only. In Britain, the IBA carried out tests of RDS last year in the London area but has not yet decided to launch a service. No doubt the commercial broadcasters, as a loose federation of separate stations, have rather less to gain from automatic tuning than a national broadcaster who carries the same programme on many frequencies.

The cost of self-tuning RDS sets will depend on whether i.e. makers are prepared to commit themselves to the system. But the BBC says the prospects for its success are good: a recent survey found that over 70% of adult listeners would be prepared to spend an extra £15 on a basic £25 portable set if it could have RDS. And users of car radios are said to have found the idea of RDS especially attractive.

However, although several Japanese firms are said to be working on prototypes, there are no signs yet of a rush to launch RDS sets. And in Britain, Mullard tell us they have no plans at present to produce the necessary i.e.s.

Full details of the RDS format are given in an EBU document, “Specification of the radio data system: RDS for VHF/FM sound broadcasting”, technical publication 3244/E.

In brief

Up to 2 x 105 bytes of information can be stored on both sides of a 12 mm optical disc and 600 MB on a 4.75 in compact disc. Such discs are likely to have a similar impact on information technology as the microcomputer, according to a report from the US Technical Information Service. The report includes a detailed assessment of optical disc technology and is available in the UK from Microinfo Ltd, Alton, Hants.

Kef Electronics, makers of loudspeakers, are to have a new head of research in the person of Dr Richard Small, who has left his post as a senior lecturer in the University of Sydney. He is the author of Direct radiator electrodynamic loudspeaker systems, which has been reprinted four times and received a Silver Medal award from the AES.

ELECTRONICS & WIRELESS WORLD MAY 1986

www.americanradiohistory.com
Digital assistance for tv signals

Experiments at BBC’s Research Department have produced a system for transmitting analogue picture signals along with high data-rate digital signals carrying control or supplementary information about the picture. One application of this Digitally-assisted tv (DATV) could be to reduce the bandwidth of high-definition tv so that it can be accommodated within a single DSS channel, previously planned for 625-line tv services. DATV is a bandwidth compression technique intended for use with high quality tv signals. The digital control signals assist in the reconstruction of the picture without degradation. One example of the use of the digital component is to carry information about which parts of the picture are static and which are moving. It is possible to repeat the static information and only transmit the changing part of the picture. Such techniques are common in bandwidth-saving exercises, but the DATV experiments have shown that it is possible to apply them to HDTV with a bandwidth reduction by a factor of between two and four.

Another example is the reconstruction of a sequentially-scanned picture where, to save bandwidth in transmission, the signal has been converted from sequential to interlaced scanning. DATV can also be used to improve the performance of 625-line tv systems which have associated digital capacity, such as the MAC/packet family of transmission standards. However this use restricts the freedom to exploit the full potential of DATV compared with its use to facilitate the transmission of HDTV systems using more than 1000 lines.

Charles Sandbank, deputy director of research said: “DATV is a powerful technique for squeezing HDTV signals through the bottleneck of transmission channels, using the sort of technology that will be available in our homes in the 1990’s. I am confident that it will play an important role in establishing a European broadcasting strategy for HDTV.”

Light at the end of the tunnel?

The Council of the Electronic Components Industry Federation (ECIF) reported recently that their industry seems to be pulling out of the recession. Most sectors reported encouraging signs. In particular the semi-conductor manufacturers noticed an increase in demand; enquiries for application-specific I.C.s particularly were encouraging. The council thought that lead-times might soon lengthen but warned that another ‘boom and bust’ cycle was in nobody’s interest and if it were to be avoided, equipment manufacturers must recognise that the ‘supply tap’ cannot be turned on and off rapidly, and that ordering must be planned accordingly. The ECIF were seeking urgent talks on this with customer trade associations.

It was agreed that glimmers of light were appearing at the end of the tunnel, and the council concluded that overall prospects were for a significantly better 1986 than 1985.

After Alvey

The Information Technology (1986) Committee has been formed to look into ways of preserving and maintaining the momentum generated by the Alvey programme. Sir Austin Bide, chairman of British Leyland and former chairman of Glaxo is heading a committee drawn from the IT industry, IT users and academics. The new committee has been organized by Sir Robert Telford, chairman of the Alvey steering committee. A major task for the committee is to establish a proper balance between national and European efforts including the UK relationship with Esprit, Eureka and Race. The Committee is to report its findings by October 1st.

A good idea? Patent it!

All too often, says the Chartered Institute of Patent Agents, adequate safeguards are not taken to prevent ideas being poached by others, and many entrepreneurs come unstuck in the race to get their idea to the marketplace. The most common mistake is to tell others about the idea before asking for professional advice, only to find that as a result all hope of protection has then been lost.

Manufacturers are well aware of the legal wrangles which can follow discussions of purveyors of unprotected ideas and many will refuse to negotiate with inventors until the proper legal protection has been applied for.

To counter these problems the Institute has launched a campaign to help inventors and entrepreneurs bring their ideas safely into fruition. A working party of patent agents and financiers is looking into the whole area of invention, and the funding of projects in their early stages.

Patent agents believe they must promote a better understanding of the forms of legal protection available for new ideas and of the registration systems involved. They have issued free leaflets as introductory guides to patents, trade marks and registered trade marks, design registration and design copyright, and service marks for service businesses. Available from the Chartered Institute of Patent Agents, Staples Inn Buildings, London WC1V 7PZ.

WALLCHART OF FREQUENCY ALLOCATIONS

It is over ten years since the original frequency allocation wallchart was produced and it is, of course, well out of date. Many changes have taken place during that time and it has been clear for some time that a continuing demand had to be satisfied. In response to repeated requests for a new chart, we have produced a new version, which will be presented as a loose insert with the June issue, on sale on Wednesday, May 21.

Many schools, universities and commercial laboratories still have the original chart, and we expect a large demand for the new one. Readers may find it useful to place an advance order for the journal with their newsagents, or take out a subscription, to ensure that they do not miss this once-only opportunity.

ELECTRONICS & WIRELESS WORLD MAY 1986
Electron beam writing on GaAs

At its base in Towcester, Plessey 3-5 Group is installing a Cambridge Instruments EBMF 10.5 electron-beam tool. This will enable the consistent production writing of gate lengths down to 0.2µm on gallium arsenide metal semiconductor field-effect transistors (MESFETS). The first product to benefit from this ability will be a 40GHz MESFET currently under development. Direct writing of features on monolithic microwave ICs will also be possible.

The equipment allows the fabrication of fine geometries by a highly focussed beam of electrons to expose a specially formulated resist, thus reducing the size of the features compared with that previously possible with photolithographic techniques. Computer control provides a high degree of automation. Such short gate lengths will not only lead to higher frequency devices but also improve the signal/noise performance of current MESFETS at frequencies down to X-Band.

Microwave power devices will also benefit; large device structures can have total gate widths of several centimeters and gate lengths of 1µm. Such devices are used in phased-array radars and as solid-state replacements of travelling wave guide tubes.

Knowledge base for Esprit

A five-year project, funded by the European Esprit programme, is to be undertaken on research into knowledge-based systems. Such systems are a facet of 'artificial intelligence' research. They acquire knowledge from experts in a specific field; combine this with codes of practice and/or other rules and regulations, and then programme a computer to analyse and give a prognosis based on the acquired knowledge. One successful example has been used in medical diagnosis. The software required is intrinsically different from conventional programs. In order to apply it effectively in industry, a better understanding of the methods and techniques for building such systems is needed. Ways of applying the disciplines of software engineering in this new area need to be found. This could also reflect back by providing insights into writing more conventional software.

The work should be of interest to all researchers in providing a better understanding of the way such systems operate. It should also provide modes of operation, applying similar techniques to new areas and for increasingly complex applications. The work is to be led by STC.

Britain dominates the comms RACE

Yet another European acronym to go alongside Esprit and Eureka is Race; Research in Advanced Communications for Europe. The European Commission has announced details of contracts to be awarded and Geoffrey Pattie, IT minister, is very proud that: 'there are more British participants than there are from any other member state. Of the 192 participants, 52 are British. British enterprises are leaders in 14 of the 32 successful consortia and there is a British presence in 26. This shows that Britain is ready, willing and able to take a leading part in collaborative research in Europe, which is important both for Europe and for British companies.'

The aim of the Race programme is to establish a strong Community manufacturing industry in broadband communications and to accelerate the emergence of a viable and competitive Community market for telecommunications equipment into the next century.

IBA plans DBS service

The Independent Broadcasting Authority if proceeding with plans to persuade contractors to provide up to three directbroadcasting-by-satellite channels. This follows the bringing into action of sections 37 to 41 of the Cable and Broadcasting Act which provide for the contractors to make the financial and other arrangements for the provision of satellite transponders, subject to the specification of the IBA, which as broadcaster will be responsible for ensuring that the services are of high quality.

John Witney, IBA's director general, warmly welcomed the opportunity to provide additional services; "After much discussion as to how DBS could be introduced to the UK, we are enthusiastic at the prospect. We shall be proceeding with all speed while aiming to ensure that the firmest possible basis is laid." The service, if suitable contractors are found, could be broadcasting by 1990. It is likely to be funded by advertising and/or subscription.

In brief

We have received bitter complaints from manufacturers of modems who are frustrated by the red tape and delays in getting BATB approval for their equipment. Nazir Jessa of Watford Electronics points out the Catch-22 situation that he is caught in with Watfords Le Modem: "If I wait for approval before I put Le Modem on sale, I could find that the technology is out of date. Alternatively I could sell (am selling) the modem without approval and risk customer dissatisfaction."

According to Nazir the situation is made more ridiculous because the device is constructed from BT approved components and is actually being offered with a three-month free subscription to Micronet, partly owned by BT.

Similarly vociferous is Barry Krite of DataStar Systems, distributors of the Magic Modem: "BT's marketing policy supposes that modems without BATB approval are potentially dangerous, despite the fact that they themselves sell modems without approval. Until our modem is approved, customers such as government departments and schools, who are obliged to buy approved products, can't by the Magic Modem." Barry is even more frustrated with the knowledge that the modem has been successfully tested in the BT labs but is still awaiting official approval.

Ceefax, BBC's teletext service is now using six lines in the TV signal compared with the four in previous use. This speeds up the time it takes for the required page to come round. The improvement is the result of the new computer equipment which also increases the efficiency of the system by taking over some of the 'housekeeping' tasks from the contributing journalists. There has also been improvement in the subtitling service: it is now possible to transmit subtitles on both channels simultaneously. The teletext signals are now generated at the point of programme origin, bypassing the Ceefax computers.
A range of small steel enclosures enabling smaller installations to be completed with ease.

Optional plain or glazed door with locking variations are available ex stock.

Split design permits mounting within the door as well as on the standard backplate.

4300 Series is strong and gives good protection against dust and liquids.

Attractive epoxy powder paint finish.

Please send me details of how Sarel's 4300 series of small steel enclosures set the standard.

Name:
Company:
Position:
Address:
Telephone:

Sarel Ltd
Cosgrove Way, Luton, Beds. Telephone: Luton 20121

The infinite choice!

CIRCLE 33 FOR FURTHER DETAILS.

CIRCLE 34 FOR FURTHER DETAILS.

CIRCLE 16 FOR FURTHER DETAILS.

STEWART OF READING Telephone: 0734 68041
110 WYKEHAM ROAD, READING, BERKS RG6 1PL

CIRCLE 50 FOR FURTHER DETAILS.

SOFTWARE DEVELOPMENT TOOLS FOR THE BBC MICROCOMPUTER

CROSSASSEMBLERS

FULLY SUPPORTED QUALITY SOFTWARE

As exhibited at MDS '86

Is it really possible to use the BBC micro and a single disc drive to assemble more than 4 megabytes of source code?

Yes... if you're using one of our XR-series cross-assemblers and making full use of local labels.

But there is more to our software than that. So much more in fact that we will send you a free comprehensive data sheet to tell you about it.

Since 1984, industry has been using our cross-assemblers to develop applications ranging from defence systems to software for the Amstrad; and education has found them ideal for teaching microprocessor system development.

They are available immediately from stock and are supplied on 15k ROMS, each with one or more utilities discs. They're Econet compatible and run on any model B or B+ - fitted with Basic II and a 1.20 or later operating system.

Order Code Target Processors Price

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Target Processors</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001X</td>
<td>8080,6080,5602,6301X</td>
<td>£48.00</td>
</tr>
<tr>
<td>1005X</td>
<td>6805,14600,5635</td>
<td>£48.00</td>
</tr>
<tr>
<td>1009X</td>
<td>8080 family</td>
<td>£48.00</td>
</tr>
<tr>
<td>1085X</td>
<td>8085,8060A</td>
<td>£48.00</td>
</tr>
<tr>
<td>280X</td>
<td>286, D61610</td>
<td>£48.00</td>
</tr>
<tr>
<td>68000X</td>
<td>68000,68008</td>
<td>£56.00</td>
</tr>
<tr>
<td>6520X</td>
<td>65C02, 65C22, 6520</td>
<td>£38.00</td>
</tr>
</tbody>
</table>

Further information from:

CROSSWARE PRODUCTS
2 The Litts, Melbourn, Royston, Herts SG8 6BA
Telephone: 0763 61539

(prices exclude VAT)
ELECTRONICS & WIRELESS WORLD MAY 1986

RESEARCH COMMUNICATIONS LTD.
UNIT 3, DANE-JANE ROAD, CANTERBURY, KENT CT1 3PP
TELEPHONE: CANTERBURY (0227) 456489

FREQUENCY CONVERTERS

In the range 30-1000 MHz.
TYPE 9006A 100MHz to 200MHz £35 + £2 P&P
TYPE 9013 Transmitting. With phase locked loop frequency control £295 + £5 P&P

GASFET RF PREAMPLIFIERS

Aimed to your specified frequency in the range 30-1000 MHz.
TYPE 9006 N F 0 0dB Gain 10-40dB variable. In the range 30-250 MHz £65 + £2 P&P
TYPE 9006FM As above. Band 96-108 MHz £65 + £2 P&P
TYPE 9002 Two stage Gaspht preamplifier N. P. 0.5 dB Gain 25 dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V £65 + £2 P&P
TYPE 9004 UHF two stage Gasht preamplifier. N. 0.7 dB. Gain 25 dB adjustable. High Q filter. £65 + £2 P&P

TYPE 9002

GASFET RF PREAMPLIFIERS

Aimed to your specified frequency in the range 30-1000 MHz.
TYPE 9006 N F 0 0dB Gain 10-40dB variable. In the range 30-250 MHz £65 + £2 P&P
TYPE 9006FM As above. Band 96-108 MHz £65 + £2 P&P
TYPE 9002 Two stage Gaspht preamplifier N. P. 0.5 dB Gain 25 dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V £65 + £2 P&P
TYPE 9004 UHF two stage Gasht preamplifier. N. 0.7 dB. Gain 25 dB adjustable. High Q filter. £65 + £2 P&P

TYPE 9006

GASFET RF PREAMPLIFIERS

Aimed to your specified frequency in the range 30-1000 MHz.
TYPE 9006 N F 0 0dB Gain 10-40dB variable. In the range 30-250 MHz £65 + £2 P&P
TYPE 9006FM As above. Band 96-108 MHz £65 + £2 P&P
TYPE 9002 Two stage Gaspht preamplifier N. P. 0.5 dB Gain 25 dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V £65 + £2 P&P
TYPE 9004 UHF two stage Gasht preamplifier. N. 0.7 dB. Gain 25 dB adjustable. High Q filter. £65 + £2 P&P

TYPE 9006

GASFET RF PREAMPLIFIERS

Aimed to your specified frequency in the range 30-1000 MHz.
TYPE 9006 N F 0 0dB Gain 10-40dB variable. In the range 30-250 MHz £65 + £2 P&P
TYPE 9006FM As above. Band 96-108 MHz £65 + £2 P&P
TYPE 9002 Two stage Gaspht preamplifier N. P. 0.5 dB Gain 25 dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V £65 + £2 P&P
TYPE 9004 UHF two stage Gasht preamplifier. N. 0.7 dB. Gain 25 dB adjustable. High Q filter. £65 + £2 P&P
<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12X66</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X65</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X63</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X62</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X61</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X60</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X59</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X58</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X57</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X56</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X55</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X54</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X53</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X52</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X51</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X50</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X49</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X48</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X47</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X46</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X45</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X44</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X43</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X42</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X41</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X40</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X39</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X38</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X37</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X36</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X35</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X34</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X33</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X32</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X31</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X30</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X29</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X28</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X27</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X26</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X25</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X24</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X23</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X22</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X21</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X20</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X19</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X18</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X17</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X16</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X15</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X14</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X13</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X12</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X11</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X10</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X9</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X8</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X7</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X6</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X5</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X4</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X3</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X2</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>12X1</td>
<td>1</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Note: The table above lists various components and their respective quantities and prices. The table is based on the image provided.
The Archer Z80 SBC

The SDS ARCHER — The Z80 based single board computer chosen by professionals and OEM users.

- High quality double sided plated through PCB
- 4 Bytewai memory sockets — upto 64k
- Power-fail and watchdog timer circuits
- 2 Serial ports with full flow control
- 4 Parallel ports with handshaking
- Bus expansion connector
- CMOS battery back-up
- Counter-timer chip
- 4 MHz. Z80A

OPTIONS:
- SDS BASIC with ROMable autostarting user code
- The powerful 8k byte SDS DEBUG MONITOR
- On board 120 / 240 volt MAINS POWER SUPPLY
- Attractive INSTRUMENT CASE — see photo.
- 64k / 128k byte DYNAMIC RAM card
- 4 socket RAM — ROM EXPANSION card
- DISC INTERFACE card

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

CIRCLE 18 FOR FURTHER DETAILS.

5.0V 1.0A PSU

- SPECIAL OFFER
- HI-SPEC TRANSFORMER TO BS415
- LINEAR REGULATED PSU WITH 5v TRIMPOT
- EX STOCK — DIRECT FROM MANUFACTURER
- TOROID FITTED THERMAL FUSE
- OUTPUT FUSE ON PCB

£11.50 EACH P&P
INC. + £1 VAT
ALLOW 14 DAYS FOR DELIVERY.

Make cheque (crossed) or P.O for £12.50 payable to:—
ST IVES WINDINGS LTD.
POST TO:—
ST IVES WINDINGS LTD
4 Edison Road, Industrial Est.
ST IVES CAMBS. PE17 4LT
Tel: 0480 62978
TELEX 826717 REF 110

CIRCLE 14 FOR FURTHER DETAILS.

RUGBY TIME?

MSF CLOCK IS EXACT

- 8 DIGIT display of Date, Hours, Minutes and Seconds.
- SELF SETTING at switch-on, never gains or loses, automatic GMT/BST and leap year, and leap seconds.
- EXPANDABLE to Years, Months, Weekday and Milliseconds and use as a STOPCLOCK to show when something happened.
- COMPUTER or ALARM output also — parallel BCD (including Weekday), accurate minute and second pulses and audio to record and show time on playback.
- DECODES Rugby 60KHz atomic time signals, superhet receiver (available separately), built-in antenna, 100Km range.
- LOW COST fun-to-build kit (ready-made order) with receiver.
- ONLY £59.90 includes ALL parts, 5 x 8 x 15 cm case, pcb, by return postage etc and list of other kits. TIME RIGHT.

CAMBRIDGE KITS
45(WE) Old School Lane, Milton, Cambridge, Tel 660150

GOOD NEWS
FOR S100, V.M.E., IBM, APPLE & PCB USERS

FULCRUM (EUROPE) LTD

Distribute and technically support over 180 different board levels products
Select from manufacturers like
- MACROTECH INTERNATIONAL CORP.
- ADVANCED DIGITAL CORP.
- ACKERMAN DIGITAL SYSTEMS
- INNER ACCESS CORP.
- COMPUTOP
d- I/O PRODUCTS CORP.
- INTERCONETNTAL MICROSYSTEMS
- EARTH COMPUTERS INC.
- ILLUMINATED TECHNOLOGIES INC.
- INTEGRATED MICRO PRODUCTS
- JUHEL
- JEPPEL SYSTEMS ELECTRONICS LTD.
- TAPPOL TECHNOLOGY PLC.
- DATA SYSTEMS CONSULTANTS
- CLASSIC TECHNOLOGY CORP.

CALL US ON (0921) 828763

VALLEY HOUSE, PURLEIGH, ESSEX CM3 6HQ. ENGLAND
TELEX 946240 CWEASY G — Easylink I.D. 18010455

CIRCLE 75 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD MAY 1986
ELECTRONICS

Software listings

- **Smorgasbord**
- **Quadcolour Viside**
- **Visicalc Manual**
- **Apple Ill System Software**
- **Softcard**
- **Vlasak Sales Workbench**
- **Forth Systematics Purchase Ledger**
- **Think Supercalc**
- **Multiplan PFS**
- **PFS MailList Manager**
- **ASCII Express**
- **Apple Access Ouickfile**
- **SOFTWARE**
- **Dacom Buzzbox Modem**
- **Emudec Box**
- **Plan 2000**
- **Cluster Program**
- **Cluster Cable**
- **Luxor Grappler**
- **Paradise Megaplus Serial Option**
- **Hypercard**
- **Graphix Plus Card (Graphics Plus II)**
- **Hypercard**
- **Megaplex Serial Option**
- **Paradise Multidisplay Card**
- **Quadrocard Card**
- **Simpalamics 54K**
- **Vis On Mosaic**
- **Grappler + Parallel**
- **Laser Hi-plus colour monitor**
- **Cluster Adapter IBM PC**
- **Cluster Cable Kit IBM PC**
- **Plan 2000 Network**
- **Emulex Disk**
- **Dacom Buzzbox Modem**

HARDWARE

Phone number

01 247 4060

Price £

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quanta 1/2 Height Drive</td>
<td>65</td>
</tr>
<tr>
<td>Graphix Plus Card (Graphics Plus II)</td>
<td>60</td>
</tr>
<tr>
<td>Hypercard</td>
<td>80</td>
</tr>
<tr>
<td>Megaplex Serial Option</td>
<td>10</td>
</tr>
<tr>
<td>Paradise Multidisplay Card</td>
<td>85</td>
</tr>
<tr>
<td>Quadracard Card</td>
<td>35</td>
</tr>
<tr>
<td>Simpalamics 54K</td>
<td>32</td>
</tr>
<tr>
<td>Vis On Mosaic</td>
<td>26</td>
</tr>
<tr>
<td>Grappler + Parallel</td>
<td>55</td>
</tr>
<tr>
<td>Laser Hi-plus colour monitor</td>
<td>85</td>
</tr>
<tr>
<td>Cluster Adapter IBM PC</td>
<td>65</td>
</tr>
<tr>
<td>Cluster Cable Kit IBM PC</td>
<td>70</td>
</tr>
<tr>
<td>Plan 2000 Network</td>
<td>400</td>
</tr>
<tr>
<td>Emulex Disk</td>
<td>5</td>
</tr>
<tr>
<td>Dacom Buzzbox Modem</td>
<td>40</td>
</tr>
</tbody>
</table>

SOFTWARE APPLE

Price £

- Quickfile II: 40
- Apple Access: 11
- ASCII: 24
- The Dictionary: 12
- MailList Manager: 25
- PFS: 32
- PFS Graph: 30
- PFS Report: 30
- PFS Apple: 20
- Multifiler: 32
- Superlantis II: 49
- Think Tank II: 35
- Systematics financial applications: 50
- Systematics General Ledger: 50
- Systematics Purchase Ledger: 50
- Fort: 36
- Workbench: 40
- Exas I System Software: 80
- Viasat Manual: 10
- Video: 10
- Pascal: 10
- Drill: 20
- Bulkfile (Management info): 10
- Quickfile: 10

SOFTWARE IBM

Price £

- DMA 6201 + BUX - IBM: 110
- VDT Emulation: 10
- OPM 91: 10
- Cobol Compiler - IBM: 100
- APL Program: 30
- Microsoft BASIC Compiler: 136
- Microsoft Basic Compiler: 72
- Microsoft Basic Int/Ext: 68
- PFS File - IBM: 30
- PFS Graph - IBM: 40
- Cardbox - IBM: 40
- PC Blasto: 40
- D: Graph: 40
- PC Tutor Intro to DOS: 10
- System Build Budget: 10
- System Build CashFlow: 10
- System Build Multi Regress: 14
- System Build Mail Shop: 14
- System Build Project: 14
- System Build Sales F/Cast: 14
- EasyPhi: 16

PHONE NOW! STOCK IS STRICTLY LIMITED

First come—first served!

CIRCLE 8 FOR FURTHER DETAILS.

VERSATOWER:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V, part 2; 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design, quality and reliability.

Suitable for mounting equipment in the fields of: Communications Security surveillance — CCTV Meteorology Environmental monitoring Geographical survey Defence range-finding Marine and air navigation Floodlighting Airport approach lighting

Further details available on request.

STRUMEC ENGINEERING LIMITED
Portland House, Coppice Side, Brownhills
Walsall, West Midlands WS8 7EX, England
Telephone: Brownhills (0543) 374321
Telex: 335249 SEL G.

HIGH PERFORMANCE LOGIC ANALYSER

The TA3000 is a high performance modular logic analyser which interactively combines up to 16 channels of 100MHz Timing analysis with up to 96 channels of 20MHz State analysis controlled by a powerful multi-level conditional trigger-trace sequencer.

- Flexible, expandable, modular design
- Up to 112 channels
- 100MHz Timing, 20MHz State
- Multi-level conditional triggering
- State/Timing cross-triggering and correlation
- Easy to use softkey control
- CP/M PLUS® operating system
- IEEE: 488, RS-232 and parallel printer interfaces

For further information contact:
Thandar Electronics Ltd., London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ.

CIRCLE 56 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD MAY 1986
The fabulous TELEBOX, an INVALUABLE MUST for the owner of any video monitor with synchronising colour. Manufactured by a major UK Co., it is a TOP QUALITY, stand alone UHF filter, which allows direct connection to a B/W/colour video monitor to remove the most troublesome sync fluctuations. It is ideal for dual view, when monitoring channel sound or VCR. The TELEBOX even has an integral wide audio amplifier to drive your headphones or HI-Fi system etc. The TELEBOX comes complete with instructions and a full 15 year guarantee.

HELPFUL INFORMATION

- **Type:** TELEBOX
- **Delivery:** 3-5 working days
- **Price:** £22.50
- **Free Postage:** £1.00
- **Full Instructions:** Included
- **Guarantee:** 15 Year Guarantee

For orders please telephone: 01-679 1888

For queries please telephone: 01-679 1888
SUPER DEAL! NO - SUPER STEAL
THE FABULOUS 25 CPS "TEC STARWRITER"

Made to the very highest spec, the TEC STARWRITER! FP1500-25 features a very high spec, 25 cps, 8 pin daisy wheel, and comes from the source of quality. Micro-processor type with a brushless DC motor. DIABLO/GUE command compatibility and full control via CP/M WORKSTAR ETC. Many other features include bit-directional printing, switchable 10 or 12 pitch, full width print, 12 mm paper handing with up to 163 characters per line, roller for single sheet or continuous paper, internal buffer standard, RS232 serial interface with handshake. Supplied standard: BRAND NEW with 90 day guarantee and FREE daisy wheel and dust cover. ORDER NOW or contact sales office for more information. Extra daisy wheels £10.00, Jobber card £7.50. Traction Feed £140.00. Sparry daisy wheel £3.50. (UK Mainland) £10.00.

NOW ONLY £499 + VAT
DIY PRINTER MACH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - printer - digitizer etc. entirely to your own specification. The printer mechanism is supplied ready built, aligned and pre tested but WITHOUT electronics. Many features including dot matrix, phosphor drum, bidirectional, optical shaft position encoder, NINE needle head, 2 x two phase 12V stepper motors for carriage and paper control, 95 F. Paper plate, etc. enough to allow a basic printer design allowing the user to design his own printer to suit his own requirements. Overall dimensions 40 cm x 12 cm x 21 cm.

DIAG NO 1 AT A FRACTION OF THE COST £49.50 + £4.50.

TELETYPE ASR33 DATA I/O TERMINALS

Industry standard, combined ASCII/110 baud printer, keyboard and 8 hole paper tape punch and reader. Serial interface RS232 serial interface, ideal as cheap high copy unit or tape prep for CNC and NC machines. TESTED and in good condition. Only £250.00. floor stand £10.00. Carr & Ins £15.00.

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTELC Corporation. Often seen in major hotels printing up to the minute News and Financial Information, the unit operates on 5 UNIT BAUDOT CODE from a Current loop. RS232 TEL interface. May be connected to your micro as a low cost printer or via a simple interface and letter to any communications receivers to enable printing of worldwide NEWS, SCIENTIFIC and N.C.S. services are also available.

Supplied TESTED in second hand condition complete with DATA, 50 and 100 series rolls, hand paper feed, large paper feed and 10 x 100's of other VDU and spare parts.

TYPE AE11R 50 Column, ORIGINAL ONLY£9.95 Spec.
TYPE AE11R 72 Col. £16.00

TYPE AH11R 50 Col. £15.00

Compact and Insurance £7.50

TELECOMMUNICATIONS

A massive purchase of these desk top printer terminals. Retails originally £95.00 each to offer these quality 30 or 120 cps printers at a SUPERB PRICE, above our original cost of over £1000. Unit comprises of full QWERTY, electronic keyboard and printer mech with print face similar to correspondingly quality typewriter. Variable forms trick unit enables full width - up to 135. 120 columns paper, parallel or serial, case standard RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon, adjustable baud rates, power switch, variable form feed, paper level indicator, plus many other features. Supplied complete with manual. Guaranteed working price £325.00. SPECIAL PRICE GE1200 120 cps £175.00. Tested GE600 £95.00 Optional floor stand £12.50. Carr & Ins £15.00.

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents include Transistors, digital diodes, IC's, tracs, diodes, bridge recti, etc etc. All devices guaranteed. Brand new full spec with manufacturers markings, full guarantee.

PRICE £2.95 100+ £5.15

TEL 14 15 Series A Gigantic purchase of an "across the board" range of 47 TEL series IC's, transistors, diodes, bridge recti, etc. for immediate sale. This 'grab bag' at a price which is well below the manufacturers list price normally cost to buy. Fully guaranteed all IC's full spec. £100+ £8.60, £200+ £12.30, £300+ £19.50

MAINS FILTERS

CUTRE those unnerving hang ups and data glitches caused by mains powered equipment with professional quality filters. SDSA match box size up to 1000 watt 240 V Load ONLY £3.50. PLUS £3.50. Completely encapsulated unit with 3 pin plugged fitted socket up to 750 watts ONLY £9.95.

EPROM COPIERS

The amazing SOFTY 2 The Complete Toolset for copying, writing, modifying and listingEPROMS of the 2516, 2716, 2725, 2732, 12 pin sockets. Further functions include complete keyboard, cassette interface, serial interface, R/F modulator ZIF socket etc £2.50.

"GANG OF EIGHT" Intelligent Z80 controlled 8 gang programer for ALL single 5v (5PROMS up to 27128). Will copy 27128 in ONLY 3 MINUTES. Internal LCD display and checking routines for IDPOF operation. Only £395.00 + £15.00.

"GANG OF EIGHT PLUS" Same spec as above with internal checksum function for down line loading data from computers etc ONLY £445.00 + £13.00.

Data sheets on request.

COOLING FANS

Keep your hot fans, Tractors, ETRI COOLING FANS ETRI MUFFIN- CENTAUR- MUFFIN- CENTAUR-3AR dimensions 120 x 120 x 25. Measures 5" x 5" x 10". ELECTRICAL and PHYSICAL DATA for brushless servo motor. £185.00

3000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSPORTERS, TEST EQUIPMENT, CABLES, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VIDU'S, PRINTERS, POWER SUPPLIES, OPTICS, KEYBOARDS etc etc. Give us a call for your spare part requirements. Stock changes almost daily.

Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH.

CIRCLE 70 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD MAY 1986
by J.D. Last, Ph.D., M.I.E.E. (GW3MZV)

New directions for marine d/f

Marine d/f is dying, long live marine d/f.

Although radio direction-finding is the oldest and simplest form of radio navigation, it is still the one installed on the greatest number of ships, and aeronautical radio-beacons outnumber all other radio navigation aids for aircraft. The technology of direction-finding, developed before the first World War, has been changing rapidly, the latest receivers employing microprocessor and data-processing techniques. In parallel with these developments in the technology, an inter-governmental radio conference held in Geneva in 1971 and 1972 agreed radical changes in the transmission formats of maritime radio-beacons. These open the door to the development of a new generation of receivers which promise to revolutionize radio direction-finding.

Alongside the most modern techniques, the earliest method of direction-finding — turning the aerial by hand until the signal received is at a minimum and then noting the direction in which the aerial is pointing — is still in widespread use. Automatic direction-finders employ a similar technique and a pointer shows the bearing of the transmitter relative to the heading of the ship, as in Fig. 1. From this relative bearing and the magnetic heading measured by a compass, the bearing of the radio-beacon is calculated and a line of position drawn through the location of the beacon on a chart. Two or more such lines of position should intersect at the receiver.

Maritime radio-beacons are simple, low-frequency, non-directional transmitters installed at coastal sites and on light-vessels. Figure 2 shows some of the beacons which serve the English Channel. The frequencies, power levels and transmission standards of the more than 500 beacons in Europe and North Africa are organized under an old intergovernmental agreement — the Paris Plan of 1951. The prime object of the Paris Plan was to minimize interference between radio-beacons, but in achieving this laudable aim the Plan has seriously inhibited the development of radio direction-finding. To see how this has happened — and how the new Geneva agreement has freed the logjam — we must look at the way the Paris plan attempted to squeeze a quart of beacons into a pint-pot of spectrum.

The marine radio-beacon frequency band, from 285 to 315kHz, is divided into just 14 channels, spaced 2300Hz apart (top of Fig. 3). However, so many beacons must share each channel that it is only possible to space co-channel groups sufficiently far apart to achieve about 14dB of the 30dB protection ratio on which the Plan is based.

The remaining 16dB of protection is obtained by amplitude modulating the signals of each group of beacons with a different audio tone, one of a set of tones between 354 and 1052Hz. The idea is for operators to measure bearings by turning their receiving ailerons until they hear a null in the tone of the wanted beacon, all interfering tones being carefully ignored — the 'audio null' method of direction-finding.

Beacons may be identified by the callsigns which they transmit in Morse code or by the unique combination of carrier frequency, tone and time-slot.

When the systems was designed, some 35 years ago, radio direction-finding was the principal radio navigation aid for ocean-going and coastal ships. Installation was made mandatory under the Safety of Life at Sea Convention for all ships of more than 1600 tons. The receivers on these 'Convention ships' must meet type-approval specifications based on the Paris Plan. But ironically, the great majority of these receivers are operated as...
automatic direction-finders, automatically seeking the null direction of the carrier signal — not the modulation — so the interference protection provided by the audio tones is lost. Moreover, these receivers are used much less frequently nowadays because the ships carry radar, Decca or satellite navigation systems which give more accurate fixes, automatically and continuously. So the people for whom the system was designed don’t often use it — and when they do they don’t use it as it was designed to be used!

Instead, the main customers of the radio-beacons are the pleasure-craft sailors — relatively rare birds in 1951 but found in large flocks now. They generally carry few other electronic navigation aids, so radio direction-finding — still the cheapest form of radio-navigation — is very important to them. It has been estimated that more than 70,000 d/f receivers were sold by UK manufacturers in the decade up to 1983, principally to pleasure-craft sailors.

Small-craft receivers don’t have to be type-approved nor conform to the Paris Plan. This has freed designers to be highly innovative in developing receivers for this large market, which demands ease of operation, low cost and high performance — preferably simultaneously!

For example, one popular receiver has only 10% of the volume, 0% of the weight, 4% of the cost and 0.14% of the power consumption of a Convention ship receiver! Though a few small craft receivers are cheap and nasty, at least one claims to meet the type-approval specification for convention ship receivers.

Many small-craft receivers are hand-held. They include a built-in ferrite-rod aerial, a meter or headphones to show the signal null as the receiver is rotated and a magnetic compass to measure the bearing of the beacon when the null has been found. A hand-held receiver appears deceptively simple; in fact it contains a frequency synthesizer for channel selection and a precise clock to identify the transmission time-slots, since the most users cannot read the Morse code identification.

The most sophisticated small-craft direction-finders are very advanced. Taking bearings under microprocessor control and storing the positions of beacons in memory, they calculate the ship’s position and display it as a latitude and longitude or even as a bearing to steer and distance to run to the next viewpoint.

But all these receivers, just like the Conventional ship ones, measure bearings using the carrier only and ignore the audio modulation. So they all dispense with the protection provided by the audio tones. This is one of several ways in which the radio-beacon system, which now looks very old-fashioned in concept, is out of step with its users (and their receivers). Other problems include a shortage of channels which is seriously inhibiting the development and improvement of the service, especially in areas of dense shipping movement. But, of course, the channels are few because the transmissions are wide — wide enough to accommodate the modulating tones which the users ignore!

The six-minute transmission sequence is also very unpopular. Navigators want frequently-updated position fixes with no ‘skew’ errors due to the movement of the ship in the intervals between taking the two or more bearings used to plot the fix; a ship travelling at 20 knots may sail a nautical mile in the interval between measurements on beacons in the same group. A few beacons generally low-powered ones — operate continuously at present; it would be desirable for all beacons to do so or to be in groups of three at the most.

The Paris Plan actually obstructs the development of the art. For example, although it is now possible to measure and record the bearing errors due to the ship’s structure and...
ウンル

Fig. 5. Under the new Plan, some radio-beacons will be in groups of three, although many will transmit continuously on individual frequencies. The Morse transmissions are retained and short data transmissions are introduced at one-minute intervals. New 'high-tech' direction-finders will use these to measure bearings and read the beacons' identities, locations and ranges.

to apply corrections automatically, the Paris Plan requires the errors to be plotted and corrections applied by the operator!

These criticisms of the present system — together with a call for much greater automation of receivers — have led to new radio-beacon transmission standards being agreed: in April 1982 the Geneva Plan of 1985 will replace the Paris Plan of 1951.

The new Geneva plan totally abandons the use of modulating tones. The resulting narrow-band transmissions can be spaced by only 500Hz, so creating 62 channels, in place of the previous 14, in a slightly expanded band (bottom of Fig. 3). Although these are sufficient channels to do away with the grouping of beacons and allow every beacon to operate continuously without mutual interference, some national administrations will continue to group many of their beacons. They argue that navigators find it more convenient to receive beacons in the same area on a common frequency. In no case, however, will there be more than three beacons to a group.

At first glance, the transmission sequence in Fig. 5 looks remarkably little altered: the long transmissions have been retained — though slightly shortened — for the use of hand-held receivers. The Morse code identification is still there too, but the carrier is keyed instead of the modulation. This means that receivers must have beat-frequency oscillators (b.f.o.s) but most already have them to receive certain (A1A) aeronautical radio-beacons.

In fact, the new transmissions are compatible with the old receivers, even though the channels have been packed so much more tightly together. Most small-craft receivers already have very narrow bandwidths, since they require only the carrier for direction-finding. The Geneva Plan protects the older Convention ship receivers which have wider passbands by not allocating adjacent channels to beacons in adjacent areas. So the existing receivers should take the changes in their stride and no-one is forced to buy a new receiver.

The 'revolution' is in the short transmissions, shown in Fig. 5, which are radiated at one-minute intervals and allow a new generation of 'high-tech', automatic, processor-controlled receivers to be developed. Beacons which are grouped in threes will each transmit rapidly in turn so that these high-tech receivers can take and store sets of bearings with negligible skew errors at one-minute intervals.

But the short transmissions contain provision for something more: the identity, latitude and longitude of the beacon transmitted in digital form. Using this information, together with the measured bearings, the receivers will compute the ship's position and show it in digital form or on a moving map display. The data transmissions will use narrow-band frequency-shifting keying — either conventional f.s.k. at 100 baud, +/-85Hz shift (similar to the marine telex system) or minimum shift keying (m.s.k.) at 40 baud. The choice between f.s.k. and m.s.k. will be made by a World Administrative Radio Conference in 1987.

Although these data transmissions are not essential to high-tech receivers, their great value is in providing rapid and immediate access to updated information. Navigators are supposed to note and record all changes of radio-beacon parameters — a tedious task. Because the data transmissions will make this process more certain — and safer — to several administrations, including the UK, are planning to introduce them as soon as the Geneva Plan comes into force.

The short transmissions with their data signals will lead to a major advance in radio direction-finding, but the possibilities start to get really interesting when one thinks of putting a processor into the tuning of the receiver — so creating a scanning receiver which can step through the beacon frequencies. When first switched on, the receiver would have no idea of its position. It would locate itself by scanning through the radio-beacon channels for a period of three minutes, building up a record of the strengths and signal-to-noise ratios of all the signals received. The strongest transmissions would then be identified either by receiving their data transmissions or by comparing the frequencies and time-slots of the transmissions with radio-beacon data stored in the receiver. The bearings of these beacons and the ship's heading would also be measured. Then, using all this data, the processor would calculate the ship's position, taking into account the bearings of two beacons but weighting the contributions of all nearby beacons in accordance with their signal-to-noise ratios.

The information about each beacon which is transmitted or stored will also contain its 'protected range' — the area within which the Geneva Plan ensures that its signal is at least 15dB stronger than that of any other beacon which shares its channel. This information will allow the processor to check that the ship is within the protected ranges of the beacons it uses to calculate its position.

Once the receiver has obtained an initial fix, it continues to track the vessel, displaying its position continuously. The simplest receivers would recalculate position coordinates

ELECTRONICS & WIRELESS WORLD MAY 1986

Acknowledgements
The author acknowledges the advice of Mr F.E.J. Holden of Trinity House Lighthouse Service and Mr W. Paterson of the Northern Lighthouse Board in the preparation of this article.

References
each time a bearing was measured. Cleverer receivers would use a Kaiman filter to model the dynamics of the ship, rapidly identifying and displaying the position estimates continuously on a moving map display. Position inputs from other navigation receivers could be combined to give an integrated navigation system.

So the new transmission standards make possible the direction-finding receivers which operate wholly automatically, providing the navigator with a continuous view of his position. No such receivers exist, of course, and it is sensible to question when—or even whether—they will be able to create. There is no technique that is not already known and understood or which is especially expensive—as ever in electronics, the greater the role of the processor, the lower the production cost. The most advanced direction-finders already compute positions automatically, using beacon data typed in by the operator who must also specify the beacons to be used. The new transmissions simply remove the restrictions on the further development of such receivers, providing automatic input of beacon data, automatic selection of beacons and easier identification.

If there is no technical obstacle to the development of these high-tech receivers, will their development be plain sailing? Pessimists would say not—pointing to the failing costs and ready availability of small-boat receivers for the hyperbolic navigation systems (several for Decca Navigator alone), the rapidly growing use of satellite receivers and the promise of NAVSTAR. "D/F?, they say, "is dead!"

But D/F has been a dying for years and, while doing so, mad-deningly continues to grow! There are now more radio-beacons and more receivers than ever before. It has been estimated by the International Association of Lighthouse Authorities (IALA) that throughout Europe, a quarter of a million people depend on direction-finding as their primary means of radio navigation, while some 57% of Convention ships report that they still use D/F.

Part of the reason is that, while Decca and LORAN-C are only available in parts of the world (not by any means in all of Europe), while present satellites give quite infrequent position fixes with significant errors due to the vessel’s movement and NAVSTAR is subject to delays and fiscal cut-backs, radio-beacons are available in both advanced and developing countries. They are operated in each state by local administrations, not by overseas government agencies or companies; their technology is simple and operating costs low.

One or two possible glimpses of the future have been given by the French: they have suggested that radio-beacons may not be used as much by now as metamorphosed into something new. For some years certain French radio-beacons have transmitted 'differential Omega' data. Omega is a world-wide, v.f., hyperbolic navigation aid. Because of periodical changes in the ionosphere, Omega receivers experience position errors which are substantially constant over large areas. So the errors measured at fixed stations on land are broadcast as ‘differential Omega corrections’ and used to correct the fixes of marine receivers in the same area. The US Coast Guard are likewise proposing to use radio-beacons to broadcast differential data to improve the accuracy of fixes made using the proposed NAVSTAR (GPS).

In addition, the French have developed and installed a hyperbolic radio navigation system — RANA — operating in the radio-beacon frequency band and IALA are studying the possibility of precisely synchronising the carriers of groups of beacons to form hyperbolic systems. These beacons could be used not only for good old-fashioned direction-finding but simultaneously for precise hyperbolic navigation to accuracies of a few metres!

Whether that will happen or not I do not know. But I suggest that the next few years will prove interesting and that, in its death throes, radio direction-finding will make far more waves than many suspect.

FEEDBACK

BLACK BOXES

The magic of amateur radio still exists and, in some ways, with greater power, despite the proliferation of black boxes. High equipment costs do present problems to newcomers to the hobby and to the image amateur radio presents to the public.

Outsiders look upon amateur radio as ‘more expensive CB’ and turn away. People generally are unimpressed with communications technology; crystal-clear colour TV coverage of cricket in Australia or the latest pictures from Uranus are taken for granted.

There is nothing wrong with radiation, but the use of black boxes, however expensive. Japanese equipment manufacturers release new models every year and people buy them. It must be fun being wealthy! As far back as I can remember, big powerful stations have existed in places such as Kilowatt Alley, but the casual listener is not to know how those stations are qualified for this expensive equipment. I know that many of them have started on the factory floor, worked their way up through all aspects of electronics development and manufacturing to retire as multi-national company directors. They are entitled to enjoy the amateur radio they can afford.

We have to accept that black boxes are and ever will be an established part of amateur radio. Thanks to new technology and producing technique, equipment now represents far greater value per pound earned than in the 1950s. But there is a very great deal that experienced amateurs can do to portray the existence of the low cost approach to our hobby.

These days, beginners come into amateur radio ‘backwards’, starting with v. or u.f. fm. with zero interference and no ‘need’ for internationally recognised operating procedures, then progress into h.f. and wonder why they hit them! The Black Box/Black Box causes problems in forcing one to start at v.h.f., where it is difficult to home brew gear, so one is compelled to buy. It might be better to have beginners introduced directly into h.f. where a valve oscillator/p.a. transmitter is within everyone’s reach.

In the reformative years experience short-wave listening are missing, so there is a great need for magazine articles, club lectures and shack visits, to fill the gaps in the amateur radio education process. Dealers need to advertise their black boxes in order to make a living; consequently magazines, including the RSGB Radcom, unavoidably present the expensive image that turns a lot of potential enthusiasts away from the hobby. So there is a need for as much exposure of e cheapo amateur radio as possible, such as construction information, QRP and SWLing.

Public interest can be roused. Try featuring Morse code communication in your club’s next appearance at the local hobbies exhibition or rally. You’ll be amazed how the public associates old up-down key technology with ‘sensible’ and responsible spectrometer c.w. decoder and v.d.u. make the interest even greater.

The future of amateur radio depends upon us making the most of black boxes and technical evolution vital interest in the basics of radio, communication and electronics.

Denzil S. Roden, G3KXF
Lancing
West Sussex

YES MINISTER

The letter from David Rudd of the Department of Transport (March 1986) well illustrates the capabilities of innovation and originality that our public servants have. The abdication of planned and responsible spectrum allocation in favour of the discredited monetarism of his current masters is a perfect though late demonstration of the supreme size of their purse! Do the “small latecomers” have bigger purses? If there are bad practices, stop them. In this regulation-ridden society I am sure that suitable regulations exist. If they too are out of date, I would be happy to offer my services, but to pretend that spectrum renting will solve abuses generated by management deficiencies is an arrogance.

Another arrogance is the pretense that the present secret practices of allocation would somehow be ended by the transfer of money. Is it not possible for administrators to display their competence in public? The dissemination of claptrap through the media of papers, lectures, letters etc. still leaves it as claptrap; it cannot be mistaken for a display that would bring any credit to the propagator.
I will always be indebted to the Department of Transport for defining “arcane” for me, but now they have no buses to run could they leave the spectrum alone? It may well need attention but surely not from them.

D. E. Kershaw
Marton
Blackpool
Lancashire

ELECTROLYTICS AND DISTORTION

I have read with interest, in February 1986 & WW, letters from White and Self, on the subject of electronic components and Mr Self’s subjective quality of audio amplifiers.

White seems to sit on the fence and invoke a whole host of variables along the record/replay chain to explain differences in the final sound quality. Self uses a very strange logic to ‘prove’, that because his and others’ tests on capacitors show only minor improvements from the ideal, then somehow they cannot affect sound quality. Self argues that the proponents of ‘better capacitors’ have dreamt up ‘new effects’, which Self argues cannot exist without ‘a theoretical mechanism for the operation of the effect that is logically consistent if not actually plausible’.

Does Mr Self genuinely believe that an implausible theoretical mechanism is of any value in furthering the present state of development of audio amplifiers? In the real world, a great many well liked and widely sold amplifiers, make extensive use of non-aluminium capacitors. Aluminium electrolytic capacitors are certainly the cheapest; hopefully manufacturers that use non-aluminium ones have a good reason for doing so.

Amplifier manufacturers tend to make more sales and therefore profit, when their amplifiers sound better than their competitors and I think Mr Self has given less credence to this fact and examine its implications.

Familiarity with a range of presently available amplifiers reveals that non-aluminium electrolytics are prevalent in very low level circuitry, in direct contradiction to Mr Self’s implausible depolarisation theory which predicts quasi-perfect behaviour from aluminium types at these tiny signal levels. I agree that these subjective observations should be confirmed by sensible tests and statistical analysis but I suggest that manufacturers have little to gain from this. It can be more properly explored in university research departments, if there are any left to do this work after current government cuts. Hopefully we may also see a capacitor model produced from measurements derived from low and high lamp levels, which will predict non-linearities of an audible proportion.

Mr Self knows of no mechanism whereby a microphone can be left intact and yet music ‘mangled’. There exists a phenomenon called phase distortion which can be of such a magnitude as to render a previously unidentifiable transmission over, for example, long unloading telephone lines. This is quite a serious distortion when one considers that speech, when infinitely clipped is still intelligible. Furthermore a linear low-pass filter, at say 100Hz, will not produce any harmonic distortion but can be said to modify music considerably.

From my present (unconfirmed) observations (a) aluminium electrolytics are the worst sounding capacitors commonly available and (b) by far-to-back aluminium electrolytics (which incidentally will not cyclically depolarise) are little, if any, better.

B. Powell
Common Elektrik
Stoke-on-Trent

VON NEUMANN

I was somewhat disappointed by the January article (p.6) “Von Neumann’s elephants.” There are several statements with which I would take issue. Computable Numbers is certainly a landmark paper in the history of numerical methods. However, modern computers did not start to appear until some years later.

The machine described in Turing’s paper does not have a Von Neumann architecture. The program quite clearly resides in the “head” in the form of “configurations”, which approximate to the routines being executed at any moment.

Furthermore (though I am open to correction on this) I believe that the machines on which Von Neumann actually worked did not have subroutine capability, being effectively large calculators. There is a case to be made for all modern computers being derived from the Babbage architecture and the machines designed and worked on by Turing and others after 1945. Turing’s major claim to fame, I submit, is the profoundly practical nature of his genius, and the fact that (unlike other mathematicians) he was prepared to teach himself the electronic engineering he needed to make his proposals concrete.

RISC computers are one thing, and the data-driven architectures alluded to in the article are quite another. The basis of the RISC principle is the building of fast machines by limiting the instruction set to instructions and addressing modes that can be accessed without going to a complex microcode, while providing a partly exposed microarchitecture that provides good hooks for complex operations. RISC machines typically employ numerous registers to speed context switching but this is not essential.

The Pyramid superminicomputer and the new Acorn ARM processor is an example of the type. The TMS32010 DSP uses RISC techniques to such effect that its execution speed is comparable with bit-slice designs. RISC machines do not avoid the Von Neumann bottleneck, however; in fact they may actually worsen it in one respect. Microcoded processors typically do not use the memory with great efficiency (in fact the old 6502/6809 designs leave the bus dead for half the memory cycle time). It is thus possible to have multiple processors sharing some set of utilities. A RISC machine with highly efficient bus utilisation cannot share the bus without having to wait for program and data.

I may suggest a slightly different analogy, the new generation of 32 bit c.p.u. resemble Rolls-Royces and the RISC processors resemble racing motorcycles. (The Intel 386, with an enormous array of bells and whistles, perhaps more closely resembles one of those Cadillacs modified for desert oil but this is getting rather silly.) I suspect choice is largely a matter of market forces or personal preference. The Transputer is apparently a way out of the bottleneck — it has serial links between processors to relieve the bus overhead problem — but consideration shows that some time must be consumed in interprocessor communication. No doubt Imonos have looked very hard at the trade off between parallel processing costs and sophisticated architecture and processor-to-processor messaging, but my own feeling is that the Transputer architecture has as its major virtue the ease of connecting transputer processors rather than the avoidance of bus limitations.

One of the worst bottlenecks in computing is the blocking store. The problem is that where users share a large data base, any modification made by one must reach all. Reductions in the cost of semiconductor memory do not necessarily help this problem since the ability to store very large amounts of data in ram transfers the bottlenecks from disc to ram without changing its nature. My own pessimistic conclusion is that it is the field of mass storage peripherals that we need a revolution — not in c.p.u.

Historically, peripherals have always been the performance limiters, especially when one considers total process time rather than c.p.u. execution time. Anybody who doubts this should reply honestly to one simple question; last time your driving licence was updated, how long did it take?

Martin Bacon
Taunton
Somerset

CLASS B OUTPUT

There would seem to be very few new circuits under the sun. A circuit similar is that described by Mr Nalty in ‘Circuit Ideas’ (February 1986) was previously published by Mr Edwins in Hi Fi News and Record Review, October 1971. This circuit differed only in detail from that submitted by Mr Nalty; in the Edwins circuit three diodes were used to generate the bias voltage.

Having one of these circuits some ten or twelve years ago, and used it ever since, I would state that the quality of sound it helps produce is significantly superior to the traditional class B circuit. When first built the circuit was extensively tested for distortion both at high and low signal levels. The only conclusion reached was that better measurement equipment was required, as it was discovered that what was being measured was the ‘distortion’ output of the oscillator. The equipment used was manufactured by Radford and was of a very high standard — type numbers have been forgotten.

R. T. Wrigley
Ware
Hertfordshire

MATHS PUSHERS

I feel that Ivor Catt is aiming at the wrong target with his polemic, in recent issues, against mathematics and mathematicians. I would like to take one example, a topic which he has touched on several times over the years in WW: the use of Fourier series.

Mr Catt has held up to scorn the assertion of a certain FRS that “reality is made up of sine waves”, and has pointed out that Fourier expansions are no more than a computational tool, sometimes useful and sometimes not. It is mere fantasy to suppose that the description of a single square pulse as a continuous spectrum of sine waves has a better claim to reality than the pulse itself. Fantasy becomes absurdity when one contemplates
the action on such a pulse of a perfect low-pass filter (which is defined by what it does to sine waves): its output must begin before the leading edge of the pulse arrives.

All this is true. But is it the fault of mathematicians? Around ten years ago I was studying pure mathematics at Edinburgh University. I remember in the course on partial differential equations, the lecturer pointed out (as Mr Catt has done in your columns) that the most general solution of the wave equation:

\[\frac{\partial^2 u}{\partial t^2} = \frac{1}{\rho^2} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \]

is \(u = f(x + t) + g(x - t) \), for arbitrary (sufficiently differentiable) functions \(f \) and \(g \), and not, as is sometimes supposed, some complicated Fourier series. Who, then, are those people who believe that “reality is made of sine waves”? I went to the library of the university where I currently work, and looked at a random selection of books on physics on the mathematics shelves. All of them gave the general solution, and those books which treated Fourier expansions at all did so only at a much later point. Then I looked on the shelves for physics and engineering. Out of ten books, only two gave the correct general solution. The remainder all dove straight into separation of variables, superposition and Fourier transforms, and never mentioned the general solution at all. It seems that physicists and engineers do not suffer from too much mathematics, but too little, and too little understood.

Richard Kennaway
School of Information Systems
University of East Anglia
Norwich

ENERGY TRANSFER

There is no problem with electric current theory as questioned by Mr Faint (Letters, March 1986). The resistance of a wire is inversely proportional to cross-sectional area at zero frequency (d.c.). Without getting bogged down in EM theory (I, Shaw, Theory H and I,or Catt’s Theory C) it is broadly true to say that a time-varying EM field cannot exist inside a perfect conductor and that when it penetrates a conductor, but not perfect conductor, its magnitude drops off as the depth increases. A good analogy is that it is ‘seeping’ into the conductor, and the rate of seepage depends on the conductivity and the frequency.

The skin depth is a convenient measure of this rate of seepage. Since the drop off is exponential, it is useful to define the skin depth as the depth at which the magnitude of the field has dropped to 1/2 or \(\pi \) of its surface value. The current is not confined to a surface region as Mr Faint perhaps thinks, and the skin depth is not a magic depth below which current cannot penetrate.

At high frequencies, the skin depth is indeed small — a few micrometres at v.h.f., but even at 50Hz the skin depth is only about a centimetre. There is no point, then, in making power cables more than a few centimetres in diameter, as the central portion would not carry much current. I am led to believe that this is why the cables on overhead transmission lines are often bunched as a group of four small cables rather than one larger one.

David Gibson
Broadstone
Dorset

MAXWELL’S EQUATIONS

Maxwell’s equations are merely more precise formulations of the following phenomena, verifiable by experiment:

1. Changes in the spatial distribution of an electric field are attributable to a magnetic field which changes as a function of time.
2. Changes in the spatial distribution of a magnetic field are attributable to an electric field which changes as a function of time.

Maxwell’s equations merely state the empirically observed phenomena described above in the “shorthand” notation of vector analysis, a particular branch of mathematics which lends itself very nicely to the expression of spatial and temporal changes in a symbolic form and thereby avoid that cumbersome and imprecise sentences written above.

In my opinion, Maxwell’s great contribution lies not in any inherent truth or mystical quality (not to mention “obvious truisms”) attributable to the equations themselves but in the manner in which it made possible the derivation of a unified theory that explained diverse phenomena manifested in Faraday’s experiments covering a broad field known today as electrostatics, electric circuit and network theory, the generation of constant and distributed parameter versions), skin effect, antennae, wave propagation, etc. from just two basic equations stating “obvious truisms”. As a matter of fact, Maxwell’s equations actually predicted the existence and behaviour of radio and microwaves since, at the time of their publication, these had not yet been discovered.

It seems that Maxwell’s equations are beautiful examples of the so-called scientific method, whereby a large and diverse group of natural phenomena observed experimentally can be explained within the framework of a unified theory, which is even capable of predicting future discoveries. Maxwell’s equations make statements of obvious truisms much like Euclid’s postulates from which a lot less obvious truisms were later derived, much to the surprise of everyone. However, Euclid’s postulates were not the last word in geometry, much as Maxwell’s equations were not the last word in electromagnetic theory.

Catt’s rather extertaining equations presented by him as a parody of those of Maxwell, might still turn out to be great truisms in science, should they somehow become recognized as a theoretical framework for a large group of phenomena observed empirically.

I would like to present a modest contribution of my own, most humbly called Shaw’s theorem. To conserve space, illustrations will be dispensed with. In a recent series of experiments I placed an apple on the table, and a few minutes later, another apple was also placed thereon. This experimental fact may be expressed in the following mindboggling mathematical jargon:

\[a + 2a \]

This, of course, represents only an obvious truism, since it is only a symbolic expression of the facts observable in my experiment. (The astute reader might even predict, as an inevitable outcome of my revolutionary discovery, that if the symbol means a banana, the equation would still be valid! But let us assume a few discoveries to posterity... before Mr Catt would hastily remind us that the above equation does not teach us anything about fruit...)

It seems to be fashionable today to say that scientific theories are nothing but tautologies and obvious truisms, purposely obscure by mathematical jargon.

In defence of the mathematical jargon, I wish to say that motion and change in time and space are, if expressed in mathematical shorthand, notation, necessarily involve “a mixture of integrals, divs, curls” called “mathematical brew” by those who never understood their function as merely shorthand symbols, easily manipulated and visualized by means of simple rules even by first-year university students.

As to tautologies and obvious truisms, logical thinking is a process which needs to start from a set of first principles or axioms, accepted by everyone as being obvious truisms, unprovable and fundamental. Thus any sort of “truth” derived from a set of axioms can only be relative and confined with respect to the framework of the axioms from which it was derived. Change one of the axioms and you end up with an entirely different set of “truths”. (This actually happened to one of Euclid’s postulates which gave rise to a new kind of geometry.) In fact, you can invent any set of axioms you wish and derive any “truths” from them you wish. These, however, become scientific truths only whenever verified by experiments, providing that somehow they relate to our real world (another bad choice of words). In fact, Mr Catt’s funny equations teach us just that.

I. Shaw
Pretoria
Republic of South Africa

XY PLOTER

In the excellent ‘X.Y. plotter update’ article in December 1984, author P.N.C. Hill, the formulae printed for the calculation of the best next step to take in the ‘plotting of a “straight line”’ (at the bottom of page 77) requires, on most computers the use of ‘floating point’ routines, which of course tend to be relatively slow and not directly amenable to translating into a machine code program.

A rework of the formulae is shown below: it now requires for its solution only the use of simple integer additions, and can be coded up with no great difficulty (my own Z80-based home-built plotter uses this method).

It is written in program form as the computer’s own screen can demonstrate the line draw.

10 INPUT “LINE FINISH POINT (X’); XF
20 INPUT “LINE FINISH POINT (Y’); YF
30 Z + XF
40 C = YF
50 F + 0
60 IF I = 1 THEN = A + A + YF: C = C + YF
70 IF F = 2 THEN D = D + XF: B + B + XF
80 IF ABS(A-B) < ABS(C-D) THEN 90: ELSE 100
90 Y = Y + 1: PLOT X, Y; F: 2:GOTO 60
100 Y = N + 1: PLOT X, Y; F: 1:GOTO 60

The program is shown only working in the first quadrant, lines 90 and 100 being altered to suit the matrix in use.

J. Jardine
Dewsbury
Yorkshire

ELECTRONICS & WIRELESS WORLD MAY 1986

23

www.americanradiohistory.com
68000 board - 6

Bob Coates ends his description of the monitor software with details of some applications

To illustrate some of the techniques we have discussed, we will now look at some simple programming examples.

We shall touch briefly on accessing the duat and p.i.t. but these devices are very complex and it is beyond the scope of this series to deal with them in any depth. Interested users should therefore obtain the Motorola data manuals. These are fairly voluminous documents! The data manuals will be obtainable from Magenta Electronics, who are producing a package consisting of manuals for the processor and for the duat and p.i.t.

When using Kaycomp with only a terminal and no access to a 68000 assembler, it is feasible to assemble by hand but it is a somewhat laborious task. This problem will be solved by the introduction of the eprom-based assembler for the board.

Other recommended reading is '68000 Assembly Language Programming' by Kane, Hawkins and Leventhal, published by Osborne/McGraw-Hill. The necessary information to hand-assemble is available from this, the MC68000 User’s Manual and the MC68000 Programming Card from Motorola.

In the examples which follow, the listings were produced by an assembler which uses a different convention for denoting hex constants from Motorola’s, h ‘1F’ being equivalent to $1F etc. The assembler directives are also different, but should be self-explanatory.

The examples start at address 400400A, which is the lowest ram address that the user may use; 400000H to 4003FH are reserved for use by the monitor.

Example 1

A very simple example is sufficient to demonstrate the trace function and the use of breakpoints when running a program. Using the *MO* command, enter the object code, which is the second column of the listing, into memory at the address shown in column 1.

The first three lines of the program preset three of the processor’s registers, d0, d1 and a0, with 0, 0 and 100 respectively. The loop section of the program then adds 1 to d0, 10 to d1 and subtracts 2 from a0.

First try putting a breakpoint at address 40040A. Now run the program using GO 40040.

The registers should now be displayed with their preset values as the breakpoint has been hit.

Next set another breakpoint at 400412. This must be a different breakpoint number from the
previous one, as we shall continue from the previous break.

When we use the CN command, it looks to see which breakpoint was encountered and starts from there; so it must not be moved in the meantime. CN will restart the program, canceling the first breakpoint and displaying the registers again as it encounters the next one. Here we should see that the registers have been altered by the appropriate amount.

The operation may be seen more clearly if the trace function is used. Remove the breakpoint at 400412 by setting the address of that breakpoint to 0 using BR. Now start the program using TR.

Enter 400400 for both trace and program start. Registers should now be continuously displayed after each instruction is executed. Execution can be suspended by control-S.

Leave it running for a while and see what happens to d1. The add instruction on this register is byte-length only so it will be seen that when the count passes FF it wraps around to 00. The upper six digits always remain unchanged.

Example 2

Our second example illustrates monitor calls and how the 4080 column formatting may be used.

The lea instruction loads a0, with the address of the start of the string. Then pdatm is called with the two lines...

trap #11
data 0, pdatm

The word data is an assembler directive which means 'form a byte containing the value of 0 and pdatm'; pdatm is equated to 6, so the assembler inserts this value.

After printing the string, which is terminated by the null byte, the next trap instruction causes a return to the monitor.

Try first running this program with the column mode at 80, then at 40. You will see that in the 40-column mode an extra new line is inserted after the word 'is'. This is due to the data line h '8d', h '8a' which are the ASCII codes for carriage-return and line-feed with bit 7 set to 1. The description of pdatm explains the difference.

Example 3

The MC68230 peripheral interface/timer i.e. is not used by the monitor, so this example will check whether the device is working or not (if fitted).

The base address of the p.i.t. is h 'A00001' and the first line sets a0 to this value. All references to the p.i.t. are then made using the 'register indirect with offset' addressing mode. The three registers of the device we are going to access are equated to their offset from the base address of the device.

The next line sets up the mode of operation of the p.i.t. (refer to the manual) and line after sets the data direction register for port A of the 68230 to all eight lines as outputs.

Then the program enters a loop where the port A outputs are set alternately to 01010101 and 10101010 with a delay in between. This delay is about one second with a 10MHz clock and pro-rata for other clock frequencies. On
Example 4

Now on to the interrupts. The interrupt output of the duart goes to the processor IPL1 input, the one on the Kaycomp wired for user-vectored interrupts. Accesses to the duart are made in a similar manner as in example 3 using 'register indirect with offset' addressing.

First we use the interrupt vector number we are going to use, 64, is put into the interrupt vector register (i.v.r.) of the duart. This value is passed over the data bus during the interrupt acknowledge cycle to tell the processor which vector address to fetch. If the register is not set, it holds a default vector which points at the 'uninitialized interrupt vector'.

Later, try padding out this line with NOPs and see what happens, but operate 'reset' before running it.

Next in the program, the jmp.l instruction opcode and the address of the service routine are placed in the vector #64 ram block at h '400092'.

Finally, interrupts are enabled in the duart for characters received (refer to duart manual) and the processor's interrupt mask is set to level 1 — one lower than the level of the interrupt generated by IPL1.

The program then hangs up in a loop waiting for an interrupt.

This may seem a little pointless (in practice the processor would be off somewhere doing something useful), but it serves to demonstrate the principle.

An interrupt will be generated when a terminal key is pressed and processing will jump to vector #64 location where it will find the ram address h '400082'.

There it will execute the jmp.l h '4004EA' instruction which is the start of the exception processing routine. This first gets the character from the transmit/receive buffer register (trba) of the port A of the duart. The trap #11, 0009' call prints the two-character hex equivalent of the Ascii key; the next trap instruction adds a space after them.

The duart receiver is then reset and re-enabled, because the previous monitor calls (which were not designed to be used at the same time as duart interrupts) upset the receiver operation.

The 'return from exception' instruction then causes processing to return to the next instruction after where it left off, the 'hang-up' loop again, until the next interrupt.

LOC OBJECT M STAT E LINE SOURCE LINE

<table>
<thead>
<tr>
<th>LOC</th>
<th>OBJECT</th>
<th>M</th>
<th>STAT</th>
<th>E</th>
<th>LINE</th>
<th>SOURCE LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>example 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>base</td>
<td>h'ff801'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>addr</td>
<td>h'8'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>base</td>
<td>h'6c'</td>
<td>* offset from base of end read address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>base</td>
<td>h'17'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00000</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00001</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00002</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00003</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00004</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00005</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00007</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00008</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00009</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00010</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00011</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00012</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00013</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00014</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00015</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00016</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00017</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00018</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00019</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00020</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00021</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00022</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00023</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00024</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00025</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00026</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00027</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00028</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00029</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00030</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00031</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00032</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00033</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00034</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00035</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00036</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00037</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00038</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00039</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00040</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00041</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00042</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00043</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00044</td>
<td>asct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 5

This example shows one way of accessing a peripheral on the G64 bus.

The card I have chosen is the Syntel SYN-ADC2 which is an analogue i/o card having eight 12-bit analogue inputs and two 12-bit analogue outputs. It is unlikely that many readers will have this card, but I include the example to illustrate the principles of external bus access and handling auto-vectored interrupts.

The card must be configured as follows:

Address switches — all on (FFF80116, bottom of VPA).

J1: 1—3
J2: 1—2 and 3—4
J3: 1—2
J6: 2—4

An analogue output should be provided on P2, pin 15 (positive) and P2, any even pin (negative) for channel 0.

The G64-VPA range on the Kaycomp is FFF801 to FFFFFF; that is, the top 2K-bytes of the memory map. This is so that accesses to these absolute addresses may be made with a word-length address operand.

One of the above jumpers connects the interrupt output to the IRQ line of the G64 bus, which is in turn connected to IPL0, giving a level 1 interrupt. The a-to-d card generates an interrupt when a conversion is complete.

Channel zero is selected on the a-to-d card in the program after the jmp.l instruction has been set up in the autovector 1 ram space, as with the previous example.

The conversion is then started by writing (it does not matter what) to the a-to-d register.

The ADC2's interrupt output is then enabled and the processor's interrupt mask set to its lowest level, 0, to allow interrupts at level 1. It then hangs up and waits for the interrupt to
occur, which will be about 35μS later after the a-d has finished converting.

Processing than jumps via address 400016 to 'except'. Here, after clearing d_{37}, the 12-bit conversion value is obtained from the card and placed in d_{36}. The 12 bits are obtained by reading two consecutive addresses of the ADC2 card, the eight most significant bits from the first and the four least significant from the second.

However, because there is no a_0 line on the 68000, the processor a_1 output goes to a_0 on the G64 bus and so consecutive addresses appear at alternative addresses to the processor. So we need, in this case, to read FFF809 and FFF80B.

Here the move p (move peripheral) instruction comes to the rescue. It addresses alternate locations (odd or even), two or four depending upon the size attribute, word or long-word.

The read word is shifted right four bits to right-justify it as, through a peculiarity of this card, the data comes out left-justified.

The value read will be between 0 and FFF16 (4096) for an input range of 0 to ±10 volts. So next it is scaled to represent millivolts by multiplying by 1000 and dividing by 4095.

The divide instruction exits with the result in d_{37} bits 0-15 being the integer result and bits 16-31 the remainder. We are not interested here in the remainder, so bits 16-31 are forced to zero.

This binary value is converted to b.c.d. and then displayed as eight decimal digits, being the result of the conversion in millivolts

SmartWatch real-time clock with ram

Building components into a socket gives a real-time clock and battery-backed ram that plugs into many modern microcomputers without hardware modifications.

With most computers, adding a real-time clock involves at least plugging in a separate p.c.b. Adding non-volatile ram can mean yet another p.c.b.

A computer real-time clock needs address decoding, a crystal, power-down switching and a battery. Unless expensive electrically-erasable proms are used, non-volatile ram also requires power-down switching and a battery. Normally add-on clock and non-volatile ram facilities constitute two separate p.c.b.s.

With SmartWatch however — the subject of our special offer on page 65 — the clock and all its associated circuits are built into an 8mm-high socket. What is more, the clock’s lithium battery and power-switching circuits also connect to the top of the socket so the 8K-by-8bit ram fitted becomes non-volatile and remains so for 10 years.

Timekeeping information includes hundredths of seconds, seconds, minutes, hour, day, date, month and year. At the end of the month, the date is automatically adjusted for months with fewer than 31 days, including correction for leap years. Whether the clock operates in 12-hour mode with a.m./p.m. indication or 24-hour mode is selected by software.

Manufacturer of SmartWatch, Dallas Semiconductor produces various 'sockets', some with a ram and battery but no clock and some with a clock but no ram back-up facility so that eproms can be fitted. Other products include electronic keys and tags, an add-on serial port, silicon delay lines and an 'intelligent battery'. These are all available through Joseph Electronics in the UK.

Accessing SmartWatch

Plugged into a computer 8K-by-8bit ram socket, the device appears in the memory map as a normal 8K-by-8bit memory. Only when a unique 64-bit data stream is sent to the socket does the clock respond. After this initialization stream, the next 64 bits written or read from the memory area go to or from the clock.

This method of accessing the clock means that only one byte of processor address space is needed, and only when the clock is addressed. With many operating systems, the clock will only need to be read once when the computer is switched on. From then on, timekeeping can often be taken over by the computer.

Any ram byte can be chosen for accessing the clock because the clock-access sequence through data-line zero depends only on states of the ram read, write, output enable and chip-enable lines, i.e. those lines indicated on the diagram. Address line transitions during this period are irrelevant as far as the clock is concerned but data is only transferred via data-bit zero. If need be, the one ram byte affected can be stored elsewhere temporarily while the clock is read.

Any read from the ram area sets the 64-bit code pointer in the clock circuit to its first location, which means that when the clock is to be accessed, a read operation normally precedes the string of initialization bits to be written. It also means that should the initialization sequence ever be interrupted by a read operation, the pointer will be set back to the first code bit.

Minimum and maximum signal levels on all lines controlling the clock are 2.2V logic high and 0.8V logic low. Lines not controlling the clock go straight through the socket to the c-mos ram.

In some ram sockets, mainly in 6502-based computers, the output-enable signal is active during memory writing, which means that SmartWatch cannot be used without hardware modification. Next month we'll show such a modification and a SmartWatch control program for the BBC microcomputer.

All pins on the SmartWatch socket except pins 20, 26 and 28 pass straight through to the c-mos static ram.
The real-time clock interface card which was described in last month’s article included a 2K eprom programmed with firmware to control the clock. The remaining 1K-bytes are free to hold code to provide a variety of other useful functions, such as the one described here.

The 6821 p.i.a. consists of two parallel ports A and B each with two control lines CA1, CA2, CB1, CB2 and is located at the absolute address C000 using 7421 gates and 7425 gates to decode the address bus. The R/W (read/write) and E (enable) pins are driven directly from the edge connector of the Apple. The reset pin, pin 34, is tied permanently high so that the chip can only be initialized under program control.

The eleven lines required to address the eprom are provided by the eight lines of port A programmed for output. For programming purposes the eprom is split into eight blocks each of 256 bytes.

These are accessed by latching the three highest address lines, A0 to A2, through a 7475 latch (Fig. 1). The block is obtained through the p.i.a. outputs, PA0 to PA7, which are latched by control line CA1 used as an output.

The latch-enables, which are active-high, are obtained by taking CA2 low-high-low-under program control.

Having latched the block address, the eight data lines of port A provide the low byte of the address to the eprom, A0 to A7, whilst CA1 is held low to disable the latch. The fourth bit of the latch allows PA7 to be used, in conjunction with a 7432 gate, to control the PCM/READ pin of the eprom; again, CA2 is

<table>
<thead>
<tr>
<th>OOP/DCN(O)</th>
<th>SLOWER</th>
<th>MIDDLE</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOPCOCO</td>
<td>psc</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td>table</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCCAO</td>
<td>ptable</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCCAO</td>
<td>way1</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCCAO</td>
<td>way2</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td>write</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td>wtable</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCCAO</td>
<td>prtable</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCCAO</td>
<td>ptable</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td>write</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td>wtable</td>
<td>#COCO</td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OOPCOCO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The second in a series of laboratory add-ons for the Apple and other 6502 computers

Answer some questions about the article or provide additional information.
Below: subroutines. For details, see April issue.

```
C800  41  64  6A  AC  40  9E  9C  40  Adj, @ . @
C808  A7  A8  B2  A4  A8  40  B2  88  ' . ( $ ( @
C810  88  DC  40  92  9C  40  9A  A0  \ . @ . @
C818  A4  9E  9A  74  48  60  60  $. th'''
C820  60  40  9C  9E  5E  84  B2  A8  ' @ . 2 ( 
C828  8A  A6  74  48  60  60  60  60  &th' ' ' ' 
C830  61  5C  9A  B0  92  A8  40  62  o \ 0. ( # b
C838  5C  86  9E  A0  B2  40  64  5C  \ ' 2 e d 
C840  84  AA  A4  9C  7E  BB  A4  8A  * S ' ' ' .
C848  A8  AA  A4  9C
```

These numbers refer to Apple II interface connections.

Fig. 1. This eprom programmer programs single-rail 2K devices suitable for holding user firmware in the Apple II.
The register selected to appear at the shared address is controlled by the status of bit 2 of the appropriate control register. If bit 2 is cleared the DDR is accessed; if set, the i/o register is selected.

The control register format is given in Table 1. Bits 7 and 6 are interrupt flag bits for the CA/B, CA/B control lines; the flag is set to logic 1 when the programmed transition occurs on the appropriate control line. If the interrupt is disabled the related irq line from the p.i.a. will not be taken low and the processor will not be interrupted. The flag bit will however be set; it is cleared by reading from or writing to the port.

In the same way, the CA/B control lines are programmed by switching bit 5; if bit 5 = 0, the line is an input. The CA/B lines operate only as inputs.

For input control lines, a further bit specifies which transition will set the irq flag bit. If the transition is to be 1 to 0, a zero must be written to the appropriate bit. The logic state written to the bit indicates the status of the line after the transition has occurred.

For CA/B, bit 1 is used to control the transition whilst bit 4 indicates the required transition on those CA/B lines configured as inputs. When the lines CA/B are configured for output, if bit 4 is set to 1 the status of the control line is determined by the status of bit 3; if bit 3 is set the line is high.

Firmware

The 6502 code is entered by Call (52294). The user then selects Exit, Read or Burn. Exit may be followed by Call (52526): Poke 249,0 : Call (52290) in order to read a rom. The user next enters the eprom start address, number of bytes and ram start address in hex notation.

In read mode, the program then copies the specified area of the eprom to ram and indicates whether the byte previously held in ram was the same, for verification. In programming mode, the program asks the user to insert the 25V connection and burns the code into the eprom, displaying the data as it does so.

Self-programming

With a few modifications, the code can be used to generate its own firmware. Enter the code into ram at $6800-$6FFF, then copy it, using the Basic program (table 4), into ram at $8000-$FFFF.

The program alters the high bytes of absolute addresses $C7, $CB, $CC, $CD and $CF to new values ($57, $5B, $5C, $5D and $5F). The eprom programmer may then be operated by calling the modified code with CALL (23532).

Table 1 (above): control register from of the 6821.

Below: this Basic program modifies the code generated by the main listing so that the software can program its own eprom.
COMMUNICATIONS COMMENTARY

JAM TODAY

Unless a solution to the problems of deliberate interference can be found at the second session of the World Administrative Radio Conference for the planning of the h.f. broadcasting bands, due to be held at Geneva from January 27 to March 13, 1987, little progress is likely to be achieved and the interference may well continue. The pessimistic view was expressed by Bert Gallon, chief engineer of BBC External Services, in a recent "Waveguide" broadcast.

At peak-listening times as much as 60 to 70 per cent of available spectrum is being badly affected by jamming. This affects listeners in countries far beyond those to which the jamming is directed.

The Russians are currently jamming, in an extremely sophisticated manner, the Russian-language programmes of the BBC, Voice of America, Deutsche Welle, Radio Free Europe, Radio Liberty, Radio Israel and Radio Peking. The only other country jamming BBC transmissions is Poland. China jams programmes from the USSR. With the narrow 5kHz channel spacing and the mixture of very high and medium power transmitters on h.f., the jamming spreads over more than the target channel and can cause problems as far away as South America and Australia.

The USSR has an elaborate and costly network of ground-wave jammers for urban areas of more than 100,000 population and powerful sky-wave jammers to blanket suburban and rural area. Over the years, they have learned a great deal about the technique of jamming, seldom wasting power on what they regard as "harmless" programming but switching on very quickly when an "objectionable" programme begins, following any sudden changes of frequency promptly and effectively.

Non-deliberate interference arises mostly from poor spectrum management and lack of experience in some countries. The h.f. broadcast spectrum is the least well regulated of any of the broadcasting allocations, and is seen by many governments primarily in terms of national prestige and propaganda.

The jamming problem, unfortunately, could easily spread to the microwave bands for satellites, with their increasing use for such purposes as the world-wide television exchanges already in operation by the United States Information Agency, and the future possibility of high-power direct-broadcast satellite systems targeted at East Bloc countries. There is a popular view that d.b.s. is impossible to jam. In fact this could be done all too easily by squinting signals at the receiver of the satellite transponder.

Although jamming is contrary to the radio regulations, it could be argued that a United Nations recommendations on space broadcasting states that this should not be targeted towards another country without the agreement of the country concerned. It would, for instance, be one thing for the Federal Republic of Germany to put out their own national programmes on a satellite whose footprint extended over the whole of East Germany and beyond, but quite a different matter if the satellite carried programmes expressly for that area. A majority of viewers in East Germany can, in fact, already receive West German television from terrestrial transmitters, and viewers who take advantage of this are no longer harassed by the authorities as they once were. But then East German tv can be viewed as far west as Hamburg and I am told is popular because of the spectacular State-subsidized films with, as the cinema used to proclaim, "a cast of thousands".

USA IN THE RED

For many years one has thought of the USA as the heart-land of radio communications and electronics, the large domestic market giving the economies of scale that made their products sellable in every country that could find the dollars to pay for them. Yet in 1985, the USA had a world-wide electronics deficit of an estimated $8600-million, almost 40 per cent more than in 1984. The main reason is the enormous deficit of about $17,500-million with Japan, much of it due to importing $11,700-million worth of consumer products from that country. Only in computers did the USA achieve a worldwide positive balance. Japan's NEC has taken over from Texas Instruments as the world's largest supplier of integrated circuits. One result has been the hardening of the yen/dollar exchange rate by about 25 per cent in recent months, with Japanese firms trying to hold their market shares in capital equipment by not raising prices to an equivalent degree. But already losing some of their consumer-market to Korean industry.

Space Outlook

The UK may or may not have a high-power d.b.s. system in operation by 1989 or 1990. We shall have to wait and see what response there is to the IBA advertisements. Meanwhile the provisional timetable for other European high-power and intermediate-power satellites is that the French TDF-1 and West German TV-SAT could be launched later this year, both providing up to four channels from orbital position 19° East with transponders putting out more than 200 watts of r.f. If all goes well TDF-1 should be receivable over much of the UK with small dishes, and may have an English-language service provided by Robert Maxwell, but it is by no means certain that there will not be further delays. The Japanese Yuri BS-2b (not receivable in Europe) was launched in February with three 100-watt transponders, but it will be some time before anyone can be sure that these will not suffer a similar fate to two of those on BS-2a. The "intermediate power" Luxembourg SES satellite being built by RCA is expected to be launched in 1987 with a capacity of 16 television channels. With 45 watts per channel and an e.i.r.p. of 50dBW it should be receivable over most of west Europe on dishes of about 0.9 to 1.2-metre diameter. It has an Ariane launch booked. The American geostationary launches following the Shuttle disaster

ELECTRONICS & WIRELESS WORLD MAY 1986

This time the plans include a satellite link from the base camp to the UK, plus the use of Racal 10-watt manpack sets and a 100-watt h.f. transmitter to maintain links with North America and Portishead Radio. The manpack sets have been tested down to temperatures as low as minus 45 degrees Centigrade. The team are using special lightweight (500 lb) sledges made by British Aerospace and designed to stay afloat should they fall through the ice with a full 600 lb load. They are seeking scientific information on atmospheric pollution and the structure of the ice shelf.
seems bound to increase the pressure to get on to Ariane. Papers presented at a recent IEE colloquium on "Operational experience in the use of the European communications satellites for television transmission" was concerned exclusively with the use of the Eutelsat F1 (13° E) and F2 (7° E). F1 carries a number of the services for European cable systems. F2 includes EBU news and programme exchanges and occasional use for satellite news gathering (SNG).

Most speakers agreed that the Eutelsat systems have been very successful but equally it is clear there have been a number of problems. The drop in performance of the transponders used for Sky Channel and the Belgian film channel has so far not seriously affected the services, but has shown an unexpectedly high rate of degradation on two of the Telefunken travelling wave tubes.

There is also a difficulty in making meaningful cost comparisons between satellite and terrestrial links due to fluctuating exchange rates and the use of Swiss Gold Francs on terrestrial links and European currency units (ecus) on the leased space segments. A major problem for SNG is the need for frequency co-ordination before a 14 GHz uplink can be used from a temporary site.

For equipment designers there is still the problem of the different transmission standards including deviation (bandwidth), pre-emphasis, audio, sub-carrier spacing, audio bandwidth plus the different colour encoding systems, etc. The outlook for a single European transmission standard is still unsettled, while a world transmission standard grows ever less likely. Latest contender to enter the h.d.tv stakes is a BBC concept called digitally assisted television (d.a.tv) that involves the transmission of analogue picture signals together with high data-rate digital signals carrying control or supplementary information about the picture and claimed to put an h.d.tv picture into home receivers, even when the bandwidth of the signal has been reduced.

TVI TURN-ROUND

What appears to be a major change in the official DTI approach to difficult cases of radio-frequency interference, following the phasing-out last year of free investigation by the Radio Investigation Service, was disclosed in a Parliamentary reply by Mr John Butcher, Secretary of State for Trade and Industry. The reply, combined with the belief that new licence regulations for amateurs are in the offing, is causing many rumours to circulate about future power restrictions.

Mr Butcher stated: "Problems can arise when high power radio transmissions are made in close proximity to radio and television sets, or indeed a range of electrical apparatus not designed to receive radio. Such problems can be exacerbated by equipment which is deficient in its ability to reject unwanted signals or in the case of radios and televisions which have an inadequate or defective aerial or no aerial at all. The problem is growing because more and more homes now contain a great range of electrical equipment; and high power transmitting equipment is now more widely available to the growing number of amateur radio licensees."

"Radio amateurs generally take a responsible attitude to the problems their transmissions cause. Equally, manufacturers are keen to produce equipment which has adequate immunity. Regrettably, a few amateurs and manufacturers do not have a responsible attitude; it is they who cause problems."

"My officials are currently discussing with BREMA and the RSGB the implications for them of the new standard for television immunity currently under discussion internationally and procedures for dealing with individual cases where interference is caused. I would like to see sensible immunity standards observed by all manufacturers and importers of radio receiving and radio sensitive equipment. Where possible and appropriate these will be enforced by order. Similarly, manufacturers and importers of radio and non-radio equipment should seek to ensure that their products do not cause interference to radio users. Orders exist for some types of equipment and where appropriate others will be made."

"Where it proves impossible to resolve individual problems and the affected apparatus has been brought up to a reasonable level of immunity, I intend to vary the terms under which the relevant amateurs are licensed; where necessary (and I hope it will not be necessary often) licences will be revoked."

"In this particular case (at Easteate, near Pinner) I will vary the powers which the amateur is licensed to use and restrict his use of certain bands. If this does not resolve the problem, I shall further review the position." While few amateurs would disagree with the DTI's analysis of the problem, many are extremely worried at the new threat of varying or revoking a licence where the transmitter is causing breakthrough and not harmonic interference. This reverses the procedure that has existed for many years. This has meant that an amateur causing breakthrough interference will not be prevented from operating within the terms of his licence except temporarily while the RIS team advise the viewer on a cure. Furthermore, only appliances intended to receive radio or television have been the concern of the D.T.I.

It is understood that British Standard BS905, intended to improve the immunity of tv receivers primarily against CB 27 MHz interference is being put aside in favour of the European specification. While this still help minimise the problem of breakthrough from low-power transmitters there may remain problems of breakthrough interference in close proximity to high-power transmitters unless the sets are fitted with additional filters as in the past. It seems likely that the DTI will wish to introduce regulations restricting the effective radiated power of amateur transmitters, particularly on microwave bands, where high-gain antennas can result in very high e.r.p. from relatively low-power transmitters.

THERMIONICS

The 50th anniversary of the introduction by RCA Radiotron of the 6L6 valve in 1936 has sparked off a good deal of nostalgia among radio amateurs who still recall with something approaching genuine affection the series of beam tetrodes that included the 6L8, 807 and 813 that filled so many transmitter sockets over many years. I wonder if solid state devices will come to be remembered in this way? How long before we are talking nostalgically of the 555 or even the OC171?

For many amateurs, the valve is still the easiest and surest way to obtain lots of r.f. watts. The 813 is still in demand for s.s.b. linear amplifiers, along with the modern high-pervenance valves that can be decidedly more temperamental unless carefully handled.

I note that the British Vintage Wireless Society is sponsoring a three-day, 15-lecture course on "Early Wireless — the thermionic age past and present" at Imperial College, London SW7, July 7 to 9. A snap for retired engineers and amateurs is that the fee, including lecture notes etc, is £85. Course organizer is Dr L.L. Freris, Electrical Engineering Department, Imperial College, London SW7 2BT.

Looking through the list of topics one wonders how many of the current generation of amateurs are familiar with such techniques as reflex, neutrodyne and superinductance. But the use of the valve in modern transmitters and hi-fi equipment is also to be covered. The possibility of a considerable return to thermionics as a protection against equipment damage from nuclear electromagnetic pulses is still on the cards, with the American Naval Research Laboratory claiming to be working on microminiature thermionic devices.

PAT HAWKER, G3VA

ELECTRONICS & WIRELESS WORLD MAY 1986

www.americanradiohistory.com
Quad switch as SR latch

A set/reset bistable latch can be configured from two sections of a 4016 or 4066 c-mos quad bilateral switch.

Two transmission gates are cross-coupled as shown. Closing S2 causes gate a to be non-conducting; point A is therefore high and so gate b conducts. Because gate b is conducting, point B is low, holding gate a open when S2 is released.

When Si is closed, gate b is open circuit, point B goes high and gate a conducts, making point A low and so holding gate b non-conducting. The truth table is shown.

If a known power-up condition is required, C1 may be added across Si to make sure that gate a is conducting and gate b is open circuit at switch on.

The remaining two transmission gates may be arranged as a one-pole two-way switch, a two-pole one-way switch or as two one-pole one-way switches, and may be driven by SR latch outputs at points A and B.

J. E. Noakes Camberley Surrey

Automatic power switch and headphone amplifier

I have used this battery-power switch and the headphone amplifier for about a year now with my Sony Walkman DD and Sennheiser HD-430 headphones. Amplification is needed as the Walkman has a 32Ω output and the headphones are 600Ω.

Audio is amplified by Tr1, rectified by D1 and charges C1 to switch on the mosfet Tr2. Resistor R2 determines delay between loss of audio and switch off, which is usually greater than 1min.

Value of R1 is determined by fitting a 2.2MΩ potentiometer in its place and adjusting it so that Vout is zero with no audio, rising to Vin within a few seconds when audio appears.

Power consumption is 5mA when switched on and about 130μA when off; if the unit is switched off for long periods, add a normal power switch.

Philip Bosma Enschede The Netherlands

* All capacitors except these are tantalum.

ELECTRONICS & WIRELESS WORLD MAY 1986
Line driver

In order to drive c-mos at a distance, an active pull-up is required.

Active current sinking is provided by a high-voltage t.t.l. 7406 inverter or 7407 buffer while the BC183L acts as a current source when the t.t.l. output goes high.

This circuit has been used to drive a c-mos input at 2MHz over 3m of twisted pair.

J. Shaw
Dunfermline
Fife

Inexpensive 150V regulator

Using a 100V complementary pair as a shunt regulator provides a solid-state alternative to neon stabilizers. Point X is held at 75V relative to either rail, providing 150V. At 100mA, amplification of the TIP41C/42C pair is greater than 100.

David Hoare
Leicester

Development interface

This Z80 Spectrum interface reads most single-rail eproms and reads and writes non-volatile rams and battery-backed eprom emulators such as the GR2716.

We use assembly language on the Spectrum for developing industrial control applications software. Code is assembled then transferred to an emulator using the interface.

To transfer eprom content to ram starting at C000,16:

```
ORG B000
LD BC,0800 ;1000 for
LD HL,C000 ;4K devices
LOOP1
IN A,(1F)
INC HL
LD A,B
OR C
JR NZ,LOOP2
RET
```

or to transfer contents from C000 onwards to an emulator,

```
ORG B030
LD BC,0800 ;1000 for
LD HL,C000 ;4K devices
LOOP2
LD A,(HL),A
INC HL
LD BC
LD A,B
OR C
JR NZ,LOOP2
RET
```

Supply switching linked to the zero-insertion force socket allows eproms to be inserted and removed while the computer is powered.

Hamid Mustafa
Sola ADC Lenses
Ireland
DATA GENERAL MINICOMPUTER PARTS AND SYSTEMS

Does your application need those multi-user megabytes but your budget stretch only to a PC? Or is your old DQ mini flat on its back? Need an upgrade? Second printer? Hardware support? As traders in commercial systems, we always have stock of older (and newer) equipment. We also deal in second-hand and surplus micro systems. Large SAE for current catalogue.

Sample stock: Eclipse 5130 (CS;601) 8-line mux, 40MB — £5600; D211 screen — £570; 6123 Micronova/CS100 streaming tape — £3400; CS10 C3, 4 line mux, 12.5 x 1; 2MB, console — £1500; NEC APC, colour, 10MB, Autocad, A1 plotter & digitiser — £4000; 3000 rpm drum printers — £400.

SILICON GLEN LTD
Moray Street, Blackford, Perthshire, Scotland

Callers & Overseas Enquirers welcome on Telephone: 076482315 or 484

Telex: 295141 TXLINK G quoting MBX 076482315 on first line
Bulletin Board Sales Catalogue (Prestel Standard) on 076482465

BEST PRICE MEMORIES

All the latest latest devices not to be confused with slower old stock offered elsewhere:

DRAM
- 5V NMOS 150ns
- 4164 64K x 1 £1.20
- 4125 256K x 1 £2.80
- 4416 16K x 4 £3.95
- 41464 64K x 4 £5.90

SRAM
- 5V CMOS 6264 8K x 8 £3.50

EPROM
- 5V NMOS 250ns
- 2716 2K x 8 £3.25
- 2732 4K x 8 £3.75
- 2764 8K x 8 £1.95
- 27256 32K x 8 £4.95
- 27C64 8K x 8 £6.50
- 27C256 32K x 8 £15.00

MICROKIT LIMITED

MANOR PARK, RUALNS, NORTHANTS NN9 6PD
Technical advice etc., please phone 0933 664624 24 hour service.

CIRCLE 53 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD MAY 1986
by H. W. Gleaves

An introduction to 3D graphics

Principles for producing threedimensional images in perspective are discussed, with an implementation example in QL Basic.

Many personal computer users regard computer graphics — especially 'three dimensional' computer graphics — to be both complex and specialized. For these reasons many people avoid one of the most interesting and effective applications of a personal computer.

To fully understand the subject requires great effort and study; modern state-of-the-art computer graphics, is a highly developed subject, demanding the highest performance possible from computers.

Forming an introduction to the subject, this article demonstrates how a microcomputer graphics system for constructing object outlines is developed. These outlines, or 'wire frames', are in perspective and can be constructed in any position and orientation.

Superbasic on the Sinclair QL is used to show how the graphics system is implemented. Elementary algebra and trigonometry are used but you can skip over these and just use the programs without studying their internal workings if you wish.

Applications for such graphics software are up to you; one obvious use is games, but time taken to compute the images has to be taken into account. It would be interesting to see how the software presented here performs when written in assembly language or speeded up by some other method such as compilation.

Because we want to be able to view objects in the graphics system from any position and orientation, a description of the objects must be present. This description takes the form of a numerical model of objects in the artificial world, or environment.

Three-D artificial environment

Such a model constitutes what is termed a 'three dimensional artificial environment', or simply 3D a.e. Given a 3D a.e. and appropriate software, it is possible to produce perspective images of the environment from any position and orientation. The environment used in this system has an hierarchical structure as shown in Fig. 1.

Every object in the 3D a.e. is referred to as a body. Each body is referenced by its body number and constructed from a number of polygons. A cube for example has six polygons. Furthermore each polygon has a number of vertices.

Finally each vertex has three coordinates uniquely identifying its position in space.

Because our 3D a.e. takes this form, it means that all objects in the 3D a.e. must be constructed from plane, that is flat, polygons, but this is not a significant restriction.

Thus the 3D a.e. contains the description of real, material objects and does not relate to the viewer in any way. It is a generalized description of the objects to be viewed.

The 3D a.e. is a data-base, but is implemented in Superbasic as a number of arrays. Since the 3D a.e. only contains array references, integer arrays can be used to save memory and increase system speed.

The viewing process

Now comes the problem of constructing an image of the region of the 3D a.e. in view. Imagine that you are inside a TV camera that floats freely in the 3D a.e. and can be pointed in any
desired direction and in any orientation.

The imaginary camera itself has coordinates, C_x, C_y, C_z, as well as three orientation components, roll, pitch, and yaw. Parameters roll, pitch and yaw are three angles that uniquely specify the imaginary camera's direction, and are measured with respect to the camera's co-ordinate system.

There are thus two coordinate systems. The first describes all points in the 3D a.e. including camera position and the second is an identical coordinate system that is fixed with the camera, i.e. each point in the environment has two sets of coordinates, those relating to its position in the 3D a.e. and those relating to its position relative to the camera.

To compute the image seen by the camera, the position of all points in the environment relative to the camera needs to be known. These relative co-ordinates depend on the camera position and orientation in the 3D a.e. and can be calculated from the real coordinates.

The process of obtaining these coordinates is transformation — a mathematical term to describe the process of obtaining coordinates in one system given the coordinates in another system.

Transformation takes place in two stages in the program (to follow). In the first stage, translation, the second coordinate system is placed at the specified position, with a plane parallel to the original coordinate system. New co-ordinates of any point can then be found very simply, as Fig. 2a shows.

The second stage takes the previously found coordinates of a point and rotates the coordinate system through the specified angles. New coordinates of any point relative to the coordinate system can then be calculated as shown in Fig 2b.

A similar set of equations exists for three dimensions. Our imaginary camera can now be placed anywhere in the 3D a.e. pointed in any direction, and coordinates of any point in the 3D a.e. with respect to the camera can be calculated. Calculation takes place in two steps as described above.

Given the camera's position and orientation, six numbers in all, the position of any point in the 3D a.e. relative to the camera can be calculated. But this is only half the story. A two-dimensional picture still has to be constructed from the 3D data. This final stage of the 3D a.e. manipulation involves finding screen coordinates of a point given its 3D coordinates in space. This is simply another transformation process, Fig. 3.

Several types of transformation are available that allow a two dimensional image to be produced. This article is primarily concerned with a class of transformations known as perspective transformations. In a perspective transformation, a point in space known as the focal point is designated and a surface is introduced, in our case a plane surface, between the focal point and the scene to be viewed.

Projection takes place as follows. For every point in the 3D a.e. or portion of the environment being viewed, construct a straight line from that point to the focal point. The position on the screen that this line penetrates is the projection of the point in the 3D a.e. If this process is carried out for every point in the scene, and points on the screen joined in the same order that they are joined in the scene, then a perspective image will have been produced on the screen.

Perspective transformation

There is a simple mathematical relationship between the point's true coordinates and the coordinates of its projection. The equation relating this is derived with reference to Fig 3.

The diagram shows the simple geometrical relationship between the true and per-
Transformation.

[Diagram of coordinate systems with equations and explanations]

Table 1. Example coordinates.

<table>
<thead>
<tr>
<th>Vertex</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2. Translation of (ij) coordinate system (a) and rotation of the (ij) coordinate system (b).

The diagram also shows that the camera is located at the origin of its own coordinate system. It is in relation to this system that all points in the 3D a.e. are specified, after the aforementioned transformations are carried out.

Now, x and y coordinates of a point projected onto a screen have to be determined, say x_1, y_1, z_1. From Fig. 3 you can see that a triangle is formed by F(x_1, y_1, z_1) and the z axis. It should also be evident that a triangle is formed by points F(x, y) and the origin.

Since both of these triangles form the same angle at F, they are similar triangles. This means that the ratio of any two sides, is the same for both triangles. So for the point x,y
\[
\frac{y-y_1}{D+Z_1} = \frac{y_1}{D+Z_1}
\]

which means that
\[
y = \frac{D+y_1}{D+Z_1} = \frac{y_1}{1+\frac{Z}{D}}
\]

A similar argument applies to the x coordinate of any point on the screen. So that you can see for a given point x,y,z in the 3D a.e., its projection, i,j is given by

\[
i = \frac{x}{1+\frac{Z}{D}}
\]

and

\[
j = \frac{y}{1+\frac{Z}{D}}
\]

This final transformation allows points to be plotted on the QL’s screen, and if the points are joined in accordance with the 3D a.e. data-base, a line or ‘wire frame’ image in perspective will be produced on the screen.

Software for wire-frame drawings

We are now in a position to examine some preliminary software for producing wire frame images of objects of any shape provided that they can be constructed from straight lines.

Program 1, to be shown in the next article, is modular which allows the important functions and procedures to be used in any program. The main role of this program is to allow objects to be set up in the 3D a.e. and to view those objects from desired position. When ‘viewing’, you should try to prevent the camera from turning its back on the scene, since this program does not make any attempt to prevent transformation of invisible points.

The first procedure, SETUP, allows a rudimentary method of defining the 3D a.e. data-base. The next major procedure, VIEW places the camera at the origin of the 3D a.e. The image from this position is then drawn, and the user prompted for camera commands.

Entering positive x, y and z values causes the camera to move right, up or forward respectively by the desired amount. Negative values will move the camera in the opposite sense.

If you imagine that you are sitting in your chair facing the QL screen, then the orientation commands are described as follows. Entering a negative value causes the camera to turn towards the right, up through the specified angle, entering a negative pitch value causes the camera to turn upwards through the specified angle and entering a negative roll value causes the camera to rotate along its axis of viewing in a clockwise direction through the specified angle. Positive values will turn the camera in the opposite direction.

If you adjust the orientation and not the position then it is as if the camera has not moved, but simply turned about its centre.

Octahedron example

To give you an idea of how the program works, try the octahedron example, firstly using the SETUP facility to describe the octahedron to the 3D a.e. data-base.

Because ‘wire frame’ images are used, it is not essential to describe every face of the body, i.e. you make a cube from just four wire frame squares, the two remaining faces appear automatically. This can be a great saving for many bodies, the octahedron being the case in point.

In fact only four faces of the octahedron need to be described to give a correct image. Try entering the following data, after first entering ERASE and SETUP. The octahedron has four polygons, 1, 2, 3 and 4. Polygon 1 has vertices 1, 4 and 5, polygon 2 has vertices 1, 2 and 3, polygon 3 has vertices 4, 3 and 6 and polygon 4 has vertices 5, 2 and 6.

Table one gives the x,y and z coordinates of each vertex. When you have finished describing the body, the program will end and tell you so. You should now enter VIEW.

Software for producing wire-frame images will be presented in the next section.
<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th>VALVES</th>
<th>BASES</th>
<th>CRTs</th>
<th>INTEGRATED CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4101 0.01</td>
<td>A4201 0.01</td>
<td>B101 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4102 0.01</td>
<td>A4202 0.01</td>
<td>B102 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4103 0.01</td>
<td>A4203 0.01</td>
<td>B103 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4104 0.01</td>
<td>A4204 0.01</td>
<td>B104 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4105 0.01</td>
<td>A4205 0.01</td>
<td>B105 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4106 0.01</td>
<td>A4206 0.01</td>
<td>B106 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4107 0.01</td>
<td>A4207 0.01</td>
<td>B107 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4108 0.01</td>
<td>A4208 0.01</td>
<td>B108 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4109 0.01</td>
<td>A4209 0.01</td>
<td>B109 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4110 0.01</td>
<td>A4210 0.01</td>
<td>B110 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4111 0.01</td>
<td>A4211 0.01</td>
<td>B111 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4112 0.01</td>
<td>A4212 0.01</td>
<td>B112 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
<tr>
<td>A4113 0.01</td>
<td>A4213 0.01</td>
<td>B113 5.00</td>
<td>755C/19 0.60</td>
<td>7203 0.70</td>
</tr>
</tbody>
</table>

Terms of business: CW0. Pottage and packing valves and semiconductors 50p per order. CRVs £1.50. Prices excluding VAT, add 15%. Price ruling at time of despatch.

In some cases prices of Midland and USA valves will be higher than those advertised. Orders correct when going to press.

Account facilities available to approved companies with minimum order charge £10. Carriage and packing £1.50 on cash orders.

Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any type not listed. S.A.E.

CIRCLE 25 FOR FURTHER DETAILS.
PROBABLY THE ONLY DEVELOPMENT SYSTEM YOU'LL EVER NEED...

... runs FLEX, a powerful, well supported operating system; and gives access to a vast range of high level languages, Compilers and Cross Assemblers including: Z8, 8048, TMS7000, TMS320, 6800, 6802, 6808, 6801, 6803, 6301, 6805, 6502, 8085, 8080, Z80, 68000.

Its attractive modular design allows for easy expansion as your demands increase.

The complete system comprises:
- a 6809 Industrial Controller with 64K DRAM, battery backup, and Real Time Calendar Clock.
- the new CMS Floppy Disc Controller, supporting up to three Quad Density 3.5" or 5.25 Disc Drives.
- the recently introduced 40/80 Column Teletext Card with Centronics Printer Port and Serial Communications to an IBM style keyboard. All housed in an extremely rugged Industrial rack.

This has to be the Best Value For Money on the MDS market today!

CMS
Cambridge Microprocessor Systems Limited
44a Hobson Street, Cambridge CB1 1NL. 0223-324141

THREE INTO ONE WILL GO— WITH THE CROTECH 3132

1 SCOPE:
DC — 20MHz Bandwidth
2mV/div Sensitivity
40ns — 0.2s/div Sweep
14 Trigger Functions
Including active TV trigger on line & frame.
2 Active Component Comparator
(for checking Transistors, diodes and I.C.'s etc)
Test Voltage: 8.6Vrms (28mA)
3 Triple Output DC Source
+5V (1A); —ve grounded
+12V (200mA) Common Floating

All for the price of a scope at £285*

*CroTech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818

Also available from Audio Electronics & Henry's

SATELLITE TELEVISION
Buy direct from the manufacturers, low cost full band satellite TV systems. Write or telephone for details, or call in at our factory showroom.

Agents and Distributors required.

NETWORK SATELLITE SYSTEMS LTD
Units 7-8
Newburn Bridge Industrial Estate
Hartlepool, Cleveland TS25 1UB
Tel: 0429 869366

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, WC1
Phone: 01-837 7937
Telex: 892301 HARTRO G

Also available from Audio Electronics & Henry's

CIRCLE 63 FOR FURTHER DETAILS.
CIRCLE 71 FOR FURTHER DETAILS.
CIRCLE 29 FOR FURTHER DETAILS.
CIRCLE 23 FOR FURTHER DETAILS.
Transistors:

<table>
<thead>
<tr>
<th>Type</th>
<th>List</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N375</td>
<td>10.90</td>
<td>2SC1978</td>
</tr>
<tr>
<td>2N3953</td>
<td>1.60</td>
<td>2SC603</td>
</tr>
<tr>
<td>2N5002</td>
<td>12.95</td>
<td>2SC2377</td>
</tr>
<tr>
<td>2N5673</td>
<td>12.95</td>
<td>2SC2277</td>
</tr>
<tr>
<td>2N5968</td>
<td>1.20</td>
<td>2SC2390</td>
</tr>
<tr>
<td>2N4416</td>
<td>0.75</td>
<td>MRF240</td>
</tr>
<tr>
<td>2N4427</td>
<td>1.40</td>
<td>MRF340</td>
</tr>
<tr>
<td>2N5890</td>
<td>10.90</td>
<td>MRF2376</td>
</tr>
<tr>
<td>2N5109</td>
<td>1.95</td>
<td>MRF433</td>
</tr>
<tr>
<td>2N5110</td>
<td>3.00</td>
<td>MRF4498</td>
</tr>
<tr>
<td>2N5399</td>
<td>1.60</td>
<td>MRF450</td>
</tr>
<tr>
<td>2N5590</td>
<td>7.90</td>
<td>MRF450A</td>
</tr>
<tr>
<td>2N5591</td>
<td>9.90</td>
<td>MRF454</td>
</tr>
<tr>
<td>2N5641</td>
<td>9.30</td>
<td>MRF456</td>
</tr>
<tr>
<td>2N5642</td>
<td>9.30</td>
<td>MRF456</td>
</tr>
<tr>
<td>2N5643</td>
<td>11.85</td>
<td>MRF458</td>
</tr>
<tr>
<td>2N5913</td>
<td>2.50</td>
<td>MRF475</td>
</tr>
<tr>
<td>2N5946</td>
<td>7.85</td>
<td>MRF576</td>
</tr>
<tr>
<td>2N5945</td>
<td>10.10</td>
<td>MRF624</td>
</tr>
<tr>
<td>2N5946</td>
<td>10.10</td>
<td>MRF624</td>
</tr>
<tr>
<td>2N6060</td>
<td>6.65</td>
<td>MRF648</td>
</tr>
<tr>
<td>2N6081</td>
<td>8.40</td>
<td>MRF921</td>
</tr>
<tr>
<td>2N6082</td>
<td>10.50</td>
<td>SD1013</td>
</tr>
<tr>
<td>2N6083</td>
<td>11.20</td>
<td>SD1018-STUD</td>
</tr>
<tr>
<td>2N6084</td>
<td>12.00</td>
<td>SD1018</td>
</tr>
<tr>
<td>2N1729</td>
<td>12.00</td>
<td>SD1217</td>
</tr>
<tr>
<td>2SC1945</td>
<td>3.45</td>
<td>SD1131A</td>
</tr>
<tr>
<td>2SC1944A</td>
<td>16.00</td>
<td>SD1131A</td>
</tr>
<tr>
<td>2SC1947</td>
<td>8.50</td>
<td>SD1143</td>
</tr>
<tr>
<td>2SC1948</td>
<td>1.80</td>
<td>SD1171</td>
</tr>
<tr>
<td>2SC1970</td>
<td>1.40</td>
<td>SD1272</td>
</tr>
<tr>
<td>2SC1971</td>
<td>3.50</td>
<td>SD1278</td>
</tr>
<tr>
<td>2SC1972</td>
<td>9.50</td>
<td></td>
</tr>
</tbody>
</table>

Induction and Dielectric Heating Spares

- Neoprene I, II: 2.5 Kg at 1120 mm²
- Mepor: 1 Kg at 420 mm²

Workcell Component

- Indexing table:
 - Expandable conveyor
 - Sensors:
 - Gauges:
 - Etc.

Naiad Water Hydraulic/DC Servo Pneumatic

- Serpent II:
 - 2kg at 400 or 650 mm

Toroidal E.I. Transformers

As manufacturers, we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices. Quantity Prices and delivery on request.

###MAIL Order Price List

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toroidal transformers 15VA, 7.95, 30VA 9.15, 50VA 10.16, 80VA 11.36</td>
<td>C.75</td>
</tr>
<tr>
<td>100VA 12.07, 160VA 14.20, 225VA 15.51, 300VA 17.04, 500VA 22.16, 650VA 24.66, 750VA 28.75, 1000VA 44.82</td>
<td>C.145</td>
</tr>
<tr>
<td>Available from stock in the following voltages: 60, 90, 120, 150, 180, 220, 250, 300, 360, 400, 450, 500-550, 600, 750, 900, 1000 (max 10amp)</td>
<td>C.145</td>
</tr>
<tr>
<td>Printed circuit mounting transformers: E.I. 3VA 0.98, 3.98 0.99</td>
<td>C.145</td>
</tr>
<tr>
<td>3.5VA 1.00, 5.4VA 1.05, 8.2VA 1.10, 11.5VA 1.15, 15-20, 25-05, 25-00, Primary 240</td>
<td>C.145</td>
</tr>
<tr>
<td>Portable isolating transformers: Input 240 output 110V</td>
<td>C.145</td>
</tr>
<tr>
<td>E.I. transformers (clamp): 6VA 2.90, 8VA 3.40, 12VA 4.00, 18VA 4.75, 25VA 5.40, 50VA 6.50, 100VA 7.15, 150VA 8.50, 200VA 10.00</td>
<td>C.145</td>
</tr>
<tr>
<td>Available in the following voltages: 60, 90, 120, 150, 180, 220, 250, 300, 360, 400, 450, 500-550, 600, 750, 900, 1000 (max 10amp)</td>
<td>C.145</td>
</tr>
<tr>
<td>E.I. transformers E.I. 3VA 0.98, 3.98 0.99</td>
<td>C.145</td>
</tr>
<tr>
<td>3.5VA 1.00, 5.4VA 1.05, 8.2VA 1.10, 11.5VA 1.15, 15-20, 25-05, 25-00, Primary 240</td>
<td>C.145</td>
</tr>
<tr>
<td>Printed circuit mounting transformers: E.I. 3VA 0.98, 3.98 0.99</td>
<td>C.145</td>
</tr>
<tr>
<td>3.5VA 1.00, 5.4VA 1.05, 8.2VA 1.10, 11.5VA 1.15, 15-20, 25-05, 25-00, Primary 240</td>
<td>C.145</td>
</tr>
<tr>
<td>Portable isolating transformers: Input 240 output 110V</td>
<td>C.145</td>
</tr>
<tr>
<td>E.I. transformers (clamp): 6VA 2.90, 8VA 3.40, 12VA 4.00, 18VA 4.75, 25VA 5.40, 50VA 6.50, 100VA 7.15, 150VA 8.50, 200VA 10.00</td>
<td>C.145</td>
</tr>
<tr>
<td>Available in the following voltages: 60, 90, 120, 150, 180, 220, 250, 300, 360, 400, 450, 500-550, 600, 750, 900, 1000 (max 10amp)</td>
<td>C.145</td>
</tr>
<tr>
<td>E.I. transformers E.I. 3VA 0.98, 3.98 0.99</td>
<td>C.145</td>
</tr>
<tr>
<td>3.5VA 1.00, 5.4VA 1.05, 8.2VA 1.10, 11.5VA 1.15, 15-20, 25-05, 25-00, Primary 240</td>
<td>C.145</td>
</tr>
</tbody>
</table>

Service CES

- Service cleaner: 1.00
- Freeze it aerosol: 1.25

Prices

- Correct at time of going to press
- Terms: We shall accept PO and VAT at 15% on orders

WE ALSO SUPPLY JMA TUBES AND ACCESSORIES

Please refer to further details

www.americanradiohistory.com
Fibre Optics '86

If you don’t think fibre optics is for you this event should convince you otherwise.

The Fibre Optics '86 Exhibition, held in hall D of the Earls Court exhibition centre, is part of British Electronics Week consisting of four exhibitions taking place simultaneously at Earls Court and Olympia. It aims to bring together leading manufacturers of fibre optic components and systems to show their latest products to a "broadly based audience of engineers, managers and commercial staff", and includes lasers, local area networks and optical sensors. It is open from 28 April to 1 May in hall D of the Earls Court exhibition centre — a different venue from last year's Olympia — and a list of exhibitors accompanies our stand plan.

For about £100 a day an accompanying conference, held at the nearby London West Hotel 29 April to 1 May, discusses recent developments in fibre components and applications in both sensing and communications. If you are unable to attend you will be able to buy a set of conference papers after the event (only abstracts are available at the event from, strangely, publishers in the USA — SPIE*), and if you want copies of previous conference papers (all British) you'll have to buy them from America. To help newcomers get down to basics there are tutorial sessions on 'Basic fibre optics' (28 April), and 'Optical fibre sensor technology' (29 April), both of which cost around £100 but for companies wishing to acquire the basics quickly this is probably a cost-effective way. (There is also 'Business opportunities in fibre optics', which the brochure shows as a listing of applications, and 'Industrial applications of expert systems', which connection with fibre optics isn't at all clear.)

- K-Tech claim a typical loss of less than a decibel for all Diamond SA single-mode connectors, using 6/125µm fibre, including new types MMS40 to BT spec and MMS11 the first to be approved to DIN standard. Also new are optical attenuators for single to multimode and vice versa use with values from 2.5 to 30dB, and several tool sets. EWW 301 for further details.

- Kaptron, a new principal for Centronic Sales, specialise in fibre optic components and specialist test gear including Polytrope, an IBM PC-controlled automatic fibre alignment equipment. EWW 302 for further details.

- BICC Optical Components Unit at Prescot are to introduce a series of test equipment, the first of which is a stabilized light source for accurate on-site attenuation measurements. The emitter is a 1300nm edge-emitting i.e.d. whose output is chopped at 270Hz (the normal power meter frequency) but which can be externally modulated or operated c.w. We're told the price of £3,450 is about half that of its laser-based competition. EWW for further details.

- Fused couplers for fibre sizes of 62.5 and 85/125µm are now made by ADC Fiber Optics in addition to existing types for 50/125, 100/140µm graded-index and 100/140, 200/240µm step-index fibre. EWW 304 for further details.

- Belling and Lee Intec fibre components, modules and connectors are to be distributed by Circuit Distribution following an agreement signed at PO '86.

- Cossor's optical time domain reflectometers will be marketed in the USA by Wilcom Products, a subsidiary of communications co. Plantronics Inc.

New at Electro-Optics, Brighton

- As well as standard single mode optical fibres York Ventures and Special Products of Chandler's Ford make both ultralow and high birefringent fibres. The high birefringent type avoids polarization noise and signal fading in fibre gyrosopes and other interferometric sensors, for links to polarization-sensitive devices and for coherent communication. York's fibre has a beat length of less than 2mm; beat length is a measure of polarization holding ability. (Any phase difference between the two orthogonal modes gives rise to beats.) Ultra-low birefringence is useful in devices where the polarization plays an important role.

Data link modules typical of those currently available for point-to-point use and local area networks. This Plessey pair can operate up to 125Mbit/s in either NRZ or Manchester biphase encoding (50Mbit/s) at distances of up to 2km. IBM PC-controlled fibre optic alignment aid by Polytrope (Centronic sales).

* PO Box 10, Bellingham, Washington, 98227-0010, USA.
role for example in electric or magnetic sensors. In ordinary single-mode fibres birefringence is generally sensitive to temperature, pressure and vibration making calibration of polarization difficult. York's fibre, made by a preform spinning process patented at the University of Southampton, can have zero birefringence in nearly all situations; linear retardance is less than a degree, with no variation of polarization with temperature. EWW 305 for further details.

- Radial fibre optics connectors are now available through Norbain Electro-Optics, following a distribution agreement with the French manufacturer. Covered are the SMA style connectors for live sizes of p.c.s. multimode fibre, the new FMA types, and the very low loss Optaball range also suitable for monomode fibre. Emitting and photodiodes from RCA, TRW, Siemens, and EC&G's Vactec were newly shown at Brighton but a surprise announcement was the exclusive rental agreement with STC for its range for time domain reflectometers.

- Temporal disperser is the name Hamamatsu give to their 30GHz long wavelength optical oscilloscope. Based on a synchronized streak camera, it connects with a conventional camera — TV or still — and temporal analyser for real time operation together with other peripheral equipment to allow measurement of chromatic dispersion of single-mode fibres. The multidimensional detectors are able to record time, position or wavelength, and light intensity, and allow time-resolved spectroscopy up to a wavelength of 1.6µm. Observations of long wave phenomena have been impossible with conventional streak cameras because of the low efficiency of the photocathode in the range 1.3 to 1.6µm. The streak unit, type C1587, uses a synchronscan tube in which a sinusoidal sweep voltage applied to the tube's deflection plates is synchronized with repetitive light pulses, for example from a dye laser. Integration of streak images occurs on the phosphor screen or by direct recordout. Hakuto International. EWW 306 for further details.

- Gallium aluminium arsenide emitters and a p-i-n photodetector are newly available from Motorola distributors Gothic Crellon. Designated type MFOE3200 and 3201 and MFOD3100, the devices are housed in a new low-cost rugged plastics-capped package that fits standard device receptacles. The two emitters launch 10 and 20µW into 100µm fibre and are 850nm diodes with a bandwidth (60MHz) claimed to be higher than any other emitter in the price range. Enter EWW 307 for further details.

SMA-style connectors, often referred to as the 'industry standard' of connectors, are frequently used in data transfer applications. The range of Radial SMA types now available from Norbain, together with the Optaball range which have average losses as low as 0.35dB. New ceramic-terrule SMA types are added to the Optical Fibre Technologies range from Walmore, as are two new biconical types with ceramic capillary. Multimode version is field-installable using procedures for Dorrans Photonics connectors, with which they are mateable. Telecommunication systems usually use flat contact (FC) connectors such as Sicko's NTT type. Their latest development is the point contact (PC) type, bottom,

Stabilized modulated light source for attenuation measurement (BICC).
SENSITIVITY ANALYSIS
— WHAT IS IT AND WHAT CAN IT DO?

Whilst generally used for filter analysis, the sensitivity analysis is just as valid in many other branches of electronics.

Sensitivity analysis is a fairly simple mathematical technique that is most often used in electronics as an aid to help establish whether a particular active filter will perform to the required specification, and if so, what tolerance and temperature coefficient the components should have.

Though quite useful in this context, sensitivity analysis is a very useful technique that may be applied to many circuit problems and the results obtained are valuable to the circuit designer.

Definition
The informal (not absolutely precise) definition of the sensitivity function is

\[S^Y_X = \frac{\Delta Y}{\Delta X} \]

(1)

and it is the ratio of the normalized variation of parameter Y to the normalized variation of parameter X. If the variation \(\Delta X \) is infinitely small, then

\[S^Y_X = \frac{X}{Y} \frac{\partial Y}{\partial X} \]

(2)

Equation 2 is the formal definition. To illustrate the meaning of \(S^Y_X \) consider the following example.

Suppose X represents temperature, T, and Y represents a resistor value R, the value of which is inversely proportional to temperature, i.e. \(R = A/T \), where A is a constant. Then using equation 2 gives

\[S^R_T = T^2 \frac{\partial (A/T)}{\partial T} = \frac{A}{T^2} \]

(3)

Sensitivity values

Using the informal definition in (1), the fact that \(S^R_T = -1 \) means that if the temperature were to increase by 1% then the resistance would decrease by about 1%. As can be verified using equation 2, if the resistor happened to be inversely proportional to \(T^2 \) then the value of \(S^R_T = -4 \) and then the change of \(R \) would be four times as great.

Mathematical relationships
A very helpful relationship in simplifying calculations of sensitivity values is derived next.

Suppose Z is defined by the expression \(X = e^Z \) or \(Z = \ln X \).

Differentiating gives

\[\frac{\partial X}{\partial Z} = e^Z \frac{\partial Z}{\partial \ln X} \]

or

\[\frac{\partial X}{\partial \ln X} = e^Z \frac{\partial Z}{\partial \ln X} \]

(3)

Similarly

\[\frac{\partial Y}{\partial \ln X} = Y \]

(4)

Rewriting equation 2 using 3 and 4

\[S^Y_X = \frac{X}{Y} \frac{\partial Y}{\partial X} \frac{\partial X}{\partial \ln X} \frac{\partial \ln X}{\partial \ln Y} \frac{\partial \ln Y}{\partial \ln X} \frac{\partial \ln X}{\partial \ln Y} \frac{\partial \ln Y}{\partial \ln X} \]

(5)

To illustrate the value of this formulation of \(S^Y_X \), consider the following example. Suppose \(Y = AX^p \), where \(A \) and \(P \) are not functions of \(X \), then from equation 5

\[S^Y_X = S^{AX^P}_X = \frac{\partial \ln A}{\partial \ln X} \cdot \frac{\partial \ln X}{\partial \ln Y} \cdot \frac{\partial \ln Y}{\partial \ln X} \]

(6)

This is the proof of the first identity shown in the Appendix, and the others can be verified in a similar way. The identities ease the complexity of evaluating \(S^Y_X \) using the definition of (2).

Application to negative feedback systems
Negative feedback results in a lower overall system gain and closed-loop gain in much less sensitive to open-loop amplifier performance. This classical result can be simply shown by evaluating the sensitivity of the closed-loop gain to the open-loop gain. If we use the symbol \(A_F \) for the feedback gain and \(A \) for the open-loop gain with \(\beta \) for the feedback factor, then the standard relationship between these parameters is

\[A_F = \frac{A}{1 + \beta A} \]

(6)

Rewritten equation 2 using 3 and 4

\[S^{AF}_X = \frac{A(1 + \beta A)}{1} \frac{\partial (1 + \beta A)}{\partial \ln A} \frac{\partial \ln A}{\partial \ln X} \frac{\partial \ln X}{\partial \ln Y} \frac{\partial \ln Y}{\partial \ln X} \frac{\partial \ln X}{\partial \ln Y} \frac{\partial \ln Y}{\partial \ln X} \]

(6)

Or

\[S^{AF}_X = \frac{A(1 + \beta A)}{1} \frac{\partial (1 + \beta A)}{\partial \ln A} \frac{\partial \ln A}{\partial \ln X} \frac{\partial \ln X}{\partial \ln Y} \frac{\partial \ln Y}{\partial \ln X} \frac{\partial \ln X}{\partial \ln Y} \]

(6)
The closed-loop gain is almost the same as the inverse of the feedback network gain, provided that the open-loop gain is much larger than the closed-loop gain. This fact is clear from equation 6, and from equation 7 this makes

\[S_{A_f} = \frac{A_f}{A}. \]

The table shows that the \(S_A \) values are reasonable with no sensitivity effects evident. In fact, they are all within the range -1 to +1. Other constraints permitting, if \(R_1 \) were set to equal \(R_2 \), then

\[S_{A_f} = 0 = S_{R_1} \]

and

\[S_{R_2} = \frac{1}{2} = S_{R_2}. \]

The sensitivity tabulation resulted in any values being five more it would be wise to consider discarding the circuit in favour of an alternative yielding lower sensitivity to component variation.

The second-order active band-pass filter shown above has the characteristics:

- centre frequency
 \[f_0 = \frac{1}{2\pi R C} \]
- centre frequency gain
 \[A_o = \frac{K}{4 - K} \]
- quality factor
 \[Q = \frac{\sqrt{2}}{4 - K} \]

One of the poorest aspects of this particular circuit comes to light when evaluating the sensitivity of \(K \) to variations in amplification gain \(K \). It is relatively easy to show that

\[S_{R_2} = 2\sqrt{2} - 1. \]

Clearly if \(Q \) is 10 say, this gives a value of \(S_{R_2} = 27 \).

This is intolerably high as a +1% change in \(K \) results in about 27% change in \(Q \). Having discovered this most disastrous feature for moderately high values of \(Q \), the designer would be well advised to abandon this circuit completely and seek a replacement to achieve the desired band-pass response.

Appendix

Useful identities for sensitivity analysis

1. \(Y = AX^n \), where \(A \) and \(P \) are not functions of \(X \)
2. \(S_X = Y^\frac{n}{X} \)
3. \(S_X = -S_Y^\frac{1}{X} \)
4. \(S_X = S_Y^\frac{1}{X} - S_Y \)
5. \(S_X = \frac{-S_Y}{N} \)
6. \(S_X = Y_1 + Y_2 = \frac{Y_1 Y_2}{Y_1 + Y_2} \)

Application to active filters

The circuit shown on Page 46 is of a second-order band-pass filter and from analysis the centre frequency \(f_0 \) the quality factor \(Q \), and the centre frequency gain \(A_o \), are given by the following expression:

\[f_0 = \frac{1}{2\pi \sqrt{C_1 R_1 C_2 R_2}} \]
\[A_o = \frac{C_1}{C (R_1 + R_2)} \]
\[Q = \frac{1}{(R_1 + R_2) \sqrt{C_1 C_2}} \]

The closed-loop gain of a standard op-amp with non-inverting amplifier with closed-loop voltage gain of

\[V_o = A_f(1 + R_2/R_1), \]

where \(R_2 \) and \(R_1 \) are the feedback resistors linking the output to the op-amp with the inverting input terminal and the inverting input terminal and earth respectively.

To establish the sensitivity of \(A_f \) to each of the resistors without much effort and no differentiation, use the identities shown in the Appendix:

\[S_{R_2} = \left(\frac{A_f - 1}{A_f} \right) = S_{R_1}. \]

Clearly if \(A_f > 1 \) then the sensitivity values given in equation 8 approach unity in magnitude.

On the face of it none of these results are particularly surprising nor startling. However, if the values obtained were not small but yielded figures of 10 or more we might well be alarmed as this would suggest a large change of the circuit parameter \(Y \) as a result of a change in circuit component \(X \). This does occur if positive rather than negative feedback is used in a particular application.

Introducing the S/58 bus

Simpler communications between computers.

The notoriously difficult art of getting computers and their peripherals to talk to one another is about to become a great deal easier, with the launch of the S/58 serial interface. After extensive preparatory work by Government bodies and British industry, a detailed specification of S/58 has just been published by the British Standards Institution.

The new arrangement is certain to receive a warm welcome from anyone who has to struggle with RS232 and its endless permutations of data format and electrical connections. For with S/58, incompatibility has been designed out.

All physical and electrical aspects of S/58 (it stands for serial, 5 volt, 8 pin) are defined in the published proposals: as far as the user is concerned, it is a 'plug and run' interface. There is only one kind of interconnecting cable and only one permissible signalling format and data rate.

But S/58 offers further benefits: in place of the costly 25-wire connector it is based on cheap, compact eight-pin DIN connectors. Logic levels are compatible with 5V c-mos i.c.s and are appropriate for portable and other low-power equipment.

Already, six manufacturers are using S/58 in their products and many more have said they will adopt it when it becomes a British Standard.

We hope to publish shortly an article giving full details of S/58. But in the meantime, the specification is available under the BSI reference number DD 153. BSI Sales Department, Linford Wood, Milton Keynes MK14 6LE.

ELECTRONICS & WIRELESS WORLD MAY 1986
INDUSTRIAL CONTROL with BBC BASIC

The EuroBEEB SYSTEM offers a fast, modular solution for the engineer designing intelligent control and monitoring systems. Typical cost-effective applications include:

- PLANT MONITORING
- AUTOMATED TESTING
- PROCESS CONTROL
- FACTORY SUPERVISION
- REMOTE DATA ACQUISITION
- INTELLIGENT INSTRUMENTATION

Real-Time BASIC allows a powerful system to be configured in the minimum time. This event driven, multi-tasking extension to BBC BASIC allows the user to control the CUBE range of Eurocard expansion modules simply and efficiently.

BBC Micro or IBM PC can provide low cost development support, data analysis and display facilities for EuroBEEB.

Rugged stand-alone systems can be configured by adding disk, video and keyboard interfaces to EuroBEEB.

See us at LONDON CONTROL and INSTRUMENTATION, Earls Court, June 3–5, Stand V32

CIRCLE 63 FOR FURTHER DETAILS.

VICCOM MODEM (UNIVERSAL)
For IBM, Apple, BBC, Commodore computers with user-port, and for the SPECTRUM.

- Work with most Viewdata Softwares and VIP Terminal Program (CBM-64)
- Expandable with a power unit for other computers.
- CBM-64/VICCOM INTERFACE CABLE $8.00
- SPECTRUM/VICCOM INTERFACE CARD & CABLE, AND TERMINAL/VIEWDATA SOFTWARE $20.00
- POWER UNIT $26.00

EUROPEAN CCITT STANDARD
CBIT V 21 ORL, 300 BD F. Duplex
CBIT V 21 ANS, 300 BD F. Duplex
CBIT V 23 600 BD H. Duplex
CBIT V 23 1200 BD H. Duplex
CBIT V 23 751200 BD F. Duplex
(Cineplex Viddit, Prestel)
CBIT V 23 1200BD F. Duplex
(Cineplex/Vewedata Host)
USA BELL STANDARD
Bell 103 ORI, 300 BD F. Duplex
Bell 103 ORI, 300 BD F. Duplex
Bell 202 1200 BD H. Duplex

VIDEO TEX/VIEWDATA
Telecommunication softwares:
- Top Spectrum $16.00
- For IBM 64......................... $25.00
- For BBC......................... $39.00
- For IBM PC....................... $75.00
- For bullet. Morrow MD11, Northstar advantage...... $70.00

VIDEO TEX/VIEWDATA
Host Softwares:
- DataTel for CBM 64.................. $25.00
- Posen+ for BBC.................. $170.00

Note: these softwares work with AUTO ANG/WIDIAL CARD

SURREY ELECTRONICS LTD.
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG
Tel: 0483 275997

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPpreciate A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N.12, 5 mins. from Tally Ho corner
Telephone 01 445 2713/0749

CIRCLE 72 FOR FURTHER DETAILS.
NEW MULTIVISION FROM ROBOT

AVAILABLE NOW

☆ Four cameras, any type including high quality 1", into one 120V AC for, recorder, time lapse recorder, microphone or Slow Scan system.
☆ Can be retrofitted into any existing CCTV installation with full compatibility. No special or additional cabling required.
☆ A full picturing of each quadrant of the full area of the camera tube for maximum definition. Individual cameras may be selected if required.
☆ Freeze frame, to instantly freeze motion in any quadrant for closer inspection.
☆ Full alarm facilities including video loss alarm. Cunnyning freezes the last picture before video is lost and activates the alarm.
☆ Security lockout prevents unauthorised operations of controls.

ROBOT (U.K.) LTD
Building 33, East Midlands Airport
Castle Donington, Derby DE7 2SA
Telephone Derby (0332) 812446, Telex 37522

CIRCLE 24 FOR FURTHER DETAILS.

CIRCLE 24 FOR FURTHER DETAILS.
CP/M Plus (vers 3)
For NASCOM and Gemini computers

Features:
- TELESCOPIC MASTS
- Pneumatic
- Hydraulic Ram Operated
- Winch Operated

Developing Systems
Consider our modular approach
Nasbus/80 Bus compatible

CPU card
- 280 CPU incorporating memory mapping
- 64k RAM on board (expandable)
- 280 S10 providing two RS232 channels
- CTC providing programmable baud rates
- P10 providing parallel/centronics I/O
- Parallel keyboard port

VIDEO card (VFC)
- 80 by 25 line output
- Fast memory mapped display
- On board floppy disk controller
- Can be used with CPU card under CP/M
- Available in kit or built and tested

DISK card (MPI)
- Mixed 3", 3.5", 5.25", 8" drives supported
- SASI Winchester interface
- 280 S10 providing two serial channels
- CTC providing programmable baud rates

RAM card
- 64k to 256k (in 64k steps)
- Supports 64/32k paging 4k mapping
- Available in kit or built and tested

CLOCK card (RTC)
- Attaches to any 280 P10
- Retains Centronics parallel output
- Battery backup

PRICES
- CPU £230
- VFC £150
- RTC £35
- RAM (64k) £150
- RAM (256k) £285

All prices exclude carriage and VAT

For further information contact:
MAP 80 Systems Ltd
Unit 2 Stoneylands Road, Egham, Surrey
Tel: 0784 37674

CIRCLE 22 FOR FURTHER DETAILS.

Happy Memories

Part type	1 off	25 up	100 up
4116 150ns | 1.55 | 1.15 | 1.10
4164 150ns Not Texas | 1.30 | 1.00 | 0.90
41256 150ns | 2.36 | 2.10 | 2.05
2714 200ns Low Power | 1.75 | 1.55 | 1.50
6116 150ns | 1.45 | 1.30 | 1.25
6264 150ns Low Power | 2.80 | 2.35 | 2.25
2716 450ns 5 volt | 2.95 | 2.65 | 2.45
2732 450ns Intel type | 2.75 | 2.45 | 2.25
2764 250ns Suit BBC | 1.90 | 1.75 | 1.70
27126 250ns Suit BBC | 2.50 | 2.25 | 2.10
27256 250ns | 3.85 | 3.75 | 3.60

Low profile IC sockets: Pins 8 14 16 18 20 24 28 40
Pence 5 9 10 11 12 15 17 24
Available now — The ROAM BOARD for the BBC Micro. Reads
Roms via a Low Insertion Force Socket and saves their
contents as files, then reloads a file into its sideways Ram
as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts
starting at a mix of just 25 pieces. Write for phone list.

Please add 50p post & packing to orders under £15 and VAT to total.
Access orders by phone or mail welcome.
Non-Military Government & Educational orders welcome, £15 minimum.

HAPPY MEMORIES (WW),
Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (054 422) 618

CIRCLE 40 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD MAY 1986
Timing by remote control

Contraction, testing and setting up of a versatile Z80 timer that uses coded r.f. bursts through the mains wiring

The author asks us to point out two alterations to the transmitter circuit on page 67, February issue: the preset potentiometer at Tr1 should have a 100kohm value, not 10k, and a 100nF capacitor, C10+, was omitted between the bases of Tr7 and Tr8. (One constructor found that a 100PF ceramic capacitor connected between Tr7 and Tr8 bases cured his 1MHz oscillation.) And in the receiver circuit, page 68, C1 should be returned to the neutral line, not to the earth line. Incidentally, two of IC6 gates had the wrong symbol: the type number is correct. The line that leaves the address bus at IC8a on page 65 is A2; the brightness control is a 47kohm logarithmic potentiometer; and on IC9 it is the inverting inputs that are grounded.

Electronics & Wireless World May 1986 by Peter Ferris
If all the appliances to be controlled are in the same room as the control unit the f.s.k. control unit can be dispensed with. Instead of IC₁, this circuit provides a directly-connected signal to operate each opto-coupled switch. Tables below refer to the receiver circuit on page 68 of the February issue.

Table 1

<table>
<thead>
<tr>
<th>Filter resistors (kΩ)</th>
<th>Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0k</td>
<td>531</td>
</tr>
<tr>
<td>3.3k</td>
<td>482</td>
</tr>
<tr>
<td>3.6k</td>
<td>442</td>
</tr>
<tr>
<td>3.9k</td>
<td>408</td>
</tr>
<tr>
<td>4.3k</td>
<td>370</td>
</tr>
<tr>
<td>4.7k</td>
<td>339</td>
</tr>
<tr>
<td>5.1k</td>
<td>312</td>
</tr>
<tr>
<td>5.6k</td>
<td>284</td>
</tr>
<tr>
<td>6.2k</td>
<td>257</td>
</tr>
<tr>
<td>6.8k</td>
<td>234</td>
</tr>
<tr>
<td>7.5k</td>
<td>212</td>
</tr>
<tr>
<td>8.2k</td>
<td>194</td>
</tr>
<tr>
<td>9.1k</td>
<td>175</td>
</tr>
<tr>
<td>10k</td>
<td>159</td>
</tr>
<tr>
<td>11k</td>
<td>145</td>
</tr>
<tr>
<td>12k</td>
<td>133</td>
</tr>
<tr>
<td>13k</td>
<td>122</td>
</tr>
<tr>
<td>15k</td>
<td>106</td>
</tr>
<tr>
<td>16k</td>
<td>99.5</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Channel</th>
<th>R319</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1k</td>
</tr>
<tr>
<td>2</td>
<td>22k</td>
</tr>
<tr>
<td>3</td>
<td>33k</td>
</tr>
<tr>
<td>4</td>
<td>43k</td>
</tr>
<tr>
<td>5</td>
<td>56k</td>
</tr>
<tr>
<td>6</td>
<td>68k</td>
</tr>
<tr>
<td>7</td>
<td>75k</td>
</tr>
</tbody>
</table>

The timing’s operating program occupies the first 2K bytes of the processor memory map, i.e. from 0000 to 07FF. If a 2732 or 2733A is used, the next 2K bytes, from 0800 to 0FFF, are available for additional functions.

Fault-finding

The following is necessarily only a brief outline of the sort of problems most likely to be encountered in a system of this type. It is based on the assumptions that all the components have been correctly fitted, and that theeprom contains the published machine code.

If there is no 601Hz waveform on interboard connection 16, check for a clean 1MHz square-wave on in 6 of the processor chip. If it isn’t there, check the 2MHzwaveforms at the outputs of IC₈. You may find only one of these waveforms present - an impossible situation at first glance. But what is really happening is that the oscilloscope probe is adding enough extra capacitance to make the circuit oscillate when it is applied to one of the outputs, but not the other. The solution is to fit a small capacitor (between 10 and 30pF) between the apparently working output and 0V.

If you have a 1MHz clock but still no 601Hz at point 16, the most likely culprit is the power-up reset circuit (C₁, D₁, R₈ and Tr₁). Try momentarily shorting Tr₁ collector to 0V. If the 601Hz waveform appears, experiment with the values of C₁ and R₈; the aim is to increase the length of the not-reset pulse, because it must remain low for some time after the clock oscillator has started up. As a last resort, wire a reset pushbutton across C₁. The software can distinguish a reset from a power-up, so you won’t lose your stored timer settings if the button is pushed accidentally; though you will have to reset the clock.
Interrupt structure

Although there are only two sources of interrupts, namely the 20Hz and 601Hz c.t.c channels, the priority between them had to be carefully defined to meet the following requirements:

- To maintain a regular rate of multiplexing the display, which is essential to avoid visible flicker, the 601Hz channel must be allowed to interrupt any routine currently in progress — including its own keyboard service routines, which in some cases can take tens of milliseconds to run.

- To maintain accurate time-keeping, the 20Hz channel must be allowed to interrupt keyboard services; fortunately it need not interrupt the display multiplexing/keyboard scanning routine, which only takes about 30ms.

- When the clock minute increments, the 20Hz interrupt service routine (i.s.r.) has to search for, examine, and possibly act upon, all the active timer settings; a process which can take more than the 50 ms interval between interrupts. The 20Hz channel must therefore be able to interrupt its own service routine.

- The 601Hz i.s.r. cannot be allowed to enter a keyboard service routine if it has interrupted a 20Hz i.s.r because the 20Hz routine will be using the c.p.u. registers. (The original contents, needed for keyboard servicing, are saved on the stack at the start of the 20Hz routine and replaced at the end.)

The first three of these requirements are easily met by clearing the c.t.c. channel's interrupt flag and enabling further interrupts, (using the EI and RETI instructions), before entering a potentially time-consuming routine. The 20Hz i.s.r. takes care of the fourth requirement by manipulating the Key Enable status in ram location 80BE. This location is set to FF (key services disabled) before the 20Hz i.s.r. enables interrupts, and the original contents and related data at the end of the 20Hz i.s.r. along with the processor register contents.

Flowchart

Space does not permit publication of a fully commented assembly-language listing of the software. However, such a listing would only be of more use than the flowcharts to constructors who intend to modify the program, and such people are likely to have sufficient knowledge of 280 assembler and machine code to disassemble small blocks of code. To assist in this, each block in the flowcharts has alongside it the eprom address of the first instruction corresponding to the process written inside the block. The following paragraphs should also help.

Most accesses to the scratchpad area of ram are made using indexed addressing via the IX register; the first byte of the instruction is always DD, and the third byte is the displacement, which in this application is the same as the lower half of the ram address. For example, at eprom address 216 is the machine code DD 7E BB, which disassembles as LD A, (IX + BB). This loads the accumulator from ram address 80BB, whose function can be looked up in Table 3.

Testing for a keyboard row or for a particular key is done with bit test instructions, which are recognizable by the fact that the first byte is always CB. The meanings of the individual bits in registers C, D and E are given in Table 4.

If the existing code is moved around to make room for additional functions, remember that the seven-segment look-up table must remain on a 256-byte page boundary. Also, beware of relative jumps which go past your added code. The safest, if not the most elegant, way of adding code into the middle of a routine is to insert a Call instruction into the middle of the last three bytes (or more if necessary) to make up a complete instruction) before the place where you want to put the added code. The Call is to an address above the end of the existing program, and at that address should be the instructions replaced by the Call, followed by your additional code.

Table 3. Scratchpad ram allocations and setting storage format

<table>
<thead>
<tr>
<th>Code</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080</td>
<td>Password to distinguish</td>
</tr>
<tr>
<td>8081</td>
<td>Reset from power-up</td>
</tr>
<tr>
<td>8082</td>
<td>Interrupt vector for</td>
</tr>
<tr>
<td>8083</td>
<td>601Hz CTC channel</td>
</tr>
<tr>
<td>8084</td>
<td>Interrupt vector for</td>
</tr>
<tr>
<td>8085</td>
<td>20Hz CTC channel</td>
</tr>
<tr>
<td>8086</td>
<td>Interrupt vector for</td>
</tr>
<tr>
<td>8087</td>
<td>spare CTC channel</td>
</tr>
<tr>
<td>8088</td>
<td>Counter 2 (5 to 1Hz divider)</td>
</tr>
<tr>
<td>8089</td>
<td>Counter 1 (20 to 5Hz divider)</td>
</tr>
<tr>
<td>808A</td>
<td>Enable 1/2</td>
</tr>
<tr>
<td>808B</td>
<td>Not used</td>
</tr>
<tr>
<td>808C</td>
<td>Pointer 1</td>
</tr>
<tr>
<td>808D</td>
<td>Pointer 2</td>
</tr>
<tr>
<td>808E</td>
<td>Temp. store 1</td>
</tr>
<tr>
<td>808F</td>
<td>Temp. store 2</td>
</tr>
<tr>
<td>8090</td>
<td>Search store</td>
</tr>
<tr>
<td>8091</td>
<td>Not used</td>
</tr>
<tr>
<td>8092</td>
<td>Day (bits 6 to 0)</td>
</tr>
<tr>
<td>8093</td>
<td>Tens-of-hours</td>
</tr>
<tr>
<td>8094</td>
<td>Units-of-hours</td>
</tr>
<tr>
<td>8095</td>
<td>Tens-of-minutes</td>
</tr>
<tr>
<td>8096</td>
<td>Units-of-minutes</td>
</tr>
<tr>
<td>8097</td>
<td>Tens-of-seconds</td>
</tr>
<tr>
<td>8098</td>
<td>Units-of-seconds</td>
</tr>
<tr>
<td>8099</td>
<td>Not used</td>
</tr>
<tr>
<td>809A</td>
<td>Timer enables</td>
</tr>
<tr>
<td>809B</td>
<td>Output status</td>
</tr>
<tr>
<td>809C</td>
<td>Repeat transmission password</td>
</tr>
</tbody>
</table>

809E to 80AC are not used.

<table>
<thead>
<tr>
<th>Code</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>80AD</td>
<td>Today (bits 6 to 0)</td>
</tr>
<tr>
<td>80AE</td>
<td>Hours</td>
</tr>
<tr>
<td>80AF</td>
<td>Minutes b-c-d</td>
</tr>
<tr>
<td>80B0</td>
<td>Seconds</td>
</tr>
<tr>
<td>80B1</td>
<td>Active/suspended/cancelled</td>
</tr>
<tr>
<td>80B2</td>
<td>Repeat (bit 7) and days</td>
</tr>
<tr>
<td>80B3</td>
<td>Tens-of-hours</td>
</tr>
<tr>
<td>80B4</td>
<td>Units-of-hours</td>
</tr>
<tr>
<td>80B5</td>
<td>Tens of minutes (7-seg)</td>
</tr>
<tr>
<td>80B6</td>
<td>Units of minutes (7-seg)</td>
</tr>
<tr>
<td>80B7</td>
<td>Tens of hours</td>
</tr>
<tr>
<td>80B8</td>
<td>Units of hours</td>
</tr>
<tr>
<td>80B9</td>
<td>Tens of minutes (7-seg)</td>
</tr>
<tr>
<td>80BA</td>
<td>Units of minutes</td>
</tr>
<tr>
<td>80BB</td>
<td>Channels</td>
</tr>
<tr>
<td>80BC</td>
<td>Output status</td>
</tr>
<tr>
<td>80BD</td>
<td>Not used</td>
</tr>
<tr>
<td>80BE</td>
<td>00: keys enabled, FF: disabled</td>
</tr>
<tr>
<td>80BF</td>
<td>Keyboard debounce counter</td>
</tr>
</tbody>
</table>

Table 4. Calculating registers

<table>
<thead>
<tr>
<th>Code</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>80BE</td>
<td>00: keys enabled, FF: disabled</td>
</tr>
<tr>
<td>80BF</td>
<td>Keyboard debounce counter</td>
</tr>
</tbody>
</table>

Variations

A number of simple modifications may be made, either to reduce the cost of the system or to change its operation in some way. For example, if all the appliances to be controlled are in the same room as the control unit, a substantial cost saving may be achieved by dispensing with the f.s.k. remote control. Instead of IC13 on the processor board, the circuit opposite provides a directly-connected signal to operate each opto-coupled switch. It would even be possible to mount some or all of the switches inside the control unit, to save on boxes, and to connect the appliance
main leads to the control unit, either with standard mains plugs and sockets, or via "chocolate-block" connectors or barrier strips. But remember that the total current for all the appliances is then supplied from a single wall socket, and must therefore be limited to 13 amps.

Table 4, Flags

<table>
<thead>
<tr>
<th>Register C</th>
<th>Meaning of Flag (when at logic 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Seconds count is enabled</td>
</tr>
<tr>
<td>6</td>
<td>Minutes count is enabled</td>
</tr>
<tr>
<td>5</td>
<td>The CHECK the time is enabled</td>
</tr>
<tr>
<td>4</td>
<td>Non-control keys are enabled</td>
</tr>
<tr>
<td>3</td>
<td>Settings for a particular CHANNEL are being examined/ altered</td>
</tr>
<tr>
<td>2</td>
<td>Settings on a particular DAY are being examined/ altered</td>
</tr>
<tr>
<td>1</td>
<td>Repeat setting is being entered</td>
</tr>
<tr>
<td>0</td>
<td>A NEW setting is being entered</td>
</tr>
</tbody>
</table>

Flowchart

Copies of the flowchart annotated with eeprom addresses and too extensive to print here are available from the editorial office in return for a stamped and addressed envelope marked 'Remote timer'. Included is the hexadecimal listing, some notes on battery backup, components lists and p.c.b. hints.

Register D

<table>
<thead>
<tr>
<th>Bit</th>
<th>Pressed Key</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Set clock</td>
<td>Repeat</td>
</tr>
<tr>
<td>6</td>
<td>Last step</td>
<td>Saturday</td>
</tr>
<tr>
<td>5</td>
<td>Next setting</td>
<td>Sunday</td>
</tr>
<tr>
<td>4</td>
<td>Down</td>
<td>Monday</td>
</tr>
<tr>
<td>3</td>
<td>Jp</td>
<td>Tuesday</td>
</tr>
<tr>
<td>2</td>
<td>Next step</td>
<td>Wednesday</td>
</tr>
<tr>
<td>1</td>
<td>Normal</td>
<td>Thursday</td>
</tr>
<tr>
<td>0</td>
<td>New setting</td>
<td>Friday</td>
</tr>
</tbody>
</table>

Register E

<table>
<thead>
<tr>
<th>Bit</th>
<th>Key Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Control</td>
</tr>
<tr>
<td>6</td>
<td>Days & repeat</td>
</tr>
<tr>
<td>5</td>
<td>Timer enable/disable</td>
</tr>
<tr>
<td>4</td>
<td>Output on/off</td>
</tr>
<tr>
<td>3-0</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Operation

To set the clock when power is first applied (the day leds should be flashing):
1. Set the day by pressing the appropriate key.
2. Press 'next step'. This makes the tens-of-hours digit flash; use the up and down keys to change it if required.
3. Use the next step up and down keys to step through and change the other three clock digits in the same way. 'Last step' can be used to correct a previous digit if a mistake is made.
4. With the right-hand digit flashing, press 'next step' or 'normal' on a time signal. The seconds start counting from zero at this point.

To correct the clock time:
1. Press 'set clock', which makes the seconds digits flash.
2a. If the clock is less than half a minute fast or slow, press 'normal' on a time signal. This sets the clock seconds to zero, and if the clock was slow, (i.e. if the displayed seconds were 30 or more) the clock time is incremented by one minute.
2b. If the clock is out by more than half a minute, press 'next step' repeatedly until stepping through days, hours and minutes, using the day keys or the up and down keys to correct whenever part of the display is flashing. The seconds count is not affected unless the units-of-minutes digit is altered; in which case the seconds are set to zero and will resume counting when 'next step' is pressed again. If the tens-of-minutes digit is altered, the minute will not increment when the seconds change from 59 to 00. The minutes count is re-enabled on returning to normal mode, which is done by pressing 'next step' while the units-of-minutes digit is flashing.
3. Enter a new timer setting:
1. Press 'new setting'. If the display shows 'full', there are already a hundred settings stored, and one must be cancelled to make room for the new one (see below). Normally, the active led flashes, and the on-time is set to 00:00. At this stage the up key may be used to change active to suspended if required.
2. Press 'next step', which makes the repeat led and all the day leds flash. Any combination of days may be selected; the day becomes last day, and one you pressed 'next step' to return to the clock display.
3. If 'normal' is pressed at any stage when no channels are selected, the setting is cancelled and in place becomes blank except for the cancelled led, the colon and any output leds which were already on. Press 'normal' again to return to the clock display, or press 'next setting' to start again.

To examine and alter stored settings:
1. Press 'next setting'. The repeat led and all the channel and day leds flash.
2. To examine all settings for a particular day or channel, or all repeated settings, press the corresponding key; to examine all stored settings regardless of content, press 'next setting' again. The first appropriate setting (if there is one) is displayed with active or suspended flashing. If the setting is not a repeated one, the last day also flashes. If there are no such settings stored, the display shows 'none'.
3. Use the 'up' and 'own' keys to rotate the active/suspended/cancelled status if required. 'Next step' may be used to step through the rest of the setting; whichever part is flashing may be altered. 'Next step' is ignored if the cancelled led is lit, as there is no point in altering a setting if you're going to cancel it. (a)
4a. If any stage in the above, 'next setting' may be used to display the next appropriate setting (if there is another one). If the previously displayed setting was left with no channels selected or with the cancelled led on, it is deleted from the setting ram. If there are no further stored settings appropriate to the group selected at '2' above, the display shows 'none' with a day, repeat or channel led lit to remind you which settings you were examining. If you were looking at all stored settings, all the channel leds are lit.
4b. Pressing 'normal' at any stage restores the clock display, unless the last setting to be displayed was left with no channels selected or with the cancelled led on. In those cases, the setting is deleted from the setting ram, and the display is blanked except for the cancelled led, the colon and any output leds which were already on. Press 'normal' again to restore the clock display; or press 'next setting' to return to step '2' above; or press 'new setting' to set up a new setting from scratch.
Measuring tape speed

A simple and accurate method of ensuring the correct tape speed

It is often important to ensure that the speed of a cassette recorder is reasonably close to its correct speed, either to ensure the correct pitch of music or the correct frequency of delayed data. One method of doing this is to use a standard-frequency tape and measure the output of the cassette recorder on a frequency meter. Having neither at my disposal, I devised a method which only requires a watch, a pair of vernier calipers and a cassette. Basically, the method consists of measuring the thickness of the tape and then measuring the time for a given number of revolutions of the cassette when playing the recorder or player. The cassette used should preferably be a C60 (although a C90 will do) it must be of screwed construction and the tape hubs should be clearly visible. (The latest range of Sony cassette players are particularly good for this purpose as the tape clamp provides a very easy reference when counting the hub revolutions.)

Measuring tape thickness

If your cassette recorder doesn’t have a counter, this will be the most laborious part of the process. Run the cassette from start to finish and count the total number of revolutions of the take-up hub. Most cassette recorders, however, have a counter driven from the take-up hub, and this makes the process much easier.

First, the ratio of the hub revolutions to the counter is found by noting the change in counter reading for 20 revolutions of the take-up hub and then dividing this change into 20, i.e. read the number of revolutions on the counter from one end to the other and then note the change in the counter reading. The number of revolutions of tape (including the lengths) is the change in counter reading.

With the cassette wound to one end, unscrew the cassette and measure the diameter of the empty hub (h) and the diameter of the full spool (f) using the vernier calipers. The total thickness of the tape on the full spool is (f-h)/2, and if the number of revolutions is nT, then the thickness of the tape, t = (f-h)/2nT.

It is wise to do all of your calculations in one set of units, preferably millimetres, so if your calipers measure in inches don’t forget to convert the measurements to millimetres first. Tape thicknesses, typically, 18 µm (0.018mm) for C50 cassettes and 12µm (0.012mm) for C90s.

Tape speed

If the counter on the recorder uses the hub instead of the take-up hub then see Method 2 (later). Having reassembled the cassette, rewind it to the start. Either by direct counting or using the recorder’s counter, count the number of revolutions of the hub for, say, 5 minutes (using a watch or stop watch). Do not time the first few revolutions, since this will lead to starting errors, but do note the exact number of revolutions n1 at which you start to time. After timing for a duration d seconds (the longer the better) note the number of revolutions n2. If you are using the recorder’s counter don’t forget the conversion factor k. The tape speed is,

\[s = \pi \left(n_2 - n_1 \right) \left[\frac{h + (2nT + 2 - n_2 - n_1)k}{d} \right] \text{ mm/s} \]

and, since the correct speed of cassette recorders is 47.625 mm/s (1.51 p.s.) the speed error is

\[e = \left(s - 47.625 \right) \% \text{ of 47.625} \]

These calculations can easily be carried out with the aid of a scientific calculator, but for those who need to carry out the calculation many times (for example, when adjusting the speed of a recorder or player) a short computer program is included at the end of this article. Although written for the Spectrum, it can easily be adapted for any other computer. The tolerance permissible for professional recorders is ±0.5% and for domestic recorders ±2%.

Method 2. If the counter is driven from the feed spool instead of the take-up spool then the same basic timings are made, but the equations are

Tape speed

\[s = \pi \left(n_2 - n_1 \right) \left[\frac{h + (2nT + 2 - n_2 - n_1)k}{d} \right] \text{ mm/s} \]

Making a speed test tape

Having determined the speed of a recorder, it is now possible, with the aid of an audio signal generator and a frequency meter, to make a standard speed tape. Using the frequency meter, set the signal generator frequency to 1kHz (X100+e) and then record several minutes of this signal. When replayed on any machine the speed error will be indicated on a frequency meter, the tens of Hertz indicating units of percentage error and units of Hertz indicating tenths of one percent error. For maximum stability of the test tape a C60 (or shorter) cassette must be used.

Derivation of the formula

The length of tape on the first revolution of the hub is \(\pi h \), where \(h \) is the diameter of the hub. The length of the second revolution is greater since its diameter is larger by twice the thickness of the tape (t). Its length is \(\pi (h+2t) \) and so the length of the nth revolution is \(\pi (h+2(nt-t)) \).

The total length of the first n revolutions of tape is equal to the sum (addition) of the lengths of each revolution. This sum is an arithmetic series whose first term is \(\pi h \) and whose common

by M. E. Theaker, B.Sc., M.I.E.R.E.
difference is $2\pi t$. The total length of tape for n turns is

$$L = \pi n(h + (n - 1)k)$$

Using this equation and the information found when measuring the thickness of the tape, you can calculate the total length of the tape in the cassette by making n equal to the total number of revolutions of the cassette (nt). The nominal length for a C60 cassette is 90m and for a C90 is 135m, plus a leader of about 0.5m at each end. The length of tape between n_1 and n_2 revolutions is

$$L_{21} = \pi n_2[h + (n_2 - 1)k] - \pi n_1[h + (n_1 - 1)k]$$

Similarly, if the revolutions of the feed spool are counted, then the length of tape is

$$L = \pi n[h + (2nT + 1 - n)T]$$

where nT is the total number of turns on the cassette. The length of tape between revolutions n_1 and n_2 in this case is

$$\pi n_2[h + (2n_2 + 1 - n_2)T] - \pi n_1[h + (2n_1 + 1 - n_1)T] = \pi (n_2 - n_1) \times [h + (2n_2 + 2 - n_2)T]$$

Accuracy

The accuracy in measuring the speed error (and the speed) depends upon the accuracy with which the various measurements have been made. If the difference between the full-speed diameter and the hub diameter is measured to within 0.1mm then the apparent speed error will be 0.05%. An error of 1 in determining the total number of revolutions will introduce an error of 0.02%. The most critical is the measurement of the duration of the revolutions from n_1 to n_2. If the number of the revolutions for the entire side of a C60 cassette (30 mins) is timed with an accuracy of 0.5s, then an error of 0.03% will be introduced, which brings the total error of 0.1% if, however, the revolutions for the first 5 minutes are timed to an accuracy of 0.5s, then the resulting error is 0.15%, bringing the total error to 0.22%. It is important, therefore, to carry out the time measurement over as long a period as possible to achieve the highest possible accuracy.

by T. Loughlin
B.Sc. (Hons.)

10-bit digital recorder

Using modern data conversion i.c.s, very low-frequency analogue signals can be recorded on tape with high accuracy.
Fig. 1. Record section. Analogue signals are converted into a 10bit digital word and fed to the uart in sections.

Fig. 2. Record timing. In this system, a logical one is encoded as a rising edge and a logical zero as a falling edge.
A problem may arise here. The start conversion going low initializes the ZN432E sar so data present at uart inputs TBR1-5 will change. The maximum hold time requirement for the uart is 960ns so the delay from TBR high through IC26, IC4 and IC5 must be greater than this.

However since typical propagation delay of IC5 is 160ns and the typical uart data hold time is 40ns, problems should not normally arise. If this does cause a problem then delay the start-conversion pulse from TBE.

The converter takes 11 clock cycles or 143μs at 4800 baud to make a conversion. When the uart has finished transmitting the first character TRE goes high (Fig. 2c). Output of 'Byte' is low at this stage gating the lower five bits of the sample into the uart. Signal TBR1 loads the transmitter-buffer register and the TRE(TBR1) rising edge transfers this data into the transmit register and starts transmitting it. "Byte" low output inhibits the start-conversion pulse and is also transmitted as bit six.

The falling edge of TRE toggles the 'Byte' bistable device high. Fig. 2b, and the five most-significant data bits are loaded into the uart by TBR1 being low with bit 6 high. When the uart i.e. has finished transmitting the lower five data bits and associated bits, TRE again goes high on a clock falling edge. The five most-significant data bits and 'Byte' are loaded into the transmit register ready for transmission.

Being high, 'Byte' output gates a start-conversion pulse to the a-to-d converter, Fig. 2c. which begins taking a new sample while the upper five bits are transmitted. The sequence thus repeats itself and is self-driven.

Serial output data from the uart, IC1 pin 25, is encoded into a biphase form by IC11, IC18 and IC17 (Fig. 1) as shown in Fig. 2a. In this system a one data bit is encoded as a rising edge and a zero as a falling edge of the digital output to the recorder. Output level is around 50mV. Inspection of the output waveform shows that the highest frequency present is equal to the baud rate used e.g. at 4800 baud the maximum is 4800Hz.

High level replay signal from the recorder would normally suffer from phase distortion because of the recording process itself and appears usually as shown in Fig. 4a. This signal is applied to a phase equalizing circuit comprising IC10a and associated components (Fig. 3) to compensate for this distortion. It is then amplified, IC10b and squared, IC2c, to obtain a t.t.l.-level signal that is close to the original recorded signal.

The biphase decoding circuit comprises IC7a, IC9a, IC26, and IC7b. Clipping circuit IC7b produces a narrow pulse for each transition of the encoded digital signal. Counter IC19b, driven by the 16x uart clock, counts to 12 or greater unless reset by clipper output pulses. If the counter goes to 12 or greater. IC2d output goes low then high causing bistable device IC9b to toggle.

Output of IC9b as can be seen from the timing waveforms is decoded serial data. It is however possible that bistable device IC9b may be in the wrong state initially in which case the decoded data will be inverted. This produces a parity error and/or a frame error signal from the uart which cause bistable device IC17b to toggle. Output Q of this bistable device drives exclusive-or gate IC9 pin 13 which gates decoder output to the uart serial input; the net effect is to invert the data stream seen by the uart. The circuit then rapidly synch-
oscillates itself to incoming data, Fig. 4d.

Assuming that a correct stream of data is being received the problem is to reconstruct the 10bit analogue samples. When a full character has been received, data-received flag DR, IC1 pin 19, goes high in the middle of the stop bit on the clock rising edge, Fig. 4c.

Data-received bistable device IC17a is driven by the inverted clock so the next clock falling edge transfers DR to its outputs. Signal Q of IC9 is used to reset DR via RR to prepare for the next character and the next clock falling edge transfers DR low to IC17a output which is thus a pulse one clock period wide.

If the received character contained the lower five bits of the sample then bit 6, IC1 pin 7, is low so bistable-device output is gated via IC13b, to register IC12 which stores the data.

The next received character will contain the five higher bits of data and bit 6 will be high so the data received pulse is gated via IC13a to the output d-to-a converter, IC13, Fig. 4b. The five lower bits from IC9 and the five upper bits from the word are thus clocked into the DAC1000 output register and the analogue output attains the latest value.

The output d-to-a converter obtains its reference voltage from the ZN432E a-to-d converter so ensuring good tracking between the two devices. However the output, IC16 pin 6, will be inverted so after filtering (IC10a) to remove quantizing noise it is inverted (IC10b). If no signal is being received or the re-played data is incorrect for some reason then parity or frame-error signals inhibit output-latch pulses and cause the 'signal present' lamp to go out.

The circuit described here was built and tested to determine the validity of the design concept and has been used to good effect for recording e.g. signals. Certain features which contribute to the absolute overall accuracy of the system are not included such as converter offset and gain adjustment potentiometers. Note however the use of separate analogue and digital power supplies and grounds.

Dynamic sampling accuracy can be improved by using a sample-and-hold circuit such as the LF398, which may be connected as shown in Fig. 5. The circuit as shown without a s/h device will have a dynamic sample error of 2% on a 50Hz full scale sine wave input.

References

At Olympia, in Hammersmith, London, the British Electronics Week has come round again. Occupying even more space, with a greater number of exhibitors, the show has become a major event in the electrical/electronic calendar. From the 29th April to the first of May, Olympia will be full to overflowing with exhibitors.

The week actually consists of four exhibitions; The All-Electronics/ECIF Show, Circuit Technology, Electronic Product Design, and Fibre Optics. A fifth section has been announced for inclusion in the Week in 1987; Power Sources and Supplies. We had planned to provide a map of the stands and a list of exhibitors, but this would have taken up too much of our space; it is better left to the catalogue, available at the Show; instead we have concentrated on presenting some recent announcements of new products by exhibitors. Some companies are very chary of releasing details of products to be launched at the Show; so we will report on such releases after the event.

Your correspondents will have the unenviable task of attempting to visit every stand in this mammoth circus. For those unwilling or too busy to spend too much time there, we would recommend that you get a catalogue and then find a spot to sit down and read the sections that interest you. This will save a lot of time. Also at the entrance to the Show there are stations that can provide computer print-outs of the positions of the stands that have the products that may interest you.

Olympia has its own underground station, served during exhibitions by a shuttle train from Earls Court, which is the exhibition hall for the Fibre Optics section.

Function generator

Among the products to be displayed by Global Specialties is the Sovereign 8200 series of synthesized 20MHz function generators. Fully programmable through the GPIB interface, the generators provide sine, square and triangle waves and pulses with variable amplitude, symmetry and offset over a 2mHz to 20MHZ frequency range. The company are also showing d.c. power supplies, surface-mounting breadboards using plastic leaded chip carriers, a low-cost universal counter-timer and a wide range of rack systems and test-and-measurement instruments. Global specialties corporation (UK) Ltd, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. EWW 207 on reply card. Stand no. 260.

SIL resistors

High volume production and improved manufacturing techniques have allowed Allen-Bradley to extend the range of its 700 series of cermet resistor networks in single in-line (SIL) packages. The resistors are available in 4 to 14-pin packages with resistances from 220 to 2.7MΩ. They are connected internally to a common bus (style A), as individual resistors (style B) or as digital line terminators (style E). All are fully tested. Allen-Bradley Electronics, Ennia House, High Street, Edenbridge, Kent TN8 5LY. EWW 216 on reply card. Stand no. 106.

Alternative to tantalum

Subminiature electrolytic capacitors with radial leads are suggested as a low-cost alternative to tantalum beads. The Waycom WSQ series has a capacitance range of 0.1 to 100μF with rated voltages from 6.3 to 63V. The aluminium capacitors are cased in aluminium with welded internal connections. High-grade paper separators for long-term reliability. BA Electronics Ltd, Hitchin Road, Arlesley, Beds SG15 6SG. EWW 212 on reply card. Stand No. 482.

Mains filter

Compufilter has been designed to remove noise, r.f.i., and voltage transients from mains lines used with microcomputers and allied peripherals. Each model comprises a series of filters designed to eliminate both incoming and outgoing interference by providing a high level of attenuation. A two-stage filter protects against incoming asymmetry and includes a transient suppressor. Each socket is protected against asymmetry and is isolated from the others. There is a choice of output socket types. Each output is limited to 3A. Cetronic Power Products Ltd, Hodeston Road, Stanstead Abbotts, Ware, Herts SG12 8EJ. EWW 209 on reply card. Stand no. 561.
AFFORDABLE ATE
Diagnoses bus troubles
Helps mend micro boards
Z80, 6502, 6800, 8085
All covered by one product
Disassemblers included
Plugs into micro socket
Hand-held probe identifies
ADDRESS, DATA and CONTROL
lines at a touch.

Prints a memory map
of an unknown system
showing ROM, RAM, I/O
and EMPTY ADDRESSING SPACE

FPGS all tests and responses
on PRINTER and ALPHA LCD
Non-volatile memory
retains test sequences
CHECKSUMS, RAMTESTS,
READS/Writes MEMORY & I/O
Reports location of SHORTS
on ADDRESS and DATA busses
Prints out memory contents
in ASCII, HEX or SOURCE CODE

You cannot expect to mend
microprocessor products with
a meter and a scope.
How many repairs would
pay for your SuperDOC?

SuperDOC.. £395

EPROM EDITOR
Displays HEX on standard TV
with text-editing facilities
inserts and deletes
shifts and copies
bytes and blocks of code
EMULATES EPROM in circuit
using romulator lead supplied

Uploads and downloads
using serial and parallel
routines - RS232, Centronics
PROGRAMS & EMULATES
2716 2732 2532
Useful for development
particularly for piggy-back
single-chip micros
Adaptor is available
to program 2764 & 27128
"Our expensive equipment
stays on the shelf
for weeks - but SOFTY
is used every day"
-says big-budget customer

SOFTY.. £195
ADAPTOR... £25

FAST EPROM PROGRAMMER
Copies eight EPROMS at a pass
all 25 and 27 series up to 27256
EPROM type is set by switches
erasure is checked automatically
control is simple - two keys
Alpha liquid crystal display
checksum facility 6 hex digits
FAST or NORMAL programming
PLUS VERSION also has:
serial RS232 program & check
CTS or DSR handshake
ASCII, SIMPLE HEX, INTELHEX
MOTOROLA S or TEKHEX
GANG-OF-EIGHT £395
GANG-OF-EIGHT plus £445

Z80 TUTOR
Designed for Schools Tutor
to teach Z80 machine code
MENTA uses TV for display
shows STACK & PROGRAM in HEX

Editing facility includes
direct keyboard ASSEMBLER
RS232-output DISASSEMBLER

Used to write & debug
short machine-code routines
MENTA is a complete
controller with 24 bits of I/O
used for ROBOTICS

TEACHER's GUIDE, PUPIL READER
MODULES (e.g. A to D) available

MENTA .. £99

COMPUTER BARGAINS
-ring for our BEST OFFER
OLIVETTI M21, M24
with 10MB hard disk if req.
AUTO-CAD & M24 created this AD
also EPSON PX8

EPROM ERASERS from £39

BUY IT AND TRY IT
REFUND GUARANTEED

less postal expenses, if goods returned intact within 14 days
PRODUCT IS USUALLY IN STOCK
TODAY DESPATCH IS POSSIBLE
PHONE FOR A LITERATURE PACK
VAT must be added to prices

www.americanradiohistory.com
WHAT'S NEXT!

Leetronex
1–3 JUly 1986
LEEDS ELECTRONICS EXHIBITION
OF COURSE
Don't forget to visit us.

STOP PRESS STOP PRESS STOP PRESS STOP PRESS

组织由
The Department of Electrical and Electronic Engineering,
The University of Leeds, Leeds LS2 9JT.
Telephone (0532) 431751 Ext. 328

CIRCLE 19 FOR FURTHER DETAILS.

CIRCLE 45 FOR FURTHER DETAILS.

STOP PRESS STOP PRESS STOP PRESS

SMALL SELECTION ONLY LISTED RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Roatan Battery or Maini Desclouscope: SE Laboratoire 115 Desclouscope — Solid State — General purpose — Barndish GC to 180MC/S at 20VC/M — Dual Channel
Rated time 1945 — Capacitance Sweep — Calibrator — Digital Counter — Power AC — 9V300 to 1050V 99 to 26V or 26V DC — Single Channel
Rated time 1945 — Capacitance Sweep — Calibrator — Digital Counter — Power AC — 9V300 to 1050V 99 to 26V or 26V DC — Single Channel

Portable Battery or Maini Desclouscope: SE Laboratoire 115 Desclouscope — Solid State — General purpose — Barndish GC to 180MC/S at 20VC/M — Dual Channel
Rated time 1945 — Capacitance Sweep — Calibrator — Digital Counter — Power AC — 9V300 to 1050V 99 to 26V or 26V DC — Single Channel
Rated time 1945 — Capacitance Sweep — Calibrator — Digital Counter — Power AC — 9V300 to 1050V 99 to 26V or 26V DC — Single Channel

COURSE

FORTH COMPUTER

You’ve heard that —

Industries from breeding to aerospace use FORTH
It is easy to learn and apply
It is interactive, yet is compiled for speed
Assembler code can be included

Development is done on the target system
Your VDU, IBM compatible or BBC programs
TDS900 series computers have a full-screen editor
TDS900 series has both N-channel and C-MOS versions
TDS902 consumes 25mA and has 62K bytes memory
Execution times in microseconds can be measured
TDS900 cards have hardware multiply and 16-bit timer
They have interrupts, both internal and external
Some have non-volatile memory, some 8.8MHz clocks
TDS971 offers RS232 and EEE—488 expansion
TDS972 adds RS232, A to D and parallel interfaces
TDS973A gives opto-isolation on 12 input/outputs

FORTH computers start at £99

Triangle Digital Services Ltd
100a Wood Street, London E17 3H
Telephone 01–520–0442 Telex 262284 (Ref M0775)

CIRCLE 20 FOR FURTHER DETAILS.

Electronics & Wireless World May 1986

www.americanradiohistory.com
British rival for Amiga

The new Amiga computer from Commodore with its exceptionally fast graphics created a good deal of interest at the recent Which Computer? show. But now comes a British rival to the Amiga, the Microbox 3, which on paper outpaces it.

Microbox 3 is a colour graphics computer designed around the 68000 (or 68010) processor running at 8MHz and Motorola's Raster Memory System chip set. It offers 40 different screen modes, with resolution ranging up to 640 by 500 pixels, plus features such as a 4096-colour palette, eight re-usable sprites, and a virtual screen of up to 512K in size with smooth horizontal or vertical scrolling. The video standard is 625-line PAL or NTSC and the output can be genlocked to an external video source.

The board carries 512K of D-RAM plus 128K of system rom and has room for 64K of user rom. An 8M-byte plug-in expansion board with a floating-point co-processor is promised. Also on the way is a Transputer co-processor.

There is a twin 800K floppy disc interface built in and a choice of four operating systems — CP/M68K (GEM), OS-9/68K, Tripos and SMS-2, which should enable the machine to run most software designed for the Amiga or the Atari 520ST. In addition there is an SCSI bus interface for a 20M-byte hard disc.

Other details include a real-time clocks, a stereo sound generator, a dual RS232 port, parallel printer port, mouse interface and a built-in emporium programmer.

The board alone, is available at £650; boxed versions of the computer with built-in disc drives will be ready later. Applications suggested by the makers include image processing, engineering work, video games and Kanji word-processing. Micro Concepts, 2 St Stephen's Road, Cheltenham, Gloucestershire GL51 SAA. EWW 220 on Reply Card.

FFT on the BBC

A second-processor board will allow the BBC Micro (or many other computers) to perform fast Fourier transformations very rapidly; 1024 complex points in less than 50ms using 16-bit two's complement arithmetic. Magnitude scaling is included to maintain a high dynamic range. Computing power is provided by the TMS 32010 digital signal processor from Texas Instruments with 4K of program memory and 64K of 16-bit memory with 100ns access time. The instruction set is optimized for single processing. For example a 16 by 16 to 32-bit multiply takes only 200ns and 32-bit accumulates can be pipelined with the loading of the next operand.

A hardware interface enables the transfer of data and programs between the BBC and the TMS at about 2Kword/s. Operation is controlled by software running on the BBC. It takes assembled program data from discs, sends them to the TMS for processing and displays the results either graphically or as a table of numbers. A compatible a-to-d board is available to allow processing of incoming data in real time, sampling at frequencies up to 500kHz for 8-bit resolution.

The processor board, interface and software to perform FFT's and design matching filters is all bundled together to provide a development system for the TMS processor in a variety of real-time digital signal processing applications such as spectral analysis, finite and infinite impulse response filters. It makes a useful teaching aid for students of digital signal processing. Practical applications include the possibility of recording sound in real time digitally with a resolution comparable with that on compact discs; real time encryption is also possible.

The hardware can be used with other computers since it only requires two i/o ports on the host. Enquiries about adapting the interface to work on any host computer bus would be welcomed by Graham Sutherland and James Ervine, 71 Linden Gardens, London W2 4HJ. EWW 211 on reply card.

Signal generators

Two new signal generators cover the frequency spectrum from 10Hz to 450MHz in overlapping ranges. The audio frequency model has an accuracy of +3%, generating sine waves up to 1MHz and square waves up to 100kHz with a rise-time of 200ns. Output voltage is variable from 0 to 4V. It has an output impedance of 5000.

The r.f. model covers six bands from 100kHz to 150MHz on fundamentals extending to 450MHz on harmonics, with a continuously variable output of 0 to 0.1V. r.m.s. Modulation is by an internal 1kHz tone or can be supplied externally. The provision of an external crystal socket makes it easy to use for spot frequency calibration. Available through MS Components Ltd, Zephyr House, Waring Street, London SE27 9LH. EWW 213 on reply card. MS was part of the Steatite Group who are also showing a range of r.f. protection and shielding products; capacitor and resistors; semi-conductors, cells and batteries and many other products. Stand No. 219.
Battery-powered oscilloscope

The new T0315 oscilloscope from Electroplan is a dual-trace 15MHz instrument weighing only 4.5Kg. The low weight and small dimensions make it suitable for field service and for application where a.c. power may not be available. It has sensitivity ranges from 2mV to 10V/division in 12 ranges, automatic selection of chopped or alternate mode and TV line or frame display. It can operate from batteries or a.c. mains with internal rechargeable batteries offering up to two hours of continuous operation. Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts SG8 5HH. EWW 217 on reply card. Stand No. 132.

Compact switch-mode power

Peak current may be drawn from all outputs in this 350W switched-mode power supply. The F350 is a compact, open frame supply that can provide 5V at 50A, -5V at 5A, -12V at 5A and +24V at 5A. Power-failure indication is included and pulse overload capability is available on all outputs. 'Power trading' between the outputs is used. Meeting a number of IEC, BS, VDE and TG standards the supply is intended for use on computer systems with disc drives, printers and other electromechanical devices that demand high peak power. Powerline are displaying a wide range of other products including the Vicor VI100 d.c. - d.c. converter that switches at zero volts. It is claimed to produce half the heat of a conventional switched-mode regulator and to have a minimum efficiency of 80% — typically 90%. Powerline Electronics Ltd, 9 Nimrod Way, Eglat Road, Reading, Berks RG2 0EB. EWW 211 on reply card. Stand No. 118.

Modular measurement systems

The introduction of a family of Eurocard computer products comes from Measurement Systems. Modular 96 supports the Unix-like OS-9 operating system, giving multi-user, multi-tasking capability. OS-9 can be contained in a rom and can be used in turnkey systems, with or without discs. The family includes a wide selection ofrom, ram and i/o functions including disc, parallel, serial, isolated parallel, GPIB, analogue and graphics interfaces. A key feature is that all the modules in the range are provided with OS-9 software at no extra cost. Support includes comprehensive documentation, regular training courses and on-site consultancy to ensure rapid system development. Available through R.C.S. Microsystems Ltd, 141 Uxbridge Road, Hampton Hill, Middlesex TW12 1BL. EWW 218 on reply card. Stand No. 527.

Surface-mount connectors

In order to obtain the best benefits from surface-mounted p.c.b.s, it is necessary that all the components used should mount on the surface. Erni, in West Germany have come up with two-part connectors specifically developed for surface mounting. They conform to DIN 41612 and allow the use of conventional p.c.b. size, spacing and racking. The materials used are suitable for vapour-phase and reflow soldering. Fixing holes are supplied and the makers recommended screwing or riveting the body to the p.c.b. Available through Radiatron Components Ltd, Crown Road, Twickenham, Middlesex. EWW 214 on reply card. Stand No. 375.
ANOTHER BRIGHT IDEA from A.B.I.

☆ Are you spending hours repairing faulty printed circuit boards?

☆ Do you find the high cost of traditional ATE cannot be justified?

☆ Do you wish you had a low cost, simple-to-use circuit board tester that would provide a cost-effective digital test and repair facility?

If you can answer "Yes" to any of these questions, you should make a point of visiting us on Stand 493 at the All Electronics Show at Olympia, April 29th to May 1st, where we will be launching our NEW

IN-CIRCUIT DIGITAL IC TESTER

If you would like complimentary tickets or preliminary product information, please contact us:

A.B.I. Electronics Ltd.,
Unit 21 Aldham Ind. Est., Wombwell, Barnsley, S. Yorks S73 8HA
Tel. 0226 751639 Telex 547376 CEAG G (for ABI)

CIRCLE 37 FOR FURTHER DETAILS.

SmartWatch

A battery-backed real-time clock/calendar with 64Kbit non-volatile ram for under £35.

This real-time clock/calendar from Dallas Semiconductor includes a battery-backed c-mos ram capable of holding data for 10 years. SmartWatch keeps track of:
- Hundreds of seconds — seconds — minutes — hours — day — date — month — year in any computer or controller application.

Looking like a 28-pin socket, SmartWatch fits into a computer's 8K-by-8bit memory socket*—without any hardware modifications on most computers.

For memory read/write operations, no software modifications are required either.

Normally the computer sees SmartWatch as a standard memory i.c. but when a special code is sent to the socket, internal address decoding triggers the clock/calendar function, allowing time and date information to be read and written.

This means that both clock and memory occupy the same computer address range and no external decoding is required.

Only a small software routine is needed to trigger the clock function and read and write time/date information.

Built into the socket are the real-time clock, a lithium battery, address decoding and power-down switching.

Because of their extremely low power consumption, the 8264-type static memory i.c. and clock/calendar remain powered for 10 years using the same battery.

*JEDEC pinout

SmartWatch

ELECTRONICS & WIRELESS WORLD MAY 1986

Send to:— EWW SmartWatch Offer.
M.S. Components, Zephyr House, Waring St., West Norwood London, S.E.27 9LH.
Offer applies to U.K. only. Please allow 28 days for delivery. Price includes data sheet.

To: EWW SmartWatch Offer, M.S. Components, Zephyr House, Waring St., West Norwood, London, S.E.27 9LH.

Please send me:

—SmartWatch(s) with memory @ £33.95 each inclusive of V.A.T., post and packing.

I enclose my cheque / p.o's value £ made payable to EWW SmartWatch Offer.

Access/Barclaycard No.

Signature

Name

Address

Regd. in England 15137 BUSINESS PRESS INTERNATIONAL LTD.
Regd. Office: Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

CIRCLE 13 FOR FURTHER DETAILS.
ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer’s entire stock of this top-quality machine enables us to retain it at far below its manufacturing cost. ALL FEATURES LISTED are INCLUDED AS STANDARD:

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height 5V/4 double-sided, double-density floppy disc drives. Formatted capacity: 320KB per drive.
- 4 MHz 280A CPU
- 64Kb RAM (in 4184 chips)
- 28Kb EPROM containing monitor & MICROSOFT BASIC
- CP/M Version 2.2
- 80 x 24 display with colour block mode graphics

- Exceptionally high quality styled keyboard with numeric keypad & 6 function keys
- Centronics parallel interface
- RS232/24 serial interface selectable 300-9600 baud
- UHF Modulator for TV, RGB & composite video output
- ROM port, (A Word-Processor ROM is available at £59 + VAT)
- 6 month full guarantee

Available ONLY from: COMPUTER APPRECIATION, 111 Northgate, Canterbury, Kent CT1 1BH. (0227) 470512
MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 5JZ. (0444) 414484 454377 (0444) 73830

CIRCLE 69 FOR FURTHER DETAILS.
Logarithmic video amp

Among the products to be displayed by Exar is the XR-7000 a log video amplifier i.e. with a wide bandwidth, suitable for many applications from audio to radar and including test instruments, video and audio systems, smoke detectors, ultrasonic detectors, medical instrumentation and so on. The single-chip device has seven logarithmic stages which may be cascaded for increased dynamic range.

Power supplies

Advance Power Supplies have extended several of their ranges. The d.c. driven Powerflex range now includes a PD500 which has a nominal input of 48V, but which will operate between inputs of 40.5 and 63V, believed to be the widest input operating voltage swing in the world. Outputs are available in four versions: 5V at 60A, 12V at 30A, 24V at 13A and 48V at 7A. Plug-in p.c.b.s offer auxiliary outputs of 5, 12, 15, 18, 24 and 48V. 'Power trading' between outputs is a standard feature.

The Powermag A1500 is a 5V, 300A switchmode power supply working from 110V or 220V a.c. inputs. These are nominal and the supply will operate from almost any a.c. supply and input frequency. Its largest dimension is 280mm.

To complete the additions to the Advance range there are the Powerite A200 series of five-output, 200W openframe power supplies. They use 100kHz EES to allow the use of small transformers and be 'highly efficient and reliable'. The supplies operate from a.c. mains and offer a main output of +5V at 40A, with auxiliary outputs of -5V, 5A, +12V, 5A, -12V, 5A and +24V, 8A.

Advance Power Supplies Ltd, Raynham Road, Bishop's Stortford, Herts CM23 5PF, EWW 255 on reply card. Stand No. 251.

Desolderer free from static

A new addition to OK Industries' 'Anti-static' range of products is this desoldering pump, the DP3, which conforms to standards of electrostatic-free materials. It has a conductive tip that is easy to clean and change.

Presently available at a special offer of £3.16 inclusive — 40% off the list price. OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants SO5 4SL. EWW 210 on reply card. Stand No. 250.

Telecomms transformers

An expansion of its range of audio transformers for telephone coupling applications, is the TA series from Dale-ACI. All the new models are designed to meet FCC part 68 requirements. A wide range of sizes, mounting configurations and circuits are available to provide line isolation, four-wire to two-wire hybrid termination, impedance matching and line balance functions over a frequency range of 300 to 3500Hz for data and voice applications. Modifications to the impedance, frequency response or other electrical characteristics are available to meet specific design needs. Dale-ACI Components Ltd, River Park Industrial Estate, Berkhamstead, Herts HP4 1HL. EWW 215 on reply card. Stand No. 99.

High-frequency power sensor

Marconi Instruments has added a high-frequency, 50Hz power sensor to its range of detectors for use with its digital and analogue power meters. The new sensor, 6913, extends the upper limit of the overall sensor frequency range to 26.56Hz and a 50dB power range from +20 to –30dBm. Applications for measurement in microwave, radar and satellite communications. Marconi Instruments Ltd, Longacres, St Albans, Herts AL4 0JN. EWW 206 on reply card. Stand no. 357.
Low-cost data logger

A comprehensive range of industrial and scientific data capture tasks can be performed by the Vela data logger from Data Harvest. At its heart is a 6802 processor, 8-bit d-to-a and a-to-d converters, ram software and 4K of battery-backed c-mos memory. Sockets are available internally for additional applications 28x. There are four analogue inputs plus an additional pulse input for counting, triggering and recording. Internal pulses for timing and triggering are also provided. Various transducers and sensors can be connected directly to the inputs, or through amplifiers and signal-conditioning units which are available as optional extras and which can be plugged directly to the inputs. The instrument can be mains or battery powered and the recorded data is retained in memory for later downloading. Vela's programs are selected by simple push-button instructions, selected from the front panel. These include transient recording, data collection, timing, pulse counting and waveform generation. Channel number and required parameters are all selected through the membrane keyboard and shown on the led display at the top of the panel. After an event is captured it can be stepped through with the recorded values being displayed on the leds. All of the four channels can be used simultaneously.

The instrument can also output its data to an analogue oscilloscope or a microcomputer. Both can display the recorded waveform and if possible to step through it sequence to get a felt waveform at the cursor. This has the added advantage of turning the laboratory oscilloscope or micro into a digital storage oscilloscope. The micro has the added advantage of being able to store the recorded events as waveforms or as tables of data, make comparisons and perform such analyses as FFT and statistics. The data can be also output to a printer to obtain a graph of the waveform or a table of the data. Graphical output can also be obtained on a pen plotter and as the data is all recorded, there is not disadvantage in the slow speed of the plotter. Vela may be connected to a BBC micro, an Apple II and many other computers.

Applications are varied and use is to be designed to be as versatile as possible. If it is possible to use a sensor it is possible for Vela to record the output. Some examples are structural stress analysis using accelerometers and pressure sensors. Analysis of gases, recording the vibrations in machinery and then analysing potential failure, using FFT etc. Data Harvest believes that its instrument will become a standard piece of lab equipment alongside the multimeter and the oscilloscope. They also believe that at the low price of £275 there is no rival for use in industry or higher education. The instrument is also being marketed under their own name by a well-known component distributor and is featured as a new product in the latest edition of their catalogue. Data Harvest Ltd, 28 Lake Street, Leighton Buzzard, Beds LU7 8RX. EWW 222 on reply card.

Fans on show

Papst needs two stands — one each in the All Electronic and Electronic Production Design shows — to display all their air-moving products. New are a range of 25mm rugged a.c. fans and 120mm electronically commutated d.c. models. Also on display is an "intelligent" cooling system that can automatically control d.c. fans to suit varying requirements of ambient temperature and operating load. Papst Motors Ltd, East Portway, Andover, Hants SP10 3RT. EWW 208 on reply card. Stands no. 101 and 1031.

Assembler + emulator = instant development

Developing object-code software for a target system presents problems. However, one solution is to use an emupro emulator. Such a device is the Portal emulator one port of which plugs into the development system and the other to the target. Portal has the advantage of being developed by Andy Green, who also wrote the Meta assembler — and of being cheap. When a program is assembled by Meta, in the machine code of the target system, the object code is immediately available on the target and may be run instantly. Meta can translate a program into machine code for all the popular 8-bit processors (68000 is under development). This means that the Meta/Portal combination can be used on a wide variety of target processors and is not dedicated to one specific system. Up to four Portals can be chained together and addressed individually and can be used in sockets for a 2716 up to a 27512 i.e. 64Kbyte. Two may be used together, one each for the high and low data strobes of a 68000 system. The system runs from the user port on a BBC micro with no hardware modification. Meta is on two rons. Crash Barrier. Freepost Flitwick, Bedford MK45 1YP. EWW 219 on reply card.

www.americanradiohistory.com
BBC Computer & Ecomer Referal Centre

AMBIT BBC MASTER Foundation computer 128k £435 (a)
AMB2 BBC MASTER Ecomer Computer 128k feisty ANF. £701 (a)
A CCORD Turbo 266 (68 - 128K) Development Module £107 (a)
AD13 ROM/ROM (formerly 17070 DS & 103) £43 (a)

AD22 Ref. Manual Part I £145.40 (c) AD23 Ref. Manual Part II £145.40 (c)

AD24 Advanced Ref. Manual £19 50 (c)

BBC Dust Cover £450 (d)
17070 DFS Upgrade for Model B £43 (d)

ACORN 802 2nd Processors £45 (d)
MULTIFORM 280 2nd Processor £299 (d)
TORCH 280 2nd Processor ZEP 100 £199 (d)

ZEP 100 ZEP 100 with Technamic PD100 dual drive with monitor stand £469 (d)

META-ASSEMBLER Both an editor and Macro-Assembler. Meta can assemble most 65xx, 68xx, 6804, 6806, 6809, 6808, 68088, 280, 1200 and more. Please phone for comprehensive leaflet. Meta-Assembler £30 (a)

We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals for the BBC. For detailed specifications and prices please send for our leaflet.

PRINTERS & PLOTTERS

- **EPSON LX 8000** £195 (a) Optional Tractor Feed £20 (c)
- **EPSON LX 8000** £195 (a) Optional Tractor Feed £20 (c)
- **FX85 (80 coil)** £315 (a) FX 105 (136 coil) £449 (a)
- **EPSON LX 40 Colour Printer** £435 (a)
- **EPSON LG 4000** £285 (a) £200 £875 (a)
- **1500 £32k £950 (c)**

TAXAN P80 10 (80 coil) £160 (a) P910 (1150 coil) £339 (a)

BROTHER HR-15 £285 (a) JUK 6100 £289 (a)

Canon GLP/GR QL Printer £109 (a) Tractor Feed £28 (a)

HPI2 = NML Rom for Epson £28 (a)

Epson Hi-Bo Printer £325 (a) Integrates Colour Printer £569 (a)

MODEMS

MIRACLE WS 2000 The world standard B.T approved modem covering all standard CCITT and ITU-T (outside UK only) standards up to 1200 baud. Allows communication with virtually any computer system in the world. Expandability to Auto Dial and Auto Answer with full software control enhance the considerable features already provided on the modem. mains powered. **WS 2000 £100 (b)** Data Cable £7 (d)

NEW WS 2000 RANGE the new professional series. All are intelligent and ' Hayes compatible. allowing simple English commands to control its many features. All models feature Auto-Dial with 10 number memory, Auto Answer, Speed-Dialing, printer port, data security option etc. All models are factory upgradeable. All **WS3000 V2123 (V2 & V23)** = Bell £235 (a) **WS3000 V22** (as above plus 1200 baud full duplex) £485 (a) **WS3000 V22bis** (as above plus 2400 baud full duplex) £650 (a)

BBC Data Cable for WS3000 £62 (d) Data Cables for other micros available.

GEC DATACHAT 1223 An economically priced B.A.T approved modem complying with CCITT V23 standard capable of operating at 1200/75bps and 75/75bps and 1000/2000 bps baud. It is line powered does not require external power source. It is supplied with software compatible to Prestel, Micronet 800, Telecom Gold and a host of bulk ordering boards £890 (a)

SOFTH II This is our own intelligent operating system earning carpanet 2716, 2516, 2533, 2720, and with an adapter, 2546 and 2748. Display 128 byte display screen size. Accesses a serial and parallel I/O devices. Can be used as an emulsion, cassette interface CPU, microcontroller and **£35 50 (d)**

ACORN IEEE Interface £278 (a)

PRODUCT ACCESSORIES

PRINTERS & PLOTTERS

- **EPSON LX 8000** £195 (a) Optional Tractor Feed £20 (b)
- **EPSON LX 8000** £195 (a) Optional Tractor Feed £20 (c)
- **FX85 (80 coil)** £315 (a) FX 105 (136 coil) £449 (a)
- **EPSON LX 40 Colour Printer** £435 (a)
- **EPSON LG 4000** £285 (a) £200 £875 (a)
- **1500 £32k £950 (c)**

TAXAN P80 10 (80 coil) £160 (a) P910 (1150 coil) £339 (a)

BROTHER HR-15 £285 (a) JUK 6100 £289 (a)

Canon GLP/GR QL Printer £109 (a) Tractor Feed £28 (a)

HPI2 = NML Rom for Epson £28 (a)

Epson Hi-Bo Printer £325 (a) Integrates Colour Printer £569 (a)

INTERCONNECTIONS

- **MIRACLE WS 2000** The world standard BT approved modem covering all standard CCITT and ITU-T (outside UK only) standards up to 1200 baud. Allows communication with virtually any computer system in the world. Expandability to Auto Dial and Auto Answer with full software control enhance the considerable features already provided on the modem. mains powered. **WS 2000 £100 (b)** Data Cable £7 (d)

NEW WS 2000 RANGE the new professional series. All are intelligent and ‘Hays compatible. allowing simple English commands to control its many features. All models feature Auto-Dial with 10 number memory, Auto Answer, Speed-Dialing, printer port, data security option etc. All models are factory upgradeable. All **WS3000 V2123 (V2 & V23)** = Bell £235 (a) **WS3000 V22** (as above plus 1200 baud full duplex) £485 (a) **WS3000 V22bis** (as above plus 2400 baud full duplex) £650 (a)

BBC Data Cable for WS3000 £62 (d) Data Cables for other micros available.

GEC DATACHAT 1223 An economically priced B.A.T approved modem complying with CCITT V23 standard capable of operating at 1200/75bps and 75/75bps and 1000/2000 bps baud. It is line powered does not require external power source. It is supplied with software compatible to Prestel, Micronet 800, Telecom Gold and a host of bulk ordering boards £890 (a)

SOFTH II This is our own intelligent operating system earning carpanet 2716, 2516, 2533, 2720, and with an adapter, 2546 and 2748. Display 128 byte display screen size. Accesses a serial and parallel I/O devices. Can be used as an emulsion, cassette interface CPU, microcontroller and **£35 50 (d)**

ACORN IEEE Interface £278 (a)
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74199</td>
<td></td>
<td>2.20</td>
</tr>
<tr>
<td>74198</td>
<td></td>
<td>2.20</td>
</tr>
<tr>
<td>74178</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>74155</td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>74154</td>
<td></td>
<td>1.40</td>
</tr>
<tr>
<td>74120</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>74110</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>74109</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>7495A</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>7486</td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>7473</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>7447A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7437</td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>7433</td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>7413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS253</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>74L5249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS244</td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>74L5195A</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>74LS155</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>74L5132</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>74LS73A</td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>74L555</td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>74LS11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>745257</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>74S38</td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>74510</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>74LS683</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>74LS6101</td>
<td></td>
<td>19.00</td>
</tr>
<tr>
<td>74LS399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS3954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74C10</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>LM30N-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA3130T</td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td>CM7556</td>
<td></td>
<td>1.40</td>
</tr>
<tr>
<td>CM721682</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>10A+VAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL02A</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>MB3712</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>LM3914</td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79L05</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>ZN414</td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>ZN404</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>TL071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL061CP</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>TDA2030</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>TDA1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78A00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A41:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPX25</td>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6875</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>68B21</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>80C39</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>88000-LB</td>
<td></td>
<td>36.00</td>
</tr>
<tr>
<td>65CO2-2MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS9901</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>TMS4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAA009</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>SAA030</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>MC7441</td>
<td></td>
<td>2.70</td>
</tr>
<tr>
<td>MC1441</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>AM25S10</td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5101/5501</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>058832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS9929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF9366</td>
<td></td>
<td>25.00</td>
</tr>
<tr>
<td>65CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM71/DL707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPX25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8287</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>8284</td>
<td></td>
<td>4.80</td>
</tr>
<tr>
<td>8226</td>
<td></td>
<td>4.25</td>
</tr>
<tr>
<td>28522</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>6875</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>68B21</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>80C39</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>88000-LB</td>
<td></td>
<td>36.00</td>
</tr>
<tr>
<td>65CO2-2MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS9901</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>TMS4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAA009</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>SAA030</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>MC7441</td>
<td></td>
<td>2.70</td>
</tr>
<tr>
<td>MC1441</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>AM25S10</td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5101/5501</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>058832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS9929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF9366</td>
<td></td>
<td>25.00</td>
</tr>
<tr>
<td>65CO2-2MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS9901</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>TMS4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAA009</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>SAA030</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>MC7441</td>
<td></td>
<td>2.70</td>
</tr>
<tr>
<td>MC1441</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>AM25S10</td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5101/5501</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>058832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS9929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF9366</td>
<td></td>
<td>25.00</td>
</tr>
</tbody>
</table>

Other LEDs:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74S387</td>
<td></td>
<td>2.25</td>
</tr>
<tr>
<td>8256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5101/5501</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>058832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMS9929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF9366</td>
<td></td>
<td>25.00</td>
</tr>
</tbody>
</table>

Please phone for bulk orders.
Add 8 channels to your 'scope
New Thurlby OM358 multiplexer £179+vat

The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc.

The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms. The OM358 has a bandwidth of 35MHz and 3% calibration accuracy. Each channel has an impedance of 1MΩ - 20pF and accepts signals up to ±6V. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available.

Thurlby Electronics Ltd
New Road, St Ives, Cambs. PE17 4BG Tel: (0480) 63570

The world’s most advanced low-cost bench multimeter!
Thurlby 1905a £349+vat

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1µV, 1mV, 1mA.
- Pull ac and current functions as standard

A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St Ives, Cambs. PE17 4BG
Tel: (0480) 63570

Now Thurlby makes logic analysis affordable! from
the new Thurlby LA-160 £395+vat

- 16 channels, expands to 32
- Clock rates up to 20MHz
- State and timing displays
- Selectable display formats
- 2K word acquisition memory
- Non-volatile reference memory
- Search and compare facilities
- Hard-copy data print-out

An oscilloscope and logic probe are not enough to unravel the complexities of today’s electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer’s reach. Contact us now and get the full technical data.

Thurlby Electronics Ltd
New Road, St Ives, Huntingdon,
Cambs. PE17 4BG, England. Tel: (0480) 63570
Affordable Accuracy
Quality Multimeters from
Cirkit
A comprehensive range of Analogue and (Pushbutton or Rotary Switched) Digital Models

ANALOGUE
HM-100Z ... 20DC Range. 20mV/10V.
Buzzer, Battery Test Scale £12.50
15 measuring ranges
HM-102A - Low end voltage & current ranges. Jack for audio & p voltages £11.00
20 measuring ranges
HM-101S - Rugged Pocket sized for general purpose use £7.50
16 measuring ranges
Battery, Test Leads and Manual included with each model.
Please add 15% for VAT and 50p for pp/p.

DIGITAL
HC-7000
0.1% Accuracy Standard Model £39.50
HC-6010
0.05% Accuracy Standard Model £35.50
HC-5010
0.02% Accuracy TV Test Facility £39.50
DM-105
0.01% Accuracy Pocketable £21.50
All models have full function and ranges and feature 3: digital V/10 display; low battery indication; auto-scan & auto-polarity; ABS plastic case; DK AC/DC range test; DM-W5: Overload protection on all ranges; battery saver, low test leads and manual

Full details and specification from:
Cirkit Distribution Ltd
Park Lane, Bamber, Herts, EN18 7NJ
Telephone (992) 41111 Telex 22178
TRADE ENQUIRIES WELCOME

CIRCLE 67 FOR FURTHER DETAILS.

The Peak...

Designed and manufactured in West Germany by Hameg, one of the World's leading oscilloscope manufacturers - a complete range of high instrument standard oscilloscopes, at prices that defy comparison. Make the comparison and discover the 'Peak of Perfection'.

HM208 £1300 (£1550 with IEEE)
20 MHz Digital Storage

HM605 £515
60 MHz Dual Trace
Sensitivity 5mV/div. at 60 MHz. 1mV at 5 MHz. Automatic peak-value or normal triggering to 80 MHz. Delay Line Variable Sweep Delay. Timebase from 2.5Ms/div. to max. 5ns/div. Unique fast-riser time 1kHz/1MHz calibrator. Y-Output. High-resolution 15 kV CRT

HM204 £365
20 MHz Dual Trace
Sensitivity 5mV - 20V/div. 1mV at 5 MHz. Timebase from 1.25Ms/div. to max. 10ns/div. DELAY LINE. Variable sweep delay. Single sweep. Automatic peak-value trigger to 50 MHz. Y-Output. Z Modulation. Overscan indicator

HM203 £270
20 MHz Dual Trace
Western Europe's best selling 20 MHz. Scopel Sensitivity 2mV/div. Trigger bandwidth 40 MHz. Timebase from 0.2s/div. to max. 20ns/div. X - Y. Component Tester

For those who compare

HAMEG
74 - 78 Collingdon St, Luton, Beds, LU1 1RX
Tel: (05821) 41174 Telex: 825484
2 Years Warranty

CIRCLE 26 FOR FURTHER DETAILS.

Wembley '86
Amateur Radio & Electronics
Hobby Fair
To be held at Wembley Conference Centre, Saturday 5th & Sunday 6th July 1986
☆ The first Two Day Fair to be held in the South of England. A major new event in the Amateur Radio Calender.
☆ Over 200 retail & manufacturers stands - plus lots more.
☆ See future publications for more details.
The organisers are: Amateur Radio Promotions, Woodthorpe House, Clapgate Lane, Birmingham B32 3BU - Telephone: 021-421-5516.

CIRCLE 76 FOR FURTHER DETAILS.
ELECTRONICS & WIRELESS WORLD MAY 1986

www.americanradiohistory.com
Appointments

DISPLAYED APPOINTMENTS VACANT: £21 per single col. centimetre (min. 3cm).
LINE advertisements (run on): £4.50 per line, minimum £15 (prepayable).
BOX NUMBERS: £10 extra. (Replies should be addressed to the Box Number in the
advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS).
PHONE: SUSAN PLATTS, 01 661 3033 (DIRECT LINE).

Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

Advertisements accepted up to 12 noon
May 7th for June issue

THE BEST APPROACH

£7,000-£30,000 + CAR

* Where does your interest lie: Graphics; CAD; Robotics; Simulation; Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms. Radar; Opto and Laser?
* Experienced in: VLSI: Microprocessor Hardware or Software. Digital and Analogue circuitry; RF and Microwave techniques?
* There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
* For free professional guidance: Call: 0638 742244
(till 8pm most evenings) or write (no stamp needed) to

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED
FREEPOST, The Maltings, Burwell, Cambridge, CB5 8BR.

(1926)

PIDIONEER

TECHNICAL LIAISON ENGINEER
WITH A DIFFERENCE
£11,000

The successful candidate will join a small engineering team, responsible for the technical support of our full range of Hi Fi, Car Audio and Video products.

He/she will be responsible for the technical evaluation of products which includes investigating and resolving product problems, answering dealers’ and consumers’ correspondence, telephone enquiries and giving advice relating to Pioneer products and after sales service.

The applicant for this very important and interesting position will have at least five years experience in repairing domestic audio and video products and should ideally be qualified to City and Guilds in radio and television and/or HNC in electronics or equivalent, and must have experience in dealing with technical correspondence.

Benefits include four weeks annual holiday, rising to five weeks, contributing pension scheme and private health cover.

For further information or an application form, please contact:

Mrs. C.A. Burridge.
Pioneer High Fidelity (GB) Limited.
16 Field Way, Greenford, Middlesex.
Telephone: 01-575 5757

(223)

BRITISH GEOLOGICAL SURVEY

ELECTRONICS ENGINEER

The Survey has a vacancy for an Electronics Engineer in its Marine Operations Research Programme. The successful candidate will work in a small electronic engineering section of four people, responsible for the development, modification and maintenance of electronic equipment in support of the Survey’s marine survey work. The equipment uses analogue and digital techniques in systems of both commercial and in-house design. The work will normally involve participation of offshore and inshore surveys for up to 70 days each year, for which there are generous allowances in addition to salary.

A wide variety of equipment is used on these surveys including specialist navigation data logging systems and a range of shipborne and towed geophysical sensors. Prior experience of geophysical equipment would be useful but not essential. The work requires a blend of sound theoretical and practical ability.

The appointment will be at Scientific Officer or Higher Scientific Officer level.

Qualifications
Degree or equivalent in electronics. For appointment as Higher Scientific Officer, candidates must have at least 2 years relevant postgraduate experience.

Salary
Depending on qualifications and experience, salaries will be within the following scales, which are currently under review:

Scientific Officer £6190 £8561
High Scientific Officer £7788 £10541

Starting salaries may be above the minimum. Occupational Pension Scheme.

Location
The post will be located at Edinburgh, but staff appointed to the Survey are liable to serve in any part of the United Kingdom or overseas.

For further details and an application form, write to Establishments (Recruitment) Section, British Geological Survey, Keyworth, Nottingham, NG12 5GG. Closing date for receipt of completed application form is 30 April 1986.

Please quote reference: HS/C4/ED/1

(228)
Technomark

Engineering & Technical Recruitment

11 Westbourne Grove, London W2 Tel: 01-229 9239 (1986)

RIVERSIDE HEALTH AUTHORITY

WESTMINSTER HEALTH AUTHORITY

DEPARTMENT OF PHYSICS

Chief Electronics Technician is required to take charge of a small but active electronics workshop. You should have advanced experience in electronics, microwave techniques, medical instrumentalism and computer technology.

Informal enquiries to: Dr JP Nicholson on 01-828 9811 ext 2505.

Salary: £9157 — £11,154 (inclusive of London Weighting).

Application forms and job descriptions available from the Personnel Department, Queen Mary Nurses Home, 20 Page Street, London SW1. Tel: 01-400 0296 (24 hour service). Please quote reference number A/2191.

Closing date: 30 April, 1986.

Solid State Logic

Oxford • England

TECHNICAL DOCUMENTATION MANAGER

Solid State Logic manufactures an advanced and comprehensive range of audio mixing consoles and studio computers for the recording and broadcast industries.

We require a Technical Documentation Manager to co-ordinate the production of the complex technical manuals for our complete range of products. The successful applicant will be responsible for all technical writing and the efficient use of computer and drawing office resources, including CAD.

Applicants should have proven ability as a clear and concise technical writer, and be able to work to tight timescales on your own initiative. You will be expected to gain a detailed understanding of the present product and to possess the necessary energy and imagination to motivate the small team for which you would be responsible.

This is a demanding but rewarding post, as part of a friendly Research and Development team based in rural Oxfordshire.

Please request an application form from: Solid State Logic, Stonesfield, Oxford OX7 2PQ or telephone 0993 89 8282.

ENGINEERING OPPORTUNITIES NATIONWIDE

Salaries £8,000 to £30,000 p.a.

"As the UK's leading specialist sales and technical recruitment consultancy, we provide a FREE service to engineers seeking a career move. If you have experience in Microprocessors (H/W or S/W), Digital or Analogue technologies, ideally with a recognised qualification, we have hundreds of vacancies throughout the UK in R & D, Design, Manufacturing, Test, Service and Sales.

Call your nearest branch for more information or send a comprehensive C.V. (no stamp required) to:

ata Engineering Recruitment

A Division of ATA Selection and Management Services Ltd

FREEPOST, Bishop's Stortford, Herts. CM23 2BR.

CAPITAL APPOINTMENTS LTD

THE UK's No. 1 ELECTRONICS AGENCY

If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields:

Telephone now for our free jobs list

We have vacancies in all areas of the UK

Salaries to £15,000 pa

01 808 3050 (24 hours)

CAPITAL APPOINTMENTS LTD

76 WILLOWBY LANE, LONDON N17 0SF

(291)
THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ? We are recruiting RADIO OFFICERS who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an R.O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.

The basic requirement for the job is 2 years radio operating experience or hold a PMQ, MPT or MRG or be about to obtain a MRGC. Registered disabled people are welcome to APPLY.

Salaries start at £4,988 at age 19 to £6,028 at age 25 and over during training and then £6,832 at 19 to £8,915 at 25 and over as a Radio Officer. Increments then follow annually to £12,328 inclusive of shift and weekend working allowances.

application form phone 0242 32912/3
or write to:
GCHQ
The Recruitment Office
A/1108 Priors Road
CHELTENHAM
Glos GL52 5AJ
(28/06)

CLIVEDEN

1. SERVICE ENGINEER
 Repair and install laser printing equipment.
 £12,000 plus Car, N.W. London.
2. SYSTEMS ENGINEER
 To provide technical support on a wide range of mini and micro systems.
 £13,000 + Car, Berks.
3. TEST ENGINEER
 Repair and calibrate a wide range of pocket and radio pagers.
 £10,000, Hants.
4. FIELD SERVICE
 Repair of mini and micro based texts processing equipment.
 £10,000 + Car, Berks.
5. TEST ENGINEERS
 RF/VHF/UHF radio telecoms equipment.
 £10,000, Berks.
6. SERVICE ENGINEER
 To provide support on disc and tape drives. c. £13,000 + Car, Berks.

Phone or write:
CLIVEDEN RECRUITMENT
52 Broadway, Bexhill, Sussex TN31 1AA
Tel: 0344 485485 (28/06)

NATIONWIDE BUILDING SOCIETY

has vacancies for two
TELECOMMUNICATIONS ENGINEERS
at its Administrative and Computer Centre at Princes Street, Swindon
The computer system, a Sperry 1100/89, supports a network of over 2000 terminals in the Society's branch offices.
The successful applicant will joint a small team responsible for the maintenance and development of the Society's telecommunications networks. He or she will be involved in a range of teleprocessing activities, including the identification and isolation of faults and the general maintenance of microcomputer and communications equipment. The position is seen as a career opportunity and necessary training will be provided.

Experience of at least one of the following items is required:
Switching/Statistical Multiplexers
Network Control Systems
Microprocessors
Modems
British Telecom lines and equipment

Candidates should preferably hold a HNC/HND or higher TEC Certificate/Diploma in Electrical/Electronic Engineering

Commencing salary in the range £8,115 to £8,954 per annum subject to review on 1 April. The Society has its own Superannuation and Sickness Schemes. Fringe benefits include four weeks annual holiday entitlement, staff restaurant and, after a qualifying period of three years service, concessionary mortgage facilities.

Please telephone for an application form, 01-242 8822, Ext 2582.

R N Wharton, Recruitment Manager
Nationwide Building Society
New Oxford House, High Holborn
London WC1V 6PW

Nationwide Building Society
an Equal Opportunity Employer.

SCOTTISH OFFICE
DIRECTORATE OF TELECOMMUNICATIONS
WIRELESS TECHNICIAN

£6,810 — £9,317 (currently under review)

Applications are invited for 1 post of Wireless Technician in the Central Services Department of the Scottish Office. The post is based in Edinburgh.

Candidates must have a sound theoretical and practical knowledge of Radio Communications Systems both fixed and mobile, in the frequency range HF to 2 GHz. They must also be able to use test equipment and simple machine tools. A sound basic knowledge of digital techniques would be an advantage. They should have a minimum of 3 years appropriate experience and should hold an Ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification of higher or equivalent standard. Some assistance may be given with re-location expenses.

A valid UK driving licence is essential.

For full details and an application form (to be returned by 9 May 1986) write to Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN (or telephone 031 556 8400 Ext 4317 or 5028). Please quote ref PM(PTS)1/3/86.

The Civil Service is an equal opportunity employer.

UWIST

University of Wales
MSc/Diploma course in
Electronics (Digital Systems, Control, Communications, Medical Electronics)
MEng Course in
Systems Engineering (Automation, Robotics and Information Systems)

Applications are invited for places on the above full-time one-year courses commencing in October 1986.

Further details and application forms (returnable as soon as possible) may be obtained from the Assistant Registrar, UWIST, PO Box 68, Cardiff CF1 3XA.

76 ELECTRONICS & WIRELESS WORLD MAY 1986

www.americanradiohistory.com
ELECTRONICS & WIRELESS MAY 1986

APPOINTMENTS

Telesonic Marine Ltd., A rapidly expanding Company, have the following vacancies

A BENCH SERVICE ENGINEER. The candidate will be involved in the service of Yacht Marine Electronic Equipment, or have good general Marine Electronics background. You should live in, or close to London. The ability to work unsupervised is essential. Salary £6000 to £8000 neg.

A TRAINEEN INSTALLATION ENGINEER. The candidate will have had a good general knowledge of Marine Electronics, and be able to use the hands of their own. The candidate will be required to work oversea, so a passport is essential. You should also hold a valid UK driving licence. Starting salary £6000 + O/T and overseas working neg.

Reply to Mr. Spackman on 01 837 4106 (201)

CLASSIFIED

ARTICLES FOR SALE

"GRAND CLEARANCE SALE," on Saturday May 24th, 10 a.m. to 5 p.m. at: Unit 2, The Malthings, Cambridge. "World" for football stadium. Examples: Keyboards £8 key with 874/8048 £4 ea., 2 for £7, 3 for £8. Marcon 8010 £35. TFM43/42 transmission level test £25, TEK 520 vectorscope £195, Crystal calibrator RCA W988 £25. Micro development systems, TEK 8002 with 8024 intelligent terminal, ices for 8086 and 8086 5W and doc. £850, Zilog Z80 rev. syst. c/w SW and doc. £450, MOS4000 Intel less disc £100, SMS3000 8X53000 (8X3000) micro controller dcv. syst £350, TEK 4610-1 photoplotter £25. Versatec V80 Hi res printer/plotter £400, Perkin Elmer laser gauge, offers?, TEK GAMA 102 and 103 graphics screens new unused £90 ea., HP72218 4 colour digital A3 plotter RS32 - HP118/F £350, TEK611 storage screen + terminal two for £75, Linear transducers and readout units various from £15, HP5000 A logic analyser £1000, HP3420 ratiometric voltmeter £100, ESR meter £50, Gauss meter £50, Penrecorders single pen and multi point. Printers, Centr0, T50 £75, Astra Teletype £50, OR330 £45, Drum plotter CIL 6000 2 pen 2 speed AO size £250, RRC viewdata plinths £35 ea. Many more items, power supplies, Components, Subassemblies, PCB’s etc. prices from a few pence to pounds. No reasonable offers refused.

"TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

- SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC, WELCOME TO CUSTOMERS COLLECTORS, ETC.

ALL AT KNOCKOUT PRICES - Come and pay us a visit in AUNDEN'S CAVE

TELEPHONE: 445 0749/445 2713

R. HENSON LTD.
21 Lodge Lane, North Finchley, London, N.12
(5 minutes from Tally Ho Corner) (1613)

DIGITRON 1751 Thermocouple Meter Hewlett Packard digital multimeter 3476A inductance meter DLM 367 2 xlandridge decade box dabs/abde digital scale Gravitron 300/3000, counting scale, GEM 120 drawing copier, Astra pillar drill 1000 plus DIF Netrik sockets 5000 Jack sockets 100000 plus paws 2 x Arco air conditioners, banding machines etc, Dave Roberts 051 227 1919 Day 051 426 1945 evenings.

WAVEGUIDE, Flanges and dishes. All standard sizes and alms mate material out of stock. Special sizes to order, Earth Stations, 01 226 1766, 22 Rowe Street, London W11 439 (1999)

Quantities of surplus capacitors 15000 mid., 40 volt approx, and PO style relays approx 10000 ohms col. Telephone 01 837 6021 (211)

TELEPHONE: 081 837 4106 for an application form.

1mW LASER HEAD COMPLETE WITH POWER SUPPLY KIT £139.00 + VAT. P.P. INCLUDED.

MAINS & BATTERY OPERATED POWER MODULES AVAILABLE, OFFICIAL ORDERS FROM GOVERNMENT DEPTS WELCOME

MARTEL LASER CO. LTD.
17/19 Whitworth Street
West Manchester • M1 5WG
United Kingdom
Telephone: 0612 228 0965

1mW LASER HEAD COMPLETE WITH POWER SUPPLY KIT £139.00 + VAT. P.P. INCLUDED.

MAINS & BATTERY OPERATED POWER MODULES AVAILABLE, OFFICIAL ORDERS FROM GOVERNMENT DEPTS WELCOME

MARTEL LASER CO. LTD.
17/19 Whitworth Street
West Manchester • M1 5WG
United Kingdom
Telephone: 0612 228 0965

1mW LASER HEAD COMPLETE WITH POWER SUPPLY KIT £139.00 + VAT. P.P. INCLUDED.

MAINS & BATTERY OPERATED POWER MODULES AVAILABLE, OFFICIAL ORDERS FROM GOVERNMENT DEPTS WELCOME

MARTEL LASER CO. LTD.
17/19 Whitworth Street
West Manchester • M1 5WG
United Kingdom
Telephone: 0612 228 0965

1mW LASER HEAD COMPLETE WITH POWER SUPPLY KIT £139.00 + VAT. P.P. INCLUDED.

MAINS & BATTERY OPERATED POWER MODULES AVAILABLE, OFFICIAL ORDERS FROM GOVERNMENT DEPTS WELCOME

MARTEL LASER CO. LTD.
17/19 Whitworth Street
West Manchester • M1 5WG
United Kingdom
Telephone: 0612 228 0965

FM & MW BROADCAST EQUIPMENT

A special range of high quality transmitters, power amplifiers, stereo encoders, UHF repeater links, compressors, antennas. Powers 10w to 1kw.

Built to high specifications at an economic price. Meets IBA & Home Office specifications. Full catalogue available.

Cyberscan International, 3 Eastcoast View, Pinner, Middlesex HA5 1AT.
Tel: 01 886 3300

MODEM CHIP AM7910 (With Data), £17.80 inc. VAT/P&P. IC sockets, turned pin contacts on terminal carriers, fraction cost price. Also comprehensive valve sockets. Lists of both, S.A.E. Access/Back Card. Lineware Electronics R43 Uxbridge Road, Hayes End, Middlesex, UB4 8HZ. Tel: 01 673 3677
G.W.M. RADIO LTD., 40/42 Portland Road, Walthamstow, London, Essex. Tel: (0899) 24589. Test equipment, receivers, oscilloscopes, components, etc. Factory Seconds and Damaged Stock. Free Sales and Warranties. Large or small lots. Many miscellaneous bargains for callers. Amateur equipment stacked. A.V.O. 8 with case and heads £89 incl. V.A.T. and P&P. A.V.O. master only checked and in good order. Tel: (0899) 24589.

19" RACK MOUNT CASES. Industrial Quality Fully enclosed with separate chassis. 1U x 250mm deep at £18.81 1½U x 300mm at £21.35 2U x 200mm at £22.05 2½U x 300mm at £24.59 3U x 250mm at £25.21 3½U x 300mm at £27.99 P&P £3 + VAT. Also 4½U large Newrad intrusmate cases. Unit 19, Wick Ind. Est, New Milton, Hants BH25 6SJ. Tel: (0415) 621955. (186)

PC\'s MANUFACTURED. Prototype small/large production runs. Single, double sided, PTH screen printing, panels, modules, mother boards. For photography, Orbitechnic Circuits. The rear of 427 Woodhills Road, Edgbaston, Birmingham. Tel: 01-553 9211. (151)

BURLINGTON ROAD, LITTLEPORT, CAMBS. Telephone: ELY (0353) 860185.

BAMBER ELECTRONICS, 5 STATION ROAD, LITTLEPORT, CAMBS. Telephone: ELY (0353) 860185.

FOR SALE: MANUFACTURERS SURPLUS STOCKS

Electronic Components, Test Gear, Radiotelephones, Computers, Photographic and Video Equipment. All at knock down prices. Export and Trade Enquiries Welcome. Catalogues Available from:

B. BAMBER ELECTRONICS, 5 STATION ROAD, LITTLEPORT, CAMBS. Telephone: ELY (0353) 860185.

Now available: Bumper Catalogue - 150 pages - for collectors of vintage radio, audio & TV equipment. Price: £2.00 post paid U.K., £3.00 post paid overseas Vintage Wireless Co., Ltd., Cosham Street, Mungersfield, Bristol BS17 1EN. Phone 0792/960472. (208)

QUALITY SECOND USER TEST EQUIPMENT FROM Translab. Whatever your requirements we can help. Oscilloscopes, signal analysers, power supplies, etc. We have a huge selection all fully refurbished to original manufacturers specification with warranty. Send now for our free price list to Translab Electronic Services, 28 Maillock Close, Rugby CV21 1LD. 227

TELEQUIPMENT SPARES

Genuine parts at your next price. * TPX 1x10 TPZ (10) at only £3.35 incl. VAT. Plus large selection of popular electronic components. Nottingham (0602) 582255/587241. High Speed Technology Ltd, Technology House, Priestley Road, 2a Carlton, Nottingham NG4 1LA. (231)

Exporting to U.K.? Send us a sample board and all components to produce to your order. Send to: VRW, 163a Luton Road, Luton.品质波形/转译分析器。校准、标准、毫伏计、脉冲计、KW米。示波器、记录器、信号生成器扫频、低失真、真实 RMS、音频、RM、偏差。电话：040 396236。 (261)

QUALITY SECOND USER TEST EQUIPMENT FROM Translab. Whatever your requirements we can help. Oscilloscopes, signal analysers, power supplies, etc. We have a huge selection all fully refurbished to original manufacturers specification with warranty. Send now for our free price list to Translab Electronic Services, 28 Maillock Close, Rugby CV21 1LD. 227

TELEQUIPMENT SPARES

Genuine parts at your next price. * TPX 1x10 TPZ (10) at only £3.35 incl. VAT. Plus large selection of popular electronic components. Nottingham (0602) 582255/587241. High Speed Technology Ltd, Technology House, Priestley Road, 2a Carlton, Nottingham NG4 1LA. (231)

Exporting to U.K.? Send us a sample board and all components to produce to your order. Send to: VRW, 163a Luton Road, Luton.品质波形/转译分析器。校准、标准、毫伏计、脉冲计、KW米。示波器、记录器、信号生成器扫频、低失真、真实 RMS、音频、RM、偏差。电话：040 396236。 (261)

QUALITY SECOND USER TEST EQUIPMENT FROM Translab. Whatever your requirements we can help. Oscilloscopes, signal analysers, power supplies, etc. We have a huge selection all fully refurbished to original manufacturers specification with warranty. Send now for our free price list to Translab Electronic Services, 28 Maillock Close, Rugby CV21 1LD. 227

TELEQUIPMENT SPARES

Genuine parts at your next price. * TPX 1x10 TPZ (10) at only £3.35 incl. VAT. Plus large selection of popular electronic components. Nottingham (0602) 582255/587241. High Speed Technology Ltd, Technology House, Priestley Road, 2a Carlton, Nottingham NG4 1LA. (231)

Exporting to U.K.? Send us a sample board and all components to produce to your order. Send to: VRW, 163a Luton Road, Luton.品质波形/转译分析器。校准、标准、毫伏计、脉冲计、KW米。示波器、记录器、信号生成器扫频、低失真、真实 RMS、音频、RM、偏差。电话：040 396236。 (261)
ARE YOU MAKING THE MOST OF YOURSELF
WHY NOT FURTHER YOUR TRAINING IN ELECTRONICS?

We offer:
CNAAB ENG. IN ELECTRONIC ENGINEERING
A four year part-time degree course for those working in industry.
Attendance one full day each week. The course is based upon modern
electronic engineering with a strong computing theme.
Entry Qualifications: BTEC HNC or equivalent in Electrical and
Electronic Engineering or Applied Physics.

BTEC HND ELECTRONIC ENGINEERING
A two year full-time course which combines an up-to-date technological
education with a considerable 'hands on' experience of a wide range of
modern equipment and techniques.
Entry Qualifications: One pass at 'A' level in an appropriate subject, or a
BTEC Certificate or Diploma or equivalent.

BTEC HND IN ENGINEERING (SOFTWARE)
(subject to approval)
A two year full-time course designed with industry to provide the
education, including hands-on experience, which is essential for a
software engineer.
The course also provides basic engineering training as specified by the
EITB.
Entry Qualifications: One pass at 'A' level or a BTEC Certificate of
Diploma; the final selection will be by interview.

SHORT COURSES IN ELECTRONIC ENGINEERING
A number of short courses are provided each year on topics which include
analogue or digital microprocessors, digital signal processing and
computer aided circuit design. These courses normally include hands-on
experience.
Additional courses may be provided in response to specific request from industry.
For further details contact the department of Engineering,
Cambridgeshire College of Arts and Technology, Cambridge CB1 1PT.
TELEPHONE (0223) 352973 or 352979

CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY

London: Yorkshire Motorway: Route M1
Major Maintenance: 1986/87 Programme
Provision of Site Radio Telephone System
Applications are invited from companies wishing to be
considered for the supply and maintenance of this system on
the basis of a medium term hire contract. The equipment is to
be used for a period of approximately four months during the
maintenance programme in South Bedfordshire.
Companies wishing to be considered should apply to:
The County Surveyor, County Hall, Cauldwell Street,
BEDFORD MK42 9AP

SENIOR DESIGN ENGINEER required to join a rapidly expanding
electronics company researching and developing video and hi-fi products.
A degree in electronic engineering and a minimum of five years experience
in the field of analogue engineering is required. Experience with digital or
audio design would be advantageous but not essential. The successful candidate should be self-motivated and able to work with the minimum of
supervision within a small research laboratory developing high quality
products. Since the company has divisions in the U.S.A. and the Far East
there may be opportunities for travel. Salary will be negotiable but will be
commensurate with this important position.

Please send CV to: Pat Kerridge, Technical
Secretary/Administrator,
NAD Electronics Ltd.,
Adastr House, 401-405, Nether Street,
London, N3 1QG or telephone 349 4034
for further information.

CLASSIFIED ADVERTISEMENTS
Use this Form for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To “Wireless World” Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Rate £4.50 PER LINE. Average six words per line. Minimum £36 (prepayable)
Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus £10
Cheques, etc., payable to “Business Press International Ltd.” and cross “& Co.”
15% VAT to be added

NAME……...

ADDRESS……...

……...

REMITTANCE VALUE …………………………… ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION…………………………………………………………………………………….

ELECTRONICS & WIRELESS WORLD MAY 1986
THE 16 BIT MSDOS SAMURAI S-16

Brand new surplus stock of this high quality machine which originally retailed at £2400.

- 8086 based (4.6MHz clock rate)
- 128K memory with parity
- Twin half height 8” floppy disc drives (total 2.3MB formatted)
- 12” green phosphor monitor included

- One parallel & two serial interfaces included
- MSDOS & manuals included
- VICTOR/SIRIUS format
- Manufactured by HITACHI to highest possible standards
- Much public domain software available
- 90 day full guarantee

Price: £485.00 + VAT
CARRIAGE: £5.00 (incl. VAT)

Available ONLY from:

COMPANY APPRECIATION, 111 Northgate, Canterbury, Kent. (0227) 470512
MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 6JZ. (0444) 414484/454377

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 74-79

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Electronics Ltd.</td>
<td>.65</td>
<td>Langrex Supplies Ltd.</td>
<td>.39</td>
</tr>
<tr>
<td>AEL Crystals</td>
<td>.40</td>
<td>Lelectronix</td>
<td>.62</td>
</tr>
<tr>
<td>Airlink Transformers Ltd.</td>
<td>.42</td>
<td>Levell Electronics Ltd.</td>
<td>.9</td>
</tr>
<tr>
<td>Amateur Radio Promotions</td>
<td>.73</td>
<td>Lincoln/Binns Ltd.</td>
<td>.2</td>
</tr>
<tr>
<td>Barrie Electronics Ltd.</td>
<td>.49</td>
<td>Fulcrum (Europe) Ltd.</td>
<td>.14</td>
</tr>
<tr>
<td>Beckenham Peripherals</td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge Kits</td>
<td>.14</td>
<td>Hameg</td>
<td>.72</td>
</tr>
<tr>
<td>Cambridge Microprocessor Systems Ltd.</td>
<td>.41</td>
<td>Happy Memories</td>
<td>.50</td>
</tr>
<tr>
<td>Coniston Electronics Ltd.</td>
<td>.3</td>
<td>Harris Electronics (London Ltd.)</td>
<td>.41</td>
</tr>
<tr>
<td>Cirit Holdings PLC</td>
<td>.73</td>
<td>Harrison Electronics</td>
<td>.66</td>
</tr>
<tr>
<td>Computer Appreciation</td>
<td>.66, 80</td>
<td>Hart Electronics Kits Ltd.</td>
<td>.69</td>
</tr>
<tr>
<td>Computer Source</td>
<td>.45</td>
<td>Henry’s/Audio Electronics</td>
<td>.80</td>
</tr>
<tr>
<td>Control Universal Ltd.</td>
<td>.48</td>
<td>Henson, R. Ltd.</td>
<td>.48</td>
</tr>
<tr>
<td>Crash Barrier</td>
<td>.11</td>
<td>Hilomast Ltd.</td>
<td>.50</td>
</tr>
<tr>
<td>Crossware Products</td>
<td>.10</td>
<td>Johns Radio</td>
<td>.62</td>
</tr>
<tr>
<td>Crotech Instruments</td>
<td>.41</td>
<td>Johnstone</td>
<td>.</td>
</tr>
<tr>
<td>Cybernetic Applications</td>
<td>.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datamak Design</td>
<td>.61</td>
<td>Keitley Instruments</td>
<td>.49</td>
</tr>
<tr>
<td>Display Electronics</td>
<td>.16/17</td>
<td>Kestral Elect. Comp.</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| OVERSEAS ADVERTISING AGENTS
| |
| France and Belgium: Pierre Mussyard, 18 — 20 Place de la Madeleine, Paris 75008 |
| United States of America: Jay Feinman, Business Press International Ltd. 52 East 42nd Street, New York, NY 10017 — Telephone (212) 867-2060 — Telex: 23827 |

80

ELECTRONICS & WIRELESS WORLD MAY 1986

www.americanradiohistory.com
Now! Tek quality and expert advice are just a free phone call away...

Our National Order Desk line gets you fast delivery of the industry's leading value/performance portables...and technical advice from experts!

The 60MHz 2213A, 2215A and the 100MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts. CRT included.

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement. The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature.

These UK manufactured 'scopes are obtainable through the National Order Desk. Call us to order or obtain literature, or to talk to our expert on 'scope applications.

...talk to Pete

Dial 100 and ask for Freefone Tek-scope

Tektronix UK Ltd
Fourth Avenue, Globe Park, Marlow, Bucks SL7 1YD
Tel: (06284) 6000
Telex: 847277 & 847378

The Company reserves the right to modify designs, specifications and change prices without notice.

CIRCLE 2 FOR FURTHER DETAILS.
2955 Radio Communications Test Set £5,750
- 11 test functions, including full duplex radio test
- Resolutionary design: fast and easy to use
- High clarity CRT shows all settings plus measurements in digital or analog forms
- Tuning encode/decode features
- 38 instrument settings in non-volatile memory
- Spin-wheel frequency/level control in addition to front panel buttons
- Single and two-port operation

2382/80 Spectrum Analyser & Display £13,150 and £5,350
- Audio to UHF: 100Hz-1000MHz
- Outstanding resolution: 9Hz minimum resolution filter bandwidth
- 0.025dB amplitude resolution
- 0.01dB frequency accuracy
- Fully GPIB programmable capability
- Two steerable markers for levels and frequencies
- Self-calibration for repeatability of measurements

2022 AM/FM Signal Generator 10kHz to 1GHz £2,950
- Wide frequency range: 10kHz to 1GHz
- Comprehensive modulation: AM/FM/PhM
- Simple push-button operation, large LCD display
- Non-volatile memory: 100 settings
- The perfect service maintenance tool.

2305 Modulation Meter 500kHz to 2GHz £5,012
- 500kHz to 2GHz frequency range:
- Outstanding 0.5% basic accuracy:
- Exceptionally fast auto-tuning, with low noise:
- Non-volatile memory to store user settings:
- Excellent stereo separation:
- Automatic self-calibration, advanced diagnostics.

6960 Option 001 Digital RF Power Meter £1,945
- Simple push button or systems application:
- Unparalleled accuracy through sensor correction:
- Non-volatile storage of frequently-used settings:
- W or dB readings, plus offset capability:
- Single key auto-zero operation:
- Average factor selection to reduce noise or improve resolution, enhanced GPIB facilities.

2440 Microwave Counter 20GHz £4,100
- Wide frequency coverage: 10Hz to 20GHz:
- High sensitivity and resolution:
- Fast acquisition time: 100ms typical:
- High-stability oven-controlled crystal oscillator:
- Overload capability up to 25dBm:
- High AM/FM tolerance:
- Built-in GPIB.

The first name in test equipment distribution
Electronic Brokers are now distributors for a full range of Marconi Test Instruments including Signal Generators, Microwave Counters, Power Meters, Modulation Meters, Spectrum Analyzers, Radio Communication Test Sets and other general test and measuring equipment. For further information and a colour brochure please contact our Sales Office.

Electronic Brokers 140-146 Camden Street, London, NW1 9PB
Tel: 01-267 7070 Telex: 298694 Fax: 01-267 7363
All prices exclusive of VAT (which will be charged at time of going to press). (Only) Trading conditions available on request.