68000 computer board

Memory expansion

Switched-mode power supply

Multi-standard digital terminal
Now! Tek quality and expert advice are just a free phone call away...

Our National Order Desk line gets you fast delivery of the industry's leading value/performance portables...and technical advice from experts!

The 60MHz 2213A, 2215A and the 100MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included.

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement. The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature.

These UK manufactured 'scopes are obtainable through the National Order Desk. Call us to order or obtain literature, or to talk to our expert on scope applications.

...talk to Pete

Dial 100 and ask for Freefone Tek-scope

Tektronix UK Ltd
Fourth Avenue, Globe Park, Marlow, Bucks SL7 1YD
Tel: (06284) 6000
Telex: B47277 & B47378

The Company reserves the right to modify designs, specifications and change prices without notice.
FEATURES

<table>
<thead>
<tr>
<th>Multistandard digital terminal unit by J. Walker</th>
<th>Case study in interface design by A. Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing a digital filter with a microprocessor leads to simple hardware for this programmable modem.</td>
<td>How the Syscon 6 interface was developed for using Commodore peripherals with a BBC computer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The tale of the long-tail pair — part 2 by F.J. Lidgey</th>
<th>Switched-mode power supply by R.L. Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further applications ranging from analogue log/exp circuits, multipliers and dividers, to fast logic gates.</td>
<td>Last part of the instructional series on power supplies is a practical design for a 13A, 14V switcher.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Half-megabyte memory for SC84 by J.H. Adams</th>
<th>Call cost calculator by S.A. Cameron</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Silicon disc' with 256k or 512k of dynamic memory uses novel refresh technique.</td>
<td>How the software works and how to reprogram the instrument.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The future — what it could hold by R.E. Young</th>
<th>Digital polyphonic keyboard — 2 by D.G. Greaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where Britain’s hidden strengths exist, where they are being suppressed, and how they could be brought to the surface.</td>
<td>Digipoly’s t.t.l. processor circuit and macrocode program.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>68000 evaluation kit by R.F. Coates</th>
<th>Electronic mailbox by M. Allard</th>
</tr>
</thead>
<tbody>
<tr>
<td>The £100 Kaycomp is Bob Coates 68000 board for engineers, students, and enthusiasts.</td>
<td>Construction tips and line interface circuits complete this description of an electronic message system.</td>
</tr>
</tbody>
</table>

REGULARS

<table>
<thead>
<tr>
<th>News commentary</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swings and swings</td>
<td>Electromagnetic paradox</td>
</tr>
<tr>
<td>Molecular beam epitaxy</td>
<td>Energy transfer</td>
</tr>
<tr>
<td>Spark hazards</td>
<td>Optical communication</td>
</tr>
<tr>
<td>Etpos comes to High Street</td>
<td>Valve preamplifier</td>
</tr>
<tr>
<td>News in brief</td>
<td>Relatively interesting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communications commentary</th>
<th>Circuit ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>British research</td>
<td>Humidity control</td>
</tr>
<tr>
<td>Interference agro</td>
<td>Add-on current dumping</td>
</tr>
<tr>
<td>Amateur radio</td>
<td>RS232 to Centronics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report</th>
<th>New products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television at Montreux; Satellite broadcasting, high definition and the future of terrestrial tv</td>
<td>934MHz c.b. transceiver</td>
</tr>
<tr>
<td></td>
<td>Multitasking 6809 with STE bus</td>
</tr>
<tr>
<td></td>
<td>Automatic t.c. tester</td>
</tr>
<tr>
<td></td>
<td>Control expansion for BBC Micro</td>
</tr>
</tbody>
</table>

CONTENTS

Volume 91 number 1596

October 1985

FEATURES

<table>
<thead>
<tr>
<th>Multistandard digital terminal unit by J. Walker</th>
<th>Case study in interface design by A. Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing a digital filter with a microprocessor leads to simple hardware for this programmable modem.</td>
<td>How the Syscon 6 interface was developed for using Commodore peripherals with a BBC computer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The tale of the long-tail pair — part 2 by F.J. Lidgey</th>
<th>Switched-mode power supply by R.L. Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further applications ranging from analogue log/exp circuits, multipliers and dividers, to fast logic gates.</td>
<td>Last part of the instructional series on power supplies is a practical design for a 13A, 14V switcher.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Half-megabyte memory for SC84 by J.H. Adams</th>
<th>Call cost calculator by S.A. Cameron</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Silicon disc' with 256k or 512k of dynamic memory uses novel refresh technique.</td>
<td>How the software works and how to reprogram the instrument.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The future — what it could hold by R.E. Young</th>
<th>Digital polyphonic keyboard — 2 by D.G. Greaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where Britain's hidden strengths exist, where they are being suppressed, and how they could be brought to the surface.</td>
<td>Digipoly's t.t.l. processor circuit and macrocode program.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>68000 evaluation kit by R.F. Coates</th>
<th>Electronic mailbox by M. Allard</th>
</tr>
</thead>
<tbody>
<tr>
<td>The £100 Kaycomp is Bob Coates 68000 board for engineers, students, and enthusiasts.</td>
<td>Construction tips and line interface circuits complete this description of an electronic message system.</td>
</tr>
</tbody>
</table>

REGULARS

<table>
<thead>
<tr>
<th>News commentary</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swings and swings</td>
<td>Electromagnetic paradox</td>
</tr>
<tr>
<td>Molecular beam epitaxy</td>
<td>Energy transfer</td>
</tr>
<tr>
<td>Spark hazards</td>
<td>Optical communication</td>
</tr>
<tr>
<td>Etpos comes to High Street</td>
<td>Valve preamplifier</td>
</tr>
<tr>
<td>News in brief</td>
<td>Relatively interesting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communications commentary</th>
<th>Circuit ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>British research</td>
<td>Humidity control</td>
</tr>
<tr>
<td>Interference agro</td>
<td>Add-on current dumping</td>
</tr>
<tr>
<td>Amateur radio</td>
<td>RS232 to Centronics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report</th>
<th>New products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television at Montreux; Satellite broadcasting, high definition and the future of terrestrial tv</td>
<td>934MHz c.b. transceiver</td>
</tr>
<tr>
<td></td>
<td>Multitasking 6809 with STE bus</td>
</tr>
<tr>
<td></td>
<td>Automatic t.c. tester</td>
</tr>
<tr>
<td></td>
<td>Control expansion for BBC Micro</td>
</tr>
</tbody>
</table>

CONTENTS

Volume 91 number 1596

October 1985

FEATURES

<table>
<thead>
<tr>
<th>Multistandard digital terminal unit by J. Walker</th>
<th>Case study in interface design by A. Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing a digital filter with a microprocessor leads to simple hardware for this programmable modem.</td>
<td>How the Syscon 6 interface was developed for using Commodore peripherals with a BBC computer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The tale of the long-tail pair — part 2 by F.J. Lidgey</th>
<th>Switched-mode power supply by R.L. Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further applications ranging from analogue log/exp circuits, multipliers and dividers, to fast logic gates.</td>
<td>Last part of the instructional series on power supplies is a practical design for a 13A, 14V switcher.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Half-megabyte memory for SC84 by J.H. Adams</th>
<th>Call cost calculator by S.A. Cameron</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Silicon disc' with 256k or 512k of dynamic memory uses novel refresh technique.</td>
<td>How the software works and how to reprogram the instrument.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The future — what it could hold by R.E. Young</th>
<th>Digital polyphonic keyboard — 2 by D.G. Greaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where Britain’s hidden strengths exist, where they are being suppressed, and how they could be brought to the surface.</td>
<td>Digipoly’s t.t.l. processor circuit and macrocode program.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>68000 evaluation kit by R.F. Coates</th>
<th>Electronic mailbox by M. Allard</th>
</tr>
</thead>
<tbody>
<tr>
<td>The £100 Kaycomp is Bob Coates 68000 board for engineers, students, and enthusiasts.</td>
<td>Construction tips and line interface circuits complete this description of an electronic message system.</td>
</tr>
</tbody>
</table>
Tri, quality PMR equipment.

NEW DISCO ELECTRONIC CENTRE
FAMOUS LOUDSPEAKERS SPECIAL PRICES

TK801S
Now from Trio, the eagerly awaited range of high quality, purpose-designed, VHF and UHF mobile radio transceivers.

AR0202
The new AR0202 from AOR combines the well known performance of the AR0201 with improved operating features. Improvements are in easier to use press button key board, the addition of a signal strength meter, spurious frequency suppression by lownoise as well as push button, a headphones jack on the front panel and a socket for remote control on the ear panel. An additional frequency range from 800 to 1300 MHz has also been included.

LOWE ELECTRONICS LIMITED
Chesterfield Road, Matlock, Derbyshire DE4 SLE
Telephone: 0629 5817, 5430, 4087, 4996 Telex: 377482

FOR S100 USERS
FULCRUM (EUROPE) LTD
Distribute & technically support over 160 different S100 products. Select from manufacturers like:
MACROTCH INT, ADVANCED DIGITAL CORP, ACKERMAN DIGITAL SYSTEMS, INNER ACCESS CORP, LOMAS DATA PRODUCTS, COMPUTRIP, CALIFORNIA COMPUTER SYSTEMS, DUAL SYSTEMS, TELTEK, INTERCONTINENTAL MICRO - SYSTEMS, SEMIDISK SYSTEMS INC, HIGH TECH. ELC. LTD, I/O TECH. INC, SD SYSTEMS, SOLID STATE MUSIC, KONAN CORPORATION, JADE COMPUTER PRODUCTS, MULLEN COMPUTER PRODUCTS INC, DATA SYSTEMS CONSULTANTS, ILLUM. TECH. INC, ZENITH DATA SYSTEMS, BICC-VERO
CALL US ON (021) 8297673
VALLEY HOUSE, PURLEY, SURREY, C15, ENGLAND
TELE: 846240 & 629 - WESLY G - Easylink I.D. 10010455

CIRCLE 38 FOR FURTHER DETAILS.
Swings and swings

It's ironic that the electronics industry, which has contributed so much to advanced technology — giving us such things as automatic blind landing of aircraft and multiprocessor control — can do so little to control its own business. Companies in this field have recently experienced the whole gamut of instability, from uncomfortable fluctuation in profitability to total bankruptcy. And the semiconductor manufacturing sector is notoriously vulnerable to fluctuations in trading. The business parameters of business stability are few, traditional and well understood. If you can optimize profit, operating costs and cash flow, you are a business-man, my son. Unfortunately, the big unpredictable parameter, the highly independent variable in the control system equation, is the external one of market demand. Here, electronics is perhaps more vulnerable than many industries. Relying as it does on 'high' or 'leading-edge' technology, it is converting knowledge about Nature, some of it very new, into industrial and domestic products at an extremely fast rate. And because the gently dozing public is inevitably unaware of the new possibilities offered by these products it has to be woken up be advertising and promotion. There is nothing wrong with advertising as a means of letting people know what is available on the market. But when it over-persuades a public which necessarily has no criteria to judge the usefulness or otherwise of entirely new kinds of products, it is doing a bad service to everyone. The hyperbole even goes to the heads of the manufacturers themselves. But hubris is followed by nemesis. We saw it with the over-selling of mainframe computers in the 1960s, the over-selling of pocket calculators in the late 1970s and we see it in the over-production of home computers now. At the worst the public feels it has been conned. At the best it signals by passive resistance that the rate at which it can consume and digest the new kinds of products is strictly limited.

If all this only resulted in a few financiers, shareholders and company directors getting their fingers burnt it wouldn't matter very much. But the worst effect is social. The flight of capital, whether in redemption of manufacturing capacity or complete shut-down of a plant, brings social havoc in its wake. According to an American study, the resulting unemployment brings"... psychosomatic illness, anxiety, worry, tension, impaired interpersonal relationships and an increased sense of powerlessness... As self-esteem decreases problems of alcoholism, child and spouse abuse, and aggression increase." Europeans know this too.

Capital mobility is regarded as a technical necessity for a free-market economy. The alternative is often stated to be the rigid bureaucracy and lack of enterprise of a centrally-planned economy, as in certain communist countries. But this is not so. All electronics engineers know that the answer to instability in a closed-loop control system is damping. It slows down the response of an over-reactive chain of cause and effect. Precise control is achieved by a careful combination of proportional, integral and differential (PID) terms in the control system equation. If one could apply this analogy to an economic system it would mean making adjustments to achieve equilibrium rather than growth. We already have enough evidence even our eyes to show that the drive for perpetual economic growth is potentially disastrous, socially and ecologically. It cannot be sustained and is as unrealistic as perpetual motion. It will either result in some kind of breakdown in civilization or, perhaps more likely, in an unredeemed painful self-limiting condition.

An economic system is not a 'natural' order or God-given. It is man-made, like a servomechanism. It is therefore capable of being stabilized.

Molecular beam epitaxy

Galium arsenide semiconductor materials are produced, like silicon, by the growth of cylindrical crystals sliced into thin wafers. Unlike silicon, though, GaAs devices are not made directly from these wafers; they are used as a substrate for the growth of very thin layers of galium arsenide or related alloys. The orientation of the layers is determined by that of the substrate, a phenomenon known as epitaxy.

Molecular beam epitaxy, just emerging from the research stage, may be used to grow layers with the depth of one atom. Molecular beams of the constituent elements, produced from effusion cells, impinge on the surface of the heated substrate to produce the required epitaxial layer. The growth rate and composition of the layer can be controlled by the intensity of the beam, which is dependant on the temperature of the cells. The beams can be turned on and off by the use of shutters and the whole system can be automated with computer control of the cell temperatures and the shutter operation. Abrupt changes in the composition of a layer are possible and multilayer devices can be made. Thickness and composition of the layer can be closely monitored by observing the diffraction patterns produced by a high-energy electron beam directed at a grazing angle across the surface of the layer.

One of the first practical products to be produced this way has been the short-wavelength semiconductor laser used in optical recording and playback systems. Philips Research Laboratories at Redhill have produced lasers that can operate at wavelengths as short as 707nm, using interband layers as thin as 13um.

The chief advantage is that these lasers give visible light whereas normal GaAs lasers operate in the infra-red. The advantage of GaAs over silicon is the higher mobility of electrons, enabling the production of much faster devices. This has been increased even farther, using molecular beam techniques, by the growth of a layer of AlGaAs onto the surface of a high-purity crystal of GaAs. At the intersection of the materials, a two-dimensional cloud of electrons is found in the gallium arsenide. This has even greater mobility than in normally doped GaAs, and could lead to the production of transistor structures able to operate at extremely high frequencies, up to 100GHz.
In brief...

Freefone numbers have only been available by asking exchange operators for the number. Now, direct dialling is introduced by the use of dialling codes 0800 and 0345. The difference between the two is that 0800 numbers are free to the caller; 0345 numbers charge the cost of a local call from anywhere in the UK. BT, who seem to have an inexhaustible supply of catchy names have called this service LinkLine. It is most likely to be used by those service companies who gain much of their business from incoming calls, such as catalogue companies, travel agents, vehicle hire, hotels, repair and maintenance companies and parts suppliers.

Professor Carsberg of Oftel is taking seriously the report in the Daily Mail that out of 200 public telephone kiosks visited, 120 of them were out of order. He commissioned a survey from NOP which found that 50% of call box users had difficulty in finding one that worked last time they tried and is having another to see how long specific boxes are out of action. He points out that BT’s licence includes provision for a “reasonable public telephone service”, and if necessary he could issue an order to enforce BT to meet its obligations.

The Director-General of Telecommunications has also been called in to arbitrate on the proposed switch from System X (GEC and Plessey) to System Y (Thorn Ericsson) digital telephone exchanges. Taking into account the possible loss of jobs at GEC and Plessey, and the possible gain in employment at Thorn Ericsson in Scunthorpe (where about 70% of the System Y exchanges will be made); and looking at the possible harm to the export prospects of System X, Carsberg has come to the conclusion that any further shifts of orders from X to Y should be gradual, over a period of three years, and give system X manufacturers the chance to meet reasonable cost and delivery requirements in the meantime.

The Monopolies and Mergers Commission has been asked by the Office of Fair Trading to investigate the possibility of a monopoly in the supply in the UK of marine radio navigation receivers compatible with the Decca Navigator system. Anyone with an interest in the investigation is invited to give their views or information to the Commission, at 48 Carey Street, London WC2.

Although the technical papers are an important part of Montreux, (our report starts on page 14) the exhibition floor is where visitors spend most of their time.

The emphasis in the exhibition was firmly on the production and programme side of television. Of the over 200 exhibitors only about a dozen or so were showing broadcast transmitters.

Digital techniques are playing an ever increasing role in programme production. The French programme company SFP showed a four-minute tv clip which was the world’s first demonstration of tv material in which the production and post-production were done entirely by digital means.

Although exhibitors and visitors regularly complain about the cramped facilities at Montreux, the picturesque lakeside location of the TV Symposium and Exhibition will continue to ensure that one of the world’s most important tv events remains where it has been for the last 20 years!

Spark hazards

Dr Peter Excell, whose work on hazards associated with radio induced explosions is well known, is one of two academic staff members (the other is Dr Alfred Keller) of the University of Bradford who have received a £33,572 grant from SERC to investigate the possibility that explosions on oil rigs and other major chemical installations could be accidentally triggered by radio waves. Although safety standards already exist they tend to be unduly restrictive they assume a number of conditions existing simultaneously, including a spark gap in the presence of a concentrated flammable mixture. They believe that probability factors could safely be taken into account to free radio systems from unnecessary restrictions.

The study will extend to related hazards, such as the likelihood of radio signals from low power transmitters setting off electro-explosive detonators or, interfering with aircraft guidance systems.

Canon’s new T80 autofocus camera brings the ‘point and shoot’ photography of compact cameras to single-lens reflex (SLR) cameras, with the benefit of being able to use interchangeable lenses. Its liquid crystal ‘picture selector system’ allows press-button selection if an appropriate program for exposure, sharpness detection and autofocus. The camera has over 28,000 active elements in its i.c. complement, including a c-mos 8 bit microcomputer, and costs £395.

Eftpos comes to the High Street

Credit or charge-card sales can now be processed on-line in just a couple of seconds using Britain’s first Eftpos system. Eftpos stands for ‘electronic funds transfer at the point of sale’, and a system is now available from Cresta Communications and British Telecom, initially in the London area.

The shopkeeper keys in brief details of each transaction on a small data terminal and wipes the customer’s card through a built-in magnetic reader. The information is immediately transferred to a British Telecom computer which checks it against data supplied by the card companies and authorizes the purchase (or not) on the spot. A receipt is automatically printed out by the terminal.

Cresta’s Teletran terminal makes use of voice-over-data techniques to exchange signals over the merchant’s existing telephone line. Ordinary use of the line is unrestricted, but it remains available continuously for direct communication with the central computer and so avoids the need for time-consuming dialling. The data does not reach the local telephone exchange and is therefore presumably hacker-proof: a high degree of security is essential where money is concerned.

Cost to the retailer is £72 per month to rent the terminal, plus 2p per transaction. Cresta, who have licensed the system to BT, see a potential market of a quarter of a million terminals; a figure which they expect to increase with the growing use of plastic money. By next year the service is due to be available nationally.
THE SOURCE OF ALL GOOD USED TEST EQUIPMENT

SAVE up to 50%

OSCILLOSCOPES

- **Hewlett Packard**
 - 5451A Scope Mainframe: £1850
 - 5452A Display (as new): £1950
 - 5471A Storage Scope: £1780
 - 1690A 4 channel p/n for 160: £1900
 - 1691A Tektronix Timebase: £1780

- **Tektronix**
 - 465B Scope 500MHz: £690
 - 465B/DM44 Scope 100MHz: £840
 - 475 Scope: £950
 - 482 Scope 350MHz: £1390
 - 634/1220 Monitor (as New): £1900
 - 485 Scope 100MHz: £950
 - 486 Storage Scope 130MHz: £1950
 - 487 Storage Scope: £1950
 - 5223 Scope Mainframe: £3600
 - 5244A Scope Mainframe: £3600

TEKTRONIX 700 SERIES

- **Hewlett Packard**
 - 7100G Scope MHT (Mid): £850
 - 7162A Storage Scope M/F: £1780
 - 7163 Storage Scope M/F: £1780
 - 7104A Scope Mainframe: £3900
 - 7106A Scope 10MHz: £3900
 - 7111 TE1 P1: £1650
 - 7112 TE1 P1: £1650
 - 7116 TE1 P1: £1650
 - 7203A Timebase: £675
 - 7205A Timebase: £675
 - 7206A Timebase: £675
 - 7207 Timebase: £675
 - 7211 Digital Delay: £1400
 - 7214 10MHz Digital Counter: £850
 - 7114 Delay Line: £780
 - 7121 Sampling Plug In: £4200
 - 7122 Sampling Timebase: £4200
 - 7123 Sampling Head: £4200

ANALYSERS

- **Hewlett Packard**
 - 3391A Distortion Analyser: £850
 - 1915A Logic Analyser: £980
 - 3505A Spectrum Analyser plug-in: £825

- **Marconi**
 - FM/10A Modulation Meter: £795
 - 12330A Wave Analyser: £7095
 - 5249A Distortion Factor Meter: £8295

- **Tektronix**
 - 29601 Data Analys: £2500
 - 39601 Data Analys: £2500
 - 7201/2F Logic Analyser: £1900
 - 7102C Tracking Generator: £2700
 - 7102d JT1 Logic Analyser: £2700
 - 7108 JMT1 Personal Module: £385
 - 7110 Personal Module: £385

RF SIGNAL GENERATORS

- **Fischer & Porter**
 - 1998 Pulse Generator 50MHz 10V: £750

Electronic Brokers is Europe's largest specialists in quality second user test equipment. Established in 1973, we have pioneered the second user concept in Britain, and many overseas territories. To support our growth we have a skilled team. This includes trained sales staff, whose role is not only to sell, but provide a helpful information service to our many customers. Backing this team is our own service laboratory where technicians monitor each item of equipment we sell. Our maxim is service, and those who have dealt with us will know that we endeavour to always live up to our reputation.

BRIDGES

- **Hewlett Packard**
 - 4142A 'Q' Meter: £1600
 - 7212 Spectrometer: £650
 - 1614A LCR Bridge: £775
 - 1620B LCR Bridge: £395
 - 16270B Inductance Analyser: £1500

AF SOURCES

- **Wavetek**
 - 4204A Octal Osc (New): £595

TEKTRONIX GP & M EQUIPMENT

- **HP**
 - DSO50A Counter 1-3GHz: £900
 - DSO601 Counter/Timer 135MHz: £895
 - DSO602 Digital Delay: £500
 - DSO701/2D 50MHz: £800
 - DSO801 1MHz Function Generator: £895
 - DSO802 1MHz Function Generator: £895
 - DSO803 1MHz Function Generator: £895
 - DSO804 1MHz Function Generator: £895
 - M9001 X-Delay: £1850
 - M9002 Pulse Generator: £1350
 - M9003 Pulse Generator: £1350
 - M9005 Calibration Generator: £1950
 - M9006 Ramp Generator: £1950
 - M9007 Ramp Generator: £1950
 - M9008 Signal Generator: £1950
 - M9009 Signal Generator 24-1500MHz: £1950
 - 10101 Title Mark Generator: £1750
 - TMR30 Masterframe: £675
 - TMS54 Masterframe: £675
 - TMS515 Masterframe: £675

COUNTERS & TIMERS

- **HP**
 - 7220A Communications Counter 1.3GHz (Guaranteed): £995
 - 3303A Counter 80MHz: £150

Hewlett Packard

- 5341A Microwave Counter 10Hz-4.5GHz: £1500
- 3385 4, Counter 1.3GHz: £650

- **Marconi**
 - 843A1A 200MHz Counter: £225
 - 243A1 500MHz Counter: £650
 - 594 100MHz IEEE Counter: £750

GENERAL PURPOSE & M

- **Hewlett Packard**
 - 3403A DMM: £350
 - 3452A DMM: £495
 - 3451A Sampling Voltmeter: £1500
 - 3452A DMM: £575
 - 3453A Vector Voltmeter: £2000
 - 477A Amplifier: £725
 - 11890A Direct Coax: £1500
 - 68001 RF Power Meter: £1500
 - 575 RF Millivoltmeter: £550
 - 2750/4 RF Voltage Generator: £750
 - 27527A S.L.M.S: £800
 - 275937A 50MHz Counter: £1250
 - 275974A Colour Inspection: £595
 - 275975A SR1 Colour Test Set: £595
 - 275980 Data Line Analysed: £950
 - 275981 Simulator: £950
 - 275999 Data Monitor: £950

- **Tektronix**
 - B400A Integrating Unit: £8500
 - 765 Curve Tracer: £1250
 - 1540 Curve Tracer: £1250
 - 1541 Curve Tracer: £1250
 - B4190 Ground Isolation Monitor: £875

HEWLETT PACKARD COMPUTERS

- 58211 Printer: £1250
- 58212 Plotter: £2200
- 58214 Desktop: £750
- 58225 Printer: £850
- 58255 Disk Drive: £950

Electronic Brokers Guarantee

Unless otherwise stated, all test equipment sold by us carries a 12 month warranty. When you buy from Electronic Brokers you know the equipment is 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians.

All prices exclusive of VAT. Carriage and packing changes extra on all items unless otherwise stated.

A copy of our trading conditions is available on request.

Electronic Brokers Ltd
140-146 Camden Street London NW1 9PB
Telephone 01-267 7070 Telex 298694

CIRCLE 42 FOR FURTHER DETAILS.
Imhof Express gives you a 24-hour delivery of the most comprehensive range of small diecast boxes available anywhere.

They are ideal for the hobbyist who wants strong metal boxes with good screening properties.

To order simply phone your Access or Visa card number and the goods will be despatched within 24 hours.

For details on these and all our many other products, ask for our latest catalogue.

Imhof Express
Riverside Way, Uxbridge
Middlesex UB8 2YX
(0895) 72247/8/9 and 72261/2/3

SALE

Due to redevelopment and moving to other premises we shall be selling certain electronic equipment. This sale is for callers only and will include Masts, Scopes, Ariels, Transformers, Meters, Plugs, Sockets, Headsets, Speakers, Signal generators, Test equipment, Pye equipment, Valves, 4CX250B etc. bases, Waveguide, Racal receivers, Rechargable batteries etc. This SALE will start around the end of September/beginning October. Please Telephone for further details.

A.H.THACKER & SONS LTD
HIGH STREET, CHESLYN HAY, WALSALL, STAFFS.
TELEPHONE: CHESLYN HAY 413300

DON'T GO DOWN WITH YOUR SCOPE! It never was designed to float

The Waugh Instruments Isolation Amplifier enables you to keep your scope earthed and still make measurements up to 1500V from earth, this together with over 100dB rejection at 50Hz means that you can now observe small signals superimposed on 350V sine waves so often encountered in switch mode power supplies, thyristor and triac firing circuits. For details of this and other oscilloscopes accessories contact Peter Waugh at Waugh Instruments, Camhelgy Isas, Glyn Ceiriog, Llangollen, Clwyd LL20 7PB. (069172) 597.
Instant results - No messing

Time was when oscilloscope trace recording was a science in itself. The new Shackman 7007 with AutoFilm back* removes the mystery and hands you the results.

Perfectly and instantly. No messing.

The Shackman 7007 cameras are quality recording systems with a high resolution four element glass lens. Available with either manual or electric shutter they allow aperture settings from f4.5 to f16. Event triggering is standard on all models and there's a range of film options that will catch even the fastest transients.

There's also a vast range of instrument adapters to match all types of scope.

And because all Shackman 7007 cameras have a factory set image-to-object ratio, there's no fiddling around with focusing. Now all you do to record that trace is swing the 7007 in front of the screen, set the shutter speed and activate the trigger.

Hey presto! The Polaroid AutoFilm back ejects the finished print.

Perfect.

With so many features to read about, you'll need the new colour brochure. Send for your copy now.

* Other film back options include Polaroid CB103 peel apart

Please send me the colour brochure on the Shackman 7007 image recording camera

Name

Organisation

Address

Telephone

CIRCLE 22 FOR FURTHER DETAILS.
British URSI research topics

The 1985 one-day “National Radio Science (URSI) Colloquium” held in London under the auspices of The Royal Society provided an opportunity to catch up with the many university, Rutherford Appleton Laboratory and British Antarctic Survey studies in the subjects covered by nine URSI commissions: electromagnetic metrology; fields and waves; signals and systems; electronic and optical devices and applications; electromagnetic noise and interference; remote sensing and wave propagation; ionospheric radio and propagation; waves in plasmas; and radio astronomy.

The presentations included wide-ranging surveys, plus informal talks by young scientists on particular projects, including a lively presentation by Dr Lorna Robertson of Glasgow University on the so-far unsuccessful attempt to detect gravitational waves which may, if ever detected, finally prove or disprove Einstein’s theories to the chagrin of so many writers of letters to the editor of this journal!

P. Wells (RSRE) described military work on compact, transportable satellite terminals for digital slow-scan tv. Dr P. Cudd (Sheffield University) described efforts to direct microwave energy further into the body to permit the use of hyperthermia techniques for deeper-seated malignant tumours with the aid of phased arrays.

Dr Peter Bradley (RAL) reviewed the many research projects in the field of ionospheric propagation, though it is clear that the $64,000 question of predicting terminals for digital slow-scan tv is still unsolved.

Prof. E.D.R. Shearman and Dr Lucy Watt of Birmingham University reported on the work on hf. sea-state radar. This has now abandoned the use of c.w. emissions between 6.7 and 40MHz that do not spread over more than about 20kHz of spectrum. Although this project is presented as a tool for studying oceanography it is difficult to dispel the suspicion that the objective could be to locate submarines from the disturbances they create at the surface.

The idea of these URSI symposia seems excellent, but they do tend to highlight the tendency of British universities and establishments to ignore work carried on elsewhere in the world — the old “invented here” syndrome. This is markedly different from the intense Japanese interest in what is happening in Europe and the USA. This has now led to American industry seeking more engineers versed in the Japanese language in order better to monitor Japanese science and engineering publications of which only a fifth are currently translated into English.

Flying tape

The recent IEE 50th anniversary of radar seminar was only one aspect of the increasingly serious interest in the recording of electronic technology. The 25th anniversary (May 15, 1985) of the first demonstration at Hughes Research Laboratories, Malibu, California by T.H. Maiman of a working laser did not go unnoticed, although what was once a “solution of a problem” is now increasingly regarded as a solution to military rather than civilian problems.

A detailed paper by Claud Powell in the IERE Journal (June 1985) traces the early history of magnetic tape from its conception in 1937, of the Decca Navigator system based on the work of William O’Brien and Harvey Schwarz. They had great difficulties in getting the system adopted in the USA. This led to its important but largely unrecognized role (as “P-tape”) in the Normandy landings of June 1944, following secret trials between Anglesey and the Isle of Man.

An SMPTE historical paper by William Lafferty “The use of steel tape magnetic recording media in broadcasting” similarly shows that while the Blattnerphone and Marconi-Stille machines, both stemming from the work of Curt Stille, were widely used in Europe throughout the nineteen-thirties and early nineteen-forties, American broadcasters depended on direct-disc recording.

There are broadcast engineers still working who recall using the Marconi-Stille machines with large spoons containing up to 2700 metres of special Swedish steel tape that sped by the heads at 1.5m/sec.

Lafferty points out: “Editing the recorded tapes could be accomplished through the tedious and cumbersome process of cutting the tape with tin shears, then soldering or spot-welding the tapes together. Edited tapes could be dangerous, since if a splice broke during transmission the operator risked being slashed by the flying steel tape as it spun.”

The BBC adopted the bulky Blattnerphone machines at the start of the Empire Service in 1932 when “time-shift” became essential. Blattner’s company went into liquidation in 1933 after their failure to interest the film industry. The later Marconi-Stille machines were smaller, more reliable and provided better quality.

The BBC also adopted the Philips-Miller film system of sound recording, mechanically cutting away an opaque coating on the film, later using a photo-electric cell for high-quality reproduction. However both steel tape and film recorders were expensive to operate so that use was also made of direct-disc recorders, including the portable machines used by the war reporters. German work on plastics-backed tape, leading to the modern tape recorder, came about to avoid having to import the special Swedish steel.

Interference aggro

The decision of the Department of Trade and Industry to discontinue its free service to viewers who complain of radio and television reception problems, and instead to concentrate its diminished resources of the Radio Investigation Service on “pirate” operation and spectrum abuse, it a logical, though in some ways regrettable, move. It was made essential because of the many members of RIS who were unwilling to accept the relatively poor terms of employment offered by the DTT when the service was transferred from British Telecom. Even after some fresh recruitment the present staff is only about 240 compared with 340 under BT.

There is little doubt that domestic interference investigation has been difficult to justify in terms of cost-benefit. A high proportion of all complaints have been due to ineffective aerials, receiver faults, or so infrequent that the investigation teams have been unable to observe, let alone locate, the interference. The introduction of c.b. into the UK significantly increased the number of viewer complaints, though in practice such interference is, when involving “legal” c.b. operation, reflected the poor immunity of many television sets, and could usually be cured by a simple filter fitted to the receiver. It could be claimed that the existence of the free-services provided by RIS encouraged the set-makers to pay little heed to immunity. Retailers have tended to leave it to the specialist skills of the RIS teams or simply to tell customers that interference problems are the fault of the transmitter or appliance. British regulations are also very lax in regard to spectrum pollution by industrial equipment, home computers and the like.

The DTT are, in effect, now copying the FCC approach in the provision of a detailed free booklet providing good explanation and advice to viewers/listeners together with technical guidance for dealers (it is questionable whether these fit well into a single booklet).

The DTT also intend to incorporate BS905, Part 2 of which provides recommended minimum immunity standards for television sets, into legally-binding regulations. This is good news for amateurs, c.b.-ers and anyone operating transmitters in residential areas. Unfortunately, BS905 Part 2 currently stipulates immunity limits to be carried out only on signals between 26-30MHz, though it is to be hoped that a set which shows good immunity to such signals will be reasonably immune to signals on other frequencies (though not necessarily for 144MHz and above). A real
PHILIPS

Fluke 0206B £172
- 3½ digit, LCD, eight functions include
 - 1200V, true RMS, D.C. accuracy 1%,
 - auto ranging, 2000 counts, polarity indication.
 - 50 nS, 100 mS, 20Vpp output.

Fluke 5600 £19
- 40 measuring ranges, sensitivity 200µV/D.C.
 - 10cm square, 20Vpp output, 100 counts.

Fluke 0202 £135
- 3½ digit, LCD, seven functions include
 - diode test, 3A DC, auto and manual ranging,
 - accuracy 0.5%, 2000 counts.

Fluke 0202B £172
- 3½ digit, LCD, eight functions include
 - diode test, 3A DC, auto ranging.
 - accuracy 0.5%, 2000 counts.

Fluke 77 £110
- 3½ digit, LCD with analogue bar graph
 - auto ranging, DC accuracy 0.5%,
 - touch and hold facility, supplied with carrying holster.

Thandar TG 101 £110
- Function generator 0.2Hz to 200kHz, sine, square, triangle, variable DC offset.
 - TTL output, 3MHz input, 10V output into variable 500ohms.

Thandar TG 102 £160
- Function generator 0.2Hz to 2MHz, sine, square, triangle, TTL output, variable DC offset,
 - external sweep, 20Vpp output into variable 500ohms.

Thandar TG 105 £295
- Function generator 0.2Hz to 5MHz, 10V,
 - amplitude adjustable, 1V, 10V, 100V, 200V, 1000V,
 - frequency range 1Hz to 50MHz.

Thandar TG 501 £295
- Function generator 0.2Hz to 5MHz, sine,
 - square, triangle, TTL output, variable DC offset,
 - external sweep, 20Vpp output into variable 500ohms.

BENCHMARK & HANDHELD DMMs

Hameg HM 203-5 £270
- 20MHz, dual trace, add and invert, maximum sensitivity 20mV,
 - automatic ranging, 2000 counts,
 - touch and hold facility, 10MHz battery powered portable,
 - brightness and sensitivity adjustable,
 - battery consumption 1V, 10mA, display frame and frame triggering.

Thandar SC 110 £175
- 10MHz, battery powered portable, brightness adjustable,
 - battery consumption 1V, 10mA, display frame and frame triggering.

PHILIPS

Philips PM 2519/01 £298
- 4½ digit, LCD with analogue bar graph,
 - auto and manual ranging, 2000 counts,
 - 1MHz, true RMS, D.B. relative reference.

Philips PM 2519X/11 £199
- 4½ digit, LCD with electrometer, sample and hold, manual and automatic ranging,
 - true RMS, D.B. relative reference.

Fluke 8010B £843
- 3½ digit, LCD, 10A current range, seven functions include
 - current, input overload, true RMS,
 - D.C. accuracy 0.1% 6010A AC-DC battery voltage range 799.

Fluke 8010A £306
- 4½ digit, LCD, ten functions include
 - current, input overload, true RMS,
 - D.C. accuracy 0.05% 6010A AC-DC battery voltage range 799.

Fluke 62 £195
- 3½ digit, LCD, seven functions include
 - diode test, 3A DC, polarity indication,
 - touch and hold facility, 500 counts.

Thandar TM 355 £85
- 3½ digit, 0.5's brightness, LED, 25 ranges of measurement, DC accuracy 0.25%,
 - 10cm square, 20Vpp output, 100 counts.

PHILIPS

Philips PM 2505 £165
- 65 measuring ranges, 100M input impedance,
 - linear resistance ranges, D.C. accuracy 0.05%,
 - 10cm square, overload protection.

I.C.E. 6800 £25
- 40 measuring ranges, sensitivity 200µV/D.C.
 - 10cm square, 20Vpp output, 100 counts.

I.C.E. 6801 £19
- 40 measuring ranges, sensitivity 200µV/D.C.
 - 10cm square, 20Vpp output, 100 counts.

MISCELLANEOUS PRODUCTS

Thandar CM 358 £89
- Thandar digital multimeter.
 - 5½ digit LCD, 1-200V, 1mA, 1A,
 - 0.0001% accuracy, 200A,
 - 500V, 100mA, 10A.

Thandar CM 359 £80
- Thandar digital multimeter.
 - 5½ digit LCD, 1-200V, 1mA, 1A,
 - 0.0001% accuracy, 200A,
 - 500V, 100mA, 10A.

TECHNOSCOPE

Technoscope £70
- Compact scope-probe for use with DMMs or frequency counters.
 - 200MHz, 100MHz, 50MHz, 20MHz.

LINE CONDITIONERS

Claude Lyons LVC 65 £186
- 100V, 100mA, line voltage conditioner.
 - unfiltered input/output, 15A, 150W,
 - 1-10A, 0.1% regulation.

EPROM PROGRAMMERS

EPROM programmers £E47
- EPROM eraser, variable voltage,
 - fast programming, 1-10A, 150W.

THURBYL

Thurby PL 320 £155
- 4½ digit, LCD, 1-200V, 1mA, 1A,
 - 0.0001% accuracy, 100A,
 - 500V, 100mA, 10A.

Thurby PL 310 £125
- 4½ digit, LCD, 1-200V, 1mA, 1A,
 - 0.0001% accuracy, 100A,
 - 500V, 100mA, 10A.

WARRANTY

Thurby offers a 1 year warranty on all items.

Visitors are welcome to our showrooms where all products are on display and demonstration. For customers wishing to order by phone, we offer a 24 hour answering service. All products are subject to VAT and are priced plus VAT. No carriage charges apply to extra items unless otherwise stated. A copy of our trading conditions is available on request.

Electronic Brokers Ltd
140-146 Camden Street London NW1 9PB
Telephone 01-267 7070 Telex 298694
problem, however, will continue to exist in the case of wideband r.f. amplifiers that are fitted to devices intended for use in countries with both v.h.f. and u.h.f. television and particularly susceptible to strong local amateur signals on 70, 144 and 430MHz or broadcast signals on 95MHz. The real loss both to amateurs and broadcasters is that of the diplomacy of the RIS teams in settling fairly the disputes and social problems that arise. While the new booklet does emphasise that it is usually the receiving installation that is at fault it is often virtually impossible for an amateur or c.b. operator to convince an irate neighbour that this is the case. It could prove an expensive business for a viewer to call in a dealer to trace and cure some of the most practicable interference problems, and pressure will be put on the amateurs and c.b. operators to close down.

C4I — Costly CCCI

The Americans, over the past two decades, have spent billions of dollars on strategic command, control, communications and information (C4I) systems designed to provide instant and secure access to military commanders throughout the world. Yet today, it is increasingly recognized that many of the projects have turned sour primarily because of the pursuit of ideal rather than practical systems. The crucial world-wide military command and control system (WWMCS) comprises more than 60 different communications systems linking 27 command centres under the control of 20 million lines of Cobol software and 35 ageing Honeywell Series 6000 computers. American journals suggest that the system suffers extensively from down-time and has failed badly on several occasions, including the putting out of a nuclear alert alert when a game program got into the main Colarado nuclear warning centre, and a record of dismal failures during real crises in the 1960s and 1970s. Currently three main up-grading projects are underway for WWMCS, for the slightly less ambitious "minimum essential emergency communications network" and for the new "Milstar" network which is intended to be proof against nuclear electromagnetic pulses (NEMP) and on which the US is spending some $400-million per year. Even EMP-protection however will not necessarily prevent disruption of communications over an extended period in the event of a nuclear attack or the use of anti-satellite weaponry.

Amateur Radio

SSB on 10.1MHz?

As a morse enthusiast initially, I welcomed the idea of keeping the narrow 10.1 to 10.15MHz band free not only of contest operation but also of s.s.b. This form of bandplanning to which the RSGB became committed at an early stage, was later endorsed by the IARU Region 1 Bureau but depends on voluntary restraint as, at least in Europe, it is not written into the licence regulations. There has, however, always been a valid case for using a small segment of this band, which has interesting "chordal hop" propagation along the twilight "grey-line" paths as a result of ionospheric tilts as the F1 and F2 layers combine at dawn and dusk. The belief that c.w./r.f.t.y. operation with its high average power duty cycle causes less interference to commercial point-to-point communications is hardly a tenable theory. The s.s.b. enthusiasts claim that telephony, with good operating discipline, enables experimental data to be obtained rapidly. It is also the case that the absence of a.s.s.b. operators to keep amateur activity on the band low.

There are signs that the IARU restriction is breaking down in several countries, including the UK — although the s.s.b. operators are subject to abuse. Is it not time that this subject should be reconsidered with a view to providing an s.s.b. segment? The alternative may prove to be a loss of confidence in the concept of "voluntary" band plans drawn up by largely self-perpetuating committees. Voluntary band-planning is too valuable an asset to be lost, yet is an area where manifestly it must be seen to be fair to all.

RAE attacked

Richard Harris, G3ZWH, head of physics at Harrogate College, has delivered a strong attack on the Radio Amateurs' Examination run by City & Guilds of London Institute. He complains in particular of the refusal of CGLI to allow actual examination papers to be published or even taken out of the examination room and the unsuitability of many of the questions which often concentrate on basic theory rather than the principles and practice of amateur radio. He suggests that the RAE should recognize that fewer candidates have prior experience as shortwave listeners and need to be encouraged to learn more about the practical aspects of two-way radio communication. He objects to the absence of a fixed "pass mark" and strongly believes that "the present situation must not be allowed to continue" — reflecting comments that have been made over several years in E&W.

In brief

Good two-way voice contacts were made from the UK with Dr Tony England, WOORE on board the August Challenger space-shuttle flight. It has also been claimed that the RSGB headquarters station at Futers Bar was the first amateur station in Europe to receive live frames of slow-scan television pictures from the shuttle.

October 27 marks the 50th anniversary of the day in 1935 when Neil Corry, G2YL made radio history by working all six continents on 28MHz in a single day. Transatlantic contacts on this band had been made in 1928-29 but the declining sun-spot cycle then resulted in several years when virtually no long-distance stations were contacted, until sun-spot activity began to increase again. At 9 a.m. she contacted VU2LJ, Assam; 10.30 a.m. VK4BB Queensland, Australia; 11 a.m. CX1CG Uruguay; followed by Europe, Africa and the USA all before 3.30 p.m.

Less than half of American "novice" licence holders renew or upgrade their licences and many never reach the stage of coming on air. It is uncertain whether this is due to the cost of equipment, restriction to morse only, or the crowded state of the novice segments of h.f. bands. American amateurs holding higher grades of licence are being urged to do more to provide encouragement and guidance to the "novices".

An RSGB "National HF Convention" is being held on Sunday, September 29 at the Belfry Hotel, Milton Common, Oxford with a crowded programme of lectures, demonstrations, talk-in stations, "car boot sale" etc. It will also be possible to take, by prior appointment, the official morse test... RSGB president for 1986 is to be W.J. McClintock, G3VPK... Welsh Amateur Radio Convention is on October 6 at Oakdale Community Centre, Blackwood, Gwent... The second Yeovil QRP (Low Power) convention is on October 13 at The Preston Centre, Monks Dale, Yeovil... A large number of RAE courses began in September at adult education centres.

The Radio Amateur Old Timers Association (RAOTA) and the Dutch Old Timers Club are holding activity mornings (0830 to 1130 GMT) on October 6 and 7 on 3.5 and 7MHz (initial contacts on 3600kHz).... The worldwide Jambojambo-in-the-Air takes place on October 19 and 20... The Royal Navy Amateur Radio Society celebrates its 25th anniversary and will operate GB4KRN throughout October from Tonbridge, Kent... The RSGB Midlands VHF Convention is at Madeley Court, Centre, Telford, on October 12... In a letter to The Lancet, J. Seager of the Arrow Park Hospital, Upton, Wirral has commented on the long-term risks that have been linked with non-ionizing electromagnetic radiation in such occupational groups as electronic assemblers, television repairmen and radio amateurs. He points to the need for more precise analysis of the apparent risk factors and their relation to the fluxes and tin/lead alloy used in soldering or the fumes given off during soldering by the overheating of synthetic materials.

PAT HAWKER, G3VA

www.americanradiohistory.com
BBC Micro Computer System
BBC Computer & Econet Reference Centre

BCOS Computers:
Model B: £299 (a) B+DFS: £346 (a)
Model B+Econet: £335 (a) B+Econet+DFS: £399 (a)
BBC B Plus (available from stock): £409 (a)

ACORN 2nd Processors: £650: £175 (a) Z80: £348 (a)
TORCH ORCHID: Z80 Card: £299 (a) Z80 Disc Pack: £560 (a)
TORCH Graduate G800/2 £689 (a)
20 Mbyte Hard Disc+400 Floppy: £1950 (a)

We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS
EPSON: RX80T+£210 (a); RX100+£345 (a); FX80+£315 (a); FX100+£430 (a); LX80 Full Colour Printer £499 (a)
EPSON LX80 £219 (a); Optional Tractor Feed £20 (c)
KAGA TAXAN: KP10 £235 (a); KP18 £339 (a)
BROTHER: HR15 £310 (a); Juki 6100 £299 (a); BUFFALO 32K Buffer for Epson Printers £75

ACCESSORIES
EPSON: FX800 plus sheet feeder £129(b)
Paper Roll Holder £17(d); FX80 Tractor Attachment £37(c); Interfaces: B143 RS232C (£29(b)); B148 RS232 (£37(c)); B132 Apple II £60(c); £165 EEE + Cable £65(c)
Serial & Parallel Interfaces with larger buffers available.
Ribbons: RX100/40X £5.00(d); RX10/MX £10.00(d); LX100 £6(d)
FX80 Dustcover £4.50(d); LX80 Tractor Unit £26(e); Spare pens for H80 £7.50(set(d))
KAGA TAXAN: RS232 Interface £56(e); Spare Dasy Wheel £14(d); Ribbon £2.50(d); Sheet Feeder £18(a); Tractor Feed Attachment £19(e)
BROTHER HR15: Sheet Feeder £169(a); Ribbons Carbon or Nylon £4.50(d)
Tractor Feed £99(a)

Printers and Printers Lead: Parallel: £41(d); Serial £7(d)
Print Lead can be supplied to any other length.
Printers Add-on £4.50; WX15 £10.50; WX15 £16.50

MIRACLE WS2000:
The ultimate world standard RT appoved monitor covering all common BELL and CCITT standards up to 1200 baud Allows communication with virtually any computer system in the world. The optional AUTO Dial and AUTO Answer boards enhance the considerable facilities already provided on the machine, including £129 (a) (Auto Dial Board) and £199 (a) (Auto Answer Board)

SOFTY II
This low cost intelligent eprom programmer can be used with any microcomputer, IBM PC or compatible. It can be used by anyone interested in the new fast developing field of microcomputer programming.
Inexpensive but powerful.

ATTENTION
In this case the £95.00 is the cost of the cable, the software is free.

ACORN IEE INTERFACE
A full complement of the IEE, 488 standard, providing computer control of compatible scientific & technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interface can support a network of up to 24 compatible devices, and would typically link several items of test equipment allowing them to work with the optimum of efficiency. The IEE File System ROM is supplied £282.

INDUSTRIAL PROGRAMMER EP8000:
This powerful tool for both eprom programming and development work. EP8000 can emulate and program all eproms, up to BVK40 bytes, can be used as stand alone unit for editing and downloading EPROMS, as a slave programmer or as an eprom emulator £695(a)

DIL HEADERS:
Solder 10p 16 pin 50p 20 pin 100p 24 way 200p 28 way 300p
Parallel 60p 24 way 300p 28 way 360p

TECHNOLINE VIEWDATA SYSTEM: TEL: 01-450 9764

01-208 1177 TECHNOMAT LTD 01-208 1177

DISC DRIVES

TECHNOMAT drives are fitted with high quality simime Microwave mechanisms and are available with or without integral mains power supply. The dual drive power supplies are switch mode type and are generally rated. All drives with integral power supply are fitted with a mains indicator.
All drives are supplied with the all required cables, manual and a formatting disc. All drives are capable of operating in either single or double density and can be connected to any computer.

Single Drives:
1 x 40K 80/120/160 £125 (b)
1 x 40K 80/120/160 £125 (b)
4 x 40K 80/120/160 £125 (b)

Dual Drives: (with integral power)
Standard Version:
2 x 40K 80/120/160 £215(a)
2 x 40K 80/120/160 £215(a)

Note: All drives can supply drives with Shugart mechanisms at considerably lower prices. Please phone for details.

3.5" Drives: £135 1 x 40K 80/120/160 £395(a)
£225 2 x 40K 80/120/160 £795(a)

The mechanisms are both track double sided and are capable of both single and double density operation.

EDGECONECTORS

3M FLOPPY DISCS

Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10
10 Track SS DD £13 (a) 40 Track DD £22 (c)
8 Track SS DD £12 (a) 20 Track DD £24 (c)

FLOPPICLONE DRIVE HEAD CLEANING KIT
FLOPPICLONE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. £15.00 (b)

MONITORS

MICROVITEC 14.2h x 20.9g: £210
14" 2431 (a) 1431 2931 £210 (a)
14" LCD-140 £225 (a)
20" LCD-200 £425 (a)

FLOPPICLONE DRIVE HEAD CLEANING KIT
FLOPPICLONE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. £15.00 (b)

DRIVE ACCESSORIES

Single Disc Cable £6 (d)
10 Disc Library Case £1.80 (d)
30 Disc Storage Box £6 (c)
100 Disc Lockable £14 (c)

MURMURER CS 12/18 14in: £235 (a) New Vision II plus £260 (a)
Sanyo TD-3215 £450 (a)
Sanyo TD-3215 £450 (a)
Sanyo TD-3215 £450 (a)

3M PRINTER BUFFER

This printer buffer/tear provides a simple way to upgrade a multiple computer system by providing greater utilisation of available resources. The buffer offers a storage of 56K. Data from three computers can be teared from the printer and switched automatically. The printer can be attached directly to any computer or computer system, or can be used with a buffer switcher. The buffer switcher allows the user to switch between tasks as seen on the computer.

3M TECHNOLOGY Neo-Angle II, entry-level network interface card (NIC). Provides expandable, Plug and Play capabilities under Windows NT 3.51. A low-cost, high-performance Ethernet adapter, the Neo-Angle II provides a simple, cost-effective way to connect 32-bit Windows NT workstations to a 10BASE-T network. The Neo-Angle II supports full duplex, collision detection, and 10Mbps operation.

3M TECHNOLOGY Neo-Angle II, entry-level network interface card (NIC). Provides expandable, Plug and Play capabilities under Windows NT 3.51. A low-cost, high-performance Ethernet adapter, the Neo-Angle II provides a simple, cost-effective way to connect 32-bit Windows NT workstations to a 10BASE-T network. The Neo-Angle II supports full duplex, collision detection, and 10Mbps operation.

3M TECHNOLOGY Neo-Angle II, entry-level network interface card (NIC). Provides expandable, Plug and Play capabilities under Windows NT 3.51. A low-cost, high-performance Ethernet adapter, the Neo-Angle II provides a simple, cost-effective way to connect 32-bit Windows NT workstations to a 10BASE-T network. The Neo-Angle II supports full duplex, collision detection, and 10Mbps operation.
Please note all prices are subject to change without notice.

Only current prime grade components stacked.

We also stock a wide range of Transistors, Diodes, Triacs Plastic, Bridge Rectifiers, Thyristors and Zeners.

Please phone for details.

TECHNOMATIC LTD
MAIL ORDERS TO: 17 BURNLEY ROAD, LONDON NW10 IED
SHOPS AT: 17 BURNLEY ROAD, LONDON NW10
175 EDGEWARE ROAD, LONDON W2

CIRCLE 51 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
Television at Montreux

Satellite dishes are now as much a part of broadcasting as studio cameras and TV transmitters.

Satellite broadcasting, high-definition and the future of terrestrial television discussed at biennial symposium

This year's Montreux TV Symposium, the 14th in the series, brought together over 200 exhibitors from 16 countries. There was an international programme of 67 papers covering both TV broadcast and c.a.tv topics. On the transmission side, d.b.s. and h.d.tv were front-line topics.

Chinese DBS

China Broadcast Satellite Corporation president, Mr Hsu Chung-ming, outlined the necessity for establishing d.b.s. as the key to the realization of national TV and radio coverage for the whole of China. He announced that some important technical decisions for China's new satellite TV services had been taken.

China plans to have two co-located satellites in orbit operating in Ku-band. Reasons given for the selection of Ku-band (11-14GHz) as opposed to C-band (4-6GHz) included the protection of microwave links, the eventual requirement for provincial beams, and C-band orbit congestion, which, with two-degree orbital spacing limits the use of small receiving antennas.

East satellite will have "5-for-2" transponder redundancy. The transponder power will be 230-250W at the orbital position of 92 degrees East, which is one of the three (62°E, 80°E and 92°E) WARC-77 positions allocated to China. The earliest eclipse time at this position is at 01.09 Beijing Time: TV transmissions will not take place because of the power requirements of the transponders.

One satellite will act as a spare, but it will operate on a different pair of channels to the main, so that in-orbit testing of the spare can be made without interfering with the main satellite. If necessary, all four channels could be switched on at the same time.

China's current terrestrial TV transmission network consists of 455 main transmitter stations and over 9,000 repeaters with powers below 1kW. The present network covers just 64.7% of the 1 billion population. DBS is the key to providing high-quality radio and TV services for the whole population of China.

A single beam will cover the whole of China, and the proposed beam-shaping will permit densely populated areas to use 1.5m dishes for 'grade 4' community reception, or about 1.0m dishes for 'grade 3.5' individual reception. Under clear sky conditions, a 0.75m dish is expected to provide 'grade 3.5' performance in these areas. In the sparsely populated areas of Northwestern China, 2m dishes will be used for community reception.

PAL will be used for terrestrial TV transmission. Since studio equipment and retransmission equipment in China already use PAL, according to Hsu Chung-ming, there is no significant reason to go for a MAC transmission system through China's d.b.s. satellite.

Terrestrial retransmission stations will take the signal from the satellite receiver and retransmit it over the local area. China's d.b.s. satellite will thus be used as a direct feed for a large number of re-transmission transmitters. TV coverage will be provided for remote mountainous regions which could not be economically serviced by a terrestrial transmitter network alone.

Arabsat

In a supporting paper, Mr Shaweesh from Jordan outlined the speed with which developments have taken place in the field of satellite communications during the past 20 years, with particular emphasis on the emergence of regional satellite systems such as the European ECS and Arabsat.

The Arabsat project dates back to a meeting of Arab Ministers of Information in Tunisia in 1967, when it was decided to initiate a study for developing communications in the Arab world including the development and interchange of TV and radio broadcasting services.

Mr Shaweesh explained that Arabsat offered the only facility for real-time broadcast coverage of major events in the Arab world. Arabsat is seen as an important broadcast tool both for use within the Arabsat world as well as for the exchange of material with the non-Arab world.

Shaweesh touched on the problems of d.b.s. and how technological advances since 1977 had outdated the provisions of WARC-77. In particular, improvements in satellite receiver front end performance have meant that d.b.s. can be achieved with lower transmitted power from the satellite for a given antenna size or alternatively that smaller receiver antenna dishes become practical for a given radiated power. Mr Shaweesh concluded that "we are in a period of extraordinary change in a field that was considered settled in 1977."
Terrestrial tv lives on

Even though there is much heated discussion around satellites and how they are going to revolutionise tv transmission, terrestrial tv transmitters are likely to remain the major carriers for much of the world well into the next century.

Rudi Gressmann, EBU, in a lecture on the history of the development of terrestrial tv transmission in Europe, told delegates that within the EBU area there are currently some 9,000 transmitters and repeaters in v.h.f. Bands I and III and over 20,000 in u.h.f. Bands IV/V.

Gressmann questioned whether the present plan, as based on the Stockholm conferences of 1982 (v.h.f.) and 1981 (u.h.f.), provided the optimum use of the frequency spectrum.

The first problem that the European tv frequency plan comes up against is the one of multiple channel bandwidths. In 1961 there were no less than four separate channel bandwidths in operation in the v.h.f. tv bands. The UK's 405 line b/w services used 5MHz channels, whereas the French 819 line system used 14MHz channels. There were also the 7 and 8MHz channel bandwidths of the 625 line services. Since then the 5 and 14MHz channel services have been closed down, but even today there is still disparity between 7 and 8MHz channel bandwidths at v.h.f. Carrier frequencies (sound and vision) at v.h.f. are different all across Europe.

At u.h.f., even though there is a uniform channel spacing of 8MHz, there are differences in the sound–vision carrier spacing (5.5, 6.0 or 6.5MHz), which add to pan-European spectral discord.

There is little spectral harmony of tv transmitters within Europe. Gressmann reminded delegates that the OIRT countries of Eastern Europe still use much of Band II for tv transmissions rather than f.m. as is the case in Western Europe.

The average viewing choice provided by terrestrial tv broadcasting is approximately one programme per location on v.h.f. and about two or three on u.h.f. Although one major exception to this is the UK, where there are now no longer programmes at v.h.f. but where there are (in most places) four programme channels at u.h.f.

The programme carrying capacity of the terrestrial tv transmitter network in Europe is not likely to increase above the present numbers. There are already pressures from powerful mobile radio ladies to take over more frequencies from broadcasters. The shared usage of Band III between tv broadcasters and land mobile radio users (e.g. the UK and France) for the sharing of a common frequency band by different services (i.m.r. and tv) precludes any hope of standardised terrestrial tv transmission system across Europe on v.h.f.

Gressmann, if it keeps pace with modern technology, “This is only possible through standardization and harmonization”.

John Curley, RET, told delegates that agreements that had recently been reached in some countries between broadcasters and land mobile radio users (e.g. the UK and France) for the sharing of a common frequency band by different services (i.m.r. and tv) precludes any hope of standardised terrestrial tv transmission system across Europe on v.h.f.

Robson advocated that the opportunity for a true worldwide standard would come with the next generation of systems and not the present.

The next generation of tv standards would be digital and free from the present constraints of 50/60Hz compatibility. Such a standard could then be the standard for the next fifty years or so.

Robson said that today’s talk of a standard was not a real world standard. Robson’s opening remarks were later to be fiercely contested by several speakers.

Joe Flaherty, CBS, said that the weakness on Robson’s argument was his belief that broadcasters have the power to control the living rooms of the future. “But, this is not true!”

In direct reply to Robson’s argument that a home display unit suitable for h.d.tv would not be available for 20 years, Mr Sugimoto, NHK, said that a large flat screen display suitable for h.d.tv with a target price of $2,000 would be on show at the next Montreux in two years.

Prof Messerschmid of the German radio and tv research institute (IRT) strongly disagreed with Robson’s opening remarks: “Broadcasters cannot just sit back for 20 years”.

Henry Yushkavitshus, USSR, threw into the discussion the comment that the USSR was looking at a possible system using 50Hz in the studio and 75Hz field rates for transmission.

There is no disagreement that the world does need an h.d.tv studio production standard, but the question is when. The problem with choosing an h.d.tv production standard too early is that even though individual parameters (numbers of lines, field rates, interlacing and aspect ratios) have been discussed, only one fully operational standard has been proposed. The NHK proposed standard being based on 60Hz presents a conversion problem for the large number of countries using 50Hz.

The Montreux h.d.tv debate highlighted the amount of basic disagreement that still exists in this area.
Keithley's 130A & 136.

Ready and willing to give you the accuracy and flexibility you've come to expect from all handheld DMM's.

On the one hand, the new 133A has the design and performance of our most popular 150 model but with greater basic DVC accuracy—0.25% and the need to calibrate only once every two years—all this at no increase in price.

On the other, there is the new unbeatable value 136, a high performance full autoranging 11/2 digit DMM permitting precise measurements in 22 ranges of AC/DC voltage, resistance AC/DC current including 10A capability.

If you could use an extra pair of hands, or would just like to find out about our complete range of DMM's—phone 0734 861287 or contact a Keithley distributor now. Prices start at $69.00.

KEITHLEY

Berkshire (0734) 861287 Essex (0276) 29262 Glamorgan (0633) 280566 Herefordshire (0001) 984147

Contact: EG & G RETICON
34/35 Market Place, Wokingham, Berks RG11 2PP. Telephone: 0734 788666. Telex: 847510 EGGUK.
A PC/XT COMPATIBLE THAT WON’T GO BY THE BOARD

OUR COSTAR 2000 fully IBM PC/XT compatible single board computer and peripherals is most advanced highly integrated and cost efficient system available.

ADVANCED DESIGN
The CS-2000 Mother Board is a highly integrated state of the art design, with a unique software controlled dual processor speed system. Enabling all PC software to be run uninterrupted at high processing speeds.

When used with the CS-2000 Multi Function Card, you get a very advanced, compact system, with all the facilities of a fully expanded PC/XT.

COSTARS rationalisation of board numbers has resulted in cost saving, reliability and reduced installation time benefits.

CS 2000 PLUS. A complete IBM PC/XT compatible computer in a kit. Requiring only a slotted screw driver and 1-2 hours to assemble and run. Price and compare our system with others and you will find most other systems’ options are standard on ours.

COSTAR 2000
STANDARD FEATURES
• 8088 — CPU, 7MHz 4.77MHz Software Toggle control
• 8087 Co-processor optional
• 8K custom BIOS in ROM
• 6 EPROM SOCKETS
• 8 expansion SLOTS
• Hardware Reset
• PC/XT Form, Fit & Functions
• 256K RAM, 640K max

NO RISK TRIAL OFFER
If, after purchasing one of our boards, you are not satisfied, we will refund your money (minus post and packing), provided the board is returned, intact, within 15 days of shipment.

TO ORDER
Please include your remittance with your order. Access, Visa and Amex welcome. Credit Card purchases may be telephoned. Dealer and O.E.M. enquiries welcome.

18 MONTH WARRANTY
Our stringent production quality controls and the high reliability of our boards, has enabled us to give an 18 month warranty, and a 6 month exchange program for defective units.

MULTI FUNCTION 2000
STANDARD FEATURES
• Floppy Disk Controller
• Real Time Clock, with battery backup
• Dual Serial Port, one optional
• CENTRONICS parallel printer port
• RAMDISK
• Printer SPOOL

CO-STAR LIMITED
321 Bridgegate House, IRVINE, Ayrshire, KA12 8BD
Tel: 0294 76252
Easy Link No. — 9289001
CIRCLE 29 FOR FURTHER DETAILS.
ELECTROMAGNETIC PARADOX

Whereas relativity provides a wealth of paradoxical issues that have from time to time engaged your readers’ interest, there is a seldom-discussed paradox of more direct significance to anyone concerned about the electromagnetic field.

Maxwell’s equations demand that, when waves propagate through the vacuum, magnetic fields are set up which imply that there is an oscillatory electric displacement in free space. Yet, it is well established that electric displacement produced by the motion of an isolated electron in no way moderates the primary magnetic action of the electron in the immediate locality of the electron. Rossner, for example, writing at p.285 of his 1968 book ‘Classical Electromagnetism via Relativity’ published by Butterworths, has endorsed Fitzgerald’s opinion that displacement currents in the field between the plates of an excited capacitor do not produce a magnetic field. This is consistent with the experimental finding by Graham and Lahoz (Nature, 285, 154 (1980)) that, when an externally applied magnetic field acts on the displacement current and a return conductor current set in parallel, the net force acting on the apparatus is that applicable to the conductor current. Since displacement current does not produce a magnetic field it cannot respond in setting up a force when subject to a magnetic field.

Surely, it is paradoxical that waves only propagate because displacement current in the field sets up magnetic fields but yet we know that in our bench experiments the displacement currents do not set up magnetic fields. I wonder if your readers can provide the answer to this problem.

Pending a better proposal, my suggestion is that the paradox can be put in context by noting that for any local reaction there has to be a local reaction and this applies whether we look at apparatus on our laboratory bench or at a region of remote space. In the bench experiment the primary motion of electrons in the current circuit produces a magnetic field and the reaction is merely the manifestation of this field. Local displacement currents are an embodiment of this reaction and so can hardly set up their own magnetic fields as well. In the free space situation, with the propagating wave, there has to be something locally in space that has an active field-producing role and something that has a reactive and secondary role. Thus, just as we argue that there is a displacement current between the plates of an excited capacitor, we must argue that in free space there are two ‘somethings’, only one of which is the reactive displacement. Both must be capable of relative motion with respect to the applicable frame of reference, the inertial frame or electromagnetic reference frame. Hence, our understanding of wave propagation is incomplete unless it caters for the physical existence of two displacements.

This argument lends support to the views expressed in my article in Wireless World (October 1982, p.37) where I argued that the ability of the vacuum to propagate electromagnetic waves without dispersion was direct evidence of dual or reciprocal displacement characteristic. Since writing that article, a further advance has shown that the progressive attenuation of one displacement in relation to the other can cause a wave to lose frequency slowly in transit and Hubble’s constant has been deduced theoretically (Lett. Nuovo Cimento, 41, 252 (1984)).

H. Aspen
Department of Electrical Engineering
The University
Southampton

RELATIVELY INTERESTING

In the July 1985 issue, H. Morgan suggests that Wireless World “stem the flow of letters and articles on [Einsteinian] relativity.”

But who then would publish the fierce debate between Einsteinian relativity and Newtonian-Galilean relativity? Several years ago, WW published an important article by Louis Essen, the great English acientist who designed and built the first caesium clock. Essen showed that Einsteinian relativity cannot be squared with the facts of nature. Who else would have published his critique? I do not know of another journal in all the world that allows criticism of Einstein’s paradoxical—indeed, anomalous—beliefs.

The late Herbert Dingle, professor in the University of London, wrote a whole book, Science at the Crossroads, on his own experience with suppression, and attempted suppression, of the debate. For the editors of WW, a fervent “Bravo!”

Lee Cee
Berkeley
California
USA

I have followed the articles and letters on relativity and the rest of the “modern physics” circus since the article by Essen in October 1978, which so impressed me that I started buying Wireless World instead of reading it in the library.

I would like to see more of the subjects which bore H. Morgan (Letters, July). You ask who is competent to decide who is right. I ask where else we can read open debate on these matters if you go back to being just another electronics magazine, printing inoffensive S-level “physics for electronics engineers” — in New Scientist?

If I was a professional physicist, I think I would be ashamed to admit it to a lay person whose idea of what I did might well have been formed from television programmes full of starry-eyed academics quoting from T.S. Elliot, and a background of loud, jarring music. Why do all the worst BBC science programmes have this? Is it to drown out the words? I might have claimed to be a physicist and hoped to be taken for a tough behaviourist. Of course, the truth always comes out eventually. Where are the reputations of Freud, Cyril Burt and Lysenko now? Remember, all founded powerful, seemingly unchallengeable orthodoxies. Humphry Dumpty and a great fall...

Roderick Saunders
Birmingham

ENERGY TRANSFER

I fear it is not I that have misunderstood Ivor Catt (July Letters), rather the reverse.

In my June letter I pointed out that superposition of forces could not be expected to succeed when the forces in question were quadratic functions of current or voltage. I then proceeded to illustrate this claim by reference to a simple situation in electrostatics, and concluded with a derivation of the magnetic force from Special Relativity.

I fear these last two points detracted from my argument, and confused Mr Catt.

Mr Catt is upset that I choose to overturn his arguments (concerning forces between conductors guiding t.em waves) by discussing static currents and voltages, while he allows himself the privilege of building his arguments by reference to these same static forces. However, I would assert that there is no difference between the static case (with suitably chosen values of current and voltage), and the momentarily quiescent state in the middle of a broad pulse. If Mr Catt thinks that there is a difference then he cannot use the static case to prove that the force between conductors carrying a pulse is zero.

N.C. Hawkes
Abingdon
Oxfordshire

I wonder if some of the conceptual difficulties with the transmission line stems from the assumption — and it is an assumption — that power density in an em wave is measured by Poynting’s vector? (Do I hear cries of dissent? But who remembers what Poynting’s theorem actually says?) In fact there are any number of vectors that would be equally valid.

One such is Slepian’s. $S = E \times H + curl(VH)$ where V is the electric potential. Poynting’s vector tells us that the power flows through the space surrounding the waves, i.e. is carried by the em wave. Slepian’s vector, on the other hand, tells us that all the power flows through the wires! It seems that either view...
is “true, but not exhaustive” (Churchill’s phrase).

As an engineer I welcome this. It means that I can adopt either point of view, whichever is more convenient for the problem in hand.

Interested readers should consult “The Electromagnetic Field in its Engineering Aspects” by G.W. Carter (Longmans, 1954) Professor Carter devotes the whole of Chapter 13 to the flow of energy in an electromagnetic field.

P. L. Taylor
Marple
Cheshire

OPICAL COMMUNICATIONS

Having read the most interesting article in the August 1985 issue of *Electronics and Wireless World* entitled “Optical Communications — 1935 style”, your readers may be interested to know that there are a number of these optical systems on public display, still looking as good as the day that they were made.

Two locations with which I am familiar are the German Occupation section of the main museum within Castle Cornet on the island of Guernsey, and the excellent German Occupation Museum run by Richard Haume, also on the island of Guernsey, at Forest near the airport.

If any readers are proposing to take their holidays on this most delightful of islands, a trip to these two museums, and in particular the latter, will be well worth while, and will afford the opportunity to study many other examples of contemporary German technology.

Alan G. Hobbs, G8GOJ
South Croydon
Surrey

RELATIVITY

P. H. Spratt uses the word ‘pretext’ in the first sentence of his August letter. This word is defined in my dictionary as ‘a false explanation or motive to disguise the true one.’ I assume Spratt has some experimental evidence to prove I am a liar

and a cheat. As a letter unanswered might be thought to be unanswerable, Spratt leaves me with no alternative but to reply. Before I do reply in some detail to his letter, would he please explain his evidence in very ordinary words even I can understand as soon as possible. This letter is an ultimatum.

I merely quoted measurements quoted by Eastwood who acknowledged the work of other scientists. Does Spratt realise he has libelled Eastwood and other scientists? He ought to look before he leaps.

M.G. Wellard
Kenley
Surrey

VALVE DISC PREAMPLIFIER

Mr Brice’s valve disc preamplifier (EWW, June 65) is an interesting approach to a familiar design exercise, and I am with him in sentiment in his liking for valves for sound reproduction. However, I would take issue with him on two points:

Firstly, the RC coupling between the cascode stage and the next (cathode-follower) stage: Mr Brice’s footnote on the circuit diagram states that the 10n capacitor and the 1M grid resistor puts the response at 20Hz down by 3dB. This would be a fair statement if the cathode-follower input impedance was in fact the same, or nearly the same, as the resistor value. However the conventional wisdom of valve electronics is that the input impedance of a cathode follower is about 10 times the value of the grid resistor.

The mechanism is akin to that which raises the input impedance of a boot-strapped emitter follower in the world of solid state.

Assuming, then, that the input impedance of the stage under discussion is 10M, the response at 20Hz will be about 0.03dB. To achieve a -3dB figure at 20Hz a capacitance of about 800pF would seem to be required.

Secondly, the coupling capacitor (1µF between the volume-control slider and the grid of the output stage: this is a cathode-follower identical to the first one, with presumably the same input impedance. A 1µF capacitance coupled to 10M, or even to 1M, looks a little like overcooking the bottom end response. And surely, (a minor quibble, this) the polarity of the capacitor, as drawn, is incorrect.

Finally, may I suggest a small but worthwhile refinement? If the preamplifier, in a warmed-up condition, is suddenly connected to the input of a solid-state main amplifier (as when the selector switch is turned from say, ‘tuner’ to ‘disc’) the output coupling capacitor charging current must flow through the input circuit of the main amplifier. In other words the first transistor base would see a positive pulse of around 150 to 180 volts. It would not like this. The remedy is to include a high resistance, say 4M7 or higher, permanently across the preamplifier output, and to ensure that the preamplifier is fully warmed up and its voltages at equilibrium before it is connected to the main amplifier.

Despite the foregoing, which some may see as nit-picking, I say more power to Mr Brice’s thermonic elbow! D. Bolton Victoria Australia

I thank Mr. Jones for his constructive comments concerning my valve disc preamplifier circuit (Feedback, EWW, July 1985). Your readers may be interested in two further suggestions regarding this design.

I mentioned in the original article that a smooth supply can be obtained with simple RC filtering, but it is better to use a regulated supply. Not only does this secure the best hum and noise performance but the regulator ensures that high off-load voltages are not applied to the anodes of the valves and the power supply decoupling capacitors during valve warm-up time. Several schemes were contemplated and tried. All the regulating circuits improved the sound quality: the final arrangement is shown in the Fig. 1. The OA2 and OB2 are two easily available voltage-stabilizer tubes. Over a certain range of current flowing through a cold-cathode glow-discharge tube the voltage across it remains nearly constant. The circuit operates like a zener shunt-regulated supply. Its great advantage for h.t. regulation is that it is self-protecting, simple and cheap. Just as with zener diodes, the tubes may be used in series to provide voltages exceeding those of a single tube. The 1M resistors are added to facilitate striking of each individual tube. The power supplies were built on a separate chassis and this method of construction is recommended on sound-quality grounds.

The ECC83 would be suitable as the first-stage cascode valve, except that it is less robust than the ECC82 and, consequently, more microphonic, hence the decision to use the latter. I have found there is no alternative but to select low-noise valves individually for this first stage and that the more expensive types available are no better, in this application, than the cheap ECC82’s available at about 65 pence each.

Richard Brice
Teddington
Middlesex

Letters

Letters for publication are always welcome, but the shorter and pithier, the better. I try not to edit original letters, but sometimes they are far too long, and therefore cut, and the writers upset. Please keep your letters short.
A thousand miles from land, the great whales follow their mysterious course — closely followed by flocks of wheeling seabirds. These are the Grey Phalaropes. Their diet: the sea life that prey on the whales. The birds enjoy the life. And the whales enjoy being rid of them.

It’s a classic symbiotic relationship: one in which each partner needs (yet greatly enhances the performance of) the other.

And, as such, it parallels our relationship with Thomas and Betts.

We’re Britain’s major distributor of connectors. While they’re one of the world’s leading manufacturers of IDC interconnections: headers; socket; and solder transitions; card edge and “D” connectors, flat and ribbon cable; and tooling. As well as IC sockets, I/C board jumpers, cable ties, terminals, and heat shrink tubing.

FIELD ELECTRIC LTD
3 SHENLEY RD. BOREHAMWOOD, HERTS.
TELEPHONE 01-953-6009
OFFICIAL ORDERS, OVERSEAS ENQUIRIES WELCOME
OPEN 6 DAYS A WEEK 9.00am-5.00pm THUR 9.00am/1.00pm

SPECIAL OFFER: 10% GREEN PHOS. LEAD COMP. VIDEO MONITORS IN CASE
240V H.F. TESTED SIZE 15.9x29.5x32.5 C/P 6.50

POLY-COAX D MODELS 75/50 OHM. TEMP. RANGE: -25°C/75°C 2410/2415A D/V SW.
SIZE: 35 x 17.5 x 10.1.
10010/20 H/M. 115VAC PANS NEW 8X24Q EMI C/P 4.95
12710/20 H/M. 120VAC TRANSFORMER 500VA+ 24X24Q EMI C/P 3.50
11910/20 H/M. 120VAC TRANSFORMER 500VA+ 24X24Q EMI C/P 2.50

REDMOND 12V 250W 100W Motors 24VDC 5.000 RPM MOUNT SIZE 100x75x75 C/P 15.00

PARVALUX 220VAC 2PH CONT. RATING 44 AMP GEARED MOTORS
SUN 150X150MM C/P 2.25
150X150MM C/P 2.75

PARVALUX 220VAC 2PH CONT. RATING 44 AMP GEARED MOTORS
SUN 150X150MM C/P 2.75

TDS900
FORTH COMPUTER
Build the TDS900 into products.
Programme it with a VDU and your forecasts become fact.

- Single board computer.
- 12K RAM 6K ROM (expandable)
- All C-MOS for low power
- Fig-FORTH high level language. Compiled and fast.
- On-board screen-editor, compiler and debug facilities.
- Easy connection with serial & parallel channels, A/D, D/A converters, tracs, printers, keyboards and displays.

Triangle Digital Services Limited
10a Wood Street Watlington London E17 3MX
Tel: 01-570 0442 Telex: 26284

CIRCLE 130 FOR FURTHER DETAILS.

CIRCLE 33 FOR FURTHER DETAILS.
Multistandard terminal unit

Implementing a digital filter with a microprocessor leads to simple hardware for this programmable modem.

Recently I became interested in packet radio and soon realised that this mode of data communication would require a new tone standard, different to RTTY and simple ASCII, and that a new terminal unit (or modem) would be required. A consideration of the various tone standards soon showed that to obtain best performance for standard RTTY, Amtor and packet, both the tone standards and demodulator bandwidths must be changed to suit each case. The most common standards are summarised in Table 1. By using a minimum-configuration microcomputer and digital filtering implemented in software, the only alteration to cater for a new tone standard is a program addition instead of a hardware change. Although the techniques described in this article are complicated it should be realised that because of its digital implementation this terminal unit is easily built and does not require any setting up.

Figure 1 shows the block diagram of a conventional analogue terminal unit which could be used to demodulate RTTY or Amtor signals. The tones from the receiver are split into two channels tuned to the two frequencies representing 0 and 1. The outputs of the two channel filters are rectified, low-pass filtered and then subsampled. The sign of the subtraction indicates which channel contains the largest power at that instant and hence the most likely correct state of the output. The filtering operation can therefore be split into three operations, the two channel filters and the post detection filter. The power spectral density for the new tone system (1275, 1445Hz) used for RTTY is shown in Fig. 2.

The channel filter bandwidth is determined by the transmission rate, which in the case of 50 baud and F, is equivalent to a 25Hz modulating frequency on an a.m. carrier of 1275Hz. The channel filter bandwidth for F, is from 1250 to 1300Hz and for Fz 1420 to 1470Hz, this being the minimum channel bandwidth for minimum signal-to-noise ratio. After detection the bandwidth can be usefully reduced to Fz (25Hz) with a post-detection filter. In practice, the filter bandwidths are normally made slightly wider so that the tuning is not too critical, and to compensate the bandwidth shrinkage between the channel and post-detection filters.

Implementation of filters using digital techniques

Digital filtering is based on sampling a signal at regular intervals and then summing previous inputs and filter outputs multiplied by appropriate constants. In analogue filter design, the appropriate transfer function is obtained by starting with a low-pass prototype and then applying a bandpass transform to get a bandpass transfer function. The exact details involved in realising Z transforms are outside the scope of this article (for a detailed exposition see ref. 1), except to say that by applying a similar process the transform given in equation 1 can be obtained.

\[H(z) = A \left(\frac{1 - z^{-2}}{1 - Cz^{-1} + Bz^{-2}} \right) \]

\[\frac{g}{f} \]

where

\[A = \frac{1}{b+1}, B = \frac{b-1}{b+1}, C = \frac{2ab}{b+1} \]

and \(b = \cot \pi \left(F_2 - F_1 \right) \).

(3)

For the sampling period \(T \) is the sampling period \(F_0 \) filter centre frequency \(F_1 \) lower 3dB point of filter \(F_2 \) upper 3dB point of filter \(A, B, C, a, b \) are constants based on \(F_0, F_1, F_2, T \)

digital representation of sampled filter output

digital representation of sampled filter input.

Equation 1 is the Z transform for a digital bandpass filter and by rearranging this an expression in terms of previous inputs and outputs may be obtained as given by equation 4.

\[g = f(A - f AZ^{-2}) + CgZ^{-1} - BgZ^{-2} \]

(4)

The operator \(z^{-1} \) indicates a delay of one sample period, so \(BgZ^{-2} \) means the filter output at the time before last multiplied by the constant.

References

A wide variety of FSK tone standards have become established for modems in use on radio circuits. The accompanying software supports the established standards listed here.

Table 1. Commonly used tone standards for radio data transfer

<table>
<thead>
<tr>
<th>RTTY (45, 50, 75 Baud)</th>
<th>Mark (Hz)</th>
<th>Space (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old tones (Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 shift</td>
<td>1445</td>
<td>1275</td>
</tr>
<tr>
<td>425 shift</td>
<td>1700</td>
<td>1275</td>
</tr>
<tr>
<td>850 shift</td>
<td>2125</td>
<td>1275</td>
</tr>
<tr>
<td>New tones (Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 shift</td>
<td>2125</td>
<td>2295</td>
</tr>
<tr>
<td>425 shift</td>
<td>2125</td>
<td>2550</td>
</tr>
<tr>
<td>850 shift</td>
<td>2125</td>
<td>2975</td>
</tr>
</tbody>
</table>

Amtor

Tone standards as for RTTY except that the rate is 100 baud and the shift is always 170Hz.

ASCII (300, 600, 1200, 2400 baud)

Kansas computer standard, mark 2400 space 1200Hz.

Other modem tone standards also exist

Packet

AX25 mark 2200Hz space 1200Hz.

Data rate 300/1200 baud.

AX25 is the approved packet standard for amateur radio applications of packet data system.

by J.D. Walker
B.Sc.(Hons)
G6FYU

Following a period of amateur radio interest in digital communications John Walker joined the electronics industry in 1979 and developed a number of microcomputer systems using the Z80, 6502 and 6800/6809 microprocessors for both industrial and hobby applications. John, who is 23, graduated last year from the University College of North Wales in electronic engineering and has been subsequently employed in the design and development of radar display equipment.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985

21
Fig. 1. Conventional configuration of a two-tone terminal unit depicted here can be entirely realised by mathematical operations performed on digital samples of the input signal.

Fig. 2. Power spectral density of the new tones standard for 170Hz shift at 50 bits per second sending speed is accurately matched by the digital filter realisations achieved by the use of an inexpensive 8 bit microprocessor using 16 bit arithmetic.

Fig. 3 & 4 General form of the mark and space filters is given together with its practical realisation. Note that the non-recursive part is common to both mark and space channels which contributes to the economy of mathematical operations leading to an elegant solution of the filtering task.

Fig. 5.

\[Z = e^{j2\pi FT} - \cos 2\pi FT + j\sin 2\pi FT \]

The other filtering operation is the post-detection low-pass filtering and this can be expressed as equation 6.

\[D = \sum_{n=0}^{n-1} F_{n} e^{-j2\pi F_{n}} \]

where \(F_{n} \) and \(F_{n} \) are the rectified outputs of the high and low tone filters respectively and \(n \) is the number of channel filter samples during a signal element. In the case of 50 baud and 1455Hz the element time is 20ms and the sampling period 172us, so \(n = 116 \).

Equation 6 may be expressed as a single sum:

\[D = \sum_{n=0}^{n-1} (F_{n} - F_{n}) e^{-j2\pi F_{n}} \]

This is also a geometric series which can therefore by expressed as

\[D = D(1 - e^{-j2\pi F_{n}}) \]

the final digital output being the sign of \(D \). By applying equations 5 to 8 the response may be plotted in a similar way to the bandpass filters and this is shown in Fig. 6. It is interesting to note the rapid cut-off, as expected, and the sharp null at twice the 3dB frequency. This means that when working in the 50 baud mode the unit will completely reject 1000 baud signals. The ripples in the stop-band are not important as these frequencies will have been previously attenuated by the channel filters.

Practical realisation of the terminal

The circuit consists of an analogue-to-digital converter and a small microcomputer based on the 68B09 microprocessor, Fig. 7. A 68B21 parallel interface is used to input the samples from the a-to-d converter and to output the demodulated data to the computer. Because the microprocessor can only execute one task at a time the three filtering operations must be executed in sequence as shown in Fig. 8. The need to complete all these operations before it is time to take the next sample means that careful programming must be used and to cater for some of the higher frequency tone standards the microprocessor must be clocked at 2.25MHz, about 12% faster than its rated maximum. However I found no problem at a clock rate of 2.25MHz (using a 9MHz crystal) using the standard 6809.

The filter operations are implemented using 16bit arithmetic because the filtering operations involve summing eight-bit numbers which inevitably results in greater than 8bit answers. This means that the terminal unit uses the full eight bits of the converter, enabling the unit to operate with input signals from a multi-volts to a couple of volts (peak). The need to use 16bit arithmetic makes the 68B09 an ideal microprocessor for this application because of its low cost compared to full 16 bit microprocessors.

The modes of operation (different tone standards and rates) are determined by selecting the appropriate program in the eprom. This could have been done with a switch on the front of the unit, but it was considered that in most cases a computer would be used with the unit and by using an RS232 interface (68B30), the mode could be directly controlled from the keyboard via a set of escape sequences. This is particularly attractive now that most computer programs used for RTTY also control the PTT line on the transceiver, so resulting in a system completely controllable from a keyboard. The digital terminal unit therefore interfaces with the transceiver and computer as shown in Fig. 9.

Because the unit is completely controlled by a control part, the unit also contains a front panel status display, shown in Fig. 10, which indicates the tone standard, data rate and output status currently in use. Figure 11 shows a suitable power supply for the digital terminal unit. In the case of f.s.k. signals careful turning of the receiver is necessary to demodulate the input signal. This can
be done either by ear, a Toni Tuna (tuning indicator described in reference 2) or via a tuning voltage available from the tones-out socket during receive. Clearly a vast number of tone combinations and data rates could be implemented, but in most cases only a few of the combinations will be of use. The escape sequences given in Table 2 have therefore been allocated in the prototype although other combinations may be easily implemented if required when the eprom is programmed.

Because ESC 4 will demodulate any data rate less than 100 baud the unit powers up in this mode, but in the case of marginal RTTY signals a further improvement can be obtained by selecting mode 5 (ESC 3). The AX25/Kansas mode selected by mode 7 being a high data-rate mode does not lend itself to the two-channel digital filter approach described because of the small number of cycles available per bit time. Although the terminal unit can be programmed to operate as a missing pulse detector, better performance can be obtained by higher rates by using the microprocessor to measure the time between zero crossings. This is achieved by using the a-to-d converter as a limiter sampling the input at 10µs intervals. The time between transitions being used to decide if the output should be high or low. Because of the modular programming techniques used a section for 850 Hz, 50 baud using digital filtering could easily be added by simply adding an extra section to the program with the appropriate constants in the filter algorithm.

Fig. 5. Actual response of bandpass filters for 170Hz shift (50 bits per second) using the new tone standard as predicted by computer modelling.

Fig. 6. In addition to the digital realisation of the channel filters, further post-detector filtering tailored to the bit rate is also provided.

Fig. 7. Circuit of the minimum-configuration microcomputer used to perform the digital processing operations. The design uses readily available low-cost components throughout.
Fig. 8. Flowchart of the program used in the digital terminal unit showing how both channel filter response are determined from the same input data samples. The mark and space component energies are compared and the resulting differences subjected to a final filtering operation.

Table 2. Escape sequences used to control the d.t.u. via its RS232 port.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Mode</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC1</td>
<td>170Hz Shift new bones 50B</td>
<td>Amateur RTTY</td>
</tr>
<tr>
<td>ESC2</td>
<td>425Hz Shift new bones 50B</td>
<td>Commercial RTTY</td>
</tr>
<tr>
<td>ESC3</td>
<td>170Hz Shift old bones 50B</td>
<td>FSK position on new rig</td>
</tr>
<tr>
<td>ESC4</td>
<td>170Hz Shift old bones 100</td>
<td>AMTOR & 75B RTTY</td>
</tr>
<tr>
<td>ESC5</td>
<td>Set normal</td>
<td>Resets normal mode to ESC6</td>
</tr>
<tr>
<td>ESC6</td>
<td>Set invert</td>
<td>Caters for invented signals</td>
</tr>
<tr>
<td>ESC7</td>
<td>AX22/Kansas up to 1200</td>
<td>Caters for new ASCII11 modes.</td>
</tr>
</tbody>
</table>

Fig. 9. How the d.t.u. interfaces with two transceiver and computer.

DTU performance

After connecting the unit as in Fig. 9 and loading a suitable RTTY program into the computer, the digital terminal unit is used in a similar way to any other TU except that to change the mode of operation the appropriate escape sequences as shown in Fig. 9 must be sent to the DTU via the control port from the computer.

The performance has been found to be about 10 dB better than the ST-6 TU and the reasons are believed to be twofold: the channel bandwidths have been optimized together with the post-detection filter for the best s/n ratio, difficult to achieve with analogue components, and (2) the unit does not use a limiter. The DTU has also proved to be very effective in decoding both Kansas (2400/1200Hz) and Bell 202 (2200/1200Hz) tones at up to 1200 baud and it therefore ideal for use with packet radio.

Although not described or implemented in the eprom the circuit given can also generate the tones required for transmission using a suitable sine table and digital-to-analogue converter. Finally, at a cost of £80-100 the unit clearly provides performance far beyond any other device for the price and is easily updated to cater for new tone standards which may become established in the future.

Eeproms programmed for the escape sequences of Table 2 are available for £10 from the author, at 82A Grosvenor Road, Epsom Downs, Surrey.

In a subsequent article John Walker will discuss the basis of the Z transforms used for the bandpass and low-pass filters, together with the use of the digital terminal unit in other data applications.
AVO multimeters embody decades of experience to meet virtually every electrical/electronic servicing requirement. From the analogue Model 8 mk 6 and the hand-held 1000 and 1001, to the digital 2000 Series, it's easy to see why AVO multimeters are world famous for decades of reliable and accurate performance.

Standard choice for industry. Standard choice for value.

Taylor instruments represent outstanding value for money, with a range of digital instruments built to our uncompromising standards to meet BS requirements and spanning a complete range of usage. From the compact, probe-style volt-ohm meter to the 3½ digit TD23, you'll find the Taylor range lives up to our reputation for simplicity and performance. The choices: instruments are ours. The choice of them is yours. Contact us today for further detailed information.

THORN EMI Instruments Limited
Archcliffe Road, Dover, Kent CT17 9EN
Telephone: 0304 202620 Telex: 96283

Test with total confidence
The technology of television won’t stand still: satellites, videotext systems, cable, video, equipment interfacing…Follow developments month by month in this unique magazine. Each issue includes in-depth servicing articles on TVs and VCRs. Other regular features include test reports, also vintage and DX TV. The magazine for all those interested in the technology of domestic TV and video.

ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer’s entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. **ALL FEATURES LISTED** are **INCLUDED AS STANDARD**:

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height 5¼ double-sided, double-density floppy disc drives. Formatted capacity: 320kB per drive.
- 4 MHz Z80A CPU
- 64kB RAM (in 4116 chips)
- 28kB EPROM containing monitor & MICROSOFT BASIC
- CP/M Version 2.2
- 80 x 24 display with colour block-mode graphics

Available ONLY from: **COMPUTER APPRECIATION**, 111 Northgate, Canterbury, Kent CT1 1BH. (0227) 470512
MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 5JZ. (0444) 414484 454377 (0444) 73830

PLEASE NOTE: from 5th September Computer Appreciation’s new address is 111 Northgate, Canterbury, Kent. Tel: (0227) 470512.

CIRCLE 135 FOR FURTHER DETAILS.

Toroidal Transformers

as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List

<table>
<thead>
<tr>
<th>VA</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5VA</td>
<td>89.50</td>
</tr>
<tr>
<td>10VA</td>
<td>99.00</td>
</tr>
<tr>
<td>15VA</td>
<td>110.50</td>
</tr>
<tr>
<td>20VA</td>
<td>130.00</td>
</tr>
<tr>
<td>25VA</td>
<td>175.00</td>
</tr>
<tr>
<td>30VA</td>
<td>200.00</td>
</tr>
<tr>
<td>40VA</td>
<td>300.00</td>
</tr>
<tr>
<td>50VA</td>
<td>400.00</td>
</tr>
<tr>
<td>60VA</td>
<td>500.00</td>
</tr>
<tr>
<td>70VA</td>
<td>600.00</td>
</tr>
<tr>
<td>80VA</td>
<td>750.00</td>
</tr>
<tr>
<td>90VA</td>
<td>900.00</td>
</tr>
<tr>
<td>100VA</td>
<td>1000.00</td>
</tr>
</tbody>
</table>

Quantity Prices and delivery on request (we also manufacture conventional E1 type transformers)

Airlink Transformers.

Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279-724425

CIRCLE 10 FOR FURTHER DETAILS.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner

Telephone 01 445 2713/0749

CIRCLE 91 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
The tale of the long-tail pair — part 2

Further applications ranging from analogue logarithm and exponential circuits, multipliers and dividers to fast logic gates.

High-precision, wide dynamic-range, analogue amplifiers rely on the use of linear resistive components to define accurately the negative feedback around a high-gain open-loop amplifier. With this classical feedback-amplifier configuration, the exact gain and linearity of the open-loop amplifier is of little importance, provided the open-loop gain is much higher than the closed-loop gain. The net gain of the closed-loop amplifier is just about equal to the inverse transfer function of the negative-feedback network. Clearly, precise, wide dynamic-range, closed-loop, linear gain is only achieved if the feedback network exhibits precise wide dynamic-range linearity. Fortunately, resistors are remarkably linear and a simple resistive attenuator together with a high open-loop op-amp, are all that is required to achieve a very good linear amplifier.

Using the well known exponential relation between base-emitter voltage and collector current we can obtain an expression for the output voltage V_o,

$$V_o = V_{EB} = -V_t \log_2 (I/I_o)$$

$$V_o = -V_t \log_2 (V_V/Z/I_R)$$

The b.j.t. yields a better exponential voltage-to-current relationship than a simple diode, due mainly to that fact that a b.j.t. behaves as a very short diode, there being essentially no minority carriers at the edge of the collector-base junction. It is an advantage that the collector-to-base potential is held to zero by the action of negative feedback, in that no high-frequency modulation effects occur. However, recalling the problems identified in the last article about the strong temperature dependence of the b.j.t. parameter I_o, the circuit is not particularly good in practice.

A modified version based on the long-tail pair structure is shown in Fig. 2. The output is essentially proportional to the difference in the two transistor base to emitter potentials, which is not dependent upon I_o, provided that the two b.j.t's are very well matched and at the same temperature (i.e. $T_1 = T_2$).

Though the circuit is rather unusual in its topology, both O_A_1 and O_A_2 are provided with negative feedback, so that both inputting inputs are effectively held at zero potential and hence,

$$I_1 = V_{BE}/R_1$$

$$I_2 = V_{REF}/R_2$$

Logarithmic and exponential circuits

To produce an exponential (anti-log) or a logarithmic analogue amplifier, the feedback circuit must be formed from a circuit element that exhibits the inverse relationship. As for the linear amplifier, the quality of the net performance is critically dependent upon the accuracy of the exponential or logarithmic current-to-voltage characteristic used in the feedback path.

Logarithmic circuits. First let us consider developing an analogue logarithmic converter. Clearly, since the log of zero is minus infinity we can only be talking about positive (unipolar) inputs. The circuit shown in Fig. 1 is a simple log-converter which uses a bipolar transistor (b.j.t.) in the feedback path. Collector current is equal to V_{OE}/R_2 and the output of O_A_1 will be negative.
Resistors R_3 and R_4 are chosen so that the base current into Tr_2 does not load the potential dividing action of these resistors on the output of OA_1, and hence the base to ground potential of Tr_2, V_{BE2}, is

$$V_{BE2} = \frac{R_3}{R_3 + R_4} \cdot V_T = V_{BE1} - V_{BE1}$$

As shown in the first article, since $T_1 = T_2$, then

$$V_{BE2} - V_{BE1} = V_T \log_e \left(\frac{I_2}{I_1} \right)$$

and so combining equations 1 and 2 we get the expression

$$V_o = K_1 \log_{10} \left(\frac{V_{BE1}}{V_{BE2}} \right)$$

where K_1 and K_2 are both expressed in volts. The choice of K_1 and K_2 is determined by the scaling required on the signal and the value against which the output is being normalised.

Referring back to equation 3 the circuit can be used to obtain a second positive input. This is a particularly useful in several applications, such as an analogue automatic transfer function plotter.

Exponential circuits. To achieve the p-n-p transistor function to the circuit of Fig. 1, namely an exponential circuit, the resistor and b.j.t. are swapped over as shown in Fig. 3. A p-n-p transistor is required for positive inputs, the output being given by the equation

$$V_o = -I_c \cdot R_e - I_e \cdot R_e \frac{V}{V_i}$$

Again, as was the case for Fig. 1, the circuit has practical limitations due to the temperature dependence of I_c. Adopting a similar approach, a long-tail pair is employed as shown in Fig. 4 to achieve a superior exponential circuit.
Following a similar analysis to that for a log-circuit of Fig. 2, the output expression obtained is

\[V_o = K_e e^{V_n} \]

where \(K_e = R_L / V_T (R_T + R_e) \) and \(K_n = V_{REF} . R_e / R_T \).

Having employed the well matched long-tail pair configuration, the \(I_0 \) parameter is absent in the final expression. As for the circuit of Fig. 2, the \(R_T \) potential divider is chosen so that the input is simply divided down, being a negligible load. Resistor \(R_e \) acts in the same current limiting role as \(R_b \) in the previous circuit. The only remaining temperature-dependent parameter \(V_T \) in \(K_e \) may be effectively removed by compensation with a potential divider \(R_e \), \(R' \) which exhibits the same temperature coefficient.

Multipliers and dividers using log and antilog circuits

Multipliers and dividers are classified in terms of the number of quadrants over which they operate. For example, if the circuit will only operate with inputs of the same sign, both positive or both negative, the circuit is referred to as single-quadrant. A multiplier/divider circuit capable of operating with bipolar inputs is referred to as a four-quadrant multiplier/divider.

Single-quadrant multiplier/divider. Having established relatively simple single-log, single-antilog, and anti-log. circuits described earlier, it is quite plausible to assemble a multiplier simply using two log. circuits of the type shown in Fig. 2, together with a conventional summing amplifier, the inputs of which is then fed to an exponential circuit such as that shown in Fig. 3. Mathematically, we are adopting the following strategy for obtaining the product of two input voltages: input 1 is \(V_1 \); input 2 is \(V_2 \); then \(V_o = V_1 \cdot V_2 = \exp \log(V_1) + \log(V_2) \).

Clearly, a divider is created if we subtract \(\log(V_1) \) from \(\log(V_o) \) using a differencing circuit. Although quite feasible, such a multiplier is complex, using in total seven op-amps and three well matched transistor pairs. A very elegant solution can be achieved more directly using the circuit of Fig. 5. A careful inspection of the circuit reveals that it is the combination of the high-quality log. and exponential circuits described earlier with the potential dividers \(R_3, R_4 \) and \(R'_3, R'_4 \) removed. Using the analysis developed for the output of the log. circuit, namely equation 3, the expression for \(V_{BD} \) is

\[V_{BD} = V_{BD} = -V_T \log_e (V_2/V_1) \]

\[= V_T \log_e (V_1/V_2) \]

Since \(V_{BD} \) is the effective input to an exponential circuit with \(V_T \) replacing the potential, \(V_{REF} \), then the output of the entire circuit is obtained by modifying equation 4 slightly, that is

\[V_o = V_e \cdot e^{V_o/V_e} \]

Substituting for \(V_{BD} \) we obtain the final expression

\[V_o = V_e \cdot V_o/V_e \]

It is important to note that the temperature of both pairs of b.j.t.s should be identical and, as before, the transistor pairs should be very well matched. These requirements are relatively easily met if the four transistors are all on the same chip. Also, it should be stressed that the circuit is only single-quadrant. In practice should the product of two inputs be required, then \(V_e \) should be chosen appropriately as a fixed d.c. reference, providing a useful scaling factor. Alternatively, if the ratio of the two inputs are required, then either \(V_o \) or \(V_e \) should be a fixed d.c. reference, this reference providing a scaling factor to the ratio of the two inputs.

Converting to a four-quadrant multiplier. It is possible to use a single-quadrant multiplier together with some additional circuitry to create a full four-quadrant multiplier. Two precision full-wave rectifiers are needed to process the two inputs, so that the circuit of Fig. 5 only "sees" positive voltages and then the output is effectively

\[V_o = \left| V_1 \right| \left| V_2 \right| / V_{REF} \]

where the inputs are \(V_1, V_2 \) and \(V_o \) has been replaced by a d.c. reference, \(V_{REF} \). In addition, some logic is needed to provide the sign-bit information. This could be done simply by testing the input signs using the sort of circuit shown in Fig. 6.

Linear differential transconductance amplifier

The transconductance (current output — voltage input) performance of the long-tail pair was investigated in my first article and it was shown that the circuit was linear over a range of about 25mV or so (see Fig. 2 of the September 1985 article). The simplest way of increasing the linear range and increasing the input impedance is to add emitter resistance as shown in Fig. 7. Two matched long-tail current sinks are used in preference to one since such a structure can be realised on a single chip with two pin-outs provided to allow the emitter coupling resistor, \(R_e \), to be inserted by the designer.

Calling the differential input voltage \(V_{IN} \) and neglecting base currents compared with collector currents, then we can solve Kirchhoff’s voltage law for \(V_{IN} \) as

\[V_o = V_1 - V_2 = V_{REF} - V_{BE2} + (I_1 - I_2) R \]

\[V_o = V_T \log_e ((I_1/2)/(I_2/2)) + (I_1 - I_2) R \]

Normalizing this equation we obtain the following expressions relating \(V_{IN} \) to \(I_1 \) and \(I_2 \).

\[V_{IN}/V_T = \left((I_1/2)/(I_2/2) \right) R \]

\[\frac{V_{IN}}{V_T} = 1 - \frac{1}{(I_2/2) R} \]

A careful inspection of the circuit reveals that it is the combination of the high-quality log. and exponential circuits described earlier with the potential dividers \(R_3, R_4 \) and \(R'_3, R'_4 \) removed. Using the analysis developed for the output of the log. circuit, namely equation 3, the expression for \(V_{BD} \) is

Fig. 6. Sign-information circuit.

Fig. 7. Linearized long-tail pair.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
Fig. 8. Linearized long-tail pair transfer characteristic.

Equation 5a cannot be turned into a straightforward transfer function equation, so the best way of visualising the equation is to plot $y = I_1/I_0$ against $x = V_m/V_y$. Figure 8 shows the plot for different values of $A = I_y/R/V_y$. Notice $A = 0$ corresponds to $R = 0$ and the transfer current of Fig. 8 is identical to that of Fig. 2 in the first article of this series. As R is increased so the total transconductance becomes less but more linear. This is to be expected, since the effect of increasing R is to increase the negative feedback to the circuit with the usual result of stabilising and hence linearising the transconductance at the expense of a loss of closed-loop gain. If we are operating the stage with a limited input and a high A value then equation 5a reduces to

$$V_m = (I_y/I_0 - 1/2) R I_y$$

or $I_1/I_0 = 1/2 + V_m/(R I_y)$ and $I_y/I_0 = 1/2 - V_m/(R I_y)$

The differential output conductance is now linearly related to the differential input voltage by

$$g_{ud} = 2/R$$

and the differential transconductance is therefore

$$g_{ud} = 2/R$$

and the differential input impedance, R_{IN}, is approximately

$$R_{IN} = B R$$

where B is the small-signal current gain of T_1 and T_2.

The final expressions are really quite simple in form, but it is necessary to look at the detailed behaviour in order to assess the maximum differential input voltage that may be applied to keep the maximum non-linearity within specified bounds. It is left to the reader to look closely at equation 5a to establish the limits for a particular application.

Monolithic four-quadrant multipliers

An elegant wide dynamic range four-quadrant multiplier is shown in Fig. 9. The monolithic circuit uses four interconnected long-tail pairs, two of which operate in a non-linear mode. In practice, the two diodes would be transistors connected as diodes with the collector shorted to the base terminal in each.

The circuit is relatively easy to analyse, as each section has already been examined earlier. To simplify the analysis I shall assume that the B of each transistor is high enough for the collector currents to be negligibly different from the emitter currents and also I shall assume that all the b.j.t.s, including the diode-connected transistors D_1 and D_2, are well matched and at the same temperature.

The emitter resistors R_5 and R_6 provide linear conversion to the input voltages to the differential currents I_1 and I_2, shown on the circuit diagram.

$$I_1 = V_y/R_y$$

Referring to the last section above, the condition needed here is

$$R_y \gg V_1/I_1$$

The resistor R_y is in the circuit merely to ensure that the base bias potentials on the T_7/T_8 and T_9/T_{10} are sufficient to keep these transistors in the forward active region.

Now potential V_1 shown in Fig. 9 is

$$V_1 = V_{II} - V_{DD} = V_y \log_e$$

$$(I_1 - I_0)/(I_1 + I_0)$$

This potential now drives the two non-linear (ordinary) long-tail pairs T_7/T_8 and T_9/T_{10}.

In the first article in this series the characteristic of the long-tail pair was established and, in terms of the present circuit, the collector currents I_1 to I_5 can be written simply as

$$I_5 = I_1/(1 + e^{+V_y})$$

$$I_6 = I_3/(1 + e^{-V_y})$$

$$I_7 = I_4/(1 + e^{+V_y})$$

$$I_8 = I_2/(1 + e^{-V_y})$$

with the substitution from 7 for V_y equations simplifies to

$$I_5 = I_1 (1 - I_0/I_1)$$

$$I_6 = I_3 (1 + I_0/I_1)$$

$$I_7 = I_4 (1 + I_0/I_1)$$

$$I_8 = I_2 (1 - I_0/I_1)$$

The differential output voltage is

$$V_o = -Ry (I_3 + I_5 - I_7 - I_9)$$

Substituting from equations 7 and 8, then

$$V_o = -Ry (I_3 + I_5 - I_7 - I_9)$$

Since $I_5 = I_1 + I_0$ and $I_7 = I_1 - I_0$, then $V_o = 2R_y (I_1/I_0)$ and using equations 6 we obtain the final expression that

$$V_o = K_o V_y V_x V_y$$

where K_o is the multiplier's scaling factor and is given by $K_o = 2R_y (R_y, R_y, I_0)$. Generally K_o is chosen to be 0.1 for convenience and compatibility with other
types of multiplier. Should a single-ended output voltage be required, then the circuit can be modified by adding a differential amplifier to the output terminals of Fig. 9.

The four-quadrant multiplier described here is an excellent example of the ingenious use of the accurate exponential relationship between emitter-base voltage and collector current of b.j.t.s and the close matching and thermal tracking that can be achieved in a single chip circuit.

Emitter-coupled logic

So far, the long-tail pair applications discussed have been for analogue signal processing. Even in digital electronics the long-tail pair has some special features. The basic emitter-coupled logic gate is a simple long-tail pair used with a single-ended input, a typical circuit of which is shown in Fig. 10. The long-tail is resistive rather than an active current-source to ensure high speed switching. A single common-emitter can be used as a logic switch. Turning “on” the b.j.t. results in a forward bias on collector-base junction which results in a high minority carrier population in the base region. To change state from “on” to “off” is relatively slow as the base region minority carriers must be removed before the collector current can be reduced to ‘zero’. The e.c.l. gate is extremely fast primarily because the “on” state is associated with current saturation due to the long-tail current sink limit on the collector current; neither b.j.t. ever entering forward bias V_{CBO} type saturation. A typical propagation delay is 2ns for one e.c.l. gate.

The penalty associated with this very rapid performance is a high power dissipation per gate which represents a fundamental limitation on the number of gates per unit chip area. A further disadvantage of e.c.l. logic is the poor noise margin, typically 50mV. This is offset somewhat by the fact that since the power supply current demand is almost constant, power supply spike due to dI/dt effects on changing state are much less of a problem with e.c.l. than other b.j.t. based logic. E.c.l. does have a place in specialized, high-speed applications.

Tail-piece

The long-tail pair is a very powerful circuit element with a wide range of applications. Some of the applications are dependent upon the precise exponential I-V characteristic of the b.j.t. and some are dependent on the use of a matched differential-pair configuration with a current-sink bias. I have only discussed b.j.t. long-tail pairs circuits in these two articles but clearly fets may also be used in the same configuration though the log/antilog and full four-quadrant multiplier circuits will only work with b.j.t.s.

![Fig. 9. Monolithic four-quadrant multiplier.](image)

![Fig. 10. E.c.l. logic gate.](image)
CIRCLE 88 FOR FURTHER DETAILS.

Happy Memories

Part type
4116 200ns 1.25 1.15 1.10
4116 150ns Not Texas 9.9 8.9 8.6
4256 150ns 3.65 3.35 3.10
4256 450ns 1.75 1.60 1.55
6116 150ns 1.99 1.80 1.65
6264 150ns Low power 5.00 4.25 4.00
2716 450ns 5 volt 3.85 3.45 3.30
2732 450ns Intel type 4.75 4.25 4.10
2532 450ns Texas type 3.45 3.45 3.30
2764 300ns Sut BBC 2.95 2.65 2.50
2712 300ns Sut BBC 3.95 3.55 3.35
2725 250ns 7.55 6.95 6.50

Low profile IC sockets: Pins 8 114 18 20 24 28 40 8 114 18 20 24 28 40 8 114 18 20 24 28 40 8 114 18 20 24 28 40 Availability now — The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then relo:ds a file into its sideways Ram as required. Full details on request. 74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by 'phone or mail. Non-Military Government & Educational orders welcome. £15 minimum.

HAPPY MEMORIES (WW), Newchurch, Kington, Herefordshire HR5 3QR. Tel: (054 422) 618

CIRCLE 41 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
Integrated Circuits

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS08</td>
<td>D-Type D Flip-Flop</td>
</tr>
<tr>
<td>74LS40</td>
<td>Octal 2-Input Negative AND Gate</td>
</tr>
<tr>
<td>74LS244</td>
<td>Octal 2-Input Positive OR Gate</td>
</tr>
<tr>
<td>74LS407</td>
<td>Hex Inverting Schmitt Trigger</td>
</tr>
<tr>
<td>74LS458</td>
<td>Hex Non-Inverting Schmitt Trigger</td>
</tr>
</tbody>
</table>

Bases

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B27</td>
<td>2N3904</td>
</tr>
<tr>
<td>B28</td>
<td>2N3905</td>
</tr>
<tr>
<td>B29</td>
<td>2N3906</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2N3904</td>
</tr>
<tr>
<td>A2</td>
<td>2N3905</td>
</tr>
<tr>
<td>A3</td>
<td>2N3906</td>
</tr>
</tbody>
</table>

Valves

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2N3904</td>
</tr>
<tr>
<td>T2</td>
<td>2N3905</td>
</tr>
<tr>
<td>T3</td>
<td>2N3906</td>
</tr>
</tbody>
</table>

Circuits

- **Integrating Circuits**: Various types of integrated circuits are listed, including D-Type D Flip-Flops, Octal 2-Input Negative AND Gates, Octal 2-Input Positive OR Gates, Hex Non-Inverting Schmitt Triggers, and Hex Inverting Schmitt Triggers.
- **Bases**: Different symbols and values for bases are provided, indicating various types of semiconductor bases.

Additional Information

- **Terms of business**: COD, Postage and packing valves and semiconductors 50p per order. CR1s 50p. Prices excluding VAT, add 15%. Price ruling at time of dispatch.
- **Stock availability**: Orders for UK and USA valves will be higher than those advertised. Prices correct when going to press. Account facilities available to approved companies with minimum order charge £10. Carriage and packing £1.50 on credit orders. Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any types not listed. S.A.E.

CIRCLE 16 FOR FURTHER DETAILS
TELESCOPIC MASTS
Pneumatically operated telescopic masts.
25 Standard models, ranging from 5 metres to 30 metres.

Hilomast Ltd
THE STREET HEYBRIDGE — Maldon
ESSEX CM9 7NB ENGLAND
Tel: MALDON (0621) 56480
Telex No. 995855

CIRCLE 109 FOR FURTHER DETAILS.

NASCOM-2

Still the most outstanding, single board computer with thousands of satisfied users in industry and the home. Full range of extensions and add-ons also available. Phone or write for further details now!

Lucas Control Systems
Lucas Control Systems Limited
Welton Road, Wedgwick Industrial Estate, Warwick CV34 5PZ.
Telephone 0926 497733. Telex 312333.

CIRCLE 107 FOR FURTHER DETAILS.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days’ delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY’S INN ROAD, W.C.1
Phone: 01-837 7937
Telex: 892301

CIRCLE 112 FOR FURTHER DETAILS.

173MHz FM TELEMETRY RADIO LINK

- Range up to 100 metres
- Modular, Wall Mounting Transmitter + Receiver
- Direct Baseband Inputs + Outputs (3kHz B/W)
- Operates to MPT1309
- Each Module 86x104x45mm + requires only 30mA dc at 7.2V
- Selective Baseband signalling by ‘add on’ modules available shortly.

ADENMORE LTD
27 Longshot Estate, Bracknell, Berks. RG12 1RL Tel: 0344 52023

CIRCLE 87 FOR FURTHER DETAILS.
ELECTRONICS & WIRELESS WORLD OCTOBER 1985
'Silicon disc' using 256K dynamic memory chips has novel refresh system.

I use a microcomputer primarily as a means of developing software and of writing long documents, such as this article. My SC84 computer gives better performance than many other computers but the discs don't go round any faster than anyone else's. When working back and forth between the ends of large files with Wordstar or when performing a major assembly, disc operations take a lot of time.

The reason for this is clear when one watches the process. In both cases the computer is operating with more than one file. In word processing, the computer memory acts as a 'window' into the file. As this window moves up and down, a file larger than the free memory available in the computer, temporary files are created to store the data ahead of and behind the window.

In program development, assembly means getting data from the source file and sending data into object and listing files. Switching between the files takes time as the drive head has to traverse the disc surface many times. There's wear and tear on the drive and the computer operator, both of which can be eliminated by the use of what has become known as a 'silicon disc'.

Silicon disc is a large memory used either as a buffer into which the working disc's contents are loaded or, as in this case, treated as a pseudo disc. The system described consists of a 512Kbyte memory, accessed as one of 256 2Kbyte 'pages'.

Pages are selected by writing an 8bit value into a register on the silicon disc unit. This is rather like writing to the track-number register of a floppy disc controller. Once selected, the page may be accessed directly or by 'mapping'. In mapping, a block of memory can be made to substitute itself for an equivalent block of system memory. SC84, as with any other good computer design, has a mapping facility. The advantage of mapping is that areas of system memory are not permanently committed to transient facilities (the v.d.u. in SC84 is a good example of this). One must choose the mapping area carefully though as it is obviously not possible for code executing in the area of system memory to be mapped out to access the mapped area. For this reason, switches allow the unit to be permanently allocated or to be mapped to any 2Kbyte block within an 18bit address range. The silicon disc is seen as an adjunct to the disc operating system and so, for SC84, the mapping is over the section of memory even more fundamental than Scidos itself, the resident operating system Mcos.

The half-megabyte memory is in the form of 16 256Kbit dynamic memories, although the unit can be built with only half of this capacity. Thought has been given to making the silicon disc as versatile as possible. As such it relies on only two system signals: one indicates that a memory cycle is taking place and the other that a read operation is occurring. In a Z80 system these would be MREQ and RD; in an 8086 system they would be a combination of ALE and IO/M and the RD signal.

Note that no reference is made to external refreshing. The RFSH signal shown on the circuit diagram is offered as a means of reducing unnecessary power consumption in Z80 systems. Refreshing of the memory is achieved by a combination of some rather clever facilities provided in the memory blocks specified and the way in which the silicon disc is used.

An explanation of the design philosophy behind multiplexed-address dynamic memory was given in my recent series on the SC84 computer*. Suffice to say that in addressing dynamic memories, the address of the locations to be accessed is latched into the memory in two parts — a row address and a column address. This saves pins and thus cost on a 256Kbit device which otherwise would need 18 address pins. It also allows refreshing of the entire memory by regular access.

I use M80, a 4/6MHz Z80-based computer running the Scidos operating system for GP/M software, described in the May, June, July, September and October 1984 issues. The three-Eurocard circuit board set for this project is still available.

* SC84 is a 4/6MHz Z80-based computer running the Scidos operating system for GP/M software, described in the May, June, July, September and October 1984 issues. The three-Eurocard circuit board set for this project is still available.
Half megabyte memory expansion circuit. Pins 15 of the three LS158 multiplexers are connected to ground.

Kits and p.c.bs
Memory board kits excluding p.c.b. are £92 inclusive from John Adams at 5 The Close, Radlett, Hertfordshire WD7 8HA. This price is £93 for readers in other parts of Europe and £94.50 for those outside.

Plated-through-hole p.c.b.s for this project are £16 including UK or overseas postage from Combe Martin Electronics, Kings Street, Combe Martin, North Devon EX34 0AD.

The Z80 has an inbuilt refresh generator consisting of a control line and a seven-bit counter which is regularly incremented and output during a period when the Z80 doesn't need the external bus. While memories were addressed seven bits by seven bits (16Kbits) this was acceptable. When 64Kbit devices appeared, most were made to be actually seven bits by nine internally, although addressed as eight bits followed by another eight. This meant that a Z80 could still refresh these devices but it did make the ICs more difficult to fabricate.

Some device manufacturers attempted to make their 64Kbit chips more versatile by building an equivalent of the Z80 refresh generator, but with 8 bits, into their dynamic memories and providing a pin to implement the refreshing process. This was a good idea as it allowed other refreshing techniques such as standby refreshing to be implemented but it took away a much needed pin. When 256Kbit ICs were designed, this pin went to provide the ninth address line but in certain devices the internal refreshing mechanism has survived.

As mentioned, the address is latched into the memory in two parts by means of a negative transition on one of two control lines, row-address strobe RAS and column-address strobe CAS. The standard operating sequence for a dynamic memory of this type would be as follows. Begin with both RAS and CAS high, apply the row address, switch RAS low, apply the column address, switch CAS low. After this a read, write, or read-then-write operation may take place on the addressed bit, depending upon the WR control line. Strobe RAS may be taken high again a short period after CAS has gone low and, as a variation, CAS may then be repeatedly pulsed to latch in the addresses of, and therefore access, other bits within the same row.

What never happens in a conventional addressing situation, and what is exploited in the devices under review, is that RAS should go low while CAS is low. My words are carefully chosen as the data sheets for most 64Kbit devices do show a mode called 'hidden refresh', where after CAS has gone low and data is being accessed (RAS goes high), the address of how to be refreshed is applied and RAS goes low, forcing a form of refresh. The differ-

Continued on page 93
FOR READERS OF ELECTRONICS & WIRELESS WORLD

This information service is a quick and simple method of obtaining the very latest literature.

We know you're going to find it useful!

ELECTROPLAN

You will already be familiar with Electroplan's position as the leading force in the field of electronic equipment and control for the professional, industrial, and technical community. We have always been dedicated to providing you with a comprehensive range of products and services that meet your needs and exceed your expectations.

INFORMATION

A NEW SERVICE FOR READERS OF ELECTRONICS & WIRELESS WORLD

We are pleased to announce the launch of a new service for readers of Electronics & Wireless World. This service will provide you with the latest and most relevant information on the latest products and technologies in the electronics and wireless world.

INFORMATION

INSTRUMENT RENTALS

Instrument Rentals has substantially increased the range of mechanical and electronic test equipment in our stock. Ten years ago, test equipment was accessible to those in the test equipment business only; today, this equipment is available to anyone who can afford it.

INFORMATION

P.S.P.

P.S.P. has updated their free short form literature which includes photographs and information about their complete range of test equipment.

INFORMATION

CIRCLE 94 FOR FURTHER DETAILS.

CIRCLE 93 FOR FURTHER DETAILS.

CIRCLE 95 FOR FURTHER DETAILS.

CIRCLE 98 FOR FURTHER DET/ILS.

CIRCLE 96 FOR FURTHER DETAILS.

CIRCLE 97 FOR FURTHER DETAILS.

CIRCLE 99 FOR FURTHER DETAILS.
RADICOCODE CLOCKS LTD
SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PRODUCTS
- MINIATURE RUBIDIUM OSCILLATOR MODULE
 - Lower power, fast warm up, optional output frequencies, programmable frequency offsets.
- RUBIDIUM FREQUENCY STANDARD
 - High performance, compact and rugged instrument. 2U rack or 1/4 ATR case options.
- INTELLIGENT OFF-AIR FREQUENCY STANDARDS
 - Microcomputer controlled instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.
- LOW COST MSF FREQUENCY STANDARD
 - Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation.

AFFORDABLE ACCURACY
QUALITY MULTIMETERS FROM ARMON

ANALOGUE
- HM-100B
 - Range: 200VDC, Buzzer, Battery Test, DC Range, DC mA. £15.00
 - Low and voltage & current ranges, Jack for Audible Voltage. £7.50
- HM-0115
 - Rugged, Pocket sized meter, for general purposes. η5.00
 - Battery, Test Leads and Manual included with each model.

DIGITAL
- HC-0110 L 1% Accuracy Standard Model £32.50
- HC-0110T 0.2% Accuracy, TR Test Facility £39.50

ALL MODELS HAVE FULL FUNCTIONS AND RANGES AND FEATURE:
- 3½ digit 0.5" LED display
- Low battery indication
- Auto zero & Auto polarity
- Auto Ranges Capping & TR Stand
- Overload Protection on all ranges
- Battery, Spare Fuses, Test Leads and Manual

FULL DETAILS ON APPLICATION FROM:
ARMON ELECTRONICS LTD
DEPT. A, HERON HOUSE, 109 WEMBLEY HILL ROAD, WEMBLEY, MIDDLESEX HA9 6AQ
PHONE: 01-902 4321 TELEX: 923985

OFFER EXCEPTABLE TO INLAND AND TRADE ENQUIRIES
PLEASE ADD 15% TO YOUR ORDER FOR VAT. P&P FREE OF CHARGE.
PAYMENT BY CHEQUE WITH ORDER

CIRCLE 143 FOR FURTHER DETAILS.
CIRCLE 120 FOR FURTHER DETAILS.

RACKMOUNT CASES

19"Self Assembly Rack Mounting Case with lift off Covers, Front Panel 10 gauge, Brushed Anodised Aluminium, Case 18 gauge, Painted Steel with Removable Rear & Side Panels. In 1U & 2U Types, a Subplate Chassis is Mounted to Bottom Cover. In 3U Type the Subplate is located on two Rails Mounted Between The Side Plates.

1U (1½) height, 230m depth............ £27.00
2U (3½) height, 308m depth............ £32.00
3U (6½) height, 280m depth............ £39.00
Width Behind Front Panel 437m (All Types).

All Prices include Postage & V.A.T. Cheques, Postal Orders Payable to:- J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 29450.

CIRCLE 116 FOR FURTHER DETAILS.
CIRCLE 89 FOR FURTHER DETAILS.

ELECTRONICS C.A.D.
"ANALYSER I & II"
PERFORMANCE ANALYSIS of LINEAR CIRCUITS using the BBC MODEL B AND SINCLAIR SPECTRUM 48K MICRO.
Emulates Resistors, Capacitors, Inductors, Transistors, Bipolar and Field-effect Transistors, and Operational Amplifiers in any circuit configuration.
Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 30 Nodes and 100 Components, for Phase and Gain/Loss, Input Impedance and Output Impedance.
Ideal for the analysis of ACTIV and PASSIVE FILTERS, AUDIO, WIDEBAND and R.F. AMPLIFIERS, LINEAR INTEGRATED CIRCUITS etc., etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.
USED BY INDUSTRIAL AND UNIVERSITY R&D DEPARTMENTS WORLD WIDE.
VERY EASY TO USE. PRICES FROM £20 ACCESS OR AMERICAN EXPRESS WELCOME.
For further details write or phone NUMBER ONE SYSTEMS LIMITED DEPARTMENT: C.A.T./ 9A CROWN STREET, ST IVES, HUNTINGDON, CAMBS. PE17 4EB. TEL: 0480 61778 TELEX: 32339
RAEDEK ELECTRONICS
102 PRIORY ROAD, SCRIBERS LANE, HALL GREEN, BIRMINGHAM, B28 0TB. ENGLAND.
Telex No 312242 MIDLTX G.

STOCKIST FOR
Richardson
Electronics
Electron
Tubes
AMPEREX AMPERITE
CETRON CTC Du MONT EIMAC
ELECTRONS GENERAL ELECTRIC GENALEX
ITT LITTON MACHLETT MULLARD
NATIONAL OMNI WAVE R.C.A. RAYTHEON STC
SIEMENS SYLVANIA TELEFUNKEN THERMOSEN
VICTOREEN VARIAN TUNSOL BURROUGHS WESTINGHOUSE

R. F. Power Transistors
MOTOROLA GENERAL ELECTRIC R.C.A. JOHNSON
AEROTRON QUINTRON REGENCY WILSON T.R.W. MSC
ACRIAN TOSHIBA NEC MITSUBISHI PHILIPS AMPEREX
R/F CERAMIC CAPACITORS

CIRCLE 139 FOR FURTHER DETAILS.

LOOK AHEAD!
WITH MONOLITH MAGNETIC TAPE HEADS
VIDEO HEAD REPLACEMENT KIT

DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES — IT’S PROBABLY IN NEED OF A NEW HEAD — FAST FROM OUR EX-STOCK DELIVERIES.
SAVE £££s ON REPAIR CHARGES.
OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF VHS OR BETAMAX VCRs. FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENT KIT.

KIT CONTAINS — NEW VIDEO HEAD, 5 CLEANING TOOLS, HEAD CLEANING FLUID, CAN OF AIR BLAST, INSPECTION MIRROR, ANTISTATIC CLOTH, VHS/BETAMAX MAINTENANCE MANUAL, CROSS HEAD SCREWDRIVER, HANDLING GLOVES, MOTOR SPEED DISC, SERVICE LABEL, HEAD REPLACEMENT GUIDE.
VHS KITS £63.25, BETAMAX KIT £75.25. Prices include P&P and VAT

HOW TO ORDER: PLEASE STATE CLEARLY THE MAKE AND MODEL OF YOUR RECORDE. THERE ARE TWO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOLE OF THE HEAD WHICH WILL BE EITHER 5mm OR 15mm DIAMETER.
CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms, etc. Please forward 50p P&P

THE MONOLITH ELECTRONICS CO. LTD.
5-7 Church Street, Crewkerne, Somerset TA18 7HR, England
Telephone: Crewkerne (0460) 74321
Telex: 46306 MONLTH G

CIRCLE 131 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985

PROTEK
COMPATIBLES

HP Series 200 all models
New 1/2Mbyte and 2Mbyte boards as well as usual 256K and 1Mbyte.

The 2Mbyte card utilises only a single slot.
Compatible Speedup, Spoolin and Mass Storage devices are also available and a wide range of software packages including Compilers, Wordprocessing and Database management.
HP150A/B and II 128K, 256K and 384Kbyte cards.

Other compatible products include peripheral sharing between computers, disk sharing and VT100 controllers.

PROTEK \£845.00/C.

From 256K to 2Mbytes on a single card and at less than half the usual cost.

Other compatibles include Programmers Toolkit, Command File and new drive/Mass Storage Roms to give the 9845 enhanced capabilities.

All memory boards are available from stock and carry a 2 year replacement warranty.

As a Hewlett-Packard distributor Protek offers the full range of HP personal computers, peripherals, interfaces, accessories and consumables.

Most items are available from stock.

LOW COST MEMORY
Protek, 10 Grosvenor Place, London SW1X 7HH Tel: 01-245 6844

THE HP SPECIALISTS
Humidity control

Normally, the extractor fan in this humidity control circuit is started when the bathroom light is turned on and the motor stops around 20 minutes after the light is turned off. If relative humidity exceeds about 80% however, the motor runs for about 20 minutes or until humidity falls below 80%.

Domestic induction-motor fans of up to 1.5A can be switched. For safety, check that the motor is impedance and overtemperature-protected; most modern fans include these features. Transients produced by switching are damped by a v.d.r. over the triac but as the circuit switches at or near zero voltage this is not a major problem.

Some have thermal runaway. The principle would normally be a constant-current source. This circuit is simple and effective enough to cure all of the problems that traditionally result in crossover distortion. The idea is to make sure that the output device is always turned on, by configuring it as a constant-current source when it would normally be turned off. The principle is not new, but the realization is.

- Transistor Tr2 is forced into constant-current mode by collector current of Tr4. This transistor senses the fall in Tr2 collector current as iRl falls, so iRl directly compensates iRg, negative feedback through Tr2 being the regulating current-derived negative feedback prevents thermal runaway without the need for special thermal feedback.
- Take care selecting base resistor values R8,R9. Lower values of around 20kΩ are preferred to prevent creation of an additional pole within the desired bandwidth.
- Drive current Ib needs to be set at about twice the value of Tr4, Tr7 maximum collector current to allow the drivers to work in class-A throughout the full voltage swing. Quiescent current is set by Ib and Rg/Rf. Making Rg equal to Rf simplifies calculations.
- Generating bias voltage with diodes allows a simple output current limiter to be added in the form of D4, D5.

M.R. Hadley
Lyndhurst
Hampshire

Available from Norbain Electro-Optics Ltd, Norham House, Baulton Road, Reading, Berkshire RG6 0LT.
Easy character-generator timing adjustment

Display circuits using 6845 or similar c.r.t. controllers usually have a system of gates and inverters to extract strobe pulses from the dot-clock divider. These strobe pulses are for shift register leading and data latch enabling.

If this gating is replaced by a 3-to-8-line decoder, the outputs available cater for most timing requirements in systems with up to eight dots/character horizontally and beyond eight dots if strobes are not required in the additional space.

The advantage of this circuit is that timing charges are easily made after construction without the need to rewrite or patch. This permits substitution of character generator rams and v.d.u. rams of various speeds and changes of parameters such as dot-clock frequency or number of dots per character.

In the general application, top left, each 138 decoder output goes active low once per character during the corresponding dot time. A switch selects output activity during either the high or low pulse of the dot clock. Alternative qualifying signals may be applied to the enable inputs.

Falling edge of the shift register LD pulse should coincide with the rising edge of the shift clock, which is the dot clock in this case. If the 138 is switched to give outputs during the clock low phase, this should be inverted before being used to drive the shift register.

The special application uses a 12MHz source to provide a 1MHz CCK signal, a 6MHz dot clock for six dots per character, and a 4MHz output for a 6802 microprocessor. In the timing diagram for this application the 138 outputs are shown without qualification. I would suggest divider B output for 138 enabling, E, and a 6MHz dot clock to either E or E.

J.B. Bell
Grimsby
Humberside

RS232-to-Centronics interface

Serial RS232 data is converted to a form suitable for driving a printer with a Centronics parallel interface using this circuit. On the AY-3-1015 uart, for converting the asynchronous serial stream to strobed parallel output, the busy line is used to implement a CTS handshake.

Data rate and number of stop bits are link or switch selectable; clock frequency is 16 times the desired data rate. Whether one or two stop bits are used depends on the printer type. The three LEDs PE, FE and OR indicate parity, framing and overrun errors respectively.

D.J. Virden
Cheltenham
Gloucestershire
Digital-offset frequency meter

Conventionally, the method of displaying receiver input frequency is to take the first local oscillator frequency and mix it with a signal equal to the i.f. Mixer output contains both the sum and difference of the two signals, so filtering must be used to provide a signal suitable for a conventional counter.

My circuit uses an all digital method to subtract the two frequencies and is therefore more accurate than the conventional method. Output from the first local oscillator feeds a decade counter which should be a 74HC or HCT type as frequency here can be up to 40.7MHz for a receiver input of 30MHz and an i.f. of 10.7MHz.

Decade-counter output is further divided and used to address a 2716, 2Kbyte eprom. Data in the eprom determines the count to be recognized which in turn controls a gate between the incoming signal and the frequency counter. For example, if an offset of 10.7MHz is required then all locations from 0 to 106 are filled with zeros and remaining locations are left at FF.

Using an eight-bit eprom, it is possible to program eight different i.f. offsets simultaneously, and to provide a true frequency indication by disabling the eprom through its chip-select input.

George Cavarra
Bristol

George Cavarra
Bristol

www.americanradiohistory.com
8085/NSC800 microprocessor replacement

Prompted by the increasing amount of Z80-oriented CP/M software and Braunschmid's circuit idea on page 51 of the November 1984 issue, I substituted an NSC800N-4 processor for the original 8085 device in an Explorer microcomputer. In doing so I noticed some further differences between the two processors.

Comparing the timing cycles, the first obvious difference is the NSC800 refresh facility. Although this appears to be transparent on the 8085 system, generation of an ALE address-latching signal may have hardware implications on some computers. On the Explorer it affected the system boot cycle. The remedy is to gate ALE with refresh signal RFUS using say a 74LS08 in the adaptor.

A more subtle difference is that the NSC800 clock output is 180° phase shifted with respect to ALE and read strobe RD. Again this may have hardware implications. On the Explorer, which supports an S100 bus, ALE and CK signals are gated together and so the phase shift has to be removed. Using the original adaptor, the clock signal can be passed through a spare inverter on the L5240 i.c.

There is a yet more subtle difference in the length of write strobe WR. On the 8085 this lasts for three T states whereas on the NCS800 it only lasts for two. It was necessary to introduce a wait state on the Explorer to ensure sufficient time for memory write operations. This was simply a matter of closing a link, but it may not be so easy on other computers. Having overcome these problems, my computer is now satisfactorily running Z80 software.

T. Sumner
Orpington Kent

NiCd battery charging

Rod Cooper’s articles in the May and June issues showed the problems of reverse charging in sealed NiCd batteries. This circuit is designed to reduce these problems in a cheap and effective manner.

To other similar cell pairs in series to form battery

In a battery, the cells are grouped in pairs as shown. Normally the combined cell voltage keeps TR1 switched on. If voltage falls below 1.3V—which is equal to two diode voltage drops and one cell voltage—then TR2 turns off. The voltage across one cell cannot become negative.

Optional diode D1 allows other cells in the battery to function when this cell pair has cut out.

About 0.1 to 0.3V is lost in the circuit due to VCE(ON) TR2. In addition, current passes through R1 even when the battery is not in use. Values shown give about 12A leakage current and 10mA load current.

Michael Robertson
Oxford

Five-decade oscillator uses one op-amp

A chopper-stabilized op-amp, the ICL7650, replaces two op-amps in a previously described circuit* to provide a simple five-decade oscillator, whose frequency is set using only one potentiometer. Output of the circuit is a squarewave.

The i.c’s internal oscillator squares output of a variable frequency range ramp generator consisting of C2 and a variable current source. Sawtooth output at pin 10 of the op-amp is directed to the internal oscillator input at pin 13 and a pulse-train output is taken from pin 12.

Kamil Kraus
Rokycany
Czechoslovakia

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
THE GOULD OS300
DUAL-TRACE 20MHz 'SCOPE

The OS300: as tough as the environment you use it in, e.g. measuring vibration characteristics of rotating machinery and mechanical structures on site.

A tough, professional instrument you can trust – at a price you can afford! Built to do more – safely, reliably and longer.

Complete with a 2-year guarantee. This robust and highly portable oscilloscope has obvious applications in test, production, service and R & D areas.

As some of the specification highlights make clear: * True 20MHz operation – compare its maximum display amplitude at full bandwidth with competitors;
* Continuously variable amplifier sensitivity with no loss of bandwidth from 2mV/cm to 25V/cm;
* Differential measurements can be made using the channel 2 'add' and 'invert' controls;
* X-Y operation for frequency and phase shift measurements;
* New type CRT with quick-heat cathode to reduce operational delays and P43 phosphor for a brighter display.

And many other features designed specifically for you!

CIRCLE 86 FOR FURTHER DETAILS.

Comprehensive data is yours for the asking. On this tough little 'scope.

Gould Electronics Ltd, Instrument Systems, Roebuck Road, Hainault, Essex IG6 3UE. Telephone: 01-500 1000 Telex: 26375.
The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The preceding articles have been written with this final one in mind in that they have all contained a certain forward-looking element based on the continuation of existing developments. This may sound far from adventurous in relation to innovation but, as has been indicated throughout, such development programmes — given the right conditions, particularly of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.

The outstanding example here is, of course, afforded by the radar/television interchange and spin-off which was covered in the second article of this series, and which becomes a consideration of manning at all levels — can produce a series of inventions and sub-inventions which are not only of major significance in their own right but also in terms of spin-off in other areas.
Comparison of HOTOL with the US Space Shuttle is inevitable and major differences in basic technological philosophy can be seen as a result.

The first of these fundamental differences lies in the mode of take-off of the vehicle itself and the propulsion system associated with it. Taking the HOTOL case, with its horizontal take-off (and landing) it may be regarded as being a 'conventional' aircraft, which in many respects it is. Its configuration, not least of that the wings which are used, owes much to Concorde; and it is stated that the runways from which it would operate are of standard Concorde length.

For propulsion, a new departure is being made, with thrust being provided by a combination of air breathing and rocket engines to take the vehicle into Low Earth Orbit (LEO). This arrangement enables advantage to be taken of the free oxygen through which it is flying during its passage through the earth's atmosphere, and correspondingly to reduce the amount of liquid oxygen which would have to be carried for pure rocket (liquid hydrogen/liquid oxygen) propulsion. This forms one element in the design considerations which make vertical take-off unnecessary, an aspect which, know-how and background generally. This will be returned to later; but in addition to quoting Rolls-Royce on propulsion, British Aerospace gives three examples of major rocket projects for which the Group has had responsibility, together with two rocket engines -- Spectre and Stanor. The vehicles ranged from Skylark, a small 'sounding' rocket, developed originally by RAE, Farnborough, through Black Knight, a 10-tonne-thrust liquid-fuelled rocket, to the Blue Streak heavy launcher. As the first stage in a multi-stage European satellite launcher, Blue Streak "performed faultlessly in eleven firings". This project was abandoned in the late 1960s.

In turn, this specific statement of experience, extended over some twenty years for launch vehicles, leads to the systems work being undertaken in the interlinking fields of remote control, communication and data handling as required for unmanned working. The capability of the British Aerospace organisation, with the Rolls Royce contribution, is best illustrated by a straight quotation from the list given by the former in this connection: "Automatic and remote piloting control systems are already capable of handling ascent, in-orbit manoeuvring, payload deployment, re-entry and landing." It may be added that HOTOL is shown as being fitted with radar; and it does appear that the nose cone configuration would be basically the same as for Concorde.

It will be realised that any comparison of HOTOL with the Space Shuttle is bound to finish up with the question, "What advantage has the unmanned vehicle over the manned Space Shuttle, with its inherent capacity to stay in orbit for a period of some days and to act as a miniature space station?" The main substance of this question can be put in another way -- "What is the justification for preceeding with a project which has reached the end of its design development studies when no immediate application for it can be seen?"

Clearly, there are two mutually dependent main issues, technical and economic, which have to be examined in the light of the unknowns that lie ahead. Even from the outline descriptions it becomes evident that by virtue of this background of experience and know-how, combined with the innovative ability shown in the project studies, these problems will be found to have been anticipated in great measure as an integral part of the essentially forward-looking project work. Consequently there are good reasons for assuming that, with this anticipation, the long and damaging delays which can take place in the early stages of engineering development would be greatly reduced, if not virtually eliminated in many areas of the work. This is in view of the extent of the effort (both in human and material terms) which has to be deployed at this stage in such a programme, it can be assumed that a more than significant saving in cost would be achieved.

HOTOL has been called a low-cost spacecraft launcher by British Aerospace, and its strengths can be seen as a key phrase extending over the entire project. Thus going on from the R & D end of the studies just quoted, one looks at the engineering economics of the whole project, beginning with the advantages exhibited by unmanned, as opposed to manned, operation.

First of all, the space occupied by the human crew, and particularly by their 'life support' equipment, can be devoted to payload, and their individual weight penalties removed. This gain in payload capacity will be offset to a certain extent by the corresponding demands of the replacement remote-control equipment; but it would appear that these demands would be much less for the unmanned condition.

Although not strictly comparable, similar considerations apply to the economies effected by the use of combined air breathing and rocket propulsion in conjunction with a winged vehicle configuration to permit horizontal take-off and -- of equal significance -- to make single-stage-to-orbit possible. These techniques, as discussed earlier, take full advantage of existing practice; and, as in the case of Concorde, this applies with particular force to the electronically based systems engineering required.

Thus, with this background it is possible to give a two-part answer to the first question related to the Space Shuttle: a) On the economic side, the development costs of HOTOL, eventually fed into the operating costs, should be much less than for the Shuttle; while with the comparative lack of complexity in HOTOL both its initial (capital) and operating costs should be

In 1960 Britain made 60% of the world's shipping. Today it makes 3%. (Engineering Council, see panel)

Most critics agree that the British are still a nation of inventors but that their record for bringing their new ideas to fruition is increasingly open to question. The range of the criticism is wide and is far from baseless; but this series set out to show that a very different picture emerges when unique technological strengths, such as those built up over the years are taken into account. If "built up over the years" seems frightening in the context of invention and amid the glamour for University-based Science Parks, it is in the "total engineering power of the British" that the unique capability to exploit the new ideas exists.

To this view is strongly expressed, in extreme cases amounting almost to a counsel of despair. This can be seen, for example, in the recent Engineering Council advertisement where a group of pictures of a 'bowled-out' cricketer -- reproduced in this article -- and their captions carry a story of decline in varied UK industries.

These articles counter this with powerful examples, taken from the build-up of the aerospace industry, the full range of medical electronics, and one of the most telling examples, a computer-based process and control applications (July article). With the example of the CEGB's National Grid control complex, that article highlights the thrust of the series -- that the British have the power to develop their new ideas, and more significantly, to set up organisations which give complete flexibility to individual teams to work on their own projects.

Another major aspect dealt with is that of continuity which brings with it a climate of confid-
much less.

b) Bearing in mind the low-cost aspect, HOTOL offers a means of staying in space in a controlled orbit at an operating height of some 300 km and for a (typical) duration of 50 hours. While in orbit, satellites with a total mass up to 7 tonnes can be launched; and it is inferred that observational data can be acquired for real-time onward transmission or brought back to earth in recorded form. All this is done without highly trained specialists having to be exposed to the rigorous conditions encountered in space; and without massive ground (rocket-range type) preparation and operational facilities being required.

Thus, the final conclusion can be reached that, because of all these low cost features, "Several HOTOLs could be provided for the price of one Shuttle"; and that this means that the number of vehicles available for a given programme expenditure would be greatly increased so that, for example, quick follow-up action could be taken to gain immediate checks on suspect data. This is in contrast to the more widely separated 'appearances' of the Shuttle, with the factors contributing to this including a much more lengthy turnaround time in addition to the comparatively large cost of setting up a single mission.

Comparative figures for the two types of operation are a reduction in cost by a factor of five for sending HOTOL into low earth orbit; while even for geo-synchronous launches a reduction of 50% is claimed for the unmanned operation. In this connection it is also claimed that HOTOL would be able to compete realistically for some three quarters of commercial market demands as predicted for the year 2000 onwards.

This reference to the year 2000 serves to introduce the concept of HOTOL becoming a manned aero-space plane for the 21st century; information on these studies having been issued at the end of May 1985. (The comparative figures quoted above are taken from this source, and are obviously based on up-to-date — confirmed — surveys.)

The salient features of this striking project for a 'Transatmospheric Skyliner' are:

- The installation of a capsule-type passenger compartment in the payload bay with conventional airline seating for about 30.
- Retention of all elements of the basic HOTOL design as described for unmanned operation. Provision was made for both manned and unmanned operation right from the outset as part of the original concept.
- Forward looking plans for ultra-high-speed passenger service with the main section of the flight consisting of a ballistic trajectory outside the earth's atmosphere, with a powered climb to this path reaching a maximum of Mach 5, and with a corresponding descent path to landing after re-entry. The possibilities offered for the future by this flight pattern are spectacularly illustrated by the proposal for a one-hour service from London to Sydney (overhead to overhead in 45 minutes).

With this background, and reverting to the original composite question, it can be said that, as compared with the Shuttle, HOTOL would appear to offer a more flexible and a lower cost service for launching satellites and for similar tasks. On the other hand, at the present time the Shuttle stands alone in providing its re-usuable Space Station facility; and the importance of this and the pioneering work that went into it cannot be over-emphasized.

These innovative studies are of special interest to all R & D engineers with management of a project where more than one branch of technology and several separate interests are involved. The HOTOL studies, with their comprehensive documentation, and with their interlinking with Concorde in particular, give an inside picture of the way in which advances are made, and consolidated, in a large, multi-team, high-technology project. A similar picture has been built up for other comparable UK projects, notably for the CEBG in Big-system automation and telemetry (Article 5); and the work of that authority enters into the next section — on continuity.

However, there are two aspects of the aerospace total study which have made it uniquely suitable for this article, both strongly related to the future.

The first is that, although conducted as a pure research exercise, its content has been predominantly practical, outstandingly with regard to 'spin-off'. Spin-off, in its widest sense, and contributing to a number of major technologies within the aerospace context, represents what is perhaps the greatest strength of this multi-team project. It certainly justifies the approach which has been adopted and which has resulted in the informed and coordinated built-up of background of mutual benefit to, for example, the aerospace and electronics/control engineers concerned. This does, of course, correspond with the interchange and 'spin-off' shown with radar and television (Article 2) which developed in Great Britain even before World War II.

For this comparison, it should be pointed out that the spread of technologies is much greater for the aerospace concept — both radar and television are essentially electronic in character. Consequently, spin-off and mutual support extend over a much larger number of fields in the aerospace case. In turn, this means that shutting down an individual project of this nature will affect many others which are being supplied with information or with results from it on which they may well be utterly dependent. There is no need to stress the seriousness of such knock-on consequences, quite apart from the loss in national terms which comes from the break-up of an
The micro-project

Throughout this series it has been possible to show that there is an enormous fund of technological knowledge and experience which can be found in Great Britain at the present time and at all engineering levels. Moreover it has been possible to show that the British retain the power to set up organizations capable of handling the largest projects right from initial development to full exploitation of the original idea or group of ideas on which the project has been based.

However, it is felt that, although these examples have given a representative picture of the way in which these projects are run and of the British expertise in such fields, this capability should be examined in relation to a project which is very much in the future.

The 'macro-project' which has been selected for this purpose is entirely hypothetical; but the circumstances which surround it are far from hypothetical. They are the conditions of drought and consequent famine which are affecting much of the continent of Africa, and have proved of more than passing concern to the rest of the world. Expressed in utterly basic terms, the proposal is that this problem should be tackled at source with the primary task to provide water on a huge scale, first for human consumption and then for irrigation. Assuming breeder-reactor power would be available, the water would be obtained by evaporating sea water using nuclear power, and distributed by pipeline, perhaps initially by tanker. Each section of this plan would represent a development programme of unprecedented magnitude; but, on the other hand, need not be regarded as insuperable.

Power generation would probably have safety precautions as its biggest project engineering commitment; but there is no reason to believe that this and all the other steps into new design and development areas would be beyond the capacity of the UK, bearing in mind the record and achievements of the supply industry and that of the manufacturing side both at home and internationally. It is perhaps not out of place to refer to a visit to a geothermal station in the North Island of New Zealand where it was clear that a new technological world had not been found to present insoluble problems.

In the same way, pipeline 'transmission' of water over long distances can be seen in South Australia and in the west of the island continent where temperatures can reach values not dissimilar to those encountered in Africa.

Continued on page 64
ELECTRONICS

COUNTER TIMERS

The latest products in the Black Star range of quality test and measurement instruments.

Designed and manufactured in Britain

From £239 (+ VAT)

Colour leaflet with full specifications and prices available from:
BLACK STAR LTD, 4 STEPHENSON ROAD, ST. IVES, HUNTINGDON, CAMBS.
PE17 4WJ, ENGLAND.
Tel: (0480) 62440 Telex: 32762

CIRCLE 8 FOR FURTHER DETAILS.

BROADBAND CABLE T.V.
REPEATER AMPLIFIERS

Application other than Cable T.V. includes C.C.T.V. (up to 26 Channels 8MHz wide on V.H.F. Repeaters, and up to 65 Channels 8MHz wide on U.H.F./V.H.F. Repeaters). Suitable for outdoor mounting.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FREQUENCY RANGE MHz</th>
<th>GAIN dB</th>
<th>ATTENUATION MIN (%)</th>
<th>ATTENUATION MAX (%)</th>
<th>FREQUENCY TO 100MHz</th>
<th>TIME INTERVAL</th>
<th>SINGLE PERIOD</th>
<th>AVERAGE PERIOD</th>
<th>TOTALISE</th>
<th>STOP WATCH</th>
<th>RPM</th>
<th>FREQUENCY MULTIPLIER</th>
<th>LOW PASS FILTER</th>
<th>TRIGGER LEVEL CONTROL</th>
<th>SLOPE CONTROL</th>
<th>INPUT ATTENUATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSC100</td>
<td>40-300</td>
<td>10-30</td>
<td>9000-10000</td>
<td>9000-10000</td>
<td>25 dB</td>
<td>30 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC100M</td>
<td>40-300</td>
<td>10-30</td>
<td>9000-10000</td>
<td>9000-10000</td>
<td>25 dB</td>
<td>30 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC90</td>
<td>40-300</td>
<td>10-30</td>
<td>9000-10000</td>
<td>9000-10000</td>
<td>25 dB</td>
<td>30 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC90M</td>
<td>40-300</td>
<td>10-30</td>
<td>9000-10000</td>
<td>9000-10000</td>
<td>25 dB</td>
<td>30 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC660</td>
<td>40-300</td>
<td>10-30</td>
<td>9000-10000</td>
<td>9000-10000</td>
<td>25 dB</td>
<td>30 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC660M</td>
<td>40-300</td>
<td>10-30</td>
<td>9000-10000</td>
<td>9000-10000</td>
<td>25 dB</td>
<td>30 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19 inch Rack Mounting enclosures complete with chassis and top and bottom covers. Front, Side and Rear panels are aluminium and flat for easy machining. These panels are located with heavy duty aluminium extrusions. Front and Rear panels are satin anodised. Covers are finished in cream.

PRICES ARE EXCLUSIVE OF VAT. P&P £2.50.

CIRCLE 127 FOR FURTHER DETAILS.

Cambridge Kits
45(WX) Old School Lane, Milton, Cambridge. Tel 860150.

CIRCLE 17 FOR FURTHER DETAILS.

www.americanradiohistory.com
It's a whole new board game.....with our 7000 Series

Many operations and tasks are now possible through BASIC which could previously ONLY be accomplished in ASSEMBLER.

Based on the Intel 8052 (romable version of the industry-standard 8051) single-component Microcontroller, the CPU comes complete with BASIC Interpreter, Serial I/O and full support specifically for Industrial Control applications. Many unique features are incorporated and the system allows very fast interactive development of user software for super easy deployment in the target system.

Static MOS RAM boards (to 128k), Power down control boards, Decoder boards providing further address line decoding, watchdog, real-time clock/calendar, plus additional output flags and I/O. Max times device backplanes, PSU and battery packs. Drive boards offering power output, pulse generation, or externally gated outputs. Multi-channel expandable ADC, Remote switch units for power, sound or V.I.S. of vision

For Industrial Control or Data Acquisition at board, sub-system or turn-key level we offer inexpensive solutions and professional implementation.

CPU BOARD FEATURES
- 11 MHz + Clock
- Hardware Timer Facilities.
- Full Floating Point Arithmetic.
- 9 x 8-Bit 1/0 Ports as standard.
- Very Fast Tokenised Interpreter.
- 8K RAM Plus 16K User ROM on-Board.
- Interrupts Handled by BASIC or ASSEMBLER.
- Single Ended Power Supply (+5V Only Required).
- Complete with EPROM/Programming Facilities.
- BASIC Utilities may be called from ASSEMBLER.
- Serial Communications on Board (EIA, RS232) Plus printer Port.

Cavendish Automation
45, High Street, St. Neots, Huntingdon, Cambridgeshire, PE19 1BN
Telephone: 0480 219457 Telex: 32681 CAVCOM G
CIRCLE 108 FOR FURTHER DETAILS.

Sowter Transformers

With over 45 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitters/Combine: transformers Input and Output transformers, Direct Injection transformers for Guitars. Multi-Secondary output transformers, Bridging transformers, Line transformers. Line transformers to B.T. Isolating Test Specification, Tapped impedence matching transformers, Grainphone Pickup transformers. Audio Mixing Desk transformers (all types), Miniature transformers. Microminiature transformers for PCB mounting. Experimental transformers. Ultra low frequency transformers. Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts. Inductive Loop Transformers. Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a specialty and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

E.A. Sowter Ltd.

Manufacturers and Designers

The Boat Yard, Cuddington Road, Ipswich IP1 2EG. Suffolk
P.O. Box 36, Ipswich, IP1 2EL, England
Phone: 0473 52794 and 0473 219390
Telex: 89703 Sowter

CIRCLE 117 FOR FURTHER DETAILS.

TEST EQUIPMENT

Hewlett Packard 131A Mainframe with 1415A TDR Plug-in	£260
Hewlett Packard 1410A & 1425A Sampling Plug-ins (pair)	£100
Hewlett Packard 6521A 1000V 200MA Variable Power Supply	£250
Hewlett Packard Microwave Link Analyzers 3701/3702	£485
Hewlett Packard 3707 RF Unit Mainframe	£100
Hewlett Packard 214A Pulse Generators	£150
Hewlett Packard 1600A Logic Analysers with pods	£295
Hewlett Packard 1615A Logic Analysers with pods	£350
Hewlett Packard 1640B Serial Data Analyzer	£1350
Hewlett Packard 1417/8526B Spectrum Analyser System	£4950
Hewlett Packard 1417/8552A Spectrum Analyser System	£4950
Hewlett Packard 86230A 2-4GHz Swept Plug-in	£295
Systron Donner 6244A 4GHz Frequency Counter	£695
Tektronix 4605B 75MHz Oscilloscope	£565
Tektronix 184 Time Mark Generator	£75
Tektronix 191 Constant Amplitude Generator	£75
Tektronix 106 Pulse Generator	£60
Tektronix TX504 Mainframe with DC503/FS503A/FS502/DS502	£1095
Tektronix MS58 Sampling Oscilloscope with 375 & 351 Plug-ins	£150
Sorensen 300V 3A Metered Power Supply Unit	£125
Sorensen 300V 1.5A Metered Power Supply Unit	£75
Sorensen 600V 75A Metered Power Supply Unit	£75
Philips 150V 3A Metered Power Supplies	£75
Cauton 24V 10A Power Supplies	£30
Cauton 24V 2A Power Supplies	£12
Lyons PG2-E Pulse Generator	£50
Systron Donner Pulse Generator 100A	£60
Telequipment D75 50MHz Oscilloscope	£265
Wayne Kerr B641 Autobalance Digital Bridge	£250
Bomation K100 Logic Analysers with pods	£1500
Biomation X-Y Display	£75
Narda E1A18 Attenuator Calibrator	£175
Philips PM 5770 100MHz Pulse Generator	£95
Tektronix Amplitude Calibrator	£40
Electrohome 10" X-Y Monitors (B & W)	£15

All equipment working and calibrated.

VAT and carriage extra.

TIMEBASE TELQ

94 Alfiston Gardens, Shoaling, Southampton S02 8FU
Telephone: (0703) 431323

CIRCLE 136 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985

www.americanradiohistory.com
68000 board

The £100 Kaycomp — Bob Coates, 68000 computer board for engineers, students and enthusiasts — is developed using a terminal and takes a G64 bus interface.

Kaycomp is a low cost computer board using a Motorola 68000 microprocessor with 16-bit data bus. It is designed for use either as an evaluation/educational tool or as the processor board of a larger system, connecting to a wide range of readily available peripheral cards through its G64 interface bus.

Programs can be entered using a terminal to gain access to Kaycomp’s 23 function monitor program Kaybug. There’s also an optional line-by-line assembler available to speed up program development. Alternatively, the board also links to a host computer with assembler/compiler facilities. Communication software is included in the monitor program.

The 68000 microprocessor has a 32-bit internal structure. Eight data and seven address general-purpose registers are available to the programmer, all 32 bits wide. Its external address bus is 24 bits which gives a linear address range of 16 megabytes. Fig. 1. Evaluation kits for the original eight-bit 68000 i.c.s were available for around £150. There is a similar kit for the 6809 microprocessor but it was not introduced in the UK. For the 68000 microprocessor, Motorola produce a design module costing £1500 — a tenfold increase over the price of a 68000 evaluation kit.

Of course the 68000 design module is a far more complicated product than its older equivalents and designed to allow evaluation on a wide scale. In many applications though this complexity is not necessary and there is certainly a need for a low cost evaluation system.

I designed Kaycomp so that it could be built in its basic form for under £100. In this form it has two RS232 serial interfaces and general-purpose i/o lines provided by a 68681 i.c.s, a monitor eprom, a small ram and a full 16-bit 68000 i.c. When expanded, the board has 128Kbyte ram, 64Kbyte eprom, two serial interfaces, a 68230 peripheral i/o device and a bus interface which allows connection to standard peripheral cards.

Large systems nowadays can have many processors and direct memory access controllers working together on the same bus to multiply processing speed. I considered that this feature was not essential to learning about and evaluating the processor and leaving it out saved a lot of peripheral logic. If you are interested in the type of work that requires multiprocessing, £1500 won’t normally be a problem.

An external bus interface probably isn’t essential for training and evaluation either, but I included one to increase the usefulness and versatility of the board. VME bus is the obvious choice for a 68000 processor board but the cost of implementing it is very high. To illustrate, one manufacturer produces a single Eurocard wire-wrap board for prototyping containing just VME interface chips for £600.

My choice was the European G64 bus designed for Motorola eight-bit processors. The interface circuit consists of just three t.t.l. devices. G64 is probably the best supported eight-bit Eurocard bus, with over 200 different cards available from many different manufacturers, but it is not well known in the UK yet. The main UK manufacturer is Syntel of Huddersfield which produces a wide range of processor and peripheral cards, back planes, rack systems, etc.

Kaycomp overview

Figure two illustrates the system. Kaycomp in kit form is double-Eurocard sized, measuring 234 by 160mm, and its p.c.b. is double-sided but to keep costs down, it is not plated through as a board of this complexity normally would be. Layout is however for a plated-through p.c. board which means that some soldering on the top side of the board is necessary. Sockets for i.cs must allow soldering on the component side too.

In order to keep costs down, some systems use a reduced-bus version of the 68000, the 6808, which although internally the same as the 68000 only has an eight-bit data bus and a 20-bit address bus. I decided against using this version. The board accepts either the 68000 or an enhanced version, the 68010, running at up to 10MHz. The 68010 is a virtual memory version of the 68000. This feature cannot be used with Kaycomp, but the 68010 also executes some instructions faster and has some extra ones too.

Memory consists of two eprom and two ram sockets. Two of each byte-wide memory are required to give a 16-bit data width. Links allow eproms with standard

Our front cover shows the 68000 board in its fullest form with G64-bus interface — this is the basic version.

by R.F. Coates

Fig. 1. The 68000 has a 24-bit external address bus giving an address range of 16Mbyte.
 configuration, assemblers

![Fig. 2. Kaycomp uses a full 68000 processor and two peripheral Ics from the same family. Using these instead of more common 6800 peripherals means higher performance and increases the board's value as an evaluation tool.](image)

JEDEC pin configurations from 2732 to 27512 to be fitted, giving a range from 8 to 128Kbyte. Note that not all larger eproms conform to the standard pinout, notably those from Mostek.

Ram sockets currently accept either 2 or 8Kbyte static rams, i.e. either 6116 or 6264, to give either 4 or 16Kbytes. The board is laid out to accept 16 and 32Kbyte devices for when monolithic Ics become available, which will give up to 64Kbytes of ram. Hybrid 16 and 32K devices are available now but they tend to be expensive. Reasonably priced hybrid 32Kbyte rams consisting of four small-outline 6264 Ics on a ceramic substrate are produced by Digital Memory Systems, the DMS6832-15PC, and by Hybrid Memory Products, the HMS 62832.

To allow programs to be developed and written on the board, there's a monitor program which fits into two 2732 eproms. This monitor, Kaybug, requires connection of a separate RS232 terminal. If a terminal is not available, many home computers such as the BBC microcomputer have an RS232 port and can be made to act as a dumb terminal. With this in mind, the monitor program can easily be set to produce either a 40 or 80-column display by a keyboard command.

A second RS232 serial port on Kaycomp can be used to connect the board to a host development system or mini/microcomputer. Both RS232 ports come from a 68000 peripheral Ic, the 68681 dual asynchronous receiver/transmitter or duart. The 68681 internal oscillator requires only a 3.6864MHz crystal. A cheaper 3.579545MHz American colour tv crystal will suffice; data rates will be a little out but still within the required tolerance.

For full-speed operation, the processor requires a separate 8MHz crystal clock but if speed is not important, the duart 3.6MHz clock may be used. If you need to use the serial port in an application, there's another version of the monitor program available which allows you to develop programs through an external G64 dual serial port card.

Parallel input/output is provided by another 68000-family Ic, the 68230 peripheral interface/timer. This optional Ic is not used by the monitor and all of its facilities are available for user applications and evaluation.

Finally, there's the optional G64 bus interface which consists of three t.t.l. bus-interface Ics. There are two sections in the G64 bus memory map, one for memory addresses and the other for peripheral addresses. The peripheral area consists of a 1Kbyte block somewhere in the memory map which is decoded on the processor board. Valid peripheral addresses are denoted by assertion of the VPA signal, which is not to be confused with the 68000 signal of the same name.

On Kaycomp, the G64 bus is provided solely for the addition of peripherals. The on-board memory is potentially quite large and capable of operating at much higher speeds than would be possible with memory operating through the interface bus.

Monitor software

Kaycomp's monitor program Kaybug allows you to enter and debug programs and exercise all the facilities on the board. Commands allow you to display/alter memory, set breakpoints and run or single-step trace through programs. Registers can also be altered. Kaybug contains all of the usual monitor features.

At a basic level, Kaybug allows programs to be hand written and typed into memory from a simple terminal using the 'memory open' command. There is an optional line-by-line assembler to simplify this job. If a home computer is used source code can be written, edited and stored using the computer's facilities. When ready, the source code can be sent for processing by the Kaybug line assembler. Object code is then produced and loaded into ram as each line is entered.

If you have a development system or development facilities on a micro or minicomputer, the second serial port allows program transfer. Kaycomp is then effectively connected in the terminal line from the host computer as shown in Fig.3.

One Kaycomp command allows the board to become 'transparent', i.e., the terminal communicates directly with the host computer as if the board did not exist. Programs can then be written and assembled or compiled in a high-level language according to the 68000 program development software available on the host computer. Another monitor command allows resulting object code to be loaded into Kaycomp's memory in Motorola S-format ready for running. The procedure may vary slightly depending on the host system used but this is a common way of developing programs.

Alternatively, a computer with 68000 'cross-software' can be made to act as both a terminal and development system, Fig.4. A monitor command allows object code to be loaded through the terminal port; the host port is not used.

Before you can understand the

Electronics & Wireless World October 1985
circuit, you need to know a little about the 68000 processor. Fig. 5. More detailed descriptions are given in the Motorola Data Manual and the MC68000 Microprocessor User's Manual.

About the circuit

Clock drive. The clock input is a t.t.i. compatible signal which is internally buffered for development of the processor internal clocks. There are 68000 processor versions with clock speeds from 4 to 16MHz faster versions are expected.

Address/data buses. These two buses are fairly straightforward. There are 16 data lines and 23 address lines but there is not an external A1 address line. Addresses are considered as being byte sizes, i.e. eight bits, and although A4 is used internally, the address bus is only capable of generating even-number addresses.

Asynchronous bus control. Bus control is a little different to that of previous eight-bit processors in that bus transfers between the processor and memory/peripherals are asynchronous.

On the 68000 for instance bus transfers are controlled by a synchronous timing signal E. This is an equal mark/space ratio signal upon which all bus timings are based. In the case of writing to memory the processor sets up the address bus and read/write signal in the first (low) half of the bus cycle and sets up data to be written in the second half. At the end of the cycle, the E signal releases and data is latched into the memory.

When reading, the processor presents memory with the address and expects it to have data ready on the bus by the time that the E signal falls to latch the data bus into the processor. This means that the system designer must make sure that memory or peripherals used are capable of operating at the speed required by the processor or, more likely, that the processor clock speed is slow enough to suit the slowest device in the system.

In the 68000, this problem is overcome by using asynchronous bus transfers. The processor sets up the bus in the same way, but it then asserts an address signal called AS and holds the bus until it receives a data transfer acknowledgment, DTACK, back from the memory or peripheral. DTACK signals from the various system elements are wire-or'd together before entering the processor. This ensures that each part operates at its highest speed.

Peripheral i.c.s in the 68000 family produce the DTACK signal but extra circuits are required for this if peripheral devices from other families are used.

Accessing bytes. No A0 address line is available so some means of implementing byte read/write operations is required. Two signals handle this, upper data strobe UDS for even byte locations and lower data strobe LDS for odd locations. For a normal 16bit word transfer, both signals are asserted.

Figures six and seven summarize the various bus transfers. Figure six shows a read and then a write cycle with no wait states inserted. After setting up the address bus the processor asserts AS, UDS and LDS and then waits for DTACK which it responds to by releasing the three signals. At that point, the addressed device must also release DTACK. If a slow device is addressed, it can be seen that wait states are inserted by the processor after S4 until DTACK is received. Figure seven shows the action of UDS and LDS when addressing bytes.

68000 peripheral i.e. accesses. Asynchronous bus accesses work fine with 68000 peripheral i.c.s but not with the wide range of 68000 peripherals which do not generate DTACK. There are three control pins on the 68000 especially for 68000 peripherals.

If the address decoding circuit asserts valid peripheral address signal VPA instead of DTACK, it indicates to the processor that the device or region addressed is a 68000 family device. The processor then executes the rest of the bus cycle synchronized to a 68000 type E signal as described earlier. It acknowledges this fact by asserting low the valid memory address output, VMA, which is gated with the device’s chip select signal.

The 68000 E signal, with a 40:60 mark/space ratio rather than 50:50, is at one tenth of the clock signal so a processor operating at 10MHz can access 1MHz 68000 peripherals. A synchronous bus access results in a somewhat slower cycle than is possible with asynchronous transfer.

Interrupt control. Seven levels of interrupt can be provided for, which ideally would mean seven interrupt pins. To save on pins though, the seven interrupt levels are turned into three-bit binary, the eighth value, all pins high, indicating no interrupt. Normally, these three pins are fed directly from the three possible interrupt sources. Hence only three interrupt levels can be used, one, two and four.

When servicing an interrupt, the 68000 fetches an address from a vector and continues processing from that address. There are two types of interrupt vectoring, though, ‘auto-vectored’ which is similar to that of the 6800, and vectored, where the interrupting device provides a vector number on the data bus in response to the processor executing an interrupt acknowledge
Fig. 7. Action of upper and lower data strobes UDS and LDS used when addressing bytes. These strobes are needed because the 68000 has no address-line zero.

Cycle. This allows different interrupting devices on the same interrupt level to be serviced by different service routines without polling, which saves time.

Processor status. When processing an interrupt the processor places a unique code on status lines FC0/1/2 of all ones, which is used by Kaycomp to generate an interrupt acknowledge signal, IACK. This signal lets the rest of the board know what is happening. Other states are indicated by the status outputs, Fig. 8, but only interrupt acknowledge is used on Kaycomp.

System control. Three signals constitute the system control section, bus error, reset and halt. Bus error, BERR, is not used on Kaycomp. It has two main functions. First, I mentioned earlier that bus cycles are terminated with DTACK. If the circuit does not send this signal, if for example access to non-existent memory location is attempted, the processor stops. A way around this is to have a hardware time-out circuit which generates a bus-error signal if DTACK is not asserted within a given period. A bus-error signal causes exception processing to allow an orderly recovery — hopefully.

The second use of BERR is in conjunction with HALT. If both are asserted together the processor will attempt to rerun a previous, failed, bus cycle in the hope that it will work the second time. This can be significant in terms of reliability if the processor is controlling say a large plant, but omission of this feature on Kaycomp will probably go unnoticed. If you attempt to access a non-existent location, you'll have to press the reset button.

The HALT pin is bidirectional and the processor can drive it low to indicate a double bus error. Bidirectionality also applies to the reset pin. A reset instruction executed in software causes the reset pin to be driven low for 124 clock periods. All peripheral devices connected to the RESET line are reset.

Taking RESET low externally will have the same effect on peripherals but it will not affect the processor. To reset the processor fully, at power-up for instance, both RESET and HALT must be taken low together externally. If the HALT line is taken low on its own, the processor is held in its current state until the line is released.

Bus arbitration control. Three pins, bus request, bus grant and bus grant acknowledge (BR, BG and BGACK) make up this section. These deal with multi-processor/d.m.a. functions which are not available on Kaycomp.

Bob Coates gives a more detailed description of the circuits in his next article.

Fig. 8. Function codes indicating the state and cycle type currently executing. These outputs are valid whenever the address strobe is active (low).

<table>
<thead>
<tr>
<th>Function code output</th>
<th>Cycle type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC2 FC1 FC0</td>
<td></td>
</tr>
<tr>
<td>Low Low Low</td>
<td>(Undefined, reserved)</td>
</tr>
<tr>
<td>Low Low High</td>
<td>User data</td>
</tr>
<tr>
<td>Low High Low</td>
<td>User program</td>
</tr>
<tr>
<td>Low High High</td>
<td>(Undefined, reserved)</td>
</tr>
<tr>
<td>High Low Low</td>
<td>Supervisor data</td>
</tr>
<tr>
<td>High Low High</td>
<td>(Undefined, reserved)</td>
</tr>
<tr>
<td>High High Low</td>
<td>Supervisor program</td>
</tr>
<tr>
<td>High High High</td>
<td>Interrupt acknowledge</td>
</tr>
</tbody>
</table>

The kit p.c.b. is not a plated-through type; this saves money but requires use of turned-pin i.c. sockets.
HAMEG

MORE THAN JUST ONE STEP UP

HM208 £1300.
Dual Trace, Digital Storage 2mV – 20V/cm
20 MHz Bandwidth Algebraic Add, Invert
X – Y, 4 x 1k Stores, 20 MHz Clock,
Roll, Refresh, Pre-trigger

HM605 £515.
Dual Trace 1mV – 20 V/cm
60 MHz Bandwidth Algebraic Add, Invert
X – Y, Single Shot Delay Sweep,
Var Hold-off Component Tester, 14kV CRT

HM204-2 £365.
Dual Trace 1mV – 20 V/cm
20 MHz Bandwidth Algebraic Add, Invert
X – Y, Single Shot Delay Sweep,
Var Hold-off Component Tester

HM203-5 £270.
Dual Trace 2mV – 20 V/cm
20 MHz Bandwidth Algebraic Add, Invert
X – Y Component Tester
2 Year Warranty
Prices U.K. list ex. VAT

HAMEG
FOR THOSE WHO COMPARE
74-78 Collingdon St. Luton, Beds, LU1 1RX
Tel: (0582) 413174 Telex 825484

CIRCLE 134 FOR FURTHER DETAILS.

IQD—
The world shrinkers

IQD's state-of-the-art DTMF signalling technology now
brings you Smartpatch 5700, which allows you to dial
direct into the telephone network while you are on the
move, and to accept incoming calls regardless of your
location.

Smartpatch 5700 is the only intelligent tele-
communications interconnect system with British
Telecom approval.

Smartpatch 5700 complements IQD’s extensive range of DTMF
products, which includes the
Codepad, Micropad
and Selcall devices.

IQD keeps you in touch.

IQD COMMUNICATION DEVICES

CIRCLE 12 FOR FURTHER DETAILS.
A Selection from Our Stock of Branded Valves

<table>
<thead>
<tr>
<th>Brand</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS</td>
<td>6SN7GT</td>
<td>250.00</td>
</tr>
<tr>
<td>ACCESS</td>
<td>6N7GT</td>
<td>2.50</td>
</tr>
<tr>
<td>BARCLAYCARD PHONE</td>
<td>6SN7GT</td>
<td>2.50</td>
</tr>
<tr>
<td>BARCLAYCARD PHONE</td>
<td>6N7GT</td>
<td>2.50</td>
</tr>
<tr>
<td>FOR</td>
<td>6SN7GT</td>
<td>2.50</td>
</tr>
<tr>
<td>FOR</td>
<td>6N7GT</td>
<td>2.50</td>
</tr>
<tr>
<td>M5143</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>M537A</td>
<td>156.00</td>
<td></td>
</tr>
</tbody>
</table>

TELEX 966371 TOS—PM

PHONE 0474 60521 4 LINES

P. M. COMPONENTS LTD

SELECTRON HOUSE, SPRINGHEAD ENTERPRISE PARK

SPRINGHEAD RD, GRAVESEND, KENT DA11 8HD

WE ARE MOVING ON 1ST JULY 85 TO OUR NEW AND IMPROVED PREMISES

CATHERC WELCOME

ACCESS & BARCLAYCARD PHONE

ORDERS P&P 50p PLEASE

FOR

CIRCLE 50 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985

57
Case study in interface design

Development of the Syscon 6 interface for using Commodore peripherals with a BBC computer illustrates the sometimes overlooked ratio between software and hardware design effort.

It is a popular misconception that microcomputer interfaces are a complex plug and socket and that their design time is equal to the time taken to make the necessary electrical connections.

The Oxford dictionary describes an interface as an area of interaction between two systems. This wider definition becomes more applicable as systems grow in complexity, particularly when distributed processing is involved. As the area of interaction grows, emphasis moves from interface hardware to interface software; this description of the design of Syscon 6 is an illustration of this trend.

Syscon 6 allows Commodore disc drives and printers, now often found collecting dust in educational establishments, to be used with the BBC microcomputer. Firmware makes sure that the user does not notice any difference between using the Commodore peripherals and the disc-drives and printers normally used with the BBC computer. The resulting interface software gives increased data storage capacity, data security and flexibility.

There are two separate interfaces in Syscon 6; both can function concurrently as data is transferred to and from the disc in blocks and to the printer a line at a time. Firmware for the printer interface allows Commodore printers to print a normal upper and lower case character set.

Commodore disc-unit design

To appreciate the design of the disc interface, CDISK, one needs to understand both the Commodore disc unit and the BBC computer disc filing system, the d.f.s.

Over the years, Commodore has produced a variety of disc units, all designed as intelligent subsystems with two microprocessors. One processor unit, described as the file-interface controller, handles communication with the host computer through the IEEE488 interface. The second processor acts as a disc controller. The processors communicate through 4Kbyte of shared memory used for data data buffering and operating-system work space.

The Commodore disc operating system, or dos, is in the disc unit. All versions support primitive direct-access commands such as those for reading or writing a block of data, and later versions support a relative-record filing system. However, random-access filing systems have always had to be supported by application programs running on the host computer.

Discs are formatted such that outer tracks have more sectors than those closer to the centre. Tracks are reserved for a directory of files and a block-allocation map, or bam. The dos includes error-checking, e.g., read-after-write verification.

Disc operating system commands are sent by the computer to the disc unit as strings of Ascii characters. When a dos command has been executed an error-status message, also a string of Ascii characters, can be read by the computer.

BBC computer d.f.s. design

The BBC-computer disc filing system is totally integrated into the main computer. An 8271 disc controller is used with software in a 'paged' rom. This simple but effective design results in rapid data storage and retrieval. Discs are formatted with ten sectors per track which gives 100Kbyte per side for a 40-track drive or twice that for an 80-track one.

There are two distinct areas of interaction between the BBC computer operating system and the d.f.s. The obvious one is the command-line interpreter. After the d.f.s. has been selected by *DISC, other commands such as *BACKUP, *COPY, etc., are passed by the operating system to the filing system for interpretation and execution.

The less obvious interface is used by languages and application programs written in assem-
bly-language. These make use of seven specific operating-system calls for reading/writing data bytes, filing information etc., and 'CDISK' for dynamic allocation.

Data in a disk file is always stored contiguously. To retrieve a file, the only information required is the file start sector and length. Disadvantages of this storage method are that disk surface faults cannot be tolerated and that frequent file writing and deletion can cause empty gaps between files. To fill the gaps, a *COMPACT command has to be used.

The first two sectors on the disc's first track hold d.f.s. catalogue information. Only having two sectors limits the number of files per disc side to 31 and file names to seven characters, which can be irritating. All files are treated by the d.f.s. as a sequence of bytes. Extremely fast random access filing is achieved by using a pointer.

CDISK interface design

After studying the Commodore dos and Acorn d.f.s. it was possible to draw up the Syscon 6 CDISK filing-system specification. CDISK would have to have all the facilities of the Acorn d.f.s. and, to be of use in educational establishments, it would have to be capable of transferring programs written on a BBC computer with the Acorn d.f.s. to a computer with CDISK without modification.

Commodore dos only fully supports sequential files, so most of the design effort went into a random-access capability for CDISK. Following aspects of the disc unit design were carefully considered.

Data transfer speed between the host computer and disc unit is limited for two reasons; the disc unit uses software for IEEE488 source and acceptor handshakes, and disc commands are sent as Ascii character strings rather than as a sequence of binary bytes. However, as the disc unit is an intelligent subsystem, the number of commands needed is reduced. Some operations, such as formatting a disc and searching for named files require only a single command.

We considered that the effects of limited data transfer rate on data storage/retrieval time could be reduced by intelligent caching and optimization. This was achieved by buffering in the host computer and transferring data to the disc unit in blocks.

Efficient filing system operation depends on how data storage is organized on the disc. After considerable thought, we chose the following method. CDISK catalogue information, load address, execution address, etc., is stored in a dos sequential file.

These sequential catalogue files are referred to by an extended file name which CDISK pads to 14 characters using spaces. The file name is preceded by the CDISK directory character and followed by a space if the file is unlocked or an 'L' if the file is locked. Each catalogue file contains up to eight two-byte track/sector pointers to blocks which, in turn, contain up to 128 two-byte track/sector pointers to the data blocks. Thus the maximum size of a CDIFS file is 8*128 blocks or 256Kbytes, provided that the drive can hold that amount.

During operation, CDIFS maintains a pointer for each open file which points to the next byte to be read from or written to. CDIFS determines the data track/sector list block, the data block and the position of a byte in the data block from the pointer.

Commodore dos sequential filing system commands and facilities are used to locate and update the catalogue file while direct-access commands are used to read and write data track/sector list blocks and the data blocks themselves. The dos block-allocate allocation map, baa, is automatically updated during sequential file allocation. By using dos block-allocate and block-free commands during read and write operations, CDIFS ensures that the allocation map is kept up to date, avoiding conflict between sequential and direct-access operation.

General catalogue information is stored by CDIFS in a sequential filing system.

The drive type is used to avoid dos directory tracks and determine data-block size. CDIFS formats a disc using the dos NEW command and then writes the system files to it. Backup is carried out by formatting the disc in the destination drive and then copying each file in turn from source to destination.

DOS read-after-write verification identifies a bad block and CDIFS then excludes it from further use, allocates the next free block and repeats the write operation. The interface system is flexible in operation as the sequential catalogue files, data track/sector list blocks and data blocks can be stored anywhere on the disc, allowing a file to be extended at any time. Optimal use of disc space is made as blocks are only allocated as required and freed when not.

The maximum number of files on the disc is limited only by the disc directory capacity and ranges from 151 to 224, depending on the disc-unit model.

CDIFS operation

This is how a file is created and written to using CDIFS.

Opening the channel. This is done in response to an OSFIND call normally resulting from use of a Basic OPENOUT function. CDIFS first checks availability of an open channel, checks file name validity and checks that there is no previously opened channel to a file of the same name. It then reads the system file if there are no channels already open to the same disc. During this operation, the disc is initialized if necessary and the write-protection state is determined. Next, CDIFS determines whether the file exists, and if so, checks that it is unlocked and deletes it. Lastly, it writes the default catalogue file on disc to reserve space.

Reading and writing data. To increase speed, CDIFS maintains two buffers for each open file in the computer memory. The first contains a section of the data track/sector pointer block and the second a data block. Whenever the pointer crosses a data-buffer boundary, the data block is written to disc. In the same way, whenever the pointer crosses the boundary of a data track/sector, the data track/sector pointer block is written to disc. The least-significant pointer bits specify the next position in the data buffer to be written to. After each write operation, the pointer is updated.

Closing the file channel. Here, the CDIFS writes any valid data and data track/sector buffer to disc then erases the default catalogue file and writes the current catalogue file. Lastly, it erases the current system file if no other disc write channels are open.

Having decided how data was to be organized on the disc and determined filing-system operation, the software design could be completed. The software sections are clearly defined. There are two interfaces to the BBC computer machine operating system (mos). First is the padded-ROM interface which handles auto-start and auto-boot operations, OSWORD calls and commands not recognized by the mos, such as *CDISK and *CPRINTER. The second interface handles the seven-filing-system calls, OSFIND, OSBPUT, OSBGET, OSGBK, OSFILE, OSARGS and OSFSC. Most of the commands used by CDISK are similar to those provided by the Acorn d.f.s., but some offer additional features and there are some extra commands like *BLOCK.

Conclusion

For the sake of brevity, I have not included a detailed description of the software. Nevertheless, I hope that you have gained some appreciation of the ratio of software to hardware design time, which in this case was around 100:1.

In any interface design, this ratio is a function of the mismatch between the interfacing systems. In this case, the mismatch was considerable. Although this is only an interface between a single-user microcomputer operating system and an intelligent disc-subsystem capable of undertaking one task at a time, the area of interaction between the two systems is large.

Table 1. CDIFS catalogue file format. Catalogue information, load address, execution address, etc., is stored in a dos sequential file.

<table>
<thead>
<tr>
<th>byte</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 - 03</td>
<td>load address, l.s. byte first</td>
</tr>
<tr>
<td>04 - 07</td>
<td>execution address l.s. byte first</td>
</tr>
<tr>
<td>08 - 0B</td>
<td>extent l.s. byte first</td>
</tr>
<tr>
<td>0C - 0F</td>
<td>attributes</td>
</tr>
<tr>
<td>10 - 1F</td>
<td>track/sector list block</td>
</tr>
</tbody>
</table>
NEW EQUIPMENT made by PYE.

SSB TRANSCEIVERS 130M, 2 Channel 4-8 Mc/s
SSB TRANSCEIVERS 130M, 4 Channel 4-15 Mc/s PSU for above 12V DC/230V AC. Remote control for above sets.

SPARE PARTS FOR
Linear Amplifier A200, Olympic M202, 100T SSB, Tx Type T100 FM VHF, W15 FM, Rx Type R17/R18 VHF FM, SSB 130 M & F.

DECCA KW 2000 CAT SSB RADIO TELEPHONE
2-12 MHz with PSU 230V AC with Messenger (Mobile) DTR 2002, 2-18 MHz supply direct from 12V battery.

VEHICLE MOUNTING (3-18 MHz) Flexible glass fibre protected rods Type HFA (Separate rod and base assembly available).

POWER SUPPLY UNITS 230V AC input, 750V-100V + 12V, A300V output is obtained from a centre tap of the 750V.

CHARGING SETS 300 watts, 15V made by BSA.

IN STOCK ALSO
Large quantities of Switchboards 'F & F' Magneto 10 line, Telephone Type 'J', 'L' and 'F', Field Telephone cable D10, MARCONI signal Generator TF 144 H.

COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd. London W12
Tel. 01-743 0899 or 01-749 3934. Open Monday to Friday 9 a.m. - 5.30 p.m.

CIRCLE 7 FOR FURTHER DETAILS.

OSCILLOSCOPES

TEKTRONIX 465 Dual Trace 100MHZ Delay Sweep
HEWLETT PACKARD 1107B Dual Trace 75MHZ Delay Sweep, Manual Battery
TELEQUIPMENT D75 Dual Trace 50MHZ Delay Sweep
COSMOS CD1510 Dual Trace 30MHZ Delay Sweep
S S LASB SM11 Dual Trace 18MHZ AC external DC operation £130
TEKTRONIX 547 Dual Trace 50MHZ Delay Trace £170
TELEQUIPMENT T 123 Dual Trace 15MHZ £100
TELEQUIPMENT T 123A Single Trace 25MHZ £100

SIGNAL GENERATORS

HEWLETT PACKARD 160A-1 B 8-20KHz £100
MARCONI/IBM IBM 60MHZ 10MHZ £100
MARCONI TF066B/1 490MHz £75
MARCONI TF095A/2 AM/FM 1, - 2200Hz £30
MARCONI TF141K(4) 10KHz - 12MHz £65
ADVANCE type S6E3 AM/FM - 2200Hz £150
ADVANCE type S6E3 AM/FM - 2200Hz £150
ADVANCE type S6E9 AM/FM - 2200Hz £150
ADVANCE type S6E12 AM/FM - 2200Hz £150

MULTIMETERS

AVO III B & IV and AVO III B IV. Complete with batteries and leads only £55
AVO III TEST No. 1. (Comparable to AVO III B. Complete with Batteries, leads & carry case) £90
AVO Model 23. Pocket Multimeter (Analogue) in white. Complete with Batteries and leads £135
AVO 272 - Similar to above but in a C.C. (Analogue) in black. Complete with Batteries and Leads £105

PHILIPS DIGITAL MULTIMETERS

4 digit Auto-ranging. Use with supplied batteries and leads (P&P £7)
Type PM S177E (E.D.) £75
Type PM S177X (E.D.) £75

"FLOPPY DISK DRIVES"

TANDON 81/2" Double sided Density 1.2M £100
Single Sided Double Density 720K £90
MP 725/726 £100
MP 92 12M Double Double Density 80 Track £100

DISK DRIVE PSU 240V In 50/60 Hz 1.5A Out 5V ±10% 720Km. 1080Km. Gased. Un-used £100

P&P at extra £3

"NEW EQUIPMENT"

HAMEG OSCILLOSCOPE R60, Dual Trace 60MHZ Delay Sweep, Component Tester £100
HAMEG OSCILLOSCOPE D00.3 Dual Trace 25MHZ Component Tester £270
BLACK STAR FREQUENCY COUNTERS P&P £4
Marconi 150 - 1000MHZ £120
Marconi 1000 - 10GHZ £120
BLACK STAR JUPITER 50 FUNCTION GENERATOR, Sine Square Triangle 0.1Hz 500KHz P&P £1 £95.00
HAMEG CHROMA 8010B, 6010, 5 digit, Hard wired 10 ranges, 10 100A Amp AC/DC. Complete with batteries and leads £106.00

OSCO BUSINESS PHONES Switched XT1. X01 £33.00
HEWLETT PACKARD LOGIC ANALYSER 1900-3 32 channel £300
(Consisting of HP1620A and HP1627A - channel separately) Specification on request.
MARCONI 849 MULTIVOLT/TEMPERATURE TA903 50KHZ
1500HZ, 110V 3V P&D £175
MARCONI ELECTRONIC VOLTMETER TF864 250HZ 1500HZ AC/DC/RMS 300mV - 120V P&D £100
MARCONI VALVE VOLTMETER TF860 150HZ 1500V 3000V P&D £140
MARCONI 849 MULTIVOLT/TEMPERATURE TF863 150HZ 1500HZ, 110V 3V P&D £95
(Complete with Batteries, leads & instructions) £11.00
MARCONI 849 MULTIVOLT/TEMPERATURE TF864 150HZ 1500HZ, 110V 3V P&D £140
(Complete with Batteries, leads & instructions) £11.00

PHILIPS DIGITAL MULTIMETERS

4 digit Auto-ranging. Use with supplied batteries and leads (P&P £7)
Type PM S177E (E.D.) £100
Type PM S177X (E.D.) £75

"FLOPPY DISK DRIVES"

TANDON 81/2" Double sided Density 1.2M £100
Single Sided Double Density 720K £97
MP 725/726 £100
MP 92 12M Double Double Density 80 Track £100

DISK DRIVE PSU 240V In 50/60 Hz 1.5A Out 5V ±10% 720Km. 1080Km. Gased. Un-used £100

P&P at extra £3

"NEW EQUIPMENT"

HAMEG OSCILLOSCOPE R60, Dual Trace 60MHZ Delay Sweep, Component Tester £100
HAMEG OSCILLOSCOPE D00.3 Dual Trace 25MHZ Component Tester £270
BLACK STAR FREQUENCY COUNTERS P&P £4
Marconi 150 - 1000MHZ £120
Marconi 1000 - 10GHZ £120
BLACK STAR JUPITER 50 FUNCTION GENERATOR, Sine Square Triangle 0.1Hz 500KHz P&P £1 £95.00
HAMEG CHROMA 8010B, 6010, 5 digit, Hard wired 10 ranges, 10 100A Amp AC/DC. Complete with batteries and leads £106.00

OSCO BUSINESS PHONES Switched XT1. X01 £33.00
HEWLETT PACKARD LOGIC ANALYSER 1900-3 32 channel £300
(Consisting of HP1620A and HP1627A - channel separately) Specification on request.
MARCONI 849 MULTIVOLT/TEMPERATURE TA903 50KHZ
1500HZ, 110V 3V P&D £175
MARCONI ELECTRONIC VOLTMETER TF864 250HZ 1500HZ AC/DC/RMS 300mV - 120V P&D £100
MARCONI VALVE VOLTMETER TF860 150HZ 1500V 3000V P&D £140
MARCONI 849 MULTIVOLT/TEMPERATURE TF863 150HZ 1500HZ, 110V 3V P&D £95
(Complete with Batteries, leads & instructions) £11.00
MARCONI 849 MULTIVOLT/TEMPERATURE TF864 150HZ 1500HZ, 110V 3V P&D £140
(Complete with Batteries, leads & instructions) £11.00

STEWART OF READING

Telephone: 0734 68041
110 NYKEHAM ROAD, READING, BERKS RG6 1PL
Callers welcome 9 a.m. to 7 p.m. Monday to Saturday inclusive.
Switched-mode power supply

Last part of the instructional series on d.c. supplies is a practical description of a switcher to provide 13.8V at 13A.

In this, the last part of the Power Supplies series, I describe a flyback switcher - again to show how the theory is applied and to see if it works. There should be enough detail to enable anyone interested to gain some hands-on experience and perhaps embark on a design of their own.

I have deliberately chosen cheap, easily obtainable components. You can find the switch (a BU126) for less than a pound and the control chip (TDA2640) for a couple of pounds or so, in the advertising pages. The technology is therefore a straightforward application of the ideas to produce the following specification:

- power output 180 watts (13.8V at 13A)
- flyback mode, double-wound choke
- switching frequency, 16kHz.

I chose a flyback-mode circuit to introduce the slightly more complex detail necessary for its design: a forward converter should be simpler, should you wish to experiment with one, although a storage choke is required, so there is probably not a lot of simplification in it.

Establishing parameters

The two important formulae required are quoted:

\[VA = \left(\frac{A_p F_p L_p}{\rho_{mL} F_p} \right) \cdot \left(\frac{\sqrt{3}}{1 + \eta \frac{3}{3}} \right) \cdot \frac{\eta}{1 + \eta} \cdot \delta A_{min} f \ldots (10A) \]

and

\[V_{Turn} = \frac{2 \eta \cdot \frac{\delta A_{max} f}{\delta A_{min}}} {1 + \eta} \ldots (9A) \]

Table 1 lists the quantities with the values relevant to the operation of this design.

The choke

A core large enough to store the energy (or in other words, handle the throughput) is required. Two Mullard Ferroxcube cores type FX3609 were chosen and should be amply for \(P_r = 180W \).

The dimensions of the cores used are given in Fig. 1(a) and (b). The ferrite material is type A16 (3C8) and the absolute maximum flux density allowed before saturation at 100°C is just over 300 milliteslas. The pair of cores can handle the required absolute peak flux of 126mWb.

Using the data collected, the calculation proceeds via the two equations. Throughput, \(VA = \frac{180 \times 10^{-6} \times 0.5 \times 7.5}{1.7 \times 10^{-6} \times 1.3 \times 125 \times 10^{-3} \times 14} \cdot \frac{0.4}{1 + 0.4 \frac{3}{3}} \cdot \frac{1.4}{1.72} \cdot 190 \times 10^{-6} \times 16 \times 10^3 \)

This gives a ratio of 15:1:1 at the nominal \(V_r \) of 340V and output of 13.8V, and requires 6 secondary turns. I wound half of these beneath the primary and the other half on top - with a non-shorting copper foil screen between each winding. The secondary has to handle 13 amps and a bunched winding is the best answer. I used 13 strands of 24 s.w.g. copper enamelled wire, all in parallel on each 3-turn half-secondary.

One or two points arise in the design. The first is the difference between the absolute maximum flux allowable in the core, and the working peak flux under normal circumstances. A safety factor is given by:

\[\frac{\Phi_{max}}{\Phi_{min}} = 1.72 \]

This was used in the volts per turn expression. The normal \(\Phi \) appears in the throughput formula.

There is a tertiary winding placed on the choke for sensing secondary turns we must use

\[\frac{V_r}{1 - \delta} = n \ldots (1) \]

This result indicates that the required 180 watts should be comfortably obtained.

The second equation gives the required volts per turn to support the peak flux, at \(f = 16kHz \). From this the number of turns on the primary is easily found. In practice, I used 4 volts per turn and with an input level of 360 volts, this rounded off to 90 turns for \(N_p \).

In a flyback circuit, where the mark to space ratio is not unity (i.e. our "8" differs from 0.5), the output voltage at any secondary is not simply the turns ratio difference. Therefore to find the

Fig. 1. Dimensions of Mullard Ferroxcube Cores. At (a), type FX3609 as used in the power choke. At (b), the small "U" cores type FX3605 employed in the driver transformer. Both are made from type A16 (3C8) material, \(B_{max} = 310 \) mT, \(\mu_s = 1000 \).

by K.L. Smith Ph.D.
the voltage level to enable the feedback system to control the output stability. The flyback choke factor η was chosen to be 0.4: thus, full control is maintained down to a power output of a little less than half the 180 watts. At that point the current in the choke winding falls to the critical zero value and the control circuit detects this and drastically alters the factor to keep the output fairly level. But much stability is lost, and the output smoothing is liable to worsen. Also, the mode of control changes, and an audible whine may arise — from the magnetostriction in the ferrite core.

There is a large d.c. component in the windings of the power choke. The optimization of the a.c. performance (i.e. the inductance) therefore requires a gap in the magnetic circuit. As I mentioned in earlier articles, Hanna curves are usually employed to estimate this. My approach was "experience tempered with experiment". In other words, I slid the curves apart very carefully under power — and watched the slope on the current wave being monitored with an oscilloscope until it showed the shallowest decline. (This was difficult, as there was considerable magnetic pull.) I then inserted paint shims of the required thickness.

Table 1. Design parameters and quantities for 180 watt flyback switcher

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f (switching frequency)</td>
<td>16 kHz</td>
</tr>
<tr>
<td>P_c (resistivity of copper at 20°C)</td>
<td>$1.7 \times 10^{-4} \text{ ohm}$</td>
</tr>
<tr>
<td>m (resistivity increase with temperature, (ref. 20°C))</td>
<td>$1.3 \times 10^{-4} \text{ ohm}$</td>
</tr>
<tr>
<td>F_c (A.C resistance, d.c. resistance of windings (extra factor in 10A))</td>
<td>1.4</td>
</tr>
<tr>
<td>A_s (cross-sectional winding area (not window area))</td>
<td>$180 \times 10^{-4} \text{ m}^2$</td>
</tr>
<tr>
<td>F_w (winding copper factor)</td>
<td>0.5</td>
</tr>
<tr>
<td>l (mean turn length)</td>
<td>$125 \times 10^{-4} \text{ m}$</td>
</tr>
<tr>
<td>δ_{m} (absolute maximum peak flux density)</td>
<td>300 mT</td>
</tr>
<tr>
<td>δ_{core} (magnetic core area)</td>
<td>420 mm^2</td>
</tr>
<tr>
<td>δ_{m} (duty factor (mains high))</td>
<td>0.36</td>
</tr>
<tr>
<td>δ_{max} (duty factor (mains low))</td>
<td>0.47</td>
</tr>
<tr>
<td>δ (duty factor (normal))</td>
<td>0.38</td>
</tr>
<tr>
<td>η (minimum to maximum P_c, chosen to be)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Operation

The full practical circuit is shown in Fig. 2, with the printed circuit layout in Fig. 3. The TDA2640 s.m.p.s. control chip I chose is being replaced by later types, such as the TDA1060, in up-to-date designs. Briefly the 2640 operates as follows (see Fig. 4).

A voltage of $+12V$ is required on pin 1. I derived this via a Zener diode (D) from the main d.c. line. If the voltage falls below $+8V$ on pin 1 then the protection circuits inside will switch off the supply. Pins 3, 4 and 5 are the oscillator control component connections. C1, R9, and R10 produce a switch rate of 16kHz here. The pulse width modulated output appears at pin 6, feeding the base of the drive transistor, Tr1. Pin 7 is a connection for "low feedback protection". Resistor R11 connected to pin 13 reduces the duty cycle to a small value if there is a loss of voltage on pin 10.

It is important to detect overvoltage. A sample is taken to pin 8 via a rectifier network from the sensing winding on the choke. The potential on pin 8 is compared with the reference voltage on pin 9 from the 6.2V Zener (D) and if the level is exceeded, the protection circuits trip. The regul
lution control system operates via pin 10. Again, the reference is the voltage on pin 9 and the pulsewidth modulator varies the drive waveform; i.e. the factor δ to maintain level output. If you look at the circuit in the feedback loop, a number of actions can be seen: R13, R8 and R9 supply the sample. The present RV sets the level of output voltage. The combination C13 and R13 improves the transient performance: C13 and R13 is a feedforward network taking a sample of mains hum from the mains d.c. feed to enable the modulator to compensate for it. Finally there is a shunt network, C14, R14 which sets the gain of the loop and obviates possible instability.

Pins 11 and 12 sense any overcurrent through the switch and turn off the circuit to protect it. The sample is taken across the 1 ohm resistor, R11. The threshold is set by R11.

The components C10 and R12 from pin 13 to the common line form a slow-start circuit. When switching on, the drive to the switch is gradually increased, reaching full drive after a couple of seconds. Thus, inrush surges are avoided.

Finally, the chip incorporates a fault-condition counter. The number of restarts counted before the circuit is turned off permanently is set by C10 in pin 15: after the final trip, the whole supply must be turned off, then on again to restart. Pin 14 is a remote-control point, left floating here.

Components

- C1: 0.1 µF 600V
- C2: 0.1 µF 600V
- C3: 1 nF
- C4: 1 nF
- C5: 1 nF
- C6: 1 nF
- C7: 225 µF 300V
- C8: 10 µF 10V
- C9: 0.1 µF
- C10: 10 µF 25V
- C11: 1.7 nF
- C12: 1 µF
- C13: 100 nF
- C14: 1 nF
- C15: 8.2 nF
- C16: 4.7 nF
- C17: 4.7 nF
- C18: 25 µF 380V
- C19: 10 nF
- C20: 0.47 µF
- C21: 4.7 µF
- C22: 100 nF
- C23: 330 nF
- C24: 1.5 µF
- C25: 1 nF
- C26: 2.2 nF
- C27: 1000 µF 35V
- C28: 1000 µF 35V

- R1: 2R7 8 W
- R2: 22k 5 W
- R3: 5k6
- R4: 390k
- R5: 39k
- R6: 10k
- R7: 5k6 2%
- R8: 4k7
- R9: 1k
- R10: 10k
- R11: 27k
- R12: 470R
- R13: 27k 2%
- R14: 150k
- R15: 1k
- R16: 3k3
- R17: 22k 5 W
- R18: 3k3
- R19: 5R6
- R20: 470R
- R21: 33R
- R22: 10k 9 W
- R23: 1k 100R
- R24: 1k
- R25: 2k 9 W
- R26: 1A 2 W
- R27: 330R
- R28: 4k7 preset
- R29: 2k preset

Driving the switch

The variable-width voltage pulse from pin 6 of the control chip requires converting into the appropriate current-drive waveform to operate the BU126. I discussed the reasons, and how the fast turn-on and reverse basecurrent turn-off waveform was produced, in part 5.

The driver transistor Tr1 is a BSX21 and stores energy in the

Fig. 4. TDA2640 contains advanced control and monitoring circuitry, as outlined here.

Fig. 3. Component side of the printed circuit board.
Fig. 5. The maker's data regarding base current requirement, given graphically.

Driver transformer

The construction of T2 is based upon a pair of FX3605 'U' cores (Fig. 1(b)). Its secondary was wound to have 0.8mH inductance, found from

\[L_s = \frac{\mu_B N^2}{C} \]

where \(\mu_B \) is the amplitude permeability, \(C \) is the core factor for a pair of FX3605s. From the maker's data, \(\mu_B = 1000 \) and \(C = 1.2m^2 \). These 26 turns were wound outside the primary with 36 s.w.g. enamelled wire. The primary supported some 75 to 80 volts during the pulse, which was stepped down to a secondary level of 5 to 6 volts, giving a turn ratio of about 1:14. It was wound with 380 turns of 42 s.w.g. enamelled wire.

Yet again, the problems are more than formidable, but the solutions are not beyond the bounds of possibility. Briefly, from the production engineer's point of view, composting is a long process (full conversion, even with accelerators, takes 6-9 months or more.) As seen by the farmer, however, this is a normal sort of time scale; and with the proposed scheme it might be possible to make use of the farmer's experience and yet evolve something more like continuous production by taking serially from groups of heaps graded according to age.

Also from the production engineer's point of view, handling poses a number of problems; but it would appear that advantage could be taken of existing agricultural practice and of the slow-moving 'edges' of the process. Export to other countries by sea might well be done by means of converted oil tankers, with the compost treated to make it more fluid, thus enabling existing pipeline delivery techniques to be used.

References

1. Young, R.E.: 'Managing research and development', Wireless World, June 1985

Snubber

The power transistor has to be protected from voltage pulses arising mainly from the leakage inductance of T2. This is true especially for this circuit which has no energy-recovery winding on the choke. Components C23, R24, D23 and C24 with inductor D11 perform this function — called in the USA "snubbing" circuits. Resistors R23 and R24 dissipate a large power and must be heavy duty types (9 W wire-wound).

References

From page 48

However, as experience indicates, the difficulties do not end when the technological problems are solved and water becomes available for cultivation of food crops. It has to be anticipated that all soil will be completely infertile, without even a trace of humus being present; but again a possible solution can be seen in work done overseas on agricultural technology. At the beginning of the century, a British project was conducted in India on the production of compost, and in which, incidentally, bulk cartage was used to crush tough, woody material before composting. In this instance the significance of composting lies in the fact that a variety of organic materials, particularly vegetable matter, into a form of fertile soil, with a high humus content, sometimes known as a compound manure, and strongly reminiscent of the Black Land (alluvial soil) of the English Fens.

Composting, described as low-cost biotechnology,1 depends for its action on bacterial-chemical conversion processes; and, as carried out in the UK on a domestic scale, using mainly kitchen waste, is virtually cost-free. It is therefore possible to envisage a large-scale operation being set up, initially in the UK, to produce compost for replacement of eroded soil in regions denuded of trees and vegetation generally.

Snubber

The power transistor has to be protected from voltage pulses arising mainly from the leakage inductance of T2. This is true especially for this circuit which has no energy-recovery winding on the choke. Components C23, R24, D23 and C24 with inductor D11 perform this function — called in the USA "snubbing" circuits. Resistors R23 and R24 dissipate a large power and must be heavy duty types (9 W wire-wound).

Final output

The last operation is to rectify and smooth the available pulses of energy at the output winding of T2: fast diode pair BY32 is designed for this service. The total average current it can handle is 20A, which is plenty for this application. Output smoothing is achieved by C25 assisted by C26, which are 1000µF low-series-resistance types. The small (= 10 µH) choke L2 reduces the high frequency "edges" likely in the output of a flyback supply, with a ripple of 5%: it was added empirically, not really designed into the circuit for optimum performance. Components R23 and C25 also help to damp transient edges at the output winding.

Finally, T3, C26 and the small capacitors around the diode bridge help to suppress interference flowing back into the mains. In a tightly controlled professional design, the level of mains-borne and directly radiated interference would have to meet the standards laid down, as I mentioned in part I of this series.

Snubber

The power transistor has to be protected from voltage pulses arising mainly from the leakage inductance of T2. This is true especially for this circuit which has no energy-recovery winding on the choke. Components C23, R24, D23 and C24 with inductor D11 perform this function — called in the USA "snubbing" circuits. Resistors R23 and R24 dissipate a large power and must be heavy duty types (9 W wire-wound).

References

1. Young, R.E.: 'Managing research and development', Wireless World, June 1985

Snubber

The power transistor has to be protected from voltage pulses arising mainly from the leakage inductance of T2. This is true especially for this circuit which has no energy-recovery winding on the choke. Components C23, R24, D23 and C24 with inductor D11 perform this function — called in the USA "snubbing" circuits. Resistors R23 and R24 dissipate a large power and must be heavy duty types (9 W wire-wound).

References

1. Young, R.E.: 'Managing research and development', Wireless World, June 1985

Snubber

The power transistor has to be protected from voltage pulses arising mainly from the leakage inductance of T2. This is true especially for this circuit which has no energy-recovery winding on the choke. Components C23, R24, D23 and C24 with inductor D11 perform this function — called in the USA "snubbing" circuits. Resistors R23 and R24 dissipate a large power and must be heavy duty types (9 W wire-wound).

References

1. Young, R.E.: 'Managing research and development', Wireless World, June 1985
ROBOTS for EDUCATION TRAINING and INDUSTRY

Hydraulic using water, NEPTUNE System from £2195

MENTOR System from £495

Serpent System from £1515

MENTOR DC servo desktop robot: 8 bit control system, 300gm capacity, 420 reach.

NEPTUNE 6/7 axes 8/12 bit control system: 2 kg capacity, 1.12m reach.

Serpent 5 axes, 12 bit control system: 2 kg capacity, 400/800mm reach.

Robots programmed from keyboard or hand-held simulation (model robots). Robots may be taught by 'lead by the nose' method.

Please phone for brochure: 0264 50093.

CIRCLE 103 FOR FURTHER DETAILS.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.

E.M.S. specialise in systems to eliminate your power problems.

Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.

E.M.S. also manufacture chargers which range up to 60 amps.

For further details please contact:

E.M.S. Manufacturing Limited
Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484

CIRCLE 133 FOR FURTHER DETAILS.

4 + 11GHz SATELLITE TV RECEIVING EQUIPMENT
LNA’s, LNCS, RECEIVERS, FEED HORNS ETC.
Dealer enquiries welcome for further details contact:

HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 7JX Tel: (0702) 332338

COMPLETE SYSTEM UNDER £1000 including software!

WITH 'PERSPEX' SEE-THROUGH CYLINDERS!

NAIAD MICRO ELECTROHYDRAULIC ROBOT
BEING FEATURED IN WIRELESS WORLD November Issue

Please phone for brochure: 0264 50093

CIRCLE 101 FOR FURTHER DETAILS.

STEREO STABILIZER

- Rack mounting frequency shifter for howl reduction in public address and sound reinforcement
- Mono version, box types and circuit boards also available

SURREY ELECTRONICS LTD., The Forge, Lucks Green
Cranleigh, Surrey GU6 7BG
Telephone: 0483 275997

NAIAD

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
TG501 FUNCTION GENERATOR £295+VAT
005Hz to 5MHz: sine, square, triangle, ramp, pulse and
harmonic waveforms; free-run, triggered or gated modes;
variable start/stop phase; 911 symmetry range; variable DC
offset; variable 50Ω output; TTL output, external sweep mode.

TG502 SWEEP/FUNCTION GENERATOR £495+VAT
Main generator features as TG501 plus internal sweep
generator; 1000:1 linear or 10000:1 logarithmic sweep range; precise
dial-and-enter setting of sweep limits; marker with variable
duration and out-of-range indicator; variable sweep rate; single
sweep mode; sweep reset and hold; sweep and pen/lift outputs.

TG503 PULSE/FUNCTION GENERATOR £495+VAT
Main generator features as TG501 plus normal, double
and delayed pulse modes; pulse width variable from 50ns to 50ms;
delay variable from 100ns to 50ms; 10MHz capability in
double pulse mode; complement mode; symmetrical positive-going or
negative-going outputs with adjustable baseline.

For further information contact:
Thandar Electronics Ltd.,
London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ
Telephone: (0480) 64646
Telex: 32250.

ELECTRONICS LIMITED
CIRCLE 110 FOR FURTHER DETAILS.

ELECTRONICS LTD.
dicon

AUDIO VISUAL
EQUIPMENT FOR
THE PROFESSIONAL

Matrices • VDA's • Modulators •
Cross Wire Generators • Time/Date
Generators • Split Screen Generators
• Comprehensive Design and
Manufacture of Customer 'Specials'

DICON ELECTRONICS LIMITED
(A wholly owned subsidiary of Telefusion Plc)
Unit 8, Barns Fold Close, Wingate Industrial Park, Westhoughton, Lancs. BL5 3XH.
Tel: 0942 811717; Telex: DICON 'G' 978493.

CIRCLE 102 FOR FURTHER DETAILS.

SurTel

UHF RADIO TELEMETRY

HOME OFFICE APPROVAL TO MPT 1309
• RANGE LINE OF SIGHT
• TRANSMISSION RATE 1200 BAUD
• SERIAL INPUT/OUTPUT
• ROBUST WEATHERPROOF HOUSINGS (IP65)
• OPERATES FROM 12 VOLT D.C.
• LOW POWER DRAIN 250mA
• OPTIONAL BASE INTERFACE UNITS

— LINK COMPUTER/COMPUTER/PERIPHERAL/INSTRUMENTATION —
COST EFFECTIVE UHF RADIO MODEM —

MICROMAKE ELECTRONICS
1 THE HOLT, HARE HATCH, UPPER WARGRAVE, BERKS RG10 9TG
TEL: 07342 2655 TLX: 849462 FAC: 0628 74928

CIRCLE 144 FOR FURTHER DETAILS.
ELECTRONICS & WIRELESS WORLD OCTOBER 1985

www.americanradiohistory.com
AFFORDABLE ATE

Diagnoses bus troubles
Helps mend micro boards
Z80, 6502, 6800, 8085
All covered by one product
Disassemblers included
Plugs into micro socket
Hand-held probe identifies
ADDRESS, DATA and CONTROL
lines at a touch.

Prints a memory map
of an unknown system
showing ROM, RAM, I/O
and EMPTY ADDRESSING SPACE

LOGS all tests and responses
on PRINTER and ALPHA LCD
Non-volatile memory
retains test sequences
CHECKSUMS, RAMTESTS,
READS/Writes MEMORY & I/O
Reports location of SHORTS
on ADDRESS and DATA busses
Prints out memory contents
in ASCII, HEX or SOURCE CODE
You cannot expect to mend
microprocessor products with
a meter and a scope.
How many repairs would
pay for your SuperDOC?
SuperDOC... £395

FAST EPROM PROGRAMMER
Copies eight EPROMS at a pass
all 25 and 27 series up to 27256
EPROM type is set by switches
erase is checked automatically
control is simple - two keys
Alpha liquid crystal display
checksum facility & hex digits
FAST or NORMAL programming
PLUS VERSION also has
serial RS232 program & check
CTS or DSR handshake
ASCII, SIMPLE HEX, INTELHEX
MOTOROLA S or TEKHEX
GANG-OF-EIGHT £395
GANG-OF-EIGHT plus £445

Z80 TUTOR
Designed for Schools Council
to teach Z80 machine code
MENTA uses TV for display
shows STACK & PROGRAM in HEX
Editing facility includes
direct keyboard ASSEMBLER
RS232-output DISASSEMBLER
Used to write & debug
short machine-code routines
MENTA is a complete
controller with 24 bits of I/O
used for ROBOTICS
TEACHER'S GUIDE, PUPIL READER
MODULES (e.g. A to D) available
MENTA... £99

COMPUTER BARGAINS
- 10" screen for our BEST OFFER
OLIVETTI M21, M24
with 10MB hard disk if req.
AUTO-CAD & M24 created this AD
also EPSON PX8

EPROM ERASERS from £39

BUY IT AND TRY IT
REFUND GUARANTEED

less postal expenses, if goods returned intact within 14 days
PRODUCT IS USUALLY IN STOCK
TODAY DESPATCH IS POSSIBLE
PHONE FOR A LITERATURE PACK
VAT must be added to prices
Call cost calculator

To conclude this series, a description of the software and the reprogramming procedure.

The call costing procedure must take account of the many permutations of distance, connection charge and tariff.

For calls on the British Telecom system, inland and international, there are 13 distance zones, three charge rates and three modes. In all there are 117 combinations, but because of repetition they can be stored in only 80 data blocks. Each block consists of six bytes specifying cost and time; it may hold data for the initial call unit or for subsequent units.

If every call category had unique data for both initial and subsequent units, then 234 blocks would be needed. Fortunately, direct-dialled calls normally carry the same charge for initial and subsequent units and so the storage requirement is greatly reduced.

Consider now the calculator’s 2Kbytes of ram. The combination look-up table occupies 0.5K and the data block area takes 1K, giving up to 256 two-byte combinations and 174 six-byte data blocks.

The look-up table reference consists of two bytes. One points to the address of the block specifying the initial charge unit, the other points to the block for subsequent units.

The system is sufficiently flexible to allow any combination of distance, rate and mode; for example there could be 16 Dists, four Rates and four Modes or 28 Dists, three Rates and three Modes and so on.

Now, how do we refer to the initial and subsequent units through the look-up table?

Each Dist, Rate and Mode has a binary number allocated to it (Fig. 1). Each of these factors has a limit — Lmdst, Lmrate and Lnmmode — which is the number of possible distances, rates and modes; in our case, 0D, 3r, and 3m respectively.

The address of the initial data block reference in the look-up table is given by the formula

\[(\text{Start of look-up table}) + 2 \times ((\text{Dist} \times \text{Lmrate} \times \text{Lnmmode}) + (\text{Rate} \times \text{Lnmmode}) + \text{Mode})\]

Incrementing this address will give the block address reference for the subsequent unit.

The start address of the initial data block in the data block area can be expressed as

\[(\text{Start of data block area}) + 6 \times \text{(look-up block reference)}\]

Consider an example. An operator-controlled call (normal charge) at peak rate over 35 miles costs 114p for the first three minutes and one-third of that for every succeeding minute. Accordingly, the bytes containing the initial unit information will be

<table>
<thead>
<tr>
<th>Cost</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 14 00</td>
<td>03 00 00</td>
</tr>
</tbody>
</table>

and those for subsequent units

<table>
<thead>
<tr>
<th>Cost</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 38 00</td>
<td>01 00 00</td>
</tr>
</tbody>
</table>

These groups can be stored anywhere in the call data block area. If we decide to make the initial unit block the first block in the area (that is, starting at 20F016), then its reference will be 00006.

The subsequent unit block will be the second block, with a start address at 20F616 and the reference 0116.

Now we must place the references 00 and 01 in the look-up table. But where?

The value of Dist (for a call of over 35 miles) is 0216 and the Rate and Mode are also 0216. We have the same Lmdist, Lmrate and Lnmmode as before and so plugging into the formula gives

\[2000_{16} + 2 \times ((2 \times 3 \times 3) + (2 \times 3) + 2) = 2058_{16}\]

as the address where the initial data block reference 00 is placed.

The address reference for subsequent units, 0116, is stored at location 205916.

Reprogramming

To reprogram for yourself, write down all the block information for initial and subsequent call units. Allocate a unique hexadecimal number to each unique block and put them in numerical order into the call data block area starting with block 00. Then using the formulas above, go through each combination routine and locate the look-up address for the unique data block reference.

System parameters

System parameter bytes can be altered by the user to control the operation of the system. Parameters beginning with S (see Table 3) are the addresses to which the program will jump from the scrolling message procedure when the appropriate keys are pressed. This arrangement allows jumps to user-supplied routines within the ram space. It also allows expansion software to be accessed. The Adjump address is the jump location used on pressing Reset after a telephone call has been made. These locations are filled with default addresses on bootstrap loading.

Steps and Cadast are the start address of the data areas. By default they are 260016 and 20F016 respectively. Initad is the start address used by the reprogramming routine: by default it

Table 1: for the B.T. tariff structure. The unit can cost calls on any system in the world.

<table>
<thead>
<tr>
<th>Rates:</th>
<th>0000 Cheap/off-peak</th>
<th>0001 Standard</th>
<th>0010 Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modes:</td>
<td>0000 None</td>
<td>0011 Operator-controlled, lower charge</td>
<td>0010 Operator-controlled, normal charge</td>
</tr>
<tr>
<td>Special services:</td>
<td>0000 None selected</td>
<td>0001 Advice of duration and charge</td>
<td>0010 Credit-card call</td>
</tr>
<tr>
<td>0010 Fixed time call</td>
<td>0100 Personal call</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distances:</th>
<th>0000 Local</th>
<th>0001 Over 35 miles</th>
<th>0010 Over 35 miles, low-cost routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels:</td>
<td>0100 Channel A</td>
<td>0111 Channel B</td>
<td>1000 Channel C</td>
</tr>
<tr>
<td>0101 Irish Republic, Isle of Man</td>
<td>1010 International charge band A</td>
<td>1011 International charge band B</td>
<td></td>
</tr>
<tr>
<td>1012 International charge band C</td>
<td>1100 International charge band D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

by S.A. Cameron

Stephen Cameron, who is 23, is reading for a B.Sc. in electrical and electronic engineering at Brunel University, Uxbridge. An industry-sponsored student, he has worked for the past four years on broadcast equipment, radio and television and computing systems.

He qualified as an instructor in Cadet Force signals while at the Duke of York’s Royal Military School, Dover. Spare-time interests include music, tennis and writing poetry. He is publicity manager of the Brunel University Industrial Society.
Table 3: System parameters. Address are in hexadecimal form. Data format is shown in brackets.

points to the State control parameter at 26D1_{16}.

Mklim bytes are used to change the end-of-unit indication limit. They are initially set to give 40 seconds.

The Lmdist parameters are used for unravelling the packed characters in the call-type text area. They indicate the limit for call-type selection and are used for data area access calculations. Totocs, Listdist and Totunit are the storage bytes for running totals. On bootstrap they are all reset to zero.

Certain bits in the state control byte indicate to the system the position of the decimal point in the cost data, with respect to the least significant byte. All costs are expressed in the cost base unit (Cobu). An appropriate abbreviation — P for pence, for British users — is stored in Cobuch, 26E4_{16}.

This decimal format applies also to the Totocs bytes. The floating-point format is used in the total cost and cost information display procedures. It features automatic suppression of leading zeroes and variable-justify for overflow.

The time and cost display has a fixed format and displays no decimals unless bit 1 and bit 0 are 10 or 11.

If a hundreds form of the base unit exists, as with the pound sterling, this will be indicated by bit 2 and the display will accord-

ingly be subdivided into pounds and pence.

The special service (Sps) data is separate from the normal costing as it represents a distance-plus-service element which can be treated as a connection charge — a one-off additional cost to the call.

Each Sps cost occupies two bytes of memory at the base unit level. For British Telecom this gives a cost range of 0 to 9999p. Should the Sps costs be far more than this, State bit 7 can be set, multiplying costs by 100 to give a range of 0 to 999990p in 100p steps.

If no Sps service is required the facility can be disabled by setting State bit 5.

The data storage format follows the pattern used previously. A look-up table the length of Lmdist, accessed by the Dist parameter, has address references pointing to the start of Sps data blocks twice the length of the number of services available.

Each Sps binary number is the offset in this data block. It points to two bytes giving the cost of that service at that distance. The data blocks appear immediately after the look-up table.

Programming procedure

Before switching on, remove the top panel of the instrument and link program pin D0 to V+.

Switch on. The display immediately shows the Initad address and data at that location in hexadecimal format. From here you can gain access to any point in the memory map. If the system crashes, this routine will always work so that corrections can be made.

The flashing digit can be increased by the Rate key or decreased by the Dist. Carry is applied only in the case of changes to the least significant digit. The Mode key switches control from each

Table 2: ram map. Addresses are shown in hexadecimal form. System interrupt variables should be used with care as they contain important display counter values, divider and sequencer constructs as well as key-ped scanning information. Call type text is stored sequentially as Dist, Rate and then Mode texts in 3,2,2 character blocks respectively. Areas 2000-21D0, 2600-2630, 2680-277F are bootstrap-loaded from eprom if Bootcnt (26D0) does not contain AA_{16}.

<table>
<thead>
<tr>
<th>State byte</th>
<th>Cont format</th>
<th>Cobuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

All the electronic components are mounted on two printed circuit boards which fit into a standard plastics box.
The instrument, based on a Z80 processor with 2K of ram, uses low-cost components throughout. The same hardware could be used to implement a general i/o controller, for example in a security installation or central heating system.

digit to the next.

The Start/stop key toggles between address and data control. Changes made by the user are not transferred to the displayed address until Start/stop is pressed to switch to address control. Addresses are incremented and read automatically during data loading with the Start/stop key.

The Reset key returns the data at the current address to its old value. If Reset is held down then the address is reset to the Initial address.

When programming is complete the user should ensure that the control byte Bootcnt 26D016 is set to AA16. This will disable the bootstrap loader from overwriting the altered data on subsequent switch-ons.

The unit may now be switched off and the D. link removed.

The introductory message (which can be up to 64 characters long) may be changed by writing to ram locations 268016 to 26BF16. The purpose of this message is to show the user whether the system still contains the updated cost and time data. It is therefore wise to include in it an issue date.

The byte Chxstr (26E516) contains a checksum of all the bytes from ram locations 200016 to 263016. It is updated automatically on switch-on.

An indication of the total units used is displayed when the Start/stop button is pressed during total cost display. Reprogramming of these displays can be disabled by State bit 4.

Table 4: System control. The status byte 27F316 is used for intercommunication between the interrupt routine and the main program.

<table>
<thead>
<tr>
<th>Bit description</th>
<th>set (1)</th>
<th>clear (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Key pressed</td>
<td>new key</td>
<td>no key</td>
</tr>
<tr>
<td>1 Timer control</td>
<td>timer on</td>
<td>timer off</td>
</tr>
<tr>
<td>2 Auto-repeat</td>
<td>sustained</td>
<td>single key entered</td>
</tr>
<tr>
<td>3 New number indicator</td>
<td>intermediate number</td>
<td>same number</td>
</tr>
<tr>
<td>4 Correct addition sequence</td>
<td>add to total</td>
<td>do not add to total</td>
</tr>
<tr>
<td>5 Flashing (Hz)</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>6 Buzzer with flashing</td>
<td>enable</td>
<td>disable</td>
</tr>
<tr>
<td>7 Buzzer trigger</td>
<td>trigger mono stable</td>
<td>do not trigger</td>
</tr>
</tbody>
</table>

Table 5: Cost data and display formats are controlled by the State byte at address 26D1.

<table>
<thead>
<tr>
<th>Bit description</th>
<th>set (1)</th>
<th>clear (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Decimal point pos'n bit 0</td>
<td>see cost format table</td>
<td></td>
</tr>
<tr>
<td>1 Decimal point pos'n bit 1</td>
<td>see cost format table</td>
<td></td>
</tr>
<tr>
<td>2 Hundreds selection</td>
<td>No hundreds</td>
<td>hundreds</td>
</tr>
<tr>
<td>3 Decimal point</td>
<td>left-hand</td>
<td>right-hand</td>
</tr>
<tr>
<td>4 Total cost/total unit</td>
<td>enable</td>
<td>disable</td>
</tr>
<tr>
<td>5 Sps selection</td>
<td>disable</td>
<td>enable</td>
</tr>
<tr>
<td>6 Buzzer</td>
<td>disable</td>
<td>enable</td>
</tr>
<tr>
<td>7 Sps multiplier</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Display byte

The display character byte follows the standard bit-segment format. Bits D4 to D1 correspond to segments a to h (as shown in the display board circuit diagram in the August issue). Setting any bit causes it segment to light. State bit 3 indicates to the software whether the decimal points in use are right-hand or left-hand.

Assembler listing

An assembler list of the software is available for £3 from the author at 7 Donnington Court, Worthy Road, Winchester, Hampshire S023 7BJ. The listing is in the form of a 48-page A5-size booklet and includes detailed notes and comments.

Component kits for this design are available from the sources given in the July and August articles.

The calculator displays elapsed time and cost of calls in progress and stores running totals in memory.

The calculator displays elapsed time and cost of calls in progress and stores running totals in memory.
The Archer Z80 SBC

The SDS ARCHER — The Z80 based single board computer chosen by professionals and OEM users.

- High quality double sided plated through PCB
- 4 Bytewide memory sockets — up to 64k
- Power-fail and watchdog timer circuits
- 2 Serial ports with full flow control
- 4 Parallel ports with handshaking
- Bus expansion connector
- CMOS battery back-up
- Counter-timer chip
- 4 MHz, Z80A

OPTIONS:

- SDS BASIC with ROMable autostarting user code
- The powerful 8k byte SDS DEBUG MONITOR
- On board 120 / 240 volt MAINS POWER SUPPLY
- Attractive INSTRUMENT CASE — see photo.
- 64k / 128k byte DYNAMIC RAM card
- 4 socket RAM — ROM EXPANSION card
- DISC INTERFACE card

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.Tel. 02814-5067

CIRCLE 138 FOR FURTHER DETAILS.

VALVES

<table>
<thead>
<tr>
<th>VALVE</th>
<th>SPECIAL QUALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A156</td>
<td>0.70 ECF80</td>
</tr>
<tr>
<td>2A259</td>
<td>0.80 EF82</td>
</tr>
<tr>
<td>4A960</td>
<td>1.35 ECF80</td>
</tr>
<tr>
<td>6A85</td>
<td>0.75 ECF80</td>
</tr>
<tr>
<td>14TF4</td>
<td>0.60 EF82</td>
</tr>
<tr>
<td>21PJ4</td>
<td>2.90 ECF80</td>
</tr>
<tr>
<td>24AF5</td>
<td>1.60 ECF80</td>
</tr>
<tr>
<td>36AF5</td>
<td>1.60 ECF80</td>
</tr>
<tr>
<td>56A85</td>
<td>2.90 ECF80</td>
</tr>
<tr>
<td>61A85</td>
<td>2.90 ECF80</td>
</tr>
<tr>
<td>64A85</td>
<td>2.90 ECF80</td>
</tr>
<tr>
<td>72A85</td>
<td>2.90 ECF80</td>
</tr>
<tr>
<td>120A85</td>
<td>2.90 ECF80</td>
</tr>
</tbody>
</table>

CIRCLE 139 FOR FURTHER DETAILS.

VIDEO TERMINAL BOARD

- 80 characters x 24 lines
- Requires ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7 x 9 matrix with descendents) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Bare board with 2 EPROMs and program listing — £48 plus VAT. Assembled and tested — £118 Send for details or CWO to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT
Tel: 0728 831131

CIRCLE 11 FOR FURTHER DETAILS.

Andelos 68000 SBC

- Ideal for students, or as a target board for development
- Currently in use in Universities, Technical colleges, and Government departments
- 4K/16K/32K/64K RAM, up to 32K EPROM, on board
- 24 parallel I/O lines, RS232 serial interface
- Expansion interface
- Low cost EPROM programmer — simply plugs in
- True 16 bit, 10MHz, for high speed processing
- Comprehensive monitor (optionally with assembler) in 2764 EPROM
- Assemblers and cross assemblers available for 68000 and 280 hosts

10MHz 68000 SBC with 4K RAM, Monitor in 16K EPROM £295 + VAT
10MHz 68000 SBC with 16K RAM, Monitor in 16K EPROM £305 + VAT
10MHz 68000 SBC with 32K RAM, Monitor in 16K EPROM £345 + VAT
10MHz 68000 SBC with 64K RAM, Monitor in 16K EPROM £345 + VAT
EPROM programmer card, plug in £95 + VAT
Assembler/Disassembler in EPROM, plug in, includes monitor £150 + VAT
Cross assembler for 280 hosts/Assembler for 68000 hosts

Andelos Systems
Telephone: (0635) 201150
Solina, Bucklebury Alley, Cold Ash, Newbury, Berkshire RG16 9NN

CIRCLE 31 FOR FURTHER DETAILS.
Polyphonic keyboard — 2

Digipoly’s t.t.l. processor circuit and microcode program.

by D.J. Greaves B.A.

The instrument has two processors — an 8088 microprocessor for control functions and a t.t.l. processor for note generation. There are 18 instructions in Digipoly’s microcode program, List 1, which execute sequentially and then start again. The final instruction, INCV, causes the program to be run on each sound channel in turn.

Frequency of the master clock is divided by the length of the program and by the number of voices to give the sample rate at the audio output d-to-a converter. With a 5MHz master clock rate this is 5 000 000/(18x8) = 35kHz.

An assembler written for the microcode language in BCPL produced the code in List 1, but microcode can easily be manually assembled using the instruction set described last month.

The first three instructions of the microcode increment the P-register low-order section and the next three the high-order section. At address six, the wave from the waveform table is sampled and this is multiplied by the VOL, V register in the remaining instructions. At address 16, the computed result is sent to the output d-to-a converter.

Each channel sends its output to the same converter and the value is latched there until the next channel sends a value. This gives a discontinuous waveform. Summation of the eight channels into a single continuous audio waveform is performed by the integrating behaviour of the analogue low-pass filter following the converter.

The multiplication is performed using a quarter squares algorithm. The amplitude value is 0..63 and the waveform table ranges -64 to 64.

- A x B = 4 * (A + B) - (A - B)
- The square table is indexed 0 to 63 and gives values in the range 0 to 127.

List 1 Microcode of t.t.l. processor is only eighteen bytes long.

00 00	LOAD \(FL,V \)	get low order part of note phase
01 12	ADD \(FL,V \)	add on the frequency (Integrate)
02 80	STORE \(FL,V \)	repeat with high order
03 01	LOAD \(FH,V \)	including the carry from the low order
04 53	ADC \(FH,V \)	look up the result in the waveform table
05 B1	STORE \(FH,V \)	
06 0A	LOAD \(MV,A \)	take the difference,
07 BF	STORE \(E3 \)	and square it.
08 04	LOAD \(VOL,V \)	Save in register 2.
09 6F	SUB \(E3 \)	Now calculate
0A 08	LOAD \(BR,A \)	the sum of them,
0B 6E	SUB \(E2 \)	square the answer,
0C 86	STORE \(DACO \)	plus the square of the difference
0D 0F	LOOP	giving the answer.
12 F0	INCV	move to next voice and perform HOST instruction.

Features and software availability

Digipoly is an eight-note polyphonic digital musical instrument with a five-octave keyboard transposable over a nine-octave useful range. It includes

- Comprehensive envelope generator controls
- Vibrato and tremolo control
- Midi interface
- Hundreds of front-panel selectable waveforms
- Battery-maintained memory for 16 user-defined voices
- Rotary control for adjustment of many parameters

Note frequencies are non rigidly locked as in divider type organs. A detune facility introduces a variable amount of scale error.

Digipoly can be built for around £175 excluding case. Software is available in various forms from the author at 5 Grovely Way, Crampmoor, Romsey, Hampshire S05 9AX. A fifty-page listing of the 8088 source program is £3 and a 40-track disc for the BBC microcomputer, holding source, object and related files, is £4 (single density). Programmed 2764 eproms containing the 8088 object code and a bipolar prom containing the t.t.l. processor code are £6.50 and £4.00 respectively. Please include £1 for UK postage and make cheques payable to D.J. Greaves. Brave readers can obtain a copy of the hexadecimal listing by sending a large stamped addressed envelope and a cheque for £1.35 to our editorial offices. Please make this cheque payable to Business Press International.

The large circuit has left little space for text in this issue. We hope to find room for more description in the next article which includes details on the Midi bus.
This discrete high-speed T.T.L. processor was developed specifically for Digipoly but is general enough in design for many other applications. Its purpose is note generation. Microcode software for the ten-instruction processor is stored in a bipolar PROM.
Mainboard B — 103 4 Layer PC/XT $294
MSGA Mainboard PC/XT $249
SUPER Mainboard PC/XT $249
256 M/FACTY.
16K 768K M/FACTY. 6-WAY (SEE ILL.) $298
OX $289
512 RAM EXPAND (2 DISK) $256
SIFTRXU $256
Parallel printer card $39
Parallel card with 64K buffer (6KY) $109
Monochrome (text) display card $119
PC Express/Intelligent Research 512X $278
Titan Accelerator 128K $259
Titan Accelerator 512X $279

COLOUR/GRAPHICS

Card (2 layer)

COMPOSITE COLOUR/rgb $149
SUPER COLOUR/GRAPHICS Card (4 layer) $149
PC/XT, FCAT COMPATIBLE $399
MONOCHROME GRAPHIC CARD VERSION II single parallel port standard $229
MULTI I/O CARD — 5 WAY!! Dual floppy controller interface $399
Asynchronous RS232 serial comm port Parallel printer port, games adapter or Ctx/Cal writer backup $399

EPROM WRITER CARD up to 128K $149

384 MULTIPLICATION CARD — SIX WAY!!

- 64K to 256K RAM Memory
- RS232 Serial Port
- Real Time Clock/Calendar with Battery Backup
- RAMDISK & RSPOLO Software
- Optional games port
- Built & Tested $195.00

4-LAYER PC/XT MAINBOARD

- 64X to 1MB ON BOARD
- 8 Fully Compatible Slots
- Built & Tested $295.00

RAM CHIP SALE!!!

- 416 64K DRAMS 150ns $1.49 each (upgrade PC/XT and compatibles)
- 4126 256 RAMS 150ns $5.49 each (upgrade OLIVETTI M24, CAMPAG DISKPRO etc)
- 4182 (Pippsback) Upgrade IBM PC/XT $19.99 each
- CO — PROCESSOR INTEL 8088/7-3 $139.00

PC/XT CASE

- 8 — Slot
- Hinged lid
- Includes hardware
- $5.00

PC to XT CONVERSION KITS

FOR IBM AND COMPATIBLES

- **NEW FAST CONVERTER!!!**
 - WESTERN DIGITAL 1002 SWC-2 SEGATE — $506 STANDARD $199.00
- 10 MEGABYTE MR-521 1/4" WINCHESTER HARD DRIVE, 2 HEADS ACCESS
 - 86ins : $375.00
- 20 MEGABYTE MR622 5/4" WINCHESTER HARD DRIVE, 4 HEADS ACCESS
 - 86ins : $550.00
- HARD DRIVE CABLE SET
 - BETWEEN 130WATT POWER SUPPLY $25.00
- UPGRADE 130WATT POWER SUPPLY $135.00

TRANSFORMERS

EX- STOCK

<table>
<thead>
<tr>
<th>TRANSFORMER</th>
<th>VA</th>
<th>Price</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>150W</td>
<td>3.33</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>250W</td>
<td>4.16</td>
<td>4.46</td>
<td></td>
</tr>
<tr>
<td>400W</td>
<td>5.71</td>
<td>5.92</td>
<td></td>
</tr>
<tr>
<td>600W</td>
<td>7.26</td>
<td>7.62</td>
<td></td>
</tr>
<tr>
<td>1000W</td>
<td>10.93</td>
<td>11.43</td>
<td></td>
</tr>
<tr>
<td>2005W</td>
<td>19.68</td>
<td>20.63</td>
<td></td>
</tr>
</tbody>
</table>

CIRCUIT 46 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
Electronic mailbox

Construction tips and line interface circuits complete the description of a self-contained electronic message system.

A plated-through printed circuit and the three rows are available to constructors. The printed circuit is designed to fit into an RS cabinet type 509-620. This board, the mains transformer, and the line-isolation transformer are all attached to the front panel, leaving only the backup battery fixed to the base of the cabinet. Other components fixed to the panel are the three LEDs indicating 'power', 'on-line' and 'attention', two push buttons to manually open and close connections if required, and a switch for the battery backup supply.

The relays are RS type 346-851 and the switch for the clock is RS type 336-674. The only components not mentioned in the circuit diagram are numerous 100nF decoupling capacitors which should be monolithic ceramic types. They are shown in the layout drawing which will be supplied with the printed circuit.

The 64K RAMs can be any type except the Texas variety which has different refresh requirements; the slowest available devices will be suitable for the application. This also applies to the RAMs and the interface chips. To reduce dynamic consumption, the system runs at a relaxed clock speed but this does not limit its operation in any way. The 1nF capacitor in the receiver monostable should be polystyrene; other capacitors are not critical.

The mailbox can be connected directly in parallel with a telephone by using a dual-outlet adaptor. There is no need for the line to the telephone to be switched as in a normal modem, because any sounds picked up by the handset cannot cause data errors.

There are only two adjustments to be made in the modem circuit. Inject a sine wave of 10mV peak-to-peak at 1700Hz across the line side of the transformer, and monitor test point one. Adjust the offset potentiometer to obtain a symmetrical square wave, and confirm that the shape does not change when the input level is raised to 1V. Monitor test point two and adjust the timing potentiometer so that the logic level is on the point of changing states.

The clock is set by use of a special command and an internal switch which protects it from being changed inadvertently. The command format is 0000- mins- tens mins- units hrs- tens hrs- units days- tens days- day of wk- tens months- months- leap status- 10- magic switch on- cr- magic switch off- cr-

where leap status is eight for leap year, four for leap year + 1, two for leap year + 2 and one for leap year + 3. For example, to set the clock to 23:57 GMT on 9 December 1984, the string would be t0000753290021810. The trimmer on the clock crystal should be adjusted at intervals of a few

Messages entered into the mailbox from a computer or terminal are sent immediately or later on while you're asleep. The message can even be held until the destination caller rings you.

by Martin Allard
B.Sc.(Hons)

Martin Allard has an honours degree in computing science from Essex University. Over the years he has worked in psychology research, gas pipeline instrumentation, operating systems design and digital video, including the single-handed design of a digital PAL-NTSC standards converter, all done from his cottage in Devon.

He recently left that business, convinced that it is the road to madness, and is now an independent broadcasting and communications consultant.
One of his current projects is the construction of solar-powered community f.m. radio stations in Nepal and Sri Lanka, in conjunction with UNESCO and Arthur C. Clarke. Martin still owns the working automatic telephone exchange which he designed at the age of 11.
Principles of the electronic mail system were discussed in the August issue and hardware in the September issue.

Analogue signal paths. On the receive side, the limiter is followed by an exclusive-or gate generating pulses on both edges of the waveform. These pulses are integrated and sliced after passing through a monostable i.e. Data for transmission is buffered after passing through a simple filter.

days, and the clock should be reset until it is found to be running accurately.

Uses of the system
Computing appears to many people to be a solitary pastime, but when the power of modern data communications is added it becomes an interesting social activity.

This system is intended to provide a mail service and a remote terminal service which are sufficiently reliable and easy to use that one can concentrate on the message being sent, and forget about the way that it is being delivered. Because the writing and reading of mail is all performed off-line at no cost in communication time, messages tend to be much longer and more leisurely in style than conventional electronic mail. There are no arguments about whether or not the message was received — the sender always knows the answer. One doesn’t know whether it has been taken notice of however.

The control wire called DCD is in fact a far more reliable form of remote control than anything provided by a simple modem, and it is being used to switch computers on and off when an incoming call is received. As with all other aspects of the system considerable attention has been paid to making it fail-safe.

Fundamentally, the mailbox provides a cheaper, faster and more reliable way of getting messages to a specific destination than centralized systems such as Prestel, Telecom Gold, Easylink, and the hobbyist bulletin boards. It does have the social disadvantage that one cannot spend one’s telephone bill idly browsing through other people’s correspondence. However it is a general purpose real-time communications system as well as a way of delivering private mail, and as such is well suited as a means of accessing a common database.

I am considering setting up a bulletin board specifically for users of this design if interest justifies it, and would therefore like to hear from prospective users. The firmware rom has plenty of space for enhanced facilities in it, and one use of the board would be to arrange for firmware upgrades. It is my belief that the underlying standard is sufficiently sound to remain compatible with potential future versions possessing many more features.

A double-sided plated-through printed circuit for this design is available from Combe Martin Electronics, King Street, Combe Martin, North Devon EX34 0AD, for £23 including UK/overseas postage and vat.

A set of three programmed roms is available from Mailard Concepts Ltd., 13 Southdown Avenue, Brixham, Devon TQ5 0AP for £34.50 including vat and postage. A guide giving more detailed information on the use of the system is also available free of charge from the same address on receipt of a large s.a.e.
The new LJ TRACER Robot provides a cost-effective introduction to the world of Robotics. This ruggedly constructed XYZ robot features both stepper motor and closed-loop servo motor drive. The TRACER can be driven by any microcomputer with a suitable TTL level I/O facility. The TRACER is supplied with a pcb Assembly Task Kit (as shown) and a 3 colour pen-plot kit.

For full details of this and other LJ products send for our catalogue.

SMALL SELECTION ONLY LISTED RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDS 100</td>
<td>DDS 100 B, DDS 100 C, DDS 100 D</td>
<td>£450 - £550</td>
</tr>
<tr>
<td>DDS 200</td>
<td>DDS 200 B, DDS 200 C, DDS 200 D</td>
<td>£650 - £750</td>
</tr>
<tr>
<td>DDS 300</td>
<td>DDS 300 B, DDS 300 C, DDS 300 D</td>
<td>£850 - £950</td>
</tr>
</tbody>
</table>

Latest Bulk Government Releases — Gasser Oscillo- scope CDSI501/CDSI502/CDSI503/CDSI504 only. Solid state general purpose scope with DC to 25 MHz, 4 or 7.5 inch screen. 2 channels. Two sweep ranges. All controls and indicators are clearly located in the same field of view.

LJ Electronics Ltd
Francis Way
Bawthorpe Industrial Estate
Norwich, NR5 9JA, England
Tel: (0603) 748001
Telex: 975504

CIRCLE 100 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985

TRACER - A new Robotic Teaching System from LJ

TRAINING MATERIALS

- design manufacture and supply
- POWER AMPLIFIERS
- HIGH POWER ASSEMBLIES
- CONTROL CIRCUITRY
- for application in
- INDUSTRY
- PUBLIC ADDRESS
- HI-FI
- available

OFF THE SHELF CUSTOMISED CAD/D DESIGNED

Export Trade and Quantity Discounts Given

JOHNS RADIO (G274) 684007
WHITEHALL WORKS
84 WHITEHALL ROAD,
EAST BIRKSWORTH,
BRADFORD
BD11 2ER

WANTED: Redundant Test Equipment - Receivers and Transmitting Equipment - Valves - Plugs - Switches - Synchros - Etc.

Contact: [Contact Information]

Panatechnic

Telephone: 01.361.8715
Telex: 826973

www.americanradiohistory.com
PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with disc drive with FREE updating service on all software

DIAGRAM

- A program which allows you to store very large diagrams — up to 39 mode 0 screens and view/edit them by SCROLLING the computer screen around over any part of the diagram.

FEATURES

- Draw diagrams, schematics, plans etc. in any aspect ratio, e.g. 10:3, 2:12 screens.
- Access any part of the diagram rapidly by entering an index name e.g. TAG. ALL etc. to display a specific section of the diagram, and then scroll around to any other part of the diagram using the CURSOR MOV.
- Up to 128 icons may be pre-defined for each diagram, eg. Transistors, resisters etc. in full mode 0 definition up to 32 pixels horizontally by 2 vertically.

£28.75

Z8O CONTROL Z8O

CARDMASTER CPU

- 68K Z80 CPU
- CP/M compatible
- User transparent MULTI-TASKING
- Up to 38K EPROM & 16K RAM
- Watchdog crash protection
- R5252 & R5242 Compat.
- 2 x Z80A PIO (uncommitted)
- On board bus buffering
- Power-off jump hardware
- Euro-card construction

£150 inc. VAT

CUB MICROCONTROLLER

- Z80 CPU
- 4 x 38KX PIO's (64/1 lines)
- 286 CTC
- 4K Battery backed RAM 2K sup.
- 8K EPROM (2K MCV2.0 sup.)
- Powerful monitor (MCV2.0)
- Eucares construction

The Z80 microcontroller CUB is the ideal solution where a simple computer is required. The CUB fully supports the powerful Z80 mode 2 structure making single board/bracket in systems or MCV2.0 provide excellent backboning links. The CUB is also ideal for building a simple teletext system.

£80 inc. VAT

CMR16 MICROCONTROLLER

- Z80 CPU
- 4 x 38KX PIO's (64/1 lines)
- 286 CTC
- 84 Dynamic RAM
- 8K EPROM
- 4 Channel A/D converter
- Real time clock

The CMR16 is a very powerful multiplexing control system. Featuring on the front panel of the type 16arihere MCM16 is the addition of R5252 and a 38KX PIO. Data exchange is simple with the type 10 A/D converter.

£150 inc. VAT

PINEAPPLE SOFTWARE, 39 Brownlea Gdns. Seven Kings, Ilford, Essex IG3 9NL 01-599 1476.

CIRCLE 48 FOR FURTHER DETAILS.
Ram-rom input/output controller

A combination of 'sideways' ram and rom-based software expands the capabilities of the BBC Micro into control applications. The Spider adds a number of commands to BBC Basic to allow easy access to external devices and has uses in laboratories or in industry for real-time control. Applications include measurement and recording systems, burglar alarms, aids for the disabled and energy optimizing systems for industry and the home.

The device is provided on a butterfly board which plugs into the 6532 user v.i.a. socket. Parallel processing is possible, which is why it is called the Spider: if an event is caught in the 'web' it is acted upon, another event triggers the system and its presence noted. The first event has its data fully secured and the processor is then free to deal with the second or subsequent events. Different versions are available from the simplest, Spider-B at £65, which communicates through the user and printer ports to Spider-X at £115, working through the 1MHz bus. Spider-E, also £115, interfaces with the Control Universal range of Eurocard control and monitoring devices. Paul Fray Ltd, Willocroft, Histon Road, Cambridge CB4 3JD. EWW201

Modular workstation

A choice of central processing units, displays, application software, programming languages and peripherals are a feature of the Hewlett-Packard series 300. The modular approach enables the user to start on an entry-level system at relatively low cost and upgrade as and when required by the addition of a faster c.p.u. or a higher-resolution display. All of the software and the peripherals remain compatible. The c.p.u. is either a 10MHz Motorola 6810 or a 32-bit 16.6MHz 6820. A megabyte of ram is standard with either processor and may be expanded to 7.5Mbytes. Four bit-mapped v.d.us are available medium or high resolution, monochrome or colour.

Like most of the H-P range, these computers are particularly designed for control and measurement applications and a number of analogue and/or digital interfaces are available along with the appropriate software. Series 300 will run most of the series 200 applications software and an integrated word processor/spread-sheet/database package is available as well as electrical and mechanical engineering programs. Peripheral devices include digitizer tablets, mice, mass storage, printers and plotters. The workstations can be networked together and can communicate with H-P series 200 and 500 systems over a 10Mbit/s lan. Two IEEE 802.3 Standard cabling options may be used: the first can link up to 30 systems over a distance of 185m, the second can provide connections to 100 computers at distances of 500m.

A typical entry-level system will cost about £5164 while the top of the range costs ten times as much: lower than the Series 200 which are superseded by these computers offering better performance. Measurement Design and Manufacturing Systems, Hewlett-Packard Ltd, Miller House, The Ring, Bracknell, Berks RG12 1XN. EWW206

Frequency spotting laser

Instantaneous measurement and analysis of any number of incoming r.f. signals is possible with the use of the Bragg cell developed by Marconi Research Labs at Great Baddow and available through GEC Research. The Bragg cell uses acoustic energy generated by the incoming signal to deflect or modulate a laser beam passing through a lithium niobate crystal. The angle of deflection of the beam is proportional to the frequency of the signal and thus it is a simple process to determine that frequency.

The cells are said to have much potential in optical signal processing and spectrum analysis. It could also be used to unscramble the signals from a frequency hopping radar or radio, or to follow the frequencies in order to jam them. The cells are available in various versions with bandwidths from 60 to 2000MHz and centre frequencies from 0.16 to 2.9GHz. GEC Research Ltd, East Lane, Wembley, Greater London HA9 7PP. EWW211
Digital i.c. tester
Many i.c. testers need 'personality' modules to tell the instrument which i.c. it is testing, but an instrument from ABI Electronics includes test algorithms for a wide variety of i.c.s which are held in memory and can give instant results on all the 74 series of I.E.C. devices, the 4000 range of c-mos devices and a number of memory and interface chips. The instrument can identify the device and test it, thus enabling the identification of unmarked devices. It can also test itself.

The i.c. tester emulates in-circuit conditions and provides the correct supply and input voltage levels. The test may be repeated indefinitely to simulate soak testing and for the detection of intermittent faults. The makers claim that it is possible to test 1000 devices in an hour on the instrument and is therefore ideal for 'goods inward' testing, while the price (£573), the makers say, is within the means of many educational establishments who may wish to test a 'job-lot' of i.c.s purchased for students' designs.

The makers also manufacture a low-cost 16-channel logic analyser (£299). ABI Electronics Ltd, Unit 21, Aldham Ind. Estate, Wombwell, Barnsley, S. Yorks S73 8HA. EWW209

Data from space
Automatic satellite telemetry receiver and information decoder is represented by the acronym Astrid and describes the functions of Astrid — a complete satellite receiving system with built-in decoder enabling signals to be received and data displayed on a home computer.

In operation, it receives all the data transmitted by the Uosat satellites and automatically records it on a standard tape recorder. The recorded signals are then fed back into Astrid to be decoded into ASCII format which may be read through the RS232 serial input on a computer. Signals may also be decoded 'live'.

Information transmitted from the satellites include news bulletins, satellite status data, experimental data, messages on an electronic mailbox, and orbit information. There is an experimental speech digitizer giving telemetry information on board Amsat 2 and c.c.d. tv camera signals.

Using suitable software, which is available from Amsat UK, the data can be decoded to allow the graphic display of satellite tracks over maps, error detection of received data, disc storage of data for computer analysis and data presentation of particular telemetry channels. The software also allows the inclusion of the latest orbit information to enable the accurate prediction of satellite positions.

Astrid comes complete with an aerial and feeder, power supply unit, test tape, manual, and connecting leads. It costs £149 from MM Microwave Ltd, Thornton Road Ind. Estate, Pickering, N. Yorks Y018 7JB. EWW207

Amsat UK is at 94 Herongate Road, London E12 5EQ.

Lithium-backed memory
Over 10 years is the quoted retention of these memory modules when c-mos static RAM is used in the DS1213 'smart' socket. The socket incorporates a lithium cell and a control circuit. The socket may be used with 2Kbyte and 8Kbyte static RAMs and may upgrade existing boards for memory retention without any change in the design. Manufactured by Dallas Semiconductors, the DS1213 sockets are available from Joseph Electronics, 188 Shirley Road, Solihull, W. Midlands B90 3AQ. EWW203

Miniature v.h.f. amplifier
Working over a range from 5 to 250MHz, the Watkins-Johnson EA51 can provide a typical gain of 17dB with less than 3dB noise. The v.s.w.r. output is 1.2:1 and the direct current required at 5V is 12.5mA. The amplifier is housed in a TO-12 package and will work as specified over a temperature range of from -54 to +85°C. Watkins-Johnson International, Dedworth Road, Oakley Green, Windsor, Berks SL4 4LH. EWW202
A superb range of innovative loading and duplicating technology

Worldwide

The leaders

Tape Automation Ltd, Unit 2, River Way, Harlow, Essex CM20 2DN.
Telephone (0279) 442946, Telex 265871 MONREF G quoting Ref: 84 AUL001.

EUROPE • USA • JAPAN • UK • INDIA

CIRCLE 128 FOR FURTHER DETAILS.

POWERTRAN ROBOTIC WORK CELL SYSTEM

COMPLETE ROBOTICS EDUCATION AND TRAINING PACKAGE

Custom-tailored accessories enable IVAX to be incorporated into a comprehensive work cell environment. 32 I/O lines can control auxiliary units and monitor sensors. Rugged, reliable and exceptionally accurate, IVAX is suitable for light industrial use as well as for educational purposes.

Complete robotics education and training package IVAX is the SCARA (Selective Compliance Assembly Robot Arm) with the Powertran pedigree. With fully integrated software and coursework, IVAX is the perfect tool for robotics education and training.

The bench top robot operates on a closed loop system to simulate virtually any industrial application 4 axes and an independent gripper are operated by a programmable controller, either as a self-contained unit or under the control of a host microcomputer.

CIRCLE 36 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
SOME IDEAS NEVER SELL...
but our new innovations do!

Crotech 'scopes are chosen for use throughout the electronics industry and in education for their reliability and ease of use....and they’re affordable too!!

LIKE THE 3132 DUAL TRACE 'SCOPE

The innovations...

- Component Comparator
- Triple Output DC Source

plus...

- 20MHz Bandwidth
- 2mV/div Sensitivity
- 40ns/div Timebase
- TV Frame and Line Trigger
- Add and Subtract
- X – Y mode

....and very affordable at £312.00*

For free details call:
Crotech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818

CIRCLE 104 FOR FURTHER DETAILS.

THE THERMOMETERS

HAZ40
Differential
0.5% accuracy
-30°C to +200°C
0.1°C resolution
£63.50

HAZ30
0.2% accuracy
-120°C to +820°C
1°C resolution
£45.50

HAZ20
0.1% accuracy
-100°C to +1370°C
0.1°/1° resolution
Autoranging
Min and Max hold
RS232 and Centronics
Output option
£95.50

HAZ SERIES
Sealed tactile keyboard
Automatic segment test
Splashproof design

Types K, T and J available
Low battery indication
2000 hour min battery life
3 year Guarantee

LINI
The cheapest!
0.2% accuracy
-120°C to +820°C
1°C resolution
£29.85

VIXEN HYTECH LTD.

17 Amberley Road,
Bostal Heath,
London SE2 0SG.
01-310 4233

CIRCLE 45 FOR FURTHER DETAILS.

CIRCLE 104 FOR FURTHER DETAILS.
Socket for the leadless

A low-profile socket, type IC75, is only 7mm high and 33mm square and may be used for any Jedeck A or B 68-way leadless chip carrier. The contact design and cantilever-action lid ensure good electrical performance. The contacts are rated at 1A with a maximum resistance of 30mohm at 10mA. All 68 contacts are accessible from the sides of the socket to enable testing under loaded conditions. The socket may be used at up to 150°C. Radiatron Components Ltd, Crown Road, Twickenham, Middlesex.

CB at 934MHz

934MHz never caught on as rapidly as the 27MHz band for CB, partly because at this wavelength the equipment needs to be more precise and therefore more expensive. It is seen by many to be the more discerning band, free from the many 'cowboy' operators who dominate the 27MHz band. A CB transceiver, the Cybernet Delta 1, offers 20 channels at this frequency. It has an automatic search facility with a memory for the positions of 8 specific channels as well as manual selection of any channel. The receiver is claimed to be highly sensitive with 20dB quieting sensitivity of less than 0.7µV and a signal/noise ratio better than 40dB. Made by Kyocera in Japan for Mike Devereux Music Ltd, it is distributed at £355 by Telecomms. 189 London Road, Portsmouth, Hants PO2 9AE.

Commodore upgrades

The Commodore C16 computer can be augmented to a 64K machine by the addition of a ram board from MCT of Norwich. The board plugs into the computer internally, leaving the cartridge part free, and enables the extended memory to be used with Commodore C16 and Plus-4 programs (but not those for the CBM64). At £39.95 inclusive, MCT claim the 64K machine represented the best value for money of any home computer.

The same company has also produced their own extended Basic, MCT Basic, for the CBM64 which incorporates the commands found in the much improved Basic of the C16. The product is available on cassette for £10.95 and on disc for £14.95; a rom version will be available "in the not too distant future." Micro Component Trading Co. Group House, Fishers Lane, Norwich, Norfolk NR2 1ET.

Multi-tasking OS9 board

A development board, the SC09 from Arcom, brings together the STE bus with the 6809 processor and the OS9 operating system. The single Eurocard includes four memory sockets, three 16-bit programmable timers, an a.c.i.a. for RS232C communications, and an STE- bus arbiter.

The OS9 is a multi-tasking system which can access a disc controller through the bus or communicate with a target rom-based system; it can be replaced with a machine-code monitor. The memory sockets take two 24-pin and two 28-pin devices and may be used with any combination of ram and ram. Ram may have power back-up from the STE bus standby power line.

The STE bus has access to 64 pages of 56Kbyte ram and 1K of input/output locations any of which may be accessed by the 6809. The /O memory mapped and code running in any of the STE pages may have access to peripheral devices. Interrupts are accepted from any two of the bus's attention request lines. The processor acts as a 'master' on the bus, using its arbiter to grant access to one or two other temporary masters. The control system includes facilities for the processor to scan the bus and deduce the amount of memory available and identify the connected modules on start-up. Arcom Control Systems Ltd, Unit 8, Clifton Road, Cambridge CB1 4BW.
Heat-sensitive paint
A three-bottle kit of liquid crystal thermographic paint provides temperature coverage from 58 to 117°C to non-destructive thermography. Spectratherm may be applied to any dark and preferably non-reflective surface. Semiconductor packages in shiny finishes may be darkened with a black felt pen before applying the liquid crystal paint, thus allowing the colour change to show more clearly. The right combination of liquids to give the required temperature colour-change can be applied on a test piece and assessed against a printed calibration spectrum provided. Temperature can be resolved to within 0.5°C under laboratory conditions. The kit costs £25.30 from Redpoint Ltd, Cheyney Manor, Swindon, Wilts SN2 2PS. EWW219

Current tracer
Unskilled operators can trace faults in complex circuits with the Polar Tonehm 580. Such is the claim for this instrument which has a sensitive magnetic-field probe that can detect small currents such as the flow through an i.c. substrate or within the layers of a multi-layer p.c.b.
The instrument also has an internal power supply that provides a test current of about 0.55V at 50kHz which can then be traced with the probe. Shorts and partial shorts can be traced by following the current path around the circuit. It gives an audible tone so the operator can concentrate on the circuit under test without needing to look at the instrument. £176 from Antron Electronics Ltd, Hamilton House, 29 Kings Road, Haslemere, Surrey GU27 2QA. EWW212

Give it a tweek
A liquid that is claimed to cut down or eliminate problems caused by poor contacts is called Tweek. It is not a cleaner, says the distributor, but a non-conductive fluid that works by filling in the surface imperfections and improving the metal-to-metal contact and ‘dramatically’ reducing the contact resistance. It is claimed to offer improved reliability in any electrical or electronic equipment. It comes in a 7ml dispenser for £15 and, as it needs to be used sparingly to give of its best, 7ml should go a long way. Fulcrum (Europe) Ltd, Valley House, Purleigh, Essex CM3 6QH. EWW208

Digitizing tablet
Initially designed for Siemens as a high-quality, low-resolution input device, the Videograph 1 is now available in the UK. The working area is 320mm square with a resolution of 0.1mm. The output can be binary or ASCII, serial or parallel, up to 19200 baud, point, stream or switched stream, at 1 to 200 coordinate pairs per second. A single 12V supply is taken in through the RS232 connector. Typical configuration of tablet, stylus and RS232 interface costs £199. Fulcrum Dataystems Ltd, Bond Close, Kingsland Estate, Basingstoke, Hants RG24 0QB. EWW216
MODEM OPTICAL ISOLATOR UNIT

Sperry Univac Model 20 isolator unit is designed specifically for data transfer applications to provide excellent electrical isolation between data transfer lines, employing high voltage and megger. Four isolators employing 400 VDC are contained in this unit, which incorporates a 1000 watt power supply. Since it is designed for use with Cat 5 data line, it is particularly useful in data networks. The optical isolator unit is priced at £195.

LJCDR LIQUID CRYSTAL DISPLAY DETECTION TECHNOLOGY

With a CO display, 2 years of following material, backlight diffuser, micro battery pack, and micro battery contacts, this portable display measures 161 x 161 mm. The display is priced at £27.

OSBORNE EXECUTIVE PORTABLE

Superb quality portable with integral enhancements. Data micros, micro lamp, precision crystal, trimmer, battery contacts, and speed of excellent electrical isolation between chassis. Video Monitors, and Personal callers are welcome at 63.0.

MT686/7/TD710: 4 ohm speaker. Size 12 x 10 x 3.94 cm. Complete with heat sinks and power terminals, employing 240v 50Hz at 13JLromley Kent.

This month we feature some fantastic bargains. Our range of professional quality kits and cassette decks is still expanding, along with new lines in Video heads and power supplies. Our FREE list gives details of these and many other lines. ALL BARGAIN ITEMS INCLUDE VAT & POST.

CIRKWIRK is a lightpen or trackerball driven CAD package or entailed to the production of schematic drawings, as such circuit diagrams, flow charts, power systems, pipework diagrams and many similar professional and engineering applications.

Using this on screen menu driven program you can turn your BBC micro into a powerful CAD system capable of producing high quality drawings quickly and accurately. An ordinary 80 column dot-matrix printer is all that is required for output and a unique graphics routine allows a simple screen drawing to be printed in one place.

Drawings up to 7 screens high by 4 screen wide may be produced and new symbology is automatically created. Graphs may be created on an enlarged scale even though drawings progress. Up to 640 different symbols may be used at any time. The drawings in high resolution mode 4 with no restrictions on position and symbols and text may be copied, overaid, rotated and inverted at will. Block components, logical shape and self straightening are some of the useful features included with this program. Parts lists of symbols used may be generated and printouts of the Lead symbol libraries.

3 versions available: Datapen lightpen, trackerball and Graffpad, the latter two also include the lightpen version. The drawings produced on any of the versions are completely interchangeable and the difference between versions is one of speed of drawing. Please send your cheque/P.O. to Dept. WW Datapen Microtechnology Ltd., Kingsclere Road, Overton, Hants. RG25 3JB. Tel: (0256) 770488.

Datapen

Lightpen version £19.95
Trackerball/lightpen version £24.95
Graffpad version £29.95
Datapen lightpen £25.00
Marcon Tracker ball with Micro Draw program £59.50
ICON drawing program £60.50
ATARI Trak Ball with BBC interface £33.00

All prices include VAT & postage. S.A.E. FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985

87
The world's most advanced low-cost bench multimeter!

Thurlby 1905a £349 + VAT

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1 μV, 1 mΩ, 1 nA.
- Full ac and current functions as standard
- A sophisticated computing and logging DMM
 - Linear scaling with offset; null/relative
 - Percentage deviation; running average
 - dBV, dBm general logarithmic calculations
 - Limits comparison; min and max storage
 - 100 reading timed data logging
 - RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St Ives, Cambs. PE17 4BG
Tel: (0480) 63570

CIRCLE 123 FOR FURTHER DETAILS.

Now Thurlby makes logic analysis affordable!

Thurlby LA-160 £395 + VAT

- 16 data channels, expandable to 32
- Clock rates up to 20MHz
- 2,000 word data acquisition memory
- Non-volatile reference memory
- Data state and logic timing displays
- Binary, octal, decimal or hex formats
- Powerful search and compare facilities
- Hard copy data print
- Wide range of optional microprocessor disassemblers!

Now with optional microprocessor disassemblers!

- 6502, 8080 and 6800 presently available
- Simple connection to the microprocessor
- Full capture using 32 data channels
- All memory/stack operations are shown
- Branch addresses are calculated
- Extra uncommitted channels available

An essential instrument

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser has become the essential tool for both hardware and software engineers. Indeed a logic analyser is as important for the observation of logic signals as an oscilloscope is for the observation of analogue signals.

Unfortunately the high cost has made logic analysers unavailable to many who could benefit from them, but now the Thurlby LA-160 puts a sophisticated and versatile logic analyser within the reach of everyone.

CIRCLE 124 FOR FURTHER DETAILS.
It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema.
Many of them comply with the rules contained in the British Code of Advertising Practice.
But some of them break the rules and warrant your complaints.
If you're not sure which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code.
Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority. If an advertisement is wrong were here to put it right.

ASA Ltd. Dept 2 Brook House, Torrington Place, London WC1E 7HN

This space is donated in the interests of high standards of advertising.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
SUPER DEAL? NO - SUPER STEAL
THE FABULOUS 25 CPS "TEC STARWRITER"

Made to the very highest spec the STC STARWRITER FP1500-25 features a very high quality chassis and DIABLO type printer mechanism, giving superb registration and print quality. Microprocessor electronics offer full DIABLO/QUME command compatibility and turbo control via CP/M WORDSTAR etc. Some of the excellent features include: bi-directional printing, switchable 10 or 12 pitch, full width 38 line paper handling with up to 133 characters per line, 1,232 character rollers for single sheet or continuous paper, internal buffer, standard RS232 serial interface with handshake protocol, switchable atlas. Brand New with 50-day guarantee and FREE delay wheel and dust cover. Order NOW or contact sales office for more information. Optional extras RS232 data cable £10.00, Tech manuals £7.50, Tractor Feed £14.00. Spare daisy wheel £3.50 Grapevine & Ins (UK Mainland) £10.00

SUMMER OFFER ONLY £399.99!!
DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotician to build their own specification. The printer mechanism is supplied ready built, aligned and tested but WITHOUT electronics. Many features including: microprocessors, phosphor screen, 12-bit character, optical shaft position encoder. NINE needle head. 2 x two phase 12V stepper motors for carriage and paper control. 9V Paper drive etc. Even a manufacturer's print sample to show the unit's capabilities!!! Overall dimensions 40 cm x 12 cm x 21 cm
Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp £4.50

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES
ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING

PDP 11/40 System comprising of CPU, 124k memory & MMU 15 line RS232 interface. RP02 40 MB hardisk drive. TUX 34/50-BP tape drive dual track system. VTS2 VDU, etc. Tested and running £3750.00
BA11 MB 3.5 Box, PSU, LTC £395.00
DI20 AD 16 x RS232 DMA interface £1900.00
DLV11-34 EIA interface £350.00
DI21 1 EIA interface £350.00
DUP1 5 Synch Serial data £180.00
DOL101 1 EIA interface for higher speed £495.00
DZ11-8 B line RS232 MUX board £650.00
KDP1 Interface board for EIA interface £100.00
LA30 Printer and Keyboard £80.00
LA36 Decowriter EIA or 20 mb tape £270.00
MS11-JP Umbus 32k Ram £80.00
MS11-LB Umbus 128k Ram £450.00
MS11-LD Umbus 256k Ram £450.00
PDI1/050 Pup Ram, etc £450.00
PDI1/040 Pup 124k MUX £1850.00
RT11 ver 3.0 documentation kit £450.00
ROK5-2 5.25 mb disk drives £550.00
KLK4A 3.5 MB disk drives £175.00
M18P B8 Bootstrap circuit £75.00
M18P B8 Bootstrap circuit £175.00
VTS0 VDU and Keyboard £250.00
VTS2 VDU and RS232 interface £250.00

MAG TAPE DRIVES

Many EX STOCK tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge drives ONLY £450.00 each

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET & PSU

All in one quality computer cabinet with integral switched mode PSU, fans filtering, and a fan interlock to prevent overheating. A new 24 inch per day the PSU is fully screened and will deliver a massive +5v DC at 17 amps. +15v DC at 1 amp and -15v DC at 5 amps. The complete unit is fully enclosed with front switch, trip switch, power and run LEDs mounted on all front panels, rear cable entries, etc. Units are in good but used condition supplied for £240 operation complete with full circuit and tech man. Give your system that professional finish for only £49.95 + carr 19" wide 16" deep 10.5' high Useable area 31.16 in 1 E1 Fd
Also available less psu, with fans etc. Internal dim 19" w, 16" d, 10.5' h £19.95. Carriage £8.75

66% DISCOUNT ON ELECTRONIC COMPONENTS ETC

Due to our massive bulk purchasing programme, which enables us to bring you the best possible bargains, we have thousands of parts now available. Parts include: Resistors, Capacitors, PCBS, Sub-assemblies. Switches etc. etc. surplus to ROYAL MILITARY REQUIREMENTS. Because we don't have sufficient stocks of any one item, we have to sell them by the BARGAIN OF A LIFETIME. At these prices, we are prepared to accept your orders for thousands of items. Free delivery to groups of 30 items. Ask us to bring you some samples. The unit can be guaranteed to be worth all the money you pay. Unbeatable value when compared to our normal stock - perhaps one of the most consistent useful items you will ever buy!!" Sold by weight

5k x 6.90 + £1.50
20k x 11.50 + £4.75
50k £14.95 + £2.00
100k £19.95 + £3.00

1000's of other EX STOCK items including POWER SUPPLIES, Sockets, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDUs, PRINTERS, POWER SUPPLIES, OPTICS, KEYBOARDS etc etc. Give us a call for your spare part requirements. Stock changes daily

Don't forget, ALL TYPES AND QUANTITIES of electronic surplus purchased for CASH

CIRCLE 129 FOR FURTHER DETAILS

www.americanradiohistory.com
DUAL 300 BAUD MODERN OFFER

Another GIGANTIC purchase of these EX-BRITISH TELECOM BRAND NEW or little used 25 baud data modems allows us to make the FINAL REDUCTION and for YOU to join the exciting world of data communications at an UNBELIEVABLE PRICE.

Originally £58.95 per unit, we are now OFFERING just £29.95. Order one or more and you will be pleasantly surprised at both the facilities and the price.

This modem in a 320 baud unit, only 2.5" high fits under your telephone. No need to connect with any separate terminal. Just plug it into any telephone socket and instantly connect you to PRESTEL etc. Many other features include memory dialing, recall, on-line screen storage and expansion. Standard Muriel LUCY chip set, integral 5 x 10 character display and keyboard. Designed to suit your own requirement. But £80 or more if any 116 or £100.

Contact CALL00 or DIAL TOLL FREE 8489900 (0116) or 01234 567890 for further details.

DUAL 300 BAUD MODERN OFFER

Another GIGANTIC purchase of these EX-BRITISH TELECOM BRAND NEW or little used 25 baud data modems allows us to make the FINAL REDUCTION and for YOU to join the exciting world of data communications at an UNBELIEVABLE PRICE.

Originally £58.95 per unit, we are now OFFERING just £29.95. Order one or more and you will be pleasantly surprised at both the facilities and the price.

This modem in a 320 baud unit, only 2.5" high fits under your telephone. No need to connect with any separate terminal. Just plug it into any telephone socket and instantly connect you to PRESTEL etc. Many other features include memory dialing, recall, on-line screen storage and expansion. Standard Muriel LUCY chip set, integral 5 x 10 character display and keyboard. Designed to suit your own requirement. But £80 or more if any 116 or £100.

Contact CALL00 or DIAL TOLL FREE 8489900 (0116) or 01234 567890 for further details.
AERITALIA AVIONICS GROUP

Electrical & Magnetic Field Sensor System.
Covering Frequency: 20Hz-1GHz & 1-18GHz.
With nine optional sensor heads.

TYPICAL APPLICATIONS (electric and magnetic fields)
- Radiation hazard measurements in near and far field conditions
- Transmitter antenna evaluation and field pattern measurements
- Transmitter antenna tuning for maximum radiation
- Monitoring electromagnetic environment in areas where electro-explosive devices, or weapon systems are stored
- Quantitative "on the air" measurements
- R.F. interference measurements
- R.F. field strength measurements during EMI susceptibility tests (MIL-STD-461-462, H.E.R.O. TESTS etc.)
- Monitoring of installation sites for R.F. sensitive equipments (industrial areas, ships, aircraft etc.)
- CIRCLE 24 FOR FURTHER DETAILS.

APPLICATIONS
Research & design of electrical and electronic equipment with either variable or fixed frequencies and voltages.
Active steady mains simulation for sources of 50Hz, 60Hz, 400Hz, & 4KHz.
Capability to decrease & surge the voltage and shift the frequency.
Mains simulation for MIL-STD-704B.
TESTING OF: Motors, chokes, capacitors, fluorescent lamps, transformers, synchronizers. A calibrating source for all control & regulatory apparatus.

HIRE
Many Units from these manufacturers are included in our range of EMC Hire facilities –
per day/week/month
ASK FOR THE HIRE BROCHURE
CIRCLE 25 FOR FURTHER DETAILS.

EMCO
Antenna Range
ELECTRO-MAGNETIC INSTRUMENTATION
- Magnetometers
- Magnetic Field Intensity Meters
- Helmholtz Coil Systems
- Magnetic Field Generating Coils
- Antennas 20Hz-18GHz
- Triaxial Magnetometer System
- L.I.S.N.’s
- Rejection Networks
CIRCLE 27 FOR FURTHER DETAILS.

FISCHER
Custom Communications
A full range of current probes 20Hz to 1GHz.
Also injection probes.
Models can be customised regarding internal diameters.
CIRCLE 28 FOR FURTHER DETAILS.

For further Information on the above contact:
ELECTRO-METRICS LTD.
TEL: (0767) 316767
41 Church Street, Biggleswade, Beds., SG18 0JS.
Communications receivers

Some additions to last month’s survey

Philips have launched two multi-band synthesized portables, each covering 150kHz-30MHz plus the f.m., broadcast band.

The D2935 (£170), styled as a portable, memory-dual-superhet with a liquid-crystal display, keypad frequency selection giving storage for up to nine stations, a b.f.o. for s.s.b. or c.w. reception and an r.f. gain control. It can run on mains or battery power and it weighs 2.45kg.

Among the additional features offered by the D2999 (£300) are three-speed electronic tuning using a knob as an alternative to the keypad, a digital field-strength meter, seven more memories, a search-tuning facility and a switchable dual loudspeaker system. This model, which is described as a transportable, weighs 4.11kg.

The Danish manufacturer Eska is returning to the market after a reorganization, and among the h.f. products announced by the company is the RX99 PL portable receiver.

Frequency coverage is 15kHz to 29.999MHz plus a.v.h.f. range of 144-176MHz and an unusually wide f.m. broadcast band of 60-109.9MHz. Modes available are s.s.b., f.m. (broad and narrow-band), radio-teleprinter, a.m. and phase-locked a.m., with true push-and-tuning. This versatile set has a two-line, 20-character alpha-numeric LCD. read-out, 99 memory channels, scanning, four independently-selectable a.g.c. time constants and nine receiver bandwidths ranging from 500Hz to 240kHz. Remote control and data transfer are possible via a passive 20mA current loop.

Also from Eska is a modification kit for the JRC NR-515 receiver pictured last month. The kit includes extra filters to improve the set’s selectivity and is claimed to increase the signal-to-noise ratio by 10dB. It also provides a phase-locked a.m. detector and distortion-free reception of a.m. stations even during severe fading and interference.

Eska Communications Systems A/S, Frederikssundvej 274D, DK2700 Brønshøj, Denmark.

From page 36

Once here is that in the newer devices there is no onus on the system to provide the refresh address.

This ‘CAS-before-RAS’ signal mechanism — just one of the advances being made in dynamic memory development — requires the slightly more complex RAS signal.

To keep the system simple, no code is executed within the silicon, and it is purely a store into which and from which data is transferred. This means that access to it will always be interleaved with access to other areas of memory.

The timing controller generating RAS and CAS for the silicon disc produces conventional memory cycles when the disc is actually being accessed. It generates CAS-before-RAS cycles whenever accesses at other addresses occur or when the silicon disc is mapped out of the system. Thus refreshing is guaranteed while the microprocessor runs and yet minimal control signals are required.

Component IC3 operates the data bus to and from the host system. It is permanently active and normally faces off the system bus toward the silicon disc. Page selecting latch IC4 is treated as an i/o port clocked by an external signal which, in the case of the SC84, comes from the i/o board through pin 25. The lower seven bits stored in this latch combine with the lower 11 bus address lines to form inputs to a nine channel two - input multiplexer, IC5, providing row and column addresses to the dynamic memory array.

It doesn’t matter which address lines are paired up, or which multiplexer outputs go to which dynamic memory address inputs. Upper address lines are connected with IC5, to the compactor formed from IC6, which gives an active output when the address matches the switch settings and the SDSEL line is active. This line is the signal which maps the silicon disc into memory and may be selected to be active high or low by switch S6. Output of the compactor is used to gate the inverted RD signal into the dynamic memory W pins.

In SC84 an inverted read signal rather than the conventional write one was used as the write strobe to the memories. The advantage of this is that an ‘early write’ is always generated. This type of write cycle is particularly useful in that the write operation for these dynamic memories can take two forms, dependent on the state of the W line when CAS goes low.

Most microprocessors still have their write signals high at the point when CAS goes low, so a conventional cycle is generated where the memory outputs the present state of the bit, i.e. the cycle begins as a read one. By setting W low before CAS goes low an ‘early write’ cycle occurs in which the output pin of the memory stays in a high impedance state throughout the cycle. This allows the data input and output pins on the memory to be connected together without any fears of bus contention— an arrangement which suits the bidirectional system data bus.

The main control signal indicating a memory cycle passes through buffering and a series of time delays to produce a slightly delayed version for the RAS signal. A further delayed version switches the address-line multiplexer and a yet further delayed one acts as the conventional CAS. Note that these signals are all gated with the original one so that all signals go to their inactive state promptly at the end of the memory cycle.

The memory control signal also feeds forward, bypassing the delay chain. This is the early version of CAS, made available for the ‘CAS-before-RAS’ refresh cycles mentioned earlier. Selection of the CAS type takes place in a dual 4-to-1-line multiplexer, IC4. Here the comparator output and the higher order bit from the page register combine to select which type of CAS, early or conventional, is passed to which 256-byte memory block.

In using a silicon disc, one rule must be adhered to. Remember that the ‘disc’ is silicon and not magnetic and so should the power fail you will lose all of the data. The rule is to regularly make back-up copies of any master files on magnetic disc.

A version of the SC84 operating system, version 2.1D, is available which treats the silicon disc as drive E. For readers patching their own CP/M Bioso, a DBP exists. The DBP sets the number of sectors per track as 16 (sixteem 128 byte sectors yields the 2kByte of page/track) and zero offset, i.e. no tracks reserved for system use as you would never boot the system from a silicon disc! Other parameters are by choice, although the system uses a block and 16 checked directory entries.
ADVANCED
LOW COST
SPECTRUM ANALYSER

THE IFR A-7550 SPECTRUM ANALYSER
The A-7550 Spectrum Analyser is the most advanced, low cost portable spectrum analyser on the market today. Two powerful microprocessors, menu driven display modes and single function keyboard entry aid the user in the operation of all analyser functions. To further enhance the operational simplicity of the A-7550, the microprocessor system automatically selects and optimises the analyser’s bandwidth, sweep rate, centre frequency display resolution and the rate of the frequency slewing key. An operator override is also provided when non-standard settings are required.

TO LEARN MORE ABOUT THE A-7550’S IMPRESSIVE RANGE OF FEATURES, CONTACT US TODAY.

Fieldtech Heathrow Limited, Huntavia House, 420, Bath Road, Longford, Middlesex, UB7 OLL, England.
Telephone: 01-897 6446
Telex: 23734 FLDETC G

CIRCLE 13 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD
EDITORIAL FEATURES
1985/86

ISSUE DATE PUBLICATION DATE FEATURE
Nov. 1985 Oct. 16th Modems
May 1986 April 17th Fibre Optics

For more details regarding advertising
Contact Bob Nibbs
01—661 3130

It's easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers’ complaints. Any complaint sent to us is considered carefully and, if there’s a case to answer, a full investigation is made.

If you think you’ve got good reason to complain about an advertisement, send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority. If an advertisement is wrong, we’re here to put it right.

ASA Ltd. Dept 1 Brook House, Torrington Place, London WC1E 7HN

This space is donated in the interests of high standards of advertising.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985

www.americanradiohistory.com
THE BEST APPROACH

£7,000-£30,000 + CAR

* Where does your interest lie: Graphics; CAD; Robotics; Simulation; Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms; Radar; Opto and Laser?

* Experienced in: VLSI; Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?

* There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers

* For free professional guidance: Call: 0638 742244 (till 8pm most evenings) or write (no stamp needed) to ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED FREEPOST, The Maltings, Burwell, Cambridge, CB5 8BR.

Professional Career Opportunities

The Easy Way to look for your new job from the comfort of your own armchair. Our well qualified consultants will carefully match your requirements against appropriate vacancies.

We have many clients seeking Engineers and Technicians at all levels and we are particularly interested in hearing from you if you have experience in the following:

- Signal Processing
- Technical Sales
- ATE Programming
- Radar Systems
- RF Development
- Real Time Software

Your next step is to complete and return the attached coupon or telephone John Proder on 0442 473111 or one of our duty consultants on 0442 212650 during evenings or weekends.

Executive Recruitment Services

THE INTERNATIONAL SPECIALISTS IN RECRUITMENT FOR THE ELECTRONICS, COMPUTING AND DEFENCE INDUSTRIES

FREEPPOST, Hemel Hampstead, Herts HP2 4BR

NAME ___________________________ (Mr/Miss/Mrs)
ADDRESS _________________________
POST CODE _________________________
TEL NO ____________________________
QUALIFICATIONS AGE ______________
 NONE CG/HNC DEGREE OTHER
 □ □ □ □
SALARY JOB _________________________
 £0-£6000 £6-10000 £10-15000 £15000 + WW2
 □ □ □ □
(36)
Appointments

CUT THIS OUT!
Clip this advert and you can stop hunting for your next appointment. We have a wide selection of the best appointments in Digital, Analogue, RF, Microwave, Microprocessor, Computer, Data Comm's and Medical Electronics, and we're here to serve your interests. Call us now for posts in Design, Test, Sales or Field Service, at all levels from £6,000 - £18,000.

Technomark
Engineering & Technical Recruitment
11 Westbourne Grove, London W2. Tel: 01-229 9239.

Telecommunications
Engineering Technicians

Openings in Servicing and Maintenance
Up to £9,317

Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales – some of the latest you will find in operation anywhere.

We have a number of vacancies at our Service Centres in various parts of the country for Telecommunications Engineering Technicians with practical skills in locating and diagnosing faults in a wide range of equipment from computer-based data transmission to FM and AM radio systems.

The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep you up to date on developments and new equipment. There are also opportunities for day release to gain higher qualifications.

Applicants, male or female, must be qualified to at least City & Guilds Intermediate Telecommunications standard and possess a current driving licence.

Home Office
Directorate of Telecommunications

Capital Appointments Ltd
The UK's No. 1 Electronics Agency
If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, technical sales or similar fields:

Telephone now for our free jobs list
We have vacancies in all areas of the UK Salaries to £15,000 pa

01 808 3050
(24 hours)

Capital Appointments Ltd
76 Willoughby Lane, London N17 O5F

The Home Office is an equal opportunities employer.

Salary will be on a scale £6,810 to £9,317 a year with generous leave allowance and pension scheme.

Good prospects for promotion.

If you are interested in working with us, please write for further details and application forms quoting reference WW/9 to: Miss M Andrews, Home Office, Directorate of Telecommunications, Horseferry House, Dean Ryle Street, London SW1P 2AW.

www.americanradiohistory.com
Electronic Engineers – What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £16,000 – £20,000.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.
Tel: 0892 39388 (24 Hour Answering Service)

Please send me a TJB Appointments Registration form.

Name

Address

(861)

THE OPEN UNIVERSITY in collaboration with BRITISH TELECOM

Faculty of Technology

RESEARCH FELLOW

COMPUTER AIDED FILTER DESIGN

Applications are invited for the three year post of Research Fellow, to work in the Electronics Discipline at The Open University on a SERC Collaborative Research Programme with British Telecom Research Laboratories entitled 'A comprehensive Computer Aided Filter Design System'. The System will be based on a DEC Vax Station Computer, together with a wide range of input/output devices.

We are seeking applicants with a PhD in Electronics, Computer Science or a related area, and a background or interest in one or more of the areas of Computer Aided Circuit Design, Electronic Filter Design, Numerical Methods, Software (C/Fortran under Unix), and Machine Interfaces.

An appointment will be made on the Research Fellow IA scale, currently £7520 to £12150, with an initial starting salary of up to £8920. The post is available from 1st October 1985.

Further particulars and an application form can be obtained from: Miss M. Fordham (48672), Faculty of Technology, The Open University, Walton Hall, Milton Keynes, MK7 6AA, or Telephone Milton Keynes (0908) 653941:
There is a 24 hour answering service on 653868.

Closing date for applications: 7 October 1985

PENRHOS ELECTRONICS LTD

PENRHOS ELECTRONICS LTD

COMPUTERISED AND PROGRAMMABLE CONTROL FOR INDUSTRY

A GROUND FLOOR OPPORTUNITY EXISTS FOR

PRODUCTION ENGINEER

1. Qualifications - Micro Electronics HNC/D or Degree.
2. Experience 2/3 years Z80, Motor Rola, 6.8000,
 Assembler, C.,

Penrhos Electronics is a fast growing company with a World - wide market. We require a hardworking, ambitious engineer who would have his sights set on the
* Technical Directors job * at the outset he would take charge of a small team and be responsible for taking designs and modifications through prototype trials into productions.

Salary initially £8-11K with sizeable increments on progress.

Please reply in writing to: C.M. Griffiths, Managing Director, Penrhos Electronics Ltd, Westfields Trading Estate, Grandstand Road, Hereford, HR4 9PA.
Appointments

Brighton Health Authority.
Chailey Heritage Hospital. Rehabilitation Engineering Unit. Medical Physics Technician Grade III or II. With a background in electronic and mechanical engineering to join an enthusiastic research team on a Spastics Society funded research project concerned with the development and duplication of special switches and interfaces for electronic aids and microcomputers for the severely disabled. This is a new post, initially for three years.
Salary according to age, qualifications and experience on a scale £6408-£9627.
Closing date for return of application forms is 31st October.
Further information and application forms from:
Dr C.E.E. Thornett, Senior Research Scientist, or:
Mr R.L. Nelham, Technical Director, Rehabilitation Engineering Unit, Chailey Heritage Hospital, North Chailey, Lewes, Sussex, BN8 4EF. Tel. 052-572-2112 Ext 99.

VIDEO SERVICE ENGINEER FOR INDUSTRIAL VIDEO EQUIPMENT – FARNHAM, SURREY.
E.S. Video have a vacancy for an engineer with service experience on low band U'Matic equipment, Industrial V.H.S., single and three tube cameras.
Attractive negotiable salary with car allowance and Free BUPA.
Write with full details to:
Mr R N Woodward, E.S. Video, 5 Mead Lane, Farnham, Surrey. GU9 7DY

COMMUNICATIONS DESIGN FROM START...

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, test and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics or electronics related subjects to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer (£7,435-£10,039) or Scientific Officer (£5,909-£8,153) according to qualifications and experience.

For further details please write to the address given below. It would be particularly helpful if an outline of your personal interests and practical experience could be included.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 8HN.

THE START OF SOMETHING NEW
If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ?

We are recruiting RADIO OFFICERS who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.

The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.

Salaries start at £4,988 at age 19 to £6,028 at age 25 and over during training and then £6,832 at 19 to £8,315 at 25 and over as a Radio Officer. Increments then follow annually to £12,328 inclusive of shift and weekend working allowances.

For full details and application form phone 0242 32912/3 or write to:

GCHQ

The Recruitment Office A/1108 Priors Road

CHELTENHAM

Gloucestershire GL52 5AJ

(2606)
SERVICE ENGINEER

IN-HOUSE ELECTRONICS

Harpenden, Herts

Tektronix is at the forefront of innovative technology in electronics with an extensive product range unequalled in the industry.

We have an opening for a Service Engineer to work in-house in our Harpenden office. Working as part of a highly skilled team this represents an excellent opportunity to develop your knowledge of electronics, and apply it to our most sophisticated in-house range of test and measurement equipment.

You should have a good practical knowledge of analogue and digital techniques and circuit theory, plus the ability to fault-find down to component level. If you can also bring some knowledge of digital techniques to much the better but this is not essential.

We offer a competitive salary, enhanced by a profit share scheme and fringe benefits. Excellent product and skills training is offered and there is good opportunity to advance within the company as we continue to grow and diversify.

For more information and an application form, please contact Sue James, Human Resources Department, Tektronix U.K. Ltd, Fourth Avenue, Glen Park, Marlow, Bucks.

Telephone: Marlow (06284) 6000.

ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE

Edith Cavell Hill, Egham, Surrey. TW20 6XX

DEPARTMENT OF PHYSICS

2 Grade 5 Technicians required for this recently expanded department.

One to assist with the research into nuclear and microwave physics or crystallography and solid state spectroscopy.

One to assist in the running of the large undergraduate laboratories in the modern Tolansky building.

Applicants should be qualified in physics, applied physics or electronics and have some laboratory or workshop experience.

Applicants without experience would be appointed at a lower grade and be instructed in laboratory techniques.

Salary on the scale £7401 - £8204 inclusive of London allowance.

Please apply in writing stating age, qualifications and experience together with the names and addresses of two referees to: the Personnel Officer.

UNIVERSITY OF SUSSEX

ELECTRONICS TECHNICIAN (M/F)

In the Psychology Laboratory in the Arts and Social Studies Area. In the first instance this will be a temporary appointment with a possibility of being made permanent. Duties will include maintenance and repair of computer terminals and printers, installation and checking of wiring, installation of computers, ordering and keeping stock of spare parts. An interest in computing is desirable.

Salary within Grade 4 - £6,610 to £7,024 per annum (pay award pending), according to age and experience.

Application form from: Personnel Office, Sussex House, University of Sussex, Falmer, Brighton BN1 9RH.

Closing date 18 October 1985.

PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMMUNICATION ENGINEERING

SENIOR TECHNICAL INSTRUCTOR

Applications are invited for the post of Senior Technical Instructor, which will be available from January 1986. Candidates should have a higher certificate/diploma/degree qualification and relevant industrial experience.

Preference will be given to candidates with teaching experience/qualifications and experience in communications systems or broadcasting.

SALARY: Senior Technical Instructor £17,555 per annum, Senior Technical Instructor £19,405 per annum (K1=Stg. 0.7215 approx.) level of appointment depending on qualifications and experience.

The initial contract period is for three years. Other benefits include a gratuity of 24% taxed at 5%, appointment and relocation payment for the staff member and family after 18 months of service. Settling-in and setting-out allowances, six weeks paid leave per year, education fares and assistance benefit schemes are available.

Detailed applications, covering two or three pages, together with references and addresses of three referees, and indicating earliest availability to take up appointment, should be received by: THE REGISTRAR, PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY, Private Mail Bag, Lae, Papua New Guinea, by 13 October 1985. Applicants resident in the United Kingdom should also send one copy to the Association of Commonwealth Universities, 36 Gordon Square, London WC1H 0PF, from whom further information may be obtained.
Appointments

Services Sound and Vision Corporation

Assistant Chief Engineer (UK & Overseas)

Based at Chalfont Grove and reporting to the Chief Engineer (UK and Overseas) the main duties include:
- Assisting in the day-to-day general and technical administration of UK non broadcast engineering staff.
- Recruitment and training of non broadcast engineers.
- Administration and supervision of the general office for engineering department UK.
- Co-ordination and liaison with equipment manufacturers regarding Post Design Services activity and equipment assessment.
- Deputising for the Chief Engineer (UK and Overseas) in his absence.

This is a managerial position and in addition to a competitive salary a corporation car is provided which is available for personal use. Five weeks and two days annual leave. Good pension scheme and life assurance. Group BUPA scheme available.

Applications are invited from suitably qualified personnel with at least 5 years experience of technical support for electronics or electro-mechanical equipment at least 2 years of which should be in a supervisory or managerial capacity.

Please apply to Mrs. D.B. Trigg, Personnel Manager,
The Services Sound and Vision Corporation, Chalfont Grove, Gerrards Cross, Bucks SL3 8TN. Telephone: Chalfont St. Giles 4461.

WANTED

RESILIENT BROADCAST ENGINEER

To operate 20 Kw AM & FM Transmitters for "The Voice of Peace" aboard the Peace ship in the Mediterranean.

Applications, including C.V. to:
The voice of Peace, P.O. Box 4399, Tel Aviv, Israel
Or call Israel (010 972) 03 245 560.

SERVICES SOUND AND VISION CORPORATION

VIDEO TECHNICIAN FOR WESTERN EUROPE

An experienced and suitably qualified Video Technician is required to work in and around Dusseldorf, West Germany. Responsibilities will include the service and repair of video equipment (predominantly domestic) in our workshop in Dusseldorf along with some on-site visits to areas in West Dusseldorf.

A car is provided with this appointment.

VIDEO ENGINEER FOR WESTERN EUROPE

An experienced and suitably qualified Video Engineer is required for work in our workshop in München, West Germany. Responsibilities will include the repair and service of video equipment both domestic and industrial with some on-site service calls.

The successful applicant must possess a good working knowledge of U-matic V.C.R.'s and 3 tube colour cameras.

Good salaries paid to right applicants. Please write or telephone for an application form to:
Mrs. A.R. Sive, Personnel Officer,
The Services Sound and Vision Corporations,
Chalfont Grove, Gerrards Cross, Bucks SL3 8TN.
Tel: Chalfont St. Giles 4461 Ext. 221.

Product Development Engineers

Dolby Laboratories, famous for its audio noise reduction systems, was founded by an engineer. A company that believes in engineers and engineering, we are small enough for individual contributions to be recognised yet well established with the resources to implement and capitalize on innovations.

We are looking for Senior and Junior Engineers, who are probably electronics graduates, to staff a new Product Development Section in the UK.

Reporting to the Managing Director, the group will be responsible for translating agreed product "outlines" into manufacturable units. The emphasis is on creative engineering and design.

Salaries will be competitive.

For more information contact:
Gary Holt, Dolby Laboratories Inc.,
346 Clapham Road, London SW9 9AP
01-720 1111

RED ROSE RADIO P.L.C.

The independent local Radio Station for Lancashire has a vacancy for an Engineer, Grade L2.

The successful applicant will enjoy a wide variety of work including project design and development, technical maintenance and Studio and Outside Broadcast operations.

Applicants should be qualified to Degree/HND level in Electronics and have experience in broadcasting or a related field. A clean driving licence is essential.

Salary is in accordance with current ACTT rates. Apply in writing, including a full C.V. to: Dave Cockram, Chief Engineer, Red Rose Radio P.L.C., P.O. Box 301, St. Paul's Square, Preston. PR1 1YE.

100

www.americanradiohistory.com
ELECTRONICS/SOFTWARE

TECHNICAL AUTHORS

Howard Engineers produce maintenance and user manuals, to a high standard, for a wide variety of products, from large electronics systems to software for personal computers.

We currently have vacancies for both trainee and experienced Technical Authors. The work involves liaison with our clients, developing a detailed understanding of the product, organising and writing the handbook and co-ordinating the production of the finished text and illustrations.

Prospective trainees should have a sound knowledge of electronics or computer software, acquired from formal education, job experience or a serious leisure activity, plus the ability to express themselves concisely in the written word.

The company offers varied and interesting work, a pleasant working environment and a salary commensurate with your knowledge and experience.

Vacancies exist at our Gosport, Southampton and Wokingham offices. Apply in the first instance to:

Carolyn Hatch
HOWARD ENGINEERS LTD
Grovesnor House
Cumberlall Place
Southampton
Hampshire
S01 2BD
Tel: (0703) 334332

SOUTH PACIFIC
JOB OPPORTUNITIES

PAPUA NEW GUINEA
DEPARTMENT OF CIVIL AVIATION
GROUND FACILITIES DIVISION

REQUIRES—
CHIEF ENGINEER
Ref No. VS/C/53
SENIOR ENGINEERS
RADIO AND ELECTRICAL
Ref No. VI/OA/54
TELECOMMUNICATIONS AND ELECTRICAL
TECHNICIANS
Ref No. VI/OA/55
TECHNICAL INSTRUCTORS
RADIO AND ELECTRICAL
Ref No. VI/OA/56
DRAFTSMEN ELECTRONIC AND ELECTRICAL
Ref No. VI/OA/57

SALARY PACKAGE
Engineers £23000 — £24200
Technicians, Instructors and Draftsmen £18000 — £22000

BENEFITS
Three year contract with possibility of renewal.
Free MARRIED/SINGLE accommodation.
Six weeks annual leave.
Return leave fare once per contract.

EXPERIENCE
Extensive background in Aviation Ground Facilities preferred. May consider those from allied areas if they have proven staff management and training experience particularly in a developing country.

QUALIFICATIONS
Degree, HNC/ONC or equivalent.

Closing date for applications 20th September 1985
For full details and application forms please write or telephone the Recruitment Dept. Papua New Guinea High Commission, 14 Waterloo Place, London SW1R 4AR. Telephone 01-930 0922 Telex: Kundu 25827

B&W LOUDSPEAKERS
STEYNING SUSSEX

Rare opportunities to join our progressive research team developing high-end audio products.

SENIOR PROJECT ENGINEER
Canditates should have a good degree and at least five years R&D experience in high quality drivers and loudspeaker systems, and be capable of original thinking as well as following projects through to conclusion.

AUDIO ENGINEER
To work with Project Engineers in developing high quality drivers and systems. Some previous experience is desirable, but graduates will be considered depending on ability and initiative.

Working conditions are extremely pleasant, complete with computer and laser interferometry facilities.

BUPA membership, canteen and other fringe benefits. Salary commensurate with ability/ experience. We are looking for dedication and ambition recognising success with a bonus scheme.

Please apply initially in writing to the Managing Director
B&W LOUDSPEAKERS LTD
Elm Grove Lane, Steyning, West Sussex BN4 3SA

Inner London Education Authority
LEARNING RESOURCES BRANCH,
Production Division,
Television and Publishing Centre,
Thackeray Road,
London SW8 3TB

TELEVISION ENGINEER
for Master Control Section (ST/12)
This post is involved with the bulk production of colour videocassettes from 1" Ampex submasters. The successful candidate will be expected to operate the 1" machine, cassette machines (VHS, BetaMax and U-matic) and label and check copies. He/she will have a good working knowledge of colour television principles and suitable experience and/or technical background.

Salary within the scale £6222 to £8327 + £1494 London Weighting Allowance.

Further details, including full job description and application forms from EO/Estab 1B, Room 366, The County Hall, London SE1 7PB. (Please enclose S.A.E.) The closing date for completed application forms is 20th September 1985. This post is suitable for Job-share.

This is a re-advertisement.

ILEA IS AN EQUAL OPPORTUNITIES EMPLOYER.

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
LINSLEY HODD DESIGNS

- Amplifiers
- Signal Generators
- THD Analyser
- Millivoltmeter

Details from:

TELERAadio ELECTRONICS
325 Fore Street, Edmonton, London. N.9. O.PE.

LIFELITE SOLIDSTATE SAW SOLDERING MACHINE - model 8060, with 90 cm of solder, complete with stand, purpose made bench. Excellent condition. £280.
Tel: 031/303 2013.

WOUND COMPONENTS

Complete custom built service for:
- Air core, self bonded, miniature ferite wound components for transformers, inductors, chokes etc.
- Write or phone

Tayside Audio (Scotland) Ltd
Unit 1, Dunsmuir Ave
Dundee DD2 30N
Tel (0382) 819997 Tlx 76137

11)2

WAVEGUIDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock.

G.W.M. RADIO LTD. 60/22 Portland Road, West Brompton, London. Sw6. TEL: 01-357 2157. Marconi Atlantic Communication Receivers £25. Suitable spares or resell etc. B.V. 8 with case and leads £17.10. C. V. 7, case £15.10. Advance Signal Generators 1 - 14.35v - 50/60c £25.10. Wayne Kerr Universal Bridge. TYPE CT392 £19.10. P. 11. All prices include VAT. Returns are guaranteed.

Various P.C.B.s, Choke disk drive and cables for data general Nova 820 family of computers. Tel: 031-328 7997.

OPPORTUNITIES IN THE SOUTHEAST

Sales Executives
10.6k basic + 6k OTE + car.

Test Engineers £9.5k

Service Engineer £8k.

Field Service Engineer £8k + car.

Technical Support 10k plus.

WANTED

SUSPENSION ELECTRONIC COMPONENTS AND EQUIPMENT

We also welcome the opportunity to quote for complete factory clearance.

B. BAMBER ELECTRONICS
5 STATION ROAD, LITTLEPORT, CAMBS. Phone: 01353 86085

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M & B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
0532 4356649

(9569)

MORE BRIGHT Hi Tech Jobs

£8000 - £20,000

As a leading recruitment consultancy we have a wide selection of opportunities for hi calibre Design, Development, Systems and supporting staff throughout the UK.

If you have experience in any of the following then you should be talking to us for your next career move.

ARTIFICIAL INTELLIGENCE + IMAGE PROCESSING
MICRO HARDWARE & SOFTWARE + GUIDED WEAPONS
OPERATIONAL RESEARCH + RF & MICROWAVE + OPTICS
MATHEMATICAL MODELING + C
HIGH LEVEL PROGRAMMING + SYSTEMS ENGINEERING
ACOUSTICS + SONAR + FLUID DYNAMICS + RADAR
SATELLITES + AVIONICS + CONTROL + ANTENNA

Opportunities exist with National, International and consultancy companies offering excellent salaries and career advancement.

For Free and Confidential career guidance call John Spencer or send a detailed CV. Please quote reference W4W4.

Skypoint Technical Services
85 High Street, Winchester, Hampshire SO23 8AP
Tel: Winchester (0626) 69478 (24hours) (2579)

4.98

SATELLITE COMMUNICATIONS

V/HF + UHF + UHF

For Rockwell International in the Avionics Defence & Communications Industry

Sweep generators, PAMM generator, Pulse generator. Marconi Test Modulator HG 72 £19. Mechanical capacitors 1.5v Varist. Standard capacitors. Centurion Marion Novak Receiver TF 12725, £45. Temperature & Fluidflow meters. Vary large range spares motors, sublet pet, power electronics etc. £45. Qualty of chemicals, reagents, metals, electrolytic etc. Syntax Sodium Lamp £55. UHF Frequency Standard £45. These new subletable pieces are both mechanical and chemical, prototype stage easy & cheap to make.

£40 0.376236 (2016)

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money.

£20.10

E C COMPONENTS

We buy large and small parcels of surplus IC transistors, capacitors and related electronic stock. Immediate settlement.
Tel: 01-208 0766 Tellex: 8814998.

Stewart of Reading
110 Wheycombe Road
Reading RG6 1PL
Tel No: 0734 68041
Top prices paid for all types of surplus test equipment, computer equipment components etc. Any quantity.

£24.01

Turn your surplus IC transistors etc. into cash, immediate settlement.
We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING & CO, 103 South Brink, Wiztech, Cambridge. 0945 585186.

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY

(52)

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money.

£20.10

E C COMPONENTS

We buy large and small parcels of surplus IC transistors, capacitors and related electronic stock. Immediate settlement.
Tel: 01-208 0766 Tellex: 8814998.

Stewart of Reading
110 Wheycombe Road
Reading RG6 1PL
Tel No: 0734 68041
Top prices paid for all types of surplus test equipment, computer equipment components etc. Any quantity.

£24.01

Turn your surplus IC transistors etc. into cash, immediate settlement.
We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING & CO, 103 South Brink, Wiztech, Cambs. 0945 585186.

WANTED

SUSPENSION ELECTRONIC COMPONENTS AND EQUIPMENT

We also welcome the opportunity to quote for complete factory clearance.

B. BAMBER ELECTRONICS
5 STATION ROAD, LITTLEPORT, CAMBS. Phone: 01353 86085

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M & B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
0532 4356649

(9569)

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money.

£20.10

E C COMPONENTS

We buy large and small parcels of surplus IC transistors, capacitors and related electronic stock. Immediate settlement.
Tel: 01-208 0766 Tellex: 8814998.

Stewart of Reading
110 Wheycombe Road
Reading RG6 1PL
Tel No: 0734 68041
Top prices paid for all types of surplus test equipment, computer equipment components etc. Any quantity.

£24.01

Turn your surplus IC transistors etc. into cash, immediate settlement.
We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING & CO, 103 South Brink, Wiztech, Cambs. 0945 585186.

WANTED

SUSPENSION ELECTRONIC COMPONENTS AND EQUIPMENT

We also welcome the opportunity to quote for complete factory clearance.

B. BAMBER ELECTRONICS
5 STATION ROAD, LITTLEPORT, CAMBS. Phone: 01353 86085

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M & B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
0532 4356649

(9569)
CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.50 PER LINE. Average six words per line. Minimum £30 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus £7
- Cheques, etc., payable to "Business Press International Ltd." and cross "& Co."
- 15% VAT to be added

NAME..
ADDRESS ...

REMITTANCE VALUE ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS

ELECTRONICS & WIRELESS WORLD OCTOBER 1985
ANTEX
a world of soldering

Tomorrows Soldering Technology Today.
ANTEX has a worldwide reputation for quality & service & for many years has been one of the best known & most popular names in soldering. Always at the forefront of technology, ANTEX is continually researching new and better ways of achieving more accurate, reliable, and cost effective soldering. On ANTEX Soldering Irons, the advanced design of the interface between the element & the bit allows more efficient heat transfer to the bit and improved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an XS25 watt iron can be used for tasks where a 40 watt iron would normally have been required.

ANTEX Soldering Irons exhibit exceptionally low leakage currents & hence are suitable for use on Static Sensitive Devices. Sophisticated temperature controlled soldering units have recently been added to the ANTEX range.

CIRCLE 2 FOR FURTHER INFORMATION

www.americanradiohistory.com
PICK A CARD

ANY CARD

Every card's a winner. The versatile 80-Bus system can be used for a host of applications: Process Control, Batch Counting, Robotics, Colour Graphic Displays, CAD/CAM, CNC, In Manufacturing, Telecommunications, Instrumentation, Laboratory Testing, Security Systems, Plant Control, Data Collection and Distribution.

Also, in smaller companies it can handle Accounts, Payroll, Wordprocessing, Stock Control, Program Compilation and Data Base Management . . . whilst still being able to run specialist applications.

And because there is no wasted capacity with a Gemini, a system can cost a good deal less than you might think.

With Gemini you can buy a complete system, upgrade your existing 80-Bus system, or build your own.

So when you've had a look at the pack of cards below, plug yourself into our dealer network to discover how opening a new pack of cards with Gemini will help you pick a winner.

These represent just a small selection from our extensive range of cards.

GM811 Z80 CPU board with serial and parallel I/O
GM813 Z80 CPU board with 64K dynamic RAM, serial and parallel I/O
EV814 IEEE 488 interface board
GM816 Multiple parallel I/O board
GM824 8 bit A-D board
IO828 High resolution colour graphics board
GM832 Video controller board
GM833 512K RAM-DISK board
GM836 RS422 network interface
GM837 Medium resolution colour graphics board
GM839 Prototyping board
GM841 Extender board
GM842 Trackerball interface

GM844 8-way Backplane assembly
GM845 6-way Backplane assembly
GM846 3-way Backplane assembly
GM848 Multiple serial I/O board
GM849 Floppy disk controller/SCSI board
GM853 Bytexwide Eprom board
GM862 256K dynamic RAM board
GM863 Static RAM board
GM870 Modem board
GM888 8088 co-processor board

Gemini
Computer Systems Limited
Springfield Road, Chesham, Bucks HP5 1PU.
Telephone: (0494) 791010. Telex: 837788