Electronic music

Burglar alarm

Waveform analyser

Wireless World

Electronic music

Burglar alarm

Waveform analyser
AFFORDABLE ATE

Diagnoses bus troubles
Helps mend micro boards
Z80, 6502, 6800, 8085
All covered by one product
Disassemblies included
Plugs into micro socket
Hand-held probe identifies
ADDRESS, DATA and CONTROL
lines at a touch.

Prints a memory map
of an unknown system
showing ROM, RAM, I/O
and EMPTY ADDRESSING SPACE

LOGS all tests and responses
on PRINTER and ALPHA LCD
Non-volatile memory
retains test sequences
CHECKSUMS, RAMTESTS.
READS/Writes MEMORY & I/O
Reports location of SHORTS
on ADDRESS and DATA busses
Prints out memory contents
in ASCII, HEX or SOURCE CODE
You cannot expect to mend
microprocessor products with
a meter and a scope.
How many repairs would
pay for your SuperDOC?

SuperDOC...£395

FAST EPROM PROGRAMMER
Copies eight EPROMS at a pass
all 25 and 27 series up to 27256
EPROM type is set by switches
erasure is checked automatically
control is simple - two keys
Alpha liquid crystal display
checksum facility 6 hex digits
FAST or NORMAL programming
PLUS VERSION also has:
serial RS232 program & check
CTS or DSR handshake
ASCII, SIMPLE HEX, INTELHEX
MOTOROLA S or TekHex
GANG-OF-EIGHT £395
GANG-OF-EIGHT plus £445

Z80 TUTOR
Designed for Schools to teach Z80 machine code
MENTA uses TV for display
shows STACK & PROGRAM in HEX
Editing facility includes
direct keyboard ASSEMBLER
RS232-output DISASSEMBLER
Used to write & debug
short machine-code routines
MENTA is a complete
controller with 24 bits of I/O
used for ROBOTICS
TEACHER'S GUIDE, PUPIL READER
MODULES (eg A to D) available
MENTA...£99

COMPUTER BARGAINS
Rings for our BEST OFFER
OLIVETTI M21, M24
with 10MB hard disk if req
AUTO-CAD & M24 created this AD
also EPSON PX8

EPROM ERASERS from £39

BUY IT AND TRY IT

REFUND GUARANTEED

less postal expenses, if goods returned intact within 14 days
PRODUCT IS USUALLY IN STOCK
TODAY DESPATCH IS POSSIBLE
PHONE FOR A LITERATURE PACK
VAT must be added to prices

www.americanradiohistory.com
FEATURES

Domestic microelectronic controller
by J.L. Gordon
Intelligent alarm and controller.

Electronic mailbox
by M. Allard
Self-contained electronic message system hardware.

Sampled-data servo systems
by M. Taub

Bubble memory interface
by J.C. Kanaar
Three-i.c. interface for an existing 120 Kbyte memory board.

Digital polyphonic keyboard
by D.G. Greaves
Versatile keyboard instrument producing many organ, piano and synthesizer sounds.

Communications receivers
by R. Lambley
Survey of h.f. receivers available on the UK market.

Oscilloscope display of input, r.m.s., and mean voltages
by S. Kirby
Simultaneous presentation on one trace, with optional d.v.m.

Nickel-cadmium cells
by R. Cooper
Hints on constructing the charger.

The tale of the long-tail pair
by F.J. Lidghey
The first of two articles on the characteristics of a versatile circuit.

Fast Fourier transforms using a microcomputer
by T. Larson and G. Dyrik
Spectral analysis of periodic waveforms for the amateur.

Human communications — a new discipline
by R.E. Young
Penultimate in the series of articles on innovation in electronics.

REGULARS

News commentary
Electronics, bread and games
Cats at the Beeb
Cellular TACS could go
Community radio in London

Circuit ideas
1Hz-30MHz v-to-f converter
Loudspeaker measurement
Fluorescent lamp inverter
Stepping a motor

Communications

Feedback
Correspondence
Wireless?
Relatively boring?
Light, distance and time

New products
P.c.b. photoplotter
Thermocouple logger
IEEE488 interface

Front cover shows the digital, polyphonic keyboard, described on page 37. Cover design by Richard Newport.
NEW PRODUCTS

1. **MINIATURE RUBIDIUM OSCILLATOR MODULE**
 - Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

2. **RUBIDIUM FREQUENCY STANDARD**
 - High performance, compact and rugged instrument, 2U rack or 1/4, ATR case options.

3. **INTELLIGENT OFF-AIR FREQUENCY STANDARDS**
 - Microcomputer controlled instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.

4. **LOW COST MSF FREQUENCY STANDARD**
 - Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation.

Radiocode Clocks Ltd

Unit 19, Parkengue, Kernick Road Industrial Estate, Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007

[A Circuit Services Associate Co.]
Series 70 Systems for printing, office automation and communications with comprehensive supporting software.

Eliminate your printing problems with the Advent approach to full page, full feature word processing—laser quality printing for that professional image to all your work—correspondence, scientific and technical documents, forms design and foreign languages.
SMALL SELECTION ONLY LISTED
RING US FOR YOUR
REQUIREMENTS WHICH MAY BE
IN STOCK.

Portable Battery or Mains Oscilloscope. SE Laboratory
111 Oscilloscope - Solid State - General pur-
pose - Barlow 500/150 MHz 20CMS - 50CMS -
Reel New 1952 - Calibrated Sweep - Calibrate-
ate- Ranges 1/2-200 - 500us - Mains - 250/24
150 vars in 260 or 24 volt DC battery - Price
25 £ - 24 CMS - 40CMS SCOPE - 40CMS Scope -
Wireless - WT1145 - Carring handle - Tested in con-
condition with operating instructions £ 00.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and styles available
for 10-14 days delivery. Other Ranges and special scales can be
made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C.1
Phone: 01-837 1937

Lynwood GD1 VDU's: Intelligent Green micro controlled,
RS322, printer port, 101 key k/b. Full Video
einandrments - ONLY £49 + £15 P/S (P/H)
Burroughs MT686/7TD/718: Intelligent Green 12” VDU with
3 micros and 64k store. RS322 Programmable. – Only £199
new or £149 S/H + £15 P/S
Open Chassis Video Monitors from above VDUs
£40 + 7.00p/p
Multibrach Switching PSUs from above 5v 4A 12v +24v
Data General 6012 VDU's very attractive display working RS322
with integral 7 key k/b either dumb terminal mode or page
buffered. Only £120 + £10.00p/p
Centronics 306 Line printers: Professional fast (120cps),
superspeed 80 column printer Parallel only. ONLY £99 + £15 P/S
Osborne Executive Portable CP/M system with loads of software. Twin floppy
drive. £599 + £15 P/S
Dabblo 630 Daisychainwre printer. OEM/M
NEW £599 + £15 P/S
Calcomp 560 Drum Plotter. #1000 steps.
ONLY £490 + £15 P/S

We are the leading suppliers of R.F. Power Transistors and Electronic Tubes for the communications and industrial markets. With our nationwide coverage we represent all the major manufacturers and from our nine million pound stock of points of stock we can supply virtually any form of tube or R.F.Transistor of American manufacture or its European equivalent. We can normally dispatch your requirements on a same day service.

Send for further information to

RICHARDSOON ELECTRONICS (Europe) Ltd.
METER READ FURTHER DETAILS.
IF YOU CAN’T PUT YOUR FINGER ON A QUALITY PROBE AT A LOGICAL PRICE.

LP-1 LOGIC PROBE

The LP-1 detects high speed pulse trains or one shot events and stores pulse or level transitions. This simple handheld probe means no need for separate level detectors, pulse detectors, pulse stretchers and pulse memory devices.
- Minimum detachable pulse width of 50 nanoseconds
- Maximum input frequency of 10MHz
- 100 K ohm probe

NEW LOW PRICE!
ONLY £24.95 plus VAT

LP-2 LOGIC PROBE

This extremely low-cost probe works much like the LP-1, but is for slower speed circuits and has no pulse memory.
- Minimum pulse width
 - 300 nanoseconds
- Maximum input frequency
 - 1.5 MHz
- 300 K ohm probe

ONLY £21.00 plus VAT

Or in kit form (LPK-1) with easy instructions, only £14.50 plus VAT

LP-3 LOGIC PROBE

It’s the high speed probe that captures one-shot or low-rep events, giving you the main facilities of a top quality memory scope, but at a fraction of the cost!
- Minimum pulse width -
 - 10 nanoseconds
- Maximum input frequency -
 - over 50 MHz

ONLY £53.50 plus VAT

DP-1 DIGITAL PULSER

The DP-1 registers the polarity of any pin, pad or components. Press the PULSE button and it delivers a single, no bounce pulse to swing the logic state the other way. Hold the button down for more than a second and deliver a stream of pulses at 1000 Hz. With a very fast circuit, you can open the clock line and take it through its function step-by-step at single pulse rate or at 100 per second.

ONLY £56.00 plus VAT

Or in kit form (DPK-1) with easy instructions, only £19.95 plus VAT

LOGIC PROBES SHOWN ARE SUITABLE FOR TTL, DTL, HTL AND CMOS CIRCUITS.

YOU NEED TO SEE A SPECIALIST!

Send for a Specialist!
Order today - and if you’re not completely satisfied, simply return the products within 14 days and we’ll refund your payments.

GLOBAL SPECIALTIES
An Interplex Electronics Company
Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
Telephone: (0799) 21682 Telex: 817477 GSC LTD
CIRCLE AS FOR FURTHER DETAILS.

To: GLOBAL SPECIALTIES CORPORATION (UK) LIMITED, DEPT 711
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.
Please send me:
☐ LP-1 at £30.70 (inc P&P and VAT)
☐ LP-2 at £26.20 (inc P&P and VAT)
☐ LPK-1 at £18.70 (inc P&P and VAT)
☐ LP-3 at £64.00 (inc P&P and VAT)
☐ DP-1 at £66.00 (inc P&P and VAT)
☐ DPK-1 at £25.00 (inc P&P and VAT)
☐ Please send me a free catalogue and more information

Name __Company/Address ________________________________

Telephone __

I enclose PO/Cheque for £ ____________________________or debit my Barclaycard/Access/ American Express No ____________________________ exp date ___

www.americanradiohistory.com
Electronics, bread and games

If community radio is legalized in the UK, as seems likely, it will be a confirmation that electronic communications has something to offer even village-sized groups of people.

At the same time, electronic data communication is revolutionizing financial services like banking and stockbroking. As such it demonstrates its potential for any activity where quick decisions have to be made in response to rapidly updated information.

And now the electrical data sent via telecommunications systems is providing another kind of information beyond that of symbols written on v.d.us and printers — namely, video-conferencing over narrow-band links. Facial expressions, gestures and body-language are all meaningful components of human communication. The fact that video-conferencing is now commercially viable demonstrates the reality of the need for visual clues added to spoken words.

Undoubtedly this technology will help industry and commerce: it is a phenomenon of advanced capitalism — perhaps of the 'post-industrial' society so often discussed these days. A question worth considering, though, is whether it could also improve the quality of life in societies to which it is available. In particular, could modern data communications, with perhaps the addition of telemetry and telecontrol, allow more people to work either at home or very near their homes? This is not a luxury but an urgent social need in a rapidly industrializing world. Some big cities are rotting on the inside, squalid, overcrowded, insanitary and violent. Yet people have actually migrated to them, in search of a better standard of living, because rural poverty was even harsher.

This happened in Europe and North America in the 19th century and a similar process is occurring in Africa, Asia and Latin America in the present century. In some cities, like Calcutta, living conditions have become so bad that the migration is going into reverse, indicating a kind of equilibrium of rural and urban misery. With over a million people being added to the world's population every five days, this situation will not improve.

Slums, shanty-towns and the more salubrious but dreary suburbs all exist because workers have to live within reasonable distances of their places of work. If many workplaces could be decentralized by the use of modern data communications, the wretchedness of urban poverty might be alleviated. In advanced industrialized countries the national radio service will be restructured. Instead of being virtually a dormitory suburb it could be once again a place for working as well as living. At one time economically based on rural crafts and industries, it would now support some inhabitants through the local 'mill' of a data communications station.

Who would pay for the extensive electronic systems needed? There would be considerable savings on the fuel at present wasted by daily commuting, and economies on health care, crime prevention, emergency services, urban land costs and big-city administration. People might even work better and hence more productively.

And the cities themselves would remain as centres of art and entertainment, learning and culture, sport and circuses, exhibitions, fairs and carnivals — in short, as places where people gather together because they want to, not because they have to.

Plasma etching at Harwell

Thought to be the key element in the manufacture of sub-micron integrated circuits, plasma etching is to be investigated at Harwell in an Alvey-backed programme. The system involves the selective removal of material by reaction with chemically active gases formed in a glow discharge.

Like all the Alvey projects, there is a close link between academic and industrial research and the process is to be studied using the latest laser and emission spectroscopy techniques by UKAEA at Harwell and by Oxford University. They will examine electrode materials, etching gas composition, resists and glow discharge characteristics. Special gases are to be provided by BOC Ltd, resists by Johnson Matthey Chemicals. Plasma Technology Ltd., are to develop emission spectroscopy techniques for monitoring and controlling the etching process and use the information to design new plasma etching machines. The major part of the work will be carried out in the Microelectronics Materials Centre at Harwell Laboratory.

BBC plans to save money

Thwarted in its attempt to get a much higher licence fee, the BBC has undertaken a 'fundamental re-examination' to provide the best service whilst staying within its income. The chief saving is to be made by "thorough reorganization and reduction of the central support services which, together with other economies, will permit a redeployment of resources and enhance the quality of programmes for listeners and viewers to network, regional and local services." £1million more is to be spent on making BBC-1 an all-day service and cash for national installation and architectural requirements will normally be carried out under external contract with a greatly reduced staff of BBC specialists acting as advisors. House and office services are to be devolved to the specific departments that use them and all support areas such as catering, office cleaning, security and building maintenance may be contracted out if it is found to be economically advantageous. A target reduction of 10% is sought in secretarial and clerical effort. Out of a total of 25,000 staff it is thought that a reduction of 4000 could be possible. Cuts are also planned in senior dining rooms, expense and hospitality costs. Travel and duty allowances are to be frozen for the current licence period and canteen subsidies to be reduced.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Weather satellite recovers

The recovery of the presumed dead NOAA-8 weather satellite will increase the odds for saving the lives of people whose planes have crashed or whose ships are in peril. The search and rescue (SARSAT) equipment on board the satellite will now be able to resume its operation of picking up distress signals from victims of aviation and navigational mishaps.

According to Gerald W. Longanecker, NASA's Meteorological Satellites Project Manager: "the restabilization of the satellite, which began tumbling out of control last June when an oscillation in the spacecraft's attitude control system failed, is now in full operation with the exception of one detector on an infrared radiometer that measures temperatures from the Earth's surface to 25 miles altitude. The instrument has three detectors, however, and the loss of one means only a minor loss of data."

The government/industry team of engineers reacted swiftly to stabilize the NOAA-8 satellite when a backup oscillator came back on line unexpectedly.

The satellite restabilization means that the search and rescue equipment will resume operations as part of an international program, begun in September 1983, which uses satellites to save the lives of people in downed airplanes or on ships in distress. Since the program began, nearly 400 lives have been saved. Principal participants in the international rescue program are Canada, France, the Soviet Union and the United States.

During the 11 months of NOAA-8 malfunction, three Soviet and one U.S. satellite have been circling the Earth picking up distress signals and relaying them to ground rescue stations.

The satellite recovery was the result of engineering teamwork aided by NASA and NOAA ground stations plus a French station at Lannion which provided data on the recovery as it developed.

Mobile radio on old tv Bands

The private mobile radio lobby has won the day, and will be granted the whole central section of Band III, made vacant by the demise of 405-line, black-and-white tv. The band will be used to establish private mobile radio on a nationwide basis.

Five small local networks are to licensed in London. Ten local networks in areas of greatest demand outside London will be allowed. There may be a limited degree of interconnection between the local networks and the PSTN. Other uses for the band are the business use of cordless telephones and the possibility of two-way mobile data systems is being investigated.

Only a limited number of frequencies have been allocated in Band I while other claims for use are being considered. The 50 to 50.5MHz band is to be set aside for amateur radio. 0.5MHz is allocated to on-site paging services. The 49.82 to 49.9MHz band will be used for low-power devices.

The same report was used to announce the extension of wide-area radio paging at 153 and 454MHz frequencies. British Telecom will not be allowed to apply for wide-area paging licences in the interests of competition. Voice as well as tone and data is to be permitted on one of the 454MHz services.

In brief

Latest issue of Which? (July) includes a table listing portable colour tvs and monitors. Of the monitors listed — there are many omissions — the Microvitec 1441 and the Novex 1416 are given as 'best' ratings, while the magazine identifies two tv/monitors as having 'best' picture quality and at the same time an adequate RGB rating — Philips 2007 and Grundig P40.
Cellular TACS could go

The full licences for the two cellular radio services, Vodafone and Cellnet, have been issued. There are a few differences between them and the draft licences issued last February: one addition allows the customer a choice in routing the calls over inter-connected public systems; another extends the obligation of both services to be used with each other. Before erecting any new transmission masts, the licencees should investigate the possibilities of using existing masts or masts designed for joint use.

Tucked into Condition 37 of Schedule 1 is the provision for a mechanism to change the UK system from total access communication system (TACS) to European Community standards.

Cellnet has recently announced it 10,000th customer.

Electronic blue pencil

Apart from the headaches caused by hackers to electronic communications systems, there has been an increasing use of obscene words on bulletin boards and it is thought that this could offend. To the rescue comes Tim Clarkson, who has devised a naughty-words editor. This includes a glossary of all the forbidden words and automatically checks all messages. If an offensive word or phrase is encountered, the message is put into abeyance and may then be re-checked by an operator. The operation of the system is quite complicated as many rude words occur quite harmlessly within other words or phrases. So the glossary must include permitted contexts for the words as well as exclusions. The system is to be tried out on MicroLink, a nationwide bulletin board for micro users.

Londoners want community radio - but not pirates

The Greater London Council commissioned a poll of Londoners to find out what local radio services would appeal to them. A 62% majority said that they would like some form of community radio. A similar proportion was unhappy with the local services of the broadcasting authorities and would prefer that a local service should be run on a local basis by a committee representing several interest groups. There was quite a high demand for radio stations that catered for specific sections of the community, such as ethnic minorities.

The only source for really local news was often found to be advertisements in newsagents’ windows.

Advertising was thought to be the best way of paying for the services, but some form of non-commercial control should keep the service from being too commercial.

There are no plans for any specific services yet. The Government has announced the pilot launch of some community radio stations but these are very few in number and are unlikely to meet the demand.

Pirate radio gets a resounding thumbs down from the survey. The stations were thought to be too similar to ILR transmissions and covered too wide an area. Only 7% of those asked said that they listened to pirate stations most often.

The survey was carried out under the auspices of the Broadcasting Research Unit, a multi-funded body set up as an independent source of thinking and research into future broadcasting policies.

What future for BBC engineering?

In the present frenzy of cost-cutting at the BBC, it is sad to note that the principal casualty is to be the corporation’s engineering division.

Design work by the BBC will be greatly reduced, studio planning and installation will be dealt with by outside contractors, whilst in-house equipment manufacture will cease altogether.

The BBC’s need for home-grown technology is undoubtedly much less than it was in the days when there was no other customer in Britain for broadcast equipment. And indeed manufacturers already satisfy most of its requirements.

But much of the BBC’s reputation for technical excellence depends on its having exactly the right tools for the job. And experience has shown that good tools cannot always be obtained off-the-shelf. Left to find its way in the commercial market-place, the BBC may have to put up with tape machines on which you can’t edit properly, record-players with inaccessible controls and studio mixers where the transmission-mode switch is heart-stoppingly close to the one that turns off the mains.

As a major buyer, the BBC has up to now been able to tidy up such injustices by discussion with the manufacturer, to the benefit of both parties.

Details of the cuts are still being worked out, it seems. But it is to be hoped that the BBC’s administrators will use the axe with discrimination. For at present, it looks as if their engineering staff are in danger of being whittled away into little more than a maintenance crew.

In their first half-century, BBC engineers gained over 350 patents, many of them landmarks of their time: such as those relating to the slot aerial, the ribbon microphone, bandwidth compression, pulse-code and numerous other devices and techniques.

It is right that priority should be given to financing programmes rather than peripheral activities. But it will be a pity if, in its haste to scrape together enough money to pay for daytime television, the BBC allows this distinguished record of engineering innovation to lapse.

This audio mixing console, the SL1000E from Solid State Logic, is intended for controlling live broadcasts and recorded sound. It can handle inputs from up to 120 microphones and offers extensive signal processing routing and monitoring, and yet can be controlled by one engineer.
HIGH PERFORMANCE 13 BIT DATA ACQUISITION CARD

Ideal for Industrial Control, Data Logging or Teaching Applications:

- 16 - High Performance 13 bit Analogue Inputs
- 12 Bit Analogue Output with offset and gain
- 16 - Digital Outputs capable of 50V @ ½ amp.
- LED Indication of output status
- 4 digital input lines of up to 100V DC input
- 2 programmable timers
- 6809 software in PL9.
- 6502 Multi-Basic 85 software
- Unipolar or Bipolar operation
- Acorn BUS compatible

£189

plus VAT

CIRCLE 11 FOR FURTHER DETAILS.

TEST EQUIPMENT

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telequipment D61 Oscilloscope 10Mhz Dual Channel</td>
<td>£110</td>
</tr>
<tr>
<td>Telequipment D54 Oscilloscope 10Mhz Dual Channel</td>
<td>£150</td>
</tr>
<tr>
<td>Telequipment D65 Oscilloscope 15Mhz Dual Channel</td>
<td>£165</td>
</tr>
<tr>
<td>Telequipment D66 Oscilloscope 25Mhz Dual Channel</td>
<td>£195</td>
</tr>
<tr>
<td>Telequipment D67 Oscilloscope 25Mhz Dual Channel</td>
<td>£195</td>
</tr>
<tr>
<td>Tektronix 463 Oscilloscope 752Mhz Dual Channel</td>
<td>£565</td>
</tr>
<tr>
<td>Tektronix 568 Oscilloscope +3TS & 35S Plug-ins</td>
<td>£200</td>
</tr>
<tr>
<td>Tektronix 5440 Oscilloscope Mainframe 50Mhz</td>
<td>£400</td>
</tr>
<tr>
<td>Tektronix 5A48 Oscilloscope Plug-in 50Mhz</td>
<td>£250</td>
</tr>
<tr>
<td>Tektronix 5B42 Timebase Plug-in</td>
<td>£250</td>
</tr>
<tr>
<td>Tektronix TM504 Mainframe with DC503, PS503A, FG502 & DMS502 Plug-ins</td>
<td>£1,095</td>
</tr>
<tr>
<td>HP 1610A Logic Analyser with pods</td>
<td>£750</td>
</tr>
<tr>
<td>HP 1615A Logic Analyser with pods</td>
<td>£950</td>
</tr>
<tr>
<td>HP 1640B Serial Data Analyser complete</td>
<td>£1,350</td>
</tr>
<tr>
<td>HP 1600A Logic Analyser with pods</td>
<td>£295</td>
</tr>
<tr>
<td>Biomatik K1000 Logic Analyser with pods</td>
<td>£1,500</td>
</tr>
<tr>
<td>Systron-Donner 4.8 Ghz Frequency Counter Type 6244A</td>
<td>£700</td>
</tr>
<tr>
<td>Biomatik X-Y-Z Display</td>
<td>£75</td>
</tr>
<tr>
<td>Wayne Kerr B641 Autobalance Digital Bridge</td>
<td>£250</td>
</tr>
<tr>
<td>HP 8558B Spectrum Analyser</td>
<td>£3,500</td>
</tr>
<tr>
<td>HP 1821 Oscilloscope Mainframe</td>
<td>£1,000</td>
</tr>
<tr>
<td>HP 141T Spectrum Analyser with 8554B & 8552B Plug-ins</td>
<td>£4,950</td>
</tr>
<tr>
<td>HP 141T Spectrum Analyser with 8555A & 8552B Plug-ins</td>
<td>£4,995</td>
</tr>
<tr>
<td>Tektronix 106 Pulse Generator</td>
<td>£50</td>
</tr>
<tr>
<td>Tektronix 191 Constant Amplitude Signal Generator</td>
<td>£75</td>
</tr>
<tr>
<td>Tektronix 194 Time Mark Generator</td>
<td>£75</td>
</tr>
<tr>
<td>HP 86230A Sweeper Plug-in</td>
<td>£295</td>
</tr>
<tr>
<td>HP 3701A & 3702A Microwave Link Analyser</td>
<td>£495</td>
</tr>
</tbody>
</table>

All equipment working and calibrated.

VAT and carriage extra.

TIMEBASE QTEQ

94 AYRFORD GARDES, SHOLING, SOUTHAMPTON SO2 8FV
TEL: 0703 433227

CIRCLE 84 FOR FURTHER DETAILS.

FIELD ELECTRIC LTD

3 SHENEY RD, BOREHAMWOOD, Herts, Telephone 01-953-6009
OFFICIAL ORDERS/CORRESPONDENCE WELCOME OPEN 6 DAYS A WEEK 9:00am-5:00pm THUR 9:00am-1:00pm

CIRCLE 83 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

www.americanradiohistory.com
RESEARCH COMMUNICATIONS LTD.
UNIT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP
TELEPHONE: CANTERBURY (0227) 456489

CHUM ONE A
Industrial Computer

£258

- Control BASIC and Z80 Assembler Language
- On Board EPROM Programmer
- Detachable Hand-Held Keyboard and Display
- 4K Bytes of Battery Backed Memory
- Up to 64 Relay Outputs
- Up to 64 Opto-Coupled Inputs
- 4 Analogue Inputs
- 1 Analogue Output
- RS232 Interface
- Cassette Back-Up Memory
- Real Time Clock

The Chum One A offers the complete solution to all measurement and control problems. Programs can be written, tested and modified in RAM then at a touch of a switch blown into an EPROM.

WARWICK DESIGN GROUP, 12 ST. GEORGE'S ROAD
LEAMINGTON SPA CV31 3AY (0926) 34311

CIRCLE 98 FOR FURTHER DETAILS.

The CM1600 Measurement and Control Interface from IMS Electronics

Unique construction allows flexibility
Four module positions, each with four channels
Each module may be selected from an ever increasing list including:

- ± 10 volt outputs, 16 bit resolution
- ± 10V, ± 1V, ± 100 mV (Software Selectable) inputs, 16 bit resolution
- Thermocouple inputs (linearised)
- Single pole change over relays (mains rated)

Choice of IEEE-488 or RS 232C INTERFACE
Z80 MICROPROCESSOR BASED

Optional extras include:
Dot matrix panel printer (as illustrated)
32K RAM for assistance in data acquisition

IMS Electronics
Unit RG, Riverside Industrial Estate, Bridge Road, L.t.m.i.hampton, West Sussex BN17 5DF
SALES TELEPHONE (0903) 723492

CIRCLE 78 FOR FURTHER DETAILS.
AUTHORISED DISTRIBUTOR
For the Leading Brands of Electronic Test & Measurement Equipment

From Philips, Fluke, Hameg, ICE, Thandar, Thurlby, GP Industrial, Claude Lyons, Coline, Compact Instruments

OSCILLOSCOPES

PHILIPS
- Philips PM 3206 £286
- Philips PM 2518/01 £299
- Philips PM 2518X/11 £199
- Philips 8025A £202
- Philips 8022B £172
- Philips 8022B £173
- Philips 8022A £139
- Philips 8022B £114
- Philips JF7 £72
- Philips JF7 £88
- Philips JF7 £73
- Philips JF7 £193
- Philips JF7 £216
- Philips JF7 £225
- Philips JF7 £231
- Philips JF7 £216

HAMEG
- Hameg HM 203-5 £270
- Hameg HM 203-5 £175
- Hameg JF7 £115
- Hameg JF7 £195
- Hameg JF7 £85

BENCH & HANDHELD DMMs
- Thandar 205 £216
- Thandar 205 £216
- Thandar 205 £195
- Thandar 205 £85

THANANDAR
- Thandar DM 200 £179
- Thandar DM 200 £89

PHILIPS
- Thandar DM 200 £159

INEOLUS PRODUCTS
- Traceprober £70
- Traceprober £10
- Traceprober £93

LINE CONDITIONERS
- Claude Lyons LC 250 £211
- Claude Lyons LC 250 £186

EPROM PROGRAMMERS
- GP Electronics UV 151 £88
- GP Electronics UV 151 £88

POWER SUPPLIES
- Power supplies £159
- Power supplies £155
- Power supplies £215

ANALOGUE MULTIMETERS
- Analogue multimeters £165
- Analogue multimeters £60

MISCELLANEOUS PRODUCTS
- Miscellaneous products £25
- Miscellaneous products £480
- Miscellaneous products £515

Electronic Brokers are leading suppliers of electronic test & measurement equipment. Our Distribution Division handles the major names in the industy and all products are stocked in depth in our spacious new premises at Camden Town, ready for prompt despatch to all parts of the country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measurement.

Visitors are welcome to our showroom where all products are on display and demonstration. For customers wishing to order by phone, we offer a 24 hour answering service. All prices are exclusive of VAT and correct at time of going to press. Carriage and packing charges extra on all items unless otherwise stated. A copy of our trading conditions is available on request.

Electronic Brokers Ltd
140-146 Camden Street London NW1 9PB
Telephone 01-267 7070 Telex 298694

CIRCLE 204 FOR FURTHER DETAILS.
More power for your elbow ... less from your supply

The SBM C02 is a powerful Eurocard CMOS single board computer featuring the R65C00 Processor and Peripheral family from Rockwell.

Forty I/O and handshake lines are available along with a programmable baud rate RS232 port and 3 x 26 Pin RAM/ROM sockets. The I/O can readily be expanded using bus and four 256b chip select signals available at the DIN41612 connector.

Fully static operation permits the user to implement "wake-up" or reduced clock-rate operation for particularly low power applications.

Features:
- CMOS — Low power consumption
- 40 I/O and handshake lines
- RS232 with programmable baud rate
- 2Kb or optionally 8Kb RAM fitted
- 16Kb ROM/EPROM
- 2 x 16 bit timer/counters
- Simple I/O Expansion
- FORTH Language available

R.C.S. MICROSYSTEMS LIMITED
THE KINGS ARMS,
141, UXBURIDGE ROAD,
HAMPTON HILL,
MIDDLESEX.
TW12 1BL
Tel No. 01-979-2204
Telex: 8951470 RCS MIC

115 TO 165 MHZ NARROW BAND VFO RECEIVER
KIT No 627

Specification
Frequency coverage in two sections. 115 to 135 Mhz or 140 to 165Mhz
Sensitivity: 0.6uV for 20dB
Double conversion: First IF 10.7Mhz, second IF 455KHz
First IF limiting: 5uV for 12dB S/N
Input impedance: 508
Operating volt.: 10 to 14V DC
S-meter out
Audio out: 1W

Description
Uses latest ICs for best results. All coils ready made (T Ko) as well as special Varicaps for best linearity. Wide Band hybrid in the front end as RF amplifier. Can easily adopted for AM reception. All circuit on a 18 x 6cm double sided p.c. board
AGC included in front end.

FREQUENCY SYNTHESIZER 22 TO 37 MHZ IN 100 KHZ STEPS
KIT No 634

The first in our range of Frequency synthesizers! It uses the famous HCTRO320 chip by Hughes as well as the MC12061, MC1648, and 11C90. Everything included on the p.c. board, measuring 10 x 5cm. Direct frequency setting by BCD thumbwheels. No alignment or trimming to look after!

PLEASE ASK FOR OUR FREE CATALOGUE ON OUR FULL RANGE OF ELECTRONIC KITS.

C & A ELECTRONIC O.E.
PO Box 25070 Athens 10026
GREECE Tel:5242867, Telex:210798 CAGR

CIRCLE 91 FOR FURTHER DETAILS.

© 1985 PANTEC ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Electronic Brokers are Europe's largest specialists in quality second user test equipment. Established 17 years ago, we have pioneered the second user concept in Britain and many overseas territories. To support our growth we have a skilled team. This includes trained sales staff, whose role is not only to sell, but provide a helpful service to our many customers, including this team in our own service laboratory where technicians monitor each item of equipment we sell. Our maxim is service, and those who have dealt with us will know that we endeavour to always live up to our reputation.

Electronic Brokers Guarantee
Unless otherwise stated, all test equipment sold by us carries a 12 month warranty. When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's specifications. And it's serviced by our own highly qualified technicians. All prices exclusive of VAT. Carriage and packing charges extra on all items unless otherwise stated. A copy of our trading conditions is available on request.

Electronic Brokers Ltd
140-146 Camden Street London NW1 9PB
Telephone 01-267 7070 Telex 298694

CIRCLE 201 FOR FURTHER DETAILS.
A Selection from Our Stock of Branded Valves

<table>
<thead>
<tr>
<th>Value</th>
<th>Brand</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>EAF42</td>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>1.95</td>
<td>E99F</td>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td>10.00</td>
<td>DLS16</td>
<td></td>
<td>13.50</td>
</tr>
<tr>
<td>22.50</td>
<td>DA41</td>
<td></td>
<td>27.50</td>
</tr>
<tr>
<td>27.50</td>
<td>A2792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>Special</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>M8195</td>
<td></td>
<td>6.60</td>
</tr>
<tr>
<td>12.00</td>
<td>L63</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>4.55</td>
<td>GTR150</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>1.15</td>
<td>ESU150</td>
<td></td>
<td>4.95</td>
</tr>
<tr>
<td>14.00</td>
<td>ESU151</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>9.00</td>
<td>E410</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>1.25</td>
<td>EF732</td>
<td></td>
<td>3.95</td>
</tr>
<tr>
<td>0.65</td>
<td>EF83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>EC93</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>2.60</td>
<td>1044</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>1.90</td>
<td>EY90A</td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>2.75</td>
<td>EY90B</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>0.90</td>
<td>EY90C</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>2.50</td>
<td>EY90D</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>0.50</td>
<td>EN91</td>
<td></td>
<td>9.00</td>
</tr>
<tr>
<td>5.00</td>
<td>EY51</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>12.00</td>
<td>EY52</td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>1.15</td>
<td>EY53</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>2.00</td>
<td>A8022</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>2.50</td>
<td>A8023</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>0.65</td>
<td>A8024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>A8025</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>11.50</td>
<td>A8026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>A8027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.50</td>
<td>A8028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td>A8029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.00</td>
<td>A8030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Information

PHONE
0474 813225
AND AFTER 1/7.85
0474 60521

P. M. COMPONENTS LTD
SELECTION HOUSE, SPRINGHEAD, ENTERPRISE PARK
SPRINGHEAD RD, GRAVESEND, KENT DA1 1 HD

TELEX
966371 TOS—PM

WEB SITE
www.americanradiohistory.com

WE ARE MOVING ON 1ST JULY 85 TO OUR NEW CENTRE CALLERS WELCOME

CIRCLE 50 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

www.americanradiohistory.com
STRETTONS
CHARTERED SURVEYORS
LONDON, E17.
16 NEW INDUSTRIAL UNITS
EACH 1250 sq.ft.

Exceptionally well appointed new factories built to a high specification.

Available to let now.

Particulars from Strettons.
Tel: 533-1212.

CIRCLE 90 FOR FURTHER DETAILS.
Domestic microelectronic controller

Intarlec: intelligent alarm and partial control of the electrical installation.

Microprocessor-based alarm systems are now a popular addition to the many alarm control boards that are available from various sources. Generally it seems from conversations with some alarm installers, that electronic alarm control boards have been suspect as far as false alarms are concerned. However, more modern and perhaps expensive boards are indeed more reliable: some of the latest boards have microprocessor-controlled designs containing a processor that is rather under-worked in a domestic alarm system.

A microprocessor in such a system could service each alarm call through an interrupt and network, the delay in servicing being only a few microseconds. However, there may be nothing for the microprocessor to be interrupted from, so a loop program can be chosen. Each contact or zone may be interrogated at regular intervals within a continuous loop, and decisions made as to the state of the system. Even this option provides for extremely rapid interrogation frequencies, which are not required. A pressure mat, for instance, would miss nothing if interrogated every 10 or even 100 microseconds, as opposed to every 500 microseconds as should be possible in a domestic system.

The use of a microprocessor allows the advantages available in more expensive electronic systems, such as being able to take an average reading from peripherals so that noise may be eliminated and the ability to mask out faulty contacts under programmed criteria. In addition, the system would become more flexible, allowing functional modifications through programming.

Using a loop-type program, it should be possible to fit additional processing into the loop and still be able to interrogate contacts at a more than adequate frequency. The additional work should be related in cost terms to the cost of the alarm system. For example, it would make little sense to spend thousands of pounds on servo control equipment that would supplement an alarm system costing only a few hundred pounds. The servo control system would probably be self contained, and a separate alarm system chosen.

The unit described aims to provide control options that complement each other and extend the ability of the whole system. The control of certain lights in the premises can be effected through the microprocessor and be entirely automatic. This requires a light-level sensor but also enables the controller to simulate house occupation during holidays. The contact system could be extended to allow the controller to distinguish between rooms in the house. Additional internal sounders can be used as door bell repeaters and the door bell itself can allow silent access for the consumer when the alarm is armed.

The description that follows was intended for the operator and is not an extensive technical description. In the hardware and software descriptions that follow the unit is referred to as Intarlec, which with some poetic licence, is intended to represent “intelligent alarm and partial control of the electrical installation.”

Intarlec is intended to provide the householder with a useful control and an alarm at a price that compares with other alarm systems. The system consists of a central control unit which is actually a small computer. Intarlec monitors peripherals located around the premises to detect the presence of a person. When the alarm mode is requested the information can be used by the computer to determine the appropriate action, given the input conditions. In this respect, it is little different from many other systems. However other systems have the alarm function as their only objective. Intarlec is useful in other ways, even when not operating as an alarm.

Intarlec will have control of a small number of lights in the premises. This is essential to the main program. Suitable lights for control are those which serve a functional purpose such as hall, stairs, landing, kitchen and outside lights.

Taking the hall light as an example, Intarlec monitors the outside light level and will therefore not activate the hall light during the day. However override facilities exist to allow for occasional events such as decorating where more light is needed during the day. During the evening it uses the same monitoring facilities that are used for the alarm, to detect the presence of a person in the hall. When programmed conditions are satisfied Intarlec will activate the hall light without any direct request from the consumer other than presence. Someone entering the premises by the front door will be greeted immediately by a well-lit hall and so avoid having to reach for a switch in the dark. Intarlec appears to provide character to an otherwise lifeless house. This kind of reasoning can be applied to other areas and lights. However the consumer is not advised to have this facility installed in areas such as living rooms, bedrooms etc., where lighting is not always functional and may depend on mood.

Three basic modes

— Mode 1. Normal mode as previously described.
— Mode 2. A request to arm the alarm but to inform Intarlec that house occupants are going to bed.
— Mode 3. This is maximum alert where all presence is interpreted as hostile.

Mode 2. When all householders are retiring for the evening mode two should be selected. Initially the alarm program is activated and then de-activated for about three minutes to allow people to clear hostile areas. During the de-activate period, hall and landing lights are turned on to allow safe passage to bed. When these lights go out, the consumer will know that Intarlec has re-activated the alarm program.

If the consumer needs to get up during the night, Intarlec deduces that it is not a burglar and promptly turns on hall and landing lights and de-activates the alarm for about five minutes. If the consumer stays for longer than this mode two should be cancelled and re-established when required. After five minutes, and presumably when the consumer is safely back in bed, Intarlec turns off the lights and re-activates the alarm. In the morning, mode one should be requested whilst the alarm is de-activated. If an intruder is detected in mode two, an internal alarm will sound, and all lights under computer control will be turned on.

Mode 3. When the consumer goes out, mode three should be selected. Intarlec allows about 1½ minutes for the premises to be cleared and the alarm will then be armed. If an intruder is detected Intarlec initially responds by sounding an internal alarm and flashing all house lights to attract attention. During this time Intarlec establishes the validity of the call and when sure of an intrusion will add the external alarm. The alarm automatically resets and re-arms after about five minutes.

Mode three cannot be cancelled externally but entrance can be gained silently with programmed criteria (not discussed here). Mode three also offers a simulate facility for use when the premises remains unattended for

by J.L. Gordon

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Communication unit operating instructions

Switch-on.
On power-up Intarlec starts in mode three, but will be deactivated to allow mode setting.

Mode 1. This is normal mode with no alarm. To select this mode, press button number one. A '1' will appear on the right hand display.

Mode 2. This is alarm request for occupied premises. To select this mode, press button number two. A '2' will appear on the right hand display.

Mode 3. This is alarm request, maximum alert. To select this mode, press button number three. A '3' will appear on the right hand display after a short delay. Simulate may be requested by holding in button number three until PP is seen on the display. After a short delay, 'S' will appear on the right hand display to show 'Simulate' has been activated.

The computer can be seen to be working normally by observing the rapid pulsing of any blank display segments.

When in mode one
All other key facilities are available:

Key 8 — override. Press key 8 then hold down the key for the light required until OK is seen on the display. Normal operation will be resumed.

Key 7 — set up. Key 7 re-starts the program as if power-up has just occurred. All edited registers will be set to normal.

Key 6 — lights out. Key 6 turns off all lights that are on.

Key 5 — edit. Key 5 is used to edit working registers. Pressing this key starts the editor. The following keys work in edit mode:

1 — increments address or data.
2 — decrements address or data.
3 — selects address of register.
4 — selects content of register.
6 — exit from edit mode to normal.
7 — rapid test of simulate routine.

This facility should only be used after proper instruction, and with a register map.

When in mode two, the keyboard will not respond unless the alarm has been automatically deactivated. This prevents an intruder from cancelling the alarm.

Any mode request automatically cancels other modes.

When in mode three, the keyboard will not respond unless the alarm is deactivated by the user. If the alarm is activated by accident, it may be cancelled by a special procedure.

longer periods. When this routine is requested Intarlec controls internal lights when the premises are empty. Dusk initiates the simulate routine each day of absence. Lights then operate to simulate movement around the premises for as long as required. The consumer can determine the exact nature of this facility, so that the routine will be individually tailored to the consumer's needs. It is hoped that the simulate facility will deter breaks in so that the alarm function is not required. However, simulate in no way impairs Intarlec's ability to detect intruders.

When modes two or three are selected the last contact facility will read 0 unless a contact is operated. A non-zero reading means that a fault exists on that circuit or a door is open etc.

Other facilities

Lights under computer control will not normally have switches, and as Intarlec never forgets to turn lights off, electricity may be conserved.

The communications unit will normally show the mode of operation and the last point on which an alarm occurred.

Fig. 1. The central controller can service up to eight mains lights, 12 inputs from various sensors, a five-tone internal sounder and special connections such as light level and auto reset prevention. Six port bits are used for user interface, allowing a reasonable length connection cable to the controller.

where a presence has been detected, on two displays. It is therefore possible to trace movement around the premises by studying the control panel.

Any lights under computer control may be turned on or off from the keyboard. Even when lights have been overridden in this way, Intarlec turns them off automatically after about two hours, in case you forget.

Some functions can be edited from the keyboard. However this requires more extensive knowledge of the system and is not recommended for the unpracticed. If editing wrong, the system may be easily re-set to normal. In the event of a power failure or other temporary problem, a separate electronic circuit monitoring computer functions automatically re-starts in maximum alert mode, but deactivates for a short period to allow correct mode selection.

Hardware description

Figure 1 shows the overall arrangement of the hardware required for a working system. A 12V d.c. power unit is required rated at about 2A; separate 5V regulators are used for the 6502 controller, the interface board, and the communication unit. This arrangement is not essential but has worked successfully in the prototype unit.

The controller board consists of a 6502 microprocessor, 1K of ram (2×2114), one 2716 eeprom containing the system software, two 8154 p.1.a.s, chip select logic and a 1MHz clock provided for by the 6502. The original board was bought from Acorn Computers for £46, and was their System 1 board without monitor roms. Such a board may easily be constructed on a suitable i.c. breadboard if a commercial board cannot be found. The main feature of the Acorn board that prompted its use was the provision of two 8154 p.1.a.s for /io and a 2716 2K eeprom socket for the controller firmware. Although the construction of the controller is straightforward, one point of importance is that the 8154 and 6502 belong to different families of i.cs. The main problem is that the 8154 requires 'not read strobe', (NRDS) and 'write strobe' (NWDS) lines, whilst the 6502 provides a 'read/not write' (R/W) line for the same purpose. A solution is to split R/W with an inverter and then to hand each of the two new signals with 'O2' (theta two) clock producing the required 'NRDS' and 'NWDS', which are only low during 'O2' and the correct level of R/W.

All input to, and output from, the microprocessor is done through two 8154 p.1.a.s. These chips are useful because they allow single-bit read and write operations to any one of 16 bits, as well as two 8-bit port addresses. Single bits can be set or cleared through a unique address for each operation on each bit. The chip also contains 128 by 8 bits of ram, but has no timer. The timing of events is done within the main loop of the program.

It is possible to use a controller...
board which includes the more common 6522 v.i.a. A simple arrangement using a minimal 6502, 2716 eprom, $2 	imes 2114$ ram and $1 	imes 6522$ v.i.a. has been built and tested successfully using an i.c. breadboard (such as RS 434-021). A working board would of course require two v.i.a.s, but it should be possible to include the extra one on the breadboard. The use of 6522s would reduce the cost of the unit but would not allow individual addressing of separate port bits.

Setting and clearing individual bits will require slightly more complex instructions in the firmware of a 6522-based controller:

For 8154
STA bit4/set-porta/set bit 4
STA bit4/clear-porta/clear bit 4

For 6522
LDA porta/to clear a bit
AND #0111011111/clear bit 4
STA porta
LDA porta/to set a bit
ORA #0000100000/set bit 4
STA porta

Reading a bit requires similar additions.

The Acorn board enabled its p.i.a.s at 0900 and $0E00$. The rest of the text assumes that this is the case for any controller used.

Signal processing is done by the interface board, with the exception of the communication unit. It is possible to construct a controller board on suitable i.c. stripboard (eq. RS434-021). The design of such a board can not be included here but a simple arrangement using a minimal 6502, 2716 eprom, $2 	imes 2114$ ram and a 6522 p.i.a. has been built and tested successfully using the board stated. A working board would of course require two p.i.a.s, but it should be possible to include the extra one on the strip board. The use of 6522s would reduce the cost of the unit but would not allow individual addressing of separate port bits.

The communication unit is connected directly to six bits of one of the p.i.a.s. The purpose of this unit is to permit the transfer of information between the user and the controller. Eight numbered keys are encoded by a 74LS148 to give three bits of data. A further bit (EO) is used to detect a key press. GS may also be used to detect a key press; this is active low which may be more secure if connecting wires are cut in that the servered keyboard will not be read when the port bit floats high.

To reduce interfacing cost and allow for the maximum number of bits on the 8154s to be used for control purposes, it was decided to use serial data transfer for the display. Two eight-bit shift registers are provided, which contain the information for the two seven segment displays. The information is shifted into the registers by a subroutine in the main program controlling the clock and data inputs to the shift register. The clock and data are not sent at the maximum frequency available to the program to allow for trailing leads connecting the communication unit. The clock frequency will be about 36kHz for the sub routine shown, and the information for the two digits of the display is sent about five times per second or once every 240 cycles of the main loop of the program.

The 74164 shift registers are used to drive common-anode displays through suitable resistor networks. Common-cathode displays may also be used with minor alterations to the drive subroutine.

As previously stated, other input and output is done through the interface board. The tone selector handles alarm sounding. The three control bits and the 74138 provide eight possible conditions. Address 0 is used as an off condition, '7' is also not connected to an alarm as it may be activated in the event of a fault if pins 1 to 3 on the 74138 float high during system reset. Address '6' is used to activate the outside alarm bell through the interface shown in Fig. 6. Lines 1 to 5 are used to provide five different tones for the internal sounders. These sounders are loud speakers driven from the output transistor shown. The tones are derived from a 7493 binary counter which divides the pulses from a 2096Hz oscillator. Each note is gated as shown using and logic. The lowest frequency note also provides reset pulses for the auto-reset circuit.

These pulses are independent of the microprocessor clock. The auto-reset circuit monitors the pulses provided by the processor; in the event of a failure of the pulses, the 74123 re-triggerable monostable will return to a low output, which in turn will allow the reset pulses to appear at the reset pin of the processor. The main program should provide a set pulse for the monostable within 200µs of the first reset pulse. This prevents any further reset pulses and the reset line remains high. Fig. 4 also shows a resistor-capacitor-diode circuit at the input of the inverter which allows reset at the earliest instant on power-up: reset will not have to wait for the timing of the monostable on this occasion. In the event of a fault on the controller board, it is likely that all lights will turn on and alarms off, due to the fact that the 8154's ports will reset as inputs and the gate inputs controlling lights etc. will tend to float high.

Fig. 2. User interface should be as straightforward as possible. Only eight key inputs are provided but the system may be driven from just three keys for minimal operation 'Day' 'Sleep' and 'Out' (1', 2' and 3'). Two seven-segment displays provide contact and mode of operation information which is frequently updated.
ALARM SYSTEM

Fig. 3. Five notes may be generated from three port bit I/O lines allowing several types of warning sound. This sub-system also forms the route for outside alarm bell activation and an independent clock for auto reset.

Fig. 4. The failure of the central controller to provide retriggering pulses for the 74123 will allow a series of Reset pulses to be generated, which should re-start the system or at least cause it to fail safe.

Fig. 6. Connection to an outside bell, incorporating a little pulse stretching and some inductive transient suppression.

General input and output buffers are shown in Fig. 5. Doors and windows using magnetic contacts are straightforward, pressure mat buffers are also simple, with 4.7kΩ resistors being used to limit peripheral wiring current to about 1mA. Inputs have generally been arranged so that an active contact shows logic 1 to the controller. A number of light-level sensor circuits have been tried and most have proven successful. The circuit chosen is the simplest and allows signal processing at the interface board instead of the sender end. The sensor is an ORP12 which is housed in a transparent waterproof box outside the premises and where it will not be affected by artificial light or direct sunlight. When the light level is high, the ORP12 has a low resistance and the Schmitt nand is at logic 1. Some adjustment is provided by the 10kΩ pot. for a convenient change-over from 1 to 0 etc., are not inconvenient as each light has a timed on-period regardless of light level.

The door bell sensor is provided to read from the existing push at the front door. The circuit could easily be modified in case
there is no existing bell. The simple pressure mat buffer of Fig. 5 would read from a push.

Fig. 6 shows a small circuit that is used to activate the outside alarm bell. Many bells available work on 6 to 12V and 300mA d.c. so the Darlington arrangement can drive the bell provided that protection is included from inductive transients. A pulse stretching circuit is also included because the bell will be sounded as well as the internal tone. As both internal tone and bell are activated through the 74138 of Fig. 3, they cannot be on together without this addition. This circuit, along with the battery supply to the bell, would be suitably housed in a box situated just inside the building near the bell.

Great care should be taken when installing the light switches. Safety precautions should be observed so that the mains supply remains entirely separate from the low voltage control circuit. In addition, it should be possible to arrange disconnection of the supply for maintenance to ceiling rose etc., and for changing lamps. The two circuits shown in Fig. 8 will both allow low voltage control of the lamps whilst isolating from the mains.

The opto-triacs were obtained from RS components. Their data sheet quotes an insulation resistance at 500V of 10E11 ohms. However the 15th Edition of the IEE Wiring Regulations states that semiconductor devices should not be used as isolators. One possible solution to this would be to fit a lock type switch and install the opto-triac unit behind it. This would allow disconnection of the supply to an individual light whilst still giving the controller total control for much of the time. The relay switch circuit will provide the required isolation and comply with the regulations. The regulations would also require insulation to low voltage and barriers if the relay or opto-isolator is to be housed in the existing switch box or ceiling rose. The way that this is done is not specified and the local electricity board may be consulted. The relay shown in Fig. 8 from Diamond Electronics would have an insulating barrier and p.v.c. sleeving could be used where the control cable enters the box. If method 1 is used then the interface board will require a 7405, and if method 2 is chosen, a Darlington driver should be used. The UNL2003 etc. should be a suitable driver.

Allowing the unit such total control of some lights may seem drastic, but if the software is implemented correctly and the hardware is reliable, no difficulties should be experienced. The original system implementation has in fact been moved to a different premises. Changing an original installation back to its normal state will prove easy if mains controllers have been installed at the light switch positions and blanking plates fitted instead of the switches. The change-over will simply involve removing the controllers and replacing the switches.

Fig. 5. Several types of very simple interface are incorporated in the interface board which provide connection between controller and peripheral.

Fig. 7. Interface buffering is accomplished by using several t.t.l.ics on a suitable i.c. patchboard such as those found in the RS or Maplin catalogue. The prototype was constructed on a 30-i.c. board from RS Components.

Fig. 8. Mains light buffering must provide adequate electrical isolation and comply with the 14th edition of the IEE regulations. The use of an opto-triac provides isolation and simplicity of interface, whilst the use of a miniature relay removes the need to switch with a semiconductor device.
BBC Micro Computer System

BBC Computer & Econet Referral Centre

TCP/ATONIC drives are fitted with high quality semicircular Mitsubishi mechanisms and are available with or without integral mains power supply. The dual interface supports and switch modes are type and are generously rated. All drives with integral power supply are fitted with a mains indicator.

Connectors:
- 3M FLOPPY DISCS: Industry Standard floppy discs with a lifetime guarantee. Discs in packs of 10
- MONITORS: MICROVITEC 14in. & 20in RGB

Printers:
- EPSON: RX80T £210 (a); RX80T/2 £220 (a); RX100 £345 (a); FX80 £315 (a); FX100 £430 (a); JX80 Colour £499 (a)
- PRINTERS: Brother Leads: KAGA RGB £5 Microvitec £3.50; Monochrome £3.50 (d)

Software:
- SOFTWARE: Auto Answer Board £30 (d) each (awaiting BABT approval).

Modems:
- MIRACLE WS2000: ACORN hardware

Keyboard:
- MIRACLE WS2000: ACORN hardware

Disk Drive:
- SOFTY II: This low cost intelligent floppy eprom printer can program itself. Compatible with all standard floppy eproms.

Erasers:
- UV ERASERS: UV1 with built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmful UV rays. It can handle up to 500 erasures at a time, while averaging the erasures of about 100 milliseconds. Suitable for UV as above but without the timer. £47 + £24. We offer UV1 for £143 which includes a complete set of UV1/UV2/UV3 with 500K 40T drives. We can also provide a complete set of UV1/UV2/UV3 with 500K 40T drives. With integrated PSU. All necessary cables, manual and software are included.

Printer Buffer:
- PRINTER BUFFER: This printer buffer can provide a simple way to upgrade a multiple computer system by providing greater utilization of available resources. The buffer can save a storage of 64K. Data from several computers can be lumped into the buffer which continues accepting data until it is full. The buffer will automatically stop accepting data when the machine is full. This is a low-cost solution at the same computer as has been saved in its data. The computer can be used for other tasks. LED display notifies line full, and simple buffer control. PIPE, PAUSE, and RESET functions all integral power supply £390 (5). Cablot £30.

Connectors:
- EURO CONNECTORS: DIN 41612. Plug: Skt 36 way plug £8.00 36 way socket £8.00

Triple D Connectors:
- MISC CONNS: RIBBON CABLE: 16pin 20p 1 x 10 way £24.50 1 x 20 way £44.50 1 x 30 way £64.50

D Connectors:
- D CONNECTORS: No of Way: Male 9 Female 15: 10 pin 100 140 210 380 30 pins 150 275 375 440 40 pins 130 195 290 350 50 pins 130 195 290 350 60 pins 130 195 290 350

TECHNOMATIC VIEWDATA SYSTEM. TEL: 01-450 9764

TECHNOMATIC LTD 01-208 1177

TELEPHONE CONNECTORS:
- 4-pin plug £10
- 4-pin plug £10
- 4-way plug £6
- 4-pin socket £6
- Flexible £5

DIL HEADERS:
- DIL HEADERS: Solder £10
- 14 pin 10p 16p £25 40p £50

MISC CONNS:
- MISC CONNS: 21 pin on 01 Video Connector £200

22 ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

www.americanradiohistory.com
Electronic mailbox

Circuits are the subject of this second article describing a self-contained electronic message system. Included in the microprocessor-based hardware is a novel digital modem design using a rom and latch.

Calls can be set up in a number of ways, but in all cases both a terminal circuit and a two-way mail circuit are opened, and any pending mail will be passed. There is a connect-to-line switch and a corresponding disconnect switch on the panel of the equipment. These are useful only if a call has been made manually and it is required to switch the systems to line without issuing a command from a terminal.

The 'o' command does the same thing. A connection will be established automatically by use of the 'c' command followed by a node name or a telephone number. A connection can be closed by typing 'control-p' followed by 'c'. When mail is sent first class the call will be placed at once, but if one attempt fails the message will be reassigned as overnight mail.

It is central to the philosophy of this system that it does not interfere with normal use of the telephone. Considerable thought went into ways of achieving an economical and efficient service with no important disadvantages.

The solution is based on the use of a battery-backed real time clock in each node. Because it is essential that these should always be in step, they are left on GMT. When the telephone rings during normal hours, the mail system allows it to ring 20 times (about one minute) to give a reasonable opportunity for it to be
answered if there is anybody at home, before answering itself.

In order to take advantage of cheap rate telephone calls for non-urgent mail, this is sent at night. It is assumed that not many ordinary telephone calls are received between the hours of 4 and 5 a.m., so this period is used for mail transmission. To ensure that sleep is not disturbed, the mail system answers any call received in this hour immediately, within the first cycle of ringing current, and the telephone bell makes little or no sound.

Each node that has second-class mail to send starts making calls soon after 4 a.m. In order to reduce the risk of calls from two nodes to each other being attempted at the same moment and hence colliding, the first call is made at a random number of minutes past the hour, and further attempts are made at random intervals until 5 a.m. When this program was first written, it was with some dismay that I realized that I could only debug the code by staying up all night!

Not only is this arrangement compatible with normal use of the telephone, but it is also possible to leave an answering machine connected to the same line and still allow electronic mail to be received in the overnight mode as well. This feature relies on the fact that most telephone answering machines do not respond for

Digital interfaces. The asynchronous communications interface adaptor, a.c.i.a., is for data going to and from the computer or terminal used to enter the messages. A second serial interface device, the 6854 advanced data-link controller, is for modem communications. Time in seconds to leap years is counted by the 58174 clock.
The modem circuit includes a ROM containing sinewave values. Each value in the ROM represents not only the level of a sample to be sent to the 428 d-to-a converter but also the address of the next value in the ROM. Notice that the ROM data lines feed the ROM address lines through a latch.

Both batteries and the power supply can be seen on the left of this prototype. Line interfacing is on the right and the processor/memories in the center.

The machine will reply during the day, but the mail system will get there first during its own special hour.

Hardware

The MC6802 microprocessor used has the virtue of being cheap, and it is quite powerful enough for this application. If I were to start the project again I would use a more advanced processor just to make the program development easier, but now that the program exists (39 pages of assembly language) it is no issue.

To reduce the amount of logic required, an ROM is used as an address decoder. The 64KByte of dynamic ram is refreshed every 2ms simply by an interrupt service routine containing 128 consecutive 'no-operation' instructions. Interrupts are also used for the terminal input, but terminal output and the line protocol are handled without them, using a simple form of process scheduling which has the side effect of generating random numbers.

Apart from the real-time clock, which runs from its own 32.768kHz quartz crystal, all timings on the card are derived from a single 2.4576MHz crystal. This includes the processor clock, the line and terminal interface data rates, and the modem tones.

The real-time clock is operated from a small float-charged NiCd battery with an endurance of several weeks without power. This avoids the tedious task of resetting the clock when the system is moved. An internal switch must be operated to allow the clock to be set. Four spare inputs and four spare outputs are brought to a socket for future accessories.

The mailbox is of course designed to be continuously powered. Three leds are fitted to the front panel; a green power indicator, a yellow one indicating line connection, and a red led marked attention. This attention led flashes when there is incoming mail which has not yet been read, and also if there has been a power failure since the mailbox was last used. It has a further function in that it comes on when a connection is made, and goes out as soon as the transport protocol has been established — a useful confirmation that the link is operating.

The heart of the modem is a finite-state machine with two purposes, consisting of a ROM and a clocked latch, which is used in both transmit and receive modes. When transmitting, in conjunction with a d-to-a converter the state machine becomes a phase-continuous sinewave FSK generator.

Consider the case of the transmitted data being continuously in...
one state, so that a steady tone is produced. Each entry in the ROM represents the level of the next sample to be output by the d-to-a converter in order to follow a sine wave at this tone frequency. This number is also used as the address in the ROM of the next entry to be used. Unused addresses are filled with copies of the last valid entry in the addressing sequence. So if the latch starts with an arbitrary number, it will conform to the sequence within a clock period.

Since the same values will occur in both the ascending and descending half cycles it is necessary for an extra bit representing the half-cycle polarity to be used in the state machine but not taken to the converter. It is also essential that each sample is a different value, otherwise the machine would get stuck. In practice this necessitates a one-sample departure from the sine shape at the peaks of the cycle, which is easily removed by a subsequent RC filter.

When the data stream changes to the other state, it switches the ROM address into a section containing a corresponding sine wave pattern for the other tone frequency. The starting point in this pattern is the voltage level and half-cycle polarity at which the first tone was interrupted, so any discontinuity is limited to the difference between two adjacent samples in the new tone sequence.

Use of a clock frequency of 153.6kHz permits the CCITT V23 standard tones of 1300Hz and 2100Hz to be reproduced to seven-bit accuracy with a frequency tolerance of 4Hz. The RT5 signal from the h.d.l.c. serial interface is used to switch the direction of the half-duplex link. To avoid generating switching transients on the line it is arranged that the transmit tone always starts and ends on a zero-crossing point.

The receive side of the modem starts with a limiter, followed by a pulse generator and a pulse-counting discriminator. Where are the filters, you may well ask? Well there aren't any, and it works remarkably well. It is essential to preserve symmetry of the zero crossings through the limiter whatever the received signal level. Various experiments with multi-stage limiters led to the conclusion that the best approach was to use just one stage and to maximise its sensitivity by balancing out its offset.

After the limiter, a circuit using an exclusive-or gate generates pulses on both edges of the waveform. These are used to trigger a precision non-retriggerable monostable i.e., the pulse train from which is integrated and then sliced. The maximum data frequency is 600Hz, and it does not take an elaborate filter to separate the 1300Hz tone from this to an adequate extent.

The receiver clock-recovery system consists of the same state machine used in a different mode without the d-to-a converter. When there are no transitions in the incoming data stream the state machine 'free runs' and generates a simple incrementing count at the 1200Hz data rate, the most significant bit of which is used as the receiver clock.

Each transition is detected by a circuit comprising a one-clockcycle delay line and an exclusive-or gate. For each cycle following each data transition the ROM address is changed to point into a table of numbers corresponding to the locking characteristics of a phase-locked loop. The amount by which the normal count sequence will be disturbed is determined by the contents of the entry accessed in this table. So if the loop happens to be in exact phase with the data stream there will be no change to the sequence, but otherwise the count will be altered by an amount proportional to the phase error. The exact characteristic is a compromise between noise immunity and a reasonably short worst-case locking time.

The interface to the telephone line (circuit follows in next article) is designed to comply with the requirements of RS6320, but it should be pointed out that approval cannot be given to a design, only to a complete apparatus. Shunt relay RL2 is used to suppress bell tinkle at the opening and closure of a connection as well as during dialling. Transients on a telephone line can be substantial, and it is important that the line wiring is led straight out of the cabinet. The only operational problems experienced with the system have been traced to the line wires running too close to the 64kohm, with the result that the processor crashed during dialling.

Operation of the mail system is dependent upon the clocks remaining within a few minutes of each other. For this reason a float-charged NiCd battery is essential for the clock supply. Rather than making provision for the protection of memory in the event of a power failure, it is simpler to provide battery backup for the whole system, since it runs from one +5V supply.

The circuit shown is capable of sustaining full operation for about 90 minutes without mains. Whether it is needed or not depends upon local conditions, but power cuts of one or two seconds during the night are surprisingly frequent even in cities.

Because of the single +5V supply the terminal output levels are not strictly RS232. A voltage converter could be added to provide the correct rails, but there is a tacit understanding between designers of many pieces of equipment today that this is not worthwhile. Any terminal using an MC1489 can be used as a line receiver if not connected at all, and I have yet to find a terminal which fails to operate with these levels.

Two backup batteries are used in the power supply, one for the real-time clock and a larger one for powering the whole system for about 90 minutes in the event of a mains failure.

Construction and uses of the system are discussed in the next article.
Sampled data servos - a new analysis

Final instalment calculates response within the continuous-signal portion of the loop.

The method explained in July’s article can be used to find the sample values at X (Fig. 21) which represents the input to the continuous-signal portion of the loop. Knowing the signal at this point it is straightforward to calculate the signal at other points in the continuous-signal portion, particularly the input and output signals of the plant at C and D respectively.

One way of making the calculation is to use the Fourier transform. If the samples at X at successive sampling instants have the values x(0), x(1), x(2) etc., this signal can be expressed in terms of frequency by taking its Fourier transform as follows (ref. 5, section 4.3):

\[X(j\omega) = x(0) + x(1)e^{-j\omega} + \ldots + x(2)e^{-j2\omega} + \ldots \]

Suppose we are calculating the signal at D. The gain between X and D is the product of the hold-circuit gain \(H_{x}(j\omega) \) given by equation 3.2, the gain associated with the time delay \(H_{t}(j\omega) \) given by equation 4.1, the gain of any continuous-signal compensation \(H_{c}(j\omega) \), and the gain of the plant \(H_{G}(j\omega) \). Calling the overall gain between X and D \(H_{D}(j\omega) \) the signal at D as a function of frequency will be

\[D(j\omega) = X(j\omega).H_{x}(j\omega).H_{t}(j\omega).H_{c}(j\omega).H_{G}(j\omega) \ldots 6.1 \]

The corresponding time function \(d(t) \) is found by taking the inverse Fourier transform of \(D(j\omega) \):

\[d(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} D(j\omega) e^{j\omega t} d\omega \ldots 6.2 \]

(ref. 5, section 3.3). Unfortunately this method cannot be used under all circumstances, in particular when the output signal contains a d.c. component. The reason is that the plant will generally contain at least one stage of integration, so that its zero-frequency gain will be infinite; also the zero-frequency component of the signal at X will generally be zero. Therefore, applying equation 6.1 at \(\omega = 0 \) involves multiplying by \(\infty \), which gives an indeterminate result.

One way of overcoming the difficulty is to find the d.c. component of the output otherwise than through equation 6.1; for instance, we know that the d.c. component at D will be the same as at the input R. A more general way, however, is to use the Laplace transform instead of the Fourier transform. It is worth digressing for a moment to explain the difference between the two.

The Fourier transform of a signal represents that signal as a function of frequency; that is to say, the signal is regarded as the sum of a large number (ideally infinite) of sinusoids each of which has a constant peak value.

With the Laplace transform, on the other hand, the signal is expressed as a function of complex frequency s, where s has a real part \(\sigma \) and an imaginary part \(j\omega \). The signal can now be looked on as the sum of a large number (again ideally infinite) of sinusoids whose peak values are changing exponentially with time as shown in Fig. 30. The interesting feature here is that there is an infinite number of ways in which a given signal can be built up from components of this kind.

Consideration of the complex-frequency plane (Fig. 31) makes this point clearer. The Fourier transform of a signal represents that signal as a function of points along the \(j\omega \)-axis: at each point along this axis the function will have some value \(D(j\omega) \) which will in general be complex.

To convert this back to a function of time, we apply equation 6.2 which can equally well be written

\[d(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} D(j\omega) e^{j\omega t} d\omega \ldots 6.3 \]

in other words, integrating the product \(D(j\omega) e^{j\omega t} \) along the \(j\omega \)-axis.

The Laplace transform of a signal, on the other hand, represents it as a function of all points on the s-plane; at every point s, the function will have some value \(D(s) \), which will again be complex. These points of course include the \(j\omega \)-axis, and so in a sense the Laplace transform contains the Fourier transform within it.

To convert the signal back to a time function we apply the inverse transformation:

\[d(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} D(s) e^{s t} ds \ldots 6.4 \]

This is very like the inverse Fourier transform, 6.3, except that the path of integration is no longer confined to the \(j\omega \)-axis. The path has to conform to certain conditions (see ref. 8, chapters 5 and 7), but even within these conditions the number of permissible alternatives is infinite. The path chosen determines the particular elements that are added to form the time function.
we could choose a different path, implying that different elements are being added, but the result would be the same.

Now to return to the practicalities of computing the plant output \(d(t) \), the same general considerations applying also to the plant input \(c(t) \). As regards the path through the s-plane it is permissible, and convenient from a computational point of view, to choose a path parallel to the jω-axis and lying to its right. The real part of s is thus held constant at a positive value \(\sigma \), as shown by the dashed line in Fig. 31. Strictly, the integration in equation 6.4 should be carried out for values of s between \(\sigma - j\omega_{\text{max}} \) and \(\sigma + j\omega_{\text{max}} \), but in practice the integrals fall to a low value when the imaginary part of s exceeds 2 or 3 times \(j\omega \); that the integration can be truncated. The value of \(\omega \) at which it is truncated is denoted by \(\omega_{\text{max}} \).

A further point concerning the integration in (6.3) is that values of the integrand at equal distances above and below the real axis are the complex conjugates of one another. Therefore, instead of integrating between \(\sigma - j\omega_{\text{max}} \) and \(\sigma + j\omega_{\text{max}} \), we need only cover the region \(\sigma_{+} \) to \(\sigma_{+} + j\omega_{\text{max}} \) as follows:

\[
d(t) = \frac{1}{2\pi j} \int_{\sigma_{-}}^{\sigma_{+}} [D(s), e^{j\omega t}] \ ds
\]

When a complex quantity is added to its conjugate, the imaginary parts cancel and we are left with twice the real part. The integration therefore becomes

\[
d(t) = \frac{1}{\pi} \int_{\sigma_{-}}^{\sigma_{+}} \text{Real} \ [D(s), e^{j\omega t}] \ ds
\]

Procedure for computing \(d(t) \):

1. A set of points is chosen equally spaced \(\delta s \) apart along the line \(\text{PC} \) in Fig. 31. These points represent the values of s at which the computation will be carried out; the closer the spacing, the more accurate the result. Choice of \(\delta s \) is a compromise. Making it too small introduces errors in the integration of equation 6.5 because of the rapid variation of \(D(s) \) with real axis, while making it too large introduces errors at large values of t because the terms being added in the integration are increasing rapidly with time. A good compromise is to make \(\delta s \) numerically equal to 3 times \(\delta s \).

2. \(H_{\text{DK}}(s) \) is computed for all the above values of \(s \). This is the product of the hold-circuit gain \(H_{\text{DK}}(s) \) given by equation 3.1, the gain of the time delay, \(H_{\text{t}}(s) \) (= \(e^{-\sigma t} \)), and the gains of any continuous-signal compensation and the plant, \(H_{\text{p}}(s) \) and \(H_{\text{p}}(s) \) respectively.

3. The Laplace transform of \(x(t) \) is computed from the expression (ref. 5, section 4.3)

\[
x(s) = x(0) + x(1)e^{-\sigma t} + \ldots + x(n)e^{-\sigma n}\delta t
\]

\[X(s) \text{ is a periodic function like } X(j\omega) \text{, and so there is no need to apply this at all the chosen values of } s. \text{ It is applied at the values from } \sigma_{+} \text{ to } \sigma_{+} + j\omega_{\text{max}}/2, \text{ and the remainder of the function obtained as explained in the April article, page 58.}

4. Corresponding values of \(X(s) \) and \(H_{\text{DK}}(s) \) are multiplied together to give \(D(s) \) at the chosen values of \(s \).

5. Equation 6.5 is applied at the desired values of t, to give the time function \(d(t) \).

Example

The procedure has been applied to the system used in the earlier examples (in the June and July issues), \(\omega_{\text{max}} \) was set at \(3\omega_{0} \), \(\delta s \) at \(0.5\omega_{0} \), and \(\sigma \) at \(3\omega_{0} \). The input to the system (point \(R \) in Fig. 21) was assumed to be a step function of unit height, so that, bearing in mind the properties of the sampler (April article), the sample values at U will be equal to the sampling period T, as they were in the July example. \(s(t) \) was computed at intervals of 0.5/\(T \), giving the time response plotted in Fig. 32. Also shown in this Figure, for comparison, are the sample values at Y copied from Fig. 28. The effect of the 2750Hz plant resonance can be clearly seen; also, the values of \(d(t) \) at the sampling instants and the sample values at Y are seen to correspond closely, confirming the accuracy of the method. The relevant programs are presented in ref. 9.

Software availability

These articles have developed a way of analysing linear sampled-data servos based on theory and concepts with which electrical engineers will be familiar, and are complemented by programs in a companion paper [ref. 9]; readers may find them useful in the development of sampled-data servos generally. They are available from the author at IBM UK Laboratories Ltd., Hursley Park, Winchester, Hampshire.

Corrections

Part 2 equations, April. The upper-case phi (\(\Phi \)) is to be taken as the lower-case form (\(\phi \)), to agree with the text. But in Fig. 6 caption please substitute zero for phi. In the appendix, 'Sampled cosine wave' should be inserted prior to equation 12.6.

Part 1 appendix, June, should show the variables as \((\phi) \) and \((\phi) \), respectively.

Part 5. The left-hand side of equation 5.6, incidently omitted, should be \(H_{\text{DK}}(s) \), and the greek characters gamma and xi should have been shown as multipliers and not as superscripts in this and equations 5.7 and 5.8. In the expression for \(y(t) \) on page 61 please substitute \(u \) for \(\alpha \) and for the word 'points' in column 3 please read 'poles'.

REFERENCES

Fig.32. Response at D and Y to step function input.
Not only in height is the range of Clark Masts wide but also in the field of application. Every model, mechanical or air-operated, has been created in response to customer requirement and proved in service; for over 25 years.

Major users in the Communications Industry, Broadcasting, Civil Authorities and Military Commands worldwide, have all contributed and benefited from Clark Masts' reliability and ceaseless engineering improvement.

Write for your copy of Clark Masts' Fast Guide to Mast Selection and see what we mean.
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field, and, thanks to ILP, PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

For 220V primary (Europe) insert "1" in place of "X" type number

For 230V primary (Europe) insert "1" in place of "X" type number

For special orders payable to ILP

Mail Order - Please make your crossed cheques or postal orders payable to ILP Electronics Ltd.

We will open your credit account immediately upon receipt of your first order.

Post to: ILP Electronics Ltd., Dept. 3
Graham Bell House, Roper Close, Canterbury, Kent, CT2 7EP
Tel: 0227/454778 Telex: 965780

Why a Toroidal?

- Smaller size & weight to meet modern space requirements
- Low electrically induced noise demanded by compact equipment
- High efficiency enabling conservative rating whilst maintaining size advantages
- Lower operating temperatures
- Why ILP?

- Ex stock delivery for standard 240V range
- Fast prototype service available
- 3 weeks despatch for special orders
- 2 year no quibble guarantee
- No price penalty for call-off order

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner
Telephone 01-445 2713/0749

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

CIRCLE 43 FOR FURTHER DETAILS.

DISHWASHERS

OUTER INSULATION

SECONDARY WINDING

PRIMARY WINDING

END CAPS

CIRCLE 72 FOR FURTHER DETAILS.
by J.C. Kanaar

Bubble memory interface

This three-i.c. interface allows a 128Kbyte bubble memory kit to run on SC84's Z80 bus. Being non-volatile, wear-free and suitable for use in hostile environments, bubble memory is an alternative to disc storage in many applications.

Bubble memories have been around since the late sixties but prices have precluded their use but many. Their main attraction is their non-volatility, but bubble memories also have no moving parts and offer immunity to hostile environments (dust and vibration). Articles appear from time to time outlining operation and applications of these memories but very little practical information is published.

A bubble memory requires quite complex support circuits, as Fig. 1 shows, and because low-level signals are in close proximity to high-level drive signals, careful design of circuit boards is required. These problems are overcome by using a prototyping kit from Intel known as the BPK72A. This is a 1MBit unit, i.e. 128Kbyte, designed to operate at ambient temperatures between 15 and 35°C. Its cost is about the same as that of a double-sided 5\(\frac{1}{4}\) in disc drive.

The kit comes with a wealth of information about bubble memories, starting with a primer on the subject and progressing through the operation of all parts of the support circuits. Design considerations for multiple bubble-memory units and their printed circuit boards are also included. In the past this was a true kit which the buyer had to build and test but it now comes completely assembled and tested, although the useful assembly instructions are still included.

Interfacing to a microprocessor, information for which is supplied in the kit, requires a few additional components depending on which data-transfer method is chosen. Data transfer can be carried out through direct memory access, which requires use of a separate controller, or by using interrupt or polling systems.

The easiest to implement of these three methods — the method used here — is polling which relies entirely on software to control data transfer. Only a simpl hardware interface to SC84 is needed to decode two i/o ports and provide switching and buffering for the data lines. Operation of the bubble memory unit as an SC84 peripheral is transparent to the user because of the support circuits and operating program.

Bubble memory communication

All communication with the bubble memory is carried out through the 7220 bubble-memory controller which has one 8bit bidirectional port allowing access to internal registers. One port address line is used to select either command/status or parameter/data registers. Instructions to initialize, read and write data to and from bubble memory are issued by the command register; information about the execution of commands and the state of the controller is provided by the status register.

The parameter registers are used to determine how the controller will respond to these commands, i.e. the amount of data to be transferred, if error correction is to be applied and which bubble memory to use. The data register is a first-in-first-out data buffer used in conjunction with the 8bit port to transfer data to and from the bubble memory. It is necessary in order to reconcile timing differences between the parallel data transfer used by the microprocessor and the serial data transfer employed in the bubble memory.

In the 7110 bubble memory, a `major-track/minor-loop' architecture is used in which magnetic bubbles are propagated along the major input and output tracks and are stored in minor loops. This design gives good manufacturing yields and permits creation of redundant storage loops. Defective loops are detected during manufacture; one loop, called the boot loop, is used to store a record of the usable loops.

During read operations, low-level signals from the bubble detectors are amplified by the 7242 formatter/sense amplifier. During write operations, this amplifier supplies control signals to the current-pulse generator. It also formats data passing between the controller and memory, handles error correction if instructed and arranges storage in usable loops of the memory by

Fig. 1. Elements of the 128Kbyte bubble-memory kit. Data passes to and from the computer through a simple parallel interface, Fig. 2, mainly under control of software within the computer. Data inside the bubble memory unit is transferred in serial form using what is called a major-track/minor-loop architecture — hence the need for controlling and formatting circuits.
reference to the bootstrap information.

The 7230 current-pulse generator is controlled by the formatter/amplifier during write operations and sends current pulses to the memory to generate magnetic bubbles with the aid of timing signals supplied by the controller. Power supply monitors are included to carry out an orderly shutdown without loss of data if either supply falls below a certain threshold level.

Current required to form the magnetic field responsible for moving the bubbles is supplied by the 7250 coil predriver and 7254 v-mos drive transistors under control of the controller and formatter/amplifier.

Interface circuit

Figure 2 shows the circuit for linking SC84 to the bubble memory unit. Unfortunately, the memory unit is too large to be mounted conveniently on a single Eurocard but it can be mounted horizontally if space is available. I used a piece of 150mm² Veroboard to mount the memory unit connector and interface i.c.s. This board plugs into a connector supplying the necessary bus signals mounted horizontally above the SC84 board.

Since the kit is built and tested, any problems that you encounter will probably be due to timing or interface circuit malfunctions. Using a 4MHz clock in the SC84 should not present any problems. There are enough instructions in the kit to allow you to write programs for verifying that it is possible to write and read to and from the bubble memory. This should be done first.

Having reached this stage you will have to determine how the memory unit is to be used. Mounted in a pluggable container it could form part of a remote data acquisition system. The memory unit containing information would then be transferred to the computer for data processing.

Alternatively, a number of memory units could be used instead of disc drives in a compact portable system.

My computer uses disc drives and so I decided to incorporate the memory into the disc operating system, designating it unit 'Y'. Again, there is enough information in the literature to allow a bubble driver program to be assembled in Z80 code.

The software consists of a bubble-memory installation program, used at the start of every disc boot, which is patched into the operating system cold-start address. Subroutines are used for loading the parameter registers, resetting the first-in-first-out memory and for bubble-memory reading/writing.

Space is also required for patching the existing disc functions. Some functions are not required by the bubble memory and Read and Write Disc functions need to transfer operation to the appropriate bubble memory when unit 'Y' is called. Before either of these functions takes place, it is necessary to convert the track and sector number to a bubble-memory page number and place it in the parameter block. This is simplified by using the bubble memory in error correction mode. In this mode each page contains 64 bytes which multiplies easily into the existing operating system’s 512 byte sectors.

After allowing for some error messages in the event of a failure in the bubble-memory system, the additional code was incorporated in the disc operating system so that it loads from DD00 to E000 when the disc is booted. One point to bear in mind if this path is followed is that the bubble memory should be loaded with E5. The operating system will produce some irregular output if the directory area is not so loaded.

John Kanaar is a keen electronics enthusiast with a C&G Full Technological Certificate earned through a correspondence course. He enjoys building circuits most — he started constructing just after the war when most of the effort was in making holes for valve holders and avoiding lethal operating voltages. An interest in RTTY led to his study of computers. At work, John is involved with administration and accounts in the food industry.

Copies of the author’s machine-code can be obtained by sending a large s.a.e. to our editorial offices. Please mark your outgoing envelope with bubbles.

Rapid Recall Ltd. is offering the BPK72A bubble-memory evaluation kit to E&W readers at special price of £126 excluding v.a.t. To take advantage of this offer, fill in the coupon on page 92.

References

2. Memory component handbook, Intel Corporation, 306 Bowers Avenue, Santa Clara, CA 95051, USA.
SAFETY LAST
The Midland Examining Group, which includes some very senior exam boards, has recently produced its syllabus for the new GCSE physics exam. The section dealing with electronics first establishes that the thermistor shown below is of the usual negentempco variety (p. 30). Indeed, no other type is discussed. Then the following is offered, as a safety-conscious circuit for a water heater.

If there is no water, the contacts are open circuit, and there is no heating. What happens if there is water is rather more interesting. One might spend a pleasant lunchtime raising questions for the examiners. Would they, for example, propose to call the fire brigade before or after switching on the above circuit? And how far, in their estimation, might this safety-conscious circuit blow its constructor?

I. Pepperpot
Steam Bomb Company
(address supplied — Ed).

LIGHT, DISTANCE AND TIME
The origin of the controversy about the Special Theory of Relativity lies with the absurdity that was contrived in 1887. This initial absurdity was further extended by Einstein in 1905 when he contrived to distort Nature in a manner which would have had Dr Frankenstein green with envy. As far as I can tell none of your contributors has identified the errors.

I would start by asking author Scott-Murray, correspondents C.F. Coleman and A. Watson, and James Burke, who recently demonstrated Michelson's Monster on television, a simple question: "How do I use an interferometer to measure the difference in the arrival time of two rays of light?" In the explanation which follows I assume c to be a physical constant but I lay great stress on the fact that I do not consider it to be a velocity: that was a major error which I shall explain in a moment.

If I walk round a source of monochromatic light, say a sodium flame, then I see the same frequency from all directions. Had it been otherwise then surely I would have seen a beat frequency at the M.M. interferometer. Since I did not see a beat frequency then I think I am entitled to assume that, within a specified distance, there will be a certain number of waves in any particular direction; numerical isotropy. That is the view of the observer who is at rest with respect to the M.M. experiment.

There was now introduced a second observer who was to be at rest relative to the aether (this was assumed, quite improperly, to be a 'rest frame' associated with the sun). What both observers saw was to be compared and we must never lose sight of the fact that in each axis both observers were to look at an unique thing, the same ray of light.

The relativity of observation between the two observers in the transverse axis is

and we see instantly that whilst the number of waves for both observers is invariant, the wavelength for the stationary observer is extended by an amount that conforms to the Lorentz transform.

In the longitudinal axis the relativity of the observation is

and for the stationary observer the wavelength is extended by the Lorentz factor as recommended by Einstein ('Einstein's universe' by Nigel Calder).

Because of the colour invariance of a sodium flame there can be no doubt that physical length is velocity-invariant. Had it been variant then M.M. would have seen their desired result for all of the wrong reasons. But there is one further thing to consider about this experiment.

The transverse axis treats with the phenomenon of aberration, and without the presence of an aether the phenomenon of aberration cannot occur.

Putting to one side M.M.'s personal error we must surely accept that the experiment showed (a) the additive theory to be true (in any case any other alternative runs counter to common sense), (b) the aether to exist and (c) that light moves at constant velocity to the aether.

This leaves us with what, at first sight, seems to be an ambiguity.

How can c be constant for all observers and yet constant with respect to the aether? To avoid this confusion I shall give light a dual aspect and we shall see Einstein's great mistake emerge — he simply did not understand what he was doing when he applied some of his mathematical symbols to Nature.

The term v/c is a hybrid, rather like mixing apples and peaches. As there is unit time both above and below the line this may be cancelled. We are left with what at first sight seems to be a simple quotient of two distances. So it is on paper, but when we come to use it to predict the behaviour of moving objects we find that our predictions go horribly wrong.

On the top of the term we have a distance that may extend to infinity. On the bottom we have a choice; we may say that the length is simply part of the infinite scale of the upper line, in which case we must accept that the term v/c is just a specification as to the magnitude of the units of velocity in an infinite Newtonian scale of possible velocities (this is the length that is involved with the velocity of propagation of light: it is part of the scale of human anticipation). The alternative view of the lower term is to differentiate between the limited length that was constructed within unit time and the distance within which it was constructed. The was finite, whereas the within implies potential infinity.

By failing to distinguish between Euclidian and an abstract distance and the length of a physical entity Einstein did science no service at all because, when it is applied to Nature, the term v/c is ambiguous. Hence the paradoxes of relativity.

I am sure that at this point some defender of relativity is likely to suggest that the two lengths for c are numerically the same so how can they be ambiguous. I would agree about the distance but the ray of light is a physical thing that has things attached other than simple distance.

Firstly, because inertia, gravity and the strong force are a simple consequence of the radiation pressure of light, in unit time no physical interaction may occupy a distance greater than c; this is due to Doppler.

Secondly, because the radiation pressure of light is in direct proportion to the frequency, all physical interactions vary linearly if judged by the light-related scale of motion.

The Lorentz transform removes the ambiguity from v/c by adjusting v into conformity with the light-related scale which is linear and finite. It is the mathematical escape from the inevitable error inherent to the admixture of light, distance and time. We see that all Hafele and Keating did was to show that the pi meson decayed in a distance that was in direct proportion to its light-related velocity. If any relativist thinks otherwise then I will show him a pair of clocks that do not allow him to follow Einstein into error.

If the transform is assigned to any place other than the proper one, say to time, then a paradox such as the 'twins' will appear because v/c is inevitably released back into ambiguity.

Here stand I at rest in the aether (heresy?) and I see a ray of light that has been constructed in unit time rushing toward me. I note, after it has passed, that it comprised N waves of wavelength D the
product of which is the distance c. Knowing by now that $c + v$ and $c - v$ are going to cause me confusion I say "I shall move toward the source and away from the source half the distance c in unit time in each case to find out what happens". In each case I see both N and D vary but find that the product ND is always c. I find that I can have addition, subtraction and constancy all at the same time but, only if I avoid the Newtonian scale of velocity and stick to light as the basis.

Alex Jones
13 Little Street
Alderney

*Mitchelson and Morley, Philosophical Magazine December 1887.

ROBOTS

With reference to your August 1985 issue and the article entitled "Robots for learning and fun", I would like to point out a couple of errors regarding the software for the Cyber 310 Educational Robot.

The article states that our applications package is "small", and costs £150. Not at all: the software is supplied free with the Cyber 310, and is far from small. Apart from the Towers of Hanoi routine mentioned in the article, the applications software also allows automatic zeroing of the robot, Cartesian input, polar cylindrical input, and direct steering and programming of the robot to emulate industrial learning boxes. Coupled with the Forth and RoboForth control software, this adds up to a very powerful free program package.

The only extra software not supplied free is the demonstration package that accompanies our Robotics Course, and the cost of this entire course is only £50.

David Atkinson
U.K. Sales & Marketing Manager
Cyber Robotics Ltd

LOGIC SYMBOLS

Mr Hayward’s letter (May 1985) rings like a resonant bell in a swamp of gridding and grating. Whereas I am not a circuit designer (which I presume Mr Hayward is) and therefore must sit on the fence regarding the adoption of the new logic symbols, his comments regarding Government committees and the growing madness to reinvent hieroglyphics are poignant to say the least.

It seems to me that today there is a lenming-like tendency on the part of power-wielding bodies to attempt to impose arbitrary standards on all and sundry to a point of stupidity, to a stage where what an engineer does becomes subordinate to the units and terms he uses to describe it. In this country, for example, we have a Bureau of Standards which seems to have only two concerns: that we write everything in Afrikaans as well as in English, and that we write, for example "m²" rather than "sq. metres". I am employed by a major water supply authority, which is absolutely soaked in this sort of nonsense.

Is it too late to call for reason? To suggest that the most important feature in, say, a specification for a mobile radio system, is that the system works, and not just that the currently fashionable terms dreamed up by a combination of university academics and Government bureaucrats are used to describe the coating on the surface of a mast? I have coined two terms: ACACRAT and BUREAUMERIC, to describe this sort of nonsense. I hasten to shrink from suggesting that they become standard (!) terms but I think your readers will know what I mean.

P.J.L. Alcock
Kempton Park
Transvaal
South Africa

BATTERY-SAVING RELAY SWITCH

The circuit shown on p. 66 of the July issue seems to be overly complicated. This circuit is designed to operate a relay (for forward/reverse) from a radio control proportional channel, using minimum component count. The response time is about 1 second, which is adequate for many applications.

Time constant $R_c \cdot C_p$ prevents T_r turning on at maximum pulse-width input, allowing C_o to charge via R_p, holding T_r and therefore R_L, off. (R_c is adjusted to achieve this.) At maximum pulse-width input, T_r is turned on by the input pulse removing sufficient charge from C_p (current-limited by R_c) to turn on T_r and T_r.

The hysteresis of the relay avoids instability.

T_r collector will follow the input in a reasonably proportional manner and could be used for (say) a simple "proportional" speed control, if T_r was replaced by an emitter follower.

D. Hutchinson
Harlow
Essex

RELATIVELY BORING?

H. Morgan of Tonbridge, in your issue of July 1985, asks you to try to find the most respected scientific figure in the world and get him to pronounce once and for all a verdict on arguments about relativity.

I gave a brief and simple account of special relativity mathematics in 1963 in a routine textbook “Physics for Engineers”, although at that date there was very little interest in the subject. Most people - including myself - did not really understand pressure of radiation and the relativistic increase of mass of the electron when travelling very fast, both of which phenomena were apparently measurable, according to then-current scientific literature; and there was also to be considered the subject of energy derived from mass loss in nuclear reactions. The non-relativistic explanation of radiation pressure seemed completely unsatisfactory at that date.

As the “most respected scientific figure” I would humbly suggest Professor D.A. Bell, a perservering and long-established contributor to your columns. I remember with interest that when I was his laboratory partner in 1931, studying then-electronics consisting of 900 volt oscillators, Lecher lines, etc., in the late Professor Townsend’s electrical laboratory, he was much enamoured of a magazine which I had not then heard of, called The Wireless World, most of which also I could not understand, though his abounding enthusiasm induced me to buy it occasionally to try to get up to date in “wireless”, then an up-and-coming subject. Professor Townsend, as he will remember, was a noted disbeliever in Quantum theory. Whether he believed in relativity perhaps Professor Bell would know.

George Lewis
South Ascot
Berk

I can well understand Mr Morgan’s objections (EWW 85-7 p. 79) to the “continuous welter of statement and counter-statement, argument and bad-tempered knocking” on subjects of theoretical physics. He might have added objections to writers who often show inability or unwillingness to listen to argument.

But why is it published in Electronics and Wireless World? Simply because this unwillingness to listen has led editors of possibly more suitable publications to refuse to print the ideas of scientists they do not agree with. I am happy that EWW has not been so narrow-minded.

Science is not religion; there is no divine revelation in science. There is no way to establish facts but observation and experiment and observation. That is why all ‘thought experiments’ should be viewed with great suspicion. They leave no room for the emergence of the unexpected and the unknown. That is also why the authority of a “respected scientific figure”
cannot provide a resolution. I'm afraid that the editor with his comment, valid as it was, did not really strike at the heart of Mr Morgan's letter.

Every theoretical and practical physicist would do well to remind himself of two things. One is that we do not really know much; we have no understanding of the things we are playing with; what is time; what is gravity; what is matter? The other is that even an accepted and well tried theoretical system (as far as it goes) is no more than a model of the reality that we are part of. The map is not the territory. P.G. van Dijk Zwolle Netherlands

I have followed the articles and letters on relativity and the rest of the 'modern physics' circus since the article by L. Essen in October 1978, which so impressed me that I started buying Wireless World instead of reading it in the library. I would like to see more of the subjects which bore H. Morgan (Letters, July). You ask who is competent to decide who is right. I ask where else we can read open debate on these matters if you go back to being just another electronics magazine, printing inoffensive S-level 'physics for electronics engineers' — in New Scientists? If I was a professional physicist, I think I would be ashamed to admit it to a lay person whose idea of what I did might well have been formed from television programmes full of starry-eyed academics quoting from T S Elliot and a background of loud jarring music ... Why do all the worst BBC science programmes have this? Is it to drown the words? I might have claimed to be a psychologist and hoped to be taken for a tough behaviourist. Of course the truth always comes out eventually. Where are the reputations of Freud, Cyril Burt and Lysenko now? Remember, all founded powerful, seemingly unchallengeable orthodoxies. Humpty Dumpty has a great fall. . .

Roderick Saunders Birmingham

Some time ago I formulated two maxims which recent correspondence in your journal reminded me of:

1) Everyone with a superficial understanding of relativity and electromagnetism or quantum mechanics will construct their own versions, complete with all paradoxes resolved, the elimination of 'unnecessary axioms', and thoroughly tested by 'thought experiment'.

2) These people will either a) continue to study and develop a deeper understanding, b) forget it, or c) try to persuade the Establishment of its errors by writing lots of letters. A couple of years ago I had the pleasure of meeting a man who was not only a specialist in relativity but had also appeared on television from time to time. I enquired as to whether he ever got eccentric letters as a result of this exposure. It transpired that he had and initially spent much time writing detailed replies. In spite of valiant efforts, at last sheet volume had swamped him. His solution was to pair up authors of similar viewpoint and send each a copy of the other's letter with a covering note suggesting that they correspond with each other. The result was invariably an aggrieved reply from each wanting to know why on earth he had suggested that they discuss their ideas with "that nutcase".

Charles Williams University of Durham

WIRELESS?

I have been a reader of Wireless World for about 55 years, and must gently complain that your title doesn't appear to justify the content as precisely as was its wont.

There is little in the magazine now which is 'wireless' or radio and any reader picking the title up for the first time could be forgiven for thinking that the paper is for computer buffs. I have used computers longer than anybody on your staff and still cannot see why they generate so much excitement. After "Three Mile Island" I would have thought that a serious review of the uselessness of computers was apparent and that the enormous risks in the vulnerability of military computers should prohibit the use thereof. Nor do I acknowledge the hightech minds which are accorded to children: sure they can solve computer problems; they can also do Monopoly and play cards better than I can.

My interest in radio is stronger than ever and I am amazed at the sangfroid shown by the young in the easy acceptance of the technical miracles which are handed to them on a golden plate. Generally, the young have not the deeper technical interests in the technology which previous generations had. Not for them the taking care not to have a wiped out key, or chasing an intermittent capacitor fault somewhere. Or second or third-channel break though via a whisker of wire which resonates, or a girl's necklace which heats up when she operates an r.f. welder, or power which leaks along a work bench and appears on the top as a r.f. spark a foot long.

Modern radio receivers are not a bit as good as the older valve types. It is unusual to hear a radio of the GEC BR7400, or its predecessor. I had one with pushpull outputs via two PX4s, driven by MHL4s, and the range was from 9 metres to 5,500 metres without a break in the range at all. I once heard a ham transmitter from Moscow one November who was using two watts aerial power. Alas the set was sold when I was an expat abroad. If I could get the specs I would rebuild that set myself. The tonal quality even on shortwave reception was marvellous. I would suggest that you could generate an radio interest in radio if you reproduced the set with diagrams and constructional details. I am using A Sanyo, a Panasonic, a Bush, a homebrew, an Edystone, a Pioneer, a Vega and all because I haven't got my old GEC!.

John D. Beud Whitchurch Cardiff

CORRESPONDENCE

May I suggest that the insoluble "paradox" of Mr Michael resides solely in his head. Our brain does not perform "triangulation", using as baseline lateral or time separation of sensor images, to determine the spatial relationship of objects within a visual field.

Intelligently, since it is a skill learnt by practice, we perform in analogue neuron networks an almost immediate weighing process using techniques similar to Probability theory (not geometry), combined with Flicker-comparator-like matching processes, to memory-map image sets to determine whether or not an object exists, and then further to determine whether or not the same found object really exists where it appears to exist in a single or a multiple-image field. Two quite separate tests! Should one test fail or should conflict arise between test results we invariably then have an illusion, but not an insoluble one. Indeed if the "paradox" is insoluble, we could then be continually bumping into each other.

Fortunately for us, Mr Michael has now quite brilliantly presented the proof of this prospect. He proposes that object-to-sensor distance is a prime paradigm in the Correspondence problem when performing or trying to perform "triangulation" to analyse a multiple image field; in that, until one object is identified (for example by an infant) as being unique within a multiple-image field, then it is impossible to instruct limb motor centres to "triangulate" and grasp the object, even with a stereoscopic image pair — sadly this is not his digital Quantum Leap.

Perhaps Mr Michael, after correcting his input-output algorithm could further amplify his intriguing proposition. Can we start bumping or not? I eagerly await his reply. Work on Mr Michael; I could be wrong.

A.J.P. Ferro F.C.T.
London N4

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Digital polyphonic keyboard

Digipoly is a versatile keyboard instrument capable of producing many electronic organ, piano and synthesizer sounds. It is entirely digital, with a Midi interface, and includes an 8088-based control processor and a high-speed t.t.l. signal processor with other potential applications.

Most current electronic keyboard instruments use a combination of digital and analogue circuits. Output of these instruments is typically generated by sixteen conventional analogue oscillators whose frequency, and subsequent filtering/amplification, is digitally controlled.

Digipoly is the outcome of an investigation into the possibilities of producing a musical instrument using entirely digital note generation techniques. The result is a useful piece of equipment capable of synthesizing many conventional electronic organ sounds and also many synthesizer and electronic-piano sounds. However, the basic instrument is not capable of producing any voice for which the harmonic structure of the sound changes during the note.

The main advantage of Digipoly over older analogue designs is the simplicity and versatility of its digital circuits. A standard Midi (musical-instrument digital interface) bus connection is included so that Digipoly can be used with other instruments, sequencers and under remote computer control.

Figure one shows the interconnection of Digipoly's various parts. On its own board at the heart of the system is an 8088 microprocessor which controls all instrument functions. It has an 8Kbyte eprom for its program and look-up tables and 2Kbyte of cmos memory back-up to retain user settings for user-defined voices when the main power source is removed.

The 8088 microprocessor controls all of the instrument through 16 eight-bit parallel I/O ports. This means that for development and debugging purposes, the complete microprocessor board can be removed from the instrument and replaced by a cable to a microcomputer which addresses the same 16 ports. Software for Digipoly was developed in this way on an 8088-based computer.

Front panel controls of the instrument are polled by the microprocessor. For economy, I chose a simple front panel with push buttons and leds, Fig.2. Two rotary controls are also used, one for the master volume setting and the second, connected to the a-to-d converter, whose function depends on the push-button selection.

The sprung-action keyboard is a standard 61-note C-to-C plastic one. It is scanned every 2ms by the microprocessor and appears as an array of 61 ones and zeros reflecting the state of the program.

David Greaves is a postgraduate research student at St John's College Cambridge working with new computer architecture, in particular on natural language processing algorithms.

David is three time a winner of the Esso-sponsored Design Technology competition, holder of an IEE Jubilee Scholarship and a former contestant on BBC tv's Young Scientist of the Year programme. He plays the guitar and, being a lover of most types of music, is fascinated by anything that combines electronics, music and computer algorithms.

His many designs include a digital spectrum analyser, several digital sound effect units and an ever growing computer which he started building in 1977. This 200Kbyte computer with hard disc drives runs home-written software including a Basic interpreter, BCPL compiler and assemblers.
the keys. Front-panel controls allow keyboard pitch to be stepped up or down over six octaves and also transposed up and down by six semitones. Absolute pitch can be varied over one semitone to allow tuning to other instruments.

DigiPoly is equipped with a MIDI interface which is a fast serial data link to other instruments. Bit serialization is performed by the 8088 microprocessor and timed using software delays from the processor's 15MHz crystal. Received-data start bits are used to interrupt the microprocessor whose interrupt routine then assembles a byte which is stored in a queue in memory. This queue is polled by the main program for new commands which are then interpreted according to the MIDI standard.

Sound generation is performed by a microcode program running on a simple processor built from discrete t.t.l. I.C.s. This processor, performing around five million instructions each second, simulates eight asynchronous oscillators whose frequency can be varied in 0.5Hz steps from zero to 16kHz. Waveforms of these oscillators are stored digitally in a 129-by-256 element array and their amplitude is adjustable over 64 linear steps. Each oscillator sends a new value to the output digital-to-analogue (d-to-a) converter at about 35kHz.

Having eight separate note channels within the instrument means that it is normally possible to hold eight keyboard keys together and hear all eight notes polyphonically. The 8088 microprocessor automatically assigns a new channel for each key. In 'double-up' mode, which is selected from the front panel, two channels are used for each key so only four keys may be used together.

Reduction in the number of channels available is also sometimes caused by the automatic arpeggio effect, the MIDI bus and the sustain pedal.

Output from the d-to-a converter is fed through a three-pole low-pass filter with a 5kHz cut-off frequency which remove steps from the digital waveform and sums the eight oscillator waves. The d-to-a converter is eight bits wide and used eight times for each sample, giving an effective dynamic range for all voices of 66dB; when no key is pressed, converter output is zero so the signal-to-noise figure is generally better than this figure. Filter output is fed through the volume control to a 1/8in jack output socket.

Figure 3 shows some of the envelope possibilities. A variable 0.1 to 5Hz sinewave oscillator is included to apply vibrato and tremolo modulation to the output; speed and depth of these effects are controlled digitally by the 8088 microprocessor.

Frequency synthesizer

Figure 4 shows a note-generation channel. Eight such channels are implemented by the t.t.l. microprocessor in microcode and each channel has two sixteen-bit registers, P and F. Frequency of the oscillator is determined by the F register and is set by the 8088 processor before a note starts. In each channel, the P register holds the current phase of the oscillator and has the contents of the F register added to it at regular intervals of 28μs.

The rate at which the P register overflows and returns to zero is the fundamental frequency of the note being
produced by the channel. Being 16 bits, the P register can count up to 65536; if the F register holds unity then the synthesized frequency is (1/0.000028)/65536 which is 0.5Hz. Hence the frequency of the channel is 0.5Hz multiplied by the value in the F register.

Indexing of the waveform table is carried out by the P register’s eight most-significant bits. The waveform table, held in an array in the t.t.l. processor address space,

T.t.l. processor instructions

All instructions are one byte long, the most significant four bits giving the instruction opcode and the lower four bits giving the addressing mode where pertinent.

For instructions that do not specify an m value, the lower-order four bits of the opcode should be zero. The INCV instruction adds one to the V register modulo n where n is the number of sound channels that the Digipoly has. This is set by links to eight. The INCV instruction has the same opcode as the HOST instruction so that the two can be performed at once. Other unused opcodes are decoded in hardware and so can easily be used to add new features to the instruction set.

Bit patterns for the opcodes are

<table>
<thead>
<tr>
<th>Code</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>LOAD m</td>
</tr>
<tr>
<td>0001</td>
<td>ADD m</td>
</tr>
<tr>
<td>0010</td>
<td>SUB m</td>
</tr>
<tr>
<td>0011</td>
<td>CLEAR</td>
</tr>
<tr>
<td>0100</td>
<td>LOOP</td>
</tr>
<tr>
<td>0111</td>
<td>INCV</td>
</tr>
<tr>
<td>1111</td>
<td>NOP</td>
</tr>
</tbody>
</table>

The addressing mode bit patterns (m) are

<table>
<thead>
<tr>
<th>Code</th>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>PL.V</td>
<td>Low order byte of the P array using V</td>
</tr>
<tr>
<td>0001</td>
<td>PH.V</td>
<td>High order byte of the P array using V</td>
</tr>
<tr>
<td>0010</td>
<td>FL.V</td>
<td>Low order byte of the F array using V</td>
</tr>
<tr>
<td>0011</td>
<td>FH.V</td>
<td>High order byte of the F array using V</td>
</tr>
<tr>
<td>0100</td>
<td>VOL.V</td>
<td>volume array using V</td>
</tr>
<tr>
<td>0101</td>
<td>NOT</td>
<td>Not used</td>
</tr>
<tr>
<td>0110</td>
<td>DAC0</td>
<td>DAC</td>
</tr>
<tr>
<td>0111</td>
<td>DAC1</td>
<td>DAC1</td>
</tr>
<tr>
<td>1000</td>
<td>SQ.A</td>
<td>square table indexed by the accumulator</td>
</tr>
<tr>
<td>1010</td>
<td>WV.A</td>
<td>waveform indexed by the accumulator</td>
</tr>
<tr>
<td>1100</td>
<td>E0</td>
<td>register E0</td>
</tr>
<tr>
<td>1101</td>
<td>E1</td>
<td>register E1</td>
</tr>
<tr>
<td>1110</td>
<td>E2</td>
<td>register E2</td>
</tr>
<tr>
<td>1111</td>
<td>E3</td>
<td>register E3</td>
</tr>
</tbody>
</table>

Fig. 4. Note generating system. Microcode in the t.t.l. processor runs eight of these systems. A pitch register is repeatedly added to an accumulator which is used to index a stored waveform. The waveform is multiplied by a volume factor using the ‘quarter squares’ method and then sent to the output d-to-a converter.

Fig. 3. Envelope profiles. The general a.d.s.r. (attack-decay-sustain-release) envelope is shown in (a), preset envelope profiles are shown in (b)-(d), and (f) is a non-a.d.s.r. profile which produces pulses. A pre-echo profile similar to the general a.d.s.r. form but with two attacks is shown in (g). Shaded portions indicate the time that a key is held.
contains values in the range -64 to $+64$. Contents of the array are initially loaded by the 8088.

Each channel has a volume register holding a value between zero and 63. It is necessary to multiply values from the waveform table by the volume value to control output-signal amplitude. This multiplication is performed using the 'quarter-squares' method. Use of a simple look-up table to multiply a seven-bit number by a six-bit number to produce an eight-bit result would take eight Kilobytes of memory; with the quarter-squares method, only 256 bytes are needed. The identity

$$AB \times 4 = (A+B)^2 - (A-B)^2$$

is used. Values from the waveform table and volume register are summed and differenced, then the difference between the squares of these values is computed. In order to keep the number of bits under control, the square table actually contains the function $S[XY] = X \times X/128$ which gives results in the range 0 to 128. When two values from the square table are differenced, a full eight-bit value is produced and this is the result of the computation.

Figure five shows the t.t.l. processor architecture. This processor was specifically designed for Digipoly but is general enough for use in many other applications. Different address spaces are used for the program and data so that the hardware can be more easily 'pipelined'.

A prom holds the microcode program and sequential execution is controlled by the eight-bit program counter register. All data manipulation instructions use the eight-bit accumulator either as a source or destination (or both) of one of the operands. There are four general-purpose extension registers E0-E3 and an index register V which is normally used to select which synthesizer channel is being processed.

Main memory is partitioned in hardware into several regions. There are five arrays which are always indexed by the V register — PL, PH, FL, FH and VOL. These arrays contain eight-bit bytes and are 16 locations long. They are used for the low and high-order bytes of the P, F and volume registers respectively.

There are also two arrays of 256 bytes, the square table SQ and the waveform table WV, which are indexed by the accumulator. Output from the t.t.l. processor is achieved by writing to one of two locations, DAC0 and DAC1. Only DAC0 is used on the present Digipoly.

Input to the processor is always performed by direct memory access (d.m.a.) to the processor memory under the control of an external device.

Figures 6. Second harmonic at 36dB and sampling noise at 63dB of a 1kHz sinewave (a), two sinewaves at 750 and 1000Hz with intermodulation product -50dB at 1750Hz (b), and 120Hz squarewave with its spectrum of odd harmonics (c).
Versatower:
A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V; part 2; 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate in design, quality and reliability.

Suitable for mounting equipment in the fields of:
- Communications
- Security surveillance — CCTV
- Meteorology
- Environmental monitoring
- Geographical survey
- Marine and aero navigation
- Floodlighting
- Airport approach lighting

Further details available on request.

STRUMECH ENGINEERING LIMITED
Portland House, Coppice Side, Brownhills
Walsall, West Midlands WS8 7EX, England
Telephone Brownhills (05433) 4321
Telex 335243 SEL G

CIRCLE 23 FOR FURTHER DETAILS.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.

E.M.S. specialise in systems to eliminate your power problems.

Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.

E.M.S. also manufacture chargers which range up to 60 amps.

For further details please contact:

E.M.S. Manufacturing Limited
Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484

CIRCLE 42 FOR FURTHER DETAILS.

ELE (RON) 'S WIRELESS WORLD SEP'TEMBER 1985
LEVELL OFFER AN EVEN BETTER DEAL

LEVELL OSCILLATORS, FUNCTION GENERATORS, AC/DC VOLTMETERS, FREQUENCY COUNTERS, DECADE R/C BOXES, DIGITAL THERMOMETERS, TRANSISTOR TESTERS and INSULATION TESTERS.

CROTECH OSCILLOSCOPES
HAMEG OSCILLOSCOPES
HITACHI OSCILLOSCOPES

THURLBY POWER SUPPLIES, MULTIPLEXERS, DIGITAL MULTIMETERS, CAPACITANCE METERS and LOGIC ANALYSERS.

LEVELL DELIVER FREE IN THE UK.
CATALOGUE, PRICE LIST and QUANTITY DISCOUNTS ON REQUEST

LEVELL ELECTRONICS LTD.
Moxon Street, Barnet, Herts., EN5 5SD, England
Telephone: 01-440 8686 & 01-449 5028

CIRCLE 17 FOR FURTHER DETAILS.

Happy Memories

Part type 1 off 25-99 100 up
4116 200ns 1.25 1.15 1.10
4146 150ns Not Texas 99 89 84
4128 150ns 5.45 4.99 4.70
4256 150ns 3.85 3.35 3.10
2114 200ns Low Power 1.75 1.60 1.55
2016 150ns 2.45 2.30 2.20
6264 150ns Low power 6.00 4.45 4.00
2716 450ns 5 volt 3.85 3.45 3.30
2732 450ns Intel type 4.75 4.25 4.10
2732A 350ns 5.25 4.69 4.50
2532 450ns Texas type 3.85 3.45 3.30
2764 300ns Suit BBC 2.95 2.65 2.50
27126 300ns Suit BBC 3.95 3.55 3.35

Low profile IC sockets:

Pins: 814 16 16 2024 4284
Pence: 12 13 14 16 1824 2738

Available now — The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by 'phone or mail welcome. Non-Military Government & Educational orders welcome. £15 minimum.

HAPPY MEMORIES (WW),
Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (054 422) 618

CIRCLE 33 FOR FURTHER DETAILS.

Weather monitoring at a down to earth price!

COLOUR ENHANCEMENT providing Red, Green, Blue outputs to display satellite images in colour.
HIGHLIGHTING of interesting temperature or brightness features making for easier interpretation.
625/50Hz PICTURES STANDARD enabling you to enjoy the benefit of video tape storage and CCTV capability.
COMPUTER CONTROL as an optional extra allows automatic operation from most of the popular microcomputers via an interface in the Feedback MICA series.
TAPE RECORDER INTERFACE available as an optional extra allows analogue signals to be stored on cassette tape via a cassette recorder.

Satellite Communication ■ Meteorology ■ Oceanography ■ Environmental Sciences ■ Remote Sensing ■ Geography

FEEDBACK INSTRUMENTS LTD
Park Road, Crowborough, E. Sussex. Tn6 2QR, England.
Telephone: (08926) 3322. Telex: 95255.

CIRCLE 26 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Communications receivers

A survey of general-coverage sets

A generation ago, a communications receiver was for countless engineers, whether amateur or professional, the pride of the workbench. Not so long ago, electronics was radio, and a high-performance general-coverage set was one of the most complex pieces of electronics it was possible to own.

Today, when there is a digital watch on almost every wrist and a computer-controlled washing machine in quite a few kitchens, radio equipment has lost its pre-eminence. But communications receivers continue to retain their usefulness.

For keeping in touch with the world, their value is greater than ever. International broadcasting is big business and the thousands of high-frequency transmitters now in operation around the world are added to every year. And investment in receiving equipment grows correspondingly.

Even the smallest and poorest countries feel the need to make their voice heard abroad. The largest may broadcast hundreds of hours of programmes every day in dozens of languages, from Afar and Albanian to Yoruba and Zulu. Their transmission schedules are listed annually in that short-wave listener's bible, the World Radio TV Handbook, which now runs to no less than 600 pages of small print. To cope with the growing babel, additional frequency allocations were agreed in 1979 and are gradually taking effect.

Some countries use the international airwaves merely for political propaganda, but by no means all. So for anyone who can put up with the lack of pictures and with a sound quality that is inevitably rather less than hi-fi, short-wave radio can be a fascinating source of news, entertainment and information.

However, in recent years many non-broadcast users of the h.f. spectrum have moved to alternative methods of transmission. International telephone traffic, for example, is carried now mostly by satellite or cable. But there remains a great deal of other activity: for example, clandestine transmissions, data, radioteleprinter code from foreign news agencies, military transmissions and, of course, radio amateurs.

For many years an apprentice-ship served before an h.f. receiver, possibly of the war-surplus variety, was considered an indispensable qualification for obtaining a transmitting licence. But besides its use as an adjunct to an h.f. transmitter, a communications receiver has its place in the modern amateur station as a building block for operations on much higher bands. Converters are available to extend coverage into the v.h.f. range and even into the microwave bands, where the tuning and accuracy and stability of the basic receiver can give important performance advantages.

In addition, the communications receiver can make a useful piece of test equipment in its own right as a tunable r.f. voltmeter. Digital frequency meters read only the largest signal present; but a receiver can detect sidebands and harmonics over several octaves and may be as much help as a spectrum analyser. To check its accuracy, you need do no more than tune in to one of the standard frequency and time stations maintained by the world's observatories and standards authorities.

Virtually all the receivers listed in the accompanying table incorporate synthesized tuning, the introduction of which in recent years has led to greatly improved convenience in use — at a cost, in lower-priced sets at least, of some sacrifice of r.f. performance. The synthesized oscillator may be noisy and so provoke spurious responses; whilst an untuned front-end is prone to overloading by unwanted strong signals.

It is nevertheless a surprise to find so few synthesized sets among the mass-market portables, since inevitably there must come a point at which silicon becomes cheaper than the mechanisms it replaces. By contrast, tv set makers seem to have had no difficulty in making the switch to electronic tuning — with a little help from the semiconductor industry.

In a synthesized set, it is a fairly simple matter to include remote control of the main receiver functions. Thus even some of the relatively low-priced sets aimed at the amateur are now offered with a computer interface, enabling the enthusiast to automate his routine band-scanning.

Remote control is widely used in professional receiving installations, where it is common practice to station the operators in an office or listening room and to group the receivers out of sight in racks elsewhere. In extreme

Grundig's Satellit 600: a multi-feature portable for the enthusiast, or the traveller with strong arms.

This professional monitoring set-up from Eddystone includes three model 1650 receivers and a panoramic display module.
cases, the receivers may even be in another country. Sets designed for this purpose may be offered by with dedicated remote-control units or with interfaces for control by serial port or by GPIB or IEEE-488 bus.

Certain receivers for professional applications are too highly specialized in nature to warrant detailed coverage in a feature such as this; however, we have included a few in the table for the purposes of comparison. Among them are measuring receivers (some more were listed in our GPIB feature last December), surveillance receivers and military sets.

Finally, for those with shallow pockets, or of an adventurous turn of mind, it may be worth noting that the home design and construction of short-wave receiver is still possible - although it would take a lot of ingenuity and experiment to match the performance and facilities of the average commercial set.

A recent published design was the RX-80 s.s.b.-c.w. receiver by A.L. Bailey, which appeared in Radio Communication (Radio Society of Great Britain) in 1981. One kit we have come across is the FCR-130 from Comutech (see address list): intended for the beginner, this four-stage t.r.f. receiver gives a.m., c.w. and s.s.b. reception.

In the table, filled blocks denote features offered with the standard model; empty blocks or entries in square brackets relate to optional extras.

Price: does not include v.a.t.

Modes: the column headed 'f.m.' refers to narrow-band frequency modulation. Wide-band f.m. capability is indicated separately.

Memos: the number of memory locations available for storage and recall of receive frequency and any associated settings.

Sensitivity: figures relate, as far as possible, to a normal a.m. signal in the h.f. band giving a signal-to-noise ratio of 10dB. Many sets can be supplied with built-in r.f. amplifiers for more gain.

Power: note that a few d.c.-powered sets require a 24V supply rather than 12V.

The sets

AOR (sold also as Regency): Japanese v.h.f.-u.h.f. keypad-controlled scanners covering in addition the upper h.f. range. Optional converter extends coverage to 1.2GHz. Available from A.R.E. Communications, Lowe Electronics, South Midlands Communications and others.

Bearcave: range of scanners from Uniden includes the multi-mode DX-1000 for the short-wave enthusiast. Available from Radio Shack, E.M.A, etc.

Drake: popular non-synthesized amateur radio work-horse, still available from Radio Shack. Accessory board provides up to eight additional crystal-controlled frequencies. Optional digital readout.

Eddystone: now part of Marconi Communications Systems. High-performance sets for monitoring.

This compact synthesized portable by Sony gives full h.f. and v.h.f. coverage and even has a digital clock.

For the DX-er, JRC’s synthesized set with traditional-style rotary controls. The memory unit is optional.
Vigilant microelectronics

HF Communications Receivers

MICROPROCESSOR CONTROLLED RECEIVERS

Type SR 530 USB/CW/AM/Telex – 10 Hz Steps (Marine)
Type SR 532 USB/LSB/AM/CW – 10 Hz Steps (Static/Transportable)
Type SR 531 USB/LSB/AM/CW – 100 Hz Steps (Static/Transportable)

DESIGNED AND MANUFACTURED TO HIGHEST INTERNATIONAL SPECS

- Freq. Range: 50 KHz to 30 MHz
- Increments: 10 Hz or 100 Hz Steps
- Stability: ± 1 Part in 10^7
- Tuning: Keypad and Spin Wheel
- Power Supplies: 110/240V AC and 24V DC
- FULLY MODULAR 'PLUG IN' CONSTRUCTION
- Memory: 200 Channels Freq/Mode/Filter
- Scanning: Full memory or discreet parts
- Automatic: or Manual Stop
- Manual step on or Reverse
- Dwell: Variable from Keypad 1 to 9 seconds
- KEYPAD FUNCTIONS INDICATED BY DISPLAYS

NOW AVAILABLE AT HIGHLY COMPETITIVE PRICES

Send for Technical Brochure to:
Vigilant Communications Ltd.
Unit 5, Pontiac Works, Fernbank Road, Ascot, Berks SL5 8JH, England

Tel: (0344) 885656
Telex: 849769 Vigcom G

TRIO, quality PMR equipment.

AOR, monitoring & surveillance.

TK801S

New from TRIO, the eagerly awaited range of high quality, purpose designed, VHF and UHF mobile radio transceivers.

Built with unimprovable quality in mind. These fully synthesised transceivers use a completely decoupled backbone chassis for reliability and ease of use. Up to 32 channels are held in PROM and completely diecast backbone chassis for reliability.

The transceivers will handle all current frequency allocations including UHF community repeater channels and, plug in CTCSS modules allow 5 minute installation time with no wiring necessary.

AR2002

The NEW AR2002 from AOR combines the well known performance of the AR2001 with improved operating features. Improvements include: an easier to use press button keyboard, the addition of a signal strength meter, up/down frequency stepping by knobs as well as push button, a headphones jack on the front panel and a socket for remote control on the rear panel. An additional frequency range from 380 to 1300 MHz has also been included.

- General off air monitoring
- Spot frequency monitoring/measurement
- Selective multi frequency analysis
- Spectrum surveillance
- Detection of unwanted transmissions
- Bug hunting
- ... and much more!!!

Frequency coverage is continuous from 5 to 550 MHz and from 800 to 1300 MHz. in selectable increments of 5, 15, 30 or 60 KHz and modes of AM, FM (wide), or FM (narrow). Any mode can be used at any frequency or channel spacing. A further facility is the ability to switch between two user programmed limits with high to low or low to high switching. Twenty memory channels are provided, with easy keyboard entry and recall. Each memory channel stores frequency and mode information without any restrictions. The memory can be recalled manually, or may be automatically scanned in sequence for unattended monitoring.

AOR/2002 operation receiver. £326.00 plus vat

LOWE ELECTRONICS LIMITED

Chesterfield Road, Matlock, Derbyshire DE4 5LE
Telephone: 0688 2817, 2430, 4057, 4966
Telex: 377482

CIRCLE 5 FOR FURTHER DETAILS.

CIRCLE 86 FOR FURTHER DETAILS.
B. BAMBER ELECTRONICS

- **Radio/telephone equipment**
 - Per-base station type 700 AM, high band & low band: £290
 - Per-base station type 4900, IF band: £320
 - Per-repeater type MIR, high band & low band: £500
 - Per-exchange type C18, IF band: £50
 - Per-dual type MIF, high band: £45
 - Per-network type NS4, high band & low band: £50
 - Per-switchboard type 104, high band & low band: £50
 - Per-telephone type 1930, IF band: £280
 - Per-network type 11A, high band & low band: £120
 - Per-station type 1011, high band & low band: £140
 - Per-switchboard type 2300, high band: £120

- **Circuits**
 - Per-switchboard type 2300, high band: £120
 - Per-dual type 1244, high band: £140
 - Per-network type 1244A, high band: £140
 - Per-switchboard type 1300, high band: £200
 - Per-circuits type 1787, high band: £200
 - Per-network type 1680: £250

- **Antennas**
 - Per-base station type 1787, high band: £250
 - Per-network type 1680, high band: £250
 - Per-station type 1787, high band: £250
 - Per-circuit type 1930, high band: £250

- **Controller**
 - Per-base station type 2300, high band: £200
 - Per-network type 1244A, high band: £200
 - Per-switchboard type 1300, high band: £200

PY POCKET-E PON F1/UMF RECEIVER

- 450 MHz, single-channel, cut speaker and aerial. Supplied complete with radio and battery and service manual. £6 each plus £1 p.p. plus VAT.

Breaking Tek 545a Scopes for Spares

- CRT type 7543: £18 each. Main transformers: £200 each. £5 each. Also switches, knobs, fans, capacitors, and connectors.

RadioSonde Rs21 Meteorological Balloon Transmitter

- With Water Activated Battery, contains everything necessary, fully stand alone, £96 each plus £1 p.p. plus VAT.

Iniplex

- HIF Broadcast Relay Receivers
 - "...no degradation from the effects of fading and interference than is possible with nearly any other receiver available." —World Radio TV Handbook 1985

Quartz Crystals/Filter

- MP Types, close tolerance and low DC leakage characteristics. 2-Pole and 4-Pole Filters. Many OEM’s and in Common Market have chosen us as their supplier due to our competitive prices and excellent service. We would be pleased to have an opportunity to quote for your bulk requirements.

- We also supply a range of passive components incl. capacitors, fuses/thermals, fuses, trimmers, heat shrink sleeving, etc.

Europa Components & Equipment Ltd

- Bartwell’s Road, Elstree, Herts WD6 3RD

5 STATION ROAD, LITTLEPORT, CAMBS CB6 1QE

RadioSonde Rs21

- **Quartz Crystals in 24 Hours**
 - Any Frequency 2 - 50 MHz for £5.50 inc (C.W.O. only)

- Ultra-stable, cold weld holders only — no solder or flux — and types equivalent to HC-6/U, HC-18/U, HC-25/U and HC-33/U. State holder required. Tight tolerance, low ageing commercial crystals 1 - 100 MHz also available in 7 day emergency or 2/3 week standard delivery. S.A.E. with enquiries please.
COMMUNICATIONS RECEIVERS

COMMUNICATIONS RECEIVERS

<table>
<thead>
<tr>
<th>Maker, model</th>
<th>Basic price</th>
<th>hf range, Mhz</th>
<th>Modes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOR AR-2001</td>
<td>295</td>
<td>25-550</td>
<td>wbfm</td>
<td>low-cost v.h.f./u.h.f. scanner</td>
</tr>
<tr>
<td>Bearcat DX-1000</td>
<td>300</td>
<td>0.01-30</td>
<td>wbfm</td>
<td>portable/table-top scanner</td>
</tr>
<tr>
<td>Drake R7A</td>
<td>1387</td>
<td>0.01-30</td>
<td>[8] <1.2uV</td>
<td>available while stocks last</td>
</tr>
<tr>
<td>Eddystone 1650/1</td>
<td>2750</td>
<td>0.01-30</td>
<td>usb</td>
<td>MHz- approved maritime receiver;</td>
</tr>
<tr>
<td></td>
<td>1650/3</td>
<td>0.01-30</td>
<td></td>
<td>commercial, profess'1, military</td>
</tr>
<tr>
<td></td>
<td>1837/2</td>
<td>0.1-30</td>
<td></td>
<td>gen'l purpose, marine reserve</td>
</tr>
<tr>
<td></td>
<td>1995/1</td>
<td>20-470</td>
<td>pulse</td>
<td>retransmission, surveillance;</td>
</tr>
<tr>
<td></td>
<td>1995/2</td>
<td>7100-20-1100</td>
<td>pulse</td>
<td>available at end of 1985</td>
</tr>
<tr>
<td>Grundig</td>
<td>96</td>
<td>1.5-26(30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yacht Boy</td>
<td>113</td>
<td>3.9-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite 600</td>
<td>304</td>
<td>1.6-26.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icon R70</td>
<td>547</td>
<td>0.1-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loa R71A</td>
<td>634</td>
<td>0.1-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JRC NRD-515</td>
<td>839</td>
<td>0.1-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panasonic R86600</td>
<td>415</td>
<td>1.6-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REP 3100</td>
<td>212</td>
<td>1.6-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Track</td>
<td>525</td>
<td>2.26.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liniplex F1-2</td>
<td>1222</td>
<td>2.26.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plessey 2825</td>
<td>100</td>
<td>0.1-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recal RA17923</td>
<td>100</td>
<td>0.1-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recal RA1795</td>
<td>20-512(1000)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regency MX7000</td>
<td>347</td>
<td>25-550</td>
<td>wbfm</td>
<td></td>
</tr>
<tr>
<td>Rohde & Schwarz EMS 500A</td>
<td>20-1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sony ICF-7000</td>
<td>156</td>
<td>0.135-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in US, ICF-2002)</td>
<td>287</td>
<td>0.15-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trio R-600</td>
<td>260</td>
<td>0.15-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-2000</td>
<td>417</td>
<td>0.15-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniden CR-2021</td>
<td>165</td>
<td>0.15-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vigilant SRS50</td>
<td>0.05-30</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micon SRS530</td>
<td>0.05-30</td>
<td>usb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micon SRS532</td>
<td>0.05-30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS721</td>
<td>0.05-30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaesu FRG8800</td>
<td>486</td>
<td>0.15-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRG9600</td>
<td>413</td>
<td>60-905</td>
<td>wbfm, acssb</td>
<td></td>
</tr>
</tbody>
</table>

Frequencies supplied are selected to give round-the-clock reception of the BBC World Service; alternatives can be provided on request. Special tracking phase-locked demodulator gives exceptional audio quality on s.s.b., d.s.b. and a.m. Dual rack-mounted version for broadcast relay applications allows pre-delay monitoring without interruption of the programme being relayed. M.f. versions available. Plessey: high-performance receiver family for monitoring, surveillance, retransmission. Sacrificing coverage to gain audio quality: the unique Liniplex portable h.f. receiver from Phase Track.

COMMENTS

Japanese receivers for the enthusiast. Options for the R71A include infra-red remote control, additional filters, voice-synthesizer for frequency indication. From Thanet Electronics, A.R.E. etc. **Japan Radio Co. (JRC):** tabletop synthesized receiver for the keen s.w.l. Options: memory unit storing 96 channels in groups of 24, c.w. filters for improved reception of Morse code. From Lowe, SMC and others. **Panasonic:** audio range includes two multi-band synthesized portables for the enthusiast. **Phase Track:** unusual, easy-to-use portable receiver for the traveller. Crystal-controlled for optimum front-end performance.
COMMUNICATIONS RECEIVERS

This all-mode set from Trio covers 150kHz to 30MHz in 30 bands. A v.h.f. converter can be fitted internally.

Vigilant: high-performance, general-purpose sets. Options include remote control, RS232/R5423 control, dual-diversity operation.
Yaesu: Japanese-made sets for the keen amateur. Interfaces available for Apple II and NEC PC-8001 computers or for any computer with an RS-232C-compatible serial port. Options for the FRG8800 include an active antenna. Available from several amateur radio dealers, including Amateur Electronics, A.R.E. Communications and South Midlands Communications.

Addresses
Amateur Electronics, 510 Alum Road, Birmingham B8 3HX.
A.R.E. Communications Ltd, 38 Bridge Street, Earlestown, Mersey-side WA12 9BA.
Comutech (Devon) Ltd, 12 Edgecumbe Way, St. Anne's Chapel, Gunnislake, Cornwall PL18 9BJ.
Eddystone Radio Ltd, Aivel-church Road, Birmingham B31 3PP.
E.M.A. Telecommunications Engineers, Orford, Woodbridge, Suffolk IP12 2LX.
Grundig International Ltd, Mill Road, Rugby, Warwickshire CV21 1PR.
Lowe Electronics, Chesterfield Road, Matlock, Derbyshire DE4 5LE.
Panasonic U.K. Ltd., 300 Bath Road, Slough, Berkshire SL1 6JB.
Phase Track Ltd., 127 Queens Road, Reading, Berkshire RG1 4DG.
Plessey Radio Systems, Martin Road, West Leigh, Havant, Hampshire PO9 5DH.
Racial Communications Ltd, Bracknell, Berkshire, RG12 1RQ.
Radio Shack Ltd., 188 Broadhurst Gardens, London NW6 8AY.
Rohde & Schwarz UK Ltd., Roe-

For servicing, receivers from Plessey's PRS2280 family can be stripped of all their modules leaving only the case.

Rock Road, Birmingham B8 3HX.
A.R.E. Communications Ltd, 38 Bridge Street, Earlestown, New-

Further Information

The Radio Society of Great Bri-

European DX Council, P.O.
Box 4, St. Ives, Huntingdon PE17 4PE.
International Short Wave

www.americanradiohistory.com
TO BE CRYSTAL CLEAR
AEL CRYSTALS LTD

GATWICK HOUSE • HORLEY • SURREY • RH6 9SU
TEL: 0293 785353 TELEX: 87116 AERO G
CAA approved

SOUTH MIDLANDS
COMMUNICATIONS

COVER THE SPECTRUM...

FRG 9600 £449
60-950MHz Continuous
NBFM, WBFM, AM(W+W-N) & SSB*
100 Memory Channels
7(W) x 3(H) x 8(D) ins
* SSB up to 460MHz

Both Yaesu Receivers feature keyboard frequency entry and
spin tune VFO as standard and optional computer control

FRG 8800 £475
0.15-30MHz (118-174MHz)*
AM/W, AM/N, SSB, CW/W, CW/N
NBFM Standard (WBFM Option)
12 Memory Channels
* Optional Unit

COVER THE WORLD...

NRD 515 £998 MS 8400A £219 SX 7000 £399

RSGB BOOKS

HOW TO PASS THE RAE
by George Benbow G3HB.

Perhaps the easiest and cheapest way of getting
through that all-important radio amateurs' examination!

The scope of this recent RSGB book is best
described by a list of chapters: What is a
multiple-choice examination? Tackling the
multiple-choice RAE; Mathematics for the RAE;
Preparing for the RAE; Sample multiple-choice
examination papers with answers (there are nine
of these).

It is a guide for the would-be RAE student, who
may not have tackled examinations of this sort
before.

Price only £3.62.

RADIO AMATEURS' EXAMINATION MANUAL

This book has established itself over the years as
the standard textbook for the RAE. It is now in its
10th edition. Price: £4.07

Other RSGB publications:
NEW! World Prefix Map.
NEW! Amateur Radio Operating Manual
3rd edition £6.51
NEW! Radio Data Reference Book
5th edition £8.45
NEW! Locator Map of Western Europe
(new grid layout) £3.24
1985 World Radio TV Handbook £20.98
VHF/UHF Manual £11.20
A Guide to Amateur Radio £5.69
Morse Code for Radio Amateurs £1.74
Test Equipment for the Radio
Amateur £6.79

Worthwhile discounts on book prices for RSGB members.

The RSGB is the national society representing all UK radio amateurs. Membership is open to all interested in the hobby, including listeners. The Society publishes a range of books, log books and maps for the radio ama-
teur. A large selection of other radio and electronics books is also stocked and a full list is available on request. Contact the membership services sec-
tion for more information about amateur radio, the RSGB and its publica-
tions. All publications sold by the RSGB are available at discounted prices to

RSGB Publications
Cranborne Road, Potters Bar,
Hertfordshire EN6 3JW

CIRCLE 61 FOR FURTHER DETAILS.
CIRCLE 60 FOR FURTHER DETAILS.
HAMEG
MORE THAN JUST ONE STEP UP

HM208 £1300.
- Dual Trace, Digital Storage 2mV - 20V/cm
- 20 MHz Bandwidth Algebraic Add, Invert
- X - Y, 4 x 1k Stores, 20MHz Clock.
- Roll, Refresh, Pre-trigger

HM605 £515.
- Dual Trace 1mV - 20 V/cm
- 60 MHz Bandwidth Algebraic Add, Invert
- X - Y, Single Shot Delay Sweep.
- Var Hold-off Component Tester, 14kV CRT

HM204-2 £365.
- Dual Trace 1mV - 20 V/cm
- 20 MHz Bandwidth Algebraic Add, Invert
- X - Y, Single Shot Delay Sweep.
- Var Hold-off Component Tester

HM203-5 £270.
- Dual Trace 2mV - 20 V/cm
- 20 MHz Bandwidth Algebraic Add, Invert
- X - Y Component Tester
- 2 Year Warranty
- Prices U.K. list ex. VAT

EXTRACTOR FANS — MAINS OPERATED

Woods extractor
5" £3.75, Post £1.25
6" £5.95, Post £1.25
5" Planair extractor £6.50, Post £1.25
4" x 4" Multi Fans 115v
£4.50 230v
£3.75, Post £1.25
All the above ex-computer, those below unused.
4" x 4" £8.50, Post £1.25
3" American made £11.50, Post £2.00
Tangential Blower 10 x 3 air outlet, dual speed £4.60
Post £1.50.

MICRO SWITCHES
V3 type all 250V 10 amp SpST 15p
1000 — £100 Spdt 20p £1000 — £150, very low torque Spdt
30p 1000 for £200

ROCKER SWITCHES
Standard size fit 11.5 x 28 mm cut out.

MINIATURE WAIVER SWITCHES
2 pole, 2 way — 4 pole, 2 way — 3 pole, 3 way
4 pole, 3 way — 2 pole, 4 way — 3 pole, 4 way
2 pole, 5 way — 1 pole, 12 way.
All at 25p each or 100 for £20.

12 volt MOTOR BY SMITHS
Made for use in cars etc. These are very powerful and easily reversible. Size 3/4", long by 3/4" dia. They have a good length of 1/4" spindle — Price £3.45 or 100 for £250.

N.B. ELECTRONIC SUPPLIES
34 America Lane, Haywards Heath, Sussex RH16 3OU
Phone 0444 454563 for Access or B.C.
Please add £1 if order under £20.

LOW COST UNIVERSAL PROGRAMMER
EPROMS Eeproms MicROS

- Completely self contained unit.
- No personality modules required.
- Controlled via RS232 serial interface.
- Supports Intel, Motorola and Aspell hex data formats.
- Easily controlled by most computers.
- Fast and standard programming modes.
- Low and high byte programming for 16 bit data.
- Byte, block and chip erase for Eproms.

Price uncased £295 plus VAT.

ELECTRONICS C.A.D.
"ANALYSER I & II"

PERFORMANCE ANALYSIS of LINEAR CIRCUITS using the BBC MODEL 8 AND SINEWAVESPECTRUM 48K MICRO.
Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field effect Transistors, and Operational Amplifiers in any circuit configuration.
Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 30 nodes and 100 Components, for Phase and Gain/Dec. Input Impedance and Output Impedance.
Ideal for the analysis of Active and Passive Filters, Audio, Wideband and R.F. Amplifiers, Linear Integrated Circuits etc., etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.
USED BY INDUSTRIAL AND UNIVERSITY R&D DEPARTMENTS WORLD WIDE
VERY EASY TO USE. PRICES FROM £20 ACCESS OR AMERICAN EXPRESS WELCOME.
For further details write or phone NUMBER ONE SYSTEMS LIMITED DEPARTMENT WAI 3A CHROMOSTREET, ST IVES HUNTINGDON, CAMBS. UK PE17 4EB.
TEL: 0480 61778 FAX: 32339

CIRCLE 10 FOR FURTHER DETAILS.

CIRCLE 27 FOR FURTHER DETAILS.

CIRCLE 35 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Following on from the success of the POCOMTOR AFR-2000, Dewsbury Electronics is proud to announce the introduction of the AFR-8000, featuring fully automatic (or manual) decoding of, CW, RTTY (BAUDOT) and TOR (Sitor, Specter, Amtor etc.) the received text is displayed on the built-in LCD display, composite video output is available as an option. Both serial and centronics compatible printer interfaces are fitted as standard. Full details on request from Dewsbury Electronics.

Visit our newly opened larger showroom same address same people.

Dewsbury Electronics offer a full range of Trio Equipment always in stock etc. Please request from Dewsbury Electronics.

We are also stockists of DAIWA, WELTZ, DATAVF, TASC, TESLER, MICROWAVE MODULES, ICS, AMTOR, AEA PRODUCTS, DRAE, BNOS.

Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063/371228. Open Monday thru Saturday. Instant H.P. subject to status. Access, Barclaycard and real money.

CIRCLE 70 FOR FURTHER DETAILS.

LOOK AHEAD!
WITH MONOLITH MAGNETIC TAPE HEADS
VIDEO HEAD REPLACEMENT KIT
DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES? IT'S PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES.
SAVE REES ON REPAIR CHARGES.
OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF VHS OR BETAMAX VCRS. FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENT KIT.

KIT CONTAINS - NEW VIDEO HEAD, 5 CLEANING TOOLS, HEAD CLEANING FLUID, CAN OF AIR BLAST, INSPECTION MIRROR, ANTISTATIC CLOTH, VHS/BETAMAX MAINTENANCE MANUAL, CROSS HEAD SCREWDRIVER, HANDLING GLOVES, MOTOR SPEED DISC, SERVICE LABEL, HEAD REPLACEMENT GUIDE.
VHS KITS £6.325, BETAMAX KIT £7.75, Prices include P&P and VAT.

HOW TO ORDER: PLEASE STATE CLEARLY THE MAKE AND MODEL OF YOUR RECORDER. THERE ARE TWO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOLE OF THE HEAD WHICH WILL BE EITHER 5mm OR 15mm DIAMETER.

CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms, etc. Please forward 50p P&P.

THE MONOLITH ELECTRONICS CO. LTD.
5-7 Church Street, Crewkerne, Somerset TA18 7HR, England
Telephone: Crewkerne (0460) 744321
Telex: 46306 MONLTH G

CIRCLE 58 FOR FURTHER DETAILS.

11 Ghz SATELLITE TV RECEPTION.
THE FOLLOWING TV TRANSPONDERS ARE AVAILABLE NOW FROM ECS/INTELSAT.-
Premiere (UK film channel), Screen Sport (UK Sports channel), Minirvision (UK film channel). Childrens Channel (UK), RAI (Italy), Teleclub (Switzerland), Olympus (Pan European TV) Film Net (Belgium, mainly American films). WPN (World Public News) SAT (Germany). TV5 (France), Worldnet (U.S. info). New World Channel (Norway — religious, multi language). SKY: Music Box (Stereo pop video channel). Norway (C-Mac system).
Additional channels late 85 — Cable News Network, Life Style channel, plus all TV transponders on ECS 3 due for August launch.
A typical system consists of our 1.6m dish in either fixed, AZ-EL or Polar mount. Scalar horn & feed in Aluminium, brass or phosphor bronze. Low noise block downconverter (2.2 — 30 dB noise figures) converting the 10.9 — 11.7Ghz signal to 950 — 1750MHz IF feed to the indoor unit. Demodulator, gives audio & video output to feed a colour monitor or a VCR.
Package price for a complete system from £1550 plus VAT & carr.
Private TVRO installations are now licenced by the Home Office. (Fee £10 indefinite).

TRADE ENQUIRIES WELCOME
The Company has supplied systems to:- Foreign Embassies, British Government, Overseas Hotels, Universities, Research Organisations, TV retail Trade and the Public.
TO DISCUSS YOUR REQUIREMENT, CONTACT:- D.J. STANDEN.

North East Satellite Systems
Manufacturers of Microwave Dishes. Feed Horns and Specialised Electronics Suppliers of Satellite Systems and Closed Circuit TV Equipment.
CROPTON, PICKERING, NORTH YORKSHIRE Y018 8HL
TEL: LASTINGHAM (07515) 598
VAT No. 347 557132

CIRCLE 16 FOR FURTHER DETAILS.
The LJ Robotic Work-Cell System

Based around the popular LJ ATLAS Robot, this work-cell provides an automatic parts-selection system running under full microcomputer control.

LJ Electronics Ltd
Technical Teaching Systems for Microelectronics, Microprocessors and Robotics

Francis Way
Bowthorpe Industrial Estate
Norwich, NR5 9JA. England
Tel.: (0603) 748001. Telex: 975504

CRICKLEWOOD ELECTRONICS LTD
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-450 0995/01 452 0161
Telex: 91 4977

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-450 0995/01 452 0161
Telex: 91 4977

TDS900 FORTH COMPUTER

Build the TDS 900 into your products, program it with a VDU and your forecasts become fact.

NOW FROM £99

- Single board computer.
- 12k RAM and 8k ROM (expandable).
- All C-MOS for lower power. FORTH language. Compiled and fast.
- On-board screen-editor, compiler and debug facilities.
- Easy connection with serial and parallel channels, A/D, D/A converters, triacs, printers, keyboards and displays.

Triangle Digital Services Limited
100 Wood St, Walthamstow, London E17 England
Telephone: 01-520 0442. Telex: 262284 IRef 7751

Agents in USA, France, Switzerland, Netherlands, S Africa, Australia

CIRCLE 21 FOR FURTHER DETAILS.
The Gould 1425 – the low-cost compact Digital Storage Oscilloscope that’s really big on performance.

With built-in computer power:
Fast, accurate measurements, made automatically with simple push-button control and on screen alpha-numeric. This already versatile instrument is further enhanced by the remote ‘waveform processor’ which will store additional waveforms, recall them to the screen and compare them with live signals. It can reposition and rescale traces. Stored waveform data can be manipulated mathematically for easy baseline compensation and display of power characteristics from current and voltage waveforms.

System noise can be reduced by a post-storage filtering facility and averaging of up to 256 signals.

Interface direct to external computer:
Send waveform data direct to your computer for mass storage, or user-defined processing, or read data direct from the computer to set up comparison tests on the 1425 display. Send control settings from computer to oscilloscope for semi-automatic test routines and show user-defined messages on the ‘scope’s display.

CHECK POINTS
★ Realtime and storage bandwidths up to 20MHz on both channels.
★ Automatic measurements.
★ Waveform processing.
★ Personal computer interface.
★ Digital plotter interface.

Simply more oscilloscope for your money from Gould Electronics Ltd., Roebuck Road, Hainault, Ilford, Essex IG6 3UE. Telephone: 01-500 1000. Telex: 263785.

CIRCLE 74 FOR FURTHER DETAILS.
The Archer Z80 SBC

The SDS ARCHER — The Z80 based single board computer chosen by professionals and OEM users.

- High quality double sided plated through PCB
- 4 Bytewide memory sockets — upto 64k
- Power-fail and watchdog timer circuits
- 2 Serial ports with full flow control
- 4 Parallel ports with handshaking
- Bus expansion connector
- CMOS battery back-up
- Counter-timer chip
- 4 MHz. Z80A

OPTIONS:

- SDS BASIC with ROMable autostarting user code
- The powerful 8k byte SDS DEBUG MONITOR
- On board 120 / 240 volt MAINS POWER SUPPLY
- Attractive INSTRUMENT CASE — see photo.
- 64k / 128k byte DYNAMIC RAM card
- 4 socket RAM — ROM EXPANSION card
- DISC INTERFACE card

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

CIRCLE 37 FOR FURTHER DETAILS.

FREQUENCY COUNTERS

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

- Measuring typically 2Hz - 1GHz
- Sensitivity <50mV at 1GHz
- Setability 0.5ppm
- High Accuracy
- 3 Gate Times

PRICES (Inc. adaptor/charger, P & P and VAT)

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>METEOR 100</td>
<td>100MHz</td>
<td>£117.30</td>
</tr>
<tr>
<td>METEOR 600</td>
<td>600MHz</td>
<td>£148.35</td>
</tr>
<tr>
<td>METEOR 1000</td>
<td>1GHz</td>
<td>£204.70</td>
</tr>
</tbody>
</table>

LOW COST

BLACKSTAR LTD, Dept. WW, 4 Steppenshaw Rd, St Ives, Huntingdon, Cambs PE11 4NH, England. Tel: (0480) 62440 Telex: 32359

CIRCLE 25 FOR FURTHER DETAILS.

RF POWER

U.S. supplier of RF POWER DEVICES. Prices LOWER than current domestic prices. Query us for immediate needs.

A quality source for a complete range of RF POWER devices — From 2-300MHz, SSB 12.5V 7.2V transistors — 14-30 MHz CB/AMATEUR 27-50 MHz, low band FM — 66 — 88MHz, mid band FM — 66 — 88MHz, mid band FM — 156 — 162MHz VHF MARINE RADIO FM — 130 — 175MHz HI-BAND VHF FM — 108-150MHz VHF AIRCRAFT AM — 225 40MHz UHF 28V — 407 — 512 UHF CATV/MATV CLASS A linear transistors — A SMALL indication of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES.

<table>
<thead>
<tr>
<th>Transistor Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
</table>

TIC Semiconductor Inc.
18 WEST 21st STREET NEW YORK, N.Y. 10010 U.S.A.
TEL: (212) - 675 6722 TELEX: 284564 TIC'S UR

CIRCLE 12 FOR FURTHER DETAILS.

MEDICAL MAGNETICS LTD
19 Norwood Drive, Chester, Cheshire.
0244-678244.

Applications — Low field surveys
(Sensitivity — Educational 1mT/mV) — Multi-axis

FLUXGATE COMPASS (2 axis + electronics) — P.O.A.

INCLINOMETER Full scale ± 60°. Accuracy 1 degree.
&125 + &1 P.P.

CIRCLE 15 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

www.americanradiohistory.com
Fluorescent lamp inverter for 12V supply

Rather than using the usual power oscillator, my fluorescent lamp inverter has a 2N3055 power transistor driven by a 555 timer acting as an oscillator with a 1:1 mark/space ratio. This makes the circuit simple, efficient and easy to adapt for different tubes up to 20W. As shown, the inverter drives two 8W, 300mm tubes.

The transformer is wound on an FX2241 pot core with the 12-turn primary next to the core. Next is the main 100-turn secondary winding in three or four neatly-wound layers, followed by three cathode heating coils, two of three turns and one of six. A small paper 'air' gap should be formed between the core segments and adjusted to give maximum lamp brightness. Larger cores such as the FX2242 should work equally well.

To run other sized lamps, just alter the number of secondary turns and the size of the ballast capacitor, while keeping an eye on current consumption, light output and ease of starting. As shown the circuit takes about 1.6A. A Thorn-EMI 16W 2D lamp could also be used with its starter and capacitor removed, but at £7.50 they are rather expensive.

P.G. Bennett
Bristol

Bandpass filter

Many telecommunications systems require bandpass with a Q factor which can be set to a desired value without changing the circuit. This solution is a quadrature amplitude modulator consisting of two identical balanced mixers which operate under control of sine or cosine-related carriers of the desired pass-band centre frequency, f_0.

Operation of the circuit is similar to that of an n-path filter, Q-factor is around 100 and small variations in Q due to changing f_0 are negligible.

Two low-pass filters with cutoff frequency f_c only pass, unattenuated, input components from the mixers within $\pm f_c$ of centre frequency f_0. After low-pass filtering, each signal is remodulated by the same carrier frequency f_0 in quadrature. Another low-pass filter at the output of the summing point removes higher harmonics resulting from the second mixing.

Hence bandwidth Δf is determined by cut-off frequency f_c and the Q factor can be set by the choice of f_c only. For example, choosing an f_c of 10kHz and f_0 of 10MHz yields $\Delta f = 2f_c = 20kHz$, resulting in $Q = f_c/\Delta f = 500$. The value of Q is thus controlled by f_c with Δf fixed. Values of R and C determine the pass bandwidth. Kamil Kraus
Ro'kyca
Czechoslovakia

Rate indication using LM3914 bargraph i.c.

In some applications it is desirable to indicate a product or ratio. The popular LM3914 bargraph can be used for this purpose, the number of leds lit being proportional to V_m/V_{ref}. Displaying petrol consumption directly in a car is inconvenient, possibly even a dangerous distraction; a bargraph indication using different colours can be noticed even when one is not looking directly at it.

Feeding, say V_m with a voltage representing km/h and V_{ref} with a representation of 1/h, the bargraph could indicate km/l. I have tried the principle by feeding the two inputs with variable voltages and it works fine.

Bart Scholten
Lerenskog
Norway

WIRELESS WORLD SEPTEMBER 1985
Stepping a d.c. motor

Using a digital control circuit, a d.c. motor can be made to act as a stepping motor provided that it has the requisite high starting torque, low armature time constant and high braking torque — features that usually go hand in hand. This single-supply control and drive circuit allows stepping in both directions.

Time taken for the motor to rotate through a given angle depends on the load so drive pulses have to be load dependent. This is difficult to implement directly so I used rotational position feedback with the aid of a disc with equally-spaced radial holes (a dark X-ray plate will do). Light through the disc holes is sensed by a fixed photo-transistor.

Output from the sensor feeds the master reset input of a monostable device, IC1. As a hole passes the sensor, the reset input of IC1 goes high. The Q output of IC1 goes low, forcing the outputs of IC4 high, and IC2 is triggered to give a short low pulse, assuming that the direction select input is zero.

Pulse width at A depends on the motor used and is determined by trial and error. The pulse from IC2 should be wide enough to rotate the motor through the desired angle (i.e. a single step) with the greatest load. I used a 15V supply and CMOS digital ICs.

S. Mitra
West Bengal
India

Oven timer/alarm

Using the CA3059 zero-voltage switch as the basis of a circuit for controlling the temperature of a small oven is a conventional application. However, using the regulated d.c. output of this device to supply low-power ICs for timer and alarm facilities means that no additional power supply components are required.

M. R. James
Sherborne
Dorset
Economical oscilloscope timebase

In this timebase for small cheap oscilloscope tubes, sawtooth waveforms are generated by a relaxation oscillator which uses hysteresis of a t.t.l. Schmitt trigger. The circuit provides up to 350V pk-pk at sweep frequencies rising to a few hundred kilohertz. Owing to the small amplitude required and the high voltage on the sweep potentiometer, charging of the timing capacitor is quite linear.

Feedback resistor R₄ slows down flyback so that the deflection amplifier can follow it at the highest speeds. This reduction in flyback discharge current also eliminates voltage steps on the capacitor due to series resistance. The width control is shunted by a compensating capacitor which affects operating speed.

Synchronization comes from a simple wave squarer fed by a signal from a Y plate. The 100pF capacitor and 4.7kΩ resistor feed a small fast pulse to IC₃a, which causes a slightly early flyback if the sweep is nearly finished, but otherwise has no effect. A 5V signal is also available for flyback blanking.

The transistors do not require heat sinks. With stage gains of 400, reasonable care is needed with layout.

D. H. Potter
Axminster
Devon

Phase sequence network

An ideal three-phase supply has three voltages of equal magnitude and separated in phase by 120°. Although only balanced voltages are generated, unbalanced loads and faults can cause unbalance in voltage magnitude or phase at the consumer terminals. Such imbalances have little or no effect on single-phase supplies, but they can cause overheating in three-phase motors.

Output of this circuit can be made proportional to either positive or negative phase-sequence of the three-phase supply. The positive phase sequence is a kind of vectorial mean of the three-phases that do useful work in a motor. The negative phase sequence is the main cause of overheating during loss of a line connection. Reversing any two inputs switches the circuit from one function to the other.

The three-phase voltages are divided and fed to three op-amps connected in series to produce output voltage.

\[V_o = -k(V_a + aV_b + aV_c) \]

where \(a \) is the phasor

\[a = \exp(j \cdot 2 \cdot \pi/3) \]

Since each op-amp introduces inversion or 180° phase shift, a capacitor bridging the feedback resistor can be selected to introduce a further 60° phase shift at 50Hz. This makes total phase shift 240° lagging or 120° leading, as required by the second equation.

Power supply for the op-amps is taken from the mains through capacitors C₁₋₃. In principle, the circuit requires a neutral connection but it works without one. A small transformer isolates output from the mains-connected circuit.

A. Refsum
Queen’s University of Belfast
Loudspeaker impedance measurement

Impedance of a low-frequency loudspeaker is represented by output voltage of this constant-current audio power amplifier with bridge output.

Amplifier IC1, connected as a straightforward non-inverting circuit, amplifies test signal \(V_n \) to about the supply-rail level. If the non-inverting input of IC1 is taken as ground, this amplifier operates as a standard inverting circuit, maintaining a virtual ground at its input. The portion of IC1 output across \(R_1 \) must then also appear across \(R_2 \), the input resistor of IC2, and output of IC2 varies oppositely and in proportion to \(Z_m \), its feedback impedance.

But for the small drop across \(R_1 \), \(Z_m \) is connected between the complementary outputs of amplifiers IC2, making a signal of nearly twice the supply voltage available for measurement. Since

\[
\begin{align*}
V_{m1} &= V_n \left(\frac{R_1 + R_2 + R_f}{R_f} \right), \\
V_{m2} &= V_n \left(\frac{R_1 + R_2 + R_f}{R_f} \right)
\end{align*}
\]

then

\[
V_{m2} = V_n \times \left(\frac{R_1 + R_2}{R_f} \frac{R_f}{R_1 + R_2 + R_f} \right)
\]

and

\[
V_{m2} = V_n \times \left(\frac{R_1 + R_2}{R_f} \frac{R_f}{R_1 + R_2 + R_f} \right)
\]

or, if the offset potentiometer is adjusted for \(V_m = 0.5V \),

\[
Z_m = 10V_{m2}
\]

1Hz to 30MHz voltage to frequency converter

For an input of 0-5V, this circuit produces frequencies from 1Hz to 30MHz with \(\pm 0.08\% \) linearity error, approximately 20ppm/°C drift and a zero error of 0.3Hz/°C.

Using charge-feedback allows the amplifier to close the loop around the entire converter which enhances linearity and stability but introduces loop settling time into the overall system response. Main elements of the circuit are a chopping-stabilized op-amp, the LTC1052, and a switched-capacitor ‘building block’, the LTC1043 (both Linear Technology).

Positive \(V_n \) sends output of IC1 negative, causing current source \(T_r \) to charge \(C_1 \) positively. Schmitt-trigger inverter IC2 changes state when the ramp passes the upper threshold, thereby removing charge from \(C_1 \) through diode-connected \(T_r \). Input-voltage hysteresis of this gate sets the limits which the oscillator will run between. Circuits IC3,4 provide a division by 20 to make the feedback frequency range acceptable to the LTC1043.

During the oscillator ramping interval, IC3 pins 13 and 12 are connected to pins 7 and 13, charging \(C_2 \) to the LTC1004 1.2V reference voltage. When output of IC3 goes low, charged capacitor \(C_2 \) appears at pin 14 of IC4. Thus each time that IC4 pulses, a fixed charge is dispersed into junction P with a polarity which opposes the positive input current.

Capacitor \(C_3 \) integrates the discrete charge dumps and amplifier IC5 controls \(T_r \) to run the oscillator at a frequency necessary to force the non-inverting input of IC1 to 0V. In this way, drift and non-linear response in the oscillator section are compensated for by the closed-loop control.

This mode of control results in very low output jitter and noise over the whole 150dB operating range. Jitter stays below 0.01% down to 20kHz, rising to 1% at 30Hz and 10% at 1Hz. As operating frequency decreases towards IC, feedback-loop roll-off, the loop dominates jitter characteristics. In the higher frequency ranges, the loop poles are not a factor and current source and schmitt-trigger noise dominate.

To trim the circuit, input should be grounded and the 1Hz-trim potentiometer adjusted to the point where oscillation occurs. Apply 5.000V and set the 30MHz-trim potentiometer for 30.00MHz output. Repeat this procedure until both end points are fixed.

Keith Williams

Microcall
Thame
Oxon

Circuit Ideas

1Hz to 30MHz voltage to frequency converter. In practice, with the switch momentarily closed, the input potentiometer nulls the tester output with no input then the offset potentiometer is adjusted so that there is 1V across calibration resistor \(R_s \) with a signal present.

N.J. Dennis
Ontario
Canada

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Now! Tek quality and expert advice are just a free phone call away...

Our National Order Desk line gets you fast delivery of the industry’s leading value/performance portables and technical advice from experts!

The 60MHz 2213A, 2215A and the 100MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry’s first 3 year warranty on labour and parts, CRT included.

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement. The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature.

These UK manufactured ‘scopes are obtainable through the National Order Desk. Call us to order or obtain literature, or to talk to our expert on ‘scope applications.

...talk to Pete

Dial 100 and ask for Freefone Tek-scope

Tektronix UK Ltd
Fourth Avenue, Globe Park, Marlow, Bucks SL7 1YD
Tel: (06284) 6000
Telex: 847277 & 847378

The Company reserves the right to modify designs, specifications and change prices without notice.
The Oryx name means a range of soldering tools and accessories designed to meet any modern requirement. Our comprehensive range includes lightweight, cordless rechargeable soldering irons, the famous "Super" and "Viking" standard designs and lightweight and temperature-controlled models. All with a wide selection of tip designs and sizes. The unique Portasol butane gas soldering iron completes the range. Oryx also supply the largest range of SR desoldering tools, including the new anti-static pump, power supply units, safety stands and solder pots.

DIAGRAM

- A program which allows you to store very large diagrams; up to 99 model 0 screens and view or edit them by SCROLLING the computer screen around any part of the diagram.

FEATURES

- Draw diagrams, schematics, plans etc.
- Access any part of the diagram rapidly by entering an index name e.g. TR6, R5 etc., to display a specific section of the diagram and then scroll around any other part of the diagram using the cursor keys.
- Up to 128 icons may be predefined for each diagram e.g. Transistors, Resistors etc. in full model 0 definition, up to 32 pixels horizontally by 24 vertically.

£28.75

All inclusive

PINEAPPLE SOFTWARE, 39 Brownlea Gdns. Seven Kings, Ilford, Essex IG3 9NL

CIRCLE 45 FOR FURTHER DETAILS!
Paying close attention to its P’s and Q’s is how Philips is able to offer Europe’s finest value in 50 and 100 MHz oscilloscopes.

Use this checklist to compare their performance and quality against any competitive instrument and you’ll realise what an outstanding investment they represent.

- Triggering capability (main and delayed time base; TV)
- Design and construction (low power consumption, low heat output, no ventilation required)
- Ease of use (display quality, panel layout, control configuration)
- Facilities and options (24 V input, 50 MHz single or dual time base and rackmount options, 100 MHz trigger filtering as standard)
- Environmental specs. (rigorous temperature, humidity, vibration tests)

Take a more detailed look by circling reader inquiry no. 220.

Authorised distributor: Electronic Brokers (01-267 7070)
Philips Test and Measurement
Pye Unicam Ltd
York Street Cambridge CB1 2PX
Tel (0223) 358866 Telex 817331

Prices exclude VAT and are correct at time of going to press.

Oscilloscopes
Performance Price & Quality

(We mind our P’s and Q’s)

50 MHz from £725*

100 MHz £1,295*

CIRCLE 220 FOR FURTHER DETAILS.

PHILIPS
Application other than Cable T.V. includes C.C.T.V. (up to 26 Channels 8MHz wide on V.H.F. Repeaters, and up to 65 Channels 8MHz wide on U.H.F./V.H.F. Repeaters). Suitable for outdoor mounting.

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Gain @ 1MHz</th>
<th>Adjustability</th>
<th>Response</th>
<th>Internal</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSC6000</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
<tr>
<td>TSC6000/50</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
<tr>
<td>TSC6060</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
<tr>
<td>TSC6060/50</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
<tr>
<td>TSC6060/30</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
<tr>
<td>TSC6060/30/50</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
</tbody>
</table>

Variations of the above are available on request. Phased-lock loop powered. Suitable for powered multi-channel amplifiers with one fixed and one distribution output.

CIRLE 47 FOR FURTHER DETAILS.

MARTIN ASSOCIATES

NEw stock of ELECTRONICS equipment

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Attenuation @ 1MHz</th>
<th>Attenuation @ 6dB</th>
<th>Frequency Response</th>
<th>Attenuation @ 10Hz</th>
<th>Attenuation @ 100Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZV66</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
<tr>
<td>ZV95</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
<tr>
<td>ZV12</td>
<td>40,300</td>
<td>1030</td>
<td>±150</td>
<td>10Hz</td>
<td>-10mV</td>
<td>±5dB</td>
</tr>
</tbody>
</table>

PUBLIC RELATIONS

The Forge, Lucks Street, Cranleigh, Surrey GU6 7BU. Tel: 0483 273997

ELECTRONICS & WIRELESS WORLD

JOHN BROWN

CIRCLE 62 FOR FURTHER DETAILS.

RUGBY TIME?

MSF Clock is Exact

- **8 Digit** display of Date, Hours, Minutes and Seconds.
- **Self Setting** at switch-on, never gains or loses, automatic GMT/BST and leap year, and leap seconds.
- **Expandable** to Years, Months, Weekday and Milliseconds and use as a STOPCLOCK to show when an event happened.
- **Computer or Alarm** output also, parallel BCD (including Weekday) and audio to record and show time on playback.
- **Decodes** Rugby 60KHz atomic time signals, superhet receiver (available separately), built-in antenna, 1000Km range.
- **Low Cost**, fun-to-build kit (ready-made to order) with receiver. **Only £89.80** includes all parts, 5x8x15 cm case, pcb, by-return postage and list of other kits. **TIME RIGHT.**

CAMBRIDGE KITS

45(WJ) Old School Lane, Milton, Cambridge, Tel 660150.

TWIN PPM BOX

Also: PPMQ, PPM3 and 20 pin DIL hybrid PPM5 drivers and Ernest Turner movements.

Stereo Disc Amplifier 3 and 5

- **10 Outlet Distribution Amplifier 3**
- **Stabilize and Frequency Shift Circuit Boards**
- Broadcast and Communications Receivers: 150MHz-30MHz
- Stereo Microphone Amplifier Moving Coil Preemphasizer
- Peak Deviation Meter and Chart Recorders
- Advanced Active Aerial System Electronics Ltd. The Forge, Lucks Street, Cranleigh, Surrey GU6 7BU. Tel: 0483 273997
ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

PC/XT - PERIPHERALS

384K MULTIFUNCTION CARD — SIX WAY!!
- 64K to 384K RAM Memory
- RS232C Serial Port
- Real Time Clock / Calendar with Battery Backup
- RAMDISK & FSPSO Software
- Optional games port

Built & Tested £295.00

RAM CHIP SALE !!!
- 4164 64K DRAMS 150ns (Upgrade PC/XT and compatibles) £1.33 each
- 41256 256K RAMS 150ns (Upgrade OLIVETTI M24 COMPATIBLES) £5.59 each
- 4128 128K RAM 150ns (Upgrade IBM PC/AT) £5.50 each

PC/XT CASE
- 8 - Slot
- Hinged lid
- Includes hardware

£99.00

PC to XT CONVERSION KITS
- NEW FAST CONTROLLER!!!
- WESTERN DIGITAL 1022 SWX 2
- SEGATE ST-506 STANDARD

£249.00

- 10 MEGABYTE 40-PI 5½
- WINCHESTER HARD DRIVE, 2.9
- AVERAGE ACCESS 85ms

£399.00

- 20 MEGABYTE 5255 5½
- WINCHESTER HARD DRIVE, 4-
- AVERAGE ACCESS 85ms

£590.00

- HARD DRIVE CABLE SET

£25.00

- UPGRADE 130WATT POWER
- SUPPLY

£149.00

Prices exclude VAT and DELIVERY — for terms see our other advertisements.

DIGITASKS

Business Systems Ltd.
Unit M, Charlwoods Business Centre,
Charlwoods Road,
East Grinstead,
West Sussex, RH19

(0342) 24631 tlx: 957547

CIRCLE 36 FOR FURTHER DETAILS.
Oscilloscope display of mean, peak or r.m.s. values

Simultaneous display on a single-channel oscilloscope

When working with random signals such as audio or white noise, it is often difficult to estimate from an oscilloscope screen their mean, peak or r.m.s. values. However, these are just those quantities required when developing circuitry that filters or manipulates such signals.

This compact instrument provides a display of all, or any combination of \(V_{pea} \), \(V_{peak} \), \(V_{rms} \), as horizontal lines on the oscilloscope simultaneously with the input voltage, while using only a single oscilloscope channel. As an optional extra a low-cost, built-in d.v.m. can provide a numerical readout of the mean, peak or r.m.s. value of the input voltage, from 20mV to 20V f.s.d.

A block diagram of the instrument (Fig.1), shows that it separates neatly into three sections: analogue signal processing; digital channel switching; and a digital voltmeter. The analogue section produces the four required voltages at the input to a four-channel multiplexer. To keep the digital circuitry as simple as possible, a mechanical switch is used to select either \(+V_{peak}\) or \(-V_{peak}\). The digital section sequentially selects any combination of the input signals that have been chosen by the user from four push buttons. If the button is pushed the corresponding signal is displayed; another push turns the signal off.

A separate, three-push-button unit selects which signal the d.v.m. measures.

Analogue circuit

The incoming signal is buffered by \(IC_{1a} \) (Fig.2) with an input resistance set by \(R_1 \) to 1M\(\Omega \), matching that of a standard oscilloscope input, so ordinary oscilloscope probes can be used with the instrument. A straight-forward RC low-pass filter with a one second time constant gives the mean signal value, buffered by \(IC_{1b} \). The positive and negative signal peaks are captured by conventional op-amp peak detectors, \(IC_2 \), with a decay time constant set to one second. This allows the peak value of a signal whose average amplitude over time is changing to be followed. \(R_p R_c \) could be switched out to provide the peak voltage over a much longer time, set by the input bias current of \(IC_{2b,c} \) and the reverse leakage of \(D_{4,5} \). The value of \(C_a, C_b \) is a compromise between catching fast peaks, as set by the maximum output current capability of \(IC_{2e} \); and the droop rate. \(D_4, D_5 \) clamp the outputs of \(IC_{2b,c} \), when the input signal is less than the currently held peak value, reducing the voltage slew rate required from the op-amps and minimizing reverse-bias-caused leakage currents through \(D_4, D_5 \).

An Analog Devices true r.m.s. i.e. (AD536) calculates the r.m.s. values of \(V_{rms} \), using the implicit...
computation method, shown schematically in Fig.3. The low pass filter output is the r.m.s. value, feedback to the multiply/divide stage to scale down the V_{in}^2 product by V_{rms}, so avoiding potentially very large square term products (e.g. $V_{\text{in}}^2 = 100$ if $V_{\text{in}} = 10V$). The output settles to the r.m.s. value of the input, averaged over a time period set by RC (the “mean” in root mean square). The AD536 works internally in a current mode, but the principle is identical to that shown here.

There are two sources of error in the r.m.s. calculation; static error and dynamic error. Static error is due to non-idealities in the XY/Z operation, offset errors i.e. $V_{\text{rms}} = 0$ when $V_{\text{in}}^2 = 0$, and absolute gain errors, i.e. $V_{\text{rms}} = K \sqrt{V_{\text{in}}^2}$, where K is not unity. Offset and gain errors can be trimmed out. Even without these trims, the AD536 version is specified to have a combined total maximum error of 0.5% of the r.m.s. value ±5mV, quite adequate for the oscilloscope display. Static errors occur for all frequencies of V_{in}; dynamic errors depend on the waveshape, particularly the crest factor $V_{\text{peak}}/V_{\text{rms}}$ and the input signal frequency relative to the period over which the mean is taken.

If V_{in} is a sine wave, for example, then $V_{\text{rms}}/V_{\text{rms}}$ has a double frequency ripple component (see Fig.3) which is low-pass filtered below a corner frequency of $1/(2\pi RC)$. To reduce the magnitude of this ripple (or drop for pulse-type waveforms) it is necessary to increase RC. This, however, increases the time required for V_{rms} to settle to its true value following a step change in the magnitude of V_{in}. A better compromise is to place another first-order low-pass filter external to the implicit feedback loop.

Fig. 2. Circuit diagram analogue sub-section.

Fig. 2. Circuit diagram analogue sub-section.

Fig. 3. Root-mean-square calculating i.c.
Fig. 4. State table for sequential four-state machine.

This reduces the magnitude of the ripple, without proportionally increasing the settling time. For the values of C_1 and C_2 (Fig. 2) used here the settling time to 1% of the step change input amplitude is about 3 seconds. The lowest frequency sine wave that can be measured to within 1% of the true r.m.s. is 10Hz, compatible with the overall 0.1 second time constant of the instrument. Many other compromises and configurations are possible: Analog Devices has a booklet available describing the various trade-offs involved. Note that the AD536 is able to cope with ±20V peak transient inputs without damage, but the nominal full scale r.m.s. output is 2V, i.e. $V_p = 3.6V$. The quoted accuracy is intended to well over 1MHz.

All four derived voltages are sent to an 8-to-1 multiplexer IC_4, which has a fast switching time, and approximately constant on resistance of 60Ω, plus a wide range of input signal voltages, easily coping with the design range of ±10V. The channel-select logic inputs are t.t.l. compatible and the output is buffered by IC_5 to provide a low-impedance drive to the oscilloscope.

Digital section

The digital section's function is to sequentially switch one of the four voltage inputs through to the oscilloscope, if and only if the button corresponding to that input has been activated. For this a logical four-state machine is used, the state switching diagram for which is shown in Fig. 4. Each button toggles a flip-flop, ($IC_{2,3,19}$ Fig. 5), which are all cleared on power up. The first push of a button sets the flip-flop Q output high, denoted on the state diagram by variables B_j; another push sets it low, shown as B_j. If only a single button was set (indicated to the user by the i.e.d. in the button coming on), e.g. V_p, the four-state machine would cycle continually through a single state, $A = 0$ and $B = 0$ in this example. These internal state variables A and B are also used as output variables: they are simply the two-bit binary code selecting which input is switched through to the output in IC_6.

When the user wishes to display more parameters of the input signal, e.g. V_{aux}, the r.m.s. button is pushed, B_2 set, and the machine cycles between states S_0 and S_2. The machine changes state on every clock pulse, which comes either from an oscilloscope time-base synchronous pulse, giving an alternate sweep display of V_p and V_{aux}, or from a free-running oscillator, giving a chopped display. The labels on the arrows show the state of the button flip-flops for that particular path to be taken. All possible paths must be indicated on the diagram. From these change of state paths the set and reset conditions for the state machine internal variables A and B (which electronically are the Q outputs of the J-K flip flops in IC_4) are derived:

$$A = S_iB_2 + S_iB_3B_2 + S_iB_4B_3 + S_iB_4B_3B_2 + B_iB_2B_3B_4 + B_iB_2B_3B_4B_5$$

$$A = S_iB_2B_3B_4B_5 + S_iB_2B_3B_4B_5B_i + S_iB_2B_3B_4B_5B_iB_i$$

$$A = S_iB_2B_3B_4B_5B_iB_iB_iB_i$$

These equations can be tidied up to:

$$A = S_i(B_2 + B_3B_5 + B_3B_4) + S_iB_2B_3B_4B_5 + S_iB_2B_3B_4B_5B_i + S_iB_2B_3B_4B_5B_iB_i$$

And the internal states are defined as: $S_i = AB, S_2 = AB, S_2 = AB, S_0 = AB$.

Following Zissos in Ref. 1 the set and reset equations for a JK type flip-flop with inputs A and A_1 are:

$$A = \bar{A}J_A$$

$$A = \bar{A}K_A$$

So when AB values are substituted for S_0 then the set and reset conditions for the two flip-flops can be derived by simply dropping the A and A_1 (or B) from the appropriate expression. When this is done we get:

$$A = \bar{B}B_2B_3B_4B_5 + B_2B_3B_4B_5$$

$$A = B_2B_3B_4B_5B_iB_iB_i$$

$$A = \bar{B}B_2B_3B_4B_5B_iB_iB_iB_i$$

The gating shown in Fig. 5 derives these functions. Expressions 1 and 2 can be recognised as a selection depending on B between two combinatorial functions, implemented with a 4053 multiplexer. The negated form of 3 and 4 has been derived so that a dual, four-input And-Or-Not gate 4095 IC_{10} can be used to drive JK IC_6. The complete four-state machine can be made up with only five i.c.s and has been found completely reliable and glitch free in use.

The clock source for the four state machine comes from a dual comparator IC_6 used as a free running 20kHz oscillator with a t.t.l. compatible output, and as a level comparator with hysteresis to bring the oscilloscope time-base gate or flyback pulse to a standard t.t.l. level. The 1k preset R_i should be adjusted to suit the oscilloscope used, and the input 10k/1k attenuator may need altering. Note the four-state machine changes on the rising edge of the clock pulse. From panel switch S_1 selects alternate or chop.

The displayed parameter selects push buttons are debounced by IC_{19}, whose outputs drive four D-types wired to toggle. The four red leds mounted on the push buttons give a clear indication of exactly what is being displayed. Of course this is all, perhaps, an electronic over-indulgence: a simple mechanical toggle switches could be used instead, with invertors to provide true and complete outputs.

Digital voltmeter. Having gone to some trouble to derive high, peak and r.m.s. values of a waveform it seems worthwhile to include a voltmeter in the instrument to give a digital readout of their long term values. Note that the oscilloscope display is even more versatile than an analogue meter; quite short term trends in the three parameters (depending on the time constants used) and their causes can be observed simultaneously.

The dynamic range of the input signals of interest in audio work is liable to be quite large. A d.v.m. has, therefore, been selected with a capability of resolving down to 100uV levels. The i.e.d. chosen, the Ferranti ZN451, has 3 digits, based on a charge-balancing circuit, with a digital auto-zero and external amplifier offset cancellation facilities. With careful design it is able to work at a remarkable 2mV f.s.d. i.e. a resolution of the ranges selected are 19.999V, 1999.9V and 199.9mV f.s.d. The single-chip d.v.m. directly drives a 3-digit liquid-crystal display.

A rotary switch S_2 selects an output from the 100k input attenuator, which is buffered by op-amp IC_9. The ZN451 cancels the offset voltage of this op-amp by regularly reversing the polarity of the input signals using the input-pin sees, using a cmos switch IC_{11}. First, the chip measures $V_p + V_{aux}$, then $-V_{aux} + V_{offset}$, digitally adds the two together, and divides by two, so the offset voltage is cancelled.

The ZN451 runs from a single +5V rail, and the common-mode input voltage range is ±1V centred on +2.5V. To measure bipolar signals of ±20mV range the chip power rails are shifted to 0.1V...
nominally -2.5V (using a simple single-transistor regulator) and
+2.5V (using the on-chip +5V regulator, which maintains a 5V
differential between V+ and V-). The cmos switch control signals
PH1 and PH2 hence run between ±2.5V, which is sufficient to
activate them, as they have a +1.4V t.t.i.-compatible logic
input threshold.

A second section of the switch
together with the Ex-Or gates in
IC6 (for backplane a.c. drive) set
the decimal point position on the
display, and a third switch section
twoloeds for "V" or "mV"
indication.

Calibration of the d.v.m. is
quite straightforward if a current
source with a very high output
impedance (>10MΩ) such as
that in Fig.7 is used. The bottom
resistor is nominally 1k. Adjust
R3 in the current source so that
199mV is dropped across it, preferably measured by an external 4
digit d.v.m. Do not alter R3 sub-
sequently! Switch S8 to the
199.9mV range and adjust R1 for a
199mV reading. Using the
changeover switch S9 you can
check for a -199mV reading.
Now switch to the 1.999V range,
and adjust R1 for a 1.999V reading
on the ZN451; do not alter R2.
Similarly switch to the 19.99V
range and adjust R2, leaving R3
and R4 alone.

The meter incorporates inter-

digital auto-zero, so with the
attenuator input shorted to
ground there should be no bot-
tom-digit flicker. If a range is
overloaded the display is blanked,
except for a leading "I". The
internal oscillator clock rate is set
by R4 and C6, so that the mea-
surement interval is 500ms, a
whole number of mains 20ms
cycles for mains pick up rejec-
tion. R4 could be trimmed if
necessary. Note that for 100µV
resolution decoupling and wiring
layout around the ZN451 should
be carefully attended to.

Use and construction
The prototype of the instrument

Fig. 5. Digital sub-section circuit diagram.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

67
Fig. 6. Digital voltmeter circuit diagram, previously published in Electronic Product Design, Dec. 1984.

Fig. 7. Calibration current source.

The instrument was constructed in a 180×120×70mm plastic Vero case, on square-pad Veroboard, using point-to-point wiring. A mains to ±15V and +5V p.s.u. is included, using the 6VA slim-line 15-0-15V transformer available from RS Components Ltd. (RS 208-282). The usual 78/79 series regulators were used, only a small heat sink being necessary as the circuitry is generally designed around low-power devices. The front panel switches are of the piano-key type, drilled to accept sub-miniature LEDs. The d.v.m. range switch is placed on the rear panel.

The instrument is very easy to use: the signal source is routed to the input rear panel BNC, output going to one oscilloscope channel. On some instruments there may be problems with triggering, especially in chop mode when it is easiest to run the input signal directly to the external trigger, as well as to the analyser. No input overvoltage protection is provided and the user may wish to add Zeners/resistors as necessary. The linear range is nominally ±10V, with a 1% accuracy. The r.m.s. chip is, however, limited to peak-to-peak swings of 5.6 volts, before the accuracy falls off.

Eliminating stereo hiss?

A major problem for listeners and broadcasters has existed since 1961, when the FCC officially adopted the Zenith/General Electric (pilot-tone) system of stereo broadcasting. This is the significant difference, amounting to a penalty of some 25dB, between the signal that needs to be applied to a receiver or tuner to receive a noise-free stereo, compared with the much lower signal strength required for satisfactory mono reproduction. In engineering terms it is UK practice to designate the 60dB (µV) field strength contour as the limit of mono coverage, and 48dB for mono, and to advise listeners that at least a two-element outdoor antenna is recommended for good stereo.

For national networks it is possible, although costly, to plan for a minimum field strength of 60dB in all areas, but for local stations there will inevitably be large areas where only mono reception is satisfactory. This can mean that in some topographic situations noise-free stereo is achieved only about a quarter of the mono coverage area, unless listeners are prepared to install multi-element roof-top antennas.

Over the past decade a number of techniques for stereo noise reduction have been proposed by Dolby and others, but these have highlighted the problem of introducing new techniques into broadcasting services without degrading the quality of reception on existing high-quality receivers. European broadcasters, in particular, have tended to reject signal-processing techniques in much the same way as they have, in the past, given thumbs down to extra channels carried piggy-back on stereo transmissions, despite the widespread use of s.c.a. (subsidary communications authorization) in the USA. Interest in s.c.a. techniques, however, is currently reviving in the UK and a new series of tests are planned. The problem of compatibility is closely related to multipath distortion.

Meanwhile in the USA, the CBS Technology Centre, in collaboration with the National Association of Broadcasters (NAB), has developed a new noise-reduction technique for stereo (“FMX extended range stereo system”) claimed to provide, with the North American pre-emphasis of 75 microseconds, a basic reduction of up to 23dB, while maintaining full compatibility with the existing pilot-tone stereo transmissions. This employs linked compression and expansion techniques (i.e. similar to Lincompx) by using the main 38kHz d.s.b.s.b. signal as a decoding reference for processing a second heavily-compressed 38kHz sub-carrier radiated in phase-quadrature to the first. Existing receivers, it is claimed, simply ignore the quadrature signals but FMX decoders automatically expand the compressed stereo signal and so overcome stereo hiss. At the transmitter, a re-entrant compressor reduces the compression ratio at high signal levels and so prevents overmodulation resulting from summation of the two 38kHz signals.

It is claimed that in large-quantity production a suitable FMX decoder chip could cost less than £1. New circuitry in the encoder would add around £2500 to the cost. Field trials at WPPT, Meriden, Connecticut were held earlier this year and the system was originally described at the June 1985 International Conference on Consumer Electronics. More trials by a number of American broadcasters are planned.

Potentially such a system could be a major step forward for v.h.f. stereo, but to gain broadcast world-wide coverage would need to be convinced that the heavily compressed quadrature signal would have no effect on existing tuners and receivers even under pronounced multipath conditions.

DTI to "specify" CB radios

In a written reply on June 28, Geoffrey Pattie, Secretary of the DTI, has confirmed that illegal forms of CB radios and cordless telephones would be "specified" later this year. This will have the effect of prohibiting sale, manufacture, hire and importation of equipment not in accordance with British regulations. However an exception is to be made for f.m. C.B. equipment designed to operate in the band 26.960 to 27.410MHz which is expected to become available in 1987 as part of the move towards "harmonization" with Europe, and where the equipment otherwise meets the UK technical specification.

Jutland and Room 40

The first casualty of war, it is often said, is truth. Churchill believed that in war truth has to be surrounded by a bodyguard of lies. Fair enough, but unless one is careful, some wartime "deceptions" become firmly established as "history".

The 1914 Russian troops "with snow on their boots", the 1941 carrot-eating night-fighter pilots, and most of the many "sibs" that were officially put into circulation have long been discredited. But the recent IEE "50th anniversary of radar" seminar provided at least one example of fiction long regarded as fact, capable of misleading even such a distinguished historian of radio technology as Professor Charles Susskind of the University of California.

In his interesting "Who invented radar?" paper, he included in passing the well-established story of how the naval battle of Jutland on May 31, 1916 was brought about by the d/f stations (built by H.J. Round of the Marconi company) detecting a tiny change in bearings of the transmissions of the German warships in the Jade estuary near Wilhelmshaven over 300 miles away, representing a change of bearing of only about one degree: This story has been widely accepted even since the end of the Great War. It was not until recently that the true story emerged in Patrick Beesly's "Room 40". Whereas the success of Alan Turing in 1942 in cracking the four-rotor German enigma cipher remained secret for 30 years, the astonishing degree to which Admiral Hall's "Room 40" cryptanalysts were able to read German naval cipher virtually throughout the first World War remained hidden for over 60 years.

Patrick Beesly shows that the intention of the German fleet to put to sea was obtained from a series of messages from May 28, 1916 onwards, including traffic via Bruges informing German U-Boats to reckon with their own ships being at sea on May 31 and June 1. There can be no doubt that it was the...
decoding of the messages rather than super-accurate d/f bearings that provided the intelligence that led to the Grand Fleet sailing to intercept the German warships and so bringing about the last major clash of battleships — 35 British and 21 German — in an action in which no less than 248 vessels were involved. Although British naval losses were the higher, the main German fleet returned to port and never ventured out again during the Great War.

This amended story does not deny due credit to H.J. Round, since his sensitive receivers were used for interception as well as d/f.

At the seminar I mentioned this to Dr Susskind and he graciously admitted that he had long had reservations about the d/f story. His wife also found my version credible as she was actually involved in decoding German naval traffic in World War 2.

Wireless World and radar

Professor Susskind also suggested that possibly the last reference to radar techniques in the open literature until the end of WW2 was the Wireless World description of the crude collision-avoidance system fitted (not entirely successfully) to the crack French passenger-liner Normandie in 1935. This encouraged me to check library copies and, sure enough, I found in the June 26, 1936 issue, pages 623-4, "'Feelers' for ships — new micro-wave equipment described" a detailed follow-up to a news item "Ratiofeeler" in the issue of November 8, 1935.

It was prophetically noted that: "Any device which may serve to increase the security of ocean travel deserves special notice and the micro-wave apparatus described here seems to offer great possibilities in this field." It was claimed that the 16cm (1875MHz) continuous-wave system could "discover the presence of an obstacle in its path, such as an iceberg or another vessel which, by reason of fog or other obstruction to vision, might otherwise not be detectable."

The equipment was made by the Société Française Radio-Electronique and known as the SFR obstacle detector. Unfortunately, as other papers at Savoy Place made clear, it use on the Normandie was less successful than during earlier trials in the English Channel and it was subsequently taken off the vessel.

By 1936 several teams of engineers were furiously working in secret on radar systems for the detection of aircraft. The open publication of this article must have come as a shock to such teams, although the idea of using radio reflections from ships dates back to about 1906.

Car electronics

The vulnerability of the increasing amount of electronic equipment in modern vehicles to strong local signals, circulating electric currents, switching transients, etc. is at last attracting the attention and concern of the industry.

High-power mobile transmitters with r.f. outputs of over 100 watts, as used legally by some radio amateurs and illegally by some c.b. operators with linear amplifiers, can cause severe e.m.c. /r.f.i. problems not only in the vehicle in which they are carried but also to the electronics of nearby vehicles, including vital vehicle control systems. Part of the trouble is due to cost-cutting exercises which leave the electronics unshielded, with interconnections unfiltered or with leaky connectors. Some engineers see a future solution in the use of fibbre-Optics within vehicles. Electronic braking systems also now face increasing competition from improved hydraulic systems that imitate the "pumping" of electronic anti-skid systems by regulating the flow of braking fluid in step with the angular momentum of the wheels — and do this at lower cost than electronic Guidance. Navigation and terrain-mapping systems are still found more in laboratories than on the roads.

The possibility of failure or inducing latching in some c.mos memory devices by the light from photographic flashguns or lasers has been investigated by British Telecom research engineers at Martlesham. In extreme cases an intense photographic flash has been shown to result in destructive latch-up while output latching can occur at much lower light levels when using inadequately protected c.mos uservrom devices.

Amateur Radio

Old-style rigs

The vast majority of amateurs now use modern transceivers, some of them hybrid (valve/semiconductor) designs but increasingly all-solid-state. Yet at the same time there is a revival of interest in the simple, classic type of crystal-controlled transmitters that were popular in the 1930s, including their use with simple wire antennas supported by trees and/or houses.

Recently on 3.5MHz I contacted Phil Evans, GW6WJ, who has the distinction that since he acquired his licence in October 1937 he has never used a transmitter exceeding 10 watts input in conjunction with an 84 ft-end-fed antenna with counterpoise (the W3EDP design of the mid-thirties). Yet his "tritet" crystal oscillator plus power amplifier (6L6 formerly 42E) still puts out a useful signal that has brought him a fair share of long-distance contacts, including Australia, New Zealand on 3.5MHz. His antenna is strung up to a neighbours chimney and the 17 ft counterpoise, with a switch at 6.5 ft for some bands, is run around the skirting board of his upstairs "shack".

Receiver is a wartime HRO, Phil Evans, who is 70 years old this month, says "I can't understand this mania for big antennae-support towers that run into so many local-authority planning problems."

On h.f. at 5 W.p.m.

Proposals for a new class of UK amateur licence that would permit Class B (v.h.f. only) licensees to operate c.w. on a restricted basis on the 1.8, 21 and 28MHz bands after passing a five words per minute Morse test have been submitted by the RSGB to the DTI and are currently being considered.

The RSGB do not regard their proposals as constituting a "novice" licence since they still require the applicant to pass the Radio Amateurs' Examination. The new permit would allow the use of transmitter powers of up to 9dBW output and it is interesting to speculate how such a limit, which is significantly below the minimum output of most widely available h.f. transceivers, could be effectively enforced.

Nevertheless many c.w. enthusiasts will welcome this new incentive in the belief that those who gain experience of manual Morse in this way will find it an attractive mode and continue to use it after acquiring a Class A licence by taking a 12 w.p.m. Morse test.

The DTI have been set something of a poser by Tom Maclean, whose exploits on lonely Rockall have included "unlicensed" amateur radio operation under the self-assigned callsign GR1TM. Apparently the Radio Investigation Service decided, wisely enough, to wait for his return to the mainland before making official enquiries — and so forfeiting an attempt themselves to effect a landing to obtain firm evidence of his radio activities.

In brief

Forthcoming mobile rallies include: August 25, Preston rally at Lancashire University, BARC rally at Sandown Park, Estor and Torbay rally at STC Social Club, Old Brixham Road, Paignton. September 1, Lincoln Hamfest at Lincolnshire Showground 4 miles north of Lincoln. September 8, Galashiels Open Day, Focus Centre, Linlithgow Place. September 15, Vange rally, Nicholas School, St Nicolas Lane, Basildon also Peterborough rally, Wirrina Sports Stadium, Bishops Road. September 21, Amateur Radio Car Boot Sale at Shuttleworth Collection, Old Warden Aerodrome, nr Biggleswade. September 22, Harlow Sports Centre, Hammarshkold Road, Barlow.

PAT HAWKER, G3VA
The small bird is in no danger; though its menacing host might be, if the bird moved on.

In return for food and security the Egyptian Plover renders an important service: warning the crocodile of impending danger, removing parasites and even cleaning its teeth. It’s a classic symbiotic relationship, one in which each partner needs (and greatly enhances the performance of) the other.

And, as such, it parallels the relationship between PSP and ITT Cannon.

WHAT’S GOOD FOR US IS GOOD FOR YOU

Our advice and service is based on nearly 20 years specialised knowledge of connector distribution.

Combine that with Cannon’s circular, rack & panel, micro-miniature, audio, environmental, high temperature, printed circuit and many other connectors – and it’s to everyone’s benefit.

So remember, to avoid the dangers inherent in the electronics jungle, there’s no better connection than PSP.

PSP Electronics Ltd, Unit 2, 2 Bilton Road, Pervale, Greenford, Middlesex, UB6 7DX. Telex: 8934699. Tel: 01-998 9061.

CIRCLE 79 FOR FURTHER DETAILS.

CIRCUIT 79 FOR FURTHER DETAILS.

CIRCLE 41 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

ROBOTS

for

EDUCATION TRAINING

and

INDUSTRY

MENTOR DC servo desktop robot. 8 bit control system, 300gm capacity, 420 reach.

NEPTUNE 7/24 5 axes 12 bit control system 2 kg capacity, 1.210mm reach.

SERPENT 5 axes 12 bit control system 2 kg capacity 420410mm reach.

Robots may also be taught by ‘lead by the nose’ method. Extensive software is supplied free with each robot.

LEAD AVAILABLE FOR CONNECTION TO BBC, ZX Spectrum, Apple II, Commodore 64 and VIC 20. Most other micros are easily usable with these robots.

Please phone for brochure: 0264 50093.

West Portway Industrial Estate, Andover SP10 3WW. A private and independent company giving prompt, personal service.

CIRCLE 95 FOR FURTHER DETAILS.

SurTel

UHF RADIO TELEMETRY

HOME OFFICE APPROVAL TO MPT 1309

* RANGE LINE OF SIGHT
* TRANSMISSION RATE 1200 BAUD
* SERIAL INPUT/OUTPUT
* ROBUST WEATHERPROOF HOUSINGS (IP65)
* OPERATES FROM 12 VOLT D.C.
* LOW POWER DRAIN 250mA
* OPTIONAL BASE INTERFACE UNITS

- LINK COMPUTER/COMPUTER/PERIPHERAL/INSTRUMENTATION
- COST EFFECTIVE UHF RADIO MODEM

MICROMAKE ELECTRONICS

1 THE HOLT
HARE HATCH
UPPER WARDRAKE
BERKSHIRE RG10 9TG

TEL: 073522 3255
TLX: 849462 EFACEC G
FAX: 0628 74526

CIRCLE 95 FOR FURTHER DETAILS.
New Circuitmate Multimeters
Feature-packed multimeters at very low prices

From Beckman Industrial comes a new range of eight low-cost 3½ digit multimeters — the 'Circuitmate' series. They include three pocket-size models with extras not found even in most large multimeters, two full-size handheld instruments for field or bench use, two autoranging models, including one of the smallest in the world, and an extra-compact, extra low-cost model with most of the features of the bigger meters. All are readily available from your local Beckman Industrial distributor.

Send for full details of a new range which cuts cost without cutting quality.

Beckman Industrial Ltd
Electronic Technologies Division, UK Sales & Marketing Organisation
Myken House, 11 Wagon Lane, Sheldon, Birmingham B28 3DU
Tel: 021-742 7621 Tel.: 339659

CIRCLE 63 FOR FURTHER DETAILS.

MITSUBISHI
MGF-1402 GaAs FETs
MGF-1403 FROM STOCK
MGF-1412
MGF-1801

Aspen Electronics Limited
UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 912727

CIRCLE 71 FOR FURTHER DETAILS.

Toroidal Transformers
as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List
15VA 8.92. 30VA 7.18. 50VA 8.88. 75VA 9.92. 120VA 10.59. 160VA 12.18. 220VA 13.69. 300VA 14.77. 500VA 19.29. 625VA 22.89. 750VA 26.17. 1KV A 42.22. 1.2KV A 48.79. 1.5KV A 52.88. 2KV A 66.55. price includes p+p+Vat.

Quantity Prices and delivery on request (we also manufacture conventional E1 type transformers)

Airlink Transformers.
Unit 8, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279-724425.

CIRCLE 93 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
NiCd cells — part 4

A practical assessment together with hints on construction

The charging system has been operational for almost two years, during which time 15 NiCd D-cells, three F-cells and variable numbers of C-cells have circulated through it. Most of my own instruments have had their 6 or 9V batteries, whether primary or secondary replaced by single NiCd cells and d.c./d.c. converters. The lower cost of single cells relative to the previous miscellaneous batteries permitted a reserve of cells to be held permanently in the charger on a 15 day cycle, sometimes extended to 31 days, without increasing the budget. Besides being used in single-cell d.c. converter combinations, cells taken from the charger stock were used in batteries in two pieces of domestic gear equipped with low-voltage cut-outs.

None of these cells have shown any symptoms of dendrite formation or any other recharge-related symptom. The failure rate prior to this over a similar period using a conventional constant-current battery charger accounted for nearly half the available NiCd capacity.

Some of the improvement must be credited to the different way in which the cells are discharged most of the time, i.e. with d.c. converters, and this should be taken into account as like is not being compared with like.

However it can be said without qualification that the technique of holding a stock of cells in a guaranteed minimum state of charge for instant replacement of discharged cells, instead of waiting for recharge, does work extremely well in practice.

If this record of reliability continues, the extra cost of the charger will be recouped very shortly. The pay-back time obviously depends on the rate of use of cells, higher rates of use reducing the pay-back time, and it also helps if the number of cells held in the charger, and thus the size and cost of the charger itself, is tailored to suit one's needs. Having two banks of four cells each will not make economic sense if the usage is only one or two cells a month, but the design is highly adaptable and the charger shown in the photograph for example has only two banks of two cells each.

To my surprise, a charger situated in a well-insulated garage indicated that the temperature cut-out operated several times during the winter months. This occurred despite the fact that the garage shared a common warm wall with the house, but a check with a maximum-minimum thermometer confirmed that the cut-out was justified. This leaves me to wonder what would have happened without such a cut-out.

Building a practical charger

The following table gives values of R_1 and R_2 for the circuit shown on page 35 of the July issue.

<table>
<thead>
<tr>
<th>R_1 (Ω)</th>
<th>R_2 (Ω)</th>
<th>cell size</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>82 or 91</td>
<td>8.2</td>
<td>AA</td>
<td>uses a C/3 charging rate</td>
</tr>
<tr>
<td>68 or 75</td>
<td>6.8</td>
<td>C</td>
<td>replace D_{10} with 3A diodes, a full range of single-cell holders including C and F sizes, the mains transformers, a suitable metal case and a set of printed circuit boards are available from J. Biles Engineering, 120 Castle Lane, Solihull, West Midlands B92 8RN.</td>
</tr>
<tr>
<td>47</td>
<td>3.9</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2.2</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Resistor R_2 should be generously rated power resistor, such as a four or seven watt type from RS Components ceramic range. R_1 can be a two-watt carbon type. These two resistors must be mounted in a position where they cannot set up strong convection currents inside the case. Do not, for example, mount them near the bottom of the case. To reduce the effect of convection, a screen can be interposed between the resistors and the sensing diode strings. These two sensors must be placed as close together as practical construction will allow, and remote from the heat sources such as the mains transformer and these resistors.

There are two critical components in the charger, namely the cell holder and the mains transformer. Unfortunately RS Components do not stock a full range of single-cell holders, but the reference numbers for those that are stocked are cell size AA: ref. 507-551 cell size D: ref. 507-539 transformers: 12VA ref. 207-627 20VA ref. 207-122 50VA ref. 207-239

To solve the problem, and for those would-be constructors without access to RS Components, a list of equivalents for the charger system, including transformers, is available provided that the equipment is portable or capable of being moved easily. This list is available by request.

The i.c.s are manufactured by Linear Technology Incorporated of Canada (not to be confused with Linear Technology Corporation of California) and are distributed by Steatite Microelectronics, Hagley House, Hagley Road, Birmingham B16 8QW. There are more than 20 devices listed which operate from 1.0V. There is no doubt that these low-voltage devices would allow a range of cost sensitive applications which are currently limited to the more expensive standard i.c.s.

Single-cell working

In response to enquiries about the LD502 i.c. mentioned in the May article, here is some more information about this little-known device.

The LD502 in an a.g.c. audio pre-amp in an 8-pin Minipac. The supply voltage range is 1.05 to 3V, open-loop gain 60dB and the a.g.c. range up to 65dB. Suitable applications are in microphone amplifiers, tape recorder equalization circuits and voltage-controlled amplifiers. The block schematic is shown below in a typical buffered electret microphone application.

The LD502 can be used with other devices in the range such as the LC507, which is a three-stage linear class A amplifier operating from 1.0 to 3V, to form recording and playback circuits for cassette recorders. (Record circuit available on request.)

The i.c.s are manufactured by Linear Technology Incorporated of Canada (not to be confused with Linear Technology Corporation of California) and are distributed by Steatite Microelectronics, Hagley House, Hagley Road, Birmingham B16 8QW. There are more than 20 devices listed which operate from 1.0V. There is no doubt that these low-voltage i.c.s will cause radical changes in the way designers specify circuits for portable equipment. Although they cost more than standard i.c.s, this is outweighed by the technical and economic merits of avoiding batteries, as highlighted in the May and June articles.

Corrections

Two errors occurred in the article, neither the author's fault, the first on page 60 of the June issue, when the words "Even charging 10C can result in a doubling of the usual overcharge pressure" did not refer to 10X capacity, but should have read 10C. And the second was in the July issue, page 35, where diode D₁ was shown connected the wrong way round. (An omission in the page 35 circuit has since been discovered — connect Tr₁ collector to the l.e.d. cathode.)
by John Lidgey†

†Dr F.J. Lidgey is Principal Lecturer in Electronics, Department of Engineering, Oxford Polytechnic

The tale of the long-tail pair

The operation and applications of the extremely versatile long-tail pair circuit are examined in two articles. In this first article the characteristics of the pair are analysed and applications in op-amp and high frequency circuits reviewed.

Probably the single most important circuit in analogue electronics is the emitter-coupled pair, often referred to as the long-tail pair. It is the basis of many circuits, most notably the input stage of operational amplifiers, high-frequency voltage-controlled amplifiers, analogue logarithmic and antilog circuits, full four-quadrant multipliers, and emitter coupled logic (e.c.l.)

In this article the main features and operation of the emitter coupled amplifier will be reviewed with the objective of obtaining a sound understanding of these circuits. The results of this exercise are then used to analyse a number of important applications.

Static characteristics

The emitter-coupled amplifier is termed a long-tail pair when connected as shown in Fig. 1. The name 'long-tail' was coined many years ago when the current sink, \(I_0 \), was realised using a large-value resistor connected between the emitters of \(T_{R1} \) and \(T_{R2} \) and the negative voltage supply.

In the forward active region the collector current of a bipolar junction transistor (b.j.t.) is related to the base-emitter voltage by the empirical relationship,

\[
I_C = I_0 (e^{V_{BE}}/V_T - 1)
\]

where \(I_0 \), typically \(10^{-14} \) A, is a constant for a fixed temperature and dependent upon the device geometry and structure, and \(V_T \) is the thermal voltage, which is linearly related to absolute temperature and about 25 mV at a nominal 290°C room temperature.

When used with a value of \(V_{BE} \) significantly higher than \(V_T \), (1) reduces to

\[
I_C \approx I_0 e^{V_{BE}/V_T}
\]

This exponential relationship holds for about six decades of collector current and is the basis of analogue logarithmic and exponential (antilog) circuits.

Returning to the circuit of Fig. 1, assuming that both transistors are well matched in device parameters and of exactly the same temperature (e.g. a single chip pair) if \(V_{BE1} = V_{BE2} \) then \(I_{C1} = I_{C2} \) as both transistors have identical values of \(V_{BE} \). Clearly, a common base-to-ground potential \(V_{BE} = 0 \) will not alter the collector currents as long as the current sink, \(I_0 \), is not affected and \(T_{R1} \) and \(T_{R2} \) both have sufficient reverse bias on \(V_{CB} \) to keep them in the active region.

However, if \(V_{BE1} \neq V_{BE2} \), then the share of emitter current between the two transistors will no longer remain equal at half of \(I_0 \). Using (2) we may obtain the expression,

\[
V_{BE1} - V_{BE2} = V_T \ln \left(\frac{I_{C1}}{I_0} \right) - V_T \ln \left(\frac{I_{C2}}{I_0} \right)
\]

However, since the transistors are a single-chip pair, which for convenience shall be denoted as \(T_{R1} \neq T_{R2} \), the additional horizontal line on the normal three equivalent sign implying precise temperature matching as well as device matching, then

\[
V_{TI} = V_{TW} = V_T
\]

and

\[
I_{C1} = I_{C2} = I_0
\]

and (3) reduces to

\[
\frac{V_{BE1} - V_{BE2}}{V_T} = \ln \left(\frac{I_{C1}}{I_0} \right)
\]

But the current sink at the emitter node forces the sum of the two emitter current to equal the constant current \(I_0 \).

Alternatively in terms of collector current,

\[
I_{C1} + I_{C2} = \alpha I_0
\]

and so (4) may be separately solved for \(I_{C1} \) and \(I_{C2} \), giving

\[
\frac{I_{C1}}{I_0} = \frac{1}{(1 + \alpha e^x)} = y_1
\]

and

\[
\frac{I_{C2}}{I_0} = \frac{1}{(1 + \alpha e^x)} = y_2
\]

where \(x = (V_{BE1} - V_{BE2})/V_T \).

These equations are best illustrated graphically and are shown plotted in Fig. 2.

The transcondutance of a circuit is the ratio of output current change in response to an input voltage change. If the input voltage of the long-tail pair is \(V_{BE1} \) the output current change may be taken from either \(T_{R1} \) or \(T_{R2} \) or the difference between them. It is interesting to note from (5) that the change of collector current, though not always linearly related to input voltage change, is always equal and opposite in the two transis-
Electronics.

The current in the circuit is V_{cB}. $\text{Vß1} > (V_{52} - \text{grade})$ to value long-tail fully connecting one base to ground. The input stage bases long-tail pair circuit, one should understand the potential between the collector and base of the single common-emitter amplifier.

Transconductance

Temperature stability. One of the most significant features of this circuit is that the transconductance, given by the slope of Fig. 2 at any particular bias point, is independent of temperature temperature independent and not at all strongly dependent upon the exact characteristics of the particular b.j.t.s used. The maximum transconductance is clearly obtained when the circuit is biased about V_{B1} and is given by

$$g_m \approx \frac{g_m}{\sqrt{V_{B1} - V_{d2}}}$$

$$= \frac{g_m}{\sqrt{V_T}}$$

Although the circuit of the long-tail pair responds to a difference in potential between the bases it may be used as a single-ended input stage simply by connecting one base to ground. To fully appreciate the merits of the long-tail pair circuit, one should consider a single directly coupled common-emitter stage, such as is shown in Fig. 3.

Ignoring any practical difficulties of obtaining a bias battery of value V_{B2}, from (2) the quiescent collector current is given by

$$I_{CQ} = I_{BQ} = \frac{V_T}{\alpha}$$

and it can be shown that in order to maintain a constant value of I_{CQ} then V_{B2} should be reduced by about 2.5 mV per degree centigrade temperature rise.

If V_{B2} is held at a constant value then the quiescent collector current will rise by a factor of $\alpha^{1.1}$ for each degree centigrade temperature rise. The transconductance g_m is given by

$$g_m = \frac{I_{CQ}}{V_T}$$

Thermal voltage V_T is directly proportional to absolute temperature and consequently increases by around 0.33% per degree centigrade at room temperature; however, this increase is much less than the increase in I_{CQ} and, as a result, g_m will rise by about 10% per degree centigrade temperature rise. Returning to the long-tail pair, (8) shows that, provided that the current sink I_b is designed to be almost temperature independent, then the long-tail pair transconductance will be much less temperature dependent than that of a single common-emitter amplifier.

Related to the relative stability of g_m, when comparing the long-tail pair amplifier with a simple common-emitter circuit, such as that shown in Fig. 3, is the fact that for zero-input signal, the quiescent collector currents in the long-tail pair remain almost at $I_{B}/2$, whereas the single common-emitter collector current increases by about 10% per °C. Inputs to both these circuits may be directly coupled for operation down to d.c. However, as the collector-base potential must remain positive to be consistent with the d.c. voltage-level shifting circuit to enable either to be used with directly coupled loads. Because of the strong temperature dependence of I_{CQ}, the single common-emitter amplifier is almost impossible to use in practice. Figure 4, shows a typical long-tail pair amplifier with a voltage level shifting circuit based on an emitter-follower buffer T_{R1}, with a constant current sink bias, I_{B1}.

The output of this circuit can now be taken to a grounded load. The long-tail pair is not really being used to maximum advantage in this amplifier as collector current changes in T_{R1} do not contribute to the voltage gain of the system; the next circuit of Fig. 5 overcomes this limitation.

Applications

As stated earlier the applications are many, ranging from linear amplifiers through to high-speed logic gates. We will now review arguably the most important application of the long-tail pair as the differential input stage of an operational amplifier.

Basic op-amp input stage. The circuit shown in Fig. 4 is typical of the early, first-generation op-amp structures. However, a significant improvement in open-loop voltage gain is achieved by the circuit of Fig. 5, which is typical of commercial op-amp designs such as the LM324 and others. T_{R1} and T_{R2} are a p-n-p long-tail pair and T_{R3} and T_{R4} present an active current-mirror type load to the collector of T_{R1} and T_{R2}.

The output is taken from the collector of T_{R3} to a second gain stage shown schematically. On the diagram are the currents flowing in response to an input signal which makes the potential of T_{R2} greater than the potential of T_{R1}.

$\text{Vß1} > (V_{52} - \text{grade})$ to value long-tail fully connecting one base to ground. The input stage bases long-tail pair circuit, one should understand the potential between the collector and base of the single common-emitter amplifier.

High-frequency ‘triple’ circuit. The circuit of Fig. 6(a) is the basic arrangement of a high-frequency tripe such as the LM3026/76.
Fig. 6. High-frequency triples, (a) being the basic circuit. At (b) the emitter-coupled, low-amplitude stage accepts single-ended inputs. Cascade is shown at (c).

LM305H. Possible application configurations for useful high-frequency performance are shown in Fig. 6(b) and (c). The first circuit of Fig. 6(b) is referred to as an emitter-coupled amplifier and is used for low-amplitude single-ended (one side common ground) inputs. It is essentially that of a two-stage amplifier comprising a common-collector stage feeding a common-base stage. It can be shown fairly easily that the high-frequency performance of this pair is extremely good, compared with a common-emitter, mainly because neither the common-collector nor the common-base produce the same Miller capacitance multiplication that occurs for the common-emitter.

The long tail current is given approximately by:

$$I_0 = \alpha \cdot V_2 / R_2$$

where $$\alpha = \beta (1 + 1)$$. As drawn, the input needs to be directly coupled to the base of Tr. Alternatively, a bias network of two equal valued resistors, connected in series between the power supplies with the centre connection taken to the base of Tr can be used if the input is to be a.c. coupled through a series capacitor.

The voltage gain of the stage is given by:

$$A_v = + \alpha \cdot R_2 / 2V_T$$

Gain is the same magnitude as that of Fig. 4, which is half the full differential gain of a long-tail pair.

If, instead of grounding the base of Tr, it is taken to a variable direct voltage of low impedance, then altering this voltage will change the quiescent current share between Tr and Tr2, resulting in a variation of gain. Clearly, if the base potential of Tr2 is sufficiently high, then although Tr will be active with quiescent collector current of I0, Tr2 will be cut-off and the voltage gain is therefore reduced to zero. Similarly, if the base potential is too low Tr will become cut-off, and again the voltage gain falls to zero.

The graph of Fig. 7 shows this gain variation as a function of base potential on Tr2, the gain being a maximum for the configuration shown in Fig. 6(b). Thus, the circuit may be used as a high-frequency voltage-controlled gain stage, suitable for applications such as automatic gain control in receivers where the d.c. potential of the base of Tr2 is controlled by the average signal amplitude obtained following the detector stage.

A similar application of the high-frequency 'triple' is shown in Fig. 6(c), where the input signal is a.c. -coupled into the base of Tr. This circuit is often without Tr2 and is known as a cascode amplifier. It is essentially a common-emitter, feeding directly into a common-base stage operating with the same collector current as Tr3. The common-emitter operates into the relatively low input impedance of the common-base stage, yielding a voltage gain of only 1, hence Miller multiplication effects are minimized. Of course, the common-emitter provides high current gain and the common-base stage, which cannot give a gain of greater than unity, provides the voltage gain of the two transistor amplifier. The net performance is almost the same power gain as a single common-emitter but operating over a much broader bandwidth. This increase in gain-bandwidth product is very significant and the circuit has many useful applications at high frequencies.

The additional transistor Tr2 can be used as a signal-robbing common-base circuit. As the d.c. base potential of Tr3 is increased with respect to the base of Tr, then the current share between Tr and Tr2 alters and the gain of the amplifier falls. Figure 8 shows the voltage gain as a function of the control potential. Unlike Fig. 7 the curve is not symmetrical, as the gain maximizes not when the base potentials are equal but when Tr2 is cut-off.

The remainder of the tail

In the second article four further important applications of the long-tail pair will be reviewed; these being log and antilog circuits, linear differential transconductance amplifiers, the full four-quadrant multiplier and emitter coupled logic gates.

Reference

Fig. 7. Gain variation with base potential on Tr2 for circuit of Fig. 6(b).
SUPER DEAL? NO - SUPER STEAL
THE FABULOUS 25 CPS "TEC STARWRITER"

DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter - digitiser etc. totally to their own specifications. The printer mechanism is supplied ready built, aligned and pre tested but WITHOUT ELECTRONICS. Many features include all metal chassis, phosphor bronze brasses, 12000 line • 1500 line back up for a "NINE needle head, 2 x two phase 12V stepper motors for carriage and paper control, 9.5 Platen paper etc etc. Full "printer supplies" to show the unit's capabilities. Overall dimensions 40 cm x 12 cm x 21 cm

Sold BRAND NEW at a FRACTION of cost only £49.50 + pp £4.50.

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES
ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING

DEC CORNER

POP 1140 System comprising of CPU, 1248 memory & MMU 15 line RS232 interface. RP20 40 MB hard disk drive TU10 9 track 800 BI Mag tape drive, dual track system, V500 VDU etc. Tested and running £3,750.00

DI-11 3.5" Box, PSU, LT £395.00

DI-11 AD-16 x RS232 DMA interface £1,900.00

DLV11-4 J/F Euro £150.00

DLV11-E Serial Modem support £150.00

DUP1 1 Sync Serial data r/o £650.00

DCCOOL 3600W, 4200W etc. £50.00

DZ11-B 8 line RS232 board £650.00

KDF11-18MR1 1123 £1,100.00

LA30 Printer and Keyboard £80.00

LA36 DECewer EIA £70.00

20 m A/sp £270.00

MS11-JP Unbus 32kB Ram £60.00

MS11-1B Unbus 128kB Ram £450.00

MS11-1BP Unbus 256kB Ram £850.00

PPD110 50u Psu Ram, etc £45.00

PPD11-40 Cop. 1248 CMU £850.00

RT11 ver 38 documentation kit £70.00

RK05-J2 3 Mb disk drives £75.00

KL8 JA PPD 8 sync/loc £75.00

M1995 bootstrap option + £75.00

VT50 VDU and Keyboard £175.00

20 m A/sp £270.00

VT52 VDU and RS232 interface £250.00

MAG TAPE DRIVES

Many EX-Stock computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEII Cartridge tape drives ONLY £450.00 each.

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET & PSU

All in one quality computer cabinet with integral switched mode PSU, mains filtering, and twin fan cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully serviceable and will deliver +5V DC at 17amps, +15V DC at 1 amp and -15V DC at 5 amps. The complete unit is fully enclosed with colour LCD display, top lid, filtering, trip switch, power and run LEDs mounted on all front panel, rear cable entries, etc. Units are in good but used condition - supplied for 240 volt operation complete with full circuit and tech manual. Give your system that professional finish for only £49.95 + carr & 19" wide 16" deep 10.5" high. Useable area 16" w x 10.5" h x 15 d.

Also available PSU, with fans etc. Internal dim 19" w x 16", d 10.5" h £95.95. Carriage £8.75

66% DISCOUNT

ON ELECTRONIC COMPONENTS

Due to the massive bulk purchasing programme, which enables us to bring you the best possible bargains, we have thousands of ICs, Transistors, Relays, Caps, PCBs, Sub assemblies, Switches etc etc. where our requirements have not sufficient stocks of any one item to include in our ads we are packing all these items into the BARGAIN OF A LIFETIME OFFER. Guaranteed to be worth at least 3 times what you pay. Unbeatable value and consists of one of the most consistently useful items you will every buy. Sold by weight.

25k £5.25 + pp £1.25 100k £11.25 + pp £2.25

5k £6.90 + pp £1.80 200k £19.50 + pp £4.75

GE TERMIPRINTER

Compact Ultra reliable quality built unit made by the USA EXTEL Corporation. Often seen in major hotels printing up to the minute News and financial information, this unit operating on 5 UNIT BAUDOT CODE from a Current loop, RS232 or TTL serial interface. May be connected to your micro as a low cost printer or via a simple interface and terf to any communications network, to enable printing of worldwide NEWS, TELEX and RTTY services.

Supplied tested in second hand condition, complete with DATA, RS232 interfaces and large paper roll.

TYPE AEII

50 Col. ONLY £94.95 100 Col. £194.50

TYPE AE11R 72 Col. £65.00

TYPE AH11R £185.00

Carriage and Insurance £7.50

EX NEWS SERVICE PRINTERS

A massive purchase of these desk top printer terminals enables us to offer you these quality printers at a SUPER LOW PRICE against their original cost of over £1000.00, this comprises of full QWERTY, electronic keyboard and printer mechanism with print face similar to correspondence quality typewriter. Variable term printer unit enables full width - up to 135 120 character upper & lower case, standard RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon, adjustable baud rates, quiet operation plus many other features. Guaranteed working £30.00. £49.00 120 character. Untested £65.00 Optional field £12.50 Carriage & Insurance £10.00

SEMI CONDUCTOR "GRAB BAGS"

Mixed Semis amazing value contents include transistors, diodes, linear, ICs, drives, bridges, diodes, etc. All devices guaranteed brand new full spec with original markings, fully guaranteed.

50- 2.5 95 100+ £5.15

TTL 74 Series A gigantic purchase of an across the board of 74 Series ICs enables us to offer 100% mixed "mostly TTL" grab bag at a price which two or three chips in the bag would normally cost to buy. Fully guaranteed all ICs full spec 100+ £8.90.

200+ £12.30, 300+ £19.50

CENTRONICS 710 PRINTERS

Ex Rental heavy duty full width carriage printer up to 132 columns on 17 fan folding width capable of premium paper print speed with standard RS232 or 20 m loop interface. Supplied in used condition with data only £65.00 carriage and insurance £16.00.

MAINS FILTERS

CURE those unwonri hump ups and data glitches caused by mains interference with professional quality Full wave POWERFORD, 505A box size 100 x 100 x 240 V Load only £9.50. L1217 compact complete unit with internal filters. Supplied socketed up to 750 watts ONLY £9.99.

EPROM COPIERS

The amazing SOFTY 2 The Complete Toolkit for copying EPROMS of the 2516, 2716, 2732, 27128, etc. Many other functions include integral keyboard, cassette interface, etc. In full working order, working 24 hours per day. Fully guaranteed as new.

ONLY £19.50 + pp £2.50

"GANG OF EIGHT" intelligent 80 controlled by gang program on for ALL single by rail BRMPS up to 27128. Only 4 £715.00 only 2 MINUTES internal LCD display and checking routines for IDIOT PROOF operation. Only £395.00 + pp £4.50

"GANG OF EIGHT PLUS" Same spec as above with 3 multifunctional RS232 serial interface for down line loading data from computer etc £445.00 + pp £6.00.

Data sheets on request

CIRCLE 66 FOR FURTHER DETAILS.

www.americanradiohistory.com
COLOR AND MONOCHROME MONITOR SPECIALS

"SYSTEM ALPHA" 14" COLOUR MULTI INPUT MONITOR
made in the UK by the famous REDIFFUSION Co. for their own professional computer systems (this monitor has all the features to suit your immediate and future monitor requirements. Two video inputs, RGB and PAL Composite Video. Allows direct connection to the BBC and most other makers of micro computers and VCRs. An internal speaker and audio amplifier may be connected to your system, enabling output to a VCR machine, giving superb sound quality. Many other features including: MUTE, BRIGHTNESS, Contrast, Color Control, MULTI-COLOR menus, line and character setup, digital on-screen display (front panel). We are happy to quote on quantities.

This must be ONE OF THE YEAR'S BEST BUYS

Supplied BRAND NEW with full 1 year guarantee supplied at the following price:

SUPPLIED BELOW ACTUAL COST - ONLY £149.00

DECCA 80 16" COLOUR monitor. RGB input. New in box, A Rahmen's Cable and MultiInput Monitor. Suitable for an entry level unit and has been designed to offer this special conversion DECCA RGB Colour Video TV Monitor at a super low price of only £200.00. gemacht in der Bundesrepublik Deutschland. Superb sound quality only on monitors costs 3 TIMES OUR PRICE. In fact, we have got these monitors in our range for only £195.00 complete with PSU £235.00. Please call for details. supplied ready and complete with PSU £235.00. We have the facilities to stock this monitor, Most modular, construction, auto degaussing circuit, multi-colors, multi-sources, etc. and make them into a complete monitor. Although used, supplies are used in EXCELLENT condition. Only £125.00.

DECCA 80 16" COLOUR monitor. Composite video input. Made in the UK by the famous REDIFFUSION Co. for their own professional computer systems (this monitor has all the features to suit your immediate and future monitor requirements. Two video inputs, RGB and PAL Composite Video. Allows direct connection to the BBC and most other makers of micro computers and VCRs. An internal speaker and audio amplifier may be connected to your system, enabling output to a VCR machine, giving superb sound quality. Many other features including: MUTE, BRIGHTNESS, Contrast, Color Control, MULTI-COLOR menus, line and character setup, digital on-screen display (front panel). We are happy to quote on quantities.

DECCA 80 16" COLOUR monitor. Composite video input. Made in the UK by the famous REDIFFUSION Co. for their own professional computer systems (this monitor has all the features to suit your immediate and future monitor requirements. Two video inputs, RGB and PAL Composite Video. Allows direct connection to the BBC and most other makers of micro computers and VCRs. An internal speaker and audio amplifier may be connected to your system, enabling output to a VCR machine, giving superb sound quality. Many other features including: MUTE, BRIGHTNESS, Contrast, Color Control, MULTI-COLOR menus, line and character setup, digital on-screen display (front panel). We are happy to quote on quantities.

DECCA 80 16" COLOUR monitor. Composite video input. Made in the UK by the famous REDIFFUSION Co. for their own professional computer systems (this monitor has all the features to suit your immediate and future monitor requirements. Two video inputs, RGB and PAL Composite Video. Allows direct connection to the BBC and most other makers of micro computers and VCRs. An internal speaker and audio amplifier may be connected to your system, enabling output to a VCR machine, giving superb sound quality. Many other features including: MUTE, BRIGHTNESS, Contrast, Color Control, MULTI-COLOR menus, line and character setup, digital on-screen display (front panel). We are happy to quote on quantities.

DECCA 80 16" COLOUR monitor. Composite video input. Made in the UK by the famous REDIFFUSION Co. for their own professional computer systems (this monitor has all the features to suit your immediate and future monitor requirements. Two video inputs, RGB and PAL Composite Video. Allows direct connection to the BBC and most other makers of micro computers and VCRs. An internal speaker and audio amplifier may be connected to your system, enabling output to a VCR machine, giving superb sound quality. Many other features including: MUTE, BRIGHTNESS, Contrast, Color Control, MULTI-COLOR menus, line and character setup, digital on-screen display (front panel). We are happy to quote on quantities.

DECCA 80 16" COLOUR monitor. Composite video input. Made in the UK by the famous REDIFFUSION Co. for their own professional computer systems (this monitor has all the features to suit your immediate and future monitor requirements. Two video inputs, RGB and PAL Composite Video. Allows direct connection to the BBC and most other makers of micro computers and VCRs. An internal speaker and audio amplifier may be connected to your system, enabling output to a VCR machine, giving superb sound quality. Many other features including: MUTE, BRIGHTNESS, Contrast, Color Control, MULTI-COLOR menus, line and character setup, digital on-screen display (front panel). We are happy to quote on quantities.
Fast Fourier transforms using a microcomputer

by Terje Larsen and Gisle Dyrik

Gisle K. Dyrik followed his masters degree from the department of applied physics at the Technical University of Norway in 1954 by post-graduate studies at Birmingham College of Advanced Technology. He has since worked as a development engineer in Norway and research physicist in the USA. In 1961 he joined the teaching staff at Horten Ingeniørhogskole, Norway, where he now lectures in electronics. He has published papers on dielectric properties of polymers in relation to molecular structure and authored didactic books on physical topics. Terje Larsen graduated as an electronics engineer at Horten Ingeniørhogskole. Previously educated as an electronics technician, he has been working in various related activities, including service and maintenance of electronic equipment, the last few years in the department of medical electronics at Haukel and Regional Hospital, Bergen. He has developed an extensive interest for, and knowledge of, the BBC Micro as a versatile electronic tool, and is presently commercializing a flexible terminal emulator of his own design, packaged as a paget rom for the BBC.

Personal computers make spectral analysis of periodic wavetrains feasible for a much wider audience than hitherto

There is one field where the impressive computational power of the modern PC/home computer can be put to a particular demanding test: the spectral analysis of periodic waveforms. When such a train of pulses has been sampled and digitized appropriately, the data can be treated with the Fourier transform technique to yield an equivalent sum of sinusoidal waves. This involves the calculation of a large number of amplitudes corresponding to the fundamental frequency occurring in the signal as well as higher the higher harmonics. To achieve a reasonably good resolution the number of samples representing a given signal should be as high as possible. The computational work involved, however, increases rapidly — with the square of the number of samples to be treated — therefore some kind of practical compromise is needed.

The present work is a program designed to take advantage of the speed and power of the BBC Micro, as applied to 256 sample points. By the application of the straight Fourier transform technique this would imply the calculation of no less than 264,144 multiplications — a cumbersome process, even on the BBC Micro! Fortunately, such digitized sam- ple values lend themselves to being treated by a simplified variety of the Fourier technique: the fast Fourier transform, developed to take advantage of inherent redundancies, and thus reducing the computational effort drastically*. In the present case this means that the number of multiplications is reduced to some 16,384.

Even so, the time lapse involved remains a factor of considerable interest. We have sought to optimize our program as far as could reasonably be done on the basis of the BBC Basic. And in particular we draw attention to the machine code routine labelled "mirror", generated by PROCassemble (List 1). As part of the FFT treatment the amplitude terms of the arrays have their array numbers changed (scrambled) to resemble their own binary mirror images: thus 1 translates into 128 because the mirror image of 00000001 is 10000000 for example. This could be achieved by means of a BBC Basic exponential expression, but there was considerable time to be saved in using machine code for this important routine.
The remarkable ease with which the BBC Micro allows such hybridization of 'bottle neck' segments is very commendable. The result is that the program now runs in some 38 seconds, as opposed to the original time lapse of about 98 seconds for our first Basic version, written in a fairly traditional manner. Just how well the BBC Micro serves is perhaps best illustrated by the observation that a similar program written in Applesoft needed some eight minutes to execute!

When run, the program first asks for the name of a data file to be used, and then for the lower limit of percentage numbers to be printed out. Pushing -RTN- when asked for the data file will load the default F.EXAMPLE. -RTN- for the percentage number will set the lower limit at 10%. If the default file F.EXAMPLE is chosen, the percentage should preferably be set to 100, which will suppress percentage printout altogether. As supplied, this file consists of data sampled and digitized from the output of a heart simulator (the typical cardiogram shape of the curve will be recognized by many). The vertical lines shown represent the amplitudes of the various sinusoidal components in the original signal (Fig. 1). By means of the cursor keys, a little arrow can be moved around, showing the frequency represented by any particular frequency line. The spectrum is crowded, with a fairly constant overall shape. Quite possibly, the presence of an abnormal heart condition might be betrayed by the appearance of characteristic patterns, superimposed over the normal spectrum.

In strong contrast to this, loading F.EX2DATA and pushing -RTN- for the percentage number, gives a strikingly different result (Fig. 2). This file contains data for five periods of an ideal sinusoidal wave — samples at a rate of 256 points per second (meaning that the window shown comprises a total time of one second). The FFT analysis gives the logical result that this particular curve only contains one single component wave: i.e. itself at 5Hz!

Next, F.EX3DATA represents five periods of a rectangular wave train, sampled at the same rate of 256 points per second (Fig. 3). The line spectrum found contains a sinusoidal component at the fundamental frequency of 5Hz, as expected, but also higher harmonics at 15Hz, 25Hz, 35Hz... This is in complete agreement with the Fourier transform theory, as are indeed the amplitude values printed out (normalized in relation to the maximum value). Theory predicts that the amplitudes should fall off successively in the ratios 1/1, 1/5, 1/7, 1/9... — which is exactly what we see.

In F.EX4DATA five periods of a corresponding sawtooth wave train have been included (Fig. 4). This type of pulse is much richer in higher harmonics than the square-wave type, and the FFT analysis bears this out in a rather striking manner: all the spectral lines are seen to be present, but with additional lines in between — just as predicted by the Fourier theory. The amplitude ratios now expected are 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7... — again confirmed by the computational results found.

Finally, data for an interference pattern generated by mixing three sinusoidal waves of equal amplitudes but different frequencies are given in F.EX5DATA. From Fig. 5, the three component waves at 6Hz, 16Hz, and 32Hz are completely resolved by the program.

The frequency-dependent representation thus found is strictly complementary to the original time-dependent signal input. The logical extension of this — but in the opposite direction — is that only slight modifications are necessary in the present program to make it remove one or more of the sinusoidal components present in such a periodic signal. The components that remain can then be superimposed again, thus reproducing the original pulse train with the unwanted components digitally filtered away.

In our quest for speed and efficiency we came to wonder what could be gained from using Forth as the programming language instead. We have therefore made a version of the FFT program for Skyway's Multi-Forth 83. To our great surprise we found that it took a considerably longer time than the BBC Basic! In spite of the fact that the same degree of machine code hybridization has been introduced, the Multi-Forth 83 version is definitely slower, needing 46 seconds of running time after the compilation stage has first been completed. A corresponding version for the J.W.B. Forth V2.5, also with machine code hybridization, was
a little faster (36s), but still surprisingly close to the BBC Basic. If the -ESC- button is pressed, the FFT program expects to find a suitable machine-language screen dump routine called PRINTER on the disc. As Mode 0 is used by our program, we will need some kind of memory expansion to be run in the given form (like the Aries B-20 a.o.). It is completely compatible with the 6502 second processor, and will then execute in 26 seconds. However, for the program to be run on any standard Model B, we have also produced a compacted version, which we will be happy to make available.

With a little practice in random file technique you should have no trouble in generating data files for testing and demonstration purposes. But note the following points.

- The program expects to find as the first item of such a data file a number giving the sampling frequency (for instance 256, corresponding to 256 samples per second — if that would be the case). Then all the 256 numbers constituting the actual sample points follow.

- After reading the data in from disc, the average of all the sample values is subtracted from each: the d.c.-component is thus 'filtered' off. This makes the data generation easier, as only the a.c.-part of the signal will matter anyway.

As an extension of the present program, one of us has recently been working on and started testing out a machine code version of it, that actually executes in about 1 second. This means that it is now feasible to do on-line signal spectral analysis, practically in real time on a shoestring budget. We hope that the publication of this BBC Basic program might serve as the starting point and source for similar inspirations to many of your ardent readers.

Literature received

The instruments catalogue from Keithley covers their range of hand-held and bench multimeters and includes programmable IEEE and systems models. There are current/voltage sources, Nanovoltmeters and the DAC500 Data Acquisition and Control system used in conjunction with Apple Ile or IBM personal computers. Keithley Instruments Ltd, Boulting Road, Reading, Berks RG2 0NL. EWW250

The Rifa range of subminiature, high power d.c./d.c. converters are detailed in leaflets from Campbell Collins Ltd., 162 High Street, Stevenage, Herts SG1 3LL. The PKA range of converters fit in a square package only 76mm wide and 17mm high and yet can provide up to 40W of power conversion. Different versions cater for input voltage ranges. EWW251

A technical manual that describes the KD52-AA and KD42-AB central processing units used in the Microwax I system is available free from distributors Rapid Recall. The Microwax I CPU Technical Description includes a system overview and sections describing the programming interface and module configuration. Other chapters deal with data path microcode, and the data pack module, memory controller microcode and module and the Q22 bus controller. There are a number of appendices. Rapid Recall Ltd, Denmark Street, High Wycombe, Bucks HP11 2ER. EWW252

A data acquisition manual includes an introduction to the products of Maxim, which include a-to-d converters, op-amps, display drivers and more. All the products are fully compatible with the 71xx range and with c-mos amplifiers Maxim Integrated Products UK Ltd., Whitchurch Road, Pangbourne, Berks RG8 7BP. EWW253

A useful stock and price list of Japanese semiconductor products comes from Impulse who hold franchises from Hitachi, Mitsubishi, NEC and Toshiba. The products are listed, together with a brief description and prices. Featured are the c-mos emors from Mitsubishi Impulse Electronics Ltd., Hammond House, Caterham, Surrey CR3 6XG. EWW254

A brochure from Rendar introduces the Spike Bloc mains protector which has been developed for the protection of sensitive electronic equipment, particularly microprocessor-based, from the hazards of electrically noisy environments. The devices offer protection against surges, spikes and r.f.i. Rendar Ltd., 7 High Street, Ringwood, Hants BH24 1AB. EWW255

Used test equipment can be bought from Carston, who produce a leaflet describing the available equipment. The company has expanded into the computer field and have a number of development systems, terminals and peripheral equipment. All second-hand instruments are guaranteed for 12 months. Carston Electronics Ltd., 99 Waldegrove Road, Teddington, Middlesex TW11 8LL. EWW256

A wide range of solid-state relays are produced in California by Opto 22 and are detailed in a catalogue from the UK distributors System Devices Ltd., 26 Such Close Ind. Estate, Works Road, Letchworth, Herts SG6 1FF. EWW257

Printer buffer memory i.c.s

Mike Catherwood's printer buffer, described in the May and July issues, is designed to give a 2ms dynamic-ram refresh cycle (ras-only refresh). Texas Instruments 64Kb d-rams require a 4ms refresh cycle and will not work with the printer buffer as it stands.

There is a modified version of the software giving a 4ms refresh cycle in the top half of theeprom supplied by Technomatic. This software is brought into play by tying address line A4 high; it should work with Texas rams, although it has not been tested. Normally the software is in the lower half of theeprom.

Access time of the 2716 eeprom was quoted as 250ns, but more readily available 350ns devices should suffice. On many types of eeprom, pin 21 should be tied high and not left floating as it is on the boards supplied by Combe Martin Electronics.

Radar in retrospect — correction

Readers baffled by the picture of the 'cavity magnetron' on p.75 of the August issue will be relieved to know that WW is not trying to change history. The device shown is the Caractal sine-wave inverter, mentioned on p.78, where the magnetron was transferred in error. Apologies to John and Caractal and any readers who didn't happen to spot the mistake.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
Human communications -
the new discipline

R.E. Young's seventh article in his series on
British invention, innovation and electronics
looks at the progress made in
communications between people, especially
with regard to mental handicap.

By its very nature, and by the way
in which it developed, "Human
Communications" would almost
necessarily lose rather than gain by
formal definition. Also when the
recognition of its constituting a
"New Discipline" was put on
record in the first article of this
series, much of the original work
contributing to the final concept
had already been carried out and
reported. For example, in a
previous article on Human Commu-
nications, it was shown how
interchange of vital information
was built up between the fields of
mental handicap (hyperautism)
and that of control under extreme
emotional conditions.

It is relevant to compare this
with the radar and television case
as given in the second article in
this series. Two points of special
interest arise here. The first is
that unique conditions existed for
them in the UK which almost cer-
tainly could not have been found
elsewhere. Thus, for example,
personnel with extensive training
and experience were available for
transfer from television to radar
at the beginning of World War II.

A number of factors entered
into the success achieved with
this transfer, notably British
adaptability; and this quality can
be seen fully in the parallel case
with transfer of technological
thinking to the field of mental
handicap, particularly to
research into "this most mysteri-
ous of all human complaints".

A programme of technologi-
cally-based research in this field
was introduced in the two-part
article on Crisis Control; and is
at the centre of a companion ar-
ticle on mental handicap which
appeared in the September 1983
issue of Wireless World.

As will be seen, this issue had
two linked features, additional to
the article itself, which made a
significant contribution to it, not
only in the immediate context of
the transfer of technological
thinking to mental handicap, but
also in that of the even more found-
amental matter of throwing light
on the mental handicap condition
- the second point of interest
mentioned earlier. Thus this
aspect of throwing light is embod-
ied almost literally in the special
cover picture of this issue. With
remarkable insight - which jus-
tifies being called inspired - the
artist has caught the person living
underneath the handicap, and
usually revealed, if at all, by only
a 'flash glance'. As indicated in
the article, that people, as iso-
lated individuals, had recognized
that this was a 'false handicap' is
indeed difficult to believe; but, in
a sense, the foundations of the
research programme lay in find-
ing this to be so which thereupon
continued as a 'bringing-
together' of people and evidence.

This process has, of course,
continued and developed over the
past two years; but by the start of
this period it had already been put
forward and had become
accepted that "... even the most
severely handicapped autistic has
a latent capability and can be
assisted to break the shell (of
hyperautism) by a deeply under-
standing approach - one which
recognizes that communication is
the basic problem and that remo-
val of stress and help in carrying
out even simple actions to
achieve some kind of pride in per-
formance are beneficial, particu-
larly when previously considered
to be impossible".

This extract from the Editorial
in the Wireless World for
September 1983, and under the heading
'Technology and people', repre-
sents an invaluable summary of
the basic - humanitarian -
approach described in the accom-
pending article on mental handi-
cap.
cap associated with the ultimate establishment of the research care unit approved in principle for Warwickshire.

It is particularly encouraging and rewarding to find similar endorsement coming some two years later in 1985, but from an entirely different type of source. This was in connection with the general approach put forward for research care, initially for the mentally handicapped.

Although on a small scale, development of research care has been maintained over this period, either essentially on the voluntary basis as noted in the earlier article or from 'supported' units within the voluntary ambit; and endorsement has come from both of these areas, and outstandingly, in terms of human communications, from a Centre falling into the latter category. In a note summarizing progress made with the 'new thinking' (human communications) approach to care, in its widest sense, the Head of this Centre reports on the success which they have achieved in "transporting the thinking and methods evolved for mental handicap to ... several (other) fields". With the unit set up originally to provide care for the physically handicapped, this had been the first of these fields in which these ideas had been tried out; but within a surprisingly short time mental handicap has been added together with certain aspects of geriatric care.

The importance of these statements arises on several counts. Foremost amongst them is the conviction (endowed by the fact of its being possible to bring together, as it were, the two kinds of handicap by taking advantage of the common ground of human communication. Such possibilities had been shown to exist by the project work described earlier in the September 1983 article, with the salient points brought out in the project flow chart for the specialized Research Care Unit. Specific examples include the reference to correlation with 'outside' areas (relative to mental handicap) such as geriatric care made on the chart for 'Phase 4'.

Another relevant reference is made at the end of that article to the aim of obtaining information which would be of value in fields such as ordinary autism and geriatric care (helping with ability to speak). It may be noted that these possibilities as exemplified by geriatric care were introduced in the first article on crisis control in relation to interchange of information. A brief digression should be made here. It will be noted that the term 'Human electronics' is used in the quoted article. This ante-dated the recognition that this whole subject represented a new discipline, and the suggestion that it demanded a title commensurate with the breadth of the fields covered. That this is a wide subject will be seen from the section headings in the rest of the article; but this introduction is made almost exclusively in relation to mental handicap because the advances that had been made and have led to this recognition were in this field with the bulk of the work having been carried out in it; and full acknowledgement must be made to all those who, either as individuals or in groups, have contributed so much to it.

Reverting to the note dealing with the progress made with 'common ground' care of the handicapped, one of the greatest services it does it is to show how utterly vital it is to establish communication with the handicapped, that every effort should be made, and continue to be made, to do this whatever the degree of handicap; and that, with full understanding, and the right conditions, the person under the handicap will be revealed. The difficulties are not underestimated, rather the reverse; but it comes out quite clearly that this is a team with a quite unusual capacity to absorb — and act upon — new ideas, and, in this case, to persist with the task of bringing out the concealed person whatever the odds.

This is, of course, an expression of a major principle which has been built up, and consolidated particularly over the last two years. It is embodied in the four letters M H S M. These initial letters, standing for 'Mentally Handicapped (of) Sound Mind', coming from an acute and penetrating observer, give an objective assessment of this condition. This is at variance with the conventional view of these disadvantaged people based on the admitted lack of knowledge of the nature of the complaint and the understandable confusion with the defined (at times) illness of mental handicap. On the other hand it offers a basic terms of reference title, familiar to most, which can be given to this overall approach. Thus by substituting 'human communications' for 'electronics' (the importance of this original substitution is to the concept of a new discipline has already been noted) and with expansion, the defining title becomes 'System research engineering permeated by human communications'.

This may seem to be an example of the unimportant, but as already indicated, experience shows that acting upon 'half-a-story' can be dangerous to the point of producing failure when embarking upon a new technology-based project. Thus, as in the case where the work is undertaken by a team with a variety of backgrounds and training, it is utterly vital to lay down lines of action in words which are without ambiguity and are fully understood by all.

To a certain extent this process corresponds to 'separating out the factors' with a project where the fact has to be faced that progress is not being maintained; and that this is due to the existence of one — or probably more than one — obscure faults which are, in effect, completely concealing the true position. Classic examples of this, quoted earlier, are the radar installation which appears to be working, and yet is actually 'blind', and the fault on a piece of instrumentation which is literally hidden by its failure to provide information. Also, although the individual fault — when finally found — is almost invariably simple in the extreme, reaching the solution is a complex and protracted task which in essence depends on achieving this segregation of factors.

Now, with the final clearance of trouble, it should be possible, in this instance, to produce a clear statement which gives the staff a picture, hitherto denied to them, of the state of the project; and which, if suitably drafted, should result in much more effective project flow being achieved by virtue of 'everyone being informed' and — quite vital in such cases — being informed in the 'same language'.

These principles, seen from the R & D Management point of view, take on even more importance for this Human Communications research programme. Apart from anything else, this was a true research project with every aspect of it being new; and on this score alone, it is essential that all those taking part be given a picture of the position reached with the programme of such a nature that they are helped to take the right step when on the course to be followed when presented with one of the so-called minor problems which arise
almost every day in this work. This is, of course, one of the main aims of endeavouring to make sure that staff are enabled to feel that they are being kept fully informed of any developments which may bear upon the work of the team; and are being put to them in such a manner that the way ahead is being cleared to the maximum for them to 'get it right'. This does, of course, represent an ideal world; but with projects like the one under discussion, the chances of a false trail being followed are so high that a close management/staff understanding is vital for this to be avoided. A corollary is that with a fully integrated team, interchange and the general contact which is maintained can prevent more than one variable being altered at a time. Violation of this ground rule i.e. for members of a team to make major technical changes in isolation, can pose a very real threat to the project.

Although it has been pointed out that a period of consolidation has been reached in the programme, this does not mean that the scale of research and investigation in this sphere should be reduced — there is still an enormous amount of ground to be covered as shown e.g. in the proposals for a new Research Care Unit for the mentally handicapped.

There is, in fact, one area in particular where a great deal of progress has already been made — that of explanation of the hyperautism of mental handicap — but where expansion of effort and resources would be well justified. This explanation has a dual character where high technology has been applied in two widely different ways; the first, developed over the years, may be called 'direct' and is fundamentally observational, while the second, an indirect approach, is based on specialized Human Communications (advanced engineering) techniques produced as part of the natural evolution of the project.

Two divisions therefore exist coming under the headings of 'Observation and the build-up of evidence' and, slightly over-simplified, 'System modelling'. These two divisions, under these headings, are examined in more detail in the next two sections; but it is felt that it would be valuable to refer at this point to a far-reaching principle which has come out of this work, that underlying the correlation of observation and system analysis to give increased insight into the hyperautism of mental handicap.

Hyperautism is used here because of its technical connotation. As many will know from experience, the whole issue of reduced, and especially of no, communication is usually totally obscured by the consequent lack of tangible evidence (of the existence of the 'concealed person'). As has been shown the initial strength of the project lay in the quality of the observers and of their evidence, and in the fact that it was possible to gather and collate this information over a long period. As the number of those taking part increased so did the speed of acquisition, but the basic problem of the long intervals between 'sightings' of the concealed person always remains; and it was not until results from work on communication parallels became available that a practicable programme of research with (at last) a finite time scale could be envisaged.

Actually as soon as the transfer of (comparison) information had become established, it rapidly turned into a two-way interchange with 'spin-off' in both directions. It was not long before definite project lines could be discerned, but it also became abundantly clear that this was a classic example of a project where 'separating-out the factors' was imperative for the maximum advantage to be taken of the data that was beginning to be accumulated. Of even greater significance was that if 'separating-out' could be done in the right way, this would mean that acceptable sub-project divisions could be identified within the informal organisation which is still maintained on this basis as a background to this work.

That this process was carried out successfully and the correct divisions selected was due in great measure to the strength of the contributions made by associates coupled with the way in which the overall project was built up. Thus, looking at this as a conventional R & D project in the UK, many of its (constituent) elements fell into place almost naturally; but, as seen in the other examples, the 'hidden strengths' in the country came into the picture. One of these, quoted earlier, becomes especially significant in this instance. The facilities which already existed in Britain, and had been set up by the medical authorities with such sound judgement, provided an environment which, as a minimum gave the equivalent of a flying start to this work.

Again, it may seem that undue emphasis is being put on an issue which is less than crucial. However as with the design development of any complex control system, this question of identifying the unknowns and establishing the divisions in which they will fall is crucial; and it will be realised that with 'human' and technological investigations and analysis being carried out simultaneously, this requirement becomes ever-riding. This process, which can be described as one of sorting-out and allocation, is perhaps best illustrated in terms of a typical sub-project which made itself manifest during the course of the programme.

The sub-project concerned — 'delay in response' — is associated with 'thinking fatigue' which has been written up in an

![A shared viewpoint reinforces a cooperative approach in a complex environment as here, and with helpers and patients.](image-url)
earlier article on crisis control1, so that a separation had been affected between the two. It should be pointed out that this separation was only in time to begin with and that it was followed by the form of individual recognition somewhat later. This order of events was controlled and the major principle emerges that if this order had been reversed, at best an appreciably longer term would have elapsed before identities became clear, and at worst, the two issues would have obscured each other to the extent that they could have remained unrecognised for an indefinite period. This is, of course, a danger which always exists and — it will be realised — increases progressively with the complexity of the project. When, as in this instance, there is a strong possibility that spin-off contributions can be made to other fields (delay in response and thinking fatigue are not confined to the mentally handicapped), failure to evolve what amounts to a correctly 'marshalled' management structure can result in losses, particularly of time, which are impossible to assess. The word 'marshall' is used here advisedly, and because it leads into the concept of data marshalling2,3 and its relevance to the whole question of the new (technological) approach offered by human communication to problems in the 'ordinary' world, and in particular to that of mental handicap. From the next two sections, and from the reference already given, it will be seen that data marshalling, defined as the separation, streamlining and systematic presentation of 'masses of data', is a key concept in this work and as exemplified by system modelling and the process of collection of evidence which preceded, and then became coordinated with it. Also, and as a concluding statement it can be said that it is equally true that the same applies to data marshalling in the various areas of research control which were covered earlier.

Observation and the build-up of evidence

Although, by force of circumstances and events, the great part of the work on human communications has been done in the general context of the hyperautism of mental handicap, its origins in the personal observation of human behaviour under the stress of unexpected emergencies, specifically with the operational control of what can fairly be called high technology systems, mainly in relation to World War II. That such systems were introduced meant that these observations were made under 'multi-channel thinking' conditions which linked in with the results of later work and also provided an elementary form of reference standard for evaluation purposes. One aspect of this has been covered in the WA article on crisis control where two categories of behaviour (Conditions A and B) are introduced in relation to comparable effects seen with the mentally handicapped.

The most important conclusion reached from these observations and from comparison which followed was that when the mentally handicapped went into condition B — where the ability to take action virtually disappears, they returned comparatively quickly to the A condition as soon as the emergency had passed. (Condition A is when, despite severe stress, the person thinks and takes action — as far as outside appearances are concerned — exactly as before the incident occurred.)

Now the other main observation made under full crisis conditions was that the change to Condition B was accompanied by a change in facial expression to the blank look of mental handicap. Obviously a number of inferences can be drawn from these observations, and this has been done progressively as more evidence became available. Equally obvious is the dependence of this evidence when reaching conclusions, and considerable caution has to be exercised in doing this. Methods of obtaining uninfuenced evidence developed e.g. for investigating obscure radar faults have been used; but, as indicated earlier, it has been possible to ensure that evidence comes from a number of independent sources, while the dependability (quality) of the observers has already been stressed. Also a number of forms of cross-checking do exist or have been set up, in this case among them the fact that information (and thinking) come from two entirely different fields. Another form of cross-checking has been provided more recently — by the system modelling of the next section.

It will be realised that this facility of cross-checking is only one element in the general process of interchange between the two fields of full crisis control and the research care and education of the mentally handicapped. The scope and influence of this interchange can be seen in an illustration based on the human communications aspect of control room design for emergency conditions (Ref. 5) stemming in turn from the observations made of actual incidents. A feature which comes to be common to all these incidents is the way in which the operating staff almost sub-consciously arrange themselves in a 'two-tier' control structure as shown in several publications notably on the front cover of the Wireless World containing the elaboration of the crisis control article, and — of still more immediate interest in relation to mental handicap — in the photograph taken at CEBG's Nuclear Power Training Centre. Notice the positions taken up by the staff where they are alongside each other and are looking at a common point. It may seem more than strange that this advanced work can be brought into the context of hyperautism; but this general disposition of two people in particular has been found to be especially favourable to establishing communication between the mentally handicapped and, say, an instructor. Surprisingly good results can be obtained with this technique, even with the severely handicapped, and it serves as an example of how the alternative 'confrontation' mode is to be avoided, something which appears to be of value to conventional education.

In passing, it may be noted that the degree of success obtained in communicating with the hyperautistic (in both directions) has two major implications: it represents confirmation of the existence of the 'concealed person'; and also shows that this whole subject is of an extremely complex nature, and not something which should be dismissed as not requiring attention of the highest calibre.

Finally, in this connection, there have been clear indications of a marked correspondence between the 'subliminal' methods of teaching found to be effective with the mentally handicapped and those suggested for the training of personnel in preparation for dealing with unforeseen emergencies2. Yet again this may seem surprising, but it emphasises an even greater extent the complexity of the thinking mechanisms (and interactions) lying underneath mental handicap.

System modelling is, in a sense, self-defining as a means of providing technological explanations of effects such as 'thinking fatigue' and 'delay in response' and even in predicting, for example, the 'inversion of speech' — seen in the non-handicapped in the transposition of syllables (the Spoonerism) or of individual digits in a telephone number. The number of ramifications of this work are clearly near-infinite; so it is proposed to take one example only to show how information can be brought together to produce a 'model'.

As part of an examination of the problems of 'fast sampling' of pulse waveforms6, Poole has found that the uncertainty (indeterminate element) resulting from the sampling action is dependent upon the position along the original signal waveform at which the sample is taken. (Other factors, of course, enter into this.) It is understood that as part of this research, Poole found that the uncertainties in 'search sampling' were reduced in some circumstances by reversing the direction of sampling in time — colliquially by sampling 'backwards' in time and not moving forwards in any way. Now system modelling has shown that sampling and 'back-comparison' effects appear in hyperautism and this has been seen in other pieces of system modelling, and as part of the associated theoretical work it does appear that the results obtained by Poole can be linked with speech inversion as quoted above.

REFERENCES
4. R.E. Young. Mental Handicap — proposals for South Warwickshire Special Hospital, University College. Presentation to the South Warwickshire Health Authority.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

86
A superb range of innovative loading and duplicating technology

Worldwide

The leaders

Tape Automation Ltd, Unit 2, River Way, Harlow, Essex CM20 2DN.
Telephone (0279) 442946, Telex 265871 MÖNREF G quoting Ref: 84:AUL001.
EUROPE · USA · JAPAN · UK · INDIA

CIRCLE 49 FOR FURTHER DETAILS.

A NEW CONCEPT IN TEST EQUIPMENT

- Identifies and tests over 1000 devices from TTL, CMOS, Memory & Interface families
- No programming necessary — in "CHIP SEARCH" mode even the device number can be omitted
- Highly cost-effective design ensures maximum benefits at minimum cost

The A.B.I. Digital IC Tester

A.B.I. Electronics Ltd., Unit 21 Aldham I.E., Barnsley, S.Yorks, S73 8HA
Telephone: Barnsley (0226) 751639 Telex: 547376 CEAG G (for A.B.I.)

CIRCLE 69 FOR FURTHER DETAILS.

VIDEO TERMINAL BOARD

- 80 characters x 24 lines
- Requires ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7 x 9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
- Bare board with 2 EPROMS and program listing — £48 plus VAT. Assembled and tested — £118 Send for details or CWo to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT
Tel: 0728 831131

CIRCLE 28 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985
The world’s most advanced low-cost bench multimeter!

Thurlby 1905a £349 + VAT

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1 µV, 1 mΩ, 1 nA.
- Full ac and current functions as standard
A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St. Ives, Cambs. PE17 4BG
Tel: (0480) 63570

Now Thurlby makes logic analysis affordable! from

the Thurlby LA-160 £395 + VAT

- 16 data channels, expandable to 32
- Clock rates up to 20MHz
- 2,000 word data acquisition memory
- Non-volatile reference memory
- Data state and logic timing displays
- Binary, octal, decimal or hex formats
- Powerful search and compare facility
- Hard copy data printout
- Wide range of software packages to support microprocessors from manufacturers standard mnemonics used
- 6502, Z80 and 6800 presently available
- Simple connection to the microprocessor
- Full capture using 32 data channels
- All memory/stack operations are shown
- Branch addresses are calculated
- Extra uncommitted channels available

Now with optional microprocessor disassemblers!

An essential instrument

An oscilloscope and logic probe are not enough to unravel the complexities of today’s electronic equipment. A logic analyser has become the essential tool for both hardware and software engineers. Indeed a logic analyser is as important for the observation of logic signals as an oscilloscope is for the observation of analogue signals.

Unfortunately the high cost has made logic analysers unavailable to many who could benefit from them, but now the Thurlby LA-160 puts a sophisticated and versatile logic analyser within the reach of everyone.

Thurlby Electronics Ltd
New Road, St. Ives, Huntingdon, Cambs. PE17 4BG, England. Tel: (0480) 63570
Modem for the wet

The first waterproof modem to receive BABT approval is Interlek's Portman 66, which comes in a sealed plastics box and is built on p.c.b.s coated with fungicidal varnish. The first buyer is the Department of Transport, which will install it in roadside cabinets as part of a national system for the automatic collection of traffic data.

Other products from Interlek include a range of more conventional high-speed and low-speed modems. Prices begin at £125 (plus v.a.t.), which buys a multi-speed V.21/V.23 modem suitable for home or business use. Interlek Electronics Ltd, 24 Portman Road, Reading RG3 1LU. EWW211

Pcb photoplotter

Artwork for printed circuit boards up to a size of 300 by 500mm can be produced automatically on the Flashcan photoplotter system. The design does not use aperture discs and slides or analogue variations in the light intensity. Instead it has a processor which controls the variable aperture lens and the flash rate of a xenon lamp. The basic image projected onto the film is octagonal and the flash rate controls overlap between successive octagons to produce lines. Servo positioning, using feedback from optical gratings parallel to the axes, ensures a resolution of 0.01mm and an accuracy of of less than 0.005mm.

With u.v.-sensitive paper it is possible to produce a plot rapidly without development. The overall plotting speed is 150mm/s including flashing octagonal pads 'on the fly'. The system can be used with many of the recognised c.a.d. formats through a RS232C port, from disc or from tape or even remotely through a modem. At £22 000 it is claimed to be less than half the price of comparable systems. Cescom Electronics Ltd, Harrow Road, Leytonstone, London E11. EWW209

Calculator/dialler

This pocket calculator not only adds up your expenses — it also helps you 'phone the office. Inside is a tone dialler which activates a box connected to your company's switchboard. By keying the right code, you get an instant connection to the extension you want without waking up the operator. And if the extension is busy, you can try another.

The IQD Phonethru unit is available from IQD Ltd, North Street, Crewkerne, Somerset TA18 7AR. A basic system costs £445. IQD have a range of other products using telephone d.t.m.f. signalling, including radio auto-patch units and devices for the supervision and control of remote equipment. EWW210

Dc power source

Used in combination with a sealed single NiCd cell, the Verkon V9-a provides a 9V d.c. output with a current rating up to 100mA. The V9-a is designed to replace PP9, PP7 and other batteries as the power source for low-power electronic circuits, small motors and other applications.

In a diameter of 31mm and a height of 16mm, there is packaged a variable drive switch-mode step-up d.c. to d.c. converter. The circuit is fully encapsulated in resin and housed in a steel case and is therefore screened and very rugged. The use of Schottkey semiconductors results in low conversion losses and obviates the need for heat sink. The single cell NiCd has the advantage of not suffering from reverse charging, overcharging, dendrite formation or electrolyte leakage, and can achieve up to 2000 charge/discharge cycles; so there are several good reasons for using single cells in combination with a V9-a, in place of a NiCd battery. £5 25 (inc. v.a.t.) from J. Biles Engineering, 120 Castle Lane, Solihull, W. Midlands B92 8RN. EWW201
NEW PRODUCTS

IEEE 488 interface

Full GPIB controller functions are available on the BBC Microcomputer by using the Electroplan interface. The unit is self-contained, with its own power supply, and plugs into the 1MHz bus port on the micro. The computer can be linked to 14 independently addressed peripheral units, including data acquisition systems, A.T.E. stations and programmable instrumentation. Full talk/listen/control functions are allowed, including multiple controller with 'pass' control. A maximum data transfer rate of 64Kbytes/s is possible.

A library of software routines is provided along with a comprehensive tutorial manual enabling the software to be tailored to a specific function. Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts SG8 5HH. EWW205

Thermocouple logger

Up to 16 thermocouples may be monitored at once on the CM1600 measurement and control interface. Cold junction compensation and linearization are performed automatically, and the readings are transmitted through an RS232C link to a host computer.

If all 16 thermocouples are not required then it is possible to reconfigure any channel as a voltage input or output or a switching relay for up to mains voltage. Optional extras include the dot matrix panel printer fitted into the instrument as shown, and a 32K ram expansion. An IEEE488 interface may be fitted instead of the RS232C at no extra cost, which works out to around £79 for an average set-up. IMS Electronics, Unit R6, Riverside Industrial Estate, Littlehampton, W. Sussex BN17 5DF. EWW206

CP/M development package

For some of the newer low-cost computers able to run CP/M operating systems, such as the Tatung Einstein and the Amstrad CP464, HiSoft have developed a suite of development software at a similarly low price. Devpac80 comes as three packages: ED80 is a fast full-screen editor that has a number of help screens instantly available and permits 'cut and paste' editing, wild card search and replace, the recovery of deleted text and many other features. GEN80 is a two-pass assembler that can handle over 4000 source lines a minute. The disc includes library files, full textural macros, conditional assembly and full mathematical functions. MON80 is single-stepping monitor and debugger. It can disassemble onto disc, to produce a file ready for ED80 or GEN80, multiple breakpoints may be set, patterns may be found either as bytes or mnemonics and there are many more features. The whole suite is available in CP/M 2.2 format for £39.95 inclusive. HiSoft, 180 High Street, Dunstable, Beds LU6 1AT. EWW207

Electronics & Wireless World September 1985

www.americanradiohistory.com
150kHz switcher kit

This kit of components for a switching power supply offers an introduction to high-frequency switching techniques. The supply is based around the Siliconix PWM125 controller i.c. and the kit includes a p.c.b. and all the components necessary to build the supply. Although the controller is switched in this circuit at a frequency of 150kHz, there is provided a separate oscillator sync terminal and can be used over a range from 100 to 500kHz. The circuit has adjustable deadtime control, internal soft-start, input undervoltage lock-out, latching p.w.m. to prevent multiple pulses and works over a range of 8 to 35V output. Dage (GB) Ltd, Eurosem Division, Rabans Lane, Aylesbury, Bucks HP19 3RG. EWW202

Rent a meter

A 7½-digit multimeter may be more precise than is needed for day-to-day use, but could be helpful at the development and prototyping stages of a project. Such an instrument is the Datron 1081 which has a short-term stability of 0.25ppm and a linearity of 0.5ppm. Measurements to 10nV resolution are possible. The 10 to 100kHz a.c. range uses true r.m.s. for measurement and can accommodate a dynamic input range of 1 to 200%. A Bessel active filter extends the low-frequency range down to 0.1Hz. The instrument may be calibrated through the front panel and there is a button to re-standardize all functions to the internal reference circuitry or a prime reference source. The instrument along with a range of other instruments may be hired on a weekly basis from Microlease plc, Forbes House, Whitefriars Industrial Estate, Harrow, Middlesex HA3 5SS. EWW203

Interference simulator

Designed to perform tests in accordance with existing and proposed standards, the Schaffner NSG 200 is capable of simulating almost all kinds of interference encountered in both a.c. and d.c. power lines. It simplifies the task of checking the susceptibility of equipment and systems to interference and also the effectiveness of suppression devices.

The instrument consists of two sections; a main unit and a number of plug-in modules, one of which may be used at a time and each of which is capable of generating a different type of interference. With these supply voltage variations and interruptions or superimposed pulses of various type can be generated. Schaffner EMC Ltd, 1 Ashville Way, Molly Miller's Lane, Wokingham, Berks RG11 2PL. EWW208
Improving your Epson

The print quality of dot-matrix printers has improved greatly in the past four or five years, and many owners of earlier models must be regretting bitterly that they hadn’t waited a little longer before buying.

But if you have one of the popular Epson FX, JX or RX+ printers you can now upgrade to the latest standards by adding Epson’s Special Font Set. The two p.b.bs fit inside the printer case without soldering and provide ‘near letter quality’ (NLQ) characters with a resolution of up to 15 dots by 18.

Several permutations of size and style are possible (we’ve used the roman face in emphasised mode to print the FFT program listing in this month’s issue) and the software permits fine adjustment of the spacing between characters or words. The proportional spacing mode gives access to italics, superscript and subscript characters and an attractive sans-serif font. There are variants for 11 languages or countries.

A 6K ram buffer helps reduce delays in printing and part of it can be used to store NLQ character sets downloaded by the user (as seen in our table on page 47). All functions and modes of the basic printer remain accessible under software control.

The Special Fonts Set is available with parallel or serial interfacing and costs about £130 plus v.a.t.

For the current FX80+ and FX100+ printers, a word-processing card (£113) offers similar NLQ options plus some formatting commands: text can be centred or right justified by the printer itself. Epson UK Ltd, Dorland House, 388 High Road, Wembley, Middlesex HA9 6UH. EWW213

More talk from the BBC

The Acorn speech upgrade for the BBC Micro gives the most realistic-sounding speech to be heard from any microcomputer. The sounds it produces come from a real voice — that of Kenneth Kendall, the former BBC-tv newreader, frozen on silicon. But through lack of room space his vocabulary is inevitably rather sparse: it’s limited to about 150 words of computerese plus the names of the characters on the keyboard. But now this restriction can be overcome by the addition of some firmware from Computer Concepts. The Speech Rom plugs into one of the computer’s paged rom sockets and controls the Texas speech processor chip directly.

It uses the phoneme system — phonemes are the units of sound which speech is composed. Southern English has 54 of them and each is represented in the rom’s command list by a single letter, or a two-letter group. The speech quality is good (the voice is not Kenneth Kendall’s, but is male and sounds English rather than American) and programming it is surprisingly easy to learn:

```
*UTTER <1> W I UH L e S W ER L D
```

The command allows much subtlety of emphasis and intonation and with a little experience you can obtain excellent results: a good ear is helpful!

The Speech Rom cannot be used at the same time as Kenneth Kendall, though it can be synchronised with the computer’s sound generator. It can even sing along in the key of C, though it cannot manage sharps and flats. The price is £33.35 including v.a.t. and postage. Computer Concepts, Gaddesden Place, Hemel Hempstead, Hertfordshire HP2 6EX. EWW212

Multi-language compiler

A small UK company called Space, known for its Intel development system rental service, is producing a range of software which allows programs to be developed, written and compiled into any one of a number of high or low-level languages. Once source code is written using the new language, called MTR, one simply selects the working language required from a menu. The package is intended for software engineers working in military, industrial and scientific design fields.

Initial products in the range are the MTR language for writing source programs and the MTR compiler for converting source code into Coral 66, Ada, ‘C’, Pascal or ASM80. New compiling options promised during 1985 at the rate of one per month are Fortran, Basic, ASM86 and PL/M.

Future releases of the compiler will include options for producing logic maps for superimposing on commercially available u.c.l.boards. The compiler currently runs on any Intel series three or four development system. Vax and IBM p.c. versions are promised and the licence fee is £2900 per site.

According to the designers, syntax of the minimum textual representation language, MTR, is almost as simple as Basic. Currently, MTR can be compiled into Coral 66, Ada, Pascal or ASM80 and a further five target languages are promised for this year: Space, Old Coach House, Court Road, Upton upon Severn, Worcs. EWW219.
Presenting a remarkable breakthrough from Shure — microphones, mixer and logic technology all combined in one totally integrated system of quite astonishing aural quality. Each microphone has complete independence within the system, eliminating all unwanted sounds.

From Shure, a microphone system that mixes automatically.

Concern is pre-setting the individual volume levels — its mixers (4- and 8-channel available) can easily be linked to control over 20 separate microphones. Which makes the AMS absolutely ideal for conferences and symposiums (though it performs equally impressively in churches, courthouses, lecture halls and broadcasting).

And advanced logic terminals provide unprecedented flexibility for including privacy buttons, free discussion or single speaking facilities and many other important capabilities.

The AMS offers a choice of four different types of microphone for all purposes: the unimicinising Low-Profile AMS22; the AMS28 Lavator for wearing round the neck; the adaptable AMS26 Prove for table, floor stand or gooseneck mounting, and the AMS24 Condenser specifically designed for the gooseneck unit.

In short, the AMS represents a major advance in sound control technology. For further information or a demonstration, simply contact Shure at the address below.

AMS 24

outside a specially tailored 120 acceptance window. And continuously analysing its own local acoustic environment allowing each channel to adapt itself autonomously as audio conditions change.

In fact, the AMS (Automatic Microphone System) is so simple to use that an operator's only concern is pre-setting the individual volume levels — its mixers (4- and 8-channel available) can easily be linked to control over 20 separate microphones. Which makes the AMS absolutely ideal for conferences and symposiums (though it performs equally impressively in churches, courthouses, lecture halls and broadcasting).

And advanced logic terminals provide unprecedented flexibility for including privacy buttons, free discussion or single speaking facilities and many other important capabilities.

The AMS offers a choice of four different types of microphone for all purposes: the unimicinising Low-Profile AMS22; the AMS28 Lavator for wearing round the neck; the adaptable AMS26 Prove for table, floor stand or gooseneck mounting, and the AMS24 Condenser specifically designed for the gooseneck unit.

In short, the AMS represents a major advance in sound control technology. For further information or a demonstration, simply contact Shure at the address below.

AMS 26

HW International 3-5 Eden Grove London N7 8EQ Tel 01-607 2717
PROF-80

Processor

RAM

Floppy card

- Z80 CPU, 4 or 6 MHz, 128 Kbytes, 8 KB
- EPROM memory management logic, real-time clock
- High sophistication Floppy controller for 4 drives
- SD/DD, SS/DS, 3.5", 5.25", B mixed
- ECB BUS, buffered, full interrupt/DMA ability
- 2 RS232 interfaces, up to 9600 Baud

finished card £ 241.50

finished card 2 MHz £266.00

Empty board + EPROM + Manual £ 49.40

manual only (will be credited) £ 5.90

EPROM 3.0 for PROF 80 (without handbooks) £162.30

EPROM 2.0 for PROF 80 (without handbooks) £133.00

- Telelex: 01049-DARMSTADT-01
- Telephone: 6151/61281

GRIP-3

Graphic I/O Processor

- graphic 268 x 560, text up to 96 x 35, Z80
- floppy card
- Accessible via TV/Teletext/Terminal via ECB BUS or RS 232, 4096 colours optionally
- 9 character sets incl. greek, 14 user characters
- 5 atroutes, sub/supersect
- clock, lightpen input, soundgenerator
- Keyboard-connection with handicap-function

completed card £ 203.60

Empty board + Manual + EPROM £ 66.50

manual only (will be credited) £ 6.80

GRIP-COLOR

Supplement for colour graphics

- attaches to GRIP for GRIP 3
- 4096 colours via look-up table
- up to 268 x 560 pixels
- 16 simultaneous colours increaseable up to 256
- 64 colour graphics without limiting speed
- all functions of GRIP are supported

finished card £203.60

Empty board + manual £ 39.60

manual only (will be credited) £ 4.10

PROMMER-80

EPROM programmer card

- programs 2716, 2732, 2764, 27128
- three selectable programming voltages
- voltage converter on the board
- fast programming-mode
- everything adjustable per Software
- ECB BUS-connection and front panel adapter

finished card with software £119.50

Empty board + Manual £ 19.80

Software on diskette £ 13.90

EPAC-80

Single-board all-purpose computer

- Z80 CPU, 7.5 or 9.0 MHz
- 8 bidirectional ports (20-56-PD)
- 16 latches, optionally with 250 mA drivers
- 8 signal inputs
- interrupt or watchdog timer (16 Bit)
- 1 RAM (EPROM), sockets for 2 16 Kbyte
- ECB BUS-connection, wrap-field optionally

finished board plus Manual £ 35.00

manual only (will be credited) £ 4.10

with wrap-field option + extra charge £ 5.50

PEPS

Programmable EPROM simulator

- ideal for developing programs
- simulates the EPROM 2716, 2732, 2764, 27128
- simple control via parallel interface
- 8 Bit Port or monochrome
- only two seconds for programming time (for 16 KB)
- employable to any system

finished board 16 Kbyte £ 67.90

Empty board plus manual £ 13.10

manual only (will be credited) £ 4.10

All products are to be paid cash in advance plus £4.90 packing and postage. We still need dealers abroad. Would you be interested in representing our firm in the U.K.? If so, we would be glad to hear from you!

Please contact:

Conitec

Grafener Str. 31
D-6100 Darmstadt — West Germany

Telephone: 01049-DARMSTADT-01

Telex: 4197288 cons d

FYLDE

Transducer and Recorder

Amplifiers and Systems

Reliable high performance & practical controls. Individually powered modules—mains or dc option single cases and up to 17 modules in standard 19" rack small size—low weight—realistic prices.

Fylde Electronic Laboratories Limited.

49/51 Fylde Road

Preston PR1 2XG

Telephone 0772 57560

Circle 14 for further details.

CONITEC

Membership

Please tick if receipt required or information on RAFA Membership

Address:

Space donated by

Electronics & Wireless World

The Wings Appeal Fund helps to maintain the RAF Association Home for Disabled & Chronic Sick. Care is essential for those who have served their country and who are in need. So please help by giving all you can for an emblem in WINGS WEEK in September or send a donation to show that you care.

To: Royal Air Forces Association, Appeals Dept., (DS) Portland Rd, Malvern, Worcs, WR14 2TA.

I enclose a donation of £ for the Wings Appeal Fund.

Name:

Address:

Please tick if receipt required or information on RAFA Membership

www.americanradiohistory.com
Appointments

Advertisements accepted up to 12 noon August 3 for September issue

DISPLAYED APPOINTMENTS VACANT: £21 per single col. centimetre (min. 3cm).
LINE advertisements (run on): £4.50 per line, minimum £30 (prepayable).
BOX NUMBERS: £7 extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant. Sutton, Surrey SM2 4AS).
PHONE: TAN FAUX. 01 661 3833 (DIRECT LINE)
15% VALUE ADDED TAX NOT INCLUDED
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

THE BEST APPROACH

£7,000-£30,000 + CAR

★ Where does your interest lie: Graphics; CAD; Robotics; Simulation; Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms; Radar; Opto and Laser?
★ Experienced in: VLSI; Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
★ There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
★ For free professional guidance: Call: 0638 742244 (till 8pm most evenings) or write (no stamp needed) to

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED
FREEPOST, The Maltings, Burwell, Cambridge, CB5 8BR.

Professional Career Opportunities

The Easy Way to look for your new job from the comfort of your own armchair. Our well qualified consultants will carefully match your requirements against appropriate vacancies.

We have many clients seeking Engineers and Technicians at all levels and we are particularly interested in hearing from you if you have experience in the following:

- Signal Processing
- Technical Sales
- ATE Programming
- Radar Systems
- RF Development
- Real Time Software

Your next step is to complete and return the attached coupon or telephone John Prodger on 0442 47311 or one of our duty consultants on 0442 212650 during evenings or weekends.

Executive Recruitment Services
THE INTERNATIONAL SPECIALISTS IN RECRUITMENT FOR THE ELECTRONICS, COMPUTING AND DEFENCE INDUSTRIES.
Maylands Avenue, Hemel Hempstead, Herts HP2 7LD

NAME
ADDRESS
POST CODE
TEL NO
QUALIFICATIONS AGE
NONE CG/HNC DEGREE OTHER
0 £6000 £6-10000 £10-15000 £15000+
JOB
Appointments

JUST THE TICKET!

Clipping this advert could be your ticket to a better career.
We have a wide selection of the best appointments in Digital, Analogue, RF, Microwave, Micro-processor, Computer, Data Comm's and Medical Electronics, and we're here to serve your interests.

Call us now for posts in Design, Test, Sales or Field Service, at all levels from £6,000 - £18,000.

11 Westbourne Grove, London W2. Tel: 01-229 9239.

ENGINEERING & TECHNICAL RECRUITMENT

1985

ELECTRONICS DESIGN & DEVELOPMENT ENGINEERS

Required by small, rapidly expanding company. Must be qualified to HNC, HND or degree level and have experience across the whole spectrum of Engineering: viz analogue, digital and 280 microprocessor based systems. Engineers must be self motivated and capable of working alone.

Apply in writing to: Mr S.D. Lawrence, PD Systems Ltd., Survey House, Pool Close, West Molesey. KT8 0RN

Electronic Engineers and Technicians

They’re asking for you in Alexandria.

Voluntary Service Overseas is looking for experienced and qualified Electronic Engineers and Technicians to work with and help train members of third world communities in Egypt (University of Alexandria Research Centre) and in Sri Lanka (Chilaw Diocesan Industrial Centre).

Applicants should be aged between 20 and 65, without dependants and willing to accept no more than the 'local' rate of pay.

If you have the right qualities and experience and you're free to go, please believe you're needed urgently!

(For more information, complete and return the coupon now.)

VOLUNTEER SERVICE OVERSEAS

Why not?

I'm interested in volunteering, my qualifications or experience are:

Name_________________________

Address_______________________

EMW3/3/85

Post to: Enquiries Unit, Voluntary Service Overseas, 9 Belgrave Square, London SW1X 8FW (S A E, appreciated) Charity No: 313757.

London Borough of Bromley

RAEVSBURKE COLLEGE OF ART AND DESIGN

School of Television and Broadcasting

Current Course developments and the introduction in September 1985 of a new BTEC HND course in Television Programme Operations have created the following staff appointments:

1. **SENIOR LECTURER IN TELEVISION BROADCAST ENGINEERING**

The Senior Lecturer will be responsible for teaching most aspects of video engineering technique in current use for broadcasting. The successful applicant is likely to have specialist knowledge of one specific aspect of television engineering with a good background knowledge of other areas. A working knowledge of digital and micro-processor techniques is essential since the applicant will be responsible for their development in the curriculum.

Applicants should hold an advanced level engineering qualification to at least HND level. This requirement may be waived if considerable broadcast experience is offered. An essential requirement of the post is that the person appointed is capable and interested in developing their interests and skills as part of the continuing course development.

2. **SENIOR ELECTRONICS MAINTENANCE TECHNICIAN**

An Electronics Maintenance Technician is required to maintain the broadcast equipment in use by the Department. Duties will include major fault finding in all types of studio equipment and some supervision of part-time technicians together with some administration duties. The postholder will report to the Board of Studies.

The successful applicant should offer several years experience in the maintenance of electronic systems including techniques involving microprocessor systems and digital techniques. Some television experience would be useful but, if a good electronics ability is demonstrated, the postholder should quickly develop the required skills for television engineering. It is expected that the successful applicant will hold an advanced level qualification in telecommunication or electronic engineering to at least HNC level or equivalent.

SALARIES (including London Weighting):

Senior Lecturer: £11,853 to £14,739

Technician (Scale 6) £9,189 to £9,771

Starting salary will depend upon qualifications and experience.

Application forms and further details from The Registrar, Ravensbourne College of Art and Design, Walden Road, Chislehurst, Kent BR7 5SN.

Inner London Education Authority

LEARNING RESOURCES BRANCH, Production Division: Television and Publishing Centre, Thackeray Road, London SW8 3TB

Television Camera Operators (ST1/2) (Two Vacancies)

Salary Range £6222 to £9327 plus £14119 London Weighting Allowance.

The Television Centre produces a range of educational programmes distributed in the form of videocassettes, sound cassettes and 16mm film. It has a colour studio equipped to professional standards (Link 110 cameras, Co video recorder, Neve sound mixer, Ampex VPR2's etc.) a mobile unit and battery portable camera.

Two vacancies have arisen for television camera operators to work principally in the studio but also on location video recording, the mobile unit and, on occasion, with other technical sections.

Full job description and application forms from EO/Estab 11B, Room 306, The County Hall, London SE1 7PB. (Please enclose S.A.E.)

Further details of the posts are available from the Chief Engineer’s Office at the Television Centre (229 9966). The closing date for completed application forms is 25/10/85. Suitable for Job-share.

ILEA IS AN EQUAL OPPORTUNITIES EMPLOYER

ELECTRONICS & WIRELESS WORLD SEPTEMBER 1985

www.americanradiohistory.com
BLOOMSBURY HEALTH AUTHORITY UNIVERSITY COLLEGE HOSPITAL
DEPARTMENT OF MEDICAL PHYSICS AND BIOENGINEERING

INSTRUMENT TECHNICIAN (MPTIV)
The post is for a Technician to work for the Instrumentation Group of the Department. The Group designs and constructs a wide range of microprocessor based instrumentation. In addition the Group is involved in the provision of first line service to the Hospital’s Ultrasound Department, the Pathology Laboratories and the Geriatric Unit. The successful applicant will be involved in all of these activities. A good working knowledge of electronics and a practical aptitude are essential.

Appointment, according to qualification and experience: Medical Physics Technician IV £6,488 – £8,188 inclusive London Weighting.

Application form and job description available from the Personnel Department on 01-387 2374 (24 hour service) quoting reference number RT69.

Closing date: 2nd September, 1985.

AN EQUAL OPPORTUNITIES EMPLOYER.

Service Engineer

Professional Video & Audio
Staines £ five figure

Sony's name needs little introduction. Our reputation is built around well designed, high quality and high performance electronics products for both the consumer and commercial markets.

As a result of internal promotion, we are now looking to recruit an additional Service Engineer to work in our well-equipped service department in Staines. As part of the small team providing service back-up for our Non-Consumer products (cameras, projectors, monitors, U-Matic, etc) you will be fault finding and repairing, on the bench, the complete product range. Qualified at least to City and Guilds 224, and ideally to HND level, you will have had at least five years' experience in servicing non-domestic video products (U-Matic format) and video cameras. In return, we offer an excellent salary, lunch allowance, 23 days holiday and a range of other benefits which are everything you would expect from a company like Sony.

To apply, please write, with full details of your qualifications and experience to date, to Patricia Casey, Sony (UK) Limited, Sony House, South Street, Staines, Middlesex TW18 4PF. Alternatively, phone her for an application form on Staines (0784) 61688.

SCHOOL OF ORIENTAL AND AFRICAN STUDIES
(University of London)

CHIEF TECHNICIAN

Experienced audio-visual aids technician required with electronics background and qualifications, preferably to HNC level. Supervisory experience combined with the ability to work well under pressure in a service environment is essential, as is a wide practical technical knowledge. Good working conditions. Salary on scale £8,246 – £10,265 inclusive. For application form contact Mr. J.M.M. Dixon, School of Oriental and African Studies (University of London), Malet Street, London WC1E 7HP. Tel: 0171 2288, Ext. 237.
Medical Physics Technician

GRADE III

To assist with the maintenance and repair of electronic and electromechanical equipment. Must be capable of a logical and analytical approach to fault diagnosis under all conditions of urgency.

Salary £6,408 to £8,283 per annum (increase pending). Minimum qualification O.N.C. or current equivalent.

Application form and job description available from District Works Office, St. James’ Hospital, Exton’s Road, King’s Lynn, Norfolk. Telephone: King’s Lynn (0553) 766266 ext. 764/798. Closing date for applications: 6th September 1985.

SYSTEM PLANNING ENGINEERS

Newbury, Berkshire

ATTRACTIVE SALARIES

RELOCATION ASSISTANCE

Cabletime is a member of the UEI Pric group which includes innovative high technology companies such as Quanetel and Link Electronics. Cabletime is involved with the design, development and installation of advanced switched star interactive cable TV networks with head end computer control and data communication networks.

Cabletime is seeking to recruit SYSTEM PLANNING ENGINEERS to assist in the design of cable television distribution and Broadband data communication systems.

The work involves interpreting customer requirements in conjunction with area mapping information to produce suitable network designs, providing technical support to the sales and project teams and evaluating electronic distribution equipment to be used within the networks.

Essential requirements area; a knowledge of data communication networks and television transmission, the ability to communicate with customers at a technical level and some skill in technical writing. You should be qualified to HND/HTC level with a high degree of self motivation, and the ability to follow projects from their conception through to commissioning.

If you are interested in this position, please write or telephone for an application form to: The Personnel Officer, Cabletime Limited, 17 West Mills, Newbury, Berkshire. Tel. Newbury (0635) 48222.

Experienced Video Design Engineer

A fast moving video manufacturing company requires a design engineer with both analog and digital experience to assist existing design teams involved in interesting and challenging projects.

The successful applicant will have several years experience in design and development of some of which will have been in the video industry. He will be educated to degree level in electronics self-motivated and possess good communication skills.

Salary negotiable depending on experience.

In the first instance contact: Deborah Levine on 01-391 5678.
ELECTRONICS/SOFTWARE

TECHNICAL AUTHORS

Howard Engineers produce maintenance and user manuals, to a high standard, for a wide variety of products, from large electronics systems to software for personal computers.

We currently have vacancies for both trainee and experienced Technical Authors. The work involves liaison with our clients, developing a detailed understanding of the product, organizing and writing the handbook and co-ordinating the production of the finished text and illustrations.

Prospective trainees should have a sound knowledge of electronics or computer software, acquired from formal education, job experience or a serious leisure activity, plus the ability to express themselves concisely in the written word.

The company offers varied and interesting work, a pleasant working environment and a salary commensurate with your knowledge and experience.

Vacancies exist at our Gosport, Southampton and Wokingham offices. Apply in the first instance to:

Carolyn Hatch
HOWARD ENGINEERS LTD
Grosvenor House
Cumberland Place
Southampton
Hampshire
S01 2BD
Tel: (0703) 334332

B&W LOUDSPEAKERS
STEYNING, SUSSEX

Rare opportunities to join our progressive research team developing high-end audio products.

SENIOR PROJECT ENGINEER

Candidates should have a good degree and at least five years R&D experience in high quality drivers and loudspeaker systems, and be capable of original thinking as well as following projects through to conclusion.

AUDIO ENGINEER

To work with Project Engineers in developing high quality drivers and systems. Some previous experience is desirable, but graduates will be considered depending on ability and initiative.

Working conditions are extremely pleasant, complete with computer and laser interferometry facilities.

BUPA membership, canteen and other fringe benefits. Salary commensurate with ability/experience. We are looking for dedication and ambition recognising success with a bonus scheme.

Please apply in writing to the Managing Director

B&W LOUDSPEAKERS LTD
Elm Grove Lane, Steyning, West Sussex BN4 3SA

SOUTH PACIFIC JOB OPPORTUNITIES

PAPUA NEW GUINEA
DEPARTMENT OF CIVIL AVIATION
GROUND FACILITIES DIVISION

REQUIRES—

CHIEF ENGINEER
Ref No: VSCA/53

SENIOR ENGINEERS
RADIO AND ELECTRICAL
Ref No: VSCA/54

TELECOMMUNICATIONS AND ELECTRICAL TECHNICIANS
Ref No: VSCA/55

TECHNICAL INSTRUCTORS
RADIO AND ELECTRICAL
Ref No: VSCA/56

DRAFTSMEN ELECTRONIC AND ELECTRICAL
Ref No: VSCA/57

SALARY PACKAGE

Engineers £23000 — £24200
Technicians, Instructors and Draftsmen £18000 — £22000

BENEFITS

Three year contract with possibility of renewal.
Free MARRIED/SINGLE accommodation.
Six weeks annual leave.
Return leave fare once per contract.

EXPERIENCE

Extensive background in Aviation Ground Facilities preferred. May consider those from allied areas if they have proven staff management and training experience particularly in a developing country.

QUALIFICATIONS

Degree, HNC/ONC or equivalent.

Closing date for applications 20th September 1985

For full details and application forms please write or telephone the Recruitment Dept, Papua New Guinea High Commission, 14 Waterloo Place, London SW11 4AR. Telephone: 01-930 0922 Telex: Kundu 25927
RADIO COMMUNICATIONS SPECIALISTS
Service Engineer Required
For Private Mobile Radio Company
Good career prospects with expanding young business

Contact:-
Frank Stafford on 01-801 6457
Unit 7, Mill Mead Centre
London N17 9QU

ELECTRONICS ENGINEER
The Polygram Recording Studio and Copying Suite require an
electronics engineer.

Applicants should have an interest and experience in the field of modern
recording and digital electronics. Ability to operate and implement a fault
diagnosis and repair procedure is essential.

Experience within a recording studio or similar environment involving
maintenance of electronic, electro-mechanical and digital systems
would be an advantage.

The successful applicant must have a flexible approach and be able to fit
into a busy working studio. There is a requirement for some overtime and
weekend working to meet recording studio deadlines.

Applicants should have a degree or HNC in a relevant discipline.

Please send a detailed C.V. with covering letter to:
Veronica Spicer, Personnel Officer,
PolyGram Record Operations Ltd.,
54, Maddox St., London W1.
01 491 4600

Brent Health Authority
Central Middlesex Hospital
Electronics Technician
(MPT GRADE II)
Salary: £7718-9627 + £648
London Weighting
A technician is required to service and maintain a wide
range of electro-medical
equipment used within this
Health Authority’s district.
Applicants should possess an
HNC or equivalent in Electronic
Engineering plus four years
relevant experience.
For a job description and
application form, please contact
the District Personnel
Department, Central Middlesex
Hospital, Acton Lane, London
W10 7NE; Tel: 01-965 5733
Ext. 2976.
For further information, please
contact Michael Trand (Chief
Electronics Technician) on Ext
2885.
Brent Health Authority working
for Equal Opportunities.

FM & MW BROADCAST EQUIPMENT
A special range of high quality
transmitters, power amplifiers,
stereo encoders, UHF repeater
links, compressors, antennas.
Power 10w to 1kw.
Built to high specifications at an
economic price. Meets IBA & Home
Office specifications.

Full catalogue available.

Cyberscan International, 3 Eastcote
View, Pinner, Middlesex HA5 1AT.
Tel: 01-886 3300

CAPITAL APPOINTMENTS LTD
THE UK’s No. 1 ELECTRONICS AGENCY
If you have HNC/TEC or higher qualifications and are
looking for a job in design, test, customer service, technical
sales or similar fields:

Telephone now for our free jobs list
We have vacancies in all areas of the UK
Salaries to £15,000 pa
01 808 3050
(24 hours)

TECHNICIAN ENGINEERS
COMMUNICATIONS AND ELECTRONICS
A Planned Career in Technology in the Cotswolds
Salaries up to £11,445

- VACANCIES at both TECHNICIAN ENGINEER and
ENGINEERING TECHNICIAN level.
- CHALLENGING WORK in the development and support of highly
sophisticated communications and computer systems.
- OPPORTUNITIES for gaining experience in a wide variety of technical roles.
- EXTENSIVE ENGINEERING FACILITIES
- CAREER PLANNING aided by regular assessments of performance,
ADVANCEMENT opportunities on the basis of proven ability.
- OVERSEAS service (voluntary).
- FLEXIBLE working hours with up to six weeks leave.
- RELOCATION EXPENSES in most cases.

Applicants for the higher grade of TECHNICIAN ENGINEER should normally possess a
BTEC Higher National Certificate/Diploma in electronics or other relevant subject; or a
City and Guilds Full Technological Certificate, or an equivalent qualification. An aggregate
of at least 8 years relevant training and experience is required. Registration as a Technician
Engineer (T.Eng) would be an advantage.

Salary Scale: £9,113 - £11,445

Applicants with BTEC ONC or equivalent and at least 4 years relevant training and
experience are eligible for posts at the ENGINEERING TECHNICIAN level for which a
structured training programme is provided.

Salary Scale: £6,599 - £9,135

INTERESTED? Then for either post send for full details and application form to the
address below, quoting Ref: 7/6823/85

THE RECRUITMENT OFFICE, GCHQ, ROOM A, 108
OAKLEY, PRIORS ROAD, CHELTENHAM, GLOUCESTERSHIRE
OR TELEPHONE (0242) 228982/3
Radio Relay ★ Ground Radio ★ Telecommunications

However you communicate with us, the reception will always be good.

If you are an Engineer or Technician who has tried to communicate your career details recently, you may have had a less than ideal reception.

But that won’t happen if you communicate to us.

That’s because we have a massive and on-going commitment to assist the Royal Saudi Arabian Air Force with the operation and maintenance of its ground-based communications and, at the same time, undertake the training of local personnel in all aspects of this work.

Which means we have immediate opportunities for Engineers (with a degree, HND, HNC, FTC or Forces equivalent and 5 years experience) and Technicians (with apprenticeship C&G or forces equivalent and at least 7 years experience).

We can offer very attractive tax-free salaries and a range of benefits including generous annual leave with free return flights to the UK ★ free accommodation ★ free medical and life assurance ★ excellent sports and recreational facilities ★ substantial end-of-contract bonus.

To find out how good the reception can be at our end of the communications link, contact The Recruitment Executive. Please quote Ref. G238.

IAL Manpower Services, Aviation Services, Aeradio House, Hayes Road, Southall, Middlesex UB2 5NJ. Telephone: 01-574 5000.

Aviation Services • Manpower Services

A member of the STC PLC group
Electronics Training Professional

£14,000 to £18,000

Excellent benefits package, including stock option and relocation assistance.

Cathie Tracy & Associates Ltd

Attracts the best!

www.americanradiohistory.com
SERVICES

DESIGN, DEVELOPMENT AND PROTOTYPES. Digital and microprocessor based equipment our speciality. Prototypes and small batch production undertaken to the highest quality and with fast turnaround. For details of our hardware and software services please contact: IB Electronics, 11 Broomshaw Road, Maidstone, Kent.

SMALL BATCH PCBs, produced from your artwork, also DIALS, PANELS, LABELS, Camera work undertaken. FAST TURNAROUND. Details: Orbiotech C ircuits, 38 Torquay Gardens, Redbridge, Essex. R44 SPT. Tel: 01-550 3610.

HAVING DESIGN PROBLEMS? THEN CONTACT OUR SOLUTIONS DEPT ANALOGUE & DIGITAL DESIGN — C.A.D. PHONE OR WRITE

Selcom

tel - 021 - 773 - 0913
Unit A, N.E.W. 272 Montgomery St.
Sparkbrook, Birmingham B11 1DS.

Don’t Forget! for your classified adverts ring

Ian Faux 01 661 3033

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To “Wireless World” Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.50 PER LINE. Average six words per line. Minimum £30 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus £7
- Cheques, etc., payable to “Business Press International Ltd.” and cross “& Co.”
15% VAT to be added

NAME
ADDRESS

REMITTANCE VALUE ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS
ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer's entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. ALL FEATURES LISTED are INCLUDED AS STANDARD:

- COMPLETE with either single or double (as illustrated) TEAC half-height 5¼ double-sided, double-density floppy disc drives. Formatted capacity: 320Kb per drive.
- 4 MHz 280A CPU
- 64Kb RAM (in 4164 chips)
- 28Kb EPROM containing monitor & MICROSOFT BASIC
- CP/M Version 3.01
- 80 x 24 display with colour block-mode graphics

Available ONLY from COMPUTER APPRECIATION, 16 Walton Street, Oxford OX1 2HQ. (0865) 551633. TEL: 834448. 454377 (0444) 73830

PLEASE NOTE: from 5th September Computer Appreciation's new address is 111 Northgate, Canterbury, Kent. Tel: (0227) 470512.

CIRCLE 19 FOR FURTHER DETAILS.
Tomorrows Soldering Technology Today.

ANTEX has a worldwide reputation for quality & service & for many years has been one of the best known & most popular names in soldering. Always at the forefront of technology, ANTEX is continually researching new and better ways of achieving more accurate, reliable, and cost effective soldering. On ANTEX Soldering Irons, the advanced design of the interface between the element & the bit allows more efficient heat transfer to the bit and improved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an X525 watt iron can be used for tasks where a 40 watt iron would normally have been required.

ANTEX Soldering Irons exhibit exceptionally low leakage currents & hence are suitable for use on Static Sensitive Devices. Sophisticated temperature controlled soldering units have recently been added to the ANTEX range.

Table of Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts</th>
<th>Voltage Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model C</td>
<td>15</td>
<td>250, 220, 115, 100, 50 or 24 volts</td>
</tr>
<tr>
<td>Model XS</td>
<td>25</td>
<td>240, 220, 115, 100, 50, 24 or 12 volts</td>
</tr>
<tr>
<td>Model XS-BP</td>
<td>25</td>
<td>240 volts, fitted with British Plug</td>
</tr>
<tr>
<td>TCSU1</td>
<td>30/40 Watt</td>
<td>240 volts, fitted around FERRANTI ULA. Range 55°C to 450°C. Accuracy ±5°C.</td>
</tr>
</tbody>
</table>
Spot On!

Time has been our business since 1974. Precision has been our aim. We have experience in display, code generation, off air time, off air frequency and frequency standards. Single units to the largest system.

Our time is at your disposal.

European Electronic Systems Limited,
Woodham Mortimer Place,
Maldon, Essex CM9 6SW.
Telephone: 024541-5911
Telex: 995917 mumme

Time Code Reader.
MSF Rugby Simulator.
Tape Search System.
Radio Clock (5 mSec)
Radio Clock (500 μSec)

CIRCLE 3 FOR FURTHER INFORMATION

Made in England.

www.americanradiohistory.com