Personal electronic mail system

50th radar anniversary

Designing small transformers

<table>
<thead>
<tr>
<th>Country</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>A$ 3.30</td>
</tr>
<tr>
<td>Denmark</td>
<td>Dkr. 38.00</td>
</tr>
<tr>
<td>Germany</td>
<td>DM 7.00</td>
</tr>
<tr>
<td>Greece</td>
<td>Dr. 24.00</td>
</tr>
<tr>
<td>Holland</td>
<td>Dfl. 9.00</td>
</tr>
<tr>
<td>Italy</td>
<td>L 4.00</td>
</tr>
<tr>
<td>Spain</td>
<td>Pes. 37.00</td>
</tr>
<tr>
<td>Switzerland</td>
<td>SFr. 5.00</td>
</tr>
<tr>
<td>Singapore</td>
<td>MS 4.00</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>$ 1.00</td>
</tr>
</tbody>
</table>

August 1985 85p

www.americanradiohistory.com
Take home a world champion.

£72,- gets you a technical knockout.

The Fluke 70 Series.
Winners of the digital vs. analog battle.
Since their debut, they've become the worldwide champions of the industry.
Never before have such tough meters offered so many professional features at such unbeatable prices.
Each comes with a 3-year warranty, 2,000+ hour battery life, and instant autoranging.
You also get the extra resolution of a 3200-count LCD display, plus a responsive analog bar graph for quick visual checks of continuity, peaking, nulling and trends.
Choose from the Fluke 73, the ultimate in simplicity. The feature-packed Fluke 75.
Or the deluxe Fluke 77, with its own protective holster and unique "Touch Hold" function* that captures and hold readings, then beeps to alert you.
So don't settle for just a contender. Take home a world champion.
For your nearest distributor or a free brochure, please call or write.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Fluke (G.B.) Ltd.
Colonial Way
WATFORD Herts WD2 4TT
United Kingdom
Tel.: (0923) 25067
Telex: 93 4583

*Patent pending
Prices are exclusive of V.A.T. at current rate.
Designing small transformers by D. Baert
A step-by-step approach to the calculation of small power transformers.

Video displays — 2
Supplementing last month’s survey, this part gives more on text and graphics displays and includes a short product review.

Vehicle electronics by R.E. Young
Using the development of automotive electronics as an example, R.E. Young discusses the relative merits of large and small development teams.

Electronic mailbox by M. Allard
A high-speed, reliable electronic message system for private use.

REGULARS

News commentary

Every word a pearl?
Breadboarding on silicon
Satellite radio
First international-standard network

Books

19,61

Circuit ideas

Solar panel regulator
Programmable power supply
Up/down counter with alarm
Buoy flasher

Communications

Public-key cryptosystems
Spreading police radio?
Software on tv
Leukaemia and radiation
Kraus’s antennas

Feedback

Real a.m.
British invention
Logic symbols

New products

Soldering thermometer
Low-cost plotter
Single-chip controllers

Front cover illustrates the personal electronic mail system, designed by Martin Allard, which is described in the article starting on page 33. Cover design by Paul Davies.

Wireless world

Regulars

August 1985

CONTENTS

Features

Designing small transformers by D. Baert
A step-by-step approach to the calculation of small power transformers.

Robots for learning — and fun by Nigel Clark
Small robots can be used to teach the principles of industrial types.

Optical communications — 1935 style by D. Rollema
Line-of-sight light communications were used by the German military before the war.

Compact disc players by J.R. Watkinson
Details of CD player circuitry.

Call-cost calculator by S.A. Cameron
Construction details for this Z80-based design, which can save its cost in a matter of months.

Radar in retrospect by Tom Ivall
A report from an IEE seminar held to celebrate 50 years of radar development.

Contents

Volume 91 number 1592

Features

Designing small transformers by D. Baert
A step-by-step approach to the calculation of small power transformers.

Robots for learning — and fun by Nigel Clark
Small robots can be used to teach the principles of industrial types.

Optical communications — 1935 style by D. Rollema
Line-of-sight light communications were used by the German military before the war.

Compact disc players by J.R. Watkinson
Details of CD player circuitry.

Call-cost calculator by S.A. Cameron
Construction details for this Z80-based design, which can save its cost in a matter of months.

Radar in retrospect by Tom Ivall
A report from an IEE seminar held to celebrate 50 years of radar development.

Regulars

News commentary

Every word a pearl?
Breadboarding on silicon
Satellite radio
First international-standard network

Books

19,61

Circuit ideas

Solar panel regulator
Programmable power supply
Up/down counter with alarm
Buoy flasher

Communications

Public-key cryptosystems
Spreading police radio?
Software on tv
Leukaemia and radiation
Kraus’s antennas

Feedback

Real a.m.
British invention
Logic symbols

New products

Soldering thermometer
Low-cost plotter
Single-chip controllers

Front cover illustrates the personal electronic mail system, designed by Martin Allard, which is described in the article starting on page 33. Cover design by Paul Davies.
NEW PRODUCTS

- **MINIATURE RUBIDIUM OSCILLATOR MODULE**
 Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

- **RUBIDIUM FREQUENCY STANDARD**
 High performance, compact and rugged instrument. 2U rack or 1/4ATR case options.

- **INTELLIGENT OFF-AIR FREQUENCY STANDARDS**
 Microcomputer controlled instruments, directly traceable to NPL, precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.

- **LOW COST MSF FREQUENCY STANDARD**
 Instant operation, directly traceable to NPL, self-contained portable unit, no scheduled frequency changes, 24 transmission, real time synchronisation.

RADIOCODE CLOCKS LTD

Specialists in Atomic Time, Frequency and Synchronisation Equipment

NEW PRODUCTS

- **MINIATURE RUBIDIUM OSCILLATOR MODULE**
 Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

- **RUBIDIUM FREQUENCY STANDARD**
 High performance, compact and rugged instrument. 2U rack or 1/4ATR case options.

- **INTELLIGENT OFF-AIR FREQUENCY STANDARDS**
 Microcomputer controlled instruments, directly traceable to NPL, precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.

- **LOW COST MSF FREQUENCY STANDARD**
 Instant operation, directly traceable to NPL, self-contained portable unit, no scheduled frequency changes, 24 transmission, real time synchronisation.

FIELD ELECTRIC LTD

3 SHENLEY RD. BOREHAMWOOD. HERTS. TELEPHONE 01-953-6909

CIRCUIT 36 FURTHER DETAILS.

FIELD ELECTRIC LTD

3 SHENLEY RD. BOREHAMWOOD. HERTS. TELEPHONE 01-953-6909

OFICIAL ORDERS/OVERSEAS ENQUIRIES WELCOME

OPEN 6 DAYS A WEEK 9.00am-5.00pm MON TO THUR 9.00am-1.00pm

PRINTED ARRAYS (DC. SERVO MOTORS)

- **TYPE U** 1MC/S W.D.C. POWER OUTPUT 110V. RATED CURRENT 0.4A W.H. 7.4A SINGLE PHASE 230V D.C. METER £90.00

TF144H/A4 £90. TF1060/2 £60 HP606A £485

CIRCLE 16 FOR FURTHER DETAILS.

ELECTRONICS C.A.D.

"ANALYSER"

PERFORMANCE ANALYSIS OF LINEAR CIRCUITS using the BBC MODEL B AND SINCLAIR SPECTRUM 48K MICROCOMPUTER

- Varactors, Resistors, Capacitors, Inductors, transformers, bipolar and Field Effect Transistors, and Operational Amplifiers in any possible configuration.

- Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 30 Nodes and 100 Components, for Phase and Gain/Loss, Input Impedance and Output Impedance.

- Ideal for the analysis of Active and Passive FILTERS, AUDIO, WIDEBAND and R.F. AMPLIFIERS, LINEAR INTEGRATED CIRCUITS, etc.

- "ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.

- USED BY INDUSTRIAL AND UNIVERSITY DEPARTMENTS WORLD WIDE.

- "EASY TO USE. PRICES FROM $20 Access or AMERICAN EXPRESS WORLD." WELCOME.

- For further details write or phone NUMBER ONE SYSTEMS.

- DEPARTMENT WWV

- 9A CROWN STREET, ST IVES

- HUNTINGDON, CAMBS, UK. PE17 4EB

- TELEPHONE: 0480 617788 DEPT: 32329

CIRCUIT 59 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
CARACAL SINE WAVE INVERTERS
200 to 1000 VA

CARACAL's new range of pulse width modulated inverters are now even better than ever compared to older tuned-type inverters—with even higher efficiency, lower standby current and lower weight than before.

CARACAL inverters have been in use around the world for many years wherever a reliable and stable source of backup or standby AC power is needed for computers, communications, instrumentation, and for mobile, field or marine applications.

ASK ABOUT OUR CUSTOM/ OEM SERVICE—THE U.K.'S BEST INVERTERS TO SUIT YOUR DESIGN—FROM 50 TO 1000 VA

CIRCLE 78 FOR FURTHER DETAILS.
COOLING & HEATING

Keep your premises cool and comfortable with a range of BRAND NEW professional cooling fans.

BUDGET RANGE VIDEO MONITORS

At this price, why not expand our range of EQUIPMENT video monitors to provide complete video systems with standard composite video input. Units are pre-tested and set to suit the local voltage. On delivery, this will ensure that the monitor is set correctly and is ready for immediate use.

DATA MODEMS

Join the communications revolution with our special OFFER of MODEMS with prices and types to suit all applications and budgets.

COLOUR MONITOR SPECIALS

A major company's over production special, a BULK PURCHASE enable TWO outstanding offers.

COOLING & HEATING

Keep your premises cool and comfortable with a range of BRAND NEW professional cooling fans.

BUDGET RANGE VIDEO MONITORS

At this price, why not expand our range of EQUIPMENT video monitors to provide complete video systems with standard composite video input. Units are pre-tested and set to suit the local voltage. On delivery, this will ensure that the monitor is set correctly and is ready for immediate use.

DATA MODEMS

Join the communications revolution with our special OFFER of MODEMS with prices and types to suit all applications and budgets.

COLOUR MONITOR SPECIALS

A major company's over production special, a BULK PURCHASE enable TWO outstanding offers.

COOLING & HEATING

Keep your premises cool and comfortable with a range of BRAND NEW professional cooling fans.

BUDGET RANGE VIDEO MONITORS

At this price, why not expand our range of EQUIPMENT video monitors to provide complete video systems with standard composite video input. Units are pre-tested and set to suit the local voltage. On delivery, this will ensure that the monitor is set correctly and is ready for immediate use.

DATA MODEMS

Join the communications revolution with our special OFFER of MODEMS with prices and types to suit all applications and budgets.

COLOUR MONITOR SPECIALS

A major company's over production special, a BULK PURCHASE enable TWO outstanding offers.

COOLING & HEATING

Keep your premises cool and comfortable with a range of BRAND NEW professional cooling fans.

BUDGET RANGE VIDEO MONITORS

At this price, why not expand our range of EQUIPMENT video monitors to provide complete video systems with standard composite video input. Units are pre-tested and set to suit the local voltage. On delivery, this will ensure that the monitor is set correctly and is ready for immediate use.

DATA MODEMS

Join the communications revolution with our special OFFER of MODEMS with prices and types to suit all applications and budgets.

COLOUR MONITOR SPECIALS

A major company's over production special, a BULK PURCHASE enable TWO outstanding offers.
SUPER DEAL! NO SUPER STEAL!!
The FABULOUS 25CP/S TEC Starwriter

BRAND NEW AT ONLY £49.95 + VAT

ELECTRONICS

Made to the highest spec the TEC Standard FRP1500-25 features a heavy duty 3 phase chassis and DIABLO type print mechanism. Superior registration and print quality, Neat & silent operation. Our TEC's have standard command compatibility and full typewriter style key action.

Many other features include b directional printing, switchable 10 or 12 pitch full with 381 mm paper handling with upto 163 characters per line. Fixation feed rollers for single sheet or continuous paper. Internal buffer standard RS232 serial interface with handshake. Supplied absolutely FREE with 90 day guarantee and never during dust cover. Orders now or contact sales office for more information. Optional extras RS232 cable £10.00. Tech manual £7.50. Tractor feed £14.00. Spares duty £2.50. carriage 6s. (£5.00 additional in mainland)

PROFESSIONAL KEYBOARD OFFER

A limited edition of this new super offer shows a GREAT OFFER: all travel keyboard packs. An Alpha Numeric keyboard plus free control key. Parallel TTL port plus strobe Dim 12" x 5.5" x 10.5" £29.00.

EXCLUSIVE keyboard with high quality GOOQ, normally open switch on standard X-Y mats. Complete with 3 LED indicators & 2 cable - ideal micro computer, etc. complete with 3c. £21.00. £4.50 carriage on keyboards £25.00.

66% DISCOUNT!!

Due to our massive bulk purchasing programme which enables you to bring you the lowest possible prices, we have thousands of T.C.'s Transistors. Reals Cap. R.C.'s. 5.d assembled switches. etc. etc. sent to our customers. Because we don't have sufficient stocks of any item to include in our ads, we are passing all these items on the BARGAIN VARIETY OF A LIFETIME levels. The standards of components all giveaway price. Guaranteed to be worth at least 33% what you pay. Unbeatable value. Sold by weight.

10Ks £1.00 + £0.25. 20 kis £7.50 + £4.75

2.5k £75.25 + £1.25. 10kis £60.25 + £2.25.

2,56k £65.95 + £1.80. 10kis £61.85 + £2.25.

WORLD AUGUST 1985

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES!

ENGLAND'S LARGEST SURPLUS STORE — SEEING IS BELIEVING!!

D.C. POWER SUPPLY SPECIALS

Experiemtens PSUs Ex-GPO. All silicon electronics. Outputs give +5v & 2 amps +12v @ 800 mA-12v @ 800 mA+24v @ 350 mA and 5v floating @ 50 mA. Dim 160 x 120 x 350 mm. All outputs are fully regulated and short circuit proof. Supplied in NEW or little used condition. Complete with circuit. Only £15.50 + £2.50 p.p.

FARNELL 5 Volt 40 amp. Type number GS40A. This miniature switching PSU, measures only 175mm deep and 50mm high. It delivers a massive 40 amp. Fully regulated and smoothed with over voltage protection etc. 120 or 240 volts AC. Supplied fully regulated with circuit at full load and full of current if the current list price. Only £130.00 + £3.00 carriage.

LAMBDA LMCC5V 110v AC input with 5 volts DC at 8 to 10 amps fully regulated output. Completely enclosed unit measures only 9 x 4 x 5" £25.95.

LAMDA LMCC5V 110v AC input with 5 volts DC at 10 to 10 amps fully regulated output. Suitable for remote control, hence remote control uses. £35.95.

PERIPHERAL SYSTEM SUPPLY. Runs almost any system. Fully cased unit. £35.00+VAT. £43.50 inc VAT. £47.50 inc. VAT. £48.50 inc. VAT. £50 inc VAT.

CIRCUIT BREAKER Fuses 100A to 10A. £3.50 inc VAT.

ULTRA COMPACT

DIAGRAM

ACOUSTIC MODERN - COUPLER

A Major manufacturer's production and a bulk buy special enables us to offer this BRAND NEW TRANSDUCER 300B with compact BT APPROVED. 300 bauf full duplex acoustic modem at a fraction of manufacturer's list price. The unit operates on the standard 4 kHz ATT 4522 and other frequencies. AFR 3202 interface via 25 way D' skt. Complete sections are made from an cartridge system, which fits almost anywhere on the phone. This includes: No jacks or phone cables and a light weight of only 1.2 Kg and you have a truly portable modem! Supplied complete with data, 90 day guarantee and ready to use.

ONLY £49.95 + £3.00 pp

1000's of other EX-STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, V.U.DS., PRINTERS, POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.

Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

CIRCLE 84 FOR FURTHER DETAILS.
Combined research for GEC Marconi

Three different research establishments are to come under a single umbrella — GEC Research Ltd. These are the Marconi Research Centre at Caversham, Badwood. The first Research Centre at Wembley and the Engineering Research Centre at Whetstone and Stafford. This will enable the research efforts to be more easily coordinated. GEC has found that with converging technologies, work done at the research centres has wider applications throughout the organization. Another reason has been that with the collaborative research ventures with other UK companies and in Europe (especially with Alvey and Esprit) it has been found necessary to establish a corporate, legal, identity. The new company employs 2500 people of whom over half are graduate scientists and engineers.

GEC took advantage of the occasion of the launch of the new company by displaying some of the subjects of their latest research. There is a very wide range and include such areas as compound semiconductors, including gallium arsenide; v.l.s.i. c.m.os and silicon-on-sapphire circuits; computer-aided i.c. design; many areas of materials science including the development of high-grade quartz, amorphous alloys and the use of organic material in electro-optics and piezoelectric devices.

Telecommunications had several projects under way including a low cost analogue telephone with the dialling and speech circuits integrated into one chip; a teletex messaging service for several simultaneous users; a 140Mbit/s optical fibre trunk transmission system and a 2400bit/s full-duplex modem.

Much research is being carried out in computer-aided design, particularly in antenna design, p.c.b. and integrated circuit design.

Perhaps of particular interest are those long-term projects carried out by the Chief Scientist Unit. One of these projects is an active matrix I.c.d. and they plan to fabricate a thin film, portable A4 size display with half a million pixels. Each pixel will incorporate a field-effect transistor and this requires the development of thin-film transistors onto glass, a completely new technology.

The Unit is also working on an organic liquid indicator that will show if a frozen food package has been defrosted after it was first frozen. Superconducting cryogenic electronics devices or Squids are extremely sensitive to magnetic fields and may be used for the non-invasive monitoring of heart and brain activity. Also in the Unit is a team investigating liquid-crystal polymers for use in optical memories. Liquid crystal polymers combine the electro-optic properties of conventional liquid crystals with the mechanical properties of solids. Data points may be written using a focussed laser beam to heat the previously aligned, transparent film. On cooling the heated spot become scattered and opaque. Subsequent applications of an electric field can erase the scattered regions.

Every word a pearl?

Authors frequently tell us how pleased they were with the presentation of their work. Some of them have said that at first, they were incensed that their work had been "edited" (the process is called sub-editing) but that, on matuer consideration, had decided that it was fully justified.

It is natural to feel resentment when someone else fiddles about with your painfully composed writing and one's instinctive reaction is to describe the tamperer as an illiterate fool, particularly if one had slipped a merry jest of some kind in the original which was subsequently excised.

There are several reasons for subbing an article. It may be that the author stands too close to the writing and is completely unable to see that it contains ambiguities, repetition, omissions or even errors. The algebra can be inconsistent; the style of writing is sometimes

Amstrad in the US

Following the successful launch of the Amstrad CPC464 computer in the UK, Amstrad are now attempting to enter the US market with a 128K home computer. The CPC6128 is to be available in America in Autumn but as yet there are no plans to sell it in the UK. The machine is to be imported and marketed by an established American company, Indescomp, and Amstrad are not making any investment in the US.

The Amstrad CP464, a 64K computer with a colour or monochrome monitor and built-in cassette player and a very comprehensive Basic, was followed recently by the CP664 which incorporated a disc drive. It is likely that the 128K micro will be available in the UK next Spring.

Satellite radio

A demonstration will take place at the Montreux Television Symposium of the simultaneous reception of nine Wegener subcarriers added to one video carrier on the ECS F1 satellite. The nine extra carriers can be used for audio or data reception. The same service was used by the BBC during last Summer's Olympic Games to carry three radio programmes on satellite link from Los Angeles in addition to the TV coverage. The BBC and Capital Radio are investigating the possibility of using the Wegener sub-carrier equipment, supplied in Britain by Megasat, for expansion of their radio networks through Europe and cheaper transmission within the UK. Megasat are showing 1.1m dishes at Montreux and the equipment at the level of the sub-carriers without the video signals is relatively very low cost. For the reception of data services the dishes can be even smaller. The 1.1m dish can accommodate data rates of up to 128Kbit/s, a 90cm dish can cope with 56Kbit/s.
First international-standard network

A British company, LDR Systems of Aldershot, are claiming the first independent implementation of the ISO standard for Open System Interconnect (OSI). Isonet is a software package that enables telecommunications users and system builders to design and install data communications networks.

The system is portable and may be implemented within a very short time on the majority of computers from micros to mainframe. The system works on the IBM PC and those computers compatible with it. It also runs on the Burroughs B20 range, the VAX-11 and the Apricot and Sirius computers from ACT. There are CP/M86, MS-DOS and Concurrent DOS versions and many other implementations are in preparation.

The system is written in ISO-Pascal and also in "C". The package comprises a number of building blocks which provide the various services and protocols defined in the ISO OSI standard. It can be used over a wide variety of communications media for both local and wide-area networking and can enable the interconnection of I.A.NS and W.A.NS using X.25 protocols.

Isonet will also form the basis of a range of applications facilities, including an electronic mailbox system and for file transfer.

The system was developed with the assistance of a grant of £244 000 from the Software Products Scheme of the National Computing Centre.

The managing director of LDR Systems, John Divers, believes it to be a major breakthrough for the future of computer networks and explained that it had taken 15 man-years to develop which would be a large amount of effort for any competitor to catch up with.

In a completely different announcement, IBM has announced its increase in support for all European customers who are considering implementation of the OSI standards. IBM participated in the national and international standards committees that were involved in the development of the standards. They have several products that support OSI-related standards and tests are to begin this year on software that will provide support for selected functions of OSI layers 4 and 5.

Breadboarding on silicon

Texas Instruments have developed electron-beam lithography to a stage where they can write the metallisation pattern on to individual integrated circuits within a slice. This enables them to provide individually programmed arrays in a very short time, i.e. down to a week from a customer's data base design to a tested product.

The process eliminates the photomask which is both costly and time-consuming to produce and requires large numbers to be manufactured to make it worthwhile. Using the E-beam technology it is possible to have number of different circuits on the same slice of silicon and so enable the production of small numbers, down to, say, ten integrated circuits. This in turn allows the designer to experiment, follow hunches or second thoughts before being committed to full i.c. production. This process has been dubbed by TI 'breadboarding on silicon'. The new facility is at TI's plant in Bedford.

Medusa is a complex of heaters and coolers which can offer a satellite under test all the temperature changes that it is likely to encounter in space. It is shown here with a mock-up of the Olympus communications satellite from BAe which will be tested in this way. Medusa comes from Dynam Engineering in Blackburn.

Talking Wireless World

Electronics & Wireless World is included amongst the electronics and radio magazines recorded onto tape for use by blind radio hams. QTI (Questions of Technical interest) is a talking newspaper that is now five years old. Each issue takes the form of three hours of readings from the technical pages of the magazines. The main emphasis is on the new and most interesting ideas in equipment and electronic design.

Advertisements are scanned and any item of particular interest to the blind is picked out for special mention. Originally free to subscribers, lack of funds have forced QTI to charge a joining fee of £3.50 and an annual subscription of the same amount. Subscribers are sent two C90 cassettes with the latest issue which they must return to get the next issue. QTI have fast copiers to prepare the editions.

The fast copiers are a retired outfit from the Harrow Talking Newspaper who kindly let them have the equipment at a knock-down price which still exhausted their funds. QTI has had generous contributions from the electronics industry, and from individuals but they are in need of help. Whether it be reading into a tape recorder, assisting by providing a stall at the many ham rallies that take place or just cash.

All contributions gratefully received by QTI Talking Newspaper Association, 2 Cartmel Walk, North Anston, Sheffield S31 7TU. Telephone: 0909 566301.
The world's future mobile communications should be organised to enable a traveller anywhere on the globe to communicate with any other person or place. This objective was expressed by Inmarsat Director Olof Lundberg, at the Spacecom conference in Paris.

Satellites would, of course, play a big part in this aim. The maritime community had solved its problems by forming the Inmarsat co-operative but the same need for remote communication apply to aeronautical and land-mobile travellers. In highly populated areas the cellular radio network provided the best economical solution and the most efficient user of the spectrum. Satellites for land mobile communications would however be of particular use to the wide-area roaming units such as trans-continental travellers, in low population-density areas and as a high capacity back-up to relieve congestion in cellular or other terrestrial systems, caused by, for example, adverse weather conditions.

The existing Inmarsat network can be used for aircraft, both for air to land communication and for air traffic control. But Mr Lundberg pointed out the shortage of available spectrum for mobile satellite communications. He also made a plea for standardization; "Today's user is not interested in fitting a plethora of communications devices. We can assume that a driver would not wish to fit a different cellular set for each country driven through. Similarly, the farmer outside the town in the US would not like to use an expensive satellite system when in a town where an inexpensive cellular system is available. The airline flying around the world certainly protest very loudly if it were forced to fit electronics compatible with a multitude of international, national and regional satellite systems."

Expert systems are a compilation of the knowledge of specialists in a particular field. Under computer control, they can offer diagnosis, analysis and can offer remedial action. Adept, developed by Marconi Instruments and Allen & Hanbury, is used to diagnose sufferers from asthma. It has a touch-sensitive screen for input.

Open up-dates

The Open Tech Unit of the Manpower Services Commission has signed a contract with the Institution of Electrical and Electronics Incorporated Engineers (IEEE) to produce open learning material aimed at supporting an up-dating technician engineers and technicians in industry. The need for this was identified by an extensive preliminary study, and the MSC is to fund £0.5M of development work for the first two years. A feature of the project is the participation by major electronics companies which will be providing support and expertise, working in partnership for the common good of practising engineers and the industry at large.

Learning material produced will assume a good standard of professional education and will attempt to strike a balance between courses for career enhancement and advanced application techniques. The first modules are due early next year with emphasis on electronic structures, systems and testing. The steering committee is chaired by Dr John Brown, President of the Institution and the project is to be managed by G.T. Richardson, formerly of the Royal Navy Weapons Engineering Branch.
TURN YOUR BBC MICRO INTO A PROFESSIONAL MICROPROCESSOR DEVELOPMENT SYSTEM

THE OPERATING SYSTEM

- FLEX—The Professional Operating System
- Versatile, Flexible & Powerful, the ideal operating system for industrial control
- Provides the power, sophistication and ease of development, previously only offered by larger, more expensive systems

THE HARDWARE

- 6809 Advanced 16 Bit Processor
- Choice of Industrial Interfaces for Target Applications:
 - High Resolution Colour Graphics
 - Industrial input/output boards
 - IEEE communications
 - and many more

THE TOOLS

- PL9—A fast, efficient control language
- CMS FORTH Interpreter & Compiler
- Cross Assemblers for most 8 bit & 16 bit micro's
- "C", BCPL, PASCAL

THE SUPPORT

- Top rate after sales technical support
- Systems / Hardware Design

Move over to CMS today.

CIRCLE 67 FOR FURTHER DETAILS.

FUNCTION GENERATOR

0.1Hz - 500kHz

- Sine, Square, Triangle, TTL output
- Typically 0.02Hz - 700kHz
- 7 switched ranges with coarse and fine frequency controls
- ± 30V output capability

JUPITER 500 (inc. P & P and VAT) £128.80

Designed and manufactured in Britain

BlackStar

CIRCLE 10 FOR FURTHER DETAILS.

STEREO MICROPHONE AMPLIFIER

- 50 or 200 Ohm balanced microphones to balanced lines
- Variety of low frequency characteristics for improving the clarity of recordings
- Inputs filtered against radio interference
- Complete boxed unit or double metal screened amplifier module alone

Surrey Electronics Ltd., The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG England. Tel: 0483 275997

CIRCLE 9 FOR FURTHER DETAILS.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full information from:

HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C.1
Phone: 01-837 7937
Telex: 892301

CIRCLE 9 FOR FURTHER DETAILS.
TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidal offer in size, weight, lower radiant field and, thanks to L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

IMPORTANT: Regulation

Prices including 10% VAT.

For DECEMBER

Telephone: (02271454778 Telex: 965780 Graham Bell House, Dept. 9, LondonW12

CIRCLE 48 FOR FURTHER DETAILS.

ANGLIA INDUSTRIAL AUCTIONS

Specialist Auctioneers to the Radio and Electronic Industry

5 Station Road, Littleport, Cambs. CB6 1E

Telephone: Ely (03535) 860185

AUCTION SALE

Lots Include:

- Electronic and Electrical Equipment, Components, Test Gear, Radiotelephones, Computers, Photographic and Video Equipment, also Manufacturers Plant and General Works Effect.

LARGE AND SMALL QUANTITIES

Please note:- Revised dates for forthcoming sales to be held on following Fridays during 1985

- **AUGUST 2 & 23**
- **SEPTEMBER 13**
- **OCTOBER 4 & 25**
- **NOVEMBER 15**
- **DECEMBER 6**

Catalogues available 4 days prior to sale, price £1 inc. p&p or for each sale for a year £10.

Entry forms on application. Although entries for cataloguing may be received up to 7 days before the date of the sale, customers are advised to enter early.

CIRCLE 50 FOR FURTHER DETAILS.

CIRCLE 23 FOR FURTHER DETAILS.
Electronic Brokers Test & Measurement Instrument Distribution Division

AUTHORISED DISTRIBUTOR
For the Leading Brands of Electronic Test & Measurement Equipment

From Philips, Fluke, Hameg, IC, Thandar, Thurlby, GP Industrial, Claude Lyons, Collin, Compact Instruments

OSCILLOSCOPES

Fluke 82028B £172 3-channels, fast & slow sweep, auto/trigger, triggered and non-triggered, sweep, sensitivity 0.5mV to 50V, trigger sensitivity 40mV to 50V.

Fluke 82026B £173 3-channels, fast & slow sweep, auto/trigger, triggered and non-triggered, sweep, sensitivity 0.5mV to 50V, trigger sensitivity 40mV to 50V.

Fluke 82018B £19 3-channels, fast & slow sweep, auto/trigger, triggered and non-triggered, sweep, sensitivity 0.5mV to 50V, trigger sensitivity 40mV to 50V.

Philips PM 306B £281 15MHz, compact portable, dual trace, 9mv sensitivity, auto and TV triggering, variable time base speed, 2 modulation.

Hameg HM 203-5 £270 20MHz, battery power, 2 input, 2 input, sensitive 2mV, automatic and normal triggering, KxY operation, compact, exelent.

Thandar SC 110A £175 10MHz, battery power, portable, bridge and economy triggering for battery conservatory, TV trigger and true triggering, sensitivity 10mV to 50V.

BENCH & HANDHELD

DMMs

Philips PM 5519/01 £299 4½ digit, LCD with analogue bar graph, auto/manual range, frequency to 1MHz, true RMS, dB, relative reference.

Philips PM 5518X/11 £199 4 digit, LCD with electroimmunisant, display, auto/manual range, true RMS, dB, relative reference, current to 20A, PM 5518X/01 without connection £145.

Fluke 8010A £243 3½ digit, LCD, 10A current range, seven functions include conduction, diode test, true RMS, DC accuracy 0.1%, 8010A Ni-CD battery warranty.

Fluke 8020A £306 4½ digit, LCD, 10A current range, seven functions include conduction, diode test, true RMS, DC accuracy 0.1%, 200mA Ni-CD battery warranty.

Fluke 80204B £250 3½ digit, LCD, seven functions include peak hold on voltage and current, audible and visual logic level detection, DC accuracy 0.1%.

Fluke 80204B £250 3½ digit, LCD, seven functions include peak hold on voltage and current, audible and visual logic level detection, DC accuracy 0.1%.

Electronic Brokers are leading suppliers of electronic test & measurement equipment. Our Distribution Division handles the major names in the industry and all products are stocked in depth in our spacious new premises at Camden Town, ready for prompt despatch to all parts of the country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring.

www.americanradiohistory.com
It's a whole new board game......with our 7000 Series

Many operations and tasks are now possible through BASIC which could previously ONLY be accomplished in ASSEMBLER.

Based on the Intel 8052 (ramable version of the industry-standard 8051) single-component Microcontroller, the CPU comes complete with BASIC Interpreter, Serial I/O and full support specifically for Industrial Control applications. Many unique features are incorporated and the system allows very fast interactive development of user software for super easy deployment in the target system.

Static MOS RAM boards (to 128k), Power down control boards, Decoder boards providing further address line decoding, watchdog, Real-time clock/calendar, plus additional output flags and 1/0. Mass storage devices. Backplane, PSU and battery packs. Drive boards offering power output, pulse generation, or externally gated outputs. Multi-channel expandable ADC, Remote switch units for power, sound or V.H.S. of vision

For Industrial Control or Data Acquisition at board, sub-system or turn-key level we offer inexpensive solutions and professional implementation.

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps.

For further details please contact:
E.M.S. Manufacturing Limited
Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484

BASIC CONTROLLER DISTRIBUTOR ENQUIRIES WELCOME

Cavendish Automation
45, High Street, St. Neots, Huntingdon, Cambridgeshire, PE19 1BN
Telephone: 0480 219457 Telex: 32681 CAVCOM G

FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
Electronic Brokers are Europe’s largest specialists in quality second user test equipment. Established 17 years ago, we have pioneered the second user concept in Britain, and many overseas territories. To support our growth we have a skilled team. This includes trained sales staff, whose role is not only to sell, but provide a helpful information service to our many customers. Backing this team is our own highly qualified packing and refurbishment team. All prices exclusive of VAT. Carriage and packing charges extra on all items unless otherwise stated.

A copy of our trading conditions is available on request.

Electronic Brokers Ltd
140-146 Camden Street London NW1 9PB
Telephone 01-267 7070 Telex 298694

CIRCLE 201 FOR FURTHER DETAILS.
01-208 1177 TECHNOMAT LTD 01-208 1177

BBC Micro Computer System
BBC Computer & Econet Referral Centre
BBC Computers:
Model B: £299 (a) B+DFS: £346 (a)
Model B+Econet: £335 (a) B+Econet+DFS £399 (a)
BBC B Plus (available from stock): £409 (a)
ACORN 2nd Processors: 6502: £175 (a) Z80: £348 (a)
TORCH UNICORN: 280 Card: £275 (a) 280 Disc Pack: £550 (a)
TORCH Graduate G800/2 £899 (a)
20 Mbyte Hard Disc+400K Floppy: £1950 (a)
We stock the full range of ACORN hardware and firmware and a very wide
range of other peripherals and firmware for the BBC. For detailed specifications
and pricing please send for our leaflet.

PRINTERS
EPSON: RX80T £210 (a); RX80FT £220 (a); RX100 £345 (a);
FX80 £315 (a); FX100 £430 (a); JX80 Full Colour Printer £499 (a)
EPSON LX80 special introductory price £242 (a)
KAGAN TAXAN: KP810 £255 (a); KP910 £399 (a)
BROther HR15 £340 (a); JKU6100 £342 (a)
GRAPHSICS PLITTER WORKSTATION Complete £490 (a)
Basic Plotter £270 (a); Hi-Plotter £399 (a)

ACCESSORIES
EPSON Serial Interface: 8143 £28 (b); 8148 with 2K buffer £37 (b)
EPSON Paper Roll Holder £17 (c); F800 Tractor Attach £37 (a); RX80 Dust Cover £4.50 (a); DX80 Tractor Unit £20 (c); Spare pins for H810 £7.50 (d).
BUFFALO 2K Buffer for Epson printers £99 (d)
EPSON Ribbons: MX/RX/FX80 £5.50; MX/RX/FX100 £10 (d)
JUKI Serial Interface £66 (c); Tractor Attach, £99 (a); Sheet Feeder £182 (a); Ribbon £2.50 (a)
BROTHER HR15: Sheet Feeder £99; Ribbons——Carbonor Nylon £4.50; Multistrive £5.50 (d).
2000 Sheets Fanfold with extra fine perf. 9.5m.——£13.50; 14m. £18.50 (b)
BBC Parallel Lead £8; Serial Lead £7 (d)

BT Approved Mods
MIRACLE WS2000:
The ultimate world standard BT approved modem covering
all common BELL and CCITT standards up to 1500 Baud.
Allows communication with virtually any computer system
in the world. The optional AUTO DIAL and AUTO ANSWER
boards enhance the considerable facilities already provided
on the modem. Main powers: £129 (c) Auto Dial Board/
Auto Answer Board £30 (d) each (awaiting BAA approval).
Software lead £4.50
BIZBROX:
This pocket sized modem complies with V21 300/300 Baud
and provides an ideal solution for communications between
users, with main frame computer and bulletin boards at a very
economic cost. Battery or mains operated. £62 (c)
Mains Adaptor: £8 (d) BBC to Modern data lead £7

COMPUTABILITY
All prices in this double page advertisement are subject to change without notice.
ALL PRICES EXCLUDE VAT
Please add carriage 50p unless
indicated as follows:
(a) £8 (b) £1.50 (c) £1.50 (d) £1.00
ACORN IEEF INTERFACE
A full implementation of the IEE-488 standard, pro-
viding complete compatibility with scientific &
technical equipment, at a lower price than other sys-
tems. Typical applications are in experimental work
in academic and industrial laboratories. The
interface can support a network of up to 140 compat-
tible devices, and would typically include several items
of test equipment allowing them to run with the
optimum of efficiency. The IEEF System ROM is
supplied £282

INDUSTRIAL PROGRAMMER
EP8000:
This CPU controlled Emulator/Programmer is a pow-
erful tool both for Emum programming and
monitoring. EP8000 can emulate and program all
eproms up to 8K x 8 bits. It can be used as
a simple programmer or as an eprom emulator £695 (a)

TECHNOLINE VIEWDATA SYSTEM. TEL: 01-450 9764

DISC DRIVES
TECHNOMAT drives are fitted with high quality sotmne Mitsubishi mechanisms and are
available with or without integral power supply. The dual drive power supplies are switch
mode type and are generally rated. All drives with integral power supply are fitted with a mains
indicator. All drives are supplied with all the necessary cables, manual and a formatting disc. All drives
are capable of operating in single or double density modes.

Single Drives: 1 X 100K 40T SS: PS100 £85 (b) PS100 £125 (b)
1 X 400K 80T DS: TS400 £125 (b) PS400 £145 (b)
Dual Drives: (with integral power)
Stacked Version: PD2002 2 X 100K 40T SS £190 (a)
PD2002 2 X 400K 80T DS £265 (a)
PD8000 2 X 404K 80T DS £265 (a)
3.5" Drives: TS35 1 X 400K 80T DS £99 (b)
TS35 2 X 404K 80T DS £175 (b)

Authorised Distributor
Data Recording Products

3M

3M FLOPPY DISCS
Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10
4 Track SS DD £13 (c) 4 Track DS DD £18 (c)
8 Track SS DD £22 (c) 8 Track DS DD £24 (c)
3" discs: Pack of ten £38 (c)

FLOPPICLENES DRIVERR CLEANING KIT
FLOPPICLENES Disc Head Cleaning Kit with 5 disposable cleaning discs ensures
continued optimum performance of the drives. £14.50 (b)

DRIVE ACCESSORIES
Single Disc Cable £6 (d) Dual disc Cable £8.50 (d)
10 Disc Library Case £1.80 (d) 30 Disc Storage Box £6 (c)
20/40 Disc Lockable Box £14 (c) 100 Disc Lockable Box £19 (c)

MONITORS
MICROTEC 14cm. & 20cm RGB
1431 Std Res £165 (a); 1431 AP Standard Prs (Audio) £205 (a)
1431 Med Res £240 (a); 1441 Hi Res £389 (a)
FOR BBC: 14/24 Base for Plastic 14/24 Microcords £20 (c)
2003CS Std Res £380 (a); 2004CS £389 (a)
Pinch for 14" Monitors £38.50. Microview Monitors with TTL/Linear inputs also available.
KAGAN TAXAN 12" RGB
Vision II Hi Res £225 (a); Vision II Super Hi Res £325 (a)
Green Screens. KAGAN 109 £96 (c); SANYO DMD121 110LX £90 (a)
Swivel Stand for Kaga Green £21 (c)

UBV ERASERS
KAGAN BVB E5 Monoves £36 (c); Monoves £36 (c)
SANDY CD 3125 NB 14cm. RGB Std Res £169 (a)

PRINTER BUFFER
This printer/scanner provides a simple way to upgrade a multiple computer system by
providing quick transfer of available resources. The buffer offers a storage of 64K. Data from
two computers can be tapped into this buffer which will continue
accepting data until full. The buffer will automatically
switch from one computer to the next as soon
as the computer has dumped its data. The computer
then switches over to the next user. LED bargraph in-
nicates memory usage. Simple push button control provides
RESET, PAUSE and RESET functions. Integral power supply. £205 (a)

TELEPHONE CONNECTORS
3-way Plug £10 4-way Plug £10 5-way Plug £10

RIBBON CABLE
3-way £6 4-way £10 5-way £15

DIL HEADERS
Solder IDC £4 10 pin £4 16 pin £6
20 pin £10 25 pin £13
Unsoldered £3 10 pin £3 16 pin £5
20 pin £8 25 pin £10

MICROCOMPATIBLES
21 pin Socket Connector £200 8 pin Socket Connector £200

Using "Prestige" type protocols. For information and orders — 24 hour service, 7 days a week

ELECTRONICS & WIRELESS WORLD AUGUST 1985

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>ICS</th>
<th>Qty 5</th>
<th>Qty 10</th>
<th>Qty 100</th>
<th>Qty 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC32</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC138</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC145</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC157</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC164</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC240</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC245</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4066</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4026</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4028</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4052</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4053</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4054</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4055</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4056</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4057</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4058</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4059</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4060</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4061</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4062</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4063</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4064</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4065</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4066</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4067</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4068</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4069</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4070</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4071</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4072</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4073</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4074</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4075</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4076</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4077</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4078</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4079</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4080</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4081</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4082</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4083</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4084</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4085</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4086</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4087</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4088</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4089</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4090</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4091</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4092</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4093</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4094</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4095</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4096</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4097</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4098</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>74HC4099</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Note: This is a partial list of linear ICs available from Technomatic Ltd. For a complete list, please refer to their catalog or website.
BAMBER ELECTRONICS

VIDEO TERMINAL BOARD

能使 ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7 × 9 matrix with descenders) in two 2716 EPROMS. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Low end board with 2 EPROMS and program listing — £48 plus VAT. Assembled and tested — £118. Send for details or CWO to:

AM Electronics
Wood Farm, Leiston, Suffolk IP16 4HT
Tel: 0728 331131

LOW COST UNIVERSAL PROGRAMMER

- Completely self contained unit
- No personality modules required
- Controlled via RS232 serial interface
- Supports Intel, Motorola and Asscc
- Not data format
- Easily controlled by most computers
- Fast and standard programming modes
- Low and high byte programming for 16 bit data
- Byte, block and chip erase for Eeproms

Price unboxed £295 plus VAT.

Tel: 0242 510525
8 Skillecrome Mews · Queens Road · Cheltenham · Glos · GL50 2NJ

CIRCLE 28 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
Designing small transformers

The design of power transformers reveals one or two interesting observations

Although power transformers are plentiful, it is often necessary to design and construct a transformer to suit one’s own needs. It is also very tempting to reuse the materials many amateurs already have, not only with conservation in mind, but from the cost point of view.

Winding transformer coils is not as difficult as one would think, since it can be performed with a simple drill and a lot of patience: mechanically or electronically counting the number of turns is necessary in order to avoid errors. The average amateur should be well able to solve all the practical problems.

I will describe a method for the calculation of small transformers which I have used for several years and which, in my view, gives more satisfaction than the methods commonly in use. Further, I will call attention to certain facts about transformers which are not well known.

Design

In general, the design of small transformers departs from that derived from the VA product to be delivered by the transformer. The VA product determines approximately the cross-section A of the core by means of formulas 1.2 of the form

\[A (\text{sq cm}) = \sqrt[4]{\text{VA}} \times \text{watt} \]

with \(C = 1.0 \) to 1.25. If a guess is made of the transformer efficiency it becomes possible to determine approximately the primary and secondary turns, etc.

The constant C has something to do with the ratio of the weight of iron to the weight of copper. It has to be changed according to the application, for example 1.2 for constant full-load transformers to 1 for intermittent use. The formula gives an approximation of the core size and it is therefore useful. From the cross-section A it is possible to determine the number of primary turns \(n_1 \)

\[E_1 = \frac{\sqrt{2} \, A \, f \, \alpha \, n_1 \, B \, \alpha \, n_1}{n_1} \]

where \(f \) is frequency and \(B \) the maximum induction in the core material: a generally accepted value for \(B \) is 1 - 1.2 Tesla. For low-quality or unknown iron it is safe to take 0.8 Tesla to avoid excessive zero-load losses. Once \(B \) has been chosen, the constant \(\alpha \) in (2) is fixed; \(\alpha \) is the induced voltage in one turn of the primary. Equation (1) suggests that \(A \) is solely determined by the VA product, but one feels that this cannot be true, since in this case it would not be worthwhile to use high-induction materials.

The next step is to calculate the number of secondary turns \(n_2 \)

\[n_2 = \frac{E_1}{\alpha} \]

Since the primary and secondary currents cause an internal voltage drop in the windings, it is normal practice to increase \(n_2 \) by a certain percentage, depending on the dimensions of the core or the VA product. A further step is to choose an allowable current density \(J \) in the coils. In general, \(J \) lies in the range 3.5 to 4 A/mm² for small transformers and it is taken smaller as the VA product increases.

<table>
<thead>
<tr>
<th>Table 1: current density</th>
<th>VA</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>4</td>
<td>3.5</td>
<td>3</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Once \(J \) is chosen it becomes possible to calculate the wire gauges \(d_1 \) and \(d_2 \). The final step is to make an estimate of the total area that will be occupied by the windings with their insulation. If this section is larger than the effective window space, a bigger core is necessary. Eventually it is possible to calculate the coil resistances.

The procedure for voltage-drop correction looks a bit like putting the cart before the horse because it is not very likely the result will be correct. The power in equation (1) is an average power and therefore, in systems with nonsinusoidal currents (rectifiers) or with intermittent current (filaments of gas-discharge tubes, impulse relays), the real voltage drop will be higher.

A different approach. The method I will demonstrate here is valuable, since it gives a more correct insight in the problem. As already noticed equation (1) is not exact. For intermittent operation, it is clear that (1) gives too big a transformer. The question following from this is: what is the maximum power that can be delivered by a given core on the assumption that heating is not important?

Surprisingly enough, one finds that the most important part of the transformer is its window and not the iron.

Transformer design formulas

This method has been developed for the standard E-I laminations, but there is no reason why it might not be adapted to other core forms. As can be seen from Fig. 1(a), the dimensions of an E-I core are entirely determined by the width \(k \) of the central leg and the height \(h \) of the lamination stack. In order to get an idea of the process involved we calculate the total transformer resistance \(R_T \), referred to the secondary

\[R_T = R_1 + R_2 \left(\frac{n_2}{n_1} \right)^2 \]

where \(n_1 \) and \(n_2 \) are the number of primary and secondary windings, \(R_1 \) and \(R_2 \) the respective wire gauges, \(l_1 \) and \(l_2 \) the mean length of turn (m.i.t.) and \(\rho \) the specific resistivity of the wire (1.72 × 10^-8 Ω·m at 20°C for copper).

If the lamination window is completely filled with the windings, one can obtain a transformer with minimum resistance. However, there is always a part of the window area lost because of the insulation and the winding former. Therefore, we introduce a filling factor \(V \) which takes account for these losses

\[V = \frac{n_1 \, d_1^2 + n_2 \, d_2^2}{\pi \, k^2} \]

It is assumed that the wire behaves as having a square section, since it is difficult to obtain winding configuration shown in Fig. 1(c). From (5) it follows:

\[R_2 = \frac{4 \rho}{\pi} \left(\frac{n_2}{n_1} \right)^2 \left(\frac{S_1}{S_2} \right) \]

where \(S_1 = n_1 \, d_1^2 \) and \(S_2 = n_2 \, d_2^2 \). Due to (6) we can say that \(S_1 + S_2 = S \) is constant for a given window area.

If it is assumed that m.l.t. of primary and secondary are equal, it follows that the minimum resistance occurs for \(S_1 = S_2 \); the copper areas of the primary and secondary coils have to be equal. The conditions of \(S_1 = S_2 \) also means that the current densities in both windings are equal. The minimum resistance follows from this fact

\[R_{2\text{min}} = \frac{16 \rho}{\pi} \left(\frac{l_2}{S} \right)^2 = \frac{64 \rho}{\pi} \left(\frac{l_2}{k \, V} \right)^2 \]

(8)

From Fig. 1(b) it can be seen that m.l.t. is \(l_2 = 2 \) (h+2k), if the rounding-off at the corner of the coil is neglected. If the corners were rounded-off with circles this would become \(l_2 = 2(h+1.785 \text{ k}) \). Since neither formula is correct, the coefficient of \(k \) will lay somewhere between 1.8 and 2, but we have chosen 2. Mostly, transformers are wound with wire such that...
The secondary output voltage of a transformer depends on the number of turns in each winding and the magnetic field strength. The turns ratio, which is the ratio of the number of turns in the primary winding to the number of turns in the secondary winding, determines the voltage ratio of the transformer. The voltage Transformation can be calculated using the following formula:

\[V_2 = \frac{N_2}{N_1} V_1 \]

Where:
- \(V_1 \) is the voltage of the primary winding.
- \(V_2 \) is the voltage of the secondary winding.
- \(N_1 \) is the number of turns in the primary winding.
- \(N_2 \) is the number of turns in the secondary winding.

The turns ratio is also related to the turns of each winding and the speed ratio of the transformer.

\[n = \frac{N_2}{N_1} \]

For example, if\(n = 2 \), then the secondary voltage is twice the primary voltage.

These formulas are useful for calculating the voltage transformation in transformers and other electrical devices.
It is well-known that the E-I lamination is used because it is generated by an economical cut of the iron sheet. But if we depart from this requirement it should be possible to make laminations with a very large window which allows a high current density. The cooling surface of the coil can be sufficiently increased by using a small but long window. There are of course practical limits: the magnetizing current increases since it is inversely proportional to the magnetic path length. In combination with a greater core volume this gives bigger zero-load losses. Otherwise, from the same reasoning, it follows that it should be possible to use a very small core-area with a large window area for a given power. The drawback here is that the leakage inductance increases because a lot of lines of force close the magnetic path through the air (especially for the part of the coil outside the window). The question then arises: what is the real function of the iron? At first sight one is tempted to say that the power is transferred from the primary to the secondary through the iron, but since the lamination window seems to be more important it is doubtful if this is true. Equation (2) partly gives an answer: the induction in the iron is only determined by the primary voltage, frequency and turns number. This means that the conditions in the iron are independent of the loading conditions of the transformer! In other words, no power at all is transferred through the core. The only reasonable way to get out of the problem is to accept that the power is transferred outside the core in the air between the coils. As strange as this seems, it can be explained by referring to Poynting vectors and the electric and magnetic field outside the core. It has several times been stated in W.W. that the electric energy transported by wires is found between the wires and not in the wires and the transformer is the magnetic analogue for this situation.

Multiple secondaries

Frequently, the transformer has multiple secondaries. It is difficult to perform the calculations as before because each secondary current has its effect on the others through the common primary resistance. By neglecting the effect of the currents on the secondary output voltages the following rules can be found:

- The total primary copper cross-section has to be half the window area or \(S_1 = \frac{1}{2} S_p \).
- The secondary cross-sections \(S_2 \) are taken proportionally to their powers:
 \[
 S_2 = S_1 \left(\frac{P_2}{P_1} \right)
 \]

In the same way as before the secondary turns can be found by imposing secondary output voltages at the given currents. It is a pity that the more practical cases of transformers used for rectifiers cannot directly be handled in this way. First, the currents are only partly sinusoidal and the conduction angle of the rectifier depends on the load, ripple capacitor and the transformer resistance. Secondly, if several secondaries are used, each with different rectifiers, the conduction angles are different. The amateur using steady-state transformer data is often disappointed by the results in stabilized rectifier circuits. The experienced amateur knows that choosing a transformer rating based on the sum of the d.c. powers is not sufficient. In many cases, the minimum value of the ripple voltage is too low in order to obtain good stabilization and increasing the ripple capacitor is of no help. These effects are of course due to the transformer resistance. The design of a transformer for such pulsed waveforms can only be correctly done by using the rectifier design curves of O.H. Schade. It is possible to combine a part of the method above with the rectifier curves in order to obtain the correct number of secondary turns.

References

BOOKS

- *Assembler routines for the 6502* edited by David Barrow. Best of PCW series, Century Communications, 180 pages, soft covers, £7.95. Easy-to-use, documented assembly-language routines contributed by readers of *Personal Computer World*. Topics include mathematical routines, delays, extra instructions, searching and sorting, check sums and parity coding, data compression.
- *The Amstrad CPC464 Disc System* by Ian Sinclair. Collins, 120 pages, soft covers, £7.95. Discs for beginners, using Amstrad's DDI-1 3-inch drive, with details of the AMDSOS and CP/M operating systems. Program examples include a selection of disc utilities and a database. A chapter on printers shows how to use some popular models.
- *The Century Computer Programming Course for the Commodore 64* edited by Peter Morse and Brian Hancock. Century Communications, 340 pages, soft covers, £10.95. Thorough treatment of Commodore Basic from a team at the Central London Poly. Attractively presented, with many useful example programs and exercises.
- *Commodore 64 Omnibus* by Peter Lupton and Frazer Robinson. Century Communications, 502 pages, soft covers, £9.95. Omnibus edition of the authors' two previous C64 handbooks, covering Basic, sound, graphics and disc storage.
- *Principles and Practice of Multi-frequency Telegraphy* by J.D. Ralphs. Peter Peregrinus on behalf of the Institution of Electrical Engineers, 205 pages, hard covers, £25 (abroad £32). Designing and using multi-frequency-shifting keying communications systems, by the leader of the design team of the first Piccolo equipment. Chapters cover history, basic principles, theory, design procedure, synchronisation, practical matched filters, error coding and special m.f.s.k. systems.

Fig. 2. Variation of secondary turns on secondary voltage, for a given secondary current.

www.americanradiohistory.com
Happy Memories

<table>
<thead>
<tr>
<th>Part type</th>
<th>1 off</th>
<th>25-99</th>
<th>100 up</th>
</tr>
</thead>
<tbody>
<tr>
<td>4116 200ns</td>
<td>1.25</td>
<td>1.15</td>
<td>1.00</td>
</tr>
<tr>
<td>4164 150ns Not Texas</td>
<td>99</td>
<td>89</td>
<td>84</td>
</tr>
<tr>
<td>2114 200ns Low Power</td>
<td>1.75</td>
<td>1.60</td>
<td>1.55</td>
</tr>
<tr>
<td>2016 150ns</td>
<td>2.45</td>
<td>2.30</td>
<td>2.20</td>
</tr>
<tr>
<td>6264 150ns Low power</td>
<td>5.00</td>
<td>4.45</td>
<td>4.00</td>
</tr>
<tr>
<td>2716 450ns 5 volt</td>
<td>3.85</td>
<td>3.45</td>
<td>3.30</td>
</tr>
<tr>
<td>2732 450ns Intel type</td>
<td>4.75</td>
<td>4.25</td>
<td>4.00</td>
</tr>
<tr>
<td>2732A 350ns</td>
<td>5.25</td>
<td>4.69</td>
<td>4.50</td>
</tr>
<tr>
<td>2532 450ns Texas type</td>
<td>3.85</td>
<td>3.45</td>
<td>3.30</td>
</tr>
<tr>
<td>2764 300ns Suit BBC</td>
<td>2.95</td>
<td>2.65</td>
<td>2.50</td>
</tr>
<tr>
<td>27128 300ns Suit BBC</td>
<td>3.95</td>
<td>3.55</td>
<td>3.35</td>
</tr>
<tr>
<td>Low profile IC sockets</td>
<td>Pins</td>
<td>814 16 18 20242840</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pence</td>
<td>12 13 14 16 18 242738</td>
<td></td>
</tr>
</tbody>
</table>

Available now — The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by 'phone or mail welcome.

Non-Military Government & Educational orders welcome, £15 minimum.

HAPPY MEMORIES (WW),
Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (054 422) 618

CIRCLE 53 FOR FURTHER DETAILS.

Micro-Tel Universal Microtelemetry System

Micro-tel is a system of integrated UHF radio/modems ruggedly constructed and suitable for a wide range of 'line of sight' data communications applications.

Features:
- UHF Home Office type approved radio (MPT 1309)
- 5 Radio Channels
- 1200 BAUD INTERNAL MODEM
- 12 Volts/250 mA
- RS232 Data Input/Output
- Small size 145 x 210 x 60 mm
- SPECIALS TO CUSTOMER SPEC. ALSO AVAILABLE
- Micro-tel offers a simple and reliable solution for:
 - Building to building computer comms
 - Instrument to computer data links
 - Industrial systems data links
 - Dealer and OEM enquiries welcome.

MEASUREMENT DEVICES LIMITED
Silverburn Crescent, Bridge of Don Industrial Estate, Aberdeen.
AB2 8EW Telephone: (0224) 824141 Telex: 739506 (MDLAB)

CIRCLE 51 FOR FURTHER DETAILS

ELECTRONICS & WIRELESS WORLD AUGUST 1985
ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer's entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. **ALL FEATURES LISTED ARE INCLUDED AS STANDARD:**

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height 5¼" double-sided, double-density floppy disc drives. Formatted capacity: 320Kb per drive.
- 4 MHz 8086 CPU
- 64kb RAM (in 4164 chips)
- 28kb EPROM containing monitor & MICROSOFT BASIC
- CP/M Version 3.01
- 80 x 24 display with colour block-mode graphics

- Exceptionally high quality styled keyboard with numeric keypad & 6 function keys
- Centronics parallel interface
- RS232/V24 serial interface selectable 300-9600 baud
- UHF Modulator for TV & composite video output
- ROM port. (A Word-Processor ROM is available at extra cost)
- 6 month full guarantee & option to return within 14 days if not absolutely delighted

Available **ONLY** from: COMPUTER APPRECIATION, 16 Walton Street, Oxford OX1 2HQ. (0865) 55163

MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 5JZ. (0444) 414484 454377 (0444) 73830

CIRCLE 85 FOR FURTHER DETAILS.

NEW DISCO ELECTRONIC CENTRE

<table>
<thead>
<tr>
<th>BAKER LOUDSPEAKERS</th>
<th>MODEL</th>
<th>HEIGHT</th>
<th>DEPTH</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARRIAGE 85</td>
<td></td>
<td>140</td>
<td>30</td>
<td>£24.60</td>
</tr>
<tr>
<td>CARRIAGE 86</td>
<td>140</td>
<td>30</td>
<td>25</td>
<td>£24.60</td>
</tr>
<tr>
<td>CARRIAGE 87</td>
<td>140</td>
<td>30</td>
<td>25</td>
<td>£24.60</td>
</tr>
<tr>
<td>CARRIAGE 88</td>
<td>140</td>
<td>30</td>
<td>30</td>
<td>£24.60</td>
</tr>
<tr>
<td>CARRIAGE 89</td>
<td>140</td>
<td>30</td>
<td>30</td>
<td>£24.60</td>
</tr>
<tr>
<td>CARRIAGE 90</td>
<td>140</td>
<td>30</td>
<td>30</td>
<td>£24.60</td>
</tr>
<tr>
<td>CARRIAGE 91</td>
<td>140</td>
<td>30</td>
<td>30</td>
<td>£24.60</td>
</tr>
<tr>
<td>CARRIAGE 92</td>
<td>140</td>
<td>30</td>
<td>30</td>
<td>£24.60</td>
</tr>
</tbody>
</table>

PRICES ARE EXCLUSIVE OF VAT. P&P £2.50

NEW RAD ELECTRONICS & WIRELESS WORLD AUGUST 1985

CIRCLE 61 FOR FURTHER DETAILS.

NEW DISCO ELECTRONIC CENTRE

19 inch Rack Mounting enclosures complete with chassis and top and bottom covers. Front, Side and Rear panels are aluminium and flat for easy machining. These panels are located with heavy duty aluminium extrusions. Front and Rear panels are satin anodised. Covers are finished in cream.

4U heights and depths of 400mm are available in minimum quantities of 10

CIRCLE 85 FOR FURTHER DETAILS.
The cathode ray tube’s broad range of resolutions and screen sizes, high luminous efficiency, and proven performance and reliability, competitive pricing per character, as well as the capability of both full colour and grey scale, give it a position so strong that it will be difficult to dislodge. Also, anti-aliasing and windowing techniques are much more effective with cathode ray tubes.

The trouble with computer graphics is that its images are only two-dimensional. A variety of computer-driven applications would benefit from the additional realism of a third dimension, not least the modelling of engineering components, flight simulation, medical imaging, scanning electron microscopy, computer games and the representation of large molecules. It was this last-mentioned application that brought authors Harris, Geddes and North of Leeds University’s department of biophysics to a recent IERE conference on the latest developments in colour research to describe their technique for 3D visualization of insulinoïd proteins. This uses a conventional display, a pair of special switching spectacles and a box of electronics.

Three-dimensional graphics

Steroscopic vision involves the brain perceiving depth cues from several sources — the focusing and binocular convergence mechanisms, perspective and illumination of the object, image behaviour under object rotation, obscuration of parts of the scene, and binocular disparity. Normally, a weighted combination of these cues is used to construct a three-dimensional representation, but in viewing a near planar screen the focus cues are absent and other cues must be used to give an impression of depth.

Monocular intensity cueing, which works by simulating a light source in front of the observer and increasing the image intensity along the z-axis, is simple to apply on equipment with an intensity control. But some observers see an ‘enantiometric’ image, with the brightest parts farthest away. Dynamic depth cueing, achieved by rocking or rotating the object, can give front-to-back ambiguity (though intensity cueing would resolve it). In the perspective approach, where the size of the image is reduced with object distance, judgement of distance is difficult and not very accurate. And the most powerful of the depth cues, obscuration, is far too time consuming for interactive graphics. Though all these monocular effects can be useful, the conflict between cue and the binocular information that the image is really flat limits their utility. Clever tricks can reduce the conflict, but the effects produced by binocular techniques are more powerful.

The thing to do is to emulate stereoscopic vision by generating two images and rotating one through an appropriate angle, contriving to have each viewed by the respective eye. One method is to separate the two images laterally on the screen and to direct light from each onto the appropriate eye using one of a variety of optical systems. But besides the possible inconvenience of attaching these to the screen, it is difficult to cater for more than one observer, and only half the screen is available for each image.

The popular way around these difficulties is to use the two-coloured images — usually red and green — and view through two-colour spectacles. With this the whole of the screen area is available for both images.

But the information content of a full colour image is clearly lost, whilst at the same time requiring a system colour capability.

A frame-sequential technique called tachistoscopy doesn’t suffer from this snag; the left and right images are displayed alternately while the unwanted image for a given eye is suitably blocked. Mechanical devices were originally for this purpose but they are generally much too slow. The alternative is an electro-optic shutter. The first kind tried, based on the birefringence of lead-lanthanum zirconate-titanate, suffered from low translight transmission (17%) and an uncomfortably high operating voltage of 500V. But authors Harris, Geddes and North described a fluid crystal cell that operates from only 30V and which doubles light transmission.

A twisted nematic liquid crystal is sandwiched between two crossed polarizers so that incident light polarized by the front polar is transmitted by the rear one, having been rotated by 90° by the cell. An alternating voltage pulse applied across the cell switches it to its opaque state, (a direct voltage would discharge the cell), the pulse being initiated by a photodetector attached to the screen. Two photodetectors operate on alternate cycles, one triggered by a symbol that accompanies one view and the other by a second symbol that accompanies the other view. This opto-coupling avoids the need for access to the screen circuitry; apart from a few lines of software, the method is independent of the v.d.u.

One of the problems with the rapid switching rate of once per refresh, or once per interface cycle, is the relatively long relaxation time in returning to the clear state, brought about by a kind of kick-back in molecular orientation in the opposite direction. A technique called dual-frequency addressing, developed by Clark & Shanks at RSRE, Malvern, helps out here, increasing speed of recovery by forcing the...
long axes of molecules perpendicular to the field with an h.f. pulse applied at a suitable time. This is made possible by choosing a material having a permittivity in the direction perpendicular to the molecule greater than that in the parallel direction. (The material actually used, supplied by RSRE, had a \(\epsilon_r \) of 2.95 at 200Hz and 1.8 at 100kHz, crossing over at 5kHz.)

This idea*, currently being exploited commercially by Millenium of Stevenage, lends itself to multiple viewing — up to four pairs of spectacles can be connected to the somewhat expensive electronics box — but the suggestion of using a single screen-sized cell with polarizer and viewing through passive spectacles fitted with orthogonally polarized glasses is interesting, if impractical at present.

Colour displays from 'mono' tubes

Another use of the switched liquid crystal technology has been pioneered by Tektronix for multicolour field-segmental displays from high resolution 'monochrome' tubes. The tube for use in this scheme is a single-gun type with no shadow mask but has a phosphor with two emission peaks that are typically, but not limited to, red and green. The resulting yellow light is passed through two colour polarizers arranged to transmit only red polarized light on one axis and only green on the other, orthogonal, axis. The liquid crystal cell that follows rotates the polarization plane by either zero or 90° depending on which colour field is selected by the synchronizing circuitry. A linear polarizer is finally required to provide the blocking ability.

The resulting alternating red and green fields integrate in the observer's eye and can create any colour on the red-green line. A different colour-polarizer pair and phosphor mix could produce other colours, though still only based on two primaries rather than three.

Tektronix' cell is different from the earlier kind; called a pi-cell, (it derives its name from a 180° twist during relaxation) its chief benefit is in the simpler driving waveform (no h.f. pulse is required), but it does have tighter manufacturing tolerances. The technique is still only used in the model 5116 colour display oscilloscope and could clearly be applied in other traditionally 'mono' display situations; however Tektronix say their shutter is not available for use outside the USA.

Versatile touch screen

Interactive displays, in the form of touch-sensitive screens, are especially useful in situations where a simplified man-machine interface is required. A new touch screen, called the Transkey, has been jointly developed by British companies Perdix Components and Global Engraving, a London-based specialist in screen printing. The screen has been initially developed using a Denstron plasma panel that displays 25 lines of 80 characters per line, but its developers say it can be used with wide variety of display technologies, and can be easily customized for specific requirements in the space of about two to three weeks.

Transkey is a transparent membrane touch panel mounted in front of the display consisting of a normally-open transparent membrane switch. The basic switch is made of two layers of optical-grade polyester film, with a coating of electrically conductive indium oxide sputtered across the surface of the film. Sputtering of the oxide ensures an even coating, essential, says Rodney Tietjen of Perdix, both to give a repeatable resistance measurement and a good optical finish. Indium oxide has a high transparency and a typical Transkey panel is 85% transmissive.

To manufacture a given switch separate rows and columns are formed onto two sheets of the polycarbonate film by a method devised by Global Engraving. (At this stage is it of manufacture possible to specify the switch operating pressure). The two halves of the switch are separated by a unique system of transparent dots; silver ink tracks are screened onto the polycarbonate film to form the conductors from the switch matrix to the flexible tail connectors. The two halves of the switch are now laminated together, forming the complete Transkey.

The switch can be unsupported, or laminated onto an acrylic substrate, which can form the colour filter for the display.

Non-multiplexed fluid crystal displays

Increased use of multiplexing as display size is raised results in reduced contrast and restricted viewing angle in plasma and twisted-nematic phase displays. This has resulted in many laboratories, Britain's GEC-Marconi included, pursuing the active matrix approach, with the need to deposit thin-film transistors directly onto glass. STL, Harlow, are developing an alternative bistable smectic-phase 760 by 420 display in which the crystals do not degrade back to the liquid but remain in place almost indefinitely. This means that elements are written only once, that contrast is good, and that viewing angle is almost hemispherical. As with other liquid crystal and plasma panels, the driver chips can be cemented directly onto the glass surface.

Recent reading

- Colour in Information Technology and Visual Displays, IERE Conference, University of Surrey, 1985. (Results of recent research in colour perception and applications)
- VDU Health & Safety. Tape/slide programmes on health, safety and ergonomics, Audio Visual Services, Loughborough University £3.95.
- VDUs users, RoSPA, Birmingham £0.70.
- Health effects of VDUs: a bibliography, Health and Safety Executive, 1983. HMSO £5.

*The same idea has also been suggested for use in television, see IEEE Trans. vol. CE-31 1985, pp. 82-87, though its not clear how the problem of flicker is overcome.
Switch encoding can be simply carried out using standard row/column multiplexing techniques, and de-bouncing by means of a simple RC filter and c-mos buffers. A purely resistive analogue Transkey is now under development.

Tube developments

A new graphics display designed for 64kHz-based computer-aided design and manufacturing systems features Matsushita's 'overlapping field-gun tube'. Available from Cameron Communications, who import Barco equipment from Belgium, the display is a high resolution RGB monitor with 0.31mm dot pitch aimed at graphics workstations costing up to £35,000, where typically the user can specify the monitor.

According to Barco, the starting point for this design was resolution — dependent on c.r.t. technology, memory chip prices, availability of and fast c.r.t. controllers. Controllers scanning at 1065 lines and a non-interlaced rate of 60Hz, chosen to give improved resolution in windows, flickerless pictures and increased light output, dictated the scan rate of 60kHz (variable from 43 to 77kHz).

With a target of 1280 addressable elements per line (1440 for the higher resolution 0.26mm pitch version) a video scan time of 12μs means a pixel time of 10ns, putting clock rate at 100MHz, and which led to Barco setting a bandwidth at a conservative 120MHz, achieved by using class-A u.h.f. transistors, generally well-defined modularity with a floating output amplifier on separate boards, minimal interconnections and d.c.-controlled contrast and brightness, and a sharpness booster that allows optimisation of risetime to clock rate.

The display's performance is further enhanced by the use of the 'o.i.f.' in-line tube. This tube features an overlapping field gun, developed to improve the resolution of in-line guns whose beams were more spread out than in delta guns. The lens structure chosen has a single aperture of overlapping circles rather than three separate holes, allowing the main lens to be effectively enlarged without widening the beam separation. Edge resolution is also improved by adding an amount of astigmatism to the tube whose beams are a pre-correction for yoke astigmatism, with the result that overall resolution has been improved by 20% over its predecessor. Since then, the lens has been simplified with the help of computer-aided simulations, and is now an elongated circular aperture, and the gun has also been simplified by making the third and fourth electrodes identical.

The Matsushita tube is also used in Panasonic-brand displays of course, and no doubt others too, as the company claim to be the world's largest maker of display tubes.

Hitachi and Nippon Electric are also at the forefront of high resolution colour tube technology. NEC claim to have the world's first super-high resolution tube in production with a dot pitch of 0.21mm, following its ultra-high resolution tube of 0.25mm. The tube, which can display 40 kanji characters per line in a 24 by 24 dot matrix, contains phosphor dots of only 80μm — so small that at a viewing distance of 40cm they are beyond the limits of visibility. Therefore, argue the tube's developers, the ultimate limit in fine-pitch tubes has been reached: tubes with finer pitches would be ineffective besides incurring extremely high cost. The achievement is largely due to the use of a 'tilt array' mask, in which only the vertical pitch is pre-distorted so avoiding the moiré interference with displayed vertical lines that would occur with NECs earlier variable pitch mask. Meanwhile Hitachi have produced a super-high res. tube with a shadow mask of an astonishing 0.15mm pitch. Details are not available but a preliminary spec. for a monitor using it indicates a bandwidth of 240MHz and a resolution of 2448 by 2046.

Product briefs

- In excess of 1280 by 1024 lines in a non-interlace mode can be displayed on Mitsubishi's C-9918 monitor. At the forefront of their

Screen-centre drawings of a typical range of colour tubes

All to the same scale (35 times actual size). Top is of 33cm consumer-type screen, next is a 33cm medium resolution line centre, next a 48cm medium resolution centre, and bottom, a high resolution centre, all from RCA's 1984 industrial and office range.

range of high resolution monitors, the C9918 has a 0.31mm dot pitch and in-line gun. Probably with the highest resolution achieved for a colour display in mass production, and have high hopes that it will soon become an industry standard. Though it's not the end of their line: models with resolutions of 2000 by 2000 lines and a video bandwidth of 200MHz are scheduled for introduction in the near future.

But there is more to monitor quality than simply resolution, as Ralph Zariah of Mitsubishi puts it, which should only be taken as a means to an end. Two other areas where Mitsubishi have made inroads are with focus and convergence. A 'multi-step' focus feature, which uses two focusing potentials 28 and 33% instead of one of 20% claims to give noticeably better focus. Convergence error of the 9918 model is quoted as 0.3mm in a central circle equal to the picture height and 0.5mm outside, but a second option uses a digital convergence technique that offers 0.3mm all over the screen. The digital approach to accurate beam positioning allows either factory setting or user setting of convergence: a small key-board and processor generates the convergence test patterns.

• By now Grundig's new range of FST/Euroconnector monitor/tv sets, to which a 66cm model has recently been added, will no longer be news. But what may be new to many readers is the availability of Grundig's professional and industrial monitors in the UK. The monochrome range includes video monitors with 31 to 61cm screens for 625 or 875-line operation, and 31cm t.t.l.-input o.e.m. data monitors with up to 416 lines per field and 25MHz bandwidth. As well as 51 and 66cm standard-resolution industrial monitors for RGB and composite video inputs and a colour receiver, the colour monitors feature the 36cm PM series for computer use (t.t.l. inputs). The series has 12MHz bandwidth at three resolutions — using tubes of 0.53mm-spot slot mask and FST, 0.39mm res. dot mask with 50-character lines, and 0.31mm high res. for 132 characters. One version (PM905AV, E374), is equipped with a fine array of sockets — 12 in all — whilst another (PM415) features a high res. FST and will be available later in the year. These monitors, most of which are available in cabinets or as o.e.m. chassis, are not handled by Grundig International, but by telecommunication engineers J.O. Grant & Taylor (London) Ltd of Potters Bar, a member of the Cray Electronics Group.

• Data Distributors Ltd of Ascot are sole UK distributor for Texan-brand monitors made by Japan's Kaga Electronics. Their range includes standard composite video monochrome monitors, with phosphors, IBM plug-compatible in two phosphors, three general-purpose RGB monitors in three resolutions, and IBM and QL-specific models. In addition a number of colour graphics cards is available for Apple. The Mantron division of Pictron, an independent company founded six years ago, produces quality high-resolution monitors and boasts one of Europe's leading design teams. In addition to making a range of standard products, e.g. the VLR series, the company offers a service of consultancy and custom design. The standard units include both portrait and landscape monitors with sizes from 5 to 26 in, and line rates up to 25kHz and frame rate to 120Mz. Mantron also supply the Indest range, including the Apricot-compatible AP1200.

• Flat-square high resolution tubes are now supplied by Mullard in development sample form. There are three tubes: a 15in 110° type similar to M38-328, a 12in 90° tube with P31 phosphor resolving 1200 lines, and a 14in 90° type resolving 1300 lines.

• Philips Consumer Electronics have four models in the 8500 series of 14in colour monitors, starting at £200. One model is medium resolution (the rest standard) for 80 character use and the range features adjustable stands and anti-glare screens on some models.

• Radi-ec brand monitors, presently available only in monochrome, will shortly be joined by colour models. Marketed by Citadel Products of 50 High Street, Edgware, their 12in model 101 has a 1100-line resolution (screen centre, 900 at the edge), a bandwidth of 22MHz, and sells for £70.

• Digisolve specialize in custom design and modification of v.d.u. and graphic display controllers, and

Computer monitor range from Grundig Electronics has models of three resolutions, one with an FST, another sporting 12 sockets, including Scart, BNC, AV, DIN, Japanese standard, and, later this year, a 0.31mm FST monitor. Shown is the PM050. Monochrome monitors are also available for video use and for t.t.l. input. From J.O. Grant & Taylor (London) Ltd of Potters Bar, not Grundig International.

Prototype colour monitor designs

Laboratory reports that include printed circuit layouts are available for a range of new designs developed in Philips application labs. For those who wish to build only a few or assemble a prototype quickly, complete kits for some designs will be available from Hawnt Electronics at Firswood Road, Garretts Green, Birmingham, (021-784 3355).

<table>
<thead>
<tr>
<th>Code</th>
<th>Dot pitch (mm)</th>
<th>Tube (size)</th>
<th>Scan rate</th>
<th>Video time</th>
<th>Report ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>C165</td>
<td>0.42 (m-in)</td>
<td>M34EAG</td>
<td>16</td>
<td>50, 60</td>
<td>37.5</td>
</tr>
<tr>
<td>C161</td>
<td>0.28</td>
<td>M52-100</td>
<td>16</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>C164</td>
<td>0.29</td>
<td>M37-103/8/11</td>
<td>16</td>
<td>60, 50</td>
<td>30</td>
</tr>
<tr>
<td>C242</td>
<td>0.29</td>
<td>M37-103/8/11</td>
<td>24</td>
<td>50, 60</td>
<td>12.5</td>
</tr>
<tr>
<td>C322</td>
<td>0.29</td>
<td>M37-103/8/11</td>
<td>32</td>
<td>60, 70</td>
<td>12.5</td>
</tr>
<tr>
<td>C323</td>
<td>0.31</td>
<td>M42-106</td>
<td>32</td>
<td>60, 70</td>
<td>12.5</td>
</tr>
<tr>
<td>C452</td>
<td>0.29</td>
<td>M37-103/8/11</td>
<td>45</td>
<td>60, 70</td>
<td>9.5</td>
</tr>
<tr>
<td>C641</td>
<td>0.32</td>
<td>M48/37/SN64</td>
<td>60</td>
<td>60</td>
<td>5</td>
</tr>
</tbody>
</table>

*Also M51-107

Another standard for which we have to thank IBM is the interconnection between monitor and source via 9-way D-type plugs and sockets.

Pin

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0V</td>
</tr>
<tr>
<td>2</td>
<td>0V</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>intensity</td>
</tr>
<tr>
<td>7</td>
<td>not used</td>
</tr>
<tr>
<td>8</td>
<td>horizontal sync</td>
</tr>
<tr>
<td>9</td>
<td>vertical sync</td>
</tr>
</tbody>
</table>

All the signals are t.t.l.-driven, so the length of cable used must be kept down. The intensity bit extends the number of colours to 16.

25
The Archer Z80 SBC

The SDS ARCHER — The Z80 based single board computer chosen by professionals and OEM users.

* High quality double sided plated through PCB
* 4 Bytewide memory sockets — upto 64k
* Power-fail and watchdog timer circuits
* 2 Serial ports with full flow control
* 4 Parallel ports with handshaking
* Bus expansion connector
* CMOS battery back-up
* Counter-timer chip
* 4 MHz. Z80A

OPTIONS:
* SDS BASIC with ROMable autostarting user code
* The powerful 8k byte SDS DEBUG MONITOR
* On board 120 / 240 volt MAINS POWER SUPPLY
* Attractive INSTRUMENT CASE — see photo.
* 64k / 128k byte DYNAMIC RAM card ★ NEW ★
* 4 socket RAM — ROM EXPANSION card ★ NEW ★
* DISC INTERFACE card ★ NEW ★

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067
CIRCLE 66 FOR FURTHER DETAILS.

AFFORDABLE ACCURACY QUALITY MULTIMETERS FROM ARMON

ANALOGUE

HM-10082
10ADC. Range. 20Kv/VDC. Buzzer. Battery Test
Scale
10 measuring ranges $13.00
10 measuring ranges $11.00
Low end voltage & current ranges. Jatex for Audio/dep Voltages
10 measuring ranges $12.00
Rugged. Pocket sized meter. for general
16 measuring ranges $7.80
Battery. Test Leads and Manual included with
each model.

DIGITAL

HC-6016 0.05% Accuracy. Standard Model $39.50
HC-5016T 0.2% Accuracy. TR Test Facility $39.50
HC-7030 0.1% accuracy $39.50

FULL DETAILS ON APPLICATION FROM:-

ARMON ELECTRONICS LTD
DEPT A. HERON HOUSE, 129 BERNABY HILL ROAD, WEMBLEY, MIDDLESEX W5 4AB
TELEPHONE 01-902 6231 TELEX 239995.
PLEASE ADD 15% to your order for VAT. P&P Free of charge. Payment by cheque with order.
Offer applicable to mainland UK only.
Trade enquiries invited
Please allow 28 days for delivery

CIRCLE 45 FOR FURTHER DETAILS.

BRAND NEW ELECTRONIC COMPONENTS

QUALITY .25W CARBON FILM RESISTORS

Qty 1-9K 10-24K 25-49K 50-99K 100K+
Price 4-25 3-95 3-70 3-45 3-25
Price per 1000. Sold in multiples of 1000.
Small quantity prices available.

LEAD-FORMING SERVICE AVAILABLE

Save assembly time and money with pre-formed leads.
Size setting £2.00 plus £1.50 per 1000.

Write or Phone for full Details

HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SS2 7JX Tel: (0702) 332338

PRINTED CIRCUIT BOARDS FOR ELECTRONICS & WIRELESS WORLD PROJECTS

PROJECT DATE No. of Boards PRICE
NIOO FAST CHARGER (NOV 83 ISSUE) 1★ £7.00
R.F GENERATOR (JAN 84 ISSUE) 2★ £6.00
SD-84 COMPUTER (MAY 84 ISSUE) 3★ £39.00
MODEM (JUN 84 ISSUE) 1★ £16.00
SD-84 POWER SUPPLY (SEP 84 ISSUE) 1★ £5.00
EPROM PROGRAMMER (NOV 84 ISSUE) 2★ £17.00
MICRO PROG. ADAPTOR (DEC 84 ISSUE) 1★ £4.00
PRINTER BUFFER (MAR 85 ISSUE) 1★ £14.00
CALL COST CALCULATOR (JUN 85 ISSUE) 1★ £12.00
BOARD CODE: ★ PLATED THROUGH HOLE ★ SINGLE SIDED
All P.C.B's are supplied with component insertion diagrams. Prices are inclusive of
Inland and Overseas Postage, Packing and V.A.T.
C.W.O. TO:

Combe Martin ELECTRONICS
KING STREET, COMBE MARTIN, NORTH DEVON EX34 1AD. Tel: 0271 88 2346

ELECTRONICS & WIRELESS WORLD AUGUST 1985
That's why from the TRIO, you're wiring customer. Held in PROM and Built with uncompromising quality, TK801S is a CTCSS transceiver from your sole dealer. No service headaches, no gimmicks, no limits, the TK801S is available in CRICKLEWOOD ELECTRONICS, Cricklewood, London NW2 3ET. Tel: 01-450 0995/1 452 0161. Telex: 91 4977. CIRCLE 42 FOR FURTHER DETAILS.

CIRCLE 26 FOR FURTHER DETAILS.

TRIO, quality PMR equipment. AOR, monitoring & surveillance.

TK801S

Now from TRIO, the eagerly awaited range of high quality, purpose designed, VHF and UHF mobile radio transceivers. Built with uncompromising quality in mind, these fully synthesised transceivers use a completely discrete back-up chassis for reliability and ease of use. Up to 32 channels are held in PROM and frequency changes or additions can be carried out without delay to the user.

The transceivers will handle all current frequency allocations including UHF community repeater channels and, for CTCSS; module allows 5 minute installation time with no wiring necessary.

CTCSS encoder/decoder units are available with 37 tone DIP switch programming, or PROM programming when you wish to allocate different tones on different channels. If you deal in radio telephones, the TRIO range is designed for you. Remove your installation and service headaches by contacting the sole distributor right now for further details. You will not be disappointed.

AR2001

The AR2001 is a monitor offers low cost, high performance receiving facilities over the frequency range 25 — 550 kHz (no gaps). All normal reception modes are included, and a wide variety of tone and search facilities under microprocessor control, make the AR2001 a versatile tool for many applications.

- General off air monitoring
- Spot frequency monitoring/masurement
- Selective multi frequency analysis
- Spectrum surveillance
- Detection of unknown emissions
- (Bug hunting) and much more!

Frequency coverage is continuous from 25 to 550 kHz, in selectable increments of 5, 12.5, or 25 kHz, and modes of AM, FM (wide), or FM (narrow). Any mode can be used at any frequency or channel spacing. A further facility is the ability to search between two user programmed limits with high to low or low to high searching.

AR2001 monitor receiver. £360.00 plus vat.

LOWE ELECTRONICS LIMITED

Cricklewood Road, Matlock, Derbyshire DE4 5JE

Telephone: 0629 2817, 2430, 4057, 4995

Telex: 377482

CIRCLE 25 FOR FURTHER DETAILS.
AVO multimeters embody decades of experience to meet virtually every electrical/electronic servicing requirement. From the analogue Model B mk 6 and the hand-held 1000 and 1001, to the digital 2000 Series, it's easy to see why AVO multimeters are world famous, for decades of reliable and accurate performance.

Standard choice for industry. Standard choice for value.

Taylor instruments represent outstanding value for money, with a range of digital instruments built to our uncompromising standards to meet BS requirements and spanning a complete range of usage. From the compact, probe-style volt-ohm meter to the 3½ digit TD23, you'll find the Taylor range lives up to our reputation for simplicity and performance. The choicest instruments are ours. The choice of them is yours.

Contact us today for further detailed information.

THORN EMI Instruments Limited, Archcliffe Road, Dover, Kent CT17 9EN Telephone: 0304 202620 Telex: 96283 CIRCLE 5 FOR FURTHER DETAILS.
Vehicle electronics and development

British innovation in the development of electronics in road vehicles illustrates the use of high-calibre all-rounders in small teams, rather than the relatively high-cost 'mass-attack' approach.

With the gathering dusk of autumn, the decline in the car's performance began. Switching on the headlamps with overdrive in produced not only a drop in speed but also a tendency for the headlamp beams to become little more than a dull red glow. Clearly the electrics had deteriorated, but fortunately a threshold in the deterioration seemed to have been reached; and the journey was completed with headlamps and without overdrive and its demand for solenoid operating current.

Such an incident is within the experience of many motorists; but, as will be shown later, was not a simple matter of battery, generator or even charging control. It did, in fact, open up a piece of investigation which formed an early part of the private venture work to be described in the next section.

Some years before, another, but comparable, car suddenly stopped; but after a few minutes, started again and then continued to run without trouble for some thousands of miles before the fault recurred.

In this second case, the stop condition was maintained for a period long enough for a passing road patrol to join in and suggest that almost beyond doubt it was 'the Condenser' — the capacitor across the ignition contact-breaker. Moreover, he extended advice into practice (the engine in the meantime having restored itself to life) and pointed out a garage just down the road where apparently they had extensive experience of the problem, and were almost certain to have the correct replacement. This indeed proved to be so: the substitution was made, the engine started instantly, the car moved happily off; and some four hundred yards further on, stopped dead. This time it became quite evident that it had stopped, and that the intermittent fault with a one-shot periodicity of about two years had become 'solid'.

Again, such events are not unknown in the motoring world; but usually the car has either been disposed of or all components in the suspect area changed before any investigation could be carried out. Such investigations — essentially long term — are, however, necessary if the fundamental cause of these obscure faults is to be determined and something done about them.

Thus, one of the main factors in the choice of these two case histories is that they both proved to be examples of design shortcomings best described as being electro-mechanical in nature; but which — as will be seen — were completely unavoidable in the circumstances.

The more straightforward illustration of how design faults arise and how they fail to come to light, is afforded by the second example quoted. In this instance, once the failure stayed on, it was traced to a break in the connection between two terminal posts on the distributor base and was cleared by putting in a conducting link between the two terminals. This was not quite the simple matter it might appear, since this link had to be made of flat strip; thin enough for the distributor rotor arm to clear it. Possibly in order to give this mechanical clearance, the link had been made of a piece of soft copper wire moulded into the distributor base. Assembly presumably depended on the equivalent of a cold weld being produced when the terminal posts were screwed in to the threaded holes to give an 'interference-plus' fit with the ends of the wires where they protruded through the walls of the holes.

That this was not entirely successful as a permanent form of connection is somewhat surprising; and it says much for the maker that some twelve months later they were found to have substituted a flat (external) link for the moulded-in wire in production distributors, i.e. they had located, and cleared, a fault which, on the face of it, could not have happened.

This question of obscure fault which, technologically speaking, can be dismissed as utterly trivial, but which can be literally catastrophic in effect, runs through the whole of development engineering. An extreme example was seen recently (April 1985) in the failure to bring a multi-million-dollar communication satellite into operation, and its total abandonment, because of a single faulty switch. At a somewhat different level (but with correspondingly large amounts of money being ultimately at stake), the British car industry has demonstrated how far-reaching the effects of the trivial, but obscure, fault can be.

An account of advances made at Jaguar Cars in quality control deals with reliability problems encountered with components obtained from outside suppliers. A large proportion of these fall either into the category of electronics or that of electrically associated electronics. A particularly apt statement is that a new connector had been developed for "... linking two wires together..."
that cannot shake loose and so lead to those infuriating intermittent faults that are so difficult to trace". Other examples of low-level design faults and their clearances, such as the changing of contact ramp angles to achieve full reliability of winker/wiper control stalks — not an obvious solution. Neither was the identification and replacement of a switch as the cause of the un- serviceability of electric window operation, or the changing of the "wrong"先天 problem. Furthermore, in stating that the difficulties of reaching a solution are almost invariably underestimated, it is submitted that one cannot put staff of too high a calibre on such work.

In the end, as with any form of R and D management, which really it is, this comes down to a question of money. Money, in this case, means not only the economics of the operation, outstandingly in terms of the overall time scale but also, in the final analysis, of survival itself. Thus when survival comes into ques-
tion, assessment of the position has to be carried out as a joint exercise between the technical and financial sides to establish likely future cost — money. The onus here rests entirely on the various sub-project (technical) managers to determine future time scales and effort required. This depends, of course, on all the sources of trouble having been identified and acceptable methods of tackling them arrived at. There is no need to stress the immensity of the problems this represents, particularly as with the motor car, where several technologies meet and interact.

Nevertheless there are methods which can be claimed to give some control of an untenable position where there are no solutions in sight: most of them have been make it possible to anticipate, at least in part, some of the problems which do arise. Such methods, centred on the use of an activity chart, become increasingly appo-
site as the multi-technology condition is reached where, finally, electronics and electrics come together with automobile engi-
neering to form an R and D team which depends for its ultimate strength on having a number of all-round engineers in each of the constituent groups. This need for all-rounders has already been well ventilated earlier in this series; but in the automobile case it takes on a special significance with the need to avoid false trails and, even more difficult, to obtain an accurate breakdown of the areas where trouble is being encountered. In an engine, it will become evident that in one or more of these areas, the time required for solution is completely unpredictable; and this is where upper management may or may not be able to fund the work for such an indefinite period.

From the project manager's point of view, the assessment of the extent of individual areas of trouble is a continuous process, assuming that activity chart methods or their equivalent, are being used; and it is from this that he should be able to build up a picture of action being taken that justifies further support. In prac-
tice the position is usually far from being so clear-cut. Thus, specifically in the car industry, vehicles and equipment may be in full production and the R and D problems that have to be tackled arrive with no time for evaluation or checking on what is almost bound to be incomplete second hand evidence. Thus the investiga-
gators are in a disadvantaged position where there is no possi-
Bility of establishing, within an acceptable time, the likely causes of any one of the troubles. Taking multiple failures at a time, this brings about the conclusion that the commercially based (and constrained) British car industry could not be expected to set up an organization with multi-project capability — and on the scale required — to cope with the system engineering needs of full project development. As the electronic content of the project increases so does the technical spread demanded of the management organization.

This build-up can be thought of as being in three phases, the first being to ensure that the maximum compatibility is achieved between the basic vehi-
cle and the electronics; while the second is an extension of the first with electronics and secondary electronics being covered. The third — the establishment of electronics as the predominant R and D type activity — involves a major change in technical empha-
sis and viewpoint generally. That such a change is well within the capability of British Industry and its underlying resources has been shown by the private-venture programme mentioned earlier.

Private-venture programme

As indicated, this programme has demonstrated that there is a suc-
cessful alternative to the setting up of a huge organization to deal with the move by the car industry into electronics. The establish-
ment of a mass-attack organization can be seen to be virtually impossible on the score of fund-
ing alone, certainly within an acceptable time scale; quite apart from the equally insuperable diffi-
culties of acquiring staff of the standard required.

Clearly, in the face of such a "no-future" position, one has every reason to say that it is just not possible to produce an alter-
tative to the mass attack organization, particularly an alternative which is low-cost.

This indeed would be so, were it not for the hidden technological strengths of the British as exem-
plified by the concept of the "clusters", and as already treated in this series in other connections. Also, as in those instances, these strengths are not far below the surface; and in a sense, the work of this programme has been to bring together small, innova-
tively minded, groups who still operate in the automobile and associated fields, admittedly on a small, localized basis. A funda-
mental part of the work has stemmed from the original cluster of Coventry and the West Mid-
lands, with much of the develop-
ment centred on that unique pro-
duct of the cluster, the Rover "P4" range of cars. These cars, prob-
ably best known in the Rover 100 version of the 1960s1 were far ahead of their time, so that they respond to electronically-based updating today. That this can be done carries a number of implications, all of particular interest in the context of providing a source of proven know-how and techni-
cal thinking which represent sub-
stantial value and are not readily available else-
where.

Before showing how advantage has been taken of these inherited assets, it is necessary to give some account of the original Rover base.

In the early phase of development, this took a longer half car, with its 2,625 c.c. engine, is shown in the instruction manual as being capa-
bles of "... sustained, high-

speed motoring at speeds in excess of 80 m.p.h." (Road tests give an average of 100 m.p.h. for the '110' version).

The key word here is 'sustained', and this takes on a much wider connotation for the Rover 100 as a car which becomes the symbol of British leadership in this particular prestige field. Thus, in this wider connotation, one synonym for 'sustained' can be given an additional technical dependence. The evidence behind this statement (and others in the same vein) can per-
haps be best summed up by quoting the senior public utility engine-
er who was operating his Rover 100 under the "Highlands and Islands" conditions of the North of Scotland: "Certainly there were days when he was going to keep that car until "It fell to pieces round him".

This then is the atmosphere which existed with these cars when production was brought to an end in 1964; and although this decision to stop was almost cer-
tainly justified by all the evidence available, it did not, and could not, take into account either the significance or the extent of the electronically oriented features which had been built into these cars. There are two clear divi-
sions of these features. The first consisted of components which in their original (physical) form could be used in principle today without fundamental modification being required. The out-
standing example here is the 10V

regulator placed in the vehicle 12V supply to give a (maintained) 10V output to the transducers. Apart from the fact that the stabilizing action was provided by a bi-metal strip cir-
cuit, this was a conventional series stabilizer unit as known today; and it is relevant to com-
pare this anticipation with the electro-mechanical computer — "fruit machine" — of the early radar days (article 2), and with the electro-mechanical digital techniques developed by the CEGB in the 1930s (article 5).

The other example to be quoted here, and coming into this division, is the installation on the engine of a small aluminium heat shield under the distributor and between it and the exhaust mani-
fold. At first sight this is an insignificant, even trivial point of design, but it represents a funda-
mental way of changing which becomes of overriding impor-
tance when electronic equipment
is introduced into the high-temperature conditions of the engine compartment.

This question of way of thinking assumes a special significance for the second division of features which are found in the Rover P4; and which only need electrical/electronic updating (in the development sense) to enable them to be used in advanced new systems now. Such a system is the fuel supply which was evolved round the SU electric petrol pump, which even today has to be regarded as a remarkable development on several counts, not least as a closed-loop, self-regulating (to demand) sub-system. Its progress over the years to its final status is of special interest in the present context, particularly in terms of detailed engineering development.

The SU pump depended on an uninterrupted electromagnetic (electric bell) drive to the pumping chamber diaphragm. Analysed, say for computer control, it is a fuel delivery system which gives a metered supply to the engine, which is automatically adjusted to demand; i.e. fuel is fed to the engine only when required and at a rate which can be accurately measured from the drive rate. These properties were, of course, the objectives which were achieved with the original innovative concept but evolved in the non-electronic world of the time. The advantages were such that a large proportion of British cars were equipped with these pumps for an extended period approaching some 20 years. This was despite the fact that, as with a mechanical ignition circuit breaker, the (diaphragm) drive assembly only had a restricted life due to the burning away of its circuit-breaker contacts.

Thus in meeting the consequent demand for increased life, metallurgical research was required; but it is of interest that another requirement existed in the field. This was with regard to the mechanical stiffness of the back contact as a cantilever arm. It had been found that in many instances, apparent contact life proved to be much less in practice than would be expected from burning away. Inspection of the contact pair suggested that an appreciable improvement might be achieved by reinforcing the back contact arm. This did indeed prove to be so. An auxiliary pressure member made from flashlamp battery brass (strip) and in the form of a leaf spring with a helical loop end, was brought to bear on the back contact arm. With the consequent positive contact thus established, greatly extended service life was obtained. It is a tribute to the makers' basic engineering that this problem was apparently solved by changes on the materials side without any modification to the original physical arrangement of the drive mechanism having to be brought in.

A similar unobtrusive, but successful, redesign can be assumed to have been carried out with the 'throw-over' (toggle) pump operating linkage assembly. This piece of mechanism, with its unique action, was made to close limits; but in the early days suffered from an intermittent 'top dead-centre' effect which caused momentary, or even longer periods of failure. That this fault was largely eliminated in later models is again a tribute to the engineering ability that was shown in detecting and in analysing this fault with its obscure, almost elusive, characteristics.

In the light of modern electronic techniques, it becomes evident that the contact life problem could be solved by fitting the pump with a power transistor unit as in a switchable transistorized ignition system and using the breaker points purely for trigger signal generation. In parenthesis it may be pointed out the Wireless World has maintained an authoritative information service on such circuits. An early article appeared in 1970, with others, for example, in March and August 1982.

Thus, reverting to the electronic updating of the SU petrol pump, this possibility was realised in practice near the beginning of the private venture programme; but it should be added that at least one individual had developed a successful version of this particular system some years earlier. This confirmation of the continued existence in Britain of what may be called the model-engineering spirit and drive was especially welcome in relation to 'climate of confidence'.

Climate of confidence has several facets; and the case histories in this article, and particularly the amount of detail given in them, have been chosen to show the importance of ensuring as far as possible that all the elements being incorporated in a new system development have been engineered and tested out. The increasing difficulty of doing this as the electronics content is made larger has also been brought out in these examples. The picture is perhaps best completed by reference to the way in which the underlying causes of trouble were eliminated, i.e. the way in which system faults were cleared despite their obscure nature.

Thus, taking the first of the case histories seen as an inexplicable deterioration in performance, the solution, withheld until now, was found to lie in the establishment of a very low resistance path between the engine and the battery in the rear of the car. This entailed not only the installation of a heavy cross-section copper cable to replace the earth-return chassis frame, but also improvement of the metallic connections to the supply by changing the thimble-type connector on the battery terminals to a clamp version. With regard to these modifications, it may be added that the performance of the car was more than fully restored by them.

This case is, of course, the classical example of the multiple fault, obscure to the point of not being recognisable, but which, once found, is simple in the extreme. It is, in fact, a microcosm of R and D investigations or the equivalent where the intractability of the problems encountered in the development of a new and complex system reaches such proportions that survival itself comes into question. The build-up of such a situation has already been examined in relation to the British car industry and its increasing adoption of electronics and electronically based equipment (its entry into the Phase 3 condition as defined earlier).

The almost overwhelming extent of the difficulties that are likely to arise in consequence is made clear; but it is submitted that British industry, with its underlying resources, has the capability to deal with them, part of the supporting evidence coming from the private-venture programme. The whole submission depends, of course, on full and effective use being made of "the hidden technological strengths of the British", and which demonstrably exist in other fields. That they do exist, and can be called upon for the car industry, has been indicated for the specific cases already covered; and it is proposed to round off this section with a short survey of a crucial area, viz. that of the operation of electronic equipment at high temperatures, where it does seem that electronic experience and know-how available in Great Britain have yet to make their full contribution.

The linked issues of reliability and equipment cooling take on a special significance with the abnormally high temperatures that can be reached in the engine compartment of a car. In designing for them, allowance must be made for the build-up of heat which takes place under traffic jam conditions, and for the much higher hot-spot temperatures within the confined engine space. This assessment does not mean necessarily that unreliability of electronic equipment traceable to high temperatures cannot be countered; and it can be said that the introduction of, for

Fig. 1. Vehicle telemetry system — sender block schematic.
example, heat shields and cold air ducting does help to reduce these effects. Nevertheless it has to be accepted that precautions must be taken in design, as a joint indi-
cision between automobile and electronics engineers, to reduce these hazards.

In this context, and to give per-
spective, advantage can be taken of information given recently that cooling still
represents a major source of delay in the engineering
development of airborne radar. The size of the problem was
brought out some little time ago as a reminder, by a member of the
industry, of the working rule that U — the unreliability of silicon devices — is given by U ∝ T^n
where T is the absolute temperature. The parallel between air-
borne and radar electronics is perhaps not close, but it will be
seen that experience and know-
how exist here which are more
than relevant in this connection.

It should be pointed out also,
that the release of the state-of-
the-art information quoted above represents a service to industry
comparable with that given by Jaguar with their Survival/Quality
article. One of the more note-
worthy points in the article is the speed with which quality-control
methods were apparently
brought into operation. Both
German and Japanese practice
was involved, together with the
adoption of Japanese Quality
Circle approach. Quality-Circle
groups are set up with selected
members from shop-floor level
upwards and offer a formal
method for reporting faults and
for putting forward suggestions
for clearing them. Now from
experience it can be stated that
this kind of interchange used to
go on almost as a matter of course
in most British engineering
firms, certainly in the smaller
ones, and that this was one of the
foundation strengths of the clus-
ters. However, it has to be admit-
ted that such interchange does
seem to have diminished over the
years and it emerges that, in the
Jaguar case, it had ceased to be
a continuous process and much
vital information failed to reach
the design and development
staffs.

Seen over the UK, it does seem
that this reduction in interchange
can be associated, at least in part,
with the specialization that
usually comes with high technol-
gy and the tendency of individ-
ual groups to become isolated
from each other. With all defer-
ence it is suggested that with the
adaptability and general flexibil-
ity of the British, the position
could be reversed almost over-
night and the fully coordinated
overall approach — shown to be
more than desirable — could be
brought to bear on Phase 3. The
capability and the will are there.

Telemetry in vehicle development

In general, with world markets in
view, the car industry has to carry
out its development testing in
every kind of climatic condition
and over every kind of road sur-
fase likely to be encountered in
the countries concerned. This
entails road testing with a num-
ber of vehicles and for extremely
protracted periods, and although
it is possible to simulate these
environmental conditions, the
cost of providing all the facilities
required is prohibitive.

Nevertheless a variety of work
can be effected, within certain
limits, on the test track. It was
with this application in mind, that
vehicle telemetry equipment was
developed and was evaluated for
commercial use in the UK in 1960. This time-division anal-
logue system followed standard
aerospace practice in having 24
channels, but a special, high-
speed, mechanical sampling
switch was used, running at 12,000 r.p.m., to give a channel
sampling speed of 200 per sec.

Discussion with the car industry
indicated that this rate of sam-
ping and the number of channels
matched their requirements; and
this was also found to be the case
in a more spectacular application.

Donald Campbell's car Blue-
bird for his attempt in 1960 on
the world land speed record, made
in the US.

Campbell was able to achieve his
aim in July 1964 at the Lake
Eyre Salt Flats in Australia, where
he established a new land
speed record of 403.1 m.p.h.
(648.7 k.p.h.). This was, how-
ever, after his 1960 attempt had
been made abortive as the result
of the car having hit a patch of
loose salt on the Utah Flats,
going into a mile-long skid and
eventually overturning.

Plans to build a new Bluebird
were apparently made immedi-
ately after the accident; and the
success ultimately achieved with
it stands as a monument to Cam-
bell and his team.

The fundamental comment on this
would be more than superfluous;
but in terms of high technology,

the Campbell team should be
given much more than a passing
mention. They — with the
unique backing organization set
up behind them — represented a
formidable high-technology club
basically as up to date as any-
thing seen today. The foundation
for this claim lies in two areas; the
first being found in the advanced
nature of the car itself: a record
attempt of this kind is, in many
respects, a development testing
project.

The second, in a sense part of
the first, is the way in which the
new technology of telemetry was
absorbed immediately into this
engineering endeavour. It will
have been made clear that this
was the case during field testing,
especially when the two technol-
ologies being brought together are
judges are widely different in character.

Finally, it is felt that although
full documentation exists to jus-
tify the inferred statement that
the telemetry system used then
would still qualify for high-tech-
ology rating, some of its salient
features should be listed.

First of all, with many of the
data signals being d.c., precau-
tions were taken against drift,
both short and long term. In the
sender, a second bank on the
sampling switch provided a d.c.
restoration action at the output
of a transistorized amplifier,
which in the receiver, a comple-
mentary action was given by
clampering to earth on the receiver
output.

Transistors were used in much
of the equipment, the main
exceptions being cases where
significant power was being han-
dled and thermionic valves had to
be employed, e.g. the output
stage of the transmitter was a
double-beam tetrode.

Considerable attention was
also given to data display and
recording, ultra-violet equip-
ment being adopted for graphical
presentation; while major de-
velopment work was put into dem-
ultiplexing and 'strobing' of
individual data signal channels.

Both transmitting and receiv-
ing equipment were given com-
prehensive environmental test-
ing, the latter for ensuring that it
would stand up to transport to
various testing sites, as with the
first Campbell record attempt
where a fully equipped receiving/
recording van was taken over to
the US.

References
2. Young, R.E.: British invention, innovation and electronics, Wireless
World, March 1985
3. Rovers consolidate, The Autocar, 4 September, 1959
World, January, 1970
and Systems' (Part 2), Electronic Engineering, December, 1961
6. Runalla, A.D.: 'Bluebird Racer's Telemetry System', Electronics October

NEXT MONTH

Interlec is a microprocessor-based controller which functions as a burglar alarm and house-
light controller able to deduce when a given
room needs to be lit.

DigiPoly — a musical keyboard instrument — generates a composite audio output entirely
digitally under the control of an 8088. The sound
generator is in the form of software running on a
f.t.l. processor.

Prototype kit BPK72A from Intel is used as a
1Mbit bubble memory for the SB84
microcomputer.

Signal analyser provides an oscilloscope
display of input, peak or r.m.s. voltages of a
waveform, simultaneously, on a single trace.

Long-tailed pair. First of two articles by John
Lidgey on characteristics and applications in
op-amp and h.f. circuits reviewed.

Fast Fourier transform. A program, running on
a BBC micro, to display spectra of periodic
waveforms.
Electronic mailbox

Using a three-class mail concept, this independent electronic mailbox has the potential for drastically reducing telephone bills in small and large businesses, but it is also cheap enough for home use.

This communication system was designed to serve two independent purposes. It is an error-proof high speed duplex data link between a computer and a remote terminal or second computer, and it is also an electronic mail service with off-line message entry and automatic delivery.

When used as a modem the unit provides auto-dial and auto-answer, and the protocol which it uses offers error-free communications even over bad lines. The only trade-off is that the speed falls if the line is of poor quality.

Conventional electronic mail systems depend upon the use of a central computer, accessed by simple dumb terminals over an unprotected asynchronous link. This system requires no central computer, and the messages are delivered directly from one mailbox to another, where they are held in battery-backed semiconductor memory.

A flashing led indicates that mail has been received. There is never any need to call a central bureau to find out whether any messages have been left; the recipient has the message there in his mailbox and the sender has a reliable acknowledgement of the delivery.

Furthermore a message is not marked as ‘delivered’ in the sender’s unit until every character has been checked and confirmed correct in the destination mailbox. Several levels of error recovery procedures, acknowledgements and interlocks are used to make the system very reliable.

The sender and recipient of mail both interact with their mailboxes off-line, Fig.1. Actual transmission of the mail is normally performed fully automatically at night. For a typical short message the telephone call lasts only a few seconds, which at cheap rate means that the cost is less than that of a second class letter. The total capacity available for storage of message text is 52Kbyte.

Apart from being fun to use, this system has considerable potential for business communications, and it could also be a great help to people with impaired hearing in that it allows long messages to be sent using a short telephone call.

All telephone lines are liable to be noisy, and so all simple modem standards are prone to errors which make terminal use frustrating and file transfer difficult, without running special protocol software in the host computer at each end of a link. Electronic mail is a most useful and habit-forming facility to have access to, but it usually depends upon the use of either a central computer or compatible hardware and software at each node. The philosophy behind this project is pragmatic. One must accept that people have all sorts of different computers and terminals which they would like to communicate between. The only facility they may have in common is an RS232 interface.

If an economical means could be found by which the modem could eliminate the transmission errors, then a distant terminal would work just as reliably as a local one and files could be transferred without special precautions. Furthermore, if the mail system was built into the modem itself, and if it was cheap enough, then the differences between computers would not matter because they would all simply be used as terminals for mail purposes.

Given the desirability of such a unit, it must be said that no satisfactory overall standards exist for the facilities which it provides. This lack of standards is the electronic mailbox’s main disadvantage at present. Possible candidates are either much too simple or much too complicated for the purpose.

I hope that my arguments for the choice of 2400 baud and HDLC (high-level synchronous data-link communication) as the lower levels are convincing. Both

by Martin Allard
B.Sc.(Hons)

Fig.1. Mailbox functional diagram. Outgoing messages are entered into the mailbox from a terminal or computer through an RS232 link. Software in the mailbox makes entering the message very simple. One may send the message immediately or leave it to the mailbox to send it later on, when calls are at cheap rate. Using ‘third-class’, the sending mailbox only sends its message when the destination unit makes contact — which is even cheaper.
ELECTRONIC MAIL

of these are CCITT standards. The higher levels of the system were designed specially for the project, and this article is not long enough to completely cover all their intricacies; but they are potentially a public-domain standard, or at least a suggestion for one, which is simple and effective and has built-in compatibility with future more sophisticated versions. Nevertheless the hardware to be described can also run any other protocol using the same lower levels, simply by extending the firmware.

Design

Physically, the system consists of a single printed circuit card which contains a microprocessor with 64Kbyte of memory, a battery-backed real-time clock and a 1200-baud modem. External connections of the unit are mains input, telephone line*, and an asynchronous RS232 line to which either a terminal or a computer can be connected.

Several methods of originating and answering telephone connections either automatically or manually are provided. Whenever the mailbox is on-line to another such system there is a duplex link open between the two terminal connections which is independent of the mail system. When off-line, the terminal line can be used to enter messages (or even binary files) for later delivery to another node, and to read incoming electronic mail.

Each mailbox is given a unique name, and the mail delivery system is based on these names rather than on telephone numbers. Three levels of delivery service are provided. First class mail is sent at once, second class mail is sent overnight, and third class mail is sent only when the opportunity arises.

Whenever two units are connected they exchange names, and each scans its list of mail to see if it has anything to send to the other one. Any opportunity to transmit mail is always taken advantage of.

Standards

Several possibilities were considered before the rather unusual choice of modem standard was arrived at. I rejected the common 300/300 baud standard because higher speeds can easily be obtained using quite simple modem circuit designs. It is not widely realized that British Telecom only guarantee the Datek 200 service at up to 200 baud, and whereas it works well at 300 over short distances, those of us who live out in remote areas find that their caution is justified.

Experiments with a number of different types of modem have suggested that the 1200/75 baud standard is actually more reliable over long lines than 300/300 baud. An asymmetrical-rate standard such as this is suitable for use in a simple terminal-to-computer link in which the data rate in one direction is limited to manual typing speed. It is not so suitable for a general purpose link between two computers or for a two-way mail system, because no simple assumptions can be made about relative data rates required in the two directions. Even if provision is made for switching the direction of the circuit, it is not easy to decide when this should be done.

Full-duplex communication at 1200/1200 baud over dial-up lines is possible, but the complexity of modem required is significantly greater than for lower speeds, and the reliability doubtful.

I decided to use a 1200 baud half-duplex standard (CCITT V23) with provision for fast direction switching but no low speed reverse channel. Provided that sufficient buffer capacity is available in the modem, there is no noticeable difference between this and a full-duplex system except that the time taken for characters typed to echo back from a distant computer increases to about half a second. This could be avoided, if necessary, by providing a local echo facility in the terminal.

Advantages of this choice are twofold. Firstly it permits the design of a very simple modem without critical filters. The greater part of the function of modem filters is to exclude the high-level signal from the reverse channel. If there is no reverse channel then the filters are merely to remove line noise in the unused part of the channel bandwidth.

Since this standard uses most of the available bandwidth, the improvement in performance gained from filtering out the unused portion is small. Experience has shown that it is far more effective to make the link tolerant of errors that to try to reduce them.

The second advantage of half-duplex operation is that it permits the relative channel capacity in each direction to be dynamically adjusted to suit the rate of data sent.

From the start it was clear that a link which was to be immune to line noise bursts should use an interlocked line protocol with a powerful method of error detection and retransmission. Asynchronous start-stop data transmission as commonly used for terminal lines has only one real advantage which is its simplicity. Against this is the inefficiency of using 10 or 11 bit periods to convey only eight bits of information, and the sensitivity of the system to loss of character synchronization through noise.

The various types of synchronous transmission in use all require some form of phase-locked loop to recover clock information from the data stream, but this in turn provides immunity from loss of synchronization through short line disturbances. Figure 2 shows the system hierarchy.

Performance

The HDLC link-level protocol chosen, with a variable packet size of up to 64 bytes, is

* Any apparatus for connection to the public switched network must be approved by the appropriate telecommunications body. In the UK. this is BSI - the British Approvals Board for Telecommunications - Ed.

Fig. 2. System hierarchy. The 1200 baud modem is an integral part of the mailbox. Careful choice of protocols and error-checking methods results in efficient and reliable communication.
described later. For the purposes of this introduction, only performance is analysed.

It is difficult to make a general comparison between this and a simple asynchronous data link because the approaches are so different. The most common situation to be considered is that of a terminal operator interacting with a remote computer through the system. In this case the requirement is for the fastest possible transmission of data from the computer to the user, with a relatively negligible data rate in the return direction.

Our half-duplex system requires an extra 32 bytes in order to transmit 64 bytes of user data. This may seem a lot, but it includes the time spent in switching line directions, locking up the receiver clocks, and sending the necessary error detection and link housekeeping information.

In return for this reduction in data rate to two-thirds of the line bit rate, one is guaranteed that the data will be received with an error rate which is independent of line quality, and which is so low as to be for all practical purposes non-existent.

This statement would seem to suggest that the 1200-baud line will give the equivalent of an asynchronous link running at only 800 baud. In fact, performance is better than this by a factor of 10/8 because no start and stop bits are sent; so the link is equal to a conventional asynchronous link running at 1000 baud.

Of course these figures assume that there are no line noise garbage, which cause retransmissions. The worse the line is, the slower the link will become, but errors will not be introduced. This is a far more useful guarantee to have than a fixed high speed with the likelihood of errors.

Since the rate at which data is sent depends on the demand for line time in the opposite direction, and also to a lesser extent on the quality of the line, some means of controlling the supply of data from a computer source is needed.

Standard XON/XOFF characters are used, which are recognized already by most operating systems. Separate provision is made in both the real-time link and the mail system for the transparent transmission of arbitrary 8bit binary files. Under normal circumstances there is no detectable limitation on the speed at which a terminal user is allowed to type into the system.

Using the mail service

Dialogue which takes place with the mail system is designed to be self-explanatory. The unit is normally in standby mode, in which it is ready to accept incoming calls. In order to enter the dialogue, the user must type OFT (i.e. press the return key) twice on the terminal. The system responds with its own name, the date and time, and a prompt.

If incoming mail has been received, or if there has been a power failure since the mailbox was last used, a message will indicate the fact. The system returns to standby mode if an 'x' command is given, or if nothing is typed for three minutes. When entering text the time-out period is extended to 30 minutes, but the system will always return to standby mode eventually to allow incoming mail to be received.

All nodes have identical hardware and firmware except for the name, which is contained in the first 16 bytes of the rom. The name can be up to 16 lower-case letters, left-justified and space-filled. I strongly recommend that names should be easy to spell, because mail will not be delivered if the name of the destination mailbox does not match the one specified.

Following this is a directory of known node names and their telephone numbers. This is for convenience, and does not prevent communication with previously unknown nodes or with known nodes on the wrong numbers. The directory contains up to 10 entries, each consisting of a 16-character name field (as above) followed by a 16-character Ascii string which is the telephone number padded with spaces. An asterisk in the number is interpreted as a two second pause during dialling, which may be needed on some PAB exchanges.

The command 'c dent' opens a connection to the node called dent. The name can be replaced by a number if the node is not in the directory. The 'o' command merely puts the system on-line without dialling a number. This is useful when a connection has been established manually.

The 'i' command lists a summary of incoming incoming messages stored. Each entry consists of the source and destination node names, the date and time of origination, the subject of the message (up to one line of text), the number of characters, the message status, and the message checksum status. The message status may be any of the following:

- received
- delivered
- overnight (to be delivered)
- 3rd class (to be delivered)
- rejected (by the destination node)

Messages are normally rejected only because the destination node has run out of space. In this case further attempts will be made to deliver the message later. The mail system is heavily protected against transmission errors; the checksum on messages is only to guard against the possibility of the data being corrupted in memory due to alpha-particles. This does not appear to be a significant problem in practice, even when long messages are left in memory for several weeks.

Mail is sent and received by use of the 's' and 'r' commands. Typing 's' to the main prompt initiates a dialogue which first asks for a subject heading for the message. Then the main body of the text is entered, terminated by a control-Z character. This is followed by a request for the destination node name and the class

Example of dialogue between the user and mail system (user input underlined).

A double-sided plategthrough printed circuit for this design will be available from Combe Martin Electronics, King Street, Combe Martin, North Devon EX34 0AD, telephone 027188 2346.

A set of three programmed roms is available from Mallard Concepts Ltd., 13 Southdown Avenue, Brixham, Devon TQ5 0AP for £34.50 including v.a.t. and postage. A user guide giving more detailed information on the use of the system is also available free of charge from the same address on receipt of a large s.a.e.
ELECTRONIC MAIL

Fig. 3. Packet format. High-level synchronous data link communication, HDLC, is a bit-oriented serial communication protocol. A transmission packet is recognized by a flag at its start.

of mail (with help if required). If the node is unknown a telephone number is also requested.

To send mail to a known node which has moved, the name is terminated with an asterisk. This overrides the directory and forces an explicit number to be entered. First class mail will be sent at once; other mail is stored and may be examined with the 'l' and 'r' commands.

The system will store up to ten messages. The 'r' command is used to step through them, examining their headers in the same way as for the 'l' command, but with the option of reading the full text of each message or of deleting it before moving on to the next one. At any time within these command sequences a 'control-C' character will abort the operation in progress and return to the main prompt.

The example of a dialogue with the mail system shows first of all the automatic notification that new mail has been received, then the prompt line and the main help message. The incoming message is read by use of the 'r' command, and a reply is sent with the 's' command, illustrating the delivery options available. Finally the 'l' command is used to list both incoming and outgoing mail.

Link level protocol

HDLC is a bit-oriented serial communications protocol. This means that character synchronization can always be unambiguously achieved by searching the bit stream for a known unique pattern which indicates the start or end of a data 'packet'. The coding rules prevent this bit pattern occurring in any other place. A transmission packet begins with this special pattern, 0111110, known as a flag, see Fig. 3. The next two bytes contain link housekeeping information. After this there is the user data field, which in this case is variable in length from 0 to 64 bytes. At the end of the packet there is a 16-bit cyclic-redundancy-check field for error detection, followed by a closing flag.

The simple coding procedure which permits arbitrary binary data to be transmitted without accidentally producing the above pattern is this; the HDLC transmitter inserts an extra zero after any five consecutive binary ones within a packet. The HDLC receiver ignores any zero which follows five consecutive ones. Thus it is guaranteed that there will never be more than six bit periods in the transmission sequence without a binary zero, see Fig. 4.

One of the requirements of this system is that there should be regular transitions in the data stream from which a bit rate clock can be recovered. To consider the two degenerate cases, the above rule assures regular transitions in the case of data which is all ones, but not in the case of all zeros.

If a secondary coding rule of n.r.z.i. is added, this problem is solved. The n.r.z.i. rule is that the serial data remains in the same state to send a one, and changes state to send a zero. Thus the case of all zeros becomes a square wave at half the bit rate, and the case of all ones becomes a square wave at one-twelfth of the bit rate. This assures at least one transition for clock synchronization in every 6 bit periods.

In this system the receiver is programmed to accept only a packet with a valid first byte and a correct c.r.c. It simply ignores all other bit sequences, and does not discriminate between an invalid packet and noise.

Transport level

Above the V3 physical level and HDLC data-link level is a transport level protocol which is purpose-designed to be the simplest way of implementing a two-way error-proof path over a half-duplex point to point link. The state transition table of this protocol is shown in Fig. 5.

Most real communication systems, or at least small ones, fit somewhat uneasily into the ISO seven-layer reference model. In this case there is no network level because at any time there is only a single point-to-point link in the path.

The link control byte, Fig. 6, in each packet contains a function code which is one of the following:

CR - connection request

DATA - normal user data packet

DR - disconnection request

DA - disconnection acknowledge

In addition to the function code, the link-control byte contains a two bit sequence number field, which is only used in DATA packets. When a connection is first established between two of these systems they both send connection-request packets, CR, at random intervals and listen for either a connection-request or a DATA packet with a sequence number of zero in response. In this way an interlocked handshaking protocol is set up which cannot get out of synchronization despite the loss of packets through line noise.

The problem with simple acknowledgement protocols is that when a message has been sent, and no acknowledgement has been received within a reasonable time, the sender does not know whether it was the outgoing message or the acknowledgement which is lost. In the latter case, if the message is sent again, it may be received in duplicate.

The solution is to number the packets. For this system, a modulo-three sequence count would be adequate, but modulo-four is used for convenience. When a DATA packet has been sent with number N, only a reply with number N+1 will be accepted. The original packet is retransmitted until the correct response is received. When this occurs, N is incremented twice (modulo-four).

Fig. 4. Data coding example. There are never more than six bit periods in the transmission sequence without a binary zero. A requirement of this system is that there are regular transitions from which the clock may be recovered.

36

ELECTRONICS & WIRELESS WORLD AUGUST 1985

www.americanradiohistory.com
It can be seen from Fig. 5 that there is no way that the two ends can get out of packet numbering sequence however bad the line may be. If either end sends a disconnection-request packet, DR, the recipient will send a disconnection-acknowledge packet, DA, and cut the connection. The disconnection-acknowledge packet is not acknowledged, but is sent twice as a precaution.

The DR packet is repeated a few times before aborting if no DA is received, and so the DA packet type serves only to make closure of the connection more efficient. In fact it is an essential part of the fail-safe nature of the system that all operations eventually time-out if unsuccessful, and separate numbers of retries are permitted before aborting in the cases of CR, DATA, and DR packets.

I have already said that the receiver ignores invalid packets and that the packet length is variable, so the problem arises that the two ends may get into step, transmitting packets of the same length at the same time on top of each other, and thus neither would ever be received.

This hazard is avoided by introducing a random element into the timing of retransmissions. The delay between repetitions of the same packet consists of a fixed minimum period plus a small random element which is accumulated on each retry. So the delay becomes longer by an unpredictable amount on each attempt (until it eventually aborts).

Usually the protocol recovers from any short noise burst within one or two attempts. It is interesting to listen to the two ends handshaking backwards and forwards and then to disturb them by speaking into the telephone. The smooth interchange is heard to stumble and then quickly resume.

The second byte after the flag in each DATA packet contains higher level information about the significance of the following data field, Fig. 7. Potentially, this byte could be used to control the statistical multiplexing of a large number of separate applications onto the one physical circuit. At present it indicates either a null packet, a terminal-data packet, or one of several types of mail packet. This byte also contains some individual one-bit flags, each of which is a simple communication channel for a special purpose in its own right.

End to end

Consider this implementation of a terminal-to-computer link from one end to the other. Input is stored in a circular interrupt buffer until it can be transmitted, and flow control is exerted on the data source if the buffer becomes more than half full. Each time this system is ready to send a new packet it examines the terminal input buffer, and sends as many characters as are available up to a maximum of 64. If there is nothing to be sent the system will call the mail sender, which always takes second place to terminal traffic. If the sender has nothing to send, the packet will be an idle one.

When the user data has survived transmission over the line it is passed from the packet receiver routine to an output buffer. The process which empties this buffer into the distant terminal line runs at a low priority and is called whenever there is nothing more urgent for the processor to do. This process responds to flow control applied by the receiving terminal equipment. If the process causes the output buffer to fill up, it applies backward restraint upon the link using a special 'stop sending' bit present in every packet to inhibit the sending end. If the input buffer at the transmitting end is filling up when this bit is set, it will cause the data source to be inhibited.

Thus an effective means of flow control exists from end to end, and this allows the terminal line speeds of the two ends of the link to be completely different, and unrelated to the actual link rate if required.

Flow control characters sent from the terminal through the system perform two functions. They immediately switch the local output on or off, and they are also transmitted through to the far end in a way which does not conflict with any more urgent constraints imposed by the link itself.

Use of the flow control characters -control-s- and -control-q- to required.

![State transition table of the transport protocol, designed to be the simplest way of implementing a two-way error-proof path over a half-duplex point-to-point link.](image)

![Link control byte. This byte in each packet contains one of the function codes shown and a two-bit sequence number field which is only used in data packets.](image)

![Packet control byte. The second byte after the flag in each data packet contains higher-level information about the data following.](image)
ELECTRONIC MAIL

Fig. 8. Simplified flow diagram of the mail sender, which is activated each time that the system is ready to send a new packet and has no terminal information to send.

Fig. 9. The mail receiving process is activated when an incoming packet with the right function code in its second byte is delivered.

regulate the data source is convenient and directly compatible with many terminals and operating systems. But it means that these characters must not occur in any data file being transferred.

To pass arbitrary 8bit binary data through the system the 'data-link escape' character-control-p can be used. Any character following this loses its special properties, and is passed through the system without being interpreted.

The terminal interface DCD (data-carrier detect) line is available as a signal intended to switch a remote computer on and off. It is asserted when an incoming call is received which was originated manually by a 'c' or 'o' command. It is not asserted on calls which were originated just for mail delivery.

Mail transmission

The mail delivery system can be considered to be a one-way communication channel with just a simple method of sending positive or negative acknowledgements of messages in the reverse direction. When two of these units are connected, each pursues its own mail delivery objectives independently without any interference to terminal traffic or to mail being delivered in the opposite direction. So long as adequate space remains in the receiving-unit memory there is no need for flow control because data can be accepted as fast as it can be sent.

Figure 8 represents the mail sending process activated each time the machine is ready to send a new packet and has no terminal traffic to send. The first action when a connection has been opened is to send the name of the local node, and then to wait for the name of the remote node to come in. Using this information the mail sender scans the list of outgoing messages for any addressed to the currently connected destination.

The mail system reverse-signalling channel consists of two flag bits in each packet — acknowledge and reject. The sender waits for both of these to be clear before starting to send the message header. This header contains Ascii strings showing the origin, date, time and subject of the message which appear in the message list display, and also some binary information such as the character count and checksum.

The header is sent in three stages and is followed by the message text. After this an end-of-message signal is sent, and the sender waits for the acknowledge bit to be set. When this happens the status field in the original table entry for the message is changed to 'delivered'. The mail sender scans for any more mail to be sent to the same destination, but waits for the acknowledge flag to clear again before starting the next message header. If at any time the reject flag becomes set, the delivery of mail is abandoned.

The mail receiver is a process which is activated whenever an incoming packet is delivered with a function code in the second byte which is one of those allocated to the mail system. Figure 9 shows the way in which it is driven by this function code.

The reject flag is set if there is no more space in either the message table or the message text area, or if the number of bytes received or the checksum do not agree with the information in the header. The acknowledge flag is set only after these tests have been passed, and then an entry is made in the message table of the recipient machine marked 'received'.

If the connection is lost, or anything else goes wrong during transmission of a message, no change is made in the message table of either machine, and another attempt will be made at the next opportunity according to the class of delivery specified.

Hardware is discussed in the next article.
‘RUR’ HOBBY ROBOT

DESIGNER APPROVED KITS AVAILABLE FROM

A complete kit of approved parts for the construction of the RUR HOBBY ROBOT as featured in PE is available as follows:

BASIC KIT £249
plus 15% VAT

ADD-ON ARM & ELEVATED TRAY £280
plus 15% VAT

CARRIAGE EXTRA Please write for a quotation

OFFICIAL ORDERS accepted from approved industrial or educational establishments, otherwise terms strictly CASH WITH ORDER

REEKIE ROBOTS
Beaufort Works, Beaufort Road, Richmond Road,
East Twickenham, Middlesex, TW1 2PQ.
Please allow 28 days for delivery

REKCOM-2

Still the most outstanding, single board computer with thousands of satisfied users in industry and the home.

Full range of extensions and add-ons also available.

‘Phone or write for further details now!

Lucas Control Systems

Lucas Control Systems Limited
Welton Road, Wedgmoor Industrial Estate, Warwick CV34 5PZ
Telephone: 0261-497733 Telex: 312333

CIRCLE 6 FOR FURTHER DETAILS.

MENTOR DC servo desktop robot; 8 bit control system, 300gm capacity, 420mm reach

NEPTUNE Series 2 & 3 6/7 axes DC 1.2 bit control system 2.5 kg capacity, 1.120mm reach

SERPENT X/II 5 axes 1.2bit control system 2 kg capacity 400/x550mm reach

Robots programmed from keyboard or hand held simulable (model robot).

Mentor may also be taught by ‘lead by the nose’ method

Extensive software is supplied free with each robot.

Leads available for connection to BBC, ZX Spectrum, Apple IIe, Commodore 64 and VIC 20.

Most other micros are also easily usable with these robots.

Robots available as kits or ready built

Please phone for brochure: 0264 50093.

West Portway Industrial Estate, Andover SP10 3 WJ.

A private and independant company giving prompt personal service

CIRCLE 20 FOR FURTHER DETAILS.
Robots for learning and fun

Some of the cheapest toy robots can respond to light, sound or touch and illustrate the principles of operation of 'real' robots. Nigel Clark looks at small robots used for pleasure and education.

Robot servants have been the dream of fiction for centuries. Most took the form of mechanical people but attempts for fact to meet fiction has met with little success. However, once it was decided to limit expectations somewhat, it has been possible to produce machines with limited intelligence and suited to specific tasks. The use of microprocessors helped to cut the cost and made possible the appearance of robots in industry. Similar developments have taken place in small robots producing a growing number of increasingly complex machines at affordable prices.

Robots are finding a ready market amongst children, electronics hobbyists and educationists. Children are attracted by the toys which are capable of increasingly complicated manoeuvres. Toys also interest the hobbyist who can adapt them for their own designs and can also use them as building blocks. Some of the toy robots are available as kits and are especially useful for this. The most use for small robots can be found in education: training for those who may use robots; as an aid in teaching a wide range of subjects involved in the whole concept of robotics; and in the teaching of abstract ideas, such as mathematical theories.

In industry, managers need to know the capabilities of robots, engineers need to know how they work and technicians need a detailed knowledge of the machines to ensure proper maintenance. Models and toys enable these aims to be carried out without the wasting of time and use for the robots on the factory floor.

The growing range of small robots can illustrate most of the major principles underlying modern automated production techniques; particularly the combination of feedback and power actuators under the direction of an operation program. Robotics also involves electronic and mechanical engineering, industrial design and mathematics.

Universities are using the more expensive robots to fulfill these aims as they provide the more mechanical and electronic capabilities. In school, the courses do not need to be vocationally based and can use robots as an attractive way to stimulate interest in a wide range of subjects. The cheaper robots are usually aimed at this market. They often come in kit form and need a microcomputer for control. Having learned the basic principles from existing products, school students can go on to design their own robots.

Toys

Robots in this context can be divided into three groups; toys, turtles and small robot arms. The toys often have the appearance of the fictional robot, miniature hominids, but are somewhat limited in their capabilities. The price range varies from as little as £10 up to £200. They are all imported, mainly from the Far East.

Their technology is limited but still interesting. The Dingbot from Tomy Toys costs only about £10 but uses a complex gearing system that will reverse and turn 90° if it hits something and then go forward until it encounters another obstacle. Several sensory inputs are illustrated in the Movit range distributed by Commotion: Peppy is sound activated and a click of the fingers or a clap will send it through its routine. Avoider uses an infra-red sensor to avoid bumps and Navius can be programmed by colouring in segments on a paper disc.

Toys are all mobile and, at their simplest, are only collections of motors, gears, drive shafts and wheels. They are usually driven by two d.c. servomotors, powered by batteries; steering is achieved by having the motors travel at different speeds. The more expensive toys, such as Omnibot or the Memoon Crawler, follow instructions from the user and incorporate feedback to report when the routine has been carried out. Potentiometers of varying accuracy and optical encoders are used for this.

Thus at the simplest level many of the processes used by modern robots can be illustrated, though each individual toy has a limited usefulness. It is possible for them to see, hear and touch. Sound inputs can be clicks or high-pitched whistles but spoken commands do not work very well. Verbot from Tomy Toys claims to recognise a few words but the system is very crude and unreliable.

Vision can be achieved by infra-red or visible light sensors and it is possible to detect obstacles or activate the robots with these. However if vision is needed to distinguish between objects then a much higher level of definition is needed.

Robot vision represents one of the problems of producing a complex robot. Any sort of camera can provide an image of the objects in sight but that image needs to be processed for the objects to be recognised.

There is not yet any useful system that has sufficient...
processing power to do this. For example, it would be possible for a vision system to work out that the scene in view was a table and four chairs. The time taken, however, would make the exercise pointless. If there had been any change in the scene while it was working it out, as could easily happen in an everyday situation, any action the robot took, based on the information processed, would be incorrect.

The reason why the processing takes so long is the method used. The robot would take a piece of information from the scene and then orient it until a match was found with information stored in its memory. Although it can do this much faster than a human, humans recognize objects more quickly because they do not use this process. Research into artificial intelligence is aiming to replace human thought processes in machines and this could lead eventually to robots being able to see.

This is still a long way away. In the meantime vision systems have adopted a different policy. They restrict the range of objects and the way that they are presented. Thus it is possible to recognise discrete object on a conveyor belt and it is possible to sort them by outline or colour. In one application mechanisms are used to orient an object so that it is presented to the 'eye' in exactly the same way each time. The system can then recognise the outline of that single object and reject any deviants.

Most forms of sensory inputs have similar problems and restrictions. That is why the commonest form of input is through a keyboard from the simple Forward and Stop keypads on the top of toys such as George and a pendant which does the same for the Memucon Crawler to the full computer keyboard.

Robot arms

Arms are designed to simulate their industrial brothers and should, ideally, be programmed in a high-level language. Many only require the co-ordinates of the points they need to reach, and some systems provide help by giving a graphic simulation on the screen so that routines may be tested before being translated into actions on the arm. One of the simplest methods of input is illustrated by the Mentor and Neptune arms of Cybernetic Applications where models of the arms are moved by hand and are reproduced by the arms themselves. Most arms however are governed by the keyboard. Small arms use a wide variety of drive methods. While most are powered by electric motor, the drive can be transmitted by some form of belt, by hydraulics and in one case by screw shafts and pistons. Belts are most popular. Early robots like the Armdroid 1 used a strong nylon cord but this proved susceptible to stretching and slippage. A toothed belt is used successfully by the Atlas and MA 2000 arms.

Dick Becker, while at Powertran Cybernetics, pioneered the use of hydraulics, using oil, in the Genesis range. When he moved to Cybernetic Applications, he designed another hydraulic arm, using water. The Teach robot uses motors to power screw drives which in turn move pistons.

As with turtles, servo motors are commonly used in robot arms and are provided with feedback through potentiometric or optical sensors. Sensors.

Arms are classified by the number of axes, or degrees of freedom, that they have. The gripper is not usually counted and arms can have up to six axes which are roughly equivalent to movements of waist, shoulder, elbow and three movements of the wrist; pitch, yaw and roll. Many have five axes with one of the wrist movements being left out. In general, the more expensive the arm the more axes are provided. The Beasty, at about £120 has three axes while the MA 2000 costing more than £3000, has six.

While there is a variety of small robot hardware, there is still a great lack of easy-to-use software. Arms are rarely provided with anything other than the operating software. Cyber produces a small suite of software for the 310 arm, which allows it to execute the Towers of Hanoi puzzle and mimic a number of different types of arm. Cost £150. One exception is the recently launched Trekker. This includes a package of 40 programs for use in education and also full documentation, teachers' notes and much else all for £150.

For the future, there is not much scope for mechanical development of small robots. New designs might be introduced, such as the Scara range which move in a horizontal rather than vertical plane; pneumatics might be used for drive mechanisms but the physical appearance and cost must remain much the same. There is much room for improvement in the electronics. More power for less money will mean that the devices will be able to accomplish more complex routines and process sensor input faster and more efficiently. Research into artificial intelligence could result in operating systems which will allow the robots to react correctly in increasing degrees of complexity.
Some suppliers of robots and their products.

Prices quoted are approximate and are given as a guideline.

Toys

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Games Ltd (CGL)</td>
<td>CGL House, Goldings Hill, Loughton, Essex.</td>
<td></td>
</tr>
<tr>
<td>George the CompuRobot.</td>
<td>Programmable through a membrane keypad on top.</td>
<td>£25</td>
</tr>
<tr>
<td>Commotion</td>
<td>241 Green Street, Enfield, Middlesex EN3 7SJ.</td>
<td></td>
</tr>
<tr>
<td>Beauty Truck</td>
<td>(controlled by BBC Micro, caterpillar-tracked vehicle)</td>
<td>£120</td>
</tr>
<tr>
<td>Movits</td>
<td>Wizard (controlled by Commodore 64)</td>
<td>£75</td>
</tr>
<tr>
<td></td>
<td>Memoon Crawler (controlled through pendant)</td>
<td>£35</td>
</tr>
<tr>
<td></td>
<td>Natus (programmed by colour disc)</td>
<td>£20</td>
</tr>
<tr>
<td></td>
<td>Medusa (four legs, sound sensor)</td>
<td>£20</td>
</tr>
<tr>
<td></td>
<td>Piper-mouse (three wheels, whisker activated)</td>
<td>£20</td>
</tr>
<tr>
<td></td>
<td>Monkey (sound activated, limbs wire)</td>
<td>£10</td>
</tr>
<tr>
<td></td>
<td>Line Tracer (infra-red sensor)</td>
<td>£18</td>
</tr>
<tr>
<td></td>
<td>Peppy (bump sensor)</td>
<td>£17</td>
</tr>
<tr>
<td></td>
<td>Avoider (infra-red sensor)</td>
<td>£30</td>
</tr>
<tr>
<td></td>
<td>Circular (remote-controlled)</td>
<td>£30</td>
</tr>
<tr>
<td>Fischertechnik</td>
<td>Imported by Economatics (see below)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kit system, needs interface and micro for control.</td>
<td>£65</td>
</tr>
<tr>
<td>Milton Bradley Ltd.</td>
<td>Spencer House, 23 Sheen Road, Richmond, Surrey.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Robotix (three kits, with own control system)</td>
<td>£20 to £80</td>
</tr>
<tr>
<td>Tomy Toys Ltd.</td>
<td>Wells House, 231 High Street, Sutton, Surrey.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Omnobot (radio-controlled mobile with two simple arms)</td>
<td>£190</td>
</tr>
<tr>
<td></td>
<td>Verbot (voice-controlled mobile, see text)</td>
<td>£50</td>
</tr>
<tr>
<td></td>
<td>Dingbot (bump-sensitive mobile)</td>
<td>£10</td>
</tr>
</tbody>
</table>

Turtles

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clwyd Techinics Ltd.</td>
<td>Unit 4B, Antelope Industrial Estate, Rhydymwyn, Clwyd CH7 3JH.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(comprehensive software and documentation)</td>
<td>£125</td>
</tr>
<tr>
<td>Economatics Ltd.</td>
<td>4 Oregave Crescent, Dore House Industrial Estate, Handsworth, Sheffield S13 9NG.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BBC Buggy (specifically for the BBC-B, light and bump sensors, grabber)</td>
<td>£200</td>
</tr>
<tr>
<td>IGR</td>
<td>Unit 208, Highbury Workshop, 22 Highbury Grove London N5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero 2 (Update of the Zeaker turtle; runs under Logo on many popular micros) Kit</td>
<td>£80</td>
</tr>
<tr>
<td>Jessop-Ralph Ltd.</td>
<td>Unit 5, 7 Long Street, London E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jessop Turtle (traditional design)</td>
<td>£200</td>
</tr>
<tr>
<td>Penman Products Ltd.</td>
<td>8 Hazlewood Close, Worthing, W. Sussex BN14 8NP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penman Plotter (combines functions of a turtle, a plotter and a mouse for input, three pens)</td>
<td>£230</td>
</tr>
</tbody>
</table>

Robot arms

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powertran Cybernetics Ltd.</td>
<td>Portway Industrial Estate, Andover, Hants SP10 3NN.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hobot II (traditional design, controlled by ZX81, amongst others)</td>
<td>£100</td>
</tr>
<tr>
<td>Valiant Designs Ltd.</td>
<td>"714, Park House, 140 Battersea Park Road, London SW11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valiant Turtle (infra-red control, runs under Logo, looks like a real turtle!)</td>
<td>£150</td>
</tr>
<tr>
<td>Colne Robotics Ltd.</td>
<td>Beaufort Rd, E. Twickenham, Mddx TW1 2PQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armdroid (5 axes, stepper motors; one of the earliest designs)</td>
<td>£500</td>
</tr>
<tr>
<td>Commotion</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beauty (3 axes, servo motors; expandable)</td>
<td>£115</td>
</tr>
<tr>
<td>Cyber Robotics Ltd.</td>
<td>Stone, Staffs ST15 0SA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyber 310 (5 axes, stepper motors; special software suite)</td>
<td>£850</td>
</tr>
<tr>
<td>Cybernetic Applications Ltd.</td>
<td>West Portway Ind. Estate, Andover Hants SP10 3LF.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mentor (5 axes, servos; controlled by miniature model of the arm)</td>
<td>£500</td>
</tr>
<tr>
<td></td>
<td>Neptune 1 (5 axes, water hydraulic)</td>
<td>£1600</td>
</tr>
<tr>
<td></td>
<td>Neptune 2 (6 axes; touch sensor control)</td>
<td>£2200</td>
</tr>
<tr>
<td></td>
<td>Serpent (5 axes, SCARA, Selective Complianc Assembly Robot Arm; moves in a horizontal rather than vertical plane)</td>
<td>£2000</td>
</tr>
<tr>
<td>Feedback Instruments Ltd.</td>
<td>Park Road, Crowborough E. Sussex TN6 2QR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRA 933 (5 axes, oil hydraulic; ready-built version of Genesis P101)</td>
<td>£2000</td>
</tr>
<tr>
<td></td>
<td>HRA 934 (5 axes, oil hydraulic; built Genesis P102)</td>
<td>£2700</td>
</tr>
<tr>
<td></td>
<td>Pedro (4 axes, servos and steppers; educational workcell SCARA design)</td>
<td></td>
</tr>
<tr>
<td>LJ. Electronics Ltd.</td>
<td>Francis Way, Bowthorpe Ind. Estate, Norwich NR5 9JA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atlas (5 axes, steppers; powerful teaching aid)</td>
<td>£1750</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>Hertford Place, Maple Cross, Herts WD3 2BJ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Movemaster (5 axes, servos; intended for light industrial use)</td>
<td>£6000</td>
</tr>
</tbody>
</table>

Powertran Cybernetics Ltd., As above

Genesis P101 (5 axes, oil hydraulic; first to use hydraulics) Kit | £1000
Genesis P102 (more memory than P101) Kit | £1350
Micrograsp (4 axes, servos; one of the earliest low-cost designs) £300
IVAX (4 axes, servos; SCARA design) "under £1000"

Reekie Research Ltd., Beaufort Road, Twickenham, Mddx TW1 2PQ

Cepek 1 (4 axes, servos; SCARA design) £4000
Reekie Arm (5 axes, steppers; similar to Armdroid) £250

Remcom Electronics Ltd., P.O. Box 81, Chislehurst, Kent BR7 6LP

Teach Robot (5 axes, servos; uses screw transmission) £400

Robot City Technology Ltd., 35 Clarke Road, Mount Farm Ind. Est. Milton Keynes.

Alfred (5 axes, servos; many add-ons promised) £200

Robotec Ltd., & Hartley Court, Norton Street, Radford, Nottingham NG7 3AN.

Hero 1 (company specializes in industrial robots)

Syke Instrumentation Co Ltd., 117 Station Road, Liss, Hants.

Teachmover (5 axes, steppers; early U.S. design) £2000

Minimover (5 axes, steppers; smaller version of Teachmover)

Systems Control Ltd., Perry Avenue, Teeside Ind. Est. Thornaby, Cleveland TS17 9LN.

Smart Arm (5 axes, servos; early British design) £1500

TecEquipment International Ltd., Bonsall Street, Long Eaton, Nottingham NG10 2AN.

MA 2000 (6 axes, servos; designed for Open University courses) £3600

Universal Machine Intelligence Ltd., Royal Victoria Patriotic Building, Trinity Road, London SW18 3SX.

RTX (6 axes, servos; modified SCARA design with software for control from an IBM PC)

Robot arm axes (or degrees of freedom) do not include the gripper.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with disc drive with FREE updating service on all software

DIAGRAM
- A program which allows you to store very large diagrams - up to 39 mode 0 screens - and view or edit them by SCROLLING the computer screen around over any part of the diagram.

FEATURES
- Draw diagrams, schematics, plans etc. in any aspect ratio, e.g. 10:3, 2:12 screens.
- Access any part of the diagram rapidly by entering an index name, e.g. TR6, RS etc., to display a specific section of the diagram, and then scroll around to any other part of the diagram using the cursor keys.
- Up to 128 icons may be predefined for each diagram, e.g. Transistors, resistors etc., in full mode 0 definition, up to 12 pixels horizontally by 24 vertically.

£28.75 all inclusive

Supplied only on disc. 40T/80T compatible.
All orders sent by return of post.

PINEAPPLE SOFTWARE, 39 Brownlea Gdns.
Seven Kings, Ilford, Essex IG3 9NL

TALKING COMPUTER TERMINAL
TD52000 FOR PRECISION DATA INPUT

IEEE488 & RS232C INTERFACES. £1611.00

Triangle Digital Services Ltd.
184A Wood Street, Walthamstow, London E17 9NS
Tel: 01-520-0442 Telex 262284 (Quote REF 775)

CIRCLE 14 FOR FURTHER DETAILS.
A first-class range of colour graphic displays which not only adapt to your system but make sense of your budget.

Flexible scanning frequencies make them compatible with a multitude of computers and systems (with a special Hewlett Packard option).

Barco gives you the performance you want — at the right price.

With years of experience behind them Barco are maintaining their leadership in colour graphic displays whether you’re working to a budget or demanding the best.

The specifications speak for themselves.

THE CD AND CDCT 20" (51 cm) RANGE CAN NOW BE SUPPLIED WITH AN INFRA-RED TOUCH SCREEN.

<table>
<thead>
<tr>
<th>CD 351 SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Bandwidth: 20 MHz</td>
</tr>
<tr>
<td>Horizontal Frequency: 15-23.5 kHz</td>
</tr>
<tr>
<td>Vertical Frequency: 45-50 Hz</td>
</tr>
<tr>
<td>H-P Option: 24.8 Hz</td>
</tr>
<tr>
<td>Tube: Sel Convergent, 0.31mm pitch (HRA)</td>
</tr>
<tr>
<td>Resolution: 1024 x 870 (H x V)</td>
</tr>
<tr>
<td>Convergence Error: Max 0.6 mm</td>
</tr>
<tr>
<td>Inputs: RGB Sep, Compo SYNCH, RGB SYNCH on Green, RGB Sep, Hand VS SYNCH, RGC Connectors</td>
</tr>
<tr>
<td>Contra or Long Persistence/Short Blue, Auto/ Manual, Degaussing, Modular Construction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDCT 5000 SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Resolution 1280 x 1024 (H x V)</td>
</tr>
<tr>
<td>2. Horizontal Frequency: 15-37.5 kHz</td>
</tr>
<tr>
<td>3. Vertical Frequency: 38-120 Hz</td>
</tr>
<tr>
<td>4. Self Convergent, 0.31 Pitch S.S.T Tube</td>
</tr>
<tr>
<td>5. Convergence Error: Max 0.6 mm</td>
</tr>
<tr>
<td>6. Normal Persistence or Long Persistence/Short Blue</td>
</tr>
<tr>
<td>7. Modular Construction</td>
</tr>
</tbody>
</table>

When only the best is good enough, it has to be Barco. This range of high resolution colour displays provide you with the perfect partner for today’s powerful graphic systems.

When uninterrupted system operation allied to hairline picture detail are of the utmost importance the Barco CDCT 5000 comes into its own with unbeatable reliability. (Mean Time Between Failure 16,000 hours).

CD 351: Photograph courtesy of Kent Process Control
CDCT 5351: Photograph courtesy of Gresham Lion (PPL)

Cameron Communications
A division of CW Cameron Ltd.
Burnfield Road, Glasgow G46 7TH
Tel: 041-633 0077 Telex: 779489
FAX 041-633 2879
Sales Service and Distribution Centre — Reading

'ELECTRONICS & WIRELESS WORLD AUGUST 1985

www.americanradiohistory.com
Optical communications — 1935 style

Very effective light-beam voice communication was in use by the German military in 1935.

During World War II the German forces availed themselves of pretty advanced telecommunication facilities. The radio equipment, for example, was very effective and of exceptional electrical and mechanical quality.

The optical communication equipment that was in use by the German army since 1935 was a closely guarded secret, but related documents were found during the first German Libyan campaign. It was not until the Battle of El Alamein in October, 1942, that the complete apparatus was found by the British. It was investigated and tested in the laboratories of the Royal Corps of Signals in the Middle East, in November of that year.

The official German designation was Das Lichtsprechgerät (80 mm): the 80 mm relates to the size of the lenses. A larger model also existed and we come back to that briefly at the end of the article. Lichtsprechgerät 80 was developed and produced by the well known firm Carl Zeiss of Jena. The photographs convey a general impression of the equipment, as restored by two Dutch collectors, Messrs Arthur Bauer, PAoAOB and Cas Caspers, PAoCSC. An important feature of the instrument is that it may be operated on white, red or infra red light, merely by selecting the required filter with a knob. The ranges obtainable are given in the operating manual and seem to be conservative, as usual for German wartime equipment. For speech they are quoted as 3 km for white and red light and 2 km for “invisible” (infra red) light.

Gifford Hull states the range as five miles (8.25 km) as an average, effective range obviously depends largely on atmospheric conditions: rain and fog will considerably reduce the range. A great advantage over radio is that security is pretty well guaranteed; even at five miles distance the light eliminates the possibility of interception and secures secret communication in the dark, whilst the range is not appreciably reduced. There are, of course, operational restrictions, apart from the limited range. The apparatus functions only over an unobstructed optical path, but it could also be used as an intermediate link in a telephone line connection, and so could be used to bridge a river or a valley.

Transmitter

The author had access to a reproduction of the operating and technical manual for Lichtsprechgerät 80 from 8 September 1938: Figure 1 is taken from that book.

The transmitter forms the upper part of this diagram. Light from an incandescent lamp 1 is focused on the modulator prisms 4 and 5 by means of mirror 2 and condenser lens 3: the lamp (4.8V, 4W) is run from a rechargeable battery, good for approximately five operating hours. After passing the modulator, the light is focused to a parallel beam by
means of the 80 mm lens. The beam is six yards wide at a mile and thirty yards at five miles, as already mentioned. The functioning of the modulator remains a bit obscure after reading the manual but luckily Gifford Hull gives a much better description of it and we will follow his words:

Fig. 2 is taken from his article. The light from the lamp house strikes the hypotenuse side of a right-angle prism. The other angles of the prism are not quite 45 degrees, so that at the point of first reflection the mean angle of incidence is approximately the critical angle for glass and air media, and partial reflection and partial refraction take place. The area at which this first reflection takes place is a small rectangle measuring 3 x 1\(\frac{1}{2}\) mm, the surrounding glass being blackened. The armature consists of a flat metal strip, pivoted at its centre, its ends being located closely between the pole pieces of the armature coils, which are so phased that one pushes and the other pulls.

A small, right-angle prism is carried on the armature, near its centre, and it is so positioned that one of its sides rests in contact with the small rectangle of the main prism. As the armature moves in accordance with the voice currents, so the pressure of the small moving prism against the larger prism changes in accordance with the voice currents. It will be appreciated that since the small prism is mounted close to the axis of rotation of the armature, its travel is small, but its pressure is great. It is necessary, then, when considering the analysis of the action of the device, to bear in mind that it is the pressure of the small prism on the large one that alters — not so much the air gap between the two.

If these two glass surfaces were truly optically flat and in perfect contact, there would be no change of medium at this point and no internal reflection would take place. Hence, no light would pass through the main prism. But as soon as the contact between the prisms becomes imperfect, a change of light media will occur, and internal reflection will result. In practice, the contact is never perfect, for all pressures of the prism, and most of the light is reflected. But the varying pressure brings about a varying degree of contact, which, in its turn, varies the amount of light reflected through the main prism. This, coupled with the fact that the angle of incidence is nearly the critical angle, makes the modulator a relatively efficient device.

A device is incorporated to control the quiescent, no-signal, pressure of contact. The operator is supposed to adjust this to give maximum sensitivity and minimum distortion. Gifford Hull also provided Fig. 3 in his article which shows the response curve of the modulator.

The photographs show a built-in telescope that is used for setting-up the optical link, Fig. 1, showing the optical rays within the telescope, which is also used for monitoring the modulator action. Part of the light that is not totally reflected in prism 4 is passed on to the eyepiece of the telescope via prisms 5 and 16 and lens 8. Looking into the telescope a green lighted rectangle is seen — the intensity of which changes with the modulation.

Part of the light emitted by lens 7 is reflected into the telescope by means of the tetrahedral prism 9. The filament of the lamp is thus seen above the just mentioned green rectangle, and is used for pointing the transmitter at the opposite station. To attenuate the image of the filament, two red filters of different transmission can be selected at will, one for day

Fig. 2. Diagram showing method of modulating the light beam.

Fig. 3. Response curve of the modulator.

Fig. 4. Circuit diagram of the amplifiers.
Fig. 5. Ray paths in the transmitter of the 250/130 mm light telephone.

At the left the detachable cover for the photconductive cell. At the right the selector for the optical filters in the transmitter beam. Unsichtbar means infra-red filter; Gestreut is a possibility not mentioned in the text, which spreads the light over a wider angle to ease sighting; Frei produces white light without a filter; the fourth position Rot cannot be seen in the picture: it selects red light.

and the other for night operation. Since the sighting telescope and transmitter have been set in the factory with their axes parallel, it follows that the transmitter beam will fall on the distant object whose image is covered by the lamp filament image. Provided that a view of the distant station can be had, it is an easy matter with this device to set up the equipment.

Receiver

The modulated light signal from the distant station enters the instrument via the 80 mm lens 10 and it is focused on the photo cell 11. Only a very small area, about 1 mm, of this thallium sulphide cell is exposed to the light. This is done because the image of the distant transmitter formed on it by the lens 10 is also very small, and increasing the cell area beyond what is needed to receive the whole image results in loss of sensitivity. This follows since the fractional change in cell resistance on illumination is diminished by the effect of the unilluminated parts of the cell.

The "Thalofide" type cell is inferior to a caesium cell, which has a better high-frequency response; however, its sensitivity to red and infra-red light is better than that of caesium cell. The cell can easily be changed by removing the cover shown in the photograph at the left.

Electronics of Lichtsprecher 80

The circuit diagram of Fig. 4., given by Gifford Hull, is better than the one in the German manual. The three amplifiers are housed in a separate box, shown in the photograph. Valves are of the standard type used by the German army during WW II — high-gain, directly heated pentodes, type RV2P800, mounted upside down in a tubular holder, being supported at both ends. The photo-cell amplifier is conventional: the cell receives a positive voltage by means of the German army during WW II — high-gain, directly heated pentodes, type RV2P800, mounted upside down in a tubular holder, being supported at both ends. The photo-cell amplifier is conventional: the cell receives a positive voltage by means of a high-resistance potentiometer from the h.t. line. The anode circuit has a resistance/capacity network that attenuates at about 4000 Hz, the purpose being presumably to minimize photo-cell hiss. This amplifier uses two valves in cascade, resistance-capacity coupled, and the last valve is triode connected to secure a low impedance for the phones. The output is also taken to the telephone bridge input circuit, the operation of which will be discussed later.

The sending amplifier normally uses but one valve, triode connected, fed by the microphone, and the anode is parallel fed by an l.f. choke, the anode load being the armature coils of the modulator. The send-receive switch normally switches on the appropriate amplifier; duplex operating is therefore not possible. But for the purpose of working into a telephone line, the switch is turned to "Telephone" and this places the bridge circuit in the sender amplifier input — and the receiver amplifier output. The bridge is balanced, to prevent singing of the circuit.

Provision is also made for keying the lamp filament by means of a push button at the end of a cord, connected to the terminals Blinktaster in the photograph. This provides facility for Morse transmission, but reception has to be visual. Under these conditions, greater distances are possible. The valve filaments are supplied from a separate rechargeable battery, sufficient for 20 operating hours: the −1.5V, +50V and +60V come from an anode battery, good for 100 hours operation.

Mechanical construction

With a device of this sort, mechanical rigidity is of prime importance. The tripod is strongly constructed and whilst the head is fixed to it by a single universal fixture, it is very rigid. The head itself is made of aluminium and optical technique has been employed by Carl Zeiss throughout the apparatus. The lamp-house, whilst being detachable, is firmly held in position and the modulator is mounted on a slotted platform, so that initially it may be located with respect to the lamp and the transmitting lens. The modulator prism is housed in a heavy machined brass holder, located within the permanent magnet of the armature system. The photo-cell clips into its holder very simply, but perfect positioning is ensured by the holder, since it is necessary that the incoming light is focused dead on the centre of the cell by the 80 mm receiving lens. The whole apparatus has a mass of 54 pounds.

Restoration of Lichtsprecher 80

Several specimens of Lichtsprecherat80, or simply Lichtsprecher 80, as the apparatus was also called, found their way to collectors of wartime communication equipment and were lovingly restored to original shape, some by Arthur Bauer of Diemmen (near Amsterdam) and Cas Caspers of Veldhoven (near Eindhoven). After some preliminary experiments, the equipment was given a field test on a cold winter day in December 1983. Cas Caspers had selected a path of two kilometers between two little-used bridges over the Beatrix Canal near Eindhoven. Although alignment is critical due to the narrow beam width, communication was quickly esta-
blished. Mr Caspers' son Remco operated a third unit. From the behaviour of the link it became clear that spanning a larger distance should pose no problems.

To find such a longer, unobstructed path is a different matter. The author was lucky to be invited for the experiment. He noticed that the audio was rather limited in frequency range and both linear and non-linear distortion were evident. Nevertheless, speech was easily readable. The non-linear distortion was also manifest from the fact that the light from the distant transmitter was fluctuating visibly under modulation. If the modulation were linear (symmetrical) this should not be possible.

Mr Caspers was standing with his unit on an old Bailey bridge, one of the few "temporary" leftovers from WW II. Occasionally a motorcar passed the bridge and shook it so heavily that the Lichtsprecher had to be set up anew.

During the summer of 1983 Caspers had already tried his instruments over a shorter distance. From time to time he noticed a strange musical note in his headphones, which he finally traced to insects in the light beam, their wings obviously causing intensity variations in the light striking the receiver. It needs no comment that the author found it a fascinating experience to see and hear these almost fifty-year-old devices in action again.

Lichtsprecher 250/130

As mentioned in the introduction the Germans developed during WW II an improved version of Lichtsprechgerät 80, which was designated Lichtsprecher 250/130. It has a receiver of 130 mm diameter and a transmitter aperture of 250 mm. The light modulator was of entirely different construction from that described above for Lichtsprecher 80. The principle follows from Fig.5. The light from the lamp traverses a grid and after reflection from a speech-controlled mirror falls on a second grid, an image of the first grid being formed on the second one. It will be seen that the amount of radiation passing the second grid depends on the position of the mirror, so that, by controlling the mirror movement by the microphone current, the radiation beam is modulated. A novel feature of Lichtsprecher 250/130 was a sunlight attachment for utilizing the rays of the sun as a light source instead of the electric lamp. Unfortunately no particulars on this intriguing feature were given in the literature available to the author. The photo-cell was of the lead sulphide type instead of thallium sulphide, providing a better frequency response. This improved photo-conductive cell was also used in some of the later Lichtsprecher 80 models. The operational features of the 250/130 mm model were about the same as those of the 80 mm equipment, but the range was greater, as to be expected from the larger optics. Tests indicated that the equipment was capable of transmission up to 20 miles, subject to weather conditions. But adjustment becomes more critical as the distance is increased and, because the sighting controls do not have vernier settings, the equipment may not have been used over the maximum distances for which it is theoretically capable.

Acknowledgement

The author is grateful to Messrs Arthur Bauer, PA0AOB and Cas Caspers, PA0CSC for their help in the preparation of this article. They provided the literature and made their equipment available for photography by the author. Their invitation to take part in the field trial of Lichtsprecher 80 is also gratefully acknowledged.

References

1. Manual for "Das Lichtsprechgerät (80 mm)", number D 877/2, issued on 8 September 1938 at Berlin.
4. "Improved German Photophone", The origin of this article could not be traced.
Application other than Cable T.V. includes C.C.T.V. (up to 26 Channels 8MHz wide on V.H.F. Repeaters, and up to 65 Channels 8MHz wide on U.H.F./V.H.F. Repeaters). Suitable for outdoor mounting.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FREQUENCY RANGE MHz</th>
<th>MINIMUM ATTENUATION</th>
<th>MAXIMUM OUTPUT LEVEL aW</th>
<th>FREQUENCY RESPONSE FLATNESS</th>
<th>INTERNAL ATTENUATION</th>
<th>POWER REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSC2000</td>
<td>40-100</td>
<td></td>
<td>10 dB</td>
<td>+ or - 5 dB</td>
<td>5 dB</td>
<td>27-47 V (UK)</td>
</tr>
<tr>
<td>TSC2000AM</td>
<td>40-100</td>
<td></td>
<td>10 dB</td>
<td>+ or - 5 dB</td>
<td>5 dB</td>
<td>25-45 V (UK)</td>
</tr>
<tr>
<td>TSC2000</td>
<td>40-100</td>
<td></td>
<td>10 dB</td>
<td>+ or - 5 dB</td>
<td>5 dB</td>
<td>25-45 V (UK)</td>
</tr>
<tr>
<td>TSC2000AM</td>
<td>40-100</td>
<td></td>
<td>10 dB</td>
<td>+ or - 5 dB</td>
<td>5 dB</td>
<td>25-45 V (UK)</td>
</tr>
</tbody>
</table>

You can depend on ElectroValue

to supply the fine range of test & measurement gear by

FREE 44 PAGE PRICED AND ILLUSTRATED CATALOGUE ON REQUEST

Over 6000 items stocked

ELECTROVALUE LTD 28 St. Jude's Road, Enfield Green, Engham, Surry TW20 0NB Phone Egham (0784) 33603 Telex 264175

No 8th Branch, 65/6 Burnage Lane, Manchester M13 1NA

Telephone 061 432 4945

Please mention this publication when replying.

BRITAINS FOREMOST QUALITY COMPONENT SUPPLIERS

CIRCLE 98 FOR FURTHER DETAILS.

RACKMOUNT CASES

19" Self Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge, Brushed Anodised Aluminium, Case 18 gauge, Plated Steel with Removable Rear & Side Panels. In 1U & 2U Types, a Subplate Chassis is Mounted to Bottom Cover. In 3U Type the Subplate is located on two Rails Mounted Between The Side Plates.

1U (1 1/2") height, 230m depth................. £27.00
2U (3 1/2") height, 380m depth............. £32.00
3U (5 1/2") height, 230m depth............. £39.00

Width Behind Front Panel 473mm (All Types).

All Prices include Postage & VAT. Cheques, Postal Orders Payable to:-

J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 20450.

CIRCLE 62 FOR FURTHER DETAILS.

ELECTRON GUNS OF THE HIGHEST QUALITY

Available in many types and variations for domestic T.V., camera tubes, industrial, military, scientific research applications, and electron microscopes. Unmatched for quality, we have 26 years experience in the T.V. tube industry. You can have the benefit of this by contacting:

ELECTRON EMISSION PRODUCTS LTD.,

Strangford Road, Seaham.

County Durham SR7 8OE.

Telephone: 0783 819312 Telex: 537681/2/3 ALWRLD G

CIRCLE 33 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
CAD-8
Low-cost Colour Multi-layer P.C.B. Design

CAD-8 is a low cost easy to operate system specifically designed for creating accurate two-dimensional multilayered P.C.B.s using high-resolution colour graphics.

Artwork is prepared interactively on the screen using pre-defined function keys and trackballs, providing single-key commands together with fast cursor positioning. Output can be delivered through a plotter, modem or colour printer. To facilitate the checking of artwork, a point-to-point wiring list can be sent to a standard printer.

The CAD-8 system is micro-processor based, with considerable scope for enlargement, upgrading and networking.

CAD-8 provides a direct replacement for the traditional drawing-board and eliminates manual taping. It has been developed to provide the benefits of computer assistance without having to learn a new way of working.

Although CAD-8 is specifically orientated towards P.C.B. design, the package has considerable potential for use in the creation of circuit diagrams where a fast-line-drawing aid with easy editing and alteration facilities to scale are required.

For further CAD-8 information contact Quantum at the address below.

Quantum Computer Systems Ltd., 18 Woodside Road, Amersham, Bucks., England HP6 0BH. Tel: (02403) 28321. Telex 837788.
Compact disc players

Part 1: details of compact disc player circuitry

One of the design constraints of the compact disc and its format was that it should allow the construction of players to be straightforward, since they were to be mass produced.

The essential components of a typical CD player are shown in Fig. 1. The most natural division here is into the control and servo system and the data path. The control system provides the interface between the user and the servo mechanisms and performs the logical interlocking required for safety and the correct sequence of operation. The servo systems include any power operated loading drawer and chucking mechanism, the spindle drive servo, and the focus and tracking servos which have been described in earlier parts.

Power loading is usually implemented on players where the disc is placed in a drawer. Once the drawer has been pulled into the machine, the disc is lowered onto the drive spindle, and clamped at the centre; a process known as chucking. In the simpler top-loading machines, the disc is placed on the spindle by hand, and the clamp is attached to the lid so that it is operated when the latter is closed.

The lid or drawer mechanisms have a safety switch which prevents the laser operating if the machine is open. This ensures that there can be no conceivable hazard to the consumer. Actually, there is very little hazard in a CD pickup; the laser beam is focused a few millimetres away from the objective lens and beyond the focal point the beam diverges and intensity falls with an inverse-square law. It would be almost impossible to place ones eye near the focal point when the pickup is in a player, but this should not be taken as licence for such an attempt.

The data path consists of the data separator, timebase correction and the de-interleaving and error correction process, followed by the error concealment mechanism. This results in a sample stream which is fed to the converter. The data separator is responsible for converting the e.f.m. channel code into a separate data stream and a clock. The interference read-out process produces modulation of the reflected light, and the photosensor output will contain the modulation due to the disc superimposed on the average level of reflected light. The first stage of the process is to remove the average level in order to leave the modulation signal only. The care taken to ensure a d.c.-free channel code means that this can be done with a simple coupling capacitor. The resultant waveform conveys information purely in the times at which the average level or centre line of the waveform is crossed.

The signal is converted to a binary form by slicing, which is essentially comparing the signal with a reference. Again, as the code is d.c.-free, integrating the binary output of the slicer will produce a pulse level which is self adjusting. This mechanism is shown in Fig. 2.

The binary signal is then fed to a p.i.o., which phase compares its own output with every incoming transition. The maximum run length of 11T ensures that the phase comparison can be made often enough to minimize phase errors between the p.i.o. and the signal. The p.i.o. runs typically at 2T rate, and can be used to determine the number of T cycles between transitions. This information identifies the channel code patterns which can be decoded to the original data. It is necessary to synchronize the data separator at the beginning of each block so that it is possible to discriminate the boundaries between 1T symbols.

Synchronization is achieved by the use of two sequential 11T run lengths, a pattern which is not in the data code book and can be uniquely identified. The 11T symbols are stripped of the 3T packing bits, which have served their purpose of d.c. control and prevention of code violations, and the 14T symbols are converted to eight-bit data in a look-up table, which can be a rom or a p.i.a. The code was computer optimized to minimize the complexity of a p.i.a. decoder. L.s.i. chips have been developed to perform the data separation function; for example the Philips SAA7010, or the Sony CK7935. The separated data output from both of these consists of subcode information, audio samples and
redundancy. The data stream will contain speed variations due to disc runout and chucking tolerances, and these have to be removed by a timebase corrector.

The timebase corrector is a memory addressed by counters which are arranged to overflow, giving a ring structure as in Fig. 3. Writing into the memory is done using clocks from the data separator, whose frequency rises and falls with runout. Reading from the memory is performed with a crystal controlled clock, which effectively removes any speed variations in the sample stream, making wow and flutter unmeasurable. The timebase corrector will only operate correctly if the read and write addresses are maintained on average 180° apart in the ring memory. This implies that the long term data rate off the disc must equal the crystal clock rate. Disc speed must be controlled to ensure that this is so.

There are two contrasting ways in which this can be done. The data separator clock counts samples off the disc. By phase comparing this clock with a crystal reference, the phase error can be used to drive the spindle motor. This system is used in Sony's CDP-101, where the principle is implemented using the motors. The data separator signal replaces the signal which originally would have come from the turntable toothed wheel frequency generator.

The alternative approach is to analyse the address relationship of the timebase corrector. If the disc is turning too fast the write address will move towards the read address, if the disc runs too slow the write address moves away from the read address. Subtraction produces an error signal which can be fed to the motor. The t.b.c. ram in Philips players, which also serves as the de-interleave memory, is a 2K byte SSB2016, and this is controlled by the SAA7020, which outputs the motor control signal.

In these systems, the actual speed of the motor is unimportant. The important factor is that the data rate is correct, and the system will drive the disc at whatever speed is necessary to achieve that end. As the disc cutter produces constant density along the track by reducing the disc speed as the track radius increases, the player will automatically duplicate that speed reduction. The actual linear velocity of the track will be between 1.2 and 1.4 m/s although this will be constant for a given disc.

These speed control systems only operate when the data separator has phase locked, and this cannot take place until the disc speed is almost correct. A separate mechanism is necessary to bring the disc to roughly the right speed. One way of doing this is to make use of the run length limits of the channel code. Since transitions closer than 3T and further apart than 11T are not present, it is possible to estimate the disc speed by analysing run length. The period between transitions will thus be from 694 to 2.55 µs. During disc runup the periods between transitions are measured. If the longest period found exceeds 2.55 µs, the disc must be turning too slowly. If the shortest period found is less than 694 µs, the disc must be turning too fast. A correction signal can be produced to drive the disc motor.

The method relies on the regular occurrence of maximum and minimum run lengths in the read-back signal whatever the recorded data may be. This is one reason for the inversion of the C1 and C2 redundancy data (see CD format article), because it injects...
The de-interleave process is achieved by writing sequentially into a RAM and reading out using a sequencer. The RAM can perform the t.b.c. function at the same time. The size of the RAM follows from the format.

The maximum delay is 108 blocks of 28 bytes, the minimum delay is negligible, thus the average delay is 54 blocks. Since a block contains 28 bytes, it follows that a memory capacity of 54 × 28 = 1512 bytes is necessary.

When a little extra is allowed for timebase error, odd-even de-interleaves and error flags transmitted from C1 to C2, the convenient capacity of 2048 bytes is reached.

The C2 decoder is designed to locate and correct a single-symbol error, or to correct two symbols whose locations are known. The former case occurs very infrequently, because it implies that the C1 decoder has miscorrected. However, the C1 decoder works before de-interleave, and there is no control over the burst error size it sees.

There is a small but finite probability that random data in a large burst can produce a syndrome which convinces C1 that a single symbol error has occurred. This causes a miscorrection, and no error flag will enter the de-interleave memory. Following de-interleave, the error is reduced to symbol size and C2 can correct miscorrections. The overall miscorrection probability of the cross-interleave system is thus quite minute. Where C1 has identified bursts, error flags will be read out of the de-interleave memory, and will be used as pointers to the C2 decoder which will correct up to two symbols. Should more flags than two arrive in one C2 codeword, the entire codeword is flagged bad by C2, and interpolation is necessary. The final odd-even de-interleave (shown in Fig.7(b) of the issue) sufficiently to allow error concealment.

If the rate of bad C2 codewords is excessive, the correction system is overwhelmed, and the output must be muted. Unfortunately digital audio cannot be switched by simply switching the sample stream to zero; this introduces a click. It is necessary to fade down by multiplying samples by descending coefficients, usually in the form of half a cycle of a cosine wave. This gradual fadeout requires some advance notice in order to operate. This is
achieved by feeding the interpolator output through a further delay before the muting multiplier. The mute signal bypasses the delay, and allows the mute to commence in advance of the uncorrectable data. The output samples will thus be correct, interpolated or muted, and can be fed to the convertor system.

The control system of a CD player is invariably microprocessor based, and as such does not differ greatly in hardware terms from any other microprocessor controlled device. As the subject of microprocessors is extensively documented, this description will restrict itself to the features unique unto a CD player.

Operator controls will simply interface to processor input ports, and the various servo systems will be enabled or overridden by output ports. Software connects the two. The necessary controls are ‘play’ and ‘eject’, with the addition of at least ‘pause’ and some buttons which allow rapid skipping through the programme material.

Although machines vary in detail, the flowchart of Fig. 7 shows the logic flow of a simple CD player, from start being pressed to sound emerging. At the beginning of the flow, the emphasis is on bringing into operation the various servos. Towards the end, the disc is read to locate the beginning of the first section of the programme. This relies upon the subcode data, which is sufficiently complex to warrant a subsequent complete article. For now, it is sufficient to state that subcode data can be used by the control system to discover what is on the disc and where, in order to locate sections of programme. The most basic implementation is to use the so-called P flag (Pause), which is an easily detected subcode bit which becomes true between programme sections. The player can jump tracks forward from the lead-in tracks, until the P flag is first seen. Programme material is thus about to start.

When track following, the tracking error feedback loop is closed, but for track crossing, in order to locate a piece of music the loop is opened, and a microprocessor signal forces the laser head to move. The tracking error becomes an approximate sinusoid as tracks are crossed. The cycles of the tracking error can be counted as feedback to determine when the correct number of tracks have been crossed. The mirror signal when the readout spot is half a track away from the target can be used to brake pickup motion and re-enable the track following feedback.

The control system of a CD player for professional/broadcast use will be more complex because of the requirement for accurate cueing. Professional machines will make extensive use of subcode for rapid access, and in addition are fitted with a hand operated rotor which simulates-turning a vinyl disc by hand. In this mode the CD plays the same length of track constantly by performing an inward single track jump one per revolution. Turning the rotor moves the jump point to allow a cue point to be located. The machine will commence play at the cue point when a start button is pressed, or using a microswitch on the audio fader. An interlock is usually fitted to prevent the rather staccato cueing sound being broadcast. Even compact discs have to be protected from fluff.

Another variation of the CD player is the so-called Karaoke system, which is essentially a CD Juke Box (see picture). The literal translation of Karaoke is "empty orchestra" which means that recordings of well known songs are made without the singer, and one can sing along oneself. This is a popular pastime in Japan and Karaoke CD Players are starting to appear in clubs and bars.

The second part of this article examines the converters used in CD players, and explains the controversial subjects of oversampling and channel phasing.

Below: Sony CD Karaoke.

Fig. 6. Illustrates the latest mega-chip CX-23035 which is intended for car dashboard and Walkman-type CD players. This replaces the separate l.s.i.cs as shown.

Fig. 7. Simple flowchart for control system focusses, starts disc, and reads subcode to locate first item of programme material.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Cost</th>
<th>VAT</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1714</td>
<td>24.50</td>
<td>1.90</td>
<td>6.45</td>
<td>21.95</td>
</tr>
<tr>
<td>A1834</td>
<td>7.50</td>
<td>0.60</td>
<td>2.10</td>
<td>5.90</td>
</tr>
<tr>
<td>A1781</td>
<td>11.50</td>
<td>0.90</td>
<td>2.85</td>
<td>10.55</td>
</tr>
<tr>
<td>A2027</td>
<td>12.00</td>
<td>0.90</td>
<td>3.24</td>
<td>10.00</td>
</tr>
<tr>
<td>A2779</td>
<td>3.50</td>
<td>0.30</td>
<td>0.99</td>
<td>2.91</td>
</tr>
<tr>
<td>A2795</td>
<td>28.50</td>
<td>2.28</td>
<td>6.84</td>
<td>31.39</td>
</tr>
<tr>
<td>A5260</td>
<td>15.00</td>
<td>1.20</td>
<td>3.60</td>
<td>12.60</td>
</tr>
<tr>
<td>A6306</td>
<td>24.00</td>
<td>1.92</td>
<td>5.76</td>
<td>20.76</td>
</tr>
<tr>
<td>A1230</td>
<td>3.50</td>
<td>0.28</td>
<td>0.84</td>
<td>2.64</td>
</tr>
<tr>
<td>A1738</td>
<td>2.50</td>
<td>0.20</td>
<td>0.60</td>
<td>1.80</td>
</tr>
<tr>
<td>A3614</td>
<td>7.50</td>
<td>0.60</td>
<td>1.80</td>
<td>5.50</td>
</tr>
<tr>
<td>A1239</td>
<td>25.00</td>
<td>2.00</td>
<td>6.00</td>
<td>21.00</td>
</tr>
<tr>
<td>A3617</td>
<td>12.00</td>
<td>0.96</td>
<td>2.88</td>
<td>9.60</td>
</tr>
<tr>
<td>A1734</td>
<td>13.50</td>
<td>1.08</td>
<td>3.24</td>
<td>10.05</td>
</tr>
<tr>
<td>A2795</td>
<td>28.50</td>
<td>2.28</td>
<td>6.84</td>
<td>31.39</td>
</tr>
<tr>
<td>A3617</td>
<td>12.00</td>
<td>0.96</td>
<td>2.88</td>
<td>9.60</td>
</tr>
<tr>
<td>A3627</td>
<td>20.00</td>
<td>1.60</td>
<td>4.80</td>
<td>14.80</td>
</tr>
<tr>
<td>A3631</td>
<td>5.00</td>
<td>0.40</td>
<td>1.20</td>
<td>3.60</td>
</tr>
<tr>
<td>A3632</td>
<td>10.00</td>
<td>0.80</td>
<td>2.40</td>
<td>7.60</td>
</tr>
<tr>
<td>A3633</td>
<td>20.00</td>
<td>1.60</td>
<td>4.80</td>
<td>14.80</td>
</tr>
<tr>
<td>A3634</td>
<td>5.00</td>
<td>0.40</td>
<td>1.20</td>
<td>3.60</td>
</tr>
<tr>
<td>A3635</td>
<td>10.00</td>
<td>0.80</td>
<td>2.40</td>
<td>7.60</td>
</tr>
<tr>
<td>A3636</td>
<td>20.00</td>
<td>1.60</td>
<td>4.80</td>
<td>14.80</td>
</tr>
<tr>
<td>A3637</td>
<td>5.00</td>
<td>0.40</td>
<td>1.20</td>
<td>3.60</td>
</tr>
<tr>
<td>A3638</td>
<td>10.00</td>
<td>0.80</td>
<td>2.40</td>
<td>7.60</td>
</tr>
<tr>
<td>A3639</td>
<td>20.00</td>
<td>1.60</td>
<td>4.80</td>
<td>14.80</td>
</tr>
<tr>
<td>A3640</td>
<td>5.00</td>
<td>0.40</td>
<td>1.20</td>
<td>3.60</td>
</tr>
<tr>
<td>A3641</td>
<td>10.00</td>
<td>0.80</td>
<td>2.40</td>
<td>7.60</td>
</tr>
<tr>
<td>A3642</td>
<td>20.00</td>
<td>1.60</td>
<td>4.80</td>
<td>14.80</td>
</tr>
<tr>
<td>A3643</td>
<td>5.00</td>
<td>0.40</td>
<td>1.20</td>
<td>3.60</td>
</tr>
<tr>
<td>A3644</td>
<td>10.00</td>
<td>0.80</td>
<td>2.40</td>
<td>7.60</td>
</tr>
<tr>
<td>A3645</td>
<td>20.00</td>
<td>1.60</td>
<td>4.80</td>
<td>14.80</td>
</tr>
</tbody>
</table>

Total: 75.00
CPU/RAM/FLOPPY/ card —

"PROF 80"
Z80 CPU, 4 or 6 MHz; 128 KByte RAM; 8KByte EPROM; memory management; sophisticated floppy interface for up to 4 drives (SS/DS; SD/DD: 3.5", 5.25", 8" mixed); buffered system bus (ECB standard); expanded addressing (A16-A19); real time clock; two V24/RS232 interface

GRAPHICS I/O PROCESSOR —

"GRIP 2"
Graphics resolution 768 X 280 pixels; text format 80 x 25 or 96x33; 8 character sets; 6 attributes; subscript/superscript; Z80A slave CPU; powerful command set; own 30 KByte printer spooler; sound generator; connections for system bus (ECB standard), V24/RS232, serial or parallel keyboard, graphics printer, light pen

SINGLE BOARD ALL PURPOSE COMPUTER —

"EPAC 80"
Z80 CPU, 2.5—6.0 MHz; 2 bidirectional ports with handshake (Z80 PIO); 16 latches, optionally with high current outputs (250 mA); 8 status inputs; watchdog timer; wire wrap field for additional hardware; two "bytewide" RAM/EPROM sockets (2-16 KByte); system bus connector (ECB standard)

CMOS SINGLE BOARD ALL PURPOSE COMPUTER —

"CEPAC 80"
NSC800 CPU (Z80 — compatible), 1-4 MHz; 46 I/O-lines, 16 of them optionally with high current latches (250 mA); 5 interrupt inputs; two 16-Bit timer; 14-Bit watchdog timer; 128 Byte RAM; two "bytewide" RAM/EPROM sockets (2-16 KByte); system bus connector (ECB standard)

PRICES

<table>
<thead>
<tr>
<th>GRIP 2 finished card</th>
<th>£282.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIP 2 card, EPROM, handbook</td>
<td>£77.00</td>
</tr>
<tr>
<td>PROF 80 finished card</td>
<td>£313.60</td>
</tr>
<tr>
<td>PROF 80 card, EPROM, handbook</td>
<td>£56.00</td>
</tr>
<tr>
<td>EPAC 80 finished card</td>
<td>£40.60</td>
</tr>
<tr>
<td>EPAC 80 card, handbook</td>
<td>£12.50</td>
</tr>
<tr>
<td>CEPAC 80 finished card</td>
<td>£78.00</td>
</tr>
<tr>
<td>CEPAC 80 card, handbook</td>
<td>£15.50</td>
</tr>
</tbody>
</table>

we are still looking for whole sellers, who would be interested in representing our firm and products in their home country. If you are interested, please contact us under the following address:

CONITEC
J. H. Christian Lotter KG · Datensysteme
Christian Lotter KG, Box 110622 6100 Darmstadt 11, W. Germany
Tel. (06151) 26013

CIRCLE 15 FOR FURTHER DETAILS.

Hilomast Ltd
THE STREET HEYBRIDGE — MALDON
ESSEX CM7 7NB ENGLAND
Tel. MALDON (0621) 56483
Telex No. 995855

CIRCLE 12 F06 FURTHER DETAILS.
ELECTRONICS & WIRELESS WORLD AUGUST 1985
Call cost calculator

Building and using this Z80-based design, which can save its cost in a matter of months.

At switch-on, an introductory message moves through the display. The user touches Reset and the display changes to indicate a direct-dialed local call — the commonest call type and the setting to which the system reverts whenever Reset is pressed. The codes used were explained in Fig. 1. last month.

![Image of calculator](www.americanradiohistory.com)

To select a different call-type, press any select key: Dist, for example, alters the distance.

When an operator-controlled normal charge call is selected, pressing the Mode key engages the Special Service selection mode. The current special service is displayed. It changes if Dist or Rate is pressed. Pressing either Mode or Start/Stop returns the display to the current call type.

Total accumulated cost: if Reset is held down for two seconds, the display shows the last distance called and the total cost.

To reset or change the cost, press Mode: one digit will flash, a different one in rotation with each press. Pressing Dist or Rate will increment or decrement that digit.

Costing a call

Once the required call type is selected, the unit is ready to cost the call.

When the call is answered, press the Start/Stop key. The display now shows the elapsed time (on the left) and the cost (on the right) of the call. Press Start/Stop again when the call has finished.

If a further call is to be made, press Reset, reselect the call type if necessary and repeat the sequence.

To display the information used in costing the call, press Dist to obtain the number of seconds per unit. Rate for the cost per unit and Mode for the Special Service cost. The time and cost display returns automatically after two seconds.

When the current charge unit is nearing its end a warning is given in the display and the buzzer sounds. If the unit time is greater than 40 seconds, the lowest bar of the fifth digit lights up when 20 seconds remain. With ten seconds left, the centre bar lights instead. At 5 seconds the top bar lights. When it disappears the cost display increases to mark the start of the new charge unit.

If the unit time is less than 40s, the three bars appear at half, three-quarters and seven-eighths of the way into each unit.

The call cost is added to the total only if the timer has been started and stopped and the reset button pressed. Any other operation, such as pressing Reset during a call, will not add to the total.

Construction

The illuminated mains switch and the fuse-holder should be fitted first. The mains lead should pass into the box through a grommet and the mains wiring to the main board should include 100mm of slack to allow easy dismantling.

Next construct the power supply and test it to ensure that it produces 5V.

When fitting the remaining components, take care to insert the correct way round. Sockets should be provided for the ram andeprom and may also be used for the display devices to raise them to the level of the front panel cut-out.

Before inserting the c.p.u., ram and eprom, power up and make sure that the address and data lines are isolated from each other and that the supply has not by S.A. Cameron

A variety of factors can affect the cost of a telephone call and this design takes account of all of them.
Fig. 1. Display board. Details of the processor board were given in last month's article.

Fig. 2. Front panel cut-outs.

been shorted. The oscillator can be tested with a d.c. voltmeter, which should display a reading somewhere between 1V and 4V. Connect the ribbon cable to the component side of the main board and the track side of the display board. Two pins may be inserted for the reprogramming handbag link. An additional switch could be mounted on the box to make reprogramming easier.

The instrument is now ready for testing. At switch-on, a scrolling message should appear in the display. To obtain a readable scroll speed, adjust R9. Press Reset and the display should show the initial call type, the piezo buzzer sounding with the flashing dots.

Now press Start/Stop. The timer will start, but it is unlikely to be accurate. Compare the display with a watch and adjust R8 until the two agree. The scrolling rate should still be acceptable. If you have access to test equipment, adjust for a 1kHz signal at the INT pin of the Z80. The battery may now be inserted and checked to ensure that the backup supply is present when mains power is off.

When installing the p.c.b. you can use self-adhesive strips to hold down the main board and to secure the piezo buzzer to the ribbon cable side of the box. It is important to fit an insulating cover to the fuse-holder and to protect other exposed mains connections with heat-shrink or insulating tape.

The display board will be supported by the p.c.b.-mounting strips: bend the box to slip it in. Lastly, screw the top panel on.

Key-pad expansion

The simple keyboard of the standard instrument can be extended with no change in the existing software.

The software always samples the input port as though it were being scanned by eight output lines, but in our basic system it interprets it as just the numbers 1 to 5. If scanning is implemented it will automatically interpret the extra keys.

The location Smask is used so that any of the output ports Q1 to Q9 can be used for other purposes without being toggled. For example, if Q9 and Q7 are being used then Smask=000101111 binary.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
Location Prthold holds the output port bits high or low. So for the above example, to hold the unused bits low Prthold must be zero. To hold them high, Prthold must be E8H.

There is a maximum of five input lines for the key-pad but eight output scan lines can be used, giving 40 keys. The output ports must be numbered, 1 to 40. The present software will accept any of these key-numbers but will act only on the first five.

The user may provide additional routines in ram to interpret the extra key-numbers held in the Kynum byte 27ED. The keypad can still be used with this expansion, which allows a full alphanumeric keyboard to be attached. Auto-repeat works for all 40 keys.

Component sources

A kit of parts including the box but excluding p.c.b.s and eprom is obtainable at the special price of £38.25 (add £1 for inland postage; v.a.t. is payable on the total) from T. Powell (Electronic Components), 16 Paddington Green, London W2 1LG.

Software in eprom can be supplied by the author at £8.50 including postage. The listing is available separately. The address to write to is 7 Donnington Court, Worthy Road, Winchester, Hampshire SO23 7B.

A set of two printed circuit boards, silk-screened and double-sided with plated-through holes is available from Combe Martin Electronics, King Street, Combe Martin, Devon EX34 0AD. The price is £23 inclusive for customers inland or abroad.

To be concluded with a description of the reprogramming procedure and the data storage format.

Fig. 3. Key-pad expansion. A keyboard of up to 40 keys can be used if required.

BOOKS

Projects for the Car and Garage by Graham Bishop. Revised edition, Macmillan Educational. 115 pages, soft covers, £4.95. Over 30 attractive construction projects for the car owner, including electronic ignition systems, anti-theft devices, lighting, instruments, audio and test gear. All are described in enough practical detail even for the beginner.

The Primer of High-performance In-circuit Testing, European edition, published by Factron-Schumilager. 96 pages, soft covers. Available from Factron Ltd., Ferndown Industrial Estate, Wimborne, Dorset BH21 7PP. An introduction to automatic testing, how it works and what it can do, with special reference to Factron equipment. Written simply enough for the complete beginner and liberally illustrated with diagrams and cartoons. There is a useful glossary.

Microelectronics Systems 3 Checkbook by Ron Vears. Butterworths, 269 pages, soft covers, £5.95. Densely-packed but well laid out compendium of microprocessor wisdom covering the business and technical education council's level 3 syllabus; designed as a support for a fuller textbook. Concentrates on the 6502, 6800 and 6800 processors. Includes some 70 tested programs, more than 140 worked problems and 140 further problems.

Using Wordwise Plus by Paul Beverley. Norwich Computer Services, 94 A4-size pages, soft covers, ring-bound, £6.50. At the keyboard guide to the latest version of the BBC Micro's best-selling word-processor. Deals efficiently with such teasers as how to underline a centred heading without having the underline stretch into the left-hand margin. Later chapters cover problems with printers, segment programming and coping with errors. At the end are details of some simple applications, including off-beat ideas such as making Christmas cards and embroidery patterns. The book can be obtained by post for £7 inclusive from I.R. Roberts, Lamorna, The Street, Bunwell, Norfolk NR16 1NA. A disc (40 or 80 track) containing most of the example programs and the larger data files is available at £5. By the same author and at the same prices, The Wordwise Applications Guide applies the same treatment to the original 8K Wordwise.

Epson Printer User's Handbook by staff of Weber Systems Inc. Century Communications, 303 pages, soft covers, £9.95. Unless your computer speaks Microsoft Basic, the manual supplied with the popular Epson FX and RX printers can be hard going. This book spells out how to get at the fancy print modes, dot graphics, user-defined characters and more. A useful chapter explains the use of Epson with some widely-used software packages, including dBaseII and Wordstar. There is a short preface for U.K. readers with a special note on the BBC Micro.

Macros for the Z80 and 6800 by Paul Overaa. Best of PCW series, Century Communications, 220 pages, soft covers, £7.95. Developed from the author's series in Personal Computer World. Later chapters cover techniques for representing numbers, data structures, sorting, searching and solving problems. A companion volume by the same author and at the same price deals with the Z80.

Forth Techniques by Richard Olney and Michael Benson. Personal Computer News Language Library, Pan Books, 253 pages, soft covers, £6.95. For the reader who already possesses a working knowledge of Forth, this book describes techniques for controlling hardware, handling files and processing strings and numbers. The final chapter explains how to build a compiler to produce turtle graphics.
Now! Tek quality and expert advice are just a free phone call away...

Our National Order Desk line gets you fast delivery of the industry's leading value/performance portables...and technical advice from experts!

The 60MHz 2213A, 2215A and the 100MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included.

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement. The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature.

These UK manufactured 'scopes are obtainable through the National Order Desk. Call us to order or obtain literature, or to talk to our expert on 'scope applications.

Dial 100 and ask for Freephone Tek-scope

Tektronix UK Ltd
Fourth Avenue, Globe Park, Marlow, Bucks SL7 1YD
Tel: (06284) 6000
Telex: 847277 & 847378

CIRCLE 76 FOR FURTHER DETAILS.
Presetable counter with alarm

Exploiting features of the GE-Intersil ICM7217 four-digit counter provides a presettable up/down counter with high or low alarm. Preset and alarm values are programmed in b.c.d. by connecting diodes between the digit drives and 4519 quad two-input multiplexer.

Programmed as shown, the preset and alarm values are 0258 and 0183 respectively. These values are loaded into the 7217 following a negative pulse from IC1a, which occurs when both inputs of IC1a go high, i.e. shortly after switch-on or on releasing the preset push button, see timing diagram. For reliability, the display is blanked during loading to increase levels on the digit-drive lines.

I designed this circuit for use as a remote display and high-level alarm in a depth measurement system which, upon interrogation, produces a number of pulses proportional to the distance between the top of a container and the level of material in it.

To convert pulses to level, the counter is first preset to the maximum container level and then used to count down. Alarm latch IC1c,d is set during the presetting operation, allowing the 555 timing capacitor to charge. If the measured level is greater than the alarm value set then the alarm is not reset by the EQUAL pulse and the timer output goes high after a delay.

Reversing alarm latch set and reset lines provides a low-level alarm.

D.W. Cooper
Rochester
Kent

Electronic piano interface

This circuit allows the sync. output of a Roland Piano Plus to control the foot switch of an analogue delay unit without using an auxiliary power supply. Many electronic pianos have a sync. output so the idea should find other uses.

Normally the sync. output, used to indicate pressing of a key, is low and the delay effect inhibited. When any key is pressed, the sync. output goes high and the interface effectively opens the foot switch to allow the delay effect to operate. The delay effect turns off when Vh is less than about 5V; Tr1 is biased to normally hold this level.

J.C. Gardiner
Bristol

ELECTRONICS & WIRELESS WORLD AUGUST 1985
Solar-panel regulator

Most solar electric panels give about 19V off load. This allows for a drop of 0.6V across a blocking diode when charging a 12V lead-acid battery; the diode stops battery current from flowing through the panel in darkness.

This arrangement is fine as long as the battery never becomes fully charged — a 12V battery can quickly overcharge to 16 or 17V if the charge voltage is not regulated. Voltage drop caused by a regulating transistor, usually around 1.2V, is too high to allow most solar panels to work efficiently. In this circuit, power from the panel is delivered to the battery through a relay and blocking diode. When battery voltage reaches 13.8V, the relay contacts open and the 2N3055 transistor trickle charges the battery to a maximum of 14V.

These voltages can be set slightly lower, although most lead-acid batteries gas freely at 13.8V. This gassing is greatly reduced at a slightly higher voltage. The relay contacts close as soon as battery voltage falls below 13.8V.

Battery power is not used to drive the circuit. The fet acts as a constant current source.

Nicholas Butt
Sudbury
Suffolk

Programmer power supply

This power supply for an eprom programmer provides all standard programming voltages (12.5, 21 and 25V), and is intended as an add-on to computers where the only supply available is 5V. Output is switchable using t.l.l. levelsignals.

The output delivers 75mA at 25V for an input of 4.5 to 5.0V, at around 85% efficiency. A single potentiometer adjusts the output voltages, whose ratios are determined by the feedback resistors. The Shottky rectifier diode gives significantly better performance than the on-chip rectifier, which wastes 10% of the output current in leakage to the substrate.

A similar circuit may be used for a switchable 5/6 Volt supply for 'intelligent' eprom programming. Another application might be as a charger for up to 20 AA size NiCd cells in series.

J.R. Hunt
Doncaster

Diagram Image: Circuit diagram for the solar-panel regulator and programmer power supply.
Eight analogue inputs for Z80/8085

The ADC0809 analogue-to-digital converter from National Semiconductor is an eight-bit device with one converter and eight multiplexed analogue inputs. Internal latching and control logic is included and being CMOS, the device only consumes about 15mW. Further, it runs from a single 5V supply.

Use of precision resistors, zener diodes and LM741 allows inputs between −5 and +5V but limits input to the converter to between about 0-5V.

For conversion, the converter requires a pulse generator; this circuit uses an LM311 to provide clock pulses at about 600kHz. To make the converter output suitable for microprocessor arithmetic operations, the most significant data bit should be inverted to give binary numbers in two's complement mode. This can be done either by a three-state inverter or in software.

The converter has six control inputs and one control output. Three of the inputs are connected to address lines A_{0-2}. The other three are controlled through microprocessor read and write outputs and the decoded peripheral address (i.e. the address of the converter).

Considering the address decoding logic, addresses used for the converter are F_{0-7} to F_{15}. To start conversion, an instruction for input channel selection and conversion start is needed. In assembly language, OUT 0F8H selects the first input and starts conversion.

To remove the prepared data from the converter, its output must be enabled after 100μs, which can be done using IN 0F8H. The converter control input can be wired to the computer interrupt input to inform the processor that conversion is ended and the result is ready.

Since conversion time is approximately 100μs, the control output can be ignored for 100μs after conversion.

M.R. Mirabedini
Tehran
Iran

<table>
<thead>
<tr>
<th>Analogue in</th>
<th>To 741</th>
<th>To converter</th>
<th>Converter out</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>+5V</td>
<td>11111111</td>
<td></td>
</tr>
<tr>
<td>0V</td>
<td>+2.5V</td>
<td>10000000</td>
<td></td>
</tr>
<tr>
<td>-5V</td>
<td>0V</td>
<td>00000000</td>
<td></td>
</tr>
</tbody>
</table>

Buoy flasher

A regenerative oscillator flashes the lamp in this circuit designed for a marine marker buoy. During daylight hours, the phototransistor clamps the BC213 transistor to stop oscillation so power drain is very low; only transistor leakage has to be catered for. Flash period is changed by altering the RC network.

Andy Bartram
Exeter
Devon
MIDSUMMER MADNESS

POPULAR I.C.'S AT INCREDIBLE PRICES!!!

<table>
<thead>
<tr>
<th>Description</th>
<th>CPU's</th>
<th>Z80A</th>
<th>Z80B</th>
<th>Z80C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6502</td>
<td>£3.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6502A</td>
<td>£4.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6800</td>
<td>£1.99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUPPORT DEVICES

<table>
<thead>
<tr>
<th>Description</th>
<th>CPU's</th>
<th>Z80APIO</th>
<th>Z80ASIO-O</th>
<th>Z80ACTC</th>
<th>8271</th>
<th>Z80ACTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6522</td>
<td>£3.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68B54</td>
<td>£8.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z80ACTC</td>
<td>£1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEMORIES

<table>
<thead>
<tr>
<th>Description</th>
<th>CPU's</th>
<th>4116-15</th>
<th>6116-LP3</th>
<th>6118</th>
<th>8118</th>
<th>8271</th>
<th>Z80ACTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4116-15</td>
<td>£1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4164-15</td>
<td>£1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPROMS

<table>
<thead>
<tr>
<th>Description</th>
<th>CPU's</th>
<th>2764-25</th>
<th>27128-25</th>
<th>2764-30</th>
<th>27128-30</th>
<th>2764-30</th>
<th>27128-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>2764-25</td>
<td>£3.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2764-30</td>
<td>£3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TTL

<table>
<thead>
<tr>
<th>Description</th>
<th>CPU's</th>
<th>74LS123</th>
<th>74LS163</th>
<th>74LS244</th>
<th>74LS245</th>
<th>74LS393</th>
<th>74LS10</th>
</tr>
</thead>
<tbody>
<tr>
<td>7437</td>
<td>£0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS00</td>
<td>£0.20</td>
<td>74LS123</td>
<td>74LS163</td>
<td>74LS244</td>
<td>74LS245</td>
<td>74LS393</td>
<td></td>
</tr>
<tr>
<td>74LS04</td>
<td>£0.20</td>
<td>74LS00</td>
<td>74LS163</td>
<td>74LS244</td>
<td>74LS245</td>
<td>74LS393</td>
<td></td>
</tr>
<tr>
<td>74LS08</td>
<td>£0.20</td>
<td>74LS04</td>
<td>74LS163</td>
<td>74LS244</td>
<td>74LS245</td>
<td>74LS393</td>
<td></td>
</tr>
<tr>
<td>74LS10</td>
<td>£0.20</td>
<td>74LS08</td>
<td>74LS163</td>
<td>74LS244</td>
<td>74LS245</td>
<td>74LS393</td>
<td></td>
</tr>
</tbody>
</table>

4000 SERIES

<table>
<thead>
<tr>
<th>Description</th>
<th>CPU's</th>
<th>4013</th>
<th>4020</th>
<th>4013</th>
</tr>
</thead>
<tbody>
<tr>
<td>4013</td>
<td>£0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. All prices exclude VAT and carriage.
2. Carriage charge £1.00 (orders up to £100.00) FREE (above £100.00).
3. Strictly cash with order or credit card (Access or VISA).
4. Delivery by return post.

RING NOW BEFORE WE CHANGE OUR MINDS

HI-TECH COMPONENTS

CIRCLE 68 FOR FURTHER DETAILS.

Power Supply Price Breakthrough

AC/DC Encapsulated Linear 5 Volt 1 Amp output

£14.40

50+

Four other models also available at the same price

A.F. Bulgin & Company P.L.C.
Power Conversion Division
Bypass Road, Barking, Essex IG11 0AZ
Telephone: 01-594 5588 Telex: 897255

CIRCLE 7 FOR FURTHER DETAILS.

FIBRE-OPTICS MONITOR

Test Equipment for MULTIMODE FIBRES, including 50μm GRADED INDEX.
SMA and STRATOS Connector Options.
Examples of Applications:
ATTENUATION MEASUREMENTS
VOICE COMMUNICATIONS
CONTINUITY TESTING

CIRCLE 18 FOR FURTHER DETAILS.

FIBRE-OPTICS EDUCATOR

Training Equipment for use in Industry, Technical Colleges, Polytechnics and Universities.
Applications and Demonstrations include:
ANALOGUE and DIGITAL Transmission over FREE-SPACE and OPTICAL FIBRES.
ATTENUATION MEASUREMENT TECHNIQUES,
Showing Properties of VISIBLE and INFRA-RED RADIATION

Designed and Manufactured in the UK

CIRCLE 18 FOR FURTHER DETAILS.
Public-key cryptosystems

It is now ten years since Whitfield Diffie and Martin Hellman of Stanford University, (and independently Ralph Merkle) conceived a new family of secure "public-key" cryptographic systems which promised to simplify greatly the problem of effective key management for multi-point communications networks. To emphasize the advantages of public key encryption they published a long and detailed tutorial paper on the techniques of cryptography and cryptanalysis ("Privacy and authentication: an introduction to cryptography" Proc. IEEE vol. 67, no 3, March 1979, reported in "Electronic cryptography" Wireless World, September 1980). It is widely believed that this detailed revelation of the "black arts" greatly disturbed the American cryptographic agency (National Security Agency) and lead to a tighter control in the USA on academic publication. Diffie and Hellman outlined public key systems in which each user would have two keys, one for encryption which could be published in a directory but also a decryption key that would be kept private; once a message had been encrypted only the recipient would be able to decode it as nobody else would possess the unique decryption key. A practical implementation of one particular public key system, RSA, was first outlined in 1977 by Rivest, Shamir and Adleman of the Massachusetts Institute of Technology. Although several of the original "knapsack" algorithms have been shown to contain hidden weaknesses that could make them much less "computationally secure", the RSA algorithm appears to have survived the most determined efforts of the cryptanalysts. RSA, like other public-key systems, depends on the fact that multiplying is relatively easy with a computer but factoring is extremely difficult. For example whereas two 100-bit factors can be multiplied electronically in a fraction of a second, the reverse process of factoring them could take hundreds of thousands of years of computer time.

RSA has already found practical use for high-grade diplomatic, military and banking applications, although J.A. Gordon of Cybernetics has (Electronic Letters, April 25, 1985) that it is possible to "forge" some RSA key certificates and thus defeat one of the prime claims for public key systems, the assurance that a message has come from a specific sender. However J.A. Gordon shows that there exists a simple remedy to this problem, so retaining the advantages of the RSA cryptosystem.

A practical problem, however, of all public key cryptosystems is that encipherment requires more computational power than private key systems, such as those using the Data Encryption Standard with its mixed substitution/transposition modulo addition of the key. This tends to limit the maximum practical rate of encipherment with practical v.s.l.i. devices.

In the UK, Martin Kochanski of Business Simulations Ltd is reportedly about to market a Fujitsu c-mos array of 16 v.i.s.i.s. chips for RSA that can encrypt at some 5Kbit/s using 512-bit keys about seven times the rate of previous commercially available public-key cryptosystems.

This is still much slower than the private key systems, which require two identical keys for sender and receiver, including Diific and Hellman's American B-Crypt which can encrypt telephony and data at rates up to about 2.5Mbit/s. The 64-bit keys of D.E.S. however involve not only the serious problems of key management, particularly severe for multiple-terminal networks, but are not regarded as secure against determined computer attack.

While D.E.S. and B-Crypt would be considered secure for the vast majority of commercial applications, large banking networks using these are faced with enormous problems of key management and seek also the assurance of 'authenticity'. However even unconditionally or computationally secure crypto-systems can be circumvented if in some way an outside agency can obtain access to the message files, etc. The Americans recently disclosed that electronic typewriters in their Moscow embassy has been 'bugged' over a long period. It is recognized that even 'single-channel' monitoring of the timings of a 'golf-ball' typewriter permits the recovery of text written on the machine.

As David Cornwall (John Le Carré) has written: "The honest-to-God steam spy is probably in greater demand than ever. Because of the enormous expense and extravagance of technological methods, the number of linked computers and mathematical agencies you need for codebreaking and the vast amount of junk you process, it's obvious that if you can buy a cipher clerk on the other side you have saved yourself millions... but Intelligence finally is only as useful as the idiots who use it." The alleged Walker spy ring in the USA, specializing in communications, appears to bear this out.

Spreading police radio?

The long drawn out controversy about how to prevent unauthorized interception of police and other emergency mobile-radio networks has taken a new turn in the USA with the FCC opening the way to use of frequency-hopping spread-spectrum techniques in the "industrial, scientific and medical" frequency bands including 902 to 928MHz, 2.4 to 2.48GHz and 5.725 to 5.825GHz. Frequency-hopping has so far been confined largely to military and government communications networks and it is by no means certain that it will be widely adopted for civilian services. FCC have already authorized American radio amateurs to begin using spread-spectrum techniques above 420MHz in 1986. A rival, lower-cost technique for secure communications, digital encryption of speech, has already been chosen by the FBI and was used at the Los Angeles Olympics. Speech encryption of some police messages is already used by some police forces. Frequency-hopping is likely to be given a cool reception by an over-cautious police departments.

Frequency-hopping radios made by Transcrypt International offer 500 or 1000 radio channels spaced 10kHz apart with dwell times of about 80ms, selected by pseudorandom codes.

Software on tv

J. Billingsley and R.J. Billingsley of Portsmouth Polytechnic have reported (Electronics Letters, May 9, 1985) the development of an improved method of transmitting software and digital data by optical techniques on broadcast television transmissions, at rates of the order of ten times that of the simple flashing spot system developed by Thames Television and Channel 4. The Plymouth Polytechnic method, suitable for data rates of multiples of 500 baud, uses a simple low-cost receiver interface and, unlike 7Mbit/s teletext signals, can be recorded on a domestic video tape recorder for subsequent decoding.

The new method permits the transmission of a complete byte to be transmitted in each television field. It is suggested that, for example, numbers of software programs could be transmitted simultaneously for educational use, possibly recorded overnight. Up to 24 light spots or more can be displayed on the screen without risk of crosstalk, individual programs being selected by positioning a phototransistor detector over the appropriate spot. More than a megabyte of software could be transmitted in a 20-minute session, with receiving equipment of much lower cost and complexity than with "telesoftware" transmission by teletext, it is claimed.

Leukaemia and radiation

Following closely after the Polish report of an enhanced statistical risk of certain cancers among military personnel exposed to microwave radiation has come a report from the New Zealand Department of Community Health ("Leukaemia in Electrical Workers in New Zealand", The Lancet, April 6, 1985) that supports earlier investigations into this occupational hazard. The New Zealand investigation has concentrated on breaking down
the electrical industry into eight main categories and finds (on the basis of 546 male leukaemia patients and 2184 matched controls) significant excess in only two of the eight categories: (1) electronic equipment assemblers and (2) radio and television repairers. The New Zealand study thus tends to support the view that the leukaemia risks previously identified among electrical workers are rather more likely to arise from exposure to metal fumes and substances used in electrical components or assembly such as polychlorinated biphenyls (widely used until the 1970s as in high-voltage transformers and capacitors) than from exposure to non-ionizing radiation from electromagnetic fields. The New Zealand study however recognizes that the second hypothesis is supported by another study based on children living near power transmission equipment.

The same issue of The Lancet, however, also reports an American study by Samuel Milham of the Washington state Department of Social and Health Studies of 1691 deaths of radio amateurs resident in California and Washington states during the period 1971-83. These included 24 deaths ascribed to leukaemias compared with an expected 12.6, with the increase almost entirely limited to myeloid leukaemias. S. Milham believes that occupational exposure alone does not explain the leukaemia excess among amateur radio operators and concludes that his findings "offer some further support for the hypothesis that electromagnetic fields are carcinogenic".

Amateur

Falling off in the number of newcomers being attracted to amateur radio and the proportion of people failing to renew licences in several countries is being ascribed to the combination of a number of factors including:
(1) improved world-wide telecommunications that have taken the thrill out of talking to distant stations.
(2) the increasing cost and complexity of modern communications equipment, the disappearance of low-cost specialized components, which have made home construction and even home maintenance difficult and relatively rare.
(3) youngsters have switched from radio communication to personal computers — and drop out of electronic hobbies when the computers lose their attraction.
(4) amateurs have become too absorbed in QSL-card collecting, "squares" and contest operating rather than meaningful communication with overseas enthusiasts.
(5) the ever-present and major problem of electromagnetic compatibility, with amateur transmitters blamed for causing radio frequency interference to the vast range of electronic consumer appliances in the home.
(6) the difficulties experienced by licensing authorities in attempting to enforce the regulations — for more than ten years abuse of the South London 144MHz repeater has reflected badly on the hobby, in the UK.
(7) the easy availability of c.b. licences has built up further resentment at having to learn morse before permission is granted for f.h. operation.
(8) the cost and slowness of the process of obtaining licences in the UK compared to some other countries where licence examinations can be taken almost any time, with licences issued to successful candidates virtually the same day.
(9) the secrecy that surrounds the City & Guilds licence examinations in which the "pass" mark appears to be adjusted each time to fail approximately one-third of candidates.

Despite this depressing list it should be stressed that the hobby is still held in very high esteem both by newcomers and the vast majority of those already licensed. None of the main problems, however, appear insuperable or any easy solution.

While some believe that in order to appeal to younger newcomers it is necessary to stress new technology in the form of packet data, spread-spectrum, Oscar satellites and microwaves, others believe that the fundamental attraction lies in the use of relatively simple equipment for speech and manual morse communication. As a newly-licensed amateur was recently "with just a handful of components, a morse key, and a wire antenna strung up into a tree, it is possible to converse with fellow human beings miles away. This is, by any reckoning, an extraordinary and wonderful thing — too often forgotten by the many who buy all their 'gear', plug it in, switch on and talk."

Kraus's antennae

Over the years many major contributions to antenna theory and practice have come from professional engineers whose interest in radio was initially sparked by amateur radio. Outstanding among these has been Professor John D. Kraus, W8JK of Ohio State University who in 1937 built and described the first family of bidirectional close-spaced flat-top driven arrays based on the theories of Dr George Brown of RCA. This was a few months before Walter Van Roberts, W3CH0 of RCA described the first unidirectional close-spaced Yagi beam array similarly based on Brown's Proc.IRE paper of January 1937.

Kraus, however, went on to originate the theory and practice of folded doublers, multiwire dipoles and, in 1940, the corner reflector which in a compact structure offers high gain, broadband width and remarkably easier to construct than the parabolic reflector antenna. In 1946, Kraus attended a lecture on the then new travelling wave tube and immediately that the long helix of a TWT might form the basis of a new antenna structure, though the lecturer denied this, saying "I've tried it and it doesn't work." To Kraus — as he describes in "Antennas since Hertz and Marconi" (IEEE Trans, vol.AP-33, no.2, February 1985) — "the finality of his answer set me thinking. If the helix were large enough in diameter than in a t.w.t., I felt it would have to radiate in some way but how I did not know. I was determined to find out, and that evening in the basement of my home I wound a seven-turn helical coil of wire one wave-length in circumference for operation at 12cm. I was thrilled to find that it produced a sharp beam of circularly polarized radiation off its open end. In the days and years that followed, I embarked on an extensive series of measurements and published a series of articles, with my students Claude Williamson, Otto Glasser and Thomas Tice collaborating on some of them. We showed that in its beam mode, a helical coil is a supergain antenna with almost constant resistive input and very wide bandwidth... non-critical to an unprecedented degree... easy to use in arrays because of almost negligible mutual impedance."

Later Kraus became director of the Ohio State University's famous large radiotelescopes including a 96-helix 250MHz array in 1953 and the 110-metre "Big Ear" array on which work began in 1956.

John Kraus was first licensed as W8JK in 1926 and as recently as 1982 contributed to QST an update on his original W8JK close-spaced rotary 14MHz antenna of 1937 which was supported by a gondola-like structure of bamboo.

In brief

The Spalding and District Amateur Radio Society has published an enlarged second edition of its useful "Digest of horizontal wire aerals" compiled by Dennis Houtl, G400, containing some 91 different designs of simple transmitting aerials and 14 antennae building units (46pp, £3 post paid from D. Houtl, Chespool House, Gosberton Risegate, Spalding, Lincs PE11 4EU)… Restricted talk-time during the morning and even rush-hour periods has been introduced on the Grampian Repeater Group's 144MHz repeater located about 15 miles south west of Aberdeen… North Staffordshire Amateur Radio Society is participating in the Stoke-on-Trent Festival Exhibition on September 23 (details David E. Morgan, G6MLI telephone (0782) 332657… Cathy Clark, G1GQI has taken over the position of honorary secretary of the Radio Amateur Invalid and Blind Club from Frances Woolley, G3LYW.

PAT HAWKER, G3VA

ELECTRONICS & WIRELESS WORLD AUGUST 1985
<table>
<thead>
<tr>
<th>BASES</th>
<th>CRTs</th>
<th>INTEGRATED CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4832</td>
<td>55.00</td>
<td>74HC00 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC02 16.00</td>
</tr>
<tr>
<td>4833</td>
<td>40.00</td>
<td>74HC04 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC10 16.00</td>
</tr>
<tr>
<td>4834</td>
<td>46.00</td>
<td>74HC12 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC14 16.00</td>
</tr>
<tr>
<td>4835</td>
<td>16.00</td>
<td>74HC15 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC16 16.00</td>
</tr>
<tr>
<td>4836</td>
<td>6.00</td>
<td>74HC22 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC24 16.00</td>
</tr>
<tr>
<td>4837</td>
<td>3.00</td>
<td>74HC32 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC34 16.00</td>
</tr>
<tr>
<td>4838</td>
<td>5.00</td>
<td>74HC36 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC38 16.00</td>
</tr>
<tr>
<td>4839</td>
<td>2.00</td>
<td>74HC40 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC42 16.00</td>
</tr>
<tr>
<td>4840</td>
<td>2.00</td>
<td>74HC44 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC46 16.00</td>
</tr>
<tr>
<td>4841</td>
<td>1.00</td>
<td>74HC48 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC49 16.00</td>
</tr>
<tr>
<td>4842</td>
<td>3.00</td>
<td>74HC50 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC51 16.00</td>
</tr>
<tr>
<td>4843</td>
<td>3.00</td>
<td>74HC52 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC54 16.00</td>
</tr>
<tr>
<td>4844</td>
<td>1.00</td>
<td>74HC56 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC57 16.00</td>
</tr>
<tr>
<td>4845</td>
<td>6.00</td>
<td>74HC58 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC60 16.00</td>
</tr>
<tr>
<td>4846</td>
<td>5.00</td>
<td>74HC62 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC64 16.00</td>
</tr>
<tr>
<td>4847</td>
<td>1.00</td>
<td>74HC66 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC68 16.00</td>
</tr>
<tr>
<td>4848</td>
<td>3.00</td>
<td>74HC70 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC72 16.00</td>
</tr>
<tr>
<td>4849</td>
<td>2.00</td>
<td>74HC74 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC76 16.00</td>
</tr>
<tr>
<td>4850</td>
<td>1.00</td>
<td>74HC78 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC80 16.00</td>
</tr>
<tr>
<td>4851</td>
<td>6.00</td>
<td>74HC82 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC84 16.00</td>
</tr>
<tr>
<td>4852</td>
<td>3.00</td>
<td>74HC86 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC88 16.00</td>
</tr>
<tr>
<td>4853</td>
<td>1.00</td>
<td>74HC90 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC92 16.00</td>
</tr>
<tr>
<td>4854</td>
<td>2.00</td>
<td>74HC94 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC96 16.00</td>
</tr>
<tr>
<td>4855</td>
<td>1.00</td>
<td>74HC98 16.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74HC100 16.00</td>
</tr>
</tbody>
</table>

Terms of business: C.W.O. Postage and packing valves and semiconductors 50p per order. CRTs £1.50. Prices excluding VAT, add 15%. Prices subject to change without notice.❚

In some cases prices of Mullard and USA valves will be higher than those advertised. Prices correct when going to press. As some valves are not available we reserve the right to make a charge of £1.00 on credit orders. Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any type not listed. S.A.E.

CIRCLE 52 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985

www.americanradiohistory.com
LEADER GENERATORS

A complete range of generators including audio, function, RF, pattern, etc. In each type several models are available offering specifications suitable for most requirements and excellent value.

Pattern
LCG 399A PAL, Colour Bar, RF and Video outputs. Patterns

Audio
LAG 27 10Hz to 1MHz
LAG 120A 10Hz to 1MHz
LAG 125 10Hz to 1MHz
Function
LFG 1300 0.002Hz to 2MHz
Sine, Triangle, Square + INT Sweep

RF
LSG 17.01 to 150MHz
LSG 215.01 to 1200MHz
LSG 216.01 to 30MHz and 70 to 115MHz
Programmable PLL Synthesizers
LSW 251/2 to 200MHz

thandar ELECTRONICS LIMITED
CIRCLE 29 FOR FURTHER DETAILS.

85000 Family Boards
For the Design Engineer and hobbyist alike, the 85000 family boards can save time and development costs, as the number of potential bugs in system integration is immediately reduced. Use these boards to evaluate the latest devices on the market, such as graphics LCD displays, 8256 MUAR, 2186A IRAM, 27153 EPROMS, etc.

85000 Processor Board
Fully buffered 8085 processor
User defined memory size 2K to 96K bytes
RS232 serial interface with D connector
Field selectable addresses
Can be used as single board computer
64 way bus connectors between boards
Single Eurocard 220 x 100 mms

For further information contact
Thandar Electronics Limited
London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ, England
Telephone (0490) 64646 Telex 32250 Test.
THE LOGICAL CHOICE

CIRCLE 24 FOR FURTHER DETAILS.

85001 Display Board
Use EPSON alphanumeric or graphic LCD's
Sizes from 16 x 1 to 40 x 8 characters
Local memory for message storage
Bus also directly compatible with MCS 51
Spare 8-bit I/O port and 14 bit timer
Prototyping area drilled to accept BICC-VERO Speedwire pins

85002 Communications Board
Programmable serial interface
On board baud rate generator
Four 8-bit programmable timer/counters
Two 8-bit programmable parallel I/O ports
8 level priority interrupt controller
Prototyping area drilled to accept BICC-VERO Speedwire pins

Cotton Road, Marsh Barton, Exeter EX2 8QW Tel: 37190

Toroidal Transformers
as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List
15VA 6.82 30VA 7.18 50VA 8.96 80VA 9.82 120VA 10.59 150VA 12.10 225VA 13.69.
1KVA 38.82 2KVA 44.06
price includes vat & p+p
Available from stock in the following voltages: 0-6, 9-0-9, 12-0-12, 15-0-15.
50, 110, 220, 240 (max 10 amp). Primary 240 volt.

Quantity Prices and Delivery on request
(we also manufacture conventional E1 type transformers)

Airlink Transformers.
Unit 6, The Mallings, Station Road,
Sawbridgeworth, Herts. Tel: 0279-724425.
CIRCLE 58 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
LOGIC SYMBOLS

The chief problem with logic diagrams, it seems to me, has always been that the diagram is expected to serve two different purposes. For some, it must be a compact functional explanation of the circuit, but for others it must be a mechanical or hardware description, and so compromises in notation have always been necessary. The new system has eliminated the need for compromise by serving neither purpose.

McKenny W. Egerton, Jr.
Owings Mills
Maryland
USA

REAL A.M.

D.M. Lauder is right to point out the problems of the poor strong-signal performance of many present-day radio receivers in making ‘the case for real a.m.’ (E & WW May, 1985). But he goes too far in condemning all pre-amplifiers.

We have tested untuned commercial pre-amplifiers with gains approaching 15 dB designed to be inserted between aerial and radio and we share Mr Lauder’s concern about their effects. So when we designed the a.m. buffer amplifier for the heated rear-window car aerial (E & WW Feb. 1985) we aimed simply to compensate for the reduced effective height of the heater compared with a standard 1m whip and for the longer cable from the rear of the vehicle. The a.m. signal voltage from the heater aerial at the receiver input is never more than 1 dB stronger than that from the whip.

Then we tested the performance, entertaining the locals as we reversed the vehicle close to the tip of a 10 kW a.m. transmitter mast. We certainly measured intermod - but they were never worse when on the heater than on the whip. They arose in the receiver, not in the buffer amplifier.

In the Barnet area, the field strengths of the Brookman’s Park and Capital Radio transmissions which intermodulate in Mr Lauder’s receiver are both approximately 0.5 V/m. However, these exceptionally strong signals generate a 459 kHz component of only 60 microvolts at the output of the heater aerial unit, which ought to be effectively rejected by even the poorest radio.

We sympathize with Mr Lauder’s enthusiasm for real a.m.; our contribution is to reduce the gassiness caused by correding whip. Coat-hangers don’t give real a.m., however good the radio!

David Last
Brian Easter
University College of North Wales
Bangor

BRITISH INVENTION

The photograph accompanying the April article by R.E. Young sums up much of British industry. Two men working on the then leading edge of technology. The approach road unmade, uncut grass and weeds, rubbish dumped by the gate-or maybe it is raw material waiting to be used. I bet there wasn’t even a bench to put their tools or working drawings on— that is if they had any. Genius and creativity there may be, but look at the working conditions, lack of investment and careless management. And if anybody thinks things have improved, since that photograph was taken I suggest they take a look out of any commuter train on their way to work.

I keep wondering about the genius who positioned the central gate right in front of a large tree—and what those two men did when it rained—or maybe those days were perpetually sunny.

John Hunt
UNDP
Tehran
Iran

VALVE DISC PREAMPLIFIER

I would like to comment on Richard Brice’s design for a valve disc pre-amplifier (WW, June, 1985)

It is a pity that space was not available for Mr Brice to elucidate on why passive equalization tends to sound ‘better’ than negative feedback equalization. There is a school of thought that says the ear is not sensitive to small changes in phase relationships and I think that here is a case for the opposition. A signal which is subject to passive equalization does not have to pass through the network and is therefore not subject to phase shift at high frequencies.

Anyone who has tried to record and reproduce a 1 kHz square wave on a tape recorder will know that what goes in does not come out even though all the harmonics up to the 13th or 15th are in fact there. The fact is that the harmonics appear at the output in the wrong order and cannot faithfully reconstruct the waveform even though it may actually sound very similar.

I was once the proud owner of a Ferrograph Five tape recorder which employed passive equalization on replay and I was able to record and reproduce a very respectable squarewave at 1 kHz at 3.75 i.p.s.

I have tried passive equalisation with cassettes, too, and it seems to me that, provided all the harmonics are reproduced in the right order according to Fourier’s analysis the input waveform will be faithfully reproduced at the output. This fact may also interest your contributor David Stonebanks, in his quest to record data.

My conclusions are that the ear is sensitive to phase shift; the difficulty lies in describing the subtle, but audible, differences.

Michael J. Lewis
Hadlow
Kent

ENERGY TRANSFER

With reference to the energy-transfer controversy, I agree with Mr Catt that the velocity of electrons in conductors is too low for the role of the primary transporter of energy along transmission lines, but I cannot agree with his contention that the energy transport takes place in the space between the conductors, in the form of “energy slabs”. It is a fact that the electromagnetic fields (or more precisely, the physical phenomena that have given rise to the concept of the electromagnetic field) are most intense in the immediate vicinity of the conductors, which strongly suggests that the primary transporter is concentrated in the conductors. Accordingly, I would like to put forward the following explanation of the transfer mechanism.

Conductors of electricity are substances which contain free electrons. Although to a first approximation these electrons may be visualised as a more or less stable “electron gas” or “fluid”, it is a well established fact that each free electron has only a limited lifetime, and there is a continuous process of electron-hole generation and recombination. The process is accompanied by the absorption and emission of quanta of energy (photons), which travel from atom to atom due to the velocity of light, but in theoretical studies of electrical conductivity this elusive “photon gas” is not considered in any detail, and the emphasis is on the tracks and lifetimes of the much more tangible electron-holes.

My suggestion is that it is in fact the photon gas that constitutes the primary transporter, since in addition to having the correct velocity of propagation, it can also explain the “two superimposed slabs of energy” concept which Catt used to account for the fact that when a transmission line is charged from a d.c. source and then discharged into Z0, the resulting pulse is twice as long as could be expected on the basis of existing theory (Wireless World, December 1980, Page 80). But the slabs would not be concentrated in the space between the conductors. They would be most intense in the conductors, or in the outer layers of the conductors, and would be mere mathematical devices representing the integrated effect of the individual photons.

I must add that when the theory of electron-hole generation and recombination was developed in connection with semiconductor processes, it was found that the rate of recombination was much faster than could be expected on the basis of chance encounters between electrons and holes — a difficulty which led to much work before a more satisfactory picture emerged. This suggests...
that the photon gas mechanism too might be rather complicated; it might even involve photon-photon interactions of the interference pattern type that has defied all attempts at commonsense explanations. But there can be little doubt that if the primary
transporter of energy along transmission lines is concentrated in the conductors, as is almost certainly the case, then the most likely candidate for that role is the photon.
Assuming that the above explanation is substantially correct, another question would arise — what would be the physical nature of the electromagnetic fields which according to classical theory are supposed to be closely associated with conduction phenomena? The answer seems to be that there would not be any physically real "fields" in the sense of regions of space where "pure energy" is stored without the active involvement and participation of physically real particles. A "field" would be nothing more than a purely imaginary device for predicting how individual particles or aggregates of particles would behave in the proximity of other particles and aggregates, and how particle distribution patterns evolve.

G Berzins
Camberley
Surrey

Once upon a time there lived a chap called Fleming who gave his first name to creamed rice. He was a handy fella from India. A little later a nutter called MacHarg took both the right and left hands of Fleming and tied together his index fingers so that they could interact also. He then discarded Fleming's lesser fingers, two on each hand, but left the thumbs attached.

A well known magician hitched a funnel on to one thumb and poured milk into the funnel: he then milked the other thumb into a pan, so providing something to cook the rice with as food for thought, if not a lot.

At least the experiment demonstrated that between action and reaction there lies interaction which occurs in the middle of the playground, a necessity if anything is actually
to happen such as a transfer of energy between dynamo and motor, deus and machina. The four horsemen involved in the interaction may be worthy of note.

However, if one wishes to involve c, it may be a good plan to first determine what c actually is: I suggest that interaction is faster than c, but that action and reaction might occur at c. (Thank you again Roy Hodges.)

As noted in my letter of February 1983, this will require a massless sensor for energy, not only to disprove it, but also to prove it. Doubtless the pages of WW will continue to resonate with arguments on the subject until such a wondrous device is invented, so to be ensured of interminable life! (Thank you, too, Provost.)

When the said wondrous device is invented, we shall also be able to determine whether the interaction between a photon and an orbiting electron is concrete (as with a rack and pinion) or abstract (as with induction). It seems to matter if c is to discover its real identity.

After all, if energy can move faster than our senses or anything else can react, then apparent action at a distance at last becomes conceivable.

That was quite a Catt you let out of the bag, Mr Hodges! James A. McHarg Wooler Northumberland

It is precisely because Ivor Catt does not distinguish between resistance and impedance that his theories fail. For a step function a transmission line behaves like a resistor. Initially, current and voltage are in phase but that is the only resemblance. Resistance has the exclusive property of turning electrical energy into heat: all energy arriving at a resistor is turned into heat. A loss free transmission line, by definition, transmits the energy. To understand transmission lines properly it is essential to take proper account of the vectors involved: a TEM wave in a transmission line has the electrical and magnetic field vectors are at right angles to the direction of propagation. They are also at right angles to each other. If the line is lossy one or both of these conditions does not hold, if the line is
correctly terminated by a resistance, but what am I saying? The dimension of length is not needed to describe a resistor, perhaps the average quarter wart is really just another of these transmission lines like Catt's capacitor, another Dogg's dinner of confusing waves.

Ivor Catt may believe that modern physics is seriously divided over electrical theory but he has produced no evidence of this. He has shown a truly amazing lack of knowledge of what current theory is about (does anybody really believe that perfect capacitors are physically realisable)? His latest letter (May, 1985) is another fine example. Of course the currents in the two conductors cancel, it would be the same with two batteries in series and two resistors in place of transmission lines. This property of current summing to zero is widely used in three phase power transmission: in some applications the three phases have no common return, amazing, isn't it?

It is indeed hard luck on Mr Potter that in the same issue (April, 1985) as his letter, there was a very good article about badly matched antennas (How long is a piece of wire? — J.J. Wiseman on) I'm sorry to (try to) disillusion him but unterminated lines do radiate, perhaps not very much at 50 Hz, but things can get quite exciting if you are trying to transmit power much above 100 kW and you don't account for transmission line effects at a million volts! Yes, waveguides radiate if left open, the efficiency depends on the degree of match, which is generally quite good for waveguides and rather poor for wall sockets! To assume the impedance of free space is some sort of universal all pervading resistance of 377 ohms is to make the same mistake as Iver Catt and to display the same degree of ignorance.

Dermod O'Reilly
Antwerp
Belgium

RELATIVITY

It is a pity that R. Priestly's friends Tom, Dick, and Harry had their taproom discussion of the lightning strikes interrupted by that domino game (June letters), since if they had continued they might have asked and answered the question that Einstein missed. The question is obvious to anyone who actually gets down to making measurements: how much time did Dick on the up-train reckon elapsed between the strike at the front of the train and that at the back? The answer can be determined easily enough; it is the time Dick reckons light takes to travel between the two scorch marks on the train multiplied by c/v, where v is the speed of the train, and c the speed of light.

For scorch marks 200 metres apart and a train speed of 120 km/h this works out at 7.4 x 10^-15 s, so that since the light from both strikes reached him at the same time, Dick reckoned that was 2.2 x 10^-16 m closer to the rear scorch mark, several thousand nanometres as Mr Priestly says.

The scorch marks on the track and on the two trains were made coincidentally in both time and space for each strike taken individually. Tom, applying a convention that works for slowly moving objects, assumes that because he reckons both strikes to be simultaneous the marks on the track are the same distance apart as those on the trains. Dick knows otherwise, since the mark at the rear of his train was made after that at the front, so that the corresponding marks on the track must be too close.

This is the essence of the Lorentz-Fitzgerald contraction, which is not a real physical contraction, but the consequence of making measurements at different points on a moving object which are simultaneous in the frame of measurement instead of in the frame in which the object is at rest. If Einstein had realised as much before dashing off to develop General Relativity an awful lot of confusion would have been avoided.

C.F. Coleman
Grove
Wantage
Oxfordshire

Reference

Given the Law of Inertia as an experimental fact, the set of all
possible trajectories of freely moving particles is a 'space' as mathematics construes the word. It satisfies Newton's specification for 'absolute space' exactly. Thus, if the Law of Inertia is a fact, so also is 'absolute space'.

In view of its importance to an understanding of both classical physics and relativity and how they are related let it be said explicitly — 'absolute space' is a mandatory consequence of the Law of Inertia and is a rigid structure consisting of a fourfold infinity of straight lines created by freely moving particles which may be numbered by the methods of geometry and which, exactly as Newton prognosticated, 'in its own right and without regard to anything external remains always similar and immovable'.

Relativists already accept the Law of Inertia. When they accept its consequences they will understand why relativity succeeds and will be able to obtain such of its formulae as are valid by less fanciful arguments.

A. Berriman
Palmerston North
New Zealand

In the June letters column Mr Wellard used the pretext of discussing Wireless World "readers' attention to the implications of E. Eastwood's article" to launch a misguided and unequivocal attack on some of the finest minds in nineteenth and twentieth century physics.

Most of the published analysis of the Michelson-Morley apparatus give expressions for the maximum observable fringe shift assuming one arm of the apparatus is headed directly into a supposed "ether wind". A more generalized analysis corresponding to an arbitrary orientation of the apparatus will also lead to an observable fringe shift.

In 1881 when Michelson set up his interferometer and rotated it through 360° there was no significant shift of the fringe pattern. Undoubtedly surprised and disappointed he had to conclude: "The result of the hypothesis of a stationary ether is thus shown to be incorrect."

A modernized version of the Michelson-Morley experiment used two lasers in a test of the basis of special relativity¹. No change of beat frequency was detectable within the accuracy of the measurement (about ± 3 kHz). This was less than 1/1000 of the change that one would calculate from an ether wind hypothesis and represents the most sensitive test yet made of the isotropy of space with respect to the speed of light signals.

Incidentally, Mr Wellard's statement that a theory can be false is incorrect. A theory is in any case relevant to a highly selected group of data — usually with the recallantists one ignored — and the theory can at best be said to be adequate or inadequate as a means of intercorrelating the members of the group.

Turning to gravitational red shift, Einstein's first statement on the phenomenon was: "An atom absorbs or emits light of a frequency which is dependent on the potential of the gravitational field in which it is situated". The gravitational red shift has been observed in a terrestrial experiment by Pound and Rebka² who made use of the Earth's gravitational field. This fact, together with further empirical corroboration from the deflection of light by a gravitational field and Einstein's explanation of the residual motion of the perihelion of Mercury, supports the General Theory of Relativity as a sound description of the Universe.

P.H. Spratt
Carlton Colville
Suffolk

H having followed Dr Murray's most interesting and stimulating articles and the relevant correspondences, there still seems to be some confusion over Einstein's trains. In WW May 1984, Dr Murray quotes Einstein as defining some velocity by assuming an observer (M) on a railway embankment mid-way between the points of origin of two flashes (A and B). Then, if the observer perceives the two flashes at the same time, they are simultaneous. Simultaneous flashes may be thought of as arising at a unique point in space, should not Einstein have specified that the track, embankment and observer must be stationary in space for his definition to have any validity? In the ensuing argument, when Einstein introduces his moving observer (M'), we are M and M' coincident "just when the flashes occur, (as judged from the embankment)". This could mean that there was coincidence either when M saw the flashes or when they actually occurred. I am not clear which interpretation Dr Murray used. If it was the latter, it seems inevitable that M' would see the flash from B first because, by the time the light signals reached him, he would no longer be at the mid-point. In that event, Einstein's discussion of the different implications of simultaneity (by M and M') seems meaningless. Perhaps Dr Murray would care to comment.

May I raise another aspect of e.m. propagation. Almost invariably, discussion of e.m. propagation velocity is confined to velocity along the direction of propagation. What about the velocity at an angle to this direction? If one could remove gravity and air resistance and then fire a machine gun from a moving train at right angles to its direction of motion, the bullets would retain the lateral component of velocity due to the train and would appear to the gunner to "propagate" away from him in a line at right angles to his motion. If, however, they somehow disobeyed Newtonian principles and did not retain the train's component of velocity, the trajectory would appear to the gunner to lag at some angle with respect to the normal to his direction of motion. What about a beam of light? If light propagates independently of source motion, would it not exhibit a lagging trajectory? If, as has been predicted from the measured anisotropy of the 3K microwave radiation field, the earth (solar system) is moving through the direction at some 400 km/sec, should not a light beam propagated from a fixed point on earth and at right angles to this motion exhibit a quite perceptible deflection? The deflection expected would be by an angle of approximately 4.6 minutes of arc, which represents a displacement of the beam by about 1.3 metres at one kilometre. If this really happens, would it not by now have been noticed during such activities as surveying, optical ranging, metrology etc.? If it does not, should we conclude that, laterally at least, light does behave in accordance with Newtonian principles? In this event, a reasonable assumption might be that it should behave similarly along the direction of propagation. I cannot think of any relativistic arguments which make this an improper question or which preclude the observation of a deflection if one occurred. Perhaps some of your readers can?

M.G.T. Hewlett
Midhurst
West Sussex

COMPUTER-AIDED PROFITEERING

Since I became involved with computers as a hobby, in a limited way, I have become very frustrated and disillusioned with the whole political and commercial dirty work of the computer industry. The basic concept of computers and digital electronics has been exploited to the disadvantage of the consumer, in order to gain commercial advantage.

I refer to such things as, for example, non-standard RS232, non-standard d.o.s., non-compatible equipment, etc. Also, it appears that many manufacturers go to the extent of holding back information so they can sell as many information books as possible. From various sources we keep getting little bits of so-called new information on what can be done with a machine which has been on sale for years: for example, joystick numbers.

Surely, when a machine is produced, all the information can be provided for the user, in one book, at the time of sale. After all, the manufacturer must know all about the machine — he built it!

In connection with the above, I would like to tell you (a) if any disk drive, printer or other peripheral can be modified to be fully compatible with any (home) computer, and if not why not; and (b) if any (home) computer can be modified to be compatible with any other (home) computer.

A.D. Tregale
Australia

ELECTRONICS & WIRELESS WORLD AUGUST 1985

73

¹ www.americanradiohistory.com

² www.americanradiohistory.com
Radar in retrospect

Report on IEE seminar marking fifty years of radar development

"The myth that we entered the war as the sole possessor of radar has of course long since been exploded. The Germans had been developing radar since 1934 and entered the war with the Freya early warning system on 2.5 metres, a wide deployment of Wurzburgs on 50 centimetres, a naval radar on 80 centimetres, and an airborne radar on 60 centimetres. Until our development of centimetric radars the German systems were superior to ours."

This was Sir Robert Cockburn, a former director of the Royal Aircraft Establishment, on Britain's radar in the 1939-45 world war. He was presenting a paper at the IEE's celebratory seminar on fifty years of Radio Detection and Ranging, "The history of radar development to 1945", held in London, 10-12 June.

It was not only Sir Robert's comments that made it abundantly clear, to anyone in doubt, that other countries besides the UK made important contributions to the development of radar. Papers given by American, Dutch, German, Italian, Japanese and Swiss authors, with accounts by British authors of French and Russian work, gave a pretty full picture of what was essentially an international achievement.

Paradoxically, though, a large part of this combined achievement wasn't co-operative but competitive — under the fierce stimulus of war. The UK's leading work in airborne microwave radar, for example, only became available to Germany and its allies when British aircraft were shot down and their radar sets were salvaged and studied.

The notion put about some decades ago that Britain "invented" radar would certainly not have been swallowed by anyone with even a general knowledge of radio science and engineering, let alone the radar specialists.

The basic principle — reflection of electromagnetic waves from objects — had been known to the whole scientific world for over half a century. After all, as early as 1865 Clerk Maxwell had recorded his belief that light was an electromagnetic-wave phenomenon — implying the possibility of reflection — and Hertz had rapidly shown that reflection was indeed a reality soon after he had demonstrated the existence of e-m waves in 1888.

From then on, physicists and experimenters in several countries observed the phenomenon of radio wave echoes, and a few speculated on possible uses of this effect. The chronological table in this report, starting from a hundred years ago, lists some of the early discoveries, experiments and proposals that led to the development of radar as a mature technology. In general it is a story of gradual progression from metre-waves to centimetre-waves, as magnetrons became more stable and powerful, and of widening application from ground stations to ship and aircraft installations.

Dates are largely drawn from the IEE's seminar but should not be taken as necessarily exhaustive, authoritative or completely representative.

The table does show, however, at least half a dozen industrialized nations contributing to radar in various ways. Mr S. Swords of Trinity College, Dublin, in an excellent survey of the beginnings of radar, listed the following nine countries as having provided significant technological effort: (in alphabetical order) America, Britain, France, Germany, Holland, Hungary, Italy, Japan and Russia.

Forgetting the crude, jingoistic propaganda of the past, there is no question, though, that Britain played a very important part in the whole story, particularly under the pressure of war. To judge from the seminar, the UK appears to have made two major contributions. One was the rapid and highly effective development, production and deployment of centimetric airborne radar, following the invention of the resonant cavity magnetron by Randall and Boot at Birmingham University in 1939. The other was the early warning chain of 19 ground metre-wave radar stations built round the coast of Britain — the so-called CH (Chain Home) stations — from Orkney to the Isle of Wight. This chain was built secretly at a cost of about £10M (now roughly equivalent to £200M), was totally integrated with the RAF's system of fighter aircraft control, and was fully operational to meet the onslaught of enemy bombers by the start of the 1939-45 war.

When the Tizard Commission went to the USA in 1940 — to exchange Britain's military tech-

Chronology of early R&D leading to radar

- 1885 Edison (USA) patents system for collision avoidance at sea.
- 1888 Hertz (Germany) observes reflection of e-m waves.
- 1900 Tesla (Serbia) suggests radio detection of icebergs.
- 1904 Hulsmeier (Germany) patents and demonstrates spark-transmitter apparatus for detecting presence of ships — the Telemobiloscope.
- 1916 Marconi (Italy) and Franklin (UK) note reflection of 2-m waves from metal objects.
- 1921 Hull (USA) publishes description of early form of magnetron.
- 1922 Marconi suggests use of s.w. reflections to detect and find bearing of ships.
- 1923 Taylor and Young (USA) observe 60-MHz reflections from river steamers.
- 1925 Appleton and Barnett (UK) discover new layer in ionosphere (F) by h.f. echo sounding.
- 1927 Okabe (Japan) invents split-anode Magnetron.
- 1928 David (France) suggests use of h.f. beam for detecting aircraft.
- 1930 Hyland (USA) observes 60 MHz reflections from aircraft. Franklin (UK) proposes use of centimetre waves to obtain "wireless pictures".
- 1931 Butement and Pollard (UK) demonstrate reflection of 50-centimetre waves from objects at about 100m range, using rotating beam.
- 1933 Philips company (Netherlands) produces 16-MHz split-anode magnetrons.
- 1935 Korovin (USSR) starts research on radio detection of aircraft.
- 1936 Okabe (Japan) demonstrates c.w. Doppler radar.
- 1937 Vallauri (Italy) starts research group on "radio detector telemetry".
- 1938 Page (USA) produces 80-MHz pulse radar for aircraft detection.
- 1939 Gutten (France) develops split-anode magnetron of 10W mean power at 16cm.
- 1940 USA establishes civilian Radiation Laboratory to develop military microwave radar.
- 1943 USSR establishes permanent military council for Radar.

Kuhnoid (Germany) starts research on reflection technology at 2 GHz.
- 1934 David (France) tests 75-MHz c.w. detection of aircraft.
- 1937 Okabe (Japan) demonstrates 60-MHz echoes from a battleship.
- 1940 USSR tests c.w. 64-MHz early warning radar with range of over 70 km.
- 1943 USSR establishes permanent military council for Radar.
ology secrets for production capacity — the US Army and Navy were so impressed by these two achievements that action followed immediately. According to Dr. E.G. Bowen, who related his part in this exchange, urgent steps were taken to put US radar systems into operational use, and orders for the manufacture of both US systems and copies of British radar systems went out to industry. “It persuaded the top [American] brass that radar was a tool of prime operational importance in modern warfare,” commented Dr. Bowen.

All this can be seen to have started from Watson-Watt’s authoritative and now famous memorandum to the UK government in 1935, “Detection and location of aircraft by radio methods.” It was certainly this document which provided the IEE with an arbitrary — though justifiable — date for celebrating fifty years of radar development in 1985. And Dr. C. Susskind of the University of California, in his provocatively-titled paper “Who invented radar?” seemed to support the choice. After saying somewhat meekly that the development of radar followed upon “the confluence of several prerequisites brought to maturations in the 1930s” he expressed the view that Watson-Watt’s memorandum stood out as the most influential of all radar publications because it was “the first to lead to the development of a system for gathering and collating radar data and acting upon them.”

The other maritime nations that are often compared with Britain in terms of geographical area and population are Italy and Japan. As can be seen from the table, both of these countries contributed to radar development, though somewhat late in the course of events.

Italy’s involvement, according to a paper by Captain R. Paliani and Professor M. Calamia, dated from 1933. In that year Guglielmo Marconi — while handing over a microwave link between Rome and Castel Gandolfo — impressed the significance of radar on the Italian military authorities. (He had been, after all, a member of the Fascist party since 1923.) Then in 1935 Marconi gave demonstrations of reflection phenomena and this resulted in a report being sent to the Italian minister of defence by Professor U. Tiberio.

Soon afterwards a research group was formed at the Royal Institute for Electrotechnics and Communications. Professor Tiberio joined this group in 1936 and devised experiments to test the validity of the “radar equation” he had formulated. From 1936 to 1943 various radar systems were developed, including a frequency modulated c.w. equipment working on 200 MHz and a 70-cm pulse radar with a double horn antenna, newly developed transmitter triodes and ‘acorn’ receiver triodes. Manufacture of radar sets started in 1941 but met with difficulties due to the war and was finally halted when hostilities moved onto Italian territory in 1943.

Japan’s contribution to radar was outlined by Dr. S. Nakajima of the Japan Radio Company and by Mr. Sword’s survey. Dr. Nakajima spoke of microwave research work by his company and the Japanese Navy’s Technical Research Institute from 1932 onwards, but said nobody had practical applications in mind at that time. Research on magnetrons started in 1933, including experiments with 18 different types of anodes. Continuous power outputs of 500W were obtained from water-cooled magnetrons and wavelengths of 0.7, 2, 3, 10 and 15 cm were generated.

Dr. Nakajima said that in 1953 he had visited the London Science Museum and examined the Birmingham University resonant cavity magnetron on view there. He could not see any difference between it and the Japanese-developed magnetrons of the late 1930s. In 1936 Professor Okabe, possibly influenced by Professor Yagi (of dipole fame), demonstrated detection of aircraft by a c.w. Doppler system. The following year, experiments in conjunction with the Japanese Navy achieved detection ranges of up to 5 km in Tokyo Bay. For defence of the Japanese mainland against air attack the Navy set up c.w. radar stations on ships and land operating on 1.5m, 2m and 6m. The 6m sets could detect aircraft in formation at a range of 450 km and single aircraft at 250km. Mobile ground radar for aircraft detection went into production.

Airborne radar development did not start seriously until 1942, after a captured British airborne pulse radar had been sent to Japan from Germany in 1941. But v.h.f. aircraft radar sets were produced, working on wavelengths around 2 metres. A copy of the German Wurzburg landing radar was put into production in 1943 but never went into service.

In general, commented Dr. Nakajima, Japan was not very prominent in radar development before 1945 because the country’s research capability was in no way comparable with those of the USA and UK: for example, only A-type displays were used. He complained that he had had an R & D of 800 people working on radar and magnetrons at the time Japan entered the war, but this was cut down to a half in the ensuing years. Japanese scientists and engineers were not fully utilized in the Army and Navy Research programmes.

Most of the people attending the IEE seminar appeared to be sexa-, septua- or octo-generations. Indeed one very lively account of radar development at the Lorenz company came from the nonagenarian Dr. G. Muller — but only his recorded voice, as he had preferred to remain at home in Berlin for his 90th birthday party. Hardly anyone present seemed to be under the age of fifty.

It was a pity the young apparently showed no interest in what was undoubtedly an exciting and adventurous period of electronics history.
The Wings Appeal Fund helps to maintain the RAF Association Home for Disabled and Chronic Sick. Care is essential for those who have served their country and who are in need. So please help by giving all you can for an emblem in WINGS WEEK in September or send a donation to show that you care.

Give as they Gave

Space donated by Electronics & Wireless World

I enclose a donation of £ for the Wings Appeal Fund.

Name

Address

Please tick if receipt required☐ or information on RAFA Membership☐

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner

Telephone 01-445 2713/0749

CIRCLE 57 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985

ONDER 132

36 COLOUR INK JET PRINTER.

Logic seeking in dot address mode

Virtually silent

COLOURJET 132

INTEGREX LIMITED

Portwood Industrial Estate, Church Gresley
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432. Telex: 377106

31 FOR FURTHER DETAILS.
META is both an Editor and a very special Assembler. Most of META resides on a 16K PROM, but the rules defining the language the Assembler is to translate META for are given in your source code. The large box on the right details all the instruction sets that have been coded for META right now: all these are supplied free with META. The other 4 instruction sets will be supplied as soon as they are written and tested as a FREE UPGRADE. We're on Freeport, so you won't even have to pay postage.

META contains a fully integrated Editor. This follows Wordwise as closely as possible in its philosophy (ie cursor keys, keys to move text — quickly — up and down about central editing line etc), and includes Global/Search/Replace. Markers (copy,save,delete,find marked text), load text to cursor, character count and heaps of other features.

If an error is detected during assembly, the Editor is right there: on the bad line with a plain English error message describing the fault.

Complex expressions are allowed by the Assembler, including brackets to 8 levels (!). All calculations are to 32 bits and if Macros and/or ENDIF Conditional Assembly are fully supported, and become nestable. Macros may also pass parameters, and contain local labels. There's also a range of I/O pseudo-ops for data setup, all of which may have a list of arguments separated by a comma. Disc datafiles can also be inserted into the object code. A complex integrated META Library system is also included — you can invoke a routine and pass parameters by just giving its name.

Source code is assembled in two fast passes (we don't use the groaning slow BITUF & BITET as do some inferior Assemblers. Instead portions of the object code (Macros, the Library system) are linked in during a second pass (effectively "LOADed in at top speed.") The resultant object code may be sent to disc files, sideways RAM, the user or printer port (full details and examples in manual), or down the RS423.

Remember that all instruction sets supported by META have access to all the above features (Macros, the Library system) when META comes complete with a comprehensive manual and function key strip. 16k of source code for a 6502 BBC game is included free and the META System disc, which demonstrates many of the features of this assembler (as well as being a neat game!)

OSTERWICH Transform

Microphone transformers (all types?), Microphone Splitter/Combiner transformers: Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to B.T. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types). Miniature transformers, Microicon transformers for PCB mounting. Experimental transformers. Ultra low frequency transformers, Ultra-linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Condensers. If an error is detected during assembly, the Editor is right there: on the bad line with a plain English error message describing the fault.

CRASH BARRIER

SOWER Transform

E.A. SOWER Ltd. (Established 1941); Reg No. England 303990

E.A. SOWER LTD. 17078.

STEWART OF READING

www.americanradiohistory.com
Sine-wave inverters

Solid-state a.c. power supplies can provide 200 to 1000VA at 50 or 60Hz continuous power at any mains voltage derived from 12 or 24V batteries. Pulse-width modulation is employed in the new range of inverters from Caracal. This results in high efficiency across the whole load range and a low standby current. In addition they are smaller and lighter than former inverter designs.

The output waveform is claimed to contain only 3% t.h.d. and the output voltage is held to within 2% for any combination of loading and variation of the d.c. input. Frequency is held to less than 0.3Hz.

Battery protection is provided by a low-voltage warning light followed by an automatic cut-out to prevent full discharge of the battery.

Protection against overload, output short-circuits and reversed input are all provided. The inverters come in rugged welded-steel cases.

Caracal Power Products Ltd.,
42 Shortmead Street,
Buggleswade, Beds. EWW203

Low-cost toroid transformers

Research into materials and into manufacturing techniques has enabled Drake to reduce the price of toroidal transformers. The most significant change has been in the use of polyester tape wrappings instead of the usual varnish impregnation.

Drake admit that this method of outer insulation cannot compare with vacuum varnish-impregnated Terylene tape (which they also supply) but say that it is totally suitable for many general-purpose, power and audio applications. This PW range of transformers offers ratings from 50 to 900VA. Copper foil earth screens between the primary and secondary windings can be provided when safety considerations so require.

Drake Transformers Ltd.,
Kennel Lane, Billerica, Essex CM11 2Sp. EWW205

Multi-assembler on a chip

A 16K eprom and a floppy disk for use with the BBC Micro provide facilities for assembling machine-code instructions for a wide, increasing, range of processors. Meta is an assembly language editor on a rom and works very like the popular BBC wordprocessor Wordwise. This means that all the Wordwise facilities are included; cursor movement around the text, search and replace, loading and saving files or marked parts of files etc.

Plain English error messages are provided if any errors are detected during assembly and the editor is automatically invoked at the point where the error occurs.

Complex expressions are allowed by the assembler including brackets to eight levels. Mathematical accuracy is to 32 bits. There are many facilities for macros and EQU pseudo op. codes and a library of macros is provided. Source code is assembled in two passes and the system is claimed to be particularly fast at doing this.

At present seven families of processor are provided for: 65XX, including 65C02; 68 and 63XX: 6809; 8080/8085; Z8; Z80. Shortly to be added are 68000, 8088/8086, Z8000 and Micro Nova. These are provided as a free upgrade to the system disc and as Freepost is used, they are really free! The assembly language file may be saved onto disc. The assembled code may also be sent to disc files, sent to sideways ram, user or printer ports or transmitted through the RS423 port. Meta has a comprehensive manual and a machine-code game which illustrates the use of the system. All for £69.95 with discounts to educational establishments. Crash Barrier, Freepost, Flitwick, Bedford MK45 1YP. EWW208
Video imager from Cambridge

Research Fellows from Cambridge University have formed a company to market their expertise in image processing. The result is the Seescan RD2566 and 2567 systems. They are self-contained microprocessor-based systems with applications including a wide range of uses in scientific, industrial and educational areas. They provide a useful introduction to such systems and can be upgraded. Each incorporates a 256 by 256, 6-bit (7-bit on the RD2567) frame store with a on-board Z80 running at 6MHz (or optionally, 8MHz).

The systems have RS232 and BBC 1Mhz bus interfaces for use with terminals. These allow for graphics facilities and a software development package for the rapid development of programs which will customize their system. The graphics facilities include user-defineable overlays and look-up tables which can be used to enhance the contrast and for gamma correction. Both systems have an 8-bit video output enabling the display of 256 shades of grey.

The software supplied with the system include a Z80 monitor and a Z80 assembler. The monitor is accessed through the interface ports by an RS232 or BBC micro. It includes full screen memory editing facilities, copy and fill commands as well as an in-line assembler. The RD 2566 costs £2750 and the £2567, £2975.

An expansion board is being developed which will add three extra frames of memory with a real-time clock and single-stepping for program debugging. The full price of a system will be refunded if the user wishes to upgrade to a Seescan 512 by 512 premium framestore within 12 months of purchase. Seescan Devices, 25 Gwydir Street, Cambridge, CB1 2LG. EWW214

Development boards

The 85000 series is a family of boards for the development engineer, college and/or electronics enthusiast. The Processor board contains a fully buffered 8085 Microcomputer with a potential on-board memory capacity of 96Kbytes. Peripherals are connected through 64-way connectors. Among the peripherals already produced are a communications board based around an Intel 8256 UART, and a display board which can drive members of the Epson EA series of liquid crystal alphanumeric displays. With this combination most of the looked-for functions of a micro-computer are provided. It is also possible to add any required interface on the blank development areas of the peripheral boards. Three voltage planes and an earth are provided and additions can be easily incorporated using the Vero Speedwire system. The processor board also has facilities for configuring different systems. Many different types of memory chip can be accommodated. The control signals are redirected by shorting jacks and the memory size and addressing range is selected by five 8-way dip switches. Each of the boards is claimed to be of high quality at a low price, though a price is not quoted, with p.l.p. They may be used for rapid development of a system.

Further details from Automation and Control Technology, Crofton Road, Marsh Barton, Exeter EX2 1QW. EWW213

ELECTRONICS & WIRELESS WORLD AUGUST 1985
Add 8 channels to your 'scope

New Thurlby OM358 multiplexer £179+vat

The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc.

The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms.

The OM358 has a bandwidth of 35MHz and 3% calibration accuracy. Each input has an impedance of 1MΩ - 20pF and accepts signals up to ± 6V. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel.

Colour data sheet with full specifications available.

The world’s most advanced low-cost bench multimeter!

Thurlby 1905a £349+ VAT

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1 µV, 1mΩ, 1nA.
- Full ac and current functions as standard

A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Leading the way in 100MHz Oscilloscopes

The remarkable new Hitachi V-1100A is much more than just a 100MHz oscilloscope. Its built-in digital measurement unit provides an on-screen readout of all control settings, voltage, dBs, frequency, time, phase, ratio and even user-defined labels.

Add to that four fully independent input channels, sophisticated triggering, an ultra-sharp trace, and a new lightweight format, and you have the most advanced oscilloscope package available anywhere.

Hitachi presently offer four 100MHz models with prices from £1,190. We hold them all in stock for immediate delivery. For full technical data, quotations, or to arrange a demonstration ring us on (0480) 63570.

Thurlby-Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB
Call in at your local for a CROTECH

LONDON & HOME COUNTIES
Audio Electronics London W2 01-724 3564
Henry's London W2 01-724 0323
Carson Electronics Teddington 01-943 4477
Kentwood Electronics Reading 0734 698040
John Minister Instruments Folkestone 0303 415999
The Instrument Centre London N7 01-263 4025
Maplin Electronics Benfleet 0702 554155
WALES & WEST
The Instrument Centre Newport 0636 280566 (Gwent)
Workshop Cirkit 0245 262149
Brxbour 0992 441111

MIDLANDS & NORTH
Northern Instruments Leeds 0532 791054
The Instrument Centre Birley Hill 0304 238298
Electronic Measurement Manchester 061-273 4053
Services
Radio Television Service Derbyshire 0332 41235

SCOTLAND
RMR Measurements Cumbernauld 02367-28170

IRELAND
Electronic Instrument Dublin 059 85711
Brokers (I.R.L.) Ltd.

Crotech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WU
Telephone: (0480) 30188

Pricing
4hr Sales Line (0691) 652894
All Prices Exclude VAT UNLESS STATED

CIRCLE 19 FOR FURTHER DETAILS.

173MHz FM TELEMETRY RADIO LINK

• Range up to 100 metres
• Modular, Wall Mounting
• Transmitter + Receivers
• Direct Baseband Inputs + Outputs (3khz B/W)
• Operates to MPT1309
• Each Module 80x104x5mm + requires only 10cm dc at 7.2V
• Selective baseband signaling by 'add on' modular Available shortly.

ADENMORE LTD
27 Longshot Estate, Bracknell, Berks. RG12 1RL Tel: 0344 52023

Callers welcome by appointment

BECKENHAM PERIPHERALS LTD
34 Rodwell Road, Bromley, Kent BR1 3JL

Circle 79 for further details.

Lyonwood GD1 VDUs: Intelligent Green micro controlled, RS232 printer port, 107 keys k/b, Full Video enhancements...ONLY £149 + £15 P&P (S/H)
Burroughs MT866/7/T7D10: IntelligentGreen 12" VDU with Timers and 64K store, RS232 Programmable...Only £199 new or £149 S/H + £15 P&P
Open Chassis Video Monitors from above VDU...
Multirail Switching PSUs from above 5v 4A 12v-24v...
Centronics 306 Line printers: Professional fast (120 cps), superb quality 80 column printer. Parallel/I...ONLY £199 + £15.00 P&P
Osborne Executive Portable CP/M system with sockets of serial, Parallel, & 24pin...ONLY £299 + £15 P&P
Diablo 836 Daisytwheel printer, OEM/IF...
Calcomp 5625 Drum Plotter, 100,000 lines...ONLY £450 + £10 P&P

Circle 55 for further details.

www.americanradiohistory.com
Sight for Nimbus

A new version of Digithurst's MicroSight image analysis system has been produced for the Research Machine's Nimbus computer. It can capture images up to 512 by 512 pixels with 256 grey levels. Using standard graphics, the image can be displayed at 256 by 256 resolution with 16 grey levels on the Nimbus screen.

The system uses an 80186 c.p.u. running at 8MHz, 320K of memory and twin floppy disc drives. Hard discs, memory expansion up to 1MByte and networking are available as options.

Image measurement software makes counting objects possible and sizing particles or measuring areas. This is of practical use in pharmaceutical research, metallurgy, microbiology and agriculture.

Images captured by the system can be dumped to a printer, stored on a disc and may be manipulated and edited through graphics programs for use in art, design, advertising, display and computer-aided learning.

The Nimbus vision system includes the computer, video camera and interface, mouse and software at a starting price of £2950. Digithurst Ltd., Leaden Hill, Orwell, Wellingborough, Northants SG8 5QH. EWW204

Satellite software

Two discs have been produced for the BBC Micro for satellite tracking. The first is an orbital prediction suite that allows the prediction of positions of satellites in circular or elliptical orbit. The second is specifically related to Uosat-2 telemetry and allows the user to decode, process and display data received from Uosat. A third disc is to be produced that will enable the graphical display of the data from disc 2 so that correlations may be extrapolated. The package is being produced by Scarborough 6th Form College and York University to coincide with the launch of a nationally coordinated package of software, hardware, information and texts on Satellites in Education by the Micros in Education Project and the University of Surrey. Marketed by Amsat-UK, 94 Herongate Road, London NE12 7EQ. EWW212

Music on the Beeb

When we wrote about the Music 500 and the Music System, we were not completely happy with those methods of getting music out of the BBC Micro. Now two more products have become available and we are happy to recommend either or both.

Murom is a music rom. Music is entered by selecting note, octave, envelope and note length in pre-determined columns; one for each of the four channels. Each note or time beat is on a numbered line which makes it easy to copy, insert or delete notes. Octave, envelope and note length are programmed into the function keys and are selected by a combination of shift, control and function. The notes are entered by name and a shifted note provides a sharp; there are no flats but A# is the same as Bb in (modern equal temperaments) this is not a problem. There is no provision for entering key signatures so all sharps must be entered as accidentals. It is possible to transpose music after it has been entered. The notes sound as they are entered and it is possible to scroll backwards and forwards through the entered music playing individual voices or all of them together. Also provided at the touch of a key is an envelope which is very easy to use and envelopes so created may be used in the music editor or saved separately.

To enter longer compositions it is necessary to reserve the space needed in memory in advance and it is possible to have sufficient space for over 2000 notes or chords. There are a number of pre-programmed envelopes which may be invoked by 'star' commands. And there is also a selection of sounds; ZAP, PING etc. which may be called from within other programs.

As long as Murom is present in the computer it is also possible to include music in other programs and combinations of the bars are selected on the demonstration cassette. These allow music to be played while the computer is free to do other things. Murom comes from the BBC user group, Beebugsoft, PO Box 50, St. Albans, Herts. EWW209

The other product combined with music is a book and software produced by Acorn. **Creative Sound on the BBC Microcomputer** by David Ellis and Chris Jordan is an introduction to sound synthesisers in general as well as being a guide to the facilities on the BBC. As Chris Jordan designed the SOUND and ENVELOPE commands for BBC Basic, he has 'inside knowledge' of their workings and knows how to get the best out of them. He and his co-author do this very effectively through a number of demonstration programs listed in the book and available on the cassette or disc that accompanies it.

In the section on computer composing there is a program to play Mozart's Musical Dice game in which bars are selected according to the throw of two dice and the application of two tables which formulate the selected waltz tune. As there are 380 000 million combinations of the bars it follows that every time the program is run a German waltz by Mozart is created that none, not even Mozart has heard before! Unfortunately, because the bars have to follow on from each other each composition sounds very similar to the last one and the authors even cast doubt on whether it was composed by Mozart at all. It is however an interesting example of a program written two hundred years before there was a computer to run it. There are other examples of music composed by the computer at random.

One section introduces a Music Composition Language (MCL). Similar to, though "somewhat humbler" than the language used to enter music on the Fairlight Music Computer. This allows envelopes and notes, duration etc. to be entered as data statements which are then compiled into a compact internal code and translated into sound commands in 'real time'. Key signatures are pre-programmed. Again, there are some excellent examples listed and provided on the cassette or disc. The final section is on the use of the computer in the music classroom and includes programs that generate different patches, intervals, key signatures, scales and modes, and rhythms for study and aural training.

It is possible to buy the book along for £9.95, but we would strongly recommend getting the cassette or disc as well as there are over 40 programs, some of which are quite lengthy and it would be a great chore to enter all of them. Cassette + book, £17.95; Disc + book, £19.95. Acornsoft Ltd., Vector Marketing, London Road, Wellingborough, Northants NN8 2RL. EWW210

NEW PRODUCTS
Universal counter-timer

There is an addition to the range of low-cost instruments manufactured by Black Star. Apollo 100 is a compact mains-operated 100MHz counter-timer with an LED display for the measurement of frequency, period and period average, frequency ratio and time interval. Stop-watch, r.p.m. and totalise modes are also provided.

Full signal-conditioning controls are provided for both inputs, including attenuation, edge selection, trigger level and a low-pass filter. Other controls include single measure, start/stop and reset, display hold and trigger hold-off. The 10MHz timebase from a crystal-controlled oscillator provides a temperature stability of 2.5p.p.m. and this may be improved to 0.5p.p.m. by the optional inclusion of an oven-controlled crystal. A rear socket allows access to the internal oscillator or use of an external reference source. Price: £285.

Black Star Ltd., 4 Stephenson Road, St. Ives, Huntingdon, Cambs PE17 4WJ. EWW215

New transmission lines

Following the demise of IMF, Transducer Developments, who manufactured the drive units for IMF, have decided to market its own range of transmission-line loudspeakers. They have enlisted John Wright, the original designer of IMF loudspeakers to design a new range.

The transmission-line principle, which extends the bass response a further octave than conventional speakers, is claimed to be particularly applicable to digitally originated material, where the signal is flat down to 20Hz. The new design is wedge-shaped for maximum dispersion and employs a double transmission line. The mid-range is exhausted into a tapered open line to avoid colouration from the box. The tweeters and super-tweeter are metal dome, ferro-fluid cooled. The design optimises the transmission-line system in the light of new materials and manufacturing procedures.

TDL Electronics, Unit 11, Hampton Lovett Industrial Estate, Droitwich, Worcets WR9 0NX. EWW206

Soldering thermometer

Where the temperature of soldering is critical it is possible to use this soldering iron thermometer which has a resolution of 1°C and an accuracy of 0.5% over a temperature range of -50 to +500°C. The type K (NiCr-NiAl) sensor is at the centre of a cleaning sponge. The instrument will run for 1000h on a PP3-size alkaline battery. £39.50 from West Sussex Instruments Ltd., 12A Coronation Buildings, Brougham Road, Worthing, W. Sussex BN11 2NW. EWW201

Low-cost plotter

An XY plotter for use with home microcomputers is provided by the Plotmate. It has a bed sufficient to accommodate an A4 sheet but can cope with larger sizes (up to A2) by using a composite command. The paper is held onto the metal plotting base by magnetic strips.

The drawing facilities include triangle and block filling: there are 15 sets of shading patterns and dotted lines. Drawings may be drawn to any orientation and may be repeated with new origins, or re-scaled.

The plotter will interface directly with the BBC Micro and recognises most of the same Basic commands used for BBC screen graphics. There is also an interface package available to allow it to be used with any micro that has an RS232 or Centronics printer port. Other software provides facilities for drawing complicated shapes, for the production of bar-graphs and pie charts and an electronics package for drawing circuit diagrams. The plotter costs £299. Linear Graphics Ltd., 28 Purdeys Way, Rochford Essex SS4 1NE. EWW202

ELECTRONICS & WIRELESS WORLD AUGUST 1985
We are stockists of the complete range of "DOUGLAS" transformers. Please ring or send S.A.E. for details.

It's easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints. Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made. If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet. It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority. If an advertisement is wrong we're here to put it right.

ASA Ltd, Dept I Brook House, Torrington Place, London WC1E 7HN

This space is donated in the interests of high standards of advertising.

R.WITHERS COMMUNICATIONS

If you have not heard of (R. Withers Communications) we are main distributors and agents for the following companies: BAE Engineering, Seaton, Brookes, QANTAS, Pacific Micro, Marmite, MPB, Mullard, Jaybeam, Toyo, Revco Avionics, Cleartone, Mutek, D.A. & D.K. Tonna, Welz, Zycorn, New Radiotelephones. We also stock light and video equipment; B&H, Alphatronics, slip-ax, Par & VAT, and VAT exc.

For all details either call us or write to:

R. Withers Communications

584 Hagley Road West, Oldbury, Warley
B68 0SB (Quinton, Birmingham)

Tel: 021-421 8201/2 (24 hr answerphone)

400-1200 power on offer, detail price report for all in the prices subject to any adjustment being made

Supply & repair of all major & business radio equipment

Complete check of your transceiver on a spectrum analyser (with our own equipment) report for all in the prices subject to any adjustment being made

Supply & complete installations of business radio systems including coporate maintenance contracts, local authority systems, security, hotel, banks, hospitals, local authorities, etc.

Supply of 10 metre converted radios LCL, DNT, ICON

Only supplier of microfilm, 2000 GCP continuous coverage scanning receiver modified by (R. Withers) Communications

Probably the largest seller of second hand radio equipment in the country because of our commitment to the buyer's agreement (3 month warranty) plus equipment faculty.

The fastest growing retail & wholesale company in the British Isles. For details of any of the equipment or services we offer whether you are in the profession of just an interested party an is a way will speed up your enquiry.

For all your communications equipment needs promise you will not be disappointed.

The largest selection of radio allied services offered under one roof, with no expense spared on test equipment and qualified staff.

CIRCLE 86 FOR FURTHER DETAILS.

AC 240V BLOWERS

For computer equipment in good condition. Can be obtained in metal frame size 10 x 7 x 12.25" or as "K" style motor size 1308 cm. Com. or carriage £5.95 inc VAT.

DIGITAL CLOCK MOVEMENTS A well made clock movement fitted with microcomputer and motor. uses shaft 3mm in diameter. £4.95 inc VAT.

9v 800mC s DC SUPPLIES A well made for a famous commercial. Although these units have a mains lead and standard jack output £5 inc VAT & postage.

HIGH DEGREE LT TRANSFORMERS ALL PRIMARIES 240V OPEN FRAME TOP PANEL CONNECTIONS. No. 1. 1-2-3 4-5-6 7-8-9 10-11 12-13 14-15 16 17 £4.25 inc VAT & carriage.

HIGH GRADE E.T.F. TRANNY, PRI 240V, sec. 10000-50000V, 90000 VMAX. No herself privilege but with 1011 other unique!!

LOW DEGREE LT TRANSFORMERS PRI 8000 or 4000V (C) OR 10000V, 240V sec. paid for 600V sec. paid for by 220V sec. 220V. £8.75 inc VAT & carriage.

LYNCH POWER TRANSFORMERS PRI 240V, 250V. £10 inc VAT & carriage.

GJO FIELD JUMPS As new fantastic condition 7 item £9.95 inc VAT & carriage.

E.H.T. TRANSFORMERS HIGH-GRAD E.T.F. Tranny, Pri 240V, sec. 12000-60000 VMAX. No herself privilege but with 1011 other unique!!

PARMAKO TRANSFORMERS PRI 8000 or 4000V (C) OR 10000V, 240V sec. paid for 600V sec. paid for by 220V sec. 220V. £8.75 inc VAT & carriage.

STOP PRESS We have in store the largest number of Epson portable computers BRAND NEW in the UK. Only 1000 at a lowest price. Please ring for details!!

PARMAKO HT TRANSFORMERS ALL PRIMARIES 220 240V POTTED TYPES 1. £4.95 inc VAT & carriage.

For all prices and listings phone us or write to R. Withers Communications, 584 Hagley Road West, Oldbury, Warley, B68 0SB (Quinton, Birmingham).

SAMSONS ELECTRONICS LTD 9-10 Chapel Street, Marylebone London NW1 5DN 21-22 Bell Street, London, NW1 026-212 25 & 01-722 7951

AC Power Supply inc VAT.

DIGITAL CLOCK MOVEMENTS A well made clock movement fitted with microcomputer and motor. Uses shaft 3mm in diameter. £4.95 inc VAT.

9 V 800 mC s DC SUPPLIES A well made for a famous commercial. Although these units have a mains lead and standard jack output £5 inc VAT & postage.

HIGH DEGREE LT TRANSFORMERS ALL PRIMARIES 240V OPEN FRAME TOP PANEL CONNECTIONS. No. 1. 1-2-3 4-5-6 7-8-9 10-11 12-13 14-15 16 17 £4.25 inc VAT & carriage.

HIGH GRADE E.T.F. Tranny, Pri 240V, sec. 10000-50000V, 90000 VMAX. No herself privilege but with 1011 other unique!!

LOW DEGREE LT TRANSFORMERS PRI 8000 or 4000V (C) OR 10000V, 240V sec. paid for 600V sec. paid for by 220V sec. 220V. £8.75 inc VAT & carriage.

LYNCH POWER TRANSFORMERS PRI 240V, 250V. £10 inc VAT & carriage.

GJO FIELD JUMPS As new fantastic condition 7 item £9.95 inc VAT & carriage.

E.H.T. TRANSFORMERS HIGH-GRAD E.T.F. Tranny, Pri 240V, sec. 12000-60000 VMAX. No herself privilege but with 1011 other unique!!

PARMAKO TRANSFORMERS PRI 8000 or 4000V (C) OR 10000V, 240V sec. paid for 600V sec. paid for by 220V sec. 220V. £8.75 inc VAT & carriage.

STOP PRESS We have in store the largest number of Epson portable computers BRAND NEW in the UK. Only 1000 at a lowest price. Please ring for details!!

PARMAKO HT TRANSFORMERS ALL PRIMARIES 220 240V POTTED TYPES 1. £4.95 inc VAT & carriage.

For all prices and listings phone us or write to R. Withers Communications, 584 Hagley Road West, Oldbury, Warley, B68 0SB (Quinton, Birmingham).

SAMSONS ELECTRONICS LTD 9-10 Chapel Street, Marylebone London NW1 5DN 21-22 Bell Street, London, NW1 026-212 25 & 01-722 7951

This space is donated in the interests of high standards of advertising.
JOYSTICK CONTROLS

By specialisation, volume production and tightly-controlled overheads we are able to offer competitively-priced, well engineered, innovative and reliable joystick controls ranging from £1.50 each (for TV games units in quantity) to £2,000 for a one off triple axis force feedback system, including torque motor amplifiers. Our current ranges cover most combinations of:

- 1, 2 or 3 axes, or up to 6 degrees of freedom.
- Potentiometer, wafer switch, microswitch and contactless sensing.
- Spring, friction or detent positioning, or force feedback systems.
- Press button switches in handles or handgrips.
- Miniature TV game units to heavy duty types for mobile and heavy engineering environments.

In addition we can design and build special requirements into standard units within days.

OVERSEAS DISTRIBUTION

- ITALY: Franco, Germany, Switzerland, Austria (via S.A., Contra Francesco 75, 30100 Venice, Italy; 0444/36444, TX:43107).
- HOLLAND: Samma, Windhuis 111, 2182 CC Hillegom, Holland.
- AUSTRIA: Techno Electronics, Lane Cove, Sydney, NSW Australia; Sydney 4273/44.
- USA and CANADA: P.C. Controls Inc., 85 Dolphin Road, Braintree, Connecticut 06011, USA; (203) 3933694, TX:643127.
- SWEDEN: Svaruk, Tel/Fax: +46-810-350-320.

FLIGHT LINK CONTROL LTD.
UNIT 12, THE MALTINGS, PHONE: 0420 87241 (24 HRS)
TURK STREET, ALTON, HANTS, TELEX 859623 TELBURY G

CIRCLE 65 FOR FURTHER DETAILS.

FORTH=
TOTAL CONTROL

FORTH programs are instantly portable across the most popular microprocessors.

- FORTH is interactive and very fast.
- FORTH programs are structured, modular, and easy to maintain.
- FORTH gives control of all interrupts, memory locations, and I/O ports.
- FORTH gives full access to DOS files and functions.
- FORTH application programs can be converted to turnkey programs.
- FORTH Cross Compilers can generate ROMmable code for: 6502, 6809, 68000, 8080, 8086, 8080, 6801, 1802, 28070, 28000, 56xx, LSI-11.
- FORTH+ has 32-bit stacks and directly accesses the whole address space of the processor.

Application Development Systems include FORTH with virtual memory, multi-tasking, assembler, full-screen editor, decompiler, utilities, and full documentation.

- LMI Z80 FORTH - CPM 2.2
- LMI 8086 FORTH - CPM-86, MSDOS
- LMI PC/FORTH - PC/MS-DOS
- LMI MPE/FORTH 6809 - FLEX, 68K
- LMI 68000 FORTH - CPM 68K

- FORTH+ has 32-bit stacks and directly accesses the whole address space of the processor.
- PC FORTH+
- 8086 FORTH+
- 68000 FORTH+

Extension Packages include floating point, cross compilers, 8087 support, colour graphics, interactive debuggers.

We are the FORTH specialists, we also stock a large range of books, listings, and implementations for machines ranging from Spectrums to Macintosh to VAX.

MicroProcessor Engineering Ltd
21 Hanley Road, Shirley
Southampton S01 5AB
Tel: 0703 780084

CIRCLE 69 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
X T CONVERSION KITS
FOR IBM® AND COMPATIBLES

NEW FAST CONTROLLER!
WESTERN DIGITAL 1002 SWX-2
ST-506 STANDARD..........................£249
MR 521 HALF HEIGHT, 5 1/2”
10MB WINCHESTER DRIVE (FORMATTED)
2-HEADS, AVERAGE 85cms ACCESS...........£399
MR 522 HALF HEIGHT 5 1/2” 20 MB
WINCHESTER DRIVE (FORMATTED)
4 HEADS, AVERAGE 85ms ACCESS...........£579
SET OF CABLES FOR ABOVE.....................£25

RAM CHIP SALE!!!
4164 64K DRAM 150Ns....................£1.99 each
4128 128K DRAM 150Ns...................£7.49 each
(for upgrade IBM AT)
41256 256K RAM 150Ns...................£5.99 each
(for upgrade Olivetti-M24, Compaq Deskpro etc)

Prices exclude VAT and delivery. For terms see our other
advertisements.

DIGITASX
BUSINESS SYSTEMS LTD

CIRCLE 30 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
THE BEST APPROACH

£7,000-£30,000 + CAR

★ Where does your interest lie: Graphics; CAD; Robotics; Simulation; Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms; Radar; Opto and Laser?
★ Experienced in: VLSI; Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?
★ There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
★ For free professional guidance: Call: 0638 742244 (till 8pm most evenings) or write (no stamp needed) to ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED FREEPOST, The Maltings, Burwell, Cambridge, CB5 8BR.

OMAN TELEVISION

£25,000 - £35,000 p.a.
+ excellent benefits

1. VISION ENGINEERS
 Must be experienced in Television Broadcast and have a thorough knowledge of basic principles of colour television. Experience in maintenance of all associated equipment such as Cameras, Coders, S.P.G. and mixers is desirable. Experience of VTR and Telecine techniques would be an added advantage.
 Will be required to work unsupervised and be able to demonstrate initiative.

2. V.T.R. ENGINEER
 Qualified engineer with a reasonable experience in maintaining 1" (One inch) VTR machines such a VPR2B and BVH 2000. Quad machine experience would be an added advantage.
 Will be required to work unsupervised and demonstrate initiative.
 Oman Television still offers the best contract conditions in the region and besides the salary scale indicated above, benefits include free furnished air-conditioned accommodation, annual home leave (48 days per annum) with free air fares for self and family (up to 3 children), free medical services etc. The entire package will be tax free.
 Contracts are for 1 year, renewable, with an attractive end of contract bonus after 2 years.
 Oman, a beautiful country on the South East Arabian 'Peninsula' is an attractive place to live with superb coastline, fine beaches and a magnificent landscape. It offers a very wide range of social and leisure activities.
 Applications should include full CV's and be sent immediately to:
 Chief Engineer Oman TV
 P.O.Box 600 Muscat
 Sultanate of Oman
 Interviews will be held in London
 All applications will be treated in strict confidence.

ELECTRONICS & WIRELESS WORLD AUGUST 1985
Appointments

Electronic Engineers – What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £6,000 - £20,000.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS. Tel: 0892 39388 (24 Hour Answering Service)

Please send me a TJB Appointments Registration form:
Name ..
Address ..

TECHNICAL MANAGER
Colour T.V. Tube Re-Building Factory
Casablanca Morocco
Required to manage a colour T.V. tube re-building factory in Casablanca. Including training local staff in production techniques. Must have production and management experience and be conversant with current technology. Contract is for 12 months, extendable. Accommodation suitable for married couple is included, use of company car and paid holiday flight to U.K. Knowledge of Franch is useful but not necessary. Salary £12,000-£15,000 p.a.
In first instance send full c.v. to
Edicon Ltd., 1/7 Wesley Ave, London NW10 7BZ.

ACCELERATE YOUR CAREER
With over 200 current opportunities, in areas throughout the U.K., for ELECTRONICS ENGINEERS we can help you turn your career aspirations into reality now.
The following is just a small sample of the wide range of positions available in high technology.
Applic Eng C.E.T.Y. .. £16,000
Microwave Product Mgr £20,000
V.L.S.I. .. £16,000
Data Eng Data Comm £17,000
Software Author .. £18,000
Chief Estimator ... £13,000
G.A. Manager Electronics £17,000
P.D.S. Eng .. £12,000
Analogue Design Eng £17,000
Digital Design Eng £17,000
Project Manager - R&D £20,000
Thin Film Eng .. £16,000
Production Eng .. £14,000
Systems Eng ... £14,000
RF Engineers ... £12,000
Tech Author .. £12,000
Elect Test Eng ... £10,000
Medical Elect R&D £16,000

For a confidential discussion, call John Spencer at (0604) 30517.

Robertson Recruitment Ltd., 11/12 Gun Street, Reading, Berkshire, RG1 1NY.

More Hi-Tech Jobs

£8000 - £20,000
As a leading recruitment consultancy we have a wide selection of opportunities for high calibre Design, Development, Systems and supporting staff throughout the UK.
If you have experience in any of the following then you should be talking to us for your next career move:
• ARTIFICIAL INTELLIGENCE • IMAGE PROCESSING
• MICRO HARDWARE & SOFTWARE • GUIDED WEAPONS
• OPERATIONAL RESEARCH • RF & MICROWAVE • OPTICS
• MATHEMATICAL MODELLING • SIMULATION • C
• HIGH LEVEL PROGRAMMING • SYSTEMS ENGINEERING
• ACOUSTICS & SONAR • FLUID DYNAMICS • RADAR
• SATELLITES • AVIONICS • CONTROL • ANTENNA
Opportunities exist with National, International and consultancy companies offering excellent salaries and career advancement.
For free and confidential career guidance call John Spencer or send a detailed C.V. Please quote reference WW3.

Skyquip Technical Services
85 High Street, Winchester, Hampshire SO23 9AP
Tel: Winchester (0962) 69478 (24 hours) 05273

RADIO COMMUNICATIONS SPECIALISTS
Service Engineer Required
For Private Mobile Radio Company
Good career prospects with expanding young business
Contact:-
Frank Stafford on 01-801 6457
Unit 7, Mill Mead Centre
London N17 9QU

11/12 Gun Street
Reading 507372
17 years Recruitment Service

(2647)
Radio Relay ★ Ground Radio ★
Telecommunications

However you communicate with us, the reception will always be good.

If you are an Engineer or Technician who has tried to communicate your career details recently, you may have had a less than ideal reception. But that won't happen if you communicate with us.

That's because we have a massive and on-going commitment to assist the Royal Saudi Arabian Air Force with the operation and maintenance of its ground-based communications and, at the same time, undertake the training of local personnel in all aspects of this work.

Which means we have immediate opportunities for Engineers (with a degree, HND, HNC, FTC or Forces equivalent and 5 years experience) and Technicians (with apprenticeship C&G or forces equivalent and at least 7 years experience).

We can offer very attractive tax-free salaries and a range of benefits including generous annual leave with free return flights to the UK ★ free accommodation ★ free medical and life insurance ★ excellent sports and recreational facilities ★ substantial end-of-contract bonus.

To find out how good the reception can be at our end of the communications link, contact The Recruitment Executive. Please quote Ref. G238.

IAL Manpower Services, Aviation Services, Aeradio House, Hayes Road, Southall, Middlesex UB2 8NU. Telephone: 01-574 5000.
Appointments

Electronics Training Professional

£14,000 to £18,000

Excellent benefits package, including stock option and relocation assistance.

Cathy Tracey & Associates Ltd

attracts the best!

THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ? We are recruiting RADIO OFFICERS who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.

The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.

Salaries start at £4,762 at age 19 to £5,755 at age 25 and over during training and then £6,399 at 19 to £8,510 at 25 and over as a Radio Officer. Increments then follow annually to £11,741 inclusive of shift and weekend working allowances.

For full details and application form phone 0242 32912/3 or write to GCHQ The Recruitment Office A/1108 Priors Road CHELTENHAM Glos GL52 5AJ

FREE OFFER!

Clip this advert for free career guidance and help in finding your next position. We have a wide selection of the best appointments in Digital, Analogue, RF, Microwave, Microprocessor, Computer, Data Communications and Medical Electronics, and we're here to serve your interests.

Call us now for posts in Design, Test, Sales or Field Service, at all levels from £6,000 — £18,000.

Technomark (1935) Engineering & Technical Recruitment

11 Westbourne Grove, London W2. Tel: 01-229 9239.

University of London Institute of Psychiatry

AUDIO-VISUAL TECHNICIAN

A vacancy exists for an Audio-Visual Technician at this postgraduate medical school and associated teaching hospital. Applicants should be experienced in maintenance of television equipment and preferably hold relevant technical qualifications: eg City & Guilds Course D22 or C24.

Salary according to experience & qualifications on Whitley Council Medical Laboratory Scientific Officer scale currently £5,738 - £8,096 pa plus £1,084 pa London Weighting. For application form and job description please write to the Assistant Secretary, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF quoting Ref AV/W.

Closing date for applications: 2 August 1985.

Andromica (T.V.) Ltd.

Senior Installation Engineer

Working directly for senior management, the successful applicant will be responsible for installations of CCTV and security equipment using monochrome and colour CCTV equipment. A proven background in the field of top quality systems installation together with an ability, when required, to take charge of small teams of engineers is a requirement. Overseas travel is a possibility although the work will mainly be UK/London based.

An excellent employment package is on offer to a flexible, hard working person with a good ability to communicate.

Apply in writing to ANDROMICA (T.V.) Ltd., 12 Buckingham Road, Uxbridge, Middlesex UB8 9T2, or ring Mr John Tucker on 0895-57971.
Sales Manager

Racal-SES Ltd, part of the world renowned electronics Group, have an outstanding reputation in the design and development of sophisticated electronic equipment and systems. In addition to this capability we also have comprehensive Tempest engineering and testing facilities along with preventive/ corrective design consultancy services.

We see the future of Tempest protection, RFI and EMC testing as an exciting new area of the ever-expanding field of electronics.

In order that the full potential of our expertise can be realised we wish to appoint an experienced electronic sales professional to promote and sell this concept.

Applicants must have a recognised electronics qualification to at least HNC level, or equivalent, and have a background in computer hardware, data communications or Telecommunications.

He/She must also be a self starter, well motivated professional who has a proven track record in electronic sales and will be responsible for expanding this high potential area of business.

For the right person there is an excellent salary package which includes a Company car, over 5 weeks annual holiday and Pension with free Life Assurance Scheme.

If you have the qualifications outlined above, coupled with the drive, enthusiasm and ambition to develop this new business field, then please write giving full career details and current salary to:
Mr R Brock, Personnel Manager,
Racal-SES Ltd,
480 Bath Road, Burnham,
Slough, Berks.
Tel: (06286) 4455.

Racal's people are Racal's success

Professional Career Opportunities

The Easy Way to look for your new job from the comfort of your own armchair. Our well qualified consultants will carefully match your requirements against appropriate vacancies.

We have many clients seeking Engineers and Technicians at all levels and we are particularly interested in hearing from you if you have experience in the following:

- Signal Processing
- Technical Sales
- ATE Programming
- Radar Systems
- RF Development
- Real Time Software

Your next step is to complete and return the attached coupon or telephone John Prodger on 0442 47311 or one of our duty consultants on 0442 212650 during evenings or weekends.

NAME __________________________ (Mr/Miss/Mrs)
ADDRESS _________________________
POST CODE _______________________
TEL NO ___________________________
QUALIFICATIONS ___________ AGE ___________
[] NONE [] CG/HNC [] DEGREE [] OTHER
SALARY ___________________________
[] £6000 [] £6-10000 [] £10-15000 [] £15000+
JOB _____________________________

The International Specialists in Recruitment for the Electronics, Computing and Defence Industries

Maylands Avenue, Hemel Hempstead, Herts HP2 7LD

Electronics & Wireless World August 1985
COMMUNICATIONS DESIGN
FROM START...

At H.M. Government Communications Centre we’re using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it’s an environment where you can see your ideas progress from initial concepts through prototype construction, test and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we’re looking for men and women who have studied electronics or electronics related subjects to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer (£7,155-£10,090) or Scientific Officer (£5,909-£8,153) according to qualifications and experience.

For further details please write to the address given below. It would be particularly helpful if an outline of your personal interests and practical experience could be included.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7BH.

...TO FINISH

Analogues Engineer

Serks Commercial Company c£17,000

Our client a major privately owned group of companies, due to continued expansion, are seeking a top calibre analogue engineer to become involved with their successful product development programme based around tape and cartridge systems for commercial markets.

Involvement will cover the design testing and releasing to production products and product sub assemblies. Ideally you should have experience in the following:

- Several years design experience
- Design of Servos motor/tacho systems
- Low level signal amplifiers and data recovery circuits
- Digital ability in TTL, CMOS, Pals. and Mpus (preferably Motorola).

In return you will receive all the benefits expected from joining an expanding and commercially aware company (excellent salary, superior working conditions, the use of the latest “kit”, genuine career prospects) and many other advantages associated with working for a company operating at the very forefront of technology.

For further information please telephone Stephen Salt, or write enclosing a full CV.

Management Personnel

Recruitment Selection & Search
2 Eton Court, Eton, Windsor, Berkshire.
Telephone: (07535) 54258 (0118) 9241970

VIDEO ENGINEER FROM £12K

W. LONDON

An internationally known company plans to expand their service to the professional video industry. It is a small but increasingly important part of their overall business.

In a small team, each person is important, their contribution will be noticed, their efforts appreciated. This position involves fault finding/analysis, maintenance and installation of professional video and AV equipment.

When fully conversant with the hardware, an increasing amount of technical support to the sales team will be expected.

The starting point is an HNC in Electrical/Electronics and at least 4 years experience of maintenance and installation of professional video equipment. In their late 20s/early 30s the person must be self-motivated, interested in technical innovation - but practical!

Translate interest into action by sending a C.V. (including current salary) to:

Brendan P. Maguire,
Technical & Management Appointments,
MEW House,
6 Horn Lane,
London, W3 6QT

(2523)

TMA
MEDICAL RESEARCH COUNCIL
INSTITUTE OF HEARING RESEARCH
SOUTHAMPTON CLINICAL OUTSTATION
RESEARCH OFFICER
IN ELECTRONICS
(RO/SRO)

A vacancy exists for a research officer with experience in electronics at IHR Southampton. The post will be based at the Institute of Sound and Vibration Research at the University, but will also relate to the other half of the team's activities, at the Royal South Hants Hospital.

The research is on clinically applicable aspects of hearing and deafness, advanced testing techniques, and the use of signal averaging equipment by computer for which a very high level of technical support is required. The appointee will be required, with minimal supervision, to design and construct new equipment involving transducers and interfaces. There will also be a little general technical support for the research team including calibration, repair and servicing work. A general electronics background is needed and a knowledge of Z80 CP/M systems and of digital interface techniques would be advantageous. For further information about the post, please contact Dr. A. R. D. Thornton (Tel: 0703 37946).

The appointment will be made on the Research Officer grade (£5483-8492) or Senior Research Officer grade (£5874-10,938). The MRC has a pension scheme and generous leave allowances.

TV BROADCAST ENGINEERING
Avitel is a small, well established and rapidly growing company, designing and manufacturing an expanding range of equipment for the Professional Broadcast Television Industry.

We have a modern purpose-built factory, offering excellent working conditions, some 10 miles south of London in Kent. As part of our programme of expansion, we have a senior engineering vacancy for which we require an enthusiastic individual, keen to grow with the Company.

TEST DEPARTMENT MANAGER
This post involves the training and supervision of test staff, planning of resources to meet production workload and specification of equipment for the department.

Close liaison with our Development, Projects, Production and Sales departments is necessary to ensure the smooth progress of equipment from the design stage through to final production. A good appreciation of modern analogue and digital circuit operation is required, including microprocessor systems. A knowledge of modern ATE techniques is also required. Familiarity with Broadcast Video equipment is an advantage. Qualification to degree level or equivalent is desirable, and at least five years' relevant industrial experience is required.

Please write for an application form, and detailed job description, enclosing your C.V. and quoting reference TM.

Avitel Electronics Ltd.,
Unit 6, Croydon Road
Industrial Estate,
Tennyson Close, Beckenham,
Kent, BR3 4BY.
Telephone: 01-656
7027 Telex: 894360
AVITEL-G
SHEETMETAL 94
Send S.A.E. Milton, Laurels' Tiptoe Mounting HALF PRICE ENCLOSURES marker modulation, RF generator 100kHz to 13MHz. A.W.H.F. modulation, 5 digt counters clock, signal generator, VS, output at 75Ω.

Oscilloscope
PM 3212 £475
Generator
RF generator 100kHz to 13MHz. A.W.H.F. modulation, 5 digit counters clock, signal generator, VS, output at 75Ω.

RADIO COMPONENT SPECIALISTS
33 WHITEHOUSE STREET CHERTSEY, SURREY. TEL: 01-404 1980

SHEETMETAL FOLDERS vice or bench model. 24" x 160" £15. Leaflet 01-906 7858 anytime.

HALF PRICE ENCLOSURES
Manufactures Brads New Surplus and Seconds at almost Half Price. 19" Rack Mounting and smaller Free Standing Enclosures. No damage and only blemishes on the finish at the very worst. Send S.A.E. for list. C. Phillips The Laurels Tiptope Road, Wooton, New Milton, Hants BH25 5SJ. Mail Order Only. (2585)

QUARTZ CRYSTALS OSCILLATORS AND FILTERS of all types. Large stocks of assorted items. Specials supplied on order. Personal and special orders welcomed — N/A for two-phase GLM support bars — design advice, prototype quantities, production scheduling. Golledge Electronics, Morten Somertett TA16 SN5. Tel: 0460 271614 (2142)

DOLCH LOGIC ANALYZER LAM 350, 30MHz. 48 channel, 32 data, 2 external clocks, 6 clock qualifiers and 8 trigger qualifiers. TTL & ECL thresholds. SA Glitch capture. Including 6ALP,88 active logic pods. £2,500 Tel: Bordon (0403) 7184. (3585)

WAVEGUIDE, Flanges and dishes. All standard sizes and alloys (some material only) from stock. Special sizes to order. Earth Stations, 020-228 7676, 226 Howe Street, London SE1 1AR. (2909)

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc., RESISTORS, C/F, M/F, W/W, etc., CAPACITORS, SILVER MICA, POLYSTYRENE, 2280, 2296, DISC CERAMICS, PLATE CERAMICS, etc.

ELECTROLYTIC CONDENSERS; SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.

ALL AT KNOCKOUT PRICES. Contact and pay us visit ALADDIN'S CAVE
TELEPHONE: 445 0749 / 445 2713
R. HENSON LTD
21 Lodge Lane, North Finchley, London, N.12
(15 minutes from Tottenham Court Road) (1913)

E C COMPONENTS
We buy large and small parcels of surplus IC's, transistors, capacitors and related electronic stock. Immediate settlement. Tel: 01-208 0760

ELECTRONICS & WIRELESS WORLD AUGUST 1985
A CAREER IN TECHNICAL AUTHORSHIP

The requirement for Technical Authors with a background in electronics is increasing rapidly. For details of a comprehensive correspondence course leading to qualifications in this field, send for free brochure and syllabus to Tutortex Services, 55 Lightburn Avenue, Ulverston, Cumbria LA12 0DL. 0229-563333.

DOLCH LOGIC ANALYZER LAM3250, 50MHz, 48 channel; 32 data, 2 external clocks, 6 clock qualifiers and 8 trigger qualifiers. TTL & ECL thresholds. 5ns Glitch capture. Including 6ALP88 active logic pods. £1800. Tel: Bordon (04203) 7174.

SMALL BATCH PCBs, produced from your artwork, also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. Details: Orbitronic Circuits, 38 Torquay Gardens, Redbridge, Essex. IG4 5PT. Tel: 01-550 3610.

DESIGN, DEVELOPMENT AND PROTOTYPES. Digital and microprocessor based equipment our specialty. Prototypes and small batch production undertaken to the highest quality and with fast turnaround. For details of our hardware and software services please contact: IB ELECTRONICS 11, Broomshaw Road, Maidstone, Kent. Tel: 0622 674192.

DONT FORGET! FOR YOUR CLASSIFIED ADVERTS

Ian Faux 01 661 3033
AFFORDABLE ATE
Diagnoses bus troubles
Helps mend micro boards
280, 6502, 8085
All covered by one product
Disassemblers included
Plugs into micro socket
Hand-held probe identifies
ADDRESS, DATA and CONTROL
lines at a touch.

Prints a memory map
of an unknown system
showing ROM, RAM, I/O
and EMPTY ADDRESSING SPACE.

LOGS all tests and responses
on PRINTER and ALPHA LCD
Non-volatile memory
retains test sequences
CHECKSUMS, RAMTESTS,
READS/Writes MEMORY & I/O
Reports location of SHORTS
on ADDRESS and DATA busses
Prints out memory contents
in ASCII, HEX or SOURCE CODE
You cannot expect to mend
microprocessor products with
a meter and a scope.
How many repairs would
pay for your SuperDOC?
SuperDOC...£395

FAST EPROM PROGRAMMER
Copies eight EPROMS at a pass
all 25 and 27 series up to 27256
EPROM type is set by switches
erasure is checked automatically
control is simple - two keys
Alpha liquid crystal display
checksum facility 6 hex digits
FAST or NORMAL programming
PLUS VERSION also has:
serial RS232 program & check
CTS or DSR handshake
ASCII, SIMPLE HEX, INTELHEX
MOTOROLA S or TEKHEX
GANG-OF-EIGHT £395
GANG-OF-EIGHT plus £445

Z80 TUTOR
Designed for Schools Council
to teach Z80 machine code
MENTA uses TV for display
shows STACK & PROGRAM in HEX
Editing facility includes
direct keyboard ASSEMBLER
RS232-output DISASSEMBLER
Used to write & debug
short machine-code routines
MENTA is a complete
controller with 24 bits of I/O
used for ROBOTICS
TEACHER's GUIDE, PUPIL READER
MODULES (e.g. A to D) available
MENTA ... £99

COMPUTER BARGAINS
-ring for our BEST OFFER
OLIVETTI M21, M24
with 10MB hard disk if req.
AUTO-CAD & M24 created this AD
also EPSON PX8

EPROM ERASERS from £39

BUY IT AND TRY IT
REFUND GUARANTEED

less postal expenses, if goods returned intact within 14 days
PRODUCT IS USUALLY IN STOCK
TODAY DESPATCH IS POSSIBLE
PHONE FOR A LITERATURE PACK
VAT must be added to prices
Spot On!

Time has been our business since 1974. Precision has been our aim. We have experience in display, code generation, off air time, off air frequency and frequency standards. Single units to the largest system.

Our time is at your disposal.

European Electronic Systems Limited,
Woodham Mortimer Place,
Maldon, Essex CM9 6SV.
Telephone: 024541-5911.
Telex: 995917

Time Code Reader.
MSF Rugby Simulator.
Tape Search System.
Radio Clock (5 mSec)
Radio Clock (500 µSec)