Video displays surveyed

Telephone charge indicator

Enlarger lamp power controller

Electronics for young people
If you need assistance in HiFi/audio service:

Here's all the help you need

Philips versatile PM5109 LF generator and unique combined distortion meter/oscillator, the PM6309, give you all the help you need for HiFi and audio service applications. They're easy to operate — and economically priced.

PM5109 brings together all the high technology features you require from a test instrument. It offers symmetrical or asymmetrical outputs, pure sine wave signals, a wide 10 Hz – 100 kHz frequency range and switchable output impedances. A high 30 Vpp amplitude in the asymmetrical mode, with stepped and continuous attenuation, a 10 Vpp floating output in the symmetrical mode, and useful TTL or DIN loudspeaker outputs are further benefits. In addition, there is a choice of low-distortion or fast-settling modes.

PM6309 is a simple-to-operate distortion meter that can handle all types of audio equipment. It has been specially designed to provide appropriate signal generation plus an accurate distortion measuring capability within a single instrument.

It offers a built-in RC oscillator, total harmonic distortion (THD), 3rd harmonic distortion and rms measuring facilities. It not only measures distortion according to DIN45500 — but also determines the distortion figure accurately when unstable audio signals are being applied.

Fully automatic operation means that all you do is connect the input, select the test frequency — and then read-out the distortion. Separate two-channel testing is also possible for stereo equipment.

Use the inquiry service to obtain further information.

Inquiry No. 198

PM 5109 LF generator
PM 6309 distortion meter

Philips Test and Measuring
Pye Unicam Ltd
York Street, Cambridge CB1 2PX
Tel (0223) 358866 Telex 817331

GN13

PHILIPS
CONTENTS

FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video displays</td>
<td>17</td>
</tr>
<tr>
<td>An overview of current practice in c.r.t. displays</td>
<td></td>
</tr>
<tr>
<td>Domestic tv to monitor</td>
<td>27</td>
</tr>
<tr>
<td>by J.A. Grubb</td>
<td></td>
</tr>
<tr>
<td>RGB conversion for Philips G8</td>
<td>32</td>
</tr>
<tr>
<td>by D.J. Dinning</td>
<td></td>
</tr>
<tr>
<td>Two methods of converting a television receiver to a computer monitor</td>
<td></td>
</tr>
<tr>
<td>Recharging system for NiCd cells</td>
<td>37</td>
</tr>
<tr>
<td>by Rod Cooper</td>
<td></td>
</tr>
<tr>
<td>Practical method of recharging, avoiding the common pitfalls</td>
<td></td>
</tr>
<tr>
<td>Printer buffer</td>
<td>41</td>
</tr>
<tr>
<td>by Mike Catherwood</td>
<td></td>
</tr>
<tr>
<td>Software, construction and operation of this 6803-based, 64K byte character store</td>
<td></td>
</tr>
<tr>
<td>Developments in tv components</td>
<td>45</td>
</tr>
<tr>
<td>by Richard Lambley</td>
<td></td>
</tr>
<tr>
<td>New range of high-performance i.c.s for television receivers from Mullard</td>
<td></td>
</tr>
<tr>
<td>Eprom programmer software for the BBC microcomputer</td>
<td>50</td>
</tr>
<tr>
<td>by Norman Sargent</td>
<td></td>
</tr>
<tr>
<td>Using John Adams’ eprom programmer with the BBC micro. Manipulation of eprom data on disc gives added flexibility</td>
<td></td>
</tr>
<tr>
<td>Call-cost calculator</td>
<td>53</td>
</tr>
<tr>
<td>by S.A. Cameron</td>
<td></td>
</tr>
<tr>
<td>Keep a check on telephone bills with this 280-based design.</td>
<td></td>
</tr>
<tr>
<td>A.C. mains power controller</td>
<td>57</td>
</tr>
<tr>
<td>by J.L. Linsley Hood</td>
<td></td>
</tr>
<tr>
<td>Stabilizing power in a resistive load by triac control</td>
<td></td>
</tr>
<tr>
<td>63rd NAB, Las Vegas</td>
<td>59</td>
</tr>
<tr>
<td>by Nigel S. Cawthorne</td>
<td></td>
</tr>
<tr>
<td>A report from the National Association of Broadcasters’ annual convention and exhibition</td>
<td></td>
</tr>
<tr>
<td>Sampled-data servos</td>
<td>62</td>
</tr>
<tr>
<td>by D.M. Taub</td>
<td></td>
</tr>
<tr>
<td>Calculating open and closed-loop gains as functions of time</td>
<td></td>
</tr>
<tr>
<td>Social electronics for youth</td>
<td>69</td>
</tr>
<tr>
<td>by K.L. Smith</td>
<td></td>
</tr>
<tr>
<td>There is a need, says Ken Smith, for educating some young people away from the school atmosphere. He describes his experiences as not so much a teacher more a leader</td>
<td></td>
</tr>
<tr>
<td>Big-system automation and telemetry</td>
<td>69</td>
</tr>
<tr>
<td>by R.E. Young’s series on British invention</td>
<td></td>
</tr>
</tbody>
</table>

REGULARS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>News commentary</td>
<td>6</td>
</tr>
<tr>
<td>Trouble for d.b.s.</td>
<td></td>
</tr>
<tr>
<td>Pirate satellites</td>
<td></td>
</tr>
<tr>
<td>Voice (and ears) of Alvey</td>
<td></td>
</tr>
<tr>
<td>Don’t commercialize the BBC</td>
<td></td>
</tr>
<tr>
<td>Circuit ideas</td>
<td>66</td>
</tr>
<tr>
<td>Multicode combination lock</td>
<td></td>
</tr>
<tr>
<td>Accurate transducer interface</td>
<td></td>
</tr>
<tr>
<td>Measuring rupture current</td>
<td></td>
</tr>
<tr>
<td>Battery-saving relay switch</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>75</td>
</tr>
<tr>
<td>Ptarmigan</td>
<td></td>
</tr>
<tr>
<td>Software crisis</td>
<td></td>
</tr>
<tr>
<td>ICAP 85</td>
<td></td>
</tr>
<tr>
<td>Microwave dangers</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>79</td>
</tr>
<tr>
<td>Logic symbols</td>
<td></td>
</tr>
<tr>
<td>Valve disc preamplifier</td>
<td></td>
</tr>
<tr>
<td>Energy transfer</td>
<td></td>
</tr>
<tr>
<td>New products</td>
<td>86</td>
</tr>
<tr>
<td>Circuit diagrams on the BBC micro (p.47)</td>
<td></td>
</tr>
<tr>
<td>Quick, dry photos</td>
<td></td>
</tr>
<tr>
<td>Design you own I.C.</td>
<td></td>
</tr>
<tr>
<td>Coded keys</td>
<td></td>
</tr>
<tr>
<td>Graphics colour controller</td>
<td></td>
</tr>
</tbody>
</table>

Front cover illustrates our feature on video display units, which starts on page 17. Insert at lower right is the call-cost calculator on page 50. Cover design by Philip Brooker.
Electronics & Wireless World July 1985

Radiocode Clocks Ltd

Specialists in atomic time, frequency and synchronisation equipment.

New Products

- **Miniature Rubidium Oscillator Module**
 Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

- **Rubidium Frequency Standard**
 High performance, compact and rugged instrument. 2U rack or 1/4 ATR case options.

- **Intelligent Off-Air Frequency Standards**
 Microcomputer controlled instruments, directly traceable to NPL, precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.

- **Low Cost MSF Frequency Standard**
 Instant operation, directly traceable to NPL, self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation.

Micro-Tel

Universal Microtelemetry System

Micro-tel is a system of integrated UHF radio/modems ruggedly constructed and suitable for a wide range of 'line of sight' data communications applications.

Features:
- UHF Home Office type approved radio (MPT 1309)
- 5 Radio Channels
- 1200 BAUD INTERNAL MODEM
- 12 Volts/250 m Amps Power
- RS232 Data Input/Output
- Small size 145 x 210 x 60 mm
- SPECIALS TO CUSTOMER SPEC. ALSO AVAILABLE

Micro-tel offers a simple and reliable solution for:
- Building to building computer comms
- Instrument to computer data links
- Industrial systems data links
- Dealer and OEM enquiries welcome.

Measurement Devices Limited

Silverburn Crescent, Bridge of Don Industrial Estate, Aberdeen. AB2 8EE. Telephone: (0224) 824141. Telex: 739506 (MOLAB)

Field Electric Ltd

3 Shenley Rd, Borehamwood, Herts Telephone 01-953-6009

OFFICIAL ORDERS/OVERSEAS ENQUIRIES WELCOME OPEN 6 DAYS A WEEK 9.00am/5.00pm THUR 9.00am/1.00pm

- 12" BLACK & WHITE 750 COMP. VIDEO, HIGH RESOL. 80 CHARACTER IN CASE TESTED $23.00
- SPECIAL OFFER 12" BLACK & WHITE 750 COMP. VIDEO, HIGH RESOL. 80 CHARACTER IN CASE TESTED $16.95
- 2 HITACHI BLACK & WHITE 750 COMP. VIDEO, HIGH RESOL. 80 CHARACTER IN CASE TESTED $45.00
- 12" GREEN PHOS. 750 COMP. VIDEO, HIGH RESOL. 80 CHARACTER IN CASE TESTED $25.00
- SPECIAL OFFER 24" 750 COMP. VIDEO, HIGH RESOL. GREEN PHOS. IN CASE TESTED $15.95
- ALL MONITORS 230 V.A.C. RING FOR CARRIAGE DETAILS
- ONLY KARR 33 230 V.A.C. RS232 TELETYPE BRAND NEW C/P 7.00 M.P.I. 1/2 & L/H. SKY DISK. SINGLE SIDED 40 TRACK 5/1. NEW & BOXED C/P 2.50 $65.00
- ONLY LAMBDA 3 PHASE 0-36V 72 AMP 208 V.A.C. C/P 15.00 60.00
- TELCOS DATA CASSETTE MEX EX-EQUIP. MEX C/P 1.00 10.00
- TELCOS DATA CASSETTE MEX EX-EQUIP. C/P 2.00 10.00
- PLESSEY 2/4 MEGABYTE (MAX) GENERAL PURPOSE RANDOM ACCESS MEMORY SYSTEM CAN BE USED FOR MAINFRAME MINI MICROPROCESSOR'S & NEW & BOXED WITH DATA P.O.A.
- AURALITE LIGHT WEIGHT HEADSET & MIC. IDEAL FOR COMMUNICATIONS EX-EQUIP. TESTED C/P 2.00 20.00
- ALL P/S U. 200-250 V A.C. INPUTS
- SWITCH MODE P/S U. C/P 2.00 UNLESS STATED
- 3.5V 10AMP D.C. $12.50
- ADVANCE 5V 20AMP D.C. 18.50
- 5V 30AMP 19.95
- 5V 40AMP D.C. 40.00
- 5V 60AMP D.C. 20.00
- FARNELL 6V 5AMP D.C. 145K87X32 M/M 20.00
- FARNELL 5V 20AMP D.C. 20.00
- 6V 40AMP D.C. 40.00
- FARNELL 24V 5AMP 35.00
- FARNELL 12V 10AMP 35.00
- FARNELL FAN COOLED MULTIRAIL SWITCH MODE +5V AT 1AMP +5V AT 1AMP +12V AT 1/8AMP -12V AT 1AMP GOULD MULTI-RAIL SWITCH MODE NEW 5V 40AMP - 12V 4AMP + 15V 11/4AMP C/P 6.00 75.00
- GOULD NOV & BOXED 6V 40AMP 60.00
- COUTANT 0-7V 7AMP D.C. LINEAR NEW & BOXED 19.95
- GOULD PMA 47 12V 3AMP LINEAR 16.95
- COUTANT ESM LINEAR MULTIRAIL 5V 13AMP D.C. +12V 5AMP OR +5V 5AMP 12V OR 24V 5AMP UNREGULATED COMPLETE BOOK CIRCUIT DIA NEW BOXED C/P 8.00 40.00
- VOLTERR LINEAR MULTIRAIL + 12V 600MA + 5V 1AMP D.C. 11.25
- P.C. SUPPLY 65V 1AMP D.C. TOROIDAL 1X REGULATED 6.00 6.95
- WE ALSO BUY EQUIPMENT SURPLUS TO REQUIREMENT. SEND LIST OR PHONE ALL PRICES INC VAT 15% UNLESS STATED CIRCLE 30 FOR FURTHER DETAILS.

CIRCLE 46 FOR FURTHER DETAILS.

CIRCLE 47 FOR FURTHER DETAILS.

www.americanradiohistory.com
The SDS ARCHER — The Z80 based single board computer chosen by professionals and OEM users.

- High quality double sided plated through PCB
- 4 Bytewide memory sockets — upto 64k
- Power-fail and watchdog timer circuits
- 2 Serial ports with full flow control
- 4 Parallel ports with handshaking
- Bus expansion connector
- CMOS battery back-up
- Counter-timer chip
- 4 MHz. Z80A

OPTIONS:
- SDS BASIC with ROMable autostarting user code
- The powerful 8k byte SDS DEBUG MONITOR
- On board 120 / 240 volt MAINS POWER SUPPLY
- Attractive INSTRUMENT CASE — see photo.
- 64k / 128k byte DYNAMIC RAM card
- NEW
- 4 socket RAM — ROM EXPANSION card
- NEW
- DISC INTERFACE card
- NEW

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

CIRCLE 47 FOR FURTHER DETAILS.
Electronic Brokers are Europe's largest specialists in quality second user test equipment. Established 17 years ago, we have pioneered the second user concept in Britain, and many overseas territories. To support our growth we have a skilled team. This includes trained sales staff, whose role is not only to sell, but provide a helpful information service to our many customers. Backing this team is our own service laboratory where technicians monitor each item of equipment we sell. Our service is unparalleled and those who have dealt with us will know that we endeavour to always live up to our reputation.

Electronic Brokers Second User Test and Measurement Equipment Division

THE SOURCE OF ALL GOOD USED TEST EQUIPMENT

SAVE up to 50%

OSCILLOSCOPES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix 7103</td>
<td>Delay Line</td>
<td>£950</td>
</tr>
<tr>
<td>HP 506</td>
<td>100MHz Storage Scope</td>
<td>£2500</td>
</tr>
</tbody>
</table>

RF SIGNAL GENERATORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM6001</td>
<td>Pulse Generator 200MHz</td>
<td>£750</td>
</tr>
</tbody>
</table>

EAF SOURCES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix 7B03</td>
<td>Signal Generator</td>
<td>£1950</td>
</tr>
</tbody>
</table>

ANALYSERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 356A</td>
<td>Spectrum Analyser</td>
<td>£2500</td>
</tr>
</tbody>
</table>

TEKTRONIX CP & TM EQUIPMENT

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 1010A</td>
<td>Calibrator</td>
<td>£950</td>
</tr>
</tbody>
</table>

COUNTERS & TIMERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 504</td>
<td>Counter 1GHz</td>
<td>£995</td>
</tr>
</tbody>
</table>

Electronic Brokers Guarantee

Unless otherwise stated, all test equipment sold by us carries a 12 month warranty. When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians. All prices exclusive of VAT. Carriage and packing charges extra on all items unless otherwise stated.

A copy of our trading conditions is available on request.

Electronic Brokers Ltd

140-146 Camden Street London NW1 9PB

Telephone 01-267 7070 Telex 298694

CIRCLE 201 FOR FURTHER DETAILS.

www.americanradiohistory.com
Another good use has been found for a cordless 'phone. This one is carried around by the warden of sheltered housing for the elderly. The handset is linked to a system that provides immediate alarm calls, can act as a vandal-proof door entry phone and offers speech communication wherever the warden may happen to be at the time. This one comes from Wolsey Electronics, in Pontypridd.

New Beeb

Without much advance publicity Acorn have launched the BBC B+ computer. Externally this is exactly the same as its predecessor. Internally it uses a completely redesigned circuit board, developed for the Acorn Business Computer. This incorporates 32K more ram, making the B+ a 64K computer. The extra memory is divided between 20K screen memory, freeing that amount for program development, and 12K of 'sideways' ram. This occupies the same area in the memory map as roms and may be used to download rom utilities. The other major difference is the provision of six sockets for roms which can now be up to 32K each. One 32K rom is installed. It combines the operating system with BBC Basic. The computer is fitted with a disc interface as standard and as a departure from their stubborn adherence to the outdated 8271 single-density, limited file-number system, they have now opted for the 1770, but in order to keep as compatible as possible with the old system the DFS incorporates all the same restrictions! Acorn see the computer as a continuation of their role in education and 'serious' home computing and it costs £499 inclusive. This compares unfavourably with many other 64K computers and general opinion is that it is overpriced and unlikely to sell well. One would have thought that it could have been possible for Acorn to reduce the price of the BBC B to about £300 and then sell the B+ with its enhancements, for the same £400 of its predecessor.

Pirate satellites?

Luxembourg may tire of the dithering over satellite broadcasting in Western Europe and launch a 'pirate' d.b.s. tv service covering several countries and financed by advertising. This comes from a report by a US firm of market researchers, International Resource Development Inc.

IRD has analysed the European d.b.s. scene. They reject two 'pirate' possibilities but feel that a third is likely. Those rejected are that an individual satellite owner capable of offering a form of d.b.s. could start transmissions or an entrepreneur could buy a satellite and launch it for the purpose. IRD's view is that a country ready to start national coverage or even a wider service may jump the gun on overspill and copyright arguments. It could then, they say, argue from a strong position and it could, if forced to withdraw, simply re-focus on a tighter beam to stay within its own borders or, alternatively, avoid contentious programming. IRD sees Luxembourg as the most likely contender. One consequence of the 'he who dares wins' scenario not covered by IRD is the possible effect on technical standards. It could be the end of MAC, catering for future improvements in picture quality, so opponents of MAC might well covertly back a pirate.

Hitech at the union

It seemed inappropriate for a high technology training scheme, organized by a trades union, to be launched by a Tory minister. However this is what happened when Norman Tebbit, Secretary for Trade and Industry, launched two systems for training members of the Electrical, Electronic, Telecommunications and Plumbing Union (EETPU) in microelectronics and robotics. Development of the training package was supported by grants from his Department.

Much of the training is carried out through the use of an interactive videodisc learning package. Mr Tebbit pointed out that the system was developed from a programme begun by his Department; "to stimulate development and growth of a UK interactive video disc industry. The EETPU project is a clear example of cooperation at its best; between a forward looking trade union, an enterprising and expanding small British firm, Epic; and the Government."

He went on to praise the union's involvement with advanced technology and its contribution to the forthcoming report of the National Economic Development Office on advances manufacturing systems. "We all depend for our well-being ultimately on the performance of British industry. Two vital ingredients of that performance are the skills of our workpeople and the new technology being put at their fingertips."

Substitute satellite

Meteosat-1, the ESA weather satellite, five years older than its original planned mission, is drifting out of orbit and has come to the end of its useful life. However, the USA is to lend a spare, standby, satellite already in orbit which is to be repositioned from its present position of 140°W, over the Pacific to 10°W by being moved by 4° a day. The GOES-4 satellite, launched in 1980, lost its imaging capability in 1982 and has been used as a standby transponder, relaying meteorological data. After its temporary service in Europe, it will be boosted up, out of the geostationary orbit to make room for other spacecraft.

British Aerospace have been given a $150M contract to build three new Inmarsat-2 satellites, expected to go into service during 1988/89. The satellites will be the first to be owned and operated by Inmarsat themselves; all the previous ones have been leased. There are now 3300 vessels equipped to operate with the Inmarsat system and 10 countries operate a total of 13 earth stations. Services are to include aeronautical communications including a telephone service for airline passengers!
Pocket phones on the way

A low-cost, lightweight, portable telephone, the size of a pocket diary, will be commonplace by the end of the century, according to John Carrington of BT Mobile Systems. He was speaking at the Asia Telecom Forum in Singapore. The biggest stumbling-block is the need for high-capacity small batteries and Mr Carrington believes that a 'major breakthrough' in battery technology is needed. The developing cost of low-cost large-scale ICs will speed the fall in prices for mobile phones as will the adoption of international standards for cellular systems.

In brief

The BBC has brought into use a system, developed by them, to protect headphone users against excessive levels. The device is smaller than a matchbox and needs no external power supply, being driven by the signal that it is monitoring and may be incorporated into the headphone lead. It offers no distortion to the sound until the limiting level is reached. That level is preset on manufacture to a value between 95 and 110dB. An averaging network prevents the protector from operating on short-term peaks. Similarly another network prevents the limiter from acting on less-harmful low-frequency sounds. The circuit is available to UK firms to manufacture and market under licence.

• British Telecom's CARE system is to be expanded. It provides continuous monitoring of a customer's premises using signals transmitted over the telephone lines with interrupting telephone usage. The second phase of the scheme is to cover one hundred telephone exchange areas in London. This follows a pilot scheme of ten exchanges last September. The equipment, manufactured by Base Ten includes local exchange scanners which are connected to the BT host computer. The subscriber terminal unit is microprocessor based and is available through Ademco-Sontrix in Reading. The system offers high security, and low cost as no extra exchange lines are required and the subscribers receive full line monitoring through the central station, with continuous interrogation and verification of the alarm system. Signalling is encrypted and modulated whether the phone is on or off the cradle.

• Morsum Magnificat is the magnificent title of a quarterly magazine devoted to Morse telegraphy. The first international edition (in English) is a compilation from the two years of its existence in Holland and has nostalgic tales written by professional and amateur operators as well as photos of all kinds of telegraph equipment. Copies may be obtained for £1 inclusive from the Editor; M. Hellemons, PA0 BPNBFN, Holweg 187, 4623 XD, Bergen op Zoom, The Netherlands.

• VHF Communications is the English language edition of UKW-Berichte, a prominent German quarterly for the radio amateur. The magazine specializes in advanced construction projects for the v.h.f., u.h.f. and microwave bands: recent issues describe a 10GHz f.m. transceiver with dielectrically-stabilized oscillator, a solid-state linear amplifier for 1.3GHz, an r.f. power meter and a receiver for the standard frequency and time signals of DCF77. Printed circuit boards and parts kits are available for most designs.

• Other articles have covered coherent c.w. telegraphy, spread-spectrum techniques, weather satellites and the use of Smith charts.

Throughout the loss of its British distributors the magazine is less easy for U.K. radio amateurs to find; however, it remains available direct from publishers in West Germany. An annual subscription now costs DM24.00, but back issues are offered at reduced prices. The publishers prefer a signed order quoting Visa card number and expiry date. Their address is Verlag UKW-Berichte, Postfach 80, Jahnstrasse 14, D-8523 Bayersdorf, F.R. Germany.

America and China have teleconference

The successful exchange of slow-scan video images between the USA and the Peoples' Republic of China opened a new channel of communications between these countries. The exchange took place between two medical facilities; the University of Cincinnati Medical Centre and Zhejiang Medical university in Hangzhou. Two separate test periods were used at the end of 1984 and in April this year. Pictures of people, charts, graphs, printed matter and the local skyline were sent. The quality of the transmissions, which spanned half the globe, was considered to be good to excellent. Further tests were carried out between China and Boulder, Colorado where Colorado Video manufactured the teleconferencing equipment. Test are to continue throughout the year.

During the All-Electronic/ECIF Show, at the ECIF banquet at the Grosvenor House Hotel, Tony Wilson, of Electronics for Peace was given the Tobie Award as Electronic Personality of the Year. The Award was for his efforts in promoting Electronics for Peace and for drawing attention to the issues of the domination of the electronics and computing industries by military research, procurement, secrecy and waste.

Satellite docking system

A precision navigational system for the automatic docking of spacecraft and load carriers is being developed by a Swedish Electronics company and the Saab Space corporation, which may be used on the European and American orbiting space stations now being planned. The system is based on the invention of Dr Lars-Erik Lindholm, who developed an optical system for detecting the reflexes and movements in handicapped people. The detector used in the system was refined until an accuracy of 0.01% could be achieved, the standard required by NASA for precise navigation in space. Dr Lindholm has also developed a photodetector process using electronic pulses from an I.e.d. The photodetector has proved to have a wide range of applications including guidance for robots and in the manufacturing industries. It's success has led to Dr Lindholm setting up his own company, StTek. Saab Space is evaluating how the system could be used in the ESA Columbus space platform project, scheduled for 1990 to 1995, and NASA are said to be very interested.

CLAUDIYS (Calling Line Announcer Using Digitally Integrated Voice Synthesis), enables Beattie Brooks, who lost her voice after a throat operation, to 'speak' on the Telephone. Words and phrases are selected by the push button keyboard. A total of 64 phrases are chosen by the customer and then coded into a rom. Developed by BT.
Trouble for d.b.s.

Will direct satellite broadcasting ever come? All the signs are that the starting dates, for the home-grown variety at least, have receded far into the future.

The BBC cannot afford a d.b.s. and has the more pressing matter of its own future to worry about. The independent broadcasters, if they go ahead, will have to carry the huge cost of a spacecraft which is already looking outdated. Receivers for 12GHz have improved so much that it is doubtful whether Unisat's expensive high-power transponders are still needed.

Direct reception of existing satellite channels is already possible with dishes only a little larger than were promised for Unisat. The Government has at last announced, after much pressure from the industry, that blocks of flats and even individuals will now be allowed to receive these programmes. But this change of policy, long overdue though it is, is certain to spoil Unisat's prospects still further.

The 11GHz band, in which Sky Channel and the others are to be found, is a broadcast band in all but name. Any individual with £1500 to spend on it can now receive six extra English-language programmes, most of them in plain ordinary PAL, plus a growing number of foreign stations.

Yet as more stations arrive on the scene, so their value to the viewer, now spoiled for choice, inevitably diminishes. So how will the viewer feel about true high-power d.b.s. tv when it arrives?

Already it can be argued that western Europe has some of the least fertile soil in the world for d.b.s. tv. Viewers can enjoy a great diversity of programmes from national broadcasters and in many cases from private stations too. New d.b.s. channels could undoubtedly fill gaps in the present services.

But to receive them, it will be necessary to have a special decoder for C-MAC, plus as many of its variants as may eventually be adopted. As engineers, whether amateur or professional, we may well relish the prospect of more 12GHz plumbing and more boxes full of black plastic beetles. For most people, though, the decision to buy the new equipment will depend, as such decisions always have, on the programmes it will bring. And the programmes provided by d.b.s. will need to be outstandingly attractive if they are to interest a public already reaching saturation point with other satellite or cable-borne material.

The voice (and ears) of Alvey

The latest announcement from the Alvey Directorate is about the backing of several interrelated projects on voice synthesis and voice recognition by computers. This is part of the Man-Machine Interface aspect of the Alvey programme which is looking into alternatives to the keyboard.

Central to the scheme is to be a large scale demonstration of a Machine Assisted Speech Transcription (MAST) project, also called a speech-operated word processor. This is to be undertaken by Plessey, with assistance from Shell (UK), Edinburgh University, Loughborough University and Imperial College. The problem is not so much the ability to hear and transcribe spoken words, but to put them into context so that the computer will be able to distinguish between 'eight' and 'ate' by reference to the words on either side. This involves the use of expert systems and artificial intelligence and another project between STL and Cambridge University is working on this.

They expect to produce a system that can recognise over 25,000 words.

Other projects include intonation in synthesize speech so that stress may be added as well as regional accent and male and female voices.

Syndex, a company who have developed a Chinese word editor are working on Chinese speech input/output along with the School of Oriental and African Studies, University College and the RSRE.

One project which it is hoped to reach fruition early is the use of a voice-operated enquiry systems. British Telecom, Logica and Cambridge University are working on such a system and as a demonstration, developing a railway timetable enquiry service. Much work will go into the study of algorithms for the analysis of speech and phonetics as a path to better reproduction by the synthesized voice.

All participating bodies and other interested parties will get together in one of the interest 'clubs' which form an integral part of the whole project.

This touch sensitive robot from Cybernetic Applications, in Andover, can be guided into position by fingertip control and then programmed to find the same spot again. Sequences of movements can be easily programmed by this method although the arm uses a powerful hydraulic system.

'Don't commercialize the BBC'

Lord Hill, who has been in turn Chairman of both ITA and the BBC, warns that the idea of advertising on BBC tv 'spells disaster to programme standards.'

"Today British broadcasting is undeniably the best in the world. But that supremacy of standard is now in danger." Lord Hill, writing in the IBA journal Airwaves, pointed out that the IBA has had to offer equal service as the BBC and the BBC responded to greater effort to give the public what it wanted as well as what it ought to want. The conversion of the BBC to a commercial service would "injure both and do irreparable damage..."

Lord Hill referred specifically to the committee to be chaired by Professor Alan Peacock which is to assess the effects of the BBC taking advertising. He urges all those who believe that the British system, of a public service competing with a commercial service, is best should "raise their voices; and prepare their evidence; to persuade Peacock to accept the basic truth."
TURN YOUR BBC MICRO INTO A PROFESSIONAL MICROPROCESSOR DEVELOPMENT SYSTEM

THE OPERATING SYSTEM
- **FLEX** — The Professional Operating System
- Versatile, Flexible & Powerful, the ideal operating system for industrial control
- Provides the power, sophistication and ease of development, previously only offered by larger, more expensive systems

THE HARDWARE
- 6809 Advanced 16 Bit Processor
- Choice of Industrial Interfaces for Target Applications:
 - High Resolution Colour Graphics
 - Industrial input/output boards
 - IEEE communications
- and many more

THE TOOLS
- PLX — A fast, efficient control language
- CMS FORTH Interpreter & Compiler
- Cross Assemblers for most 8 bit & 16 bit micro's
- "C", BCPL, PASCAL

THE SUPPORT
- Top rate after sales technical support
- Systems / Hardware Design

NEW EQUIPMENT
- **HAMEG OSCILLOSCOPE 605.** Dual Trace 50MHz Delay Sweep, Component & Test. £155
- **HAMEG OSCILLOSCOPE 203.5.** Dual Trace 20MHz Component Fitter. £270

MULTIMETERS
- UNBELIEVABLE — AVO 8 Mk IV and AVO 9 Mk IV. Complete with batteries and leads for only £195
- AVO TEST SET No. 1. (Similar to AVO 8 Mk IV). £125
- AVO Model 13. Pocket Multiplier (Acrobats) 30 ranges. Complete with batteries & leads £25
- AVO 72 — Similar to above but in plastic case. £30
- With Batteries & Leads £18

PHILIPS DIGITAL MULTIMETERS
4 digit. Auto ranging. Un-used complete with batteries and leads (P&P £5)
Type PM 2517 E (L.C.D.) £75
Type PM 2517X (L.C.D.) £95

FORTH = TOTAL CONTROL
FORTH programs are instantly portable across the most popular microprocessors.
FORTH is interactive and very fast.
FORTH programs are structured, modular, and easy to maintain.
FORTH gives control of all interrupts, memory locations, and I/O ports.
FORTH gives full access to DOS files and functions.
FORTH application programs can be converted to turnkey programs.
FORTH Cross Compilers can generate ROMmable code for:
- 6502, 6809, 68090, 68000, 8080, 8080, 8086, 8086, 80801, 1802, 29, 807, 2080, 99xx, S/ii-1

Application Development Systems include FORTH with virtual memory, multi-tasking, assembler, full-screen editor, decompiler, utilities, and full documentation.
- LMI 8809 FORTH — CPM-86, MSDOS £110
- LMI PC/FORTH — PC/DOS £110
- MPE-FORTH 8809 — FLEX, OS8 £175
- LMI 8800 FORTH — CPM 68K £225

FORTH+ has 32-bit stacks and directly accesses the whole address space of the processor.
- PC FORTH+ 8086 FORTH+ £225
- 68000 FORTH+ £225

Extension Packages include floating point, cross compilers, 8087 support, colour graphics, interactive debuggers.

We are the FORTH specialists, and we stock a large range of books, listings, and implementations for machines ranging from Spectrums to Macintosh to VAX.

MPE MicroProcessor Engineering Ltd
21 Hanley Road, Shirley, Southampton SO1 5AP
Tel: 0703 799064

STEWART OF READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: 0734 68841

Callers welcome 9 a.m. to 5.30 p.m. Monday to Saturday inclusive.

CIRCLE 88 FOR FURTHER DETAILS.

OSCILLOSCOPES
- TECNTRONIX 465 Dual Trace 100MHz Delay Sweep. £190
- HEWLETT PACKARD 1070 Dual Trace 75MHz Delay Sweep, 1000v/div, 1M/div, Battery operated £450
- TELEQUIPMENT D75 Dual Trace 10MHz Delay Sweep, £230
- CSSOR CDU150 Dual Trace 35MHz Delay Sweep, £800
- S & E LABS SM11 Dual Trace 18MHz AC or external DC operation £1700
- TELEQUIPMENT 554A. Single Trace 10MHz Solid State £710
- TELEQUIPMENT 543. Single Trace 25MHz £79

SIGNALL generators
- MARCONI TF2086 AM/FM, 10MHz. £1200
- MARCONI TF1066U1 AM/FM, 100MHz, £750
- MARCONI TF1070A4, 10MHz, 1-100MHz, £590
- MARCONI TF1446/101KHz, 70MHz £688
- ADVANCE type S863AM/FM, 250MHz £170
- ADVANCE type S863AM/FM, 7-250MHz, £175
- ADVANCE type S862AM/FM, 30MHz £120
- ADVANCE type S62AM 100KHz-220MHz £40

MULTIMETERS
- UNBELIEVABLE — AVO 8 Mk IV and AVO 9 Mk IV. Complete with batteries and leads for only £195
- AVO TEST SET No. 1. (Similar to AVO 8 Mk IV). £125
- AVO Model 13. Pocket Multiplier (Acrobats) 30 ranges. Complete with batteries & leads £25
- AVO 72 — Similar to above but in plastic case. £30
- With Batteries & Leads £18

PHILIPS DIGITAL MULTIMETERS
4 digit. Auto ranging. Un-used complete with batteries and leads (P&P £5)
Type PM 2517 E (L.C.D.) £75
Type PM 2517X (L.C.D.) £95

All above instruments in Working Order and Supplied with Manual

CIRCLE 52 FOR FURTHER DETAILS.
Multi-Function Calibrator 9822

- 0–1000V AC/DC VOLTAGE
- 0–10 AMPS AC/DC CURRENT
- 10 ohm–10M ohm RESISTANCE
- 50 ppm ACCURACY (20 ppm optional)
- IEEE-488 INTERFACE
- SELF-TEST FEATURE
- AUTOCAL
- 5 ppm RESOLUTION
- 6 AC WAVEFORMS
- 25% OVER RANGE ON DC
- ZERO OFFSET MODE

TIME ELECTRONICS
Botany Ind. Est., Tonbridge, Kent, England
DIRECT SALES ☎ (0732) 355993 Telex: 95481

CIRCLE 18 FOR FURTHER DETAILS.
PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with disc drive with FREE updating service on all software

DIAGRAM

- A program which allows you to store very large diagrams - up to 39 mode 0 screens - and view or edit them by SCROLLING the computer screen around any part of the diagram.

FEATURES

- Draw diagrams, schematics, plans etc., in any aspect ratio, e.g. 10:1, 2:12
- Access any part of the diagram by entering an index name, e.g. TR6, R5 etc., to display a specific section of the diagram, and then scroll around to any other part of the diagram using the cursor keys.
- Up to 128 icons may be predefined for each diagram; e.g. Transitors, Resistor etc., in full mode of operation, up to 22 pixels horizontally by 24 vertically.
- Hard copy printouts in varying print sizes up to 9 mode 0 screens on an A4 size sheet, compatible with most dot matrix printers.
- Many other features including selectable display colours, comprehensive line drawing facilities, TAB settings, etc.
- Disc contains sample diagrams and two versions of the program, one of which will work from a 16k sideways RAM.
- Comprehensive instruction manual.

£28.75 all inclusive

PINEAPPLE SOFTWARE, 39 Brownlea Gdns.
Seven Kings, Ilford, Essex IG3 9ML

CIRCLE 21 FOR FURTHER DETAILS.
Presenting a remarkable breakthrough from Shure — microphones, mixer and logic technology all combined in one totally integrated system at quite astounding aural quality.

Each microphone has complete independence within the system, eliminating all unwanted sounds.

Each of four unique and Optional IMIM audio environment allowing each one to adapt itself autonomously as audio conditions change.

In fact the AMS (Automatic Microphone System) is so simple to use that an operator's only concern is presenting the individual volume levels. Its mixers (4 and 8-channel available) can easily be linked to control over 200 separate microphones. Which makes the AMS absolutely ideal for conferences and symposiums (though it performs equally impressively in churches, courtrooms, teleconferencing and broadcasting).

And advanced logic terminals provide unprecedented flexibility for including.

AMS 24

outside a specially tailored 120 acceptance window. And continuously analysing its own local acoustic environment allowing each channel to adapt itself autonomously as audio conditions change.

In fact the AMS (Automatic Microphone System) is so simple to use that an operator's only concern is presenting the individual volume levels. Its mixers (4 and 8-channel available) can easily be linked to control over 200 separate microphones. Which makes the AMS absolutely ideal for conferences and symposiums (though it performs equally impressively in churches, courtrooms, teleconferencing and broadcasting).

And advanced logic terminals provide unprecedented flexibility for including.

AMS 26

privacy buttons, free discussion or single speaking facilities — and many other important capabilities.

The AMS offers a choice of four effective types of microphone for all purposes: the unimitating Low-Profile AMS22; the AMS28 Lavaliier for wearing around the neck; the adaptable AMS26 Probe for table, floor stand or gooseneck mounting; and the AMS24 Condenser specifically designed for the gooseneck unit.

AMS 22

HW International 3-5 Eden Grove London N7 7EQ Tel 01-607 2717

CIRCLE 73 FOR FURTHER DETAILS.

The CM1600 Measurement and Control Interface from IMS Electronics

Unique construction allows flexibility
Four module positions, each with four channels
Each module may be selected from an ever increasing list including:

- 10 volt outputs, 16 bit resolution
- 10V, 1V, 100 mV (Software Selectable) inputs.
- 16 bit resolution
- Thermocouple inputs (linearised)
- Single pole change over relays (mains rated)

CHOICE OF IEEE-488 or V222C INTERFACE
280 MICROPROCESSOR BASED

Optional extras include:
- Dot matrix panel printer (as illustrated)
- 32K RAM for assistance in data acquisition

IMS Electronics
Unit R6, Riverside Industrial Estate, Bridge Road, Littlehampton, West Sussex BN17 5DF
SALES TELEPHONE (0903) 723492

CIRCLE 6 FOR FURTHER DETAILS.

A PERSONAL LOGIC ANALYSER FOR YOUR SPECTRUM

Clip this high performance tool onto your circuit to really see and understand exactly what it is doing.

- Displays oscilloscope type traces of the voltage levels (0 or 5v) of 16 points in a digital circuit.
- Captures 1999 samples up to 10 MHz on 16 lines.
- Ideal for microprocessor work.
- Ready to plug into your Spectrum

Cheques and requests for information to Seal Electronics 1 Hagbourne Close Woodcote, Reading RG8 0RZ

CIRCLE 25 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JULY 1985
TAYLOR BROS (OLDHAM) LTD
BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
TELEPHONE: 061 652 3221 TELEX: 669911

There are better ways of measuring hum, ripple and other small signals

The Waugh Instruments Micro Amplifier extends the measurement capabilities of your oscilloscope to 100pg V/div from DC—2MHz differential or single ended input. For details of this and other amplifiers contact:-

Peter Waugh at Waugh Instruments, Otter Weston Underwood, Olney, Bucks. MK46 5JS (0234) 712445.

BROADBAND CABLE T.V. REPEATER AMPLIFIERS

Application other than Cable T.V. includes C.C.T.V. (up to 26 Channels 8MHz wide on V.H.F. Repeaters, and up to 65 Channels 8MHz wide on U.H.F./V.H.F. Repeaters). Suitable for outdoor mounting.

TSC200M
40 X&20 500 (1000)w 150w 100w 75w 50w 25w 10w

There are better ways of measuring hum, ripple and other small signals

The Waugh Instruments Micro Amplifier extends the measurement capabilities of your oscilloscope to 100pg V/div from DC—2MHz differential or single ended input. For details of this and other amplifiers contact:-

Peter Waugh at Waugh Instruments, Otter Weston Underwood, Olney, Bucks. MK46 5JS (0234) 712445.

CIRCLE 59 FOR FURTHER DETAILS.

CIRCLE 97 FOR FURTHER DETAILS.

VIDEO TERMINAL BOARD

- 80 characters x 24 lines -

Requires ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7 x 9 matrix with descendents) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Bare board with 2 EPROMs and program listing — £48 plus VAT. Assembled and tested — £118 Send for details or CWO to:

AM Electronics
Wood Farm, Leiston, Suffolk IP16 4HT
Tel: 0728 831131

CIRCLE 40 FOR FURTHER DETAILS.
MIDSUMMER MADNESS

POPULAR I.C.'S AT INCREDIBLE PRICES!!!

<table>
<thead>
<tr>
<th>CPU's</th>
<th>Price</th>
<th>Z80A</th>
<th>Price</th>
<th>Z80B</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6502</td>
<td>£3.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6502A</td>
<td>£4.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6800</td>
<td>£1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPORT DEVICES</th>
<th>Price</th>
<th>Z80APIO</th>
<th>Price</th>
<th>Z80ASIO-O</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6522</td>
<td>£3.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68B54</td>
<td>£8.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z80ACTC</td>
<td>£1.99</td>
<td>8271</td>
<td>£52.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEMORIES</th>
<th>Price</th>
<th>6116-LP3</th>
<th>Price</th>
<th>8118</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4116-15</td>
<td>£1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4164-15</td>
<td>£1.75</td>
<td>8118</td>
<td>£2.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPROMS</th>
<th>Price</th>
<th>27128-25</th>
<th>Price</th>
<th>27128-30</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2764-25</td>
<td>£3.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2764-30</td>
<td>£3.00</td>
<td>27128-30</td>
<td>£5.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TTL</th>
<th>Price</th>
<th>74LS123</th>
<th>Price</th>
<th>74LS163</th>
<th>Price</th>
<th>74LS244</th>
<th>Price</th>
<th>74LS245</th>
<th>Price</th>
<th>74LS393</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7437</td>
<td>£0.45</td>
<td></td>
</tr>
<tr>
<td>74LS00</td>
<td>£0.20</td>
<td>74LS163</td>
<td>£0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS04</td>
<td>£0.20</td>
<td>74LS244</td>
<td>£0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS08</td>
<td>£0.20</td>
<td>74LS245</td>
<td>£0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74LS10</td>
<td>£0.20</td>
<td>74LS393</td>
<td>£0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4000 SERIES</th>
<th>Price</th>
<th>4020</th>
<th>Price</th>
<th>4020</th>
<th>Price</th>
<th>4020</th>
<th>Price</th>
<th>4020</th>
<th>Price</th>
<th>4020</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4013</td>
<td>£0.30</td>
<td></td>
</tr>
</tbody>
</table>

1. All prices exclude VAT and carriage
2. Carriage charge £1.00 (orders up to £100.00)
 FREE (above £100.00)
3. Strictly cash with order or credit card
 (Access or VISA)
4. Delivery by return post.

RING NOW BEFORE
WE CHANGE OUR MINDS

[PHONE] 0379 4131 FOR FAST DELIVERY

MIDSUMMER MADNESS LTD.

CIRCLE 69 FOR FURTHER DETAILS.
Versatower:
A range of telescopic towers in static and mobile forms from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V; part 2; 1972 for a minimum wind speed of 140 km/hr in conditions of maximum exposure and specified by professionals worldwide where hostile environments demand the ultimate in design, quality and reliability.

Suitable for mounting equipment in the fields of
Communications
Security surveillance – CCTV
Meteorology
Environmental monitoring
Geographical survey
Defence range-finding
Marine and aeronaut navigation
Floodlighting
Airport approach lighting
Further details available on request.

STRUMEC ENGINEERING LIMITED
Portland House, Coppice Side, Brownhills
Walsall, West Midlands WS8 7CA, England
Telephone: Brownhills (024) 3321
Telex: 335423 SELG

CIRCLE 7 FOR FURTHER DETAILS.

Happy Memories

Part type
1 off
100 up
4161 200ns
1.25 1.15 1.10
4164 150ns Not Texas
1.45 1.35 1.20
2114 200ns Low Power
1.75 1.65 1.55
2116 150ns
2.45 2.30 2.20
6264 150ns Low Power
6.75 6.25 6.00
2716 450ns 5 volt
3.85 3.55 3.30
2732 450ns Intel type
4.75 4.25 4.10
2732A 390ns
5.25 4.65 4.50
2732A 450ns Texas type
3.85 3.45 3.30
2764 300ns Suit BBC
4.20 3.80 3.60
27120 300ns Suit BBC
5.60 5.00 4.80

Low profile IC sockets:
Pins: 814 16 1820242840
Pence: 12 13 14 162427736

Available now — THE ROAM BOARD for the BBC Micro. Reads files via a Low Insertion Force Socket and saves their contents, then reloads a file into its own RAM as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 50p post & packing to orders under £15 and VAT to total. A minimum was speed of 140 km/hr by phone or mail order. Non-Military Government & Educational orders welcome, £15 minimum.

CIRCLE 57 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JULY 1985

CIRCLE 27 FOR FURTHER DETAILS.
CD 351
A first-class range of colour graphic displays which not only adapt to your system but make sense of your budget. Versatile, Barco proven reliability. Flexible scanning frequencies make them compatible with a multitude of computers and systems (with a special Hewlett Packard option).
Barco gives you the performance you want — at the right price.

With years of experience behind them Barco are maintaining their leadership in colour graphic displays whether you're working to a budget or demanding the best.
The specifications speak for themselves.

THE CD AND CDCT 20” (51 cm) RANGE CAN NOW BE SUPPLIED WITH AN INFRA-RED TOUCH SCREEN.

CD.351 SPECIFICATION
Video Bandwidth: 20 MHz
Horizontal Frequency: 16-33.5 kHz
Vertical Frequency: 45-60 Hz 70-80 Hz
H-P Option: 24.8 Hz
Tube: Self-Conf. Rect. 0.31 mm pitch (HRA)
0.47 mm pitch (MRA)
Resolution: 1024 x 800 (H x V)
Convergence Errors: Max 1 mm
Inputs: RGB Sep. Com. SYNC
RGB SYNC on Green, RGB
Sep. H and V SYNC
BNC Connectors
Normal or Long Persistence/Short Blue, Auto/Manual Dimming, Modular Construction.

CDCT 5000
When only the best is good enough, it has to be Barco. This range of high resolution colour displays provide you with the perfect partner for today's powerful graphic systems.
When uninterrupted system operation allied to hairline picture detail are of the utmost importance the Barco CDCT 5000 comes into its own with unbeatable reliability. (Mean Time Between Failure 16,000 hours).
Barco gives you the performance you wait at the right price.

THE CD AND CDCT 20” (51 cm) RANGE CAN NOW BE SUPPLIED WITH AN INFRA-RED TOUCH SCREEN.
Video displays

Low cost per character will ensure that the cathode ray tube remains the dominant display technology this decade, despite advances in flat-panel displays.

Way back in the early seventies, nearly all data display units were hardwired. The main functions of computer intercommunication, screen display and editing, and print handling were organised with a rigid set of protocols, editing facilities and formatting rules. Next came the independent-maker ascii terminal of the mid-seventies that were programmable only to a limited extent but could emulate the earlier hard types, as well as handling peripheral devices. Then Terminal introduced the microprocessor to the terminal, which then became 'smart' and reduced costs as well as increased flexibility.

But nowadays, the difference between smart and dumb terminals is fast disappearing as it now becomes difficult to find them without microprocessors: characteristics are more and more determined by firmware rather than hardware.

Nevertheless, what might be called a classically-intelligent terminal is one that communicates with a mini or mainframe or other multiprocessor computer and can be used as an editing terminal to download, modify and possibly upload data. At the top end of this bracket is the multiple-emulation graphics terminal that can serve as a stand-alone workstation with bit-mapped graphics, modem and word processor.

More humble are the standard terminal displays that have come to feature 12 or 14in screens, holding 24 lines of 80 or 132 characters, line and character editing, smooth scrolling, a basic set of attributes plus variants, a matrix of 7 by 9 dots (being displaced by 7 by 14, 8 by 16, 9 by 12, 10 by 12, or most recently 13 by 18 dots), together with a gradual trend to the more visible amber phosphor, now standard in Sweden. Ergonomic design is almost mandatory, with swivel, tilt and the low-profile keyboard being the most obvious elements.

There are so many models on the market (over 400 in the US alone) that we leave the market researchers to collate and classify (e.g. SRI* in the US and Systems International here).

Visual display unit, the term more often used in Europe, has taken on a rather different meaning for users of microcomputers. Screen actions of character and window generation, editing, attribute and cursor handling are all done within the microcomputer and do not have to be separately generated. So the term v.d.u. has also come to mean simply a monitor screen, with its power supply and deflection circuit, contrasting with the word 'terminals', which implies keyboard editing or entry.

Current demand for c.r.t. monitors with higher bandwidth, increased colour options, and higher resolution is a reflection of the host-equipped manufacturer's demands for sharper and flicker-free monitors with text and graphics presentation features, according to a recent survey of the c.r.t. monitor market. But the main impetus for technical improvements and innovation, the report says, has and will come from the graphics terminal manufacturers.

The survey*, published earlier this year by Stanford Resources Inc, says that though flat-panel display technologies will make their presence known in the marketplace in the next few years, the c.r.t. will continue to be the dominant display device because of its low cost per picture element. SRI forecast that the US flat panel market value will increase from nearly 50 million this year to $340 million in five years time, while the non-tv c.r.t. market for 2,000-character tubes or more will increase from 800 million to $2 billion over the same period.

The high resolution 1,280 by 1,024 colour format will evolve to higher resolution, stretching the capability of the shadow-mask tube to its limits, and monochrome picture element count will increase to 8-10 million elements with a resolution in the range 350 to 400 elements per inch by 1992.

*The SRI study, which analyses market by application, details product specifications, assesses technology trends and profiles major suppliers, costs $1950 in Europe from International Planning Information, Nodre Ringvej 201, 2600 Glostrup, Copenhagen. It forecasts an average annual growth in shipments of non-tv c.r.t. monitors of 22% - from 3.7 million in 1983 to 16 million by 1990. Another report, from Venture Development Corp. in Wellesley, MA, gives a rate of 17%, from 8 to 25 million units over the same period, but VDC wouldn't let us see their $7500 report so there's a bit of a mystery in this large disparity.

People at Rank Xerox have recently centralized the intelligence in a new network for communicating with about a thousand terminals. Instead of using PCs at around $3000 each they have substituted dumb terminals, and collected together the processors, with hardware and software specially developed for the system. In this 'virtual PC' or 'virtual micro' method, both processors and disc drives are taken away from the terminals and centralized in such a way that as network users log on each is allocated the use of a microprocessor housed in central rack-mounted module.

An initial study estimated that the average information user requires much less that 30 minutes microcomputer time a day, and that only 10 to 15 centralized microprocessors are required for every 100 dumb terminals printers reduced with to one per floor.

The project started three years ago when Stephen Shiu, manager of information technology at Rank Xerox (UK), was asked to find a way of speeding informa-

WORLD JULY 1985

17
To meet the competitive demands of today's markets, 'state-of-the-art' terminals require a multiplicity of facilities — flexible attribute handling, proportional spacing, split screens and multiple windows with soft scrolling of windows, variable height and width, and full-page 132 by 60 screen format — all featured in AMD's 8052, the subject of this issue's front cover. Of 1983 vintage, it was the first to support flicker-free unrestricted (split-screen) smooth scrolling by using three row buffers. The 8052/8152 set can handle the Japanese Kanji character set by using two 12 by 24 characters side by side and redefining one of the attribute bits. Normally only four of the 12 attribute bits are user-redefinable but by programming a special register eight of the attributes can be redefined — especially useful for the Kanji set, which requires 2500 to 4000 unique characters or 12 bits of addressing.

The architecture has not changed over the last three years. Four options exist:

1. idio ram, dual-ported between the system and the video controller.
2. Video ram dedicated to the video controller so that system access to the ram is via the controller.
3. Video ram residing inside the controller.

In these three cases, it is important that the ram can be accessed at any time, with minimal delay, and without affecting the picture.

4. Character information is stored in system ram and via d.m.a. into row buffers inside the video controller.

Low-end video controllers. There are some applications, such as cash dispensers or window advertising, where only a simple display is required. One of the first devices was the General Instruments AY-3-9025 (later 9035 and second-sourced by Plessey), designed as part of a viewdata chip set to display text and 'chunky' graphics. Another is the Motorola 6847 which supports text and 256 graphics modes up to a maximum resolution of 256 by 192 elements. Unfortunately both devices still require external ram and logic (option 1). Fujitsu's MM88303 is a truly self-contained monochrome video controller that can connect directly onto an eight-bit multiplexed address and data bus to provide access to its internal ram (option 3). Nine rows, each of 20 characters may be displayed from an internal character set of 58 different rounded characters. The device can be synchronized to a television or video source, allowing text superposition. The single-chip microprocessor with built-in simple video controller must now be imminent: its introduction would help the development of many 'single-chip' products.

Mid-range controllers. The ubiquitous 6845, sourced from Hitachi and others as well as Motorola, is still as popular as it was in 1982. Pop the lid of any year-old business type computer and the chances are there will be a 6845 resident. Although it does little more than generate memory addresses and sync information (option 1) it still seems to be used in new devices in preference to more sophisticated and expensive controllers. One reason may be the adoption of the IBM PC as a de-facto standard. The normal graphics card basically supports four video formats: 80 by 25 and 40 by 25 colour and 200 graphics and 320 by 200 colour graphics with a limited palette.
The only thing that seems to stand still on some colour monitors is the price. But at Opus we've now made our RGB High Resolution colour monitor even more affordable – it's down to just £199.95, and the picture quality is as rock steady as ever. What's more we deliver within 48-hours and give you an unrivalled warranty plan to guarantee your peace of mind for the next two years. And if that's not enough our price includes carriage, VAT and connection leads.

Our JVC monitor (580x470 pixels) has received ample praise from the computer press. Acorn User said:

"... gave steadier pictures than the Microvitex Cub, and the colours were rather better."

Personal Computer News added:

"There is no doubt that the JVC range of ECM colour monitors is excellent value for money... there is no loss in quality of picture after long periods..."

The unit has a 14” screen and is suitable for use with the BBC Micro, Electron, Sinclair QL, Lynx, Oric, Apple, IBM, Amstrad and RML 480Z and most other leading micros.

Simply post the coupon below to: Opus Supplies Limited, or telephone us quoting your credit card number.
ERSKINE HAS POWERFUL SOLUTIONS
- AC and DC Uninterruptible Power Supplies
- Battery Chargers
- Rectifiers & Inverters
- No-Break Supplies & Emergency Lighting
- Switch Trippers
Standard Products or Custom Built
Power - where you need it — when you need it.

ERSKINE Systems Limited
Lee De Forest House, Eastfield, Scarborough,
Tel: (0723) 583511 Telex: 52562.
Facsimile: 0723 581231.
A member of the Dale Group of Companies.

CIRCLE 70 FOR FURTHER DETAILS.

Newrad

NEWRAD INSTRUMENT CASES LTD
Unit 19, Industrial Estate, Gore Road
New Milton, Hants BH25 6SJ
Tel: New Milton 0425 621195

Beautifully made 19 inch Rack Mounting enclosures complete with heavy gauge chassis and top and bottom covers. Front, Side and Rear panels are aluminium and flat for easy machining. These panels are located with heavy duty aluminium extrusions. Front and Rear panels are satin anodised. Covers are finished in cream.

<table>
<thead>
<tr>
<th>HEIGHT</th>
<th>DEPTH</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U</td>
<td>250</td>
<td>£18.84</td>
</tr>
<tr>
<td>1U</td>
<td>300</td>
<td>21.35</td>
</tr>
<tr>
<td>2U</td>
<td>250</td>
<td>22.05</td>
</tr>
<tr>
<td>2U</td>
<td>3L0</td>
<td>24.69</td>
</tr>
<tr>
<td>3L</td>
<td>250</td>
<td>25.22</td>
</tr>
<tr>
<td>3L</td>
<td>30</td>
<td>27.99</td>
</tr>
</tbody>
</table>

PRICES ARE EXCLUSIVE OF VAT. P&P £3.00

CIRCLE 78 FOR FURTHER DETAILS.

RADFORD AUDIO LTD.

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.
10 BEACH ROAD
WESTON-S-MARE, AVON BS23 1AU
TEL. 0934 416033
CIRCLE 39 FOR FURTHER DETAILS.

We are Cash Purchasers of large and small parcels of Surplus I/C, Transistors, Capacitors, Connectors and related electronic stock.

We also welcome the opportunity to quote for complete Factory Clearance incl. Production Machines & Tools.

We would appreciate a telephone call or a list available.
We pay top prices and collect.
Enquiries also welcomed from Europe.

LANCO LTD.
10 LABURNUM HOUSE
LORDSHIP TERRACE, LONDON N16 0JB
TELEPHONE: 01-249 5373

www.americanradiohistory.com
achieved using more than 60 pins.

Manufacturers attempting to emulate this product, as several dozen have, may find it hard work to design equivalent graphics circuitry without using a 6845. Equally, the use of a more advanced controller might be regarded as over-the-top, and not cost-effective. There must be a possibility that a manufacturer will produce a video controller more suitable for this application. The 6845 still requires a number of logic or 'glue' chips to make it function: the trend is toward complete chip sets that require little or no glue. Mullard's 2670, 2674 and 2675 are one well-known set. The 2670 is a character generator, the 2674 the timing controller and 2675 or 2677 adds the video attributes.

Advanced video controllers. As with the mid-range controllers, there are so many different advanced controllers, that it is not feasible to detail them all. Most boast greater resolution that is normally required. The secret to choosing a controller is to obtain detailed specifications and decide which best meets hardware, software and cost requirements. It is perhaps a shame that more manufacturers have not got together to produce similar or second-sourced devices; some components are so expensive that there must be a real risk they will be left on the shelf.

Intel's 82730 is an advanced text controller (option 4). It will support rows with up to 200 characters, and a total of 2048 scan lines. Its specification includes proportional spacing, subscript and superscript, and smooth scrolling. The device is connected directly to the system bus with a second chip, the 82731, producing a serial data stream. The 82730 has two internal row buffers. Whilst one is being used to generate the display, the other is filled by d.m.a. The dedicated device is controlled by blocks of data and pointers residing in system memory, and is ideal for high-performance word processors.

NEC's 7220 graphics display controller (option 2) supports a pixel map of 4 Mbits, or four planes each of 1024 by 1024 picture elements. The chip offers zooming, drawing of arcs, circles and rectangles, as well as limited text facilities.

AMD manufacture a range of integrated text and graphics chips, including the 8052 text controller which is similar in principle to Intel's 82730, but has three internal row buffers to provide flicker-free smooth scrolling of split-screen displays (page 18).

Colour palettes comprise a look-up table and high-speed d-to-a converters. Consider a graphics system having four planes of display. Each element is defined by four bits, one in each plane. Those four bits could be used to drive R, G, B and I directly, alternatively they could form an address into a look-up table. The look-up table is no more than a small block of high-speed static ram. With four bits, the look-up table needs to be 16 addresses deep. The data outputs of the look-up table feed high-speed d-to-a converters. If three 4-bit converters are used, then the table must be 12 bits wide. Each of the 12-bit combinations will display one of 2^12 colours, and the four planes allow simultaneous selection of any 16 of these 2^12 colours. Until recently colour palettes were generally in hybrid form, but AMD have introduced the 8151 single-channel eight-bit palette and Thomson the 9369 three-channel four-bit palette.

Thomson's other products - 9365/6/7 graphic display processors and the single-chip 9345 semi-graphic processor - will be joined shortly by a 16-bit controller. Last August when Mostek and Thomson announced an exchange agreement for second-sourcing Motorola's 68000 products, Thomson said they would include a graphics controller. Though not yet finalized, the device (designated 68450) will be a 68-pin advanced graphics chip to interface with most 8 or 16-bit processors with programmable video timing to allow its use in a wide range of terminal or computer designs.

Some other recently introduced devices that we do not have space to describe in detail are Motorola's 'raster memory system', a two-chip 'virtual screen' graphics processor whose quality 'rests on the driving processor and its software rather than on RMS itself'. TI's ADVP, intended particularly for US video terminals and home computers, with 32-sprite control features and sound generator (type 9228). . National Semiconductor's 'terminal management processor' designed for text and measurement instrumentation (an application note describes a logic analyser) as well as terminals (NS455). . . Xtar Electronics, 16bit 'graphics microprocessor' and video shift register that claims to draw polygon segments of 64 or more elements much faster than for 7220 systems (5ns/pel). . . NCR's 7300 colour graphics controller integrating as many as 100,000 transistors onto one chip. . . Hitachi's advanced controller HD63484, using a multiprocessor architecture to allow parallel processing of drawing, display and timing parameters, and with 38 high-level commands . . Philips Eurom for level 3 videotext terminals with its 40 alphabet capability, 12 by 10 matrix and 32 from 4096 colours

Colour palettes enhance low-end graphics applications in allowing economical display of up to 16 colours chosen from a universe of 4096 values (Thomson 9369) with a colour look-up table and three d-to-a converters.

Hitachi's HD63484 has a multiprocessor architecture that enables simultaneous processing of high-level commands, display functions and timing parameters. Picture shows target filled-in using pattern command, with window copied and moved within screen.
Dixy's prototype A4-size 640 by 800 plasma panel uses a trigger electrode beneath the cathode to 'keep alive' the discharge and reduce switching voltage. (left and far right). Constructions of Matsushita's vacuum fluorescent display panel may be likened to an array of 3000 small colour cathode ray tubes, but without yoke, shadow mask and e.h.t. (middle diagram). Filament consumption is said to be only seven watts.

Densitron's 600 by 400 plasma display requires 5 and 200-volt supplies and can be driven from conventional c.r.t. controllers. This view of the display drive circuits has the front panel removed.

(type 5350) . . . And STC's CRT9007, a second-sourced Standard Microsystems' video processor and controller, with row-table-driven or sequential addressing modes . . . Almost all of which were introduced last year. Which must make 1984 the year of the c.r.t. controller. Hot news: Just announced is Inmos' colour palette (256 colours from 256k) containing three 6-bit converters — see page 87.

Flat panels

The number of flat panels appearing with a 640 by 200 resolution (à la IBM PC?) conjures up thoughts of portable IBM-compatible business computers. There are even some panels that are plug-in replacements for c.r.t.s, using the sync, data and an extra signal, the dot clock (pin 7 on the 9-way connector).

Because of low production cost and power consumption liquid crystal panels are expected to take the lion's share of the flat panel market. Japanese devices dominate, the largest from Densitron, Epson, Hitachi, Panasonic, Seiko, Sharp, Terenix, and Toshiba, though many of the 640 by 200-element units appear very similar and may well have common sources. But most of the liquid crystal's limitations — grey scale, temperature range, field of view, contrast ratio, response time, limited resolution — are still prevalent.

Despite some big names dropping out of the field over the years, developments continue in plasma panels. Engineers have left Sony, Zenith and most recently Burroughs when their plasma projects were terminated and set up their own companies — Dixy, Lucitron, Plasma Graphics — though usually when this happens the originating company takes a stake in the new venture. The prototype Dixy panel's are the d.c. kind in which a gas mixture is sandwiched between two glass plates in such a way that pockets of gas are isolated from one another unlike the a.c. kind where there is no isolation and located at the intersection of vertical and horizontal anodes and cathodes deposited on the glass plates. One of the difficulties with this kind of display is in switching the high voltage needed to breakdown the gas, necessitating some kind of 'keep alive' arrangement; and even then of keeping the trigger potential low enough to use low-cost transistors. Yoshifumi Amano, founder of Dixy, overcame the triggering problem with a capacitively-coupled trigger electrode deposited on the rear glass plate, together with a dielectric layer situated underneath the cathode, using a thick-film printing process (illustrated above). The technique of positively charging the cathode using this structure not only reduces the initial discharge potential but also reduces anode-cathode switching voltage, making integrated-circuit driving possible.

In driving the 640 by 400 panel, data for the 640 lines of vertical electrodes are grouped into eight-bit packages and shifted onto the display by shift register in 80 right-to-left transfers per clock pulse. Data for all 640 lines are transferred simultaneously to latches and then to the anodes. The 400-line horizontal electrodes are sequentially driven from top to bottom and because critical flicker frequency is 60Hz the scan dwells on each cathode for 40μs or less. Luminances of this 0.3mm dot-spaced panel is 120 cd/m² pk with a viewing angle of 140° up/down and 45° left, 70° right, consuming 8 watts at 12, 65 and 175V. A prototype 640 by 800 A4 panel is being readied for trial production (see photo). (Craft Data Ltd of 92 Broad Street, Chesham, Bucks are importers for Dixy.)

Another d.c. panel with a similarly small dot size (0.25mm with a pitch of 0.33mm) and a 400 by 640-dot array is sold by Densitron. Its construction appears to be similar to Dixy's and its method of driving, though there are differences of detail in performance and in drive electronics. Densitron claim a luminance of 50cd/m², a contrast ratio of 10:1 and a 120° viewing angle, while the circuitry uses 5 and 200V supplies a double four-bit serial format, and a t.t.l.-level interface for operation from a c.r.t.
LEVELL OFFER AN EVEN BETTER DEAL

LEVELL OSCILLATORS, FUNCTION GENERATORS, AC/DC VOLTMETERS, FREQUENCY COUNTERS, DECADE R/C BOXES, TRANSISTOR and INSULATION TESTERS.

CROTECH OSCILLOS SCPES
HAMEG OSCILLOS SCPES
HITACHI OSCILLOS SCPES

THURLBY POWER SUPPLIES, MULTIPLEXERS, DIGITAL MULTIMETERS, CAPACITANCE METERS and LOGIC ANALYSERS.

LEVELL DELIVER FREE IN THE UK.
CATALOGUE, PRICE LIST and QUANTITY DISCOUNTS ON REQUEST

LEVELL ELECTRONICS LTD.
Maxon Street, Barnet, Herts., EN5 5SD, England
Telephone: 01-440 8686 & 01-449 5028

CIRCLE 81 FOR FURTHER DETAILS.

New From
POWERTRAN
CYBERNETICS LIMITED

IVAX SCARA

IVAX is the new SCARA robot designed for training and education. Available with workcell and host computer interface (options include BBC and Apple), IVAX can be programmed with complex decision making sequences. Host computer BASIC software gives complete access to the Z80 based controller and allows user programs to be run or downloaded quickly and easily. IVAX has four digital closed loop servo axes with optical encoder feedback which accurately position a pneumatic gripper. Modelled on industrial robots, but at a fraction of the price, IVAX is available ready built or in kit form.

To Powertran Cybernetics Limited, Portway Industrial Estate, Andover, Hampshire SP10 3WW
Telephone: (0264) 64455
Please send me your Colour Brochure and Price List
Name __________________________ Address __________________________

CIRCLE 82 FOR FURTHER DETAILS.
It's easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints. Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet. It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd, Dept I, Brook House, Torrington Place, London WC1E 7HN

This space is donated in the interests of high standards of advertising.
controller.

The vacuum fluorescent panel—a kind of multiple cathode ray tube—has until recently been restricted to small sizes of display, though work in Japan is aimed at increasing the size to compete with the plasma-panel radiators. Earlier this year Matsushita announced construction of a prototype panel with a 25cm diagonal screen and a depth of 10cm. Called a "matrix drive and deflection" scheme, the panel is the equivalent of 3000 electron guns—200 horizontally and 15 vertically—that excite phosphors. Using sets of primary phosphors, this device clearly has colour potential; in fact each of the electron beams can excite two sets of red, green and blue phosphors horizontally by 32 steps vertical, to form images comprising 192,000 elements. The panel has a contrast ratio of 50 and a resolution of 270 lines (0.5mm element pitch).

It effectively removes the shadow mask from colour c.r.t.s, the high e.h.t., and the bulk, whilst retaining its luminance. The electrode structure had to be optimized by computer simulation to create a beam fine enough. But the secret to its construction is the cementing technology, which is required to "evenly and alternately cement 0.1mm grid electrodes with insulating plates".

Signal processing and drive for the panel is digital, brightness being controlled by pulse duty cycles to give 64 greyscale steps, while colour reproduction is achieved by sequentially activating the phosphors.

Hacking the vdu

Almost everyone has experienced the radio interference given off by the clocked logic circuits of present-day domestic electronic equipment, first brought to public attention by a CAA ban on the use of calculators in commercial airliners. The UK has, however, really had regulations that parallel those of the FCC in controlling levels of product radiation, but a recent publication from British Standards Institution lays down limits for spurious signals from data processing and electronic office equipment in the absence of agreement on international limits. The Standard, BS 6527:1984, specifies two "protection" distances, one of 30m for offices and factories, and the other of 10m for homes, at which distances the field strength limits in the range 150kHz to 1GHz are 30dB(µV/m) below 230MHz and 37dB above. (The committee members that drafted this standard obviously live in detached houses.)

These figures of course were not designed to prevent interception by anyone intent on decoding the radiated signals. Last February, a Tomorrow's World programme showed how easy it is to eavesdrop on a v.d.u. terminal. A van contained equipment to receive and decode signals radiated from a word processor within a nearby office block and demonstrated that usable information could be obtained from many buildings around London, including a well-known merchant bank. Not surprising, you might think, considering the power of surveillance techniques nowadays: but the tv programme brought to light just how cheaply it could be done, a fact that has not been widely appreciated hitherto.

Surveying the subsequent press coverage, we noticed that one journal thought that plasma panel displays are immune from eavesdropping because they do not radiate outside the visible spectrum: "... and so unlike c.r.t.s cannot be remotely read." The fact is that the easiest way to get at the displayed information is to pick up circuit radiation and not screen radiation.

The video drive in monitors is rich in harmonics of the dot rate, usually around 15 to 20MHz. Jonathan Drori, assistant producer of the Tomorrow's World team, explained his finding to us that certain circuit elements e.g. p.c. loops can resonate at v.h.f. and radiate a strengthened harmonic of the video signal. The actual frequency may be unpredictable if a cable loom or other wiring variable is involved, but a typical monitor will radiate at Band III—inviting the use of a v.h.f. tv receiver. Close up, you can't get rid of the signal, Drori says, suggesting that the harmonics are spaced at less than 5.5MHz intervals) and he has had results over 300m and others have worked v.d.u. at a kilometre and beyond.

Of course the sync pulses do not propagate anywhere near as effectively because of their lower frequency, but can be picked up by an inductive loop, or failing that, regenerated by sync pulses from a simple t.t.l. or c.mos digital oscillator inserted into the adapted tv set. The only other item needed in the eavesdropper's armory is a directional aerial.

The significance of all this, Drori points out, is that far more installations are at risk than previously realised, and what's more, last year's Data Protection Act requires "appropriate security measures shall be taken against unauthorized access to personal data"; company directors not taking such measures are liable to prosecution.

Now, Philips Business Systems are introducing a new range of terminals, initially for such security-conscious areas as banking, with features designed to "increase the difficulty of interception". This is achieved by using the higher scan rate of 70Hz and a high-resolution character box of 13 by 18, designed to put the terminals outside the norm of low-cost "hacking" equipment, according to product manager John Williams.

Researchers at Philips, Apeldorn, have come up with the idea of randomizing the raster scan for a more secure approach, using a software key to the randomizing. Prototype chips have already been developed but while trials continue no timescale has been set for their introduction.

So lots of interest in e.m screening can be expected. One study has demonstrated dramatic reductions in field intensity by screening with copper foil after installation. With a cost of only £10 to £30, this is probably not as cost-effective as spraying at the manufacturing stage (see photo).

VIDEO DISPLAYS

Metal spraying at the assembly stage is probably the most cost-effective way of reducing radiation from video display housings from three viewpoints—possibly hazardous emissions, radio interference, and data security now that the Data Protection Act is in force. Picture shows Tafo electric arc spray gun being marketed by Mining and Chemical Products of Stone, Staffs.

Barco's latest range of computer graphics displays, available from Cameron Communications of Glasgow, is designed around Matsushita's overlapping field-gun c.r.t. and is aimed at the CAD/CAM market, with 120MHz video amplifier and 64KHz scan frequency. A brief survey of monitors will appear in next month's issue.
RESEARCH COMMUNICATIONS LTD.
UNIT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP
TELEPHONE: CANTERBURY (0227) 456489

DESIGN, DEVELOPMENT AND MANUFACTURE
OF RF COMMUNICATIONS EQUIPMENT

R. Henson Ltd.
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner
Telephone 01445 2713/0749
CIRCLE 42 FOR FURTHER DETAILS.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BRAND NEW ELECTRONIC COMPONENTS

QUALITY .25W CARBON FILM RESISTORS

<table>
<thead>
<tr>
<th>Qty</th>
<th>1-9K</th>
<th>10-24K</th>
<th>25-49K</th>
<th>50-99K</th>
<th>100K+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>4-25</td>
<td>3-95</td>
<td>3-70</td>
<td>3-45</td>
<td>3-25</td>
</tr>
</tbody>
</table>
| Price per 1000. Sold in multiples of 1000. Small quantity prices available.

LEAD-FORMING SERVICE AVAILABLE
Save assembly time and money with pre-formed leads. Size setting £2-00 plus £1.50 per 1000.

Write or Phone for full Details
HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 7JA Tel: (0702) 332338

ELECTRONICS & WIRELESS WORLD JULY 1985

ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!
Fantastic bulk purchase of a major European manufacturer's entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. ALL FEATURES LISTED ARE INCLUDED AS STANDARD:

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height 5 1/4" double-sided, double-density floppy disc drives. Formatted capacity: 320K on each drive.
- A Mhz Z80A CPU
- 64Kb RAM (in 4164 chips)
- 28Kb EPROM containing monitor & MICROSOFT BASIC
- CPM Version 3.01
- 80 x 24 display with colour block-mode graphics
- Exceptionally high quality styled keyboard with numeric keypad & 6 function keys
- Centronics parallel interface
- RS232C/V24 serial interface selectable 300-9600 Baud
- UHF Modulator for TV & composite video output
- ROM port. (A Word-Processor ROM is available at extra cost)
- 6 month full guarantee & option to return within 14 days if not absolutely delighted

Available ONLY from COMPUTER APPRECIATION, 16 Walton Street, Oxford OX1 2HQ. (0865) 55163 TELEX: 839750 MATMOS Ltd., 1 Church Street, Cuckfield, West Sussex RH17 5UJ. (0444) 414484 454377 (0444) 73830

CIRCLE 65 FOR FURTHER DETAILS.

CIRCLE 58 FOR FURTHER DETAILS.

PLEASE ADD 15% V.A.T. ON TOTAL PRICES (monitor not included):
With DUAL floppy: £347.00 (including VAT)
Without DUAL floppy: £290.00 (including VAT)
Carriage: £8.50 (including VAT) Visa & Barclaycard accepted
Domestic tv to monitor

If you can't afford a colour monitor, here's how to avoid the bandwidth limitation and spectrum interleaving of the colour tv set.

Modern colour sets have most of their signal processing performed by a set of integrated circuits, one of which takes care of the colour decoding. This chip also has to cope with the demands of tele-text, which is decoded by a different circuit but is still switched into the picture signal by the colour chip. This switching is performed electronically after the colour decoder but before the tube drive amplifiers. The TDA3561 and equivalents have data insertion inputs which require a one-volt input level and a switch pin which, when taken high, can be used to insert these inputs into the signal path. Synchronization can be effected by inserting a switch into the circuit at a suitable point to connect the computer sync. signal to the deflection unit in place of the sync. separator output. As a final refinement where the computer has a direct voltage output on the monitor connector: this can be used to control the switching automatically so that the TV set operates normally until the computer is switched on.

Most modern sets incorporate a switch-mode power supply which operates at a high frequency using a small ferrite-cored transformer. You may find (as I did) that this transformer is arranged so as to provide complete isolation from the mains. Note that there is a rectifier and other circuitry feeding the transformer primary from the mains, but there must be no connection between this and the TV signal circuits.

If the internal power supply does not provide isolation, there are two alternative strategies: put isolators in all the signal lines or use an isolating transformer in the mains supply. The first method can be implemented with four opto-isolators, which would be smaller than a transformer.

However, they must be rated for 240V a.c. and high-speed operation. Such devices are expensive (over £5 each), and extra circuitry would be needed to interface the isolators to the TV circuits, and possibly to the computer as well. The use of a transformer in the supply line is simpler and probably cheaper. It means that the chassis can be solidly earthed, which makes for safer adjustment and gives scope for further modifications etc. a feed for a hi-fi sound system. It is preferable from a safety point of view that the chassis should be earthed via a three-core mains lead rather than relying on the connection to the computer.

The colour and sync. signals from the computer are at ±1.0V, i.e. 0 to +5V. The PAL decoder chip TDA3561 requires inputs of 0 to about +1V for data and switching, while the TDA1950 horizontal deflection i.c. is a little more awkward: it requires a negative-going sync. pulse of 0.3V amplitude on a +1.3V baseline. Other deflection i.c.s may require different voltages, which will be specified in the manufacturer's data sheet. As the deflection system has only one input, a switching circuit must be provided to switch this between TV tuner and the computer. The easiest and cheapest way to do this is to use a c-mos analogue switch type 4053, which contains three separate change-over switches.

A 12-15V supply must be derived from the television: the current required is minimal and should not present any problems. The three colour inputs are connected to the TV set's three C.V. inputs.

Interface between computer and television receivers which use TDA3561 single-chip PAL decoders or equivalents.

by J.A. Grubb
M.I.E.E.

ELECTRONICS & WIRELESS WORLD JULY 1985
simply divided down to the correct level by resistor chains and a.c.-coupled to the i.c. inputs. Components marked with an asterisk may be present already, as they were in my set (a Grundig CUC120). Transistor Tr1 is switched on by the +5V line from the computer and drives the i.c. control inputs. If your computer does not have a.d.c. output, arrange a switch to connect R11 to the +12V supply in the TV. The network formed by R5 to R10 and C4 reduce the amplitude of the computer sync. pulses and shift the d.c. level. The resistor values should be changed if your TV deflection system requires different voltage levels. The feed from the tuner i.f. unit to the deflection system must be cut (in my case, there was a wire link to un-solder) and re-connected via IC15, which provides the sync. switching function. Switch IC15 is used to drive the switch input of the colour i.c. via the voltage divider R14 and R15. The led indicates that the set is in monitor mode and may be mounted in a convenient position or replaced by a link if not required.

When the circuit was tested, pattering was visible in monitor mode which was traced to breakdown from the normal TV signal. This was eliminated by switching off the d.c. supply to the tuner-i.f. unit by Tr5, chosen to switch the required current with a low voltage drop to avoid upsetting the tuner-i.f. alignment. Substitutes beware! Pin 5 of IC1 is connected to 0V when in monitor mode and is available to the user for other functions, e.g. audio muting. It is brought out to a pin with provision for a diode. The prototype was made on double-sided board with an earth plane on the component side. This is a common technique for high-frequency circuits: the top of the board is left un-etched apart from small areas around non-earthed component leads. These areas are easily cleaned using a drill bit. Earthed leads are soldered to both sides of the board.

When the installation is completed and checked, switch on the TV without the computer connected. The set should behave normally, although the tuning may need slight adjustment to compensate for the voltage drop across Tr1. Plug in the computer lead and switch on. The screen should now display the computer start-up message. If the picture is unstable, the sync. signal is probably incorrect: try changing the values of the sync. network R5 to R10. If your TV deflection circuit requires positive sync. pulses, these may be provided by changing over link 31 within the BBC Micro. You may find that optimum sharpness is obtained with the brightness control turned down a little.

by D.J. Dinning

RGB conversion for Philips G8 uses opto-isolators

The Philips G8 series of sets, like most of their marque, used a 'live' chassis, i.e. the chassis of the set was connected to one pole of the mains, making direct connection of the computer a potentially hazardous operation. Other approaches overcome this problem with the use of mains isolating transformers, but these items are both bulky and costly and, if housed within the receiver cabinet, their magnetic field may affect the convergence and purity of the picture. Additionally, unless a low-capacitance isolation transformer is used, transients can still be fed through from the mains and either damage the computer or corrupt data.

The interface uses high-speed optocouplers with 2.5kV isolation and low feed-through capacitance (0.6 pF) and is housed on a small p.c.b. fitted into the TV set, connection to the computer being via a six-core cable. The unit can be powered from the TV set itself or via a small (10VA) transformer. The unit features automatic changeover from 'off-air' to RGB drive when the computer is switched on, and was used with a BBC model B computer, but will work equally well with any computer that has RGB and sync. outputs.

RGB outputs from three identical emitter followers are fed via a six-pin DIN plug and socket to multicore cable, whose length should not exceed about three metres. The signals are terminated in high-speed opto-isolators type 6N137 (RS 304-273) Fig. 1. Resistors R1 to R3 are the terminating resistors with C1 to C3 as speed-up capacitors. Leds (RS 586-475) balance the line in the reverse direction and provide a discharge path of C1 to C3. These techniques are essential if a bandwidth of up to 10MHz is to be achieved. The optocouplers are capable of operating at up to 20MHz and require careful bypassing to avoid instability; C1 to C3 MUST be mounted across the chip, within 5mm of the pins. Components D1, D2, R2, form a modified version of the 'standard' t.l.-to-transistor interface, with C3 as a speed-up capacitor.

The sync. circuit, Fig. 2, is fed from a gate in the computer via pin 4 on the RGB socket to a circuit similar to those used for the RGB drives. A level shifting circuit D7, R15, R16 feeds the output of the opto-gate to the sync. driver transistor, Tr5, C15 and C16 are speed-up capacitors. The sync. drive required by the TV circuits is negative-going and referenced to about -2volts.

The negative emitter supply is obtained by rectifying the 6.3-volt tube heater supply with D1 and regulating it with R4 and D2.

The actual level is set by the 1k preset during the setting up procedure.
The interface can be left plugged into the computer if desired; the circuit then switches over automatically when the computer is 'powered up'. Optoisolator, IC₅, is supplied from the computer 5V rail via pin 6 of the DIN plug. This causes Tr₂ to turn on and operate the changeover relays RL₁ - RL₃, small p.c.b.-mounting relays (RS348-655) or similar. These relays are mounted on the top of the delay line (RGB relays) and on top of the sound selectivity module (sync. relay), by means of double-sided adhesive pads.

The interface card draws about 130mA at 12 volts, without relay coil currents. This was thought to be too much of an additional burden for the receiver.

A small mains transformer can be used, but this should be mounted well away from the tube to prevent convergence problems; alternatively a capacitive 'dropper', using class X capacitors, can be used, as in Fig.3.

A transistor regulator is shown, but a chip regulator such as the 7805 could equally well be used. Smoothing electrolytic capacitors are paralleled with 1µF paper capacitors for h.f. bypassing. The negative supply is derived from the tube heater pin 14 (pin 1 is earthed).

The G8 was produced with several p.c.b. versions, early sets having separate tuner i.f. and chroma boards, later sets having one large board. Thus the mounting position and number of relays used is left to the constructor.

The RGB output transistor circuitry is fed from either the RGB driver, IC₅₉₀, or the interface unit, via the changeover relays, and the sync. signal is either taken from the sound selectivity module (off air) or from the interface unit and is fed via the changeover relay into IC₀₀₁, pin 10.

Illustrations showing the location of the necessary track cuts together with associated circuit diagrams are available from the editorial office in return for an s.a.e.: mark envelopes 'G8'.

With the unit checked out and connected to the tv sets, plug in the computer and switch on. Set the RGB pre-sets to max. resistance and adjust the 'level' preset for -2volts on the emitter of Tr₁, with respect to ground. Adjust the 'amplitude' preset until the picture just locks, then a further 10°. If the picture jumps in and out of lock, but slowly, increase the smoothing on the -2volt line, or adjust 'level' to give, say -2.5 volts. A colour bar pattern program* can be run on the micro and the RGB levels adjusted until the appropriate colours are just coming out of saturation.

* Television, January 1985, page 185.
Recharging system for NiCd cells

Recharging sealed NiCd cells can be very unsatisfactory if it is done with d.c., at too low a temperature, at too high a rate, if it is prolonged, or if it is done with cells in series. Part 3 of this series of articles describes a practical method of recharging which not only avoids some of the pitfalls, but gives the best possible performance from NiCd cells, and is at the same time cost-effective, giving payback time of about two years.

In the recent two-part article on the failure modes of nickel-cadmium cells, mention was made of the damage done to cells by incorrect charging techniques. The recharging system (I call it this because it is more than just a battery charger) described here was devised to show that it is possible to recharge cells both efficiently and without premature failure or falling-off in performance. Moreover, in practical terms this system is far more pleasant to operate than simple conventional chargers since there are none of the irritating problems of having to ensure that cells are matched in capacity, are not over or under-charged, do not lose capacity on standing, or that the temperature is correct.

In this radical approach the NiCd cells are intended to remain in the charger until required. Once placed in the charger, the cell is taken care of until removed for use.

The design features are:
- Cells are charged individually to reduce the effects of any disparity in capacity.
- Dendrite-suppression charging circuit prevents premature failure due to dendrites forming between the plates.
- Automatic turn-off prevents over-charging.
- Automatic turn-on minimizes the effects of self-discharge.
- Low-temperature cut-out prevents damage due to charging below 5°C.
- Inherent NiCd fault-diagnosis capability.

These features are examined in turn as follows.

Cells charged individually

In the article on failure modes it was explained how charging a battery of cells could lead to more fault modes developing due to initial slight variations in the capacity of neighbouring cells. A common method of trying to ensure the output of a cell in the battery is to thoroughly overcharge the whole battery in the hope that each cell is driven into the oxygen-recombination phase. The attendant long-term danger of this method is separator deterioration. Another factor which detracts from the method is the possible presence of cells in the battery that have dendrites. These cells may become "stuck" short of full charge regardless of how much the rest of the battery is overcharged, but the symptoms will usually go undetected, thus storing up trouble for the future. There seems to be no easy way round this problem if the cells are charged together as a battery.

In this new approach the cells are disassembled for charging and treated as individuals. Clearly this technique can only be used for equipment where separate cells are held in a battery compartment and cannot be used where batteries consist of cells spot-welded together. However, much commercial gear like radios, cassette players etc. employs numbers of separate cells in an accessible compartment, so it is expected that this recharging system will suit most applications, and in particular it is highly suitable for those using a single cells coupled to d.c.-d.c. converters like the Texas TL496 or Verkon V9-a to step up to 9V.

Indeed, in the case of single-cell d.c.-d.c. converter combinations it is obviously nonsense to connect such a cell in series with another for the recharging process.

There are therefore definite advantages in recharging each cell according to its needs. Firstly, it will not be persistently overcharged in the interests of charge-uniformity so it is unlikely to suffer separator degradation. Secondly each cell is assured of a full charge regardless of whether the rest of the battery is overcharged, the symptoms will usually go undetected, thus storing up trouble for the future. There seems to be no easy way round this problem if the cells are charged together as a battery.

In this new approach the cells are disassembled for charging and treated as individuals. Clearly this technique can only be used for equipment where separate cells are held in a battery compartment and cannot be used where batteries consist of cells spot-welded together. However, much commercial gear like radios, cassette players etc. employs numbers of separate cells in an accessible compartment, so it is expected that this recharging system will suit most applications, and in particular it is highly suitable for those using a single cells coupled to d.c.-d.c. converters like the Texas TL496 or Verkon V9-a to step up to 9V.
Dendrite-suppression charging circuit

Charging cells with d.c. can result in the formation of cadmium dendrites, leading to the early failure or falling-off in performance that was detailed in the earlier article. Dendrite formation is not exclusive to the charging of nickel-cadmium cells. It is a problem experienced in the electroplating industry when copper, zinc and silver are electroplated. These metals are the close neighbours of cadmium in the periodic table of the elements and share some common characteristics, such as dendrite formation. However, the electroplating industry has had a remedy for very many years in the form of periodic current reversal (p.c.r. for short). This technique consists of applying a short pulse of current in the opposite direction to the main plating current at regular intervals. The result is a smooth, hard, dendrite-free metal deposit quite unlike that produced by d.c. A magnified cross-section of p.c.r. deposit shows that it is not homogeneous but distinctly laminar in nature.

Now, the charging of a NiCd cell can be regarded as a special case of electroplating, and it should therefore be possible to eliminate dendrites by using a charging current based on p.c.r. When electroplating it is necessary to define accurately the forward and reverse currents to obtain satisfactory results, but when charging a NiCd cell the requirement is not so strict, the intention being not to produce a smooth hard deposit of cadmium but merely to suppress dendrite formation. A simpler circuit should be possible, and in this design the a.c. mains is used to supply both forward and reverse currents and to define the timing.

The circuit is shown in Fig. 1 and a typical current waveform in Fig. 2. Note that $R_1 > R_2$. If a bank of, say, four cells were charged together using four of the circuits shown it would lead to unbalanced operation of the transformer, which would need to be up-rated to cope, so in this design the cells are charged in balanced pairs, as shown in Fig. 3. Although this detracts slightly from the concept simplicity, it does keep the transformer size (and cost) down. It was considered essential to have a basic charging circuit that was as simple as possible because the circuit is repeated many times, i.e. by as many cells as there are in the charger. The prototype, for example, held eight.

Note from Fig. 2 that the ratio of forward coulombs to reverse coulombs is approximately 5:1. With p.c.r. it is the coulomb ratio which is important, not just the current ratio.

It is not the first time that cells have been charged using p.c.r. In 1955 R. Hallovs reported in *Wireless World* on a device name the Electrophoor which was designed to recharge ordinary zinc-carbon dry cells, and which used the mains to produce p.c.r. Hallov described the hard deposits of zinc in cells that had been recharged in the Electrophoor, and contrasted them with the soft and spongy (i.e. dendritic) deposit of zinc that he found in cells recharged using d.c., although at that time he did not know of the reasons for this phenomenon. The indications that p.c.r. does the same for cadmium are therefore strong.

It would be a fair deduction that using d.c. is probably the worst possible way of recharging NiCd cells, yet there are nevertheless plenty of published designs for NiCd chargers which go to the trouble of providing smoothing for the d.c. applied to the cells.

Periodic current reversal is intended as a preventive measure, not as a cure for dendrites which are already in place.

Automatic turn-off

Although the nominal charge rate is set at C/10, which a standard NiCd cell can tolerate within the limitations explained in part 2, this design incorporates a cut-out that stops the charging shortly after full charge has been reached. The cell does not therefore remain in the oxygen-recombination phase for long.

A cut-out is necessary, bearing in mind the design philosophy of leaving cells in the charger until required, in order to avoid the ill effects of normal overcharging (at C/10) for prolonged periods.

There is available a choice of detection methods for determining the end-of-charge point for NiCd cells, and for this design the temperature-rise method was chosen because it was the least expensive consistent with reliability; cost is important when many cells are being individually monitored. The circuit design is shown in Fig. 4 and consists of a simple i.c. comparator driven directly by the differential temperature sensor comprising Sensor 1 and Sensor 2. The operating point is set by R_p. Originally, the temperature-sensitive devices used were thermistors of the VA1066 type, but in the interests of cost-effectiveness these were substituted by a string of four forward-biased IN4148 silicon diodes. These diodes are available at only 2p each, a worthwhile saving on the prototype charger, which housed eight cells.

The voltage drop across a forward-biased silicon diode decreases by about 2mV per 1 deg C rise in temperature. A string of four will thus give 8mV per deg C. The likely temperature rise in a D-cell at C/10 charge rate during the oxygen-recombination phase is around 3°C, so this will produce a drop of 40mV, which is ample to drive a comparator directly. A CA3140 i.c., for example, will work happily with a 5mV differential in the circuit shown. The IN4148 diode varies in its temperature characteristics from manufacturer to manufacturer and also between individual specimens from one source, but there is no need for close matching in this circuit, as the differences average out over long periods.

![Fig. 3. Charging cells in balanced pairs saves on transformer cost, halving its size.](image)

![Fig. 4. Sensor bridge and op-amp comparator determine temperature rise and therefore end-of-charge.](image)

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

ELECTRONICS & WIRELESS WORLD JULY 1985

Fig. 5. Cell holder from R S Components.

eight diodes provided they are from the same source. The thermal coupling of Sensor 1 to the cell is important. Attachment direct to the cell, as described in other designs featuring thermal detection, is out of the question in this charger, where ease of use in putting cells into and taking them out of the cell holders is required. Of the other options available it was finally decided to fix Sensor 1 to the metal contact of the cell holder as it was easiest from the construction point of view. Of the single-cell holders on the market, only one has been found suitable for sensor attachment, this being distributed by RS Components. The RS reference numbers are given at the end of this article.

This range of holders has good thermal properties, an important point considering that in the case of a standard D cell only about half a watt of power is being dissipated over a surface area of some 23cm². The recommended holder has a tubular plastic body (Fig. 5) which tends to insulate the outside of the cell, which is beneficial for temperature-rise detection, and metal contact plates at each end. The negative contact plate is large enough to attach the string of four diodes and has reasonable thermal contact with the end of the cell. This contact plate is spring loaded and slides in two slots cut in the body of the holder; the slots allow air at ambient temperature to circulate over the contact plate. This is an important point, because with such a small temperature rise to detect, some insulation from the surroundings is necessary, but it is also necessary to avoid over-insulation or a separate micro-climate will be set up inside the holder and the differential action will be upset.

A compromise is required and I have found by experiment that a ¼ in thick plastic foam disc glued onto the back of the contact plate and covering the diodes strikes about the right balance between sensitive detection of the cell temperature rise and equilibrium with the ambient temperature. It is also necessary to insulate the metal spring from the contact plate by slipping a piece of plastic sleeving over it, otherwise it acts as a heat-sink.

There are some other interesting features to this type of cell holder. For example, being panel-mounted makes design and construction of the housing for the charger easier, from the point of view of cell access. When the front cover (F) is unscrewed, the cell is partly pushed out by the rear spring — no grappling with plastic side grips to get the cell out. Also, it is polarity-protected; if a cell is inserted the wrong way round, no contact is made.

The more familiar plastic open-frame cell holders are unsatisfactory from most aspects for this design and are not recommended.

Before leaving the subject of temperature, it is worth discussing the cells themselves. It is desirable to produce a sharp rise in temperature during normal overcharge, both in the interests of end-of-charge detection and in assisting the oxygen-recombination process, which works better at higher temperatures. In the last article it was suggested that the plastic sleeve usually found on NiCd cells was removed and possibly replaced with 50mm adhesive tape. This is a good idea because the covering will accentuate the temperature rise at the ends of the cell; this will not be the case if the cell is left bare.

Note that there is a time-lag between the onset of oxygen-recombination as denoted by a rise in internal pressure and the rise in temperature at the surface of the cell, but this is not long — about an hour or so for a D-cell — and may even help dendirite suppression (see article by K.C. Johnson, WW, Feb., 1977) The temperature rise for standard D-cells is around 5°C, but is appreciably less for smaller cells. With standard AA size cells the rise is too small that it is sufficient for reliable operation of this design. In this case, fast charge AA cells should be used instead of standard cells even though their fast-charge capability may not actually be needed, and the charge rate increased to C/3 to produce a usable temperature rise. The current cost in this size of cell is very small.

Regarding circuit operation, in the charging mode the output of IC₃ is high and Tr₂ is turned on. However, the relay RL₂ cannot close until energised manually by closing push-button switch SW₂ or automatically by a clamping pulse applied via D₃ from the auto-turn-on circuit (see next section), and even then the relay cannot remain closed unless Tr₂ is also turned on. The function of Tr₃ is to prevent the relay from latching unless a cell is present in the cell holder. If the relay were to remain closed without a cell being present it would stay in this state because there would be no mechanism for turning it off. The Tr₄ circuit also ensures that the charging circuit is turned off if a cell is removed during charging.

The sequence of operation is therefore this; a pulse is applied to the relay as described; the a.c. line is connected to the NiCd cell and via D₃ charges C₄ and turns Tr₄ on, latching the relay RL₂ when charging is completed, IC₃ clamps the base of Tr₅ to ground, turning it off and de-energising the coil. The a.c. line is disconnected, C₄ discharges and Tr₅ turns off. As the cell cools down, IC₅ turns Tr₅ back on and the circuit is then ready for the next command pulse.

A command pulse applied before cooling-off has taken place cannot initiate more charging because Tr₂ will remain off until comparator IC₃ returns to the high state and this prevents prolonged overcharging whether intentional or not.

A relay was chosen for the switching element because it offers complete isolation of the NiCd cell when not being charged, and avoids the need to take into account leakage currents and "brown out" associated with semiconductors over long periods of use. Leakage is a significant factor bearing in mind the intention of leaving cells in the charger.

To set this circuit up, it is necessary to have a warm, freshly charged cell and a cell at room temperature, or alternatively a d.c. millivoltmeter. With the warm cell method, preset pot Rₙ is set to that relay RL₂ just switches off when the warm cell is inserted in the holder. The cold cell is then inserted in its place, and it should be possible to reset the charger with S₅. This process has to be repeated to ensure reliable results, and because the thermal time-constants are lengthy — a couple of minutes for each check — this scheme can be tedious if there are many circuits to set up. A much quicker method is to set the differential voltage between Tr₂ and Tr₅ at about 20mV using a d.c. millivoltmeter. This ensures that when a warm cell will turn off the relay but at the same time will be reasonably immune to spurious temperature fluctuations. A suitable millivoltmeter can readily be contracted from a.m. meter and a chopper amp like the ICL7650 — see WW, June 1983.

It is difficult to tell when a cell is in the warm, charged state without resorting to accurate temperature measurement, and as this is essential to the first method this practical tip may help, having the advantage of needing no equipment. The difference between a warm cell taken from a charger and a cold cell which has been standing at room temperature cannot be readily detected by holding them in the hand, but if they are held simultaneously to the face, the difference is instantly apparent, the face being surprisingly sensitive to temperature difference. A strange but useful tip! Note that there is virtually no temperature rise in a NiCd cell during charging until the oxygen-recombination is reached.

Automatic turn-on

One of the most annoying features of sintered cells is their ability to discharge themselves when left standing. This feature is inherent in the design and is not a failure mode, although it is a failing in practical terms. Typically a brand-new D-cell will discharge itself to about 60% of

Fig. 6. Complete circuit diagram of cell charger. Leds are standard 0.2in devices.
capacity in only 40 days — a relatively short period when compared to the shelf life of other types of cell. This figure is for a temperature of 20°C, and the performance improves at lower temperatures but deteriorates at higher temperatures. The self-discharge phenomenon is due to the unstable nature of the active materials and, of course, is not reversible — a recharge will restore the status quo.

To overcome this problem a timer has been added to the charger so that it turns itself off periodically to give the cells a topping-up charge. The time period selected can be 62, 31, 15, or 7 days depending on the user’s requirements. I personally prefer 15 days, giving a guaranteed minimum state of charge of any cell taken from the charger of about 80%.

The timer itself is shown bottom left of Fig. 6 and consists of two CD4020 c-mos i.c.s. connected in cascade. Each CD4020 is a 14-stage binary counter with stage 1 and then stages 4 to 14 brought out to buffered outputs, stage 14 providing a total frequency division of 16,384. If two devices are cascaded and the input fed with a 50Hz input, the output from stage 14 of the second i.c. will give a change of state every 31 days 1 hour and forty minutes. The signal input is not critical since the i.c. contains waveform-shaping circuitry at the input stage, so a mains-derived signal is a very faulty output, helping to keep the cost down.

The output to the cell charging circuit is buffered by transistors TR2 and TR3 for negative-going changes of state and by TR4 and TR5 for positive-going changes. By splitting the output like this, where one buffer responds only to negative changes and the other buffer to positive changes, the maximum timing period is effectively doubled. Each buffer feeds a bank of cells, so banks of cells will be turned on at alternate times. This system makes the best use of the equipment; it is clearly not efficient to have the charger idling for up to 62 days and then turning on to charge all the cells at once.

The buffers apply a sufficiently long pulse to the relay coil RL2 to charge C4 and turn on TR5, locking the circuit on. A pulse length of 2 or 3 seconds is required to ensure reliable latching. A value for C5 and C6 of between 1 and 5 µF is generally satisfactory, but it is necessary to experiment with various values to achieve equal pulse lengths for both channel A and B, due to differences in Hc, of the transistors and their asymmetric configuration. Each charging circuit is isolated from the other by D4, so individual cells can be charged if required by pressing pushbutton S4, independently of the timer.

Switch S2 is a momentary pushbutton type used for setting the start of the timing period and only needs to be pressed once when the charger is commissioned or if the charger is disconnected from the mains supply for any reason.

Transistor TR3 and C5 form a flashing light indicator. On the first models I used an ordinary mains neon as the pilot light but found this to be very unsatisfactory because it did not show that anything was actually working and there was always a nagging doubt about whether the charger was going to switch itself on after the stipulated period. Sixty two days is a long time to have to wait to discover a simple fault!

This addition puts one’s mind to rest as it shows that at least the secondary side of the transformer is working, that the a.c. signal is reaching the counters, that the first stage of the counters is working and that the stabilised line is on. The flash signal is taken from stage 5 of the first counter and has a duration of a third of a second.

Low-temperature cut-out

The dangers of charging below about 5°C are avoided by using a latching cut-out which switches the 6.2V power line away from the relay coils RL2, thus preventing them from turning on, and diverts it to a led warning light. The cut-out can only be reset by unplugging the unit and moving it somewhere warmer.

The circuit (top left of Fig. 6) is similar to that used for the end-of-charge detector, except that only one string of temperature-sensing diodes is used. The dip in temperature from 5°C produces a voltage rise of 120mV across the diodes. The pre-set resistor is set so that the comparator switches high at 5°C, energising relay RL1 via TR2, latching is achieved via D2.

The circuit can either be set up by using the unit in conjunction with a domestic refrigerator for an hour or so (these are usually about 4°C) and then setting R28 so that the relay RL1 closes.

NiCd fault-diagnosis capability

It is easy to spot a bad cell with individual charging. A cell that is suffering dendrite problems and has become stuck will stand out like a sore thumb in a bank of, say, four cells on charge, as the faulty cell will continue charging long after the others have turned themselves off.

Also, it is not difficult to sort out the cells that have "dried out" because their impedance will be higher than usual. Cells charged via the positive side of the a.c. charging circuit need an internal impedance of less than 250ohms to latch the relay, so a quick test by pushing a push S3 will reveal faulty cells. Cells charged from the negative a.c. line need an impedance of less than 600ohms to latch.

This is not a very stringent test, but it is possible to improve it if required by modifying the base drive to TR5. A few diodes or even a zener in series with the base drive resistor will make it more difficult for TR4 to turn on with these high-impedance cells.

Practical construction details

A metal case is recommended for housing the unit as it gives good temperature equalisation with the surroundings. The cases I used had no vents but this did not present a problem as the temperature rise with bank of four D-cells on charge is not large.

During development, I found that transients introduced from the mains supply caused IC4 and IC5 to turn off and terminate charging before due time. A mains interference filter cured this. Other causes of erratic operation arise from placing the unit in a draught, near a heating source or in a place suffering from water condensation.

The mains transformer used for charging two banks of four D-cells was a 20VA type with two 4.5V secondaries rated at 2.2 amp each (RS 207-122). One 4.5V secondary was used to power the cell-charging circuits and the other was used in series to provide nominal 9V from which the 6.2V stabilized line was derived. For other cells there are other transformers available from the RS range to suit.

Several methods were tried for attaching the four IN4148 diodes which form Sensor 1 to the back of the cell contact plate. The easiest method consisted of cutting the diode leads to give an overall length of just over 1cm and then soldering the diodes together in a straight line. They can then be bent into the circular shape shown in Fig. 5. The diode body must be protected from stress damage when doing this by holding the lead at a point near the body with pliers. The contact plate must be removed from the holder for the next step. A small amount of Araldite is put on the plate where the diodes are to be fixed and the diodes held hard against the plate with small crocodile clips until the Araldite is set (heating to about 80°C hastens setting). The lead-out wires can then be soldered on. Some sleeving is recommended over the lead-out to prevent any shorting or in case of bad connection to reduce the possibility of breakage due to flexing, as the contact plates moves 1 to 2 cm when cells are put in and out. The diodes can then be covered with a layer of Araldite for protection.

Note that when the contact plate is returned to the holder, the raised part of the centre must face to the rear as shown in Fig. 5 otherwise thermal contact will be impaired. The lead-out wires are best led through an exit hole drilled in the rear of the holder.

It is a good idea to test the timers circuit before commissioning the charger. This can be done by omitting IC3 for the time being and connecting C5 and C6 to terminal 3 of IC3. The buffers TR2 to TR5 should then close a relay every 2 minutes 44 seconds, and the flashing should give 100 flashes every 64 seconds. The circuit should then be rearranged so that IC5 is omitted and a jumper lead taken from terminal 10 of IC3 to terminal 10 of IC5, which is now in place. Capacitors C5 and C6 should be connected to terminal 3 of IC3, and the RL2 relays should again close every 2 minutes 44 seconds. This assumes two banks of relays, one connected to point A and one to point B. If the timing sequences are not correct, the most probable fault is a damaged i.c.

The internal layout is not critical but the heat-evolving components such as R6 and the transformer should be kept away from the heat-sensitive components.

ELECTRONICS & WIRELESS WORLD JULY 1985
Printer buffer

Essentially a small microcomputer board with large memory, this printer buffer holds enough text for around twenty A4 pages and has serial and parallel ports. Its hardware was detailed in the May issue — this article discusses software, construction and operation.

Incoming data is stored sequentially in a type of data structure known as a circular queue or more commonly, circular buffer. It uses two address pointers, one for data input, the other for data output. The input address pointer points to the next free space in the buffer and the output pointer points to the last space vacated.

If the buffer overflows, the input pointer is reset to the first entry point and data continues to be accepted until the input pointer is equal to the output pointer, at which time the buffer is deemed full. In other words, all buffer space relinquished by the output pointer after removing data is available for immediate use. The buffer is considered empty when the output pointer plus one equals the input pointer, Fig. 1.

Modular software

The software is interrupt driven and consists of six modules
- initialization
- parallel data in
- parallel data out
- serial data in
- serial data out
- d-ram refresh.

During initialization, a vector jump table is set up in scratch-pad ram for interrupt request, IRQ, and software interrupt, SWI instructions. The jump address inserted depends on the operating mode. Interrupt vectors for IRQ and SWI point to the jump table and can therefore indirectly enter the appropriate handling routine without the need to poll the interrupt sources. A sign-on message is placed into the buffer by the initialization routine primarily to help with debugging, should it be necessary.

Interrupt handling software for parallel data input is entered following a positive edge on the host data-strobe signal, DS. Similarly, the data-output handler is entered following a positive edge on the printer acknowledge signal, ACK.

To get the ball rolling, the first printer data-strobe (output) is forced by executing a software interrupt instruction, SWI. This instruction's entry in the vector jump table will have been set to point to the parallel output service routine during initialization. Although the SWI instruction is essentially intended for use by circuit emulators, for example in break-point generation, it is an elegant way to force an interrupt. Note that SWI is not maskable.

Further printer data-strobe pulses are generated automatically as the subsequent printer-acknowledge signal causes the data-output handler to be reentered. The next byte to be sent is then written into the p.i.a. and a further data-strobe pulse is generated by the on-board handshake logic.

Similarly, acknowledge pulses to the host are also generated automatically whenever the input p.i.a. port is read.

If the buffer becomes full, the BUSY line is asserted and the buffer-full led lights. Acknowledgment for the last character strobed is not sent until space has become available for the data. The BUSY line is cleared before sending this acknowledgement.

Serial data transfer is performed in a similar way to parallel data transfer apart from the handshaking and buffer status differences described in the May issue. Also, the serial-to-serial mode is unique in as much as the absence of a second serial interface precludes concurrent reception and transmission of characters.

Simple code

Much of the buffer software is straightforward, as can be seen from the sample listing. The two address pointers are BUFIN and BUFOUT. After checking that the buffer is not already full, the program reads the p.i.a., which causes an acknowledge strobe, and stores the acquired data. After being incremented, input pointer BUFIN is checked to see if it is equal to the output pointer.

Fig. 1. Circular queue principle, as applied in the printer buffer. All buffer space relinquished by the output pointer after removing data is available for immediate use.

© 1985 Mike Catherwood

by Mike Catherwood

Mike Catherwood is Systems Engineering Manager for single-chip microcontroller products with Motorola.
PRINTER BUFFER

Speciation

Two Centronics parallel ports and one serial

Modes
Parallel-to-parallel
Parallel-to-serial
Serial-to-parallel
Serial-to-parallel

Serial RS232 port
Transmit/receive using XON/XOFF protocols
300 or 9600 baud
One start, one stop and eight data bits

Parallel Centronics interfaces
Eight-bit parallel
DS/ACK handshaking
Busy and prime lines supported
64K-byte circular buffer
6803 microprocessor/6821
p.i.a.
Abort and multiple copy functions

Error and busy indicators

ensuring that it remains within the circular-buffer address range by calling subroutine LIMIT, as shown in the sample listing.

Buffer status byte FLAG is now tested to check whether or not the buffer was previously empty. If the buffer was previously empty then FLAG is cleared and, provided that the buffer is not operating in serial-to-serial mode, the program forces execution of the printer interface interrupt handler through an SW1 instruction. This restarts the DS/ACK handshake after the buffer becomes empty.

Hidden benefits

A large part of the code is common to both serial and parallel communication. For example you will find that while the buffer is in parallel-to-serial mode, the parallel printer port is also active although the acknowledge handshake signal is disregarded. Consequently, parallel-to-serial and parallel-to-parallel transfers may be performed simultaneously provided that the parallel printer can receive characters at least as fast as the serial port is sending them to its printer.

Also worthy of a mention is the ability to change the baud setting between reception and transmission of serial data in serial-to-serial mode. This allows you to transfer a file to the buffer at 9600 baud, then leave the buffer to send it to the printer at the much slower rate of 300 baud.

Refreshing of the dynamic ram is carried out by software executing a string of no-operation instructions (NOP) every 2ms. This increments the address bus 128 times which ensures that every column is refreshed through a RAM only once or twice.

An output-compare feature on the MC6803 processor is used to generate the periodic 2ms interrupt. The on-chip timer is a free-running incrementing counter which has an associated output-compare register. When the content of this compare register is equal to that of the timer, an interrupt can occur and/or a port line state can be altered (P21).

In this system, during execution of each d-ram refresh module, the output-compare register is loaded with the value of the timer plus 2ms. Port P21 is set up to fall when this time elapses, pulling the non-maskable interrupt, NMI, low and causing the d-ram refresh handler to be reentered.

Interrupt priority of the normal output-compare function was considered too low for the d-ram refresh module. Using port P21 to activate NMI effectively moved this interrupt priority to the highest position, apart from RESET. Software execution overhead is about 12% for this technique, but that is of no real consequence in this application.

Components and construction

None of the components is critical, but note that the external-clock version of the processor, the MC6803E, is not suitable for this design. A regulated 5V supply capable of delivering 1A is needed; typical current requirement is around 450mA.

Although construction is straightforward, using a p.c.b. is recommended. High-quality i.c. sockets should be used for the processor, p.i.a., and ideally the d-ram. These few components should be inserted last. To avoid damage to the more expensive components in the kit, and wasting a lot of time tracing faults resulting from the damage, it is advisable to perform continuity, oscillator and supply-rail tests before inserting the processor, p.i.a. or memory devices. Note that on the p.c.b. the 2716 is the other way round in relation to the 6803 and 6821.

Should you decide not to use a p.c.b., remember to keep the 4MHz clock circuit compact and close to the processor. Be generous with supply decoupling, especially around the d-rams.

Finally, be conscious that you are handling mos devices, so at least earth yourself and don't wear a nylon shirt! To help with any debugging, a sign-on message is sent to the printer immediately after a reset, but not following abort/repeat operations.

There are four operating modes on the printer buffer, determined by the state of Mode 0 and Mode 1 switches S4 and S5 immediately after power-up. These switches, shown on the circuit in the May issue, act as follows.

<table>
<thead>
<tr>
<th>S4</th>
<th>S5</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Serial-to-serial</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Serial-to-parallel</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Parallel-to-serial</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Parallel-to-parallel</td>
</tr>
</tbody>
</table>

Memory map of the printer buffer, which will be of use if the hardware is to be used in other applications as a microcomputer board with serial and parallel i/o.

Important section of the printer buffer software in assembly language.

38

ELECTRONICS & WIRELESS WORLD JULY 1985

www.americanradiohistory.com
Select the mode, connect the necessary cables and power up. The sign-on message should be printed. If not, refer to the Fault-finding section described later. Note that the mode switches are only read once, just after power up.

The abort/repeat key allows you to terminate printing of the current file or reprint the content of the buffer from the first address to the current output pointer, excluding the sign-on message. Momentary operation of the abort key terminates printing of the buffer content, however, for serial printers and printers without a PRIME line, any buffer inside the printer will have to empty before printing can cease.

Multiple copies

Keeping the abort/repeat key pressed for more than a second or so causes printing to abort, provided that it is not already completed, and resets the BUFIN pointer to the start of the user data. The error led lights to indicate this. Subsequent releasing of the key initiates printing of a further copy after a short delay. This may be performed *ad infinitum*.

Serial-to-serial transfer

For serial-to-serial operation, the following procedure must be followed. Set the Rx/Tx switch, S1, to Rx, i.e., off. Connect the interface to the host and send the data file. If the file does not fill the buffer, then the XON/XOFF protocol will not need to be implemented in the host.

When the transfer is complete or the buffer-full led is lit, disconnect the host and connect the printer. Change the data rate if necessary and then ensure that the printer is selected and set S1 to its Tx position. After a short delay, the file will be sent to the printer.

If the buffer-full led was lit, then it will be extinguished when 256 bytes of data have been transmitted. In this case, the rest of the file can be transmitted to the buffer by reconnecting the buffer to the host and changing S1 back to Rx. Each time that this switch is changed to the Rx state, an XON character is transmitted, to which the host should respond by sending more data.

During the reception of serial data, the error led is used to indicate a communication error, i.e., a framing or overrun error, or a protocol failure. A communication error is for information only and will not inhibit buffer operation. However, the printer output may have some characters missing since data received incorrectly is not stored by the buffer ram.

A protocol failure can occur as follows. If the buffer ram becomes full, i.e., less than 64 bytes left, the buffer-full led lights and an XOFF character is sent to the host. However, if it is ignored and the host continues to send data, the error led is lit. Subsequent data sent to the buffer will be ignored until the buffer status changes to not full.

Fault finding

These hints should be useful if any debugging proves necessary. Using an oscilloscope, recheck the oscillator and switch off immediately if it is not running. You probably have a short-circuit somewhere around the microprocessor. If the clock is running, check that the E clock and AS are functioning properly. For this, refer to Fig. 3 on page 22 of the May issue.

Check that there is 'sensible' activity on the data and address buses. If not, check the mode-select circuit around P20-22, and the RESET line. Try pulling the RESET line low momentarily and examine the printer port for activity. Looking at the various chip-enable signals is also a good guide as to what is happening.

A negative-going pulse of about 34μs width and 2μs period should be present on pins four and nine of the microprocessor. The falling edge of this pulse is used to initiate the d-ram refresh interrupt module. Common causes of problems in designs like this are solder bridges and/or static damage to devices, so careful construction is essential.

Conclusion

This design is a typical example of an application which can benefit from using a microprocessor. Had this buffer been destined for volume production, then the manufacturer would have taken advantage of the internal rom available in the MC6801 to reduce overall cost and physical size with the bonus of increased reliability. Field trials using an eprom version of the processor, the MC68701, may have been performed before committing the code to a mask.

Even though a rom version is not available for the printer buffer, I hope that this project has given an insight into the features and capabilities of a typical single-chip processor, and provided a useful computer peripheral.

Kit and expandable p.c.b. under £100

Printer buffer kits, excluding p.c.b. and case but including D connector and programmed eprom are £70.74 each (postage and packing £1.50), excluding v.a.t., from Technomatic Ltd., 17 Burnley Road, London NW10 1ED.

Silk-screened plated-through p.c.b.s for the buffer are £14 each including vat and UK postage or overseas postage from Combe Martin Electronics, King Street, Combe Martin, North Devon EX34 0AD. These Eurocard size boards include holes for tapping essential processor lines so that the hardware design may be used in other applications. Hexadecimal listings of the software can be obtained by sending an A4 sized s.a.e. to our editorial offices at Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

If you require the assembly-language list, please include a cheque or postal order for £2 to cover part of the copying cost. Theeprom shown in the May issue printer-buffer circuit diagram is 250ns or faster.

The complete printer buffer, shown here, can be built for under £100.
IQD - The world shrinkers

IQD’s state-of-the-art DTMF signalling technology now brings you Smartpatch 5700, which allows you to dial direct into the telephone network while you are on the move, and to accept incoming calls regardless of your location.

Smartpatch 5700 is the only intelligent telecommunications interconnect system with British Telecom approval.

Smartpatch 5700 complements IQD’s extensive range of DTMF products, which includes the Codepad, Micropad and Selcall devices.

IQD keeps you in touch.

CIRCLE 14 FOR FURTHER DETAILS.

10 OUTLET DISTRIBUTION AMPHIFIER 3

A compact mains-powered unit with one balanced input and ten a.c. and d.c. isolated line outputs.

* Excellent figures for noise, THD, static and dynamic IMD

* Any desired number of outlets may be provided at microphone level to suit certain video and audio recorders used at press conferences

* Meets IEC610, BS415 safety and I.B.A. ‘signal path’ requirements

Also available as a kit of parts less the case and all XLR connectors for one or two networks.

CIRCLE 44 FOR FURTHER DETAILS.

137 Standard Ranges in a variety of sizes and styles available for 10-14 day delivery. Other ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAY’S INN ROAD, W.C.1
Phone: 01-837 7937
Telex: 892301

CIRCLE 5 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JULY 1985
Developments in tv components

High-performance i.c.s and new circuit techniques promise better performance and extra features. Richard Lambley reports on a big range of new devices from Mullard.

Shed a tear for the glass delay-line: soon it may be as obsolete in colour tv sets as the top-cap pentode.

Almost two decades have passed since the start of regular colour broadcasts in Britain and in that time colour receiver design has changed radically. First came the all-solid-state chassis, then the integrated circuit and the pre-aligned picture tube with built-in deflection coils. Now one of the last familiar landmarks of the early sets is likely to disappear with the introduction by Mullard of a delay-line on a chip.

The conventional ultrasonic delay-line is the bulkiest component in present-day colour decoders and one of the most expensive. At one time it was considered so difficult to mass-produce that it almost prevented the Pal system from being adopted.

Mullard's replacement for it, now being prepared in sample quantities at Southampton, is an analogue charge-coupled delay-line in an 18-pin d.i.l. package. The TDA8450 incorporates all the delay lines and filters for a Pal colour decoder. With the addition of some integrated gyrator filters it can also improve performance of Secam decoders. It has no a-to-d or d-to-a converters, need not be shielded from interference from clock signals and it consumes little power.

The new chip is one of a series of developments by Mullard aimed at keeping pace with changes in the market for tv sets.

In their view, with the advent of new video sources such as cable and satellite tv, video players and home computers, the market is demanding an increasing diversity of tv receivers. Although the demand for basic low-cost sets is certain to continue, today's top-of-the-market receiver chassis may soon give way to a 'features tv'—an expandable system built around a basic display unit to which the designer can add extras such as multi-standard colour decoding, synthesized tuning, video memory, high-performance sound and teletext, or interfaces for peripheral devices such as microcomputers and modems.

Besides providing the improved performance now demanded by set-makers (and by some of their customers) Mullard's new i.c.s are intended to help hold manufacturing costs down; and not just through being shrunk on to ever-smaller pieces of silicon.

A typical modern colour tv has about 30 internal controls needing adjustment on the production line. The horizontal and vertical timebases, the vision i.f. and sound modules, the colour decoder and the picture geometry all take time to set up — and can account for up to a fifth of the total manufacturing time.

Many of these costly adjustments can be eliminated simply by integration on a larger scale.

Complete economy tv chassis.

A Pal decoder with integrated filters and analogue delay-lines. The delay-lines handle colour-difference information as baseband signals and not as 4.43MHz chrominance sidebands.
Digital c.c.d. memory i.c., 320K by 1 bit, for Mullard’s ‘features tv’. The eight 40K sections run at one-eighth of the input data rate; multiplexing and demultiplexing elements can be seen in the middle. A bank of seven such chips makes up a complete field memory (see diagrams opposite).

Others Mullard plan to deal with by basing the design of future sets on computer techniques.

Some headway has already been made in this direction by the introduction of digital tuning, which at little cost to the manufacturer has given the set buyer better pictures and improved reliability plus the possibility of remote control.

But with the new i.c. designs it will be possible to cut the number of adjustments to just seven. (This figure is for a receiver fitted with a stereo/dual sound option for the German market: for a British set the total will be lower still.)

In addition, the use of computer techniques brings the possibility of automatic alignment and quality monitoring — without recourse to devices such as automatic screwdrivers.

The Philips I2C bus

The inter-i.c. bus (I2C bus) is one of two bus structures designed by Philips to meet the growing need to interconnect electronic equipment.

In the hierarchy of computer networks I2C is about as local as local can be. Intended for exchanging control signals and data between different integrated circuits within the same box, it has a bidirectional serial data format and a two-wire structure.

Maximum possible length of the bus depends on the drive capability of bus devices, which is about 400pF: in practice this means a limit of 4m. A bus can support more than one master device (a master is a device which can initiate a data transfer) and its protocols settle any contention between masters which start simultaneously.

Each unit on the bus has an open-drain or open-collector output to both the clock wire (SCL) and the data wire (SDA). A pull-up resistor connects each wire to the positive supply voltage, creating a wired-AND arrangement. When a device pulls the line low it will override any ‘high’ outputs from the others. All devices have input buffers connected to their outputs and so can read the status of the bus. Signal levels are t.l. and cmos compatible.

There is no fixed data rate, but speeds of up to 100kbit/s are possible. Data is sent in 8-bit bytes, each one answered by an acknowledgement from the receiving device, which pulls down the data wire during the ninth bit period.

Peripheral devices available for the bus include ram, non-volatile ram, I.C.D. drivers, a-to-d and P.C.-to-parallel converters as well as many dedicated tv i.c.s. To drive the bus, Mullard offer two families of microcontrollers with serial i/o.

Philips’ other bus structure, the digital data bus (or D2B) is for linking physically separate items of equipment — home entertainment units for example. Thus a user might be able to command a video recorder, a tv and an audio system through a single remote control unit.

In contrast to the I2C, where the designer must decide in advance what devices will be connected to the bus, the D2B allows the set-up to be altered freely. It can handle up to 50 units spread over a distance of 150m.

The D2 bus is essentially a single-wire system, but it is implemented in the form of a balanced pair to overcome possible noise problems on long wiring runs. Maximum data transfer rate is 8000 characters per second.

Full-specification tv circuit: the course of the inter-i.c. bus is marked by yellow tape. In place of the familiar glass delay line is the TDA8450 i.c. (top left), an analogue c.c.d. which embodies all the filters and delay lines needed in a Pal decoder.

Automatic alignment

Automation in tv factories has so far been confined mainly to the automatic assembly of components on the p.c.b. Mullard propose to take it a stage further through the concept of a computer-controlled tv.

The idea behind this is an internal communications link within the set — the inter-i.c. bus or I2C. This data bus acts as the set’s spinal cord, linking the various analogue processing blocks and carrying control signals and data from one to another.

The bus saves some p.c.b. space by reducing the number of interconnections and the amount of wiring. But it does much more: it makes it possible to digitize most preset adjustments, transforming them into data values to be inserted on the production line.

www.americanradiohistory.com
and held in non-volatile memory. And it allows automatic analysis and fault testing of individual modules or complete receivers.

Mullard have shown one such set, an experimental one which has fully automatic control of picture geometry and colour balance. The equipment needed to adjust it consists of a microcomputer, a GPIB-compatible signal generator and a grid of light sensors.

The grid is fitted over the screen, and the equipment transmits sequence of video waveforms, making software adjustments to the tv set until the response detected by the sensors is the correct one. The whitepoint is programmed in by a similar procedure and the corresponding data is stored in the set’s internal memory.

This test set-up is relatively low in cost: an important point, since a similar rig with editing software would be needed in the service technician’s workshop. Receivers under scrutiny there could be switched into their service mode by a special infra-red command not available from the customer’s remote control unit.

Why have Mullard not followed the all-digital trail blazed by IIT with their Digivision sets? “Analogue is very difficult to beat”, replies Rob Green of Mullard. He points out that the tv signal arrives from the aerial in analogue form and must be presented as analogue signals to the picture tube and loudspeaker. Any digital processing in between is likely to introduce quality impairments and must be justified by other benefits.

Memory features

One area where digital processing can help is in the introduction of memory-based features. Adding a digital frame store to the basic set can provide the manufacturer with a powerful new selling points.

A simple example might be the set which, at the touch of a button, could freeze the current screen to enable the viewer to copy down an address or a recipe. Another idea might be to offer a split-screen display, for the viewer who cannot decide which football match to watch.

But one most effective use of memory is in improving the apparent quality of sub-standard programme sources. Many home video recorders give noisy pictures; but if the incoming picture is recirculated through a digital field-store and the delayed signal combined with the direct signal in suitable proportions, the picture itself is reinforced while the noise (being random) tends to cancel out. The degree of mixing needs to be controlled dynamically, since with rapidly-changing pictures the result would otherwise be a blur. But an experimental system demonstrated by Mullard using programme material from a video disc showed a very worthwhile improvement in signal-to-noise ratio. It also gave a noticeable reduction in the cross-colour interference caused by poor separation of luminance and chrominance components.

BBC television engineers have used the same principle for some years to enhance their network pictures. But the new delay-line technology will offer the same facility to the home user, at a fraction of the price professionals have been paying.

In the teletext mode, the memory can store up to 250 pages, to which the user has immediate access. Mullard’s demonstration system can recall any page within a second.

Teletext enhancements

The UK teletext system (now widely known as World System Teletext) is a hierarchy of five downwards-compatible standards. The present broadcast service is the basic Level 1 version.

The higher levels promise advanced features such as dynamically-re-definable character sets, high resolution graphics, transmission of still colour photographs and so on.

But such developments are unlikely to render today’s receivers obsolete yet, since they carry a heavy cost in transmission time and require capacity which might be used more effectively by Level 1 pages. Mullard have already announced a Level 3 decoder; nevertheless, they believe that the present Level 1 standard still has plenty of untapped potential.

Sales of tv sets in Britain are running at about 2.4 million per year. But despite a steady fall in the price of teletext components — a teletext card adds only £60 or so to the retail price of a set — deliveries of teletext sets amount to only 700,000 per year. And the growth in teletext sales seems to have levelled out.

One explanation for this might be that a sizable proportion of viewing public prefers to avoid information in written form. It is certainly true, though, that many find the broadcast teletext services slow and awkward to use.

Page access time is the biggest problem: it can take up to 15s for a chosen page to appear and viewers undoubtedly find the delay frustrating. But another difficulty for users is in finding their way about within the teletext magazines: teletext lacks the tree structure of viewdata systems such as Prestel, where each page displays a choice of escape routes to other pages.

To deal with this omission, Mullard have proposed a simple improvement which they are hoping the broadcasters will want to adopt.

The idea is to add to each teletext page an extra line which would provide such routing information. This line would carry up to four brief labels indicating pages the user might want next:

For the tv set with memory features: this 320K-bit delay-line chip is organized internally as eight parallel charge-coupled delay sections. Each runs at one-eighth of the data input frequency, reducing significantly both clock-rate and power dissipation.

The complete digital field memory consists of seven c.c.d. chips working in parallel. The baseband input signal (in YUV form) is scanned sequentially by a multiplexer: four samples of the luminance (Y) signal emerge for every pair of colour difference (U and V) samples.
‘News headlines’, ‘Weather’, ‘TV’ and ‘Sport’, for example. Each label would be colour-coded to match a corresponding button on the user’s hand-held control unit — which through a single key-press would give immediate access to those pages.

This page-linking feature is made possible by ‘ghost rows’, spare lines in the existing teletext transmission format. Each line (or packet) of transmitted teletext data carries an address specifying the region of the screen where it is to be displayed — blank rows do not have to be transmitted. Up to 32 different addresses are possible, though the teletext page consists of only 24 lines. So eight spare row-addresses are available for other purposes.

Mullard suggest using packet 25 to carry the new page labels and packet 27 for the numbers of the corresponding pages. Then, when the user calls for, say, page 102, the decoder receives advance warning as that page comes in of pages he is likely to want next. And if the decoder has a multi-page teletext memory, it can grab those pages while the user is still reading page 102 and will have them ready for immediate display when one of the coloured buttons is pressed.

Page linking is one of the features incorporated in the company’s Euro-CCT decoder design, which is based on two new special-function chips plus an eight-page memory. Direct page selection in the normal way is still available. But the page number can now include ‘don’t care’ digits, a feature which, among other things, can help overcome the problem of finding an index. For reasons which only the broadcasters understand, the four British teletext services have been unable to harmonize their choice of page for their basic indexes: to the bafflement of many viewers, these appear on pages 100, 200, 100 and 400 respectively. Yet with the new decoder, pressing -00 would find any of them — and the various sub-indexes too.

Other features of the Euro-CCT decoder include a mask-programmed character generator, which can display text in up to three different languages. The correct one is selected automatically by control bits in the page header. This might be attractive to the viewer when reception of foreign services by cable and satellite becomes more common.

Each character in the display is built up on a 12 dots by 10 grid, giving a major improvement in appearance over earlier 5 × 9 types.

Another detail of interest to potential cable subscribers is that the data acquisition period can be controlled in software: the cable operator can select either the normal field flyback period (lines 6 to 22) or the entire field, enabling him to offer high-capacity full-field teletext services.

Control of the decoder is via the inter-i.c. bus (IC).

Other features

Improved sync processing: the TDA2579 includes a circuit which measures the noise at the middle of the horizontal sync pulses and so can recognise whether the programme is coming from a tv transmitter or a home video recorder. Domestic v.c.r.s have poor speed stability and can give jittery pictures: the new chip copes by altering automatically the time-constant of the horizontal phase detector. The same i.c. provides automatic selection of 50Hz or 60Hz field rate, eliminating the need for manual adjustment.

Better colour: the TDA4560, already fitted to some sets for the West German market, helps to eliminate picture defects at the boundaries between areas of different colour. The i.c. has a delay-line which it switches in and out to increase the slope of colour transients. To compensate for the resulting variations in chrominance delay, it includes a luminance delay-line constructed with gyrator cells.

Improved sound: the familiar intercarrier sound demodulator, which derives the sound from the video detector as an I.f. subcarrier on 5.5MHz or 6MHz, has several shortcomings. Its performance is inevitably compromised by the conflicting requirements of picture and sound; consequently defects such as intercarrier buzz can arise and the audio signal-to-noise ratio has to be sacrificed. An alternative approach, the quasi-split sound system (QSS), offers the promise of real hi-fi performance by providing separate i.f. channels for vision and sound. The intercarrier technique is still used in the sound channel, but the filters can now be optimized for it: abandoning intercarrier altogether, say Mullard, would cause problems in the tuner.

Multi-standard reception: in Europe languages often spread across frontiers even though tv transmission standards do not. And in many countries there is a brisk demand for multi-standard sets. Mullard offer a colour decoder i.c., TDA4555, which automatically selects the standard from Pal, Secam, NTSC-3.58MHz or NTSC-4.43MHz by sequentially scanning the input signal. Another i.c., TDA3568, is a high-performance NTSC decoder which uses comb filtering to separate the chrominance and luminance signals and to suppress the colour subcarrier. The luminance channel has a hi-peaker controlled by an external potentiometer.

In the sound department, Mullard have a three-chip processor which can handle all current European transmission standards, including the German dual-subcarrier stereo sound system. The sound i.c. chip TDA8401 also has a synchronous demodulator for the French a.m. sound standard.

This automatic alignment system cuts out costly factory adjustments. A grid of light sensors over the screen responds to a sequence of test waveforms generated by a microcomputer system. The equipment handles picture-geometry and white-point adjustments and it programmes the appropriate control settings into the tv set’s internal microcomputer.
Eprom programmer software for the BBC microcomputer

On its own, John Adams' eprom programmer copies many different types of eprom but with software such as this for the BBC model B microcomputer, eproms can also be written from or read to a disc file with ease. Eprom data on disc can be manipulated in ram, which gives a lot more scope for experimentation.

The SC84 eprom programmer* and a BBC model B microcomputer form a versatile system for reading, writing and experimenting with most current eproms. Interfacing is easy; the programmer connects to the BBC microcomputer through the RS232/423 serial port.

This control software greatly simplifies driving of the eprom programmer by presenting two menus, one to select eprom type and the second to select the required function. These functions include reading from either programmer socket to disc, transferring data between memory and disc, programming from disc or master, erasure verifying and printing. Data check sums are displayed and drive-select and catalogue facilities are menu selectable.

Although the computer only accepts 2764 and 27128 eproms in its sideways rom sockets, the programming system will read, write and commit to file the larger 32 and 64Kbyte eproms accommodated in the programmer design. Microprocessors in the 8080 series with built-in eprom are allowed for and special flags and messages are included for user guidance.

Details of the adaptor for programming these microprocessors were given in the second article describing the programmer.

Data read from all eproms up to 16Kbyte can be transferred to memory for inspection and/or editing using memory manipulation routines in utility roms like Disk-Doctor or Toolstar, and re-saved to a disc file for programming when necessary. An MDUMP function is included in the command list to allow running of Toolstar's memory dump routine. This command can be changed to suit your needs.

I have based my software on John Adams' original suggestions for computer control on page 51 of the December 1984 issue. Most of the program is written in Basic, with machine code calls to access the RS423 serial port and extract the eight-byte check-sum code sent back from the programmer. Using Basic is no real handicap, since the BBC microcomputer is very fast, and it has the advantage that the program can be easily modified.

Notorious GOTOs are used only inside procedures in conjunction with steering flags, and in the generally accepted ON GOTO used for menu selection, to help keep the coding compact. Character string (CHR$) control codes are set as variables for readability and again, to save memory.

Initially, the display prompts you to enter a letter to select an eprom from the 'Eprom list'; this selection remains in force during all subsequent command selections until the eprom list is reentered or the program is terminated. The top two thirds of the second menu display is dedicated to the 'Command list'. A selected command is highlighted during execution. The remaining display area consists of seven lines.

- Elapsed time in minutes and seconds (and adaptor message)
- Message line (including error address on error)
- Master sum check
- Slave sum check
- File name input and counter
- Counter limit
- 'New command' prompt

A typical time for programming a 2764 eprom from a master eprom with a data sumcheck of DCC7B and the programmer in stand-alone mode was 1min 35s. With computer control using an identical disc file, time taken was 2min 8s. As the programming cycle is data dependent, these figures are only a rough guide.

by Norman Sargent

* John Adams' eprom copy/programmer for 2716, 32, 64, 128, 256 and 512 eproms and 8741/42/48/49 single-chip microprocessors was described in the November, December 1984 and February 1985 issues.
10 REM BBC Basic program to drive
20 REM SCBR eeprom programmer
30 5V--5V5 mV (+ CHA 54K)
40 REM
50 MODE7:HM=5:SF=4:CLOSE MODE7
60 DIM 00,15,20,30,40,50,60,70,80,90,100
70 DIM ep 20,real=0
80 DIM trace(7,6)
90 DIM slave from disc
100 DIM data drive no.,*CAT
110 DIM memory
120 DIM NOTTAB(3,6)
130 DIM NOTTAB(3,6)
140 REM ENABLE CURSOR, AUTO REPEAT
150 DEF INPUT,1
160 DEF INPUT,1
170 DEF INPUT,1
180 DEF INPUT,1
190 DEF INPUT,1
200 DEF INPUT,1
210 DEF INPUT,1
220 DEF INPUT,1
230 DEF INPUT,1
240 DEF INPUT,1
250 DEF INPUT,1
260 DEF INPUT,1
270 DEF INPUT,1
280 DEF INPUT,1
290 DEF INPUT,1
300 DEF INPUT,1
310 DEF INPUT,1
320 DEF INPUT,1
330 DEF INPUT,1
340 DEF INPUT,1
350 DEF INPUT,1
360 DEF INPUT,1
370 DEF INPUT,1
380 DEF INPUT,1
390 DEF INPUT,1
400 DEF INPUT,1
410 DEF INPUT,1
420 DEF INPUT,1
430 DEF INPUT,1
440 DEF INPUT,1
450 DEF INPUT,1
460 DEF INPUT,1
470 DEF INPUT,1
480 DEF INPUT,1
490 DEF INPUT,1
500 DEF INPUT,1
510 DEF INPUT,1
520 DEF INPUT,1
530 DEF INPUT,1
540 DEF INPUT,1
550 DEF INPUT,1
560 DEF INPUT,1
570 DEF INPUT,1
580 DEF INPUT,1
590 DEF INPUT,1
600 DEF INPUT,1
610 DEF INPUT,1
620 DEF INPUT,1
630 DEF INPUT,1
640 DEF INPUT,1
650 DEF INPUT,1
660 DEF INPUT,1
670 DEF INPUT,1
680 DEF INPUT,1
690 DEF INPUT,1
700 DEF INPUT,1
710 DEF INPUT,1
720 DEF INPUT,1
730 DEF INPUT,1
740 DEF INPUT,1
750 DEF INPUT,1
760 DEF INPUT,1
770 DEF INPUT,1
780 DEF INPUT,1
790 DEF INPUT,1
800 DEF INPUT,1
810 DEF INPUT,1
820 DEF INPUT,1
830 DEF INPUT,1
840 DEF INPUT,1
850 DEF INPUT,1
860 DEF INPUT,1
870 DEF INPUT,1
880 DEF INPUT,1
890 DEF INPUT,1
900 DEF INPUT,1
910 DEF INPUT,1
920 DEF INPUT,1
930 DEF INPUT,1
940 DEF INPUT,1
950 DEF INPUT,1
960 DEF INPUT,1
970 DEF INPUT,1
980 DEF INPUT,1
990 DEF INPUT,1
1000 DEF INPUT,1
1010 DEF INPUT,1
1020 DEF INPUT,1
1030 DEF INPUT,1
1040 DEF INPUT,1
1050 DEF INPUT,1
1060 DEF INPUT,1
1070 DEF INPUT,1
1080 DEF INPUT,1
1090 DEF INPUT,1
1100 DEF INPUT,1
1110 DEF INPUT,1
Creating diagrams on the BBC microcomputer

Without spending vast amounts of money, it is impossible to display all of a large detailed drawing developed on a microcomputer. In many draughting programs this problem is solved by building up a diagram in segments and stepping between them, but then drawing becomes difficult at the intersect ons.

The best compromise is to use the computer screen as a window to any area of the drawing, which is what Pineapple Software's Diagram program does, given a B&CM on B microcomputer and disc drive. Although the drawing is seen as an array of rectangular segments as far as the computer is concerned, the user need not be aware of this while drawing. When the cursor meets the edge of an on-screen drawing segment, the segment moves over a little and the empty edge of the screen is filled immediately, to create the effect of a microfiche viewer. If any of the segments used for drawing may be changed at any time and is limited only by the capacity of the disc, an empty 80-track disc holds up to 39 screen segments.

This software for driving the SCA4 eprom programmer is written in BBC Basic with embedded machine code. Data passes between intelligent programmer and computer through an RS232 serial link. If you send a disc and a £1.50 copying charge to Norman Sargent at 171 Monega Road, Forest Gate, London E7 8EP, he will copy this software for you.

A second problem with computer drawing, that of accurately positioning the cursor to allow neat line joints, is overcome by building the diagram using predetermined icons. These icons are defined using a special routine which may be easy to use as the main drawing program. Even line drawing uses these predefined elements so joints are always perfect.

This software is only part of Pineapple Software's Diagram program, which will copy and display any microcomputer drawing, and also allows the user to add notes and other information on the diagram.

ENDPROC

Diagram accesses the disc catalogue and will not necessarily run with non-Acorn disc interfaces. It has been tried in single density with the Microware interface.
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognize the advantages toroidal offer in size, weight, lower radiation field and, thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 days together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TOROIDALS

15 VA
- 62 x 34mm
- 0.35Kg
- Regulation 15%

50 VA
- 80 x 30mm
- 0.9Kg
- Regulation 10%
- 2410 6-6 2.15
- 2411 9-9 2.77
- 2412 13-13 3.39
- 2413 15-15 4.00
- 2414 22-22 5.11
- 2415 24-24 5.75
- 2416 35-35 7.83
- 2417 40-40 8.89
- 2418 50-50 10.65

120 VA
- 90 x 40mm
- 1.2Kg
- Regulation 11%
- 4010 6-6 10.00
- 4011 9-9 15.00
- 4012 13-13 20.04
- 4013 15-15 25.05
- 4014 22-22 33.03
- 4015 24-24 37.22
- 4016 35-35 46.62
- 4017 40-40 55.00
- 4018 50-50 64.28

225 VA
- 110 x 40mm
- 2.2Kg
- Regulation 7%
- 7010 13-13 9.30
- 7011 15-15 11.00
- 7012 22-22 16.82
- 7013 24-24 17.22
- 7014 30-30 20.68
- 7015 40-40 24.60
- 7016 50-50 29.00

500 VA
- 140 x 50mm
- 4.0Kg
- Regulation 4%
- 4020 13-13 20.00
- 4021 22-22 24.00
- 4022 24-24 26.00
- 4023 30-30 30.00
- 4024 40-40 34.00
- 4025 50-50 38.00

Why a Toroid?
- Smaller size & weight to meet modern "slimline" requirements.
- Low electrically induced noise demanded by compact equipment.
- High efficiency enabling conservative rating whilst maintaining size advantages.
- Lower operating temperature.

Why I.L.P.?
- Ex stock delivery for standard 240V range.
- Fast prototype service available.
- 3 weeks despatch for special orders.
- 2 year no quibble guarantee.
- No price penalty for call-off order.

Prices including P & P and VAT

<table>
<thead>
<tr>
<th>VA</th>
<th>E</th>
<th>VA Size</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>12.50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>36.00</td>
<td></td>
</tr>
</tbody>
</table>

For 0% primary insert "0" in place of "X" in type number.
For 20% primary (Eurose) insert "X" in place of "X" in type number.
For 30% primary (UK) insert "X" in place of "X" in type number.

IMPORTANT: Regulation — All voltages quoted are FULL LEDO. Please add regulator to secondary voltage to obtain load voltage.

Mail Order - Please make your crossed cheques or postal orders payable to I.L.P. Electronics Ltd.

Trade - We will open your credit account immediately upon receipt of your first order.

Post to: I.L.P. Electronics Ltd., Dept. 3 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7E1
Tel: (0227) 454778 Telex: 965780

TDS900

FORTH COMPUTER

Build the TDS 900 into your products, program it with a VDU and your forecasts become fact.

NOW FROM £99

- Single board computer.
- 12k RAM and 8k ROM (expandable).
- All C-MOS for lower power. FORTH language. Compiled and fast.
- On-board screen-editor, compiler and debug facilities.
- Easy connection with serial and parallel channels, A/D, D/A converters, triacs, printers, keyboards and displays.

CHOICE OF PROFESSIONALS

COMPACT LATTICE TOWERS and

SLIMLINE TUBULAR MASTS

TELESCOPIC—TILTOWER FIXED—MOBILE from 6m up to 30m

Suitable for a wide range of civil and military applications such as:
- RADIO COMMUNICATION
- SURVEILLANCE & CCTV
- METEOROLOGICAL MONITORING
- AMATEUR RADIO
- AERO & MARINE NAV AIDS
- FLOODLIGHTING, ETC.

Purpose designed using 4.5m and 3m sections for low retracted heights and cost effective shipment. Engineered to B.S.I. Standards and hot dip galvanised to BS5729 for protection.

Wind loads are based on B.S.C.P.3 Chap V, Pt. 2, 1972 for wind speeds up to 100 mph/160 kph.

RELIABILITY QUALITY KNOW HOW

Allweld Engineering

Factory 6, 232 Selsdon Road, South Croydon, Surrey, CR2 6PL, G.B., within
Tel: 01-680 2995 (24 hr) 01-681 6734.

7 days

ELECTRONICS & WIRELESS WORLD JULY 1985

TDS900 FOR FURTHER DETAILS.

CIRCLE 54 FOR FURTHER DETAILS.

CIRCLE 53 FOR FURTHER DETAILS.

CIRCLE 28 FOR FURTHER DETAILS.

CIRCLE 55 FOR FURTHER DETAILS.

CIRCLE 54 FOR FURTHER DETAILS.

CIRCLE 28 FOR FURTHER DETAILS.

CIRCLE 55 FOR FURTHER DETAILS.

Take home a world champion.

£72, gets you a technical knockout.

The Fluke 70 Series.
Winners of the digital vs. analog battle.
Since their debut, they've become the worldwide champions of the industry.
Never before have such tough meters offered so many professional features at such unbeatable prices.
Each comes with a 3-year warranty, 2,000+ hour battery life, and instant autoranging.
You also get the extra resolution of a 3200-count LCD display, plus a responsive analog bar graph for quick visual checks of continuity, peaking, nulling and trends.
Choose from the Fluke 73, the ultimate in simplicity. The feature-packed Fluke 75. Or the deluxe Fluke 77, with its own protective holster and unique "Touch Hold" function that captures and hold readings, then beeps to alert you.
So don't settle for just a contender.
Take home a world champion.
For your nearest distributor or a free brochure, please call or write.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Fluke 73
£72
- Analog/digital display
- Voltages, ohms, mA, digital test
- Autorange
- 0.7% basic dc accuracy
- 2000+ hour battery life
- 3-year warranty

Patent pending
Prices are exclusive V.A.T. at current rate.

Fluke 75
£88
- Analog/digital display
- Voltages, ohms, mA, digital test
- Autorange
- 0.5% basic dc accuracy
- 2000+ hour battery life
- 3-year warranty

"Touch Hold" function

Fluke 77
£110
- Analog/digital display
- Voltages, ohms, mA, digital test
- Autorange
- 0.3% basic dc accuracy
- 2000+ hour battery life
- 3-year warranty
- Multipurpose holster

Patent pending
Prices are exclusive V.A.T. at current rate.

ELECTRONICS & WIRELESS WORLD JULY 1985
by S.A. Cameron

Stephen Cameron, who is 23, is reading for a B.Sc. in electrical and electronic engineering at Brunel University, Uxbridge. An industry-sponsored student, he has worked for the past four years on broadcast equipment, radio and line development and computing systems.

He qualified as an instructor in Cadet Force signals while at the Duke of York's Royal Military School, Dover. Spare-time interests include music, tennis and writing poetry. He is publicity manager of the Brunel University Industrial Society.

Call cost calculator

Control your telephone bills with this full-feature Z80-based design, which can save its cost in a matter of months.

This call cost calculator is a very effective aid to saving money whilst making private telephone calls. It is suitable for use in any country and can cost any chargeable service on the telephone system. In price (about £70) it compares favourably to the few commercially-made instruments on the market; in performance it far outstrips them.

There are two basic types of instrument for calculating call charges: automatic devices which count charging pulses sent by the exchange at the end of each call unit and manual devices which rely on the user to enter the details of each call correctly.

Automatic devices have the drawback that British Telecom levies an additional rental for sending the charging pulses and makes a connection charge for the instrument itself. So the extra costs may wipe out some of the potential saving. Furthermore, some such instruments do no more than count pulse units and are not even automatic, since they require the user to start the pulse detection facility.

Manual instruments need no BABT approval because they have no connection to the line. However, when call tariffs are changed, reprogramming is necessary. One system on the market uses a 'credit card' which slots into the machine. When charges are revised, a new card is available to the user at extra cost.

Others are just specialized stop-watches.

In this design, call charges are stored in a battery-backed cmos memory which the user can reprogram without incurring any replacement costs.

The unit will cost not only direct-dialled calls but operator-controlled calls too. It takes account of normal and lower charges and can include the cost of any special services offered by the operator. This facility is unique to this instrument: on automatic machines it is not available since operator-connected calls are charged separately and by-pass the exchange's costing mechanism.

Furthermore, some units neglect certain types of inland calls: those to Ireland and over low-cost routes. This unit provides for these and in addition will cost any international call at any charge rate, whether dialled direct or connected by the operator.

Software

To cost a telephone call, the cost of and duration of each unit must be known.

Charging systems differ from country to country, but one factor is normally fixed while the other varies. For example, British Telecom at present charge a fixed unit cost of 5.41p, but the time bought for that sun ranges from eight minutes to 3.1 seconds. With calls connected by the operator, the unit time is fixed at 60s, while the unit cost varies from 2.33p to 17.9p.

The format I have chosen for storing all this information (Fig.3) is such that the software can handle any country's charging scheme. Twelve bytes are allocated for each call-type combination: three bytes per unit, some bytes for the initial unit, plus three bytes each for the unit cost and unit time of any subsequent call units.

These numbers are stored in b.c.d. form, which means that the maximum unit cost is 9999.99pence and the maximum unit time 59 minutes 59.99 seconds. The unit cost is stored in floating-point form for convenience when handling currencies with small base units such as the Italian lira.

Resolution of the software...
The operating system includes an interrupt service routine which updates the timers and the display. The top eight bytes of ram form the display interface between the interrupt routine and the main program. When the latter writes to any one of these bytes, the interrupt routine will output that byte to the corresponding position in the display. This method of communicating between two software modules is known as a virtual interface.

For the processor I selected the Z80 because of its compre-

Circuit diagram of the processor board. The design uses easily available, low-cost components throughout. The display board diagram will appear in the next article.

Operating system

The system memory map is shown in Fig. 2. There is a small fixed text data area carrying mostly the messages for the display; its contents can be altered to suit the user.

Hardware configuration information and indicators used by the system are stored in eprom, from which they are transferred to ram on starting up (if the ram has not previously been battery-backed). The eprom bootstrap loader saves time when the system is first commissioned, but can be disabled to avoid over-writing on subsequent power-ups any changes written into ram.

counters is 10ms, but as British Telecom (like the PTT authorities in other countries) specify their timings down to 50ms, the counters are set to increment in 0.05s steps. The cost can be set to the nearest hundredth of a penny, which is adequate for dealing with awkward v.a.t.-inclusive charges.

Electronics & Wireless World July 1985
The call cost calculator’s five unique facilities:
- it simultaneously displays the elapsed time and cost of a call as it progresses
- it gives warning when a new charge unit is about to begin
- it can display the unit cost, unit time or special service cost during the call
- it keeps a running total of cost and (for dialled calls) call units with full editing facilities
- it holds call tariffs in a battery-backed memory, which can be updated readily by the user

Component sources
A kit of parts including the box but excluding p.c.b.s and eeprom is obtainable at the special price of £38.25 (add £1 for inland postage; v.a.t. is payable on the total) from T. Powell Electronic Components, 16 Paddington Green, London W2 1LG.

Software in eeprom can be supplied by the author at £8.50 including postage. The listing is available separately at £3. The address to write to is 7 Donnington Court, Worthy Road, Winchester, Hampshire SO23 7BJ.

A set of two printed circuit boards, silk-screened and double-sided with plated-through holes is available from Combe Martin Electronics, King Street, Combe Martin, Devon EX34 0AD. The price is £23 inclusive for customers inland or abroad.

![Image of memory map](image)

Fig. 2. Memory map of the system. With different software, the board could be used as a general-purpose i/o controller for applications such as driving central heating systems.

![Image of output port address table](image)

Fig. 4. Output port address table

On the interrupt acknowledge cycle, when MI and IORQ are both active, the latch is reset and the interrupt serviced. I have avoided using the edge-triggered interrupt NMI since it could not have been disabled while the software down-counters were being refreshed.

In the memory map of the system, the first 8K of address space is assigned to ron and the remainder to ram. The chip select inputs of the memory devices are decoded from MREQ and A13 to give this 8K block addressing. At the input of the cmos gate which drives the CS terminal of the ram, a pull-down resistor ensures that the address and data buses are isolated when mains power is absent. A similar arrangement protects the WR pin. The device’s OE pin is permanently enabled, since its function can be controlled indirectly through the OE decoder.

A bit-mapped port decoder using OR-gates addresses the instrument’s peripheral functions. The piezo-sounder circuit is made up of two gates and a D-type latch. Writing logic 1 to the latch sounds the buzzer, a logic 0 silences it. This makes full control possible through an interrupt-based software monostable.

On the display board three octal latches interface the data bus to the outside world. One drives the display with the help of an LS259 addressable latch, which points to the active digit.

The display devices are 0.4 in. common-anode leds with right-hand decimal points. The software can also be made to drive displays with left-hand decimal points, the p.c.b. will accept either type.

Debounce, auto-repeat and multiple key discrimination for the keypad are provided by software. The keypad can be changed to a matrix type by use of the extra output and input port — up to 40 keys can be interpreted. The software can already support this mode and so allows easy expansion or reprogramming of the system. Connection to a serial printer and an auto-dialler would also be possible.

The same hardware could be used to implement a general i/o controller, in a security system or central heating installation for example.

In the next article, Stephen Cameron will describe construction and programming of the instrument.

![Image of short ribbon cable](image)

A short length of ribbon cable links the two boards, which fold together and fit neatly into a standard plastics box.

ELECTRONICS & WIRELESS WORLD JULY 1985
A.C. mains power controller

A simple circuit to stabilize the power into a resistive load by means of a triac control element. Intended for use with a photographic enlarger, it can be used for other purposes in which the 'notched' output waveform is no detriment.

The control of the illumination of an enlarger, particularly with reference to the voltage applied to, and the consequent colour temperature of the enlarger lamp bulb, is a matter of some concern to photographers using colour printing papers, especially if the local a.c. mains supply is subject to voltage fluctuations, either short- or medium-term.

This arises particularly between the time at which a test strip is printed, to determine correct filtration and colour balance, and the subsequent printing of an enlargement. Any variation of mains supply voltage between these two events can lead to unwanted errors in the characteristics of the final print.

A.C. mains voltage controllers have been available for many years, and while they can give a reasonably sinusoidal output waveform, when based on a saturable reactor system, the price paid for this is the considerable weight, bulk and cost of the unit.

An alternative approach is to use a triac power controller, whereby the effective output power is regulated by varying the time of switch-on of the triac at the beginning of each half-cycle, as shown in Figs 1 and 2. Such a system is light in weight, does not dissipate much energy as heat, and is entirely satisfactory as a control method for lamp bulbs or heaters where the actual waveform is not particularly important. It does, however, have the snag that the switching waveform of the triac generates a certain amount of electrical interference, so the unit should be electrically screened, and also fitted with output/input 'snubber' networks (R_k/C_j in Fig. 4).

A simplification of the construction of the triac control element is given by the use of one of the proprietary 3-terminal power-control i.c.s, of the type shown in Fig. 3, in which the switching phase-angle can be controlled, simply, by a variable resistance between pins 1 and 2 of the i.c.

In the final circuit of the instrument, shown in Fig. 4, this variable control resistance was replaced by a photo-conductive cell, PC, so that the output of the control amplifier could be isolated from the a.c. power circuit by the use of a led-photocell link.

The method of regulation is based on the use of a small filament lamp bulb, whose brightness is determined by the effective input voltage/current waveform applied to the primary of the input power transformer, T_r, across the secondary of which the bulb is connected. This is useful since it mimics the action of the larger power bulb for which this unit is intended to act as a brightness control, and also because a lamp bulb acts as a reasonably satisfactory and inexpensive 'true r.m.s.' converter.

The input transformer, a 12V/3VA unit, is also used to provide a 15V d.c. supply for an op-amp, IC₂, for which a stable 5V d.c. reference is generated by an i.c. voltage regulator, IC₁.

A supplementary d.c. power supply, having a fast response time (D_jD_k C₅), provides a suitable energizing voltage for a voltage divider chain, consisting of the photoconductive cell R_s, and the variable resistor R₉. This provides an output voltage which can be compared with the very stable voltage reference derived from IC₃, and used, when amplified, to power the light-emitting diode D₂, which, in turn, controls the power regulator i.c.

Because the 'dark' resistance of R_s must be fairly high in order not to turn on the i.c. when not required, a fairly high sensitivity photoconductive cell was employed (an NSL-382 cadmium-selenide unit). Also, for the servo control loop to be stable, it is essential that the time delay elements within the feedback loop shall have as fast a response as practicable, and this is helped by the choice of cadmium selenide devices for R_s and R₁₁.

This leaves the lamp bulb, LP₁, as the main slow-response component, but the system is stable, as a second-order control loop, with the component values shown, provided that the reservoir capacitor, C₁, is not made too large.

Because R₁₁ is a fairly low-resistance unit, mounted in close

Fig. 1. Basic triac control system

Fig. 2. Operation of triac controller. 'Notched' waveform can be a disadvantage in some applications.

Fig. 3. Commercial 3-terminal power-control i.c.

by J.L. Linsley Hood

ELECTRONICS & WIRELESS WORLD JULY 1985
Fig. 4. Full circuit of a.c. power controller

Fig. 5. Housing for led/photocell opto-coupler, made from 35mm cassette container. Conventional led/phototransistor opto-coupler would not be usable here.

However, much greater care is essential in respect of R9/D5, and the light-proof housing used for this is shown in Fig. 5. After some experimentation with the prototype, the construction adopted was based on a light-tight container used for 35mm film cassettes, into the cap of which four lead-through insulators were fitted. The led and photocell could then be soldered on to the internal pins. The whole unit would then be adequately light-tight when the cap was fitted on to the cap.

The preset potentiometer, R15, mounted on the printed circuit board, is used to control the power output of the regulator unit. The actual output voltage setting chosen will depend on the anticipated range of input voltage variation, bearing in mind that there will be a minimum of 10-12 volts drop across the control device for proper operation.

So, if it is thought that the possible input voltage range may lie between 225V and 255V r.m.s., an output setting of, say, 210V would be appropriate.

The performance of the control unit, with the output voltage measured by a true r.m.s. reading a.c. voltmeter, is shown in Fig.6, with a 100V lamp bulb as a load.

Method of operation

A small resistor, R1, connected across the regulator i.c. control pins, ensures that there is some power transmitted through this i.c. on start-up, and that the amplifier i.c., IC2, and the voltage regulator i.c., IC3, are powered. Because the illumination of LP1, will be low, at switch on, the resistance of R11 will be high, and the d.c. voltage present at the inverting input of IC3 will be lower than that at the non-inverting input, derived from IC2.

The output of IC3 will then be, initially, close to the potential of the internal d.c. supply line, and D4 will be illuminated. This causes the conductivity of R4 to decrease, which increases the output voltage from the controller, and consequently the voltage applied across LP1.

This reduces the resistance of R11, which lowers the illumination of R4, until a stable output voltage is reached, which will depend on the setting of R10.

The unit requires an output load, preferably resistive such as a small power lamp bulb, for correct operation, in that transformer T1, and its snubber network are not sufficient as a load for IC1.

The output voltage from the control unit can be transformed up, say to 240V r.m.s. equivalent, for use with a nominal 240V lamp bulb, or down to some lower voltage, as the case may be, though some caution should be exercised in rating such transformers, in that the 'notched' waveform will somewhat increase the internal transformer power losses, and this should be taken into account.

proximity to the lamp bulb, LP1, the problem of stray light isn't a particularly serious one in this instance, though it is prudent to ensure that there is little ambient light present at this point in that it will affect the output 'control voltage' setting.
Sowter Transformers

With 45 years’ experience in the design and manufacture of several hundred thousand transformers
we can supply

AUDIO FREQUENCY
TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES:

Microphone transformers (all types), Microphone Splitter/Combiner transformers, Input and
Output transformers, Direct Injection transformers for
Guitars, Multi-Secondary output transformers, Bridging
transformers, Line transformers, Line transformers to
B.T. Isolating Test Specification, Tapped impedance
matching transformers, Gramophone Pickup transfor-
mers, Audio Mixing Desk transformers (all types),
Miniature transformers, Microminiature transducers
for PCB mounting, Experimental transformers, Ultra
low frequency transformers, Ultra linear and other
transformers for Transistor and Valve Amplifiers up to
500 watts, Inductive Loop transformers. Smoothing
Chokes, Filter, Inductors, Amplifier to 100 volt line
transformers (from a few watts up to 1,000 watts), 100
volt line transformers to speakers, Speaker matching
transformers (all powers), Column Loudspeaker trans-
formers up to 300 watts or more.

We can design for RECORDING QUALITY, STUDIO
QUALITY, HI-FI QUALITY or P.A. QUALITY. OUR
PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY
LARGE OR SMALL QUANTITIES AND EVEN SINGLE
TRANSFORMERS. Many standard types are in stock
and normal despatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING
AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING
STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS
FIRMS. Export is a speciality and we have overseas
clients in the COMMONWEALTH, EEC, USA, MIDDLE
EAST, etc. Send for our questionnaire which, when
completed, enables us to post quotations by return.

E. A. Sowter Ltd.

Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303390
The Boat Yard, Cullingham Road, Ipswich, IP1 2EG, Suffolk, P.O. Box 36, Ipswich, IP1 2EL, England
Phone: 0473 52794 & 0473 219390 - Telex: 987703G SOWTER

BE FIRST WITH THE NEW SYMBOLOGY!

A Practical Introduction to the New Logic Symbols

Ian Kampel, CEng, MIERE

* The new internationally agreed style of
documentation
* Destined to become a subject in its own right
* Clear, concise and accessible
* The first available practical guide

Digital engineers need to learn how to use and interpret the new
logic symbology in order to stay at the top of their profession—
soon the new symbols will be commonplace.

A Practical Introduction to the New Logic Symbols has been
prepared with the collaboration of the International Electro-
technical Commission.

Full details of the use of the new logic symbols are given in plain
language in a book that will be retained as a constant source of
reference:

0 408 01461 X 216 x £11.50
176 pages May 1985

Order from your local bookseller or in case of difficulty from

Butterworths
Borough Green, Sevenoaks, Kent TN15 6PH

SOFTLIFE

LOGIC ANALYSER

Used with the BBC Micro and Disc Drive
for test and repair, development,
education etc, etc, etc.

- 8 NHz 8 channel
- Selectable trigger and trigger position
- Diagnostic capabilities
- TTL or CMOSS inputs
- Complete with operating software probes and
comprehensive documentation
- High-quality equipment with full specification at
under £300.00

For technical
information contact:
Alastair France B.A.
Softlife Ltd 7 Rose Crescent
Cambridge CB2 3UL Tel: (0223) 62117

CIRCLE 49 FOR FURTHER DETAILS.
CIRCLE 26 FOR FURTHER DETAILS.
CIRCLE 60 FOR FURTHER DETAILS.
Every card’s a winner. The versatile 80-Bus system can be used for a host of applications: Process Control, Batch Counting, Robotics, Colour Graphic Displays, CAD/CAM, CNC; in Manufacturing, Telecommunications, Instrumentation, Laboratory Testing, Security Systems, Plant Control, Data Collection and Distribution.

Also, in smaller companies it can handle Accounts, Payroll, Wordprocessing, Stock Control, Program Compilation and Data Base Management... whilst still being able to run specialist applications.

And because there is no wasted capacity with a Gemini, a system can cost a good deal less than you might think.

With Gemini you can buy a complete system, upgrade your existing 80-Bus system, or build your own.

So when you’ve had a look at the pack of cards below, plug yourself into our dealer network to discover how opening a new pack of cards with Gemini will help you pick a winner.

These represent just a small selection from our extensive range of cards.

GM811 Z80 CPU board with serial and parallel I/O
GM813 Z80 CPU board with 64K dynamic RAM, serial and parallel I/O
EV814 IEEE 488 interface board
GM816 Multiple parallel I/O board
GM824 8 bit A-D board
IO828 High resolution colour graphics board
GM832 Video controller board
GM833 512K RAM-DISK board
GM836 RS422 network interface
GM837 Medium resolution colour graphics board
GM839 Prototyping board
GM841 Extender board
GM842 Trackerball interface

GM844 8-way Backplane assembly
GM845 6-way Backplane assembly
GM846 3-way Backplane assembly
GM848 Multiple serial I/O board
GM849 Floppy disk controller/SCSI board
GM853 Bytewide Eprom board
GM862 256K dynamic RAM board
GM863 Static RAM board
GM870 Modem board
GM888 8088 co-processor board

Gemini Microcomputers Ltd., 18 Woodside Road, Amersham, Bucks, England HP6 0BH. Tel: (02403) 28321. Telex: 837788
CIRCLE 66 FOR FURTHER DETAILS.
North American radio and tv broadcasting is big business. The maximization of advertising revenues and the minimization of operating costs are the major consideration of broadcasting managers in the USA. Ratings are all important. The higher your audience rating the more you can charge for advertising air-time.

Understanding that business profit is the driving force behind broadcasting in the US, makes it easier to follow the development or lack of development of some of the new techniques of broadcasting in the US.

Stereo-sound tv

Stereo-sound tv has been slow to catch on in the US. A US standard for Multichannel Television Sound (MTS) was approved by the FCC in March 1984. Since then only about 25 tv stations across the US are regularly transmitting with stereo sound, although this figure is expected to increase as viewers become more aware of stereo-sound tv.

The US system, which is referred to by the initials of the Broadcast Television Systems Committee (BTSC), provides two additional sound channels as well as the stereo programme channel. A stereo a.m.-d.s.b. suppressed-carrier subchannel is centred on a frequency corresponding to twice the horizontal line frequency (2fs) within the audio baseband. This carries the (L-R) information in a similar way to stereo radio transmissions.

A monaural f.m. channel is centred at 5fs further along the audio baseband. This second audio programme channel (s.a.p.) can be used for bilingual programming. In parts of the US with large second language populations, the s.a.p. facility will be attractive to both programme producers and advertisers. By the use of the second language channel, advertisers will be able to reach audiences that up until now have not taken too much notice of their advertisements, because of language difficulties. The s.a.p. can also be used for transmitting the original sound track of a foreign film, the dubbed sound-track of which is being transmitted on the main audio channel.

The third channel provided within the audio baseband of the US stereo-sound tv system is called the Pro channel. This 3.4kHz wide channel can be used for data or voice: talk-back facilities would be one possible use for this relatively narrow-band communications facility.

The total base-bandwidth required for the multiplexed stereo sound signal in the BTSC system is about 120kHz. One of the main technical topics of discussion among television transmitter engineers at NAB was the question of stereo-sound operation and how existing equipments may have to be modified in order to access this new market. The increased audio bandwidth required imposes constraints on the transmitter driver stages. Also, in transmitter configurations which combine the sound and vision signals at the output of the transmitters before feeding the combined signal into the antenna, some modifications to the combiner may also be necessary.

Typical sound-vision combiners use a single resonator for the "sound notch". Because the multiplexed stereo audio requires more bandwidth at r.f. as well as at baseband, the sound notch has to be widened, by the addition of a further sound-notch filter.

A major part of the technical discussion programme was given over to lectures on how to modify transmitting equipment, both at the low-level signal-processing stages as well as at the output combiner, to handle the demands of stereo-sound tv programming.

Tv stations that are using stereo-sound transmission currently make most use of the facility for their own in-house productions and outside broadcasts. Much of the bought-in material used by tv stations is not recorded in stereo.

Viewers in the US are being encouraged to trade-in their
NAB, the World's largest radio and tv broadcast exhibition, held this year in Las Vegas attracted 40,000 visitors from all sectors of the broadcast industry.

existing tv sets for stereo receivers. The familiar chicken and egg situation arises: tv viewers in the US will not be easily tempted to trade-in their existing perfectly functioning tv receiver for a new one until there is adequate programming available to make it worthwhile. On the other hand, the businessmen running broadcast stations will not be too excited about investing in new equipment to convert their stations for stereo sound unless there is a ready audience. However, by next year's NAB, stereo-sound tv in the US is likely to be more common than it is today, only one year after the FCC approved a common standard.

U.h.f. tv under pressure

Whereas in the UK it is now some months since the last of the v.h.f. tv transmitters were finally turned off, liberating in excess of 70MHz of prime spectrum for other users, including predominately land mobile radio, in the US tv broadcast spectrum things are quite different. For US tv broadcasters the v.h.f. bands are still the main programme carriers. Rather than expanding services in the u.h.f. band, US broadcasters are under attack from other users, particularly the land mobile services for more access to u.h.f. channels. US tv broadcasters have already lost access to the highest u.h.f. tv channels of 70 to 83 (807-890). These higher tv channels have been taken over by different types of mobile services, including the US cellular networks, which currently operate in the ranges 825-845MHz and 870-890MHz. Other parts of this spectrum at 800MHz are used for both conventional and trunked land mobile services in the US. There is also a provisional allocation at 821-825MHz and 866-870MHz for a future land mobile satellite service. US broadcasters have lost some u.h.f. tv channels for ever. It doesn’t stop there.

U.h.f. tv broadcasters are now facing up to the idea of having to share u.h.f. frequencies with land mobile services on other u.h.f. tv channels. The FCC are proposing that certain u.h.f. tv channels be used by land mobile radio services in the US in cities distant from tv broadcasters using the same channel. The mobile radio industry in the US is a powerful lobby and they have been successful in squeezing broadcasters out of some of their exclusive allocations as well as encroaching on other broadcast channels. During a u.h.f. conference session at NAB, u.h.f. broadcasters were told by FCC Commissioner Rivera that “the land mobile community (in the US) are well organised and they smell blood and are being aggressive (in their attack on u.h.f. tv frequencies)”. “Broadcasters”, concluded Rivera “must make their views known”.

The take-over of some u.h.f. broadcast frequencies in the US by land mobile services is the exact opposite of the situation in the UK where the u.h.f. tv channels are still the exclusive reserve of tv broadcasters, but where land mobile services have taken over or will eventually take over most of what until recently were Broadcast tv Bands I and III.

Transistors move to high-power

Two of the last remaining bastions of the thermionic valve are in the front ends of e.m.p. proof receivers and in the back end of high power broadcast transmitters. Everywhere else the ever more powerful and robust transistor is taking over.

The Nautel Ampet 50kW medium-wave broadcast transmitter being shown at NAB was an example of the transistor’s ever continuing advance into the area of high-power transmitters. By using 48 power blocks, each consisting of a solid-state 1.25kW amplifier, this Canadian designed nominally 50kW a.m. transmitter is able to operate with 55kW of output power at 125% positive modulation. Old-time broadcast transmitter engineers, brought up perhaps in the days of bright emitter valves were noticeably shaking at the idea of using about 200 transistors in parallel to produce 50kW of a.m. on the medium wave! How far away now is the solid-state megawatt broadcast transmitter?

The output stages of high-power u.h.f. television transmitters are unlikely to go solid-state for many years. In the meantime the klystron designers and u.h.f. tv transmitter manufacturers continue to strive to increase the d.c.-to-r.f. efficiency of transmitter output stages.

A new record in klystron efficiency was being claimed at NAB by US transmitter manufacturers Comark. Using an "S" series Comark 60kW u.h.f. transmitter fitted with a Marconi B7500 drive, an Amperex YK1265 klystron and a high energy CTM-20 pulser, klystron beam efficiencies in excess of 77% had been measured during tests made at the Columbus Ohio tv station WTTE. Cost-conscious tv transmitter station operators are always striving to reduce their energy costs. Increasing beam efficiency of the klystron amplifier can lead to significant reductions in operating costs. The Chief Engineer of WTTE was being quoted at NAB as saying that if the equipment used for the tests were permanently installed at his station, then he would expect "a 25-33% reduction in the power bill for the transmitter plant."

NAB 1986

Next year's NAB will be held in Dallas. Before then radio and tv broadcasters have both Montreux in Switzerland and Inter-BEE in Tokyo to attend, but for broadcasters on the transmission side of the business, there is only one exhibition and that is NAB!

ELECTRONICS & WIRELESS WORLD JULY 1985

www.americanradiohistory.com
Sampled-data servos – a new analysis

June’s article explained how to calculate open and closed-loop gains as functions of frequency. This section, presented in two parts, extends the working of part 4 to give the response as a function of time. The first part, below, shows how to calculate the various sampled-data signals in the loop, while the second part, next month, shows how to calculate the continuous signals.

The servo system in Fig. 21 (June) receives a sequence of input samples at U, and produces a sequence of output samples at Y. To compute the relationship between the two, we have to obtain an expression for the closed-loop gain, H\(_{xy}\), as a function of the expression obtained between a (June), how frequency.

June's servos

Sampled-data signals in part, the response as a function of time. The first part, below, shows how to calculate the various sampled-data signals in the loop, while the second part, next month, shows how to calculate the continuous signals.

The middle term in this expression is seen to be H\(_{xy}(s)\) from (3.1). The term immediately preceding it represents H\(_{xd}\) at s + j\(\omega_0\), i.e., when the real part, \(\sigma\), of s is unchanged but the imaginary part \(j\omega_0\) is increased to \((j\omega_0 + \omega_0)\). This is written H\(_{xd}(s + j\omega_o)\).

Similarly, the last term shown represents H\(_{xd}\) at s-j\(\omega_0\), i.e., H\(_{xd}(s-j\omega_0)\). The terms preceding the ones shown represent H\(_{xd}(s+j2\omega_0)\), H\(_{xd}(s+j3\omega_0)\), and so on, while those following represent H\(_{xd}(s-j2\omega_0)\), H\(_{xd}(s-j3\omega_0)\) etc. Stated formally,

\[
H_{xy}(s) = \sum_{n=-\infty}^{\infty} H_{xy}(s+jn\omega_0).
\]

The meaning of this expression is that if we draw a line on the s-plane parallel to the \(j\omega_0\) axis, Fig. 27, and take an infinite series of points along it, \(\ldots, P_{-3}, P_{-2}, P_{-1}, \ldots\) pitched \(j\omega_0\) apart, the value of H\(_{xy}\) at every one of them is the sum of H\(_{xy}\) at all of them. This is a generalisation of what was found earlier (June, page 35): the only difference is that there, the real part of s was zero.
REFERENCES
5. S.A. Lynn. 'Introduction to the analysis and processing of signals' (Macmillan, London, 1973)
8. S. Goldman. 'Transformation calculus and electrical transients'. (Prentice-Hall, New York, 1949)

Fig. 28. Sampled-data signals in response to a step-function top: plant output, y(t); middle: error signal, \(v(t) \); bottom: compensator output, \(x(t) \).
All these expressions for the various gains can be arranged as the ratio of two polynomials, and we take $H_U(z)$ as being typical. Expressed in this way

$$H_U(z) = \frac{y(z)}{u(z)} = \frac{\sum k_n z^{-n}}{1 + \sum b_k z^{-k}}.$$

and dividing numerator and denominator by z^m,

$$y(z) = \sum k_n z^{-n} + \frac{\sum b_k z^{-k}}{z^m} = \sum k_n z^{-n-m}.$$

The relationship between the sample values at U and Y is found by writing down the recurrence formula that corresponds to this expression, i.e., by carrying out the reverse of the process used on page 35, June issue. This gives

$$y(n) = y(n-1) + \ldots + y(n-M) - b_0 y(n-1) - \ldots - b_{M-1} y(n-M).$$

The sample values at V and X can be found in a corresponding manner.

Example

The procedure explained in the preceding sections has been applied to the system used in the example on page 36, June issue. The coefficients of the polynomials in the expressions for $H_{XY}(z)$, $H_{UY}(z)$, $H_{XY}(z)$ and $H_{UX}(z)$ were found to be as follows. They are given in order of decreasing powers of z, the last one being the constant term in each case.

The Nyquist stability criterion to check that the loop is stable.

The procedure is to follow a path in the z-plane that encloses the whole area falling outside the unit circle, steering just clear of any points lying on the unit circle itself. The path to be followed is shown in Fig. 29(a) by ABCDEFGHA. At every point along this path there will be a corresponding value of magnitude and phase for $H_{YY}(z)$; around the unit circle itself these will correspond to $H_{UU}(z)$ (page 36, June). The magnitude is plotted against phase on polar co-ordinates to give the familiar Nyquist diagram (ref. 1, chapter 11). This takes the form of a closed contour, and the criterion for stability is that the net number of clockwise encirclements of the point $(-1, 0)$ must not exceed 0.

A Nyquist plot for the system used in the examples is sketched in Fig. 29(b), points A, B, C, etc. representing H_{YY} at A, B, C respectively. The contour traced out is seen to make one clockwise and one anticlockwise encirclement of $(-1, 0)$, confirming that the system is stable. The stability margins can be read from the diagram as an alternative to the Bode plot in Fig. 25.

Stability criterion

At the beginning of the sample-time response section an expression was given for the open-loop gain as a function of z, i.e., $H_{UY}(z)$ (equation 5.5). Using this, apply the Nyquist stability criterion to check that the loop is stable.

The procedure is to follow a path in the z-plane that encloses the whole area falling outside the unit circle, steering just clear of any points lying on the unit circle itself. The path to be followed is shown in Fig. 29(a) by ABCDEFGHA. At every point along this path there will be a corresponding value of magnitude and phase for $H_{YY}(z)$; around the unit circle itself these will correspond to $H_{UU}(z)$ (page 36, June). The magnitude is plotted against phase on polar co-ordinates to give the familiar Nyquist diagram (ref. 1, chapter 11). This takes the form of a closed contour, and the criterion for stability is that the net number of clockwise encirclements of the point $(-1, 0)$ must not exceed 0.

A Nyquist plot for the system used in the examples is sketched in Fig. 29(b), points A, B, C, etc. representing H_{YY} at A, B, C respectively. The contour traced out is seen to make one clockwise and one anticlockwise encirclement of $(-1, 0)$, confirming that the system is stable. The stability margins can be read from the diagram as an alternative to the Bode plot in Fig. 25.

To be continued.

Appendix

Relationship between $H_{XY}(s)$ and $H_{UX}(s)$:

$$H_{UX}(s) = \sum \frac{b_n}{s + j\omega_n}.$$
Social electronics for youth

Ken Smith describes his work with young people. Facilities are there, components need not be expensive — where are the teachers?

In the recent past, Wireless World has carried commentary about the social implications of technology and electronics in particular. There is one aspect of this debate upon which I can make a few observations from a fairly wide experience that could very well have a practical outcome.

This aspect is appropriate from the point of view of individuals and 'human-scale' values relating to technology. Such a view would, of course, link with that offered by the late Fritz Schumacher. I realise that underlying these comments is the old question, "Where are we going, and what do we want to achieve?" Therefore with a general view across most of technology, but from an unusual starting point, I ask the question: why is "grass roots" technical activity in voluntary youth work at a negligible level? All the evidence: I have is that once it was much more likely to be seen, at least within certain social classes. It now seems that hardly any engineers or scientists in Britain take up voluntary 'hands-on' work with girls and boys. The prevailing attitude in technology and engineering is remarkably conservative (with a little c...).

But science, especially physics and chemistry, was once radical, as ecology is now. And radical activity is activity for change — especially with youth. Even if engineers as a breed tend to be 'uptight', as we used to say", yet there are hardly any scientists either that enter the rural or inner-city Youth Clubs offering science-technology activities. The occasional talk might be given perhaps, or "High-tech" careers may get a mention — even if it shows careers most youth probably won't attain in the meagre job situation...

Small, but high-status projects occasionally surface and the odd lecturer or research boss sits on a committee 'advising' about the purchase of a dozen microns for some municipal youth centre or another. Or someone may appear on a TV channel talking about what ought to be done. The youth themselves end up becoming labelled as a noisy, disorganised rabble — 'Can't you keep those kids out of here, they might damage the computers...' Is this the 'sanitary' theory of projects?

There is another tendency, which appears to be the growth of social engineering and systematization of everything. If the work is not professional and does not fit the youth into some kind of peg-in-hole trade — or if it does not possess the right image and help induce consumption of the products — and unquestioning conformity, then it is labelled useless. Or worse, it might tend to radicalize the youth, and we don't appear to want that.

Many young people are critical of such things (except certain privileged ones) when they discover the manipulation. They (the failures) get enough of that in the schools. Mind you, this ethos of what has been called "closeted oppression" (or in schooling circles, the 'hidden curriculum'), is often discussed, but little is done about it. Its continuance wears down most of the young people in the end and many become docile consumers. Yet we do have, to a considerable extent, a violent State and society, lots of fiddling, unfeeling and anti-social behaviour. The economic system being what it is there is even a lot of vested interest profit in illogical uses — some would say misuses — of resources. There are of course, many other generous actions with a silver lining, but I ask again, where are the engineers contributing this goodwill and gift of their time and moral values through their subject?

Considering these observations, we might look at a few things that could be developed concerning the Technological Society, which would involve many of our youth in new activities. But first a few more observations: visits to four youth clubs showed one or two games going on; a blaring disco, a coffee bar, general (unabating) guffawing, yelling, horseplay — bashing and spitting. One had a pottery kiln, some painting, enamelling, etc: excellent. But most had very little practical activity to offer. Whenever I mentioned electronics as a possible activity, a silence fell on the proceedings nearly everywhere.

Where in these clubs is the photographic lab. model engineering-metalwork shop carpentry shop physics-chemistry lab electronics club radio shack

Even, nowadays "computer arcade"... (sic) astronomy observatory biology and ecology group motor mechanics workshop boat-building yard building construction going on... etc.

I tried to arouse the interest of one person via a local radio club (with a membership of about 60) to help one evening per week in something for youth from the above list — but there were no takers at all. Is this apathy also a kind of decadence?

I have not exaggerated — there appears to be few youth clubs in Britain with any of the activities I have listed. I believe much more occurs in Japan and, although patchy, in the USA. Thousands of youth in our country at the present time never meet an expert 'skills model' to emul-
ate. Young teenagers in my group shock me every time they say, “You are the only person that’s ever bothered about us. — we’ve never had anyone to talk to about all these technical things before.” In other words, there had been no mature friend from the technically literate middle class to lead them in projects.

I am not talking about paid, full-time professionals who service a sub-group of young people (the selected few, mainly middle class) as clients, but spontaneous networking which is not socially engineered. The lack of this freedom is rather sad. The point is an important one, as even in voluntary — or what the Youth Service calls part-time leadership, systematic professional-like training towards some kind of standardized norms and assumptions are multiplied. In some respects we should be critical of this developments.

The Thonet electronics club

Exerting a little effort, this situation can be overcome. With very little in the way of resources, other than the goodwill (thanks to the Centre Management Committee in Margate), a small subscription and scrap electronic junk, very good results have been achieved.

The development of this electronics group for youth links back to a much earlier pilot project called the Roding Boys’ Society, which was set up in Stanstead, Essex, back in the 1960s. A few years ago, Mr Stevens, then Youth and Community Officer for Kent County Council, visited me at the University and I mentioned this early work. He asked me for a short contribution to a group of Youth Leaders at a weekend training course in Broadstairs. One Centre Leader, Tony Kearney, was fired with enthusiasm after hearing the lecture, and invited me to try to form a club in a small store room at the Quarter Deck, Margate. The result has been a successful group for a few years now. This is a pattern that could very well be repeated elsewhere. To this end, you might offer a short talk to a Youth Workers’ Conference in your locality.

Many projects, from low-frequency oscillators and switching circuits, to sensitive short-wave radios, stabilized power supplies and similar devices are continually produced by a flow of young members; each project can be made for a couple of pounds or so. A useful standard assembly system has been evolved with very good educational results indeed. Experiments in play-rehearsal small business mentoring, both via the usual hierarchical “other ownership” capitalist models, and through co-operative methods of production, have been much enjoyed.

Visits to the Model Engineering Exhibition and Science Museum are highlights. I have found it important to socialize like this — the club must be a social group as well as technical. Going cycling on Youth Hostel tours is also a good experience for the young people and is very educational. The last holiday on which I took them was around the Isle of Wight, which enabled us to visit the excellent Wireless Museum at Yarmouth.

Recently, a number of members requested and then organized a “study group” for mathematics and physics to “O” Level. The youth are all “non-selective”(!) young people — but enjoyed their maths (differential calculus included!) enormously.

Going cycling on Youth Hostel tours is also a good experience for the young people and is very educational. The last holiday on which I took them was around the Isle of Wight, which enabled us to visit the excellent Wireless Museum at Yarmouth.

The youth are all “non-selective”(!) young people — but enjoyed their maths (differential calculus included!) enormously.

The group is registered as Volunteers for the Talking Book for the Blind repair scheme. The whole activities programme is regularly exhibited — usually with an “Alternative Technology” special club project — at large local fairs and events (e.g. QUEXPO, Birchington). Of course, all this kind of activity is ideal for the Duke of Edinburgh’s Award Scheme.

Springing from this electronics club experience has been the offshoot consisting of a programme of lectures for children at the University of Kent. This work, organized by a local committee, is known as the Canterbury Young Technologists scheme. It is much the middle-class in flavour, attracting young people from prep. schools, etc. and professors’ children. In this, inspiring and useful work has also been achieved, with great fun for all concerned.

Regarding the Thonet Club work it is not universally cheered on. There are sometimes a few inhibited reactions from one or two professionals — I wonder why? But I would like publicly to thank many of my colleagues at UKC who have helped with optical mistic interest and in little practical ways, who are not like this.

Spreading the work

The work of processing and engineering people into state-determined slots already figures prominently and, in spite of squelches to the contrary, mobilizes enormous private and public wealth. So I am not discussing this system, which often seems to claim to be the only valid one when powerful knowledge is involved.

But if you are interested in alternatives, then it is important to see that professionals involved (engineers, scientists, teachers) must act in a voluntary capacity and suspend the expectation of normal “fees”-level income recommended by their professional associations. But the primary thing to remember is that the given time is nevertheless worth a considerable, even if unstated, value. This means that a difficult theoretical question arises. Would such contributions amount to self-exploitation by the volunteer who carries such marketable knowledge? Would more important interests take the ‘profit’, and laugh all the way to the (ideological) bank?

Be that as it may, it remains essential for society to provide the minimum facilities, even in so-called economically difficult times. A room and small capital grants are important from the statutory bodies and from private sources. The volunteer offering the valuable skills and time cannot even start without these. The apparent difficulty many statutory services experience in providing the basic requirements probably helps to account for the dearth of competent leaders in technical activities working with youth. Technology as an activity is sufficiently out of the tradition to end up different in quality than most youth work (certainly true at the present time, but many authors claim Britain never has been pro-technology as a cultural or popular activity — ever), hence the prejudice, as well as the trend for large numbers of people to be “deskilled” by the ethos of the modern State.

Young people who find, for example, Tomorrow’s World not as interesting as one might expect, say to me that there is nothing they can see relevant to their hobbies and so on. In other words, everything is so professional — and middle-class. I can see their point. But I admit a sizeable problem. Busy engineers and scientists find it nearly impossible to generate anything for television, say, without media people advice. Unfortunately many media people are usually non-technical and have a disappointing “whizz-bang-wow” attitude to material, as well as a lot of status-mindfulness. It is a problem, and a response from that quarter is needed.

The youth respect real skill and knowledge, but are unimpressed by ego-trippers — these qualified people who wear their status on their sleeve. The young people are incisive, genuine and spontaneous. Their respect for your Ph.D lasts no longer than the time you try to cover up the fact that you can’t sold, but claim you can — or show you are a statistician (H.D. 3. — or even a teacher after all); probably the worst epitaph you will receive and they will vote with their feet.

But if you get your bottom on a bike seat and take them on a YHA tour, visiting an Engineerium, or wireless station, or technical museum en route, then you are a bit of a hero.

The youth require results — and fast. They certainly are more demanding than most rather abetted research students I have known. Because of the direct nature of this kind of work, the peculiar dehumanization ethics that is creeping across a vast area of our professional life, is perhaps somewhat offset. And the lie is put to the belief that technology and its implementation is the path to human happiness. It certainly isn’t to many, but democratizing it certainly can be; to us at least.

REFERENCES

1. See “Small is Beautiful”.
3. “Professional pomposity” much in “professionalism” might be oppressive, so argue these authors. A view is like "swarming at the altar", but I have found some evidence for some of this — even in our own profession. A healthy competitive spirit and some democratic accountability regarding professional pomposity would do a power of good.
4. I would like to record thanks to those Companies and individuals who have helped us with gifts of equipment etc. I can especially mention Measure and Sendz Components of Southend-on-Sea.

www.americanradiohistory.com
on the standard bus

The 6809 processor's exceptional power and software flexibility has won the admiration of many designers. Now it comes with four memory sockets, serial I/O, counter-timers and software including the OS/9 operating system and a machine code monitor, on a £182 board interfacing to the STE bus, the new IEEE P1000 standard for 8-bit systems designers. STE is a modern alternative to buses like G64, but with many advanced features: processor-independence, 1 Mbyte memory addressing, 4 kbytes of I/O space, and multiprocessor facilities. It's equally cost-effective in single-processor designs or high-performance systems that many would consider VME for.

Call for details:

Arcom Control Systems Limited
Unit 8, Clifton Road, Cambridge. CB1 4WH
Phone (0223) 242224
Distributors:
Dage (0296) 33200, New-Tek (0223) 211211
Not only in height is the range of Clark Masts wide but also in the field of application. Every model, mechanical or air-operated, has been created in response to customer requirements and proved in service; for over 25 years.

Major users in the Communications Industry, Broadcasting, Civil Authorities and Military Commands worldwide, have all contributed and benefited from Clark Masts' reliability and ceaseless engineering improvement.

Write for your copy of Clark Masts Fast Guide to Mast Selection and see what we mean.

CLARK MASTS

UK CLARK MASTS Ltd. (W.W.), Binstead, Isle of Wight, England. Tel: (0983) 63691. Telex: 86669.

EUPROGEN TECHNICAL PRODUCTS N.V. (W.W.), Woudsnoot 21, 3000 Genk, Belgium. Tel: 011/38.93.31. Telex: 39334.

FREQUENCY COUNTERS

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

- Measuring typically 2Hz – 1.2GHz
- Low Pass Filter
- Sensitivity <50mV at 1GHz
- Battery or Mains
- Setability 0.5ppm
- Factory Calibrated
- High Accuracy
- 1-Year Guarantee
- 0.5" easy to read L.E.D. Display
- 3 Gate Times

PRICES (inc. adaptor/charger, P & P and VAT)

- **METEOR 100 (100MHz)** £116.72
- **METEOR 600 (600MHz)** £147.77
- **METEOR 1000 (1GHz)** £204.12

Illustrated colour brochure with technical specification and prices available on request.

TIME WRONG?

MSF CLOCK is EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds

SELF SETTING at switch-on, never gains or loses, automatic GMT/ BST and leap year, and leap seconds.

EXPANDABLE to Years, Months, Weekday and Milliseconds and use as a STOPCLOCK to show an event time.

COMPUTER or ALARM output also, parallel BCD (including Weekday) and audio to record and show time on playback.

DECODES Rugby 60MHz atomic time signals, superhet receiver (available separately), built-in antenna, 1000Km range.

LOW COST, fun-to-build kit only £79-70 (ready-made to order) includes ALL parts, 5X8X15 cm case, pcb, by-return postage and list of other kits. TIME RIGHT.

CAMBRIDGE KITS

45(WU) Old School Lane, Milton, Cambridge. Tel 860150.

RF POWER

U.S. supplier of RF POWER DEVICES.

Prices LOWER than current domestic prices. Query us for immediate needs.

A quality source for a complete range of RF POWER devices — From 2-30MHz, SSB 12.5V 7.28V transistors — 14-30 MHz CB/AMATEUR 27-50 MHz, low band FM — 66 – 88MHz, mid band FM — 66 – 88MHz, mid band FM — 156 – 162MHz VHF MARINE RADIO/FM — 130 – 175MHz HI-BAND VHF FM — 108-152MHz VHF AIRCRAFT AM — 225 40MHz UHF 28V — 407 — 512 UHF CATV/MATV CLASS A linear transistors — A SMALL indication of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES.

MRF450 MRF453 MRF646 BLY88A BLY90 BLY93A
2N3552 2N4903 2N3509 2N3075 2N5016 2N5589
2N4128 2N5070 2N5591 2N5080 2N4427 2N5090
2N5634 2N5603 2N4431 2N5102 2N5918 2N6084

TIC Semiconductor Inc.

18 WEST 21st STREET NEW YORK, N.Y. 10010 U.S.A.

TEL: (212) 675 8722 TELEX: 283546 TICS UR

CIRCLE 50 FOR FURTHER DETAILS.
Battery-saving relay switch

During a period of testing, the need arose for a multi-channel coaxial relay with remote control through optical fibre. Battery power was essential and the relay had to perform well at above 500MHz*.

The relay chosen had a 330Ω coil, 27mA holding current and 20 and 9V minimum hold and dropout voltages respectively.

Current requirement during the first 50ms of energizing the coil is shown in the graph. Using a 24V supply, the relay draws 73mA. After 30ms, the current could safely be reduced to 36mA without any effect on the relay but with a 50% saving in battery drain, which is what this circuit does.

Initially, the capacitor is uncharged and both transistors are off. When the input goes high, both transistors conduct; this puts around 22V across the relay coil and its contacts switch. Current flowing through the coil causes the capacitor to charge which gradually reduces voltage over the coil. After 50ms, the zener diode conducts (10V) and holds the current at 36mA.

Derek Walton
Preston
Lancashire

* Mr Walton tells us that the relay chosen - an SK-4MIN-D - actually works up to 19GHz and is from B.L. Electronics, Mount Kisco, New York. Ed.

Accurate digital measurement of remote transducers

A remote resistive transducer can be accurately measured using a Wheatstone bridge, provided that a three-wire connection is made to compensate for lead resistance as illustrated. For precise lead resistance compensation, R1 must equal R2.

Accurate measurement of such a transducer using a microcomputer-controlled analogue-to-digital converter or d.v.m. chip is a different matter though. My solution to this problem is shown in the second diagram.

The op-amp and Darlington transistor automatically balance the bridge so that

\[(R_1+R_2)/(R_1+R_2) = (R_1+R_2)/(R_2)\]

Resistor \(R_1, -R_2, R_1/R_2\) and \(R_1/R_2, -R_2/R_1\) are used in the a-to-d converter measures the value of \(R_1/R_2\), and hence the value of \(R_2/R_1\).

Accuracy limitations are introduced by the op-amp offset voltage and the small amount of current injected into the Darlington transistor base. Using the 7650 chopper-stabilized op-amp, maximum offset voltage is less than 1µV. With a bridge supply of about 5V, and \(R_1\) having a minimum value of \(R_1/10\), error introduced by the offset voltage will be less than 3 p.p.m. Current gain of the Darlington transistor is about 10 000 so the error introduced will be of the order of 1 in 10 000 (\(R_1/R_1\)).

Measurement accuracy thus depends on the accuracy and stability of \(R_1\) and \(R_2\) and resolution of the a-to-d converter. Unless the resistors are more accurate than 0.01% and the converter can resolve to better than 1 part in 10 000, op-amp offset or Darlington transistor base current will not have any real effect on measurement accuracy.

With 0.01% accuracy resistors and, for example a 4½-digit d.v.m., i.e., \(R_1\) can be measured to an accuracy of 1/10 000 of \(R_1\).

A.J. Ewins
North Harrow
Middlesex

WILLIAM K. HARTLEY

Accurate, matched resistors d.v.m. for other a-to-d device indicates value \(R_1/2\) which is equal to \(R_2/R_1\)

ELECTRONICS & WIRELESS WORLD JULY 1985
Versatile combination lock

Many limitations of the usual electronic combination lock are overcome by this relatively simple design in which codes are programmable and can vary in length. Up to seven devices can be independently controlled from the same keypad. Several output options are given for use in different applications.

Expressions shown below, for calculating addresses and data, could easily be incorporated into a computer program for programming an eprom with any desired combination and device-select code.

Resetting of the circuit is carried out either by pressing F on the keypad (link A made) or on power up (link B). This resets bistable device IC2 and output Qo of the decoder IC4, which press counter and Cn is the nth element in the code. Desired code is C0, C1, C2, ..., Cn. For n is zero and values of r from zero to seven, the address is Cn+16r and data is 1+2d+16. This is required to ensure restarting at the correct place after a previous code has been entered. For values of r from zero to N-1, the address is Cn+16d+128n and data is 1+2d+16(n+1). For n=N, the address is Cn+16d+128N and data is 2d. Codes with the same initial few digits can be accommodated by making d zero for the common digits.

P.M. Glover
N. Humberside

Measuring rupture current

When instant rupture current needs to be determined while supply voltage and load resistance are unknown or are too remote to be measured, this holds circuit may be of use. It works for a.c. or d.c. supplies.

A resistance of known value, Rn, is inserted in the line. If current is very high, a portion of the bus bar may be used for Rn provided that its resistance can be accurately measured. For a current of around 10A, a 5W resistor of 500mΩ is used.

At the moment that the current ruptures the fuse, the diode doesn't conduct. Charge representing the current is held by the capacitor for quite some time as the op-amp has a fast input. Output voltage of the op-amp can now be measured at leisure.

The relationship between rupture current and output is given by

\[I_R = \frac{(V_s + 0.6)}{R_n} \]

for d.c. and

\[I_R = \frac{(V_s + 0.6)}{0.45R_n} \]

for a.c., assuming negligible offset voltage. Note that once the fuse has blown, the common line of the test jig is not connected to the return line of the unknown supply.

T.S. Doraiswamy
Shikrewadi
India
AFFORDABLE ATE

Diagnoses bus troubles
Helps mend micro boards
Z80, 6502, 6800, 8085
All covered by one product
Disassemblers included
Plugs into micro socket
Hand-held probe identifies
ADDRESS, DATA and CONTROL
lines at a touch.

Prints a memory map
of an unknown system
showing ROM, RAM, I/O
and EMPTY ADDRESSING SPACE.

LOGS all tests and responses
on PRINTER and ALPHA LCD
Non-volatile memory
retains test sequences
CHECKSUMS, RAMTESTS,
READS/Writes MEMORY & I/O
Reports location of SHORTS
on ADDRESS and DATA busses
Prints out memory contents
in ASCII, HEX or SOURCE CODE

You cannot expect to mend
microprocessor products with
a meter and a scope.
How many repairs would
pay for your SuperDOC?

SuperDOC...£395

DATAMAN
Lombard House, Cornwall Road,
DORCHESTER, Dorset DT1 1RX
phone 0305 68066 telex 418442
CIRCLE 22 FOR FURTHER DETAILS.

FAST EPROM PROGRAMMER
Copies eight EPROMS at a pass
all 25 and 27 series up to 27256
EPROM type is set by switches
erasure is checked automatically
control is simple - two keys
Alpha, liquid crystal display
checksum facility, 6 hex digits
FAST or NORMAL programming
PLUS VERSION also has
serial RS232 program & check
CTS or DSR handshake
ASCII, SIMPLE HEX, INTELHEX
MOTOROLA S or TEKHEX
GANOF-EIGHT £395
GANOF-EIGHT plus £445

EPROM EDITOR
Displays HEX on standard TV
with text-editing facilities
inserts and deletes
shifts and copies
bytes and blocks of code
EMULATES EPROM in circuit
using romulator lead supplied

Uploads and downloads
using serial and parallel
routines - RS232, Centronics
PROGRAMS & EMULATES
2716 2732 2532
Useful for development
particularly for piggy-back
single-chip micros
Adaptor is available
to program 2764 & 27128
"Our expensive equipment
stays on the shelf
for weeks - but SOFTY
is used every day"
- says big-budget customer

SOFTY...£195
ADAPTOR...£25

Z80 TUTOR
Designed for Schools Council
to teach Z80 machine code
MENTA uses TV for display
shows STACK & PROGRAM in HEX
Editing facility includes
direct keyboard ASSEMBLER
RS232-output DISASSEMBLER
Used to write & debug
short machine-code routines
MENTA is a complete
controller with 24 bits of I/O
used for ROBOTICS
TEACHER'S GUIDE, PUPIL READER
MODULES (e.g. A to D) available
MENTA...£99

COMPUTER BARGAINS
-ring for our BEST OFFER
OLIVETTI M21, M24
with 10MB hard disk if req.
AUTO-CAD & M24 created this AD
also EPSON PX8

EPROM ERASERS from £39

BUY IT AND TRY IT
REFUND GUARANTEED

less postal expenses, if goods returned intact within 14 days
PRODUCT IS USUALLY IN STOCK
TODAY DESPATCH IS POSSIBLE
PHONE FOR A LITERATURE PACK
VAT must be added to prices
Big-system automation and telemetry

Using public utilities as examples, R.E. Young continues his series on British innovation with a discussion of the philosophy of big-system automation, with an eye to telemetry and crisis control.

In 1984, details were published of the new national control centre of the British Central Electricity Generating Board in advance of full trials in the Spring of 1985 and final commissioning in 1988.

This account, centred on "...a new information (monitoring) system for use by the Board's system control engineers", is of particular interest in this instance because of the R & D and associated aspects shown to be involved. Thus the evolution of the system has been the responsibility of a CEGB research team with technico-economic targets in view. One of these main targets was to provide 'more efficient monitoring of the network' with the dual objectives of achieving more economic power generation and transmission, and of improving 'security'.

One example of the possibilities offered is that the manual calculation of consumer demand, especially for immediate load forecasting, will be computer assisted and will be in terms of continuously updated information from the monitoring system.

Inevitably the question will be asked "Why manual calculation in this day and age?"

From work on comparable big systems, it is safe to assume that the CEGB engineers — with full user experience being brought in — are doing everything possible to ensure the soundness of the information needed to set up the extremely complex software which will be required for the final scheme.

As planned, the national control centre will receive comprehensive operational data from the whole of the Grid network through six regional control centres, will analyse this measurement data, 'separate-out the factors', and then issue instructions (optimized every 5 minutes) for system loading back to the individual centres on the continuously updated basis noted earlier. In addition to carrying out these multiple supervisory control functions, the national control centre will also cover 'fine tuning' of power output which will be effected largely by virtue of the near-instantaneous response of the CEGB's Dinorwig pumped-storage station to sudden power demands (stated as 1800 MW available within 10 seconds).

Also, of special relevance in this connection, it is proposed to employ the overall monitoring system to determine whether Dinorwig would provide the most economic means of controlling Grid frequency, a technical possibility which was a feature of its original design concept.

From this brief summary it will be apparent that even to cover these interacting control functions purely on a routine basis demands an extremely large assembly of software. Therefore, to attempt not only to forecast demand a day ahead but also to warn the operator of potential problems make it imperative to determine trends accurately as part of 'separating-out the factors'. This situation is paralleled in building-up the engineering details of a large automation scheme where a number of interests are involved; or with any R & D project, working with experimental data coming from a number of sources when it is not really known whether the scheme is interacting or independent, as part of the initial — and over-riding — task of finding the 'unknowns'.

These last considerations are almost certainly the key to "Why manual calculation?". Phrased equally colloquially, the answer to this original question is "Leave it in the computer and you lose (never find) trends and variations from the expected". In more conventional terms this means that the CEGB engineers themselves would appear to be providing the flexibility needed for dealing with such widely varying experimental data, a flexibility which cannot be approached by ordinary computer programming.

This does not mean that the Board's policy is directed away from full computer working; on the contrary, certain elements of these remarkably far-reaching proposals for computer-based working have already been brought to the stage of field testing and evaluation. Fully engineered terminals with touch-sensitive screens and self-explanatory keys have been installed at two of the regional control centres, so that full continuity will be maintained over the whole project, from initial planning to final operational use.

The pivotal years from 1960 and the innovative leap-up

In the introductory article of this series, it was noted that the first issue of Industrial Electronics, in October 1962, not only showed that 'the Chip' was well understood in Britain at that time; but also marked the firm establishment of 'Big-System' control in the UK by then, with a mainframe process-control type computer as the cover picture.

Within the year, the first International Telemetering Conference was being held in London (September 1963); and from the report in Wireless World it will be seen that while the intensive development characteristic of aerospace telemetry could be expected to continue indefinitely, public utility systems had already been produced which were mature when they were brought into use. It will be realised that the implications of the word 'mature' are considerable. The early part of the Conference had, in fact, been largely devoted to the question of "Has telemetry reached maturity?"; and it was in his paper "Thirty Years of 'Grid' Telemetering"5) that P.F. Gunning made the point that over those years (1932-1963), CEGB equipment gave the performance demanded of it and did not have to be replaced by new systems until fresh operational requirements arose. Again, the implications of this last statement are considerable. Apart from anything else, it indicates that development was not carried out in a vacuum — system engineering and the operational side were closely interlocked throughout, something which is evident in the 1984 CEGB approach as outlined at the beginning of this article.

The overall continuity that this represents is, of course, vital, particularly working out on such a scale, not least in helping to establish a climate of confidence. Further evidence of the existence of this climate of confidence, certainly over the period up to 1963, can be deduced from Gunning's paper, with his record of achievement with equipment (usually electro-mechanical in nature) which was, in principle, the same as the 'electronic' equivalents such as analogue-digital converters which followed them much later.

Before giving a brief list of these precursors, it may help in establishing background to recall the reactions of delegates, particularly from overseas, when visiting the Conference exhibition where these original pieces of equipment were being demonstrated. Almost invariably, the ensuing remarks were ones of astonishment finishing with "It (modern digital technology) is all

by R.E. Young, B.Sc.(Eng.), F.I.E.E., M.R.Ae.S.
C.c.t.v. and super-software used independently checked early warning and detection of mechanical malfunction.

REFERENCES
local-loop operation — is of particular interest in the automation context. In this instance, two virtually self-contained control functions were covered, with master-station supervisory monitoring, viz. 'machine loading' and 'start-up' in each of the unattended stations.

Another example of these original big-systems is afforded by the UK National Methane Grid Control Scheme. Designed to distribute imported methane gas from the tanker terminal in the Thames Estuary to eight Area Boards, this pipeline 'Grid' was made relatively simple in operating as a free-flow system. This meant that after initial pressurization at the dispatching end, no additional pump boosting was needed along the line; and, with no intermediate compressor stages, the requirement for remote control as such was made relatively small. Specific remote control was, in fact, restricted to four gas-flow valves, which, in conjunction with automatic shut-off valves, gave all the real-time control facilities required.

From the system point of view, it is of interest that the development of a leak resulted in the local automatic valve moving to shut-off as determined by rate of pressure drop across it; while with the movement giving a 'transducer' indication of this condition at the master station, action could be taken to isolate the faulty section of the line by closing the adjacent upstream remote control valve. Measurement of gas flow was made in terms of corrected volume relative to standard (atmospheric) pressure and temperature (16°C). Of special interest here is the fact that this correction was effected by an instrument computer local to the primary measuring unit, a practice which was still being followed in comparable oil-well supervisory control systems some ten years after its establishment in the first half of the 1960s.

Crisis control — the two basic requirements

To borrow from another world, it is a 'crashing glimpse of the obvious' to state that as the size of modern industrial complexes has increased, so the risk of a large-scale disaster has grown with it. Such near-catastrophic accidents — fortunately small in number — have been experienced in many industrialized countries of the world, with a range extending from chemical processing to nuclear power generation as exemplified by Three Mile Island.

However, it was not until this last incident that the international public became fully aware of the threats posed to safety by high-risk centrally-controlled, complex systems. Indeed, the completely unforeseen failure develops. Three Mile Island had a special significance for nuclear safety; but it had an equal significance in regard to the picture it gave of crisis control under operational conditions as deduced from the excellent, detailed, reporting given to it by the US authorities.

The importance of this reporting and of the analysis that lies behind it cannot be stressed too highly. The incident at Three Mile Island took place in 1979, and international action followed almost immediately in the examination of safety precautions and in re-drafting standards. In this general connection, it is worthy of note that somewhat earlier — in 1974 — Flixborough in the north of England was the scene of an explosion type of accident which included serious loss of life. In this instance, a 40 tonne cloud of cyclohexane vapour escaped from a broken pipe to form a highly flammable bubble which exploded to 'flatten' the Flixborough chemical factory. It has been witnessed that this incident weighed heavily in the production of recommendations by the (UK) Health and Safety Commission aimed at the prevention of such destructive accidents. In turn it should be added that the Health and Safety Executive maintains a service in which quarterly statements are issued of incidents which have occurred at UK nuclear installations and have been reported to the Nuclear Installations Inspectorate.

As stated earlier, these accidents often become utterly catastrophic with their 'aftermath', and it is apparently unforeseen. Thus, citing the article in the Nuclear Engineer on crisis control, the statistics are that with Flixborough being the first accident if its kind in Britain during a 40 year period, at least 24 accidents had reached comparable levels in other countries over the same period.

Clearly, and as discussed in that article, a wide-ranging approach to control-system design has to be adopted if every kind of emergency, however unlikely, is to be covered. In terms of crisis control, this approach has two main phases. The first is, in effect, an extension of conventional supervisory control system design, where full account is taken of potential sources of trouble, and which, initially at least, comprises known hazards, such as the risk of explosion in coal mines or at oil well-heads. With sufficient engineering resources available, it is possible to extend this process by taking advantage of experience in analogous fields and take precautions in design to cover the fault conditions which can be envisaged.

However, although these 'total-system' design procedures have to be undertaken in order to provide the foundation for any crisis-control scheme, the design approach has to take on an entirely new character; and it is for this second phase that completely fresh concepts and techniques have to be introduced. This stems from the very nature and purpose of crisis control: to deal with the emergency conditions of an incident which is completely unforeseen.

Because of their unpredictability, 'incident' failures threatening the whole operation of the plant must be countered by human intervention, i.e. an operator must take over-riding control. Thus it becomes evident that if an incident of this magnitude is to be contained and brought under control, several pre-requisites must be fulfilled: the maximum possible early warning must be given of 'onset'; operational information (essentially measurement data) must have complete integrity; this information must be presented to the control environment in such a way as not to be assimilated almost subconsciously, so that delay and error, particularly ambiguity, are kept to an absolute minimum.

It should be added that, as an ideal, wrong information should be detected and its source located.

Requirements

Now, these pre-requisites represent a formidably total; but it can be stated that if they are brought under two 'requirement' headings, it is possible to arrive at a general picture of the present position with the suggestions that have been put forward and the way development should go.

These headings are derived in terms of a 'fully developed crisis', the control staff are being given wrong information somewhere, and, as a rider, they have no possible means of finding out where; the control staff are completely out of contact with the plant under their control because of the misleading and unsuccessful way in which control information is presented to them.

Integrity of data

This requirement is essentially one of failure of equipment (principally transducers) or of an element in the main installation which results in the indication coming, say, from a transducer being totally erroneous. There is no need to stress the dangers of relying on a reading which is utterly wrong. The extreme case develops when, for example, a transducer indicates mechanical movement that has not actually taken place because of a break in an actuator shaft with the (position) transducer being on the drive side of the break. Such a failure apparently occurred in practice with the break of the operating shaft of a vital control valve.

There are various ways of reducing these risks, one being to make the transducer, in effect, part of the operating mechanism itself. As quoted earlier in this article, this was done with the automatic shut-off valves of the UK Methane Grid where, mechanically, valve and transducer actuation were one and the same.

Another method of improving integrity is covered by the general principle of the Independent Check where, in its basic form the measurement instrument and one of its associated devices, is checked by an entirely separate chain. This principle can be applied to comparison of accuracy as well as to detection of the break type of indication fault; and it will be appreciated that the former can be far more serious than the success of the break.

Various approaches can be adopted to apply this principle, ranging from suitable positioning of adjacent transducers, to c.c.t.v. telemetering. This last system is of interest on several counts: the first is in the context.
of transducer fundamental design
where television 'transfer' obviates certain 'hyper-interface' problems; and also ensures that once the data has been 'encoded' (in pictorial form), no further degradation in its accuracy can take place through the system.

At the other end of the scale, it is suggested that c.c.t.v. could be used in conjunction with 'super-software' to provide computer-based facilities including early warning and the possibility of detecting physical (mechanical) changes, for example 'breaks' both visually and more indirectly by computer.

Transfer of information
Two distinct, but closely interlinked, areas come into this requirement. The first, the presentation of information, is largely a matter of system design in the full sense of the word; while the second is perhaps best described as being concerned with analysis/interpretation of incoming information and the implementation of the conclusions as a control action.

The underlying principle which enters into both of these areas is that of 'data marshalling'. Defined as the 'separation, streaming and systematic presentation' of masses of data, this concept helps to reduce the inter-visibility which is inseparable from the complex design considerations associated with crisis control and its entirely new technological approach. This applies particularly to the actual control aspect where, from the overall design point of view, some understanding of the mode of thinking of the engineer and of his general behaviour under stress is of paramount importance. This aspect has been discussed in the Wireless World article already quoted and forms one of the main elements in the penultimate article of this series that on Human Communications. It will be realised that data marshalling is required in this mode of thinking, both for the appreciation of the incoming multi-channel information, and for the selection (as a decision) of the correct action to take, and its implementation.

It is sometimes found useful for system design, especially for full crisis control, and to consider the man-machine interface which exists between the operating engineer and the plant under his control. Two-way transfer of information takes place at this interface; and it is worth noting that under full crisis conditions, the outward transfer will usually involve 'voice command' being employed to its maximum capacity. It is also worth noting that transfer in each direction should be as smooth as possible, i.e. distortion and obstruction should be eliminated. One practical example of this is the change from spread-panel display to individual control console layout. This introduces a form of data marshalling which helps to smooth the flow of information in the transfer across to the control engineer, and also assists in the other direction by facilitating actual operation.

Finally, in relation to engineering R & D, it can be said that in the circumstances of a full crisis, the control engineer is engaged in an R & D project, with all its implications and difficulties, which has to be brought to a successful conclusion, not within months, but as nearly as possible instantaneously, certainly in a matter of minutes.

Automatic enlarger timer
Regrettably, one or two errors appeared in Mr Linsley Hood's timer circuit in the May issue. In Fig.3, on page 46, the diodes D1 to D4, D5 to D8 were reversed. The input and output of stabilizer IC1 were reversed and a 100 μF, 16V electrolytic should be connected between +15V and 0V. The diagram is reproduced here in corrected form. Apologies for the mistakes.
New

Forth Microcard System

The Essex Forth Microcard measures only 10cm x 8cm, but it is equipped to take on powerful FORTH Programming.

Language:

You can use the Essex Forth with flexible workstation during development and the microcard to provide site and each power control.

5000 Spdt 20p

Also supplied by: RCS/Microsystems Limited

Extractor Fans — Mains Operated

Woods extractor:

- 5" £3.75, Post £1.25
- 6" £3.95, Post £1.25
- 5" Planfar extractor £8.00, Post £1.25
- 4" x 4" Muffin 115v
- £4.50, 230v
- £5.75, Post 75p.

All the above ex-computer, those below are unused:

- 4" x 4" £3.50, Post 75p.
- 9" American made £11.50, Post £2.00.

Tangential Blower 10 x 3 air outlet, dual speed £4.60.

Post £1.50.

Micro Switches

V3 type all 250v 10 amp SpST 15p

- 1000 — £100 Spdt 20p 1000 — £150, very low torque Spdt
- 30p 1000 for £200.

Rocker Switches

Standard size fit 11.5 x 28 mm cut out.

- Single pole on/off — 10p each 1000 for £1.25.
- Single pole changeover on/off — 10p each 1000 for £1.50.
- Single pole changeover on/off — 35p each 1000 for £180.

Miniature Wafer Switches

- 2 pole, 2 way — 3 pole, 2 way — 3 pole, 3 way
- 4 pole, 3 way — 2 pole, 4 way — 3 pole, 4 way

- 2 pole, 6 way — 1 pole, 12 way.

All at 25p each or 100 for £20.

12 Volt Motor by Smiths

Made for use in cars etc., these are very powerful and easily reversible. Size 3/4" long by 3" dia. They have a good length of 3" spindle.

Price £3.45 or 100 for £25.

N.B. Electronic Supplies

34 America Lane, Haywards Heath, Sussex RH16 3QU

Phone 0444 454563 for Access or B.C.

Please add £1 if order under £20.

Thanet Electronics Ltd

Suppliers of Radio Communication Equipment to the Ministry of Defence

43 Reculer Road, Herne Bay, Herne Bay, Kent, England. Tel 03227 363859/363850

CIRCLE 96 FOR FURTHER DETAILS.

University of Essex Colchester

CIRCLE 24 FOR FURTHER DETAILS.

Welcome aboard

The World System

Here is the complete range of ICOM marine radio-telephone equipment, from left to right:

- A770 HF SSB transceiver offers long-range capability at a sensible price.
- The MS VHF hand-portable, quick channel access with its push-button keyboard.
- M12 and M2 VHF hand-portables, 12 and 56 channels respectively using knobs or thumbwheels. Finally the MB0 VHF radio-telephone, a wide range of options are available for this and all other ICOM marine radios.

ICOM radios are versatile, rugged, water-resistant and most important of all — reliable.

More detailed information is readily available from your local ICOM dealer or direct from Thanet Electronics Ltd.
Ptarmigan at last

Ptarmigan, the secure tactical communications system linking static and mobile battlefield units in a digital cellular-type network, is now fully operational with British service units in West Germany. As a second generation" tactical command, control and information system it is claimed to be in advance of anything previously fielded by NATO services. Although greedy of radio spectrum, Ptarmigan is designed to "degrade gracefully" if the network sustains damage.

But, for those with long memories, Ptarmigan might better be named Phoenix, having risen from the ashes of the Hobart Plan of the early 1960s, and the aborted Project Mallard proposed later as a joint American, Australian, Canadian, British plan for tactical communications. Hobart led to the Clansman single-channel radios, but its elaborate digital switching and trunking system was temporarily put aside in favour of Bruin as a secure area system.

Ptarmigan comprises a fully transportable, distributed trunk network containing switching nodes via which brigade, division and corps subscribers have dialled access, much as outlined in the Defence White Paper of 1963. Anyone with access to the radio switching nodes, and this includes single-channel radio access from vehicle, infantry and personnel, can be connected to the line and radio multichannel trunking system. The act of lifting the handset automatically transmits a "calling line identity" to a 12-channel central. The system depends on the Plessey System 250 stored-program processor for switching, routing, signalling, multiplexing, interfacing and supervisory functions, with four-wire 16Kb/s time division multiplexed channels. The original Ptarmigan concept has been enhanced to provide packet switched network, using the X.25 protocol, for the Wavell automatic data processing system.

As foreseen in the Hobart Plan the whole battlefield area is provided with a high-capacity and flexible communications grid in which static and mobile users can be brought into contact via the lorrmounted digital switching nodes. It has been three years in the making, but has been warmly welcomed by the Royal Signals -- though, as noted below, not everyone is convinced that the necessary software expertise to keep it going is available.

Software crisis

The Spring 1985 issue of The Journal of the Royal Signals Institution follows a description of the Ptarmigan system, perhaps coincidentally, with a warning by Colonel A.J. Sammes of a "crisis in software support". He foresees the possibility of entire area networks failing at critical moments due to lack of skilled software support. In particular he is concerned that software errors or deficiencies cannot readily be put right in the field without skilled personnel and full access to all the original documents, plans, notes, charts, schedules, magnetic tapes and discs, as well as to the stored program itself.

Unlike hardware maintenance and modification, a change to software requires all the facilities and information used by the software designers to be available to the maintainers and enhancers: "A level of specialized expertise and equipment is now needed that we cannot reasonably expect to find deployed in the field... failing a permanent solution to a critical error may take weeks of effort and is more difficult and more error-prone than the original development of the software."

Col. Sammes sees the need for the creation of far more software and hardware support, including quick-reaction teams, in-house and contract software maintenance staff, software integrity and security teams. MoD have recently established a new Directorate of Communications and Information Systems (Army) one of whose tasks is to consider the need for an integrated support organization for CIS. But if it took Hobart 22 years to come finally to fruition, how long will it take to provide the sort of support needed to prevent Ptarmigan and similar systems from failing when they are most needed? I recall the story of an American "European" switching centre in France which, due to an unsuspected software error, shut itself down for 24 hours during a crisis.

High and wide

It often seems that the only point on which members of international and national television standards committees can all agree is to disagree. The current attempts to establish an entirely new "world standard" for high-definition television are still making only slow progress, despite the impact made by demonstrations of the Japanese 1125-line, 60Hz, 5:3 aspect-ratio system, using very high-cost projection displays.

Having seen not only that system but also more recently the new wide-screen enhanced C-MAC pictures demonstrated by IBA, I am far from convinced that there is any need to resurrect at this stage an entirely new plus-1000 line standard for broadcasting, although justifiable for electronic cinematography. With digital processing in receivers, the basic 625-line 50Hz system (and according to RCA even the 525-line 60Hz standard) can produce extremely impressive pictures using progressive (sequential) scanning for the display. Keeping the luminance and chrominance components separate, as with the MAC standard, makes for an easier picture that can be displayed and cleaned up pictures and helps give an illusion of higher definition even without digital processing.

As someone who in the past has often complained of the flicker on 50Hz interlaced systems, it comes as something of a revelation to discover how much of this is in fact 25Hz interline flicker and how little large-area flicker remains with 50Hz progressive systems.

RCA engineers are also drawing attention to the effect of the mechanical jitter on film displayed in the cinema and argue that even well-maintained modern cinema projectors provide dynamic picture resolution of not much more than 750 lines, a resolution that can be achieved with digital processing from both 525- and 625-line pictures.

ICAP 85

A more application-oriented approach than at some of the earlier International Conferences on Antennas and Propagation is reflected in the 130 or so papers delivered at the IEE/URSI ICAP 85, which attracted almost 300 delegates to the University of Warwick during April.

Nevertheless, with some 130 papers and up to three simultaneous sessions, and a conference book (IEE Conference Publication No 248) running to 584 double-column pages, it would be surprising if all delegates came away with any clear idea of what was and was not truly significant.

Much of ICAP 85 was concerned with microwave and millimetric propagation, rain attenuation and rain scatter; electronic steering of antenna arrays, including the possible use of adaptive antennas on satellites; h.f. over-the-horizon and sea-state radar, seemingly now attracting increasing attention in the UK; direction-finding and null-steering for electronic counter-counter measures; a clutch of BBC papers on h.f., v.h.f. and microwave antenna and coverage-prediction techniques for broadcast applications; satellite antennas and propagation; broadband antennas for frequency-hopping and surveillance; millimetric radio telescopes; u.h.f. propagation for mobile cellular radio; valuable v.h.f. and u.h.f. propagation including ducting. Many of the papers reflected university research including a number funded with a view to new defence systems.

A joint BBC/Royal Military College of Science (which was "privatized" in 1984 as part of the Cranfield Institute of Technology) paper on a cost-constrained 'flat-plate' antenna for the reception of 12GHz d.b.s. television underlined the advantages of having a steerable "flat-antenna" that could be affixed to the side of a building. But it seemed less than certain that the proposed antennas, constructed from a microstrip comb-line sandwich structure and using lightweight foam material, will prove as practical as the conventional parabolic dish reflector, at least until further progress has been
Aerostats

About ten years ago there was considerable interest in the idea of using load-carrying balloons, called aerostats, bearing aloft v.h.f. television transmitters to provide wide-area coverage from a single site. A Westinghouse subsidiary (TCOM) announced orders to supply such systems in the Caribbean, Iran and Nigeria.

The BBC looked in some detail at the use of such a system for v.h.f. when 405-line transmissions ended. The schemes seem to have come to nothing, though I believe one was implemented in the Caribbean. Earlier, u.h.f. television broadcasting from aircraft was used operationally for an educational service in the USA and also by the Americans in Vietnam.

The 20,000ft balloon skyhook, much cheaper than d.b.s., appeared an attractive system (though possibly not to amateur pilots) and I have never understood why it apparently never caught on, or what the practical, financial or technical problems proved to be. From just two aerostats you could cover the UK nationwide. It was therefore interesting to note that Westinghouse are currently demonstrating a L-band surveillance radar (AN/TPS-63) to the Saudi Air Force, lifted by a 365,000 cubic-foot aerostat, as a supplement to early-warning aircraft.

Holiday rigs

"Have rig — will travel" is a concept that is growing apace among both h.f. and v.h.f. enthusiasts. During the summer months many amateurs can be heard operating from unfamiliar locations, particularly those that have a rare prefix or even an unusual "square" designation. Monaco, Liechtenstein, Luxembourg, Andorra, Aland Islands suddenly become centres of amateur radio activity.

With rare prefixes it is easy to get answers to CQ calls even if your signals are relatively weak, but rather more of a problem exists for visitors to countries having considerable indigenous radio activity.

Compact, self-contained h.f. or v.h.f. transceivers are readily transportable. On v.h.f. it is also relatively easy to devise an antenna array that dismantles and fits into a portable carrying case. At a pinch even a foil quad loop stuck on a window pane can be reasonably effective.

For h.f. the problem is more tricky, although a throw-out random length of wire can be surprisingly effective provided the traveller has brought along a movable antenna tuning unit. Increasingly popular are mobile-type whip antennas mounted on a balcony, using monopoles but also occasionally end-fed loaded dipoles. But I was surprised recently to contact on 7MHz an Austrian amateur putting out a remarkably good signal from a hotel in Germany from a rod antenna only about a metre in length. Admittedly his transmitter was about 100 watts. It has always seemed to me that while there is a lot of interest in very-low-power operation (under 5 watts) with good antennas, more could be done to improve the efficiency of miniature, easily portable, h.f. antennas regardless of the transmitter power.

Microwave danger?

Questions surrounding health hazards posed by non-ionizing microwave radiation never seem to go away. Recent claims from Poland that military personnel exposed to relatively low levels of microwave radiation are from three to seven times more likely to suffer from certain forms of cancer compared with those not so exposed have again highlighted the continued reluctance by British authorities to act on the 1982 recommendations of the National Radiological Protection Board to lower the safety limits of v.h.f. and microwave radiation. Moreover the Polish findings appear to put in question even the proposed NPRB limit of 0.4W/kg of body weight (current British safety standard is 1W/kg).

Safety limits not only affect people working near to radar and radio transmitters and industrial r.f. generators but also microwave leakage from damaged or inadequate microwave-oven doors. The Polish investigations suggest that exposure increases the risk of cancer of the lymphatic system and blood forming organs and also, to a lesser extent, thyroid, stomach and skin cancers.

British safety standards have always been based on the premise that the only proven hazard of non-ionizing radiation is the heat generated by absorption, with particular reference to eyes.

Diamond jubilees

This recent 60th anniversary of the formation of the International Amateur Radio Union in which the American Radio Relay League were prime movers in Paris in May 1925 is only one of several "diamond jubilees" in the amateur radio field this year. It was in February 1925 that a change of ownership of The Wireless World, previously carrying the official notices of the Radio Society of Great Britain, led first to Experimental Wireless becoming the official journal in its stead, and then eventually to the launch in July 1925 of the T & R Bulletin by the more active Transmitter & Relay Section of the RSGB. This was the first British publication devoted entirely to amateur radio, surviving 720 monthly issues later as Radio Communication.

It was also in 1925 that Gerald Marcuse, G2NM, began a series of telephony broadcasts to New Zealand that quickly led to his pioneering, in advance of the BBC, and with Post Office permission, the first regular h.f. broadcasting from the UK intended for reception by listeners in all parts of the then widespread British Empire. He used a 1.5kW transmitter on 32.5 metres and a 100ft high antenna at his home in Caterham, Surrey, later setting up a studio and control panel in the nearby home of Percy Valentine.

Here and there

The RSGB and City & Guilds of London Institute have been invited by the DTL to tender for taking over responsibility for the Amateur Radio Morse Test. British Telecom, who inherited the running of the morse test from the Post Office, is expected to relinquish this responsibility in 1986.

DTI are to introduce a new form of abbreviated licence certificate with full licence conditions to be available separately in book form.

About 70 British special-call stations were licensed for operation for use over the "40th anniversary of VE Day" period using for the first time the prefix "GV".

Rajiv Gandhi who became Prime Minister of India following the assassination of his mother, Mrs Indira Gandhi, last October has held and used on h.f. and v.h.f. the amateur callsign VU2RG since January 1975. In that year he built his own h.f. s.s.b./c.w. transceiver (which he used until 1982) and a two-element quad antenna.

His wife, Mrs Sonia Gandhi, has held and used the callsign VU2SON also since 1975 and their son and daughter are reported to be studying to take the examination.

In brief

The British Amateur Teleprinter Group is holding a rally at Sandown Park, Esher, Surrey on Sunday, August 25. The Group is also offering to provide local clubs with speakers on r.t.t.y., Amtor and "packet radio" (Ian Wade, G3NRW, 7 Daubeney Close, Harlington, Dunstable (daytime telephone 0582 429141)). . As an entry in a 40th anniversary "suitcase radio" event organized by the Q-GRP Club, S. Garner, G2WSL has built a miniature 7MHz transceiver with standard, battery-powered bicycle lamp — which still functions as a lamp. Using four transistors plus an MD108 double-balanced mixer as the active devices, his rig comprises a two-stage, one-watt crystal-controlled transmitter and associated fixed-channel direct-conversion receiver. Pat Hawker, G3VA.

76

ELECTRONICS & WIRELESS WORLD JULY 1985
Introducing...

You can depend on

Serpent SCARA assembly robot
On show at Training & Development NEC 9–11th July
AND To be featured as a constructional project in Practical Electronics September issue.

Free 44-page priced and illustrated catalogue on request. Over 6000 items stocked.

MITSUBISHI GaAs FETs
FROM STOCK
Aspen Electronics Limited
UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

NEPTUNE I
NEPTUNE II
NEPTUNE - for clean hydraulic power – tap water is the hydraulic fluid!

MENTOR DC servo desktop robot;
8 bit control system; 300gm capacity; 420mm reach.

Mentor may also be taught by "lead by the nose" method. Extensive software is supplied free with each robot.
Leads available for connection to BBC, ZX Spectrum, Apple IIe, Commodore 64 and VIC 20.
Most other micros are also easily usable with these robots.

Please phone for brochure: 0264 50093.

ELECTRONICS C.A.D.
"ANALYSER"
Performance Analysis of linear circuits using the BBC Model B and Sinclair Spectrum 48K micros.
Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field effect Transistors, and Operational Amplifiers in any circuit configuration.
Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 30 Nodes and 100 Components, for Phase and Gain/Loss, Input Impedance and Output Impedance.
Ideal for the analysis of active and passive filters, audio, wideband and R.F. Amplifiers, linear integrated circuits etc. etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.
USED BY INDUSTRIAL AND UNIVERSITY R&D DEPARTMENTS WORLD WIDE.
VERY EASY TO USE. PRICES FROM £20 ACCESS OR AMERICAN EXPRESS WELCOME.
For further details write or phone NUMBER ONE SYSTEMS
Department W/W
R.A. Crown Street, St. Ives
Cambs, UK PE17 4EB
Tel: 0480 61778 Telex: 32339

CIRCLE 33 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JULY 1985
personal callers are always very welcome but please note that we are closed all day saturday

24hr SALES LINE (0691) 652894
ALL PRICES EXCLUDE VAT UNLESS STATED

PARTHIA
BECKHAMPTON, N. MARLBOROUGH, WILTS.
T. AVEBURY (0673) 219

MARTIN ASSOCIATES

SALES

ANALYTICAL
Analyzer 248A £30.00
Analyzer 855 £70.00
Spectrometer 1270 £150.00

BRIDGES
Marconi TF49B Universal LCR Bridge £150.00
Marconi TF 2700 Universal LCR Bridge £225.00

GENERATORS
Philips PM 5770 Pulsed Generator 1Hz-100MHz £200.00
Tektronix 148 A Television Insertion Test Generator £350.00

OSCILLOSCOPES
Cossor CDU 140 Dual Trace DC-30MHz 10V/div £150.00
Spectral TDS 104 Scope £200.00

METERS
H P 3406A R.T. Voltmeter 10kHz 1.0µA £495.00
Sampling Bridge £350.00
Marconi TF 2604 Electronic Voltmeter 10µA 150kHz £160.00

MISCELLANEOUS
C1035 Digital Constant Temperature Anemometer for fluid measurement £120.00
Coulter 500/511 Digital Air Contamination Monitor £250.00
Lamirat Lamiratino Clean Air Workbench to keep work area dust free £50.00

MARTIN ASSOCIATES

SALES

ANALYTICAL
Analyzer 248A £30.00
Analyzer 855 £70.00
Spectrometer 1270 £150.00

BRIDGES
Marconi TF49B Universal LCR Bridge £150.00
Marconi TF 2700 Universal LCR Bridge £225.00

GENERATORS
Philips PM 5770 Pulsed Generator 1Hz-100MHz £200.00
Tektronix 148 A Television Insertion Test Generator £350.00

OSCILLOSCOPES
Cossor CDU 140 Dual Trace DC-30MHz 10V/div £150.00
Spectral TDS 104 Scope £200.00

METERS
H P 3406A R.T. Voltmeter 10kHz 1.0µA £495.00
Sampling Bridge £350.00
Marconi TF 2604 Electronic Voltmeter 10µA 150kHz £160.00

MISCELLANEOUS
C1035 Digital Constant Temperature Anemometer for fluid measurement £120.00
Coulter 500/511 Digital Air Contamination Monitor £250.00
Lamirat Lamiratino Clean Air Workbench to keep work area dust free £50.00

THE ABOVE IS A SAMPLE OF OUR STOCK SEND S.A.E. FOR CURRENT LIST ALL ITEMS SUBJECT TO AVAILABILITY, CARRIAGE & V.A.T.

CIRCLE 80 FOR FURTHER DETAILS.

PRINTED CIRCUIT BOARDS FOR ELECTRONICS & WIRELESS WORLD PROJECTS

PROJECT
Wi-Fi FAST CHARGER
R.F GENERATOR
SCPC COMPUTER
MOSSEM
SCPC POWER SUPPLY
EPROM PROGRAMMER
MICRO PROG ADAPTOR
PRINTER BUFFER
BOARD CODE + PLATED THROUGH HOLE + SINGLE SIDED

All P.C.B's are supplied with component insertion diagrams. Prices are inclusive of inland and Overseas Postage, Packing and V.A.T.

CIRCLE 20 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JUNE 1985
VALVE DISC PREAMPLIFIER

I read with interest the article by Richard Brice on a valve disc preamplifier. I agree with his basic assumptions and design philosophy but he has made some errors of calculation.

The 10nF capacitor in conjunction with R5 (1MΩ) will not produce the desired equalization. The Thévenin impedance seen by the 10nF capacitor is more of the order of 18MΩ due to the bootstrapping effect of the cathode follower. There is no need to change this — the IEC roll-off may be implemented elsewhere. His equalization is, unfortunately, incorrect. He has assumed that the equalization network sees only the 250kΩ series resistor, (where do you get 250kΩ resistors)? In fact, it sees the Thévenin equivalent circuit which is the 250kΩ resistor in parallel with the 1MΩ resistor. An easy mistake — I did the same for months in blissful ignorance.

If we re-calculate the values of components in the equalization network we can also add the IEC roll-off. This has the added advantage that we can replace the 1μF electrolytic capacitor with a better-quality component such as a polycarbonate. See diagram 1.

The only other changes I would make are of detail, the 1μF capacitor feeding the 250kΩ potentiometer could be replaced by a 0.22μF polycarbonate. The 1μF capacitor following could be replaced by a 10nF as used in the earlier stage. The 100μF output coupling capacitor must surely be a bulky and suspect component; is it really necessary? The output stage should not be loaded by less than 10kΩ, so if we accept that as the minimum input impedance of the power amplifier, we find that 4.7μF would be an adequate value. It may be possible to use a non-polarised component here, but it would be expensive.

A word of warning, some transistor power amplifiers have coupling capacitors on their inputs with the laudable aim of preventing damage due to d.c. being applied at the input. Valve amplifier always has an output capacitor to protect the following stage. Therefore connecting a valve pre-amplifier to a transistor amplifier should be safe. Occasionally this is not so; diagram 2 shows why.

The capacitors charge to equal values of charge: by applying 0 = CV, we find that the small input capacitor of the amplifier has a large reverse voltage across it. It will fail quickly.

The solution is to add a resistor, shown dotted, or to remove one of the capacitors.

M. Jones
Shirley Warren
Southampton

RELATIVELY BORING?

Is it not possible to stem the flow of letters and articles on relativity, energy transfer and the other recondite subjects that appear to have taken over the pages of *Wireless World*? I realise that these are important, but why do they have to take up space in this particular magazine, which is supposed to be for engineers?

One could not object to the occasional page or two of exotica, but the continuous witter of statement and counter-statement, argument and bad-tempered knocking is becoming boring. It does seem a pity that all these, no doubt very clever people can’t iron out their differences in some less public and less space-consuming place and then present us, once and for all, with the outcome.

Surely, Einstein, Maxwell, Michelson and Morley, Catt, Jones and all the rest are either right or they are wrong. Please try to find the most respected scientific figure in the world and get him to say which. Then, maybe, we can all get back to something useful.

H. Morgan
Tonbridge
Kent
Who would Mr Morgan suggest? — Ed.

LOGIC SYMBOLS

I can sympathise with the views expressed by Mr Hayward (Feedback, May 1985) regarding the new logic symbols. As an amateur enthusiast, I certainly hope the amateur magazines do not adopt this standard for their circuit diagrams, but the style used at the moment does not escape criticism either. Many magazines (not *Wireless World*) use unidentified blocks for complex i.c.s and provide a legend elsewhere on the diagram (IC; is 74LS193, IC2 is 74LS74) which makes it difficult to understand at a glance.

With my other hat on, as a professional engineer, I do not think Mr Hayward has the right attitude. He may well, as most of us do, operate his own personal or in-house standard for logic diagrams with complete self consistency, and very successfully too. The trouble is that the standard used is probably different from the way anyone else does it. As such the new BS will unite. I must confess, that, that I dread to think how a 280 or 6502, or for that matter a 68030, will be represented in the new scheme.

One point that Mr Hayward seems to have missed, is that it doesn’t matter a jot which logic representation is used. The designer (of a complicated circuit typical of industry) invariably understands his design, while no one else does without considerable trouble. If nothing else, then the BS provides the mechanism for fully documented top down design, and can lead the observer gently into the intimate details of a fiendish design.

I wish to close by taking (a minor) issue with the BS. The qualifiers used to designate the function of a combinatorial box seem based on mathematical principles, eg OR “+1”, XOR “×1”, and presumably a three-input, majority-voting circuit would be “×2”. Why then is the AND function given by the non-mathematical symbol “&”? Surely, a two-input AND gate ought to be “×2”, a three-input one “×3”, etc. While I admit the use of the ampersand means that you don’t have to count the inputs, I contest that this concession to the old standards breaks the symmetry of the new.

Ken Wood
Ipswich
Suffolk

While I have a certain sympathy with Mr Hayward and his views about the new logic symbols I may have them presented to me and have no option but to learn them and use them. What I should really like to know is what are the policies of the major manufacturers with regard to this standard.

Mr Kampel’s statement, in his first article, that ‘France, Germany, Netherlands, Japan, the UK and USA and many more now intend to bring their
own national standards fully or broadly in line... implies, to me, that manufacturers are all set to follow suit. This is not at all sure. We are all aware of the impact that BS 3939: Section 21 (published in 1977) had — very little, and Section 21 was very similar to IEC Publication 117-15 which was certainly not a home-grown standard.

I am aware that publications for the armed services written to the Joint Services Publications (JSP) standards require symbols to be drawn to BS 3939 but I think I am right in suggesting that the use is selective. How many publications contractors make full use of, for example, the common control block notation? The Texas TTL Data Book 5th Edition 1982 has as a supplement: 'Explanation of the New Logic Symbols'. The introduction mentions that work first began in the mid 1960s. IEEE/ANSI Standard Y32.14-1973 proposed the introduction of rectangular symbols for gates. I cannot remember ever having seen a 'square gate' on an American circuit diagram. A brief 'phone call to Texas suggested that they were not aware of any impending changes and a similar position seems to be current amongst a number of other manufacturers to whom I spoke.

The First Quarter 1985 issue of the Journal of the Society for Technical Communication states: 'IEEE Std 91-84 Graphic Symbols for Logic Diagrams. Dated 9th July 1984. This standard has been accepted by the Department of Defense for logic symbols.' Does this mean that manufacturers in the USA will now be obliged to change? If they do then very soon we shall all have to comply.

One need look no further, however, than page 23 of the May issue of this journal to see some very old-fashioned symbols; even I draw the line at 'wiggly resistors'!

My concern is with technical publications and training and I have to deal with equipment and handbooks from different sources and prepare material for use by students from many different countries. It is important that both the technical author and the lecturer be aware of impending change. Mr Kampel, in his interesting articles, has forewarned me but need I pay any real attention if this latest attempt at standardisation is largely to be ignored as was BS 3939?

L.P. Best, F.I.S.T.C.
Aldershot
Hampshire

FUNDAMENTALS OF ENERGY TRANSFER

P.L. Taylor (Letters, June 1985) is unfair to me, probably because he has not read much of my writings. The whole thrust of "The Cat Anomaly" (WW Sept 1984, p.48) is that the conventional theory (which I call Theory N) contains logical inconsistency when it tries to explain the TEM wave, because electrons are involved. I base the case for my own theory, Theory C (WW Dec 1982 and Oct 1984) on the point Taylor is making. Does he really expect me to defend the conventional theory, which I habitually attack for his benefit?

N.C. Hawkes (Letters, June 1985) misunderstood my February letter. He discusses the force between charged conductors and the force between conductors carrying current, whereas I am discussing the force between two conductors between which a TEM wave is travelling. I only mentioned charged conductors and current-carrying conductors in passing, in order to prove that the force between conductors between which a TEM wave is travelling is zero. Having established that the force is zero. I then proceeded to supposere two TEM waves. Hawkes has put the cart before the horse and turned them round and upside down.

I congratulate C.B.V. Frankeisen (WW May 85) on the first two and last three paragraphs of his letter.

My own position is that "modern physics", as the Establishment developments in our field during this century are termed, is a collage of layer upon layer of muddle, misconception and confusion. We do not just have a problem of one or two errors in the structure. The whole is riddled with error, and a false philosophy of science has developed to buttress it. When it collapses, the effect will be devastating. I do not believe we shall save much fundamental theory from the mess of the twentieth century.

What we can do is to try to get more study going on the politics, the sociology and the self-seeking contained within the science of this century, so as to learn the lessons we shall need in order to stop a similar mess from engulfing the science of the twenty-first century. We must learn why apparently clever men succumb to such a welter of erratic nonsense; what part of their action stems from self-interest; what part from lack of mental agility and what part from the very narrow education that scientists are subjected to.

Ivor Catt
St Albans
Hertfordshire

It is quite easy by pejorative writing to attack, as D.H. Potter does in WW April, 1985, Ivor Catt and myself. If we need somewhat more skill and persistence to attack the ideas put forward. Mr Potter says in his letter that I assume the lines initially quiescent, but I am not aware of having said that, any more than I am of unwinding reefs to infinity. I simply assumed, as the SI definition of the amperes requires, that a current of 1 A is established in the conductors. How that current is set up is of no concern, since the measurement is done after the current is established. There was a slight error in the diagrams reproduced in WW that may have caused some confusion although the text was reasonably complete without the diagrams. I will give a numerical example that will, I hope, illustrate my point.

It has been long established, and I take no issue with it, that if we have a transmission line passing through a partition, no measurement that is done at the sending end can determine whether the line beyond the partition extends to infinity or is terminated in its characteristic impedance. A practical man of course would have doubts and put his head round the partition to see. The diagram shows such a line terminated in Zs, Force may be measured on a metre length on the left hand side of the partition and the results will apply to the infinite line.

Consider a line that is not too different from that of the SI definition. The conductors could be 4mm diameter spaced 1m. It is easy to calculate that Zs = 7452 and the capacitance per metre is 4.747 pF. Thus the value of E necessary to establish a current of 1 A is 745 V and that p.d. produces a charge per metre of 3.36 nC. The force between two such charges at a distance of 1 m is 2 × 10⁻⁷ N, which is the same as the magnetic force between the conductors when carrying 1 A, and in the opposite sense so that the net force is zero. Ivor Catt reaches the same conclusion, but by a different method.

I had not intended to enter into a prolonged discussion on this matter for I have put it up before in Physics Education, a journal of the Institute of Physics. The issues concerned are Nov 1981, Mar 1982, Nov 1982, May 1983 and July 1983.

Indeed if Mr Potter cares to consult the July 1983 issue of Physics Education I have taken and Professor R.G. Chambers stating my case rather more strongly than I did myself.

The question not unnaturally rises, if the ampere is always realised with an Ayton-Jones balance, then why not define it in terms of that apparatus? It is as easy to specify circular conductors as straight ones, and clearly the manufacturing tolerances are as good in one case as the other.

One point on which I do agree with Mr Potter is the slovenly use of the term impedance of free space. The word impedance is a bad choice and impedivity or specific impedance would be better for it is an impedance measured in a specified way. What is referred to is a superficial resistivity of 377Ω/square.

Space card is paper loaded with conducting particles such that if we cut a square from it with arbitrary length of side, the resistance between two
opposite edges is 3773. Any air-spaced transmission line passing through snugly fitting holes in the space card will have all its energy absorbed by the card and there will be no reflections.

I have said snugly fitting holes since I feel that the card should make good electrical contact with the conductors. However that may not be necessary. Heaviside, Poynting, and Ivor Catt all believe that transmission line energy is carried by the dielectric and only guided by the conductors. Space card may offer a way of testing that hypothesis. If the conductors are varnished where they pass through the card so that there is no electrical contact, it should make no difference if the energy is indeed only guided by the conductors, but all the difference if the conductors carry the energy. I do not have the facilities to test for reflection in the varnished and unvarnished cases, but if anyone does I would be glad to know the result.

Chris Parton
Uddingston
Glasgow

May I offer a few thoughts on that part of Chris Parton's letter (E&WW, Dec. 1984, p.66) relating to the NPL definition of the ampere involving infinitely long parallel conductors? It seems to me that electromagnetic current is defined simply by the differential equation

\[i = \frac{dq}{dt} \]

When the unit of charge is the coulomb (a physical quantity) and the unit of time is the second (a physical quantity) we obtain the unit of current called the ampere (a mathematical concept).

The NPL definition of the ampere seems at first sight to involve forethoughts that the ampere has to be subsequently realised by a physical system because of its practical utility and that the definition is "superior" to the c.g.s. "circle of wire" definition. When we try to define it apart from Eq. (1), we always run into difficulties over concepts such as "conductors of infinite length" and so on which are not allowed in real life physical systems.

The c.g.s. "circle of wire" definition also involves difficulties: Does a unit pole exist? How does the current enter and leave the coil? What is meant by force? etc.

What the NPL is doing is defining the ampere in an "absolute type" of way. The term "absolute" was introduced by Gauss, meaning independent of the size of any particular instrument, or the value of gravity at any particular place, or of any other arbitrary quantities than the three standards of length, mass and time. But with concepts such as electric current I do not see how the difficulties I have mentioned can be avoided. Mechanical quantities can be defined in Gauss's absolute way but it is better, I think, to refer to "the NPL definition of the ampere" and to realize that it is an "absolute type" of concept from which any practicality has been removed. When the NPL has to realise the ampere practically then, of course, all thoughts of infinite conductors, unit poles, etc. vanish from their minds and they turn to the realities of forces and torques on mutually magnetically coupled coils, masses and levers.

May I draw readers' attention to part of a comment1 by Dr A.T. Starr (whom I knew at Calleser's Research Laboratories in 1939 and for whom I have the utmost respect)? The development of electromagnetism adopted in this chapter is regarded with disfavour by many teachers of the subject and international committees. A few words in defence of the method will therefore be given. We are told that the idea of a magnetic pole is very deluding and that we are likely to find ourselves "floundering in a world of make-believe". This need not alarm us, as anything abstract is "make-believe" and may be indulged in, provided it is self-consistent and useful. The fact that a north pole is associated with an equal south pole is not sufficient to make the idea of a single pole useless or misleading, just as the fact that every action is associated with an equal and opposite reaction does not prevent the idea of force from being useful. The whole of this reference is very worthwhile reading.

In conclusion, I feel that the 'wisdom of our forefathers' was in the c.g.s. definition and that the NPL has erred in adopting the infinitely long wire definition. Chris Parton isto be congratulated on explaining the absurdity of introducing infinity into any 'absolute type' of definition. May I gently remind him, however, that parallel infinite wires never occurred originally in any c.g.s. definition.

Philip John Drake
Whickham
Newcastle-on-Tyne

Reference

CORRESPONDENCE, PROBLEM OR PARADOX?

In computer vision, we are led to believe that by finding corresponding objects in stereo images we can extract 3D information. In the correspondence technique, an object is found in one image and its corresponding object is found in the other stereo image; then using triangulation we find the range of the object. The method seems obvious but has never been implemented in practice because the rules for working out which objects correspond has never been found and hence we get the 'correspondence problem'.

However, presented now is proof that the correspondence problem was never a problem but an insoluble paradox. To start off, we say that our overall objective is not solving the correspondence problem but general object recognition with no 'a priori' knowledge of the scene. On examining the image we may find several objects but we cannot decipher the size of the objects because a small object will have the same size when imaged as a similar but large object further away. To resolve this we take a second and stereo image with the intent of finding the same object in both images and use triangulation to calculate object distance. In practice, finding the same object in both images is difficult and hence we get the correspondence problem. In truth, however, finding the same object in both images is impossible because to find the same object in both images we must recognise each object and to do that we must know how far each object is away from the camera! That is, we must know how far each object is before we can try to find the corresponding object.

We clearly have a paradox. We need stereo images to range objects. To solve the correspondence problem we need to know in advance how far each object is away from the camera. To find out how far each object is away from the camera, we need stereo images... ad infinitum. Hence we conclude that the correspondence problem is not a problem but an insoluble paradox.

J. Michael
London N.4.

Letters
Letters for publication are always welcome, but the shorter and pithier, the better. I try not to edit original letters, but sometimes they are far too long, and therefore cut, and the writers upset. Please keep your letters short.

CORRECTIONS
Fast camera interface
In the timing circuit of this design for interfacing a video camera to a microcomputer, (June issue) the V.C.O. timing capacitor is 5pF. We apologize for this omission.

Helical antennas for 435MHz
This reference list was accidentally omitted from James Miller's article in the June issue.

References
3. Tilson W.V., On evaluating the performance of communications antennas, IEEE Communications Magazine
September, 1981.
BBC Micro Computer System
BBC Computer & Econet Referral Centre

BBC Computers:
Model B: £299 (a) B+DFS: £346 (a)
Model B+Econet: £335 (a) B+Econet+DFS £399 (a)
ACORN 10 Mbyte Hard Disc £1300 (a)
ACORN 2nd Generation: 6552 £175 (a) Z80: £348 (a)
TORCH UNICORN: Z80 Card: £275 (a) Z80 Disc Pack: £550 (a)
TORCH Graduate 800/2 £925 (a)
20 Mbyte Hard Disc+400K Floppy: £1950 (a)

We stock the full range of ACORN hardware and software and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS
EPSON: RX80T £210 (a); RX80FT £220 (a); RX100 £345 (a);
FX80 £315 £315 (a); FX100 £430 (a); FX200 £540 (a);
COLOR PRINTERS
EPSON Serial Interface: 8143 £28 (b); 8148 with
BROTHER: KAGA TAXAN: KP810 £255 (a); KP910 £359 (a)
TORCH UNICORN: Z80 Card: £275 (a); Z80 Disc Pack: £550 (a)
TORCH Graduate 800/2 £925 (a)
20 Mbyte Hard Disc+400K Floppy: £1950 (a)

ACCESSORIES
EPSON Serial Interface: 8134 £28 (b); 8148 with 2K buffer £57 (b)
EPSON Paper Roll Holder £77 (b), FX80 Tractor Attach £37 (b), RXF80 Disc Cover £36.50 (b)
BUFFALO 3K buffer for EPSON printers £97 (b)
EPSON Ribbons: MX/RX/FX80 £5.00; MX/RX/FX110 £10.00 (c)
JUKI Serial Interface £65 (c), Tractor Attach, £39 (c), Sheet Feeder £182 (c), Ribbon £2.50 (c)
BROTHER RS15: Sheet Feeder £196; Ribbons: Carbonar Nylon £6.50; Multistrke £3.00 (c)
2000 Sheets Fairfold with extra fine perf 5.9 cm: £13.50; 14.5m; £18.50 (c)

BUFFALO Parallel £26; Serial Lead £7 (c)

BT Approved Modems
MIRACLE WS8000
The ultimate world standard BT approved modem covering all common BELL and CCITT standards up to 1200 Baud. Allows communication with virtually any computer system in the world. The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities already provided on the modem. Mains powered: £129 (c) Auto Dial Board/ Auto Answer Board £30 (d) each (awaiting BABT approval).
Software Lead £4.50 (c)

BUFFALO
This pocket modem size complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. £62 (c)

Mains Adaptor £6 (d) BBC to Modern data lead £7

ATTENTION
All prices in this double page advertisement are subject to change without notice.

ACORN IEEE INTERFACE
A full implementation of the IEEE 488 standard, providing computer control of compatible scientific & technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interface can support a network of up to 14 compatible devices, and would typically link several items of test equipment allowing them to run with the optimum of efficiency. The IEEE Filing System ROM is supplied £282.

INDUSTRIAL PROGRAMMER
EP8000
The EP8000-controlled Emulator Programmer is a powerful tool for both Empron programming and development work. EP8000 can emulate and program EPROMs up to 8K bytes, be used as a stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an empron emulator £895 (a)

TECHNOLINE VIEWDATA SYSTEM. TEL: 01-450 9764

1177 TECHNOLOGICAL LTD
<table>
<thead>
<tr>
<th>IC Code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS76A</td>
<td>0.36</td>
<td>4095 LM3916 3.50</td>
</tr>
<tr>
<td>741555</td>
<td>0.24</td>
<td>4050 DL707 1.00</td>
</tr>
<tr>
<td>741837</td>
<td>0.24</td>
<td>40103 NE555 0.22</td>
</tr>
<tr>
<td>74L527</td>
<td>0.24</td>
<td>40103 NE555 0.22</td>
</tr>
<tr>
<td>74L524</td>
<td>0.50</td>
<td>40103 NE555 0.22</td>
</tr>
<tr>
<td>741524</td>
<td></td>
<td>40103 NE555 0.22</td>
</tr>
<tr>
<td>741327</td>
<td></td>
<td>40103 NE555 0.22</td>
</tr>
<tr>
<td>4LS</td>
<td>0.60</td>
<td>40103 NE555 0.22</td>
</tr>
</tbody>
</table>

Shops:
- 1.70
- 1209 38p
- 209 33p
- 2143442 65p
- 293823 30p
- 251711 36p
- 2764-25 3.50
- 6802 1.70
- 650214 5.50
- 8088 17.50
- 1802CE 6.50

Components:
- 40103 NE555 0.22
- 4050 DL707 1.00
- 4095 LM3916 3.50

Contact:
- 40103 NE555 0.22
- 4050 DL707 1.00
- 4095 LM3916 3.50

Other:
- 40103 NE555 0.22
- 4050 DL707 1.00
- 4095 LM3916 3.50

Please add 50p p&p & 15% VAT
(Export: no VAT, p&p at cost)

Orders from Government Dept. & Colleges etc. welcome.
Detailed Price List on request.
Stock items are normally by return of post.
Minimum Telephone Order £5

ELECTRONICS & WIRELESS WORLD JULY 1985
83
We are the leading suppliers of R.F. Power Transistors and Electronic Tubes for the communications and industrial markets. With our parent company we represent all the major manufacturers and from our nine million pounds worth of stock we can supply virtually any form of tube or R.F. Transistor of American manufacture or its European equivalent. We can normally dispatch your requirements on a same day service.

Send for further information to

Dean Road, Outer Circle Road Industrial Estate Lincoln, England LN2 4DV
Tel: 0522-42631 Telex: 56175 REEL UK

CHUM ONE A
Industrial Computer

£258

* Control BASIC and Z80 Assembler Language
* On Board EPROM Programmer
* Detachable Hand-Held Keyboard and Display
* 4K Bytes of Battery Backed Memory
* Up to 64 Relay Outputs
* Up to 64 Opto-Coupled Inputs
* 4 Analogue Inputs
* 1 Analogue Output
* RS232 Interface
* Cassette Back-Up Memory
* Real Time Clock

The Chum One A offers the complete solution to all measurement and control problems. Programs can be written, tested and modified in RAM then at a touch of a switch blown into an EPROM.

WARWICK DESIGN GROUP, 12 ST. GEORGE'S ROAD
LEAMINGTON SPA CV31 3AY (0926) 34311

EXTRA EXTRA
GRAPHICS CONTROLLERS
RING
NOW
FOR
TECHNICAL DATA
AND AVAILABILITY

K KUDOS ELECTRONICS LTD.
CALL 0734 794515

ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer’s entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. **ALL FEATURES LISTED are INCLUDED as STANDARD:**

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height 5/4” double-sided, double-density floppy disc drives. Formatted capacity: 320Kb per drive.
- 4 MHz Z80A CPU
- 64Kb RAM (in 4164 chips)
- 28Kb EPROM containing monitor & MICROSOFT BASIC
- CP/M Version 3.01
- 80 x 24 display with colour block-mode graphics
- Exceptionally high quality styled keyboard with numeric keypad & 6 function keys
- Centronics parallel interface
- Rs232/V24 serial interface selectable 300-9600 Baud
- UHF Modulator for TV & composite video output
- ROM port. (A Word-Processor ROM is available at extra cost)
- 6 month full guarantee & option to return within 14 days if not absolutely delighted

PRICES (monitor not included):

- With DUAL floppy: £347.00 (£399.05 incl. VAT)
- With SINGLE floppy: £250.00 (£287.50 incl. VAT)

CARRIAGE: £9.50 (incl. VAT) VISA & Barclaycard accepted

Available ONLY from: COMPUTER APPRECIATION, 16 Walton Street, Oxford OX1 2HQ. (0865) 55163 TELEX: 838750 MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 5JZ. (0444) 414484 454377 (0444) 73830

Z80A MICRO-CONTROLLERS

Designed to meet the power and flexibility of today’s small computers, the GNC Z80A (as illustrated) TEAC half-height 5/4” micro-controllers are available with up to 64K RAM, 2K EPROM, RS232 etc. Manuals include circuit diagrams and assembly language listings. No CPU is PAL or other fancies.

- 4MHz Z80A CPU
- 4K EPROM — 2K supplied with MCV2.0
- 4K Battery backed RAM — 2K supplied
- 4 x Z80A PIO’s (64/16 lines)
- Z80A CTC
- Standard 100mm x 160mm Eurocard
- Cost effective prices (£34.04-10 off)

Included all connectors, manual etc.

PRICES

- CUB (built & tested): £163.44
- Bare board: £20.00
- Manual (free with CUB/bareboard): £3.50

Please add £1.00 for P&P plus V.A.T.

Toroidal Transformers

as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List

Available from stock in the U.K.

- 6-0-6, 9-0-9, 12-0-12, 15-0-15
- 18-0-18, 22-0-22
- 25-0-25

Quantity Prices and delivery on request

(we also manufacture conventional E1 type transformers)

Airlink Transformers.

Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279-724425

ELECTRONICS & WIRELESS WORLD JULY 1985

British Electronics Week

Two halls at London's Olympia were used to house a combination of the All Electronics Show, The Electronic Product Design Show and the Fibre Optics Exhibition. Despite its title, this great extravaganzia lasted only three days, and with over 800 exhibitors it was found to be impossible to cover everything. We offer here details of some of the products which particularly attracted our attention.

Programme-once-only micro

Zero turn-around is the title invented by Hitachi for their processor which has on-chip prom that is not erasable, so that is programmed once and the operating system is retained from then on. This gives the equivalent of a masked device without the cost and the delay time usual for such devices.

The ZTAT principle is to be extended from the present 63701 to other processors. Hitachi were also proudly displaying their HM65265 pseudo-static ram which, they claim, offers the best of the static and dynamic memories combined together, i.e. high speed and low power. Hitachi Electronic Components (UK) Ltd., 221 Station Road, Harrow, Middlesex HA1 2XL.

Quick, dry photos

Using a film or paper similar to that used in photography, the 3M Dry process can convert electronically originated images into permanent black-and-white prints. As the light from a c.r.t. or other source strikes the silver material it forms a stable latent image. When the material is heated, the exposed silver halides act as a catalyst on other silver salts and the image automatically appears. The process is totally dry; it uses less silver than photography; it may be processed at high speed and offers high-resolution images.

The material may be used in 3M's Intager which draws the material past a c.r.t. for exposure and then heats it for development, all in one process. One version of the material has a conductive backing and, if a current is passed through it, it heats itself without the need for any external heat source. Finished prints are available in 11 seconds, compared with 45s for a Polaroid print. The materials cost much less than the equivalent Polariods.

Designed for use in medical imaging such as ultrasonic scanning and fluoroscopy, the Imager is self-contained and may be used in aseptic environments. The system has been used to print electron microscope images. Other applications include facsimile printing of satellite or laser images, computer printing and graphics hard copy, and instrumentation logging.

Different papers and films are available for various applications and others including u-v sensitive film and colour images are in course of development. 3M United Kingdom plc, PO Box 1, Bracknell, Berks RG12 1JU.

Development system with Concurrent CP/M-86

The STE bus standard is used in the ARC88 computer system. The 80188-based computer runs Concurrent CP/M-86 and provides facilities for the development of 80188 software for use in real-time target application or as an expandable system for general-purpose laboratory computing. The minimum configuration consists of two boards, a floppy disc controller and the processor with its twin d.m.a. channels, three counter-timers and interrupt vectoring priority. It also has 256kbytes of dynamic ram, two programmable serial i.o. channels, STE bus clock, reset and arbiter circuit. The disc controller supports either 3 or 3.5in drives with up to 1.6Mbytes total capacity.

Eight card slots are left free for expansion and the user may choose from a wide variety of modules, including an eprom programmer, v.d.u. drivers, a real-time clock with up to 48k extra memory, and a range of industrial cards such as a-tod and d-to-a converters.

Concurrent CP/M-86 is a multi-tasking, multi-user system that is event driven and holds all current programs in memory for fast response. The system comes with an integral power supply large enough to handle fully populated racks. Prices start at under £3000. Arcom Control Systems Ltd., Unit 8, Clifton Road, Cambridge CB1 4WH. EWW206
Design your own l.c.d.

...and EEV will make it for you. On their stand at the show, EEV were demonstrating their computer-aided l.c.d. design system. They can supply Lucid displays in many shapes and sizes with direct or multiplexed drive and a selection of viewing modes. They have also expanded their range of ready-built displays and these included an 8-digit, 7mm character height display and a 9mm character display, both requiring multiplexed drives. Two new static drive displays offered 20.6mm-high characters with six, seven-segment digits. Another new device was the 16-character display of 6mm character height, intended for use with telecommunications equipment. Lucid Liquid Crystal Displays, EEV, Waterhouse Lane, Chelmsford, Essex CM1 2QU. EWW207

Coded key

A thick film matrix is used to store a number, which can be used for identification and in security systems. The idea is not new; pins and a matrix of copper tracks on a p.c.b. have previously provided such coding. The new system, 'Pre-programmed Memory' from Welwyn, has miniaturized this onto a 16-by-16 matrix on a ceramic substrate, the device being 10mm square.

A layer of tracks 0.25mm wide and the same distance apart are printed onto the substrate in the 'x' direction. These are coated with a thick film dielectric material. A laser is used to punch neat holes in the dielectric so that when the 'y' conductors are printed on top, they make contact with the x layer through the holes. The laser can also print the code onto the device so that it may be visually identified. The manufacturing system is highly automated with automatic testing. The matrix may be incorporated into a thick-film circuit or mounted on a p.c.b., using surface-mounting techniques. Dynamic addressing of the matrix enables the retrieval of the code in bit serial form and provides a much greater range of codes than when using simple static coding.

Applications include the identification of animals in a herd, objects on a production line, electronic locks and identification tags for personal use. Welwyn Microelectronics, Bedlington, Northumberland NE22 7AA. EWW203

Graphics colour controller

Combining the functions of a colour palette and video memory, the IMS 170 from Inmos is capable of generating 256K different colours, of which any 256 may be displayed on a screen at one time. The 28-pin chip incorporates a colour look-up table, three (RGB) 6-bit d-to-a converters, video memory and microprocessor interface. Colour change is enabled by a pixel word mask which allows colours to be altered in one clock cycle. With a pixel rate of up to 50MHz, very fast graphics and animation may be achieved. The integrated circuit was on demonstration at the show but details are not yet final. Inmos Ltd., Whitefriars, Lewins Mead, Bristol BS1 2NP. EWW201

Power back-up

A range of uninterruptible power supplies is to be marketed by A.F. Bulgin, following the signing, at the Show, of an agreement between them and Power Equipment Ltd. The Power Bank range, rated at 120, 230 and 500VA, offers no-break performance and can maintain power for 15 to 20 minutes at full load. Output frequency and voltage are stabilized and the units also act as a buffer against spikes, surges and dropouts in the mains supply. They are fully protected against overload. The u.p.s. range complements Bulgin’s growing range of power products which includes switchmode power supplies. A.F. Bulgin & Co. plc, Bypass Road, Barking, Essex IG11 0AZ. EWW202

COMMENTS
9 Diodes
12 Transistors
20 Resistors
14 Capacitors
1 Inductance
3 D.A.C.
4 Memories
2 Latches
2 Buffers
75 Total

How one IMS G170 replaces 75 other components

Graphics colour controller

Combining the functions of a colour palette and video memory, the IMS 170 from Inmos is capable of generating 256K different colours, of which any 256 may be displayed on a screen at one time. The 28-pin chip incorporates a colour look-up table, three (RGB) 6-bit d-to-a converters, video memory and microprocessor interface. Colour change is enabled by a pixel word mask which allows colours to be altered in one clock cycle. With a pixel rate of up to 50MHz, very fast graphics and animation may be achieved. The integrated circuit was on demonstration at the show but details are not yet final. Inmos Ltd., Whitefriars, Lewins Mead, Bristol BS1 2NP. EWW201

Power back-up

A range of uninterruptible power supplies is to be marketed by A.F. Bulgin, following the signing, at the Show, of an agreement between them and Power Equipment Ltd. The Power Bank range, rated at 120, 230 and 500VA, offers no-break performance and can maintain power for 15 to 20 minutes at full load. Output frequency and voltage are stabilized and the units also act as a buffer against spikes, surges and dropouts in the mains supply. They are fully protected against overload. The u.p.s. range complements Bulgin's growing range of power products which includes switchmode power supplies. A.F. Bulgin & Co. plc, Bypass Road, Barking, Essex IG11 0AZ. EWW202

Graphics colour controller

Combining the functions of a colour palette and video memory, the IMS 170 from Inmos is capable of generating 256K different colours, of which any 256 may be displayed on a screen at one time. The 28-pin chip incorporates a colour look-up table, three (RGB) 6-bit d-to-a converters, video memory and microprocessor interface. Colour change is enabled by a pixel word mask which allows colours to be altered in one clock cycle. With a pixel rate of up to 50MHz, very fast graphics and animation may be achieved. The integrated circuit was on demonstration at the show but details are not yet final. Inmos Ltd., Whitefriars, Lewins Mead, Bristol BS1 2NP. EWW201

Power back-up

A range of uninterruptible power supplies is to be marketed by A.F. Bulgin, following the signing, at the Show, of an agreement between them and Power Equipment Ltd. The Power Bank range, rated at 120, 230 and 500VA, offers no-break performance and can maintain power for 15 to 20 minutes at full load. Output frequency and voltage are stabilized and the units also act as a buffer against spikes, surges and dropouts in the mains supply. They are fully protected against overload. The u.p.s. range complements Bulgin's growing range of power products which includes switchmode power supplies. A.F. Bulgin & Co. plc, Bypass Road, Barking, Essex IG11 0AZ. EWW202
Now Thurlby makes logic analysis affordable! from the new Thurlby LA-160 £395 + VAT

- 16 channels, expands to 32
- Clock rates up to 20MHz
- State and timing displays
- Selectable display formats
- 2K word acquisition memory
- Non-volatile reference memory
- Search and compare facilities
- Hard-copy data print-out

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer's reach.

Contact us now and get the full technical data.

Thurlby Electronics Ltd
New Road, St. Ives, Huntingdon,
Cambs. PE17 4BG, England. Tel: (0480) 63570

CIRCLE 35 FOR FURTHER DETAILS.

The world's most advanced low-cost bench multimeter!
Thurlby 1905a £325 + VAT

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1 μV, 1mΩ, 1nA.
- Full ac and current functions as standard
A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St. Ives, Cambs. PE17 4BG
Tel: (0480) 63570

CIRCLE 36 FOR FURTHER DETAILS.

Add 8 channels to your 'scope
New Thurlby OM358 multiplexer £169 + VAT

The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc.

The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms.

The OM358 has a bandwidth of 35MHz and 3% calibration accuracy. Each input has an impedance of 1MΩ - 20pF and accepts signals up to ±6V. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available.

Thurlby Electronics Ltd
New Road, St. Ives, Cambs.
PE17 4BG Tel: (0480) 63570

CIRCLE 37 FOR FURTHER DETAILS.

Hitachi Oscilloscopes performance, reliability, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended 14 model range that represents the best value for money available anywhere.

V-212/222 20MHz Dual Trace
V-223 20MHz Sweep Delay
(illustrated)
V-209 20MHz Mini-Portable
V-222 40MHz Dual Trace
V-232 40MHz Sweep Delay
V-509 50MHz Mini-Portable
V-650 60MHz Dual Timebase
V-1050 100MHz Quad Trace
V-1070 100MHz Four Channel
V-1100 100MHz DMM/Counter
V-134 10MHz Tube Storage
VC-6015 10MHz Digital Storage
VC-6041 40MHz Digital Storage

Prices start at just over £300 plus vat and that includes a full 2 year warranty. We hold the range in stock for immediate delivery.

For colour brochure giving specifications and prices ring (0480) 63570

Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 1TB.

CIRCLE 38 FOR FURTHER DETAILS.
SOME IDEAS NEVER SELL...
but our new innovations do!
Crotech 'scopes are chosen for use throughout the electronics industry and in education for their reliability and ease of use...
... and they're affordable too!!

LIKE THE 3132 DUAL TRACE 'SCOPE

The innovations...
* Component Comparator
* Triple Output DC Source
* plus...
* 20MHz Bandwidth
* 2mV/div Sensitivity
* 40ns/div Timebase
* TV Frame and Line Trigger
* Add and Subtract
* X - Y mode
... and very affordable at £312.00*!

For free details call:
Crotech Instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
Telephone: (0480) 301818

PC/XT - PERIPHERALS

<table>
<thead>
<tr>
<th>MAINBOARD B—103 4-Layer PC/ XT</th>
<th>£295</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT</td>
<td>£249</td>
</tr>
<tr>
<td>SUPER Mainboard PC/XT</td>
<td>£249</td>
</tr>
<tr>
<td>256K M/FUNCT. (par,iser,Clu,Cl.OK)</td>
<td>£169</td>
</tr>
<tr>
<td>384K M/FUNCT. 6-WAY (SEE ILL), OK</td>
<td>£289</td>
</tr>
<tr>
<td>EXTRA RAM EXPAND 2 DIP SWITCH</td>
<td>£95</td>
</tr>
<tr>
<td>PARALLEL Printer Card</td>
<td>£39</td>
</tr>
<tr>
<td>PARALLEL with 64K buffer (OK)</td>
<td>£109</td>
</tr>
<tr>
<td>MONOCHROME (text) display card</td>
<td>£319</td>
</tr>
<tr>
<td>COLOUR/GRAPHICS Card (2 layer)</td>
<td>£149</td>
</tr>
<tr>
<td>640 x 300 b/w + 330 x 200 4 colour</td>
<td></td>
</tr>
<tr>
<td>160 x 100 16 colour + light pen I/F</td>
<td></td>
</tr>
<tr>
<td>epw: 80 X 25 & 40 X 25 will drive TTL</td>
<td></td>
</tr>
<tr>
<td>MONO / COMPOSITE MONO COMPOSITE COLOUR / RGB</td>
<td></td>
</tr>
<tr>
<td>Monitors</td>
<td>£199</td>
</tr>
<tr>
<td>SUPER COLOUR/GRAPHICS Card (4 layer) 64K Display Memory — TTL mono spec.</td>
<td></td>
</tr>
<tr>
<td>640 x 350 b/w + 2 pages 640 x 350</td>
<td></td>
</tr>
<tr>
<td>single colour 16 intensities 80 col x 25 rows with 32 pages</td>
<td></td>
</tr>
<tr>
<td>COLOUR / GRAPHICS specifications</td>
<td></td>
</tr>
<tr>
<td>640 x 400 mono with 2 pages</td>
<td></td>
</tr>
<tr>
<td>640 x 200 16 colour 2 pages</td>
<td></td>
</tr>
<tr>
<td>640 x 400 16 colour</td>
<td></td>
</tr>
<tr>
<td>TEXT 40col x 50 row</td>
<td></td>
</tr>
<tr>
<td>4col x 50 row with 32 pages mono</td>
<td></td>
</tr>
<tr>
<td>PC, PC XT, PC AT COMPATIBLE</td>
<td>£399</td>
</tr>
<tr>
<td>MONOCHROME GRAPHIC CARD</td>
<td></td>
</tr>
<tr>
<td>VERSION B 720 x 348 graphic display, 1K static RAM buffer eliminates scroll flicker single parallel port standard</td>
<td>£229</td>
</tr>
<tr>
<td>MULTI I/O CARD — & WAY!!!</td>
<td></td>
</tr>
<tr>
<td>Dual floppy controller interface</td>
<td></td>
</tr>
<tr>
<td>Asynchronous RS232 serial comms port</td>
<td></td>
</tr>
<tr>
<td>Parallel printer, port, games adapter Clock/</td>
<td></td>
</tr>
<tr>
<td>Cal with battery backup</td>
<td>£249</td>
</tr>
<tr>
<td>EPROM WRITER CARD up to 128K. £175</td>
<td></td>
</tr>
<tr>
<td>MODEM CARD V21/V23 CCITT A/A/ AD</td>
<td>£169</td>
</tr>
<tr>
<td>FLOPPY DRIVE CONTROLLER (4 DRIVES)</td>
<td>£75</td>
</tr>
<tr>
<td>TEAC FD-355 half ht 320K floppy drc £175</td>
<td></td>
</tr>
<tr>
<td>RS222 SERIAL l/Face, 1port 50-9600 £49</td>
<td></td>
</tr>
<tr>
<td>SERIAL Async RS222C, 2port 50-9600 £69</td>
<td></td>
</tr>
<tr>
<td>GAMES ADAPTER $39</td>
<td></td>
</tr>
<tr>
<td>ADIDA 12b 16ch-A/D, 1ch-D/A</td>
<td>£139</td>
</tr>
<tr>
<td>TRANSPORT NETWORKING BOARD</td>
<td>£450</td>
</tr>
<tr>
<td>NeSSiMAIL Software</td>
<td>£360</td>
</tr>
<tr>
<td>NeSSiPOOL Software</td>
<td>£250</td>
</tr>
<tr>
<td>NeSSiDsk Disk Server Software</td>
<td>£150</td>
</tr>
<tr>
<td>NeSSiDOS Data Management Software £175</td>
<td></td>
</tr>
<tr>
<td>NET BOOT ROM for floppyless ops £50</td>
<td></td>
</tr>
<tr>
<td>NET STARTER KIT £975</td>
<td></td>
</tr>
<tr>
<td>384K MULTIFUNCTION CARD — SIX WAY!!!</td>
<td></td>
</tr>
<tr>
<td>64K to 384K RAM Memory</td>
<td></td>
</tr>
<tr>
<td>RS222C Serial Port</td>
<td></td>
</tr>
<tr>
<td>Real Time Clock / Calendar with Battery Backup</td>
<td></td>
</tr>
<tr>
<td>RAMDISK & FSPPOOL Software</td>
<td></td>
</tr>
<tr>
<td>Optional games port</td>
<td></td>
</tr>
<tr>
<td>Built & Tested £289.00</td>
<td></td>
</tr>
<tr>
<td>4-LAYER PC/XT MAINBOARD</td>
<td></td>
</tr>
<tr>
<td>64K to 1MB ON BOARD</td>
<td></td>
</tr>
<tr>
<td>8 Fully Compatible Slots</td>
<td></td>
</tr>
<tr>
<td>Built & Tested £295.00</td>
<td></td>
</tr>
<tr>
<td>RAM CHIP SALE!!!</td>
<td></td>
</tr>
<tr>
<td>£4164 64K DRAMS 150ns</td>
<td>£1.99</td>
</tr>
<tr>
<td>(upgrade PC/XT and compatibles)</td>
<td></td>
</tr>
<tr>
<td>£4156 264K RAM 150ns £5.99</td>
<td></td>
</tr>
<tr>
<td>£99.00</td>
<td></td>
</tr>
<tr>
<td>(upgrade OLIVETTI M24, COMPAG DISKPRO etc)</td>
<td></td>
</tr>
<tr>
<td>PC/XT CASE</td>
<td></td>
</tr>
<tr>
<td>8 - Slot</td>
<td></td>
</tr>
<tr>
<td>Hinged lid</td>
<td></td>
</tr>
<tr>
<td>Includes hardware</td>
<td>£39.00</td>
</tr>
<tr>
<td>PC to XT CONVERSION KITS</td>
<td></td>
</tr>
<tr>
<td>FOR IBM AND COMPARABLES</td>
<td></td>
</tr>
<tr>
<td>• NEW FAST CONTROLLER!!!</td>
<td></td>
</tr>
<tr>
<td>WESTERN DIGITAL 1022 SWX-2</td>
<td></td>
</tr>
<tr>
<td>SEGATE ST-506 STANDARD £249.00</td>
<td></td>
</tr>
<tr>
<td>• 10 MEGABYTE MR-521 5.25"</td>
<td></td>
</tr>
<tr>
<td>WINCHESTER HARD DRIVE, 2-HEADS, AVERAGE ACCESS 85ms £359.00</td>
<td></td>
</tr>
<tr>
<td>• 20 MEGABYTE MR522 5.25"</td>
<td></td>
</tr>
<tr>
<td>WINCHESTER HARD DRIVE, 4-HEADS, AVERAGE ACCESS 85ms £579.00</td>
<td></td>
</tr>
<tr>
<td>• HARD DRIVE CABLE SET £25.00</td>
<td></td>
</tr>
<tr>
<td>• UPGRADE 130WATT POWER SUPPLY £149.00</td>
<td></td>
</tr>
</tbody>
</table>

Prices exclude VAT and DELIVERY — for terms see our other advertisements.

DIGITASY (0342) 313427 / 24631 tlx: 957547
Business Systems Ltd, 56 Maple Drive, East Grinstead, W. Sussex RH19 3UR. UK

CIRCLE 13 FOR FURTHER DETAILS.

CIRCLE 89 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JULY 1985 89
Oscilloscopes and logic analysers

A number of new instruments from Gould were launched at the All Electronics/ECIF show. Pride of place goes to the 1425 oscilloscope which can function as a conventional real-time oscilloscope but can also be used as a digital storage instrument. It incorporates a high degree of 'intelligence' combined with features such as repetitive sampling for storage to 20MHz, automatic measurement for voltage, time and frequency as well as RS232/423 interfaces for use with personal computers. The interface also allows stored waveforms to be copied out on a digital plotter; different traces can be plotted in different colours and scaling parameters and graticule lines can be printed automatically. An analogue output can be used to provide low-cost printouts through a potentiometric pen recorder.

An optional addition to the oscilloscope is the 125 waveform processor. This is a small keypad unit that allows waveforms to be stored, recalled for comparison or analysis, magnified, attenuated, transferred between channels, manipulated arithmetically, averaged, filtered, shifted or compared with datum points indicated by cursors on the screen. The oscilloscope can store reference waveforms for comparative testing. The oscilloscope costs £2090.

Also featured was the K205 logic analyser with many enhancements over previous models. It now has a user-defineable disassembler and a number of processor analysis packages for the disassembly of all the popular 8 and 16-bit microprocessors. The analyser can test up to 48 channels at 100MHz bandwidth and combines these with circuit analysis and variable triggering. It may be used for the analysis and trouble shooting on the very fast bit-slice processors, e.g. circuits, gate arrays, and discrete logic systems. Gould Electronics Ltd., Instrument Systems, Roebuck Road, Hainault, Ilford, Essex IG6 3UE. EWW210

New power supplies

Following a management buy-out by Advance Power Supplies from their former masters, Gould, Advance were celebrating by launching a number of new products at the Show. They were particularly proud of higher power versions of existing ranges. For example, the Hiflex modular multi-output system has a 1kW version with a redesigned, fan-cooled input module. It is suitable for powering digital systems. Also featured were several new variants in the Powerflex P-350 system, an open frame unit with plug-in cards to give up to five separate outputs; fixed or variable 5V, 10 to 15V, and 24V. The 350W unit now includes a signals board which can give a mains-failure alarm signal and remote shut-down. Advance Power Supplies Ltd, Raynham Road, Bishop’s Stortford, Herts CM23 5PF. EWW 214.
I.c. design made easy

A program for running on the IBM PC, Sceptre II/M, may be used to develop i.c.s using the AMI 3-micron single and double metal cell libraries. A recent enhancement also allows it to be used for gate array design, allowing schematic entry, functional simulation and netlist generation. As AMI, a USA/Austrian joint company with a design and marketing centre in Swindon, are keen to offer their services as silicon manufacturers, they are offering the software and licences at knock-down prices. Sceptre also runs on a Sirius.

AMI have also been working on the Mentor Graphics workstation and have come up with an adaption which allows the design of large-scale gate arrays ranging from 1000 to 4000 gates. System users can have complete control over all stages in the design process, including physical layout and interconnection. The design tasks can be automatic or interactive and it is possible to place manually and route sections of a circuit, or macros, where automatic placement might not put them in quite the right place. The logical operation of the circuit can be simulated and examined at specific nodes. Timing analysis, together with voltage, capacitance and temperature figures are all provided automatically and the circuit may be altered to change these parameters where they may be critical. The process up to the point of submitting masks to the manufacturer may be carried out entirely by the customer or, at any stage in the design, may be passed over to AMI for completion.

This is all part of the service which AMI can provide from complete design of a circuit to the manufacture of the silicon circuits. They claim that they can make a rom from a programmed eprom within two weeks. Specializing in custom circuits, they also manufacture some standard products, especially telecommunications i.c.s. and are currently reducing their circuit geometry from three microns to two and eventually less. AMI Microsystems Ltd, Prospect Place, Swindon, Wilts SN1 3JZ. EWW 211.

Instrumentation on a PC

A number of hardware modules and a software package to link them all together constitute a complete instrumentation package for the IBM Personal computer. The Hewlett-Packard instruments include a 50MHz digital storage oscilloscope, a 4.5-digit multimeter, a 100MHz counter/timer, a relay multiplexer, 5MHz function generator, 12-bit digital-to-analogue converter, 16-bit digital input/output module and an 8-channel relay actuator. The modules are powered independently from an isolated power supply. Up to eight units may be connected to a PC bus and each PC can cope with two bus lines. The units fit together rather like a stacked hi-fi system. All the instruments use the computer screen for readout and simulate the discrete versions of the instruments. The software is menu-driven and offers easy control through a mouse on any of the IBM personal computers or by touching the screen when combined with H-P's own 150 or 160 personal computer. Hewlett-Packard have devised a new bus protocol for the system, PCI-b, which includes both analogue and digital components. This interconnection bus is lower cost than IEE-488 although the system as a whole can also communicate over the IEE-488 bus. Hewlett-Packard Ltd, Miller House, The Ring, Bracknell, Berks RG12 1XN. EWW 213.
A Major company's over production problems, and a special BULK PURCHASE enable TWO outstanding offers.

COLOUR MONITOR SPECIALS

'SYSTEM ALPHA' 14 Multi Input Monitor. Made in the UK by the famous REDIFFUSION Co. for their professional computer system this monitor has all the features to suit your immediate and future monitoring requirements. Two types of video input. RGB input. The RGB input allow direct connection to most makes of micro computers and VCR's. An internal 50Hz line output and audio amplifier may be connected to your system's audio amplifier or to a VCR machine, giving superior colour and sound quality. Many other features including PAL tube. Matching BBC colour monitors are available on front panel. Separate Contrast and Brightness — even in RGB mode. Two types are available. Separate Colour and audio controls for Composite Video input. BNC plug for composite input, 15 way "D" plug for RGB input, modular connection etc. etc.

This must be ONE of the YEAR'S BEST BUYS!!!

Supplied BRAND NEW and BOXED, complete with DATA and 90 day guarantee. SUPPLIED BELOW ACTUAL COST — ONLY £149.00 + Carr.

PC/AGA RGB 80-100 Monitor. Little or no use made of these monitors, Suplus enables us to offer this special converted DECCA RGB Video TV Monitor at a super low price of only £60.00, a price for a colour monitor as yet unheard of! Our own inventory, safety modification and special 16" definition PIL tube, combined with the tried and tested DECCA 80/100 series chassis to give a 80/100 inch monitor. Printed circuits and parts quality found only on monitors costing 3 TIMES OUR PRICE. WHAT WE GUARANTEE you will be delighted with, the quality of the parts has to be seen to be believed. Supplied complete and ready to plug directly to RGB MICRO computer or any other system with a TTL RGB output. Other features includes integral audio amplifier, modular construction, screen compartment. 34 H x 24 D, 90 day guarantee. Supplied in EXCELLENT condition, ONLY £99.00 + Carr. Also available UN-MODIFIED but complete with MOD DATA. Only £75.00.

Carridge and Insurance on monitors £10.00.

DATA MODEMS

Join the communications revolution with our super range of DATA MODEMS with peace of mind from our manufacturer's guarantees and budget. Micro MODEMS are EX BRITISH TELECOM and are made to the highest standards. Hardware and outputpin to RS232 interfaces are standard to all our MODEMS. In conclusion, an inexpenensive MICRO modems, with an RS232 serial interface.

1200 baud baud negotiation will display up to 135 columns x 25 lines. Housed in an attractive black and white plastic case. Brushed metal inlay. B/W only £62.95, 24" KOG in a black case £10.50.

ORDER now — while stocks last. Carridge and Ins. £10.00.

PRINTERS

EX-DEAD STOCK 1036 MODEM. £125.00. Supplied with full installation for 240v working with the famous REDIFFUSION Co. for hobby communications. Includes all interface details. Call Sales or Order Direct.

RESTORE V.23 loop and keyboard for comms. line to VDU with RS232 interface, rebuilt and working £95.00. Cases for 1000's of telex equipment packs. Supplied complete and fully tested. For details phones or V23 Interface 01-679 1888.

TIME'S BEST SELLER!!!

SPECIAL 300 BAUD MODEM OFFER

Another GIANTIC purchase of these EX BRITISH TELECOM, BRAND NEW and little used DATA MODEMS is only £250.00 to make the FINAL REDUCTION, and for you to join the exciting world of DATA COMMUNICATIONS an UNBELIEVABLE price. The highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 28 has all the standard requirements for data base, business or hobby communications. Here is your last chance to own.

300 baud full duplex
Full remote control
CGIT time standards
2400 Mains operation
Modular construction
Direct isolated connection

Order now — while stocks last. Carridge and Ins. £10.00.

RIVIERA EX STOCK FROM £49.00. Call Sales Office for Details.

HUNDREDS OF PRINTERS!£250.00.

Call Sales Office for Details

1 only large CALCOM 1036 ASO 3 pen drum plotter and off 915 magtape controller. Good working order. ADD VAT TO ALL PRICES £250.00.

SUPER DEAL! NO - SUPER STEAL!!
The FABULOUS 25CP8 TEC Starwriter

BRAND NEW AT ONLY £499 + VAT

Made to the very highest specs the TEC Starwriter FP1500-25 features a heavy duty cast chassis and DIABLO type print mechanism giving superb registration and print quality. Microprocessor electronics offer full IBM/Apple/Mac command compatibility and fully interchangeable. Many other features include bi-directional printing, switchable pitch of 10, 12 or 13 i.p.c., full width 381 m paper handling with up to 163 characters per line, fraction feed rollers for single sheet or continuous paper, internal buffer standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with printing, switchable processor electronics heavy duty die cast FP1500.25 £140.00. Optional chassis and DIABLO type spec the TEC SRS £15.50. Experlmentors LAMDA LMCC5V 110v £29.99 LAMBDA LAM 350w £15.50. Other features include

- Standard RS232 serial interface with handshake.
- Fraction feed rollers for single sheet or continuous paper.
- Internal buffer.
- Heavy duty die cast FP1500.25.
- DIABLO type spec.

ELECTRONICS

Don £140.00.

OPTICAL

chassis and DIABLO type spec the TEC SRS

Supplied absolutely BRAND NEW with printing, switchable processor electronics heavy duty die cast FP1500.25 £140.00.

LAMDA LMCC5V 110v £29.99 LAMBDA LAM 350w £15.50.

EXPELMENTORS

LAMDA LMCC5V 110v £29.99 LAMBDA LAM 350w £15.50.

An advantageous purchase of brand new surplus allows a great QUIRKY, full travel, bi-directional printing, switchable 10, 12 or 13 i.p.c., full width 381 m paper handling with up to 163 characters per line, fraction feed rollers for single sheet or continuous paper, internal buffer standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with printing, switchable processor electronics heavy duty die cast FP1500.25 **£140.00. Optional chassis and DIABLO type spec the TEC SRS £15.50.

SUPPLIED IN BRAND NEW CONDITION.

An advantageous purchase of brand new surplus allows a great QUIRKY, full travel, bi-directional printing, switchable 10, 12 or 13 i.p.c., full width 381 m paper handling with up to 163 characters per line, fraction feed rollers for single sheet or continuous paper, internal buffer standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with printing, switchable processor electronics heavy duty die cast FP1500.25 £140.00. Optional chassis and DIABLO type spec the TEC SRS £15.50.

LAMDA LMCC5V 110v £29.99 LAMBDA LAM 350w £15.50.

EXPERIMENTORS

LAMDA LMCC5V 110v £29.99 LAMBDA LAM 350w £15.50.

An advantageous purchase of brand new surplus allows a great QUIRKY, full travel, bi-directional printing, switchable 10, 12 or 13 i.p.c., full width 381 m paper handling with up to 163 characters per line, fraction feed rollers for single sheet or continuous paper, internal buffer standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with printing, switchable processor electronics heavy duty die cast FP1500.25 £140.00. Optional chassis and DIABLO type spec the TEC SRS £15.50.
Advertisements accepted up to 12 noon July 3 for August issue

DISPLAYED APPOINTMENTS VACANT: £19 per single col. centimetre (min. 3cm). LINE advertisements (run on): £4.00 per line, minimum £25 (payable). BOX NUMBERS: £5 extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS). PHONE: IAN FAUX, 01 661 3033 (DIRECT LINE)

15% VALUE ADDED TAX NOT INCLUDED Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

The best approach

£7,000-£30,000 + Car

* Where does your interest lie: Graphics; CAD; Robotics; Simulation: Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms; Radar; Opto and Laser?

* Experienced in: VLSI: Microprocessor Hardware or Software: Digital and Analogue circuits: RF and Microwave techniques?

* There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers

* For free professional guidance: Call: 0638 742244 (till 8pm most evenings) or write (no stamp needed) to

Electronic Computer and Management Appointments Limited
FREEPOST, The Maltings, Burwell, Cambridge, CBS 8BR.

Haringey Health Authority
North Middlesex Hospital
Medical Physics
Technician III/IV

To assist in the provision of an electronic monitoring service for Haringey Health Authority, including equipment maintenance for Intensive Care Unit, Theatres, Labour Wards etc. Preference will be given to candidates with experience in electronic monitoring and design work but newly qualified applicants will be considered. Qualification: ONC/HNC or equivalent Salary: Grade IV £6,325 £7,005 per annum inclusive of London Weighting. Grade III £5,305 £6,052 per annum inclusive of London Weighting (entry to this grade requires three years relevant experience). Further information from Mr D. Halley, 01 807 4071 ext 679. Application forms and job description from the Personnel Department, North Middlesex Hospital, Stebbing Way, Enfield. N18 1QX. Telephone 01 807 971 ext 579. Closing date 6th July 1985.

(2605)

Technician Engineers Communications and Electronics

A Planned Career in Technology in the Cotswolds
Salaries up to £11,445

- Vacancies at both Technician Engineer and Engineering Technician level.
- Challenging work in the development and support of highly sophisticated communications and computer systems.
- Opportunities for gaining experience in a wide variety of technical roles.
- Extensive engineering facilities.
- Career planning aided by regular assessments of performance.
- Advancement opportunities on the basis of proven ability.
- Overseas service (voluntary).
- Flexible working hours with up to six weeks leave.
- Relocation expenses in most cases.

Applicants for the higher grade of Technician Engineer should normally possess a H.T.E.C. Higher National Certificate, Diploma in electronics or other relevant subject; or a City and Guilds Full Technical Certificate, or an equivalent qualification. An aggregate of at least 3 years relevant training and experience is required. Registration as a Technician Engineer (Eng) would be an advantage.

Salary Scale: £9,113 - £11,445

Applicants with H.T.E.C. ONC or equivalent and at least 4 years relevant training and experience are eligible for posts at the Engineering Technician level for which a structured training programme is provided.

Salary Scale: £6,599 - £9,135

Interested? Then for either post send for full details and application form to the address below, quoting Ref: "622/85"

(2599)

The Recruitment Office, CCHQ, Room A/1108
Oakley, Priory Road, Cheltenham, Gloucestershire GL52 5AJ
Or Telephone (0242) 32912/2

University of Leeds
Electronics Technician

[Advert for a position at the University of Leeds, requiring experience in electronics, circuit diagrams, and writing research documentation.]

(2623)
Opportunities in Broadcast Engineering

SONY BROADCAST LTD is well established as one of the world leaders in the professional broadcast television industry, with branches throughout Europe, the Middle East and Africa. Our wide range of sophisticated products includes Cameras, VTRs/VCRs, Camcorers, Editors and the new High Definition Video System. Applications are now invited from experienced engineers for the following career opportunities located at our international headquarters in North Hampshire.

Senior Base Service Engineer
Reporting to the Head of Base Service, the successful candidate will be expected to lead and contribute to a team of engineers and technicians engaged in the service and repair of our range of products. In addition to an electronics qualification, applicants should have a significant track record in the broadcast industry. Previous supervisory experience would be an advantage.

Senior Engineer – Customer Acceptance
The successful candidate will be responsible for the technical support of complex video products, such as Betacam and the new Sony studio camera. Key activities will include the optimisation of performance, and the conducting of customer acceptance tests for both new and established products. A minimum of 3 years broadcast experience and the ability to effectively maintain the customer interface is essential.

Full product training will be provided for all the above positions and generous relocation assistance offered where appropriate. In addition, we offer attractive salaries and first class conditions of employment, including Free Private Medical Cover and Company Pension/Life Assurance Scheme.

If you are interested please contact David Parry, Personnel Officer.

Sony Broadcast Ltd.
Belgrave House
Basing View, Basingstoke
Hampshire RG21 2LA
United Kingdom
Telephone: (0256) 55 0 11

College of Technology, Yarmouk University, Jordan.
Faculty and technical staff positions in EE Technology available Sep 85 and Feb 86. Relevant educational qualifications and demonstrated teaching/industrial abilities required. Areas of interest include, but are not restricted to Power & Machines, Communications, Electronics, Computers, Controls, Instrumentation, and Manufacturing. Responsibilities include teaching and advisory duties in a quality undergraduate EE Technology program, as well as assisting in the overall development of the College. Rank and Salary commensurate with qualifications and experience. An excellent benefits package. Positions open until filled. Letters of application, detailed resumes, copies of official transcripts, and at least three professional letters of reference should be sent to Faculty Affairs, Division of Yarmouk University, Irbid, Jordan. (2574)

Electronics Research at The Open University

Applications are invited from candidates with a good degree or equivalent, qualification in an appropriate subject to study for a full-time research degree in the Electronics Discipline at The Open University. Research projects are available in a range of subjects including: Telecommunications (Digital Systems, LAN's, Conference TV, Satellite TV), Man-Machine Interface, Robotics, Computer Vision and Graphics, Ultrasonics and Acoustics, Computer Design, Microprocessor Systems, Instrumentation, Signal Processing and Filters, and Computer Aided-Design, Learning and Manufacture.

The Electronics Discipline has good laboratory facilities and many industrial contacts, and is based in the OU campus in the new city of Milton Keynes. Suitably qualified candidates may be eligible for an SERC studentship.

Further particulars and application forms may be obtained from: THE OPEN UNIVERSITY, Disciplines Office, Oxford OX1 3LB.

Appointments

Nottingham Health Authority
Medical Physics/Electronic Technician Grade III
Hearing Services Centre
General Hospital
Nottingham
The Hearing Services Centre is a friendly department of 19 staff. It has links with the Medical Physics Department also at the General Hospital, and the Institute of Hearing Research, Clinical Deafness.

The successful applicant will be based at the General Hospital but will be expected to undertake dispensing work in schools in Nottinghamshire. They will be concerned with development, repair and maintenance of a wide range of Audiological and Hearing Aid equipment for both Health and Education.

A car would be desirable.

Applications are invited for the post of Senior Chief Technician. The post would involve the day-to-day running of the Hearing Services Department and the supervision of the senior technicians engaged in the repair and maintenance of the equipment. Previous engineering experience is essential.

QN Support Engineer
To provide engineering support to the inspection and customer acceptance activities. Responsibilities will be varied and will include conducting customer acceptance tests to recognised performance standards, preparation of test procedures, the maintenance of test facilities (including ATE) and the solving of technical problems encountered by the QA inspectorate. Previous engineering experience with broadcast equipment is essential.

QA Technician
The successful candidate will assist in the provision of technical support to the QA and customer acceptance functions. Duties will include product alignment, the maintenance and construction of test facilities, and the control of fixed assets, repair and recalibration schedules. Applicants should possess a formal electronics qualifications - a minimum of Higher TEC (or equivalent). Previous experience would be an advantage.

For further details contact:
Mr. G. Armstrong-Bednall
Senior Chief Technician
Hearing Services Centre
General Hospital
Nottingham
Tel: Nottingham 476161 ext 437

For job description and application form contact:
Personnel Department
General Hospital
Nottingham
Tel: Nottingham 476161 ext 469

Closing date: 3rd July 1985

(2608)
Telecommunications Technicians

The posts available are varied, but broadly they fall into 2 groups at, HANSLOPE PARK (MILTON KEYNES) and CENTRAL LONDON

for installations, maintenance and other work associated with HF communications equipment, VHF, UHF and microwave links and associated test equipment; teleprinters, telephone subscribers' apparatus, PMBXs, PAXs, PABXs and ancillary equipment including that using analogue and digital techniques and voice frequency telegraph.

Applicants should have at least 4 years' relevant experience, and must hold one of the following qualifications:

- ONC in Engineering (with pass in Electrical Engineering 'A')
- BTEC/SCOTEC certificate in relevant discipline
- City and Guilds Telecommunications Technicians Certificate Part II (Course No 271) or Part I plus Maths 'B', Telecommunications Principles 'B' and one other subject
- a pass in the Council of Engineering Institutions Part I examination
- an equivalent or higher relevant qualification

Ex-Service personnel who have had suitable technical training, and with at least 3 years' in an approved senior technical capacity will also be considered.

Salary: £6512 — £9009; London £1300 more, starting salary may be above minimum for those with additional relevant experience. Promotion prospects are good. Relocation assistance may be available.

For an application form write to:
Foreign & Commonwealth Office, Hanslope Park, Hanslope, Milton Keynes, MK19 7BH, or telephone Milton Keynes (0908) 510444 Ext 232. Please quote reference TT/02/85.

Closing date for applications 31 July 1985.

FOREIGN AND COMMONWEALTH OFFICE
(2617)

Analogical Engineer

Berks Commercial Company c£17,000

Our client a major privately owned group of companies, due to continued expansion, are seeking a top calibre analogue engineer to become involved with their successful product development programme based around tape and cartridge systems for commercial markets.

Involvement will cover the design testing and releasing to production products and product sub assemblies. Ideally you should have experience in the following:

- Several years design experience
- Design of Servos motor/tacho systems
- Low level signal amplifiers and data recovery circuits
- Digital ability in TTL, CMOS, Pals, and Mps (preferably Motorola).

In return you will receive all the benefits expected from joining an expanding and commercially aware company excellently salary, superior working conditions, the use of the latest "kit", genuine career prospects) and many other advantages associated with working for a company operating at the very forefront of technology.

For further information please telephone Stephen Salt, or write enclosing a full CV.

Management Personnel
Recruitment Section & Search
2 Eton Court, Eton, Windsor, Berkshire.
Telephone: (07535) 54256 (out of hours) (0294) 76 1721

Professional Career Opportunities

The Easy Way to look for your new job from the comfort of your own armchair. Our well qualified consultants will carefully match your requirements against appropriate vacancies.

We have many clients seeking Engineers and Technicians at all levels and we are particularly interested in hearing from you if you have experience in the following:

- Signal Processing
- Technical Sales
- ATE Programming
- Radar Systems
- RF Development
- Real Time Software

Your next step is to complete and return the attached coupon or telephone John Prodger on 0442 47311 or one of our duty consultants on 0442 212650 during evenings or weekends.

Executive Recruitment Services

The International Specialists in Recruitment for the Electronics, Computing and Defence Industries
Maylands Avenue, Hemel Hempstead, Herts HP2 7LD

NAME
(Mr/Miss/Mrs)
ADDRESS
POST CODE
TEL NO.
QUALIFICATIONS
AG£
OTHER
QUALIFICATIONS
AGE
NONE
CGI/HNC
DEGREE
OTHER
SALARY
£0-6000
£6-10000
£10-15000
£15000+
JOB
WW2
(2618)
COMMUNICATIONS MAINTENANCE SUPERVISOR

TELEVISION OUTSIDE BROADCASTS
Depending on experience and qualifications

Responsibility for supervising the Communications Test Area which specialises in maintaining all the Sound and Vision Radio Links and line testing equipment associated with Television Outside Broadcasts. This involves a high level of diagnostic skill, both for system and unit maintenance and the ability to manage support staff. Development work and liaison with other BBC Engineering Departments and outside organisations is also included.

Applicants should have a proven ability to supervise a modern technical area, understanding of maintenance techniques and hold a HNC, B.TEC Higher Diploma or degree in Electronic Engineering or equivalent.

For further information and an application form write to or telephone, quoting ref. 85 E 0926 W/W J.W. Roden, BBC Television Outside Broadcasts, Kendal Avenue, Westfields Road, Acton, London W3 ORP. 01-992 5344 Extension 272.

We are an equal opportunities employer. (80/4)

BLOOMSBURY HEALTH AUTHORITY
Department of Medical Physics and Bioengineering
University College Hospital, London.

EQUIPMENT MANAGEMENT TECHNICIAN (MPT IV)
Ref RT28
To work for the Department’s Electromedical Equipment Unit. The Unit is involved in the provision of an equipment management service for the Bloomsbury District. The task is to keep a wide range of patient connected equipment serviced, cleaned, calibrated and ready for immediate use. Duties include visits to wards to service equipment. Some knowledge of electronics and a practical aptitude are essential.

Appointment according to qualifications and experience.

MEDICAL PHYSICS TECHNICIAN IV
Ref RT35
£6,037-£8,188 pa inc London Weighting
Further details available from Mr R. Blackwell, on 01 636 5152.
For application forms and job descriptions please contact the Personnel Department on 01 387 2374 (24 hour service) quoting the appropriate reference number.

Closing date
AN EQUAL OPPORTUNITIES EMPLOYER

RECORDERING
STUDIO MAINTENANCE MANAGER
Required for the new North London Studio complex. Applicants should have a minimum of 3 years experience in this field. Knowledge of Studer tape machines, SSL desks an advantage.

Phone: Chris Dunn
01-459 8899

YOU ARE UNDER STARTERS ORDERS
For the biggest Mobile Rally in the South Of England on July 14th 19 a.m. to 5 p.m., at the Brighton Race Ground. Hage “Bring & Buy Stall”, 20,000 sq ft under cover exhibition area, plus attractions for the XYL and children, restaurant facilities. The Rally which caters for the whole family. Talk In S22 and 3.5 MHz. Admission £1 children free if accompanied by an adult. For further details ring 07918-5103.
Appointments

More Hi-Tech Jobs

£8000 - £20,000

As a leading recruitment consultancy we have a wide selection of opportunities for high calibre Design, Development, Systems and supporting staff throughout the UK.

If you have experience in any of the following then you should be talking to us for your next career move:

- **ARTIFICIAL INTELLIGENCE** • **IMAGE PROCESSING**
- **MICRO HARDWARE & SOFTWARE** • **GUIDED WEAPONS**
- **OPERATIONAL RESEARCH** • **RF & MICROWAVE** • **OPTICS**
- **MATHEMATICAL MODELLING** • **SIMULATION** • **C**
- **HIGH LEVEL PROGRAMMING** • **SYSTEMS ENGINEERING**
- **ACOUSTICS & SONAR** • **FLUID DYNAMICS** • **RADAR**
- **SATELLITES** • **AVIONICS** • **CONTROL** • **ANTENNA**

Opportunities exist with National, International and consultancy companies offering excellent salaries and career advancement.

For Free and Confidential career guidance call John Spencer or send a detailed C.V. Please quote reference W/W/3

Skyquip Technical Services
85 High Street, Winchester, Hampshire SO23 3AP
Tel: (0962) 69478

TV BROADCAST ENGINEERING

Avitel is a small, well established and rapidly growing company, designing and manufacturing an expanding range of equipment for the Professional Broadcast Television Industry.

We have a modern purpose-built factory, offering excellent working conditions, some 10 miles south of London in Kent. As part of our programme of expansion, we have a senior engineering vacancy for which we require an enthusiastic individual, keen to grow with the Company.

TEST DEPARTMENT MANAGER

This post involves the training and supervision of test staff, planning of resources to meet production workload and specification of equipment for the department.

Close liaison with our Development, Projects, Production and Sales departments is necessary to ensure the smooth progress of equipment from the design stage through to final production.

A good appreciation of modern analogue and digital circuit operation is required, including microprocessor systems. A knowledge of modern ATE techniques is also required.

Familiarity with Broadcast Video equipment is an advantage. Qualification to degree level or equivalent is desirable, and at least five years’ relevant industrial experience is required.

Please write for an application form, and detailed job description, enclosing your C.V. and quoting reference TM.

(Avitol Electronics Ltd., Unit 6, Croydon Road Industrial Estate, Tannery Close, Beckenham, Kent, BR3 4BY. Telephone: 01689 7027 Telex: 894360 AVITEL-G)

ELECTRONICS ENGINEER

Required by fast growing company. An electronics engineer, competent in digital and analogue systems. Must be capable of working without supervision in the production, testing and trouble shooting of our range of instruments. While a practical approach is essential, the successful candidate will be qualified to at least HNC standard. Salary level will not be a problem for the suitable candidate.

Write in the first instance detailing age, qualifications and salary expected to:

Mr. B.E. Stevens, Managing Director, Hounsfield Test Equipment, 37 Fulleton Road, Croydon, Surrey. CR0 6OR (2575)

Philip Drake Electronics is a successful and growing company that has now established itself as the leading U.K. supplier of studio communications equipment and programme quality sound distribution modules to the Broadcasting industry.

An increasing workload has lead to a requirement for the following personnel:

PROJECT AND TEST ENGINEERS

Project and test engineers are required to work in the Systems Engineering Group which primarily deals with the custom design, manufacture and test of studio talkback and intercom systems.

Project Engineers should have a suitable engineering qualification and at least two years' experience of system/project engineering with professional analogue equipment. The work includes detailed system design, liaison with customers, and technical support for production and test.

Test Engineers should have analogue experience but have the ability to adapt to digital technology. The job entails testing custom built equipment from prototype circuit boards to complete studio systems and providing after sales service and support. The post is one which provides excellent opportunities for advancement within the systems group.

TECHNICIAN/JUNIOR ENGINEER

An opportunity exists for a Technician/Junior Engineer to join our product development team. The successful candidate will be involved in all aspects of design from concept to production. He/she will work primarily with analogue circuits although there will be involvement with digital circuits. An ability to work with minimum supervision is essential and it is expected that the successful candidate will be qualified to TEC or degree level although ability is more important. Experience of the professional audio industry would be an advantage.

SOFTWARE ENGINEER

We are currently looking for two suitably qualified software engineers to strengthen our development team. The successful candidates would be required to write software in PASCAL and ASSEMBLER for the MC68000 family and must be able to work on their own initiative with minimal supervision. The ability to communicate ideas clearly is essential.

In addition to attractive salaries, the company offers a non-contributory pension scheme, BUPA membership and a pleasant working environment in newly constructed premises in Welwyn Garden City.

If any of the above positions appeal to you please apply in writing including your current CV or phone Jenni McCoy on Welwyn Garden City (0707) 333866 for an application form.

Philip Drake Electronics Ltd., 37 Broadwater Road, Welwyn Garden City, Herts AL7 3AX.

(2589)

(Avitol Electronics Ltd.)
Broadcast Systems Engineering

Turning top products into total Systems.

Established in 1978, to specialise in the high technology field of professional broadcast television equipment, Sony Broadcast now has 10 overseas branches providing sales and other specialist engineering support to our customers, in a marketing area that covers Europe, the Middle East and Africa. We now employ 400 staff and enjoy a prominent position as a market leader with a wide range of state-of-the-art broadcast video and audio products.

The Systems Engineering Division plays a key role in the success of the Company, designing and equipping complete sound and vision broadcast and recording facilities. These facilities may comprise an entire television studio complex or a single mobile outside broadcast unit, often forming part of an existing, highly sophisticated national broadcast network, or representing a pioneering thrust into one of the world’s remotest areas.

Applications are now invited for the following challenging opportunities in the Systems Group.

Project Engineer

You will be expected to make a significant contribution to a project team which will turn a design concept into reality. This will involve the in-depth design, building and commissioning of facilities that will satisfy our customers’ diverse needs. To assist, you will be supported by a Systems Production Department comprising Materials Acquisition, Mechanical Engineering, Installation and Drawing Office skills. Project time-scales of 4-12 months will offer you a stimulating challenge, and the satisfaction of seeing your contributions in action fast.

Applicants should possess a formal electronics/electrical engineering qualification (a minimum of a Higher BTEC) together with experience gained in the electronic manufacturing industry. A television broadcast background would be particularly relevant. The ability to interface confidently with technical customers is essential. Both positions will involve some overseas travel, and full product training will be provided.

First class conditions of employment are offered, and generous relocation assistance will be given where appropriate. Our salaries reflect the importance we place upon attracting the best highly skilled engineering staff and keeping them.

Please apply in the first instance to David Parry, Personnel Officer with details of your career to date.

Marketing Engineer

As a member of a Specialist Systems Marketing Team, you will be engaged in the conceptual design and costing of broadcast Systems. You must have an ability to analyse operational and technical requirements and turn them into practical solutions. You can expect to meet a wide range of customers from Professional Broadcasters and Production Companies through to National Government Officials in order to discuss their project and offer expert advice.

To assist in the preparation of detailed proposals you will have the use of modern computer based graphic design and information processing equipment.

Please apply in the first instance to David Parry, Personnel Officer with details of your career to date.

Sony Broadcast Ltd.
City Wall House
Basing View, Basingstoke
Hampshire RG21 2LA
United Kingdom
Telephone (0256) 59 583

SONY
Broadcast
MEDICAL RESEARCH COUNCIL
INSTITUTE OF HEARING RESEARCH
SOUTHAMPTON CLINICAL OUTSTATION

RESEARCH OFFICER
IN ELECTRONICS
(RO/SRO)

A vacancy exists for a research officer with experience in electronics at IHR Southampton. The post will be based at the Institute of Sound and Vibration Research at the University, but will also relate to the other half of the team's activities, at the Royal South Hants Hospital.

The research is on clinically applicable aspects of hearing and deafness, advanced testing techniques, and the use of signal processing equipment by computer for which a very high level of technical support is required. The appointee will be required, with minimal supervision to design and construct new equipment involving transducers and interfaces. There will also be a little general technical support for the research team including calibration, repair and servicing work. A general electronics background is needed and a knowledge of Z80 CP/M systems and of digital interface techniques would be advantageous. For further information about the post please contact Dr. A.R.D. Thornton (Tel: 0703 37946).

The appointment will be made on the Research Officer grade (£8574-10,938) or Senior Research Officer grade (£8574-10,938). The MRC has a pension scheme and generous leave allowances.

(2566)

CALIBRATION/
SERVICE ENGINEERS

c £8,250 + Overtime + July Review

Bradley Electronics is one of the leading organisations in the electronics industry. We provide a range of advanced electronic equipment and engineering services to MoD, Industry and the Health Care market. Our Repair and Calibration laboratory, the largest of its type in the UK, provides a comprehensive service for commercial and military organisations, with its full facilities for maintaining and calibrating all types of electronic equipment.

Opportunities exist for Engineers to work with a wide variety of equipment, including Multimeters, Oscilloscopes, Navigation Systems and Electronic Counter Measure Systems. Ability to trace, diagnose and rectify faults in these complex equipments is essential. Education to a minimum of C&G/TEC or equivalent is required, together with considerable practical knowledge and experience in electronic testing, servicing of radar, and telecommunications equipment. Experience of this nature gained in the Services will be of particular value.

The Company is located close to the underground, bus routes and the North Circular Road/M1. The salary and conditions package available is consistent with the Company's membership of a large, successful Group with considerable resources.

For full details please call our Personnel Manager, Roger Loughney, on 01-450 7811. Or write to him at Bradley Electronics Limited, Earlstown House, Neasden Lane, London NW10 1RR.

Bradley Electronics

(2560)

LINK ELECTRONICS

www.americanradiohistory.com
THE START
OF
SOMETHING
NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge … why not join us in GCHQ?

We are recruiting …

RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.

The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.

Salaries start at £4,762 at age 19 to £5,765 at age 25 and over during training and then £6,399 at 19 to £8,510 at 25 and over as a Radio Officer. Increments then follow annually to £11,741 inclusive of shift and weekend working allowances.

For full details and application form phone 0242 32912/3 or write to:

GCHQ

The Recruitment Office A/1108
Prior’s Road
CHELTENHAM
Gloucestershire GL52 5AJ

CLIVEDEN

TEST ENGINEERS

For full systems test on data communications networks.

£8,000 + Wokingham

FIELD SERVICE ENGINEERS

USA training on ATE systems. Suf exp experienced repair technician.

£10,000 + car Woking

TECHNICIAN ENGINEER

To maintain VAX PDP11 & flight simulation systems. to £11,000 Middlesex.

TEST ENGINEER

Fault-find data-processing equipment to component level. Some systems involvement. £10,500 Herts

SERVICE ENGINEER

Mobile radiocommunications equipment. £8,000 + car Hants & Central London.

TEST/SERVICE ENGINEER

Repair & fault-find microprocessor based broadcast systems. £9,000 + Reading.

Phone/write/call Roger Howard C.Eng MIEE, Cliveden Technical Recruitment Consultants, 92 The Broadway, Bracknell, Berks RG12 1AR. Tel: Bracknell (0355) 489489 (six lines)

(25/78)

ARTICLES FOR SALE

(20/16)

040 376236

SERVICES

(26/37)

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test & Repair Service. O.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service. Quality workmanship by professionals at economic prices. Please telephone 01-646 5686 for advice or further details.

TAMMOWS MANOR
302-310 COMMOMSIDE EAST, MITCHAM

(139/11)

It’s easy to complain about an advertisement.
Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers’ complaints.

Any complaint sent to us is considered carefully and, if there’s a case to answer, a full investigation is made.

If you think you’ve got good reason to complain about an advertisement, send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority.

If an advertisement is wrong, we’re here to put it right.

ASA Ltd. Dept 1 Brook House, Torrington Place, London WCIE 7HN

This space is donated in the interests of high standards of advertising.

ELECTRONICS & WIRELESS WORLD JULY 1985

101

www.americanradiohistory.com
FREE P.T.H. PROTOTYPE of the finest quality with every C.B. radio, supplied by us. Competitive hourly rates, and standard of work. Dobson Radios Limited, 31 High St., Hollington. Tel: (0677) 47-41-6700. (2126)

ARTICLES FOR SALE

MARTIN ASSOCIATES (ELECTRONICS) LTD. Partnership, Ely, Cambridge, CB7 5EG. Tel: Avebury (0673) 219

Marconi TF1064 (20 MHz) £1500, Marconi TF1064 (50 MHz) £2500. Transistor, TV and radio repair. Accessories, etc. Fully equipped radio and TV workshop. We are open Monday to Saturday 8.30am to 5.30pm. Telephone 210-202.

CAREER OPPORTUNITIES - EQUIPMENT DESIGN - ELECTRICIAN - ELECTRONICS ENGINEER - MECHANICAL ENGINEERING - QUALITY ASSURANCE - SKILL REQUIREMENTS WHICH 25.5.CM TO 512.CM - USE - H25.5CCMS OR RA37 £4010 £75

FOR SALE

1) Tektronix 510 VectorScope £450. 2) Tektronix 1485 multi standard vector £295. 3) VectorVision 6610 Electro-static printer-platter £496. 4) Inductixx electronic visual platter £45. 5) Tektronix 496X 1485B/496 Mono £750. 6) Tektronix 4010 £98. 7) Div LA 56 KS Printer £100. 8) Facit tape punch model 5070 £250. 9) HP 7846 As Pam Fax Ten £1650. Tel: Cambridge (0223) 68990 (2695)

FLUKE 8060A DIGITAL MULTIMETER for sale, complete with all attachments. Also a number of fluke high current probes, temperature probes, shunts, etc. All as new will separate. Details Mr I. Robinson, Moorcroft, Fernham Road, Lostwithiel, Cornwall. (2012)

TO MANUFACTURERS, WHOLESALERS, BULK BUYERS, ETC.

LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMI-MONITOR, all types, FULLY INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THRISTORS, etc. WIRE, WIRE, WIRE, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C290, C296, DISC CERAMICS, PLATE CERAMICS, etc. ELECTRICITY COMPENSATORS, PRINTING WIRE, CABLES, SCREENED WIRE, SCREW, NUTS, CHOKES, TRANSFORMERS, etc. ALL AT KNOCKOUT PRICES - Come and pay us a visit at ALADDIN'S CAVES TELEPHONE: 445 0749 442713

21 Lodge Lane, North Finchley, London, N. 12 (5 minutes from Tally Ho Centre) (1813)

SLIGHT BATCH PCBs, produced by your work, also DIALS, PANEL & STANDARDS, ELS. Cameras work undertaken. FAST TURNAROUND. Details: Orabbix, 28 Tomorai Gardens, Rothwell, Essex. Tel: 0551 360-5559. (2879)

DATA PROCESSING AND MANUFACTURE ANALOGUE, DIGITAL, RF AND MICRO-WAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype small batch production. Adenmore Limited, 27 Longstowe Estate, Bracknell, Berks. Tel: (0344) 203787. (2827)

DESIGN, DEVELOPMENT AND PROTOTYPES. Digital and microprocessor based equipment our speciality. Prototypes, small batch and large quantities undertaken to the highest quality and with fast turnaround. For details of our hardware and software services, write to: Eletronics, 11 Broomowhain Road, Maidstone, Kent. (2811)

SERVICES

DILCH LOGIC ANALYZER LAM250 £100, 50MHz, 16 chans: 32 digit, 2 external clocks, 6 clock qualifiers and 8 trigger qualifiers, TTL & ECL thresholds. See glitch capture. Including 638PP active logic plugs £2,500. Tel: Borondo (0240) 71919. (2884)

HALF PRICE ENCLOSURES

Manufacturers Brand New Surplus and Seconds at almost Half Price. 19" Rack Mountable Enclosures - Available. No damage and only blemishes on the finish at the very worst. Send S.A.E. for list. D. Phillips The Laurels, Tiptope Road, Worthing, West Sussex BN13 1JF. Tel: 01444 28411 (2884)

QUARTZ CRYSTALS OSCILLATORS AND FILTERS of all types, Large stocks of standard sizes, Specials supplied to order. Personnel and equipment available to design and build and are in the process of designing and producing a series of products. Call george Electronics, Merrivale, Somerset TA16 9NN. Tel: 0438 728841 (2472)

SHMETFOLD FOLDERS vice or bendable £100, 14" £65, Leaves £50. 7834 time. (2588)

WAVEGUIDE: Flanges and dishes. All standard sizes and alloys (new material only) from stock. Special supplies to order. Earth Stations, London SW9 8HN. Tel: 01-933 42134 (2909)

The Publishers take all reasonable precautions to ensure that classified advertisements are genuine, but readers must satisfy themselves as to whether they will have obtained what they require before entering into transactions, particularly if they involve large sums of money. (2909)

www.americanradiohistory.com
WANTED

All types of surplus electronic components and equipment.
We specialise in factory clearance.
SGS Electronics,
The Vineyard, Bowley Lane, Boddenham, Herefordshire HR1 3LF. Tel (056) 884 532

EC COMPONENTS
We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement.
Tel: 01-208 0766
Telex: 8814998

WANTED
SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote for complete factory clearance.
B. BAMBER ELECTRONICS
5 Station Road, Littleport, Cambs.
Phone: Ely 0324 880785

SURPLUS
We offer good prices for test equipment, components, redundant computers, PCB's, connectors. Immediate settlement.

TIMEBASE
94 Alfriston Gardens
Sholing, Southampton S02 8FU
Telephone: (0703) 431 332

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money.

STEWART OF READING
110 Wykeham Road
Reading RG6 1PL
Tel No: 0734 68041

TOP PRICES PAID FOR
ALL TYPES OF SURPLUS
TEST EQUIPMENT,
COMPUTER EQUIPMENT,
COMPONENTS etc.
ANY QUANTITY.

WANTED
Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.
M & B RADIO
86 Bishopsgate Street
Leeds LS1 4BB
0532 435649

TURN YOUR SURPLUS I.Cs, transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES-HARDING & CO, 103 South Brink, Wisbech, Cambs. 0945 584188.

Don't Forget! for your classified adverts ring
Ian Faux 01 661 3033

CLASSIFIED ADVERTISEMENTS
Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To “Wireless World” Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.00 PER LINE. Average six words per line. Minimum £25 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus £5
- Cheques, etc., payable to “Business Press International Ltd.” and cross “& Co.”
- 15% VAT to be added.

NAME ...
ADDRESS ..

REMITTANCE VALUE ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS
COMPUTER APPRECIATION
16 Walton Street, Oxford OX1 2HQ
Tel: (Oxford) (0865) 55163 Telex: 838750

TEXTRONIX Model 540/541 Integration Unit. Less than 2 years old and AS NEW (MLP £8880). £3500
INTEL Model M6800/5 10Mbyte hard disc (Hawk) for M6800. Without controller £1500
INTEL UNIVERSAL PROM PROGRAMMER for M6800. With personality cards for 8748 and 2716 (with adapter for 2764) £850
INTEL EPROM 8283 - 280 ICs for 8748 £850
UNIVAC Model 2200 microcomputer. APPLE IIe & CP/M compatible machine with 6502 & 286 processors (8K RAM, 16K memory, detached keyboard, monitor with 200 cpi bidirectional printing with U/L case, self test. Compact but heavy duty machine. BRAND NEW & BOXED £250
ROCKWELL AM 65/40 single board 6502 development system with display, keyboard, power supply and cassette recorder. £500
MARKMANN & TALLY Model MM130A matrix printer, with microprocessor control. 200 cpi bidirectional printing with U/L case, self test. Compact but heavy duty machine. BRAND NEW & BOXED £350
CENTRONICS Model 720 matrix printer, 132 cpi, 165 cps. £135
COMTERA Model 150-2 printer, NEW. £119
DIABLO model 1506 typewriter, printer (45 cpi). £93
OLYMPIA Scripto Typewriter with Centronics interface. Two available, both in box. £143
CIRCLE ELECTRONIC'S Display. £100
MOTOROLA and E appoint (Dual floppy disc drive) (PERTEC FD400) for EXORCISR £400

CIRCLE 63 FOR FURTHER DETAILS.

104 ELECTRONICS & WIRELESS WORLD JULY 1985

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 94 – 103

PAGE PAGE PAGE

AEL Crystals 10 Fiel Electric Ltd 3
Airlink Transformers Ltd 85 Fluke (GB) Ltd 49
Allied Engineering 48 Fylde Electrical Laboratories 10
AM Electronics 12 Harns Electronics 40
Arcum Control Systems 44 Harrison Electronics 26/78
Artron Products Ltd 40 Hart Electronics 78
Aspen Electronics 77 Henley Audio Electronics 15
Beckenham Peripherals 10 Hewlett Packard (R) 26
Black Star Ltd 65 Hinson Ltd (R) 112
Bull J 74 Hynix Electronics 12
Butterworths 55 IFW International 12
Cambridge Kits 61 ICL Equipment 12
Cambridge Microprocessor Systems 9 ILP Electronics 48
Carl H Power Products 14 IMS Electronics 12
Clark Masts Ltd 65 Interface Quartz Devices 40
Combe Martin 78 J. Ball (Electrical) Ltd 74
Computer Appreciation 26, 85, 104 Keithley Instruments Ltd 11
Conquern Software 2 Kudos Electronics Ltd 84
Cricklewood Electronics 64 Langarc Supplies/RST Valves 73
Crotech Instruments 39 Levell Electronics 23
CW Products 64 Martin Associates (Electrical) Ltd 78
Cybernetic Application 77 Measurement Devices Ltd 3
Dataman Design 68 Memex (Hitech Computers) 14
Dewsbury Electronics 4 Micro Processor Engineering 9
Digita Business Systems 89 Newrad Instrument Cases 20
Display Electronics 92/93 Nomrex 24
Electronic Brokes 5 Number One Systems 77
Electroquale Ltd 77
EMS Mq Ltd 64
Erksine Ltd 20
Essex Electronic Centre 74
Electronic Systems 24
Electronics & Wires World 24

OVERSEAS ADVERTISERS
France and Belgium: Pierre Mussard, 18 – 20 Place de la Mediterrane, Paris 75008.
ITALY
Japan: Mr Inoue, Trade Media - BPJ (Japan), B. 232 Azabu, Heights, 15, 10th Roppongi, Minato-ku 105. Telephone: (03) 585 0581.
Tecra Electronics Ltd 84

Opus Supplies 19
Pantechic 3
Pingobble Software 11
PPI Components 30/31
Powertran/Cybernetics Ltd 23
Pye Union 5
Radar Electronics 20
Radioclock Clocks 3
Radio Components Specialists 12
Research Communications 26
Richardson Electronics 84
Raffe Electronics (PF) 2
Seal Electronics 13
Sherwood Data Systems 4
Soft Life 5
Sonarage P.E.A. 95
Stewart of Reading 9
Strumtech Engineering 15
Surrey Electronics Ltd 40
Tape Automation 85
Taylor Bros (Othilam) Ltd 13
Technomatic 82/83
Tektronics’s (UK) Ltd.............. Inside back cover
Thame Electronics 14
Thurley Electronics 88
TIC Semiconductor 65
Time Electronics 48
Triangle Digital Service 48
Warwick Design Group 84
Waugh Instruments 13
Vairadio Power Ltd 11

Jack Mantle, The Farley Co., Suite 650, Rama Building, Cleveland, Ohio 44115. Telephone (216) 821 1919
Ray Rickles, Ray Rickles & Co., P.O. Box 2028, Miami Beach, Florida 33142. Telephone (305) 532 7201
Tim Parks, Ray Rickles & Co., 31 Meade Drive N.E., Atlanta, Georgia 30321. Telephone (404) 237 3742
*Also subscription agents.
Now! Tek quality and expert advice are just a free phone call away...

Our National Order Desk line gets you fast delivery of the industry's leading value/performance portables...and technical advice from experts!

The 60MHz 2213A, 2215A and the 100MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included.

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement. The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature.

These UK manufactured scopes are obtainable through the National Order Desk. Call us to order or obtain literature, or to talk to our expert on scope applications.

...talk to Pete
Dial 100 and ask for Freefone Tek-scope
Tektronix UK Ltd
Fourth Avenue, Globe Park, Marlow, Bucks SL7 1YD
Tel: (06284) 6000
Telex: 847277 & 847378

The Company reserves the right to modify designs, specifications and change prices without notice.
Spot On!

Time has been our business since 1974. Precision has been our aim. We have experience in display, code generation, off air time, off air frequency and frequency standards. Single units to the largest system.

Our time is at your disposal.

European Electronic Systems Limited,
Woocham Mortimer Place,
Maldon, Essex. CM9 6SW.
Telephone: 024541-5911.
Telex: 995917

CIRCLE 3 FOR FURTHER INFORMATION