Switched-mode power supplies

Improving BBC data recording

Look after your nicad batteries

70cm helical antenna design
CONGUIN SOFTWARE

Low Cost IBM PC Based CAD Systems

smARTWORK
An Electronic LIGHT-BOX allowing layout of component pads with auto or interactive tracking. Artwork can be printed on Epson dot matrix printer or plotted on Houston Instrument or Hewlett Packard plotters.

smARTWORK Software only **£895.00**. Complete systems from **£3500.00**.

CEDS
A full PCB design system allowing the design of boards from schematic diagrams. Systems expandable from basic manual placing and routing to auto-tracking and schematic capture. Also available with technical drawing facilities and auto dimensioning.

Software from **£1200.00**. High resolution colour systems from **£6000.00**.

AUTOCAD
General 2D drafting package with auto-dimensioning. Will support a variety of graphic displays and output devices.

Software from **£1000.00**. Systems from **£3495.00**.

SAM 2001 — XT
An IBM compatible with 10Mbyte hard disk, will run all IBM software. Can be upgraded to run as fast as an AT.

From **£1995.00**.

Note: All prices exclude VAT and are subject to change without notice.

Terms: Strictly CASH WITH ORDER.

PSPICE
Circuit simulation package allowing simulation of upto 120 transistors with unlimited number of nodes. Performs AC, DC and transient analysis. Can use CEDS schematic capture as input.

Software from **£950.00**.

Conguin Software, Freepost, Lancaster LA1 1BR.

Phone: 0524 381423

CIRCLE 1 FOR FURTHER INFORMATION
Fast camera interface
by Safa S. Omran
Taking one pixel from each line of a video camera signal to feed a micro is a solution to the speed problem. This method uses eight.

Sampled-data serves — a new analysis
by D.M. Taub
Fourth instalment in this new tutorial series derives the response of a servo system to sinusoidal input.

Managing research and development
by R.E. Young
In which the "small-team" approach to R & D contrasts with the hierarchical style of management.

Helical antennas for 435 MHz
by James Miller
Simple-to-make design having true circular polarization. Intended for satellite working, but excellent also for local and long distance operations.

Switched-mode power supplies
by K.L. Smith
This part of the d.c. supplies series explains the theory, practice and design of switchers.

Reactivating Band III
A report from the Mobile Radio Users' Association conference which discussed trunked repeater networks and worsening interference problems.

Look after your nickel cadmium cells
by Rod Cooper
NiCd cells are expensive to buy yet are often thrown away for lack of a few drops of water. Rod Cooper discusses more failure modes and suggests how to avoid them.

Cassette recording with the BBC micro
by David Stonebanks
Improved performance with conventional recorders and an alternative digital method.

Valve disc preamplifier
by Richard Brice
Simple design without overall feedback, using passive RIAA equalization.

Power '85
List of exhibitors

Two-dimensional digital filter design
by R.N. Gorgui-Naguib, K.M. Henein and R.A. King
This detailed comparison of current design techniques follows the authors' earlier article on one-dimensional filters.

Channel code and disc format
by John Watkinson
Part of our definitive Compact Disc series, this continuation shows how the information isorganised on the disc surface.

REGULARS

News Commentary
New blood
End of ATS-1
Towards a thinking computer
Sending text to Wireless World
Coming to this screen shortly...

Books

Communications
Costly DEF
V.h.f. changes
Radar up-date
JAS-1 in 1986

Feedback
D.c. supplies
Electro reductionism
Relativity
Energy transfer

New Products
Fast tape storage
256K s.ram
Circuit diagrams on a micro
META is both an Editor and a very special Assembler. Most of META resides on a 16K EPROM, but the tables defining the language the Assembler is to translate Assembler for ANY instruction - you specify which you want to use in your source code.
The large box on the right details all the instruction sets that have been coded for META right now. All these are supplied free with META. The other 4 instruction sets will be supplied as soon as they are written and tested as FREE UPGRADE. We're on Freeport, so you won't even have to pay postage.
META contains a fully integrated Editor. This follows Wordwise as closely as possible in its philosophy (e cursor keys used to move text - quickly - up and down and across central editing line etc), and includes Global/Selective Search/Replace. Markers (copy, save, delete, find marked text), load text to cursor, character count and heaps of other features.
If an error is detected during assembly, the Editor is right there, on the bad line with a plain English error message describing the fault. Complex expressions are allowed by the Assembler, including brackets to 8 levels. All calculations are to 32 bits.

Macros and IF/ELSE/ENDIF Conditional Assembly are fully supported, and both are nestable. Macros may also pass parameters, and contain local labels. There's also a range of EQU pseudo-ops for data setup, all of which may have a list of arguments separated by a comma. Disc datafiles can also be inserted into the object code. A complex integrated Macro Library system is also included - you can invoke a routine and pass parameters by just giving its name.

Source code is assembled in two fast phases (we don't use the groaning slow BUPP & BGET as do some inferior Assemblers. Instead portions of the source code are effectively *LOADed in at top speed.) The resultant object code may be sent to disc files, sideway RAM, the user or printer port (full details and examples in manual), or down the RS423.
Remember that all instructions sets supported by META have access to all the above features (Macros, the Library etc). META comes complete with a comprehensive manual and function key strip. 16K of source code for a 6502 BBC game is included free and the META system disk, which demonstrates many of the features of this assembler, (as well as being a neat game!).

Meta can assemble all these instruction sets right now:

- 65xx series incl. coms
- 68xx/63xx series incl.
- 6809
- 8048 series
- 8080/8085
- Z8
- Z80

And free updates ("Real Soon Now!") include:
- 68000
- 8088/8086
- Z8000

Micro Nova

CRASH BARRIER FREE POST FLITWICK BEDFORD MK45 1YP
No stamp required

CIRCLE 83 FOR FURTHER DETAILS.

COMPUTER APPRECIATION
16 Walton Street, Oxford OXI 2HQ
Tel: Oxford (0865) 55163 Telex: 838750

UNITRON Model 2200 Microcomputer, Apple 11/E and CP/M compatible machine with 6502 and Z80 processors, 64 Kbyte memory, dedicated keyboard with numeric pad and floppy disc reader/writer. BRAND NEW AND BOXED.

ROCKWELL AIM 85-40 single board 6502 development system with display, keyboard, power supply and cassette recorder.

MANNESMANN/ITALY Model M80MC Matrix printer with microprocessor control 200 CPS bidirectional printing with cut off, i.e. fast. Compact but heavy duty machine. BRAND NEW AND BOXED.

CENTRONICS Model 782 Matrix Printer, 132 col., 160cps. bidirectional printing with self test in graphics mode.

CENTRONICS Model 150-2 printer, NEW.

DIABLO TYPE/AUSY WHEEL PRINTER/45S/P5.

OLYMPIA SCRIPTA, Daisy wheel printer with centronics interface. Two available, both use processor chips and are not available. The pair.

PERITEC Model 314/4B floppy disc drives AS NEW.

SHUGART SA400/5T floppy disc drives.

DEC boxes and power supplies. Various models available (BA11MF SB11AA, BA11LX) with 122 bit addressing or easily modified and various optional processors etc. COMES WITH 16K MEMORY.

GROUP 2 machine for transmitting documents over an ordinary phone line. BRAND NEW AND BOXED.

CIRCLE 84 FOR FURTHER DETAILS.

BIRD Electronic Corporation

THRULINE® Directional Wattmeters
TERMALINE® RF Coaxial Load Resistors
TENULINE® Attenuators and accessories from stock

Aspen Electronics Limited

The exclusive UK representative for Bird Electronic

2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1185 Tlx: 8812727

CIRCLE 52 FOR FURTHER DETAILS.

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD WESTON-S-MARE, AVON BS23 1AU
TEL. 0934 416033

CIRCLE 55 FOR FURTHER DETAILS.
LEVELL OFFER AN EVEN BETTER DEAL

LEVELL OSCILLATORS, FUNCTION GENERATORS, AC/DC VOLTMETERS, FREQUENCY COUNTERS, DECADE R/C BOXES, TRANSISTOR and INSULATION TESTERS.

CROTECH OSCILLOSCOPES
HAMEG OSCILLOSCOPES
HITACHI OSCILLOSCOPES

THURLBY POWER SUPPLIES, MULTIPLEXERS, DIGITAL MULTIMETERS, CAPACITANCE METERS and LOGIC ANALYSERS.

LEVELL DELIVER FREE IN THE UK.
CATALOGUE, PRICE LIST and QUANTITY DISCOUNTS ON REQUEST

LEVELL ELECTRONICS LTD. Maxon Street, Barnet, Herts., EN5 5SD, England Telephone: 01-440 8686 & 01-449 5028

COLOURJET 132

36 COLOUR INK JET PRINTER.

Cash price £569 + VAT

Centronics parallel interface with full Viewdata and free BBC Micro dump listing.

also: prints OVERHEAD TRANSPARENCIES

Options available
- Buffered RS232/Viewdata interface
- Apple II & IIe interface
- IBM pc dump

Specifications:
1280 dots/line in double res. mode
37cps in full colour
Friction feed roll paper and single sheet feed A4
Ink cartridges 4 million character life

INTEGREX LIMITED Portwood Industrial Estate, Church Gresley Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432. Telex: 377106

CIRCLE 77 FOR FURTHER DETAILS.
FORTH = TOTAL CONTROL

FORTH programs are instantly portable across the most popular microprocessors.

FORTH is interactive and very fast.

FORTH programs are structured, modular, and easy to maintain.

FORTH gives control of all interrupts, memory locations, and I/O ports.

FORTH gives full access to DOS files and functions.

FORTH application programs can be converted to turnkey programs.

FORTH Cross Compilers can generate ROMnable code for 6502, 6809, 68000, 6808, 8086, 6808/3, 1802, 28, 8070, 28000, 9900x, LSI-11.

We are the FORTH specialists, we also stock a large range of books, listings, and implementations for machines ranging from Spectrum to Macintosh to VAX.

FIELD ELECTRIC LTD

3 SHENLEY RD, BOREHAMWOOD, HERTS.

Telephone: 01992-6009

FARNELL FAN COOLED MULTI-RAIL SWITCH MODE 12V 15A AT 15amp - 5V 12AMP - 12V 4AMP 12Amp £28.00

GOULD 1MA47 12V 3AMP D.C. LINEAR £16.95

115 V.A.C. 4" FANS NEW & BOXED £4.95

230 V.A.C. 4" FANS EX-EQUIP: NEW CONDITION £5.00

G.E. PANEL METER 0-5 A.C. £7.00

M.P.T. 1/2 HEIGHT DISK DRIVE 5"/ 40 TRACK SINGLE SIDED NEW £65.00

ALL PRICES INCLUDE 15% VAT UNLESS STATED.

SATELLITE TELEVISION RECEPTION EQUIPMENT

ANTENNA

1.8m dia aluminium petal dish complete with polar mount 45 ± 5 dB gain at 11.25 GHz. £609 + VAT (carriage included)

SATELLITE TELEVISION RECEIVERS

- Suitable for 4GHz and 12GHz F. input 430 - 500MHz £399 + VAT (carriage included)

Get to know more about the latest technology by reading "Tommorow's Television Today" by Michael J. Stone. This well illustrated book is a comprehensive guide and covers all aspects of TV technology, including a fundamental theory of satellite television reception. Price: £9.95 inc p+p

SATELLITE TECHNOLOGY SYSTEMS LTD

3 Thicket Road, Staple Hill Bristol BS16 4LW

Telephone: 0272 573878 Telex: 449752 CHACOM G ATTN: STS CIRCLE 90 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JUNE 1985
Sowter Transformers

With 42 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES:

- Microphone transformers (all types)
- Microphone Splitter/Combiner transformers
- Input and Output transformers
- Direct Injection transformers for Guitars
- Multi-Secondary output transformers
- Bridging transformers
- Line transformers
- Audio Mixing Desk transformers (all types)
- Miniature transformers
- Microminiature transformers for PCB mounting
- Experimental transformers
- Ultra low frequency transformers
- Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts
- Inductive Loop transformers
- Smoothing Chokes
- Filter, Inductors
- Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts)
- 100 volt line transformers to speakers
- Speaker matching transformers (all powers)
- Column Loudspeaker transformers up to 300 watts or more

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY or P.A. QUALITY. Our prices are highly competitive and we supply large or small quantities and even single transformers. Many standard types are in stock and normal despatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

E. A. Sowter Ltd.
Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990
The Boat Yard, Cullingham Road, Ipswich, IP1 2EG, Suffolk, P.O. Box 36, Ipswich, IP1 2EL, England
Phone: 0473 52794 & 0473 219390; Telex: 987703G SOWTER

The LJ Robotic Work-Cell System

Based around the popular LJ ATLAS Robot, this work-cell provides an automatic parts-selection system running under full microcomputer control.

LJ Electronics Ltd
Technical Teaching Systems for Microelectronics, Microprocessors and Robotics

Francis Way
Bowthorpe Industrial Estate
Norwich, NR5 9JA, England
Tel: (0603) 748001; Telex: 975504

CIRCLE 69 FOR FURTHER DETAILS
Cellular data

A method of reliably transferring data by cellular telephone network from and to a mobile subscriber has been developed. Racal Vodat has worked with Racal Research to develop a protocol named CDLC (Cellular Data Link Control) which is specifically designed to overcome the problems of data transmission encountered on a cellular radio network, particularly when switching between cells which are subject to fading and hand-off. The first CDLC products will be add-on modems for cellular phones which will provide 1200/s pseudo-full-duplex transmission. Any digital equipment with RS232 interfacing may be connected to the system. They include personal computers, printers, v.d.u.s and other terminals. Racal-Vodafone believes that this is at the forefront of world cellular technology and will be a major factor in persuading customers to use their system.

Tape makers slam levy

The Government proposed levy on blank recording tape is condemned as unworkable, unnecessary and punitive by the Tape Manufacturers Group. Under the plans levies would be imposed of 10% on the price of audio and 5% on video tapes. Each cassette would carry a levy stamp and manufacturers and retailers selling tapes without stamps could be fined. Those caught using unstamped tapes could also be prosecuted. Christopher Hobbs, Chairman of the TME likened the levy to "the Government adding £50 to the price of cars sold to allow for offences that the owners might commit." He also said that the scheme would be an "administrative nightmare, full of loopholes for the unscrupulous to exploit the public."

The proposals of the percentage levies are for the manufacturers' prices. By the time the distributors and retailers have added their mark-up and v.a.t. is added, the levy could be doubled. The scheme could be circumvented by the import of tape from overseas undercutting the local product.

"The incentives to counterfeit the levy stamp would be enormous."

The Group also maintains that the need for levies has not been proven. In an independent survey of video recorder use, less than 1% of recorded material is kept for repeat viewings. The vast majority of video usage is for time-shifting; recording programmes for viewing at a more convenient time. In audio, another survey has shown that less then 22% of the population buy blank tape for any purpose; almost 70% of record taping is from the user's own records and 25% do it to maintain their records in good condition.

Powerful exchange

Claimed to be the world's most powerful exchange, the international telephone exchange at Keybridge House, Vauxhall, London, can handle 800 000 call attempts an hour. The digital exchange can cope with data, text, facsimile and graphics as well as telephone speech. It is supplied by Thorn EMI and is based on the Ericsson AXE10 design with an APZ212 processor. At present it has capacity for 13800 circuits and this is to be expanded to 50 000 circuits on completion next year.

The exchange has been upgraded over the past nine months and all the operations including replacing the central processor have been carried out without disrupting the service. It is used primarily for international direct dialing calls and it is linked to BT's other international exchanges. It also handles transit calls (from one country to another through the UK) and operator-connected calls.

End of ATS-1 after 18 years

After more than 18 years of service, NASA's first Applications Technology Satellite, ATS-1 has failed to respond to commands to correct its eastward drift and will lose its useful orbital position in about six months. Launched in 1966, with an expected life of three years, the satellite has provided voice and data communications to wide area around the Pacific Basin. During its service it has scored several significant achievements:

It was the first to transmit a full-earth, cloud cover picture from geosynchronous orbit. It transmitted real-time tv pictures from the Apollo 4 splashdown in the Pacific. It was used between 1967 and 1968 for two-way communications tests between aircraft to determine navigational effects of satellite communications.

In 1971 it was used for the link between us and Soviet scientists during an atmosphere, sea and ice conditions experiment in the Bering Sea.

It has been employed in several medical connections including the transmission of cardiographs from Hawaii to New Zealand and from Alaska to the University of Washington; for a link-up between 12 nations for medical conferences with the University of Hawaii and as a link to paramedics in remote parts of Alaska.

ATS-3, launched in 1967 is still in operation and covers the US and most of the Atlantic as well as the eastern Pacific including Hawaii.

Can your computer climb Mount Everest? The challenge is posed by Summit, one of four entertaining games of strategy for young geographers in a new software pack from BBC Publications. The others include an exploration game designed to give an understanding of contour maps and an intercontinental airtliner simulation in which the pilot must navigate his way safely to his destination. The games tie in with a BBC radio series for schools, but can be used independently in the classroom or at home. Introducing Geography is available for the BBC Micro on three well-filled discs at £20 and there is an accompanying book for £4.95.

From the same source comes Maths with a Story, which with subtlety and imagination introduces children of primary school age to elementary probability, the four-colour map problem, graphical co-ordinates and the concept of symmetry. A cassette for the BBC Micro (transferrable to disc) costs £10.95 and versions for the Acorn Electron, Spectrum and Commodore computers are in preparation. The associated book for parents will be published on May 23.
Here is the news... without interference

A 14GHz satellite terminal made by the British company GEC McMichael will soon be helping to bring American television audiences live pictures of new events which until now would have been impossible to cover.

The CBS network has ordered GEC McMichael's Newshawk satellite terminal, which is the first transportable Ku-band earth station to meet the Federal Communication Commission's exacting technical specifications.

The orbital positions of satellites used by American broadcasters for temporary links are so close together that off-axis radiation by ground stations using them must be strictly controlled. Newshawk meets the requirements easily by virtue of its unique one-piece antenna design. An offset-fed Gregorian configuration provides an r.f. path unobstructed by mounting struts and hardware which in other designs lead to side-lobes.

GEC McMichael designed the antenna using specially-developed computer software. They say there is no simple mathematical expression to represent the curvature of the dish, but its overall shape is elliptical, combining a large radiating area with compactness, transportability and low wind-loading.

Two versions of the terminal are available: the 3m-high trailer-mounted model shown in the photograph, or the version bought by CBS which packs away so small that it can be taken as luggage on scheduled air services. A two-man crew can have it up and running in as little as 15 minutes.

A special feature of the package is a video compression codec which makes it possible to transmit the video and sound signals in digital form at a choice of data rates ranging from 1.5Mbit/s to 8Mbit/s. The rate can be selected to suit the operating conditions: with the slower ones, the clarity of the picture is reduced in areas where movement occurs.

Sending text to us

Business Press International, our parent company, has installed a Case Beeline System which can be used by those with a microcomputer and a modem to send text. The modem needs to be set up to 300Baud, even parity with 10bits/character. To use the system dial 01-661-8978, wait for a response tone from our modem, connect your modem.

Transmit in capitals EWW, the system will respond with + + + STF GO; Then type the destination, e.g. "For the attention of the editor"; your details and the message, in upper and lower case. Sign off with NNNN, in capitals. Terminate call. At the receiving end the message is treated like a Telex and rushed straight to us.

Now that negotiations for the BBC's TV licence fee are over, it is worth looking at what the opposition is up to. And by that we don't mean ITV. Or even radio.

The cable TV industry has been in the doldrums lately. The euphoria brought on by the Government's initial announcements a couple of years ago soon evaporated. And as disillusion with British prospects for the new medium set in, several powerful Anglo-American engineering marriages formed to exploit it found themselves on the rocks. But now things are looking up once more; and on council estates in Croydon and elsewhere a few brave spirits are hard at work pushing cables down holes.

But, these sporadic ventures apart, the British cable TV industry is far from booming. It still consists for the most part not of engineers or programme-makers but of dark-suited businessmen whose instinct tells them that there is money to be made out of cable, without so far having revealed precisely how.

The whole affair turns on money, of course, and it is interesting to note that there is general agreement that there is no prospect of supporting cable TV entirely through advertising income. The TV audience of the future will be fragmented into ten, twenty or more minority groups watching ten or twenty different channels. How could any programme deliver enough viewers to attract the advertisers? It would scarcely be worth the expense of producing the commercials.

So most of the money for cable programmes will have to come from viewers' subscriptions. In other words, while Westminster and The Times try to steer us away from the licence fee system, the cable TV industry is doing the exact opposite; the difference being that the monthly 'licence fee' for a cable TV connection now works out at two to four times as costly as the ordinary broadcast one (which cable subscribers have to pay as well).

Television costs money, and good programmes generally cost big money. From that point of view, signs from the cable TV business are not encouraging. Burdened by the heavy cost of setting up their networks without the government aid enjoyed by operators abroad, the new stations must get their programmes from the cheapest possible sources.

The cheapest network TV programmes now cost something like £50,000 an hour. Cable TV hopes to get by on £500 an hour or less. Certainly, part of the difference can be accounted for by the broadcasters' organizational structure and high labour costs. But how can cable possibly compete? Even the rubbish from the BBC and ITV is usually good quality rubbish.

The inevitable conclusion must be that there is only one way cable can get anywhere in Britain. And that is by lobbying; by so demoralizing the existing broadcasters and undermining them financially that they lose the will to survive. If that happens, then cable TV's endless pop prom compilations, low-budget talking heads and wall-to-wall "I Love Lucy" shows may just begin to look good by comparison.

Coming to this screen shortly...
New blood
Looking at higher education as a whole, the effect of cuts in spending continues to bite ever-more deeply. The Chancellor's Budget allocation of £43M to provide additional places in engineering and technology at selected higher education institution has to be seen against the overall picture, which still looks very grey indeed.

Nevertheless, the Engineering Council's campaign over the last year for more engineering education resources has been remarkably successful and is to have an immediate effect: 475 new places in the first phase of the programme will be available this coming October. Dr Kenneth Miller, Director-General of the Engineering Council, expresses himself as "extremely gratified" with the outcome of the campaign. He points out that "the squeeze could affect engineering education disproportionately" and that the new money will help to avoid this effect.

Those concerned with engineering will, no doubt, rejoice at this evidence that the Government's heart is in the right place, but it seems less than likely that the arts people are quite so overcome with euphoria. They may, however, derive some solace from the stated belief of the Council that "a broad education to a late stage is vital" for the provision of "numerate arts graduates and artists".

The intention is that pupils will not have to decide at, or before the age of 16 whether to be scientists or 'artists'. This has been said before, by the Council of Engineering Institutions in 1980, when the 'breadth' of proposed new courses was to be dealt with by the inclusion of "supplementary subjects as desired". A sideways glance at literature or history is mere lip-service to the concept of a broad education, and it is to be hoped that this time the Council means what it says.

However vital it is for the nation's economic growth that there should be a flow of well-trained scientists and engineers coming out of universities and polytechnics, it is equally as important in the longer term that they should be as 'articulate' as the products of the other faculties and no less appreciative of those facets of life which have little commercial value. Education is not, or ought not to be, a meal ticket; nor is it a factory process to produce a generation of single-minded technocrats to bolster the economy.

Towards a thinking computer
Intelligent knowledge-based systems is one of the major research areas of the Alvey project, part of the quest for the next generation of super computers. Fifty projects, costing about £20M, have been announced which are aimed to help establish the necessary technology upon which subsequent industrial and commercial applications of i.k.b.s. can be based. The researches into 'artificial intelligence' include projects on novel computer architecture, logic programming languages, expert systems, the understanding of natural language and image interpretation.

Each project is a collaboration between companies and/or academic research establishments and in all, 25 different firms and 25 universities, polytechnics and research establishments are involved.

The research is intended to develop systems which can reason and even guess the answer to a problem. They would need to be able to handle logical relationships and such trial-and-error based knowledge to be found in codes of practice, rules of thumb or 'hunches'. In effect they are trying to emulate the human reasoning process which often involves little actual mathematics but uses logical inference, comparison with previous situations using extrapolation and interpolation, and estimating. A start has been made in the development of symbolic processing languages such as Prolog and Lisp, but the development of much larger and more powerful expert systems is a long-term aim, likely to take decades.

Demonstration projects under way include a system to monitor the performance of machinery and to permit automatic adjustment to give optimum performance. Another is the formulation of mixtures in chemical works, such as a lubricating oil for a specific application.

The main research programme is carried out under a number of specific research themes and cover an enormous range with thirteen projects related to expert systems, two on intelligent front-end interfaces, seven are exploring natural language, three for image recognition and the development of robot vision. Other areas are inference and knowledge representation, intelligent computer-aided instruction, and declarative systems architecture.

There is also a support infrastructure for the programme and include community clubs where companies with common interests and problems can jointly commission the development of an expert system. One such club has been formed to produce software to demonstrate the use of expert systems in the real-time process control of chemical plants; another for the development of a system for use in civil engineering, particularly quantity surveying. The third club is to set up a financial advisor on the performance and health of small business companies. Several more are planned or are being set up.

Life-saving pager
Patients waiting for organ transplants can now be in constant touch with their hospitals through Life Page, a service offered free by BT Radiopaging. Many potential transplant patients are still active and mobile, not necessarily tied to their homes or beds. However if a transplant organ becomes available they need to be contacted very urgently so that the surgery can be completed rapidly. Under the scheme, patients waiting for heart, kidney, liver or other organ transplants will be issued with a standard radiopager. The first recipient of a pager at the official launch of the service recently was Paul Stokes who is on the waiting list for heart surgery at Papworth Hospital. BT launched the service to celebrate their 250,000th subscription to Radiopaging.
THE ENGINEERS Z80 COMPUTER WITH IEEE 488

- 2 x Z80 CPU's (4MHz)
- 64K DYNAMIC RAM
- UP TO 32K EPROM
- FLOPPY DISK CONTROLLER FOR 3", 5" and 8" Disk Drives
- 2 x RS232 SERIAL I/O CHANNELS
- I/O MAPPED VIDEO GEN. 80 Cols. 24 Lines
- 4 x PARALLEL I/O CHANNELS
- PARALLEL KEYBOARD PORT (POWERED)
- IEEE 488 INTERFACE
- HARDWARE REAL TIME CLOCK
- 2 x 8 BIT SWITCHES (I/O MAPPED)
- MONITOR PROGRAM IN PROM
- PROM BASED SOFTWARE AVAILABLE such as ASSEMBLER/EDITOR, and XTAL BASIC WITH IEE DRIVERS

The IBS 750 is an Industrial Quality Product designed for reliability and ease of use. It is normally supplied fully-built and tested but is also available in a number of partially-built options. The Monitor PROM contains 22 user commands which will assist in writing and de-bugging of the SBC's console and printer requirements by just opening or closing links on the PCB. The same configured version of CP/M 2.2 is available for various Disk sizes. A complete Development System and Desk Top Computer based on this board is available with a variety of Disk Drive sizes and case styles to suit users requirements and environment.

Tel (0294) 75000/73333

CIRCLE 85 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JUNE 1985

NEW

R5635 CCITT V22 bis, full-duplex Switched-Capacitor Filter I.C. with MUXes
R5636 Bell 201/CCITT V26 combo filter I.C.
R5637 Bell 206/CCITT V.27 combo filter I.C.
R5638 Bell 209/CCITT V29 combo filter I.C.
R5630 Bell 103, full-duplex filter I.C. with MUXes.
R5631 CCITT V21, full-duplex filter I.C. with MUXes.
R5632 Industry Standard, Bell 212A/CCITT V.22 full-duplex combo filter I.C.
R5633 Selectable filter array I.C. for 103, V21, DTMF and Videotex applications.
R5626 Mask programmable to your specification.

Contact: EG & G RETICON
34/35 Market Place, Wokingham, Berks RG11 2PP. Telephone: 0734 788666. Telex: 847510 EGGUK.

CIRCLE 70 FOR FURTHER DETAILS.
A Major company's over production problems, and a special BULK PURCHASE enable TWO outstanding offers.

COLOUR MONITOR SPECIALS

'SYSTEM ALPHA' 14" Multi Input Monitor.

Made in the UK by the famous REDIFUSION Co. for their own professional colour monitors. This monitor has the features to suit your studio and studio monitor requirements. Two types of video input, RGB and PAL Composite Video, allow direct connection to most makes of micro computers and VCRs. An internal speaker and audio amplifier may be connected to your system's output or direct to a VCR machine, giving superior quality and sound quality. Many other features included. Moreover, Matching Monitor and Service Manual. Separate Contrast and Brightness — even in RGB mode. Two types of audio input. Separate audio and controls for Computer, RGB, plug for composite input, 15 way D' plug for RGB input, modular construction etc. etc. This must be ONE OF THE YEAR'S BEST BUYS!!

Special Offer New and Old stock 30 days guarantee.

SPECIAL 300 BAUD MODEM OFFER

Another GIANTIC purchase of these EX BRITISH TELECOM, BRAND NEW or little used 2B data modems allows US to make the FINAL REDUCTION, and for YOU to own this unique world of data.

As the highest POST OFFICE SPEC at a cost of hundreds of pounds each, the 2B has all the standard features for data base. All this and more!!

- 300 baud full duplex
- Full remote control
- COG tone supplied
- Supplied with data cable and direct connection
- Supplied with full manual
- Order now — while stocks last Cardam and Co. £100.00

SPECIAL PRE-imator SCOOP SUPER PRINTER SCOP

_ENNEX CENTRE 7312-9)

The End Edition *Printer* at a price that will NOT be repeated. Standard CENTRONICS Parallel and Centronics Interface Serial and Modem Interface Serial. With 9 and 25 pin sockets.

The Q4 Line Printer at a price that will NEVER be repeated. Standard CENTRONICS Serial Interface with 25 pin sockets. With 9 and 25 pin sockets.

HUNDREDS OF PRINTERS EX STOCK from £49.90. Call Sales Office for Details.

- 1 only large CALCOMP 1036 A3 pen drum plotter and office 915 magee controller. Good working order
- ADD VAT TO ALL PRICES £250.00.

All prices quoted are for UK. Mainland, paid cash with order in Pounds Sterling PLUS VAT. Minimum order value £20.00 Minimum Credit Orders £10.00 Minimum BNA/BFA account orders from Government Departmental establishments £20.00. Where post and packing not included please ADD £1.00 + VAT. Warehouse open Mon-Fri 9.30-5. Sat 10.30-3.00 We reserve the right to change prices and specifications without notice. Trade: Bulk and Export

32 Biggin Way, Upper Norwood, London SE19 3XF
Telephone 01-679 4414/ Telex 894502 Data 01-679 1888
ELECTRONICS & WIRELESS WORLD JUNE 1985

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES. ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

D.C. POWER SUPPLY SPECIALS

Experiments in PSU Ex-GPO. All silicon electronics. Outputs give +5v & 2 amps +12v & 2 amps & -12v & 2 amps & +5v floating & 50 ma. Dim 160 x 120 x 350 mm. All outputs are fully regulated and short circuit proof. Supplied in NEW or like used condition. Complete with circuit. Only £9.50 + £1.50 post.

FARNELL 5 Volt 40 am. Type number G6-40A. This miniature switching PSU makes an ideal power for any type of electronic experiment. 5 volts DC, high current output of up to 40 amps. Fully regulated and smoothed with over voltage protection etc. 120 or 240 volts AC, 200 watts. Supplied in sealed plastic case at a fraction of the current list price. Only £1.00 + £3.00 carrier. In stock.

LAMDA 15 Volt 40 am. Outputs give +5v DC, -5v DC at 8 x 10 volts fully regulated output. Completely enclosed unit measures only 9’’ x 4” x 5” 49p.

PERIPHERAL SYSTEM SUPPLY. Runs almost any system. Fully cased unit supplied in brand new or like used condition. Outputs give 5v ±17% 8 amps or 5v ±17% 8 amps & +24v ±4 amps. All outputs arecrowbar protected and the 5 volts DC is fully regulated. Fan cooled. Supplied tested and tested. With circuit, £5.50 + £0.50 post.

1000s of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIABLES, TV'S, PRINTERS, POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. etc. Give us a call for your spare parts requirements. Stock changes almost daily.

PROFESSIONAL 6 FOOT 19" RACK CABINETS

LARGE 19" equipment cabinet. Simply add locking front and rear doors. An internal sub from £33 is pre wired for standard 19" equipment. Other features include internal cooling fan, built in power socket, wall mountable. Supplied complete with data, 90 day guarantee and ready to use.

ONLY £49.95 + £3.00 post.

PROFESSIONAL 6 FOOT LOGICAL KEYBOARD

Heavy duty unit in attractive satin alloy case. 55 large keys laid out in a logical format of

CIRCLE 63 FOR FURTHER DETAILS.
The PC-16 16-bit computer provides PERFECT COMPATIBILITY with the IBM PC/XT range. The motherboard can be supplied in two versions for stereoscopic convenience. The 'N' version has no memory on board and the 'B' version with space for 64 to 256K RAM. Addition of the Memory Expansion Card provides a further 64 to 512K of RAM. BASIC FEATURES INCLUDE:

- 8088 CPU operating at 4.77 MHz
- Provides for 8087 co-processor
- Four DMA channels
- Three Timer channels
- 8 EXPANSION SLOTS

SPECIAL OFFERS
- PKG PRICE £1599 — Main computer employing 'B' board with 128K on board (upgradeable to 256K on board) PLUS Colour/Graphics adaptor providing signal capability of running monochrome displays on RGB output for full colour. Multi I/O card, including floppy driver controller for two drives, one parallel port, one serial port, one games port with batter backed clock, RAM extension card for 512K. Two DS/DD floppy drives. 83-key keyboard. All complete. Kit & tested in case with power supply together with Concurrent (multituser, multitasking)CP/M, CCP/M manual and basic computer operations manual — ready to run!

CIRCUIT 86 FOR FURTHER DETAILS.

Chum One A
Industrial Computer

- Control BASIC and Z80 Assembler Language
- On Board EPROM Programmer
- Detachable Hand-Held Keyboard and Display
- 4K Bytes of Battery Backed Memory
- Up to 64 Relay Outputs
- Up to 64 Op-Coupled Inputs
- 4 Analogue Inputs
- 1 Analogue Output
- RS232 Interface
- Cassette Back-Up Memory
- Real Time Clock

The Chum One A offers the complete solution to all measurement and control problems. Programs can be written, tested and modified in RAM then at a touch of a switch blown into an EPROM.

£258

CIRCUIT 87 FOR FURTHER DETAILS.

Electronics & Wireless World June 1985
ELECTRONICS WE ADJUSTABLE CRADLE, 4.
TMOS TYPE 9175 As above with integral mains power supply unit
We told about them.
BARGAINS 80 -2250 1750 80 -1500 12v
1A
3.5MFD 2500V WKG 412” 6.5A
8MFD 1000V WKG 200MHz. 15v
FANS
MEMORABILIA V.O.U.£1.37
We do not sell, as we have full information on them only authorized units which have a 12 months’ warranty in an absolute state, and a full English Manual Keyboard. But response to them has been such that we feel they should be told about them. Comes with original in a rack complete for all makes. VAT Carriage £12.00 per item.

AC 240v BLOWERS also available 37kgs. Our stock line. Types
200MHz. 50 9191 10
9006 £1.50
TWO STAGE GASFET STRIPLINE PREAMPLIFIERS. Tuned to your specified frequency in the range 30-250MHz. £25.00 + £2.50 p&p. Type 9035
GASSET RF PREAMPLIFIERS. Aligned to your specified frequency in the range 30-250MHz. £65.00 + £5.00 p&p. Type 9006
GASSET RF PREAMPLIFIERS. Aligned to your specified frequency in the range 30-250MHz. £65.00 + £5.00 p&p. Type 9006
D.C. 80 -1500 250v £1.50
6V 1A 185.00+
220 or 240V 8-18 32V 2800V £1.75 400V £0.75 MASTHEAD or local use.

2M 9174 6V 600v £1.50
12v 1A 200MHz. £1.50
2A 200MHz. £1.50
15v 8000 72.00
15v 5000 72.00
15v High 75m 37.50 250 - 500MHz. £20.00+ £3.00 p&p. Type 9034

RESEARCH COMMUNICATIONS LTD.
UNIT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP
TELEPHONE: 01227 456489

CIRCLE 68 FOR FURTHER DETAILS.
B. BAMBER ELECTRONICS

It's easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints. Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got very good reason to complain about an advertisement, send off for a copy of our free leaflet. It will tell you all you need to know about how we process your complaint as quickly as possible.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.

ASA Ltd, Dept 1 Brook House, Tорmintton Place, London WC1E 7HN

This space is donated in the interests of high standards of advertising

ELECTRONICS & WIRELESS WORLD JUNE 1985

www.americanradiohistory.com
Introducing...

Serpent
under £2000!

Serpent SCARA assembly robot
On show at Automan NEC 14—17th May
and at
Training & Development NEC 9—11th July
AND To be featured as a
constructional project in
Practical Electronics
September issue.

11 Ghz SATCHEL TV RECEPTION.
The following TV transponders are available now from ECS/INTELSAT:-
Premiere (UK film channel). Screen Sport (UK sports channel) TEN
(UK film channel). Childrens Channel (UK).
Rai (Italy). Teleclub (Switzerland). Olympus (Pan European TV) Film
Net (Belgium, mainly American films). WPN (World Public News).
PKS (Germany). TVS (France). New World Channel (Norway —
religious, multi language). SKY. Music Box (Stereo pop video
channel). Norway (C-Mac system).
Additional channels late 85 — Cable News Network, Life Style
channel, plus all TV transponders on ECS 3 due for August launch.
A typical system consists of our 1.6m dish in either fixed, AZ/EL or
Polar mount. Scalar horn & feed in Aluminium, brass or phosphor
bronze. Low noise block downconverter (2.2—3.0 dB noise
figures) converting the 10.9 — 11.7GHz signal to 950 — 1750Mhz
IF feed to the indoor unit. Demodulator, gives audio & video output to
feed a colour monitor or a VCR.
Package price for a complete system from £1350 plus VAT & carr.
Through our joint venture Company “Tele Aerials” of Harrogate, we
can offer an installation service from a single point to a Major Hotel
System, Housing Complex etc.
The Company has supplied systems to:- Foreign
Embassies, British Government, Overseas Hotels,
Universities, Research Organisations, TV Retail
Trade and the Public.
TO DISCUSS YOUR REQUIREMENT,
CONTACT:- D.J. STANDEN.

North East Satellite Systems
Manufacturers of Microwave Dishes, Feed Horns and Specialised Electronics
Suppliers of Satellite Systems and Closed Circuit TV Equipment
CROPTON, PICKERING, NORTH YORKSHIRE YO18 8HL
TEL: LASTINGHAM (07515) 598 VAT No. 347 557132

ROBOTS
For Education, Training and Industry

NEPTUNE I
Kit from £1250

NEPTUNE II
For clean hydraulic power—lap water is the
hydraulic fluid!
Kit from £1725

NEPTUNE I: 16 axis, 8 bit control system. 2.5kg
(900g in nose) 120mm reach
NEPTUNE II: 8 axis. 12 bit control system. 2.5kg
(900g in nose) 120mm reach
MENTOR DC servo driven robot. 8 axis
control system. 350gm capacity. 420mm reach
MENTOR: Robot programmed from keyboard or hand
held simulation model robot
Robots also available ready built.

Please phone for brochure 0264 50093.

Electronics & Wireless World June 1985

www.americanradiohistory.com
Turn Your BBC Micro Into A Professional Microprocessor Development System

The Operating System
- **FLEX**—The Professional Operating System
- Versatile, Flexible & Powerful, the ideal operating system for industrial control
- Provides the power, sophistication and ease of development, previously only offered by larger, more expensive systems

The Hardware
- 6809 Advanced 16 Bit Processor
- Choice of Industrial Interfaces for Target Applications:
 - High Resolution Colour Graphics
 - Industrial input/output boards
 - IEEE communications
 - and many more

The Tools
- PL9 — A fast, efficient control language
- CMS FORTH Interpreter & Compiler
- Cross Assemblers for most 8 bit & 16 bit micro's
- "C", BCPL, PASCAL

The Support
- Top rate after sales technical support
- Systems/Hardware Design

Electronics C.A.D.

"Analyser"

Performance Analysis of Linear Circuits using the BBC Model B and Single Spectrum 48K Micro.

Simulates Resistors, Capacitors, Inductors, Transformers, Bipolar and Field Effect Transistors, and Operational Amplifiers in any circuit configuration.

Performing Frequency Response Analysis on Circuits with up to 30 Nodes and 100 Components, for Phase and Gain/Loss. Input Impedance and Output Impedance.

Ideal for the analysis of Active and Passive Filters, Audio, Wideband and R.F. Amplifiers, Linear Integrated Circuits etc., etc.

"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.

Used by Industrial and University Departments worldwide.

Very easy to use. Prices from £20 Access or American Express welcome.

For further details write or phone number one systems

Department TFD

24 Crown Street, St Ives

Huntingdon, Cambs, PE17 4EB

Tel: 0480 247425

Toroidal Transformers

As manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15VA 1.77</td>
<td>19.92</td>
</tr>
<tr>
<td>50VA 3.17</td>
<td>37.92</td>
</tr>
<tr>
<td>125VA 6.25</td>
<td>52.92</td>
</tr>
<tr>
<td>250VA 12.50</td>
<td>77.92</td>
</tr>
</tbody>
</table>

Available from stock in the following voltages:

Buy 10 and save 10% on the total price.

Airlink Transformers.

Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279-724425.

Electronics & Wireless World June 1985

N.B. Electronic Supplies

34 America Lane, Haywards Heath, Sussex RH16 3QU
Phone 0444 454563 for Access or B.C.

Please add £1 if order under £20.
Fast camera interface

Signals from standard video cameras are too fast to feed directly into a microcomputer. A solution is to take one picture element from each line in successive frames until a picture is built up. This design is faster, taking eight elements at each pass.

Video cameras scan a picture in a sequential series of horizontal lines. This scanning makes it possible for one video signal to include all the elements for an entire picture. Television frames conforming to the CCIR standard consist of two fields, each of 312.5 lines. A line is 641.56 long and picture information is transmitted for about 40µs of this time.

A method of interfacing a video camera to a microcomputer was described by P. Howard in the February 1982 issue of WW on pages 30-36. The major problem with this type of interface is the high speed of the camera relative to the microprocessor.

Howard's method involves storing one picture element, or pixel, from each scan line in the field then storing the next picture element from each line of the next field, and so on for all the pixels across the picture. In this way, the microprocessor has 64µs in which to store each pixel. An entire picture with a horizontal resolution of 256 pixels is stored in 5.12s.

Our method is to make the microprocessor store eight pixels from each scan line at each pass which reduces the time for storing a picture by a factor of eight. The time needed to store a picture with a horizontal resolution of 256 pixels is thus 256 divided by eight, multiplied by 20ms, which is 0.64s. The circuit designed uses this resolution with an eight-bit

Fig. 1. Block diagram for the video camera interface timing circuit. By taking eight pixels from each line in successive frames, the interface allows a 256-pixel by 256-line picture to be stored in 0.64s.

ELECTRONICS & WIRELESS WORLD JUNE 1985

by Safa S. Omran

Safa Omran is with the Institute of Technology in Baghdad.
Assembly language program for reading the camera interface using the 8085 microprocessor.

Comment
- Set HL register to start of picture store
- Clear memory location
- Go to next location
- End of picture store?
- Go back if not
- Set HL to start again
- Reg.C contents = no. of lines
- Initialize video camera interface
- Open field gate
- Wait for field pulse
- Go back if not
- End of picture store?
- Go back if not
- Set HL to start again

Circuit description

As shown in the block diagram, Fig. 1, the video signal feeds the synchronization separator which separates the line and field sync. pulses.

The video signal is +0.5V peak combined with synchronizing pulses of +0.2V. To separate sync. pulses, the video signal is first passed to a comparator with a reference of 0.1V. Fig. 2, which gives only sync. pulses at its output. This output is passed to an RC circuit with a time constant of about 50μs which integrates field pulses only. Width of the field sync. pulses is about 2ms, while that of line pulses is about 2μs.

From the RC circuit, the signal feeds a comparator with a positive reference of 2V, which gives only field pulses. Line-sync. pulses are passed to a circuit which increases their width. This is required because data only exists for about 40μs of the scan line. A voltage-controlled oscillator, v.c.o., determines the number of picture elements wanted on a line. Output from the width circuit enables the v.c.o. and only allows it to oscillate for 40μs.

Output of the pixel counter is compared with output from the field and binary counters by a digital comparator which generates a pulse when its two inputs are equal, Fig. 3.

Assume that output from the field counter is one, i.e., 0001. When output from the pixel counter is zero, the binary counter output is also zero so the two digital comparator inputs are unequal, being zero and eight.

When output of the pixel counter increments by one, the binary counter output also increments by one, but the two inputs to the comparator are still not equal. They remain unequal until the output of the pixel counter becomes eight, in which case output of the binary counter is zero. Now the two inputs to the digital comparator are equal (00001000) so it generates a pulse.

In the next count, outputs of the pixel counter and field/ binary counters are also equal (00001001) so another comparator pulse is generated. This is so for each count until output of the pixel counter becomes 16 (00010000), so eight pulses will be generated from the digital comparator in this scan line, Fig. 4.

After 64μs, another eight pulses will be generated for the next scan line, and the process will be repeated for all the scan lines of the field. This means that the comparator generates eight pulses corresponding to eight pixels (pixels 8-15) of each scan line.

In the next field, output of the field counter is two (00010) and the comparator inputs are equal when the output of the pixel counter is 16. In this case, output of the binary counter is zero. These inputs remain equal until the output of the pixel counter becomes 24 (00011000) which means that the digital comparator generates another eight pulses corresponding to the next eight pixels for each scan line. This process is then repeated so that eight pulses are generated by the comparator in each field.

These eight pulses enter the decoder counter, the output of which varies from 000, to 111, as shown in Fig. 4. This output is the input of the decoder, one output of which is active for each state of the decoder counter. The eight latches put eight consecutive pixels from

Table:

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Content</th>
<th>Label</th>
<th>Instruction</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>21 00 40</td>
<td>STRT:</td>
<td>LX H,4000</td>
<td>Set HL register to start of picture store</td>
</tr>
<tr>
<td>6003</td>
<td>3E 00</td>
<td></td>
<td>MVI A,00</td>
<td>Clear memory location</td>
</tr>
<tr>
<td>6005</td>
<td>77</td>
<td></td>
<td>MOV M,A</td>
<td>Go to next location</td>
</tr>
<tr>
<td>6006</td>
<td>23</td>
<td></td>
<td>INX H</td>
<td>End of picture store?</td>
</tr>
<tr>
<td>6007</td>
<td>76</td>
<td></td>
<td>MOV A.H</td>
<td>Go back if not</td>
</tr>
<tr>
<td>6008</td>
<td>FE 60</td>
<td></td>
<td>CPI 60</td>
<td>Set HL to start again</td>
</tr>
<tr>
<td>600A</td>
<td>C2 03 60</td>
<td>JNZ:</td>
<td>LXI H,4000</td>
<td>Reg.C contents = no. of lines</td>
</tr>
<tr>
<td>600D</td>
<td>21 00 40</td>
<td></td>
<td>LXI D,0020</td>
<td>Initialize video camera interface</td>
</tr>
<tr>
<td>6010</td>
<td>11 20 00</td>
<td>OUT:</td>
<td>MVI A,03</td>
<td>Open field gate</td>
</tr>
<tr>
<td>6013</td>
<td>00 00</td>
<td>OUT:</td>
<td>MVI A,01</td>
<td>Wait for field pulse</td>
</tr>
<tr>
<td>6015</td>
<td>3E 02</td>
<td>OUT:</td>
<td>MVI A,01</td>
<td>Wait for strobe pulse</td>
</tr>
<tr>
<td>6017</td>
<td>D3 30</td>
<td>OUT:</td>
<td>MVI A,01</td>
<td>Stop</td>
</tr>
<tr>
<td>6019</td>
<td>3E 03</td>
<td>OUT:</td>
<td>MVI A,01</td>
<td>Go back if not</td>
</tr>
<tr>
<td>601B</td>
<td>D3 30</td>
<td>OUT:</td>
<td>MVI A,01</td>
<td>End of picture store?</td>
</tr>
<tr>
<td>601D</td>
<td>3E 01</td>
<td>OUT:</td>
<td>MVI A,01</td>
<td>Go back if not</td>
</tr>
<tr>
<td>601F</td>
<td>D3 30</td>
<td>FLI:</td>
<td>MVI A,01</td>
<td>Set HL to start again</td>
</tr>
<tr>
<td>6021</td>
<td>DB 20</td>
<td>FLD:</td>
<td>MVI A,01</td>
<td>Reg.C contents = no. of lines</td>
</tr>
<tr>
<td>6023</td>
<td>E6 01</td>
<td>FLD:</td>
<td>MVI A,01</td>
<td>Initialize video camera interface</td>
</tr>
<tr>
<td>6025</td>
<td>FE 00</td>
<td>FLD:</td>
<td>MVI A,01</td>
<td>Open field gate</td>
</tr>
<tr>
<td>6027</td>
<td>C2 21 60</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>Wait for field pulse</td>
</tr>
<tr>
<td>602A</td>
<td>DB 20</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>Wait for strobe pulse</td>
</tr>
<tr>
<td>602C</td>
<td>FE 02</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>Stop</td>
</tr>
<tr>
<td>602E</td>
<td>DA 2A 60</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 lines?</td>
</tr>
<tr>
<td>6031</td>
<td>DB 28</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>Increment count of Reg L</td>
</tr>
<tr>
<td>6033</td>
<td>77</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>6035</td>
<td>0C</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>6036</td>
<td>79</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>6037</td>
<td>19</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>6039</td>
<td>C2 2A 60</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>603C</td>
<td>26 40</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>603E</td>
<td>2C</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>603F</td>
<td>7D</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>6040</td>
<td>FE 20</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>6042</td>
<td>C2 21 60</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
<tr>
<td>6045</td>
<td>76</td>
<td>PLSE:</td>
<td>MOV A,02</td>
<td>End of 256 pixels? (32 x 8)</td>
</tr>
</tbody>
</table>

Fig. 2. Sync. separator circuit. The first 710 comparator takes composite line/field pulses from the video signal and the second one produces field pulses only with the aid of an RC integrator at its input.
the video signal on to the input port of the microprocessor, hence the microprocessor stores eight pixels at a time from each scan line.

Software

Movement of data from the camera to the microprocessor is controlled by software which stores 256 pixels per line for 256 lines in the field.

At the start, the field and decoder counters are loaded with their maximum counts by a pulse from the microprocessor. This ensures that the output of the field counter is zero after its first count and that output of the decoder is zero to ensure that the microprocessor stores the first pixel. Next the microprocessor opens the field gate and

a. waits for the field sync. pulse

b. waits for a strobe pulse from the digital comparator

c. stores the eight pixels from its input port in less than 64µs

d. repeats steps (b) and (c) 256 times, equal to the number of lines required

e. repeats steps (a) to (d) 32 times, equal to the number of pixels in a line, i.e. 32x8=256

f. ends

For step (b), a monostable i.c. stretches the strobe pulse to about 16µs to make it suitable for the microprocessor. An assembly-language program is shown for the 8085 microprocessor assuming 256 pixels by 256 lines. In this program, memory location 4000H is the start of the picture store and location SFFFH is the end. Port 30 is used for output and ports 20 and 28 are used for input, see block diagram.

Figure 5 shows a circuit diagram which was digitized using the interface and displayed on a storage oscilloscope.

Fig. 3. Timing circuit for the video-camera interface. Data latches, video driver and i/o gating are shown in the block diagram.

Fig. 4. Output of the digital comparator, top, consists of eight pulses which step the decoder counter. On each count, one pixel from the line is latched ready for reading by the microprocessor.

Fig. 5. An example of a circuit diagram digitized using the video camera interface and displayed on a storage oscilloscope.
The Hacker's Handbook by Hugo Conwell: Century Communications, 194 pages, soft covers, £4.95. The book they tried to ban. Fascinating guide to the home computer user. Chapter 3, which describes the instruction set, takes up half of the book. Addressing modes are covered rather sketchily in just four pages with no program examples. At the end are a few brief specimen listings for ZX81, ZX Spectrum, Amstrad and Memotech micros.

An Introduction to Z80 Machine Code by R.A. and J.W. Penfold: Bernard Babani (Publishing), ref. BP152, 127 pages, soft covers, £2.25. Beginner's guide for the home computer user. Chapter 3, which describes the instruction set, takes up half of the book. Addressing modes are covered rather sketchily in just four pages with no program examples. At the end are a few brief specimen listings for ZX81, ZX Spectrum, Amstrad and Memotech micros.

Signal Processor Chips edited by David J. Quarrany: Granada Publishing, 179 pages, hard covers, ISBN 0 246 12171 8. Not ordinary analogue chips, but digital programmable l.s.i. chips with widespread applications in filters, modems, speech processing, sonar and video. The editor contributes chapters on what they are and how they work and then hands over to contributors from Intel (on the 2920), NEC (on the 7720) and Texas Instruments (on the TMS320) for the practical details.

Single-chip Microcomputers edited by Paul F. Lister: Granada Publishing, 231 pages, hard covers, ISBN 0 246 12106 8. An introduction to some commercial chips with design examples: the Motorola M6801 and M6805 (with a speech synthesizer/codec); the Texas TMS1000 (with a speech synthesizer interface); the Zilog Z8 (with a data logger); the National Semiconductor COP5400 (with a digital tv tuning system) and the Mostek MK68280 (with a machine controller).

Uosat data decoder p.c.b.

A new printed circuit board is available for the high-performance G3RUH Uosat data demodulator (Wireless World, May 1983). The board includes the 1200 baud circuit, (limiter, phase-locked loop, integrate-and-dump and lock detector), regenerated and RS232C output interfaces. The input filter, 300 baud and c.c.d. line-sync detectors have been omitted. The p.c.b. is single sided and legended, measures 160x100mm and has space for an RS Components encapsulated 12V p.s.u., RS 591-281. A suitable case is RS 508-605. Connections to the p.c.b. are via a single 16-pin d.i.l. plug.

Prices: p.c.b., instructions and (air mail) postage — UK £10, Europe £11, overseas £12. Note that the Wireless World article is not included: a reprint is available at an extra £1 (abroad £1.40). Available now from the author (for address see table 3) or from Amsat-UK, London, E12 5EQ.

Data Recording continued from page 64

may need to be varied for different heads. It does not seem critical.

During reading, the write output is shorted to prevent noise interfering with the read signal. The read signal is applied to A1, a non-inverting amplifier with a gain of about 25. Because of the head's inductive reactance, this amplifier must have a high input impedance to preserve the signal at high frequencies. About 400mV (peak-to-peak) is available at the output of A2.

Coupling between A1 and A2 is via a small-value capacitor which differentiates the signal. The output to the BBC Micro is a 1.4V peak-to-peak square wave with very little jitter on the edges. This design has proved to be very reliable over the past year. The cost of the components is about £3 plus a cheap cassette recorder (mine was £9.99 from Woolco).
Your product?

One superb product deserves another.

You know your product is the best you can make but today's electronic products are crammed full of components any one of which could damage your reputation.

In the wound magnetics world, more and more electronics manufacturers are turning to Weyrad because they find the expertise, quality and reliability they need.

They also find the flexibility in manufacture, the pricing they want and the dedication they need to help them make a better product. And they find a company determined to keep its lead in the market.

Weyrad have been in the business of high technology wound mechanics for over 30 years and now with massive resources have a fully equipped factory and an experienced staff of designers and engineers capable of making the smallest to the largest components; capable of making simple windings or the most complex; capable of designing and manufacturing custom assemblies including voltage generation and power modules.

Weyrad's products are found in TVs and audio equipment with household names. In aircraft, ships and fighting vehicles. In industrial and commercial machinery around the world. In telecommunications equipment and in the automotive industry.

Weyrad were Britain's first wound electronics company to win the coveted standard BSI BS 5750 for its quality control, which gives Weyrad customers unrivalled assurance of manufacturing standards. But then, when you make an outstanding product, it's important to make sure it stays the best, isn't it?

For more details of how Weyrad can help you improve your products contact our Marketing Department.

Weyrad

Contact the Marketing Dept., Weyrad (Electronics) Ltd., Lynch Lane, Weymouth, Dorset. Telephone: (0305) 783801
The Archer Z80 SBC

The SDS ARCHER — The Z80 based single board computer chosen by professionals and OEM users.
★ High quality double sided plated through PCB
★ 4 Bytewide memory sockets — upto 64k
★ Power-fail and watchdog timer circuits
★ 2 Serial ports with full flow control
★ 4 Parallel ports with handshaking
★ Bus expansion connector
★ CMOS battery back-up
★ Counter-timer chip
★ 4 MHz. Z80A

OPTIONS:
★ SDS BASIC with ROMable autostarting user code
★ The powerful 8k byte SDS DEBUG MONITOR
★ On board 120 / 240 volt MAINS POWER SUPPLY
★ Attractive INSTRUMENT CASE — see photo.
★ 64k / 128k byte DYNAMIC RAM card ★ NEW ★
★ 4 socket RAM — ROM EXPANSION card ★ NEW ★
★ DISC INTERFACE card ★ NEW ★

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

— CIRCLE 56 FOR FURTHER DETAILS.

RACKMOUNT CASES

19"Self Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge, Brushed Anodised Aluminium, Case 18 gauge, Plated Steel with Removable Rear & Side Panels. In 1U & 2U Types, a Subplate Chassis is Mounted to Bottom Cover. In 3U Type the Subplate is located on two Rails Mounted Between The Side Panels.

1U (1¾") height, 230m depth........ £27.00
2U (3½") height, 308m depth........ £32.00
3U (6½") height, 230m depth........ £39.00

Width Behind Front Panel 437m (All Types).

All Prices include Postage & V.A.T. Cheques, Postal Orders Payable to:
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks, SL6 1EX. Maidenhead 29450.

— CIRCLE 16 FOR FURTHER DETAILS.

BRAND NEW ELECTRONIC COMPONENTS

QUALITY .25W CARBON FILM RESISTORS

<table>
<thead>
<tr>
<th>Qty</th>
<th>1-9K</th>
<th>10-24K</th>
<th>25-49K</th>
<th>50-99K</th>
<th>100K+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>4-25</td>
<td>4-95</td>
<td>3-70</td>
<td>3-45</td>
<td>3-25</td>
</tr>
<tr>
<td>Price per 1000</td>
<td>Sold in multiples of 1000.</td>
<td>Small quantity prices available.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEAD-FORMING SERVICE AVAILABLE

Save assembly time and money with pre-formed leads. Size setting £2.00 plus £1.50 per 1000.

Write or Phone for full Details
HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 7JX Tel: (0702) 332338

— CIRCLE 54 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JUNE 1985
Costly Def

Do the Services and tax-payers obtain value for money in their purchases of radio, electronic and related equipment for advanced weapons and communications systems? In the case of some projects, such as the painful long-running £5000-milion saga of British torpedo development, patently not. For all military equipment, price tags tend to be very high when judged by civilian equipment standards. But are these not justified by the high standards of reliability and environmental testing involved in the manufacture of equipment to the defence and MIL-spec standards demanded by the UK, NATO and USA services?

In general terms all semiconductor devices and components are required to work over the impressively large temperature range of -55 to +125 °C. Semiconductors for aerospace applications have to be in hermetically sealed metal or ceramic packages. Batch testing of samples, normal practice for most electronic equipment, is ruled out. To permit traceability, all stages of manufacture and assembly have to be documented and monitored.

As one reader who is involved with making equipment to defence specifications puts it: “The standard ‘commercial’ device will rarely have received very much in the way of testing before despatch; normally the procedure is one of lot sample testing with the entire batch accepted or rejected on the results of the sample testing.” Mil-spec devices, on the other hand, will have been 100 per cent tested and burned-in for 168 hours at 125 °C. Traceability also adds quite a cost penalty. It is necessary to be able to check on a specific semiconductor device, for instance, right back to the materials used and to the diffusion process. This facility is essential when batch related problems are discovered so that suspect batches can be isolated very rapidly and appropriate action taken... drop-off plants do occur even in the best regulated circles. The most worrying thing, from an equipment manufacturer’s point of view, is that such problems often to not become evident for quite a long time. So as soon as the problem is detected, it is necessary to establish very rapidly which equipments contain devices from the suspect batches — impossible to do without full traceability... The low cost of many consumer items is gained as the result of automated flow production; once you disturb this process to add inspection and test stages, the production costs can increase very rapidly indeed.”

These arguments seem very convincing, that is until you start to wonder how much all these extra precautions have really added to reliability in the field. When a few years ago I asked the technical director of a firm supplying military communication equipment what had been the effect of the DEF component specification he replied that it had greatly increased costs but had made very little difference to reliability. The Pentagon is currently complaining that it has to spend something approaching a quarter of its annual budget on maintenance and repair of equipment. Horror stories abound of the American services paying $110 for electric plugs available in hardware stores for about 5c, $7622 rather than less than $100 for coffee makers fitted in cargo planes, $170 for battery-operated torches. The UK it is more difficult to discover just how much is paid for what — and with what results. Nobody likes the idea of people being sent into action with poorly made equipment, but it has been pointed out that video games in arcades are expected to withstand rough treatment without being made to MIL-spec standards!

Vhf Changes

As a result of decisions made at the 1984 ITU Regional Administrative Conference for the planning of the v.h.f. broadcast band between 87.5 and 108MHz, attendees by 500 delegates from 77 countries, a considerable number of frequency changes are due to take effect before July 1987 to UK local radio (BBC and IRL) stations, including some later this year. Eventually all UK local station will be two sub-bands of 94.6 to 97.6MHz and 102.0 to 104.9MHz with the possibility of “community radio” stations between 105 and 107.9MHz, a part of the spectrum now expected to be cleared of present communications services by about 1990 rather than the 1995 date originally written into the 1979 WARC. The conference, the first part of which was held in 1982, produced a formal “Geneva Agreement 1984” covering Region 1 and part of Region 3. To this is annexed a “Geneva Plan 1984” covering frequency assignments for more than 53,000 sound broadcasting stations. The UK part of the plan foresees five national networks (four for BBC, one for Independent National Radio), the BBC and IBA local radio stations most of which will be grouped into separate sub-bands, plus the proposed new tier of community radio.

Radar up-date

The Fylingdale long-range radar, which forms part of the American ballistic missile early warning system (BMIEWS) is soon to be up-graded and modernized. A radically different solid-state phased antenna array, similar to one currently being installed at Thule, Greenland, is likely to be installed. These have 560 active elements in each 84-ft high antenna face, providing almost a megawatt of power. Unlike the present mechanically steered antennas, the phased-array is fixed with electronic beam steering under the control of CDC865 computers. Such arrays can simultaneously track a number of targets.

The Americans are also currently building a network of over-the-horizon h.f. radars with an operational range of about 5000 miles, almost twice that of the BMIEWS installations. For the reception of o.t.h. signals, 4980ft longwire Beverage antennas are used.

Much longer antennas are needed for transatlantic v.h.f. communication (e.i.f.) signals frequencies below 100 hertz, and a 30-mile antenna is reportedly to be erected in Scotland though it is not clear whether this will be an American or British operated system for broadcasting messages to submersed submarines at extremely low data rates. At e.i.f. even a 30-mile antenna is very short in terms of wavelength and efficiencies are extremely low. Signals can, however, be received at great range and at considerable depth on compact frame antennas. The American customs service is planning to use six Orca long-range patrol aircraft equipped with airborne (AN/APG-63) radar capable of detecting and tracking small low-flying aircraft and surface vessels. This is part of the current American campaign to reduce the large-scale smuggling of drugs into the USA, although this campaign could be rendered ineffectived by the increasing manufacture of synthetic hard drugs within the USA. Target information from the patrol craft will be passed to the US Coast Guard and other government agencies whose task is to intercept and apprehend suspects.

Cordless TV

One of the most thankless, yet vitally important, tasks of governments is to uphold, and if possible improve, the regulation of the radio spectrum. While in recent years in the UK public attention has been focussed primarily on “pirate” broadcasters and before that on 27MHz c.b., the general situation has been deteriorating alarmingly rapidly. Point-to-point services are endangered by any number of radio channels not registered with the International Frequency Registration Board; megawatt over-the-horizon radars, including Russian pulser and American continuous-wave radars using for chunks of h.f. not allocated for radar in ITU Radio Regulations; out-of-band high-power h.f. broadcasting is flourishing (the DTI has described this as “semi-regulated anarchy”); by no means all private mobile radio networks strictly adhere to their regulations; licensing authorities find it increasingly difficult to cope with all the administration and paperwork; the Merriman Committee noted the increasing need for the UK Radio Telecommunications Department to devote “adequate resources” to “spectrum monitoring.
particularly of the mobile and fixed bands, as an aid to efficient spectrum management.

On one of the few occasions when the Radio Regulatory regime has been the subject of an adjournment debate in the House of Commons (March 26, 1985) it started at 8.43 a.m. after an all-night sitting and ended 17 minutes later at 9 a.m. when the motion duly lapsed "without Question put".

Barry Henderson, Conservative MP for north-east Fife, who has been described as "an unobtrusive New Technology man with old values" attacked the efficiency of RRD, drew attention to its draconian powers and provided a number of examples to show how delays and errors were adversely affecting business and personal users of the radio spectrum. In reply, John Butcher, Under-secretary of State for Trade and Industry, simply filled in time by describing some of the many tasks of RRD without getting round to his promised outline of "Government's policy on the enforcement of wireless telegraphy legislation" before being saved by the bell.

While RRD has been successful in closing some but by no means all of the pirate broadcasters, a good example of the confused state of enforcement concerns the power given to RRD by the 1984 Telecommunications Act to specify "restricted" transmitting equipment and so make manufacturing, selling, offering for sale or hire of it illegal. In the twelve months following the enactment of this legislation not a single restriction order has been formulated.

What is one to make, for example, of the low-power television transmitters recently announced by Waveview Holdings Ltd of South London? These range from outputs of 4 to 200mW for their "Multiview" series and 1 to 1000 watts for low-power television. The Multiview units are being offered for use in houses, hotels, etc. as local "cordsless" distribution systems with outputs tuned to u.h.f. channel 36, one of the non-allocated channels between Bands IV and V and used by airport radars, etc. All such units, even the lowest power Multiview unit with its built-in antenna, have one feature in common; the use of any would clearly contravene the Wireless Telegraphy Acts and could be seized if used — yet is is perfectly legal, despite last year's Act, for the company to make, advertise and sell these transmitting units!

Amateur Radio

Jas-1 in 1986

An amateur radio satellite, JAS-1, currently being built and tested jointly by JAXA, the Japanese national amateur-radio society and NASA, Japan's national space agency, is due to be launched from the Tanegashima space centre in early 1986 on board a newly developed H-1 two-stage launcher, as part of a multi-phase development. This will be the first multi-payload launch by NASA and the agency will depend on the telemetry from JAS-1 in assessing results. Orbital height of the 50kg JAS-1 will be about 1500km, inclination about 50° and period about 120 minutes (roughly similar to Oscar 7).

Ground stations will have about eight passes per day, with "windows" of about 20 minutes. JAS-1 will carry two mode-J (145MHz up, 435MHz down) transponders with a design lifetime of three years. One will be a conventional linear transponder, the other a digital store-and-forward transponder for communication between stations in different time zones. The digital transponder will have four input channels in the 145MHz band using p.s.k./f.m. with a single 1200-baud downlink at 435.91MHz.

AMSAT-UK reports that two more Russian amateur satellites, RS-9 and RS-10, may be launched this year. RS-10 will carry Mode A (145.9MHz up, 29.5MHz down) and Mode K (21.2MHz up, 29.5MHz down) and possibly also a 21.2MHz up, 145.9MHz down transponders.

JAKL has a special station at the large International Science and Technology Exposition 85 at Tsukuba (100km north of Tokyo) from March 17 to September 1, 1985. Visiting amateurs, including those from overseas, will be able to operate the station provided that they produce their licence certificate.

The Mark III

H.W. King's graphic account ("SOE" in Feedback, April 1965) of the trials of Veljke Dragićević, as SOE's first radio operator in Yugoslavia, is further examined in this article. When early in 1940 the first results of Bletchley Park's cracking (with the aid of the Poles and French) of the German Enigma machine became available, Special Liaison Units were set up to distribute what became known as "Ultra" to overseas commands, and the Mark III became the mainstay of SLU communications. During late 1944, there were no less than about 45 SLU out-stations in contact with the "Windy Ridge" base station, using large quantity of Ultra and Pearl traffic enciphered with one-time pads or Britain's successful answer to Enigma, the Type X cipher machine.

So while agreeing that the idea of mule-bumping such equipment around the mountains of Yugoslavia must have been well calculated to fuel the often bitter rivalry between SOE and British Intelligence, it can be argued that the "notorious" Mark III successfully provided some of the most vital radio links of WWII, despite its bulk and lack of miniaturization!

In brief

After a long interval, amateur radio licences are again being issued in Turkey, with the first going to Dr Unal Akbal who becomes TA1A. ... A number of special callsigns with the prefix "CV" were issued for use in early May by special event stations marking the 40th anniversary of the end of World War 2 in Europe. ... British Standard BS6527: 1984 provides a specification for "Limits and measurements of spurious signals generated by data processing and electronic office equipment" but does not appear specifically to cover home computers which can be the source of considerable problems to radio amateurs. ... The Tyne-Wear Radio Group reports that both of their repeaters — GB3TW (RS) and GB3NT (RB0) — are now operational. Pat Hawker, G3VA.

ELECTRONICS & WIRELESS WORLD JUNE 1986
Here is the complete range of ICOM marine radio-telephone equipment, from left to right: the M700 HF SSB transceiver offers long-range capability at a sensible price. The M5 VHF hand-portable, quick channel access with its push-button keyboard, M12 and M2 VHF hand-portables, 12 and 56 channels respectively using knobs or thumbwheels. Finally the M80 VHF radio-telephone, a wide range of options are available for this and all other ICOM marine radios. ICOM radios are versatile, rugged, water-resistant and most important of all — reliable.

More detailed information is readily available from your local ICOM dealer or direct from Thanet Electronics Ltd.

Thanet Electronics Ltd
Suppliers of Radio Communication Equipment to the Ministry of Defence
143 Reculver Road, Herne Bay, Kent. England Tel (0227) 363859/363850

CIRCLE 28 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JUNE 1985

PANTECHNO

- design manufacture and supply
- POWER AMPLIFIERS
- HIGH POWER ASSEMBLIES
- CONTROL CIRCUITRY
- for application in
- INDUSTRY
- PUBLIC ADDRESS
- Hi-Fi
- available

OFF THE SHELF

CUSTOMISED C A D DESIGNED

tel. 01.361.8715 132 High Road
telex 266 873 New Southgate
PANTEC G LONDON N11 1PG.

CIRCLE 58 FOR FURTHER DETAILS.

HENRY'S AUDIO ELECTRONICS

INSTRUMENTS STOCKED

- [UK C/P £/P 50]
 - **SCOPES**
 - HAKE 1020 50 MHz $284
 - HAMEG 1020 Dual 20 MHz $185
 - HAMEG 1020 Dual 50 MHz $315
 - **CIRCLE**
 - 3030 10 MHz Portable $188
 - 3010 10 MHz Bench $390
 - 3132 Dual 20 MHz $612
 - **THANASAR** SC11A 10 MHz battery/mains $175
- **SCOPES** £1.91

GENERATORS

- [UK C/P £/P 10]
 - **TETEC**
 - T3010 10 MHz $110
 - T3010 20 MHz $100
 - T3010 30 MHz $100
 - **HAMEG**
 - 1020 10 MHz $125
 - 1020 20 MHz $150
 - 1020 30 MHz $175
 - **LASEG**
 - 1020 10 MHz $110
 - 1020 20 MHz $120
 - 1020 30 MHz $130
- **POWER SUPPLIES** [UK C/P £/P 150]
 - **POWER SUPPLIES** £165

COUNTERS

- [UK C/P £/P 10]
 - **COUNTERS** £160
 - **TC100 10 MHz** £110
 - **100 10 MHz** £190
 - **1000 10 MHz** £120
 - **1000 30 MHz** £130
 - **1000 200 MHz** £175

TV EQUIPMENT

- [UK C/P £/P 120]
 - **TV EQUIPMENT** £120
 - **TFCB10 10 MHz** £100
 - **MC221 221 MHz** £232
 - **MC22B 22B MHz** £252

STOCK SELECTION

- [UK C/P £/P 130]
 - **STOCK SELECTION** £130
 - 10 MHz £29.95
 - 100 MHz £29.95
 - 1000 MHz £29.95
 - 10 MHz £19.95
 - 100 MHz £19.95
 - 1000 MHz £19.95

HAND DMM

- 3½ digit [UK C/P £/P 95]
 - **HAND DMM** £95
 - 3½ digit [UK C/P £/P 65]
 - 3½ digit [UK C/P £/P 45]
 - 3½ digit [UK C/P £/P 25]
 - 3½ digit [UK C/P £/P 15]
 - 3½ digit [UK C/P £/P 9]
 - 3½ digit [UK C/P £/P 5]

BENCH DMS

- [UK C/P £/P 10]
 - **BENCH DMS** £10
 - **Bench DMS** £10

ALSO IN STOCK

- Large range of analog multimeters, breadboards

SOFTWARE

- [UK C/P £/P 110]
 - **SOFTWARE** £110
 - **SOFTWARE** £110

CONTACT

- [UK C/P £/P 12]
 - **CONTACT** £12
 - **CONTACT** £12

MINI CENTRE

- 01-724-0339
 - 01-724-0339
 - 01-724-0339
 - 01-724-0339
 - 01-724-0339
 - 01-724-0339

CIRCLE 37 FOR FURTHER DETAILS.
BBC Micro Computer System
BBC Computer & Eceton Referrence Centre

BBC Computers:
- Model B: £299 (a) +B+DFS: £346 (a)
- Model B+B+Eceton: £335 (a) +B+Eceton+DFS £399 (a)

ACORN 10 Byte Hard Disc £1300 (a)

ACORN 2nd Printers:
- 6502: £175 (a)
- Z80: £352 (a)

TORCH UNICORN:
- 280 Card: £275 (a)
- 280 Disc Pack: £599 (a)

GRAPHICS:
- TORCH Graduate G002/2 £999 (a)
- 20 Mbyte Hard Disc+400k Floppy: £1950 (a)

We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS
- EPSON. RX80T £210 (a); RX80FT £220 (a); RX100 £345 (a); FX80 £315 (a); FX100 £430 (a); JX100 £750 (a)
- KAGA TAXAN: KP810 £255 (a); KP910 £359 (a)
- BROTHER: HL940 £340 (a); HL1600 £430 (a)

ACCESSORIES
- EPSON Serial Interface: £28 (b); EPSON Ribbons: MXRX990 £5.00; MXRX990 £6.00 (b)
- JUKI: Serial Interface £65 (c); Tractor Attach £199 (d); Plinth £199 (d)
- BUFFALO 32K Buffer for Epson printers £99 (d)
- EPSON Paper Roll Holder £17 (b); FX80 Tractor Attach £37 (b); RX/FX80 Dust Cover £4.50 (d)
- EPSON Serial Interface: 8143 £28 (b); 8148 with face plate £37 (b)
- SANYO CD 3125 £99 (a); RX100 £345 (a);
- SANYO CD 3145 £99 (a)
- SANYO DM411 £112 (a)
- SANYO DM61 ST £79 (a)

SOFTY II
- This low cost intelligent eprom programmer can program 32768, 256, 2532, 2732, and with an adaptor, 2564 and 2764, and provides 32 byte page on TV - has a serial and parallel interface.

DISC DRIVES
- TECHNOMATIC drives are fitted with high quality slimline Mitsubishi mechanisms and are available with or without integral mains power supply. The dual drive power switches are switch mode type and are generously rated. All drives with integral power supply are fitted with a mains indicator.
- All drives are supplied with all the necessary cassettes, manual and a formatting disc. All drives are capable of operating in single or double density modes.

FLOPPICYLINDER DRIVE HEAD CLEANING KIT
- FLOPPICLENE Disc Head Cleaning Kit £4.99 with 29 disposable cleaning discs ensures continued optimum performance of the drives. £14.50 (a)

TRAMONSPORS
- MICROTAC 14in. & 20in RGB
- 1431 Std Res £165 (a); 1431 Ap std Res PAL/Audio £205 (a);
- 1451 Med Res £240 (a); 1441 Hi Res £389 (a);
- 2003CS Std Res £380 (b); 2004CS Hi Res £685 (a)
- Price for 14in. Monitors £8.50.
- Monochrome Microwaves with TTL/Linear Inputs also available.

KAGA TAXAN 12in RGB
- Vision Il Hi Res £225 (a); Vision III Super Hi Res £325 (a)
- Green Screen, KAGA 125 £99 (a); SANYO DM111 £125 £99 (a);
- Swivel Stand for KAGA £21 (c)
- BBC Leads. KAGA RGB £5 Microflex £3.50; Monochrome £3.50 (d)
- SANYO CD 3125 £145. RGB Std Res £169 (a)

UV ERASERS
- UV Eraser with built-in timer and mains-rectifier built-in safety circuit to avoid accidental exposure to the harmful UV rays.
- Can handle up to 8iba at a time with an average erasing time of about 20 mins £35 + £2.50.
- As above but without the timer £47 + £2.50.
- For Industrial Users, we offer UV141, a UV eraser with handling capacity of 75p/Ur/141. It has a built-in timer. Both can be used in safety features of the UV141 £61, UV141 £79, £6.50.

CONNECTOR SYSTEMS

EDF CONNECTORS

EURO CONNECTORS

DISC DRIVES

FLOPPY DISCS

SWITCHES

TELEPHONE CONNECTORS

RIBBON CABLE

DIL HEADERS

MISC CONNECTORS

TECHNOMATIC LTD

ATTENTION

All prices in this double page advertisement are subject to change without notice.

ACORN IEEE INTERFACE

A full implementation of the IEEE 488 standard, providing computer control of scientific & technical equipment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interface can support a network of up to 14 other compatible devices, and would typically link several pieces of test equipment allowing them to work with the optimum of efficiency. The IEEE Firing System ROM is supplied £28.

INDUSTRIAL PROGRAMMER

TELEPHONE CONNECTORS

3M TECHNOLOGY VIEWDATA SYSTEM. TEL: 01-208 9764

TELEPHONE CONNECTORS

MISC CONNECTORS
A wide range of high performance instruments that put professional test capability on your bench.

COUNTERS - TF600 5Hz to 600MHz, TF200 10Hz to 200MHz, TF040 10Hz to 20MHz, TFU200A 20Hz to 200MHz (hand held model), TF600 precises to 600MHz, TF1000 precises to 1000MHz.

MULTIMETERS - TM351 0.1% 3½ digit LCD, TM356 0.25% 3½ digit LCD, TM354 0.75% 3½ digit LCD (hand held model), TM351 0.03% 4½ digit LCD with autotranging and sample hold, TM32 0.05% 4½ digit LCD with built-in frequency counter (hand held model).

OSCILLOSCOPES - SC110A 10MHz, 10mV sensitivity, 40mm CRT with 6mm graphule divisions.

THERMOMETERS - TH301 -50°C to -750°C, 1° resolution, TM302 -10°C to +100°C, 1° resolution, Both with k-type thermocouple.

GENERATORS - TG101 0.01Hz to 200kHz, Function Generator, TG02 0.2Hz to 2MHz, Function Generator, TG06 5Hz to 5MHz Pulse Generator, TG501 0.005Hz to 5MHz, Switched Function Generator, TG503 0.005Hz to 5MHz Pulse Function Generator.

LOGIC ANALYSERS - TA2080 8 channel 20MHz, TA2160 16 channel 20MHz.

ACCESSORIES - Bench rack, test leads, carrying cases, mains adaptors, probe, 60MHz probe, microprocessor disassembly options.

For further information contact:
Thandar Electronics Ltd, London Road, St Ives, Huntingdon, Cambs PE17 4HJ.
Telephone (0480) 64646, Telex 32250.

83000 SUB-ASSEMBLY
The 83000 is a single board micro-computer with an alphanumeric display and keyboard. It is based on an 8085 microprocessor and is ideal for control applications requiring up to 26 input/outputs. Opto-isolation of the inputs is provided and there is a 14 bit timer on board. Software utilities are available for operating the display and keyboard, initialising the system and performing self tests. Applications include:-

* Remote Intelligent Display
* Password Security Applications
* Small System Process Control
* Watchdog Monitoring
* Printer Interface

16-bit microcontroller, 16K program memory, 2K data memory, keyboard, alphanumeric display, parallel interface, serial interface, interface board options.

FREE POSTAGE
GOOD SERVICE
THOUSANDS OF STOCK ITEMS
PHONE YOUR ORDER
ACCESS OR
BARCLAYCARD

CIRCLE 51 FOR FURTHER DETAILS.
Automatic inverter switch

Electrical appliances such as a blender or sewing machine require power intermittently and when run from an inverter, power consumption of the idling inverter can exceed consumption of the appliance. This circuit automatically switches on the inverter when a load is connected, and removes the need for remote switching when the power is to be distributed.

When a load is connected, it takes the lower contact of the second relay, and therefore the comparator inverting input via R1, to ground. The first relay is energized by the comparator output being high and power is delivered to the inverter and the coil of the second relay.

With the second relay energized, the load is connected to the inverter-transformer output winding through the parallel-connected diodes. Voltage drop over these diodes keeps the left-most transistor switched on and therefore the comparator inverting input remains low.

When the load is disconnected, the leftmost transistor turns off and allows the comparator inverting input to go high, removing power from the first relay coil and therefore disconnecting the inverter input. Standby current is around 12mA.

The power-transistor emitter diode ensures that the transistor switches off when the comparator output goes low. Capacitors C1,2 stop relay chatter during switch on and off. The first relay only has to be large enough to switch the inverter in its idling state; the second relay connects the load at 230V and the first relay does not open until the load is disconnected.

A changeover switch is included to change the inverter output phase since some appliances place a diode in series with the load for half-speed or half-power operation. If the anode of the appliance diode is connected to R1, the load will not be sensed.

Heat sinking for the parallel diodes and power transistor should be isolated from earth and all connections to the inverter should be insulated for safety.

Nicholas Butt
Glemsford
Suffolk

Lower-noise oscillator

Standard two-gate oscillators generate noise spikes around the zero-crossing point. This cheap circuit using a 4001/4011 type i.c. provides a much cleaner output which is also buffered. Further, the oscillator may be gated on and off using one of the inputs shown strapped together.

I have used more expensive 4093 i.c.s for similar applications but I found that they had a higher failure rate.

I.J. Eamus
Aylesbury
Buckinghamshire

Centronics-to-RS232 converter

We have made one or two modifications to Burd’s excellent idea for producing serial output from a Centronics printer interface, described in the February issue.

As the uart is a cmos device, we added a buffer to protect its inputs when power is on and the link is disconnected. The computer needs to stop sending data when a serial printer buffer is full so we added an And gate to combine the data-terminal ready signal from the printer with the uart TRE signal.

Finally, the Centronics standard specifies an acknowledge pulse of approximately 5μs. The original monostable circuit gave a pulse of approximately 25μs so we replaced it with a t.t.l. monostable i.c.

John Wike and Dave Pinch
South Wales Radio Therapy and Oncology Service
Velindre Hospital
Cardiff

ELECTRONICS & WIRELESS WORLD JUNE 1985

www.americanradiohistory.com
Fast converter for repetitive signals

Flash analogue-to-digital converters and sample-and-hold circuits are widely used for sampling analogue data, but when the input signal is repetitive, there is a good case for using a successive approximation technique — an effective sampling rate as good as for flash converters is possible at a fraction of the cost. Speed of this circuit is only limited by the comparator and acquisition time of the D-type bistable devices IC.

Commercial a-to-d converters are usually single-chip i.c.s and the time taken for each approximation is not externally controllable, so discrete components are used. This circuit is for four-bit conversion, but expansion to six or eight bits is relatively easy.

When the reset line is pulsed, outputs of the bistable elements and the two-bit counter are cleared. The one-of-four decoder D, output becomes high. This signal is sent to the d-to-a converter most-significant input through an Or gate; all other inputs are low.

To obtain a sample, the strobe line is pulsed. Its leading edge clocks bistable device IC through the And gate, and the comparator output state appears at the output of IC. The strobe signal trailing edge clocks the two-bit counter, making Q, and Q, outputs of the decoder low and high respectively. Thus if the input signal was greater than the most significant bit when the strobe leading edge occurred, output of IC will be high, otherwise it will be low.

Four strobe signals must be applied at the same point in successive signal repetitions, allowing enough time for the converter to settle between each one. When four strobe signals have been applied, data can be read at outputs A to D, the reset signal applied, and the sequence restarted at a different point in the signal cycle. Device types depend on the application and resolution required.

T. Hunter
Doncaster
South Yorkshire

Two i.c. shortwave calibrator

Inexpensive portable shortwave receivers are often quite sensitive but have vague dial markings, making tuning difficult. Lack of a b.f.o. precludes use of a conventional crystal calibrator since its signals would be inaudible in many cases.

This circuit uses two c-mos i.c.s to generate a modulated calibration signal at switch-selectable frequencies of 100kHz or 1MHz. The signal is audible as a distinctive tone when the receiver is tuned to

Diagram:

- Comparator
- ICs
- D-to-a converter
- Decoder
- Optional unmodulated output
- Switch
- Signal input

ELECTRONICS & WIRELESS WORLD JUNE 1985

www.americanradiohistory.com
Trip for power switches

Overcurrent protection for switching power transistors is provided by this simple add-on circuit. Emitter current is monitored by R2 and the comparator. At the trip current, the p-n-p transistor turns on and shunts the base drive away through R1 to provide positive feedback. The stage remains disabled until the drive is removed, which is useful for p.w.m. systems.

The comparator is an open-collector one. Base-drive current multiplied by R2 should be around 250mV and base-emitter voltage of the output Darlington should be at least 900mV; if not add a resistor or diode. To ensure that the comparator circuit switches right over, the rise in voltage of R1 must exceed the fall over R2. A safe rule is to let the normal excess drive, shunted through R2, replace the drop across R2 before the transistor comes out of saturation at the trip current. Typically, this makes R2 quite small.

As an example using MJ1030 transistors at 50A, 339 comparators and 2N3703 p-n-p transistors, Vref was 100mV and was shared between several stages. Resistor R1 was about 2Ω and R2 only 2 mΩ.

D.H. Potter
Axminster
Devon

Adapting for double-sided drives

Microcomputers designed to select independent single-sided disc drives can be interfaced with double-sided drives using this small modification which makes the drive's second side appear as an independent drive to the computer. To do this, a drive-select signal forms the side-select signal.

The circuit, which may be installed in the microcomputer or in any of the drives, relies on drive and side-select signals being open-collector sourced; check this before installing.

Using signals shown, DS0 selects the first side of the drive and DS1 the second side. Which drive-select signals are used will depend on the logical position required for the drive.

Decouple the 7417 close to the supply pins and connect all unused inputs to the positive rail through a common 1kΩ resistor. In many drives, supply, ground and signal lines will be available at d.i.l. sockets. Pin numbers shown are for a standard 5½in drive interface (further details in the article Floppy discs on pages 44/45 of the January issue).

David March
London

Easy to read hex. display

Onlug's circuit for displaying hexadecimal numbers in decimal form (Dec. 1984) can be simplified. This circuit does the same job, but saves 14 diodes. If only one display is needed it also saves two i.c.s.

The 4011 detects inputs greater than nine and illuminates the second digit. The same signal causes six to be added to the 4008 adder input. The result always has an overflow of 16, with the effect that 10 is actually subtracted, leaving a number between zero and five which can still be decoded by the 4511 i.c.

John Cook
Ipswich
Suffolk

ELECTRONICS & WIRELESS WORLD JUNE 1985
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Brand/Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E123</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>E124</td>
<td></td>
<td>1.15</td>
</tr>
<tr>
<td>E125</td>
<td></td>
<td>0.85</td>
</tr>
<tr>
<td>E126</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>E127</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>E128</td>
<td></td>
<td>1.10</td>
</tr>
<tr>
<td>E129</td>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>E130</td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td>E131</td>
<td></td>
<td>1.40</td>
</tr>
<tr>
<td>E132</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>E133</td>
<td></td>
<td>1.60</td>
</tr>
<tr>
<td>E134</td>
<td></td>
<td>1.70</td>
</tr>
<tr>
<td>E135</td>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>E136</td>
<td></td>
<td>1.90</td>
</tr>
<tr>
<td>E137</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>E138</td>
<td></td>
<td>2.10</td>
</tr>
<tr>
<td>E139</td>
<td></td>
<td>2.20</td>
</tr>
<tr>
<td>E140</td>
<td></td>
<td>2.30</td>
</tr>
<tr>
<td>E141</td>
<td></td>
<td>2.40</td>
</tr>
<tr>
<td>E142</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>E143</td>
<td></td>
<td>2.60</td>
</tr>
<tr>
<td>E144</td>
<td></td>
<td>2.70</td>
</tr>
<tr>
<td>E145</td>
<td></td>
<td>2.80</td>
</tr>
<tr>
<td>E146</td>
<td></td>
<td>2.90</td>
</tr>
<tr>
<td>E147</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>E148</td>
<td></td>
<td>3.10</td>
</tr>
<tr>
<td>E149</td>
<td></td>
<td>3.20</td>
</tr>
<tr>
<td>E150</td>
<td></td>
<td>3.30</td>
</tr>
<tr>
<td>E151</td>
<td></td>
<td>3.40</td>
</tr>
<tr>
<td>E152</td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>E153</td>
<td></td>
<td>3.60</td>
</tr>
<tr>
<td>E154</td>
<td></td>
<td>3.70</td>
</tr>
<tr>
<td>E155</td>
<td></td>
<td>3.80</td>
</tr>
<tr>
<td>E156</td>
<td></td>
<td>3.90</td>
</tr>
<tr>
<td>E157</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>E158</td>
<td></td>
<td>4.10</td>
</tr>
<tr>
<td>E159</td>
<td></td>
<td>4.20</td>
</tr>
<tr>
<td>E160</td>
<td></td>
<td>4.30</td>
</tr>
<tr>
<td>E161</td>
<td></td>
<td>4.40</td>
</tr>
<tr>
<td>E162</td>
<td></td>
<td>4.50</td>
</tr>
<tr>
<td>E163</td>
<td></td>
<td>4.60</td>
</tr>
<tr>
<td>E164</td>
<td></td>
<td>4.70</td>
</tr>
<tr>
<td>E165</td>
<td></td>
<td>4.80</td>
</tr>
<tr>
<td>E166</td>
<td></td>
<td>4.90</td>
</tr>
<tr>
<td>E167</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>E168</td>
<td></td>
<td>5.10</td>
</tr>
<tr>
<td>E169</td>
<td></td>
<td>5.20</td>
</tr>
<tr>
<td>E170</td>
<td></td>
<td>5.30</td>
</tr>
<tr>
<td>E171</td>
<td></td>
<td>5.40</td>
</tr>
<tr>
<td>E172</td>
<td></td>
<td>5.50</td>
</tr>
<tr>
<td>E173</td>
<td></td>
<td>5.60</td>
</tr>
<tr>
<td>E174</td>
<td></td>
<td>5.70</td>
</tr>
<tr>
<td>E175</td>
<td></td>
<td>5.80</td>
</tr>
<tr>
<td>E176</td>
<td></td>
<td>5.90</td>
</tr>
<tr>
<td>E177</td>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>E178</td>
<td></td>
<td>6.10</td>
</tr>
<tr>
<td>E179</td>
<td></td>
<td>6.20</td>
</tr>
<tr>
<td>E180</td>
<td></td>
<td>6.30</td>
</tr>
<tr>
<td>E181</td>
<td></td>
<td>6.40</td>
</tr>
<tr>
<td>E182</td>
<td></td>
<td>6.50</td>
</tr>
<tr>
<td>E183</td>
<td></td>
<td>6.60</td>
</tr>
<tr>
<td>E184</td>
<td></td>
<td>6.70</td>
</tr>
<tr>
<td>E185</td>
<td></td>
<td>6.80</td>
</tr>
<tr>
<td>E186</td>
<td></td>
<td>6.90</td>
</tr>
<tr>
<td>E187</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>E188</td>
<td></td>
<td>7.10</td>
</tr>
<tr>
<td>E189</td>
<td></td>
<td>7.20</td>
</tr>
<tr>
<td>E190</td>
<td></td>
<td>7.30</td>
</tr>
<tr>
<td>E191</td>
<td></td>
<td>7.40</td>
</tr>
<tr>
<td>E192</td>
<td></td>
<td>7.50</td>
</tr>
<tr>
<td>E193</td>
<td></td>
<td>7.60</td>
</tr>
<tr>
<td>E194</td>
<td></td>
<td>7.70</td>
</tr>
<tr>
<td>E195</td>
<td></td>
<td>7.80</td>
</tr>
<tr>
<td>E196</td>
<td></td>
<td>7.90</td>
</tr>
<tr>
<td>E197</td>
<td></td>
<td>8.00</td>
</tr>
<tr>
<td>E198</td>
<td></td>
<td>8.10</td>
</tr>
<tr>
<td>E199</td>
<td></td>
<td>8.20</td>
</tr>
<tr>
<td>E200</td>
<td></td>
<td>8.30</td>
</tr>
<tr>
<td>E201</td>
<td></td>
<td>8.40</td>
</tr>
<tr>
<td>E202</td>
<td></td>
<td>8.50</td>
</tr>
<tr>
<td>E203</td>
<td></td>
<td>8.60</td>
</tr>
<tr>
<td>E204</td>
<td></td>
<td>8.70</td>
</tr>
<tr>
<td>E205</td>
<td></td>
<td>8.80</td>
</tr>
<tr>
<td>E206</td>
<td></td>
<td>8.90</td>
</tr>
<tr>
<td>E207</td>
<td></td>
<td>9.00</td>
</tr>
<tr>
<td>E208</td>
<td></td>
<td>9.10</td>
</tr>
<tr>
<td>E209</td>
<td></td>
<td>9.20</td>
</tr>
<tr>
<td>E210</td>
<td></td>
<td>9.30</td>
</tr>
<tr>
<td>E211</td>
<td></td>
<td>9.40</td>
</tr>
<tr>
<td>E212</td>
<td></td>
<td>9.50</td>
</tr>
<tr>
<td>E213</td>
<td></td>
<td>9.60</td>
</tr>
<tr>
<td>E214</td>
<td></td>
<td>9.70</td>
</tr>
<tr>
<td>E215</td>
<td></td>
<td>9.80</td>
</tr>
<tr>
<td>E216</td>
<td></td>
<td>9.90</td>
</tr>
<tr>
<td>E217</td>
<td></td>
<td>10.00</td>
</tr>
</tbody>
</table>

Note: Prices are approximate and subject to change. Please consult the catalog for the most current information.
Sampled data servos – a new analysis

This fourth instalment considers the response of a servo system to a sinusoidal signal.

If a single frequency \(\omega_n \) is applied to a conventional servo loop such as the one shown in Fig. 1, then provided that the system is linear, this is the only frequency that exists anywhere in the system. We can then define the 'open-loop gain' at this frequency as the ratio of the signal at \(Y \) to that at \(V \). This ratio will of course be a function of \(\omega_n \) and the nature of the function determines whether or not the system is stable and how it will respond to any input stimulus.

In the case of a sampled-data servo such as shown in Fig. 18, the situation is more complicated. The important point to notice here is that over part of the loop the signal exists in sampled-data form, and over the remainder including the hold circuit and the plant, it exists as a continuous signal. As indicated in the last part (May) compensation may take place in either part or it may be divided between the two. The last-mentioned is assumed, for generality.

When a single frequency \(\omega_n \) is applied to this system, the sampling action introduces new frequencies \(\omega_n \), \(\omega_n + \omega_1 \), \(\omega_n + 2\omega_1 \), \(\omega_n + \omega_2 \), \(\omega_n + 2\omega_2 \), and so on. Within the sampled-data portion there is a simple relationship between the gains at these various frequencies as discussed in April but this is not so in the continuous-signal portion. Here the gains at these frequencies will be quite unrelated to one another and so one can no longer speak of an 'open-loop gain' in the same sense as in a continuous system.

There is a way out of the difficulty. For the purpose of analysis we can replace the single sampler following the subtractor (Fig. 18) by a sampler in each of its input lines (Fig. 19), the two operating in synchronism. Thus instead of doing a subtraction between two continuous signals and sampling the result, we sample the signals first, and carry out the subtraction on the sampled versions. This is not something that would generally be possible in practice because it would entail measuring the input and output signals relative to some fixed reference, instead of merely measuring the difference between them. But if we could, it would give exactly the same error signal, and so there is no reason why we should not assume it in the interests of the analysis.

The signals at \(V \) and \(Y \) in Fig. 19 are now both of sampled-data form, and we can define the gain between them, the open-loop gain, as a function of frequency. This will be a periodic function of frequency (as explained in April's article) and the objective is to find it in terms of the gains of the sampled-data and continuous-signal portions of the loop.

Time delay in the sampled-data portion

In practice, there can be a time delay in the sampled-data portion of a loop; that is to say its output values can appear a fraction of a sampling interval later than the corresponding input values, as illustrated in Fig. 20. Part of this delay can occur in the sampler, for instance when sample values are converted from analogue to digital form. Another contributor can be the compensator. If this uses digital techniques it generally has to carry out at least one multiplication and one addition between receiving an input value and producing the corresponding output value, and this takes time.

These delays can be allowed-for as follows. For the purpose of the analysis, assume the samplers and sampled-data compensator to be delay-free, and follow the last-mentioned by a pure-delay element representing the total delay through the sampled-data section. This element will introduce the same delay whether its input is a continuous or a sampled-data signal, and so it makes no difference whether we include it in the continuous or the sampled-data portion of the loop. Mathematically, it is easier to do the first which gives the arrangement shown in Fig. 21. In terms of complex frequency the gain of the time-delay element is

\[
H_\Delta(S) = e^{-\Delta S}
\]

where \(\Delta \) is the delay introduced. In terms of \(\omega \) it is

\[
H_\Delta(\omega) = e^{-\Delta \omega} \quad \ldots 4.1
\]

In other words, the gain has a modulus of 1 at all values of \(\omega \), and a phase of \(-\omega \Delta\).

Gain characteristic of sampled-data portion

The output from a sampled-data network at any sampling instant \(n \) is generally expressed as a linear function of the input at that instant and the inputs and outputs at earlier sampling instants. Referring to Fig. 21, denote the sample values at \(V \) and \(X \) at instant \(n \) by \(v(n) \) and \(x(n) \) respect-
ively, the values set in one earlier by
v(n-1), and x(n-1), two instants earlier by
v(n-2) and x(n-2), and so on. The algorithm of the sampled-
data compensator can then be expressed as
\[x(n) = \beta_0 v(n) + \beta_1 v(n-1) + \ldots + y_{n-1} x(n-1) + \ldots + y_{n-m} x(n-m), \]
where \(\beta_0, \beta_1, \ldots \) are constants. Moving the \(x \) terms to the left-hand side,
\[x(n) + y_{n-1} x(n-1) + \ldots + y_{n-m} x(n-m) = \beta_0 v(n) + \beta_1 v(n-1) + \ldots + \beta_n, \]
From this expression, known as a 'rearrangement formula', one can write down a corresponding expression relating the z-transforms of the signals at \(X \) and \(V(X) \) and \(V(X) \) respectively (see ref. 5, sections 4.4 and 9.4). This expression is
\[X(z)[1 + y_{n-1} z^{-1} + \ldots + y_{n-m} z^{-m}] = V(z)[\beta_0 + \beta_1 z^{-1} + \ldots + \beta_n z^{-n}], \]
where \(z = e^{j\omega} \).

Both sides can now be multiplied by \(z^n \) and rearranged to give the gain as a function of \(z \):
\[H_x(z) = \frac{X(z)}{V(z)} = \frac{\beta_0 z^n + \beta_1 z^{n-1} + \ldots + \beta_n}{e^{n+1} + y_{n-1} z^{-1} + \ldots + y_{n-m} z^{-m}}. \]
To find the gain as a function of \(\omega \) set \(z = e^{j\omega} \), giving
\[H_x(j\omega) = \frac{\beta_0 e^{j\omega n} + \beta_1 e^{j\omega (n-1)} + \ldots + \beta_n}{e^{\omega n} + y_{n-1} e^{j\omega (n-1)} + \ldots + y_{n-m} e^{j\omega m}}. \]
All the exponential terms repeat their values whenever \(T \) increases by \(2\pi \), and so the function will be periodic as illustrated in the April issue.

Gain of continuous-signal portion followed by sampler

The gain of this section is found by assuming a sampled cosine wave at \(X \) (Fig. 21), calculating the spectrum of the signal this produces at \(Y \), and taking the ratio between the spectral components of the two as in April's article. The mathematics can be kept simple by assuming the signal at \(X \) to be the sampled version of \(2 \cos \omega_0 t \), so that from the equations for \(q(t) \) and \(v(t) \), all its spectral components will have unit magnitude and zero phase angle. The spectral components at \(Y \) will then be a direct measure of the gain at the corresponding frequencies.

The spectrum of the signal at \(X \) is shown in Fig. 22(a), and as it passes from \(X \) to \(D \) each component is subjected to a different value of gain. The gain characteristics of the hold circuit, \(H_{ch}(j\omega) \) and of the time delay, \(H_{dl}(j\omega) \), have already been given (equations 3.2 and 4.1 respectively).

The gain of any continuous signal compensation present is \(H_{cc}(j\omega) \) and that of the plant, \(H_p(j\omega) \).

Multiplying these gains together gives the gain characteristic \(H_{cc}(j\omega) \) covering the whole of the continuous-signal portion. A possible shape is sketched in Fig. 22(b). For the assumed signal at \(X \), the signal at \(D \) will then be as represented by the line spectrum in Fig. 22(c).

The effect of sampling is to cause each component in this spectrum to be repeated indefinitely, at intervals of \(\omega \). After the sampler, therefore, the total component at \(\omega \), representing the gain \(H_{cc}(j\omega) \), will be the sum of the following:
\[H_{cc}(j\omega) \text{ is already present before sampling, } \]
\[H_{ch}(j\omega) + H_{dl}(j\omega) \text{, repeated from } -\omega + \omega_0 \text{ to } \omega + \omega_0, \]
\[H_{cc}(j\omega) \text{, repeated from } -2\omega_0 + \omega \text{ to } 2\omega_0 + \omega, \]
and so on for higher multiples of \(\omega \), \(H_{cc}(j\omega) \text{, repeated from } -n\omega_0 + \omega \text{ to } n\omega_0 + \omega, \)
and so on for higher negative multiples of \(\omega \).

This sum will also represent the gains at \(\omega + \omega_0, 2\omega_0 + \omega \) and \(-\omega + \omega_0 \), \(-2\omega_0 + \omega_0 \) etc, in all values of \(m\omega_0 = \omega \), because the same terms are being summed in each case. In other words the value of \(H_{cc}(j\omega) \) at every one of the frequencies \(m\omega_0 + \omega \) is the sum of the values of \(H_{cc}(j\omega) \) at all of them. The corresponding relationship also exists for the frequencies \(m\omega_0 - \omega \), \(H_{cc} \), the gain of the continuous-signal portion followed by the sampler is thus
\[H_{cc}(j\omega) = \sum H_{cc}(j(m\omega_0 + \omega)). \]

The negative values of \(m \) in this expression can be eliminated by noting that the gains at equal positive and negative values of \(\omega \) are the complex conjugates of one another. This gives
\[H_{cc}(j\omega) = H_{cc}(j\omega) \]
\[\text{ where } \sum H_{cc}(j(m\omega_0 + \omega)) \text{ and } \sum H_{cc}(j(m\omega_0 - \omega)) \text{ are the same.} \]

In practice the characteristics of the plant generally cause \(H_{cc} \) to fall to a minimum level at \(\omega = 0 \). The only gain which could possibly be lost by this process is a gain at \(\omega = 0 \). However, in Fig. 21, time delay (Fig. 20) can be allowed for in the continuous-signal portion of the loop.

Fig. 20. Sampled-data portion of the loop introduces a time delay caused by the analogue-to-digital conversion process and digital computation time.

Fig. 22. Derivation of the gain \(H_{cc} \) covering the continuous-signal portion of the loop an the output sampler.

Fig. 21. Time delay (Fig. 20) can be allowed-for in the continuous-signal portion of the loop.
REFERENCES
Now! Tek quality and expert advice are just a free phone call away...

Our National Order Desk line gets you fast delivery of the industry's leading value/performance portables... and technical advice from experts!

The 60MHz 2213A, 2215A and the 100MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included.

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement. The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature.

These UK manufactured 'scopes are obtainable through the National Order Desk. Call us to order or obtain literature, or to talk to our expert on 'scope applications.

...talk to Pete
Dial 100 and ask for Freefone Tek-scope
Tektronix UK Ltd
Fourth Avenue, Globe Park,
Marlow, Bucks SL7 1YD
Tel: (06284) 6000
Telex: 847277 & 847378

The Company reserves the right to modify designs, specifications and change prices without notice.
CAD-8 is a low-cost, easy-to-operate system specifically designed for creating accurate two-dimensional multilayered P.C.B's using high-resolution colour graphics.

Artwork is prepared interactively on the screen using pre-defined function keys and tracking ball, providing single-key commands together with fast cursor positioning. Output can be delivered through a plotter, modem or colour printer. To facilitate the checking of artwork, a point-to-point wiring list can be sent to a standard printer.

The CAD-8 system is microprocessor-based with considerable scope for enlargement, upgrading and networking.

CAD-8 provides a direct replacement for the traditional drawing-board and eliminates manual taping. It has been developed to provide the benefits of computer assistance without having to learn a new way of working.

Although CAD-8 is specifically orientated towards P.C.B. design, the package has considerable potential for use in the creation of circuit diagrams where a fast line-drawing aid with easy editing and alteration facilities to scale are required.

For further CAD-8 information contact Quantum at the address below.

Quantum Computer Systems Ltd., 18 Woodside Road, Amersham, Bucks., England HP6 0BH. Tel. (02403) 28321. Telex: 837888

CIRCLE 39 FOR FURTHER DETAILS.
Managing research and development

Our series continues with a description of the working of a small integrated team’s approach to R & D, in contrast with the hierarchical approach often found. Management of large projects is discussed.

Examples of successful ‘small-team’ projects have been given in earlier articles, notably the ‘video-on-telephone-cable’ system developed by the BBC prior to World War II. This “— — model of engineering R & D” was outstanding in several respects, especially with regard to the way in which research and development were made, in effect, an integrated whole, and did not exist in watertight compartments. This is virtually impossible with ‘family-tree’ — separated level — style management which, by its very nature, almost invariably brings a comparatively large organisation with it. It should be pointed out that such extensive management organisations have to be set up for large-scale projects; where, as an extreme example, putting men on the moon demands the deployment of immense resources, both technical and human, and which all have to be managed and controlled.

Reverting, however, to the BBC case, the integration of research and development also included a user-component with all members of the team having in-the-field experience of the equipment, both in setting-up the complete video links and in their operation for actual programme service.

Thus, among the economic advantages which can be claimed for the small-team approach, (and which have been outlined in earlier articles), is the way in which the coordination and interchange possible with a closely-knit small team enables them to finalize the product as development proceeds. This means that, with suitable experi-

by R.E. Young, B.Sc (Eng.), F.I.E.E., M.R.Ae.S.
The implications of this statement, together with the spread of Sir Alec's achievements, will be examined more closely in a later article, which is based to some extent on a current private venture R & D programme on a combined electronics system/automobile engineering approach to vehicle design and development. Its first part describes some aspects of early work carried out on telemetry (instrumentation) equipment for development testing of motor vehicles; and it is of interest that, with relevant documentation published in early 1961, this original work was carried out towards the end of the 1950s.

Activity chart and project administration

In general, an engineering project taken to a successful conclusion has a certain well-defined 'shape'. This is shown in the activity chart of Fig. 1, with its build-up to a pronounced peak and spread-out distribution of effort. Drawn in this instance for a multi-team R & D project, it may be taken as applying equally to a single small-team programme or as an overall criterion for a major new technology venture at national level, or the equivalent. This aspect is covered in the next section — on Supra-Management — particularly in terms of the British ability to evolve a wide-ranging and yet flexible management approach, where much of the coordination and organization appear to develop almost automatically, but nevertheless where unobtrusive, but full, control is maintained.

It will be appreciated that, despite its apparent simplicity, the activity chart brings out clearly 'project-state' information crucial for R & D technical (progress) management and for control and direction of resources. These can be, of course, 'survival' issues; as for instance, where the extent of the peak in activity has not been realised, and the peak has become a crisis with the future of the project possibly in doubt from then on.

Obviously, drawing any form of activity diagram does not necessarily guarantee the elimination of all R & D problems; but, although the experienced manager draws the equivalent of these diagrams mentally and reviews them continuously, it is not a complete substitute for putting them on paper. Thus, one of the advantages of producing such diagrams is seen with the situation in which more and more effort is being brought to bear on a particularly intractable problem without any sign of its being solved. The accumulation of resources can pass almost unnoticed in the absence of diagrammatic analysis when attention is focussed almost exclusively on the effective deployment of the additional effort. In addition to its 'real-time' reporting role, the rapidly rising activity diagram can often provide valuable early warning and enable anticipatory action to be taken.

Also among the facilities given by the generalized activity chart is the ability to keep a watch on the manning position, particularly with regard to peak loading. Two working rules may be quoted here. The immediate one is that a peak in manning on any single sub-project or the equivalent should be held to a ratio not greatly exceeding 2:1 on the initial level of staff allocation for that particular section of the work. This corresponds with the other guideline principle that a rise in activity continuing much beyond the halfway point in the programme time scale, serious reassessment of the whole situation is required.

From the background given in the introduction and from subsequent articles, it will be realised that a peak usually represents the appearance of the unknowns which are inseparable from R & D, and which because a new field is being entered, cannot be foreseen, at least not for the particular combination of circumstances being encountered. It is, in fact, necessary to make no unexpected that singles out R & D [project] administration from all other forms of management.

In the attack on such a peak and its underlying causes, the project manager, as a team leader, must plan to 'stretch' his team, and the test of his leadership will be to do this with the full knowledge and cooperation of each individual in the team. Recognition as one of the elements in the small team approach; and it will be realised that this approach has contributed to the technical flexibility seen, for example, in the industrial 'clusters' of Great Britain.

The point has already been made in some detail to show how full 'family-tree' management control can be exercised over an R & D project being run in the much more open style as described, and without obtruding on it.

The name 'Farmer's Foot', adopted a number of years ago for this form of management, has proved its worth as a self-defining term with its allusion to the golden days of British agriculture when the watchword was 'the farmer's foot is the best fertiliser'. This allusion covers an individual approach to management just as applicable to modern technology as to those years of advance in agriculture. Thus, during that period, when enormous advances were made in the breeding of plants and animals, British farmers were in effect engaged in an international level-project indistinguishable in principle from a modern engineering R & D programme.

One aspect of R & D which should be introduced at this point is the way in which research and applications of it have been transferred from one branch of UK technology to another. A generalized illustration of this may be given in terms of biotechnology.

One of the achievements which has followed by radar with "— the range from the observers being continuously measured", but no method of finding bearing seemed in sight. In other words, it was not possible to bring even a primitive form of single-station radar system into operation until this key problem of obtaining bearing — direction finding — had been overcome. (Full operational use of these stations also demands determination of height; but the fundamental requirement is for range/bearing, and the original CHL stations did work on this 'plan position' basis.)

The astonishing speed with which the problem was solved, and what may be called the 'project stream' restored, is best shown by quoting from Rowe. After being presented with an explicit statement of the situation may well be this: "Watson-Watt was back with a solution — within a few days"; and the future of radar [notably in interception was never again in doubt.

There is no need to stress the vital nature and importance of this high technology breakthrough. Even if not quite so spectacular, similar turning points in both radio and Cavalry were on record extending over the whole spectrum of British radar; while Sir Stanley Hooker's recently published autobiography gives an up-to-date account of how one individual, admittedly
of unquestioned international standing, provided the crucial direction which "saved" a major high-technology development project for the RB 211 jet engine - from the diastrophic failure which seemed inevitable at the time.

As with Sir Robert Watson-Watt the value of Sir Stanley's work is incalculable. Also, even before these outstanding achievements, both men had demonstrated their extraordinary capacity to move into any plane of development engineering, and, however new, to make a master contribution to it. Hooker had 'sorted-out' a number of aero-engines, beginning with the Merlin piston engine and culminating with the RB 211 (the names of fifteen are given in his Appendix 3); while the degree of Watson-Watt's participation is exemplified by his being named as sole or co-inventor for five British patents coming from the work alone done in the 1930s and associated with the Slough research station.

Supra-management and R & D

The individual manager is concerned primarily with the "management economics" aspect of running a comparatively small but carefully selected team; and, at the same time, maintaining his own technical interest in the project to give it the maximum benefit of his background and experience. Although basically for single-project administration and control, this general management style can be adapted for more than one team, provided the limitations of 'spread' are recognised.

'Supra-Management' - mentioned by name for the first time at the beginning of this article - has already been introduced indirectly in this series, notably in connection with the unparalleled evolution of British radar in World War II. In this general context, A.P. Rowe has given insight into the workings of "that grand body" the Tizard Committee, with its "... objectivity and driving power" which, in effect, set in train these "momentous events". Not only did this mark as has already been noted - the commencement of the high-technology era in Great Britain, but it also represented the emergence of supra-management in the coordination and direction of the work of a number of independent (Government-level) organisations achieved by the Tizard Committee. This achievement was perhaps seen at its height in the period of 'getting it going'.

This colloquialism covers intensive effort directed over a range extending from gaining technical support at high level for what was little more than an unproved idea, to obtaining the necessary Cabinet authority for the unprecedented amount of finance required for carrying out the programme which was being put forward.

As noted in the first article, the magnitude of the technological strength that was eventually brought together on a national scale for this programme has not really been approached in the UK since those days. It was suggested at this same time, however, that the potential for undertaking such an extensive project still existed (was "... not far below the surface"); and indeed this can be taken further with the recent publication of 'inside' information on the Concorde development programme. Though not of the same absolute size, the Anglo-French Concorde was strictly comparable - as a supra-management project - with the UK radar development; and thus it can be said that in implementing their share of the programme, the British demonstrated that the potential was there and could be activated.

The main source of information on the Concorde programme, seen as an interlocking 'pro-ject', is Sir Stanley Hooker's autobiography. Already brought into this article, this book gives a penetrating view of the complexity and difficulty of maintaining project flow and cohesion in a cooperative undertaking of this size. This is done not only with regard to the propulsion side with Sir Stanley's involvement with the application of the Olympus engine to the Concorde; but also in terms of the remarkable overall management of the development of this unique airtliner. Problems there were with this 'bi-national' venture, not the least being language (with technical interchange, this involves 'way of thinking' in addition to straight translation), but with this, as with the engineering problems, there was managerial anticipa-tion and - evidently - almost inspired forward planning.

The immensity of the task that lay ahead cannot be over-empha-sized, with entrance into a number of technological worlds; but the success of the supra-management is seen in the project development times achieved despite the 'design interplay' which compounded all the problems as they were uncovered and then attacked.

These problems could fairly be called high-technology ones (almost invariably the techniques evolved to meet them were entirely new, and usually had an electronic content). Typical of this was the means which was developed to deal with the very large variations which take place in engine airflow with change in aircraft speed, varying from virtually zero at take-off to the supersonic cruise condition at Mach 2. In this instance, an engine inlet system was deve-loped consisting of very large movable flaps, ramps and doors, the control of which is scheduled by an automatic electronic system.

From experience of comparable project work it will be apparent that, with the interaction with other areas of technology, such a development programme would call for a correspondingly large amount of time and effort to be expended on it.

Of even more significance in the present context is a paper by Hilton and Steed, published in Aerospace for March 1984, which throws considerable light on the Concorde flying control system and its development.

More than one major aspect is brought in here, outstandingly that of the spin-off and exchange achieved as part of management economics. The key is in the title, which is the word, 'unknowns'.

![Fig. 2. Generalized activity chart for multi-team R&D projects](image-url)

The "fly-by-wire" Actuation for Combat Aircraft. As stated in the paper "Many of the system characteristics of Concorde, such as pressures, temperatures and performance are typical of those required for actuation in the field of military aircraft".

This information flow had started with an experimental Tay-engined Viscount aircraft equipped with two electrical control systems and one mechanical standby system with the co-pilot in control of it. This general system philosophy, as developed, appears in the Concorde with two electrical lanes (channels) in an active/standby arrangement with self-monitoring of the operating lane. Control is automatically switched to the standby lane in the event of failure on the active system. As a further safeguard, there is a back-up mechanical monitoring system which comes into operation should a common fault or the equivalent develop on the electrical side.

It will be appreciated that there is a certain independent check element in such a main/standby multiple system; but that near-instantaneous decision-taking required in an emergency demands human intervention for changeover action. The question of human intervention — its degree and timing — is, of course, common to other complex control systems; and represents just one element in flight trials and in analysis and assessment which
can rarely be carried out concurrently. With the multiple-programme character of the Concorde project in mind, it will be realised how remarkable was the

The national 'mix' and the universities

During the earlier part of 1984, an advertisement appeared in the British Press for "real engineers" - allrounders with management-grade experience in more than one field of engineering. The pros and cons of bringing non-specialists into innovative work have already been discussed at several points in this series; and it does seem possible to state that provided the necessary flexibility and adaptability are there the method broadly based engineer can contribute to the practical development of an idea, which after all is specialised in itself.

Now it is one of the main submissions of the series that these qualities of flexibility and adaptability to the new and untried are found in Great Britain, almost as a national characteristic. It has also been made clear that of the many factors that have contributed to this result, education in its widest sense is of crucial importance; and it is in this connection that the invention of the cavity magnetron can be used to illustrate how the 'British' approach works in practice and, at the same time, to show how this remarkable advance was made by a university.

The cavity magnetron of J.T. Randall and H.A.H. Boot, with its initial basic development in the physics laboratory at Birmingham University, "...on the second design, worked - and worked so well that it is literally true to say that for years no substantial variation from the original main lines was an improvement". Anyone who has been engaged in R & D at a comparable level will recognise the full import of this quotation from Science at War, not least the soundness of the way of thinking it represents.

The account that follows of the work on the ten-centimetre front continues to show the same pattern of high-technology achievement, and specifically the transfer to manufacture by GEC with "...no inconsiderable part" played by B.T.H.

As found by all who write on this era, it is only possible to include a fraction of the names of those who were responsible for advances in this area of British radar; but, in the present context, it is imperative to list the following, not necessarily in chronological order.

J. Sayers in Birmingham introduced strapping between cavity segments to obviate mode jumping on the generated radio frequency.

A team at Leeds under Prof. E.C. Stoner, working in collaboration with one at Manchester under Prof. D.R. Hartree, explained and determined a full physical picture of the complex path distribution of electrons inside the magnetron when oscillating.

A new technique to overcome the difficulty of making the reflex klystron (used as a local oscillator) was developed in the University of Bristol under R.W. Sutton, "with close contact...with the G.E.C., and in particular, with E.M.I."

In addition, a paragraph in Science at War gives "Prof. J.D. Cockcroft, Prof. M.L.E. Oliphant, Lewis and others" as the team brought in from fundamental research in atomic physics to look into the need for very short waves. The contribution that was made by this team is stated to have been a most important factor in the success achieved in this national programme.

Professor J.D. Cockcroft, who became Sir John Cockcroft, O.M., F.R.S., represents another golden age in Britain. This is essentially associated with that great institution the Cavendish Laboratory at Cambridge and the nuclear research carried on there. Apart from his pre-eminence as a research physicist, Cockcroft was an outstanding development engineer possessing all the talents of the ideal 'participation' R & D manager. Also, as with Sir Stanley Langley Hooker here, he was a brilliant mathematician.

In rounding off this section, the word 'mix' has been chosen to cover two specific and interlinked issues in the conduct of technology in the UK. Both of these issues will be considered from the national point of view, and in the case of the first largely from that of the 'total' education of the individual. Thus, as an illustration, and by virtue of the documentation that exists on his career, the mix of Cockcroft's deliberately acquired and immense technical experience, combined with his world-level research, may be said to represent, within the technological climate of Great Britain, the ultimate, and ideal, career training course for the engineering student.

Two examples will be taken from Egon Larson's book The Cavendish Laboratory to give some indication of Cockcroft's depth of penetration into most branches of engineering practice.

The first shows Cockcroft winding armatures, assembling switchgear, and testing electrical machines at Metropolitan-Vickers in Manchester. He had joined the firm as a college apprentice in 1920, following the interruption to his studies with his three year service in the Army in the 1914-18 War. Larson quotes Cockcroft's recalling that he found that his mathematics "...came back with surprising completeness" on his return to the (then) Manchester College of Technology.

The second example speaks for itself. During his construction of the first particle accelerator at the Cavendish (significantly in the period 1929-32), the workshop-trained Cockcroft built his machine, in effect, round two disused petrol-pump cyclinders. He had to overcome formidable high-vacuum problems, while it is worthy of note that the machine worked at 300,000 volts.

The second of these two issues is firmly on the national scale. In the present context it concerns the mix within each university (including the apportioning of resources and effort generally), between the various universities and between them and the outside world, e.g. their Government-type sponsoring/directing authorities.

The structure and existence of this mix will have already been gathered from the accounts given earlier in this series and more particularly from this article. There is perhaps one aspect which might be elaborated - relations with the local industry-based cluster. This has already been mentioned with the reference to the Manchester University contribution to computers; and, in line with the preceding treatment it seems appropriate to couple the name Ferranti with the Manchester computer mix.

References
2. Young R.E.; 'Vehicle Instrumentation and Development', article (This series Wireless World: To be published)

Articles in this series
- British invention, innovation and electronics (March)
- Radar and television - interchange and spin-off (April)
- The post war stride into aerospace (May)
- R & D management and economics
- Big system automation and telemetry
- Vehicle instrumentation
- Human communications
- The future

ELECTRONICS & WIRELESS WORLD JUNE 1985
Helical antennas for 435MHz

An easy-to-construct design offering true circular polarization

This antenna design was produced for satellite working with Oscar-10, but it has also proved excellent for ordinary local and long-distance operation. It has eliminated at a stroke the frustration of accurately matching and phasing crossed Yagis to true circular polarization and obtaining an acceptable s.w.r. throughout the band.

Compared with other antennas it has a very wide bandwidth - a low Q - which makes it forgiving of dimensional inaccuracies. It is therefore easy to construct successfully.

This article describes 9 and 16-turn helices for the 430-440MHz amateur band. The nine-turn version simply has fewer turns and spacers, but it is short enough to permit end-mounting. Gain figures of the two versions are 12.8 and 15.2dB respectively. You can use more turns, but the mechanical penalties increase rapidly at this wavelength, whilst the extra gain per turn is marginal.

For many years Kraus' has been a central figure in promoting helix antennas, and a little detective work reveals dimensions identical to his figures in almost every design guide (for example the R.S.G.B. VHF/UHF Manual, ITT Reference Data for Radio Engineers etc.).

More recently, King and Wong in their brief summary paper presented performance characteristics based on a large number of gain and pattern measurements of helices of 5 to 35 turns, with various pitch angles and other parameters. The paper augments and expands Kraus's theories.

The design of this antenna is based on that work. A pitch angle of 12.8° with a circumference of about 1.08 wavelengths are used. From King and Wong's curves this yields a maximum gain (allowing for mechanical tolerances) at 435MHz, for aerials of reasonable size (Fig. 1). These gains are typically 3dB lower than Kraus gives, but seem to be representative of actual practice.

Materials

In choosing materials I was guided by the need to make an antenna that could survive several years' weathering with only minor attention; and that for the most part used common material and needed simple workshop practice. I did not consider timber stable enough - but you could try it.

The reflector and boom are aluminium and the helix copper. The feed-strap is brass and the screws are zinc-plated. The spacers are of black Delrin. A waterproof N-type connector is used for the r.f. connection. For protection, the completed antenna should be varnished.

To ensure success, it is important to do things in the right order: for example, the length to which the spacers must be cut depends on the final diameter of the helix. Handling the helix itself calls for a boom through its middle and so it is easier to do drilling first. So:

- obtain all materials - see table 3;
- build up the reflector assembly;
 - drill the boom;
 - wind the helix and stretch along the boom;
 - make and fit spacers;
 - fix the copper spiral to spacers;
 - fix reflector to boom;
 - install feed strap;
 - adjust s.w.r.

Reflector

The reflector is a nominally 600mm square piece of expanded aluminium fret, obtainable as Expamet 351A, which is widely used as a grille material. The size is not critical and 500mm square could be used if windage is a problem. Take especial care to cut the Expamet sheet without leaving jagged edges.

The mesh must be stiffened, or it will bend easily in a light breeze and may quickly break. In one prototype the support/stiffening was fabricated from a 100 x 100mm 16 s.w.g. (1.6mm) centre plate and some 10 x 10mm 18 s.w.g. (1.2mm) aluminium angle, and was quite satisfactorily strong and lightweight.

For the final version model I tried a simpler design, bent up entirely from 18 s.w.g. sheet metal (Fig. 2,3). The stiffening is bolted through the mesh with M3 x 10 screws and stiffnuts, using 16mm diameter washers on the front face, cut from waste metal. To keep the reflector all-aluminium, 3mm (4") pop rivets could be used instead of screws.

Once the stiffening is fixed, mesh can be snipped away to allow the boom and N-type connector through. The connector is a single-hole-fixing type and can be fitted either way round depending on whether the feed is to be from the rear or along the boom from the front.

Aluminium tube 19mm square and of 16 s.w.g. wall is obtainable from most ironmongers or non-

by James Miller
B.Sc.
G3RUH
Fig. 2. Reflector support is fabricated from 18 s.w.g. aluminium sheet; two of each part are needed. Assemble as shown in Fig. 3. The parts are fixed through the reflector mesh with twelve 10mm M3 screws and stiff-nuts, backed with 16mm diameter washers cut from waste aluminium.

Material — Aluminium sheet 18 s.w.g

All unmarked holes are 4 dia

All dimensions are millimetres

Fig. 3. Rear view of the reflector showing assembly of support parts. Rear feed may be obtained by reversing the N-type connector and omitting the feedthrough insulator. Anti-static protection (not shown) can be effected with a small inductor from connector pip to a solder tag on the boom.

Particular thanks to Francis Pullen G4XXX for machining services during the development of this antenna, and to Cambridge Consultants Limited for the free use of facilities.

Electronics & Wireless World June 1985

The helix is made from 10mm diameter copper central-heating pipe, which is readily available, easy to bend by hand and quite cheap. It usually comes in 10 or 20m coils. Each turn takes 0.7m, so you can get up to 13 turns out of a 10m length; 20m will make two antennas, one of nine turns and one of 16. If you can obtain odd lengths from a plumber then the pieces can be soldered together. Do not uncoil the raw tubing before winding.

You will need a mandrel around which to wind the helix. It should have a diameter of 229mm and, for comfort, a length of at least 180mm. A search around your attic, scrapyard or the shops may well produce a suitable object. I found a nine-inch cake tin exactly the right diameter though a little short, and I was able to wind the first prototype, somewhat unevenly, using two pairs of hands and a lot of patience. For subsequent models this experience prompted me to make up a proper drum of the correct size out of two plywood discs and some slats.

The first spacer is a quarter-turn into the helix; the last supports the end of the final turn.

First drill the spacer holes. Position the reflector mounting holes so as to locate the front face of the reflector 53mm from the first spacer hole. This will ensure an adjustment gap of about 5mm between the reflector and the start of the helix.

Drill holes of 4.3mm diameter for the spacers and to secure the reflector (see Fig. 4). Spacers are used every 1.75 turns: the holes must therefore be alternately vertical and horizontal on a 3.5 turn (595mm) pitch. The first spacer is a quarter-turn into the helix; the last supports the end of the final turn.

First drill the spacer holes. Position the reflector mounting holes so as to locate the front face of the reflector 53mm from the first spacer hole. This will ensure an adjustment gap of about 5mm between the reflector and the start of the helix.

44
There is no need to worry if the mandrel is not exactly 229mm in diameter, but be sure to err on the small side, since the design is already close to the maximum size for 440MHz. If your helix diameter ends up N mm less than nominal, then simply make the spacers (N/2)mm shorter.

Start winding about half a metre into coil. Holding the short end tight against the mandrel, pointing away from you, pull the long end down on to the mandrel into a curve. Slip the helix back an eighth of a turn and bend again. In this way a whole turn can be built up smoothly and will start gripping the mandrel as soon as tension is applied.

After winding the first turn, stop and inspect your work. Make absolutely sure you are winding a right-hand or left-hand spiral as you really want. If in doubt, compare it with a normal woodscrew. Most people instinctively wind left-handed spirals.

Continue to close wind the copper until you have 9 or 16 tightly coiled turns. The helix will spring out naturally to the desired (coiled) diameter of about 253mm outside.

Stretching

First mark the top of each turn: stick black tape along the outside of the coil, slit the tape between turns and smooth each marker down firmly.

Support the boom at each end. Mark the location of the first and last turns on the boom (1.53 or 2.27m apart) boldly, with black tape.

Now slip the coiled helix over the boom. With an assistant holding one end, draw the other, gently stretching the coils apart, keeping the top markers vertical until the full extent is reached. Take care to avoid distorting the first and last turns through rough handling.

You should now have a fairly even helix with the correct average spacing of 170mm and nominal o.d. of 247mm.

Fig. 4. Boom drilling. Material is 19x19mm aluminium tube. The reflector is secured via two vertical holes to prevent twisting; spacers are used every 1.75 turns.

Table 1: measured performance data

<table>
<thead>
<tr>
<th>Size</th>
<th>9</th>
<th>16 turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>12.8</td>
<td>15.2dB</td>
</tr>
<tr>
<td>3dB beamwidth</td>
<td>31°</td>
<td></td>
</tr>
<tr>
<td>First nulls</td>
<td>>22°</td>
<td></td>
</tr>
<tr>
<td>Typ. sidelobe</td>
<td><18dB</td>
<td></td>
</tr>
<tr>
<td>F/b ratio</td>
<td>14dB</td>
<td></td>
</tr>
<tr>
<td>SWR (typ.)</td>
<td><1.1:1</td>
<td></td>
</tr>
<tr>
<td>Overall length</td>
<td>1.59m</td>
<td>2.78m</td>
</tr>
<tr>
<td>Weight incl.</td>
<td>2.7</td>
<td>4.0kg</td>
</tr>
</tbody>
</table>

Table 2: electrical and mechanical design

<table>
<thead>
<tr>
<th>Frequency</th>
<th>430-440MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>λ = 690mm nominal</td>
</tr>
<tr>
<td>Pitch angle</td>
<td>p = 12.8°, circumference C = 1.08A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>symbol</th>
<th>wavelengths, size, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>C = 1.08 745</td>
</tr>
<tr>
<td>Diameter</td>
<td>D = C/e</td>
</tr>
<tr>
<td>Turn length</td>
<td>L = C/cos(p) = 1.108 745</td>
</tr>
<tr>
<td>Turn spacing</td>
<td>S = C/tan(p) = 0.245 170</td>
</tr>
<tr>
<td>Tube diameter</td>
<td>d = 0.014 10</td>
</tr>
<tr>
<td>Reflector</td>
<td>0.87 600 x 600</td>
</tr>
</tbody>
</table>

Table 3: materials

<table>
<thead>
<tr>
<th>Quantities for a 16-turn helix (figures in brackets are for nine turns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector:</td>
</tr>
<tr>
<td>Extended 35A expanded aluminium mesh, about 600 x 600mm</td>
</tr>
<tr>
<td>Support/stiffeners fabricated from 300 x 25mm 18 s.w.g. aluminium sheet</td>
</tr>
<tr>
<td>12 M5 x 10 pan-head screws and spacers, plated</td>
</tr>
<tr>
<td>12 mm diameter washers drilled 3.5mm cut from aluminium waste</td>
</tr>
<tr>
<td>2 M4 x 30 pan-head screws and spacers</td>
</tr>
<tr>
<td>1 N-type socket etc. (suitably adapted part no. 10-01301)</td>
</tr>
<tr>
<td>1 feedthrough insulator, 4mm dia. x 13.7mm e.g. Sealotron type FT50P51</td>
</tr>
<tr>
<td>Boom:</td>
</tr>
<tr>
<td>3 (1B) metres aluminium tube, 19 x 19mm section, 18 s.w.g. wall thickness</td>
</tr>
<tr>
<td>2 19x19 square plastic and plugs - e.g.作文 Finishers</td>
</tr>
<tr>
<td>1 antenna clamp, double U-bolt type, e.g. Jaybeam type WP41 or similar</td>
</tr>
<tr>
<td>Helix:</td>
</tr>
<tr>
<td>15 (12) metres 10mm diameter copper micro-bore central heating tube</td>
</tr>
<tr>
<td>10mm end cap, e.g. Yorkshire type A1</td>
</tr>
<tr>
<td>Spacers:</td>
</tr>
<tr>
<td>1/2 (1.2) metres 10mm diameter black Delrin rod</td>
</tr>
<tr>
<td>10 (6c) M4 x 30 screws, pan-head, plated</td>
</tr>
<tr>
<td>Feed strap:</td>
</tr>
<tr>
<td>100 x 7mm 16 s.w.g. brass strip</td>
</tr>
</tbody>
</table>

The following parts may be obtained from the author:

1. Pre-formed reflector support/stiffeners, screws, nuts, and washers: £15 per set.

2. Manned spacers with screws: £2.50 each.

Complete antennas and kits are also available to special order. Prices include carriage to U.K., addresses only. For more details, please send a stamped, self-addressed envelope to J.R. Miller, 5 Benny's Way, Coton, Cambridge, CB3 7PS.

There are no holes to worry if the mandrel is not exactly 229mm in diameter, but be sure to err on the small side, since the design is already close to the maximum size for 440MHz. If your helix diameter ends up N mm less than nominal, then simply make the spacers (N/2)mm shorter.

Start winding about half a metre into coil. Holding the short end tight against the mandrel, pointing away from you, pull the long end down on to the mandrel into a curve. Slip the helix back an eighth of a turn and bend again. In this way a whole turn can be built up smoothly and will start gripping the mandrel as soon as tension is applied.

After winding the first turn,
The spacers are made from 16mm extruded black Delrin rod, which can be obtained from plastics suppliers listed in the classified telephone directory; but any ultra-violet and weather-resistant loss-free material could be used instead. Cross sections of the spacers are shown in Fig.5. They can be made by hand using a saw and drill, though a lot of care will be needed; I used a lathe. You will need six or ten spacers.

The slot in the top is wide enough to allow the copper tube to be snapped into place. Other methods of mounting may be just as effective, though. One possibility is a V-notch, with the tube secured by a couple of turns of 18 s.w.g. copper wire (as used in mains power wiring) via a small hole drilled beneath the notch. Whichever method is used, the tube centre must be supported 109mm above the boom surface, allowing for any error in the dimensions of the spiral.

Fix the spacers loosely to the boom in such a way that the start turn will be uppermost. Lift the helix on to the top spacers at 2, 9 and 16 turns, guided by the markers, and secure it. Next, fix the spiral at the bottom, and then at the sides.

Fine adjustment of spacing may be needed to correct any distortion. Make up a 160mm-long gauge from a strip of metal: it should just slip between the turns.

Now bolt on the reflector assembly.

Feed strap

This consists of a strip of 16 s.w.g. brass, 7mm wide and about 100mm long running from the start of the helix down direct to the connector (for rear feed). For front feed, the strap is about 85mm long and runs to a feed-through insulator mounted on the reflector support. It is linked by an 18 s.w.g. insulated copper wire across to the connector pip.

Carefully squash flat about 10mm of the start of the helix so that the strap can be soldered flat, close and parallel to the reflector. The tube can be sealed up at the same time.

If a large soldering iron or blowtorch is available, a 10mm copper end-cap makes a neat finish for the front end of the helix; but while fitting it, temporarily remove the leading spacer from the heat.

Tuning

First make sure that all screws are tight. Using an s.w.r. bridge, adjust the spacing between strap and reflector, gently bending the first quarter turn as needed. The gap should be about 3mm. Relieve any stress at the connector or feed-through by re-melting the solder.

Tuning can be done at ground level, with the antenna on a two-metre pole. In fact, after the initial adjustments indoors, little further tuning seems to be needed when the aerial is taken outside.

Use no more then 5W when experimenting, and remember the e.i.r.p. at the sharp end is high: avoid prolonged exposure. With care a virtually perfect match can be achieved from 430 to 440MHz.

Installation

In a gale the force acting on the reflector is very high, and results in a considerable torque at the clamp. Therefore pay special attention to this fixing point. Use a double U-bolt design and install with care. If in doubt run an M8 bolt right through clamp and mast. There is just room.

Consider also the parking position when the aerial is not in use. Small rotators such as the Hirschmann 250 are not really suitable for the 16-turn antenna. Windage can be reduced by cutting the reflector to a 500 x 500mm square or to a circular pattern.

The centre of gravity of the 16-turn antenna is about 6.7 turns along the boom, and at this point the bending moment of 1.6kg.m results in a 20mm sag at each end, which is quite acceptable.

The nine-turn antenna can be fixed in the same way, or end-mounted with a counterbalance weight of moment 1.7kg.m referred to the clamp. (Front-end sag will be 20mm again).

Using a metal mast through the helix seems to produce no ill effect. Glass-fibre masts are becoming more common, but unfortunately are still expensive.

The antenna's finish can be preserved with a coat of white varnish. This will flake off if the metalwork in not first degreased using hot soapy water, blue Ajax or Inshibol.

This type of antenna inevitably picks up a static charge which will damage pre-amplifiers or receivers that do not have a low input resistance to d.c. Check your system! A simple protector would be a 4.7kΩ 1W resistor from connector pip to boom, which I have not tried, or small inductor in the same place, (say 300μH, a few turns), which I have. You are warned!

Performance

I would have welcomed an opportunity to evaluate the antenna on a proper test range, but lacking both of these I had to devise another method. My local u.h.f. repeater is fortunately only 1km distant and it provides a strong, steady line-of-sight signal. I rotated the antenna in small increments and measured the response using a calibrated 1GHz variable attenuator.

With this test I was able to assess the nulls and sidelobes, and by graphically integrating the polar plot I arrived at an estimate of the gain achieved (table 1).

In actual practice, performance has surpassed my expectation. Oscar-10 working has been transformed since my crossed Yagis were replaced. Terrestrial working is excellent, the circular polarization eliminating the need for dual feeds, channelway relays and the like. Of course there is a 3dB penalty for using circular instead of linear, but does anyone actually notice? The polarization from mobile signals constantly changes, and circular polarization should actually be better than vertical alone.

The prototype has been in use since December 1985, and apart from the redesigned reflector stiffening has needed no attention. Without doubt it has been one of the easiest antennas of all to design and build.
connect with quality

The Oryx name means a range of soldering tools and accessories designed to meet any modern requirement. Our comprehensive range includes lightweight, cordless rechargeable soldering irons, the famous "Super" and "Viking" standard designs and lightweight and temperature-controlled models. All with a wide selection of tip designs and sizes. The unique Portasol butane gas soldering iron completes the range. Oryx also supply the largest range of SR desoldering tools, including the new anti-static pump, power supply units, safety stands and solder pots.

Oryx - advanced design at an ordinary price

GREENWOOD ELECTRONICS DISTRIBUTORS

Please telephone or write for further information to:
Greenwood Electronics Portman Road, Reading, Berkshire, RG3 1NE
Tel: Reading 0734 595844. Telex: 848659

CIRCLE 10 FOR FURTHER DETAILS.

FUNCTION GENERATOR
0.1Hz - 500kHz

- Sine, Square, Triangle, TTL output
- Typically 0.02Hz - 700kHz
- 7 switched ranges with coarse and fine frequency controls
- ± 30V output capability
- Accuracy typically 1% of range
- Variable DC offset
- External A.M. facility
- External sweep facility
- Short circuit protection all outputs

JUPITER 500 (inc. P & P and VAT) £128.80

Colour leaflet with specifications and prices available from:
BLACK STAR LTD. (Dept.WW) 4 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ, England. Tel: (0480) 62440. Telex: 32339

CIRCLE 11 FOR FURTHER DETAILS.

PPM5 PEAK PROGRAMME METER DRIVE CIRCUIT: 20-PIN DUAL IN-LINE
- Vcc 8.5V-35V at 3mA
- Only signal level and meter tolerance presets required
- Applications Note and full specifications on request
- +9dB IBA flasher with Mother Board 3

APRS STAND PPM5

SURREY ELECTRONICS LTD.
The Forge, Lucks Green Cranleigh, Surrey, GU6 7BG
Tel: 0483 275997

CIRCLE 4 FOR FURTHER DETAILS.

LOGICAL EE/EPROM PROGRAMMERS & ERASERS
PROMPRO 8 — £775

Powerfull commands, easy communications. 64/128/256k buffer. Emulation, keypad option. Programs all EPROMS & MPU’s

Choose from stand alone, intelligent RS232 units. Compatible with any computer/terminal. ERASERS FROM £285.00 EPROM PROGRAMMERS FROM £295.00 (ex VAT) BIPOLAR & PAL CALL

BYTRON LTD.
High Street, Kirmington,
S. Humberside, DN39 6Y2
Tel: 0652 688626
Telex 527229

CIRCLE 24 FOR FURTHER DETAILS.
ELECTRONICS & WIRELESS WORLD JUNE 1985
D.C. supplies from a.c. sources - 5

Switched-mode supply design

The brief excursion into s.m.p.s. principles in Part 1 pointed to the tantalisingly high efficiencies in power conversion they promise. This means small sizes and mass in the equipment for a given throughput, but at the cost of a higher component count and r.f.i. problems. Control and drive circuit complications can be overcome to some extent by means of circuit integration, together with good filtering, screening and circuit layout to reduce harmonic interference.

Circuit development

The three broad categories of s.m.p.s. circuits are often developed further than the simple outline I discussed before. You will find multiple windings on chokes and transformers, with the mains isolation these provide. Consider the flyback converter, which includes a limiting case, the ringing choke converter. Flybacks find the greatest use in low and medium level power supplies and work well for relatively high voltage outputs. Figure 1 offers a rough breakdown of the useful power and voltage ranges obtainable from the various types.

One advantage of the flyback circuit is the ease of obtaining multiple outputs (the rectification is simpler). Disadvantages include the high ripple component in the output and the larger choke required for a given throughput. This is because all the energy has to be stored by the magnetization current flowing in the winding round the core. Of interest is that in the ringing choke case, choke utilization is best.

The semiconductor switch and rectifier diodes have to withstand high peak voltages and currents. Because of these high switching levels, transients and interference tend to be larger in flyback designs.

In comparison, the forward converter delivers power to the output while the switch is on.

The inductor acts as a true transformer and a high throughput can be obtained with a relatively small cross section of core. The circuit is suitable for medium and high powers at low output voltages. One disadvantage is the requirement for a second inductor to store the energy over the 'off' period - tending to put up the cost. But this is compensated by the resulting low ripple component in the output, which requires a less stringent filter. Another slight disadvantage is the need to recover the magnetization current (or rather, energy) in the transformer core during the 'off' period. Unlike in the flyback circuit, the magnetizing current does not form part of the output. In practice, a similar recovery circuit is also used in a flyback s.m.p.s. for safety, to limit spikes and return the magnetization energy if the load is removed.

The inductance of the main transformer in a forward converter is kept high to minimize the magnetizing current. A rule of thumb is to aim for \(L \) to be about 10% of the load current.

The third circuit adheres to push-pull or bridge connections in the switching stage. There is a number of versions of these, including half bridge or full bridge designs. The switch drive circuits are necessarily more complex to cope with all the transistors going on and off in the right sequence, but you can obtain high and very high throughput powers, (Fig. 1.) The transformers are magnetized in both directions, since the push-pull action reverses the current, which means that a maximum flux swing can be obtained for a given core.

Flyback converter

Figure 2(a) is a two-winding choke version of the circuit. Figure 2(b) shows the waveforms when operating. You might think that L looks like a transformer, but in the flyback circuit it actually works as two 'choke' because only one winding conducts at any given time. It operates on a 'bucket-brigade' principle: the primary choke stores the energy, some of which is extracted later by the secondary at a different pressure and quantity level, according to the turns ratio. The other quantity which adjusts the relative levels is the duty cycle \(\delta \), of the switching waveform, the amount of energy stored during the 'on' time varying with \(\delta \). The rest of the period is available to abstract this variable amount of stored energy.

The third winding on L with \(D_1 \) is the one that returns any stored energy with nowhere else to go back to the primary source. This limits the voltage peaks across the transistor.

A simple analysis of how the circuit operates clarifies the picture and yields design information. To start, there are a few assumptions to simplify things. One is that the inductance of the windings on L is large enough to prevent current falling to zero during the 'off' period. It falls to zero in the ringing choke converter). Given \(L \), you will find there is a certain minimum current, \(I_{min} \), to satisfy this requirement. As we saw in article 2, designers write down a quantity called \(\eta \) for

Fig. 1. Voltage and power output obtainable from the three main classes of switched-mode supply.

<table>
<thead>
<tr>
<th>Power Output</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 W</td>
<td>85%</td>
</tr>
<tr>
<td>500 W</td>
<td>75%</td>
</tr>
<tr>
<td>1000 W</td>
<td>65%</td>
</tr>
</tbody>
</table>

by K.L. Smith, Ph.D.*

* University of Kent at Canterbury

ELECTRONICS & WIRELESS WORLD JUNE 1985

www.americanradiohistory.com
D.C. SUPPLIES

Fig. 2. Two-winding choke type of flyback converter at (a). Operating waveforms are shown at (b).

a choke or transformer, such that

\[\eta = \frac{I_{\text{MIN}}}{I_{\text{MAX}}} \]

Another assumption made is linear growth and decay of currents in the windings on \(L \). As you know, switching transistors take a finite time to operate, but assume they are very fast for the moment. More detailed investigation of the current commutation effects and to rise and fall times at the switching edges is a little complex and will stretch your reasoning. Designers have to consider these effects for peak and average switching loss calculations.

The voltage across any winding carrying a current \(i \) is

\[V = L \frac{di}{dt} \]

if \(L \) is its inductance. The linear current ramps in \(L \)'s windings mean constant \(di/dt \)'s. I have defined all the quantities 'by implication' in Fig. 2. So from these we can write:

\[\frac{di}{dt} = \frac{\Delta i}{\delta T} = \frac{\Delta i_0}{(1 - \delta)T} \]

\[\Delta i = V_i T \]

\[\Delta i_0 = V_i / L \]

and

\[\Delta i_0 = V_i (1 - \delta)T / L \]

Referring everything to the input side by using \(\Delta i_0 = \eta \Delta i \) and \(L_p = L_p / n^2 \) enables us to eliminate \(T \), the inductances and \(\Delta i_0, \Delta i \), from the previous two equations. This yields,

\[V_i = \frac{V_i \cdot \delta}{n (1 - \delta)} \tag{1} \]

Equation 1. shows that the volt-seconds product in the choke sums to zero over one cycle. In particular, it also shows that \(V_i \) depends on the duty cycle parameter \(\delta \) as well as on the usual 'transformer' turns ratio \(n:1 \).

As you can see from \(v = L \frac{di}{dt} \), to keep \(v \) constant over the 'off' period, \(L \) must be sufficiently large. This is to make \(di/dt \) slow enough to keep the diode current going throughout the period. As mentioned, if \(L \) does fall to zero, we have the ringing choke condition.

Again working in terms of quantities from Fig. 2 reflected into the primary circuit, you can find \(L_{\text{ch}(\min)} \) to avoid the ringing choke condition. By equating areas on the graph,

\[i_p = \frac{L_p}{1 - \delta} \]

Now from this result, if the output current just reaches zero, then the peak value, \(I_{\text{p}} \), will just reach,

\[2 \frac{1}{1 - \delta} \]

As an aside, this gives a useful result for the peak current in the rectifier diode. For example if \(\delta = 0.5 \) the worst case \(I_{\text{D}} = 4 I_0 \). In other words, the repetitive peak forward current, \(I_{\text{FHM}} \) rating of the diode must be equal to or greater than \(4 I_0 \).

\[2 I_0 (1 - \delta) \]

will also be the change \(\Delta i_0 \) under the conditions of minimum inductance.

\[\Delta i_0 = V_i (1 - \delta)T / L_{\text{ch}(\min)} = \frac{2 I_0}{1 - \delta} \]

(where \(I_0 \) should strictly be written \(I_{\text{(min)}} \) here.) We know

\[\delta = \frac{n V_0}{V_i + n V_s} \]

from Equation 1.

\[\Delta i_0 = V_i (1 - \delta)T / L_{\text{ch}(\min)} \]

Also, \(I_0 = P_s / V_i \), where \(P_s \) is the output power. Together with this, of course,

\[I_{\text{ch}(\min)} = \frac{P_s}{V_i + n V_s} \]

Inserting these quantities and solving for \(L_{\text{ch}(\min)} \) gives:

\[L_{\text{ch}(\min)} = \frac{V_i (1 - \delta)^2 T}{2 P_s} \]

Or in terms of \(L_{\text{ch}(\min)} \):

\[L_{\text{ch}(\min)} = \frac{V_i n V_s T}{2 P_s} \]

You can see that there is a definite \(L_{\text{ch}(\min)} \) for constant \(V_i \) given \(L_{\text{ch}(\min)} \) (it gives)

Your semiconductor switches must withstand peak values \(I_0 \) and \(V_{\text{CE}} \) in this application. Finding \(L_p \) is fairly simple:

\[L_p = \frac{L_{\text{ch}(\min)}}{n} \]

By reflecting through the \(n:1 \) transformer ratio again, this can be written:

\[I_p = L_{\text{ch}(\min)} A_i / n \]

Now from this result, if the output current just reaches zero, then the peak value, \(I_{\text{p}} \), will just reach,

\[2 \frac{1}{1 - \delta} \]

\[2 I_0 (1 - \delta) \]

Finally, for the peak collector to emitter voltage:

\[V_C = V_i + n V_s \]

These equations express general, or average operation. It is the worst case conditions that would see off your devices.

The worst case will occur if \(P_{\text{MAX}} \) is being drawn when \(V_i \) is equal to \(V_{\text{CE}(\max)} \):

\[V_{\text{CE}(\min)} = V_{\text{CE}(\max)} + n V_s \]

and the constraint on \(L_p \) is:

\[L_{\text{ch}(\min)} = \frac{V_{\text{CE}(\min)} n V_s T}{2 P_{\text{MAX}}} \]

On the other hand, \(L_{\text{ch}(\min)} \) will occur when \(P_s \) is running at the maximum demand, coincident with the lowest \(V_i \):

\[I_{\text{MIN}} = P_s / (V_{\text{CE}(\min)} n V_s + T) \]

\[L_{\text{ch}(\min)} = \frac{P_s}{V_{\text{CE}(\min)} n V_s + T} \]

50

www.americanradiohistory.com
In order to keep V_o constant with varying V_i, δ will have to change:

$$\delta_{\text{max}} = \frac{n V_i}{V_{\text{rms}} + n V_i}$$

$$\delta_{\text{min}} = \frac{n V_i}{V_{\text{rms}} + n V_i}$$

The 'd.c.' value V_i will be at maximum when the mains supply is high and the peak of the 100Hz ripple from the primary full-wave rectification. Conversely, V_{rms} will occur with a low mains input together with the trough of the 100Hz ripple. If the maximum mains r.m.s. voltage is 265 volts, the V_{rms} might reach 375 volts d.c. If the ripple amplitude is, say, 25 volts peak to peak, then when the mains is low at 190 volts V_{rms} will be about 244 volts.

Forward converter

The circuit and waveforms given in Fig.3. enable you to understand the operation in a similar way to the flyback converter. I won’t go through the analysis, as space hardly permits such a duplication, but to quote a cliché ‘it is left as an exercise for the student’. A brief note of a few details about the circuit operation and a quotation of the results for comparison should help anyone to derive the formulae.

The magnetic component T, operates as a true transformer. With Tr on, D_1 is on and energy is passed through from the input. Some is stored in L, some flows on to the output load. When T turns off, primary and secondary currents, i_1 and i_2 cease. The voltage V_i across the choke reverses, diode D_1 goes off and 'flywheel diode' D_2 comes on. The current in choke L 'commutes' from D_1 to D_2. The magnetizing current in the transformer would also stop flowing, since no path now exists for it in the primary or secondary circuits. An extremely high voltage inductive 'kick' would occur across T. Therefore the energy recovery winding with D_2 is essential in this form of converter. D_2 limits V_{CE} to $2V$ by returning the stored magnetic energy to the source.

The designer must consider two limiting requirements. The transformer core should reach zero magnetization in less time than the 'off' period of the switching, so that the circuit starts the next cycle with a clean slate, as it were. The choke L should be large enough to keep the current going during the 'off' period, for a similar reason to that given for the flyback converter. As you can see, current flows through a sufficiently large L all the time. In fact it ramps gently (and linearly...) up and down. This means the ripple duty for C_i is much less stringent than the corresponding filter component in the flyback circuit, where bursts of current arrive followed by nothing for a while.

In a similar argument for Equation 1. you can show V_o and V_i relate as:

$$V_i = \frac{\delta V_o}{n}$$

(5)

The criterion for the design of T is to make its winding inductance large enough to keep the magnetizing current small compared to the load currents. The energy storage inductor L has a certain minimum value L_{min}, which will keep the current going, down to a stipulated minimum current out, I_{min}. With a similar approach to Equation 2. for the flyback circuit:

$$I_{\text{min}} = \frac{V_i^2}{2F_{\text{rms}}^2} \left(1 - \frac{n V_i}{n V_o} \right)$$

(6)

L_i is also found in a similar way:

$$I_o = \frac{V_o T}{L} \left(1 - \frac{n V_o}{L} \right)$$

(7)

Finally D_3 clamps V_{CE} to $2V$,

$$V_{CE} \leq 2V$$

(8)

Precisely similar arguments as before will give you the 'worst-case' magnitudes the devices would have to handle in practice.

Will the transformer handle the power?

Always central to power supply design is the question of whether your transformer will burst into
VA = \text{ampere-turns} \times \text{volts per turn}

The true transformer action in the forward converter means that magnetizing currents can be ignored for the moment. They can be checked at a later stage in the design. The d.c. pulse drive is illustrated in Fig. 4, from which, the peak primary current is:

\[I_1 = \frac{1}{\delta} \]

R.m.s. current \(I_1 \) is given by:

\[I_1 = \sqrt{\frac{1}{T} \int_0^T I_1^2 \, dt} = \frac{I_v}{\sqrt{\delta}} \]

or in terms of \(I_1 \):

\[I_1 = \frac{I_v}{\sqrt{\delta}} \]

The transformer efficiency is high (about 96%) which means:

\[\text{VA}_{\text{out}} = \text{VA}_{\text{in}}(1 - \delta) \]

Equations A5 in Part 2 give the resistance of the windings. Equations A6 built up a picture of current density in the copper and power dissipation. We can quote via Equation A6(a):

\[P_v = 2 \rho \frac{\Delta V}{\Delta t} L \]

The rate of change of magnetic flux gives the volts per turn:

\[V_\phi = \frac{\Delta \phi}{\Delta t} \]

where the linear rate of change of flux \(\Delta \phi / \Delta t \) is simply \(\phi / T \delta \) from Fig. 4.

\[V_\phi = \frac{\phi_\delta}{N_p \delta} \]

And from Equations 10 and 12 we obtain:

\[VA = V I_1 = \frac{\sqrt{V}}{N_p} \frac{A_p A_{\phi} F_1}{m_{\text{eff}}} \cdot \frac{\phi}{\Delta t} \]

where \(I_1 \) has been replaced by the current density \(I_1 \) times the effective copper area, \(A_p A_{\phi} F_1 \), of the primary winding, the number of turns, \(N_p \), cancelling. Now substitute for \(I_1 \) from Equation 11:

\[VA = \frac{P_v A_p A_{\phi} F_1}{\rho m_{\text{eff}}} \cdot \frac{\phi / T \delta}{2} \]

Or writing in terms of the cooling surface, \(A_{\text{c}} \), and the heat transfer, \(P_i \) (see Part 2) Equation 13 becomes:

\[VA = \frac{2 P_i A_p A_{\phi} F_1}{3 \rho m_{\text{eff}}} \cdot \frac{\phi / T \delta}{2} \]

Looking at this result, you can see that the throughput VA is a minimum (or temperature rise is maximum for a given VA) when \(\delta \) is at its maximum value, 0.5 – together with minimum \(V \) and

minimizes \(\delta \) and so we have the smallest numerator divided by the largest denominator in Equation 13. Hence the throughput conditions are explained.

Design note. In practice, you would calculate the windings from the minimum supply voltage and maximum \(\delta \) conditions. The volts per turn for the three types of converter work out as:

- forward converter: \(V = 2 \pi \delta \phi \)
- flyback converter: \(V = \frac{4 \pi \delta \phi}{N_p} \)
- push-pull circuit: \(V = \frac{4 \pi \phi}{N_p} \)

Some d.c. flux will occur in a forward converter transformer core – and might occur in an unbalanced push-pull circuit. A slight reduction in your chosen \(\phi \) can be made to take this into account.

Chokes carrying d.c. such as those in the flyback converter and the smoothing chokes in forward converter and push-pull circuits, require some thought. The d.c. component bases the flux in one direction and the relatively small alternating swings go round and round a minor hysteresis loop. The incremental permeability might very well be much less than the amplitude permeability we have assumed to apply. The inductance is optimized by using an air gap in these cases, since a gap in the magnetic circuit can increase the incremental permeability. The best approach would be for you to use the appropriate Hanna curves for the chosen core.

Switching to new endeavours

The efficiency of conversion will only remain high if you endeavour to keep down the dissipation in the switches as well as the transformers. The primary switch has been bipolar transistors, but power fets are challenging this position. We can look upon the steering and rectifier diodes as secondary switches. In all of them, time is required to turn on and off. Especially in the diodes, charge storage can cause trouble at turn-off.

While the current rises through the switches at turn-on, the previously high voltage across the devices has to fall rapidly. The power dissipation is high during the rise and fall times but, averaged over a whole period, the fractional energy lost can be quite small.
There is always an offset, or forward saturation voltage across semiconductor devices. The on period dissipation arises through the product of this voltage with the saturation current. The time taken by the switching edges is so short that they are a tiny fraction of the steady periods of the cycle. The fraction of time a particular device is on and dissipating steadily changes with 6, You can see that operating at higher frequencies increases the switching edge average losses, as there are more of them per second, but the on dissipation remains steady. If you consider a simplified set of switching waveforms, for example those shown in Figure 5, a loss estimate is straightforward. The on dissipation is the average on current, multiplied by $V^2_{CE(sat)}$, over period nT, averaged over the whole period T:

$$P_o = \frac{\delta}{2} + \frac{1}{2} V^2_{CE(sat)}$$ (14)

The approximately linear rise and fall ramps on the switching edges makes for a simple integral of the following form. At switch on:

$$V_{CE} = \frac{V}{t} + v$$

and

$$i = \frac{V}{t}$$

The energy dissipated and averaged over the period T is:

$$P = \frac{1}{T} \int_{t}^{v} V \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot dt = \frac{V}{6T} \cdot \frac{V}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$ (15)

Similarly at turn off:

$$P_o = \frac{V}{6T} \cdot \frac{V}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$ (16)

The sum of these powers gives the total dissipation in the switch:

$$P = P_o + P_o + P_o$$

$$P = \frac{\delta}{2} + \frac{1}{2} V^2_{CE(sat)} + \frac{V}{6} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$ (17)

where I have written f_s the switching frequency, for 1/T. You can see from this that the power lost is proportional to the frequency f_s. Fast rise and fall times are required in the devices to minimize f_s and f_o and a low saturation voltage $V^2_{CE(sat)}$.

The estimate for P is optimistic and applies best to switching in resistive circuits. S.m.p.s. circuits are anything but resistive: there are additional effects from leakage inductance, charge storage in the diodes and capacitances charging and discharging. The transient losses are likely to be worse than the simple analysis shows. Typical waveforms in s.m.p.s circuits are shown in Fig.6.

Optimising f_s and f_o

The problems of getting the switching transistor to turn off include the need to prevent the emitter-base junction losing control. If this happens, the charge storage in the base-collector junction causes energy dissipation over a long time with high loss. The trajectory of the operating point at turn off must be arranged to avoid the dangerous second breakdown region of the devices. The slow rise network ensures this, see Fig. 3.

Stored charge must be taken out via the base-emitter circuit. The current i_b remains constant during the time this occurs in a correctly designed circuit, then snaps off quickly. The V_{CE} edge has begun to rise, but overall the power lost, P_o, is minimized. Figure 7 shows the two possibilities: the required base drive waveforms to achieve the desired result are shown. A series induc-

Fig. 7. Minimizing loss of power during transistor turn-off. Rapid turn-off of collector current at (b) produces optimum result.

Fig. 8. Optimum turn-on waveforms at (b), while (a) shows result without extra i_b pulse.
tor is used to store energy to form the waveshapes at switch off.

During switch on, the base current drive must rise above the \(I_{(on)} \) level in order to flood the base-collector region with injected charge. This produces a fast rise in \(i \) and minimizes \(t_r \). The extra pulse of base current at turn on is usually obtained from a capacitor. Figure 8 shows the rising edge of current at switch on for two conditions. The kind of results that can be achieved in practice are impressive: for instance, special s.m.p.s. transistor type BUS13 switching directly rectified and smoothed 230 volt mains in a forward converter, can handle a maximum throughput of 1000 watts at 20kHz switching rate. The BUS13 has an \(I_{(on)} \) of 10 and a \(V_{(e)} \) of 400 V. Its makers state that test results gave <1µs for the turn-on time and typically 40ns for \(t_r \) with the ‘off’ storage time \(t_s \) less than 3µs, (Figs 7 and 8). You would have to exercise some caution because, as I have shown, the switching times can be very circuit dependent.

To achieve circuit optimization of the switching characteristics, you will come across base drive arrangements such as that shown in Fig. 9 which also illustrates the desired base current waveform it provides.

Rectifiers

There was a hint earlier that unless you choose carefully, diodes can cause trouble in high-speed switching circuits. At turn-on, the depletion layer in a p-n junction has to be flooded with charge. This is called forward recovery and lifts the voltage drop (and therefore the power dissipation) slightly. Things are worse at turn-off: charge storage can cause a big increase in power loss and transients. Typical waveforms for an ordinary double-diffused diode are shown in Fig. 10. The diode cannot support any reverse voltage until the reverse current reaches its peak. Then reverse voltage increase rapidly while the remaining reverse current sweeps out the remnants of stored charge \(Q_r \). This accounts for the pulse of energy dissipation shown in (b). The usual forward \(V_f \) times \(I_f \) dissipation is also occurring and by adding up the total over one cycle, you can calculate the heat sinking requirement for the diode, if any, to remove the waste watts in your particular application.

The reverse current pulse has ramifications elsewhere. The transformer winding is effectively short circuited by the diode in the first part of \(t_r \); the current pulse is reflected through to the main switch (see Fig. 6) and increases the dissipation there. All in all, very fast recovery epitaxial diodes should be chosen for this duty. For example, the BYW30 has a \(t_r \) less than 35 ns and a stored charge, \(Q_r \) less than 15nC. Figure 11 compares an ordinary diode with one from the BYW series. As a bonus, these diodes also tend to have a lower forward voltage drop, \(V_f \).

Output filtering: just a capacitor?

There is further trouble if we take the well known smoothing capacitor techniques from 50Hz linear supplies and apply them to s.m.p.s. systems without thought. Figure 12 illustrates a straightforward s.m.p.s. output circuit, with the real equivalent circuit of the filter capacitor. At 100Hz say, the e.s.l. has negligible effect, but consider 50kHz…? Also, very high peak currents can occur in an s.m.p.s. and the e.s.l. becomes significant. The upshot of all this is that it is difficult to get ripple components down in switching systems. The capacitors have to be carefully designed for this service. They tend to be expensive — and any old electrolytic won’t do.

The forward converter shown in Fig. 12 supplies a sawtooth current waveform whose mean value is \(I_w \). The variable component flows through the capacitor and its parasitic series components. If we know the value of this ripple current, then the ripple voltage amplitude is easily calculated. Fig. 13 shows the current waveform \(i_w \), and the resultant peak to peak voltages across the e.s.l., e.s.l. and capacitor itself. These voltages are found as follows.

A glance at Fig. 3 with linear current ramps again, enables you to write down the peak to peak ripple current as:

\[
\Delta I_r = \frac{(V_r - V_L) T_s}{L}
\]

But from Equation 5:

\[
\Delta I_r = \frac{(V_r - V_L)}{T_s} V_r
\]

Continued on page 79
GANG-OF-EIGHT is our FAST EPROM PROGRAMMER which handles CMOS or NMOS EPROMS from 2716 to 27256 (25XX too) using FAST or NORMAL programming methods. FAST programming 27128's takes 2 minutes, NORMAL programming takes 14. All possible levels of Vpp are covered including 25, 21 and 12.5 volts. G8 has an LCD which tells you what you're doing correctly or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included. Good value.

GANG-OF-EIGHT PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which lets you download in INTELHEX, MOTOROLA S, TEKHEX, ASCII, SIMPLE HEX etc.

Oh, yes. PLUS 50 quid too, but you might think it's worth it...

EMULATOR/EDITORS

SOFTY 2, our intelligent EPROM PROGRAMMER/EMULATOR, plugs into a TV, shows you memory and lets you TEXT-EDIT in HEX/INSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc. It also calculates ADDRESS-OFFSETS in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves programs on TAPE, and PROGRAMS, COPIES and EMULATES EPROMS 2716, 2732 and 2532. Great DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead, ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use.

2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMs for...

£25.00

Z80 DEVELOPMENT TOOLS

MENTA is a Z80 development system designed by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBLER and TV hex display: let it enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS, CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O — it can be used as a controller for ROBOTS and intelligent machines. MENTA appears in GCE syllabuses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available — also CONTROL MODULES — UNIVERSAL I/O, A to D, D to A, MOTOR and VARIABLE SWITCHED INPUT for less than £20 each. A MENTA with TV flylead and power-supply costs...

£9

MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You just plug into the microprocessor socket, READ and WRITE to the MEMORY and I/O. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE in Z80, 6502, 6800 or 8085 mnemonics. When your SCOPE or MULTIMETER can't find the problem — consult the MD. When you order say which processor or ask about microprocessor MD...

£295

CONNECTIVITY TESTERS

I.C.T. (Intelligent Connectivity Tester) is the project name for a 40 pin dual-in-line CUSTOM-CHIP developed by DATAMAN.

The chip is called the MT72017 and it will appear soon in BARE BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION/SYSTEM CONTROLLER for the MT72017 is available on a EUROCARD and you can BUILD YOUR OWN custom connection-pattern tester for...

£295

The controller has full documentation, source-code, circuit diagram, parts-list and a description of operation. Each MT72017 tests 26 points and a single controller will handle hundreds of 'em — thousands of test-points.

MT72017 chip prices: £12.50 (1 to 99) £11.25 (100-999) £10.25 (1000 up). We do not sell samples of the MT72017 without a controller.

LOGIC ANALYSER TA2080 by THANDAR with SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams — and DISASSEMBLES Z80, 6502, 6800 code on the screen or printer.

THANDAR TA2080...

£1950

DATAMAN RETROFIT...

£295

EPSON AND NEC COMPUTERS QX10, HX20 and PX8, PC8800. ALL COMPUTERS are sold with a free bundle of useful software written by DATAMAN.

OLIVETTI TYPEWRITER INTERFACES designed by DATAMAN for ET121 and 221 — cheaper than a DAISYWHEEL printer RS232, HPIB (IEEE) and PARALLEL including fitting...

£195

EPROM ERASERS from...

£39.00

If you need more send for a FREE LIT-PACK and an ORDER FORM or, better still, JUST BUY THE PRODUCT AND EXAMINE IT — you may return any item within 14 days for A FULL REFUND (we deduct only postal charges). Add £2.50 for carriage to orders below £100. ADD VAT TO ALL UK ORDERS. Terms cheque with order. Dealers who mean business welcome. Goods normally in stock — TODAY DESPATCH IS POSSIBLE — please phone us DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET DT1 1RX. TELEX: 418442. PHONE (0305) 68066.
TELESCOPIC MASTS
Pneumatically operated telescopic masts.
25 Standard models, ranging from 5 metres to 30 metres.

E.M.S. POWER SYSTEMS
Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps.

For further details please contact:
E.M.S. Manufacturing Limited
Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484
Reactivating Band III

Trunked repeater networks and worsening interference problems were among the topics discussed by mobile radio users at their annual conference

These are exciting times for the mobile radio industry: in January, cellular radio opened for business on 900MHz while at the same time TV broadcasting ended in Band III leaving the way clear for a big expansion in private mobile radio. So there was no shortage of subjects for consideration when members of the Mobile Radio Users’ Association met at Wadham College, Oxford, in March.

Opening the conference, Lord Lloyd of Kilgerran said that the emergence of cellular radio would act as a prodd to the entire mobile industry. He emphasized its value to the small businessman: for a large company, cellular could mean better service and improved efficiency, but to a self-employed plumber it could be the difference between profits and bankruptcy.

Speaking of his own role in Westminster, Lord Lloyd said that five years ago no-one in Parliament had been interested in information technology; but now things were different. And he called on the industry to give presentations to Pitcom, the Parliamentary Information Technology Committee, so that MPs could be better informed.

One of the more provocative speakers at the conference was Walter Stevenson of Air Call, a founder-member of the MRUA. He criticized the “unhelpful” regulatory attitude in Britain, which he said had fallen behind the United States in mobile radio. And he reminded his audience of the about-turns by the regulating authority from which the industry had suffered.

For example, Band III had been given to the land mobile service in the early 1950s because the BBC did not require it for television; yet on the opening day of one of the largest mobile radio schemes outside the US, a 1000-unit radio taxi network in London, the Government changed its mind and handed over the band to the new commercial TV service. The same had happened to Band II, where the presence of public service transmissions continued to restrict the expansion of broadcasting.

Smarting, perhaps, under this onslaught there came next Rod Stewart of the Radio Regulatory Department of the DTI, one of a strong contingent from that unit, whose involvement in the conference was warmly welcomed by several speakers.

Allocating band III

Mr Stewart spoke about the technical problems of frequency assignment, especially those of Band III. This band is still in use by television broadcasters in continental Europe and in Ireland; and Britain, through bilateral agreements, has a duty to minimise interference caused there by mobile services.

The most serious source of difficulty for British users, he explained, would be the new French 625-line service Canal Plus. Strong signals from this service were often present over wide areas of Britain, their interference-causing potential being greatest around the vision carrier frequencies. For this reason, the new mobile band had been split into six sub-bands with intervening gaps centred on those frequencies. With this arrangement the Department hoped to be able to provide up to 1200 interference-free channel pairs, with scope for trunked systems where needed.

Answering questions afterwards, Mr Stewart said that there were no plans to use the gaps for mobile radio, although they might be assigned later to low-power services in the cities.

Another questioner raised the issue of delays by the department in granting allocations: he was told that the cause was a serious manpower shortage.

Also from the DTI came Les Barclay, who described his department’s activities in monitoring interference and spectrum usage.

The Monitoring Section’s main centre of activity is at Baldock in Hertfordshire, where it can monitor frequencies ranging from 10kHz to 12.75GHz. This station, recognised by the ITU, concentrates on the h.f. band, where it is mainly concerned with protecting British services against interference from abroad. Baldock now has two 12m satellite dishes, covering 4GHz and 12GHz.

For investigating mobile services, the department has a van newly equipped with automatic and manually-controlled equipment covering the spectrum up to 230MHz. The van has been regularly on the road as a mobile research station.

Fig. 1. Band plan for the new U.K. land mobile allocation in band III. The gaps are to avoid interference caused by strong signals around the vision carrier frequencies of the French Canal Plus network.
Can isolators muting strong enough carrier, the noise is still frequencies several transmitter.

Fig. 100 000 100 220 000 400 000 Table 7 Band Name 30 - 88 (F,B) 97 - 102 (B) (until 1989) 104 - 108 (until 1995). 138 - 235 (F) 235 - 399 (F) 401 - 470 (F) 862 - 960 (F) total, all bands 30 - 960MHz, 486.25MHz (F) - shared with fixed services (B) - shared with broadcasting Table 2: mobile radio users in Britain, 1985 (Walter Stevenson)

400 000 despatch-type radio-telephone, including police, fire, prisons and civil defence 220 000 radio message and signalling pagers, including wide-area, national and on-site pagers 35 000 public mobile radio telephones, including message-handling and cellular 100 000 vehicle and portable telemetry and radio-control devices 30 000 amateur radio, mobile and portable 200 000 citizen’s band radio including unlicensed users 100 000 cordless telephones 1300MHz. The automatic system scans 300 channels per second and measures the signal level on each. Data is stored on a Winchester disc and then transferred to magnetic tape for off-line computer analysis later on. Up to 10 hours of data can be held on a single tape.

With this information, operators can list channels in order of their traffic congestion. And they can study in detail any channels with anomalous traffic loadings. A second van is to go into service later this year.

Spectrum pricing
The final DTI speaker was the head of the Licensing Branch, Ian Jones, who was introduced lightly heartedly as the man delegates would most like to stick pins into.

Mr Jones discussed, among other matters, the issue of ‘spectrum pricing’, an approach to frequency allocation by which channels might be let to the highest bidders. His department had decided to investigate the feasibility of spectrum pricing, though he stressed that there was no commitment to implement it. The first study would take six months and would deal with fixed services; the second, covering private mobile radio, broadcasting, the amateur and emergency services and others, was unlikely to be completed before late 1986.

If adopted, spectrum pricing might enable R.R.D. to drop its existing spectrum-loading criteria in deciding whether to assign further channels: the user’s willingness to pay would become the main factor. At present, he said, licensing costs were “quite incredibly low” in relation to the other costs of running a mobile system, and some operators made excessive demands for frequencies. Spectrum pricing might sharpen their appreciation of a valuable resource. “Why must the Government decide what is a frivolous use of radio?”, he asked; “shouldn’t the market decide?”.

Mr Jones spoke also about the announcement in January by the industry minister, Geoffrey Pattie, of the Government’s initial decision on the uses to which Bands I and III would be put. The minister was considering the possibility of one or more large national mobile radio networks; these would not however be allowed to interconnect with the public telephone system, except possibly on a very limited basis. Applications would probably be invited for up to five trunked radio systems in major conurbations, using the common signalling standard now being drawn up. The government also wanted to hear from companies interested in setting up two-way mobile data transmission systems.

Mr Jones promised further ministerial announcements by early summer.

A questioner asked why the 900MHz band had been given so cheaply to the cellular radio operators. Mr Jones said that the charge was £1,000 per national channel (for 160 channels) plus £8 per mobile user, which he felt was quite a good start to spectrum pricing.

Trunked systems
The theme of trunked networks, or community repeater systems, was taken up by Norman Croft of Motorola, a company which has played a large part in introducing such systems in North America. Trunked systems can provide a big increase in the efficiency of channel usage. Users, instead of having their own private frequencies, share between them a much smaller number of pooled channels. Each user has access to all of them, and on initiating a call is switched automatically (via a separate control channel) to a vacant communications path as soon as one is free. When the call is over, the channels are released for other users.

Such a system, according to Mr Croft, had many advantages. It was simple to use, offered privacy (though not secrecy), reliability (failure of an individual channel did not mean total loss of communication) and easy expansion to accommodate new users. Since costs were shared it was especially attractive to the small user. As a bonus, trunked repeater systems offered reliable mobile-to-mobile contact.

Even greater traffic densities could be achieved by grouping the mobiles under network controllers or ‘dispatchers’, such as were used by taxi firms.

Cellular radio was itself a trunked system, though the networks now envisaged would not permit hand-off from one base-station to another as the mobile roamed about. To cover adequately a large region such as the London area, trunked systems would probably have to transmit simultaneously from multiple sites and incorporate voting techniques on the receive side.

Cellular radio
The first three months’ experience with Cellnet, one of Britain’s two new cellular radio systems was the subject of a presentation by Bernard Mallinder, formerly the consortium’s technical director and now general manager. (No representatives of the rival Racal-Vodafone system were present at the conference.)
At the end of March, Cellnet had just over 4000 subscribers. Areas covered now include Birmingham, Manchester and Liverpool, and the system is expected to cover 80% of the population by the middle of next year.

The busiest times for callers are just before noon and just after. Four-fifths of all traffic occurs between 0800 and 2000; 70% of it is originated by mobiles and the average call duration is about 93s. Calls cost 25p per minute at peak times but fall to 8p per minute in the evenings and weekends.

Cellnet is now working on protocols to permit data communication with mobiles: at present there are difficulties because of the momentary interruptions as the mobile passes from one call to another.

Tackling interference

With the rapid growth in mobile radio during the last few years, there has been a marked increase in the number of radio stations sharing a common site. Co-siting can result in severe mutual interference; and the mechanisms by which this occurs were described by Gerald David of Aerial Facilities Ltd.

One problem results from the fact that the transmit-receive frequency spacing is generally constant within a given band. An incoming signal from a mobile will mix with the base station's transmitter output to produce a difference frequency. Any other transmitter in that base station can now mix with that difference frequency to produce its own receive frequency, which will be treated as a valid input on that channel. With 1mV of received signal coming in, up to 50μV of the transmit-receive difference frequency could be floating about in the installation.

Interference problems at shared base stations could be very hard to solve. Mr David mentioned one case of intermodulation interference at a site equipped with 35 transmitters, where it had taken four hours of mainframe computer time to track the fifth-order intermodulation products. The signal being looked for turned out to be an 11th order product.

A further source of interference was the noise generated by modern solid-state transmitters. The spurious noise 2-3% away from the carrier in a typical 25W unit is rarely better than 130dB below, which is much worse than with earlier thermionic designs. Thus, at a multi-channel transmitting site, the accumulated noise can be sufficient to open the muting of all the receivers.

The cure, said Mr David, was to add cavity and bandpass filters throughout and to insert ferrite isolators in each transmitter's output to prevent unwanted mixing.

A switch to s.s.b.?

The prospect of novel modulation modes was looked at by Prof. J.D. Parsons of the University of Liverpool in a paper which was published at the conference, but which he was unable to present in person.

The Government, he wrote, was under pressure to allocate a substantial part of Band III to systems using amplitude-companded single-sideband transmission. This would greatly increase the traffic capacity of the band by making possible a reduction in channel spacing to 5kHz. But its cost in receiver complexity would be significant. However, some sort of pilot-tone would need to be added to the transmission to provide a.g.c. and a.f.c.

Further investigation of a.c.s.s.b. was needed to evaluate its susceptibility to interference, particularly on the signalling channel; however, in the meantime it looked as though the first systems to be licensed would employ conventional f.m.

Improving coverage

A common source of complaint among mobile radio operators is failure to achieve adequate coverage of a system's service area. Brian Collins of C & S Antennas said that many of these problems could be avoided at the planning stage by a better choice of site for the base station and by better aerials.

A folded dipole mounted on the side of a steel mast was usually not good enough, since the mast created unwanted lobes which would confound the intentions of the planners. Attempting to deal with this by mounting a dipole on each side of the mast produced even worse results: a radiation pattern with deep nulls. A better approach was to use dipole or slot-fed panels on each face of the tower, driving them in phase: this would be more expensive, but the antenna would have a broadband characteristic and so could be shared by several services.

Typical aerials used by cellular systems consisted of ten-tier panels, which gave high gain in the horizontal direction, but could have sharp nulls at other angles. This could give rise to poor coverage in areas close to the base-station, especially where the station was at a high site above a town. In this case, Mr Collins said, mobile operators could borrow an idea from broadcasters, who phased the elements of such arrays so as to produce a slight downward tilt. A tilt of about 2.5° to 3° was common in tv practice: it directed the main beam more accurately at the boundary of the service area and filled in the nulls close to the station.

Another idea worth borrowing from broadcasters was to avoid hilltop sites where possible: it could help reduce co-channel interference.

Mr Collins added that coverage with mobile systems was often restricted by multi-path reception: the use of polarization diversity at the receiving site could bring about worthwhile performance improvements.

Guest speaker at the conference dinner was Professor Brian Carsberg, director-general of Oftel since its inception last year. Prof. Carsberg outlined the functions of Oftel, which by next year will have a staff of up to 110, with powers to enforce the licence conditions of telecommunications operators and to investigate complaints within the industry.

Speaking of Bands I and III, Prof. Carsberg said the Government had asked his advice on their allocation, and that he would be reporting shortly. The interests of the consumer would be paramount, he said. "We welcome the opportunity to have contacts with organisations on matters which are important. They should not wait to be invited."

Fig. 3. Polar diagram of a vertical high-band folded dipole stood off a 2m-square solid mast on a 1.5m boom (left): a common arrangement in mobile radio practise, but one which gives disappointing coverage. Adding dipoles on the other faces of the mast (right) makes matters even worse: eight deep nulls appear and the strong lobes between them frustrate the efforts of frequency planners. Much more even coverage (centre) results from phased array of dipole or slot-fed panels mounted around the mast. This arrangement costs more, but has broadband characteristics and can be shared between several users. (C&S Antennas)

ELÉCTRONIC & WIRELESS WORLD JUNE 1985
Avoiding failure of sealed NiCd cells

Nickel-cadmium cells are expensive to buy, yet are often thrown away for lack of a few drops of water! More attention is needed in their day-to-day use to achieve their full lifespan, argues Rod Cooper – the use of cheap chargers that do not do their job properly is a completely false economy.

Temperature, all other factors being equal. For standard cells the designed rate is $C/10$ where C is the capacity in amp-hours, the cell being able to tolerate this rate at 20°C without immediate problems (but see failure mode 3). During normal overcharge (i.e. $C/10$ at 20°C) the internal pressure will rise slightly due to the presence of oxygen and the small increase in temperature. Neither of these effects present a problem until the $C/10$ rate is exceeded, when the internal pressure will rise rapidly until the safety vent opens, due to an accumulation of uncombined oxygen. This condition is often exacerbated by a rise in temperature if the charge current is uncontrolled because this lowers the internal resistance and increases the current further i.e. thermal runaway, Fig. 6. The end result of exceeding $C/10$ is loss of capacity, and often an abused cell will show one or two other symptoms; a bulge in the bottom of the steel case as shown in Fig. 7 and splitting of the plastic sleeve, both due to the high internal pressures that are generated before the safety vent opens. Opening pressures in excess of 140 p.s.i. are quoted.

Failure mode 1 (May issue) dealt with the importance of water to cell operation, and how loss of even a small amount caused by reverse-charging could result in a drastic shortening of cell life. The article continues with loss of water as the theme.

Failure mode 2: loss of electrolyte water due to incorrect charging

Oxygen is absorbed in a recombination process with cadmium during normal overcharge. The rate at which this reaction can proceed is determined by how much extra active material is provided by the manufacturer at the negative plate and by the ambient temperature, all other factors being equal. For standard cells the designed rate is $C/10$ where C is the capacity in amp-hours, the cell being able to tolerate this rate at 20°C without immediate problems (but see failure mode 3).

During normal overcharge (i.e. $C/10$ at 20°C) the internal pressure will rise slightly due to the presence of oxygen and the small increase in temperature. Neither of these effects present a problem until the $C/10$ rate is exceeded, when the internal pressure will rise rapidly until the safety vent opens, due to an accumulation of uncombined oxygen. This condition is often exacerbated by a rise in temperature if the charge current is uncontrolled because this lowers the internal resistance and increases the current further i.e. thermal runaway, Fig. 6. The end result of exceeding $C/10$ is loss of capacity, and often an abused cell will show one or two other symptoms; a bulge in the bottom of the steel case as shown in Fig. 7 and splitting of the plastic sleeve, both due to the high internal pressures that are generated before the safety vent opens. Opening pressures in excess of 140 p.s.i. are quoted.

Avoidance tactics

Both of the above effects are more likely to happen during fast-charging so for standard cells it is best to adhere to the recommended rate of $C/10$ and ensure an ambient temperature of 20°C. Some fast-chargers have a temperature cut-out which operates when overcharge has been reached, so it might be thought that this neatly avoids such problems with standard cells. However, some excessive overcharging has already taken place by the time a temperature cut-out can operate, because of the time-lag between the rise in internal pressure and the rise in temperature which follows it.

If fast charging is required it is far better to adopt special fast-charge cells which have a greater oxygen recombination capacity.
The penalty paid is a reduction in Ah capacity — generally about 10% — but such cells can withstand typically a charge of C/3 during overcharge at 20°C. An example of this type of cell is the Cadmica N-500 AAP. The capacity of this cell is 450mAh compared to 500mAh for the standard cell, but it can be recharged in 4 to 6 hours instead of the usual 14 to 16 hours. The size and weight are about the same and the price only slightly more.

Experimental cure

Several D and C-size cells in my own collection of NiCd cells had been subjected to severe overcharge, reverse-charge and low-temperature abuse, due to accidents in faulty charging equipment and also deliberate experiment, and were known to have little or no capacity. Some of these cells were stripped of their steel casing (this was done precisely by machine-tool and so did not damage the contents — it is not recommended due to the highly hazardous nature of the KOH/LiOH electrolyte and the possibility of internal pressure) the electrodes removed and wound with nylon cord to prevent disintegration. Immersion in fresh electrolyte and subsequent recharging showed that much of the capacity had returned, indicating that the active materials of the plates were relatively undamaged.

Following this successful experiment, a small hole was drilled and then tapped in the nylon top of another 'dead' cell. A matching nylon screw and neoprene washer resealed the hole, Fig. 8. Small quantities of distilled water were gradually introduced via the hole with a hypodermic syringe during a succession of recharge/discharge cycles, until most (but not all) of the capacity had returned. This cell was eventually returned to service.

The only cells that refused to respond to this treatment were those that had been subjected to high temperatures, the inference being that high temperatures cause more damage of an irreversible nature than does excessive overcharging or reverse-charging.

It is easy to calculate the minimum theoretical amount of water needed in any particular type of cell from the basic reaction shown on page 61, May Issue.

2NiOH + Cd + H₂O → 2Ni(OH)₂ + Cd(OH)₂

The electrochemical equivalent and atomic weight of cadmium can be looked up in any reference book on electrochemistry, and these are 2.097g/Ah and 112.4 respectively for cadmium.

A D-cell has 4Ah capacity and thus 8.388g of active cadmium. From the above equation, 112.4g of cadmium reacts with 18g of water. Thus 8.388g of cadmium will react with 1.342g of water. Of course, this may not be the amount put into a cell but it shows the order of magnitude of the quantities used, which is very useful when refilling a dead cell.

Failure mode 3: degradation of plates and separator

Due to the dangers of loss of electrolyte already detailed, it is tempting to think that a low rate of charge spread over a long period was the best solution. However, this would be a mistake because low rates of charge over extended periods appear to cause another type of failure. This is referred to obliquely in manufacturers data sheets as 'crystal deformation' of the plates, but what it means in practice is that the cell develops an internal short-circuit which renders it useless long before the expected life-span is reached.

The trouble is caused by the pronounced crystalline nature of cadmium, which is of the hexagonal-pyramidal type, and also the very slight solubility of cadmium in the electrolyte. During the charging process, if conditions are right, cadmium can be deposited in the form of dendrites, which are miniature tree-like growths with spiky branches sprouting from a central trunk and standing clear of the electrode. There is also a sub-species of dendrite, the whisker; these are single filament or rod-like structures 1 — 2μm in diameter which stand out like stubble on an unshaven chin. Cadmium has the dubious distinction of being the first metal in which whiskers were observed. There are some good photomicrographs of dendritic growth in ref.2.

The dendrite can grow through the separator and eventually bridge the very small gap between the plates, providing an internal short-circuit. This often happens to an apparently healthy cell; during the charging process a dendrite will bridge the gap and divert further charging current through itself so that the cell never becomes fully charged. When put into service, any charge already in the cell rapidly leaks away through the dendrite, perhaps in only a few hours. The short time needed for a healthy cell to become 'dud' must provide a source of surprise, puzzlement and possibly indignation to the user, who may well have followed instructions to the letter and who cannot see that he has done anything wrong to the cell to cause it to malfunction.

The charging conditions that favour dendritic growth, on the evidence available, appear to be low current over extended periods. The Cadmica handbook for example warns of 'continuous charge over a long period' and the article by K.C. Johnson on NiCd cells (WW Feb. 1977) suggests that 'gentle cycling of charging and discharging are likely to accelerate the process.' My own experience confirms this.

Apart from this problem, the plates of a NiCd cell are both physically and chemically robust and cause few problems. The same cannot be said of the separator, usually polypropylene or nylon in fibrous form. During normal over-charge the separator material is subjected to attack by the oxygen which must diffuse from positive to negative plate for recombination. This attack is made worse by the high pressures and temperatures encountered during excessive overcharge. A cell temperature of 50°C is often quoted as being the maximum permissible to avoid failure.

The more usual form of deterioration is a slow process and failure occurs due to accumulated effects over a long period. Manufacturers state in their data sheets that prolonged or repeated overcharge even at safe rates has a deleterious effect on cell life, yet it is still common procedure to leave cells on charge for hours after full charge has been reached. This is bad practice. Unfortunately there is an almost universal belief that an indefinite amount of overcharge at C/10 is perfectly alright.

To assure full life expectancy a NiCd cell should have its recharge period terminated shortly after the oxygen recombination process has set in, preferably by automatic means.

Avoidance tactics

A cycle life of 500 times and up to

Do's and Don'ts

Recharging

• Don't recharge cells connected in batteries if at all possible.
• Recharge cells singly instead.
• Avoid temperatures above 50 and below 5°C.
• Don't persistently overcharge cells — use an end-of-charge cut-out.
• Recharge standard cells at C/30 — invest in fast-charge cells if you want faster recharge.

Discharging

• Where possible, don't use cells connected in batteries. Use a d.c./d.c. converter to step the voltage up whenever such a technique is suitable or redesign circuit around a working voltage of 1.25V.
• If batteries are essential to the application, make use of protection diodes or low voltage cut-out.

General

• Avoid encapsulated batteries like PPP.
• Don't replace dead cells in a battery with brand-new cells, and do not add partly-used cells onto a new battery.
Completes neoprene of screw, which does steel pan-head in quantities. Introduced in controlled Fig. 8. Sealed with top so putting a "dried out" cell, sectioned to show the collapsed base. This cell was overcharged due to a fault in the charger, but shows what can happen when any cell is charged for longer than is necessary at a rate which is too high. The contents of this cell were expelled when the cell became hot, and on cooling the case collapsed inward.

2000 times has been claimed by the manufacturers at charge rates of C/10. It would seem from this that charging at this rate does not lead to dendrite problems, at least in laboratory tests. My own experience is that, in practice, charging at C/10 does lead to dendrite problems in some cells but not in others, although they may be in the same battery. There seems to be no hard and fast rules about predicting which cells are prone to form dendrites.

I have experimented with a promising technique for supressing the initial formation of dendrites, and this will be described as a practical construction project in a later article.

To avoid material degradation it is safe to assume that a standard cell should be charged at C/10 provided that the overcharge period is detected and curtailed.

Experimental cure

There is no cure for a damaged separator, but an interesting cure for dendrites was put forward in K.C. Johnson's article. Essentially this consists of a charge and discharge programme at controlled but very high rates, to melt the dendrites and reform the cadmium on the negative plate. A period of normal overcharge is recommended to oxidize remaining dendrite material, the theory being that the dendrites are in a relatively prone position for oxidation compared to the rest of the electrode. There must be a compromise between controlling dendrites and degradation of the separator with the oxygen of the overcharge mechanism.

Temperature must be carefully
controlled during the above treatment or more problems will be created than solved. I recommend looking at this article in detail. I have tried it and it works, but I have reservations about the separator failing, as nylon melts at around 220°C and polypropylene at 170°C so localized melting may occur in the areas around dendrites which will lead to premature failure anyway. Also, I have found that cells treated with this method rapidly reform their dendrites.

Failure mode 4: electrolyte creepage
Electrolyte creepage manifests itself as a furry white deposit, often confined to the top of the cell but sometimes spreading to sides and onto surrounding components such as circuit boards and wiring where it wreaks havoc due to corrosion, particularly of copper, zinc and tin parts. The cause of this phenomenon lies in the penetrating nature of the potassium hydroxide solution used as the electrolyte, which seems able to get past seals which on the face of it appear to be well designed. After creeping past the seal the hydroxide is converted to carbonate by reacting with CO₂ in the atmosphere. Potassium carbonate is less hazardous that the hydroxide (which can remove skin with rapidity) but still presents an corrosion problem for metal parts particularly in damp conditions.

Loss of electrolyte leads to loss of capacity but experience suggests that this is a lengthy process. In the battery of cells in the photograph (Fig. 9) the cells that showed the most efflorescence also showed the largest drop in capacity, as one would expect, but it took 12 months to get to the stage shown.

Avoidance tactics
Some manufacturers’ products tend to suffer more than others from this defect. The only avoidance tactic one can practice is based on experience — simply avoid those manufacturers whose cells give creepage. I have tried four different makes of cell and only one — the nylon-topped variety made by Saft — has shown freedom from this trouble.

Experimental cures
I have tried re-sealing cells suffering from efflorescence with neoprene compounds, urethane and nitrile rubbers, epoxy resin and also thermal sealing with various thermoplastics. All attempts failed, although sealing with urethane solution (used for making the seams in neoprene wet-suits) did last several months before the signs of creepage re-appeared. I concluded that there is no really satisfactory cure and that it is better to throw away a faulty cell than risk corrosion damage to surrounding equipment.

Failure mode 5:
The external case material is commonly thin-walled steel. Rusting is prevented by nickel-plating, which is adequate for most purposes but not entirely satisfactory. The case is usually covered by a plastics sleeve, and this can assist corrosion by trapping moisture between sleeve and case. Fig. 10 shows an example of such corrosion, which was completely hidden despite its advanced state until the sleeve was removed. The cause was moisture from a damp atmosphere assisted by slight electrolyte creepage.

Fig. 11 shows another cell which was exposed for a short time to a small amount of sea-spray, again trapped by the sleeve despite washing down in fresh water. This rapid corrosion resulted in a pin-hole and a ruined cell.

In another instance of corrosion, a zinc-plated screw was left on top of a NiCd cell and this caused a pin-hole with surprising rapidity, probably assisted again by slight electrolyte creepage.

Avoidance tactics
It is best to keep dissimilar metals like copper and zinc away from the steel case. Where a damp environment is likely, it is a good plan to strip off the plastic sleeve altogether — it is more trouble than it is worth, especially if the cell is subject to electrolyte creepage. If insulation is required then the cell can be wrapped in 50mm wide adhesive fabric-backed tape (RS Components 512-058). Exposed metal can be painted with Celvar cell paint or smeared with Kromium grease, both these products being made by Chloride-Alcad* for nickel-cadmium cells. I have tried all three techniques and they are effective in avoiding corrosion.

* Celvar is an alkali-resistant paint for steel cell containers. Kromoline is a special mineral jelly for greasing steel cell tops, both available from J. Bîtes Engineering.

Unfortunately there is no effective cure for pinholes or remedy for advanced corrosion as shown Figs 10 and 11.

Multiple failure modes
Damaged cells are less amenable to diagnosis, and corrective action more difficult to implement, if more than one failure mode is present. For example, a cell may be suffering simultaneously from being over-charged and reverse-charged, or may be dendrited and have separator failure.

Recharging and discharging cells in series tends to promote the disparities between cells and increase the number of defects. This is explained as follows. Suppose a battery has seven cells; after a period in service perhaps four of these cells have full capacity, two slightly less capacity and one cell is in the early stages of dendrite formation. Cells are never exactly equal to start with and diverge in their performance in service even if they are of the same type and same manufacture, so this is a realistic assumption.

If this battery is recharged so that the healthy cells are fully charged, then the two reduced-capacity cells will be overcharged. The dendrited cell may not reach full charge. When this battery is fully discharged, the two cells of reduced capacity and the dendrited cell will be reverse-charged. The two cells of reduced capacity will eventually suffer from separator deterioration by being persistantly overcharged. One cycle of the charge/discharge described may not make much difference but 20 or 50 cycles certainly will, and two failure modes will have been introduced simply by cycling the cells in series.

Even if the charging process is modified so that the two cells with reduced capacity are fully charged, leaving the healthy cells undercharged, the dendrited cell will in all probability still not be fully charged and will be reverse-charged when the battery is discharged. Further modifying charging so that this dendrited cell receives an extra charge leads to overcharging of the other six cells.

The correct way to charge cells is to charge them individually each according to their needs. This is not a difficult requirement if the battery is made up of cells like the AA, C, D and F types held in a battery compartment, but is ruled out if the cells are spot-welded together or are encased in a container like the PP9 or PP3. These batteries are best avoided for this reason.

Conclusion
NiCd cells are expensive to buy, they use up the relatively scarce and finite resources of nickel and cadmium, and consume large amounts of energy and industrial capacity in their production, yet they are often thrown away for lack of a few drops of water.

More attention is needed in the practical day-to-day usage of NiCd cells so that the full lifespan of 500 to 2000 cycles can be achieved, present practice being more akin to that associated with a throw-away product.

In particular, because NiCd cells are expensive, there is no such thing as cheap equipment that does not do the job properly is a completely false economy. (These are the ones that charge cells in series, have no overcharge limiting device and no low-temperature control.)

Also, it would be useful if the makers provided some means of giving the electrolyte a partial service; a re-sealable valve similar to that already provided for venting excess pressure so that a measured quantity of water could be injected for example. This is not a suggestion that diverges too far from the sealed-cell concept. It would be expensive and could be made quite safe. The other item that manufacturers could assist with is the provision of more comprehensive information on fault-finding than is presently available.

An article dealing solely with failure modes naturally gives a false impression of the technical integrity of the subject under discussion. Given a proper system of management, it must be said that nickel-cadmium cells can give superb performance, paying back many times over the investment in recharging gear, the higher cost of the cells themselves over other types of cell, and the extra equipment needed to prevent accidental abuse in service.

Further reading
Alkaline storage batteries, by Falk & Salton, 1959.
Cassette recording with the BBC micro

Improved performance with conventional recorders and an alternative digital method

The cassette port of the BBC Microcomputer encodes logic 0 as one cycle of 1200Hz tone and a logic 1 as two cycles of 2400Hz. These tones are synthesized sine waves, the frequency changes occurring at the zero-crossing point (trace 1).

When such a waveform is replayed from tape, the read head differentiates it, giving an output proportional to the rate of change of flux (trace 2).

After amplification and limiting, the waveform is as shown in trace 3. Continuous logic zeros correctly produce 1200Hz square waves (417µs for each half-cycle) and continuous logic ones produce 2400Hz square waves (208µs for each half-cycle). But where the logic value changes for consecutive bits, the result is a pulse of intermediate length (512µs), which is impossible to interpret correctly. No wonder cassettes are so unreliable!

Tape recorders do integrate the read waveform somewhat to overcome this uncertainty, but not always enough. A simple integrating circuit (Fig.1) can often improve reliability. It causes some attenuation and reduces the amplitude of the 2400Hz waves to half that of the 1200Hz waves; but the BBC Micro includes a limiting amplifier and is quite tolerant of amplitude variations provided that the signal is correctly phased.

If the frequency change could be made at the peak of the recorded waveform (trace 4) the differentiated waveform would be as required (trace 5). When amplified and limited, this produces the easily-interpreted waveform of trace 6.

Digital recording

The advantages of digital recording over analogue (audio) methods are:
• a high output from the head when reading because of full flux reversals on the tape;
• elimination of the need for a replay volume control (there is nothing to set incorrectly);
• reliability.

In the circuit of Fig.2, amplifier A1 limits the writing (record) signal from the computer to square-off the waveform. The input capacitor is not really necessary, but I am happier with the input isolated.

Amplifier A1 provides a ±6V square wave drive to the write head via a 4.7kΩ current-limiting resistor. If the power supply used is itself ±6V then the zener diodes are not required.

To ensure fast current reversals the head must be driven from a high impedance. Head current must be enough to saturate the tape fully, but not so great as to leave the head magnetized, erasing the signal instead of reading it. With the recorders I have modified, 4.7kΩ was suitable, but it cont. on page 20

Fig. 1. This simple integrating network can help reduce uncertainty at data transitions.

Fig. 2. Replacing the cassette recorder's electronics with this digital read-write chain gives high reliability at low cost.

Fig. 3. Data recording on cassette: the problem and the solution (see text).
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognize the advantages toroids offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

Electronics

Dished Washer

Outer Insulation

Secondary Winding

Insulation

Primary Winding

End Caps

Neoprene Washers

15 VA

<table>
<thead>
<tr>
<th>VA</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8 x 80</td>
<td>£13.00</td>
</tr>
</tbody>
</table>

50 VA

<table>
<thead>
<tr>
<th>VA</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8 x 80</td>
<td>£13.00</td>
</tr>
</tbody>
</table>

120 VA

<table>
<thead>
<tr>
<th>VA</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8 x 80</td>
<td>£13.00</td>
</tr>
</tbody>
</table>

225 VA

<table>
<thead>
<tr>
<th>VA</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8 x 80</td>
<td>£13.00</td>
</tr>
</tbody>
</table>

600 VA

<table>
<thead>
<tr>
<th>VA</th>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8 x 80</td>
<td>£13.00</td>
</tr>
</tbody>
</table>

Prices including P & P and VAT

AFFORDABLE ACCURACY

QUALITY MULTIMETERS FROM ARMON

MODEL

HM102Z £13.00

DIGITAL

HC-6010 0.05% Accuracy Standard Model £33.50

HC-5010T 0.02% Accuracy TR Test Feature £39.50

ALL MODELS HAVE FULL FUNCTIONS AND RANGE FEATURES

HM102Z £13.00

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner

Telephone 01-445 2713/0749

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and standings available for 10-14 days' delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAY'S INN ROAD. W.C.1 Phone: 01-837 7937

Telex: 892301
It's a whole new board game......with our 7000 Series

Many operations and tasks are now possible through BASIC which could previously only be accessed in ASSEMBLER.

Taking advantage of the new-generation software-on-silicon devices Cavendish Automation has already implemented a complete range of computer boards with full support specifically for industrial control applications. Our system enables very rapid interactive development of user software for super-easy deployment in the target system.

Static MOS RAM boards (to 128K), Power down control boards, Decoder boards providing further address line decoding, watchdog, Real-time clock/calendar, plus additional output flags and 1/0. Mass storage devices. Backplanes, PSU and battery packs. Drive boards offering power output, pulse generation, or externally gated outputs. Multi-channel expandable ADC, Remote switch units for power, sound or V.I.S. of vision.

For Industrial Control or Data Acquisition at board, sub-system or turn-key level we offer solutions and professional implementation.

CPU BOARD FEATURES
* 11 MHz + Clock
* Hardware Timer Facilities.
* Full Floating Point Arithmetic.
* 9 X 8-Bit 1/0 Ports as standard.
* Very Fast Tokenised Interpreter.
* 8K RAM Plus 16K User ROM on-Board.
* Interrupts Handled by BASIC or ASSEMBLER
* Single Ended Power Supply (+ 5v Only Required).
* Complete with EPROM/E2PROM Blowing Facilities.
* BASIC Utilities may be called from ASSEMBLER.
* Serial Communications on Board (EIA, RS232) Plus printer Port.

Cavendish Automation
45, High Street, St. Neots, Huntingdon, Cambridgeshire, PE19 1BN
Telephone: 0480 219457 Telex: 32681 CAVCOM G

CIRCLE 8 FOR FURTHER DETAILS.

IT WON'T COST YOU A PENNY.

BEING WITHOUT ONE COULD COST YOU DEARLY.

The 1985 Midwich catalogue is now available, absolutely free. It's the most comprehensive catalogue yet, containing many of the latest and very best computer components on the market, at highly competitive Midwich prices and a service that is second to none. Which means it will provide your organisation with a vital source of information including numerous technical specifications and pin-out diagrams. Order your free copy by calling Doss (0379) 4131 today.

FIBRE-OPTICS EDUCATOR

A New Concept in Optical Equipment

The Fibre-Optics Educator is a low-cost, versatile instrument designed primarily for organisations involved in or about to enter the field of fibre-optics.

It can function as:

- **TEST EQUIPMENT** e.g. for accurate fibre attenuation measurements to a range of 50dB, optical level measurements, and for testing out analogue and digital optical transmitters and receivers. Also, it may be set to give an audible indication of low level infra-red radiation using the analogue loudspeaker output or the digital buzzer output, with a length of optical cable acting as a probe.

- **TRANSMISSION EQUIPMENT** for both analogue and digital data, over free-space as well as optical fibres. It is also ideal for:

 - TRAINING engineers, technicians and executives in the growing field of fibre-optics. Suitable for industry, colleges and technology training centres.
 - The Fibre-Optics Educator comprises fully portable optical transmitter and receiver units, optical cables, together with numerous accessories, a comprehensive manual, and carrying case.

Designed and Manufactured in the U.K.

For further details contact:
ELLMAX Electronics Ltd.
Unit 29, Leyton Business Centre,
Etoe Road, Leyton, London, E10 7BT.
Tel: (01) 539 0136

CIRCLE 13 FOR FURTHER DETAILS.
Right to the point

The point is accuracy, under all conditions. Something only a DMM with true RMS AC measurement can achieve. For £165*, something only Philips new PM 2518 can offer.

Look at the table and you'll see how important true RMS can be. Look at the PM 2518 and see how much more you get - DC accuracy of 0.1%, plus wide-ranging standard and optional facilities (including "Backlite" display).

<table>
<thead>
<tr>
<th>True RMS</th>
<th>5V</th>
<th>5V</th>
<th>5V</th>
<th>5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading on PM 2518</td>
<td>5V</td>
<td>5V</td>
<td>5V</td>
<td>5V</td>
</tr>
<tr>
<td>Reading on average detecting meter</td>
<td>5.50V</td>
<td>4.7V</td>
<td>3.2V</td>
<td></td>
</tr>
</tbody>
</table>

Like the idea of bench-top spec. with the convenience and price of a portable? Take a closer look at Philips PM 2518. You'll find the point is well made.

Authorised distributors:
Electronic Brokers (01-267 7070)
Philips Service (01-666 0505)
Wessex Electronics Ltd (0272-571404)

Philips Test and Measurement
Pye Unicam Ltd
York Street Cambridge CB1 2PX
Tel: (0223) 358866 Telex 817331

* Price excludes VAT and is correct at time of going to press.
RADIOCODE CLOCKS LTD
SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PRODUCTS
- MINIATURE RUBIDIUM OSCILLATOR MODULE
 Lower power, fast warm up, optional output frequencies, programmable frequency offsets.
- RUBIDIUM FREQUENCY STANDARD
 High performance, compact and rugged instrument. 2U rack or 1/4 ATR case options.
- INTELLIGENT OFF-AIR FREQUENCY STANDARDS
 Microcomputer controlled instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.
- LOW COST MSF FREQUENCY STANDARD
 Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation.

Radiocode Clocks Ltd*
Unit 19, Parkengue, Kernick Road Industrial Estate, Penryn, Falmouth, Cornwall. Tel: Falmouth (0326) 76007
(*A Circuit Services Associate Co.)

CIRCLE 27 FOR FURTHER DETAILS.

CRICKLEWOOD ELECTRONICS LTD
Free! catalogue
It's no secret...

that there is a real difference at Cricklewood Electronics.
That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, competitive prices and service from the U.K.'s number one 100% component shop. No gimmicks, no gadgets or computers, just components, millions of them, all easily available by mail order, calling or credit card telephone orders. Just pick up the phone for a penny to get your FREE copy now (no SAE required) - you have nothing to lose.

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-450 0996/01-452 0161
Telex: 914977

CIRCLE 20 FOR FURTHER DETAILS.

MICRO-TEL
Universal Microtelemetry System

Micro-TEL is a system of integrated UHF radio/modems ruggedly constructed and suitable for a wide range of "line of sight" data communications applications.

Features:
- UHF Home Office type approved radio (MPT 1309)
- 5 Radio Channels
- 1200 BAUD Modem/Demodem
- 12 Volts/250 m Amps Power
- RS232 Data Input/Output
- Small size 145 x 210 x 60 mm

Micro-TEL offers a simple and reliable solution for:
- Building to building computer comms
- Instrument to computer data links
- Industrial systems data links

Dealer and OEM enquires welcome.

CIRCLE 45 FOR FURTHER DETAILS.

MEASUREMENT DEVICES LIMITED
Silverburn Crescent, Bridge of Don Industrial Estate, Aberdeen.
AB2 8EW
Telephone: (0224) 824141
Telex: 739506 (MDLAB)

CIRCLE 27 FOR FURTHER DETAILS.

ELECTRONICS & WIRELESS WORLD JUNE 1985
FUNDAMENTALS OF ENERGY TRANSFER

Mr Catt evidently assumes that the often-repeated statement that the field round a transmission line if TEM has been proved. But has it? If there is a proof that the electric field is everywhere strictly transverse then, please believe me. I would be really glad to see it.

The proof would have to deal with the following point. As a step wave passes down the line it sets in motion the electrons in the conductors. That is, the electrons are given (kinetic) energy by the field. Hence, somewhere, energy passes through the surface of each conductor, that is, somewhere there is a component of the Poynting vector into the conductor. So somewhere, there is a component of electric field along the conductor. P.L. Taylor Marple Cheshire

I believe Mr Catt (Letters, February 1985) has made an error.

He seems to be saying that the principle of superposition should apply to the situation he describes — the case of the forces between conductors carrying overlapping pulses. It is, of course, wrong to try to apply superposition here, since the equations he has written down for his forces F_1 and F_2 are not linear (as superposition demands), but quadratic.

The equations

$$F_1 = iB \text{ and } F_2 = qE$$

appear at first sight to be linear, but since B is itself proportional to i, and E to q

$$F_1 = k_i i^2 \text{ and } F_2 = k_q q^2$$

Thus the forces are quadratic functions of the current and charge on the conductors and linear superposition is invalid. We should therefore not be surprised by the appearance of these 'strange' forces.

This is perhaps more clearly illustrated by the corresponding problem in electrodynamics. The forces on a positively and negatively charged sphere are shown in Figure 1.

The forces on the spheres in Figure 2 are the same in magnitude and sign. However, in the situation of Figure 3 where we have superposed the charges on the spheres from Figures 1 and 2, we find that the forces disappear.

If Mr Catt is searching for unification of electric and magnetic forces, he may be interested in considering the following.

In the double beam c.r.o. mentioned in Chris Parton's letter (December, 1984), the force per unit length on each beam of electrons can be written as the sum of the electrostatic repulsion and magnetic attraction

$$F = \frac{\mu_0 F}{2\pi} - \frac{q^2}{2\pi \epsilon_0 a}$$

where a is the separation of the two beams.

But, if you transform to the rest frame of the electrons, travelling at speed v, the magnetic field disappears since the charges are now at rest. Now, if q is the charge per unit length in the beam in the laboratory frame, then the length part of q must be Lorentz transformed to q' giving

$$q' = q/\gamma$$

where $\gamma = \left(1 - v^2/c^2\right)^{-1}$. Thus the electrostatic repulsive force can be rewritten

$$F = \frac{q'^2}{2\pi \epsilon_0 a} - \frac{q'^2 v^2}{2\pi \epsilon_0 a c^2}$$

Finally, substituting

$$C^2 = \frac{1}{\mu_0 \epsilon_0}$$

where the current in the beams is $I = q v$, we have

$$F = \frac{F \mu_0}{2\pi} - \frac{q^2}{2\pi \epsilon_0 a}$$

which is exactly the same force as we derived using magnetic theory.

This is a general result embodied in the relativistic invariance of Maxwell's equations and may be considered to be the unification of electromagnetic and electrostatic field theory. N.C. Hawkes Abingdon Oxfordshire

RELATIVITY

Recent articles and letters on relativity and the speed of light make me consider the greatest observable experiment, the "red shift" of distant astronomical objects. The faster the object recedes, the slower the peaks arrive so the redder they appear. Now suppose the object recedes at light speed: then no energy is arriving, no phase is changing, in fact nothing is happening, yet according to standard theory the light — at infinitesimal energy — is still arriving at c. In what sense can anything be said to be travelling past an observer's position if it is impossible even in principle to observe it? We cannot escape this by claiming that it is impossible for even astronomical objects to travel at light speed away from us, since there is no evidence of their behaving with any such limitation. The only sensible way to interpret it is that we cannot observe a velocity greater than c, which may well be true in most cases.

R.A. Rees Kirkland WA USA

Eastwood's article deals with experiments (actual, not thought) performed to determine the peculiar or absolute velocity of our galaxy relative to the 3K cosmic microwave background radiation. As velocities are calculated relative to a point in space assumed to be at rest, the 3K microwave radiation is assumed to be at rest, i.e. standing waves caused by the constructive interference of crests and troughs of waves moving relative to Newton's absolute at a space at rest.

In the part of Eastwood's article headed 'Anisotropy of microwave background' Eastwood gives the true or absolute velocity of the earth relative to the 3K background assumed to be at rest as about 390 km/sec. This velocity vector is the Newtonian vector sum of three other velocity vectors assigned to empty space filled with 3K electromagnetic radiation by cranks and crackpots. "...nor assign a velocity vector to a point in the empty space in which electromagnetic processes take place." — the introduction to Einstein's 1905 paper).

The three other velocity vectors are:-

1. The orbital velocity of the earth relative to the sun assumed to be at rest — 30 km/sec.

2. The orbital velocity of the sun relative to our galaxy's centre of gravity assumed to be at rest — about 300 km/sec.

3. The absolute linear velocity of our galaxy's centre of gravity relative to the 3K background assumed to be at rest — about 600km/sec.

The earth's absolute velocity vector of 390 km/sec. relative to the stationary 3K background is constantly directed from Aquarius to Leo but continuously variable in direction relative to a point on the earth's surface. In the northern hemisphere Aquarius is an autumn constellation and Leo a spring constellation.

Lorentz used the earth's orbital velocity vector of 30 km/sec. to calculate the earth's constant equatorial contraction of "about 6.5 cm." due to the constant pressure exerted by the earth's liquid. (The Principle of Relativity, Dover. p.6.) The
model of the relative motions of the heavenly bodies used by Lorentz in his calculations is one step removed from the flat earth theory and just as dangerous.

Michelson, Morley, Lorentz and Einstein assumed the velocity vector of Stoke’s hypothetical ether wind was equal in magnitude but opposite in direction to the earth’s orbital velocity vector relative to the sun, which they believed to be stationary at the centre of the universe. They believed the orbital directions of the vectors were absolute and constant relative to the supposedly stationary sun, and that both vectors were directed parallel to the plane of Michelson and Morley’s apparatus. They were unaware of the real experimental fact that the direction of the earth’s absolute velocity vector is a continuous variable relative to the plane of Michelson and Morley’s apparatus, and that Stokes’s ether wind blows seasonally and daily at continuously varying angles through the ceiling of Michelson and Morley’s laboratory.

Any theory based on a false model of the universe is false. The stationary sun and stars model is as false as the flat earth model in explaining the Doppler shift of receding galaxies. Hence Einstein’s self-contradictory assumption that as his “fixed stars” were stationary in Newton’s stationary space, the magnitude of a star’s red-shift is a function of the intensity of the star’s gravitational field. Proved mathematically, of course.

M.G. Wellard
Kenley
Surrey

RELATIVITY

In Dr W.A. Murrays’ article on Relativity (WW May, 84) some assumptions were made that I feel were not quite as cut and dried as he made them seem.

Firstly, Time dilation has been experimentally demonstrated with the aid of the atomic clocks on board the later Apollo space missions. These results agreed closely with those predicted by Special Relativity.

Secondly, relativistic principles have been shown to affect sub-atomic particles travelling at speeds in excess of 0.9c. It has thus been shown that the physical velocity limit of c is a reality when the E=mc² equation is used. If one assumes that mass is constant, as Dr Murray presumably does, then where does the exponential increase in energy input arise?

Thirdly, in his argument the train experiment it would appear that a subtle change takes place between the disproving of Einstein assumptions and its paraphrasing on the following page.

In Einstein’s argument the flash at A and B take place at the moment A and M coincide, hence it is to the observers future positions that the light will arrive.

However, in Dr Murray’s analysis he maintains that the light will travel the distance A-M and A-M’ in the same time, hence reaching both observers simultaneously. In other words he has their future positions coinciding, not their present ones.

But in the paraphrasing of the above paragraph this has been changed back in order to refute the Einsteinian argument, which naturally will not agree with the author’s assumptions. I must point out that I neither agree or disagree with Einsteinian Relativity, but surely a principle that can be demonstrated to work would require a very strong argument to topple.

G.R. Moore
Brantree
Essex

I have been following the arguments about Einstein’s train hypothesis with amazement and incredulity. There have been so many arguments and counterclaims that now we cannot see the wood for the trees.

In the February 1985 issue, Messrs Marquis and Scott Murray fall into opposite ends of the same trap, in describing apparently similar but actually different cases.

In Mr Marquis’s case, M’ and M perceive the flashes simultaneously, but will measure different distances. The error here is to transfer measurements from one world to the other. Scott Murray’s observers would measure identical distances, but perceive the flashes at different times; he bases the question by transferring Ms definition of simultaneity to the world of M’.

An incident recently brought to my attention is a good illustration of the problem. My friend Tom was sitting in his signal box, watching the up and down trains rattling past, when he noticed two flashes of lightning at different points of the track. His portable Lightning Detector informed him that the flashes had arrived at precisely the same instant. Dick on the up-train and Harry on the down-train happened to be opposite the signal box then, and got similar results from their instruments.

Tom subsequently discovered that the scorch marks on the track were precisely equidistant from his box. Dick and Harry found that the scorch marks on their respective trains were not equidistant from their seats; the differences were several thousand nanometres.

When the three of them compared notes that evening in the taproom of the Monkey’s Nest, there was some initial disagreement, not only over the simultaneity of the flashes but also which came first. However, when Dick and Harry made allowance for the velocity of light and of their respective trains, all agreed that the flashes had been truly simultaneous in their present frame of reference. Old Lorentz in the corner muttered something about comparing the sums of the pairs of measurements, as well as the differences, but a game of dominoes was now in progress and this was not taken up.

Had Dick and Harry remained on their trains for ever, each would have been confident that the lightning strikes had NOT been simultaneous. Both would have been correct, even though the order of occurrence was not the same.

I trust that this incident adequately explains the situation, and will terminate this particular dispute.

R. Priestley
Southsea
Hants

Let there be a pyramid upon an ever-changing foundation of information, its four faces being (upwards) systems, scientific laws, abstract laws, and causation. Let Max Planck sit on top of it as an abstract quantum of energy positively glowing with absolusion. Let a special relation in the shape of a creative ape called Roy Hodges MIEE run down and up the pyramid, translating the abstraction of method into material means and vice versa, so demonstrating the creative and an abstract process of visualisation so abhorred by digital theoreticians who use computers when they run out of fingers, so to get it as declinatory as the average monetarist.

One might now be deboggled as Mr A.H. Winterfold was when he grasped that energy is and mass becomes — between them lies a Constant Time Function, the fastest thing on wheels, which also has a reverse gear so allowing Mr Hodges to run up as well as down. (Wheels are frictional) — with error (in abstraction) if it has none, so it can go as fast as it is pushed).

Special Relativity applies when correcting the error of scale seen in our tiny Cyclopaean local frame after peeping from it either to an micron (one abstraction) or to the macrocosm (another abstraction). For those bogged down in the mud of our local frame the golden oldies are quite accurate enough for everyday use — may they rest in their wellies.

A pleasantly harmonic orchestration of an original theme, Mr Hodges! Let us rename it the Planck-Hodges Constant, whose dimensions are M⁰t³, or in this context Mdc, where d is the single directional dimension of linear movement of a quantum of energy towards a mass M: the change occurs at c (regardless of the speed of light) and represents the change of state of mass from which we deduce the existence of energy, even in the case of human receptors (for those who possess them).

The photon leaving an atom is a little more tired than the one arriving, having wound it up a bit during its brief stay. It’s that entropy thing.

Now, gentlefolk, what happens to the energy radiated by an atom which is moving at the speed of light? Seemingly it is caught in the act of being radiated, so what happens to
the atom? And what happens to an atom rushing at the speed of light towards the source of energy? It can only translate the energy (or whatever it does to it) at the speed of light: one likes to imagine that there is a limit for relativistic mass just as there is for everything else.

 Might the four horsemen of quadrature have a little something to say upon the matter? Or the mass-energy dualism? Or are we coming to the monistic conclusion that there is no such thing as energy, that all mass is inherently static, all movement being imaginary and causation non-existent?

Thank you for your revelation, Mr. Hodges: wellies rot eventually. But do tell us; in considering the photon, who are they that play pass-the-parcel?

J.A. MacHarg
Wooler Northumberland

In the February Letters Dr Scott Murray once again quotes Einstein with the provisos (as judged from the embankment) and (considered with reference to the embankment) faithfully included, and once again proceeds to argue as if he were blind to their presence in the text, as I previously pointed out in the December 84 letters, and A.J. Clayton in the January letters.

However the real crunch comes with the second half of his letter, and with his description of Figs 5 and 6 as Minkowski diagrams. A basic feature of a Minkowski diagram is that any event or encounter which is represented at all is represented by one point and one point only. Thus Dr Murray’s figures and the discussion in which he talks about a single event being represented by two distinct points show not only that he doesn’t understand Minkowski diagrams, but also that he doesn’t even understand the physical interpretation of Lorentz transformations. In fact they relate the coordinates attributed to a given event relative to the two noncoincident sets of time and position axes which according to special relativity are used by any two observers such as M and M’ who are at rest in two distinct inertial frames. No one worries about a point having different coordinates with respect to two sets of spatial axes which are rotated with respect to one another; special relativity says that something rather similar occurs with mixed time and space axes.

If his Fig. 5 had really been a Minkowski diagram he would have shown the t-axis along the line labelled M, and the x-axis along the line between the points labelled (wrongly) A' and B'. With respect to those two sets of axes the lightning strike at A at time zero in the embankment frame would be represented by the point labelled A'. This is how the coordinates Dr. Murray calculates with respect to these two sets of axes, the embankment axes being oblique. Similarly the strike at B would be represented by the point labelled B'. The sloping lines through the points labelled A' and B' would then represent the world lines of A and B, while vertical lines through those points would represent the world lines of the observers on the train who are present at the lightning strikes, A' and B'.

The points labelled (wrongly) A and B represent nothing in particular, but the cuts of the line through them with the world lines for A and B would represent the positions relative to the train of those observers at the train time of the encounter between M and M', represented by the intersection of the t' and x' axes. An important feature is that the lines labelled ‘c’, which represent light rays, bisect both the angle between the x' and t' axes, and the angle between the x and t axes, which means that both the train and the embankment observers interpret the light flashes as travelling at the speed ‘c’.

Almost any question one can ask about the interpretation of events by the train and embankment observers can be answered off this diagram.

Dr Murray asserts that direct demonstrations of any correspondence between the predictions of special relativity and the workings of the world as it is are ‘conspicuously non-existent’. The prediction of time dilation was verified over fifteen years ago by measurements of the lifetime of pi mesons travelling with respect to the laboratory at a speed very close to the speed of light, so that the time dilatation factor was not just marginally larger than one, but over 2.5. The measurements (see refs) agreed with the special relativity predictions to better than 0.5%. C.F. Coleman
Wantage

D.C. SUPPLIES

It may be helpful to Dr. Smith to have two additional references brought to his attention. These are:

Schade’s original work was extremely good for the full and half-wave rectifiers, but for the voltage doubler circuits was seriously in error due to a false assumption. Also his work was done at a time when the low values of load resistance imposed by solid-state circuits were unusual and it did not predict the instantaneous minimum output voltage which is needed to ensure that regulators do not ‘drop-out’. The writer can supply, for non-commercial users, a listing of a Pascal program which will produce instantaneous minimum output voltage, peak-peak ripple voltage, peak rectifier current and r.m.s. rectifier current, given the values of \(v_0 \), \(R_L \) and \(R_f \) where \(C \) is the filter capacitance, \(R_L \) load resistance and \(R_f \) the equivalent source resistance. The calculations take about eight seconds using a 4MHz 280 machine and the ‘Turbo Pascal’ compiler.

Professor P.F. Ridley University of Zimbabwe Harare

ELECTRONICS & WIRELESS WORLD JUNE 1985

Thank you, Wireless World, for coining the useful term: electron-reductionism, to describe the fashionable variety of intellectual suicide. But anyone can disprove it; we do not need an irrational leap of faith.

The failure of rationalism to account for your own consciousness means that it is a rotten theory. So its failure to address values, human nature and ultimate questions is only to be expected.

We cannot answer whether a machine could have a conscious mind until we have a model that predicts the know fact of human awareness.

It is the reductionist who is forced to a leap of faith — that science will one day be able to tackle consciousness. What is consciousness? What is colour? We divide colour into the objective wavelength and physiology model, and the sensation. We divide morality into behaviour, absolute moral imperatives, and subjective conscience. Science refuses to touch the absolutes or the subjects. And consciousness is both indisputably factual, and subjective.

Which leaves a fact hanging. Which destroys the garbage. Which makes monkeys of them all, as, no doubt, they would agree.

D.H. Potter
Axford
Devon

RAILROADING RELATIVITY

Over the last year Dr. Murray has used a lot of your column inches attacking Einstein and his theories. I have no particular objection to this as a sport, but in his case both of the main lines of his arguments are based on easily demonstrable fallacies.

With regard to Einstein’s “rare but crucial conceptual error”, Dr. Murray asks us to believe that Einstein tells us...
that when the train is moving, both the light flashes reach M' together. Since he twice quotes for us the passage where Einstein says precisely the opposite, it is hard to see the justification for such an allegation. Einstein says quite clearly that M' will see one flash before the other, and this is based on the argument that M sees them arrive together. Since at that moment M and M' do not coincide, it is a physical impossibility for the flashes to reach M' together, and we hardly need to invoke Minkowski to tell us this. Now what is a physical impossibility in one frame of reference is still a physical impossibility in any other, so the statement that M' sees one flash before the other is an absolute statement for this experiment. Of course, there is no denying that if the conditions for simultaneity had been met in another frame of reference of the train, those flashes much indeed arrive at M' together. The impossibility of this is proof that the events were not simultaneous in the train's frame of reference. Which is precisely what Einstein said.

The other argument concerns the constancy of the speed of light. Dr Murray is one of the very numerous band who tell us that Einstein's "second postulate" says that the velocity of light is the same for all observers despite their relative motion. It doesn't. This is a paraphrase of the conclusions reached from the experiment of the two similar laboratories passing in space and the light at the centre of each flashing as they draw level. This makes it a little difficult to support the contention that this is an "irrational assumption", or that Einstein "accepted it without evidence". We need to go rather further back in the argument to find what the "second postulate" really does say.

When he set out to save Maxwellian theory, Einstein encountered therein the concept of the aether. The characteristics of this where that light would be propagated through it at constant speed, and that any motion of the source through the aether would not alter this speed. The analogy of sound through air is apt. Einstein adopted these ideas in the form that in the absence of matter, light travels with a definite speed c that does not depend on the motion of its source. It is worth our while to take a further look at this assumption.

Suppose for a moment that we invert these characteristics, so that the light does not travel with constant speed, and that speed is dependent on the source's motion. In the first case, the speed would have to depend upon some function of time/distance. The alternative that it might be totally random belongs. I think; to the realm of science fiction, and it could hardly depend on the value of some local field, because there is no matter to anchor it to. The consequence of time/ distance dependence is that any change in the position of the source would result in a change of the "local" value at every reference point in space. No matter whether the observer's motion enters into the final equation or not, this change in value would be detected by that observer, who would thus be able to detect any motion of the source. The same thing happens if the value is altered by the source's motion. The "local" value will change, and though the observer would again be able to detect the source's motion. But to detect such motion is a violation of Newton's principle that no experiment exists that is capable of detecting absolute rest or uniform motion. This must be applied equally to the light and its source as it is to everything else. The conclusion is clear. The requirement that light travels at constant speed and that the speed is independent of the source's motion comes directly from Newton's principles, and in introducing his "second postulate" Einstein introduced no new information not already implicit in those principles. This puts the mathematical arguments into their correct perspective. As Dr Murray says, they are circular and do not constitute a proof of any assumption at all, only being a demonstration that the conclusions can be handled mathematically. I suggest that that is all they were ever intended to be.

In saving Maxwellian theory, Einstein found the way to save Newtonian theory. By the end of the 19th century the cracks were beginning to show: by now the evidence against it is overwhelming. Fortunately Einstein realised that the basic inconsistency in Newtonian theory that was causing all the trouble was that the existence of absolute space and absolute time was not compatible with Newton's principles. Fortunately for us, too, he produced in 1915 the necessary correction, otherwise the "baby with the bathwater" brigade would long ago have been screaming for us to abandon those principles, too. Of course it is a profound emotional shock to find that all those terrible consequences are only the logical outcome of Newton's principles, and I don't blame anyone for hoping they will go away if we pretend they are not there. It is interesting that many scientists are just as irrational as the rest of us.

Finally, Dr Murray is highly dogmatic about the nonexistence of direct demonstrations of the correspondence between the "workings of the world as it is" and the predictions of the theory. I would refer him to the experiments of Hafele and Keating in 1971, who set out to see if the predictions of theory about clocks could be confirmed. They were. (SCIENCE vol. 177, 1972, p.68ff).

Alan Watson Pollensa Malorca

Amorphous metals, previously only possible to produce in strips on 0.05mm thick, have now been made 1mm thick using a technique known as rapid diffusion. The picture shows X-ray diffraction photographs of a nickel-zirconium sample. In A, typical X-ray reflexes of crystalline metals can be seen from an NiZr sample before annealing. After annealing, B, the sample is amorphous and causes diffussion.
Disc preamplifier

This valve design with no overall feedback uses passive equalization and a cascode input stage.

I designed this disc preamplifier working on three assumptions. The first is that good valve amplifiers sound better than good solid-state ones. Secondly, records sound better when passive equalization is used and lastly, amplifiers sound better when loop feedback is not used and linearity is an inherent part of the gain block.

The only problem with passive equalization is overloading of the first stage due to high-level treble signals. A valve with a high-voltage supply handles high-level signals and provides good linearity but the first stage must also have high gain to reduce the effect of noise in the following RC network.

For a high-gain stage, the obvious choice of valve is a pentode but these valves generate more shot noise than triodes because the cathode current splits between the anode and screen. The amount of shot noise depends on valve construction. Good low-noise pentodes are expensive so I chose a cascode circuit.

The second valve, V_{in} contributes little to noise: total stage noise is substantially that of V_{in}. Gain obtainable is approximately the product of the anode V_{in} and the working mutual conductance of V_{in}.

Equalization components are shown boxed. You may want to calculate values for the network more accurately than I have. At the expense of the convenience of using easily obtainable high accuracy capacitors, the network could operate at a lower overall impedance which would thus reduce the noise contribution of R_d.

Current consumption is low, at around 11mA for both channels; so a very smooth h.t. supply can be obtained using simple RC filtering. To keep hum to a minimum, a 6V d.c. supply feeds the heaters as shown in the upper diagram. A complete valve is used for V_{in}. Of the remaining three valves, one half is used for one channel, the other half for the other channel.

Total gain is around 40dB and distortion is calculated as well below 0.1% for 10mV r.m.s. input a 1kHz. Distortion is mainly produced by the triode directly following the equalizing network.

It's all too easy to jump to conclusions but I, together with interested friends and musicians, consider this circuit to be as good as or better than my previous design using a frequency-dependent shunt 5532 op-amp. In turn, this circuit has proved better than any series feedback equalization circuit and better than shunt-feedback circuits using simple transistor triples.

A d.c. regulated supply feeds the valve heaters to reduce hum, top.

The cascode input circuit feeds a passive equalization network, tinted area, whose component values are a compromise, bottom.
Sarei's Chassis Systems Set the Standard

- Sarei Chassis are designed for use in their relevant size enclosures and are available ex-stock.
- Flat Plate Chassis: 3 types of sheet steel, coated in anti-rust lacquer or finished in zinc bichromate, plain or perforated according to type.
- Rail Chassis: Using Symmetric or Asymmetric DIN section, each kit consisting of longitudinal members, transverse rails, nuts and screws.
- Perforated Plate Chassis: Sarei nuts, adjustable vertically and horizontally, aid rapid assembly of control gear on this design offering great flexibility.
- Combined Chassis: A combination of transverse rails and perforated plates provides an infinite variety of chassis possibilities from a wide range of components.
- Telequick Chassis: The basis of a complete wiring and installation system, simple to fit in the Sarei range of enclosures.

Please send me full details of how Sarei's Chassis Systems set the standard.

Name:
Company:
Position:
Address:
Telephone:

Sarei Limited
Cosgrove Way, Luton, Beds.
Telephone: Luton 20121

The Infinite Choice!

Circle 36 for further details.

4GHz + 11GHz Satellite TV Receiving Equipment

4GHz low noise amplifiers, receivers downconverters, feed horns. 11GHz blockconverters, demodulators. Antennas for both frequencies. Satellite reception feasibility report. A full report on reception feasibilities at a given location; price: £50-00. Please state longitude and latitude.

For further details contact

HARRISON ELECTRONICS
22 MILTON ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 7JX Tel: (0702) 332338

Circle 50 for further details.

Video Terminal Board

★ 80 characters × 24 lines ★

Requires ASCII encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 character generator (7 × 9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.

Bare board with 2 EPROMS and program listing — £48 plus VAT. Assembled and tested — £118 Send details or CWO to:

A M Electronics

Wood Farm, Leiston, Suffolk IP16 4HT
Tel: 0728 831131

Circle 25 for further details.

Electronics & Wireless World June 1985
Power '85 Exhibitor List

Power '85 Exhibition and Conference, sponsored by the Power Supply Manufacturers Association at the Brighton Metropole Exhibition Centre from the 21st to the 23rd May 1985, is supported by the manufacturers listed below. The exhibition includes virtually everything connected with all types of power-handling equipment from batteries to automatic test gear and from components to systems.

A full conference and seminar programme will run concurrently. For free tickets apply to TCM Expositions Limited, Exchange House, 33 Station Road, Liphook, Hampshire GU30 7DN. Opening Times: 9 – 5 on Tuesday and Wednesday, 9 – 4.30 on Thursday.

<table>
<thead>
<tr>
<th>GREEN HALL</th>
<th>Stand No.</th>
<th>RED HALL</th>
<th>Stand No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allbatteries (Medicharge) Ltd.</td>
<td>515</td>
<td>Abbott Transistor Labs.</td>
<td>900</td>
</tr>
<tr>
<td>AVX Limited</td>
<td>618</td>
<td>Cetronic (P F) Ltd.</td>
<td>1004</td>
</tr>
<tr>
<td>APLAB (UK) Ltd</td>
<td>515</td>
<td>Ferranti Computer Systems Ltd</td>
<td>906</td>
</tr>
<tr>
<td>R Baker (Electrical) Ltd</td>
<td>419</td>
<td>Gardners Transformers Ltd</td>
<td>707</td>
</tr>
<tr>
<td>F W O Bauch Limited</td>
<td>505</td>
<td>Hanover Press Ltd</td>
<td>1006</td>
</tr>
<tr>
<td>Boschert Incorporated</td>
<td>508</td>
<td>Kollmorgan (UK) Ltd</td>
<td>1007</td>
</tr>
<tr>
<td>Bowes Electronics Ltd</td>
<td>407</td>
<td>Micro Forecast</td>
<td>705</td>
</tr>
<tr>
<td>Bowthorpe EMP Ltd</td>
<td>425</td>
<td>Transduktor Teoranta</td>
<td>706</td>
</tr>
<tr>
<td>Brandner U.K.</td>
<td>516</td>
<td>Tungstone Batteries Ltd</td>
<td>704</td>
</tr>
<tr>
<td>A F Bulgin & Co plc</td>
<td>404</td>
<td>Varta Limited</td>
<td>700</td>
</tr>
<tr>
<td>Campbell Collins-Rifa Ltd</td>
<td>418</td>
<td>Watford Control</td>
<td>1001</td>
</tr>
<tr>
<td>Cerberus Ltd</td>
<td>617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cole Electronics Ltd</td>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E D Transformers Ltd</td>
<td>667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Product News</td>
<td>620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frako GmbH.</td>
<td>518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinchley Engineering Co Ltd</td>
<td>520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hipotronics Inc.</td>
<td>609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi-Wire Ltd</td>
<td>616</td>
<td>Advance Power Supplies Ltd</td>
<td>118</td>
</tr>
<tr>
<td>Hollidiyne Electronics Ltd</td>
<td>409</td>
<td>Amplicon Electronics Ltd</td>
<td>119</td>
</tr>
<tr>
<td>Hueting Publishing</td>
<td>605</td>
<td>The Belix Company Ltd</td>
<td>206</td>
</tr>
<tr>
<td>Hunting Hivolt Ltd</td>
<td>412</td>
<td>Brandenburg Limited</td>
<td>251</td>
</tr>
<tr>
<td>Kingshill Electronic Products Ltd</td>
<td>416</td>
<td>California Instruments</td>
<td>312</td>
</tr>
<tr>
<td>M A Systems Ltd</td>
<td>509</td>
<td>Canadian Instruments & Electronics Ltd.</td>
<td>303</td>
</tr>
<tr>
<td>MTL Microtesting Ltd</td>
<td>626</td>
<td>Celt-Exem Limited</td>
<td>109/210</td>
</tr>
<tr>
<td>Merrimack Magnetics</td>
<td>621</td>
<td>Chloride Power Electronics</td>
<td>113/214</td>
</tr>
<tr>
<td>Nedap N V</td>
<td>507</td>
<td>Coutant Electronics Ltd</td>
<td>205/306</td>
</tr>
<tr>
<td>New Electronics</td>
<td>422</td>
<td>Electronic Product Review</td>
<td>220</td>
</tr>
<tr>
<td>Papst Motors Ltd</td>
<td>608</td>
<td>F R Electronics</td>
<td>207</td>
</tr>
<tr>
<td>Plessey Wound Products Ltd</td>
<td>612</td>
<td>GEC Avionics Ltd</td>
<td>305</td>
</tr>
<tr>
<td>Power Concepts Ltd</td>
<td>511</td>
<td>Gates Energy Products</td>
<td>315</td>
</tr>
<tr>
<td>Power Conversion Ltd</td>
<td>519</td>
<td>Gresnbon Electronics Ltd</td>
<td>213</td>
</tr>
<tr>
<td>Power Electronics</td>
<td>606</td>
<td>Gresham Lion Power Technology Ltd</td>
<td>209/211</td>
</tr>
<tr>
<td>Powertron Ltd</td>
<td>526</td>
<td>Gresham Powerdyne Ltd</td>
<td>112</td>
</tr>
<tr>
<td>R W Electronics Ltd</td>
<td>619</td>
<td>Harmer & Simmons Ltd</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hartley Measurements Ltd</td>
<td>310</td>
</tr>
<tr>
<td>Renata AG.</td>
<td>406</td>
<td>ILP Electronics Ltd</td>
<td>320</td>
</tr>
<tr>
<td>Salicru SA.</td>
<td>411</td>
<td>Kenure Developments Ltd</td>
<td>311</td>
</tr>
<tr>
<td>Sharetree Ltd</td>
<td>522</td>
<td>Keysource Technology Ltd</td>
<td>108</td>
</tr>
<tr>
<td>Starkstrom (London) Ltd</td>
<td>408</td>
<td>Kingslo Limited</td>
<td>313</td>
</tr>
<tr>
<td>Startronic Ltd</td>
<td>414</td>
<td>Power International Ltd</td>
<td>309</td>
</tr>
<tr>
<td>Systron-Donner Ltd</td>
<td>405/506</td>
<td>Power Supply Manufacturers Assoc.</td>
<td>102</td>
</tr>
<tr>
<td>Technimation Ltd</td>
<td>613</td>
<td>Rel Industrial Ltd</td>
<td>217</td>
</tr>
<tr>
<td>Techniton Ltd</td>
<td>663</td>
<td>Rhopoint Ltd</td>
<td>308</td>
</tr>
<tr>
<td>Tekelec Ltd</td>
<td>611</td>
<td>STC Components Ltd</td>
<td>105</td>
</tr>
<tr>
<td>Venable Industries Inc.</td>
<td>622</td>
<td>Savage Power Ltd</td>
<td>104</td>
</tr>
<tr>
<td>Verospeed</td>
<td>415</td>
<td>VA Electronics Ltd</td>
<td>106</td>
</tr>
<tr>
<td>Wavetek Electronics Ltd</td>
<td>615</td>
<td>VMS Professional Power</td>
<td>314</td>
</tr>
<tr>
<td>Yuasa Battery Sales</td>
<td>521</td>
<td>Venture Technology Ltd</td>
<td>307</td>
</tr>
</tbody>
</table>

ELECTRONICS & WIRELESS WORLD JUNE 1985
2-D digital filter design techniques

A comparison of different techniques for designing two-dimensional digital filters.

Two-dimensional digital signal processing is a relatively new field. Almost all of the work reported in this area has occurred during the last 15 years. In spite of its recent origin, significant progress has been made in the analysis, design and implementation of two-dimensional digital signal processors. This article focuses particularly on the design techniques of two-dimensional finite impulse response (f.i.r.) filters and infinite impulse response (i.i.r.) filters.

In the case of f.i.r. filters, most of the methods used for the design of one-dimensional (1-D) filters can be extended to the two-dimensional (2-D) case:

- frequency sampling technique
- window method
- optimal design methods.

Another, different, technique is used in the design of 2-D f.i.r. filters and is compared to the previous ones. This is:

frequency transformation.

In the design of 2-D i.i.r. filters, on the other hand, 1-D techniques are not carried directly to the two-dimensional case. This is due to the fact that in two dimensions the 2-D z-transform cannot generally be factored into lower order systems. This leads to many design problems, such as the difficulty in determining the stability as well as in finding an efficient realization where the coefficients of the transfer function may be truncated to a reasonable number of bits. Because of these difficulties very little work has been done on designing 2-D i.i.r. filters.

Consequently, we concentrate more on the design techniques of 2-D f.i.r. filters and give a brief survey of some design principles for 2-D i.i.r. filters.

Two-dimensional f.i.r. filter design

If h(n1,n2) is the impulse response of 2-D filter where n1 and n2 are finite and defined over the range

\[0 \leq n_1 < N_1 - 1 \]

and

\[0 \leq n_2 < N_2 - 1 \]

then the system function of a 2-D f.i.r. filter can be expressed as

\[H(z_1, z_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} h(n_1,n_2) \cdot z_1^{-n_1} \cdot z_2^{-n_2} \]

where \(H(z_1, z_2) \) is the 2-D z-transform of the finite length sequence \(h(n_1,n_2) \).

The convergence of the z-transform is guaranteed because the above equation has finite limits on all the summations and as \(H(n_1,n_2) \) is bounded, so is \(h(n_1,n_2) \). \(z_1^{-n_1} \cdot z_2^{-n_2} \) is bounded for finite values of \(z_1 \) and \(z_2 \).

As the z-transform converges everywhere in the \(z_1 \) and \(z_2 \) planes for these sequences, this guarantees that filters designed from finite sequences will be stable.

Frequency sampling technique

This method is based on the principle that any 2-D finite duration sequence can be represented by its 2-D discrete Fourier transform \(F(k_1,k_2) \). This is an approximation of the analogue frequency response at the appropriate samples, and so \(h(n_1,n_2) \) can be obtained via the inverse discrete Fourier transform given by

\[h(n_1,n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} F(k_1,k_2) e^{2\pi i (k_1 n_1 + k_2 n_2)} \]

where

\[a = \frac{k_1}{N_1}, \quad b = \frac{k_2}{N_2} \]

And, since for the designed filter, \(h(n_1,n_2) \) is finite, the frequency response may be calculated by substituting the value of \(h(n_1,n_2) \) obtained from the inverse discrete transform, in the z-transform equation given above and by putting \(z_1 = e^{a \pi} \) and \(z_2 = e^{b \pi} \). This gives

\[H(e^{a \pi}, e^{b \pi}) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} F(k_1,k_2) \cdot L_{w_1,w_2} \]

where

\[L_{w_1,w_2} = \frac{1}{N_1 N_2} \cdot \exp(i) \cdot \exp(2i) \]

and

\[\exp(i) = \frac{1 - e^{-\omega_0 X}}{1 - e^{-2\omega_0 R/N_0}} \]

As in the 1-D case, the above relation is called the frequency interpolating function and it forms the basis for the design of 2-D f.i.r. digital filters using the frequency sampling technique. This function expresses the interpolated frequency response as a linear combination of its frequency samples, and Fig. 1 shows the frequency response of a low-pass filter designed through this method.

Again, as in 1-D case, the interpolation effect may be highly reflected in the oscillations that occur in the transition region since peak in-band and out-of-band ripples may develop at the edges of the passband and stopband respectively.
ELECTRONICS & WIRELESS WORLD JUNE 1985

The Window method

The window method can be directly extended to 2-D I.I.R. filters where the 2-D impulse response sequence h(n₁, n₂) is multiplied by a 2-D window function, w(n₁, n₂), defined equal to zero outside a certain region of interest.

This results in truncating the impulse response to obtain a finite matrix of finite dimensions and is expressed as follows: h(n₁, n₂) → h(n₁,w₁) · h(n₂,w₂) where w₁ = 0: n₁ ≤ N₁ - 1; 0 ≤ n₁ ≤ N₁ - 1

- 0 otherwise.

In this case, the frequency response is equal to the convolution of H(e^jo, e^jw) and W(e^jo, e^jw) which is the Fourier transform of w(n₁, n₂).

If a window sequence (corresponding to the rectangular window in the case of one dimensional design) is defined as:

w(n₁, n₂) = 1 0 ≤ n₁ ≤ N₁ - 1; 0 ≤ n₂ ≤ N₂ - 1

- 0 otherwise.

then some oscillations are bound to occur in the frequency transfer function of the filter and, consequently, the task for windowing is to choose an appropriate window function w(n₁, n₂) which will have the following transform properties:

1. W(e^jo, e^jw) should approximate a circularly symmetric function.
2. The volume under the main lobe of W(e^jo, e^jw) should be large.
3. The volume under the side lobes should be small.

Huang showed that:

w(n₁, n₂) = (w(n₁)² + w(n₂)²)⁻¹/2

is a good circularly symmetric 2-D window where w is a good symmetrically 1-D window sampled at the appropriate values.

Accordingly, through the above equation, one can design approximations to circularly symmetric rectangular, Hannings, Blackman and Kaiser windows. As an example, Fig. 2 shows a 2-D Kaiser window.

Optimal design methods

As in the case of 1-D filters, the problem of designing 2-D optimum I.I.R. filters in the Tchebycheff sense involves techniques where all the impulse response coefficients of the filter or, equivalently, all the discrete transform coefficients are allowed to vary and are solved by an optimization routine.

However, a direct multiple exchange algorithm such as the Remez exchange algorithm devised for 1-D I.I.R. filter design can be directly extended to the 2-D case. This is because of the alternation problem which is not directly generalizable in the 2-D case.

On the other hand, although theoretically the problem is in principle solvable by means of linear programming, practically it becomes computationally intractable because of the extremely high number of variables involved in the computations and because of the number of constraints that have to be set to solve the problem.

Frequency transformation method

This is an efficient technique developed by McClellan for the design of 2-D I.I.R. filters consisting of mapping an optimal 1-D I.I.R. filter into its 2-D counterpart. To illustrate the technique, consider the frequency response of a linear phase 2-D filter with N₁ and N₂ odd where (a(n₁, n₂)) = R(n₁, n₂):

H(e^jo, e^jw) = ∑ ∑ a(n₁, n₂)e^j(n₁jo+n₂jw)

Then multiplying both sides of the equation by e^−j(n₁jo+n₂jw) a real function Hₜ(e^jo, e^jw) may be defined as:

(−N₁/2 ≤ n₁ ≤ +N₁/2) ∑ ∑ a(n₁, n₂)cos(n₁jo+n₂jw)

Now consider the frequency response of a 1-D filter with N also odd:

H(e^jo) = ∑ a(n)cos(njo)

If we let x = cos ø, then

cos n jo = cos[(n(jo)cos(njo))]

which C(x) is a Tchebycheff polynomial of the nth order. Moreover

(−N₁/2 ≤ n₁ ≤ +N₁/2) ∑ a(n₁) C(n₁ x)

and therefore

H(e^jo, e^jw) = ∑ a(n) cos(njo)

Hence, by the transformation

cos ø = A cos ø₁ + B cos ø₂ + C cos ø₁ cos ø₂ + D

then

H(e^jø₁, e^jø₂) = ∑ ∑ a(n₁, n₂)cos(n₁ø₁+n₂ø₂)

which can be put in the form

(−N₁/2 ≤ n₁ ≤ +N₁/2) ∑ a(n₁, n₂)cos(n₁ø₁+n₂ø₂)

which corresponds with Hₜ(e^jø₁, e^jø₂).

An example of spatial frequency response of a digital filter designed by this technique is shown in Fig. 3.

Two-dimensional I.I.R. filter design

Although much research has recently been done on finite-dimensional filters, almost all of the work reported in this area is concerned with the design of causal, quarter-plane stable filters from two different approaches: the frequency domain, and the spatial domain approaches.

In the frequency domain case, a number of design efforts can be grouped into two categories: those involving fast Fourier transforms and those involving computer-aided optimization techniques.

In the spectral transformation approach, a design technique proposed by Shanks consists of mapping analogue 1-D into 2-D with arbitrary directivity in a 2-D frequency plane.

These analogue filters are rotated called filters because they are obtained by rotating the 1-D filters and then converting them into their digital two-dimensional equivalence via a 2-D bilinear transformation defined by the following two equations:

s₁ = (1-z) / (1+z) s₂ = (1-z) / (1+z)

However, for angles of rotation above 90°, this technique does not guarantee the stability of the designed filter and the warping effects of the bilinear transformation affect the filter frequency response.

Costa and Venetianopoulou have presented in this method by using a number of rotated filters where angles of rotation are uniformly distributed over 180°. This results in a filter having a reasonable approximation which approximately a circularly symmetric cut-off boundary by a polygon.

As a result, but also necessary insufficient condition for the stability of the designed filter, the angle of rotation must be in the range of 270° to 360°.

Alternatively, in computer-aided optimization approaches, an iterative nonlinear optimization procedure is used to adjust the filter coefficients to minimize a specified error criterion. Again, the chief problem is to ensure the stability of the resultant 2-D digital transfer function.

In the spatial domain design problem, a filter transfer function is chosen to approximate a finite extent 2-D impulse response. A least-squares approach is developed with a spatial error criterion to reach a best approximation of the spatial error criterion to reach a best approximation of the spatial response. Unfortunately, as with other 2-D I.I.R. design techniques, this approach does not lead to stable filters. Furthermore, it may lead to a filter whose impulse response does not adequately meet the prescribed specifications.

However, a technique has been developed which relies on the fact that, by using an infinite sequence rather than a finite length, the mean square solution would then necessarily lead to a stable filter. But the main disadvantage of using such a method lies in the very complicated computational effort involved in the analysis.

Conclusions

Most of the techniques used for 1-D I.I.R. filter design can be extended to the 2-D case, amongst them, the window method proves to yield good 2-D non-reursive ideal low-pass filters.

The other two techniques discussed in this category, namely the frequency sampling technique and the optimal design methods have some problems associated with their implementation. In the frequency sampling technique, the interpolating function gives rise to oscillations and when using optimal methods, the design problem becomes extremely complicated by the number of variables and constraint equations that have to be solved to obtain a reasonable solution.

The last design technique considered for I.I.R. filters involves designing a 1-D filter and then transforming it to a corresponding 2-D filter directly, according to a certain mapping criterion. This technique is very efficient and the resulting approximations are fairly good.

In the case of 2-D digital I.I.R. filters, problems associated with the stability of the resulting filters are very dominant and hence most of the design principles suffer from them and although two design approaches were presented, no simple technique is readily available.

References

1. B.M.G. Cheetham and P.M. Hughes: Digital filter design, Wireless World, May, June, August 1982
THE ELECTRONICS MAGAZINE PROFESSIONALS CAN'T RESIST.

Electronics and Wireless World is the only electronics magazine to really tempt the professionals. It's the only one they take the trouble to pick up for themselves. That's because it's written for the engineer who sees electronics not only as a job, but also as a hobby. It's written on a technical level that doesn't talk down to you. It keeps you up to date with all the latest products and processes, applications and equipment. And it covers every industry where electronics is involved. Just one look at the new look magazine and you'll see why it gets professionals like you out of the office, and down to the newsagents.
so that the peak value of the current through the capacitor is given by:

\[I_{\text{cap}} = \frac{(V_i - nV_o) V_s}{2 \pi L V_i} \]

(18)

Because the ripple current has a triangular waveshape, the r.m.s. value is:

\[I_{\text{cap}} = \frac{I_{\text{amp}}}{\sqrt{3}} \]

(19)

Now using these results, we can proceed to get:

a) the ripple voltage across the e.s.r., which is simply:

\[\Delta V_{\text{ESR}} = \frac{V_i - nV_o}{L} \times \text{ESR} \]

(20)

b) the peak to peak voltage across the e.s.l. by means of:

\[V_{\text{ESL}} = (\text{ESL}) \frac{d V_{\text{amp}}}{dt} \]

which on the positive ramp gives:

\[V_{\text{ESL}} = (\text{ESL}) \frac{V_i - V_o}{L} \]

and on the negative ramp:

\[V_{\text{ESL}} = (\text{ESL}) \frac{V_o}{L} \]

The peak to peak voltage across the e.s.l. is the sum of these:

\[\Delta V_{\text{ESL}} = V_{\text{ESL}} + V_{\text{ESL}} = \frac{V_i}{n} L \times \text{ESL} \]

(21)

c) finally the ripple across the actual capacitor.

The charge going on and off the capacitor \(\Delta Q \), is represented by the shaded area on Fig. 13.

\[\Delta Q = \text{AREA} = \text{base} \times \text{height} = \frac{1}{2} \frac{d V_{\text{amp}}}{dt} \frac{T_b}{2} \]

and:

Fig. 11. Ordinary diode compared with fast-recovery type.

Fig. 12. S.m.p.s. output circuit, showing 'invisible' components of \(C_o \).

BOOKS

Designing Microprocessor-based Instrumentation by Joseph J. Carr: Prentice-Hall International, 323 pages, hard covers, ISBN 0 8359 1270 1. Practical guide to microprocessors (the Z80 in particular) and their support chips, and how to interface them to the outside world. Later chapters deal with basics of data conversion, transducers, sample-and-hold circuits and interfacing keyboards, switches and displays.

Fault Tolerant Hardware Design by Parag K. Lala: Prentice-Hall International, 263 pages, hard covers, £24.95, ISBN 0 13 308248 2. Chapters cover basic concepts of reliability, types of faults in digital circuits and how to model them, test generation, fault-tolerant design of i.s.i. and v.i.s.i. chips, self-checking and fail-safe logic and design for testability.

Going Online 1984, ed. Jacky Deumette: Online Information Centre (Ashib, 26-27 Boswell Street, London WC1N 3ZJ), 60 A4 pages, soft covers, £3.50. What services are available, how to use them and how much they cost. An extensive list of addresses covers UK user groups and system operators on both sides of the Atlantic; there is also a useful bibliography.

International Electrotechnical Vocabulary, chapter 521: Semiconductors and Integrated Circuits. International Electrotechnical Commission (3 rue de Varembé, Geneva), 90 pages, soft covers, Sw.Fr.103. How to render 'reverse recovery time' and several hundred other phrases into German, Spanish, Italian, Dutch, Polish and Danish. Translations and fuller explanations are given in French, English and Russian.

 ELECTRONICS & WIRELESS WORLD JUNE 1985

79
Channel code and disc format — 2

How information is organized on the disc surface

The last article in this series discussed channel code and showed how binary data is adapted to a form which suits the characteristics of the medium. This part explains how information is organized on the disc surface.

Fig. 6 reveals the timing relationships of the CD format. The sampling rate of 44.1kHz with 16-bit words in left and right channels results in an audio data rate of 196.4kbytes/s (k = 1000). There are 24 audio bytes in a data block, so the block rate will be

\[
\text{196.4 kHz} \div 24 = 7.5\text{Hz}
\]

If this block rate is divided by 98, the subcode block rate of 75Hz results. This frequency will be divided down to provide running time display in the player. If the block rate is multiplied by 588, the number of T periods in a block, the master clock rate of 4.3218MHz results. From this the maximum and minimum frequencies of e.f.m., 720kHz and 196kHz, can be obtained using the run-length limits.

Each data block contains 24 non-contiguous audio bytes. Their sequence and their relationship to the redundancy bytes is discussed next.

The error correction system has to deal with large burst errors resulting from surface contamination and the technique of interleave reduces the amount of redundancy necessary. The principle is that by storing data in a non-contiguous fashion, several adjacent symbols destroyed by an error burst become single-symbol errors spread more widely.

There are a number of interleaves used in CD each with a specific purpose; the full structure is shown in Fig. 7(a). The first stage of interleave is to introduce a delay between odd and even samples. The effect is that uncorrectable errors cause and even samples to be destroyed at different times and interpolation can then be used to conceal the errors, with a reduction in audio bandwidth. The odd/even interleave is performed first in the encoder, as de-interleave in the player will be the reverse order, and interpolation is the last process. An odd/even delay of two blocks permits interpolation in the case where two uncor-

Diagram:

- **Fig. 7(a).** CD interleave structure.

- **Legend:**
 - L: Audio block
 - R: Redundancy block
 - A: Adjacent symbol
 - OUT: Output symbols
 - P: Redundancy symbols
 - G: Input symbols

- **Steps:**
 1. Delay even samples two blocks
 2. Re-order incoming samples to separate odd and even
 3. Calculate 4 bytes delay from G to 108 blocks
 4. Unequal delays from G to 24 data bytes
 5. Calculate 4 bytes redundancy from 28 data bytes
 6. Delay every non-zero P/G with zero data
 7. Calculate 4 bytes redundancy from 8 symbol A, B

www.americanradiohistory.com
Left and right samples at the same instant form a sample set. As the samples are of 16 bits, each sample set will be of four bytes, AL, BR, AR. BR. Six sample sets form a 24-byte parallel word, and the C2 encoder produces four bytes of redundancy Q. By placing the Q symbols in the centre of the block, the odd/even distance is increased, permitting interpolation over the largest possible error burst. The 28 bytes are now subject to differing delays, which are integer multiples of four blocks. This produces a convolutional interleave, where one C2 code word is stored in 28 different blocks, spread over a distance of 108 blocks.

At one instant, the C1 encoder will be presented with 28 bytes which have come from 28 different C2 code words. The C1 encoder produces a further four bytes of redundancy P. Thus the C1 and C2 code words are produced by crossing a data array in two directions (cross interleaving).

The final interleave is an odd/even output symbol delay which causes P code words to be spread over two data blocks on the disc, as shown in Fig. 7(c). This mechanism prevents small random errors destroying more than one symbol in a P code word. The choice of eight-bit symbols in the e.t.m. channel code assists this strategy.

The expressions in Fig. 7(a) determine how the interleave is performed.

Fig. 6. The frequencies of the various events in compact disc timing are intimately connected - as the diagram shows - and the relationship cannot be broken. It should be self-evident that the drop frame time code should not be fed into a CD cutter.

Fig. 7(b). Odd/even interleave permits the use of interpolation to conceal uncorrectable errors.

Following an M.Sc. course at Southampton's Institute of Sound and Vibration, John Watkinson worked in research before joining Digital Equipment Corporation, first as a field engineer, later as an instructor, specializing in mass storage devices. He joined Sony Broadcast in 1982 specializing in professional digital audio and timebase corrector training, and is currently training manager at Ampex International.
The final interleave of the CD format spreads P code words over two blocks. Thus any small random error can only destroy one symbol in one code word, even if two adjacent symbols in one block are destroyed. Since the P code is optimized for single symbol error corrections, random errors will always be corrected by the CI process, maximizing the burst correcting power of the C2 process after de-interleave.

Because of cross-interleave, the 28 symbols from the Q encode process (C2) are spread over 109 blocks, shown hatched. The final interleave of P code words, as in Fig. 7(c), is shown shaded. Result of the latter is that Q code word has 5,3,5,3 spacing rather than 4,4.

The calculation of the P and Q redundancy symbols is made using Reed-Solomon cyclic polynomial division. The P redundancy symbols are primarily for the purpose of detecting errors, to provide error flags for the Q system. The P system can however correct single symbol errors. This mechanism will be described in greater detail in a later part.

Fig. 8 the encoder modulates the cutting laser. Audio and sub-code data streams are supplied, and the cross interleaved block structure created. The e.f.m. encoder produces a 14T pattern for every 8-bit symbol, and sync, patterns and merging patterns are multiplexed in.

The next article in the series assembles the disc, optics, servos and error correction system to form a CD player.
ELECTRONICS & WIRELESS WORLD JUNE 1985

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS

TCUU Single channel converter. Gain adjustable +3dB -16dB Maximum output +30dBmV. Crystal controlled oscillator. Power requirement 14V 20mA (Quote Channels required)

TCUW As TCUU except UHF to VHF converter (Quote Channels required)

TCUJ As TCUU except VHF to UHF converter (Quote Channels required)

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS

TAG063 Gain 46dB maximum output 63dBmV. Regulator + or - 8dB. Power requirement 14V 20mA

TAG065 Gain 40dB maximum output 64dBmV. Regulator + or - 16dB. Power requirement 14V 20mA

SINGLE CHANNEL AMPLIFIERS

TSS463 Gain 26-46dB adjustable. Maximum output 63dBmV. Power requirement 14V 17mA

TSS302 Gain 12-30dB adjustable. Maximum output 62dBmV. Power requirement 14V 20mA

DRIVER AMPLIFIERS

TS1030MHz FM driver amplifier. 10dB Gain. Maximum output 38dBmV. Power requirement 14V 16mA

TS10310MHz Band III driver amplifier. 10dB gain. Maximum output 30dBmV. Power requirement 14V 13mA

TS103UHF UHF driver amplifier. 10dB gain. Maximum output 30dBmV. Power requirement 14V 10mA

TS10K5 Single channel UHF driver amplifier. 10dB gain. Maximum output 40dBmV. Power requirement 14V 10mA (Quote channel required)

DISTRIBUTION AMPLIFIERS

TE2022 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum output 42dBmV

TE1028 Domestic distribution amplifier. 1 input, 2 outputs. Gain 16dB Maximum output 2 at 38dBmV

TSS246 40-800MHz. Gain 26dB UHF, 16dB VHF. Maximum output 46dBmV

TSS245 40-800MHz. Gain 26dB UHF, 22dB VHF. Maximum output 46dBmV

TSS245 Separate UHF/UHF inputs. Gain 26dB UHF, 22dB VHF. Maximum output 46dBmV

TSS245 40-800MHz. Gain 26dB UHF, 16dB VHF. Maximum output 46dBmV

TSS245 40-800MHz. Gain 26dB UHF, 16dB VHF. Maximum output 46dBmV

TS1055 Gain 15dB UHF, 15dB VHF. Maximum output 65dBmV

REPEATER AMPLIFIERS

TSC20010 Repeaters. Gain 16-36dB UHF, 10-30dB VHF. Maximum output 60dBmV

TSC20010 Repeaters. Gain 16-36dB UHF, 10-30dB VHF. Maximum output 60dBmV

TSC20010 Repeaters. Gain 16-36dB UHF, 10-30dB VHF. Maximum output 60dBmV

TSR2000 Repeaters. Gain 16-36dB VHF. Maximum output 60dBmV

QUALITY AT LOW COST

TAYLOR BROS (OLDHAM) LTD
LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911

CIRCLE 18 FOR FURTHER DETAILS.

Newrad

NEWRAD INSTRUMENT CASES LTD
Unit 19, Industrial Estate, Gore Road
New Milton, Hants BH25 6SJ
Tel: New Milton 0425 621195

WE HAVE INCREASED THE RANGE OF OUR SUCCESSFUL NM40 ENCLOSURES

Beautifully made 19 inch Rack Mounting enclosures complete with heavy gauge chassis and top and bottom covers. Front, Side and Rear panels are aluminium and flat for easy machining. These panels are located with heavy duty aluminium extrusions. Front and Rear panels are satin anodised. Covers are finished in cream.

PRICE ARE EXCLUSIVE OF VAT P&P £3.00

CIRCLE 21 FOR FURTHER DETAILS.

TDS900

FORTH COMPUTER

Build the TDS 900 into your products, program it with a VDU and your forecasts become fact.

NOW FROM

£99

Single board computer. 12k RAM and 8k ROM (expandable)

All C-MOS for lower power. FORTH language. Compiled and fast. On-board screen-editor, compiler and debug facilities.

Easy connection with serial and parallel channels, A/D, D/A converters, triacs, printers, keyboards and displays.

Triangle Digital Services Limited
Villa Wood Dr. Wallan, Essex CW3 8TJ
Telephone: 01530 84842.
Fax: 50260822 (Ref: 779)

Agents in USA, France, Switzerland, Netherlands, S. Africa, Australia

CIRCLE 29 FOR FURTHER DETAILS.
Mobile tv aerial

Patents have been applied for the design of a u.h.f. tv receiving aerial for use on vehicles. It is an adaptation the quad configuration. The objective behind the design was to evolve an aerial that would provide an omnidirectional field pattern where the direction of the desired transmission station changes as the vehicle moves from one location to another. Of course it is possible to redirect a Yagi-type aerial but this requires physical movement of the aerial and the new design eliminates this. The success of the design can be judged by looking at the polar field strength diagrams; it is not worth reproducing them as they are just circles! Suggested applications are for use in coaches, cars, caravans and on water craft. Because vehicles often operate in areas of low signal strength, the aerial is provided with a broadband amplifier giving a 22dB gain over the whole u.h.f. band. The UK price of the Omnimax Aerial, including the amplifier and 5m coaxial cable is £39.50 inclusive. Maxview Aerials Ltd. Setchey, King’s Lynn, Norfolk. PE33 0AT. EWW213

Tiny trimmer

Another world’s first is claimed for this device. The smallest ever precision trimmer capacitor. Designed to provide screwdriver adjustable tuning of high frequency circuits (up to 5GHz), The Voltronics CPA10 achieves it small size by eliminating the outer case and internal screw mechanism. Extreme precision is used to manufacture the parts and the Teflon dielectric is fused to the stainless steel moveable shuttle. Both the contact clamp and the shuttle clamp are gold-plated beryllium copper. Very low contact resistance ensures low r.f. loss and high Q. The capacitor has been vibration tested to 40G with no variation in the set capacitance value. The use of the CP series of trimmers eliminates the cost of wirebonding small capacitance elements, allows the rough tuning of several stages before final tuning, eliminates the cost of matching and tuning integrated circuits and the r.f. loss is lower than for ceramic elements. Pascall Electronics Ltd, Hawke House, Green Street, Sunbury-on-Thames, Middlesex. TW16 6RA. EWW211

Transportable Unix

Trumpeted as the world’s first transportable, fully integrated Unix-based computer the Hewlett-Packard Integral PC, incorporates multi-tasking, Multi-window facilities and combines processor, display, printer and disc drive all in one 11.2Kg (25lb) package. The Unix operating system is on a 256K ram, the computer is built around the Motorola 68000 processor, uses the fast H-P thinkjet printer and has a 3.3in double-sided, double-density disc drive.

The computer operates from a.c. mains supply. Display is provided by an amber electroluminescent screen with a 9in diagonal. There is an HP-IB (~GPIB) interface, an input port for a mouse, and 512K of ram with expansion slots for more (up to 1.5MByte) and/or for a V23 modem. By using bus expanders, memory can be increased to 5.5MBytes. Eventually the computer will be able to address up to 8MB of user ram. An additional 32K ram is used for the screen memory. For software development, C and Technical Basic are available, as is a wide range of applications software. Stocked by Rapid Recall Ltd., Denmark Street, High Wycombe, Bucks. HP11 2ER EWW205
A superb range of innovative loading and duplicating technology
- Worldwide -

The leaders
Tape Automation Ltd, Unit 2, River Way, Harlow, Essex CM20 2DN.
Telephone (0279) 442946, Telex 265871 MONREF G quoting Ref: 84 AUL001.

EUROPE • USA • JAPAN • UK • INDIA

CIRCLE 17 FOR FURTHER DETAILS.

OSCILLOSCOPES

TEKTRONIX 465 Dual Trace 100MHZ Delay Sweep
GOLDS Q4000 DIGITAL STORAGE Dual Trace
TELLEQUIMENT 075 Dual Trace 50MHz Delay Sweep
COXSH 2CO150 Dual Trace 35MHz Delay Sweep
S.E. LABS SM111 Dual Trace 10MHz or external
TELLEQUIMENT 554A Single Trace 10MHz Solid State
TELLEQUIMENT 543 Single Trace 25MHz...

ADVANCE ADVANCE

TELEQUIPMENT S54A. DC
S.E. LABS SM111 Dual
Trace 10MHZ

ADVANCE

DC

S.E. LABS SM111 Dual Trace 10MHz or external
TELLEQUIMENT 554A Single Trace 10MHz Solid State
TELLEQUIMENT 543 Single Trace 25MHz...

MARCONI type SG63EAM/FM & 410KHZ

ADVANCE ADVANCE

SIGNAL GENERATORS

TEKTRONIX 465 Dual Trace 100MHZ Delay Sweep
GOLDS Q4000 DIGITAL STORAGE Dual Trace
TELLEQUIMENT 075 Dual Trace 50MHz Delay Sweep
COXSH 2CO150 Dual Trace 35MHz Delay Sweep
S.E. LABS SM111 Dual Trace 10MHz or external
TELLEQUIMENT 554A Single Trace 10MHz Solid State
TELLEQUIMENT 543 Single Trace 25MHz...

MARCONI type SG63EAM/FM & 410KHZ

MULTImETERS

UNBELIEVABLE — AVO 8 MK V. Complete with batteries and leads for only...

PHILLIPS DMM 2513; 4 digit; Auto ranging. Complete with Batteries. Leads (if not used) P&P...

ADVANCE type SG63EAM/FM & 410KHZ

ADVANCE type SG63A AM/PM & 410KHZ...

ADVANCE type SG62A AM 150KHZ...

ADVANCE type 62A & 150KHZ...

NEW EQUIPMENT

HAMEG OSCILLOSCOPE 605. Dual Trace 60MHZ Delay Sweep: Component Tester
HAMEG OSCILLOSCOPE 203.5. Dual Trace 20MHZ

BLACK STAR FREQUENCY COUNTERS. P&P £4

In V.

Signal generator...

7500...

270...

750...

600...

150...

ADVANCE type SG63EAM/FM & 410KHZ

ADVANCE type SG63EAM/FM & 410KHZ...

ADVANCE type SG62A AM 150KHZ...

ADVANCE type 62A & 150KHZ...

NOW ONLY £12 p&p £3

AVO TRANSISTOR TESTER T169 Complete with batteries, leads & instructions.

This is a VERY SMALL SAMPLE OF STOCK,
SAE or Telephone for LIST.

Please check availability before ordering.

VAT to be added to total of Goods & Carriage.

CIRCLE 17 FOR FURTHER DETAILS.

Happy Memories

Part type

1 off

25-99

100 up

4116 200ns...

1.25

1.15

1.10

4164 150ns Not Texas...

2.10

1.90

1.80

2114 200ns Low Power...

1.75

1.60

1.55

2016 150ns...

2.75

2.50

2.30

6116 200ns Low power...

7.75

Call Call

6264 150ns Low power...

9.80

8.75

8.40

2716 450ns 5 volt...

3.85

3.45

3.30

2732 450ns Intel type...

4.75

4.25

4.10

2732A 350ns...

5.25

4.69

4.50

2532 450ns Texas type...

3.85

3.45

3.30

2763 300ns Suit BBC...

4.20

3.80

3.60

27128 300ns Suit BBC...

5.60

5.00

4.80

Low profile IC sockets:

Pins: 814 16 18 20 24 28 40

Pence: 12 13 14 16 18 24 27 38

Available now — The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIV discounts starting at a mix of just 25 pieces. Write or phone for list.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by 'phone or mail welcome.

Non-Military Government & Educational orders welcome.. £15 minimum.

HAPPY MEMORIES (WW),
Newchurch, Kington,
Herefordshire HR5 3Qr.
Tel: (054 422) 618

CIRCLE 81 FOR FURTHER DETAILS.
Circuit diagrams on a micro

Using a light pen directly on the screen and a library of pre-programmed images it is possible to draw circuit diagrams, with a BBC Micro, very quickly and obtain a high-quality printout from a low-cost dot matrix printer. The Cirkwick kit consists of software on a disc and a lightpen which incorporates a switch. The graphics image of the circuit is displayed on the screen which acts as a window on a much larger 'virtual' screen; eight times the size of the screen in use. Although the system has been designed for electronic diagrams it may also be used for flow charts, power systems, pipework diagrams, fluid logic diagrams and many other engineering applications. A large number of electronic symbols are included in the package and it is also easy to create symbols with the light pen, on a magnified scale, even when drawing is in progress.

Printout is obtained from any dot matrix printer that can provide dual-density graphics. The printout is produced in one continuous action using a screen dump routine that manipulates the drawing file so that the correct portion of the diagram is on the screen while being printed. The drawing is stored in memory as a file of symbols and co-ordinates and may be manipulated by other programs if desired. The software costs £19.95 and the lightpen £25.00 (inclusive). Datapen Microtechnology Ltd., Kingsclere Road, Overton, Hants. RG25 3JB. EWW203

Fast tape storage

A new wafer tape drive is available for the Commodore 64 computer which loads faster than cassette and is claimed to be more reliable and, because of the slow serial interface with Commodore discs, is even faster than disc. The medium is a continuous loop of 1.6mm magnetic tape in a tiny cartridge, somewhat similar, though a little larger and more robust, to the Sinclair Microdrive. The interface software for the Quick Data Drive includes an audio simulation which makes the Commodore think that it is communicating with a normal cassette and this routine takes up as much time as the actual transferring of the program. To load the full 64K capacity of the computer takes 30s, compared with 2min for a Commodore disc drive and 23min for a Commodore tape. The drive complete with the operating system, one blank cartridge and one game cartridge costs just under £100. A wide range of software is already available on Wafadrive cartridges including many games, a word processor and a spreadsheet program. Other versions are planned for the BBC micro. The Rotronics Wafadrive for the Sinclair Spectrum uses the same mechanism. Dean Electronics Ltd., Glendale Park, Fernbank Road, Ascot, Berks. SL5 8JB. EWW 201

Solid-state disc

Based around the Fujitsu 1Mbit bubble memory, the SSD1 has been designed to emulate a 5.25in floppy disc in applications where extra reliability and ruggedness are required. With no moving parts it has none of the potential mechanical problems of disc drives and offers a high immunity to the effects of temperature, humidity, dust, shock or vibration.

The unit can take two 1Mbit cassettes offering 125Kbytes each, or the equivalent of two single-sided, single-density disc drives. The two cassettes can be combined to offer the equivalent of a single-sided double density disc. Full emulation is included in the internal electronics so that the unit may be plugged into the disc drive port of most microcomputers. It operates from a single 5V supply. Track access time is about 150ms and data transfer rate is 125Kbyte/s.

Bubble memory has an error rate of 1 in 10^{16} and a calculated m.t.b.f. of 400 000h.

The units cost £960 including two cassettes and each additional cassette is £260. Tempatron Ltd., 6 Portman Road, Battle Farm Estate, Reading, Berks. RG3 1JQ. EWW216
Pascal on the QL

The USCD p-system has been translated into a format usable on the Sinclair QL computer. This includes compilers for Pascal, Fortran-77 and USCD Basic, a screen editor, filer, utilities, print formatting and the Advanced Development Toolkit. USCD Pascal is widely used in as a teaching tool in universities and colleges and was chosen, for example, by the Open University for their course on structured programming in Pascal.

The P-system also provides a useful software development environment with its integrated editor and compilers. Programs so compiled are highly portable and may be used on a variety of microcomputers. The system is very fast; 700 lines of Pascal can be compiled in a minute on the QL, twice as fast as a similar operation on the IBM PC. Standard benchmark tests show that the system takes the QL from its current position of 31st in the league table to 6th place, much faster than the IBM PC and close to the speed of the IBM AT. Pascal or Fortran-77, together with a full set of development utilities, is available for £99.95. The Advanced Development Toolkit costs £49.95. TDI Software Ltd, 29 Alma Vale Road, Bristol BS8 2HL EWW208

Multitester

A miniature hand-held multitester includes a socket for transistor testing. It is housed in a book-hinged box with a manual, battery, leads and a spare fuse. The instrument features a 12mm high 3½-digit 1.c.d. It has an overload protection circuit and automatic polarity and zero adjustment. The ranges and accuracies for each range are: alternating voltages, 0-200-500V (1.2%); direct voltages 0-20-200-1000V (0.8%); d.c. 0-2-20-mA (1.2%); Resistance 0-2-20-200kohms (1%). Transistors up to 1000nF may be tested. Available through Semiconductor Supplies International Ltd, Dawson House, Carshalton Road, Sutton, Surrey. SM1 4RS. EWW219

STE-Bus to Micro interface

When an STE-bus system is connected to a BBC Micro using Arcom's Beebop interface board, both systems benefit. The BBC can have access to STE's data acquisition and control features, such as 1MByte addressing range and 4Kbyte of input/output space; and the STE system gains a fast and easy means of developing Basic programs, and the BBC's colour display facilities. The interface is a single Eurocard which sits in an STE card frame and is connected to the BBC through the 1MHz bus port. A 'filing system' eprom is installed in a BBC sideways rom socket and provides the computer with an additional set of STE-oriented commands to the Basic interpreter. These include dedicated facilities for a-to-d conversions, reading or writing to memory or i/o locations, and performing block moves. The BBC can be used as the only processor in the system or as one processor in a multiprocessor system. It is possible to use an STE processor board for applications while the BBC provides colour graphics. STE, which is reaching the final stages of standardization by the IEEE in the USA, offers a variety of expansion boards including digital and analogue interfaces and real-time clocks. The interface includes two v.i.a. chips which send and receive data between the BBC and STE buses with the necessary logic to set up the required bus cycles and an arbiter circuit for use when the BBC is part of a multi-processor system. Beebop costs about £120. Arcom Control Systems Ltd., Unit 8, Clifton Road, Cambridge. CB1 4BW. EWW218

Temperature controlled iron

Compact and light the miniature soldering iron from Oryx has a preset control adjusted by a screw which may be between 200 and 400°C. The operating temperature is reached within 45s from cold and is then maintained to within ±2%. This rapid heating and accurate heat control are made possible by the use of a 50W element and a thermostat. The Oryx 50 iron is fitted with an iron coated, chrome plated screw-on tip there is a wide range of tips available. The bench stand is an optional extra. Greenwood Electronics Ltd., Portman Road, Reading, Berks. RG3 1NE. EWW204
Now Thurlby makes logic analysis affordable! from

the new Thurlby LA-160 £395 +vat

- 16 channels, expands to 32
- Clock rates up to 20MHz
- State and timing displays
- Selectable display formats
- 2K word acquisition memory
- Non-volatile reference memory
- Search and compare facilities
- Hard-copy data print-out

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer’s reach.

Contact us now and get the full technical data.

Thurlby Electronics Ltd
New Road, St. Ives, Huntingdon,
Cambs. PE17 4BG, England. Tel: (0480) 63570

CIRCLE 31 FOR FURTHER DETAILS.

The world's most advanced low-cost bench multimeter!

Thurlby 1905a £325 + VAT

A complete high performance bench DMM
- 5½ digits; 0.015% acc; 1 μV, 1mΩ, 1mA.
- Full ac and current functions as standard

A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St. Ives, Huntingdon,
Cambs. PE17 4BG, England. Tel: (0480) 63570

CIRCLE 32 FOR FURTHER DETAILS.

Add 8 channels to your scope

New Thurlby OM358 multiplexer £169 +vat

The Thurlby OM358 gives an oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc. The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms.

The OM358 has a bandwidth of 35MHz and 3% calibration accuracy. Each input has an impedance of 1MΩ - 20pF and accepts signals up to ±6V. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available.

Thurlby Electronics Ltd
New Road, St. Ives, Cambs.
PE17 4BG Tel: (0480) 63570

OM358 with two BNC cables £197.80
(inc P & P and VAT)

CIRCLE 33 FOR FURTHER DETAILS.

Hitachi Oscilloscopes performance, reliability, value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended 14 model range that represents the best value for money available anywhere.

V-212/222 20MHz Dual Trace
V-223 20MHz Sweep Delay (Illustrated)
V-209 20MHz Mini-Portable
V-422 40MHz Dual Trace
V-623 40MHz Sweep Delay
V-509 50MHz Mini-Portable
V-202 20MHz Dual Trace
V-1050 100MHz Quad Trace
V-1070 100MHz Four Channel
V-1100 100MHz DMM/Counter
V-134 10MHz Tube Storage
VC-6015 10MHz Digital Storage
VC-6041 40MHz Digital Storage

Prices start at just over £300 plus vat and that includes a full 2 year warranty. We hold the range in stock for immediate delivery.

For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

CIRCLE 34 FOR FURTHER DETAILS.
LONDON & HOMES COUNTIES
Audio Electronics London W2 01 724 3564
Henry's London W2 01 724 0323
Caraton Electronics Teddington 01 543 4477
Kentwood Electronics 01 584 38043
Aughton Instruments Strood 0634 724751
The Instrument Centre Dunstable 0582 027239
Mapihn Electronics Benfleet 0702 554155

WALES & WEST
The Instrument Centre Newport 0633 280566
(Ewes)
CIRCLE 12 FOR FURTHER DETAILS.

EAST ANGLIA
Electronic & Computer Workshop Chelmsford 0245 262149
Cirkit Bruxborne 0892 441111

CIRCLE 88 FOR FURTHER DETAILS.

LONDON, HEATH 300 SERIES AMPLIFIERS

RF POWER
U.S. supplier of RF POWER DEVICES.
Prices LOWER than current domestic prices.
Query us for immediate needs.

A quality source for a complete range of RF POWER devices. From 2-30 MHz. SS6 12.5 V 7.28 V transistors - 14 -30 MHz CB/AMATEUR 27 -50 MHz. Low band FM - 66 - 81 MHz, mid band FM - 66 - 81 MHz, mid band FM UHF; 416-452 MHz. VHF FM - 108 - 150 MHz. VHF AIRCRAFT AM - 225 -400 MHz UHF 28 V 407 - 512 UHF CATV/MATV CLASS A linear transistors - A SMALL SELECTION of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES.

DO502-1 DRIVER, SOSIONED CONTROLLED CARTRIDGE DRIVE. Fully balanced, balanced cassette mechanism suitable for high-end applications. With a low input voltages, the output can be regulated by low output. No input voltag controls or output from a micro. Idea for applications - Automatic. Controlled - Audio equipment, tape recorder details are included in the technical specification. A large selection of parts is available. A complete list of parts is over 120. Our complete kit is under $100.

LINSLEY-HODD 100-WATT MOSFET POWER AMPLIFIER

The very latest example of the "Wireless World" by the renowned John Linsely Hodd. This may now be taken as the standard to which the rest are judged. Our kit, approved by the designer, has massive heat sinks and power supply, and includes all components needed to build. Case and 45mm wide, 75mm deep and 146mm high. Automatic switched speaker protection is included as standard. Cost of all parts is over £150. Our complete kit is £195.99.

LINSLEY-HODD CASSETTE RECORDER CIRCUITS

Complete record and replay circuits for very high quality low noise stereo cassette recorders. Cables are optimised for our LH6 Super Quality Sandusky Audio Head. Switched bias and equalisation to suit for phono and fig. tape, very easy to assemble on plug-in PCBs. Complete with full instructions, including a holiday guide to cassette making. 40W Complete Kit. £37.99

STUART TAPE RECORDER CIRCUITS

Complete Studio quality record/Play electronics to bring that old style machine back to life. Full details in our REPRINT £11.50 (No VAT)

PW WINTON STEREO AMP

Super HiFi Mosfet Amplifier Kit giving 56 Watts per channel at 0.1% distortion, housed in attractive wood veneered cabinet. Full Kit is normally £109. Special Offer! £89. Reprint of descriptive articles only (No VAT)

MIDLANDS & NORTH
Northern Instruments Leeds 0532 791054
The Instrument Centre Brierley Hill 0384 233988
Electronic Measurement Manchester 061 273 4653
Radio Telephone Service Derbyshire 0332 41235

SCOTLAND
RMR Measurements Cambernauld 02367 28170

IRELAND
Electronic Instrument Brokers (IRL) Ltd. Dublin Dublin 857119

TIC Semiconductor Inc.
18 WEST 21ST STREET, NEW YORK, N.Y. 10010 U.S.A.
TEL: (212) 675-7222 TELEX: 6023 NYK

CIRCLE 39 FOR FURTHER DETAILS.

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do you tapes lack tape? A worn head could be the problem. Fitting one of our replacement heads could restore performance to better than new! Standard recordings may be made well and our Test Cassettes help you fit the correct system. We are the basic prices for prime parts. Compare us with other suppliers and see the following list of HHRCs. All are suitable for use on Deihl machines and are as stock.

H2C2 Perrinall Stereo Head. This is the standard head fitted as original equipment on music decks. £15.99
H4D5 High Beta Permalloy Head. A hard wearing, high performance head with metal capability. £14.99
H154 Sendump Super Head. The best head we have found. Longer life than Permalloy, higher output than Ferris, fantastic frequency response. £19.99
H2351 H-Track Head for auto-reverse or quadrophonic use. Full specification and price list. £18.99
H2352 OPTIMUM Head. Super low noise, high speed, high performance head. £18.99
H2353 Head. This is the standard head fitted as standard equipment on music decks. £15.99
H2356 Latest version Double Mono (2/2) Recorder/Head. £15.99
H2357 Standard Mono (2/2) Earsaw Head. Complete with all parts! £18.99
H2358 Standard Head. £14.99
H2359 Metal Tape Earsaw Head. Double full gap. £4.90

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One purpose cassette head. Helps to set up D1, U, and VM. Fitting heads is very easy. When fitting new heads. Only £1.60 plus VAT and 50p postage.

Tape Head D-Magnetisation. Handy size heads operated unit prevents burn up of individual head magnetisation causing errors on playback.

Cassette with a Track for Test head. £4.95
Send for your free copy of our DTS. Overseas please send 2 each to cover surface Post only.

Inland Orders £10 per order.

Overseas £10 per order.

Please send the full order to cover insurance.

Send to:
Mr. Robert J. Bloom
374 Newton Road
Manchester M24 9FR

CUSTOM ELECTRIC LTD
GOMSHAM, ESSEX

www.americanradiohistory.com
Output power for mobile radio

For operation between 140 and 175MHz, the BLV45/12 power transistors are intended for use with v.h.f. mobile radio transmitters. They are designed for optimum performance under adverse conditions and can withstand a 20-to-1 v.s.w.r. under severe output mis-match conditions. They feature internal matching, diffused emitter balancing resistors and gold metallization. They can deliver 45 and 74W output power respectively in amplifiers powered from a 12V battery. They offer a gain of 6.5dB at 175MHz. Mullard Ltd., Torrington Place, London. WC1E 7DH. EWW220

Alternative disc for Electron

Unlike the disc interface for the BBC micro, Acorn's Electron has a double density drive and would seem to provide all that may be required. Except that it exclusively uses a 3in drive. Cumana have come up with an alternative that may be used with 3.5 or 5.25in drives, double or single density, up to 89 file names and an interface that includes a battery-backed real time clock so that file may be 'date stamped' when saved. Software included with the package includes the ability to copy to and from Acorn DFS discs that can be used with a BBC micro. It is also possible to format single-density discs for the Acorn DFS. Cumana Ltd, Pines Trading Estate, Broad Street, Guildford, Surrey. GU3 3BH EWW202

Dry lubricant in a can

A special anti-stick and mould release agent is provided by Electrolube's Dry Film Lubricant. It is designed for use where mineral oils or silicones are not appropriate. Especially suitable for electronics applications, DFL assists in the insertion of p.c.b.s into edge connectors, stops squeaks in disc drives caused by friction between metal and plastics and improves the action of keys in keyboards. It may also be used for any plastic or plastic/metal connectors in such equipment as video recorders, tape recorders, typewriters and printers.

The material is based on p.t.f.e. It is clean and non-oily, water repellent, fast drying, non-flammable and chemically inert. This enables it to be used on most materials, including leather, wood, synthetic or natural fibres, glass, metals and most plastics. It is available in aerosol cans and in bulk containers. Electrolube Ltd, Blakes Road, Wargrave, Berks. RG10 8AW. EEW207

Single-rail quad op-amp

High stability, fast slew rate and wide bandwidth are claimed for the Motorola MC3074 op.amp, comparable to those characteristic associated with b.i.fet devices whilst offering single supply operation with input common mode range down to ground (V_{in}). In addition the NPN output stage provides a minimum output swing 36% greater than other standard op.amps and a capacitive drive capability of 10000pF. Its high stability results in a settling time of 1.1us. Suitable for use in battery-operated equipment, automotive systems and in switch-mode power supplies, the op.amp can be operated from split supplies as well as single rail if required. Stocked by Coldis Ltd., 37 Loverock Road, Reading Berk, RG3 1ED. EWW221

Solid-state relays

Designed and manufactured in the UK by Allen-Bradley, relays are available in three formats, two for p.c.b. and on for chassis mounting. The p.c.b. relays differ in their shapes one being flat to allow rackmounting the other being mounted vertically for higher population density on each board. They are both rated at 3A r.m.s. at 240V a.c. load switching. The chassis mounted versions have three current ratings 10, 25 and 45A r.m.s. for mains power switching. They all offer zero-crossing switching to reduce r.f.i. to negligible levels.

Applications include switching a.c. motors, burst fire regulation of electric heating elements and with capacitive input power supplies where the zero voltage
D.C. fans

The shapes of the blades and the airflow venturi have been designed by computer in the latest range of 80 and 92mm fans from papst. The fans in this range have a depth of only 32mm but may move air up to 80³/h. The series III Multifan is driven by a 4-pole brushless d.c. motor which features polarity protection and automatic restart. The use of a p.t.c. thermistor in the drive electronics allows the fan to start with a very slow ramp-up voltage. Papst Motors Ltd., East Portway, Andover, Hants. SP10 3RT. EWW210

Computer-video synch

A device to allow the superimposition of computer text subtities and graphics onto an incoming video signal has been developed by CCI Associates under licence from the BBC. Having been successfully prototyped the Super Genlock unit will be available very soon. It is capable of synchronising the RGB and video outputs of a BBC Micro to a stable reference as offered by a tv camera, video disc or time-base corrected v.t.r. It can also synchronize with lower quality video recorders such as VHS and Betamax when it can cope with such errors as a line frequency difference of 2%, 7us line timing variation relative to a stable reference over one second, and it will correct a quarter line period timing error following head switching in about 15 lines.

Motion sensor

A ultra-miniature precision linear motion potentiometer may be used in short-travel position sensing, in confined places and for linear movement voltage adjustment. The body is 31.75mm long with screwholes for mounting at 25.4mm centres. The shaft, 3.2mm thick has 16.6m travel. A range of resistances from 1K to 100ohms are offered and independant linearity is specified as 1%. Spectrol Reliance Ltd., Drakes Way, Swindon, Wilts. SN3 3HY. EWW215

256K S.RAM

By combining memory chips onto a hybrid substrate, it is possible to make up larger memories. The C.mos 256-03 combines four ram chip and a decoder to give a 32Kbyte static ram, with an access time of 100ns, an operating current of 40mA and a standby current of only 10mA. The hybrid is mounted in a standard 28-pin d.i.l. package and there are standard and military temperature tolerance versions available. Manufactured by Integrated Circuits Inc. and available from Pascall Electronics, Hawke House, Green Street, Sunbury-on-Thames, Middlesex. TW16 6RA EWW222

The unit has an input for a 1Vp-p composite video signal. The 15-way output is connected to the computer which needs to be slightly modified. It is powered either from auxiliary power output of the computer or can have a built in mains power supply. The price of the basic unit will be £199 without or £249 with a power supply. CCI Associates Ltd., Beechwood House, Depot Road, Newmarket, Suffolk. CB8 OHA. EWW214

www.americanradiohistory.com
Timing and signature analysis

Standard operating modes of this 40-channel instrument include the ability to save and recall blocks of data on disk, screen dumps of timing diagrams, signatures and the printing of data listings and disassembled code. Timing waveforms may be labelled automatically and software enables the user to create a label file or enter labels directly. The instrument has a 24-bit trigger and area trace with trigger and clock qualifiers operating up to 10MHz. Each of the 40 channels can have up to 1K memory allotted to it.

Standard operations include the disassembly of 6502, Z80, 6800, 6809, 8080, 8085 and other 8-bit processors.

Additional options include direct processor access for 6502 processors and cross-assemblers for 8086 and 68008 without the need to get expensive personality modules. Data may be transmitted to emote stations through a modem.

The system is based around a re-packaged BBC micro with a detachable keyboard. The housing includes two disc drives and space for such expansions as a hard disc drive, modem and a second processor. Lawrie T&M Ltd., Mercury House, Mercury Row, Otley, W Yorks LS21 3HE.

Low-cost 8048 development system

Writing software for the popular 8048 family of single-chip microcomputers normally entails the use of an expensive microprocessor development system. But a low-cost alternative is now available in the form of the Saldep-48, development system based on the BBC microcomputer.

The unit, which is self-powered, plugs into the computer’s 1MHz bus. The software, provided in eprom, includes a text editor for entering programs, a symbolic two-pass 8048 assembler and interactive de-bugging tools.

User programs can be stored on disc or cassette. The unit can program, read and verify the 8748, 8748H and 8749H eprom versions and it can act as an 8048 hardware emulator.

Saldep-48, which costs £925, was developed in co-operation with the Department of Electrical and Electronic Engineering at the University of Salford. Similar systems are in preparation for other single-chip microcomputers, such as the 8051 and 6800, and the IBM personal computer.

Volex Electronics Ltd., Volex House, Lissadel Street, Salford M6 6AP.

8088 educational system

The latest in the series of Microprofessor single-board computers is the MPF1/88 which is built around the 16-bit Intel 8088 processor. It is designed to teach the fundamentals of 8088-based hardware and may also, at £325, be used as a low cost development system. It allows designers to prototype control devices for robotics and other servo-systems and unlike many ‘packaged’ computers allows direct access to the processor.

Included in the standard software are instructions on writing and debugging programs, and introduction to assembly language and the fundamentals of i/o interfacing. Included on the board is 4K of ram (expandable to 24K) and a 16K eprom which may be added to up to a total of 48K. There is a two-line l.c. display which is actually a window onto a 20 column by 24 lines virtual screen. A full-sized qwerty keyboard is provided, together with a Centronics parallel interface and a 64-pin edge connector which allows any IBM-PC compatible expansion cards to be used. This allows for memory expansion, RS232c communications, colour video output and many other facilities in common with the IBM PC.

Standard features include an on-board monitor with many interactive sub-routines to aid the assembly-language programmer, routines to interface with any standard ASCII terminal, printer driver, and asynchronous communications routines. Also provided are a cassette interface, a power adaptor and a built in loudspeaker.

Documentation includes a User’s manual, monitor source listing, and a software reference guide which introduces 8088 assembly-language instructions and explains the internal workings of the monitor system software. Future options include a two-pass assembler with editor, a ram-based Basic interpreter and Forth. A low-cost 20-column thermal printer is available and an eprom programmer. Flight Electronics Ltd., Quayside Road, Bitterne Manor, Southampton SO2 4AD.

EWW206
JPR ELECTRONICS
UNIT M
KINGSWAY INDUSTRIAL ESTATE
LUTON BEDS LU1 1LP
TEL (0582) 410055
TELEX 925859 JPR

BIND IT... FIND IT!

Keep tabs on those valuable back issues the easy way with purpose-designed binders. They're sturdy made in a black finish with gold blocked title on spine. Each one holds six issues of Electronics and Wireless World.

£3.45 each (including postage) from Sandys Sales, Room 303, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

We're not kidding.

This board offers all you need to implement a simple controller. And you can develop your application on it as well. All you need is access to a VDU since the board comes with its own BASIC interpreter and PROM programmer. On-board is a Z8, 4k of CMOS RAM (expandable to 16k), one ROM socket, 40 lines of parallel I/O and a serial interface. For £169! For this and our large range of I/O boards, give us a call.
THE BEST APPROACH

£7,000-£30,000 + CAR

★ Where does your interest lie: Graphics; CAD; Robotics; Simulation; Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms: Radar. Opto and Laser?

★ Experienced in: VLSI: Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?

★ There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers

★ For free professional guidance: Call: 0638 742244
(till 8pm most evenings) or write (no stamp needed) to:

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED
FREEPOST, The Maltings, Burwell, Cambridge, CB5 0HB.

IMPERIAL COLLEGE
Department of Electrical Engineering
ELECTRONICS TECHNICIAN
(£7831 to £8934 inc. under review)

Required in the Microprocessor Teaching Unit. Duties will include the construction of digital and analogue circuits the repair and modification of electronic equipment and general technician support to the teaching and research programmes of the unit.

Applicants must hold an ONC or full C & G certificate, and it is essential that they have substantial experience of modern electronic circuits.

Applications giving details of education, training and experience should be sent to:- Departmental Superintendent, Department of Electrical Engineering, Imperial College, London SW7 2BT. Tel. 01-589 5111 Ext. 5105.

(2585)

UNIVERSITY OF ST ANDREWS
S.E.R.C. CASE STUDENTSHIP

Applications are invited for a CASE studentship in collaboration with the National Physical Laboratory. The successful applicant will become involved in the design and development of detectors, interferometers, and other forms of quasi-optical instrumentation for use in the far-infrared. The student will be trained in the use of the far-infrared millimetre-wave spectrometer. The student will then be involved in using the spectrometer aimed at providing wave or ground in a better understanding of the behaviour of quasiparticles in superconductors. It is anticipated that the project would be best suited to a student with a practical outlook, who has an interest in developing his or her skills in the areas of microwaves, optics and electronic engineering.

Applications should be received by 15th October 1985. Further details may be obtained from the author.

The successful candidate will be expected to register for a higher degree. Applications, which should include a CV and the names of two referees, should be sent to: Dr J. Levitt, Physics Department, University of St Andrews, Fife KY16 9SS, as soon as possible.

(2586)

Inner London Education Authority Learning Resources Branch, Television & Publishing Centre, Thackeray Road, London SW8.

Television Engineer

Salary range £7836 to £9906 plus £1419 London Weighting Allowance and an irregular hours allowance of £228.

The Mobile Videorecording Section, which is equipped to broadcast standard, makes observational classroom recordings for teacher education. A Television Engineer is required to join a technical team of 8 for operational and maintenance work involving rigging and driving duties.

Further details, including full job description and application forms from EO/Estab 1B, Room 366, The County Hall, London SE1 7PB. (Please enclose S.A.E.) The closing date for completed application forms is 5th July 1985.

This post is suitable for Job-share.

IEA IS AN EQUAL OPPORTUNITIES EMPLOYER.
The Queen's University of Belfast
The Computer Centre
HEAD OF HARDWARE SUPPORT AND COMMUNICATIONS DIVISION
£14,136 – £17,706

As part of the Senior Management team reporting to the Director of the Computer Centre, the successful applicant will lead a group of seven staff responsible for the Centre's data communications, hardware development and equipment maintenance programme. The post offers an invigorating opportunity to take over a senior managerial, technical and motivational role in a very active and stimulating University environment.

Applicants, male or female, should preferably be university graduates or equivalent in electrical or electronic engineering, demonstrating a comprehensive, in-depth knowledge and practical experience of data communications, state-of-the-art hardware, active managerial and technical expertise and a thorough knowledge of the general field of computing.

Salary scale: University Other Related Staff Grade III - £14,137 – £17,706 (under review from 1.4.85), initial placing according to age, experience and qualifications. Assistance with relocation.

Applications, including a full curriculum vitae and the names and addresses of three referees should be sent to the Personnel Officer, The Queen's University of Belfast, Northern Ireland BT7 1NN, from whom further particulars may be obtained.

If you are a 28 to 38 year old RF design engineer with a desire to learn the Scandinavian way of life — this ad might be the turning point of your professional career.

FINDIT is a small electronics Hi-Tech company closely associated with one of Norway's most profitable electronics industries.

Located in the picturesque city of Trondheim, we are developing sophisticated RF based mobile systems for relocation of moving objects. Trondheim, being the number one R & D centre of Norway, is the ideal place for electronics industries. We have a good network if suppliers and necessary services as well as excellent communications.

As a result of continued expansion of our development program we need to strengthen our design engineering team.

The candidate should be a graduate electronics engineer. 5 years with the industry is preferable and experience within VHF/UHF circuit design a must. We can offer a starting salary of £18,000-£24,000 according to qualifications and experience, good fringe benefits and a generous pension scheme. Fees for students at Trondheim – British School will be paid by us.

You will find an open, young and creative environment where you can see your ideas progress from initial concepts through prototype construction, test and evaluation to the pre-production stage.
Electronic Engineers—What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £6000 - £20,000.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

Please send me a TJB Appointments Registration form:

Name ..
Address ...

TJB ELECTROTECHNICAL
PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.

Tel: 0892 39388
(24 Hour Answering Service)
Broadcast Systems Engineering
Turning top products into total Systems.

Established in 1978, to specialise in the high technology field of professional broadcast television equipment, Sony Broadcast now has 10 overseas branches providing sales and other specialist engineering support to our customers, in a marketing area that covers Europe, the Middle East and Africa. We now employ 400 staff and enjoy a prominent position as a market leader with a wide range of state-of-the-art broadcast video and audio products.

The Systems Engineering Division plays a key role in the success of the Company, designing and equipping complete sound and vision broadcast and recording facilities. These facilities may comprise an entire television studio complex or a single mobile outside broadcast unit, often forming part of an existing, highly sophisticated national broadcast network, or representing a pioneering thrust into one of the world's remoter areas. Applications are now invited for the following challenging opportunities in the Systems Group:

Project Engineer
You will be expected to make a significant contribution to a project team which will turn a design concept into reality. This will involve the in-depth design, building and commissioning of facilities that will satisfy our customers' diverse needs. To assist you, you will be supported by a Systems Production Department comprising Materials Acquisition, Mechanical Engineering, Installation and Drawing Office skills. Project time-scales of 4-12 months will offer you a stimulating challenge, and the satisfaction of seeing your contributions in action fast.

Applicants should possess a formal electronics/electrical engineering qualification (a minimum of a Higher TEC) together with experience gained in the electronic manufacturing industry. A television broadcast background would be particularly relevant. The ability to interface confidently with technical customers is essential. Both positions will involve some overseas travel, and full product training will be provided.

First class conditions of employment are offered, and generous relocation assistance will be given where appropriate. Our salaries reflect the importance we place upon attracting the best highly skilled engineering staff and keeping them.

Please apply in the first instance to David Parry, Personnel Officer with details of your career to date.

Marketing Engineer
As a member of a Specialist Systems Marketing Team, you will be engaged in the conceptual design and costing of broadcast Systems. You must have an ability to analyse operational and technical requirements and turn them into practical solutions. You can expect to meet a wide range of customers from Professional Broadcasters and Production Companies through to National Government Officials in order to discuss their project and offer expert advice. To assist in the preparation of detailed proposals you will have the use of modern computer based graphic design and information processing equipment.

Sony Broadcast Ltd.
City Wall House
Basing View, Basingstoke
Hampshire RG21 2LA
United Kingdom
Telephone (0256) 59 583

SONY
Broadcast

ELECTRONICS & WIRELESS WORLD JUNE 1985
Appointments

More Hi-Tech Jobs

£8000 - £20,000

As a leading recruitment consultancy we have a wide selection of opportunities for high calibre Design, Development, Systems and supporting staff throughout the UK.

If you have experience in any of the following then you should be talking to us for your next career move:
- ARTIFICIAL INTELLIGENCE
- IMAGE PROCESSING
- MICRO HARDWARE & SOFTWARE
- GUIDED WEAPONS
- OPERATIONAL RESEARCH
- RF & MICROWAVE
- OPTICS
- MATHEMATICAL MODELLING
- SIMULATION
- COMPUTER SYSTEMS
- HIGH LEVEL PROGRAMMING
- SYSTEMS ENGINEERING
- ACOUSTICS
- FLUID DYNAMICS
- RADAR
- SATELLITES
- AVIONICS
- CONTROL
- ANTENNA

Opportunities exist with National, International and consultancy companies offering excellent salaries and career advancement.

For Free and Confidential career guidance call John Spencer or send a detailed C.V. Please quote reference WW/3.

Skyquip Technical Services
85 High Street, Winchester, Hampshire SO23 9AP
Tel: Winchester (0962) 69478 (24 hours)

TVS, the ITV programme company serving the South and South-East of England, requires an

Engineer - Vision Line Up

Central Technical Area

A vacancy has arisen within the Engineering Division for a Vision Line Up Engineer to be based at the TVS Studio Centre in Maidstone.

Applications are invited from qualified engineers who have preferably worked in a Central Technical Area within a broadcast television company; however, candidates from related engineering backgrounds will be considered.

We will also consider the possibility of a trainee to fill this position. In this instance, applicants should have 'A' level qualifications in both mathematics and physics.

If you think that you fit the bill, please apply in writing giving full details of your qualifications and experience, and quoting ref no. 15/SE/85, to:

Personnel Manager
TVS

Vinters Park, Maidstone,
Kent ME14 5NZ

TVS is an equal opportunities employer

ITV for the South & South-East

(2581)

Philip Drake Electronics is a successful and growing company that has now established itself as the leading U.K. supplier of studio communications equipment and programme quality sound distribution modules to the Broadcasting industry.

An increasing workload has lead to a requirement for the following personnel:

PROJECT AND TEST ENGINEERS

Project and test engineers are required to work in the Systems Engineering Group which primarily deals with the custom design, manufacture and test of studio talkback and intercom systems.

Project Engineers should have a suitable engineering qualification and at least two years experience of system/project engineering with professional analogue equipment. The work includes detailed system design, liaison with customers, and technical support for production and test.

Test Engineers should have analogue experience but have the ability to adapt to digital technology. The job entails testing custom built equipment from prototype circuit boards to complete studio systems and providing after sales service and support. The post is one which provides excellent opportunities for advancement within the systems group.

TECHNICIAN/JUNIOR ENGINEER

An opportunity exists for a Technician/Junior Engineer to join our product development team. The successful candidate will be involved in all aspects of design from concept to production. He/she will work primarily with analogue circuits although there will be involvement with digital circuits. An ability to work with minimum supervision is essential and it is expected that the successful candidate will be qualified to TEC or degree level although ability is more important. Experience of the professional audio industry would be an advantage.

SOFTWARE ENGINEER

We are currently looking for two suitably qualified software engineers to strengthen our development team. The successful candidates would be required to write software in PASCAL and ASSEMBLER for the MC68000 family and must be able to work on their own initiative with minimal supervision. The ability to communicate ideas clearly is essential.

In addition to attractive salaries, the company offers a non-contributory pension scheme, BUPA membership and a pleasant working environment in newly constructed premises in Welwyn Garden City.

If any of the above positions appeal to you please apply in writing including your current CV or phone Jenni McCoy on Welwyn Garden City (0707) 333866 for an application form.

Philip Drake Electronics Ltd.,
37 Broadwater Road,
Welwyn Garden City,
Herts AL7 3AX.

(2589)

ELECTRONICS ENGINEER

Required by fast growing company. An electronics engineer, competent in digital and analogue systems. Must be capable of working without supervision in the production, testing and trouble shooting of our range of instruments. While a practical approach is essential, the successful candidate will be qualified to at least HNC standard. Salary level will not be a problem for the suitable candidate.

Write in the first instance detailing age, qualifications and salary expected to:

Mr. B.E. Stevens, Managing Director,
Hounslow Test Equipment, 37 Fulleton Road, Croydon, Surrey.
CR0 6OR

(2575)

98

ELECTRONICS & WIRELESS WORLD JUNE 1985
LEWISHAM AND NORTH SOUTHWARK HEALTH AUTHORITY
GUY'S HOSPITAL
DEPARTMENT OF CLINICAL PHYSICS AND BIOENGINEERING

ELECTRONICS TECHNICIAN — MEDICAL PHYSICS TECHNICIAN III

This active, well established and well equipped Department provides a physical sciences service for a number of clinical departments in the Hospital. We require a technician to join our electronics servicing group. This work includes the maintenance and servicing of a varied range of medical electronic equipment and covers all aspects of patient orientated equipment from fixed installations to small portable instruments.

Experience in this type of work would be an advantage, but candidates with HM Forces experience or having a good background of TV servicing are encouraged to apply.

An ONC/HNC or equivalent qualification, followed by at least three years technical experience, are required.

Day release is available for approved studies for higher qualifications.

Salary: £7,492 p.a. rising to £9,367 p.a. inc.

For further information contact Mr. F. Trowell
Tel: 01-407 7600 Ext: 2574

Application forms are available from the Personnel Department
Guy’s Hospital, St Thomas Street, London SW1 9RT. Tel: 01-407 7600 Ext: 3471 quoting Ref: No: P/153

Closing date for completed applications: 31st May 1985.

(2588)

UNIVERSITY OF LEICESTER
DEPARTMENT OF COMPUTING STUDIES
Post of Experimental Officer

Applications are invited for a post of Experimental Officer in the Department of Computing Studies, available from 1st August 1985.

Candidates will be expected to have some hardware design experience and it would be an advantage to have a suitable postgraduate or industrial background. The post will involve working with members of staff to develop both hardware and software for research and teaching, and will also involve some supervision of laboratory classes and student projects. The Department uses mostly 16-bit and 8-bit microcomputers and experience of this type of machine would be an advantage.

Initial salary will depend on qualifications and experience and will be on the scale £6,600 to £10,330.

Further particulars may be obtained from the Registrar, University of Leicester, University Road, Leicester LE1 7RH, to whom applications should be sent on the form provided by 31st May 1985.

(2577)

CHARING CROSS HOSPITAL
ELECTRONICS TECHNICIAN
(MPT IV)

Technician required to work with a team engaged on the maintenance of a wide range of electro-medical equipment. The successful applicant will largely be involved with repair, calibration and safety checking. ONC or equivalent is essential and a mechanical aptitude would be an advantage.

For further details please contact the Unit Personnel Department, Riverside Health Authority, Parsons House, Charing Cross Hospital, Fulham Palace Road, Hammersmith W6. Tel: 01-748 2040 extn 2992.

(2590)

College of Technology, Yarmouk University, Jordan.

Faculty and technical staff positions in EE Technology available Sep 85 and Feb 86. Relevant educational qualifications and demonstrated teaching/industrial abilities required. Areas of interest include, but are not restricted to Power & Machines, Communications, Electronics, Computers, Controls, Instrumentation, and Manufacturing. Responsibilities include teaching and advisory duties in a quality undergraduate EE Technology program, as well as assisting in the overall development of the College.

Salary and Salary commensurate with qualifications and experience. An excellent benefits package. Positions open until filled. Letters of application, detailed resumes, copies of official transcripts, and at least three professional letters of reference should be sent to Faculty Affairs Division, Yarmouk University, Irbid, Jordan.

(2574)

SOUND ENGINEER

Applications are invited for the newly-created post of TECHNICAL ASSISTANT to the studio’s HEAD OF TECHNICAL SERVICES.

The successful candidate will work in the field of SOUND ENGINEERING for film post-production, and must have a thorough theoretical background in electronics and light electrical engineering. Ability in project management is a priority, involving audio and control systems, planning, specification and installation, with skills at the drawing board and development bench. A working understanding of remedial and routine maintenance is required, and experience with video systems would be an advantage.

The prospects for advancement would be best for an applicant having a good manner and appearance, an even temperament, and the ability to deal with clients, to handle administrative duties and to write clear English. The suggested age range is 28 to 40 years.

In conformity with studio practice, membership of ACTT (the Association of Cinematograph, Television and allied Technicians) would be expected, and due weight would be given to applications from present members. Non-members should be willing to apply for acceptance by this union.

Please forward a full c.v. (quoting ref: ACN/GFL/A) to:
— Personnel Dept., Pinewood Studios, Pinewood Road, Iver, Bucks SL0 0NH.
Tel: Iver (0753) 651700

(2535)

RECORDING STUDIO MAINTENANCE MANAGER

Required for major North London Studio complex. Applicants should have a minimum of 3 years experience in this field. Knowledge of Studer type machines, SSL desks an advantage.

Phone: Chris Dunn 01-459 8899

(2595)

YOU ARE UNDER STARTERS ORDERS

For the biggest Mobile Rally in the South Of England on July 14th 10 a.m. to 5 p.m. at the Brighton Race Ground. Huge “Buy & Bring Stall”, 20,000 sq. ft under cover exhibition area, plus attractions for the XYL and children, restaurant facilities. The Rally which caters for the whole family. Talks in S22 and 3.5 Mhz. Admission £1 children free if accompanied by an adult.

(2593)

The Queen’s University of Belfast
The Computer Centre
COMPUTER DEVELOPMENT ENGINEER £11,876 — £14,925 (under review)

The computer development Engineer will be a senior member of the Hardware Support and Communications Division, which is responsible for the Centre’s data communications, hardware development and equipment maintenance programmes. The post offers an invigorating opportunity to take on a senior technical role in a very active and stimulating University environment. Applicants, male or female, should preferably be university graduates or equivalent in electrical or electronic engineering, demonstrating an in-depth knowledge and practical experience of data communications, state-of-the-art hardware and active technical expertise.

Salary scale (Universities Other Related Staff Grade III) £11,676—£14,925 (under review for at least 1.5 yrs), initial placement according to age, experience and qualifications. Assistance with relocation available. Further particulars and an application form are available from the Personnel Officer, The Queen’s University of Belfast, Northern Ireland, BT7 1NN.

(2578)
MEDICAL RESEARCH COUNCIL
INSTITUTE OF HEARING RESEARCH
SOUTHAMPTON CLINICAL OUTSTATION

RESEARCH OFFICER
IN ELECTRONICS
(RO/SRO)

A vacancy exists for a research officer with experience in electronics at IHR Southampton. The post will be based at the Institute of Sound and Vibration Research at the University, but will also relate to the other half of the team's activities, at the Royal South Hants Hospital.

The research is on clinically applicable aspects of hearing and deafness, advanced testing techniques, and the use of signal averaging equipment by computer for which a very high level of technical support is required. The appointee will be required, with minimal supervision to design and construct new equipment involving transducers and interfaces. There will also be a little general technical support for the research team including calibration, repair and servicing work. A general electronics background is needed and a knowledge of Z80 CP/M systems and of digital interface techniques would be advantageous. For further information about the post please contact Dr. A.R.D. Thornton (Tel: 0703 37946).

The appointment will be made on the Research Officer grade (£6483-8492) or Senior Research Officer grade (£8574-10,938). The MRC has a pension scheme and generous leave allowances.

CALIBRATION/ SERVICE ENGINEERS

£8,250 + Overtime + July Review

Bradley Electronics is one of the leading organisations in the electronics industry. We provide a range of advanced electronic equipment and engineering services to MoD, Industry and the Health Care market. Our Repair and Calibration laboratory, the largest of its type in the UK, provides a comprehensive service for commercial and military organisations, with full facilities for maintaining and calibrating all types of electronic equipment.

Opportunities exist for Engineers to work with a wide variety of equipment, including Multimeters, Oscilloscopes, Navigation Systems and Electronic Counter Measure Systems. Ability to trace, diagnose and rectify faults in these complex equipments is essential. Education to a minimum of C&G/TEC or equivalent is required, together with considerable practical knowledge and experience in electronic testing, servicing of radar, and telecommunications equipment. Experience of this nature gained in the Services will be of particular value.

The Company is located close to the underground, bus routes and the North Circular Road/M1. The salary and conditions package available is consistent with the Company's membership of a large, successful Group with considerable resources.

For full details please call our Personnel Manager, Roger Loughney, on 01-450 7011. Or write to him at Bradley Electronics Limited, Electrical House, Neasden Lane, London NW10 1RR.

Bradley Electronics
Telecommunications
Engineering Technicians

Openings in Servicing and Maintenance
Up to £8,873

Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales - some of the latest you will find in operation anywhere.

We have a number of vacancies at our Service Centres in various parts of the country, for Telecommunications Engineering Technicians with practical skills in locating and diagnosing faults in a wide range of equipment from computer-based data transmission to FM and AM radio systems.

The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep up to date on developments and new equipment. There are also opportunities for day release to gain higher qualifications.

Applicants, male or female, must be qualified to at least City & Guilds Intermediate Telecommunications standard and possess a current driving licence. Some travelling will normally be involved. Registered disabled persons can of course apply.

The Home Office is an equal opportunities employer.

Salary will be on a scale £6501 to £8873 a year with generous leave allowance and pension scheme.

Good prospects for promotion. If you are interested in working with us, please write for further details and an application form, quoting reference WY/3 to Miss M. Andrews, Home Office, Directorate of Telecommunications, Horseferry House, Dean Ryle Street, London SW1P 2AW.

Home Office

Directorate of Telecommunications

COMMUNICATIONS DESIGN
FROM START...

At H.M. Government Communications Centre we're using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, test and evaluation, to the pre-production phase, with a chance to influence every stage. Working conditions are pleasant, the surroundings are attractive, and the career prospects are excellent.

Ideally we're looking for men and women who have studied electronics or electronics-related subjects to degree level or equivalent and have had some experience of design, whether obtained at work or through hobby activities. Appointments will be made as Higher Scientific Officer (£7,435 - £10,039) or Scientific Officer (£5,908 - £8,153) according to qualifications and experience.

For further details please write to the address given below. It would be particularly helpful if an outline of your personal interests and practical experience could be included.

The Recruitment Officer, HMGCC, Hanslope Park, Buckinghamshire MK19 7Bt.

...TO FINISH
APPOINTMENTS

Do you regard yourself as an electronics whiz kid? Then I would like to hear from you. Formal qualifications may not be necessary. Age not important. Interested? Then telephone 01 941 2225 and ask for Mr Lawrence. 2596

BUSINESS OPPORTUNITY

Due to very strong demand, ILP Electronics Limited - UK manufacturer of audio modules and related products - urgently seek Yugoslavian based representative/distributor to market their range. Reply to:

ILP Electronics Limited
Graham Bell House, Roper Close, Centerbury. Kent. Telephone: 0227-454778

T.I. DATA BOOKS

Due to very strong demand, ILP Electronics Limited - UK manufacturer of audio modules and related products - urgently seek Yugoslavian based representative/distributor to market their range. Reply to:

ILP Electronics Limited
Graham Bell House, Roper Close, Centerbury. Kent. Telephone: 0227-454778

FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.T.H. artwork (or artwork designed by us). Competitive hourly rates, and high standard of work. Howard Jenkins Limited, 34, High St., Hatfield, Herts. Tel. (0727) 474448/474554.

SHEET METALS, FLOORS or bench. Please call or write - design advice, prototype quantities, production schedules; Gallaghe Electronics/Engineering Somerset TA5 5NS. Tel: 0846/79718

EAST STREET, FARNHAM, SURREY.
TEL: 0252 722666

G. P. SKINNER

CONTACT: G.P. SKINNER

A SELECTION OF TELEVISION AND ELECTRONIC COMPONENTS FOR DISPOSAL

68 PF Ceramic Cop
470 PF Pulse Ceramic 12K
PYE 731/732 - Mains Switch
TEC - 8000/8500 Therm Cut Out
GEC - 10400/Therm Cut Out
7400D
CB308B
B137
CB408
B308B
B302A
DA661
PHIL 210 - Brightness knob
PHIL 210 - Volume knob
TEC 1500 - Brilliant on knob

CATHODE RAY TUBE COLOUR
A51 - 110K/A51 - 220K
A67 - 120K
A56 - 120X
ALL AT KNOCK DOWN PRICES

FOR A DETAILED LIST PLEASE APPLY TO 0252-722666

(2591)

FREE P.T.H. PROTOTYPE of the finest quality with EVERY P.T.H. artwork (or artwork designed by us). Competitive hourly rates, and high standard of work. Howard Jenkins Limited, 34, High St., Hatfield, Herts. Tel. (0727) 474448/474554.

SHEET METALS, FLOORS or bench. Please call or write - design advice, prototype quantities, production schedules; Gallaghe Electronics/Engineering Somerset TA5 5NS. Tel: 0846/79718

EAST STREET, FARNHAM, SURREY.
TEL: 0252 722666

G. P. SKINNER

CONTACT: G.P. SKINNER

A SELECTION OF TELEVISION AND ELECTRONIC COMPONENTS FOR DISPOSAL

68 PF Ceramic Cop
470 PF Pulse Ceramic 12K
PYE 731/732 - Mains Switch
TEC - 8000/8500 Therm Cut Out
GEC - 10400/Therm Cut Out
7400D
CB308B
B137
CB408
B302A
DA661
PHIL 210 - Brightness knob
PHIL 210 - Volume knob
TEC 1500 - Brilliant on knob

CATHODE RAY TUBE COLOUR
A51 - 110K/A51 - 220K
A67 - 120K
A56 - 120X
ALL AT KNOCK DOWN PRICES

FOR A DETAILED LIST PLEASE APPLY TO 0252-722666

(2591)
WANTED

All types of surplus electronic components and equipment.

We specialise in factory clearance.

SGS Electronics,
The Vineyard, Bowley Lane,
Boddenham, Herefordshire
HR1 3LF. Tel (056) 864 532

E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement.

Tel: 01-208 0766
Telex: BB14998

SURPLUS

We offer good prices for test equipment, components, redundant computers, PCB's connectors. Immediate settlement.

TIMEBASE

94 Allfriston Gardens
Shelling, Southampton SO2 8FU
Telephone: (0703) 431 323

ARTICLES FOR SALE

FM BROADCAST EQUIPMENT

A special range of high quality transmitters, power amplifiers, stereo encoders, UHF repeater links, compressors, antennas etc.

Built to high specifications at an economic price, VHF/UHF data and telemetry systems (MPT 1309) available ex-stock.

Full catalogue available.

Cyberscan International, 3 Eastcote View, Pinner, Middx HA5 1AT.
Tel: 01-866 3300

WANTED

SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT

We also welcome the opportunity to quote for complete factory clearance.

BAMBER ELECTRONICS

5 Station Road, Littleport, Cambs.
Phone: 121 (0353) 861385

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M & B RADIO

86 Bishopsgate Street
Leeds LS1 4BB
0532 435649

STEWART OF READING

110 Wykeham Road
Reading RG6 1PL
Tel No: 0734 68041

TOP PRICES PAID FOR ALL TYPES OF SURPLUS TEST EQUIPMENT, COMPUTER EQUIPMENT, COMPONENTS etc. ANY QUANTITY.

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Quality workmanship by professionals at economic prices.

Please telephone 01-646 5686 for advice or further details.

TAMWORTH MANOR

302-310 Commons Side East, Mitcham

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £10.00 PER LINE. Average six words per line, Minimum £25 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus £5
- Cheques, etc., payable to "Business Press International Ltd." and cross "& Co."
- 15% VAT to be added.

NAME
ADDRESS

REMITTANCE VALUE ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS

ELECTRONICS & WIRELESS WORLD JUNE 1985

103

www.americanradiohistory.com
ELECTRONICS & WIRELESS WORLD

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 95 – 103

PAGE PAGE PAGE

AH Supplies.......................... 93
AM Electronics........................ 74
AWR Technology........................ 74
Advertising Standards Authority...... 14
Air Link Trans........................ 56
Antex (Electrical) Outside back cover
Arcom................................. 93
Arnon Products Ltd 65
Aspen Electronics 2
Audio Electronics 104
Automation & Control Technog...... 28
B Bamber Electronics 14
Beckenham Peripherals............ 15
Black Star Ltd 48
Bytron Ltd 48
Cambridge Microprocessor 16
Cavendish Automation 66
Colomar Electronics 56
Computer Appreciation 9
Conquin Software 2
Conquin Software .. Inside front cover
Crash Barrier 2
Cricklewood Electronics 68
Crotech Instruments 89
Cybermatics Application 15
Datman Design 55
Digitak 89
Digitak Business System 12
Display Electronics 10/11
E.A. Sower 5
EG & G Reticon 9
EMS Mig 56

OVERSEAS ADVERTISMENT AGENCTS

France and Belgium: Pierre Mussard, 18 – 20 Place de la Madeleine, Paris 75008.

Telephone: 225 009 – Telex: Budapest 22-4525

ITALY:

JAPAN:

Mitsubishi, Takase Media – BPL (Japan), B 212, Azabu Heights, 15,10 Roppongi, Minato-ku 106.

Telephone: (03) 583 0581.

Telephone: (212) 687-0350 – Telex: 32837.

Telephone: (312) 830-7174.

Victor A. Jach, Elrma International, P.O. Box 34807, Los Angeles, California 90024, USA – Telephone: (213) 621-8591 –

Telex: 18-1059.
Spot On!

Time has been our business since 1974. Precision has been our aim. We have experience in display, code generation, off air time, off air frequency and frequency standards. Single units to the largest system.

Our time is at your disposal.

European Electronic Systems Limited, Woodham Mortimer Place, Maldon Essex CM9 6SW Telephone: 024541-5911 Telex: 995917

CIRCLE 2 FOR FURTHER INFORMATION
SOLDERING

FREE

`How To Solder` booklet and pack of solder

Tomorrows Soldering Technology Today.

ANTEX has a worldwide reputation for quality & service & for many years has been one of the best known & most popular names in soldering. Always at the forefront of technology, ANTEX is continually researching new and better ways of achieving more accurate, reliable, and cost effective soldering. On ANTEX Soldering Irons, the advanced design of the interface between the element & the bit allows more efficient heat transfer to the bit and improved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an XS25 watt iron can be used for tasks where a 40 watt iron would normally have been required.

ANTEX Soldering Irons exhibit exceptionally low leakage currents & hence are suitable for use on Static Sensitive Devices. Sophisticated temperature controlled soldering units have recently been added to the ANTEX range.

Model CS
- 17 Watts. 240 volts, fitted with British Plug.
- SKS: Soldering Kit. Contains model CS 240V Iron, an ST4 Stand and solder
- SK6: Soldering Kit. Contains model XS240V Iron, an ST4 Stand and solder
- SK5: Soldering Kit. Contains model XS240V Iron, an ST4 Stand and solder
- SK5-BP: and SK6-BP: Soldering Kits as above with British Plug

Model C
- Model XS
- Model XS-BP
 - 25 Watts. 240 volts, fitted with British Plug.

ST4 Stand
- To suit all irons.

TCSU-D
- Temperature-Controlled Soldering Unit

Model CS-BP
- 17 Watts. 240 volts, fitted with British Plug.

TCSU1
- Very robust temperature controlled Soldering Unit, with a choice of 30 Watt (CSTC) or 40 Watt (XSTC) miniature irons.
- Range 65°C to 420°C.
- Accuracy ±2°C.

TCSU-D
- Elegant Temperature Controlled Soldering Unit with 50 Watt Iron (XS3) and built around FERRANTI custom-made ULA. Range 65°C to 450°C. Accuracy ±5°C. Zero crossing switching.

Readership
- CIRCLE 3 FOR FURTHER INFORMATION